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Abstract

Next Generation technology has the need of a very high speed information networks. When
these networking services are built for end users, minimization of available resources with-
out compromising on quality is an important aspect of the technological era. Till now, the
most common form of multiplexing is that of time division multiplexing (TDM). In this mul-
tiplexing technique , each source is allocated a small time period to transmit information of
fixed length. The packets available on the channel result from different sources, which send
the packets simultaneously. The packets of the different sources are mixed on the channel
e.g.- a packet is transmitted for first source, then a packet for a third source, next for the
first, then two packets in a row for second source, and so on. This technique of mixing is
referred to as “Statistical Multiplexing”. A statistical multiplexer has the advantage that all
channels will not have peak demand of bit rate at the same time. Channel which has more
need gets more bandwidth and less needed channels will be allocated less bandwidth, which
provides the better quality of service (QoS).

In this technological era, QOS is an important parameter, which a user has to consider
for each and every application. Implementing QOS issue is much more complicated because
quality requirements differ from user to user. One critical problem in networking world is
that how many users can be allowed in the network without diminishing the QOS levels.

Generally hardware implementation is faster than software implementation, because it
takes less time to perform an algorithm than software. So, we proposed VLSI hardware
architecture of statistical multiplexer and implemented on FPGA using Xilinx ISE. The data
and coefficient widths are adjustable in the range 8 to 32. It has pipelined mode operation,
each result is outputted in one clock cycle. The period of the clock is very less roughly in
the range of ‘ns’, the frequency of the hardware will be in 100 MHZ to 1 GHz and now a
days in communication this range of frequency is used.
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Chapter 1

Literature review

1.1 Introduction

In twenty-first century communications will be directed to intelligent high-speed informa-
tion networks. Networks will be enable to integrate and transmit media-rich services within
specified standards of delivery due to all over access to the network through wired and wire-
less technology, adaptable network systems, and broadband transmission capacities. This
vision has developed the standardization and evolution of broadband integrated services
network (B-ISDN) technology since the early 1990s. The narrowband ISDN proposal for
integrating voice, data, and video on the telephone line was the pioneer to broadband ser-
vices and asynchronous transport mode (ATM) technology [1]. For efficient utilization of
the transmission link capacity, integrated services traffic is multiplexed onto a single com-
mon channel. This concept is the basis of design of ATM and ISDN network. In ATM, the
time slots of time- division multiplexed frame are allocated asynchronously for servicing the
variable-bit-rate (VBR) traffic generated from video, voice and data services. The transport
of information is done by using fixed-size cells of 53 bytes in length and the application of
fast cell-switching architectures. It uses the concepts of both circuit and packet switching
by creating virtual circuits that carry VBR streams generated by multiplexing ATM cells
from voice, video, and data sources [2, 3].

The ATM architecture is designed to efficiently transport traffic sources that alternate
between bursts of transmission activity and periods of no activity means bursty information
which is shown in fig. 1.1 [4]. It handles various classes of traffic with different bit-rates
and quality of service (QoS) requirements and the traffic source with continuously changing
transmission rates. For example, voice traffic has the bit-rate of several Kbps and is delay
sensitive, while high-speed data traffic used for file transfer or LAN interconnection has the
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Fig. 1.1 Burst Model

bit-rate of hundreds of Mbps and is loss sensitive. Taffic burstiness is measured in terms of
the ratio of peak to average rate of source. A circuit-switched network allocates capacity
to each source equal to its peak rate. In this case, full resource utilization takes place only
when all of the sources transmit at their peak rates. This is a low-probability event when
the sources are statistically independent of each other [5]. However, statistical multiplxer
allocates tha capacity between the peak rate and the average rate. When demand exceeds
the channel capacity, the traffic is stored in the buffer. The multiplexed traffic should have
a smaller variance in the limit of mean rate as the number of sources multiplexed increase
to a large value. So the probability of occurrence of source rates that are greater than the
available capacity is decreased.

Statistical multiplexer has been an integral component in packet switches and routers on
data network since the 1960s. But, the use of statistical multiplexer increases since 1990
with the availability of broadband transmission speeds exceeding 155 Mbps and ranging
upto 10 Gbps in the core of the network. However, since broadband traffic features are
highly unpredictable, the quality of service such as packet delay and loss probabilities must
be controlled by intelligent and adaptable protocols. These protocols include integrated
(Intserv) and differentiated (Diffserv) services, multiprotocol label switching (MPLS), and
resource reservation protocols (RSVPs). The design and performance of these protocols and
services depend on the traffic patterns of voice, video and data sources and their influence
on queues in statistical multiplexers [6].
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1.2 Multiplexing

Many applications generate the information in a bursty manner. These bursts of informa-
tion are formatted into packets and then transmitted over a communication line. If we as-
sign a dedicated line to each user it becomes highly inefficient basically in long distance
communication. Because, the bursty data has the long idle periods between the bursts so
it is possible to send the data from all users over a single communication channel. Sec-
ondly, most of the individual data-communicating devices require modest data rate. But,
communication media usually have much higher bandwidth. As a consequence, two com-
municating stations do not utilize the full capacity of a data link. Moreover, when many
nodes compete to access the network, some efficient techniques for utilizing the data link
are very essential [7, 8]. When the bandwidth of a medium is greater than individual signals
to be transmitted through the channel, a medium can be shared by more than one channel
of signals. So, these two things develop the idea of “Multiplexing”. Basically, multiplexing
means mixing, it mix the information from two or more sources and transmits over a single
communication link. It is efficient in terms of capacity, resource utilization and cost. Most
common use of multiplexing is in long- haul communication using coaxial cable, microwave
and optical fibre. Multiplexing is the technique where two or more separate communications
channels are supported across a single transmission medium. A well known example from
the telephone network is the support of multiple telephone conversations on a single high
bandwidth trunk [9, 10].

Fig. 1.2 Basic Concept of Multiplexing

Fig. 1.2 depicts the functioning of multiplexing in general. Multiplexing is done by
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using a device called multiplexer (MUX) that combines n input lines to genrate one output
line i.e (many to one).Therefore multiplexer (MUX) has serval inputs one output. On the
other hand, the demultiplexing is done using a device called demultiplexer (DEMUX) that
splits 1 input line to generate n output lines i.e. (one to many). The multiplexer is connected
to the demultiplexer by a single data link. The multiplexer combines (multiplexes) data
from these ‘n’ input lines and transmits them through the high capacity data link, which is
being demultiplexed at the other end and is delivered to the appropriate output lines. There
are many types of multiplexing named as follow:

1. Frequency Division Multiplexing (FDM)

2. Wavelength Division Multiplexing (WDM)

3. Time Division Multiplexing (TDM)

(a) Synchronous Time Division Multiplexing

(b) Statistical or Asynchronous Time Division Multiplexing

4. Space Division Multiplexing (SDM)

5. Code Division Multiplexing (CDM)

Early multiplexing systems for use in the analogue telephone network employed fre-
quency division multiplexing (FDM) in which each separate channel was transmitted at a
different carrier frequency. An analogous technique currently being developed for use in
optical communications systems is wavelength division multiplexing (WDM) in which the
various channels are carried on different optical wavelengths. In digital communications
systems by far the most common form of multiplexing is that of time division multiplexing
(TDM) [11, 12].

1.3 Time Division Multiplexing

Time-division multiplexing (TDM) is a digital process in which all signals operate with
same frequency at different times. It allows several connections to share the high bandwidth
of a link. Each connection occupies a portion of time in the link. This is a base band
transmission system, where an electronic commutator sequentially samples all data source
and combines them to form a composite base band signal. This composite base band signal
travels through the shared medium and is being demultiplexed into appropriate independent
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message signals by the corresponding commutator at the receiving end. Composite data rate
must be at least equal to the sum of the individual data rates. The time division multiplexing
operation is shown in fig. 1.3 [13].

