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Abstract—This article discusses the-state-of-the-art of the vane-
loaded gyrotron traveling wave tube (gyro-TWT) amplifier, which is
device of increasing importance for high resolution radar and high
information density communication systems because of its high-power
and broad bandwidth capabilities. Vane loading is identified as a
means to achieve a low-beam energy, high-harmonic, low-magnetic
field, mode-selective and stable operation of a gyro-TWT. Thus, the
development of a simple approach to the analysis of the interaction
structure of vane-loaded gyro-TWT has been identified as a problem
of practical relevance.

1. INTRODUCTION

There are numerous applications in the millimeter and sub-millimeter
wave frequency range of the electromagnetic spectrum that have
led to interesting research and development activities. The
existing possibilities opened up by new design tools, approaches,
and electromagnetic structures will yield a continuing stream of
revolutionary advances in RF vacuum tube technology. Operational
demand on RF systems to achieve greater functionality, scientific
innovation driven by technical opportunity, and market demand have
been and continue to be the major forces behind the growth in
vacuum electronic devices. These devices are used in wide variety
of military and commercial applications requiring high RF power at
high frequency, as well as in scientific research areas such as high-
energy particle acceleration system and plasma heating for controlled
thermonuclear fusion. Commercial satellite communication systems,
broadcasting, industrial heating, and air traffic control radar also rely
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heavily on vacuum devices for reliable performance at high power
and high efficiency. In the area of sources for high resolution radar
and high information density communication systems, work is now
progress to improve the average power of the gyro-TWT amplifiers
at millimeter and sub-millimeter wave frequencies in order to build
tubes suitable for use in future radar systems, and there will probably
be an attempt to improve the bandwidth beyond few GHz. The
gyro-TWT is a fast wave device of the gyro-device family and based
on the electron cyclotron resonance maser instability [1–68]. The
benefit of the gyro-devices is derived from the combination of cyclotron
resonance interaction and the fast wave interaction circuits. In the fast
wave interaction circuits the electric field strength can be quite high,
independent of the proximity of the metallic circuit structure. This
enables the electron beam to be situated in regions of high-electric
field (to produce optimum coupling) without placing the beam in
close proximity to delicate circuit structures. The wavelength in gyro-
devices is determined by the electron cyclotron resonance condition
or more specifically, by the applied magnetic field strength [1–5].
One makes use of higher order waveguide mode in the interaction
circuit, whose dimensions can be significantly larger than the operating
wavelength.

The gyro-TWT is mainly consisting of MIG (magnetron injection
gun), interaction structure and collector as shown in Fig. 1. A hollow
beam of electrons comprised of helical beamlets of small orbital radii
compared to the transverse dimensions of the interaction structure of
the device, is formed normally by an electron gun, called the magnetron
injection gun (MIG) — so named because of the appearance of its
cathode assembly resembling a magnetron [1, 2]. Electrons are emitted
from an axially symmetric emitter strip on the lateral face of a convex
cathode, which is operated in the temperature-limited region rather
than in the space-charge-limited region to minimize the velocity spread
in the beam. Electrons are drawn off the cathode at an angle with the
tube axis into a system of crossed DC electric and magnetic fields
with a small angular velocity. The DC electric field is established by
a potential difference between the cathode and a modulating anode,
called the first anode, which may or may not be at the same or different
potential from the interaction region. The required DC magnetic field
for this purpose may be provided by a solenoid in the gun region as
shown in Fig. 1. The gun consists of another anode called the second
anode that supplies a large amount of axial energy to the beam. The
trajectories of electrons become helical subject to the DC axial external
magnetic field and the component of the applied electric field parallel
to the magnetic line of force. In the region between the cathode
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Figure 1. Schematic of the gyrotron-travelling wave tube (gyro-TWT)
amplifier.

and the entrance to the interaction region, typically electrons make
many gyrations. In this region the electrons are subject to a slowly
increasing magnetic field. This ensures that the transformation of the
axial energy of electrons into their kinetic energy is adiabatic, meaning
thereby that all changes in electron motion during one gyro-cycle are
relatively small. Electrons in helical trajectories formed by the gun
take part in the cyclotron-resonance interaction with the transverse
RF electric field of the interaction region, which is waveguide in a
gyro-TWT. The spent electron beam enters a magnetic decompression
region and diverges off the axis to settle on the surface of the collector
surrounding the beam. The RF output is coupled out from a region
further down the axis of the tube beyond an output window, which is
vacuum-sealed to the tube. The output coupling arrangement has also
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to provide for the necessary waveguide-mode conversion since the mode
of the waveguide interaction structure could, in general, be different
form that of the output wave-guiding system [1–46].

