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Abstract 

Today we are moving towards the era of digital devices i.e. we want to replace every 

analog device with a suitable digital device. Digital devices operate on the digital 

signals but most of the times origination of the signal is in analog form. So we need to 

convert analog signal to digital signal before processing by using Analog to Digital 

Converter (ADC) devices. But analog to digital conversion is bounded by Nyquist 

criteria i.e. number of samples to represent an analog signal should be at least twice of 

the maximum frequency of the signal. This bottleneck criterion prevents us to use 

digital signal processing for the devices which operate on high frequencies like Radar 

(Radio Detection and Ranging). Compressive sampling allows us to recover the 

original analog signal with very less number of samples as compared to the number of 

samples given by Nyquist rate. But compressive sampling can be implemented on the 

sparse signals. Radar signals can be made sparse in dictionary domain due to prior 

knowledge of the transmitted waveform at the receiver. So we used compressive 

sampling technique for radar signals. 

In this dissertation, we provided the general framework of compressive sampling for 

the arbitrary one dimensional and two dimensional signals. We analyzed the effect of 

sparsity level and noise level on the recovery of an arbitrary signal. Further we 

provided the framework of compressive sampling for Radar Signals. In radar systems 

popular waveforms are linear frequency modulated waveforms which are not sparse 

in frequency domain so we used waveform matched dictionary so that we can apply 

compressive sampling on radar signals. Further we proved that the elements of 

waveform matched dictionary shows orthogonal nature with each other which is 

required. Further we analyzed the effect of sparsity level and noise on the recovery of 

radar signals. 

The purpose of this dissertation is to understand the basics of compressive sampling 

and how it can be implemented on the signals which are sparse in some domain.          

 

 

 

 



 

1 
 

 

 

 

CHAPTER 1  

INTRODUCTION 

 

 

 

 

 

Radar is an electronic system which is used to detect and locate the objects. Objects 

are called as targets. “Radar” is acronym for radio detection and ranging. Radar‟s 

basic principle relies on the properties of electromagnetic waves as they interface with 

physical objects. Electronic waves could be reflected by physical objects. This 

property allows radar to detect the targets by sensing the presence of reflected wave 

from the target. Initial forms of radar are used to detect the target and to know the 

distance of target from the radar. The distance of target from the radar is known as 

“Range” of the target. The process of detecting the target is known as Detection. 

Advance radar system performs a number of functions beside the detection and the 

range measurement. As we see in Figure.1.1, radar performs all function by 

processing the received waveform or echo. Initial radar systems use analog signal 

processing for functioning. But due to popular nature of digital signal processing, in 

modern radar systems we are trying to replace analog signal processing with digital 

signal processing.  

Principle: Radar principle is based on electromagnetic waves.  
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Basic block diagram of radar systems is shown in Figure 1.1. It consists of a 

transmitter connected to the transmitting antenna to covert voltage current waves into 

electromagnetic waves and a receiver which is connected to receiving antenna for 

receiving the echo signal reflected form the target. In general, target is the part of 

channel between transmitter and receiver. 

 

Figure 1.1 Basic block diagram for radar [1] 

In the basic radar, waveform S(t) is produced at output of the transmitter and 

transmitting antenna converts this waveform into an electromagnetic waves so that it 

can travels through channel(free space). Electromagnetic waves travel with the speed 

of light. Receiving antenna is used to receive the echo signal reflected form the target 

at distance R from the radar. Total time taken by electromagnetic wave to travel from 

radar to target and come back from target to radar is called round trip time. Received 

electromagnetic wave at receiving antenna is converted into received waveform 

R(t).Receiver circuit conforms the presence of target by observing the presence of 

receiving waveform R(t). Receiver circuit further process the received waveform R(t) 

to achieve more knowledge about target like range, velocity etc. 

Radar basically operates in two modes i.e. Pulsed mode or Continuous mode. In 

pulsed mode, radar transmits the waveform in the form of pulses and expects the 

reflected echo from the target in a limited time frame called as pulse repetition 

interval (PRI).Total time for which we transmit the signal is called as pulse width 

denoted as  . If we operate the radar in pulsed mode, it is called as pulsed wave radar. 
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Radar which uses continuous waveform is called as continuous radar. Pulsed radar is 

useful when we have to find that how much far the object is i.e. range measurement. 

To detect the speed of the moving targets we use continuous wave radar. Generally 

for range measurement and velocity measurement we use two different mode of 

operation. We can use single mode for determination of both range and velocity 

measurement if we use waveform modulation. Considering the case of pulsed wave 

radar, for better range resolution between two targets pulse width should be small 

whereas for better received signal strength pulse width should be large. But we can‟t 

meet with both requirements at same time. We can solve this problem using pulse 

compression. One technique is to modulate the pulsed waveform with high frequency 

so that effective pulse width can be reduced to get better resolution when actual pulse 

width is large to transmit more energy. Thus in radar applications, use of linear 

frequency modulated (LFM) waveform and phase coded waveform became popular 

due to the regions discussed above [1-3].    

 

1.1 Motivation 

In initial form of the radar, we used analog signal processing to achieve the 

knowledge about the target. But in modern radar systems we are trying to replace 

analog signal processing with digital signal processing because of its advantages over 

analog signal processing. But one major bottleneck for digital signal processing is 

analog to digital conversion at very high frequencies. Operating frequency band for 

radar signals is given in table 1.1. Where commonly used bands are L, S, C and X. 

 

Band designation Nominal Frequency Range 

L 1-2  GHz 

S 2-4  GHz 

C 4-8  GHz 

X 8-12 GHz 

Ku 12-18 GHz 

K 18-27 GHz 

Ka 27-40 GHz 

Table 1.1 Radar Frequency Bands [1] 
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Conventional sampling system follows Nyquist Criteria i.e. a signal can be 

completely represented with its samples if sampling rate is greater than or equal to 

twice of the maximum frequency present in the signal [4]. 

       

Where                                                

AND                                                     

 

So if we sample the signal of 1 GHz using above criteria. So number of samples 

required             

   
and 1 sample represented with 8 bits. So data rate will be 2 

GB/sec. Storage and processing of such large number of samples is very difficult or 

sometimes infeasible. If somehow we can overcome the Nyquist Criteria on required 

number of samples for given signal, then above problem can be resolved. 

 

1.2 Problem Statement 

We can apply Digital Signal Processing (DSP) on Radar Signals with the help of new 

born technique known as compressive sampling. Compressive sampling is a technique 

which allows us to recover original signal by using very less number of samples as 

compared to number of samples given by Nyquist Criteria if signal is sparse in some 

domain like time domain ,frequency domain etc. 

