Roll No	

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- Oct 2017

B.Tech VII / M.Tech I Semester

COURSE CODE: 11M1WCE112

MAX. MARKS:15

COURSE NAME: STRUCTURAL DYNAMICS

COURSE CREDITS: 3

MAX. TIME: One Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- A block of mass M = 0.20 kg is placed between two identical springs, whose combined stiffness is 20 N/m. The mass can slide without friction over the horizontal bar AB (see Fig # 1). The whole speed rotates with a constant angular velocity ω = 4.4 rad/s about a vertical axis passing through the middle of the bar AB. If the block M is slightly displaced from its original position shown in the figure, the block will start to oscillate.
 - **a.** Write down the equation of motion of the block M for small oscillation.
 - **b.** Find the period of oscillation.
 - c. At what values of ω will there be no oscillation of the block?

[6 Marks]

Fig # 1

2. A projectile of mass $m = 10 \, kg$ travelling with a velocity $v = 50 \, m/s$ strikes and becomes embedded in a massless board supported by a massless spring of stiffness $k = 6.4 \times 10^4 \, N/m$ in a parallel with a dashpot with coefficient of viscous damping $c = 400 \, N. \, m/s$. Determine the time required for the board to reach the maximum displacement and the value of the maximum displacement. [4 Marks]

Fig#2

Turn the page

Roll No	

3. Find the steady-state response of the mass-damper-spring system modeled by the following ODE: [5 Marks]

$$\ddot{x} + 4\dot{x} + 3 = \cos(t) + \frac{1}{3}\cos(3t)$$