JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION- May -2017 P. Took 8th Sam/ M. Took 2nd Samuelton

B. Tech8 Sem/ M. Tech 2 Semester COURSE CODE: 12M1WCE214	MAX. MARKS: 35
COURSE NAME: THEORY OF PLATES AND SHELLS	
COURSE CREDITS: 03	MAX. TIME: 2 HRS
Note: All questions are compulsory. Carrying of mobile phone durin	g examinations will be
treated as case of unfair means.	
Q1. Deduce the differential equation to find deflection, bending mon	
simply supported rectangular plate under sinusoidal loading.	(5)
Q2. For a thin cylindrical vessel compute volumetric strain in terms	of P, D, t, and μ (5)
Q3. A thin cylindrical pressure vessel of diameter 2.5m and thickn internal pressure 1.2N/mm ² . In addition the vessel is also subjected 2800kN. Determine the normal and shear stresses on a plane at an a vessel. Find also the maximum shear stress.	d to an axial tensile load o
Q4. Deduce the equation of a circular plate with a hole at the centre	(5)
Q5. With the help of Mohr's circle find the equations of principal cuin case of pure bending of plates.	
Q6. Find the ratio of thickness to internal diameter for a tube subjects the pressure is 5/8 of its maximum permissible circumferential internal diameter of such a tube 100mm internal diameter, wh $90N/mm^2$. $E=2\times10^5N/mm^2$ and $\mu=0.286$	stress. Find the increase in
Q7. Deduce an equation to find the radial pressure and hoop stress	at any distance x in case o
thick cylinders. How these two are inter related?	(5)