Quadrature sampling plays important role in radar systems due to required coherence 

nature to know the velocity of the target. It is also known as “Digital Quadrature 

Demodulation”. Quadrature sampling is a technique which generates samples of the 

In Phase and Quadrature Phase components of the signal.  

In this dissertation we provided a general framework of compressive sampling and its 

applications for radar signals considering quadrature sampling. We also considered 

the effect of noise on the reconstruction of the signal. 

1.3 Organization of Dissertation 

Complete dissertation is organized as below. In Chapter 1, we provide introduction to 

radar systems. Further we introduce motivation and problem statement. Chapter 2 

provides the general framework of compressive sampling. In chapter 3 we discussed 
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about new architecture of digital quadrature demodulation or quadrature sampler. 

Chapter 4 provides overview of PN sequences. Chapter 5 is studies on combination of 

compressive and quadrature sampling. In chapter 6 we discussed simulation results. In 

chapter 7 we concluded the dissertation.    
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CHAPTER 2 

GENERAL FRAMEWORK OF COMPRESSIVE SAMPLING 

 

 

 

 

 

2.1 Introduction 

Today we are moving towards digital domains, but origination of a signal is in analog 

domain most of the times. So analog to digital conversion systems are required but 

these systems follow some criteria i.e. sampling frequency should be greater than twice 

of the analog signal frequency (Shannon Nyquist Criteria) [4]. But if the frequency of 

signal will be very high then it will be very inconvenient to use Nyquist criteria 

because number of samples will be very large. Storage and processing of such large 

number of samples will be costly or sometimes infeasible. 

But if somehow we can overcome a Shannon Nyquist criterion, i.e. if we can 

reconstruct original signal by using very less number of samples as compared to the 

Nyquist criteria, then problem of storage and processing of large data can be solved. 

This problem may be solved by compressive sampling [5-8], a random approach if 

signal is sparse in some domain.  

Compressive Sampling uses very less number of samples as compared to Shannon 

Nyquist rate which reduces the hardware and software loads and then signal is 

recovered by using various recovery mechanisms [8-16]. Compressive sampling uses a 



 

7 
 

random matrix to form out linear random projections of signals with most of the 

desired information. It is possible due to two properties of signal i.e. sparsity and 

incoherence [17]. Sparsity refers to the property of signal according to which 

information present in signal is very less as compare to the bandwidth occupied by the 

signal.  Incoherence is property of sparse signal to get transform into desired domain. 

Desired domain is the domain in which signal is sparse. If signal will be more sparse 

i.e. low sparsity level, its reconstruction will be better as compared to less sparse 

signal. Basically incoherence refers to not coherent i.e. the dictionary(domain) 

elements should be independent to the sampling matrix.  

The chapter is organized as follows. In section 2.1 we discussed about introduction. 

Section 2.2 provides some background on Compressive Sampling, Mathematical 

Model and Signal Reconstruction by solving Optimization problems. In Section 2.3 we 

use compressive sampling for signal and image compression and its successful 

reconstruction. Section 2.4 presents logic behind two dimensional signal compression 

and recovery. In section 2.5 we consider effect of noise. Section 2.6 deals with the 

simulations and results whereas in section 2.7 we conclude the chapter. 

 

2.2 Background 

2.2.1 Compressive Sampling 

Emerging theory of compressive sampling (CS) allows us to project random 

measurements of signal of interest so that we can sample the signal at information rate 

rather than its ambient data rate. This reduces the number of samples to represent a 

signal. Reduced number of samples can be stored easily and processing of such small 

number of samples can be performed efficiently. But to apply compressive sampling 

on the signal, signal should be sparse and incoherent.  

Sparse Signal: A signal is said to be sparse if only some of the components have 

significant magnitude and all other components have insignificant magnitude i.e. 

closer to zero. 

Incoherent Signal: One signal is said to be coherent with respect to other signal if they 

have no relation. 
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2.2.2 Mathematical Approach for Compression 

Consider a signal   which is sparse.   is said to be sparse if it can be represented as a 

linear combination of basis functions where some of the coefficient‟s magnitude is 

significant and all others have zero magnitude. 

                                                                                                      

 – Basis Functions  

c -Basis Coefficients 

For compressive sampling a random matrix or sampling matrixØ need to project 

random projections or random measurements 

                                                                                                         

where    – Random Measurement vector 

2.2.3 Reconstruction 

Now we need to reconstruct back    form   

                                                                                             

By solving above equation we can find basis coefficients  . Information of   leads us 

towards recovery solution  

                                                                                                   

2.2.4 Optimization Problem Formulation 

The equation we have to solve i.e. (2.3) is an underdetermined system as number of 

equations is less than number of unknowns. So we need to use norm minimization 

techniques to solve above problem.  

Mathematically norm provides total size or positive lengths of all vectors in a vector 

space or matrices.                                                       
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Generally Norm n of vector x is defined as:          √∑        
 

 Where,     

Frequently using norms are l0, l1, l2 but here we use l1 norm.   

l1 norm : l1 norm is defined as :          ∑      

l1 optimization problem is formulated as 

                                                                                               

Above problem can be solved using least square optimization    

                                                                                                  

Where                          

Even though this method is easy to compute but it is not necessary that it provides best 

solution [18].That is why we use l1 norm optimization. 

So our optimization problem is formulated as:      

                       |   |
 
                                                                   

2.2.5 l1 Optimization Solution 

l1 optimization problems can be solved by using number of alogorithms.one among 

them is  greedy type-orthogonal matching pursuit[19] 

2.2.5.1 GREEDY TYPE - ORTHOGONAL MATCHING PURSUIT, BASIS PURSUIT 

Orthogonal matching pursuit is a greedy-type algorithm as it selects the one index 

regarded as the optimal decision after each iteration. 

Basis pursuit is a technique where signal is decomposed into an optimal superposition 

of dictionary elements. Optimization criteria is l1 norm of coefficients  

 

2.3 One Dimensional Signal Compression and Recovery 

Reduced load on hardware and software leads us to use compressive sampling in all 

possible fields. e.g. Signal compression, Image compression, Speech compression, 
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audio and video compression, wireless sensor networks etc. But here we apply 

compressive sampling on one dimensional signal. 

