
1

Matrix Approximation Algorithms and

Its Applications

A dissertation submitted in partial fulfillment of the

requirement for the degree of

Master of Technology

In

Computer Science &Engineering

under the Supervision of

Mr. Suman Saha

By

Lokendra Singh Patel

Enrollment no: 132213

Jaypee University of Information Technology

Waknaghat, Solan – 173234, Himachal Pradesh

i

Certificate

This is to certify that dissertation report entitled “Matrix Approximation Algorithms

and Its Application”, submitted by Lokendra Singh Patel in partial fulfillment for the

award of degree of Master of Technology in Computer Science & Engineering to Jaypee

University of Information Technology, Waknaghat, Solan has been carried out under my

supervision.

This work has not been submitted partially or fully to any other University or Institute for

the award of this or any other degree or diploma.

Date: Supervisor’s Name…………………

 Designation…………………………

ii

Acknowledgement

This may seen long but the task of my thesis work both theoretically and practically may

not have been completed without the help, guidance and mental support of the following

person. Firstly I would like to thank my guide Mr. Suman Saha, Assistant Professor,

Department of Computer Science and Engineering, Jaypee University of Information

Technology, Waknaghat, Solan(H.P), who provided me the related material and idea for

the project proposal. He indeed guided me to do the task for my thesis in such a way that

it seems to be research work encouraged me a lot for doing my thesis in very smooth

manner. Even if I made the mistake sometime he always tried to correct those mistakes

and endeavor always to take me in the right direction.

 Secondly, I would like to thank my parents who have always been with me for

inspiring me that I can do the good thesis task with the hard work. Their instigation

always helped me to grow my mind focused towards the hard work for implementation of

thesis with having the research work in the mind.

Once again thanks a ton to all mentioned people in my life.

Date ………………………… Signature………………………

 Name……………………………

iii

Table of Contents
Abstract .. viii

Chapter 1 ... 1

Introduction ... 1

1.1 Motivation ... 1

1.2 Objective ... 2

1.3 Problem Statement .. 3

1.4 Thesis Organization... 3

Chapter 2 ... 4

Review of linear algebra ... 4

2.1 Vector Terminology .. 4

2.1.1 Vector Length ... 4

2.1.2 Vector Addition .. 4

2.1.3 Scalar Multiplication .. 4

2.1.4 Inner Product .. 5

2.1.5 Orthogonality .. 5

2.1.6 Normal Vector .. 5

2.1.7 Orthonormal Vectors .. 5

2.2 Matrix terminology ... 6

2.2.1 Square Matrix ... 6

2.2.2 Transpose .. 6

2.2.3 Matrix multiplication .. 7

2.2.4 Identity Matrix .. 7

2.2.5 Orthogonal Matrix .. 8

2.2.6 Diagonal Matrix .. 8

2.3 Eigenvector and eigenvalue .. 8

2.4 Matrix Norms .. 10

2.4.1 Frobenius norm ... 10

2.4.2 Spectral Norm ... 11

2.4.3 Max Norm... 11

2.5 Vector Norm .. 11

iv

2.5.1 Euclidean norm (or 2-norm) ... 11

2.5.2 Norm .. 12

2.5.3 Norm ... 12

2.5.4 -norm .. 12

2.6 Matrix Decomposition (or Matrix Factorization) .. 13

2.6.1 Decomposition based on solving linear equation ... 13

2.6.2 Decomposition based on eigenvalues and eigenvectors 16

2.7 Kernel functions .. 21

2.7.1 Linear kernel ... 21

2.7.2 Polynomial kernel ... 22

2.7.3 Gaussian kernel... 22

2.7.4 Exponential kernel .. 22

2.7.5 Power kernel ... 22

2.7.6 Log kernel ... 22

2.8 Summary ... 23

Chapter 3 ... 24

Literature survey ... 24

3.1 Introduction ... 24

3.1.1 Statement of results .. 25

3.2 Comparison of the various error bounds ... 30

3.3 Low rank approximation ... 31

3.3.1 Truncated SVD ... 31

3.3.2 Computing the SVD ... 33

3.3.3 Computing Approximations to the SVD .. 34

3.3.4 Linear time SVD approximation algorithm .. 34

3.3.5 Constant time SVD approximation algorithm .. 36

3.4 Sampling-based techniques for matrix approximation.. 39

3.4.1 Nystrom Method ... 40

3.4.2 Column sampling method ... 40

3.4.3 Modified Nystrom Approximation ... 43

3.5 Summary ... 45

v

Chapter 4 ... 46

Applications .. 46

4.1 Support vector machine ... 46

4.1.1 Transforming Non-linear SVM into Linear SVM .. 47

4.2 SVM Low-rank Linearization ... 49

4.3 Summary ... 52

Chapter 5 ... 53

Proposed Approach: Efficient Nystrom Method .. 53

5.1 Efficient Nystrom method ... 55

5.2 System design .. 56

5.3 Algorithm (Efficient Nystrom method)... 57

5.4 Summary ... 57

Chapter 6 ... 58

Implementation and results ... 58

6.1 Datasets ... 58

6.2 System requirements ... 59

6.3 Results of matrix approximation ... 59

6.4 Results of the support vector machine .. 68

6.5 Summary ... 72

References ... 74

vi

List of tables

Table 1 Description of the datasets used in our experiments comparing sampling-based

matrix approximations .. 58

Table 2 Analysis of two sampling methods based on random generated data with various

ranks of the matrix in Frobenius norm .. 60

Table 3 Analysis of two sampling methods based on random generated data with various

ranks of the matrix in spectral norm ... 61

Table 4 Analysis of two sampling methods based on letter data set with various ranks of

the matrix in Frobenius norm .. 63

Table 5 Analysis of two sampling methods based on letter data set with various ranks of

the matrix in Frobenius norm .. 64

Table 6 Analysis of two sampling methods based on abalone data set with various ranks

of the matrix in Frobenius norm ... 66

Table 7 Analysis of two sampling methods based on abalone data set with various ranks

of the matrix in spectral norm ... 67

Table 8 Computation time of Support vector machine without approximation and using

the standard Nystrom method and efficient Nystrom method .. 69

Table 9 Computation time of Support vector machine using the standard Nystrom method

and efficient Nystrom method for abalone dataset ... 70

Table 10 Computation time of Support vector machine using the standard Nystrom

method and efficient Nystrom method for letter dataset .. 71

vii

List of figures

Figure 1 Flow Chart of the Efficient Nystrom Method .. 56

Figure 2 Efficient Nystrom algorithm for generating the low rank approximation 57

Figure 3 Plot between standard Nystrom method and efficient Nystrom method using

Frobenius norm for the random data ... 61

Figure 4 Plot between standard Nystrom method and efficient Nystrom method using

spectral norm for the random data .. 62

Figure 5 Plot between standard Nystrom method and efficient Nystrom method using

Frobenius norm for the letter data set ... 63

Figure 6 Plot between standard Nystrom method and efficient Nystrom method using

spectral norm for the letter data set ... 65

Figure 7 Plot between standard Nystrom method and efficient Nystrom method using

Frobenius norm for the abalone data set ... 66

Figure 8 Plot between standard Nystrom method and efficient Nystrom method using

norm for the abalone data set .. 68

Figure 9Plot between the computation time of standard Nystrom method and efficient

Nystrom for random data in SVM .. 70

Figure 10 Plot between the computation time of standard Nystrom method and efficient

Nystrom for abalone data set in SVM... 71

Figure 11 Plot between the computation time of standard Nystrom method and efficient

Nystrom for letter data set in SVM ... 72

viii

Abstract

Large data sets have tens of thousands to millions of training instances, which suffers

from high time and space complexity. To reduce the time and space complexity, we

propose efficient Nystrom method to approximate kernel matrix, which is used in many

machine learning methods such as kernel-based methods, e.g. Kernel Ridge Regression,

Kernel Principle Component Analysis and Support Vector Machine. This thesis focuses

on sampling based matrix approximation methods. Matrix approximation will help to

speed up the kernel based algorithms to large data set. We give the desirable error bound

both in the Frobenius and spectral norm for the quality of approximation. Based on these

error bounds, we analyze the quality of approximation in kernel based algorithms. We

present guarantees on approximation accuracy based on various matrix properties and

analyze the effect of matrix approximation on actual kernel-based algorithms. Our

proposed algorithm gives the lower error bound for the low rank approximation of the

kernel matrix.

1

Chapter 1

Introduction

In this chapter, motivation, objective and problem statement briefly explained. This

chapter presented overview of the thesis and presented the organization of the thesis.

1.1 Motivation

In machine learning, there is a problem with large scale data. So the problem with large

scale data is storage and time complexity. Due to high complexity we have to find the

efficient approximation of a matrix. That matrix be a kernel matrix, which is use in

support vector machine, kernel principle component analysis and kernel ridge regression.

Large kernel matrix having millions of entries, such large data sets creates problem both

in storing and operating. So we have to find the efficient solution for kernel matrix to

speed up the kernel methods. We find the good approximation of kernel matrix using the

efficient Nystrom method. Efficient Nystrom method generates the low rank

approximation of matrix. Sampling based approximation method select the subset of

columns and using the subset of columns generate the efficient solution of the problem.

Suppose having symmetric positive semidefinite matrix , n is very large. So it requires

 () space complexity to store the kernel matrix. And operating the kernel matrix, it

requires () finding the singular value decomposition (SVD) of matrix. Suppose B is

the approximate matrix with rank , so we have to minimize the ‖ ‖ in terms of

Frobenius norm and spectral norm respectively ‖ ‖ and ‖ ‖ for any matrix .

