JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION- December, 2018

M. Tech III Semester

COURSE NAME: Advanced Theory of Computation		
COURSE CREDITS: 3 MAX.	TIME: 120 Minut	es
Note: All questions are compulsory. Carrying of mobile phone during of	examinations will	be
treated as case of unfair means.		
Q1. Definition of a language L with alphabet {a} is given as following. L= {	$\{a^{nk} \mid k > 0, \text{ and } n \}$	S
a positive integer constant} What is the minimum number of states needed in	n a DFA to recogn	ize 🔪
L?	(3)	(co1)
Q2. Construct PushDown Automata for L={0 ⁿ 1 ^m 2 ^m 3 ⁿ }. Trace the acceptance		
string by this PDA: 00011112222333.	(4)	(co2)
Q3. Which of the following problems are decidable? Support your answer	er with appropriate	
explanation.	(6)	
1) Does a given program ever produce an output?		(co 5,
2) If L is a context-free language, then is L' (complement of L) also	context-free?	
3) If L is a regular language, then is L' also regular?	•	
4) If L is a recursive language, then, is L' also recursive?		<i>;</i>
Q4. Does the PCP with two lists x=(b,bab³,ba) and y=(b³,ba,a) have a solution	on? (3)	(CO 5)
Q5. Describe the class of languages accepted by different machines in Autor	mata theory. Draw	a /(a6)
Venn Diagram also for the same.	(7)	رعات
Of Draws a TM for subtraction apprection as (2.4) or (4.2)	(6)	(C ~ 16)
Q6. Draw a TM for subtraction operation. eg. (3-4) or (4-3)	(0)	" (co6) (co\$) (co7)
Q7. What are NP, P, NP-complete and NP-Hard problems?	(6)	(CO7)