2.3.1 Signal Compression and Recovery 

Many times we deal with one dimensional signals such as audio signals speech signals 

and we need to sample these signal for performing some digital operation on these 

signal. Less number of samples can be processed easily with reduced processing time. 

So we go for compressive sampling of such signals if they are sparse. Complete 

recovery of signal relies on sparsity level (SL) and compression ratio (CR).  Sparsity 

level is number of components having significant magnitude. Compression ratio is 

with respect to the ratio that up to what level we have compressed the signal e.g. N/10 

where N is total number of samples present in the signal. 

If sparsity level is low, recovery will be better.                                                                                                                                

If compression ratio is more, recovery will be better. 

Consider a one dimensional signal     having length n        

    can be represented with the help of  basis functions and its coefficients 

                                                                          

Where          -       matrix of basis function 

                      -      vector of basis coefficients 

For random measurements after random sampling we use measurement matrix      

                                                                           

      – Measurement Matrix                                           . 

                                                                         

Above equation needs to solved using l1norm optimization.  

l1 norm optimization problem is formulated as :        

   |      |                                                                        
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Solution to above equation is in the form of a vector    . Once coefficient vector 

     is available to us, reconstruction becomes possible. 

Reconstruction using above solution 

    ̂                                                                    

2.3.2. Recovery Error(    ) 

Recovery error gives us the error for successful recovery and defined as:   

                                      ̂                                                                  

 

2.4 Two Dimensional Signal Compression and Recovery 

Two dimensional signal like image can also be compressed using its Fourier or wavelet 

domain where image shows some sparse nature. Mathematical approach for image 

remains same as for signals but we choose basis functions either on Fourier or Wavelet 

domain .Instead of a one dimensional vector we deal with a two dimensional matrix as 

image is a two dimensional signal. 

 

2.5 Effect of Noise on Recovery Error 

Noise is an undesired signal that may affect the performance of the system. So we 

analyzed the effects of noise on our system of compressive sampling i.e. how 

recovery error is going to vary with respect to noise. 

For compressive sampling noise may affect the sampled values and mathematical 

equation for sampled signal will be defined using eq. (2.8) 

                                                                         

Where                    
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Recovery procedure will be same as in eq. (2.10) i.e. we need to solve l1-norm 

minimization problem  

                                                 |                      |                   

But due to addition of noise, values of vector b gets change. Thus above problem gets 

solve with affected value of b. So value of coefficient vector c also varies from the 

desired values. By this way reconstruction or recovery gets affected. 

 

2.6 Simulation and Results Discussion 

For implementation of all algorithms, we used Matrix Laboratory on a standard 

computer.l1- magic toolbox is used to achieve the solution of l1-norm optimization 

problems. 

2.6.1 Signal Reconstruction 

We considered a signal in time domain and make it sparse in frequency domain by 

taking all frequency domain coefficients zero which are below some threshold value. 

Here threshold value is assumed as one fifth of the maximum amplitude of the 

coefficients. We used same procedure used for signal compression and recovery of 

original signal in section 2.3.1. We sampled the signal using sampling rate which is ten 

times less than Nyquist rate and successfully reconstructed the original signal as shown 

in Fig. 2.1. Further we sampled the signal with sampling rate twenty times less than the 

nyquist rate. Original and reconstructed signal is shown in Fig 2.2. Here we varied the 

sparsity level of signal and analyzed its results on recovery error. In addition to this we 

also analyzed the effect of variation of compression ratio on recovery error. 

Compression ratio is defined as ratio of the difference between total number of 

samples before compression and the total number of samples after compression to the 

total number of samples after compression and resultant value need to multiply by 

hundred.   
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Figure.2.1 Original signal versus Recovered Signal 

 

Fig.2.3. explains the behavior of recovery error with variation in compression ratio for 

different sparsity levels. Here total number of samples (N) we consider are 751.It is 

clear that with increase in compression ratio, recovery error increases. If sparsity level 

will be more, recovery error will be more. So it conforms that the compressive 

sampling can be implemented on the signals having sparse nature otherwise recovery 

or reconstruction cannot be done successfully. Recovery error relies on sparsity level 

and compression ratio. If signal is more sparse, can be compressed more and can be 

reconstructed successfully. 
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Figure 2.2 Original signal versus Recovered Signal 
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Figure.2.3 Recovery error versus No of samples after compression with different sparsity 

level
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2.6.2 Effect of Noise on Recovery Error: 

We have seen in section 2.5 that how noise affects our recovery error. Here we 

analyzed the effect of noise on the recovery error for different values of sparsity level. 

                Table 2.2 Effect of noise on Recovery Error for different Sparsity Level 

SL=3 

SNR3(dB) 49.62 29.62 9.62 3.60 .085 -2.41 -4.3515 10.3721 

Rerr3 7.8014 8.01 10.42 13.86 17.684 22.33 26.3561 49.30] 

SL=5 

SNR5(dB) 51.44 31.44 11.24 5.42 1.90 -0.59 -2.33 -8.55 

Rerr5 19.78 19.57 22.57 27.68 31.68 36.78 41.78 58.78 

SL=7 

SNR7(dB) 54.48 34.01 14.48 8.96 4.94 2.44 0.50 -5.51 

Rerr7 28.84 29.01 31.25 32.75 37.13 40.07 43.13 61.06 

SL=8 

SNR8(dB) 54.97 34.97 14.97 8.95 5.43 2.93 0.99 -5.022 

Rerr8 33.15 32.49 32.488 35.06 39.79 43.16 48.10 64.88 

SL=10 

SNR10(dB) 57.85 37.85 17.85 11.85 8.30 5.81 3.87 -2.14 

Rerr10 40.25 40.05 40.49 43.60 46.26 49.70 52.00 70.48 

It is observed that as signal to noise ratio (SNR) is going to increase, recovery error 

decreases for certain threshold value of SNR. Once SNR crosses certain threshold 

value, Rerr becomes constant. 
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We also analyzed recovery error for different values of sparsity level considering 

noise effects. We found the expected results i.e. as sparsity level increases, recovery 

error also increases.  