Rank of B much smaller than . We have to find the orthogonal vector and diagonal

matrix using Eigen value and Eigen vector. In singular value decomposition, we have to

decompose the matrix in right orthogonal vector, left orthogonal vector and diagonal

matrix. Previously, we have various without sampling approximation method such as

truncated SVD but without sampling based method takes more time as compare the

sampling based methods. Sampling based approximation leads to inaccuracy as compare

truncated SVD. Nystrom method was use for numerical integration of quadrature method.

In 2000 William and Seeger introduced Nystrom method for kernel methods to reduce

the time and space complexity. Matrix approximation is very useful in large data set. For

2

large data set, kernel methods take large amount of time to solve the problems of machine

learning.

In this thesis, we look the efficient solution of this problem that generates efficient matrix

approximation of kernel methods. We introduced sampling based efficient Nystrom

method.

1.2 Objective

The main objective of matrix approximation is to speed up the kernel methods. We have

to generate the low rank of the given matrix . Given matrix with rank , we have to

find the good approximation of and the rank of matrix is less than . Matrix has

good spectral feature that helps in finding the good approximation. Approximate matrix

is able to speed up the kernel methods such as support vector machine, kernel ridge

regression, kernel principle component analysis. But sampling based approximation

suffers from inaccuracy so we have to minimize the approximation error. Approximation

error calculated using Frobenius norm and Spectral norm. Measure of approximation is

based on quality of error bound. We have to generate both theoretical and experimental

error bound using Frobenius norm and Spectral Norm. We have to choose columns using

good sampling methods. And that columns help to generate good approximation. We

have various sampling based such as Nystrom methods and column sampling methods to

approximate the matrix. For better approximation this thesis deals with following

objectives:

1 For a given matrix, we have to develop low rank matrix approximation based on

sampling methods.

2 We have to select the columns for approximation based on efficient sampling

methods. Efficient Nystrom method uses these sampled columns to generate the

efficient matrix approximation.

3 Using the Frobenius norm and spectral norm, we will show the quality of matrix

approximation.

4 Here, we show that how approximation works with the kernel methods such as

support vector machine.

3

1.3 Problem Statement
To found the accuracy of the algorithms in terms of error bound. Suppose we have a

matrix A be a matrix and is the best rank approximation.

 ‖ ‖ (1.1)

 ‖ ‖ (1.2)

Where ‖ ‖ represents the spectral norm and ‖ ‖ represents the Frobenius norm of a

matrix.

 is the represents a tolerable level of error for the given application. We have to

minimize the tolerable error .

1.4 Thesis Organization

In this thesis, there are seven chapters. In the first chapter, we discuss about the

motivation, objective and problem statement. In the second chapter, we discuss review of

linear algebra because concepts of linear algebra uses in the low rank approximation.

Chapter 3 presents the literature survey of the matrix approximation. Various low rank

approximation methods are discussed in chapter 3. In the chapter 4, we discuss the

application of the low rank approximation. This chapter tells hoe the low rank

approximation works. Chapter 5 presents the proposed approach and the algorithm.

Chapter 6 describes the implementation results of the standard Nystrom method and the

efficient Nystrom method and also discusses results of the application of the low rank

approximation. Chapter 7 provides the conclusion and outline the most promising

directions for future work.

4

Chapter 2

Review of linear algebra

In this chapter, we have to discuss about basics of linear algebra. Suppose be an

 matrix, entries of matrix are non-negative. Independent rows (or columns) are the rank

of the matrix ; thus, () * +. A square matrix all of whose off-

diagonal elements are zero is called a diagonal matrix; rank of diagonal matrix is equal to

number of non-zero diagonal elements. If diagonal elements of diagonal matrix are one,

such type of matrix called identity matrix of dimension and identity matrix represented

by .

2.1 Vector Terminology

2.1.1 Vector Length

Squaring each component, add all the square components and taking the square root of

the sum. If ⃗ is a vector, length of vector denoted by | ⃗|.

| ⃗| √∑

 (2.1)

For example, if ⃗ , -, then

| ⃗| √ √

2.1.2 Vector Addition

Addition of two vectors means adding each component in its corresponding position.

Suppose, if , - and , -, then ,

 -.

2.1.3 Scalar Multiplication

Multiply a scalar (real number) times a vector means multiplying each elements by the

scalar to get new vector. Scalar multiplication means if is a real number and ⃗ is a

vector , - then ⃗ ,] [1].

5

2.1.4 Inner Product

Multiplication of two vectors is called inner product (also called scalar product or dot

product). Scalar value is the calculated by multiplying each component in ⃗ by the

component in ⃗ in the same position and adding the product of each component, we get

a scalar. Dimensions of both vectors should be same, and then only inner product is

possible. The inner product of the two vectors is denoted as (⃗ ⃗) or ⃗ ⃗ (the dot

product)[1].

(⃗ ⃗) ⃗ ⃗ ∑

 (2.2)

2.1.5 Orthogonality

If inner product of two vectors equals to zero then they called orthogonal to each other. In

two dimensional space, they called as vectors are perpendicular or the angle between two

vectors are 90
0
.

(⃗ ⃗) ⃗ ⃗ ∑

 (2.3)

2.1.6 Normal Vector

Length of the vector is 1, called normal vector. We can normalized the vector by dividing

each component in it by the vector‟s length.

For example, if , -, then

| ⃗| √ √

Then ⃗ 0 ⁄ ⁄ ⁄ ⁄ 1 is a normal vector because

| ⃗| √(⁄) (⁄) (⁄) (⁄) √ ⁄

2.1.7 Orthonormal Vectors

Orthonormal vectors are those vectors which are of unit length and are orthogonal to each

other. For example,

 ⃗ 0 ⁄ ⁄ ⁄ ⁄ 1

6

and

 ⃗ [
√
⁄

√
⁄

√
⁄

√
⁄]

are orthonormal because

| ⃗| √(⁄) (⁄) (⁄) (⁄)

| ⃗| √(
√
⁄)

 (
√
⁄)

 (
√
⁄)

 (
√
⁄)

 ⃗ ⃗

2.2 Matrix terminology

2.2.1 Square Matrix

Equal number of rows and columns are called square matrix. If matrix has row and

columns called square. For example, the matrix with 2-square

0

1

2.2.2 Transpose

Changing the row into columns is called transpose of the matrix. Transpose of the matrix

denoted by subscript
T

. Given a matrix , then transpose of the matrix is . For

example, if

 0

1

Then transpose of matrix is

 [

]

Size of matrix is then sixe of become .

7

2.2.3 Matrix multiplication

Before multiplying to matrix, we have to check compatibility of these two matrixes.

These matrixes are compatible only if first matrix has the same number of columns as the

second matrix has rows. After the multiplication, size of the resulting matrix depends on

first matrix rows and second matrix columns. Multiplications of two matrixes are

determined by finding the inner product of each row of first matrix and each column of

second matrix.

If is a matrix and is matrix, then is matrix.

For example,

 0

1

 [

]

 0

1 [

] 0

1

2.2.4 Identity Matrix

Any square matrix with elements of diagonal matrix equal to one and remaining elements

of matrix equal to zero is called identity matrix. The diagonal entries are iff , i.e.,

 . Identity matrix denoted by or for -square matrix or for

convenience it simply denoted by . Every identity matrix must follow the properties [1]

 , where is a matrix

For example,

 0

1 and [

]

8

 0

1 [

] 0

1

2.2.5 Orthogonal Matrix

Matrix is orthogonal iff we multiply its transpose then get an identity matrix.

For example [

]

A is orthogonal matrix then,

 [

] [

] [

]

2.2.6 Diagonal Matrix

A matrix is said to be diagonal matrix iff all the elements are zero where .

 [

]

2.3 Eigenvector and eigenvalue
Eigen vector and Eigen value are calculated by the characteristic equation. Characteristic

equation is given below:

 ⃗ ⃗

where is a square matrix, ⃗ is the eigen vector and is a scalar. is the eigen value.

Using the , we have to find corresponding eigen vector. Eigen vector and eigen value

also called as characteristic vectors and characteristic roots, respectively [5].

Properties of eigenvalues:

1. Theorem: Eigenvector with dissimilar eigenvalues are linearly independent.

9

Suppose, square matrix and set of eigenvectors is * + with

eigenvalues where whenever . Then said to be

linearly independent set.

2. Theorem: Singular matrix has no eigenvalue.

Suppose, square matrix . If has zero eigenvalue then said to be a singular matrix.

And determinant of singular matrix is zero, so inverse of singular matrix don‟t exists.

3. Theorem: Nonsingular matrix has eigenvalues.

Suppose is a square matrix with size . They follow some properties:

1. is a nonsingular matrix.

2. is row-reduce to identity matrix.

3. Null space of contains only zero vector, () * +

5. Unique solution exists for every possible choice of , a exists in linear system ().

6. There exists a set of linearly independent for the columns .

7. Matrix invertible, means is nonsingular matrix there exists inverse of matrix .

8. Rank of matrix is , () .

9. The nullity of matrix is zero, () .

10. Determinant of matrix is non-zero, () .

11. If , then there is no eigenvalue exists.

4. Theorem: Eigenvalues of the polynomial matrix.

Suppose is a square matrix and is the eigenvalue of . Let () be a polynomial in the

variable . Then () is an eigenvalue of the matrix ().

5. Theorem: Eigenvalues of inverse of a matrix.

10

Suppose is a nonsingular matrix and is the eigenvalue of . Then is an

eigenvalues of the matrix .

6. Theorem: Eigenvalues of the transpose of a matrix.

Suppose is a square matrix with size . Then is the eigenvalue of the matrix .