Fig. 1.3 Time Division Multiplexing Operation

As shown in the fig. 1.3 the composite signal has some dead space between the succes-
sive sampled pulses, which is essential to prevent interchannel cross talks. Along with the
sampled pulses, one synchronizing pulse is sent in each cycle. Sampled pulses and synchro-
nizing pulse along with the control information form a frame. Each of these frames contain
a cycle of time slots and in each frame, one or more slots are dedicated to each data source.
The maximum bandwidth (data rate) of a TDM system should be at least equal to the same
data rate of the sources. The precise synchronization is needed in TDM. All senders have
precise clocks and scheduling or there has to a way to distribute synchronization signals.
Receivers have to listen to the right frequency at exactly the right points in time [14].
Time division multiplexing (TDM) can be divided into two schemes: Synchronous and Sta-
tistical [15].

1.3.1 Synchronous Time Division Multiplexing

In synchronous TDM the entire capacity of the shared transmission medium is allocated
to each source for a short duration which is sufficient for the source to transmit a burst of
information of fixed length. This is called synchronous because each time slot is preassigned
to a fixed source. The time slots are transmitted irrespective of whether the sources have
any data to send or not, so the channel capacity is wasted [16, 17]. Sources of different
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data rates can be handled by assigning fewer slots per cycle to the slower input devices than
the faster devices. For example, a current European TDM transmission standard employs a
2.048 Mbps digital carrier divided into frames of length 125 µsec, as shown in fig. 1.4. Each
frame is divided into 32 timeslots each of length 8 bits. In every frame, timeslot 0 is reserved
for synchronization and maintenance purposes, timeslot 16 is allocated to signalling and all
other timeslots allocated to traffic sources. When allocated a channel, the source is given
the timeslot number and it fills the appropriate timeslot in every frame with 8 bits of data.
Each channel thus carries 64 Kbps of traffic.

Fig. 1.4 An Example of Synchronous TDM

In synchronous TDM, the data flow of each input is divided into units, where each input
occupies one input time slot. A unit can be 1 bit, one character, or one block of data. Each
input unit becomes one output unit and occupies one output time slot. The duration of an
output time slot is n times shorter than the duration of an input time slot. If an input time

Fig. 1.5 Synchronous TDM with 3 Connections

slot is T s, the output time slot is T/n s, where n is the number of inputs. The fig. 1.5 shows
an example of synchronous TDM where n is 3. In this technique, data units from each input
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is collected into a frame. If there are n connections, a frame is divided into n time slots and
one slot is allocated for each input. If the duration of the input unit is T, the duration of each
slot is T/n and the duration of each frame is T [18].

Interleaving

TDM can be seems as two fast-rotating switches, one on the multiplexing side and the
other on the demultiplexing side which are synchronized with each other rotate at the same
speed, but in opposite directions. On the multiplexing side, as the switch opens in front of a
connection, that connection has the opportunity to send a unit onto the path. This process is
called interleaving. On the demultiplexing side, as the switch opens in front of a connection,
that connection has the opportunity to receive a unit from the path. The fig. 1.6 shows the
interleaving process.

Fig. 1.6 Interleaving in Synchronous TDM

Data Rate Management

One Problem in TDM is how to handle the disparity of the data rate. If the data rate of
all inputs are not same, three strategies or a combination of them can be used. The three
strategies are multilevel multiplexing, pulse stuffing and multiple slots allocation.
Multilevel Multiplexing: This technique is used when data rate of one input is factor of
data rate of other inputs. For example, in fig. 1.7 we have two inputs of data rate 30 Kbps
and two inputs of data rate 60 Kbps. Inputs of data rate 30 Kbps can be multiplexed to
provide the data rate of 60 Kbps that is equal to the other two inputs. A second level of
multiplexing can be used to provide a data rate of 180 Kbps.
Multiple Slots Allocation: This technique is used when the data rate of one input line is

multiple of data rate of other input lines. Allocate the more than one time slot to that input
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Fig. 1.7 Multilevel Multiplexing

in each frame. For example, in fig. 1.8 one input line has a data rate of 60 Kbps and other
input data lines have data rate of 30 Kbps. We allocate the two time slot in each frame to
the input line with data rate 60 Kbps. A serial to parallel converter is used to make the two
inputs out of one.
Pulse Stuffing: This technique is used when the data rate of inputs are not integer multiple

Fig. 1.8 Multiple Slots Allocation

of each other. In this case, the above two techniques cannot be applied. We make the highest
data rate as the dominent data rate and then add some dummy bits to the lower data rate to
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make their data rate is equal to the highest data rate. This technique is called pulse stuffing,
bit stuffing or bit padding. For example, in fig. 1.9 the input with data rate 26 Kbps is bit
stuffed to increase its data rate to 30 Kbps, now multiplexing can take place.

Fig. 1.9 Pulse Stuffing

Frame Synchronization

Synchronization between multiplexer and demultiplexer is the major issue in TDM. If the
multiplexer and demultiplexer are not synchronized, bit belonging to one channel can be
received by another channels. So, one or more bits called synchronizing bits are added at
the starting of each frame. These bits also called framing bits and follow a pattern from
frame to frame. It allows demultiplexer to synchronize with incoming bit stream so that it
can identify the time slots accurately. In most cases, this synchronizing bit consist only one
bit in each frame and alternates between 0 and 1 as shown in fig. 1.10.

Fig. 1.10 Frame Synchronization
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Empty Time Slots

If a source does not have data to send then its corresponding slot in output frame will be
empty. Fig. 1.11 shows tha case when one input line has no data to send and another input
line has discontinuity in data, so their corresponding time slots are empty in corresponding
frames. The first output frame has three time slots filled, second frame has two time slots
filled and third frame has three time slots filled, no frame is full [19, 20].

Fig. 1.11 Empty Time Slots

Statistical time division multiplexing can increase the efficiency of the system by re-
moving these empty time slots from the frame.

1.3.2 Statistical or Asynchronous Time Division Multiplexing

One drawback of synchronous TDM is that many of the time slots in the frame are wasted.
If a particular input has no data to sent at particular time instant, an empty time slot will be
transmitted. The solution of this problem is statistical TDM also known as asynchronous
TDM or intelligent TDM and is shown in fig. 1.12 [21]. In statistical multiplexing the
channels are no longer of fixed bandwidth but each source receives as much transmission
capacity as it requires instantaneously, means it dynamically allocates the time slots to each
input based on demand, thus saving the channel capacity [22]. Only when an input line has
data to transmit, the time slot is allocated to that source in output farme. Sources continue to
transmit information in bursts but these bursts are not necessarily of equal length and sources
may submit bursts of information in any order and at a rate that reflects the instantaneous
bandwidth required. Sources generally queue for access to the shared transmission medium
on a first come first serve basis but some sources may be allocated priority. In synchronous
TDM, when a source is idle the time slot allocated to it is unused and is not available to
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Fig. 1.12 Statistical TDM

other sources whereas in statistical TDM a source only consumes the time slot when it
has information to send. In statistical multiplexing, the number of slots in each frame is
less than the number of input lines. The multiplexer checks each input line in round robin
fashion. It allocates a slot for an input line if the line has data to send otherwise it skips the
line and checks the next line. The difference between synchronous TDM and asynchronous
TDM is shown in fig. 1.13. It may be noted that many slots remain unutilised in case
synchronous TDM, but the slots are fully utilized in statistical TDM, leading to smaller
time for transmission and better utilization of bandwidth of the medium [3, 23, 24].

