JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- December 2017

MTech 1st / B.Tech 7th

COURSE CODE: 10M11EC111

MAX. MARKS: 35

COURSE NAME: Advanced Communication System

COURSE CREDITS: 3

MAX. TIME: 2Hrs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

WRITE IN SHORT TO SAVE YOUR TIME TO ANSWER ALL THE QUESTIONS

- 1. (20 marks) Short answers type questions.
 - a. Draw the transmitter and receiver structure of the OFDM system.
 - b. Why cyclic prefix is used in the OFDM system?
 - c. Draw the block diagram of RAKE receiver.
 - d. Mention the names of four multiple accessing techniques.
 - e. Write the benefits of Spread Spectrum technique and its types.
 - f. Explain in short the significance of coherence bandwidth, coherence time, delay spread, and doppler's frequency, and explain their dependencies.
 - g. Sketch phase trajectory of MSK for input sequence 11000110111.
 - h. In a regenerative binary baseband transmission system with m=10 repeaters, single hope error probability is 10^{-5} . Find the end-to-end error probability at the receiver.
 - i. Let P_{el} and P_{eQ} denote the probabilities of symbol error for the in-phase and quadrature channels of a narrowband digital communication system. Find the average probability of symbol error for the overall system.
 - j. Plot signal space diagram of BPSK, QPSK, Octal PSK, and 8-QAM.

- 2. (15 marks) Develop the Adaptive modulation scheme for spectral efficiency maximization without power adaptation using MQAM with 7-modes: $M=2^n$, n=0, 1, 2,...6. If average SNR is $\bar{\gamma}$ and average spectral efficiency \bar{es} . Design for the following constraints: **NOTE:** Use the expressions and figures given in the appendix.
 - a. For target BER= 10^{-5} , find SNR thresholds γ_i for all the modes.
 - b. For constraint Outage probability $P_{out}=0.2$, find $\bar{\gamma}$ and \bar{es} .
 - c. For average spectral efficiency \overline{es} constraint $\overline{es} = 2.8$ bps/Hz, find $\overline{\gamma}$ and P_{out} .
 - d. Find the % of energy saved in no transmission mode in above parts b. and c. assuming that in each mode same energy would have been spent.

Appendix

 $erfc^{-1}(2*10^{-5})=3.0157$