7. Theorem: Eigenvalues of the real matrix.

Suppose is a square matrix with real elements and is an eigenvector of for the

eigenvalue . Then ̅ is an eigenvector of for the eigenvalue ̅.

8. Theorem: Eigenvalues of hermitian matrices Hermitian matrices have real

eigenvalues. Suppose is a hermitian matrix and is the eigenvalues of , .

9. Hermitian matrices have orthogonal eigenvalues. Suppose, is a hermitian matrix

and if there exists two eigenvectors of for different eigenvalues. Than and are

orthogonal vectors to each other [5].

2.4 Matrix Norms
 is a vector space of dimension , magnitude of matrices can be measured

by employing any vector norm on .

2.4.1 Frobenius norm

The Frobenius norm or Hilbert-Schmidt norm of is defined by the equations

‖ ‖ √∑ ∑ | |

 (2.4)

‖ ‖ √ ()

‖ ‖ √ ∑

 * +

where represents the conjugate transpose of , is the singular values of . Singular

value is the square root of the eigenvalue. If then it called as unitary

11

matrix. The function trace is the sum of the diagonal of the matrix .Trace has a cyclic

nature [6]

 () ()

Properties of trace:

 () ()

 () () ()

2.4.2 Spectral Norm

Spectral norm of matrix defined as square root of maximum eigenvalue of (where

is the conjugate transpose of matrix) [6].

‖ ‖ ()

‖ ‖ √ ()

‖ ‖ () (2.6)

2.4.3 Max Norm

The max norm defined as elementwise norm.

‖ ‖ *| |+ (2.7)

Max norm is not sub-multiplicative.

2.5 Vector Norm

2.5.1 Euclidean norm (or 2-norm)
Euclidean norm (or L^2) Norm is a vector norm defined for a complex vector-

 |

|

12

by

 ‖ ‖ √∑ | |

 (2.8)

Where | | on the right denotes the complex modulus.

2.5.2 Norm

A L^1 vector norm defined for a vector

 |

|

With complex entries by

‖ ‖ ∑ | |

 (2.9)

L^1 norm also called Taxicab norm or Manhattan norm. distance calculated by L^1 norm

is called as Manhattan distance or L^1 distance [6].

2.5.3 Norm

A vector norm defined for a vector

 |

|

With complex entries by

‖ ‖

| | (2.10)

2.5.4 -norm

For any real number,

‖ ‖ (∑ | |

) (2.11)

13

If , called as taxicab norm (or ^1 norm). if , known as Euclidean norm. And

 , then the norm is infinity norm (or maximum norm). Holder mean is related

by norm.

By the definition, , then norm is not define as the resulting function because it

violates the triangular properties[12].

2.6 Matrix Decomposition (or Matrix Factorization)
In linear algebra, matrix decomposition (or matrix factorization) is defined as

factorization of matrix into product of matrices. There are many different matrix

decompositions methods exist. Each of the decomposition methods has specific feature to

solve the different class of problems[4].

2.6.1 Decomposition based on solving linear equation

2.6.1.1 LU decomposition

In 1948, the great mathematician Alan Turing was introduced LU decomposition. LU

decomposition (LU stands for lower upper and also known as LU factorization) factors

the matrix into product of two parts, first is a lower triangular matrix and an upper

triangular matrix. Gaussian elimination of matrix is viewed by LU decomposition.

Suppose, be a square matrix. Factors of refers as and , where is the lower

triangular matrix and is refers as upper triangular matrix.

In lower triangular matrix, , all entries above the diagonal are zero. In upper triangular

matrix, , all entries below the diagonal are zero. For example, is matrix, LU

decomposition of ,

[

] [

] [

]

Application of LU decomposition:

1. Solving linear equations

14

2. Inverting the matrix

3. Computing the determinant

2.6.1.2 LU reduction

LU reduction is an algorithm that is another version of LU factorization. Super

computing and highly parallel computing used LU decomposition. LU decomposition

used as benchmark algorithm, that provides to measure the speed for various computers.

LU decomposition is the another kind of parallelized version of an LU decomposition

algorithm [4].

2.6.1.3 QR decomposition

In 1959, British computer scientist John G. F. Francis and Soviet mathematician Vera

Kublanovskay discovered the QR algorithm for eigenvalues.

In the field of linear algebra, QR decomposition (also called QR factorization) of matrix

is the decompose into two matrix, first, Q and second, R then the product of Q and R

equals to .

 (2.12)

where is the orthogonal matrix and is the upper triangular matrix.

Linear least squares problem solved by QR decomposition.

QR decomposition for square matrix:

Let be the square matrix, decomposed as

where is an orthogonal matrix (its columns are orthogonal unit vectors,) and

 is the upper triangular matrix(right triangular matrix). Factorization is unique if is

invertible, so the diagonal elements of is positive.

15

QR decomposition for rectangular matrix:Suppose is rectangular matrix with

size (where), orthogonal matrix is and upper triangular matrix is .

In upper triangular matrix, bottom () rows of , consists only zeroes.

 0

1 , - 0

1

where is an upper triangular matrix, zero is an () zero matrix, is

 , is () and and both have orthogonal columns [4].

2.6.1.4 Rank factorization (or rank decomposition)

Matrix have size with rank of is . Rank decomposition of is

where is an matrix and is an matrix. Rank decomposition is possible for

every finite-dimensional matrix. For matrix , whose column rank is . Columns rank of

matrix indicates there are linearly independent columns in .

 () ()

Rank factorization can be achieved by row echelon forms. In this, we can compute ,

reduced form of . Removing the non-pivot columns, is obtain and eliminating all zero

rows of [4].

2.6.1.5 Interpolative decomposition

An interpolative decomposition is the product of two matrixes. One of the matrixes

contains selected columns form the original matrix. And another matrix contains a subset

of columns that is identity matrix.

An interpolative decomposition of matrix of rank * + is factorization

 , - , -,

16

Where , - is a permutation matrix, i.e., . We can write it as

 , where and , - are the skeleton and interpolation matrices,

respectively

If has not exact rank r, then can be approximated by interpolative decomposition

such that , where ‖ ‖ is the largest singular value of [4].

2.6.2 Decomposition based on eigenvalues and eigenvectors

2.6.2.1 Eigendecomposition

Canonical from of factorization is called as Eigendecomposition (or spectral

decomposition), and the matrix is shown by the eigenvalues and eigenvectors.

Eigendecomposition is possible only for square matrix.

For square matrix , vector of dimensions that satisfied the linear equation

 (2.13)

where is the scalar, named as eigenvalue corresponding to . Equation() called

characteristic equation or eigenvalue problem.

 () () (2.14)

where () is the characteristic polynomial and the equation called as characteristic

equation.

For each eigenvalue, , there is specific equation

()

There are linearly independent solutions to each eigenvalue equation.

Eigendecomposition of a square matrix

Let matrix is size with linearly independent eigenvectors. Matrix can be

factorized as

 (2.16)

17

where is the square matrix whose column is the eigenvectors of and is the diagonal

matrix whose diagonal entries are corresponding to the each eigenvalues [5].

Functional calculus

Power series of matrices is computed by using eigendecomposition. () is given by

 ()

For matrix ,

 () ()

Because is a diagonal matrix, function of calculated:

, ()- ()

Similar method works with the holomorphic functional calculus, using

from above,

, ()- ()

For example,

 ()() ()

 (2.17)

2.6.2.2 Schur decomposition

In linear algebra, if square matrix has size of with complex entries, then

decomposition of define as,

 (2.18)

where is a unitary matrix (for unitary matrix, and conjugate transpose of),

and is an upper triangular matrix, called a schur form of . So is same as , has

18

the same multiset of eigenvalues, and is a triangular, eigenvalues of is the diagonal

entries of .

The Schur decomposition says that there is a nested sequence of invariant subspaces

* + and there is first basis vector span fro

each nested sequence [12].

Generalized schur decomposition

For given two matrices and , generalized schur decomposition factorize both matrices

as

 (2.19)

And

 (2.20)

where and are unitary, and and are upper triangular. The generalized schur

decomposition is known as QZ decomposition.

Eigenvalue that solve the generalized eigenvalues decomposition problem

 (where is an unknown nonzero vector) is calculated as the ratio of the diagonal

elements of to those . For the generalized eigenvalue satisfies

 (2.21)

 2.6.2.3 Singular value decomposition

In linear algebra, the singular value decomposition (SVD) is the factorization method for

real or complex matrix. Suppose we have given real or complex matrix with

size, then singular value decomposition of (Golub and van loan, 1996; Watkins, 1991),

 (2.22)

19

where is an orthonormal matrix, columns of called as left singular vectors of

 . And (Conjugate transpose of for real or complex matrix) is an the

orthonormal matrix, columns of called as right singular values of [8].

Relation with eigenvalue and singular value decomposition:

1. The left singular vectors of calculated by eigenvalues of .

2. The right singular vectors of calculated by eigenvalues of .

3. The non-singular values of calculated by both and .

The properties of SVD matrix are given below:

1. The Singular values of a real valued rectangular matrix are equal to the square

roots of the eigenvalues of matrix .

2. Positive singular values is same as the rank of matrix

 ()

3. The Euclidean norm of A is equal to the largest singular value,

 ‖ ‖

Basic Idea of SVD: Data is in high dimensional space, highly variable set of data points

so need to be reducing it to low dimensional space losing the less information [13]. SVD

is based on the theorem of linear algebra. Theorem says that any rectangular matrix can

be factorize in three matrices – orthogonal matrix , a diagonal matrix and transpose of

orthogonal matrix. We can represent the theorem as

where , here, the columns of are orthonormal eigenvectors of ,

the columns of are orthonormal eigenvectors of and is a diagonal matrix

containing the square roots of eigenvalues from in descending order[2].