Addressing

The fig. 1.14 also shows a major difference between slots in the synchronous TDM and
asynchronous TDM. In synchronous TDM the output slot is totally occupied by the data but
in statistical TDM data as well as address of destination is transmitted in one time slot.
In synchronous TDM, synchronization and preassigned relationship between input and out-
put serves as an address. For example, we know that the input from input line 1 goes to
the output line 1, if the multiplexer and demultiplexer are synchronized it is guaranteed. In
statistical multiplexer there is no fixed relationship between input and output because there
is no preassigned and fixed time slot. So, it is needed to include the address of the receiver
in each time slot to show that where it has to be delivered. To represent the address of N
output lines we need n bits as N = log2n. This leads to more overhead per slot as shown in
fig. 1.15. Relative addressing can be used to reduce overhead [25, 26].
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Fig. 1.13 Synchronous vs Asynchronous TDM

Fig. 1.14 Addressing in Statistical TDM
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Fig. 1.15 Address Overhead in Statistical TDM

Slot Size

Since a slot carries both data and an address in statistical TDM, the ratio of the data size
to address size must be reasonable to make transmission efficient. For example, it would
be inefficient to send 1 bit per slot as data when the address is 3 bits. This would mean an
overhead of 300 percent. In statistical TDM, a block of data is usually many bytes while the
address is just a few bytes [27].

No Synchronization Bit

In statistical multiplexer, there is no need of synchronization between multiplexer and de-
multiplexer. So, we don’t need to add synchronizing bit at the starting of each frame.

Bandwidth

In statistical TDM, the capacity of the link is normally less than the sum of the capacities
of each channel. The designers of statistical TDM define the capacity of the link based on
the statistics of the load for each channel. If on average only x percent of the input slots are
filled, the capacity of the link reflects this. Of course, during peak times, some slots need to
wait [28, 29].

1.3.3 Synchronous vs Statistical Multiplexing

In synchronous TDM the offered traffic load can never exceed the capacity of the shared
transmission medium, a utilisation of 100% may be supported indefinitely, delay is deter-
ministic and jitter is very low. However, with statistical multiplexing, for short periods the
offered traffic load can exceed the capacity of the transmission medium which may results
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in either loss of information or delay or both. Statistical multiplexing can support only 80%
maximum utilisation of the transmission medium. Delay is dependent upon the mean traffic
load and the source traffic characteristics and jitter may be high. Despite these apparent
disadvantages, statistical multiplexing is very fexible, supports traffic sources which vary
widely in their bandwidth requirements and source traffic characteristics and handles bursty
sources efficiently [30–32].

1.4 Motivation and Objective

Now a days, we are working in the frequency range from 100 Mbps to several Gbps. We
also want that each user gets better quality of service (QoS) without bearing the quality
of service of each other. Some applications are delay sensitive and some applications are
loss sensitive, some applications generate bursty information. Todays, networks are able
to carry all types of information due to development of statistical multiplexing. Statistical
multiplexer also uses the buffer to store the packets, so there is a delay in the transmission of
the information. Software implementation of statistical multiplexer can take several minutes
to hours. It is, therefore necessary to implement statistical multiplexer so that the processing
time is reduced to the order of seconds. Furthermore, these implementations should not
be cost effective. So, this thesis presents a field-programmable gate array (FPGA) based
implementation of statistical multiplexer. The reported implementation provides a speedup
in process, thus reducing the time from minutes to several neno seconds.

1.4.1 Hardware vs Software

Software is a general term used to describe a collection of computer programs, procedures,
and documentation that perform some task on a computer system. Practical computer
systems divide software systems into three major classes: system software, program-
ming software, and application software. Software is an ordered sequence of instruc-
tions for changing the state of the computer hardware in a particular sequence. It is
usually written in high-level programming languages that are easier and more efficient
for humans to use (closer to natural language) than machine language. High-level lan-
guages are compiled or interpreted into machine language object code. Software may
also be written in an assembly language, essentially, a mnemonic representation of a
machine language using a natural language alphabet.

Hardware is best described as a device that is physically connected to the computer or
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something that can be physically touched. A CD-ROM, monitor, printer, and video
card are all examples of computer hardware. Without any hardware, computer would
not exist and software would have nothing to run on. It is the physical part of a
computer, including the digital circuitry, as distinguished from the computer software
that executes within the hardware.

Fig. 1.16 Design Methodology for Efficient Test Mapping

Writh’s law states that, “Software is getting slower more rapidly than hardware becomes
faster.” or, colloquially, "Software gets slower faster than hardware gets faster". It is stated
by Niklaus Wirth in 1995. Computer hardware has become faster over time, and some of
that development is quantified by Moore’s law. So, the hradware implementation is always
faster than the software implementation. Reconfigurable logic provides high performance
per watt, execution time in neno seconds and high adaptability to application constraint.
FPGA technology could offer better performances comparing to CPUs or GPUs up to 10x.
George AFONSO, Rabie Ben Atitallah and Jean-Luc Dekeyser in [33] perform a experi-
ment and prove that the execution time of hardware implementation is much more less than



1.5 Organization of thesis 16

the execution time of software implementation. They also present a design methodology
that covers the different development steps from software specification to the system imple-
mentation as shown in fig. 1.16 [33].

1.4.2 Why FPGA?

A field-programmable gate array (FPGA) is an integrated circuit which is designed to be
configured by the customer or designer after manufacturing. FPGA can be used to imple-
ment any logic function. This project is targeted for FPGA for the following reasons:

1. FPGA represent a new direction for DSP, communication and real time systems and
there is much original work to be done in terms of optimized algorithms for this type
of systems.

2. They fill a need in the design space of digital systems, complementary to the role of
micro-processors. Since, micro-processors can be used in variety of, but they rely
on the software environment to implement functions. Hence, micro-processors are
generally slower & more power hungry than the custom chips.

3. There is no wait from completing the design to obtain the working chip, that is design
can be programmed into FPGA & tested immediately.

4. They are excellent prototyping vehicles. When used in final design, the jump from
prototype to product is much smaller and easier to negotiate.

5. In several different designs, they are used to reduce the inventory cost.

They were often used in prototype because they could be programmed and inserted into
board, in a few seconds/minutes. But they did not make it into the final product. And now
a days they are used in all sort of digital systems: as video accelerator in home, personal
video recorder (PVR’s). They provides programmable logic elements & programmable
interconnects to build the multilevel logic function [34].

1.5 Organization of thesis

The thesis has been organized as follow: In chapter 2, a brief introduction about the algo-
rithms and proposed hardware architecture is discussed. The blocks used in the hardware
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architecture is also studied for the purpose of understanding their working which is impor-
tant for implementation. Chapter 3 describes the hardware & software tools used in the
implementation. Preference of verilog in Xilinx ISE instead of VHDL is also studied. Fea-
tures of FPGA implementation are also discussed. Finally, in chapter 4, all modules are
implemented in Xilinx ISE. Their schematic, RTL behavior and simulation is studied.



Chapter 2

Algorithms & Proposed Hardware
Architecture

Multimedia applications ranging from telephone to video have become widespread, and net-
works today are filled with streaming flows having various bandwidths. Quality of service
(QoS) must be controlled under streaming traffic conditions. Bandwidth management in
high speed networks is also considered as a key technology in providing services to differ-
ent traffics such as video, voice and data [35, 36]. These traffic types have very different
needs as well as quality of service (QoS). In order to guarantee QoS to every transport con-
nection established across the network, we need to have call admission control (CAC) which
decides if a new call can be established with QoS required by the call without affecting the
QoS of existing connections.

We have a lot of algorithms for call admission control [37–42]. In this theis we are de-
scribing two algorithms for call admission control: one is based on the effective bandwidth,
and second is based on the tail probability of queue length. These two algorithms are the
basic algorithms for call admission control.

2.1 Algorithm Based on Tail Probability of Queue Length

The authors in [43, 44] has proposed an algorithm for call admission control based on the
tail distribution of the queue length in the corresponding infinite-buffer queue. In [43] it
is assumed that the time is divided into slots and the length of one slot is equal to a unit
time and cells arrives in batches. Two types of queuing models are defined based on the
timing of arrivals: the early arrival model and the late arrival model. In the early arrival
model, an arrival of a batch in the nth slot occurs immediately after the beginning of the nth
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slot. On the other hand, in the late arrival model, an arrival of a batch in the nth slot occurs
immediately before the end of the nth slot [45, 46]. In this paper only early arrival model is
considered.

