

2e

Basic Electronics and Linear Circuits

N N Bhargava D C Kulshreshtha S C Gupta

NITTTR Chandigarh

Improved pedagogy includes

- 71 Solved Examples
- 310 Illustrations
- 286 Review Questions
- 255 Objective-type Questions
- 83 Tutorial Problems
- 22 Experiments

BASIC ELECTRONICS AND LINEAR CIRCUITS

Second Edition

(Late) N N Bhargava

National Institute of Technical Teachers' Training and Research Chandigarh

D C Kulshreshtha

Jaypee University of Information Technology
Waknaghat, Solan

S C Gupta

Hindustan Institute of Technology and Management

McGraw Hill Education (India) Private Limited

NEW DELHI

McGraw Hill Education Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sydney Tokyo Toronto

ion McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited P-24, Green Park Extension, New Delhi 110 016

Basic Electronics and Linear Circuits, 2/e

Copyright © 2013, 1984, National Institute of Technical Teachers' Training and Research, Chandigarh.

Fifth reprint 2015

ROXYCDLVRARZR

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers, McGraw Hill Education (India) Private Limited.

ISBN (13 digits): 978-1-25-900646-3 ISBN (10 digits): 1-25-900646-8

Managing Director: Kaushik Bellani

Head-Higher Education (Publishing and Marketing). Vibha Mahajan

Publishing Manager—SEM & Tech Ed.: Shalini Jha

Editorial Executive: Koyel Ghosh

Manager—Production Systems, Satinder S. Baveja Asst. Manager—Production, Anjali Razdan

Asst. Manager—Production: Anjan Razdan
Asst. General Manager—Higher Education Marketing: Vilay Sarathi

Senior Product Specialist: Tina Jajoriya

Senior Graphic Designer—Cover: Meenu Raghay

General Manager-Production: Rajender P. Ghansela

Manager-Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to be reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness of any information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This work is published with the understanding that McGraw Hill Education (India) and its authors are supplying information but are not attempting to render engineering or other professional services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset Tej Composers, WZ 391, Madipur, New Delhi 110 063, and text and cover printed at Magic International Pvt. Ltd., Sector-31 (Industrial), Greater Noida 201306.

Visit us at: www.mheducation.co.in

CONTENTS

Abou	t the Authors		i
Forev	vord		1
Prefa	ce		xiii
Unit	1 Introduction to Electronics		1
1.1	What is Electronics? 1		
1.2	Applications of Electronics 2		
1.3	Modern Trends in Electronics 5		
1.4	Electronic Components 5		
1.5	SI Units 20		
	Review Questions 25		
	Objective-Type Questions 26		
Unit	2 Current and Voltage Sources		29
2.1	Sources of Electrical Power 29		
2.2	Internal Impedance of a Source 32		
2.3	Concept of Voltage Source 33		
2.4	Concept of Current Source 38		
2.5	Equivalence between Voltage Source and Current Source	40	
2.6	Usefulness of the Concept of Voltage and Current Source in Electronics 46		
	Review Questions 49		
	Objective-Type Questions 49		
	Tutorial Sheet 2.1 52		
	Tutorial Sheet 2.2 53		
Unit 3	3 Semiconductor Physics		55
3.1	Why Study Semiconductor Physics 55		
3.2	Semiconductor Materials 56		
3.3	Structure of an Atom 57		
3.4	Metals, Insulators and Semiconductors 63		