 

 

Figure 2.4 Effect of SNR on Recovery Error 

2.7 Conclusion 
Compressive sampling appears to be a revolutionary technique for data acquisition 

and successful reconstruction. We implemented this technique for one dimensional 

signal as well as two dimensional signal and successfully recover them from 

compressive random measurements. We analyzed recovery error due to variations in 

sparsity level and compression ratio and assured that successful reconstruction of 

signal relies on sparsity level and compression ratio. Effect of noise also considered in 

compressive sampling and we verified that with increase in SNR, Recovery error 

decrease that is according to our system expectations. 
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CHAPTER 3 

QUADRATURE SAMPLING 

 

 

 

 

3.1 Introduction 

Quadrature sampling is a sampling technique through which we gets sampled In phase 

and Quadrature phase components of a signal with dc level near origin. For a band pass 

signal, it is initially converted into baseband signal and then In phase and quadrature 

phase components get derived using complex envelope. Complex envelope of the band 

pass signal is low pass equivalent of complex equivalent of band pass signal. [20] 

A band pass signal can be represented as: 

  

                                (        )                                               

Where          –                                      

                                                                                

                                                                       

Complex equivalent of band pass signal is given by 

                                    (  (        ) )                                  
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Complex envelope or low pass equivalent of band pass signal is achieved by 

demodulating the signal with respect to carrier frequency. 

                                                                         

In phase and Quadrature phase components can be derived from the complex envelope by 

considering real and imaginary parts. Real part is considered as In phase whereas 

imaginary part as Quadrature phase component.  

                             (     )         (    )                                     

             (     )         (    )                                   

Where                                                       

                                   

To get digital versions of In phase and Quadrature phase components                 need 

to sample using Nyquist sampling rate. 

 

                                     [ ]                                                                              

 

                    [ ]                                                                            

 

Where                         [ ]                                

    [ ]                                       

 

This complete process of translating the received band pass signal to baseband signal and 

deriving In phase and Quadrature Components is also known as Quadrature 

demodulation. 
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Figure 3.1 Basic Architecture of Digital Quadrature Demodulator 

 

Here system multiplies given signal       with         &         to take out base band 

outputs with 90 degree phase difference. Filter output gives us In Phase and Quadrature 

Phase components. Sampling stage generates samples of In Phase and Quadrature Phase 

Components   

 

Applications: 

 

 Coherent systems  [21] 

 Reduce the effect of noise [22] 

 

In phase and Quadrature phase components play a very important role in various 

applications, like they can be used in phase detection of the given signal. 

 

 

            (
   [ ]

   [ ]
)                                                           

 

Where                   signal. 

𝑆𝑄 𝑡  

𝑆𝐼[𝑛] 

𝑆𝑄[𝑛] 

𝑆𝐼 𝑡  

 𝑆 𝑡  
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In case of coherent systems, phase of every waveform or signal should be known and 

related so that phase difference can be used for certain calculations. 

Noise is an undesired signal which degrades the performance of system by affecting 

desired signal. Noise is independent for real and imaginary parts. So noise can affect real 

and imaginary parts of desired signals independently. Due to presence of in phase and 

quadrature phase components simultaneously effect of noise can be reduced on the signal 

of we consider less affected part. 

 

3.2 Drawbacks of Basic Approach 

This approach to take out In phase and Quadrature phase components is very popular and 

extensively used in different applications. But one serious bottleneck with this approach 

is imbalance problem due to occurrence of severe phase and gain errors. These errors 

have been investigated in [23] and phase errors may be up to 2 to 3 degree [24].This high 

amount of error is intolerable in some applications of signal processing. So other 

quadrature demodulation approaches are required that can overcome these problems. 

 

3.3 New Architecture of Quadrature Sampling 

A band pass signal can be represented by  

                                            (        )                                                          

                    (    )                 (    )                          

                                                                             

Where                    (    ) &  

                              (    ) 

Given that the signal bandwidth is much smaller than the carrier frequency, the input 

signal is usually translated to a certain IF frequency before processing. This down 
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conversion step involves mixing the analog input with a local oscillator at IF frequency 

and then low pass filtering to remove the image frequency band. A properly selected 

sampling rate f however, can exploit the frequency domain periodicity of the discrete 

Fourier transform so that the down conversion can be included in the sampling process, 

thereby eliminating the mixing and low pass filtering.  

Let signal bandwidth is B, highest frequency is   and lowest frequency is   .                                                                   

[         ] 

After sampling, R(f)  will convolve with periodic impulses. 

Figure 3.2(a) Input Signal Spectrum (b) Sampling waveform Spectrum (c) Resultant Signal 

Spectrum 

To avoid aliasing      such that         
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From the figure                                     
    

 
                                                        

                                                                          

                                                   
      

      
                                                                   

 From above equations       (           
  

  
   ) 

 From Equation (3.13) & (3.15) 

   
      

    
                                                                     

 

                                                                 
 

 
                                                                     

Now 

                        

Can be sampled at            

                                             
  
 

 

                                                  

            (   (  
 

 
)      )                                      

                                         (
  

 
     )                                                  

                                        (
  

 
)         (

  

 
)                                              

Substitute n=1, 2, 3,…….. 

     {
    

 

                            

      
 

                   
                                    (3.22) 
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From (3.22) it is clear that at specified value of n either I(n) or Q(n) is directly available 

from s(n) . But to detect other component at same time further processing is required.   

That is multiply s(n) with        (
  

 
) 

So                 (
  

 
)    ( 

  

 
     )                                     

                                       (       )         (    )                             

                                                       (       )                                                                

                                                       (    )                                                                 

From above equations it is clear that 

                                   
 

 
 

                                                                       

So by passing       through LPF of cut of frequency ¼ Hz a down sampling by 2 gives 

samples of Quadrature Phase Components. Thus complete structure for Digital 

Quadrature Demodulation is presented here 
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Figure 3.3 Digital Framework of Quadrature Sampling 

 

3.4 Conclusion 

We have studied about quadrature demodulation and analyzed the basic architecture used 

for quadrature demodulation.  We find that there are some practical limits to produce the 

exact 90 degree phase difference which is very much required. We find new architecture 

in literature and analyze that it directly operates digital inputs and can provide us sampled 

in phase and quadrature phase components. New architecture is better as compared to 

basic architecture because only one ADC is required in new architecture whereas in basic 

architecture two ADC are required. Second benefit of using new architecture is that no 

need to generate two signal with 90 degree phase difference.  
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CHAPTER 4 

PN SEQUENCES 

 

 

 

 

4.1 Introduction 

A pseudo random noise (PN) sequence is defined as a coded sequence of 1s or 0s with 

certain auto correlation properties. These sequences are called as pseudorandom noise 

because these sequences appear to be unpredictable to an outsider but are generated by 

deterministic means with some properties in mind. Pure random sequences are never 

periodic i.e. their bit pattern does not repeat itself. A pseudo random binary sequence is a 

semi random sequence in the sense that it appears random within the sequence length as 

it fulfills the requirements of randomness, but the entire sequence repeats indefinitely.  