The probability that a random variable deviates by a given amount from its expectation is
referred to as a tail probability. Let xk denote a 1 X M vector whose jth element represents
the joint stationary probability of k cells in the system and the underlying Markov chain
being in state j in the corresponding discrete-time queue with infinite buffer. Let ρ denote
the traffic intensity, N is the number of cell in the system and e is an M X 1 vector with all
elements equal to one. The tail probability Tk (k ≥ 0) is defined as:

Tk =
∞

∑
m=k+1

xme (2.1)

Let Ploss denote the cell loss probability in the early arrival model and is defined as:

Ploss ≈
(1−ρ)TN

ρ(1−TN)
(2.2)

Eq. 2.2 gives the approximate value of the cell loss probability. Also, it is difficult to cal-
culate the tail probability of the queue with infinite buffer length. It is also not possible
practically to implement the queue of infinite length.

2.2 Algorithm Based on Effective Bandwidth

Suppose we have a system as shown in fig. 2.1. There is M no. of sources, which have data
that is statistical in nature, means they don’t transmit data with constant periodic bit rate, bit

Fig. 2.1 An Example of a System
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rate is variable in nature. Let the bit rate of source one is R1, bit rate of source two is R2 and
so on, bit rate of source M is RM. L is the maximum bit rate of output and Y is the combined
bit rate of inputs, means

Y = R1 +R2 + ........+RM (2.3)

Suppose new user wants to enter in the system. So, the network problem is to determine
whether new user can admit or not. In other way the network problem is to determine that
how many numbers of users can admit in the system so that the packet loss probability is
less than some threshold.

We consider that the PDF of bit rate of all users is known and PDF of ith source, data rate
is represented by fRi(ri). Because, the bit rate of users is a random variable and independent
to each other, so from eq. 2.3

fY (y) = fR1(r1)∗ fR2(r2)∗ ............∗ fRM(rM) (2.4)

Probability[Y > L] => packetlossprobability

if,

packetlossprobability < δthreshold

Only then new user can enter in the system otherwise not. This technique has been defined
in detail in [47].

2.3 Proposed VLSI Architecture

The algorithm describe in section 2.1 cannot be implemented on the hardware. So, we
proposed a VLSI hardware architecture Based on the principle described in section 2.2 as
shown in fig. 2.2 to control the new user admission in statistical multiplexing and to provide
better QoS in terms of packet loss probability. This reconfigurable hardware architecture
has been implemented on FPGA. The FPGA hardware implementation is faster than the
software implementation because it takes less time in the range of ns. The working of this
architecture is based on the flow chart as shown in fig. 2.3

If new user wants to enter in the system then it will send its packet to the system. Packet
has the source address, by which system will know that it is not the packet from existing
users. So, the convolution unit in the system computes the convolutio of all PDF of source
data rate, which is already stored in the memory. Its output is fed to the probability compu-
tation unit. Probability computation unit compute the probability of combining data rate Y
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Fig. 2.2 Proposed Hardware Architecture

Fig. 2.3 Flow Chart
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is greater than the maximum data rate of the output, i.e.

P(Y > L) =
∫ ∞

L
fY (y)dy (2.5)

The comparator unit compares the output of probability computation unit with a threshold
value which is again stored in the memory. Based on the output of comparator, decision
unit decide whether the packet of new user will stored in the buffer or it will be discarded.
If the output of comparator is 1, it means that the combined bit rate of inputs is less than the
maximum bit rate of the output so the packet of new user can be stored in the buffer means
new user can enter in the system. Decision unit gives the input to control unit to store the
packet in the buffer. If the output of comparator unit is 0, then decision unit gives the input
to control unit to discard the packet.

2.4 Different Units in Hardware Architecture

As this project is focused on hardware implementation of statistical multiplexer for con-
trolling the user admission. The proposed hardware architecture is shown in fig. 2.2. This
architecture for statistical multiplexer has several basic bolcks:

1. Convolution Unit

2. Probability Computational Unit

3. Comparator

4. Decision Unit

5. FIFO Buffer

6. Memory Unit

7. Control Unit

2.5 Convolution Unit

Convolution is a mathematical operation on two functions, producing a third function that
is typically viewed as a modified version of one of the original function, giving the area
overlap between the two functions. It is also defined as an array operation where each
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output data element is a weighted sum of a collection of neighbouring input elements. The
weight use in the weighted sum calculation are defined by an input array, commanly referred
to as convolution kernel. For the discrete time signal it is defined as convolution sum and for
the continuous time signal it is defined as convolution integral [50]. If we have two discrete
time signal x[n] and h[n] and if the output is denoted as y[n] then convolution sum is given
as:

y[n] = x[n]∗h[n] =
∞

∑
k=−∞

x[k]h[n− k] (2.6)

If two continuous time signal is defined as x(t) and h(t) and output is defined as y(t), then
convolution integral is defined as:

y(t) = x(t)∗h(t) =
∫ ∞

−∞
x(τ)h(t − τ) (2.7)

The properties of convolution is given as below:

2.5.1 Properties of Convolution

• Commutative Property:
x[n]∗h[n] = h[n]∗ x[n] (2.8)

• Associative Property:

x[n]∗ (y[n]∗h[n]) = (x[n]∗ y[n])∗h[n] (2.9)

• Distibutive Property:

x[n]∗ (y[n]+h[n]) = x[n]∗ y[n]+ x[n]∗h[n] (2.10)

• Constant Multiplier:
(ax[n])∗h[n] = a(x[n]∗h[n]) (2.11)

• Sum of the sample values in the resultant of convolution is equal to the product of the
sum of the sample values of individual signal being convolved.

The same properties also valid for convolution integral [51].
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2.6 Probability Computational Unit

If an experiment is repeated n times under the same conditions, and if nA is the number of
occurences of event A, then the probability of A, i.e. P(A) is defined as [52]:

P(A) = lim
n→∞

nA

n
(2.12)

This is also called the relative frequency of event A. It has the following properties for an
event A:

1. 0≤P(A)≤ 1, where P(A) = 0 if A occurs in none of the n repeated trials and P(A) = 1
if A occurs in all of the n repeated trials.

2. Probability of a certain event is equal to 1

P(S) = 1, where S is the certain event (2.13)

3. If A and B are the mutually exclusive events, then

P(A+B) = P(A)+P(B) (2.14)

2.6.1 Elementary Properties of Probability

The useful properties of probability are given as [52]:

1. P(A) = 1−P(A)

2. P(ϕ) = 0, where ϕ is a null event.

3. P(A)≤ P(B) if A ⊂ B

4. P(A)≤ 1

5. P(A∪B) = P(A)+P(B)−P(A∩B)

2.7 Comparator Unit

Comparator basically compares the two input and gives the output that the one input is either
greater or smaller or equal to the second input. Mathematically, if A ≥ B, then the output of
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comparator is one and if A < B, then comparator output is zero. It is not the hard and fast
rule that if A ≥ B, then only its output is one, it may be that if A ≤ B, then also its output is
one otherwise zero, it depends on the requirement of the system. The basic concept behind
the comparator is that it perform the operation A−B. If the result of this operation is either
zero or positive then it gives the output one and if the result of operation is negative then it
gives the output zero.

2.8 Decision Unit

Decision unit simple takes the decision that which operation has to perform. In this there is
one or more select lines based on the number of operations. We assign a unique operation
for a particular value of the select lines. Basically, it works as a multiplexer, in which
we have two or more inputs, one or more select lines and one output. Suppose, we have
four operations A, B, C, & D to be performed. If the select line has value 1 then perform
operation A , if select line has a value 2 then perform operation B, if select line is equal to 3
then perform operation C, & if the select line is equal to 4 then perform operation D.

