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Abstract 

Large data sets have tens of thousands to millions of training instances, which suffers 

from high time and space complexity. To reduce the time and space complexity, we 

propose efficient Nystrom method to approximate kernel matrix, which is used in many 

machine learning methods such as kernel-based methods, e.g. Kernel Ridge Regression, 

Kernel Principle Component Analysis and Support Vector Machine. This thesis focuses 

on sampling based matrix approximation methods. Matrix approximation will help to 

speed up the kernel based algorithms to large data set. We give the desirable error bound 

both in the Frobenius and spectral norm for the quality of approximation. Based on these 

error bounds, we analyze the quality of approximation in kernel based algorithms. We 

present guarantees on approximation accuracy based on various matrix properties and 

analyze the effect of matrix approximation on actual kernel-based algorithms. Our 

proposed algorithm gives the lower error bound for the low rank approximation of the 

kernel matrix.  
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Chapter 1 

Introduction 

In this chapter, motivation, objective and problem statement briefly explained. This 

chapter presented overview of the thesis and presented the organization of the thesis. 

1.1 Motivation  

In machine learning, there is a problem with large scale data. So the problem with large 

scale data is storage and time complexity. Due to high complexity we have to find the 

efficient approximation of a matrix. That matrix be a kernel matrix, which is use in 

support vector machine, kernel principle component analysis and kernel ridge regression. 

Large kernel matrix having millions of entries, such large data sets creates problem both 

in storing and operating. So we have to find the efficient solution for kernel matrix to 

speed up the kernel methods. We find the good approximation of kernel matrix using the 

efficient Nystrom method. Efficient Nystrom method generates the low rank 

approximation of matrix. Sampling based approximation method select the subset of 

columns and using the subset of columns generate the efficient solution of the problem. 

Suppose having symmetric positive semidefinite matrix  , n is very large. So it requires 

 (  ) space complexity to store the kernel matrix. And operating the kernel matrix, it 

requires  (  ) finding the singular value decomposition (SVD) of matrix. Suppose B is 

the approximate matrix with rank  , so we have to minimize the ‖   ‖ in terms of 

Frobenius norm and spectral norm respectively ‖ ‖  and ‖ ‖   for any matrix  . 

Rank of B much smaller than  . We have to find the orthogonal vector and diagonal 

matrix using Eigen value and Eigen vector. In singular value decomposition, we have to 

decompose the matrix in right orthogonal vector, left orthogonal vector and diagonal 

matrix. Previously, we have various without sampling approximation method such as 

truncated SVD but without sampling based method takes more time as compare the 

sampling based methods. Sampling based approximation leads to inaccuracy as compare 

truncated SVD. Nystrom method was use for numerical integration of quadrature method. 

In 2000 William and Seeger introduced Nystrom method for kernel methods to reduce 

the time and space complexity. Matrix approximation is very useful in large data set. For 
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large data set, kernel methods take large amount of time to solve the problems of machine 

learning.  

In this thesis, we look the efficient solution of this problem that generates efficient matrix 

approximation of kernel methods. We introduced sampling based efficient Nystrom 

method.   

1.2 Objective  

The main objective of matrix approximation is to speed up the kernel methods. We have 

to generate the low rank of the given matrix  . Given matrix   with rank  , we have to 

find the good approximation of    and the rank of matrix   is less than  . Matrix   has 

good spectral feature that helps in finding the good approximation. Approximate matrix 

is able to speed up the kernel methods such as support vector machine, kernel ridge 

regression, kernel principle component analysis. But sampling based approximation 

suffers from inaccuracy so we have to minimize the approximation error. Approximation 

error calculated using Frobenius norm and Spectral norm. Measure of approximation is 

based on quality of error bound. We have to generate both theoretical and experimental 

error bound using Frobenius norm and Spectral Norm. We have to choose columns using 

good sampling methods. And that columns help to generate good approximation. We 

have various sampling based such as Nystrom methods and column sampling methods to 

approximate the matrix. For better approximation this thesis deals with following 

objectives: 

1 For a given matrix, we have to develop low rank matrix approximation based on 

sampling methods. 

2 We have to select the columns for approximation based on efficient sampling 

methods. Efficient Nystrom method uses these sampled columns to generate the 

efficient matrix approximation. 

3 Using the Frobenius norm and spectral norm, we will show the quality of matrix 

approximation. 

4 Here, we show that how approximation works with the kernel methods such as 

support vector machine.  

 

 



3 

 

1.3 Problem Statement 
To found the accuracy of the algorithms in terms of error bound. Suppose we have a 

matrix A       be a matrix and   is the best   rank approximation. 

 ‖    ‖                   (1.1)            

 ‖    ‖        (1.2) 

Where ‖ ‖   represents the spectral norm and ‖ ‖  represents the Frobenius norm of a 

matrix.  

  is the represents a tolerable level of error for the given application. We have to 

minimize the tolerable error  . 

1.4 Thesis Organization 

In this thesis, there are seven chapters. In the first chapter, we discuss about the 

motivation, objective and problem statement. In the second chapter, we discuss review of 

linear algebra because concepts of linear algebra uses in the low rank approximation. 

Chapter 3 presents the literature survey of the matrix approximation. Various low rank 

approximation methods are discussed in chapter 3. In the chapter 4, we discuss the 

application of the low rank approximation. This chapter tells hoe the low rank 

approximation works. Chapter 5 presents the proposed approach and the algorithm. 

Chapter 6 describes the implementation results of the standard Nystrom method and the 

efficient Nystrom method and also discusses results of the application of the low rank 

approximation. Chapter 7 provides the conclusion and outline the most promising 

directions for future work. 
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Chapter 2 

Review of linear algebra 

In this chapter, we have to discuss about basics of linear algebra. Suppose   be an   

  matrix, entries of matrix are non-negative. Independent rows (or columns) are the rank 

of the matrix  ; thus,     ( )      *   +. A square     matrix all of whose off-

diagonal elements are zero is called a diagonal matrix; rank of diagonal matrix is equal to 

number of non-zero diagonal elements. If   diagonal elements of diagonal matrix are one, 

such type of matrix called identity matrix of dimension   and identity matrix represented 

by  .  

2.1 Vector Terminology  

2.1.1 Vector Length 

Squaring each component, add all the square components and taking the square root of 

the sum. If  ⃗ is a vector, length of vector denoted by | ⃗|. 

| ⃗|   √∑   
  

       (2.1) 

For example, if  ⃗  ,         -, then  

| ⃗|  √               √          

2.1.2 Vector Addition  

Addition of two vectors means adding each component in its corresponding position. 

Suppose, if   ,          - and   ,          -, then     ,         

          -. 

2.1.3 Scalar Multiplication  

Multiply a scalar (real number) times a vector means multiplying each elements by the 

scalar to get new vector. Scalar multiplication means if   is a real number and   ⃗ is a 

vector ,              - then    ⃗  ,                ] [1].  
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2.1.4 Inner Product 

Multiplication of two vectors is called inner product (also called scalar product or dot 

product). Scalar value is the calculated by multiplying each component in  ⃗ by the 

component in   ⃗  in the same position and adding the product of each component, we get 

a scalar. Dimensions of both vectors should be same, and then only inner product is 

possible. The inner product of the two vectors is denoted as ( ⃗    ⃗ ) or  ⃗   ⃗ (the dot 

product)[1].  

( ⃗   ⃗ )   ⃗   ⃗   ∑     
 
      (2.2) 

2.1.5 Orthogonality 

If inner product of two vectors equals to zero then they called orthogonal to each other. In 

two dimensional space, they called as vectors are perpendicular or the angle between two 

vectors are 90
0
.  

( ⃗   ⃗ )   ⃗   ⃗   ∑     
 
         (2.3) 

2.1.6 Normal Vector  

Length of the vector is 1, called normal vector. We can normalized the vector by dividing 

each component in it by the vector‟s length.  

For example, if  ,       -, then  

| ⃗|  √            √     

Then  ⃗   0  ⁄    ⁄    ⁄    ⁄ 1 is a normal vector because  

| ⃗|  √(  ⁄ )  (  ⁄ )  (  ⁄ )  (  ⁄ )  √    ⁄    

2.1.7 Orthonormal Vectors 

Orthonormal vectors are those vectors which are of unit length and are orthogonal to each 

other. For example, 

 ⃗   0  ⁄    ⁄     ⁄    ⁄ 1 
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and  

 ⃗   [ 
√  
⁄    

√  
⁄   

√  
⁄   

√  
⁄ ] 

are orthonormal because  

| ⃗|   √(  ⁄ )  (  ⁄ )  (   ⁄ )  (  ⁄ )    

   

| ⃗|   √( 
√  
⁄ )

 

 (  
√  
⁄ )

 

 ( 
√  
⁄ )

 

 ( 
√  
⁄ )

 

   

 ⃗  ⃗    

2.2 Matrix terminology 

2.2.1 Square Matrix 

Equal number of rows and columns are called square matrix. If matrix has   row and 

columns called   square. For example, the matrix with 2-square 

0
  
  

1 

2.2.2 Transpose  

Changing the row into columns is called transpose of the matrix. Transpose of the matrix 

denoted by subscript
T 

. Given a matrix  , then transpose of the matrix   is   . For 

example, if  

   0
   
   

1 

Then transpose of matrix   is 

    [
  
  
  

] 

Size of matrix   is     then sixe of    become    . 
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2.2.3 Matrix multiplication  

Before multiplying to matrix, we have to check compatibility of these two matrixes. 

These matrixes are compatible only if first matrix has the same number of columns as the 

second matrix has rows. After the multiplication, size of the resulting matrix depends on 

first matrix rows and second matrix columns. Multiplications of two matrixes are 

determined by finding the inner product of each row of first matrix and each column of 

second matrix.  

If   is a     matrix and   is     matrix, then    is     matrix. 

For example,  

 

   0
   
   

1 

   [
  
   
  

] 

    0
   
   

1 [
  
   
  

]   0
   
   

1 

2.2.4 Identity Matrix 

Any square matrix with elements of diagonal matrix equal to one and remaining elements 

of matrix equal to zero is called identity matrix. The diagonal entries are     iff    , i.e., 

               . Identity matrix denoted by    or      for  -square matrix or for 

convenience it simply denoted by  . Every identity matrix must follow the properties [1]  

    , where   is a matrix 

For example,  

   0
   
   

1 and     [
   
   
   

] 
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    0
   
   

1 [
   
   
   

]   0
   
   

1    

2.2.5 Orthogonal Matrix  

Matrix   is orthogonal iff we  multiply its transpose then get an identity matrix. 

          

For example    [
   
        
       

] 

A is orthogonal matrix then, 

    [
   
        
       

] [
   
       
        

]  [
   
   
   

] 

2.2.6 Diagonal Matrix  

A matrix   is said to be diagonal matrix iff all the elements     are zero where    .   

   [
     
   
     

] 

2.3 Eigenvector and eigenvalue 
Eigen vector and Eigen value are calculated by the characteristic equation. Characteristic 

equation is given below: 

  ⃗   ⃗   

where   is a square matrix,  ⃗ is the eigen vector and   is a scalar.   is the eigen value. 

Using the  , we have to find corresponding eigen vector. Eigen vector and eigen value 

also called as characteristic vectors and characteristic roots, respectively [5].  

Properties of eigenvalues: 

1. Theorem: Eigenvector with dissimilar eigenvalues are linearly independent.  
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Suppose, square matrix   and set of eigenvectors is   *               + with 

eigenvalues                 where       whenever    . Then   said to be 

linearly independent set. 

2. Theorem: Singular matrix has no eigenvalue. 

Suppose, square matrix  . If   has zero eigenvalue then   said to be a singular matrix. 

And determinant of singular matrix is zero, so inverse of singular matrix don‟t exists.  

3. Theorem: Nonsingular matrix has eigenvalues. 

Suppose   is a square matrix with size  . They follow some properties: 

1.   is a nonsingular matrix. 

2.   is row-reduce to identity matrix. 