Theorem 1: (Matrix diagonalization theorem) Let A be a square real-valued

matrix with linearly independent eigenvectors. Then there exists an

eigendecomposition

 (2.23)

20

Where the columns are the eigenvectors of and are a diagonal` matrix whose

diagonal entries are the eigenvalues of in decreasing order.

(

) ,

Decomposition is unique if eigenvalues are distinct.

Theorem 2 (Symmetric diagonalization theorem) Let be a square, symmetric real-

valued matrix with linearly independent eigenvectors. Then there exists an eigen

decomposition

 (2.24)

For symmetric matrix, left singular vector and right singular vector both are same.

Application of Singular value decomposition

1. Pseudoinverse

Pseudoinverse of the matrix can be computing using singular value decomposition.

Pseudo-inverse of symmetric matrix as

 ∑

 () () (2.25)

And

pseudo-inverse of complex matrix as

 (2.26)

where is the pseudoinverse of , which is calculated by replacing the non-zero

diagonal entry by the reciprocal of the singular value and transposing the resulting

matrix. Pseudoinverse is used to solve the linear least squares problems[2].

21

2. Low rank approximation

Low rank approximation problem is solved by the SVD. Suppose the ̃ is the

approximation of

 ̃ ̃

In low rank approximation, sort the singular values in the decreasing order and then

select the top largest singular values. we have to minimize the Frobenius norm of the

difference between and ̃. This theorem is also known as Eckart-Young theorem.

 2.6.2.4 CUR decomposition

CUR decomposition are the class of randomized algorithms which is used to approximate

the matrix by taking only small number of columns of .

Given a matrix decompose into three matrices , and as

 where , contains exactly columns of , consists of

row of and is a small matrix that says the product of very close to .

 decomposition can be used as SVD for low rank approximation. But CUR has high

inaccuracy as compare to SVD still CUR approximation is easy to compute.

2.7 Kernel functions
Kernel functions can be used in many applications as they provide a simple bridge from

linearly to non-linearly for algorithms which can express in terms of dot products. Below

is a list of some kernel function available [7].

2.7.1 Linear kernel

The linear kernel is the simplest kernel function. It is given by the inner product

plus an optional constant [7].

 ()

22

2.7.2 Polynomial kernel

The polynomial kernel is a non-stationary kernel. Polynomial kernels are well suited for

problems where all the training data is normalized.

 () ()

Where alpha is the slope, constant term and the polynomial degree [7].

2.7.3 Gaussian kernel

The Gaussian kernel is example of radial basis function kernel.

 () (
‖ ‖

)

Alternatively, it could also be implemented using

 () (‖ ‖)

Sigma plays the important a major role in the performance of kernel, it depends on the

problem [7].

2.7.4 Exponential kernel

The Laplace kernel is equivalent to the exponential kernel, except for being less sensitive

for changes in the sigma parameter. Being equivalent, it is also a radial basis function

kernel [7].

 () (
‖ ‖

)

2.7.5 Power kernel

 The power kernel is also known as the triangular kernel.

 () ‖ ‖

2.7.6 Log kernel

The log kernel seems to be particularly interesting for images, but it only conditionally

positive define.

23

 () (‖ ‖)

2.8 Summary
In this chapter, we present the basic terminology of matrix and vector. Various norm

discussed that will use to find the error bound of the various low rank approximation

method. We also discussed some kernel function which uses in the implementation In

next chapter we present the various low rank approximation algorithms and their

theoretical error bound based on Frobenius norm and spectral norm.

24

Chapter 3

Literature survey

In this chapter, we discuss various low rank approximation methods to generate the good

approximation of the matrix. We discuss sampling algorithms and some other low rank

approximation methods. Contents of this chapter is linear time SVD, constant time SVD

and various sampling based low rank approximation methods such as standard Nystrom

and column sampling method.

3.1 Introduction
Given matrix , find the good approximation of that has low rank. There are several

techniques for fast computation of the approximation of . And has good spectral

feature that help to capture the data from the original matrix. Quality of the matrix

approximation is measured by the Frobenius norm and spectral norm. That is the

fundamental result of linear algebra for matrix and is the any positive integer. Best

rank approximation is denoted by . Efficient computation of the low rank

approximation measure by the ‖ ‖. C is the any rank matrix then it satisfies

‖ ‖ ‖ ‖ (3.1)

Tolerable error is adding to a matrix whose entries are independent Gaussian

random variable with mean 0 and standard deviation . That is, is not too big, the

optimal rank approximation to ̃ will approximate nearly as well as .

This stability of low rank approximations with respect to Gaussian noise is well

understood and stems from the fact that no low dimensional subspace accommodates

well, i.e., ‖ ‖ is small for small . Low rank approximations are frequently used with

the explicit purpose of removing Gaussian noise [30].

A fundamental result in random matrix theory is that the being Gaussian is not

essential in the above example. Rather, is innocuous by virtue of the following three

properties of its entries: independence, mean zero, and small variance. If is a random

matrix whose entries are zero-mean, independent random variables with variance

bounded by , then ‖ ‖ ‖ ‖. There is a proof of the quantity ‖ ‖ bounds the

25

influence that may apply over the optimal rank approximation to .

Specifically, to the extent that ‖ ‖ ‖ ‖, the matrix () will be largely

determined by [31].

3.1.1 Statement of results

Definitions of the Frobenius norm and 2- norm,

‖ ‖ (∑
)

 and ‖ ‖ ‖ ‖ ‖ ‖

For matrix and any , ‖ ‖ √ ‖ ‖ and ‖ ‖ ‖ ‖

This analysis based on observing that acts of sampling and quantization cab be viewed as

adding random matrix to , whose entries are independent random variables with zero-

mean and bounded variance. Since, with high probability, has very weak spectral

features, shows the effect sampling and quantization nearly vanishes when low rank

approximation to is computed. The quality of approximation is given by the

Frobenius norm and 2-norm [17].

Next statement a lemma formalizing that perturbation matrices which are poorly

approximable in dimensions have little influence on the optimal rank approximation.

Lemma 1. Let and be any matrices and write ̃ N. then

‖ ̃ ‖
‖ ‖ ‖ ‖ and

‖ ̃ ‖
‖ ‖ ‖ ‖ √‖ ‖ ‖ ‖

Notice that all error terms above scale with ‖ ‖ and thus whenever is poorly

approximated in dimensions, i.e., ‖ ‖ is small, the error caused by adding to

must be small.

 According to lemma 1, take an example of a Gaussian perturbation matrix. This will

provide a sense of scale for our results, stated in theorems 1-3 below

Fact 1. Let be an matrix, where , whose entries are independent

Gaussian random variables with mean 0 and variance . With probability (),

26

‖ ‖ √ and ‖ ‖ √ .

To put these two bounds in perspective consider the trivial rank approximation, , that

results from zeroing-out all but the first rows of . With high probability we have

‖ ‖ √ . Moreover, since has rank at most , ‖ ‖ ‖ ‖ √ . Fact 1 asserts

that the optimal rank approximation of only improves upon this trivial approximation

by at most a factor of 4, attesting to the near-orthogonally of the rows of . In contrast,

for general matrices with | | , ‖ ‖ can easily be as large as √ , in

either norm[25].

Results show that it is possible to find a good low rank approximation to even after

randomly quantizing its entries. In theorem 1 below we quantize each entry to a single

bit, representing a 32 to 64 factor of compression over standard floating point numbers.

Naturally, one can generalize the quantization process to larger set of numbers, trading

representation length for error.

Theorem 1. Let be any matrix where , and let | |. Let ̂

be a random matrix whose entries are independently distributed as

 ̂ {

 (3.2)

For all sufficiently large , with probability at least (()), the matrix

 ̂ satisfies

‖ ‖ √ and ‖ ‖ √ .

Our second result asserts it is possible to find a good low rank approximation to even

after randomly omitting many of its entries. In particular, the stronger the spectral

features of the more of its entries we can afford to omit.

27

Theorem 2. Let be any matrix where 76 m , and let b= | |. For

 () , let ̂ be a random matrix whose entries are independently

distributed as

 ̂ {

 (3.3)

With probability at least with probability at least (()), the matrix

 ̂ satisfies

‖ ‖ √ and ‖ ‖ √ .

As mentioned earlier, we can improve upon the uniform sparsification process by

retaining entries with probability that depends on their magnitude. This yields greater

sparsification when entry magnitudes vary, without increasing the error bounds.

Theorem 3. let ̂ be a random matrix where , and let b=

 | |. For any p>0, define ()
 and let

 { √ () }

Let ̂ be a random matrix whose entries are independently distributed as

 ̂ {

 (3.4)

1. With probability at least with probability at least (()), the

matrix ̂ satisfies

‖ ‖ √ and ‖ ‖ √ .

2. The expected number of non-zero entries in ̂ is bounded by (pmn)

 [.

/

] () [29] .

28

Proof of lemma 1

Now, prove two lemmas relating ‖ ‖ to ‖ ‖ for arbitrary matrices , in

the Frobenius and 2-norm. specifically, lemma 2 compares ‖ ‖ to ‖ ‖ ,

while lemma 4 compares ‖ ‖ to ‖ ‖ [32].

Lemma 2. For any matrices and

‖ ‖ to ‖ ‖ ‖() ‖ .

Proof. Starting with ‖ ‖ and applying the triangle inequality we get (3.5). Using

that for any rank matrix , ‖ ‖ ‖ ‖ we get (3.6). applying the triangle

inequality again gives (3.7)

‖ ‖ ‖ ‖ ‖ ‖ (3.5)

 ‖ ‖ ‖ ‖ (3.6)

 ‖ ‖ ‖ ‖ ‖ ‖ (3.7)

Finally, we note that ‖ ‖ ‖ ‖ ‖() ‖ , which concludes the

proof .