2.9 FIFO Buffer

FIFO stands for First In First Out. It is an approach to handle the program from queue or
stack, so that the oldest request is handled first. It is a memory in which the data word that is
written in first also comes out first when the memory is read. The real life examples of FIFO
are printer, a queue of people at ticket window, vehicles on toll-tax bridge, phone answering
system, luggage checking machine and patients waiting outside the doctor’s clinic. The data
flow in a FIFO is illustrated in fig. 2.4 [53].

There are three kinds of FIFO:

1. Shift register

2. Exclusive read/write FIFO

3. Concurrent read/write FIFO

2.9.1 Shift register

In this type of FIFO the number of stored data words are fixed. So, there is a proper syn-
chronism between the read and write operation, means a data word must be read at the same
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Fig. 2.4 First-in First-out Data Flow

time when a data word is written in FIFO.

2.9.2 Exclusive Read/Write FIFO

In this type of FIFO the number of stored data word are variable in nature. But, there is
also a proper synchronism between the read and write operation, means the read and write
operation are not independent to each other. There are timing relationships between the
write clock and the read clock. For the use of such type of FIFO between two systems which
are not synchronized with each other, an external circuit is required for synchronization.
But, this external synchronization circuit reduces the data rate.

2.9.3 Concurrent Read/Write FIFO

In this type of FIFO also the number of stored data word are variable but the read and write
operation are asynchronised, means there is no dependence between the read and write
operation. So, the two systems with different frequencies can be connected to this type of
FIFO. Depending on the write control and read control signals, concurrent read/write FIFO
divided into two groups:

• Synchronous FIFO
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• Asynchronous FIFO

The block diagram in fig. 2.5 shows the control lines of an asynchronous FIFO, and
fig. 2.6 shows the typical timing on these lines in a read and write operation. The control

Fig. 2.5 Block diagram of a FIFO

lines WRITE CLOCK and FULL are used to write data. Before writing the data in a FIFO,
it is neccessary to check whether there is space available in FIFO or not by checking the
FULL status. If it is low it means that there is no space available in the FIFO. If it is high,
means the FIFO is not full, so we can write the data in FIFO by the clock edge of the WRITE
CLOCK input. Similarly, the control lines READ CLOCK and EMPTY are used to read
data. Before, reading the data from the FIFO, we have to check whether the data is stored
in the FIFO or not, means whether the FIFO is empty or not. This is done by quering the
EMPTY status. If the FIFO is not empty, the data can be read by the clock egde of the
READ CLOCK input. The timing diagram in fig. 2.6 shows that first we have to reset the
FIFO. Then, three data words D1 through D3 are stored in the FIFO by the clock edge of
the WRITE CLOCK. Once the first data i.e. D1 is written in the FIFO the EMPTY signal
changes from low level to high level. Another two data wirds are written into the FIFO
after the first read cycle. The reading out of first data by the clock edge of READ CLOCK
does not change the status signals. After writing the two data words, FIFO is full which is
indicated by the FULL signal. Finally, the four data words D2 through D5 remaining in the
FIFO are read out. Thus, the FIFO is empty again, so the EMPTY status line changes again
from high level to low level [54].
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Fig. 2.6 Timing Diagram for FIFO of Length 4

2.10 Control Unit

To control all the sub-modules we need a control unit. Basically, it changes the status signal
of a unit based on the status signal of other units. Like, if we have an adder, a subtractor, a
multiplier and a division unit. Decision unit takes the decision that the subtractor operation
has to be performed. So, the based on the output of the decision unti it applies the input to
the subtractor unit. In this project, it changes the status signal of FIFO, gives the command
to the convolution unit to perform the data fetch operation from the memory and many more.



Chapter 3

Hardware Tools and Implementation
Platform

3.1 Hardware Description Language (HDL)

In electronics, a hardware description language or HDL is any language from a class of
computer languages, specification languages, or modeling languages for formal description
and design of electronic circuits, and most-commonly, digital logic. It can describe the
circuit’s operation, its design and organization, and tests to verify its operation at any level.
The automatic translation of design description into a set of logic equation is performed
by HDL. It is used to describe the architecture and behavior of discrete electronic system.
The main difference with the traditional programming languages is HDL’s representation of
extensive parallel operations whereas traditional ones represents mostly serial operations.
The design flow using HDL is given in fig. 3.1 [55].

3.1.1 Benefits of HDL

• We can verify design functionality early in the design written as an HDL description.

• Design simulation at this higher level before implementation at gatelevel, allow us to
test architecture and design decision.

• The language content can be stored and retrieved easily and processed by computer
software in an efficient manner.

• Reduced non-recurring engineering costs.
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Fig. 3.1 Product Development & Design Verification Cycle using HDLs
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• Design reused is enabled.

• Increase flexibility to design changes.

• Better and easier design auditing and verification.

• Base line testing of lower level design representations - example: gate level or register
level design.

• Ability to manage/develop complex designs.

• Hardware/software co-design

3.1.2 Types of HDL

There are two types of hardware description language (HDL):

• VHDL – VHSIC Hardware Description Language
VHSIC – Very High Speed Integrated Circuit
developed from an initiative by US. Dept. of Defense.
gate level through system level design and verification

• Verilog is other main HDL
Primarily targeted for design of ASICs
developed by Cadence Data systems and later transferred to a consortium called Open
Verilog International (OVI).
ASIC – Application Specific Integrated Circuit

3.1.3 Difference Between Verilog and VHDL

We can use any of the hardware description language (HDL) to design a circuit, but there is
some differences between verilog and VHDL which are described in table 3.1.

In this thesis verilog is used to design the project. So, it is described in breif in next
section.

3.1.4 Application of HDL Processing

There are two application of HDL processing: simulation and synthesis. The flow of both
application is given in fig. 3.2.
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Table 3.1 Difference Between Verilog and VHDL

S.No. Verilog VHDL
1 depends on C depends on ADA
2 case-sensitive case-insensitive
3 easy to learn difficult to learn
4 more constructs are synthesizable less constructs are synthesizable
5 data types are only built-in complex, abstract, flexible, own defini-

tions possible
6 no packages are required required for functions, constants, types

etc.
7 automatic conversion and declaration conversion functions and all signals

must be declared

Fig. 3.2 Simulation Flow (left) and Synthesis Flow (right)

Simulation tool simulates in software the actual behavior of the hardware circuit for certain
input conditions, which we describe in a testbench. Because compiling our HDL for
the simulation tool is relatively fast, we primarily use simulation tools when we are
testing our design.

Synthesis tool is used to turn high level HDL code to a low level gate netlist. A mapping
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tool then maps the netlist to the applicable resources on the targeting device. Finally,
we download a bitstream, describing the way in which the targeting device should be
reconfigured onto the FPGA, resulting in an actual digital circuit.

3.2 Verilog

Verilog means Verifying Logic. It was developed by Gateway Design Automation in 1985
by Phil Moorby as a simulation language. In 1989, Cadence Design Systems bought it after
that it is also used as a synthesis language. It was a proprietary language, being the property
of Cadence Design Systems. In the late 1980’s it seemed evident that designers were going
to be moving away from proprietary languages like n dot, HiLo and verilog towards the US
Department of Defence standard VHDL. So, Cadence Design Systems opened verilog to
public in 1990. It becomes an IEEE standard named as IEEE-1364 in 1995 and then revised
in 2000 and till now it is an IEEE standard.

The Verilog Hardware Description Language (HDL) is used to describe a hardware de-
sign and a simulator that allows for testing the logic of a hardware design. Thus the designer
is able to accurately simulate the operation of a wide variety of digital networks such as
combinatorial logic, sequential networks and asynchronous networks. A description of a
hardware design using the Verilog HDL is called a Verilog model and is the basic building
block for simulation. This model can describe both the function of a design as well as the
components and connections of components. Thus Verilog HDL is both a behavioral and a
structural language [56].