3. Null space of   contains only zero vector,  ( )  * + 

5. Unique solution exists for every possible choice of  , a exists in linear system (   ). 

6. There exists a set of linearly independent for the columns  . 

7. Matrix   invertible, means   is nonsingular matrix there exists inverse of matrix  . 

8. Rank of matrix   is  ,  ( )   . 

9. The nullity of matrix   is zero,  ( )   . 

10. Determinant of matrix   is non-zero,     ( )   . 

11. If    , then there is no eigenvalue exists. 

4. Theorem: Eigenvalues of the polynomial matrix.  

Suppose   is a square matrix and  is the eigenvalue of  . Let  ( ) be a polynomial in the 

variable  . Then  ( ) is an eigenvalue of the matrix  ( ). 

5. Theorem: Eigenvalues of inverse of a matrix. 
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Suppose   is a nonsingular matrix and   is the eigenvalue of  . Then     is an 

eigenvalues of the matrix    . 

6. Theorem: Eigenvalues of the transpose of a matrix. 

Suppose   is a square matrix with size  . Then    is the eigenvalue of the matrix   . 

7. Theorem: Eigenvalues of the real matrix. 

Suppose   is a square matrix with real elements and   is an eigenvector of   for the 

eigenvalue  . Then  ̅ is an eigenvector of   for the eigenvalue  ̅. 

8. Theorem: Eigenvalues of hermitian matrices Hermitian matrices have real 

eigenvalues. Suppose   is a hermitian matrix and   is the eigenvalues of  ,    . 

9.  Hermitian matrices have orthogonal eigenvalues. Suppose,   is a hermitian matrix 

and if there exists two eigenvectors of   for different eigenvalues. Than   and   are 

orthogonal vectors to each other [5]. 

2.4 Matrix Norms 
     is a vector space of dimension   , magnitude of matrices        can be measured 

by employing any vector norm on    . 

2.4.1 Frobenius norm 

The Frobenius norm or Hilbert-Schmidt norm of        is defined by the equations  

‖ ‖   √∑ ∑ |   |
  

   
 
       (2.4) 

‖ ‖   √     (   )  

‖ ‖  √ ∑   
 

    *   +

   

 

where    represents the conjugate transpose of  ,    is the singular values of  . Singular 

value is the square root of the eigenvalue. If           then it called as unitary 
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matrix. The function trace is the sum of the diagonal of the matrix  .Trace has a cyclic 

nature [6] 

     (   )       (   )  

Properties of trace: 

     (  )        ( ) 

    

     (   )       ( )       ( ) 

2.4.2 Spectral Norm 

Spectral norm of matrix defined as square root of maximum eigenvalue of     (where    

is the conjugate transpose of matrix  ) [6]. 

‖ ‖  (                         )    

‖ ‖  √    (   ) 

‖ ‖      ( )    (2.6) 

2.4.3 Max Norm 

The max norm defined as elementwise norm.  

‖ ‖       *|   |+   (2.7) 

Max norm is not sub-multiplicative. 

2.5 Vector Norm 

2.5.1 Euclidean norm (or 2-norm) 
Euclidean norm (or L^2)    Norm is a vector norm defined for a complex vector- 

   |

  
  
 
  

| 
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by 

                           ‖ ‖   √∑ |  | 
 
        (2.8) 

Where |  | on the right denotes the complex modulus.  

2.5.2     Norm  

A L^1 vector norm defined for a vector 

                                  |

  
  
 
  

|       

With complex entries by 

‖ ‖   ∑ |  |
 
       (2.9) 

L^1 norm also called Taxicab norm or Manhattan norm. distance calculated by L^1 norm 

is called as Manhattan distance or L^1 distance [6]. 

2.5.3           Norm 

A            vector norm defined for a vector 

   |

  
  
 
  

| 

With complex entries by 

‖ ‖   
   
 

|  |    (2.10) 

2.5.4  -norm 

For any real number,      

‖ ‖   (∑ |  |
  

   )       (2.11) 
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If    , called as taxicab norm (or  ^1 norm). if    , known as Euclidean norm. And 

   , then the   norm is infinity norm (or maximum norm).  Holder mean is related 

by   norm.  

By the definition,      , then norm is not define as the resulting function because it 

violates the triangular properties[12]. 

2.6 Matrix Decomposition (or Matrix Factorization)   
In linear algebra, matrix decomposition (or matrix factorization) is defined as 

factorization of matrix into product of matrices. There are many different matrix 

decompositions methods exist. Each of the decomposition methods has specific feature to 

solve the different class of problems[4]. 

2.6.1 Decomposition based on solving linear equation   

2.6.1.1 LU decomposition 

In 1948, the great mathematician Alan Turing was introduced LU decomposition. LU 

decomposition (LU stands for lower upper and also known as LU factorization) factors 

the matrix into product of two parts, first is a lower triangular matrix and an upper 

triangular matrix. Gaussian elimination of matrix is viewed by LU decomposition.  

Suppose,   be a square matrix. Factors of   refers as   and  , where   is the lower 

triangular matrix and   is refers as upper triangular matrix. 

     

In lower triangular matrix,  , all entries above the diagonal are zero. In upper triangular 

matrix,  , all entries below the diagonal are zero. For example,   is     matrix, LU 

decomposition of  , 

[

         
         
         

]  [

     
       
         

] [

         
       
     

] 

Application of LU decomposition: 

1. Solving linear equations 



14 

 

2. Inverting the matrix 

3. Computing the determinant  

2.6.1.2 LU reduction 

LU reduction is an algorithm that is another version of LU factorization. Super 

computing and highly parallel computing used LU decomposition. LU decomposition 

used as benchmark algorithm, that provides to measure the speed for various computers. 

LU decomposition is the another kind of parallelized version of an LU decomposition 

algorithm [4]. 

2.6.1.3 QR decomposition  

In 1959, British computer scientist John G. F. Francis and Soviet mathematician Vera 

Kublanovskay discovered the QR algorithm for eigenvalues. 

In the field of linear algebra, QR decomposition (also called QR factorization) of matrix 

is the decompose into two matrix, first, Q and second, R then the product of Q and R 

equals to  . 

        (2.12) 

where   is the orthogonal matrix and   is the upper triangular matrix.  

Linear least squares problem solved by QR decomposition. 

QR decomposition for square matrix: 

Let   be the square matrix, decomposed as 

     

where   is an orthogonal matrix (its columns are orthogonal unit vectors,      ) and 

  is the upper triangular matrix(right triangular matrix). Factorization is unique if   is 

invertible, so the diagonal elements of   is positive. 
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QR decomposition for rectangular matrix:Suppose   is rectangular matrix with     

size (where    ), orthogonal matrix   is     and upper triangular matrix is    . 

In upper triangular matrix, bottom (   ) rows  of    , consists only zeroes. 

      0
  
 
1   ,     - 0

  
 
1       

where    is an     upper triangular matrix, zero is an (   )    zero matrix,    is 

   ,    is   (   ) and    and    both have orthogonal columns [4]. 

2.6.1.4 Rank factorization (or rank decomposition)  

Matrix   have size     with rank of   is  . Rank decomposition of   is  

     

where   is an     matrix and   is an     matrix. Rank decomposition is possible for 

every finite-dimensional matrix. For matrix  , whose column rank is  . Columns rank of 

matrix indicates there are   linearly independent columns in  .  

    ( )      (  ) 

Rank factorization can be achieved by row echelon forms.  In this, we can compute  , 

reduced form of  . Removing the non-pivot columns,   is obtain and eliminating all zero 

rows of   [4]. 

2.6.1.5 Interpolative decomposition  

An interpolative decomposition is the product of two matrixes. One of the matrixes 

contains selected columns form the original matrix. And another matrix contains a subset 

of columns that is identity matrix.  

An interpolative decomposition of matrix   of rank       *   + is factorization 

   ,       -      ,    -, 
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Where   ,     - is a permutation matrix, i.e.,         . We can write it as 

    , where       and   ,   -   are the skeleton and interpolation matrices, 

respectively 

If   has not exact rank r, then   can be approximated by interpolative decomposition 

such that       , where ‖ ‖        is the largest singular value of   [4]. 

2.6.2 Decomposition based on eigenvalues and eigenvectors 

2.6.2.1 Eigendecomposition 

Canonical from of factorization is called as Eigendecomposition (or spectral 

decomposition), and the matrix is shown by the eigenvalues and eigenvectors. 

Eigendecomposition is possible only for square matrix.  

For square matrix  , vector   of   dimensions that satisfied the linear equation  

          (2.13) 

where   is the scalar, named as eigenvalue corresponding to  . Equation() called  

characteristic equation or eigenvalue problem. 

 ( )     (    )       (2.14) 

where  ( ) is the characteristic polynomial and the equation called as characteristic 

equation.  

For each eigenvalue,   , there is specific equation  

(     )    

There are linearly independent solutions to each eigenvalue equation.  

Eigendecomposition of a square matrix 

Let matrix   is size     with   linearly independent eigenvectors. Matrix   can be 

factorized as  

            (2.16) 
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where   is the square matrix whose column is the eigenvectors of   and   is the diagonal 

matrix whose diagonal entries are corresponding to the each eigenvalues [5]. 

Functional calculus 

Power series of matrices is computed by using eigendecomposition.  ( ) is given by 

 ( )             
        

For matrix  , 

 ( )    ( )    

Because   is a diagonal matrix, function of   calculated: 

, ( )-    (  ) 

Similar method works with the holomorphic functional calculus, using 

            

from above,  

, ( )-    (  ) 

For example, 

   (     )(     )    (    )            

              (2.17) 

2.6.2.2 Schur decomposition 

In linear algebra, if square matrix   has size of   with complex entries, then 

decomposition of   define as, 

            (2.18) 

where   is a unitary matrix (for unitary matrix,     and conjugate transpose    of  ), 

and   is an upper triangular matrix, called a schur form of  . So   is same as  ,   has 



18 

 

the same multiset of eigenvalues, and   is a triangular, eigenvalues of   is the diagonal 

entries of  . 

The Schur decomposition says that there is a nested sequence of   invariant subspaces 

* +                        and there is first   basis vector span    fro 

each nested sequence [12].  

Generalized schur decomposition 

For given two matrices   and  , generalized schur decomposition factorize both matrices 

as 

           (2.19) 

And 

           (2.20) 

where   and   are unitary, and   and   are upper triangular. The generalized schur 

decomposition is known as QZ decomposition.  

Eigenvalue   that solve the generalized eigenvalues decomposition problem    

   (where   is an unknown nonzero vector) is calculated as the ratio of the diagonal 

elements of   to those  . For the     generalized eigenvalue    satisfies 

   
   

   
     (2.21) 

 2.6.2.3 Singular value decomposition  

In linear algebra, the singular value decomposition (SVD) is the factorization method for 

real or complex matrix. Suppose we have given real or complex matrix   with     

size, then singular value decomposition of  (Golub and van loan, 1996; Watkins, 1991), 

           (2.22) 
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where   is an     orthonormal matrix, columns of   called as left singular vectors of 

 . And   (Conjugate transpose of   for real or complex matrix) is an     the 

orthonormal matrix, columns of   called as right singular values of   [8].  

Relation with eigenvalue and singular value decomposition: 

1. The left singular vectors of   calculated by eigenvalues of    . 

2. The right singular vectors of   calculated by eigenvalues of    . 

3. The non-singular values of   calculated by both     and    . 

The properties of SVD matrix are given below: 

1. The Singular values of a real valued rectangular matrix   are equal to the square 

roots of the eigenvalues                   of matrix    . 

2. Positive singular values is same as the rank of matrix   

    ( )            

3. The Euclidean norm of A is equal to the largest singular value,  

                                               ‖ ‖     

Basic Idea of SVD: Data is in high dimensional space, highly variable set of data points 

so need to be reducing it to low dimensional space losing the less information [13]. SVD 

is based on the theorem of linear algebra. Theorem says that any rectangular matrix can 

be factorize in three matrices – orthogonal matrix  , a diagonal matrix   and transpose of 

orthogonal matrix. We can represent the theorem as 

              
  

where            , here, the columns of    are orthonormal eigenvectors of    , 

the columns of   are orthonormal eigenvectors of     and   is a diagonal matrix 

containing the square roots of eigenvalues from        in descending order[2].  