The gyro-TWT uses a non-resonant waveguide interaction
structure, operates near the grazing intersection between the beam-
mode line and waveguide-mode dispersion plots for wide device
bandwidths [1–17]. In the device, the bunch of electrons formed
by relativistic effects twists around the helix system with a pitch
substantially greater than the electron pitch. The spatial position
where electrons in the bunch are decelerated advances with a phase
velocity approximately equal to the phase velocity of the RF wave
in the waveguide, and a continuous transfer of energy takes place
from the beam to the RF wave over a large interaction length. The
device is operated close to the cutoff frequency of the waveguide of
the constant radius portion. Due to closeness to the cutoff, the
wavenumbers of the components of waves of the excited mode are small,
which mitigate the effects of velocity spread in the electron beam on
the inhomogeneous broadening of the cyclotron resonance band. The
grazing intersection or coalescence between the beam-mode line and
waveguide-mode dispersion plot yields the maximum device bandwidth
as shown in Fig. 2. For wider bandwidths, however, one has to take due
care to optimize the beam and magnetic filed parameters for a wide-
band coalescence between the beam-mode line and waveguide-mode
dispersion plots [1–41].

Figure 2. The waveguide and beam-mode dispersion characteristics
in a gyro-TWT.

2. PROBLEM FORMULATION

Earlier, attempts were made to broadband the gyro-TWT by
widening the coalescence bandwidth. For this purpose, the
loading of the waveguide was suggested, for instance, by dielectric
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loading [12–15], disc loading [16, 17] and helix loading [18–20]. The
conventional gyro-TWTs are operated at grazing intersection for
wide-band coalescence between the beam-mode and the waveguide-
mode dispersion characteristics, with the beam and magnetic field
parameters optimized, for wide device bandwidths as shown in Fig. 2.
Although the coalescence bandwidth of the device in a smooth-
wall waveguide is wider at grazing intersection than at crossing
intersection, it is restricted by the rapid increase in the group velocity
with frequency near cutoff where the device is operated [1–5]. The
distributed gyro-TWT has a wider bandwidth than the conventional
gyro-TWT though at the cost of gain [26]. Poor gain of a distributed
gyro-TWT is due to a relatively small interaction length of the
waveguide becoming effective for a given operating frequency, the
effective length portion moving towards the smaller cross section
portion of the waveguide with the increase in the operating frequency.
The loaded gyro-TWT can yield wide bandwidths with a gain larger
than that of a distributed gyro-TWT. A wide device bandwidth results
from a wide-band coalescence brought about by dispersion shaping the
waveguide by controlling the loading parameters. Thus, for instance,
if a dielectric lining is used on the wall of a cylindrical waveguide,
its thickness and, if a dielectric rod is used at the axis of the same
waveguide, its diameter can be adjusted for this purpose [12, 14]. The
method of dielectric loading however poses the problem of dielectric
charging, which generates heat in the dielectric, if it is lossy. The
suggested method of ameliorating the problem of dielectric charging
is to coat the dielectric surface by a very thin conducting coating
of thickness less than the skin depth for draining out the charge
build-up [12]. Similarly, for wide device bandwidths, axially periodic
discs may be arranged to load the cylindrical waveguide. For the
disc-loaded gyro-TWT, the controlling parameters for widening the
coalescence bandwidth and hence the device bandwidth are the disc
radial thickness and the axial periodicity of discs [16, 17]. A coaxial
helix internally loading a cylindrical waveguide [18–20] and a helical
groove on the interior wall of a cylindrical waveguide [21, 22] can also
similarly widen the coalescence bandwidth and hence broadband a
gyro-TWT. For optimum performance, the device should be designed
such that the desired mode dominates and suppresses all other modes
during the transition of the device parameters to the operating point.
Such selective excitation of the desired mode is an extremely difficult
problem due to the presence of many competing modes [15, 17]. The
mode, for which the self-excitation conditions will be fulfilled first
during the voltage and current rise, is likely to dominate the mode
competition. Other modes can be triggered, by the presence of the first
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mode to reach large amplitude. So, it is important to study these effects
too in order to make sure that the required mode alone dominates
the mode competition. A poor coupling of the volume modes near
the wall as well as a larger frequency separation between competing
modes reduces the competition in a high beam harmonic operation of
the device in the whispering gallery mode, the high-harmonic operation
reducing the background magnetic field requirement [47, 49, 50].