viii Contents

3.5	Intrinsic Semiconductors 64
3.6	Extrinsic Semiconductors 69
	Review Questions 73
	Objective-Type Questions 74
Unit 4	Semiconductor Diode 78
4.1	PN-Junction 79
4.2	Junction Theory 79
4.3	V-I Characteristics of a PN-Junction Diode 84
4.4	The Ideal Diode 86
4.5	Static and Dynamic Resistance of a Diode 87
4.6	Use of Diodes in Rectifiers 89
4.7	How Effectively a Rectifier Converts AC into DC 98
4.8	How to get a Better DC 105
4.9	Types of Diodes 110
	Review Questions 116
	Objective-Type Questions 117
	Tutorial Sheet 4.1 121
	Experimental Exercise 4.1 122
	Experimental Exercise 4.2 125
	Experimental Exercise 4.3 127
	Experimental Exercise 4.4 129
	Experimental Exercise 4.5 131
	Experimental Exercise 4.6 133
Unit 5	Bipolar Junction Transistors (BJTs)
5.1	Introduction 138
5.2	Junction Transistor Structure 138
5.3	The Surprising Action of a Transistor 140
5.4	The Working of a Transistor 142
5.5	Transistor Amplifying Action 147
5.6	Three Configurations 150
5.7	Transistor Characteristics 151
5.8	Comparison Between the Three Configurations 165
5.9	Why is CE Configuration Widely used in Amplifier Circuits? 167
5.10	Basic CE Amplifier Circuit 169
	Construction of Transisters 174

5.12	Transistor Data Sheets 177	
5.13	Thermal Runaway and Heat Sink 180	
	Review Questions 181	
	Objective-Type Questions 182	
	Tutorial Sheet 5.1 187	
	Tutorial Sheet 5.2 188	
	Tutorial Sheet 5.3 188	
	Experimental Exercise 5.1 189	
	Experimental Exercise 5.2 193	
Unit 6	Field Effect Transistors (FETs)	19
6.1	Introduction 196	17
6.2	Junction Field-Effect Transistor (JFET) 197	
6.3	Metal-Oxide Semiconductor FET (MOSFET) 202	
6.4	Depletion-Type MOSFET (DE MOSFET) 203	
6.5	Enhancement-Type MOSFET (EN MOSFET) 205	
6.6	Complementray MOS (CMOS) 208	
6.7	Comparison of JFET, MOSFET and BJT 210	
	Review Questions 211	
	Objective-Type Questions 212	
	Experimental Exercise 6.1 213	
Unit 7	Transistor Biasing and Stabilisation of Operating Point	21
		216
7.1	Introduction 216	
7.2 7.3	Why Bias a Transistor? 217	
7.4	Selection of Operating Point 217	
7.4	Need for Bias Stabilisation 220	
7.6	Requirements of a Biasing Circuit 221 Different Biasing Circuits 221	
7.7	PNP Transistor-Biasing Circuits 243 Biasing the FET 244	
7.0	Review Questions 246	
	Objective-Type Questions 247	
	Tutorial Sheet 7.1 250	
	Tutorial Sheet 7.2 251	
	Tutorial Sheet 7 3 251	
	Tutorial Sheet 7.4 252	
	Experimental Exercise 7.1 254	
	Experimental Exercise 7.1 254 Experimental Exercise 7.2 256	
	Experimental Exercise 7.2 250 Experimental Exercise 7.3 257	
	Emperation Line Cose 1.3 431	

Unit 8	Small-Signal Amplifiers	259
8.1	Introduction 259	
8.2	Single-Stage Transistor Amplifier 260	
8.3	Graphical Method 261	
8.4	Equivalent Circuit Method 266	
8.5	FET Small-Signal Amplifier 277	
	Review Questions 281	
	Objective-Type Questions 282	
	Tutorial Sheet 8.1 283	
	Tutorial Sheet 8.2 285	
	Tutorial Sheet 8.3 287	
	Experimental Exercise 8.1 287	
TT 1. 0	N. W. C	200
Unit 9		290
9.1	Do We Require More Than One Stage? 291	
9.2	Gain of a Multi-Stage Amplifier 291	
9.3	How to Couple Two Stages? 294	
9.4	Frequency Response Curve of an RC-Coupled Amplifier 300	
9.5	Analysis of Two-Stage RC-Coupled Amplifier 307	
9.6	Distortion in Amplifiers 315	
9.7	Classification of Amplifiers 318	
	Review Questions 319	
	Objective-Type Questions 321	
	Tutorial Sheet 9.1 323	
	Experimental Exercise 9.1 323	
	Experimental Exercise 9.2 326	
Unit 1	0 Power Amplifiers	329
10.1	Need for Power Amplifiers 329	
10.2	Difference between Voltage Amplifier and Power Amplifier 330	
10.3	Why Voltage Amplifier Cannot Work as a Power Amplifier? 331	
10.4	How to Avoid Power Loss in R_C ? 332	
10.5	Single-Ended Power Amplifier 332	
10.6	Why Class-B and Class-C Operation is More Efficient	
	than Class-A? 339	
10.7	Harmonic Distortion in Power Amplifiers 340	
10.8	Push-Pull Amplifier 342	