Theorem 1: (Matrix diagonalization theorem) Let A be a square real-valued     

matrix with   linearly independent eigenvectors. Then there exists an 

eigendecomposition  

           (2.23) 
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Where the columns are the eigenvectors of   and   are a diagonal` matrix whose 

diagonal entries are the eigenvalues of   in decreasing order. 

(
    
   
    

) ,         

Decomposition is unique if eigenvalues are distinct. 

Theorem 2 (Symmetric diagonalization theorem) Let   be a square, symmetric real-

valued matrix with   linearly independent eigenvectors. Then there exists an eigen 

decomposition 

                                                                 (2.24) 

For symmetric matrix, left singular vector and right singular vector both are same.  

Application of Singular value decomposition  

1. Pseudoinverse 

Pseudoinverse of the matrix can be computing using singular value decomposition.  

Pseudo-inverse of symmetric matrix   as 

    ∑   
   

    ( ) ( )    (2.25) 

And  

pseudo-inverse of complex matrix   as 

             (2.26) 

where    is the pseudoinverse of  , which is calculated by replacing the non-zero 

diagonal entry by the reciprocal of the singular value and transposing the resulting 

matrix. Pseudoinverse is used to solve the linear least squares problems[2]. 
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2. Low rank approximation 

Low rank approximation problem is solved by the SVD. Suppose the  ̃ is the 

approximation of    

 ̃    ̃   

In low rank approximation, sort the singular values in the decreasing order and then 

select the top   largest singular values. we have to minimize the Frobenius norm of the 

difference between   and  ̃. This theorem is also known as Eckart-Young theorem. 

 2.6.2.4 CUR decomposition  

CUR decomposition are the class of randomized algorithms which is used to approximate 

the matrix   by taking only small number of columns of  .  

Given a matrix        decompose into three matrices  ,   and  as 

      

 where                      ,   contains exactly   columns of  ,   consists of 

row of   and   is a small matrix that says the product of     very close to  . 

    decomposition can be used as SVD for low rank approximation. But CUR has high 

inaccuracy as compare to SVD still CUR approximation is easy to compute.  

2.7 Kernel functions 
Kernel functions can be used in many applications as they provide a simple bridge from 

linearly to non-linearly for algorithms which can express in terms of dot products. Below 

is a list of some kernel function available [7]. 

2.7.1 Linear kernel  

The linear kernel is the simplest kernel function. It is given by the inner product       

plus an optional constant   [7].  

 (   )        
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2.7.2 Polynomial kernel  

The polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited for 

problems where all the training data is normalized. 

 (   )  (      )  

Where alpha is the slope, constant term   and the polynomial degree   [7]. 

2.7.3 Gaussian kernel  

The Gaussian kernel is example of radial basis function kernel. 

 (   )     ( 
‖   ‖ 

   
) 

Alternatively, it could also be implemented using  

 (   )     (  ‖   ‖ ) 

Sigma plays the important a major role in the performance of kernel, it depends on the 

problem [7].  

2.7.4 Exponential kernel  

The Laplace kernel is equivalent to the exponential kernel, except for being less sensitive 

for changes in the sigma parameter. Being equivalent, it is also a radial basis function 

kernel [7]. 

 (   )     ( 
‖   ‖

 
) 

2.7.5 Power kernel 

 The power kernel is also known as the triangular kernel. 

 (   )   ‖   ‖  

2.7.6 Log kernel 

The log kernel seems to be particularly interesting for images, but it only conditionally 

positive define. 
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 (   )      (‖   ‖   ) 

2.8 Summary  
In this chapter, we present the basic terminology of matrix and vector. Various norm 

discussed that will use to find the error bound of the various low rank approximation 

method. We also discussed some kernel function which uses in the implementation In 

next chapter we present the various low rank approximation algorithms and their 

theoretical error bound based on Frobenius norm and spectral norm. 
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Chapter 3 

Literature survey 

In this chapter, we discuss various low rank approximation methods to generate the good 

approximation of the matrix. We discuss sampling algorithms and some other low rank 

approximation methods. Contents of this chapter is linear time SVD, constant time SVD 

and various sampling based low rank approximation methods such as standard Nystrom 

and column sampling method.  

3.1 Introduction  
Given matrix  , find the good approximation of   that has low rank. There are several 

techniques for fast computation of the approximation of  . And   has good spectral 

feature that help to capture the data from the original matrix. Quality of the matrix 

approximation is measured by the Frobenius norm and spectral norm. That is the 

fundamental result of linear algebra for matrix   and   is the any positive integer. Best   

rank approximation is denoted by   . Efficient computation of the low rank 

approximation measure by the ‖    ‖. C is the any rank   matrix then it satisfies 

‖   ‖    ‖    ‖           (3.1) 

Tolerable error   is adding to   a matrix   whose entries are independent Gaussian 

random variable with mean 0 and standard deviation  . That is,   is not too big, the 

optimal rank   approximation to  ̃      will approximate   nearly as well as   . 

This stability of low rank approximations with respect to Gaussian noise is well 

understood and stems from the fact that no low dimensional subspace accommodates   

well, i.e., ‖  ‖ is small for small  . Low rank approximations are frequently used with 

the explicit purpose of removing Gaussian noise [30]. 

A fundamental result in random matrix theory is that the     being Gaussian is not 

essential in the above example. Rather,   is innocuous by virtue of the following three 

properties of its entries: independence, mean zero, and small variance. If   is a random 

matrix whose entries     are zero-mean, independent random variables with variance 

bounded by   , then ‖  ‖    ‖  ‖. There is a proof of the quantity ‖  ‖ bounds the 
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influence that   may apply over the optimal rank   approximation to    . 

Specifically, to the extent that ‖  ‖  ‖  ‖, the matrix (   )  will be largely 

determined by   [31]. 

3.1.1 Statement of results  

Definitions of the Frobenius norm and 2- norm, 

‖ ‖   (∑   
   )

   
 and   ‖ ‖     ‖ ‖  ‖  ‖ 

For matrix   and any  , ‖ ‖  √ ‖ ‖   and ‖  ‖  ‖ ‖     

This analysis based on observing that acts of sampling and quantization cab be viewed as 

adding random matrix   to  , whose entries are independent random variables with zero-

mean and bounded variance. Since, with high probability,   has very weak spectral 

features, shows the effect sampling and quantization nearly vanishes when low rank 

approximation to     is computed. The quality of approximation is given by the 

Frobenius norm and 2-norm [17]. 

Next statement a lemma formalizing that perturbation matrices which are poorly 

approximable in   dimensions have little influence on the optimal rank   approximation. 

Lemma 1. Let   and   be any matrices and write   ̃    N. then 

‖   ̃ ‖  
‖    ‖   ‖  ‖  and 

‖   ̃ ‖  
‖    ‖  ‖  ‖   √‖  ‖ ‖  ‖  

Notice that all error terms above scale with ‖  ‖ and thus whenever   is poorly 

approximated in   dimensions, i.e., ‖  ‖ is small, the error caused by adding   to   

must be small. 

 According to lemma 1, take an example of a Gaussian perturbation matrix. This will 

provide a sense of scale for our results, stated in theorems 1-3 below 

Fact 1. Let    be an     matrix, where    , whose entries are independent 

Gaussian random variables with mean 0 and variance   . With probability      ( ), 
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‖  ‖    √  and ‖  ‖    √  . 

To put these two bounds in perspective consider the trivial rank   approximation,  , that 

results from zeroing-out all but the first   rows of  . With high probability we have 

‖ ‖     √  . Moreover, since   has rank at most  , ‖ ‖  ‖ ‖  √ . Fact 1 asserts 

that the optimal rank   approximation of   only improves upon this trivial approximation 

by at most a factor of 4, attesting to the near-orthogonally of the rows of  . In contrast, 

for general     matrices   with |   |   , ‖  ‖ can easily be as large as  √  , in 

either norm[25]. 

Results show that it is possible to find a good low rank approximation to   even after 

randomly quantizing its entries. In theorem 1 below we quantize each entry to a single 

bit, representing a 32 to 64 factor of compression over standard floating point numbers. 

Naturally, one can generalize the quantization process to larger set of numbers, trading 

representation length for error.  

Theorem 1. Let   be any     matrix where    , and let        |   |.  Let  ̂ 

be a random     matrix whose entries are independently distributed as  

    ̂   {
                   

 

 
 

   

  
 

                   
 

 
 

   

  
 
    (3.2) 

For all sufficiently large  , with probability at least       (   (    ) ), the matrix 

     ̂ satisfies 

‖  ‖    √  and ‖  ‖    √  . 

Our second result asserts it is possible to find a good low rank approximation to   even 

after randomly omitting many of its entries. In particular, the stronger the spectral 

features of   the more of its entries we can afford to omit. 
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Theorem 2.  Let   be any     matrix where 76 m  , and let b=      |   |. For 

  (     )   , let  ̂ be a random     matrix whose entries are independently 

distributed as  

 ̂    {
   

 
                  

                      
     (3.3) 

With probability at least with probability at least       (   (    ) ), the matrix 

     ̂ satisfies 

‖  ‖    √    and ‖  ‖    √    . 

As mentioned earlier, we can improve upon the uniform sparsification process by 

retaining entries with probability that depends on their magnitude. This yields greater 

sparsification when entry magnitudes vary, without increasing the error bounds.  

Theorem 3. let  ̂  be a random     matrix where       , and let  b= 

     |   |. For any p>0, define      (     )
  and let 

       {       √    (     )   }  

Let  ̂ be a random     matrix whose entries are independently distributed as 

    ̂    {
   

 
                    

                      
    (3.4) 

1. With probability at least with probability at least       (   (    ) ), the 

matrix      ̂ satisfies 

‖  ‖    √    and ‖  ‖     √    . 

2. The expected number of non-zero entries in  ̂ is bounded by (pmn) 

   [.
   

 
/
 

]   (     ) [29] . 
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Proof of lemma 1 

Now, prove two lemmas relating ‖    ‖ to ‖    ‖ for arbitrary matrices    , in 

the Frobenius and 2-norm. specifically, lemma 2 compares ‖    ‖  to ‖    ‖ , 

while lemma 4 compares ‖    ‖  to ‖    ‖  [32]. 

Lemma 2.  For any matrices   and   

‖    ‖  to ‖    ‖   ‖(   ) ‖ . 

Proof. Starting with ‖    ‖  and applying the triangle inequality we get (3.5). Using 

that for any rank   matrix  , ‖    ‖   ‖   ‖  we get (3.6). applying the triangle 

inequality again gives (3.7) 

‖    ‖   ‖   ‖  ‖    ‖                    (3.5) 

 ‖   ‖  ‖    ‖         (3.6) 

  ‖   ‖  ‖   ‖  ‖    ‖    (3.7) 

Finally, we note that ‖   ‖   ‖   ‖   ‖(   ) ‖  , which concludes the 

proof . 

In order to prove the Frobenius norm bound we need to introduce the following notion. 

Given a matrix, let    denote the projection matrix onto the space spanned by the 

columns of    (we suppress the dependence of    on   to simplify notation). An 

important consequences of the Singular Value Decomposition is that        and, as 

a result, that for any matrices   and  [30], 

‖   ‖  ‖   ‖            (3.8)  

 

To prove our stated bounds for the Frobenius norm we will first show that for any 

matrices  ,  , if ‖(   ) ‖  is small, then projecting   onto    is almost as good as 

projecting it onto    in terms of capturing Frobenius norm. 
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Lemma 3. For any matrices   and    

‖   ‖  ‖   ‖   ‖(   ) ‖ . 

Proof. Starting with ‖   ‖  and applying the triangle inequality we get (3.9). Applying 

(3.8) yields (3.10). Applying the triangle inequality again gives (3.11) 

‖   ‖  ‖   ‖  ‖  (   )‖      (3.9) 

 ‖   ‖  ‖  (   )‖     (3.10) 

 ‖   ‖  ‖  (   )‖  ‖  (   )‖       (3.11) 

Finally, we applying (3.8) to bound the ‖  (   )‖  terms in (3.11) by ‖(   ) ‖ .  

We now use Lemma 3 to prove that if ‖(   ) ‖  is small, then ‖    ‖  is not 

much larger than ‖    ‖ . In order words,    can be a good surrogate for    with 

respect to the Frobenius norm even when ‖   ‖  is large, so long as ‖(   ) ‖  is 

small [30].  