The loading of a cylindrical waveguide with metal vanes projecting
radially inward from the wall of the guide cannot, however, widen
the bandwidth of a gyro-TWT, unlike such vane loading of the
metal envelope of a conventional TWT using the helix as a sow-
wave structure. This is because the azimuthally periodic vanes merely
alters the cutoff frequency of a waveguide, and unlike the axially
periodic discs cannot shape the dispersion characteristics and hence
the coalescence bandwidth of a gyro-TWT. However, also for gyro-
TWTs, the vane loading of a cylindrical waveguide was suggested
but with a different purpose — to meet the challenge of building up
gyrotrons with low energy beam and low magnetic field with good
mode selectivity and harmonic coupling [27–29]. Moreover, if vanes
are provided with the wall of the waveguide of a gyro-TWT in the
large-orbit configuration, the radius of the beam of electrons circling
the axis of the waveguide and interacting with the fringe field of the
vanes could be reduced, that would in turn allow a reduction in beam
energy. The vane-loaded structure also provides better mode selectivity
in high harmonic operation. For high power gyro-TWT, the size of
the waveguide is increased. An increase in the size of the waveguide
reduces wall losses, but makes the interaction structure over-moded.
The challenge to build gyro-TWTs with low energy beam and low
magnetic field, in a high beam harmonic operation, makes a vane-
loaded cylindrical waveguide an important interaction structure. The
vanes, arranged at a regular angular interval around the wall of the
cylindrical waveguide, create a periodic fringe field near the axis-
circling electrons thus enriching the harmonic contents experienced
by gyrating electrons. Thus, the harmonic coupling in a vane-loaded
cylindrical waveguide is enhanced over that in a smooth-wall cylindrical
waveguide. In such a gyro-TWT, the structure would reduce the
required energy of beam electrons orbiting in small radii around the
waveguide axis (in large-orbit configuration). Operating at a high
beam harmonic requiring a reduced magnetic field, the vane-loaded
gyro-TWT will also provide better mode selectivity and increased
stability of the device as an amplifier.
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3. INTERACTION STRUCTURE

A cylindrical waveguide, provided with wedge-shaped metal vanes
projecting radially inward from the wall of the guide, excited in the
transverse electric (TE) mode as shown in Fig. 3(a), was analysed. The
analysis was carried out considering the angular harmonics generated
due to the angular positioning of the vanes. A set of equations
was generated in the Fourier amplitudes of field constants. The
condition for the nontrivial solutions for the field constants gave the
dispersion relation of the structure. The cold (beam-absent) analysis
of a cylindrical waveguide loaded by identical wedge-shaped metal
vanes, arranged around the wall of the guide, at a regular angular
interval is developed. We first derive the cold dispersion relation of
the vane-loaded cylindrical waveguide, excited in transverse electric
(TE) mode, considering the effects of the azimuthal harmonics arising
from the azimuthal periodicity of the structure [58, 70]. The azimuthal
harmonics arising from the angular periodicity of vanes are taken into
consideration in the field expressions. The dispersion relation of the
vane-loaded cylindrical waveguide is developed with the help of the
field expressions and the relevant boundary conditions.

The small-orbit configuration of the device has been considered as
shown in Fig. 3(b), which is rather general, since the analytical results

Figure 3. Transverse cross-section of (a) vane-loaded cylindrical
waveguide interaction structure for (b) small-orbit configuration and
(c) for large-orbit configuration.
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of the large-orbit configuration as shown in Fig. 3(c) easily follow, as a
special case, from those of the small-orbit configuration, by taking the
hollow-beam radius tending to zero and interpreting that the Larmor
radius refers to the beam position.

3.1. Cold Dispersion Relation

The method of cold (beam-absent) analysis of the vane-loaded
cylindrical waveguide to take into account the azimuthal harmonic
effects of the vanes closely follows that used in the past for the
azimuthal harmonic effects due to the azimuthally periodic dielectric
helix-supports in a conventional helix TWT [70]. The basic approach
to finding the cold dispersion relation of the structure as shown in Fig. 3
(without electron beam) consists in finding a system of simultaneous
equations in the Fourier components of field constants [58, 62, 70–76].
For this purpose, we follow the usual approach of substituting the field
expressions in the relevant boundary conditions of the structure, and
find the condition for non-trivial solution. The field expressions for the
structure (Fig. 3(a)) are [58]:

Hr,p =
∞∑

ν=−∞
− (jβ/kc)

(
Aν,pJ

′
ν{kcr} +Bν,pY

′
ν{kcr}

)
(1)

Eθ,p =
∞∑

ν=−∞
(jωµ0/kc)

(
Aν,pJ

′
ν{kcr} +Bν,pY

′
ν{kcr}

)
(2)

Hθ,p =
∞∑

ν=−∞
−

(
νβ/k2

cr
)
(Aν,pJν{kcr} +Bν,pYν{kcr}) (3)

where Aν,p and Bν,p are the field constants. p = 1 refers to
the region 1 (0 ≤ r ≤ rV ; 0 ≤ θ ≤ 2π) and p = 2 to the region
2 (rV ≤ r ≤ rW ; φV /2 ≤ θ ≤ 2π/NV − φV /2). The RF dependence
exp j (ωt− βz + νθ) is understood. ν = m + kNV , m and k being
integers. NV is the number of metal vanes each of angular thickness
φV and of inner radius rV ; and rW is the radius of the waveguide
wall (Fig. 3). Jν and Yν are the Bessel functions of order ν, and
of the first and second kinds, respectively. The primes with Bessel
functions representthe derivative with respect to their arguments. kc

is the cutoff wavenumber. Out of the four field constants Aν,1, Bν,1,
Aν,2 and Bν,2, the constant Bν,1 vanishes in order to prevent the field
quantities from blowing up to infinity. One may choose to express
the non-zero constants Aν,2 and Bν,2 in terms of Aν,1 with the help of
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following boundary conditions:

Eθ,1 = Eθ,2 |r=rV (φV /2 ≤ θ ≤ 2π/NV − φV /2) (4)
Eθ,2 = 0 |r=rW (φV /2 ≤ θ ≤ 2π/NV − φV /2) (5)

Two other relevant boundary conditions, which have to be used in the
derivation of the dispersion relation of the structure, are:

Hθ,1 = Hθ,2 |r=rV (φV /2 ≤ θ ≤ 2π/NV − φV /2) (6)
Hr,1 = 0 |r=rV (−φV /2 ≤ θ ≤ φV /2) . (7)

In order to obtain the dispersion relation, we substitute (3) into the
boundary condition (6), multiply it by exp−j (ν ′θ), where ν ′ = m +
k′NV , and integrate it between the limits θ = φV /2 and 2π/NV −φV /2.
We then add the result thus obtained to that similarly obtained by first
multiplying the boundary condition (7) — into which (1) is substituted
— again by exp−j (ν ′θ), and then integrating it between the limits
θ = −φV /2 and θ = φV /2. The resulting equation may be divided
into two parts, one corresponding to ν = ν ′ and other to ν �= ν ′, and
expressed as follows.

Pν′Aν′,1 +
∞∑

ν=−∞
(ν �=ν′)

Qν,ν′Aν,1 = 0 (8)

where

Pν′ =φV J
′
ν′ {kcrV } + (2π/NV − φV ) [(1 + ην′) Jν′ {kcrV }

−ην′
(
J ′ν′ {kcrW } /Y ′

ν′ {kcrW }
)
Yν′ {kcrV }

]
Qν,ν′ =

sin ((ν − ν ′)φVNV /2)
(ν − ν ′)NV /2

[
J ′ν {kcrV } − (1 + ην) Jν {kcrV }

+ην
(
J ′ν {kcrW } /Y ′

ν {kcrW }
)
Yν {kcrV }

]




(9)

where ην and ην′ occurring respectively in the second and first
equations of (9) are given by

ην,ν′ =
J ′ν,ν′ {kcrV }Y ′

ν,ν′ {kcrW }
J ′ν,ν′ {kcrW }Y ′

ν,ν′ {kcrV } − J ′ν,ν′ {kcrV }Y ′
ν,ν′ {kcrW } .

Considering only the three close by consecutive modes of practical
relevance: ν, ν ′ = χ− 1, χ, χ+ 1(ν �= ν ′), we may write from (9) a set
of three simultaneous equations in Fourier components Aχ,1, Aχ+1,1
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and Aχ−1,1. The condition for the existence of the nontrivial solutions
of this set of equations gives:

PχPχ+1Pχ−1 − PχQχ−1,χ+1Qχ+1,χ−1 +Qχ+1,χQχ,χ−1Qχ−1,χ+1

−Qχ+1,χQχ,χ+1Pχ−1 +Qχ−1,χQχ,χ+1Qχ+1,χ−1

−Qχ−1,χQχ,χ−1Pχ+1 = 0 (10)

It may be shown that for practical structure dimensions the first term
dominates over the remaining terms of the left-hand side of (10), so
that one can write

PχPχ+1Pχ−1 = 0. (11)

Replacing χ by ν (= m+ kNV ), we may choose to write (11) as:

PνPν+1Pν−1 = 0. (12)

It has been found by actual calculation that, out of the three solutions
of (12), the one that gives the solution for the desired mode is: Pν = 0.
The latter may be read with the help of (9) as the following dispersion
relation of the vane-loaded cylindrical waveguide:

φV J
′
ν {kcrV } + (2π/NV − φV ) [(1 + ην)Jν {kcrV }

−ην
(
J ′ν {kcrW } /Y ′

ν {kcrW }
)
Yν {kcrV }

]
= 0 (13)

As a special case, the dispersion relation (13) for the vane-loaded
cylindrical waveguide passes on to that of a smooth-wall cylindrical
waveguide excited in TEνn mode: J ′ν {kcrW } = 0, if one puts φV = 0
(or rV = rW ). Once the value of kc is obtained from the solution of
(13), one can find the axial phase propagation constant of the structure
β from the general waveguide-mode relation: k2

0 − β2 − k2
c = 0, where

k0(= ω/c) is the free-space propagation constant, ω being the wave
angular frequency, and c the speed of light.