A PN sequence can be considered as an ideal test signal because it simulates the random 

characteristics of the signal and can be easily generated. „Maximum Length Sequence‟ is 

a typical sequence among all PN sequences. It represents an ordinary using periodic 

sequence.  A PN sequences can be generated using phase shift register with m flip-flops 

if desired length of sequence is m. PN sequences may also be aperiodic and such 

sequences are known as Barker sequences. But Barker sequences are limited due to their 

length up to thirteen [3,4,25,26,]. 
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4.2 Generation of PN Sequences 

Typically PN sequences are generated by using linear feedback shift register (LFSR) as 

shown in Fig. 4.1 

 

 

Figure 4.1 PN Sequence Generator  

 

The PN sequence generated by using LFSR has periodic nature and maximum length  

            

                     Where                                                              

The sequence available from LFSR with maximum possible period is called a Maximal 

length sequence (MLS). 

4.3 Properties of PN Sequences(MLS) 

1) Balance Property: Number of binary one‟s is one more than the number of 

binary zero‟s in the maximal length sequence per period of sequence. 

2) Run Property: Among all runs, one-half runs are of length one, one –fourth runs 

are of length two and so on. 

3) Co-relation Property: For maximal length sequence auto correlation function 

is periodic and binary valued. 
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4.4 Frequency Spectrum of PN Sequences 

PN sequences seem like noise signals and exhibits the spectrum similar to the noise 

signal. PN sequences have wideband spectrum. We analyzed the frequency spectrum for 

different PN sequences by considering them continuous function of time as shown in 

Fig.1.2. From Figure 1.2, It is clear that spikes appear over the entire spectrum. Further 

spectrum appears to be periodic over the frequency given by reciprocal of the minimum 

width of the pulse. This periodic nature appears because frequency transform of the 

rectangular pulse is Sinc function. 

 

Figure 4.2 PN sequences with their Magnitude Spectrum 

 

4.5 Effect of PN Sequence Multiplication on the Spectrum of an 

Arbitrary Signal 

Here we try to analyze the effect of PN sequence multiplication on the Spectrum of an 

arbitrary signal. From Fig.1.3 it is clear that as signal is multiplied with a PN sequence 

with wide spectrum. The spectrum of resultant signal is shifted version of original 
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spectrum. Thus we can say that information about signal gets smear up over the complete 

spectrum of PN sequence after multiplication with PN sequence. In Fig.4.3 we analyze 

the affect on signal with small frequency. 

 

Figure 4.3 Effect of PN Sequence on the Magnitude Spectrum of Signal 

 

4.6 Conclusion 

In this chapter we discussed some basics of PN sequences and their properties .we 

analyzed the spectrum of the PN sequences. Further we consider an arbitrary signal and 

analyze its spectrum after multiplication with PN sequence. PN sequences shows 

periodicity over the frequency given by reciprocal of the minimum width of the pulse of 

sequence. This periodic nature appears due to the sinc nature of Fourier transform of the 

rectangular pulse. 

 

 

0 1 2 3 4

x 10
-5

-1

-0.5

0

0.5

1

Rx Signal

Time

A
m

p
li

tu
d

e

0 5 10

x 10
6

0

0.05

0.1

0.15

0.2

0.25

SS spec Rx Signal

Frequency 

|R
x

(f
)|

0 1 2 3 4

x 10
-5

-1

-0.5

0

0.5

1

PRS

Time
A

m
p

li
tu

d
e

0 5 10

x 10
6

0

0.2

0.4

0.6

0.8

1

SS Spec. of PRS

Frequnecy

|P
(f

)|

0 1 2 3 4

x 10
-5

-1

-0.5

0

0.5

1

Resultant Signal

Time

A
m

p
li

tu
d

e
0 5 10

x 10
6

0

0.05

0.1

0.15

0.2

SS Spec of Resultant Signal

Frequency
A

m
p

li
tu

d
e



 

30 
 

 

 

 

 

CHAPTER 5 

QUADRATURE COMPRESSIVE SAMPLING 

 

 

 

 

5.1 Introduction 

We have seen in chapter 2 that compressive sampling is a very effective tool to reduce 

the number of samples for representation of an analog signal if signal is sparse. From 

literature it is also clear that quadrature sampling plays important role in radar systems. 

Now challenge is that how to use both techniques in radar systems simultaneously. 

General framework of compressive sampling for ultra wide band signals is given in [27]. 

The output of the random demodulator [28-31] is in sampled form i.e. a digital signal. 

The technique of Quadrature sampling illustrates in chapter 3 uses digital signals as input 

and generate In phase and quadrature phase components in digital form. So if output of 

random demodulator applies to quadrature sampler, we get digital In Phase and 

Quadrature phase components in compressed form. Recovery mechanism needs to use to 

recover original In Phase and Quadrature Phase components. 

We have analyzed that to apply compressive sampling theory on a signal it need to follow 

three key elements  
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1. Find the space in which signal has sparse representation. 

2. Obtain random measurements as samples of sparse signal. 

3. Reconstruct the original signal from the samples using optimization techniques.  

As the number of measurements required for exact recovery relies on the sparsity level of 

signal representation in certain space. Thus choice of basis functions is the premise of 

compressive sampling theory. But bound on basis functions is that they should be 

orthogonal. Rauhut et al. [32] proved that signal which is sparse in redundant 

dictionary can still be sampled based on the CS theory. A basis or dictionary for 

representation of sparse signal plays important role so we want best basis so that our 

signal bear more sparsity. Shi et al. [33] formulate a waveform matched dictionary for 

radar signals on the bases of prior knowledge of transmitted waveform. This enables 

us to use compressive sampling for ultra wideband radar signals. 

So initially we will discuss about construction of waveform matched dictionary in 

section 5.2 and then complete framework of quadrature compressive sampling in 

section 5.3 

 

5.2 Construction of Waveform Matched Dictionary 

Here we use waveform matched rules to construct the dictionary for ultra wide band 

signals (UWB). Frequency modulated waveform is very popular waveform used in radar 

applications and represented as 

                                      (        )                                           

Where                                

In case radar system, the receiver is aware of the transmitted waveform.  The 

transmitting waveforms are known and received waveform can be modeled as sum of 

various scaled and time shifted versions of transmitted waveform for stationary targets 
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when all noise and interference effects are consider be zero. Thus knowledge of 

transmitted waveform act as prior knowledge required to form the dictionary. Using   

above considerations, we can construct a matched dictionary for radar echo signals. If 

s(t) be the transmitted signal and    be the Nyquist sampling interval of its echo signal 

in theory. All time-shifted versions of transmitted waveform at integral multiples of 

Nyquist sampling interval   form a redundant dictionary. Formed dictionary can be 

represented as  . 