Verilog models can be developed at several levels of abstraction. At the highest level,
the designer can develop algorithmic that implement a design as an algorithm in a high level
language similar to the C programming language. The next lower level would be to develop
a model that describes the flow of data between registers and how a design processes that
data. This type of modeling uses the languge which is called Register Transfer Language
(RTL). The designer can develop more concrete models at the gate-level that describe the
individual logic gates and the connections between logic gates in a design. Finally, the
designer can develop very concrete models at the switch-level that describe the individual
transistors and storage nodes in a device and the connections between them.

There are three main steps in the process of logic simulation in Verilog. First, the hard-
ware is modeled using Verilog HDL at an appropriate level of abstraction. Second, the
Verilog Simulator is told how to apply stimuli to the design. Third, Verilog Simulator is told
how to report the results of the simulation.
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Verilog Language uses a hierarchical, functional unit based design approach. The whole
design consists of several smaller modules. The complexity of the modules is decided by
the designer. Verilog modules define the input and output ports and logical relationship
between the input and output ports. The module is always begin with module , ends with
endmodule and may contain several statements. All statements as well as module terminate
with a semi-colon while endmodule does not terminate with a semi-colon.

Verilog statements are concurrent in nature; except for code between begin and end
blocks, there is no defined order in which they execute. In comparison, most languages like
C consist of statements that are executed sequentially; the first line in main() is executed
first, followed by the line after that, and so on. Synthesizable Verilog code is eventually
mapped to actual hardware gates. Compiled C code, on the other hand, is mapped to some
bits in storage that a CPU may or may not execute [57].

3.3 Xilinx Integrated Software Environment (ISE)

The Xilinx ISE system is an integrated design environment that consists of a set of programs
to create (capture), simulate and implement digital designs in a field programmable gate
array (FPGA) or complex programmable logic device (CPLD) target device. It produced
for synthesis and analysis of HDL designs, which enables the developer to synthesize their
designs, perform timing analysis, examine RTL diagrams, simulate a design’s reaction to
different stimuli, and configure the target device with the programmer. All the tools use a
graphical user interface (GUI) that allows all programs to be executed from toolbars, menus
or icons [58].

This tool used for the designing of both combinational and sequential circuits using a
hardware description language (HDL) design specifications. In this thesis verilog is used to
design the whole project, so the steps used in the design procedure are listed below:

1. Create Verilog design input file(s) using template driven editor.

2. Compile and implement the Verilog design file(s).

3. Create the test-vectors and simulate the design (functional simulation) without using
a PLD (FPGA or CPLD).

4. Assign input/output pins to implement the design on a target device.

5. Download bitstream to an FPGA or CPLD device.
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6. Test design on FPGA/CPLD device.

A Verilog input file in the Xilinx software environment consists of the following segments:

Header: module name, list of input and output ports.

Declarations: input and output ports, registers and wires.

Logic Descriptions: equations, state machines and logic functions.

End: endmodule

The WebPack is a free version of Xilinx ISE. This edition provides synthesis and pro-
gramming for limited number of Xilinx devices. Particularly, devices with lots of I/O and
huge gate matrix are disabled. The low-cost Spartan family of FPGAs, and the family of
CPLDs is fully supported by this edition, that means small developers and educational in-
stitutions have no overheads from the cost of development software. License registration to
use the WebPack of Xilinx ISE is required, which is free and can be renewed an unlimited
number of times.

3.3.1 Design Flow of Xilinx

The following steps are involved in the realization of a digital system using Xilinx FPGAs
and CPLDs, as illustrated in the fig. 3.3.

Design Entry

The first step is to enter the design which has to be analyzed. This can be done by creating
“Source” files. Source files can be created in different formats such as a schematic, or a
Hardware Description Language (HDL) such as VHDL, Verilog or ABEL. A project design
will consist of a top-level source file and various lower-level source files. Any of these files
can be either a schematic or a HDL file.

Design Synthesis

The synthesis step creates netlist files from the various source files. It is basically description
of logic cells and their connections. The netlist files can serve as input to the implementation
module.



3.3 Xilinx Integrated Software Environment (ISE) 36

Fig. 3.3 Various Steps Involved in the Design Flow of a Digital System

Design Verification (Simulation)

This is an important step that should be done at various stages of the design. The simula-
tor is used to verify the functionality of a design (functional simulation), the behavior and
the timing (timing simulation) of the circuit. Timing simulation needs to know the actual
placement and routing to find out the exact speed and timing of the circuit, so it is done after
implementing the circuit in FPGA or CPLD.

Design Implementation

After generating the netlist file (synthesis step), the implementation will convert the logic
design into a physical file that can be downloaded on the target devices (e.g. Virtex FPGA).
This steps involves three sub-steps: Translating the netlist, Mapping and Place & Route.

Device Configuration

This refers to the actual programming of the target device by downloading the programming
file to the Xilinx FPGA or CPLD.
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3.3.2 Project Navigator Window

The above steps are managed through a central ISE Project Navigator window. It is divided
into four panel sub-windows as shown in fig. 3.4. On the top left are the Start, Design, Files,
and Libraries panels, which include display and access to the source files in the project
as well as access to running processes for the currently selected source. The Start panel
provides quick access to opening projects as well as frequently access reference material,
documentation and tutorials. At the bottom of the Project Navigator are the Console, Errors,
and Warnings panels, which display status messages, errors, and warnings. To the right is
a multi-document interface (MDI) window referred to as the Workspace. The Workspace
enable us to view design reports, text files, schematics, and simulation waveforms. Each
window can be resized, undocked from Project Navigator, moved to a new location within
the main Project Navigator window, tiled, layered, or closed.

Design Panel

The Design panel provides access to the View, Hierarchy, and Processes panes.

View Pane radio buttons enable us to view the source modules associated with the Imple-
mentation or Simulation Design View in the Hierarchy pane. If we select Simulation,
we must select a simulation phase from the drop-down list.

Hierarchy Pane displays the project name, the target device, user documents, and design
source files associated with the selected Design View. The View pane at the top of
the Design panel allows us to view only those source files associated with the selected
Design View, such as Implementation or Simulation. Each file in the Hierarchy pane
has an associated icon. The icon indicates the file type (HDL file, schematic, core, or
text file, for example). If a file contains lower levels of hierarchy, the icon has a plus
symbol (+) to the left of the name. We can expand the hierarchy by clicking the plus
symbol (+) and a file could be opened for editing by double-clicking on the filename.

Processes Pane is context sensitive, and it changes based upon the source type selected in
the Sources pane and the top-level source in the project. From the Processes pane, we
can run the functions necessary to define, run, and analyze the design. The Processes
pane provides access to the following functions:

• Design Summary/Reports provides access to design reports, messages, and
summary of results data. Message filtering can also be performed.
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• Design Utilities provides access to symbol generation, instantiation templates,
viewing command line history, and simulation library compilation.

• User Constraints provides access to editing location and timing constraints.

• Synthesis provides access to Check Syntax, Synthesis, View RTL or Technology
Schematic, and synthesis reports. Available processes vary depending on the
synthesis tools used to analyze the design.

• Implement Design provides access to implementation tools and post implemen-
tation analysis tools.

• Generate Programming File provides access to bitstream generation.

• Configure Target Device provides access to configuration tools for creating
programming files and programming the device.

The Processes pane incorporates dependency management technology. The tools keep
track of which processes have been run and which processes need to be run. Graphical
status indicators display the state of the flow at any given time. When a process in
the flow is selected, the software automatically runs the processes necessary to get to
the desired step. For example, when we run the Implement Design process, Project
Navigator also runs the Synthesis process because implementation is dependent on
up-to-date synthesis results.

Files Panel

The Files panel provides a flat, sortable list of all the source files in the project. Files can
be sorted by any of the columns in the view. Properties for each file can be viewed and
modified by right-clicking on the file and selecting Source Properties .