In order to prove the Frobenius norm bound we need to introduce the following notion.

Given a matrix, let denote the projection matrix onto the space spanned by the

columns of (we suppress the dependence of on to simplify notation). An

important consequences of the Singular Value Decomposition is that and, as

a result, that for any matrices and [30],

‖ ‖ ‖ ‖ (3.8)

To prove our stated bounds for the Frobenius norm we will first show that for any

matrices , , if ‖() ‖ is small, then projecting onto is almost as good as

projecting it onto in terms of capturing Frobenius norm.

29

Lemma 3. For any matrices and

‖ ‖ ‖ ‖ ‖() ‖ .

Proof. Starting with ‖ ‖ and applying the triangle inequality we get (3.9). Applying

(3.8) yields (3.10). Applying the triangle inequality again gives (3.11)

‖ ‖ ‖ ‖ ‖ ()‖ (3.9)

 ‖ ‖ ‖ ()‖ (3.10)

 ‖ ‖ ‖ ()‖ ‖ ()‖ (3.11)

Finally, we applying (3.8) to bound the ‖ ()‖ terms in (3.11) by ‖() ‖ .

We now use Lemma 3 to prove that if ‖() ‖ is small, then ‖ ‖ is not

much larger than ‖ ‖ . In order words, can be a good surrogate for with

respect to the Frobenius norm even when ‖ ‖ is large, so long as ‖() ‖ is

small [30].

Lemma 4. For any matrices and ,

‖ ‖ ‖ ‖ √‖() ‖ ‖ ‖ ‖() ‖ .

Proof. By the fact and the triangle inequality we get

‖ ‖ ‖ ‖ ‖ ()‖ (3.12)

Applying the Pythagorean inequality to each column of implies that for any projection

matrix ,

‖ ‖
 ‖ ‖

 ‖ ‖
 (3.13)

Inserting (3.12) in (3.13), we get

‖ ‖ (‖ ‖
 ‖ ‖

)

 ‖ ()‖ (3.14)

30

To bound the right hand side of (3.14) we first invoke the lower bound for ‖ ‖

provided by Lemma 3 to get (3.15). We then use (3.13) to get (3.16) to which we apply

the inequality √ √ √ to get (3.17).

‖ ‖ (‖ ‖
 ‖ ‖

 ‖() ‖ ‖ ‖)

 ‖ ()‖

 (3.15)

 (‖ ‖
 ‖() ‖ ‖ ‖)

 ‖ ()‖ (3.16)

 ‖ ‖ (‖() ‖ ‖ ‖)

 ‖ ()‖ (3.17)

To wrap up, we use (3.8) again to bound ‖ ()‖ by ‖() ‖ .

3.2 Comparison of the various error bounds
Now, we focus on the various error bounds given by Drines et al[19], as it gives the best

known bounds for computing near-optimal low rank matrix approximation by column /

row sampling. Approach given by Achlioptas et al [18], i) sample c columns from ,

selecting each columns with probability proportional to its squared 2-norm, ii) determine

the optimal - dimensional subspace . Intuitively, as the number of columns sampled

grows, the sample approaches the distribution of columns of . In particular, [] show that

if () columns are drawn, then with constant probability the resulting rank

matrix satisfies

‖ ‖
 ‖ ‖

 ‖ ‖
 (3.18)

‖ ‖
 ‖ ‖

 √ ‖ ‖
 (3.19)

More generally, if (()) columns are drawn then (3.18), (3.19) holds with

probability . We note that, in the case of the Frobenius norm, the bound in (3.19)

is meaningful only if √ .

By Comparison, given the same matrix , invoking sample (

) yields an

matrix ̂ with (

 ()) non-zero entries, sampled from the distribution of

31

theorem 3 with (‖ ‖)
 . Thus, by Lemma 1 and theorem 3, with

probability (()),

‖ ̂ ‖ ‖ ‖ ‖ ‖ (3.20)

‖ ̂ ‖ ‖ ‖ √ ‖ ‖ (3.21)

where in deriving (3.21) we assumed that √ so that the bound in (3.19) is

meaningful.

Unfortunately, making a direct comparison of the two results at this point is hindered by

the fact (3.18),(3.19) bound ‖ ‖ ‖ ‖
 while (3.20), (3.21) bound ‖

 ̂‖ ‖ ‖. If the bound the right hand side of (3.18), (3.19) using the inequality

 () , observed that the Frobenius bounds are comparable, while 2-norm

decays at the rate of [6].

Such a comparison is oversimplified, to be sure: () is inappropriate

when ‖ ‖ ‖ ‖ . Also, equating () columns of with (

 ()) non-zero entries is justified only when each column of contributes ()

non-zero entries and

 is not dominated by () [18].

3.3 Low rank approximation

3.3.1 Truncated SVD

The singular value decomposition is a classical mathematical technique for factorizing a

matrix. The SVD for a matrix is the decomposition , where

 , and . The matrices are orthogonal, with their

columns being eigenvectors of and respectively. is a diagonal matrix

diag() where * +. The are sorted in decreasing order and

are known as singular values of . The is satisfy for all , and the squares of

nonzero are the eigenvalues of (or equivalently).One of the most common

operations one performs using the decompositions is to form the truncated SVD

 ,

32

Where we take first columns of and consider the submatrix . Due to the

orthogonally of one can equivalently write as
 or

 . This matrix has

rank at most , and a classic theorem of Eckart-Young-Mirsky says that it is a good

approximation to the matrix in the following specific sense[30].

Theorem 4 [EACKART AND YOUNG 1936; MIRSKY 1960]. For a given matrix

 let be its truncated SVD. Let ‖ ‖ be a unitarily invariant matrix norm.

then, for all (),

‖ ‖
 ()

‖ ‖

To see the intuition behind the theorem, another way to express the SVD is to write each

elements of the matrix as

 ∑ ∑

 .

Now suppose that we keep just the top singular values of , and significantly treat the

rest as being 0: this creates a rank approximation to . Since

intuitively this approximation should be quite good, because we are keeping the terms

that contribute the most to . What the theorem says is that this approximation is not

only good, but optimal [27].

Two commonly invariant norms are the Frobenius and 2-norm. the Frobenius norm of

matrix, ‖ ‖ is an analogue of the norm for vectors :

‖ ‖ √∑ ∑

 √∑

 .

The 2-norm (or spectral norm) of the matrix, ‖ ‖ is an induced that the largest singular

value of a matrix:

‖ ‖

An important connection between the 2-norm and the singular values of a matrix is the

following result:

33

‖ ‖

It is well known that ‖ ‖ ‖ ‖ √ . ‖ ‖ [11].

3.3.2 Computing the SVD

In general, the problem of computing the SVD of a matrix reduces to that of computing

the Eigenvalue decomposition of a symmetric matrix. Eigenvalue decomposition is

deeply connected to the SVD because of the following fact.

Fact 2. Let have the decomposition , where (). Let ,

denote the columns of respectively. Then,

i. has eigenvalue
 with corresponding eigenvectors .

ii. 0

1 has eigenvalues with corresponding eigenvalues

√
0

1.

Therefore, common methods for computing the SVD of a matrix are standard

eigensolvers such as QR iteration and Arnoldi/Lanczos iteration, or are slight

modifications of the same, such as the modified Golub-Reinsch method [Chan 1982]. We

note that any algorithm for SVD computation can only produce an approximation to the

true SVD of a matrix. The reason for this is an impossibility result which says that no

algorithm can find the exact eigenvalues of a general matrix. The proof of this claim is

that computing the eigenvalues of a matrix is equivalent to finding the roots of its

characteristic polynomial, and further, that every polynomial is the characteristic

polynomial of some matrix (known as the companion matrix). However, the Abel-Ruffini

theorem [37] says that there is no formula for finding the roots of polynomials of degree

≥ 5. This implies that no general algorithm exists for finding eigenvalues, which shows

the claim [8].

For most classical SVD algorithms, we have the following error guarantees due to finite

precision arithmetic [11]. Throughout, we let denote the machine-precision constant,

that is, the maximum relative error in storing a real number on a computer.

(1) The reported singular values ̃ are close to the true ones :

34

| ̃ |

(2) The reported left-singular vectors ̃ are close in angle (̃) to the true left-

singular vectors :

 (̃)
 ‖ ‖

| |

(3) The reported matrix ̃ ̃ ̃ are precisely the SVD of a matrix , where

‖ ‖ ‖ ‖

On dense datasets, the classical methods have complexity of (* +) to

compute the thin (or economy) SVD, defined as:

that is, the truncated SVD with . This makes them infeasible if * + is large.

This the motivation to approximation to the SVD.

3.3.3 Computing Approximations to the SVD

The truncated SVD of a matrix is mathematically guaranteed to be the optimal low rank

approximation in the sense described in Theorem 4. However, a natural question is

whether we can find a suboptimal approximation much quicker: provided the additional

error is not too great, one can typically use this instead of the truncated SVD. For a norm

‖ ‖ , the quantity of interest is

 (̂) ‖ ̂‖

 ‖ ‖

Where is the truncated SVD of and ̂ is an approximation to . If (̂) is

small, that means that ̂ is close to being an optimal low rank approximation to [8].