 

                                                                                       

 

 Where          = sampling interval,         T- Total observing interval.    

                   n  1, 2,….,N                        [ N=T/   ] 

 

This dictionary is complete for radar echo signals and every element of dictionary has 

waveform similar to transmitted waveform i.e. why dictionary is called as waveform 

matched dictionary waveform.  

Consider the noise free environment for radar systems. When transmitted signal is      at 

the transmitter, then received echo signal at the receiver can be described as: 

     ∑                                                  

 

   

 

Where                                    – showing coefficient vector.  

                            

K is the number of targets present. Thus our signal became K sparse in dictionary 

domain. If we will consider received signal with zero and non-zero coefficients. 
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     ∑                                                                         

 

   

 

Where number of non-zero coefficients in coefficient vector   areK and number of zero 

coefficients are N – K. i.e. sparsity level in radar echo receiver is equal to the number of 

targets. Here   represents the amplitude of the n
th

 target. For real radar scenario large 

number of elements in vector   will be zero because of limited number of target 

presence. The position of the target echoes can be determined by using non-zero elements 

of the vector   and this is required information to calculate the range of the target. There- 

fore it is clear that matched dictionary guarantee a successful sparse representation of 

echo signal and can also make echo detection easier.    

5.3 Framework of quadrature compressive sampling 

Basic Block Diagram is shown in Fig. 5.1 

 

Figure 5.1 Quadrature compressive sampling system 

Complete process consists of three main subsystems named as: 

 Compressive Sampling Subsystem 
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 Quadrature sampling subsystem 

 Recovery Subsystem 

5.3.1 Compressive Sampling Subsystem 

Compressive Sampling Subsystems works similar to random demodulator but here we 

use band pass filter instead of low pass filter since signal in processing is band pass one 

with known if frequency instead of low pass signal. Complete operation of compressive 

sampling subsystem is explained below. 

The received signal      mixes with a random binary signal      

                   *
 

  
 

     

  
+                          

              and       

    is known as chipping sequence which alternates between two values +1 and -1. The 

rate of alteration is equal to or greater than the Nquist rate      of the baseband signal. 

The effect of mixing is that it spread the frequency content of the baseband signal on the 

complete spectrum of     . Analog band pass filter with impulse response      is 

centered at frequency    with band width      . Thus output of the filter      has a 

bandwidth     centered at   . 

Convolution of filter‟s impulse response       with resultant of multiplication of received 

signal      with random signal      

                                                                            

                                           ∫                   

 

  

                                        

Complex envelope of signal      can be represented as 
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                                  ∫                            

 

  

                              

  Where                      -   Center frequency of BPF 

                             -   Complex envelope of y(t) 

In phase and Quadrature phase components in compressed form directly taken out 

                            {      }                                                                   

                        {      }                                                                  

Highest and lowest frequency components of      are 

             

             

Second step now is to sample the signal      using band pass sampling theorem []. 

Bandwidth of      is     which is defined as            . So sampling frequency is 

chosen as explained in chapter 3 

  
    

         

    
                                                                  

Where         (           
  

     
   ) 

Minimum value of sampling frequency can be achieved if    is divisible by       i.e. the 

value 
  

    
 is an integer. 

                        ∫                         

 

  

                                           

          [ ]  ∫                                                                       
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Where k = 0,1,2,3,4………… 

So output of our compressive sampling subsystem is  [ ], where number of samples to 

represent the signal are very less as compared to number of samples if we directly sample 

the       .  

 

5.3.2 Quadrature sampling subsystem 

We have seen in chapter 3 that how quadrature sampling plays important role in various 

applications. Further we have seen the basic architecture of quadrature sampler and 

identified its practical limits. After that we have also confirmed that how new digital 

architecture can overcome the practical limits of the quadrature sampler. Due to new 

architecture we became able to combine compressive sampling with quadrature sampling, 

because output of the compressive sampling subsystem in discrete form and input 

required for the quadrature sampling subsystem is also discrete. 

Quadrature sampling subsystem is used to take out compressive In phase and Quadrature 

phase components from the applied input  [ ]. The digital compressive In phase 

component is obtained by first down sampling  [ ] by a factor of 2 and after that 

multiplying the resultant sequence with      . 

   [ ]                                                                       

Where    m = 0, 1, 2, 3, 4….   &        
   

 

To obtain digital Quadrature phase component, first step is digital demodulation of the 

sequence  [ ]  through                and then filter the resultant output through low 

pass filter. At last down sample the filtering output by a factor of 2 . 

                           [ ]                                                                           

 Where    m = 0, 1, 2, 3, 4….   &        
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Thus we get In phase and Quadrature phase components in digital form,    [ ]&   [ ] 

and their complex samples     [ ]               of compressive complex envelope  

      . 

   [ ]     [ ]      [ ]                                                     

Thus at the output of Quadrature sampling subsystem we get compressed and sampled In 

phase and Quadrature phase components. 

5.3.3 Recovery subsystem 

The output of the quadrature sampling subsystem is in the form of sampled and 

compressive In phase and Quadrature phase components. Now we need to recover back 

original signal from these samples. We have shown the relationship between In phase and 

Quadrature phase components with complex envelope of the signal. So now if we 

consider sampled complex envelope of the        i.e.    [ ] and try to formulate the l1 

norm minimization problem similar we have solved in eq. (2.10) of chapter 2, then 

recovery becomes possible. Further by considering real and imaginary parts of recovered 

complex envelope we can take out recovered In phase and Quadrature phase components.  

We know from the literature of compressive sampling that this technique can be 

implemented if our signal is sparse in some domain. So consider that received signal 

    is sparse in      waveform matched dictionary domain as we have discussed in 5.1   

                                                      ∑                                                                   

 

   

 

Where                    is a set of basis function.  

                           – Basis coefficients.  

Here      can be represented as linear combination of basis functions       with 

weighted coefficients. Now for recovery we need to formulate the l1 norm minimization 

problem.  

Use the value of      from eq. (4.15) and substitute in eq. (4.05)   
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         ∑   

 

   

∫                                                             

 

  

 

After sampling         by substituting t = m    

 

          ∑   

 

   

∫                                   

 

  

                             

For the given observation interval T, the number of complex samples of         are given 

by        . As       , so M is much less than    . 