Libraries Panel

The Libraries panel enables us to manage HDL libraries and their associated HDL source
files. We can create, view, and edit libraries and their associated sources.

Console Panel

The Console provides all standard output from processes run from Project Navigator. It
displays errors, warnings, and information messages. Errors are signified by a red X next to
the message; while warnings have a yellow exclamation mark (!).



3.4 Field Programmable Gate Array (FPGA) 40

Errors Panel

The Errors panel displays only error messages. Other console messages are filtered out.

Warnings Panel

The Warnings panel displays only warning messages. Other console messages are filtered
out.

Workspace

The Workspace is where design editors, viewers, and analysis tools open. These include ISE
Text Editor, Schematic Editor, Constraint Editor, Design Summary/Report Viewer, RTL and
Technology Viewers, and Timing Analyzer.

Design Summary/ Report Viewer

The Design Summary provides a summary of key design data as well as access to all of the
messages and detailed reports from the synthesis and implementation tools. The summary
lists high-level information about the project, including overview information, a device uti-
lization summary, performance data gathered from the Place and Route (PAR) report, con-
straints information, and summary information from all reports with links to the individual
reports. Messaging features such as message filtering, tagging, and incremental messaging
are also available from this view.

3.4 Field Programmable Gate Array (FPGA)

Field Programmable Gate Arrays (FPGA) are a relatively new class of integrated circuits.
Firstly, it is introduced by the Xilinx company in 1985. Many different competing desings
are developed by companies like Actel, Advanced Micro Devices, Algotronix, Altera, At-
mel, AT&T, Crosspoint Solutions, Cypress, Intel, Lattice, Motorola, QuickLogic, and Texas
Instruments. A generic FPGA consists of an array of logic elements together with an inter-
connect network which can be configured by the user at the point of application. User
programming specifies both the logic function of each block and the connections between
the blocks. Programming can take two forms; one-time programmable chips (analogous to
fusible link PROMs), and reprogrammable chips (analogous to EEPROMs or Static RAMs).
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The Programming technologies which allow these devices to be "field programmable"
are EPROM and EEPROM transistors, anti-fuses, and Static Random Access Memory
(SRAM) cells. The selection of a programming technology is important because it affects
chip density, signal and logic propagation delays, and chip power consumption. FPGAs can
be programmed by changing the characteristics of a switching element using EPROM and
EEPROM programming technologies. The alternative method to design FPGA device is to
use anti-fuse element. The anti-fuse resistance which is normally very high (> 100MΩ)
is permanently changed to a low resistance (200− 500Ω) by the application of appropri-
ate programming voltages. The programmed anti-fuse is used to make a direct electrical
connection between two metal lines.

The Static Random Access Memory (SRAM) FPGA programming technology is first
introduced by Xilinx. It is also used in designs by Algotronix, Plessey, AT&T, and oth-
ers. Programmable connections in these FPGAs are made using multiplexers, transmission
gates, or pass transistors that are controlled by information stored in SRAM cells. Since,
SRAM is volatile in nature, these FPGAs must be programmed to set the circuit configura-
tion each time that power is applied to the chip. Table 3.2 gives the characteristics of four
FPGA programming technologies which is discussed above [59].

Table 3.2 Characteristics of FPGA Programming Technologies

Programming Re-Programmable Volatile Series Capacitance cell
Technology Storage Resistance in ff area
Static RAM in-circuit yes 1KΩ 15 5X
Anti-Fuse no no 50-500Ω 1.2-5.0 1X
EPROM outside circuit no 2KΩ 10 1X

EEPROM in-circuit no 2KΩ 10 2X

3.4.1 Characteristics of FPGA

The characteristics of FPGA are given below:

1. They are standard parts: i.e. not designed for any particular function but are pro-
grammed by the customer for a particular purpose.

2. They implement multilevel logic: Means logic blocks inside FPGA can be connected
in a network of arbitrary depth.

Because FPGA implements multilevel logic, they generally need both programmable
logic blocks and programmable interconnects. PLD’s use fixed interconnects and
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Fig. 3.5 Four FPGA Structure Classes
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simply change the logic function attached to the wires. FPGA, in contrast requires
programming logic blocks and connecting them together in order to implement func-
tion.

3. One of major characteristic of FPGA is that it can be programmed, which is very
different than in microprocessor. Because FPGA’s program are directly interwoven
into logic structure of FPGA.

Fig. 3.6 Basic Structure of FPGA
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3.4.2 FPGA Architectures

FPGAs are commonly available in many different architectures. FPGA architectures can
be generally classified into one of four categories: Symmetrical Array, Row Based, Hier-
archical PLD, and Sea of Gates. Fig. 3.5 illustrates this classification based on the general
internal organization of the design.

The general structure of FPGA is shown in fig. 3.6. It Contain three main types of
resources: configuration logic blocks (CLBs), I/O blocks for connecting to the pins of pack-
age, and interconnection wires and switches. The configuration logic blocks (CLBs) are
arranged in a two-dimensional array. Each CLB contain flip-flop(s), multiplexers, and a
combinatorial function block which operates as a SRAM based look-up table. The inter-
connecting wires are organized as horizontal and vertical routing channels between rows
and columns of configuration logic blocks. The routing channels contain wires and pro-
grammable switches that allow the logic blocks to be interconnected in many ways. Pro-
grammable connections also exist between I/O blocks and the interconnecting wires [60].

3.4.3 FPGA Design Flow

Although early FPGA designs were generated largely by hand, access to today’s com-
plex programmable logic devices requires the use of an integrated Computer-Aided Design
(CAD) system. Fig. 3.7 illustrates the sequence of operations needed to convert applica-
tion design described in a Hardware Description Language (HDL) to a stream of bits that
is eventually programmed on the FPGA. Both commercial CAD tool vendors and FPGA
companies offer appropriate tools. For example, traditional Electronic Design Automation
(EDA) vendors such as Cadence, Mentor Graphics, Synopsys, and ViewLogic all offer tools
to support FPGA design. These tools are typically used for the front-end design entry and
simulation operations and provide the necessary interfaces to vendor-specific back-end tools
for chip placement and routing. Examples of vendor specific back-end tools are the Xilinx
ISE system and the Altera MAX+PLUS II software.

The starting point in any logic or digital system design is a set of architectural or be-
havioral specifications. Traditionally, a designer uses schematic capture tools for graph-
ical entry of a logic design which has been manually generated to meet the architectural
or behavioral specifications. The upper left hand arrow in fig. 3.7 identifies some of the
commercial CAD tools available for FPGA schematic capture. A behavioral design specifi-
cation is created using a Hardware Description Language (HDL), and then a synthesis tool
automatically compiles the gate level schematic or netlist from the behavioral description.
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Fig. 3.7 CAD System Design Flow for FPGA
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The upper right hand arrow in fig. 3.7 indicates some of the HDLs currently being used for
FPGA behavioral modeling.

The behavioral description of designs can be done in many ways which include the VH-
SIC Hardware Description Language (VHDL), the Verilog hardware description language,
timing diagrams and logic state diagrams. Which ever behavioral design entry method is
chosen, the design system provides logic synthesis which automatically creates gate-level
schematics. The next step in FPGA design is to translate the entire design into a standard
form which can be processed by a logic optimization tool. The goal of logic optimization
is to perform minimization of the Boolean expressions and eliminate redundancy, thus min-
imizing the area of the final circuit. The tool may also be constrained to maximize speed
by limiting the number of logic levels. Simulation is performed both before and after the
logic optimization steps to verify that the design meets the original system requirements for
functionality and timing. The next step is to convert the gate level design into one which
uses the FPGA circuit building blocks of the target technology. For example, the Xilinx
ISE design system flow will be used to illustrate the steps needed to go from logic design
to programmed FPGA. In the Xilinx design flow, the native format of the logic design must
first be translated into the Xilinx Netlist Format (XNF) which is understood by the Xilinx
tools. Next, the XNF circuit description must be mapped into Xilinx Configurable Logic
Blocks (CLBs). This is the technology mapping step referred in fig. 3.7.