Lemma 4. For any matrices   and  ,  

‖    ‖   ‖    ‖   √‖(   ) ‖  ‖  ‖   ‖(   ) ‖ . 

Proof. By the fact        and the triangle inequality we get  

‖    ‖   ‖     ‖   ‖  (   )‖    (3.12) 

Applying the Pythagorean inequality to each column of   implies that for any projection 

matrix   ,  

‖     ‖ 
  ‖ ‖ 

   ‖   ‖ 
      (3.13) 

Inserting (3.12) in (3.13), we get 

‖    ‖   (‖ ‖ 
   ‖   ‖ 

 )
 

   ‖  (   )‖     (3.14) 
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To bound the right hand side of (3.14) we first invoke the lower bound for ‖   ‖  

provided by Lemma 3 to get (3.15). We then use (3.13) to get (3.16) to which we apply 

the inequality √     √   √  to get (3.17). 

‖    ‖   (‖ ‖ 
   ‖   ‖ 

   ‖(   ) ‖ ‖   ‖ )
 

   ‖  (   )‖   

 (3.15) 

  (‖    ‖ 
   ‖(   ) ‖ ‖  ‖ )

 

  ‖  (   )‖     (3.16) 

 ‖    ‖  ( ‖(   ) ‖ ‖  ‖ )
 

    ‖  (   )‖             (3.17) 

To wrap up, we use (3.8) again to bound ‖  (   )‖  by ‖(   ) ‖ . 

3.2 Comparison of the various error bounds 
Now, we focus on the various error bounds given by Drines et al[19], as it gives the best 

known bounds for computing near-optimal low rank matrix approximation by column / 

row sampling. Approach given by Achlioptas et al [18], i) sample c columns from  , 

selecting each columns with probability proportional to its squared 2-norm, ii) determine 

the optimal  - dimensional subspace  . Intuitively, as the number of columns sampled 

grows, the sample approaches the distribution of columns of  . In particular, [] show that 

if    (    ) columns are drawn, then with constant probability the resulting rank   

matrix satisfies  

‖   ‖ 
   ‖    ‖ 

   ‖ ‖ 
      (3.18) 

‖   ‖ 
   ‖    ‖ 

   √ ‖ ‖ 
     (3.19) 

More generally, if    ((    )    ) columns are drawn then (3.18), (3.19) holds with 

probability      . We note that, in the case of the Frobenius norm, the bound in (3.19) 

is meaningful only if  √   . 

By Comparison, given the same matrix  , invoking sample (
   

  
  ) yields an     

matrix  ̂ with  (
 

  
  (    ) )  non-zero entries, sampled from the distribution of 
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theorem 3 with         ( ‖ ‖ )
 . Thus, by Lemma 1 and theorem 3, with 

probability       (   (    ) ),  

‖   ̂ ‖   ‖    ‖   ‖ ‖        (3.20) 

‖   ̂ ‖   ‖    ‖   √     ‖ ‖           (3.21) 

where in deriving (3.21) we assumed that  √    so that the bound in (3.19) is 

meaningful.  

Unfortunately, making a direct comparison of the two results at this point is hindered by 

the fact (3.18),(3.19) bound ‖   ‖  ‖    ‖
  while (3.20), (3.21) bound ‖  

 ̂‖  ‖    ‖. If the bound the right hand side of (3.18), (3.19) using the inequality 

      (   ) , observed that the Frobenius bounds are comparable, while 2-norm 

decays at the rate of [6].  

Such a comparison is oversimplified, to be sure:       (   )  is inappropriate 

when ‖    ‖    ‖ ‖ . Also, equating  (    ) columns of   with  (
 

  
 

 (    ) ) non-zero entries is justified only when each column of   contributes  ( ) 

non-zero entries and 
 

  
 is not dominated by  (    ) [18].  

3.3 Low rank approximation 

3.3.1 Truncated SVD    

The singular value decomposition is a classical mathematical technique for factorizing a 

matrix. The SVD for a matrix        is the decomposition       , where 

      ,        and       . The matrices     are orthogonal, with their 

columns being eigenvectors of     and     respectively.   is a diagonal matrix 

diag(            ) where       *   +. The       are sorted in decreasing order and 

are known as singular values of  . The      is satisfy      for all  , and the squares of 

nonzero      are the eigenvalues of    (or equivalently    ).One of the most common 

operations one performs using the decompositions      is to form the truncated SVD 

         
 ,  



32 

 

Where we take first   columns of     and consider the     submatrix   . Due to the 

orthogonally of      one can equivalently write    as     
   or      

 . This matrix has 

rank at most  , and a classic theorem of Eckart-Young-Mirsky says that it is a good 

approximation to the matrix   in the following specific sense[30]. 

Theorem 4 [EACKART AND YOUNG 1936; MIRSKY 1960]. For a given matrix 

        let    be its truncated SVD. Let ‖ ‖  be a unitarily invariant matrix norm. 

then, for all       ( ), 

‖    ‖      
    ( )  

‖   ‖  

To see the intuition behind the theorem, another way to express the SVD is to write each 

elements of the matrix   as  

     ∑             ∑         
 

 . 

Now suppose that we keep just the top   singular values of  , and significantly treat the 

rest as being 0: this creates a rank   approximation to  . Since               

intuitively this approximation should be quite good, because we are keeping the terms 

that contribute the most to    . What the theorem says is that this approximation is not 

only good, but optimal [27]. 

Two commonly invariant norms are the Frobenius and 2-norm. the Frobenius norm of 

matrix, ‖ ‖    is an analogue of the    norm for vectors : 

‖ ‖  √∑ ∑    
 

    √∑   
 

  . 

The 2-norm (or spectral norm) of the matrix, ‖ ‖  is an induced that the largest singular 

value of a matrix: 

‖ ‖        
 

   

An important connection between the 2-norm and the singular values of a matrix   is the 

following result: 
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‖    ‖        

It is well known that ‖ ‖  ‖ ‖  √ . ‖ ‖  [11]. 

3.3.2 Computing the SVD 

In general, the problem of computing the SVD of a matrix reduces to that of computing 

the Eigenvalue decomposition of a symmetric matrix. Eigenvalue decomposition is 

deeply connected to the SVD because of the following fact. 

Fact 2. Let        have the decomposition     , where       (  ). Let   ,    

denote the columns of     respectively. Then, 

i.        has eigenvalue   
  with corresponding eigenvectors   . 

ii.   0
  
   

1 has eigenvalues     with corresponding eigenvalues 

 

√ 
0
  
   

1. 

Therefore, common methods for computing the SVD of a matrix are standard 

eigensolvers such as QR iteration and Arnoldi/Lanczos iteration, or are slight 

modifications of the same, such as the modified Golub-Reinsch method [Chan 1982]. We 

note that any algorithm for SVD computation can only produce an approximation to the 

true SVD of a matrix. The reason for this is an impossibility result which says that no 

algorithm can find the exact eigenvalues of a general matrix. The proof of this claim is 

that computing the eigenvalues of a matrix is equivalent to finding the roots of its 

characteristic polynomial, and further, that every polynomial is the characteristic 

polynomial of some matrix (known as the companion matrix). However, the Abel-Ruffini 

theorem [37] says that there is no formula for finding the roots of polynomials of degree 

≥ 5. This implies that no general algorithm exists for finding eigenvalues, which shows 

the claim [8]. 

For most classical SVD algorithms, we have the following error guarantees due to finite 

precision arithmetic [11]. Throughout, we let   denote the machine-precision constant, 

that is, the maximum relative error in storing a real number on a computer. 

(1) The reported singular values  ̃  are close to the true ones   :  
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|     ̃ |       

(2) The reported left-singular vectors   ̃  are close in angle   (  ̃    ) to the true left-

singular vectors    : 

 (  ̃    )   
 ‖ ‖ 

   
   

|     |
 

(3) The reported matrix  ̃  ̃  ̃ are precisely the SVD of a matrix     , where 

‖  ‖   ‖ ‖  

On dense datasets, the classical methods have complexity of  (     *   +) to 

compute the thin (or economy) SVD, defined as: 

        
  

that is, the truncated SVD with    . This makes them infeasible if    *   + is large. 

This the motivation to approximation to the SVD.  

3.3.3 Computing Approximations to the SVD 

The truncated SVD of a matrix is mathematically guaranteed to be the optimal low rank 

approximation in the sense described in Theorem 4. However, a natural question is 

whether we can find a suboptimal approximation much quicker: provided the additional 

error is not too great, one can typically use this instead of the truncated SVD. For a norm 

‖ ‖ , the quantity of interest is 

  (   ̂)   ‖   ̂‖
 
 ‖    ‖  

Where    is the truncated SVD of   and  ̂ is an approximation to   . If   (   ̂) is 

small, that means that  ̂ is close to being an optimal low rank approximation to   [8].  

3.3.4 Linear time SVD approximation algorithm 

3.3.4.1 The Algorithm  

Given a matrix         we wish to approximate its top k singular values and the 

corresponding singular vectors in a constant number of passes through the data and 
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 (     ) additional space and  (      ) additional time. The strategy behind the 

LinearTimeSVD algorithm is to pick   columns of the matrix  , rescale each by an 

appropriate factor to form a matrix       , and then compute the singular values and 

corresponding left singular vectors of the matrix  , which will be approximations to the 

singular values and left singular vectors of  , in a sense we make precise later. These are 

calculated by performing an SVD of the matrix     to compute the right singular vectors 

of   and from them calculating the left singular vectors of  . 

The LinearTimeSVD algorithm is described in figure 1; it takes as input a matrix   and 

returns as output an approximation to the top   left singular values and the corresponding 

singular vectors. Note that by construction the SVD of    is       
 .  

LinearTimeSVD Algorithm 

Input:                 such that         *  +   
  such that      and 

∑   
 
     . 

Output:         and   ( )          

1. For     to  , 

(a) Pick           with Pr[    -                

(b) Set  ( )   (  ) √   . 

2. Compute     and its SVD 

3. Compute    
   

  ( )
 for           

4. Return     where   
( )

   , and   ( )         . 

 

 

 

 

 

 

Figure 1: The LinearTimeSVD algorithm. 
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3.3.4.2 Analysis of the implementation and running time 

Assuming thatnearly optimal sampling probabilities are used, then in the 

LinearTimeSVD algorithm the sampling probabilities    can be used to select columns to 

be sampled in one pass and  ( ) additional space and time using the Select algorithm of 

[13]. Given the elements to be sampled, the matrix   can then be constructed in one 

additional pass; this requires additional space and time that is  (  ). Given       , 

computing     requires  (  ) additional space and  (   ) additional time, and 

computing the SVD of     requires  (  ) additional time. Then computing    requires 

  matrix-vector multiplications for a total of  (   ) additional space and time. Thus, 

overall  (     ) additional space and  (      ) additional time are required by 

the LinearTimeSVD algorithm. Note that the “description” of the solution that is 

computable in the allotted additional space and time is the explicit approximation to the 

top   singular values and corresponding left singular vectors [31]. 

3.3.5 Constant time SVD approximation algorithm 

3.3.5.1 The algorithm 

Given a matrix        we now wish to approximate its top k singular values and the 

corresponding singular vectors in a constant number of passes through the data and 

additional space and time that are  ( ), independent of   and  . The strategy behind the 

ConstantTimeSVD algorithm is to pick   columns of the matrix  , rescale each by an 

appropriate factor to form a matrix        and then compute approximations to the 

singular values and left singular vectors of the matrix  , which will then be 

approximations to the singular values and left singular vectors of  . In the 

LinearTimeSVD algorithm of section 3.3.4, the left singular vectors of the matrix C are 

computed exactly; as the analysis of section 3.3.4.2 showed, this computation takes 

additional space and time that is linear in     (assuming that   is constant). With the 

ConstantTimeSVD algorithm, in order to use only a constant  ( ) additional space and 

time, sampling is performed again, drawing rows of   to construct a matrix       . 