                [ ]   ∑   

 

   

∫                                   

 

  

                     

Now we need to define the measurement vector      
̃

and measurement matrix   ̃ in time 

domain as 

     
̃  [     [ ]      [ ]         [   ]]                                                 

 ̃  [ ̃  ]       

Eq. (4.18) can be represented in matrix form 

     
̃   ̃  ̃                                                                         

Where   ̃
  

=∫                                   
 

  
 

  ̃  [                    ]
  

     ̃
is     matrix   & ̃is     vectror                               

Our complete system i.e. quadrature compressive sampling system is described by the 

matrix  ̃ .For recovery of complex envelope      of the received signal      we need to 

reconstruct the sparse coefficient vector   ̃ from eq. (5.20). We can solve eq.        
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directly        But in the given observation interval  ,    . So eq. (5.20) shows an 

underdetermined system which has infinite solution. But this eq. can be solved if vector 

  ̃shows sparse nature. From literature of compressive sampling, it is stated that if matrix 

 ̃  satisfies restricted isometric property (RIP), then we it becomes possible for us to 

reconstruct the K sparse vector ̃. 

RIP Condition[34]:  Given matrix  ̃ with parameter     satisfies restricted isometric 

property if following inequality holds for every k sparse  ̃ 

         ̃   
  || ̃ ̃||

 

 

        || ̃||
 

            

                                  

The RIP ensures that the measurement matrix try to preserves the norm of any K- sparse 

vector living in    when mapping it to a M  dimension space (M<N).Thus the 

information of K-sparse signal is preserved so reconstruction becomes possible. 

If the matrix  ̃ satisfies RIP, the sparse coefficient vector  ̃ can be reconstructed by 

solving the l1-norm optimization problem given below. 

                        | ̃|                                                  
̃   ̃  ̃                                   

This complete scenario is defined for noise free case. But in actual scenario noise exists 

and affects the output of the system. So for noisy environment measurement vector can 

be defined as 

     
̃   ̃  ̃    ̃                                                                

Where       ̃   shows compressive samples of additive noise in received signal      So for 

reconstruction in noisy environment we need to solve following l1-norm minimization 

problem. 

                          | ̃|                                             ||    ̃   ̃  ̃||
 
                        

Where -   is a small parameter given by the noise environment. 
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Problems of optimization defined in eq. (5.22) and (5.24) can be solved by using greedy 

algorithms or convex optimization algorithms. For our simulations we use convex 

optimization algorithms. 
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CHAPTER 6  

SIMULATION AND RESULTS ANALYSIS 

 

 

 

 

We consider the case of quadrature compressive sampling for radar signals. We have 

seen in Chapter 1 that for radar systems we use linear frequency modulated waveform 

typically because it can avoid the Doppler and Range ambiguities (LFM). So we use 

LFM waveform to analyze how quadrature compressive sampling.  

6.1 Waveform Generation 

The complex baseband signal of the LFM waveform can be represented as [1] 

         ( 
  

  

 

  
 )    (    (  

  

 
)
 

) 

Where                            
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     (
 

  
)   {         

  

 
    

  

 
                           

} 

That is it represents a rectangular pulse as shown in Fig. 6.1.  

For our experiments, we consider the signal parameters as 

          

                                                         &             

 

 

 

 

 

Figure 6.1 Rectangular Pulse 

 

In this scenario targets are assumed to exit in the interval         .So dictionary size 

is take as                 . The target in environment can be anywhere i.e. 

random so time delay     for k
th

target is chosen randomly from the set SET1. 

                      );                           Where           

The gain coefficients    of the dictionary domain are randomly distributed between (0, 

1]. Sampling rate is considered with respect to bandwidth of the filter     . Absolute 

value of LFM transmitted waveform is as shown in Fig. 6.2  

 

𝑇𝑝 𝑇 
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Figure 6.2 Transmitted Waveform (Real Part) 

 

6.2 Dictionary Generation 

We have seen in chapter 5 that received waveform      is sum of time shifted and scaled 

versions of the transmitted waveform     . So dictionary        that we have created is   

combination of all possible time shifted versions of transmitted waveform and time shift 

is provided by nyquist interval  . Scaling to the shifted version is given by random 

vector   ̃. We have also seen in literature of compressive sampling that the domain or 

dictionary in which signal is sparse should maintain Orthogonality. So we verify whether 

our dictionary is orthogonal or not. 

For a two functions to be orthogonal inner product should be zero and for a matrix to be 

orthogonal multiplication of a matrix with its transpose should be identity matrix. 

Our Dictionary have N number of elements and every element should be orthogonal to 

each other.  

                           ,                                       where     =   sampling interval 

                                                                                            n = 1,2….N     [ N=T/   ]                                                                                                                                               

We sample the dictionary elements by replacing t with      .   
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  [ ]    (    ) 

  [ ]is a matrix and we need to prove Orthogonality for this matrix. We can also prove 

Orthogonality in other transform domain of transformation is orthogonal because 

Orthogonality preserves in transform domain if transform is orthogonal [35] .So we take 

DTFT of    [ ]  as Z and find the gram matrix.   

                  
 

√ 
  (  (

  

 
  )) 

       

 If G matrix is an Identity (Diagonal) matrix Z matrix will be orthogonal  

 

                      Figure 6.3 Transmitted Waveform (Real Part) and Gram matrix 
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It is clear from Fig. 6.3 that our dictionary is almost orthogonal because Gram matrix is 

identity matrix. 

 

6.3 Signal Reconstruction 

We have seen in section 5.2 that how to apply quadrature compressive sampling on the 

given signal. Initially by passing through compressive sampling system and then from 

quadrature sampler we need to formulate an underdetermined problem that can be solved 

using l1 norm minimization. 

Formed problem is given in eq. (5.20)                               ̃   ̃ ̃ 

Solution to this problem is 

 

We have shown here received and reconstructed signal at different sparsity level when 

total number of coefficients in dictionary domain are 1024. 
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Figure 6.4 Received versus Recovered Signal for SL = 26 
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Figure 6.5 Received versus Recovered Signal for SL = 35 

 

Fig.6.4 corresponds to sparsity level 26 where Fig. 6.5 corresponds to sparsity level 35. It 

is clear from above figures that recovery is better in case of sparsity level 26 as compare 

to sparsity level 35. 

