JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- Dec. 2017

Ph.D. Mathematics: I Semester

COURSE CODE: 17P1WMA111

MAX. MARKS: 35

COURSE NAME: DIFFERENTIAL GEOMETRY

COURSE CREDITS: 3

MAX. TIME: 2 Hrs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. Let $V_1 = U_1 xU_3$, $V_2 = U_2$ and $V_3 = xU_1 + U_3$. Prove that the vectors $V_1(p)$, $V_2(p)$, $V_3(p)$ are linearly independent at each point $p \in R^3$. [5 Marks]
- 2. For any function f, show that the vector fields $E_1 = (\sin f U_1 + U_2 \cos f U_3)/\sqrt{2}$, $E_2 = (\sin f U_1 U_2 \cos f U_3)/\sqrt{2}$, $E_3 = (\cos f U_3 + \sin f U_3)$; form a frame field, and find its connection forms.
- 3. Define a differentiable manifold and explain it by an example.

[6 Marks]

- 4. Define the normal curvature $K_n(u)$ in the u direction. Moreover by means of a rough sketch interpret the geometric meaning of $K_n(u) > 0$ and $K_n(u) < 0$. [6 Marks]
- 5. Define the Gaussian curvature K at a point of a surface and using this classify a point p of a surface S as elliptic, hyperbolic, parabolic or planar.

 [6 Marks]
- 6. Define the following:

[6 Marks]

- (a) Connected surface
- (b) Compact Surface
- (c) Orientable surface