3.2. Hot Dispersion Relation

In order to obtain the hot (beam present) dispersion relation it
is further considered that RF waves interact with a thin hollow
mono-energetic, relativistic, tenuous electron beam of large transverse
velocities. Also it is assumed that the device operates very close to
the beam-mode harmonic resonance where the cyclotron resonance
maser instability prevails over the Weibel instability [1]. The current
density component to be put in the wave equation is obtained from the
perturbed part of the electron distribution function, the latter obtained
in terms of an assumed unperturbed part of electron distribution



Progress In Electromagnetics Research B, Vol. 4, 2008 51

function by solving the relativistic Vlasov equation. A thin hollow
electron beam is considered and it is assumed that the electron beam
is sufficiently tenuous such that the spatial structure of the waveguide
mode is unaffected due to the presence of the electron beam [4, 17, 65].
Thus, in the beam-wave coupled system of the gyro-TWT, the radial
and azimuthal RF dependence of the field quantities continues to be
the same as that for a cold cylindrical waveguide in the absence of the
beam.

In the present analysis, let us consider a model of a thin hollow
(annular) beam of monoenergetic electrons in helical trajectories all
of the same Larmor radius rL(= pt/meoωc = pt/ |e|B0) with their
guiding centers uniformly distributed on a common guiding circle of
radius rH , equal to the average hollow beam radius, the radial thickness
of the beam being 2rL. The model, though it refers to the small-orbit
configuration, may be also extended to the large-orbit configuration by
taking rH → 0, and a suitable value of rL that now refers to the center
of the beam position. The hot dispersion relation of the smooth wall
cylindrical waveguide is as [64]:

(
k2

0 − k2
z − k2

c

)
=

−µ0N0 |e|2
γme0πr2WKνn

(
η2t

(
ω2 − k2

zc
2
)
Hν,−s {kcrH , kcrL}

(ω − kzvz − sωc/γ)
2

− (ω − kzvz)Qν,−s {kcrH , kcrL}
ω − kzvz − sωc/γ

)
(14)

The dispersion relation (14) obtained as above further simplifies
retaining only the first term in its right hand side that dominates over
the second term, because, for a relativistic beam of large transverse
velocity, the value of ηt becomes significant, and also because while
the second term is inversely proportional a small quantity that tends
to zero ((ω − kz vz − sωc/γ) → 0), the first term is proportional to the
square of the same small quantity.

(
k2

0 − k2
z − k2

c

)
=

−µ0N0 |e|2
γme0πr2W Kνn

η2t
(
ω2 − k2

zc
2
)
Hν,−s

(ω − kz vz − sωc/γ)
2 . (15)

The terms in the dispersion relation (15) obtained in previous step may
be suitably re-arranged.

(
k2

0−k2
z−k2

c

)
(ω−kzvz−sωc/γ)

2 =
−µ0N0|e|2η2t

(
ω2−k2

zc
2
)
Hν,−s

γme0πr2WGνn
(16)

which, on substituting the expression for Gνn and Hν,−s, given below.
For weak coupling, one may set the right hand side of (16) to zero,
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so that putting each of the two terms of its left hand side equal
to zero, and interpreting therein kz ≈ β, one recovers the beam-
mode dispersion relation and the waveguide-mode dispersion relation
from the dispersion relation (16) of the gyro-TWT. It may be noted
that the dispersion relation (14) was derived starting from the beam-
present wave equation for a smooth-wall waveguide. However, when
one takes the device in a vane-loaded waveguide, one must again start
from the beam-present wave equation but now written including the
azimuthal field harmonics in the field expressions. Also one has to
include the presence of the azimuthal field harmonics in the solution
of the Vlasov equation for the perturbation part of the electron
distribution function from which to find the current density to be used
in the wave equation [65]. The electron beam is represented by a
distribution function in the six-dimensional spatial and momentum
space. Evolution of the distribution function in the presence of
RF fields is governed by Vlasov equation, which is essentially the
collisionless Boltzmann equation valid under the assumed tenuous-
beam approximation. One can solve Vlasov equation for the perturbed
part of the electron distribution function, the product of which and
the RF beam velocity component when integrated over the momentum
space gives the RF beam current density component of interest involved
in the beam-present wave equation. The improved approach leads to
the same expression as (16) for the interaction impedance, however
with the following interpretation for Gνn and Hν,−s [63]:

Gνn =
(
2/r2W

) 
 rV∫

r=0

rJ2
ν {kcr}dr − ην

rW∫
r=rV

rJ2
ν {kcr}dr

+ην

(
J ′ν {kcrW }
Y ′

ν {kcrW }

) rW∫
r=rV

rJν {kcr}Yν {kcr}dr




Hν,−s =
(
UJs−(ν−1){kcrH} + Js−ν{kcrH}

+V Js−(ν+1){kcrH}
)
Js−ν {kcrH} J ′2

s {ktrL}




(17)

where

U = − Pν−1Pν −Qν,ν−1Qν−1,ν

Qν+1,νPν−1 −Qν+1,ν−1Qν−1,ν

V =
(
Qν+1,ν−1

Pν−1

) (
Pν−1Pν −Qν,ν−1Qν−1,ν

Qν+1,νPν−1 −Qν+1,ν−1Qν−1,ν

)
−

(
Qν,ν−1

Pν−1

)
.