The SVD of     is then computed; let            
     

   . The singular 

values and corresponding singular vectors so obtained are with high probability 
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approximations to the singular values and singular vectors of      and thus to the 

singular values and right singular vectors of  . Note that this is simply using the 

LinearTimeSVD algorithm to approximate the right singular vectors of   by randomly 

sampling rows of  . 

ConstantTimeSVD Algorithm 

Input:                such that                    

   (   )       *  +   
  such that      and ∑   

 
     . 

Output:   ( )           and a “description” of  ̃      . 

1. For     to  , 

(a) Pick           with Pr[    -              , and save 

*(      )         +. 

(b) Set  ( )   (  ) √    (Note that Set   is not explicitly constructed in 

RAM) 

2. Choose Set {  }   
 

 such that     | ( )|
 
‖ ‖ 

 ⁄ . 

3.    For     to  , 

(a) Pick           with Pr[    -              ,  

(b) Set  ( )   (  ) √      

4. Compute     and its SVD.  

5. If a ‖ ‖  bound is desired, set       ⁄  , 

 Else if a ‖ ‖  bound is desired, set       ⁄ . 

6. Let       *     *    
 ( )   ‖ ‖ 

 ++ 

7. Return singular values *  ( )+   
  and their corresponding singular 

vectors *  +   
 . 

 Figure 2: The ConstantTimeSVD algorithm [31]. 
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The ConstantTimeSVD algorithm is described in Figure 2; it takes as input a matrix   

and returns as output a “description” of an approximation to the top   left singular values 

and the corresponding singular vectors. This “description” of the approximations to the 

left singular vectors of   may, at the expense of one additional pass and linear additional 

space and time, be converted into an explicit approximation to the lest singular vectors of 

  by using     ̌   
  to compute  ̌, whose columns are approximations of the left 

singular vectors of  . Note that   in the ConstantTimeSVD algorithm is introduced to 

bound small singular values of C that may be perturbed by the second level of sampling; 

as indicated, the particular value of   that is chosen depends on the norm bound which is 

desired [31].  

3.3.5.2 Analysis of the implementation and running time 

Assuming that optimal sampling probabilities are used, then in the ConstantTimeSVD 

algorithm the sampling probabilities pk can be used to select columns to be sampled in 

one pass and  ( ) additional space and time using the Select algorithm of [13]. Given the 

columns of   to be sampled, we do not explicitly construct the matrix   but instead 

perform a second level of sampling and select   rows of   with probabilities *  +   
  

(described in ConstantTimeSVD algorithm) in order to construct the matrix  . We do 

this by performing a second pass and using  ( ) additional space and time, again using 

the Select algorithm. Then in a third pass we explicitly construct  ; this requires 

additional space and time that is  (  ). Then, given   computing     requires 

 (  ) additional space and  (   ) additional time, and computing the SVD of      

requires  (  ) additional time. The singular values and corresponding singular vectors 

thus computed can then be returned as the “description” of the solution. The total 

additional time for the ConstantTimeSVD algorithm is then  (      ); this is a 

constant if   and   are assumed to be a constant. To explicitly compute  ̌  would require 

  matrix-vector multiplications which would require another pass over the data and 

 (   ) additional space and time [28]. 
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3.4 Sampling-based techniques for matrix approximation 

In this section, we introduce the two most common sampling-based techniques for matrix 

approximation and compare their performance on a variety of tasks. 

Notations 

For a matrix        , we define  ( )          as the     column vector of T
 
and 

 ( )          as the     row vector of T. We denote by    the best rank k 

approximation to  , that is                       ( )   ‖   ‖     where   

*   + , ‖ ‖   denoted the spectral norm and ‖ ‖  the Frobenius norm of a matrix. 

Assuming that     ( )    we can write thin singular value decomposition (SVD) of 

this matrix as          
   where     is a diagonal and contains the singular values of   

sorted in decreasing order and         and         are corresponding to left and 

right singular vector of  . Then we can describe     in terms of its SVD as      

             
  . Let        be a symmetric positive semidefinite (SPSD) kernel and 

Gram matrix with     ( )     . We will write the SVD of K as       , and 

pseudo-inverse of           ∑   
   

    ( ) ( )     and        when K is full rank. 

For         ∑   
 
    ( ) ( )         

  is the „best‟ rank-k approximation to K, 

i.e.                    ,     (  )  ‖    ‖  *   + with  

         ‖    ‖            (3.1) 

‖    ‖  √∑   
  

           (3.2) 

We assume that we sample columns uniformly without replacement, though various 

methods have been proposed to select columns [14]. 

Let C denote the      matrix formed by these columns and W the     matrix 

consisting of intersection of these   columns with the corresponding   rows of K. Note 

that W is the SPSD since K is SPSD [7]. Without loss of generality, the columns and 

rows of K can be rearranged based on this sampling so that K and C can be written as 

Follows: 

   [
    

 

      
] And   [

 
   

]        (3.3) 
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3.4.1 Nystrom Method 

The Nystrom method was initially introduced as a quadrature method for numerical 

integration, used to approximate Eigen function solutions [15]. More recently, it was 

presented in Williams and Seeger (2000) to speed up kernel algorithms and has been used 

in applications ranging from manifold learning to image segmentation Nystrom method 

uses W and C from (4.3) to approximate K, and for uniform sampling of columns, the 

Nystrom method generates a rank – k approximation  ̃ of K for     defined by :  

                   ̃ 
    

    
             (3.4) 

Here    is the best rank   approximation of   for Frobenius norm and   
 denotes the 

pseudo-inverse of    . If we write the SVD of   as         
 , plugging into 

equation 4.4 we can  

                                                              ̃ 
    

          
     

       

 (√
 

 
          

 )(
 

 
    )(√

 

 
          

 )    (3.5) 

And hence the Nystrom method approximates the top k singular values (  ) and singular 

vectors (  ) of as:  

 ̃    (
 

 
)     and  ̃      √

 

 
          

    (3.6) 

The time complexity of compact SVD on W is  (   ) matrix multiplication C takes 

 (   ) hence the total complexity of Nystrom method is  (   ) [15].  

3.4.2 Column sampling method 

The Column sampling method was introduced to approximate the SVD of any 

rectangular matrix. It generates approximations of   by using the SVD of  . If we write 

the SVD of   as          
   then the column sampling method approximate the top   

singular values (  ) and singular vector (  ) of   as [27]: 

 ̃    √
 

 
      And  ̃                 

    (3.7) 
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The runtime of column sampling method is dominated by the SVD of  . The algorithm 

takes  (   ) time to perform compact SVD on c but still more expensive than the 

Nystrom method as the constants for SVD are greater than those for the  (   ) matrix 

multiplication step in the Nystrom method [15]. 

Low rank approximation 

We will focus on the accuracy of low rank approximation of kernel matrices is tied to the 

performance of kernel- based learning algorithms. Furthermore, the connection between 

kernel matrix approximation and the hypothesis generated by several widely used kernel-

based learning algorithms has been theoretically analyzed. Hence, accurate low-rank 

approximations are of great practical interest in machine learning. The optimal is     is 

given by: 

          
       

        
      (3.8) 

where the columns of    are the   singular vectors of   corresponding to the top 

  singular values of   . We refer to       
  as Spectral Reconstruction, since it uses 

both the singular values and vectors of    and      
   as Matrix Projection, since it uses 

only singular vectors to compute the projection of   onto the space spanned by 

vectors   . These two low-rank approximations are equal only if   and   contains the 

true singular values and singular vectors of  . Since this is not the case of approximate 

methods such as Nystrom and Column sampling these two measures generally give 

different errors. Thus we analyze each measure separately in the following sections [22]. 

Matrix projection 

For column sampling using (3.7), the low rank approximation via matrix projection is  

 ̃ 
      ̃      ̃     

            
    ((   ) )

         (3.9) 

Where 

              (   ) 
       (    

 )     
 . Clearly, if      (   )       . 

Similarly, using (3.6), the Nystrom matrix projection is 
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 ̃ 
   

  ̃       ̃     
   

 

 
 (  

 )           (4.10) 

As shown in (3.9) and (3.10), the two methods have similar expressions for matrix 

projection, except that      is replaced by a scaled   . The scaling term appears only in 

the expression for the Nystrom method. We now present theorem 1 and observations 1 

and 2, which provide further insights about these two methods in the context of matrix 

projection [14]. 

Theorem 1 The Column sampling and Nystrom matrix projections are of the 

form      
  , where        is SPSD. Further, Column sampling gives the lowest 

reconstruction error (measured in  ‖ ‖ ) among all such approximations if    . 

Observation 1 For     matrix projection for column sampling reconstruction C 

exactly. This can be seen by block- decomposition   as : ,    ̅-, where   ̅  ,      -
 , 

and using (3.9) 

                    ̃ 
     (   )     ,    (   )    ̅-  ,    ̅-. 

Observation 2 For    , the span of the orthogonalized Nystrom singular vectors equals 

the span of  ̃   . Hence, matrix projection is identical for Column sampling and 

Orthonormal Nystrom for    . 

Matrix projection approximations are not necessarily symmetric and require storage of 

and multiplication with K. Hence, although matrix projection is often analyzed 

theoretically, for large-scale problems, the storage and computational requirements may 

be inefficient or even infeasible [14]. 

Spectral reconstruction 

Using (4.6), the Nystrom reconstruction is : 

 ̃ 
    

  ̃      ̃      ̃     
     

       (3.11) 

Where    , this approximation perfectly reconstructs three blocks of  , and     is 

approximated by the Schur Complement of   in  . The Column sampling spectral 

reconstruction has a similar from [14] (4.6): 
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 ̃ 
     ̃      ̃      ̃     

  √
 

 
  ((   ) 

 

 )      (3.12) 

 

In contrast of matrix projection, the scaling term now appears in the column sampling 

reconstruction. To analyze the two approximations, we consider an alternative 

characterization using the fact that        for some       . We define a zero-one 

sampling matrix,       , that selects   columns from  , that is,     . Further, 

        =     , where         contains   sampled columns of          = 

         
  is the SVD of     . We now present two results. Theorem 2 shows that the 

optimal spectral reconstruction is data dependent and may differ from the Nystrom and 

column sampling approximations. And theorem 3 reveals that in certain instances the 

Nystrom method is optimal, while the column sampling methods enjoy no such guarantee 

[12]. 

Theorem 2 Column sampling and Nystrom spectral reconstruction of rank   are of the 

form             
   where        is SPSD. Further, among all approximations of 

this, neither the Column sampling nor the Nystrom approximation is optimal (   ‖ ‖ ). 

Theorem 3 Let       ( )       and     ( )    . Then, the Nystrom 

approximation is exact for spectral reconstruction. In contrast, Column sampling is exact 

iff    ((   )   )    . 

3.4.3 Modified Nystrom Approximation 

Given a     symmetric matrix  , one needs to select  (  ) columns of   to form a 

matrix        to construct the standard or modified Nystrom approximation. Without 

loss of generality,   and   can be permuted such that 

                                             [
    

 

      
] And   [

 
   

]       (3.3) 

Where   is of size    . The standard Nystrom approximation is defined by  

                                                ̃ 
    

    
                 (3.4) 

And the modified Nystrom approximation is [24] 

 ̃ 
             (   (  ) )   
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Here the     matrices          and         (  )  are called the intersection 

matrices. We see that the only difference between the two models is their intersection 

matrices [15]. 

For the approximation      constructed by either of the methods, given a target rank  , 

we hope the error ratio  

   
‖      ‖ 

‖    ‖     
⁄ (        )    (3.5) 

is small as possible. For the standard Nystrom method, whatever a column selection 

algorithm is used, the ratio   must grow with the matrix size   when   is fixed [17]. 

Lemma 1 (Lower Error Bound of the Standard Nystrom Method). Whatever a column 

sampling algorithm is used, there exists an     SPSD matrix A such that the error 

incurred by the standard Nystrom method obeys: 

‖       ‖ 
    (  

  

  
) ‖    ‖ 

   

‖       ‖   .
 

 
/ ‖    ‖  

Here   is an arbitrary target rank, and c is the number of selected columns. 

Thus, when the matrix size   is large, the standard Nystrom approximation is very 

inaccurate unless a large number of columns are selected. By comparison, for the 

modified Nystrom method, the error ratio   remains constant for a fixed   and a 

growing  . Therefore, the modified Nystrom method is more accurate than the standard 

Nystrom method [16]. 

