Dr. Kojiv ganguly

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT **TEST I EXAMINATION (February-2018)**

M. Tech. (II- SEM.)/B.Tech. (VIII- SEM.)

COURSE CODE: 14M31CE214

MAX. MARKS: 15

COURSE NAME: Process Design in Environmental Engineering

COURSE CREDIT: 3

MAX. TIME: 1 HR

Note: Attempt all Questions. Carrying of mobile phones during exams will be treated as case of unfair means. Assume suitable data if required.

Design a waste stabilization pond for a population of 150,000 having wastewater flow requirement of 1. 300 lpcd. The BOD₅ consumption is 70gm/capita/day and SO₄-2 concentration is 130 mg/l. The pH value varies between 7.5-8.0 and coliform measured is $10^6/1000$ ml. The effluent $10^6/1000$ ml. The effluent $10^6/1000$ ml. greater than 50 mg/l. The latitude of the location is the 30°N and average radiation in Jan is 140 cal/cm²/day. The ambient winter and summer temperature is 17°C and 35°C respectively. The temperature of wastewater is 20°C. The oxygen production is 1.3 times algal production and unit heat of combustion is 6000 cal/gm. The value of η is 8%. Assume L = 150 kg O₂/hect/day and K_p at 20°C is 0.11. Assume a part temperature of 12°C (8) is 0.11. Assume pond temperature of 12⁰C. (8)

Design an aerated lagoon for a flow of 15000 m³/day having ap influent SBOD₅ and suspended solids 2. of 250 mg/l. The overall first order BOD₅ removal rate constant is 2d⁻¹ at 20^oC. The ambient summer and winter temperature is 35°C and 15°C and the temperature of wastewater is 15°C. Assume $\theta = 1.07$, $\alpha = 0.90$, $\beta = 1.01$. The elevation is 1500 m and oxygen concentration to be maintained is 3 mg/l. The lagoon depth is 3 m and HRT is 12 days. Assume 1.0.5. The effluent SBOD₅ is 20 mg/l. Take $K_s = 100$ Mg/l. $M_s = 1.00$ Mg/l. $M_s =$ ssun

100, $K_d = 0.07$, Y = 0.5 and K = 5. (7)