3.3.4 Linear time SVD approximation algorithm

3.3.4.1 The Algorithm

Given a matrix we wish to approximate its top k singular values and the

corresponding singular vectors in a constant number of passes through the data and

35

 () additional space and () additional time. The strategy behind the

LinearTimeSVD algorithm is to pick columns of the matrix , rescale each by an

appropriate factor to form a matrix , and then compute the singular values and

corresponding left singular vectors of the matrix , which will be approximations to the

singular values and left singular vectors of , in a sense we make precise later. These are

calculated by performing an SVD of the matrix to compute the right singular vectors

of and from them calculating the left singular vectors of .

The LinearTimeSVD algorithm is described in figure 1; it takes as input a matrix and

returns as output an approximation to the top left singular values and the corresponding

singular vectors. Note that by construction the SVD of is
 .

LinearTimeSVD Algorithm

Input: such that * +
 such that and

∑

 .

Output: and ()

1. For to ,

(a) Pick with Pr[-

(b) Set () () √ .

2. Compute and its SVD

3. Compute

 ()
 for

4. Return where
()

 , and () .

Figure 1: The LinearTimeSVD algorithm.

36

3.3.4.2 Analysis of the implementation and running time

Assuming thatnearly optimal sampling probabilities are used, then in the

LinearTimeSVD algorithm the sampling probabilities can be used to select columns to

be sampled in one pass and () additional space and time using the Select algorithm of

[13]. Given the elements to be sampled, the matrix can then be constructed in one

additional pass; this requires additional space and time that is (). Given ,

computing requires () additional space and () additional time, and

computing the SVD of requires () additional time. Then computing requires

 matrix-vector multiplications for a total of () additional space and time. Thus,

overall () additional space and () additional time are required by

the LinearTimeSVD algorithm. Note that the “description” of the solution that is

computable in the allotted additional space and time is the explicit approximation to the

top singular values and corresponding left singular vectors [31].

3.3.5 Constant time SVD approximation algorithm

3.3.5.1 The algorithm

Given a matrix we now wish to approximate its top k singular values and the

corresponding singular vectors in a constant number of passes through the data and

additional space and time that are (), independent of and . The strategy behind the

ConstantTimeSVD algorithm is to pick columns of the matrix , rescale each by an

appropriate factor to form a matrix and then compute approximations to the

singular values and left singular vectors of the matrix , which will then be

approximations to the singular values and left singular vectors of . In the

LinearTimeSVD algorithm of section 3.3.4, the left singular vectors of the matrix C are

computed exactly; as the analysis of section 3.3.4.2 showed, this computation takes

additional space and time that is linear in (assuming that is constant). With the

ConstantTimeSVD algorithm, in order to use only a constant () additional space and

time, sampling is performed again, drawing rows of to construct a matrix .

The SVD of is then computed; let

 . The singular

values and corresponding singular vectors so obtained are with high probability

37

approximations to the singular values and singular vectors of and thus to the

singular values and right singular vectors of . Note that this is simply using the

LinearTimeSVD algorithm to approximate the right singular vectors of by randomly

sampling rows of .

ConstantTimeSVD Algorithm

Input: such that

 () * +
 such that and ∑

 .

Output: () and a “description” of ̃ .

1. For to ,

(a) Pick with Pr[- , and save

*() +.

(b) Set () () √ (Note that Set is not explicitly constructed in

RAM)

2. Choose Set { }

 such that | ()|

‖ ‖

 ⁄ .

3. For to ,

(a) Pick with Pr[- ,

(b) Set () () √

4. Compute and its SVD.

5. If a ‖ ‖ bound is desired, set ⁄ ,

 Else if a ‖ ‖ bound is desired, set ⁄ .

6. Let * *
 () ‖ ‖

 ++

7. Return singular values * ()+
 and their corresponding singular

vectors * +
 .

 Figure 2: The ConstantTimeSVD algorithm [31].

38

The ConstantTimeSVD algorithm is described in Figure 2; it takes as input a matrix

and returns as output a “description” of an approximation to the top left singular values

and the corresponding singular vectors. This “description” of the approximations to the

left singular vectors of may, at the expense of one additional pass and linear additional

space and time, be converted into an explicit approximation to the lest singular vectors of

 by using ̌
 to compute ̌, whose columns are approximations of the left

singular vectors of . Note that in the ConstantTimeSVD algorithm is introduced to

bound small singular values of C that may be perturbed by the second level of sampling;

as indicated, the particular value of that is chosen depends on the norm bound which is

desired [31].

3.3.5.2 Analysis of the implementation and running time

Assuming that optimal sampling probabilities are used, then in the ConstantTimeSVD

algorithm the sampling probabilities pk can be used to select columns to be sampled in

one pass and () additional space and time using the Select algorithm of [13]. Given the

columns of to be sampled, we do not explicitly construct the matrix but instead

perform a second level of sampling and select rows of with probabilities * +

(described in ConstantTimeSVD algorithm) in order to construct the matrix . We do

this by performing a second pass and using () additional space and time, again using

the Select algorithm. Then in a third pass we explicitly construct ; this requires

additional space and time that is (). Then, given computing requires

 () additional space and () additional time, and computing the SVD of

requires () additional time. The singular values and corresponding singular vectors

thus computed can then be returned as the “description” of the solution. The total

additional time for the ConstantTimeSVD algorithm is then (); this is a

constant if and are assumed to be a constant. To explicitly compute ̌ would require

 matrix-vector multiplications which would require another pass over the data and

 () additional space and time [28].

39

3.4 Sampling-based techniques for matrix approximation

In this section, we introduce the two most common sampling-based techniques for matrix

approximation and compare their performance on a variety of tasks.

Notations

For a matrix , we define () as the column vector of T

and

 () as the row vector of T. We denote by the best rank k

approximation to , that is () ‖ ‖ where

* + , ‖ ‖ denoted the spectral norm and ‖ ‖ the Frobenius norm of a matrix.

Assuming that () we can write thin singular value decomposition (SVD) of

this matrix as
 where is a diagonal and contains the singular values of

sorted in decreasing order and and are corresponding to left and

right singular vector of . Then we can describe in terms of its SVD as

 . Let be a symmetric positive semidefinite (SPSD) kernel and

Gram matrix with () . We will write the SVD of K as , and

pseudo-inverse of ∑

 () () and when K is full rank.

For ∑

 () ()

 is the „best‟ rank-k approximation to K,

i.e. , () ‖ ‖ * + with

 ‖ ‖ (3.1)

‖ ‖ √∑

 (3.2)

We assume that we sample columns uniformly without replacement, though various

methods have been proposed to select columns [14].

Let C denote the matrix formed by these columns and W the matrix

consisting of intersection of these columns with the corresponding rows of K. Note

that W is the SPSD since K is SPSD [7]. Without loss of generality, the columns and

rows of K can be rearranged based on this sampling so that K and C can be written as

Follows:

 [

] And [

] (3.3)

40

3.4.1 Nystrom Method

The Nystrom method was initially introduced as a quadrature method for numerical

integration, used to approximate Eigen function solutions [15]. More recently, it was

presented in Williams and Seeger (2000) to speed up kernel algorithms and has been used

in applications ranging from manifold learning to image segmentation Nystrom method

uses W and C from (4.3) to approximate K, and for uniform sampling of columns, the

Nystrom method generates a rank – k approximation ̃ of K for defined by :

 ̃

 (3.4)

Here is the best rank approximation of for Frobenius norm and
 denotes the

pseudo-inverse of . If we write the SVD of as
 , plugging into

equation 4.4 we can

 ̃

 (√

)(

)(√

) (3.5)

And hence the Nystrom method approximates the top k singular values () and singular

vectors () of as:

 ̃ (

) and ̃ √

 (3.6)

The time complexity of compact SVD on W is () matrix multiplication C takes

 () hence the total complexity of Nystrom method is () [15].

3.4.2 Column sampling method

The Column sampling method was introduced to approximate the SVD of any

rectangular matrix. It generates approximations of by using the SVD of . If we write

the SVD of as
 then the column sampling method approximate the top

singular values () and singular vector () of as [27]:

 ̃ √

 And ̃

 (3.7)

41

The runtime of column sampling method is dominated by the SVD of . The algorithm

takes () time to perform compact SVD on c but still more expensive than the

Nystrom method as the constants for SVD are greater than those for the () matrix

multiplication step in the Nystrom method [15].

Low rank approximation

We will focus on the accuracy of low rank approximation of kernel matrices is tied to the

performance of kernel- based learning algorithms. Furthermore, the connection between

kernel matrix approximation and the hypothesis generated by several widely used kernel-

based learning algorithms has been theoretically analyzed. Hence, accurate low-rank

approximations are of great practical interest in machine learning. The optimal is is

given by:

 (3.8)

where the columns of are the singular vectors of corresponding to the top

 singular values of . We refer to
 as Spectral Reconstruction, since it uses

both the singular values and vectors of and
 as Matrix Projection, since it uses

only singular vectors to compute the projection of onto the space spanned by

vectors . These two low-rank approximations are equal only if and contains the

true singular values and singular vectors of . Since this is not the case of approximate

methods such as Nystrom and Column sampling these two measures generally give

different errors. Thus we analyze each measure separately in the following sections [22].

Matrix projection

For column sampling using (3.7), the low rank approximation via matrix projection is

 ̃
 ̃ ̃

 (())

 (3.9)

Where

 ()
 (

)
 . Clearly, if () .

Similarly, using (3.6), the Nystrom matrix projection is

42

 ̃

 ̃ ̃

 (

) (4.10)

As shown in (3.9) and (3.10), the two methods have similar expressions for matrix

projection, except that is replaced by a scaled . The scaling term appears only in

the expression for the Nystrom method. We now present theorem 1 and observations 1

and 2, which provide further insights about these two methods in the context of matrix

projection [14].

