JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- Oct 2017

M.Tech I Semester

COURSE CODE: 14M31CE112

MAX. MARKS: 25

COURSE NAME: SIMULATION AND MODELING

COURSE CREDITS: 03

MAX. TIME: 11/2 Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- Q1. a) Distinguish between an "Analytical Model" and a "Numerical Model".
 - b) Discuss the applications of mathematical models in addressing the issues/concerns in Environmental Engineering. [2+3]
- Q2. a) What are the various hydrologic transport processes which are responsible for transport of contaminants in the environment? Discuss any one of them
 - b) Write a basic equation which represents the fate of contaminants in environment due to transport and transformation processes and define the variables involved in the equation [2.5+2.5]
- Q3. a) State Fick's Laws of Diffusion
 - b) A batch of liquid waste containing 1,70,000 kg of salt is to be pumped to the bottom of a lake 100 m deep. The lake has almost vertical sides and an average area normal to the vertical direction of 1km². Estimate the concentration of salt at the surface of the lake 1 year later. Assume turbulent diffusion coefficient of 10°cm²/s. What will be the concentration at the surface if the diffusion coefficient is reduced to 10⁻¹ cm²/s. [2+3]
- Q4. a) A wastewater treatment plant disposes of its effluent in a surface stream.

 Characteristics of the stream and effluent are shown below. [10 Marks]

	Wastewater	Stream
Flow	17280 m ³ /day	5.0 m ³ /s
Dissolved Oxygen, mg/L	1.0	8.0
Temperature, °C	15	25
BOD₅@20°C, mg/L	200	2
K ₁ at 20°C, day ⁻¹	0.2	
K ₂ at 20°C, day ⁻¹		0.3

- i) What will be the dissolved oxygen concentration in the stream after 2.0 d?
- ii) What is the critical oxygen level in the stream and how far downstream will it occur?
- iii) Determine the maximum BOD₅ (20°C) that can be discharged if a minimum of 4mg/L of oxygen must be maintained in the stream
- iv) Sketch the Dissolved oxygen profile a 100-km reach of the stream below the discharge
 (Assume Velocity of mixture is 0.15m/s)