Dr Rayin Gazely

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT T3- EXAMINATION (December - 2017) MAX. MARKS: 35

M. Tech. (I-SEM.)

COURSE CODE: 14M31CE113

COURSE NAME: Water Supply and Treatment

COURSE CREDIT: 3

MAX. TIME: 2 HRS

Note: Attempt all questions. Assume suitable data if required. Carrying of mobile phone during examinations will be treated as case of unfair means

- A flocculator is designed to handle a flow of 70,000 m³/d. The alum dosage required is 55 mg/l. Assume Gt value of 4.5 x 10^4 and temperature of water is at 25^0 C. Assume a μ of 1.002 x 10^{-3} N.s/m². 1. Design the flocculator and draw neat sketches of the configurations (5)
- With a neat sketch, derive the condition for two-film theory. In this context also explain the reason for modification in the derived equation for super saturated systems. Mention the treatment system in 2. which the two-film theory plays a significant role (3)
- Derive the expressions with explanation of proper terms for (a) principles of an aeration system and 3. (b) Karmen-Cozeny Equation for filtration. (2+2)
- The solid concentration of sludge is 4000 mg/l and underflow concentration is 18000 mg/l. The discharge is 0.05 m³/s. The variation of the interface height with time is as shown below. Determine 4. the area of the thickener (4)

Interface (cm)	50	40	30 28	25	23	21	18	17.5 45	17.5
Time (min)	0	15	20 121	23	23	20	1		

Determine the head loss across a bed of non-uniform sized sand for a filter rate of 8.0 m/h and temp of water is 20°C. The depth of filter bed is 0.85 m deep and has an overall specific gravity of 2.75. 5. The porosity and shape factors are 0.48 and 0.86 respectively throughout the bed. Assume density of water as 999.2 kg/m 3 and μ of 1.002 x 10 3 N.s/m 2 . Also determine the head loss if uniform sized soil grains were to be utilized. Also calculate the permeability of the sand bed (5)

Average size	1.0	0.71	0.54	0.46	0.38	0.32	0.27	0.23	0.18
(mm) Mass retained	0.87	8.63	21.30	28.10	23.64	7.09	3.19	2.16	1.02
(%)									

- Design a spray aerator system to aerate a flow of 50 MLD. The iron concentration present in water is 1.9 mg/l and the permissible value is 0.3 mg/l. The aeration constant is 85 cm/h and saturation 6. concentration of oxygen is 8.5 mg/l (5)
- With a neat sketch, briefly explain the process of break point chlorination in water. (3) 7.

8. A settling column analysis is run on suspension type-II and the results of the analysis are shown below. Using this table determine (a) theoretical efficiency of a settling basin with a depth of 3.5 m having a volume of 1400 m³ and inflow rate of 14,400 m³/d (b)) theoretical efficiency of a settling basin with a depth of 2.5 m having a volume of 2200 m³ and inflow rate of 13,200 m³/d. (6)

Depth (m) 0.5 1.0 1.5 2.0		369	80	100				
m)		1260		120	160	200	240	280
	820 820	369			107	66	41	33
1.5	820	1 302	238	164				90
2.0	000	442	369	279	213	230	180	148
2.0	8ZU	631	476	361	287	287	238	187
	820	672	558	426	102	344	262	230
2.5	820	713	590	492	402	394	320	262
3.0	820	722	615	533	400	418	360	303
3.5	820	738	656	574	492			L
		e.	369 476 558 590 615 656	(°)	ø'			
					·			

Page 2 of 2