The next step is to place and route the design on the selected chip image. There are two
types of placement and routing: manual and automatic. In the automatic placement opera-
tion, each CLB generated during the “technology mapping” step is assigned to a physical
location on the chip. Interconnections between the CLBs must be routed using the available
interconnect segments and switch matrix elements. With the physical placement and routing
completed, exact timing values can now be used to determine chip performance. The final
step in the Xilinx design flow is the creation of the “BIT” file which contains the binary
programming data needed to configure the SRAM bits of the target chip. This file is then
downloaded to configure the chip for final functional and timing tests of the programmed
chip [61].
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Synthesis, Simulation and Timing
Results

In this project we have taken some assumptions given as below:

1. Three users are already in the network and fourth user wants to admit in the network.

2. The PDF of bit rate of all the users is already known to us and is stored in the memory.

We divide our project into four sub-modules and then call these sub-modules into the final
integrated unit. The sub-modules of this project are:

1. Convolution Unit

2. Probability Computational Unit

3. Comparator Unit

4. FIFO Buffer

4.1 Convolution Unit

The convolution unit is used to convolve the PDF of bit rate of users. When fourth user
comes to the network with its packet which contain the address through which network get
to know that it is not the packet of the existing user, then it gives the control signal to the
convolution unit. Convolution unit take the PDF of bit rate of all the users from the meory
and start its function. The simulation and synthesis results are given below:
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4.1.1 Block Diagram

The block diagram of convolution unit is shown in fig. 4.1. It shows the number of inputs
and ouputs in the unit and also shows that which input or output is represented by how many
number of bits.

Fig. 4.1 Block Diagram of Convolution Unit

4.1.2 RTL Schematic

The RTL schematic of convolution unit is shown in fig. 4.2. It gives the full schematic veiw
of the convolution unit.

4.1.3 Simulation Result

The simulation result of the convolution unit is shown in fig. 4.3. For the simulation of
convolution unit we have taken two inputs, each have 9 samples of 16 bits. The output of
convolution unit has 17 samples of 16 bits.
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Fig. 4.2 RTL Schematic of Convolution Unit

Fig. 4.3 Simulation Result of Convolution Unit
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4.1.4 Synthesis Report

Fig. 4.4 shows the synthesis report of the convolution unit. Basically, the synthesis report
shows the utilization of the logic devices like no. of slices which contain a pair of lookup
tables and flip flops, no. of I/O bounds, no. of clock when we implement the hardware of
the device. The minimum clock period of convolution unit is 5.34 ns.

Fig. 4.4 Synthesis Report of Convolution Unit

4.2 Probability Computational Unit

The probability computational unit takes the input from the convolution unit and it calculates
the probability of combined bit rate of all users is less than the maximum output bit rate.
Basically it calculates the sum of samples of convolution output upto the no. of maximum
output bit rate. The simulation and synthesis results are given below:
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4.2.1 Block Diagram

The block diagram of probability computational unit is shown in fig. 4.5.

Fig. 4.5 Block Diagram of Probability Computational Unit

4.2.2 RTL Schematic

The RTL schematic of probability computational unit is shown in fig. 4.6.

Fig. 4.6 RTL Schematic of Probability Computational Unit
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4.2.3 Simulation Result

The simulation result of the probability computational unit is shown in fig. 4.7. For the
demonstration purpose we add only 5 samples of the output of convolution unit. The output
of probability computational unit gives the addition of 5 samples.

Fig. 4.7 Simulation Result of Probability Computational Unit

4.2.4 Synthesis Report

Fig. 4.8 shows the synthesis report of the probability computational unit. The minimum
clock period of probability computational unit is 3.61 ns.

Fig. 4.8 Synthesis Report of Probability Computational Unit
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4.3 Comparator Unit

The comparator unit takes one input from the probability computational unit and other in-
put from the memory. Other input indicates the threshold value. If the output of probability
computational unit is less than the threshold value only then the user can admit in the net-
work. The simulation and synthesis results are given below:

4.3.1 Block Diagram

The block diagram of comparator unit is shown in fig. 4.9.

Fig. 4.9 Block Diagram of Comparator Unit

4.3.2 RTL Schematic

The RTL schematic of comparator unit is shown in fig. 4.10.

4.3.3 Simulation Result

The simulation result of the comparator unit is shown in fig. 4.11.
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Fig. 4.10 RTL Schematic of Comparator Unit

Fig. 4.11 Simulation Result of Comparator Unit

4.3.4 Synthesis Report

Fig. 4.12 shows the synthesis report of the comparator unit.

4.4 FIFO Buffer Unit

When the output line is busy and when the packet generation time overlap, the packets are
stored in the buffer. The simulation and synthesis results are given below:

4.4.1 Block Diagram

The block diagram of FIFO is shown in fig. 4.13.

4.4.2 RTL Schematic

The RTL schematic of FIFO is shown in fig. 4.14.

4.4.3 Simulation Result

The simulation result of the FIFO is shown in fig. 4.15. For the demonstration purpose we
have assumed that the FIFO can only store the 8 samples of 16 bit.
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Fig. 4.12 Synthesis Report of Comparator Unit

Fig. 4.13 Block Diagram of FIFO
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Fig. 4.14 RTL Schematic of FIFO

Fig. 4.15 Simulation Result of FIFO
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4.4.4 Synthesis Report

Fig. 4.16 shows the synthesis report of the FIFO. The minimum clock period of FIFO unit
is 3.33 ns.

Fig. 4.16 Synthesis Report of FIFO

4.5 Final Integrated System

All the sub-modules described above are interfaced in the final integrated unit. For the
convolution of PDF of bit rate of 4 users, convolution unit is called three times in the final
integrated unit. All the sub-modules work parallely in the final integrated unit, means one
module will not wait for the whole output of second module. When it got the one or two
samples from the previous module it starts its working. The simulation and synthesis results
of the final integrated unit are given below:

4.5.1 Block Diagram

The block diagram of final integrated unit is shown in fig. 4.17.
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Fig. 4.17 Block Diagram of Final Integrated Unit



4.5 Final Integrated System 59

4.5.2 RTL Schematic

The RTL schematic of final integrated unit is shown in fig. 4.18.

Fig. 4.18 RTL Schematic of Final Integrated Unit

4.5.3 Simulation Result

The simulation result of the final integrated unit is shown in fig. 4.19.

Fig. 4.19 Simulation Result of Final Integrated Unit

4.5.4 Synthesis Report

Fig. 4.20 shows the synthesis report of the final integrated unit. The minimum clock period
of final integrated unit is 9.297 ns.
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Fig. 4.20 Synthesis Report of Final Integrated Unit



Chapter 5

Conclusion and Future Scope

5.1 Conclusion

The design and implementation of “Statistical Multiplexer” has been done. The description
was made by Verilog-HDL in Xilinx ISE on Vertex-series family. We divided this project
into different module and find out satisfactory results for each module in terms of minimum
clock period and simplicity. All the modules are performing their operation in very less time
only in the range of “ns”. Here we find out the minimum clock period for each modules are-

• Convolution Unit- 5.34 ns

• Probability Computational Unit- 3.61 ns

• FIFO Buffer- 3.33 ns

• Final Integrated Unit- 9.297 ns

After synthesizing the all module we find out, all the modules are synthesized, mapped
and fit for the implementation on the FPGA platform. FPGA implementation is faster than
the software implementation.

5.2 Future Scope

Even though we achieved our aim as we design a high speed statistical multiplexer. But
still works are going on to increase more and more speed and to reduce area. Statistical
multiplexer has many applications like digital TV transmission, digital broadcasting, asyn-
chronous transfer mode, UDP-TCP protocol, X.25 and frame relay. Its a challenging area
where reaserch is going on to increase the speed provided by the service provider.
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