However, the accuracy gained by modified Nystrom method is the cost of higher time 

and space complexities. Computing the intersection matrix          only takes time 

 (  ) and space (  ), while computing          (  )  naively takes time  (  ), 

and space  (  ), while computing          (  )  naively takes time  (   )  

          ( 
  ) and space  (  ) [21]. 
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Approximation algorithm  
Data:     Gram matrix   and    . 

Result:     matrix  ̃. 

 Pick    columns of  , uniformly at random  with replacement; Let   be the set of 

indices of the sampled columns. 

 Let   be the     matrix containing the sampled columns. 

 Let   be the     submatrix of   whose entries are            . 

 Return  ̃        [8]. 

3.5 Summary  

In this section, we discussed various low rank approximations algorithms. We discussed 

two algorithms to compute the SVD of a matrix        which do not require that   

be stored in RAM, but additional space required is either linear in m + n or is a constant 

independent of   and  ; error bounds for both algorithms are proven with respect to both 

the Frobenius and spectral norms. We also present sampling based matrix approximation 

i.e, standard Nystrom method and column sampling method for the selection of 

representative columns. In the next chapter we presented application of the 

approximation. Matrix approximation helps to speed up the kernel methods such as 

support vector machine, kernel ridge regression, kernel principle component analysis. 
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Chapter 4 

Applications 

In previous chapter, we discussed various low rank approximation techniques based on 

sampling and non-sampling that generate approximation of the kernel matrices. We 

analyzed the effectiveness of these algorithms. In this chapter, we discuss specific 

application of these approximations particularly in context of large scale applications. We 

discus Nystrom low rank approximation for efficient linearization of a non-linear SVM, 

and provide theoretical error analysis. 

4.1 Support vector machine 

Support Vector Machine (SVM) delivers state-of-the-art results in non-linear 

classification, but the need to maintain a large number of support vectors poses a 

challenge in large scale training and testing. To scale up kernel SVM on limited 

resources, we propose a low rank linearization approach that transforms a non-linear 

SVM to a linear one via a novel, approximate empirical kernel map computed from 

efficient low-rank approximation of kernel matrices. Support vector machine is 

introduced by Vapnik and Cortes in 1995 for classification has been widely used in 

various scientific domains. The use of kernels allows the input samples to be mapped to a 

Reproducing Kernel Hilbert Space (RKHS), which is crucial to solving linearly 

nonseparable problems. While kernel SVMs deliver the state-of-the-art results, the need 

to manipulate the kernel matrix imposes significant computational bottleneck, making it 

difficult to scale up on large data[32].  

Here, we discus general approach towards linearization kernel SVM for large scale 

problems. This is achieved by low rank approximation to the kernel matrix of the kernel 

matrix where the low-rank factors can be deemed as providing a novel, approximate 

empirical kernel map that explicitly transforms the kernel SVM into a linear space; the 

resultant linear SVM can then be solved efficiently using state-of-the-art linear solvers. 

This framework has several desirable properties. First, it can be applied to any 



47 

 

(nonlinear) SVM variations and any Positive semi-definite (PSD) kernel; second, both the 

dimension of the approximate kernel map and the number of “basis” in the decision 

function can be freely controlled by the user, therefore guaranteeing efficient training and 

testing; third, theoretical bounds can established on the approximation, which in turn 

provides important guidance on sampling based low-rank approximation; last and most 

important, this approach inherits the rich repesentability of kernel SVM as well as the 

high efficiency of linear SVM, and ideally can be applied to arbitrarily large problems 

with limited computing resources via advanced incremental learning techniques[33]. 

4.1.1 Transforming Non-linear SVM into Linear SVM 

We shoe that a nonlinear SVM can be cast exactly as a linear SVM using symmetric 

decomposition of kernel matrices. Suppose we are given a set of training pairs (     ), 

where           are concatenated as row in the     training data matrix    and 

        are stored in the training level        . Similarly we have   testing 

samples in        . Assume we use a positive semi-definite(PSD) kernel function 

 (     )  〈 ( )  ( )〉            where  (  ) is the associated mapping function 

that implicitly maps the data point from the input space to feature space. Define the 

kernel matrix on the training and testing data in blocks as   [
      
      

],          

is the kernel matrix defined on             is defined on                is 

defined on    and   . Training a kernel SVM is to find the classifier  ( )  

    (   ( )   ) by solving the optimization[35]  

           
 

 
‖ ‖   ∑        (4.1) 

  ( 
  ( )   )      . 

where     is the regularization parameter. In the following we discuss how to 

transform the non-linear (kernel) SVM into linear SVM via decomposition of the PSD 

kernel matrix. 
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Proposition 1 Given training data    and    , and test data    . A kernel SVM (4.1) 

trained on    ,   , and tested on     is equivalent to a linear SVM trained on    ,    and 

tested on    , where 

  [
   
   
]  ,  

   
 -     (4.2) 

is any decomposition of the psd kernel matrix   evaluated on (     ), and the factor 

        and        can be deemed as “virtual samples” whose dimensionality   is 

the rank of  . 

Proof 1 The dual of the kernel SVM optimization (4.1) can be written as  

     
 

 
        ∑      (4.3) 

s.t.        ∑       

        (    
 ), 

where   is the Lagrangian multipliers and   is the entry-wise product between matrices. 

The prediction on the testing data can be written as 

 ̂        (    ),     (4.4) 

Let   [
  
  
]  and be the i

th
 columnin     Assume we train a linear SVM using    and   , 

with the primal form 

    ̅  ̅  
 

 
 ‖ ̅‖   ∑  ̅        (4.5) 

  ( ̅
     )      ̅ 

The dual can then be written as  

    ̅
 

 
  ̅  ̅   ̅  ∑  ̅        (4.6) 

s.t.    ̅    ∑  ̅      
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 ̅   (    
 )  (    

 )  

Then the prediction on    is  

 ̅̂    
    ( ̅    )    (4.7) 

Comparing (4.3) and (4.6), we can see these two problems are equivalent and lead to the 

identical optimal solution     ̅  since     
      (   ). Plugging the optimal 

solutions into (4.4) and (4.7), and nothing the fact   
        (4.2), we can see the 

prediction in (4.4) and (4.7) are identical, i.e.,  ̂   ̅̂ . The kernel SVM (4.1) and linear 

SVM (4.5) are equivalent. 

Proposition 1 shows that any kernel SVM can as an equivalent linear SVM by 

decomposition of the kernel matrix      (   ), where   serves as an empirical kernel 

map or virtual samples. The positive semi-definiteness of the kernel matrix guarantees 

that decomposition (4.2) always exists. When only training data is used, the 

decomposition [34]  

        
        (4.8) 

That allows to recover the Langrangian multipliers in the original nonlinear decision 

function (4.3).  

Motivated by this observation, we consider learning large scale kernel SVM in two 

stages: first, transform 

it to a linear SVM using kernel eigenvalue decomposition; second, solve a linear SVM 

efficiently. Obviously, the key to the success of such linearization is an efficient 

decomposition of the PSD kernel matrix to obtain the empirical kernel map    (4.8).  

4.2 SVM Low-rank Linearization 

The kernel matrix is the key building block of kernel methods: its entries recover the 

inner product of the samples in the kernel induced feature space. This avoids explicit 

computation of the mapping  ( ) (which can be potentially infinite dimensional) but 

instead one only needs to perform kernel evaluations in the input space. Such “kernel 

trick” allows the model to capture highly non-linear classification concepts, but at the 
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cost of manipulating the     kernel matrix. In comparison, linear SVM assumes a 

simple and explicit mapping (i.e.,  ( )   ) which renders great potential computational 

efficiency[32]. 

Proposition 1 provides a new perspective on the kernel map embodied through the 

empirical kernel matrix  . It shows that any exact decomposition of the kernel matrix can 

preserve the dot products among feature induced kernel mapping   (  )   via a new, 

empirical kernel map     , as 

    〈 (  )  (  )〉   〈     〉 

This is the key to transforming a non-linear SVM into an explicit linear counterpart. It 

bridges the gap between non-linear and linear SVMs and opens the possibility of training 

large scale non-linear SVM by advanced linear solvers. 

Given an     kernel matrix on the training set, with the eigenvalue decomposition 

          
     (4.9) 

where         contains orthogonal eigenvectors such that   
        , and    is a 

diagonal matrix whose diagonal entries are eigenvalues ( ) in descending order. Then the 

empirical kernel map on training data (4.8) can be chosen as 

       
   

     (4.10) 

Theoretically, the eigenvalue decomposition provides the optimal rank- approximation 

of the kernel matrix 

       ( ̃  )  ‖     ̃  ‖ 
 
 ∑   

  
        (4.11) 

 

where  ̃   is the rank-  approximated matrix. In other words, given a dimension,  , the 

feature map 

  
( )

   
( )
(  

( )
)       (4.12) 
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composed of top eigenvectors/values is the optimal since the inner products it recovers is 

the closest to     among all rank-  kernel maps, which equals sum of squared minimum 

n−k eigenvalues as shown in (4.11) [34]. 

However, exact computation of the top   eigenvectors requires  (   ) time and  (  ) 

space, which is not suitable for large problems. So we seek an approximate 

decomposition here. We are interested in the Nystrom method that has gained great 

popularity recently in scaling up kernel based algorithms [36]. Given a set of training 

samples    and the kernel matrix    , the Nystrom method chooses a subset of   samples 

  and provides a rank-  approximation of the kernel matrix as 

 ̃         
     

      (4.13) 

where          is the kernel matrix on    and   , and          is the kernel 

matrix on  . 

Next we show how to approximate the optimal kernel map (4.12) using the Nystrom low-

rank approximation (4.13) [37]. Let the eigenvalue decomposition of     be       
  , 

then (4.13) can be written as 

 ̃    ̃  ̃ 
  

 ̃         
    

               (4.14) 

the rank-k approximation by the Nystrom method (4.13) provides a natural 

approximation to the optimal kernel map    (4.12).  Consider the extreme case where the 

landmark set   in the Nystrom method is chosen as the whole data set: then      , 

     ,         and as a result we have, when | |    

       
    

        
    

 

                                    
     

    
 

              
   

 

Nystrom‟s approximation error in the form of Frobenius norm 
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   ‖     ̃  ‖     (4.15) 

or in the form of spectral norm 

   ‖     ̃  ‖      (4.16) 

These are the error bound in the rank   approximation[36]. We analyze the quality of 

SVM classifier using Nystrom low rank approximation.  

4.3 Summary 

In this chapter we discussed support vector machine for large scale datasets. Kernel 

methods suffer from highly time complexity. We discussed a non-linear SVM to a linear 

one via a novel, approximate empirical kernel map computed form efficient low-rank 

approximation of kernel matrices. We showed the effectiveness of the approximation in 

theoretically. In next chapter, we discuss the implementation result of matrix 

approximation and the low rank support vector machine using real data sets. 
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Chapter 5 

Proposed Approach: Efficient Nystrom Method 

In this section, we introduce sampling based technique for matrix approximation. We 

assume that we sample columns uniformly without replacement. Our proposed method, 

Efficient Nystrom method reduced the error for approximated matrix in term of 

Frobenius norm and spectral norm. 

Notation 

Let        be an arbitrary matrix.             , as the     row vector of   and 

              , as the     column vector of   ‖ ‖ represents the norm of the 

vector. Moreover,  (   ) refers to the     through     columns of   and  (   ) refers to 

the     through     rows of  . If     ( )     then the thin Singular Value 

Decomposition of the   as 

        
       (5.1) 

where    is the diagonal matrix that contains the singular values of   in decreasing order 

and         and         both are orthogonal columns that contains the left singular 

vectors and right singular vectors of   for its singular values. We show that    the best 

       approximation for   [22]. 

                     ( )  ‖   ‖   where   *   + and ‖ ‖  represents the 

spectral norm and ‖ ‖  represents the Frobenius norm of the matrix. We resents the SVD 

for top   singular values of   as 

               
      (5.2) 

where      represents the diagonal matrix of top   singular values of   and      is the 

left singular vector and      is the right singular vector.  