6.4 Effect of variation of sparsity level on Recovery Error 

We have analyzed the effect of variation of sparsity level on recovery error for different 

bandwidths as shown in Fig. 6.6. In Table 6.1 value of Recovery error is given with 

variation in sparsity level for different bandwidth of the filter. Fig. 6.6 clearly shows that 

for large bandwidth recovery error is more as compared to recovery error for small 

bandwidth. We have discussed in chapter 5 that because compression is decided by the 

bandwidth of the filter i.e. less compressed signal can be recovered better as compare to 

more compressed signal. It is clear from the Fig. 6.6 that as sparsity level increases 

Recovery error also increases. This statement follows the general theory of compressive 
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sampling i.e. if signal will be more spars, recovery will be better. We also analyzed the 

recovery error with variations in sparsity level for different bandwidths of the filter. 

 

                       Table 6.1 Effect of Bandwidth and Sparsity Level variation on Recovery Error 

B 

SL 
1MHz 2 MHz 3MHz 

103 2.44 2.30 1.97 

86 2.13 1.9 1.72 

69 1.94 1.58 1.13 

61 1.71 1.43 0.3384 

52 1.54 1.25 0.0070 

47 1.41 1.02 1.31e-4 

41 1.31 0.0232 4.41e-6 

37 1.23 5.57e-4 4.40 e-6 

35 1.17 9.93e-5 3.48e-6 

30 1.05 4.84e-7 3.48e-6 

26 0.8532 3.25e-7 3.48e-7 

23 0.0254 1.055e-7 2.0e-7 

21 0.0002 7.25e-8 5.2e-8 
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Figure 6.6 Recovery Error versus Sparsity Level 

 

6.5 Effect of SNR on Recovery Error 

We have seen in section 5.4 that how noise affects our recovery. Here through 

simulations we saw that how recovery error varies with change in signal to noise ratio 

(SNR). 

 

                    Table 6.2 Effect of Noise on Recovery Error with different Sparsity Level 

SL=21 

SNR1(dB) 12.47 8.94 6.45 4.512 2.92 1.59 0.4302 -0.59 -1.5 -2.3 

 Rerr1  9.29 13.84 18.9  23.53 29.08 34.0 38.79 44.47 48.29 53.7 
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SL=23 

SNR2(dB) 14.74 11.29 8.72 6.78 5.19 3.85 2.69 1.67 0.76 

Rerr2 9.87 14.90 20.29 25.95 33.02 38.01 43.81 49.86 55.97 

 

SL=25 

SNR3(dB) 14.73 11.29 8.72 6.77 5.19 3.97 2.69 1.65 0.75 

Rerr3 11.57 17.36 25.05 29.32 35.67 42.08 51.37 57.98 64.09 

 

SL=30 

SNR4(dB) 15.05 11.53 9.03 7.10 5.51 4.17 3.01 1.99 

Rerr4 23.71 35.171 46.74 63.17 74.78 87.26 100.0112 112.63 

 

Fig. 6.7 is showing the relation between recovery error and signal to noise ratio for 

different sparsity level. From here it is clear that with increase in SNR recovery error is 

going to decrease. One more relation is also verified here i.e. change in recovery error 

with sparsity level. If sparsity level is more recovery error will be more i.e. for better 

recovery sparsity level should be more.   

 

6.7 Effect of Chipping Sequence Multiplication in Compressive      

Sampling Subsystem on Recovery 

We have used chipping sequence p(t) in compressive sampling subsystem in section 5.2.  

We use this sequence so that frequency content of the incoming signal r(t) smears up on 

entire spectrum of the chipping sequence p(t) and to avoid the information loss in next 

stage i.e. low pass filtering. Here we analyzed that how much effect of chipping sequence 

on recovery. 
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Figure6.7 Recovery Error versus SNR 

From Fig 6.8 and Fig. 6.9, it is clear that if we use chipping sequence then recovered 

signal try to approach the received signal. But we don‟t use chipping sequence it is not 

following the received signal. From this it is clear that chipping sequence plays important 

role.  
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Figure 6.8 Received versus Recovered Signal using PN Sequences 

 

                Figure 6.9 Received versus Recovered Signal without using PN Sequences 
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6.8 Conclusion 

In this chapter we simulated the quadrature compressive sampling system for radar 

signals. We generated dictionary for radar signals and show that dictionary elements are 

orthogonal to each other that was actual requirement for our dictionary. Further we apply 

LFM signal on quadrature compressive sampling system and analyze the effect of 

sparsity level and noise. Our results conforms that recovery is better for more sparse 

signal as compare to the less sparse signal. Noise also affects performance of the system. 

For large vale of SNR recovery error is less i.e. recovery is better.     
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CHAPTER 7  

CONCLUSION AND FUTURE SCOPE 

 

 

 

 

In this dissertation we have analyzed that Compressive sampling appears to be a 

revolutionary technique for data acquisition and successful reconstruction. We 

implemented this technique for one dimensional signal as well as two dimensional image 

signal and successfully recover them from compressive random measurements. We 

analyzed recovery error due to variations in sparsity level and compression ratio and 

assured that successful reconstruction of signal relies on sparsity level and compression 

ratio. Effect of noise also considered in compressive sampling and we verified that with 

increase in SNR, Recovery error decrease that is according to our system expectations. 

Further we simulated the quadrature compressive sampling system for radar signals. We 

generated dictionary for radar signals and show that dictionary elements are orthogonal to 

each other that was actual requirement for our dictionary. Further we applied LFM signal 

on quadrature compressive sampling system and analyze the effect of sparsity level and 

noise. Our results conforms that recovery is better for more sparse signals as compared to 

the less sparse signal. We also performed simulations by considering noise effects. Noise 

also affects performance of the system. For large vale of signal to noise ratio(SNR) 

recovery error is less i.e. recovery is better.  
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Future Scope: 

We have analyzed throughout this dissertation that compressive sampling appears to be a 

very effective tool to move from analog domain to digital domain by overcoming the 

nyquist criterion. So we can use compressive sampling for high frequency signals for 

which we can‟t use sampling due to nyquist criterion. Further sampling rate of normal 

frequency signals can be decreased through this technique so that storing and hardware 

cost can be reduced. 

Today we are dealing with online activities like video conferencing, video streaming etc.  

Discussed approach can‟t handle the streaming signal. Because we have considered that 

our signal is static and represented in the form of basis functions. One approach to handle 

streaming signal is given in [36-37]. So by using this technique we can use streaming 

signals on quadrature compressive sampling system.    
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