The standard definite Bessel integrals occurring in (17), obtainable for
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instance from [77], are:

b∫
a

rJν {kcr}Yν {kcr}dr =
[
r2

2

((
1 − ν2

k2
cr

2

)
Jν {kcr}Yν {kcr}

+J ′ν {kcr}Y ′
ν {kcr}

)]b

a

b∫
a

rJ2
ν {kcr}dr =

[
r2

2

((
1 − ν2

k2
cr

2

)
J2

ν {kcr} + J
′2
ν {kcr}

)]b

a

3.3. Gain for Vane-loaded Gyro-TWT

The Pierce-type gain equation may be derived from the dispersion
relation (14) by an approach [59–62, 70], which is similar to what
is followed in obtaining the gain equation of a conventional TWT.
For this purpose, the solution of (14) is sought around the cold
propagation constant β of the waveguide, such that −jkz = −jβ+βCδ,
with Cδ << 1, where C and δ are arbitrarily chosen dimensionless
quantities. This enables one to express the dispersion relation (14) in
the form of a cubic equation [64]:

δ(δ + jb)2 = j (18)

if one chooses to put C = (KI0/4V0)1/3, where I0 and V0 are the
beam current and voltage, respectively. K, which has the dimension
of impedance, is identified as the interaction impedance of the gyro-
TWT given by:

K =
(µ0/ε0)

1/2 (vt/c)
2 k2

c

(
1 + α2

0

)
Hν,−s

πr2W (vz/c)β4Gνn
(19)

where α0 (= vt/vz) is the beam-velocity pitch factor. The method of
obtaining the gain equation of a conventional TWT from the solution
of a cubic equation similar to (15) is well known. Following the same
method, one may derive, from the solution of the cubic equation (18),
the gain equation of a gyro-TWT. The method, which is outlined
in [59–62, 70], leads to the following gain formula for a gyro-TWT
in terms of the three solutions δ1, δ2 and δ3, say, of (18), and x1, the
real part of δ1, supposedly positive (corresponding to a growing wave
solution):

G = A+BCN (20)
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where

A = −20 log10

∣∣∣∣
(

1 − δ2
δ1

) (
1 − δ3

δ1

)∣∣∣∣
B = 40π (log10 e)x1

and

N = β//(2π)

is the interaction length l, expressed in terms of the number of guide
wavelengths. For a gyro-TWT in a vane-loaded cylindrical waveguide,
one may continue to use the gain Equation (20), however, with the
proper interpretation of the interaction impedance K, the latter given
by (19). If one uses the ‘approximate’ approach, that has been followed
in the past to estimate the effect of loading a gyro-TWT by a dielectric,
for instance in [13], one may continue to use the expression (19) for
K, but take, for β in this expression, the corresponding value for
the vane-loaded cylindrical waveguide instead of that for a smooth-
wall waveguide [59–62]. The value of β(= (k2

0 − k2
c )

1/2) for a vane-
loaded gyro-TWT in turn can be found from the solution of the cold
dispersion relation of the structure (13). Thus, in this approximate
approach, the effects of azimuthal harmonics due to the azimuthal
periodicity of the structure enter the analysis only through the cold
dispersion relation. However, an ‘improved’ approach to reveal the
effect of fringe-field effects of vanes would be to include the effects of
azimuthal harmonics not only in the cold dispersion relation but also in
the beam-present (hot) dispersion relation, which can be subsequently
interpreted for the device gain. In the ‘improved’ approach, again
one may use the same gain formula as (20), that can be read with
the help of the same expression (19) for the interaction impedance K,
however, now with a new interpretation for Gνn and Hν,−s from (17).
The results of both the ‘approximate’ and ‘improved’ approaches have
been presented and compared in the following section. The approach
would be an improvement over the approximate approach in which the
azimuthal harmonic effects of azimuthally periodic vanes are included
only in the cold dispersion relation and the results of the cold analysis
subsequently plugged into the expression for the interaction impedance
(19) that occurs in the gain equation (20) of the device. However, the
axial wavenumber β that appears in the RF axial dependence, for
instance in will have to be interpreted now as different from that for a
cold (beam-absent) waveguide.
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4. RESULTS AND DISCUSSION