Theorem 1 The Column sampling and Nystrom matrix projections are of the

form
 , where is SPSD. Further, Column sampling gives the lowest

reconstruction error (measured in ‖ ‖) among all such approximations if .

Observation 1 For matrix projection for column sampling reconstruction C

exactly. This can be seen by block- decomposition as : , ̅-, where ̅ , -
 ,

and using (3.9)

 ̃
 () , () ̅- , ̅-.

Observation 2 For , the span of the orthogonalized Nystrom singular vectors equals

the span of ̃ . Hence, matrix projection is identical for Column sampling and

Orthonormal Nystrom for .

Matrix projection approximations are not necessarily symmetric and require storage of

and multiplication with K. Hence, although matrix projection is often analyzed

theoretically, for large-scale problems, the storage and computational requirements may

be inefficient or even infeasible [14].

Spectral reconstruction

Using (4.6), the Nystrom reconstruction is :

 ̃

 ̃ ̃ ̃

 (3.11)

Where , this approximation perfectly reconstructs three blocks of , and is

approximated by the Schur Complement of in . The Column sampling spectral

reconstruction has a similar from [14] (4.6):

43

 ̃
 ̃ ̃ ̃

 √

 (()

) (3.12)

In contrast of matrix projection, the scaling term now appears in the column sampling

reconstruction. To analyze the two approximations, we consider an alternative

characterization using the fact that for some . We define a zero-one

sampling matrix, , that selects columns from , that is, . Further,

 = , where contains sampled columns of =

 is the SVD of . We now present two results. Theorem 2 shows that the

optimal spectral reconstruction is data dependent and may differ from the Nystrom and

column sampling approximations. And theorem 3 reveals that in certain instances the

Nystrom method is optimal, while the column sampling methods enjoy no such guarantee

[12].

Theorem 2 Column sampling and Nystrom spectral reconstruction of rank are of the

form
 where is SPSD. Further, among all approximations of

this, neither the Column sampling nor the Nystrom approximation is optimal (‖ ‖).

Theorem 3 Let () and () . Then, the Nystrom

approximation is exact for spectral reconstruction. In contrast, Column sampling is exact

iff (()) .

3.4.3 Modified Nystrom Approximation

Given a symmetric matrix , one needs to select () columns of to form a

matrix to construct the standard or modified Nystrom approximation. Without

loss of generality, and can be permuted such that

 [

] And [

] (3.3)

Where is of size . The standard Nystrom approximation is defined by

 ̃

 (3.4)

And the modified Nystrom approximation is [24]

 ̃
 (())

44

Here the matrices and () are called the intersection

matrices. We see that the only difference between the two models is their intersection

matrices [15].

For the approximation constructed by either of the methods, given a target rank ,

we hope the error ratio

‖ ‖

‖ ‖
⁄ () (3.5)

is small as possible. For the standard Nystrom method, whatever a column selection

algorithm is used, the ratio must grow with the matrix size when is fixed [17].

Lemma 1 (Lower Error Bound of the Standard Nystrom Method). Whatever a column

sampling algorithm is used, there exists an SPSD matrix A such that the error

incurred by the standard Nystrom method obeys:

‖ ‖
 (

) ‖ ‖

‖ ‖ .

/ ‖ ‖

Here is an arbitrary target rank, and c is the number of selected columns.

Thus, when the matrix size is large, the standard Nystrom approximation is very

inaccurate unless a large number of columns are selected. By comparison, for the

modified Nystrom method, the error ratio remains constant for a fixed and a

growing . Therefore, the modified Nystrom method is more accurate than the standard

Nystrom method [16].

However, the accuracy gained by modified Nystrom method is the cost of higher time

and space complexities. Computing the intersection matrix only takes time

 () and space (), while computing () naively takes time (),

and space (), while computing () naively takes time ()

 (
) and space () [21].

45

Approximation algorithm
Data: Gram matrix and .

Result: matrix ̃.

 Pick columns of , uniformly at random with replacement; Let be the set of

indices of the sampled columns.

 Let be the matrix containing the sampled columns.

 Let be the submatrix of whose entries are .

 Return ̃ [8].

3.5 Summary

In this section, we discussed various low rank approximations algorithms. We discussed

two algorithms to compute the SVD of a matrix which do not require that

be stored in RAM, but additional space required is either linear in m + n or is a constant

independent of and ; error bounds for both algorithms are proven with respect to both

the Frobenius and spectral norms. We also present sampling based matrix approximation

i.e, standard Nystrom method and column sampling method for the selection of

representative columns. In the next chapter we presented application of the

approximation. Matrix approximation helps to speed up the kernel methods such as

support vector machine, kernel ridge regression, kernel principle component analysis.

46

Chapter 4

Applications

In previous chapter, we discussed various low rank approximation techniques based on

sampling and non-sampling that generate approximation of the kernel matrices. We

analyzed the effectiveness of these algorithms. In this chapter, we discuss specific

application of these approximations particularly in context of large scale applications. We

discus Nystrom low rank approximation for efficient linearization of a non-linear SVM,

and provide theoretical error analysis.

4.1 Support vector machine

Support Vector Machine (SVM) delivers state-of-the-art results in non-linear

classification, but the need to maintain a large number of support vectors poses a

challenge in large scale training and testing. To scale up kernel SVM on limited

resources, we propose a low rank linearization approach that transforms a non-linear

SVM to a linear one via a novel, approximate empirical kernel map computed from

efficient low-rank approximation of kernel matrices. Support vector machine is

introduced by Vapnik and Cortes in 1995 for classification has been widely used in

various scientific domains. The use of kernels allows the input samples to be mapped to a

Reproducing Kernel Hilbert Space (RKHS), which is crucial to solving linearly

nonseparable problems. While kernel SVMs deliver the state-of-the-art results, the need

to manipulate the kernel matrix imposes significant computational bottleneck, making it

difficult to scale up on large data[32].

Here, we discus general approach towards linearization kernel SVM for large scale

problems. This is achieved by low rank approximation to the kernel matrix of the kernel

matrix where the low-rank factors can be deemed as providing a novel, approximate

empirical kernel map that explicitly transforms the kernel SVM into a linear space; the

resultant linear SVM can then be solved efficiently using state-of-the-art linear solvers.

This framework has several desirable properties. First, it can be applied to any

47

(nonlinear) SVM variations and any Positive semi-definite (PSD) kernel; second, both the

dimension of the approximate kernel map and the number of “basis” in the decision

function can be freely controlled by the user, therefore guaranteeing efficient training and

testing; third, theoretical bounds can established on the approximation, which in turn

provides important guidance on sampling based low-rank approximation; last and most

important, this approach inherits the rich repesentability of kernel SVM as well as the

high efficiency of linear SVM, and ideally can be applied to arbitrarily large problems

with limited computing resources via advanced incremental learning techniques[33].

4.1.1 Transforming Non-linear SVM into Linear SVM

We shoe that a nonlinear SVM can be cast exactly as a linear SVM using symmetric

decomposition of kernel matrices. Suppose we are given a set of training pairs (),

where are concatenated as row in the training data matrix and

 are stored in the training level . Similarly we have testing

samples in . Assume we use a positive semi-definite(PSD) kernel function

 () 〈 () ()〉 where () is the associated mapping function

that implicitly maps the data point from the input space to feature space. Define the

kernel matrix on the training and testing data in blocks as [

],

is the kernel matrix defined on is defined on is

defined on and . Training a kernel SVM is to find the classifier ()

 (()) by solving the optimization[35]

‖ ‖ ∑ (4.1)

 (
 ()) .

where is the regularization parameter. In the following we discuss how to

transform the non-linear (kernel) SVM into linear SVM via decomposition of the PSD

kernel matrix.

48

Proposition 1 Given training data and , and test data . A kernel SVM (4.1)

trained on , , and tested on is equivalent to a linear SVM trained on , and

tested on , where

 [

] ,

 - (4.2)

is any decomposition of the psd kernel matrix evaluated on (), and the factor

 and can be deemed as “virtual samples” whose dimensionality is

the rank of .

Proof 1 The dual of the kernel SVM optimization (4.1) can be written as

 ∑ (4.3)

s.t. ∑

 (
),

where is the Lagrangian multipliers and is the entry-wise product between matrices.

The prediction on the testing data can be written as

 ̂ (), (4.4)

Let [

] and be the i

th
 columnin Assume we train a linear SVM using and ,

with the primal form

 ̅ ̅

 ‖ ̅‖ ∑ ̅ (4.5)

 (̅
) ̅

The dual can then be written as

 ̅

 ̅ ̅ ̅ ∑ ̅ (4.6)

s.t. ̅ ∑ ̅

49

 ̅ (
) (

)

Then the prediction on is

 ̅̂
 (̅) (4.7)

Comparing (4.3) and (4.6), we can see these two problems are equivalent and lead to the

identical optimal solution ̅ since
 (). Plugging the optimal

solutions into (4.4) and (4.7), and nothing the fact
 (4.2), we can see the

prediction in (4.4) and (4.7) are identical, i.e., ̂ ̅̂ . The kernel SVM (4.1) and linear

SVM (4.5) are equivalent.

Proposition 1 shows that any kernel SVM can as an equivalent linear SVM by

decomposition of the kernel matrix (), where serves as an empirical kernel

map or virtual samples. The positive semi-definiteness of the kernel matrix guarantees

that decomposition (4.2) always exists. When only training data is used, the

decomposition [34]

 (4.8)

That allows to recover the Langrangian multipliers in the original nonlinear decision

function (4.3).

Motivated by this observation, we consider learning large scale kernel SVM in two

stages: first, transform

it to a linear SVM using kernel eigenvalue decomposition; second, solve a linear SVM

efficiently. Obviously, the key to the success of such linearization is an efficient

decomposition of the PSD kernel matrix to obtain the empirical kernel map (4.8).