Now let        matrix, then we have to make it symmetric positive semidefinite 

(SPSD) kernel or Gram matrix using linear kernel such that        where         

and   be a SPSD matrix. SVD for the matrix   as       , where   is the orthogonal 
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vector of  and       (           ) is the diagonal matrix of   .      of the matrix 

  is    . We have to find the pseudo-inverse of   as 

    ∑   
   

    ( ) ( )         (5.3) 

And   =    , both are equal when   is full rank matrix.  

Let    , then 

   ∑   
 
    ( ) ( )        

      (5.4) 

   is the best rank –   approximation to  . Quality of approximation is measure by the 

Frobenius norm and spectral norm. 

                     (  )  ‖    ‖         (5.5) 

where   *   +, with ‖    ‖       and ‖    ‖  √∑   
  

      

Now we focuses on the generating an low rank approximation  ̃ of   based on sampling 

algorithm. We have to choose the column from the original matrix such as    . There 

is a assumption, we sample the columns uniformly without replacement, there are various 

method to select the columns. We have to choose sampling matrices such as   and  , 

where   denote the     matrix formed by the sampling columns. And In this section, 

we introduce sampling based technique for matrix approximation. We assume that we 

sample columns uniformly without replacement. Efficient Nystrom method reduced the 

error for approximated matrix in term of Frobenius norm and spectral norm [18]. 

Now we focuses on the generating an low rank approximation  ̃ of   based on sampling 

algorithm. We have to choose the column from the original matrix such as    . We 

take an assumption, we sample the columns uniformly without replacement, there are 

various method to select the columns. We have to choose sampling matrices such as   

and  , where   denote the     matrix formed by the sampling columns.   denote      

such as intersection of   rows with the   columns of  .   is the SPSD matrix so   also be 

a SPSD matrix [25].  
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Now we can write the   and   such as  

   [
    

 

      
]  And   [

  
  
]        (5.6) 

We select     columns from    
 named as    and   columns from     named as   . Then 

combine    and    form as D matrix with      . We change the sampling technique as 

describe in Nystrom method [12]. To generate the low rank approximation of  , we need 

  and SVD of  . 

5.1 Efficient Nystrom method  
When Nystrom method introduced, it was used as quadrature method for numerical 

integration and eigenfunction solution approximated by Nystrom method. Recently, to 

speed up the kernel methods and used in the application of manifold learning to image 

segmentation Nystrom method introduced by Williams and Seeger [20]. Accuracy of 

efficient Nystrom method is calculated by the Frobenius norm‖    ̃‖ . Efficient 

Nystrom method uses the   and   to approximate the kernel matrix  . Efficient Nystrom 

method is effectively able to generate the rank   approximation  ̃ of   for    , defined 

by: 

  
     

    
                (5.7) 

where    is the best  - rank approximation of   for the Frobenius norm and the   
  

denotes the the pseudo-inverse of   . SVD of the   as          
 , then put it in 

equation (5.7) we can write  

  
     

          
     

    

 (√
 

 
          

 )(
 

 
    )(√

 

 
          

 )  

Top   singular values (  ) and singular vectors (  )of   approximated by efficient 

Nystrom method as: 
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 ̃     (
 

 
)     and  ̃       √

 

 
          

    (5.8) 

Time complexity of SVD of   is  (  ) and multiplication with   takes  (   ), so the 

time complexity of the efficient Nystrom method is  (      ). . 

5.2 System design 

 

 

Figure 1 Flow Chart of the Efficient Nystrom Method 
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Input: 𝑋  𝑅𝑛 𝑛 and 
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Choose Q and D from X as 

   𝑙 𝑙 and    𝑛 𝑙 
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 𝐷𝑄𝑘
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5.3 Algorithm (Efficient Nystrom method) 

Input:        or       (             ) , rank (M) =    

Output:  ̃       and     ( ̃ )   ,     

1. Check given matrix is SPSD  

if yes then pass it for approximation 

else make it SPSD using linear kernel(      )  

2. for i=1 to  . 

Pick   columns of   and     ( ̃ )   ,   rows 

3.   is the SPSD matrix containing the   columns and   rows 

4. for i=     to 2  

pick next   columns. 

5. D is the matrix with     size  

6. Compute the SVD of the Q as          
  

7. Select top   singular values and vector 

8.    and    are the top k singular values and singular vector 

9. Return  ̃     (
 

 
)     and  ̃       √

 

 
          

  

10.  Compute  ̃        ̃      ̃     ̃    
  

11. Return  ̃      

Figure 2: Efficient Nystrom algorithm for generating the low rank approximation 

5.4 Summary 

In this chapter we discussed our proposed algorithm efficient Nystrom method. Efficient 

Nystrom method uses different sampling method from standard Nystrom method. We 

discussed algorithm and the flowchart of efficient Nystrom method. In the next chapter, 

we show the implementation results of the standard Nystrom and efficient Nystrom 

method.    
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Chapter 6 

Implementation and results 

6.1 Datasets 

In the implementation, we used 3 types of data sets. First, random generated data with 

1000 instances and 1000 attribute using linear kernel. Second, letter data set having 

16000 of instances and 16 attribute. For making the kernel matrix (SPSD) of the letter 

data set, need to be kernel function so we use radical basis function (sigma=.1). We have 

to covert the matrix into kernel matrix because efficient Nystrom method is applicable 

only for kernel matrix. Third, abalone data set having 4177 instances and 8 attribute. For 

making the kernel matrix (SPSD) of the abalone data set, need to be a kernel function [].    

Efficient Nystrom method gives low construction error as compare to the standard 

Nystrom method.  

Table 1 Description of the datasets used in our experiments comparing sampling-based matrix 

approximations 

Data set  No. of Instance No. of attribute Kernel 

Random data  1000 10000 Linear 

Letters 16000 16 RBF 

Abalone 4177 8 RBF 

 

We compare the results of the all three datasets for sampling methods (standard Nystrom 

and efficient Nystrom). Random data having large error as compare to real datasets. All 

the same datasets used in the kernel methods such as support vector machine. In the 

application part, we will show how approximation works for kernel methods. Table 1 

represents the three data set, random data set, letters and abalone. We will compare 

standard Nystrom method and efficient Nystrom method based on the results of these 

data sets. Random data is self-generated and letter data set and abalone data set is 

available on the UCI repository. UCI repository is online resource for data sets [9][10].  
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6.2 System requirements 

1. Hardware requirements 

 Windows 7 operating system or Ubuntu 12.04  

 2 GB RAM  

 2.4 GHz dual core processor  

 160 GB hard drive 

2. Software requirements  

For statistical computing and graphics, there exists a programming language named R. T 

language is widely used by the data miners and the statisticians for analyzing the data and 

developing statistical software.  

R was developed by the Ross  Ihaka and Robert Gentleman and R Development Core 

Team at the University of Auckland, New Zealand. R is named partly after the first letter 

of first name of its first two authors and partly as the generalization of S language. 

R is a GNU project. R is primarily written in C and FORTRAN.  It is freely available 

under the GNU General Public License. Pre-compiled versions of R are provided for 

different operating systems. A command line interface is used by R. Graphical front-ends 

are available for developing the user-friendly application in R.  Various GUIs are 

available for R programming like RStudio, Deduvcer, and Java GUI for R, Rattle GUI, R 

Comander, RGUI, RWeka RKWard etc.  

RStudio is used for simulating the proposed approach 

RStudio is a free and cross-platform open source IDE (integrated development 

environemnt) for R. Two editions are available for RStudio: RStudio Desktop and 

RStudio Server. RStudio Desktop runs locally as a regular desktop application. Via 

RServer, RStudio can be accessed using web browser. The R-Server runs on remote 

Linux server. RStudio desktop is available for Microsoft Windows, Linux and Mac OS 

X. RStudio is written in C++. Its GUI is developed by using Qt framework [26]. 

6.3 Results of matrix approximation 

In the results section, we compare sampling methods for low rank approximation. 

Comparisons of the approximation methods based on the error bound. The error bound is 

calculated suing the Frobenius norm and spectral norm. We will show the comparisons of 

the sampling methods based on the three types of data set. One is random data set and 

reaming two is the real data sets. Results of the low rank approximation methods are 
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simulated in R. To implement the sampling based approximation, we have to need some 

R-package such as matrix, kernlab, etc. 

Table 2 Analysis of two sampling methods based on random generated data with various ranks of the 

matrix in Frobenius norm 

Target rank Standard Nystrom method Efficient Nystrom method 

90 313.8549 305.1442 

80 319.1229 310.2205 

70 326.0917 315.2669 

60 332.444 322.5728 

50 340.3372 330.8423 

   

Table 2 shows the results based on the Frobenius norm. Frobenius norm shows the 

quality of the approximation. Efficient Nystrom method has good quality of low rank 

approximation as compared the standard Nystrom method. As the rank of the matrix 

increase the approximation error becomes less. Means we select more spectral feature as 

increase the rank. In the table 2, we take the rank form 50 to 90. When the rank is 90 the 

Frobenius error for efferent Nystrom is 305.1442 and for standard Nystrom is 313.8549. 

And decrease the rank up to 50 then this error become 330.8423 for the efficient Nystrom 

method and 340.3372 for standard Nystrom method. So the results show that efficient 

Nystrom method has better quality bound. 

Figure 3 represents the comparison graph between the standard Nystrom method and 

efficient Nystrom method. Plots show that efficient Nystrom method has low 

reconstruction error as compare to the standard Nystrom method. These errors known as 

the Frobenius error that gives the quality of low rank approximation. 
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Figure 3 Plot between standard Nystrom method and efficient Nystrom method 

using Frobenius norm for the random data 

Efficient Nystrom method and standard Nystrom method are based on sampling method. 

We perform the approximation only same columns of the original matrix instead of the 

whole matrix. We select the sampled columns using uniform sampling algorithms 

without replacement. If we found the 100% accuracy, then the Frobenius error becomes 

zero. Means there is no error in the approximation. 

Table 3 Analysis of two sampling methods based on random generated data with various ranks of the 

matrix in spectral norm 

Target rank Standard Nystrom method Efficient Nystrom method 

90 30.20235 27.44825 

80 31.46203 28.92563 

70 34.61651 32.02353 

60 34.20472 33.62095 

50 36.94372 35.45737 

 

Table 3 shows the analysis of the results based on spectral norm. It shows the comparison 

between standard Nystrom method and the efficient Nystrom method based on the 

spectral norm. 
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We show the result based on the Frobenius norm and spectral norm. Both of norms show 

the quality of the approximation so efficient Nystrom method has the good approximation 

because it has a low reconstruction error. Frobenius and spectral norm shows the error 

bound with various ranks the approximation.      

 

Figure 4 Plot between standard Nystrom method and efficient Nystrom method 

using spectral norm for the random data 

 

Figure 4 shows the plots of the spectral error. The efficient Nystrom method has a low 

reconstruction error as compared to the standard Nystrom method. Here, we only show 

the comparisons between the sampling based methods. There exist other approximation 

methods, but they have a high time complexity, so we prefer only the sampling methods. 

Sampling methods are much faster than other approximation methods such as truncated 

SVD. But sampling methods suffer from high inaccuracy, but that inaccuracy is tolerable 

so we prefer sampling methods and try to improve the quality of bounds in Frobenius 

norm and spectral norm.  
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Table 4 Analysis of two sampling methods based on letter data set with various ranks of the matrix in 

Frobenius norm  

Target rank Standard Nystrom method Efficient Nystrom method 

50 35.97377 34.26584 

60 35.30443 33.93821 

70 34.83593 33.65025 

80 34.48521 33.37971 

90 34.14554 33.00249 

100 33.82525 32.76092 

    

Table 4 shows the analysis of the sampling based methods on the letter data set. 

Description about the letter date set discussed in the 6.1. It shows the error bound based 

on the Frobenius norm and compare both the sampling methods so efficient Nystrom 

methods has a low reconstruction error. For the letter data set, we use radial basis 

function kernel to make kernel matrix with sigma value 0.1.  

If the target rank is 50 then the standard Nystrom method gives 35.97277 error bound 

while efficient Nystrom method gives 34.2684. And when we choose the target rank 100 

then qualities of approximation improve. We have done the simulation on the different 

target range, and then analyze the results.  