The analytical method developed here includes the azimuthal harmonic
effects due to the angular periodicity of vanes, though the cold (beam-
absent) as well as hot (beam-present) analysis of the interaction
structure. The shape of the dispersion characteristics and the value of
the cutoff frequency as well as the interaction impedance characteristics
of the waveguide were found to depend on the vane parameters — their
number as well as radial and angular dimensions [58]. The optimum
vane parameters were obtained corresponding to the minimum
variation of the slope of the ω-β dispersion plot — such parameters
being useful from the standpoint of the bandwidth of a gyro-travelling-
wave tube using a vane-loaded cylindrical waveguide as the interaction
structure. The dispersion and impedance characteristics, which were
found typically for TE01 mode, as defined for the structure, taking
four vanes, were more sensitive to the number and angular width of
the vanes than to their radial depth [58]. The value of the interaction
impedance, calculated at the potential beam position, was found to
be higher for a loaded waveguide than for an unloaded (smooth-wall)
one, and it depended on the frequency of operation relative to the
cutoff. The interaction impedance also depended on the position of
the beam relative to the waveguide wall where it was estimated, and
hence the optimum beam position corresponding to the maximum
interaction impedance was found [58]. The theory was validated
against the dispersion characteristics reported elsewhere typically for
four-vane magnetron-like structure excited in the 2π-mode [58]. The
dependence of the dispersion and azimuthal interaction characteristics
on the vane parameters, obtainable from the cold analysis of the vane-
loaded cylindrical waveguide, reflects on the gain-frequency response
of a vane-loaded gyro-TWT. The mode competition behaviour with
respect to cold dispersion characteristics also similarly reflects on the
gain-frequency response of the device [62, 65]. Thus, the interaction
impedance of the device, which is found to be sensitive to the choice
of the operating frequency relative to the cutoff frequency, as well as
the gain of the device, becomes maximum for an optimum value of the
hollow beam radius relative to the radius of the waveguide wall. It is
also found that, in general, vane loading causes an increase in the gain
of the device over the gain of a device in a smooth waveguide.

The vane-loaded waveguide has been referred to as the magnetron-
like π- and 2π-mode structures in the literature on vane-loaded
gyrotrons [39–43]. In 2π-mode excitation, the phases of RF fields in
all the slots between vanes are identical, while in π-mode excitation,
the phases of adjacent slots are out of phase by π. Typically, the
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TE41 waveguide mode, which corresponds to a magnetron-like π
mode, is well separated in frequency from the waveguide-modes TE01

and TE21, corresponding, respectively, to magnetron-like 2π and π-
modes, which themselves are close together in the frequency scale and
competitive [65]. However, due to poor coalescence bandwidth, the
vane-loaded gyro-TWT does not enjoy wide bandwidths as a dielectric-
loaded or a disc-loaded gyro-TWT. Methods have been suggested
as to how to widen the bandwidth of a vane-loaded gyro-TWT,
which cannot be controlled by the vane parameters. Two schemes
— one in a two-section configuration and the other in a tapered-
cross-section (distributed-amplifier) configuration — prove to be useful
in widening the bandwidth of a vane-loaded gyro-TWT at high gain
values. However, the analysis of a two-section gyro-TWT has exhibited
both a high gain and a wide bandwidth of the device, with a suitable
choice of vane parameters of each section, along with its length and
background magnetic field. In the two-section vane-loaded gyro-TWT,
while, when considered individually, one of the sections shows a single
peak in the gain-frequency response, the other section shows two
peaks corresponding to two points of intersection between the beam-
mode and waveguide-mode dispersion plots. The respective lengths of
individual sections can control their gain values. By adjusting the vane
parameters and magnetic field parameters, therefore, the peak of the
section showing a single gain peak may be so adjusted that it falls, on
the frequency scale, between the peaks of the other section showing two
gain peaks. Thus, when the gain of the individual sections are added
on the frequency scale, a wide-band gain-frequency response results
at a high gain value, irrespective of whether one chooses to change
the vane parameters of the individual sections by changing rV /rW ,
while keeping φV constant, or by changing φV , while holding rV /rW
constant. Severing the interaction length into sections also adds to the
stability of the device as an amplifier [61].

In the distributed amplification scheme of a tapered-cross section
vane-loaded gyro-TWT, one may choose to taper any one of the
three parameters, namely, the waveguide wall radius rW , the vane
tip radius relative to wall radius rV /rW , and the vane-wedge angle
φV , while holding constant the remaining two [62]. Tapering of any of
these parameters basically causes a tapering of the waveguide cutoff
wavenumber which can be found from the solution of the cold (beam-
absent) dispersion relation of the vane-loaded cylindrical waveguide.
Synchronously, one has to profile the background magnetic field, say,
choosing to hold the magnetic flux density relative to its grazing point
magnetic flux density B0/Bg constant, the grazing point value Bg