	Review Questions 350	
	Objective-Type Questions 351	
	Tutorial Sheet 10.1 352	
	Tutorial Sheet 10.2 353	
	Experimental Exercise 10.1 353	
	Experimental Exercise 10.2 355	
Unit 1	11 Tuned Voltage Amplifiers	359
11.1	Need for Tuned Voltage Amplifiers 359	
11.2	Resonance 361	
11.3	Single-Tuned Voltage Amplifier 370	
11.4	Double-Tuned Voltage Amplifier 373	
	Review Questions 374	
	Objective-Type Questions 375	
	Tutorial Sheet 11.1 377	
	Tutorial Sheet 11.2 377	
	Tutorial Sheet 11.3 378	
	Experimental Exercise 11.1 378	
Unit 1	2 Feedback in Amplifiers	381
12.1	Concept of Feedback in Amplifiers 381	
12.2	Types of Feedback 383	
12.3	Voltage Gain of Feedback Amplifier 384	
12.4	How is Negative Feedback Advantageous? 387	
12.5	Amplifier Circuits with Negative Feedback 394	
	Review Questions 396	
	Objective-Type Questions 397	
	Tutorial Sheet 12.1 398	
	Tutorial Sheet 12.2 398	
	Tutorial Sheet 12.3 399	
	Experimental Exercise 12.1 399	
	Experimental Exercise 12.2 402	
Unit 1	3 Oscillators	404
13.1	Why Do We Need an Oscillator? 404	
13.2	Classification of Oscillators 405	
13.3	How a Tuned Circuit can be made to Generate Sine Waves 405	
13.4	Positive Feedback Amplifier as an Oscillator 408	

		٠		٠	۰
V	r	1		٦	ı
л	L	J	Ļ	J	ι

13.5 LC Oscillators 409

Contents

13.6	RC Oscillators 415		
13.7	Crystal Oscillators 420		
13.8	Astable Multivibrator 422		
	Review Questions 424		
	Objective-Type Questions 425		
	Tutorial Sheet 13.1 426		
	Experimental Exercise 13.1 426		
	Experimental Exercise 13.2 428		
Unit 1	4 Electronic Instruments		430
14.1	Introduction 431		
14.2	Multimeter 431		
14.3	Electronic Multimeters 445		
14.4	Cathode-Ray Oscilloscope (CRO)	449	
14.5	Audio Signal Generators 462		
14.6	Strain Gauge 464		
	Review Questions 465		
	Objective-Type Questions 467		
	Tutorial Sheet 14.1 470		
	Tutorial Sheet 14.2 470		
	Experimental Exercise 14.1 471		
	Experimental Exercise 14.2 472		
Index			
HULL			177

Basic Electronics and Linear Circuits 2e

Salient Features

- Simplistic presentation of the fundamentals of electronics
- Emphasis on semiconductor devices and applications
- Experimental exercises to facilitate students in conducting laboratory experiments
- Tutorial sheets at the end of each unit to help students practice and reinforce the concepts learnt

New to the Edition

- Concepts of vacuum tube circuits replaced with FETs
- Biasing and bias stabilisation
- Small signal amplifiers and equivalent circuits
- Electronic multimeters

Write to us at info.india@mheducation.com

www.mheducation.co.in