 

Figure 5 : Plot between standard Nystrom method and efficient Nystrom method 

using Frobenius norm for the letter data set 
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Figure 5 shows the plot between the standard Nystrom method and efficient Nystrom 

method for the letter data set based on the Frobenius norm. Figure 4 represents the 

spectral error for the sampling methods. If the target rank increase then the spectral error 

decrease. If we increase the target rank then approximated matrix become very close to 

the original matrix. 

Table 5 Analysis of two sampling methods based on letter data set with various ranks of the matrix in 

Frobenius norm 

Target rank Standard Nystrom method Efficient Nystrom method 

50 5.837304 5.074329 

60 5.048819 4.601283 

70 5.031492 4.538082 

80 5.03018 4.489118 

90 5.029517 4.453372 

100 5.026945 4.282975 

 

Table 5 shows the analysis of the results for the sampling methods. It shows the spectral 

error for the standard Nystrom method and efficient Nystrom method. If target rank is 50 

then spectral error for the standard Nystrom is 5.837304 and spectral error for the 

efficient Nystrom method. As we increase the target rank then spectral error decreases. 

For the target rank is 100 then spectral errors for standard Nystrom is 5.026945 and 

efficient Nystrom method is 4.282975. These results show the quality of the 

approximation in terms of the spectral norm. We use radial basis function kernel to make 

for letter data set as kernel matrix with sigma=0.1.  

Efficient Nystrom method has low construction error for the real data sets as compare to 

the standard Nystrom method. If matrix having good spectral feature then we get good 

approximation. Our proposed sampling based low rank approximation method having 

low construction error.  
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Figure 6 Plot between standard Nystrom method and efficient Nystrom method 

using spectral norm for the letter data set 

Figure 6 shows the plot between the standard Nystrom method and efficient Nystrom 

method. It shows error bound for the sampling methods. These results are based on the 

letter data sets using spectral norm. Approximation error shows the quality of the 

approximation. Target rank of the matrix is increased then spectral error will decrease so 

that shows the approximation error of the targeted low rank matrix.  

All these results show the quality of matrix approximation based on the sampling method. 

The efficient Nystrom method has a low construction error as compared the standard 

Nystrom method. As compared to previous data sets for the spectral error, letter data set 

has a low reconstruction error. Because letter data set having high dimensions so it gives 

less error. Matrix approximation works well for the large data sets. For the application 

point of view, we use the small matrix instead of large matrix. Matrix approximation 

helps to speed up the kernel method because we use the small matrix to find the kernel of 

the matrix. For example, support vector machine used for the classification. For large 

data, SVM does not work well, so we have to apply the matrix approximation over the 

large data. Matrix approximation helps to speed up the kernel method such as support 

vector machine, kernel principal component analysis and kernel ridge regression.  
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Table 6 Analysis of two sampling methods based on abalone data set with various ranks of the matrix 

in Frobenius norm 

Target rank Standard Nystrom method Efficient Nystrom method 

50 56.20786 54.2193 

60 51.36662 49.03168 

70 43.0483 42.3812 

80 40.4295 39.0392 

90 38.59548 37.18314 

100 36.05404 34. 489118 

 

Table 6 shows the analysis of standard Nystrom method and efficient Nystrom method 

based on the Frobenius norm for the abalone data set. If the target rank is 50 then 

Frobenius error for the standard Nystrom method is 56.20786 and for the efficient 

Nystrom method is 54.2193. So Frobenius norm gives the error bound for the quality of 

matrix approximation for the abalone data set. For abalone data, we use radial basis 

function kernel with sigma = 1.  

 

Figure 7 Plot between standard Nystrom method and efficient Nystrom method 

using Frobenius norm for the abalone data set 

Figure 7 shows the plot between the standard Nystrom and efficient Nystrom method for 

the abalone dataset using Frobenius norm. After the analysis of the plot, efficient 
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Nystrom has low reconstruction error as compared standard Nystrom for the abalone data 

set based on the Frobenius norm. We increase the target rank for the approximation, then 

we get low reconstruction error for the abalone data set. After the increasing the rank of 

the approximated matrix, we get the quality of the approximation. Means highly rank 

with minimum error, but our target is low rank and minimum error. We have to minimize 

the error of the approximation so our proposed algorithms having minimum 

reconstruction error.  

Table 7  Analysis of two sampling methods based on abalone data set with various ranks of the 

matrix in spectral norm 

Target rank Standard Nystrom method Efficient Nystrom method 

50 38.71982 36.03871 

60 37.31203 35.4216 

70 29.60764 25.52193 

80 28.04498 24.83014 

90 26.55803 22.01872 

100 24.10108 21.28443 

 

Table 7 shows the error analysis of the standard Nystrom and efficient Nystrom method 

based on spectral norm for the abalone data set. Abalone data set also gives the low 

construction error for the efficient Nystrom method. These three data sets used in the 

application to show the effectiveness of the approximation in the kernel based methods. 

We will extract the small amount of information from the original training data. Spectral 

norm gives the information related to the error of the approximation. But Frobenius norm 

gives the best approximation error as compared to the spectral norm. Real data set works 

well for the approximation as compared to the random dataset. In the implementation, we 

show the approximation error with the three datasets. After analyze the results, efficient 

Nystrom method has minimum reconstruction error as compared to the standard Nystrom 

method.  If target rank is 50 then the spectral error for the standard Nystrom method is 

38.71982 and for efficient Nystrom method are 36.03871. When target rank is 100 then 

spectral norms for the standard Nystrom method is 24.10108 and for the efficient 

Nystrom method is 21.28443. According these norms we find the conclusion that 

efficient Nystrom gives better accuracy. 



68 

 

 

 

Figure 8 Plot between standard Nystrom method and efficient Nystrom method 

using norm for the abalone data set 

Figure 8 shows the results of the abalone data set based on the spectral norm. After 

analysis the graph, we found that efficient Nystrom method has a good approximation for 

the kernel matrix. Here, Radius Basis Function is used in the implementation.  

6.4 Results of the support vector machine 

Here, we show the application of the matrix approximation. Matrix approximation helps 

to speed up the kernel algorithms such as support vector machine, kernel ridge 

regression, and kernel principal component analysis. Here, we show the computation time 

of the support vector machine. We take approximated matrix instead of original matrix as 

the training data. And the approximated matrix is small as comparison of the original 

matrix. So it reduced the computation time. At the time of calculating the kernel of the 

training data, we use small matrix for calculating the kernel. Size of the small matrix is 

    and it contains the orthogonal matrix and square root of the diagonal matrix. After 

calculating the kernel of the matrix, small kernel matrix multiplies by its transpose that is 

same as the kernel of the original matrix. But there is some error in the training data. And 

these errors are tolerable for the application. We will show computation with three data 

sets. Description of the data sets already explained in the section 6.1. First is random data 

and remaining two are real data sets.  
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Table 8 Computation time of Support vector machine without approximation and using the standard 

Nystrom method and efficient Nystrom method  

Target Rank Computation time of SVM 

using standard Nystrom  

method (in seconds) 

Computation time of 

SVM using efficient 

Nystrom  method (in 

seconds) 

50 1.356364 1.4600258 

60 1.4280241 1.4990289 

70 1.4590261 1.5270288 

80 1.479027 1.581033 

90 1.5410309 1.594034 

100 1.553031 1.600034 

 

Table 8 shows the computation time of the approximation methods. Efficient Nystrom 

has better accuracy as compare to the standard Nystrom method. But for random data set, 

efficient Nystrom method is having more computation time as compare to the standard 

Nystrom. Computation time for the support vector machine is 4.471313 seconds without 

approximation. After applying the standard Nystrom and efficient Nystrom method, 

computation time becomes very less. In table 8, computation time for various rank of the 

matrix using Nystrom method and efficient Nystrom method. As we increase the rank of 

approximated matrix, the computation time increase. When target rank of the matrix 50 

then computation time is 1.356364 seconds using standard Nystrom method and 

computation time for the efficient Nystrom method is 1.4600258 seconds. If we increase 

the target rank 100 then the computation time is 1.553031 seconds using standard 

Nystrom method and computation time is 1.600034 second for the efficient Nystrom 

method.  
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Figure 9 Plot between the computation time of standard Nystrom method and 

efficient Nystrom for random data in SVM 

Figure 9 represents the computation time of the support vector machine using the 

approximated matrix. For the random data set, standard Nystrom work well in terms of 

the computation time. Regression problems are solved by the support vector machine. For 

large scale data set, support vector machine having high time complexity. Due to such 

reason, need to be an efficient implementation using the matrix approximation.  

Table 9 Computation time of Support vector machine using the standard Nystrom method and 

efficient Nystrom method for abalone dataset 

Target Rank Standard Nystrom Efficient Nystrom 

50 1.2580152 1.2560141 

60 1.295017 1.2800162 

70 1.292016 1.2740159 

80 1.327019 1.292017 

90 1.3360188 1.301017 

100 1.35602 1.3100178 

 

Table 9 represents the computation time of the support vector machine for the abalone 

dataset. Efficient Nystrom method takes low computation time as compare to the 

standard Nystrom method if such approximation used for the matrix approximation. If 

Support Vector Machine (SVM) uses original training data set for classification then it 

takes 3.596205 seconds in computation. And with approximation it takes 1.2580152 

seconds if the target rank is 50 and if target rank is 100 then it takes 1.35602 seconds.  
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Figure 10 Plot between the computation time of standard Nystrom method and 

efficient Nystrom for abalone data set in SVM 

 

Figure 10 represents the computation time of the efficient Nystrom method and standard 

Nystrom method in the abalone dataset. Efficient Nystrom method is having low 

computation cost. If we use original training dataset in the classification using support 

vector machine. Then support vector machine is having high computation cost so we 

have to apply low rank approximation on the training data to speed up the kernel 

methods.  

Table 10 Computation time of Support vector machine using the standard Nystrom method and 

efficient Nystrom method for letter dataset 

Target Rank Standard Nystrom Efficient Nystrom 

50 1.2690151 1.2590139 

60 1.2750161 1.272016 

70 1.2800159 1.2870159 

80 1.3290188 1.2860172 

90 1.3320189 1.2940171 

100 0.34202 1.3160191 

Table 10 shows the results of the computation time of the support vector machine for the 

letter data set. Original dataset takes 3.3070168 seconds to classify the data using support 

vector machine.  After the approximating, the training dataset is becomes smaller as 
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compared to the original dataset. So, efficient implementation of the SVM takes 

1.2690151 seconds to classify the data. 

 

Figure 11 Plot between the computation time of standard Nystrom method and 

efficient Nystrom for letter data set in SVM 

 

Figure 11 represents the comparison between the computation time of the efficient 

Nystrom method and the standard Nystrom method. Both of the sampling based 

approximation methods helps to speed up the kernel methods. As we increase the target 

rank of the matrix, computation time will increase. Without approximation it takes 

3.3070168 seconds. 

6.5 Summary 
In this chapter, we discuss the effectiveness of low rank approximation in support vector 

machine. We compare various sampling methods for matrix approximation. Our 

proposed method is superior for other sampling based methods. We have done the 

experiments on various dataset such as letter dataset and abalone dataset. Based on the 

results of these datasets, we claim that efficient Nystrom method is superior than standard 

Nystrom. 
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Chapter 7 

Conclusion 

We addressed the question how can large scale data handled by the machine learning 

algorithm. We focused on this problem and find the effective solution of this problem; we 

have to generate the low rank approximations based on sampling methods. In chapter 5, 

we discussed efficient Nystrom method to generate the low rank approximation. In 

chapter 6, our result shows that efficient Nystrom method is superior for large datasets. 

We showed the effectiveness of low rank approximation on the kernel methods. We 

showed the various comparisons of the sampling based methods. In chapter 2, we 

discussed various decomposition methods. SVD is superior method for matrix 

decomposition. In chapter 3, we discussed previous work as literature survey. In efficient 

Nystrom method, we introduced new sampling method which is superior as previously 

discussed.  

Though efficient Nystrom method reduces the error but still some improvements are 

required which will be considered in future. I will try to implement efficient sampling 

method to reduce the error. 
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