being proportional to the waveguide cutoff frequency ωcut (and hence



Progress In Electromagnetics Research B, Vol. 4, 2008 57

to cutoff wavenumber kc) [62, 64]. Furthermore, in order to find the
gain of the individual sections into which the entire interaction length
is distributed, one has to take, at the concerned length portion, the
appropriate values of beam parameters, namely, the relative Larmor
radius rL/rW and the relative hollow beam radius rH/rW , as well
as the transverse (vt) and axial (vz) electron velocities, and hence the
beam velocity pitch factor α0. If the radius of waveguide rW is tapered,
taking rV /rW and φV constant, then, with an increase taper angle, the
bandwidth of the device increases, though at the cost of gain. While
tapering the waveguide radius at a given taper angle, one finds that an
optimum value of rV /rW exists that gives the widest bandwidth. Study
shows that, the other types of tapering, like the tapering of rV /rW and
that of φV , while holding rW constant, widens the bandwidth but not
as much as when the waveguide radius rW is tapered, keeping both
rV /rW and φV constant. Study clearly establishes that, by tapering
a vane-loaded cylindrical waveguide as the interaction structure, one
can widen the bandwidth of a gyro-TWT at high gain values [62]. The
bandwidth of a tapered vane-loaded gyro-TWT is certainly wider than
that of a non-tapered gyro-TWT, with or without vanes. The gain of
a vane-loaded gyro-TWT reduces due to the tapering of cross section
for wide bandwidths, but still the gain remains reasonably high — at
least, as high as that of a gyro-TWT in a smooth-wall waveguide.

Figure 4. Gain-frequency response of vane-loaded cylindrical
waveguide interaction structure for gyro-TWT and its comparisons
with different approach of analysis as well as smooth wall waveguide
interaction structure.
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The effects of the vane parameters [67] have thus been
encapsulated only in the waveguide-mode axial phase propagation
constant and cutoff wavenumber, subsequently plugged into the gain
equation of a gyro-TWT in an otherwise smooth cylindrical waveguide
which is known as approximate approach as shown in Fig. 4. Thus
the approximate method has by-passed the rigour of including the
effects of azimuthal harmonics in the field expressions, both in the
beam-present wave equation (from which the dispersion relation of the
device is derived) and in the relativistic Vlasov equation, the solution
of which gives the perturbed part of the electron distribution function,
which appears in the current density components of the wave equation.
The inclusion of such rigour in the analysis would have more correctly
estimated the fringe-field effects of the periodic vanes which is known
as improved approach as shown in Fig. 4. With the lack of this rigour,
the gain value predicted by the present simplified analytical approach
is bound to be approximate, though the approach has been found
to be useful in searching through initial design parameters. In the
large-signal regime, interactions of electrons with different waveguide-
mode azimuthal harmonic components are mutually dependent, and
the electron beam interacts independently with each of the azimuthal
components, and thus the large-signal behaviour of a vane-loaded gyro-
TWT could differ significantly from that of a smooth-wall device in
which the azimuthal mode has only one component. A large-signal
analysis of a vane-loaded gyro-TWT thus appears warranted.

A study of dispersion relation reveals that two types of
spontaneous oscillations may be excited in a gyro-TWT amplifier,
oscillation arising from the absolute instability and gyrotron backward
wave oscillators. The wave amplification will occur when the beam
cyclotron mode couples with the waveguide mode near the grazing
intersection point. There will be a finite width of unstable spectrum
about the intersection. If this unstable band is confined to the forward
wave region only (β > 0), a wave will be travel down the interaction
tube with convectively growing amplitude. However, if the unstable
band is sufficiently wide to extend in the backward wave region (β < 0),
waves growing in the backward direction will be excited and provide
internal feedback to yield self-oscillation near the cutoff. If this
oscillation occurs, it will grow in time (absolutely) when viewed at
a fixed spatial position [48]. In addition to the self-excited oscillations
caused by the absolute instability, a gyro-TWT amplifier is also
susceptible to spontaneous backward wave oscillations, which occur
at interaction with negative β. The critical length is very sensitive
to the beam current in the low current regime. However, in the high
beam current regime of interest, the critical length depends only very
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weakly on the beam current. In this regime, the interaction length
needs be reduced only slightly to maintain stability for a very large
increase in the beam current. Using an interaction length less than the
shortest critical length for all possible spontaneous oscillations, a gyro-
TWT amplifier can be kept stable. If the critical length is too short to
allow amplification with reasonable gain, multiple stage separated by
attenuating severs can be used, where the length of each stage is still
kept shorter than the critical length. This procedure will ensure single
mode operation together with a high amplification gain.

5. CONCLUSION

Due to strong interaction, one may expect to achieve large gains from
a vane-loaded gyro-TWT, though not as wide bandwidths (because of
narrow-band coalescence between the beam-mode line and waveguide-
mode dispersion plots) as those obtainable from a gyro-TWT loaded
with an axially periodic disc-loaded structure. Furthermore, with a
view to removing the narrow-band deficiency of the device, it will be
of interest to analyse innovative device configurations, which combine
the high-gain advantage of a vane-loaded gyro-TWT with any new
schemes for broadbanding the device. In the scope for further work, it
will be also worth making a stability analysis of the device, which has
been kept outside the scope of the present work, a study which would
be of relevance to a vane-loaded gyro-TWT that enjoys a higher gain
than a gyro-TWT in a smooth waveguide.
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