4.2 SVM Low-rank Linearization

The kernel matrix is the key building block of kernel methods: its entries recover the

inner product of the samples in the kernel induced feature space. This avoids explicit

computation of the mapping () (which can be potentially infinite dimensional) but

instead one only needs to perform kernel evaluations in the input space. Such “kernel

trick” allows the model to capture highly non-linear classification concepts, but at the

50

cost of manipulating the kernel matrix. In comparison, linear SVM assumes a

simple and explicit mapping (i.e., ()) which renders great potential computational

efficiency[32].

Proposition 1 provides a new perspective on the kernel map embodied through the

empirical kernel matrix . It shows that any exact decomposition of the kernel matrix can

preserve the dot products among feature induced kernel mapping () via a new,

empirical kernel map , as

 〈 () ()〉 〈 〉

This is the key to transforming a non-linear SVM into an explicit linear counterpart. It

bridges the gap between non-linear and linear SVMs and opens the possibility of training

large scale non-linear SVM by advanced linear solvers.

Given an kernel matrix on the training set, with the eigenvalue decomposition

 (4.9)

where contains orthogonal eigenvectors such that
 , and is a

diagonal matrix whose diagonal entries are eigenvalues () in descending order. Then the

empirical kernel map on training data (4.8) can be chosen as

 (4.10)

Theoretically, the eigenvalue decomposition provides the optimal rank- approximation

of the kernel matrix

 (̃) ‖ ̃ ‖

 ∑

 (4.11)

where ̃ is the rank- approximated matrix. In other words, given a dimension, , the

feature map

()

()
(

()
) (4.12)

51

composed of top eigenvectors/values is the optimal since the inner products it recovers is

the closest to among all rank- kernel maps, which equals sum of squared minimum

n−k eigenvalues as shown in (4.11) [34].

However, exact computation of the top eigenvectors requires () time and ()

space, which is not suitable for large problems. So we seek an approximate

decomposition here. We are interested in the Nystrom method that has gained great

popularity recently in scaling up kernel based algorithms [36]. Given a set of training

samples and the kernel matrix , the Nystrom method chooses a subset of samples

 and provides a rank- approximation of the kernel matrix as

 ̃

 (4.13)

where is the kernel matrix on and , and is the kernel

matrix on .

Next we show how to approximate the optimal kernel map (4.12) using the Nystrom low-

rank approximation (4.13) [37]. Let the eigenvalue decomposition of be
 ,

then (4.13) can be written as

 ̃ ̃ ̃

 ̃

 (4.14)

the rank-k approximation by the Nystrom method (4.13) provides a natural

approximation to the optimal kernel map (4.12). Consider the extreme case where the

landmark set in the Nystrom method is chosen as the whole data set: then ,

 , and as a result we have, when | |

Nystrom‟s approximation error in the form of Frobenius norm

52

 ‖ ̃ ‖ (4.15)

or in the form of spectral norm

 ‖ ̃ ‖ (4.16)

These are the error bound in the rank approximation[36]. We analyze the quality of

SVM classifier using Nystrom low rank approximation.

4.3 Summary

In this chapter we discussed support vector machine for large scale datasets. Kernel

methods suffer from highly time complexity. We discussed a non-linear SVM to a linear

one via a novel, approximate empirical kernel map computed form efficient low-rank

approximation of kernel matrices. We showed the effectiveness of the approximation in

theoretically. In next chapter, we discuss the implementation result of matrix

approximation and the low rank support vector machine using real data sets.

53

Chapter 5

Proposed Approach: Efficient Nystrom Method

In this section, we introduce sampling based technique for matrix approximation. We

assume that we sample columns uniformly without replacement. Our proposed method,

Efficient Nystrom method reduced the error for approximated matrix in term of

Frobenius norm and spectral norm.

Notation

Let be an arbitrary matrix. , as the row vector of and

 , as the column vector of ‖ ‖ represents the norm of the

vector. Moreover, () refers to the through columns of and () refers to

the through rows of . If () then the thin Singular Value

Decomposition of the as

 (5.1)

where is the diagonal matrix that contains the singular values of in decreasing order

and and both are orthogonal columns that contains the left singular

vectors and right singular vectors of for its singular values. We show that the best

 approximation for [22].

 () ‖ ‖ where * + and ‖ ‖ represents the

spectral norm and ‖ ‖ represents the Frobenius norm of the matrix. We resents the SVD

for top singular values of as

 (5.2)

where represents the diagonal matrix of top singular values of and is the

left singular vector and is the right singular vector.

Now let matrix, then we have to make it symmetric positive semidefinite

(SPSD) kernel or Gram matrix using linear kernel such that where

and be a SPSD matrix. SVD for the matrix as , where is the orthogonal

54

vector of and () is the diagonal matrix of . of the matrix

 is . We have to find the pseudo-inverse of as

 ∑

 () () (5.3)

And = , both are equal when is full rank matrix.

Let , then

 ∑

 () ()

 (5.4)

 is the best rank – approximation to . Quality of approximation is measure by the

Frobenius norm and spectral norm.

 () ‖ ‖ (5.5)

where * +, with ‖ ‖ and ‖ ‖ √∑

Now we focuses on the generating an low rank approximation ̃ of based on sampling

algorithm. We have to choose the column from the original matrix such as . There

is a assumption, we sample the columns uniformly without replacement, there are various

method to select the columns. We have to choose sampling matrices such as and ,

where denote the matrix formed by the sampling columns. And In this section,

we introduce sampling based technique for matrix approximation. We assume that we

sample columns uniformly without replacement. Efficient Nystrom method reduced the

error for approximated matrix in term of Frobenius norm and spectral norm [18].

Now we focuses on the generating an low rank approximation ̃ of based on sampling

algorithm. We have to choose the column from the original matrix such as . We

take an assumption, we sample the columns uniformly without replacement, there are

various method to select the columns. We have to choose sampling matrices such as

and , where denote the matrix formed by the sampling columns. denote

such as intersection of rows with the columns of . is the SPSD matrix so also be

a SPSD matrix [25].

55

Now we can write the and such as

 [

] And [

] (5.6)

We select columns from
 named as and columns from named as . Then

combine and form as D matrix with . We change the sampling technique as

describe in Nystrom method [12]. To generate the low rank approximation of , we need

 and SVD of .

5.1 Efficient Nystrom method
When Nystrom method introduced, it was used as quadrature method for numerical

integration and eigenfunction solution approximated by Nystrom method. Recently, to

speed up the kernel methods and used in the application of manifold learning to image

segmentation Nystrom method introduced by Williams and Seeger [20]. Accuracy of

efficient Nystrom method is calculated by the Frobenius norm‖ ̃‖ . Efficient

Nystrom method uses the and to approximate the kernel matrix . Efficient Nystrom

method is effectively able to generate the rank approximation ̃ of for , defined

by:

 (5.7)

where is the best - rank approximation of for the Frobenius norm and the

denotes the the pseudo-inverse of . SVD of the as
 , then put it in

equation (5.7) we can write

 (√

)(

)(√

)

Top singular values () and singular vectors ()of approximated by efficient

Nystrom method as:

56

 ̃ (

) and ̃ √

 (5.8)

Time complexity of SVD of is () and multiplication with takes (), so the

time complexity of the efficient Nystrom method is (). .

5.2 System design

Figure 1 Flow Chart of the Efficient Nystrom Method

Start

Input: 𝑋 𝑅𝑛 𝑛 and

𝑅𝑎𝑛𝑘(𝑋) 𝑟 𝑛

Choose Q and D from X as

 𝑙 𝑙 and 𝑛 𝑙

Apply efficient Nystrom

method on X using Q and D

Compute 𝑋̃𝑘
𝑒𝑛𝑦𝑠

 𝐷𝑄𝑘
 𝐷𝑇

and 𝑅𝑎𝑛𝑘(𝑋) 𝑘 𝑟

Stop

57

5.3 Algorithm (Efficient Nystrom method)

Input: or () , rank (M) =

Output: ̃ and (̃) ,

1. Check given matrix is SPSD

if yes then pass it for approximation

else make it SPSD using linear kernel()

2. for i=1 to .

Pick columns of and (̃) , rows

3. is the SPSD matrix containing the columns and rows

4. for i= to 2

pick next columns.

5. D is the matrix with size

6. Compute the SVD of the Q as

7. Select top singular values and vector

8. and are the top k singular values and singular vector

9. Return ̃ (

) and ̃ √

10. Compute ̃ ̃ ̃ ̃

11. Return ̃

Figure 2: Efficient Nystrom algorithm for generating the low rank approximation

5.4 Summary

In this chapter we discussed our proposed algorithm efficient Nystrom method. Efficient

Nystrom method uses different sampling method from standard Nystrom method. We

discussed algorithm and the flowchart of efficient Nystrom method. In the next chapter,

we show the implementation results of the standard Nystrom and efficient Nystrom

method.

58

Chapter 6

Implementation and results

6.1 Datasets

In the implementation, we used 3 types of data sets. First, random generated data with

1000 instances and 1000 attribute using linear kernel. Second, letter data set having

16000 of instances and 16 attribute. For making the kernel matrix (SPSD) of the letter

data set, need to be kernel function so we use radical basis function (sigma=.1). We have

to covert the matrix into kernel matrix because efficient Nystrom method is applicable

only for kernel matrix. Third, abalone data set having 4177 instances and 8 attribute. For

making the kernel matrix (SPSD) of the abalone data set, need to be a kernel function [].

Efficient Nystrom method gives low construction error as compare to the standard

Nystrom method.

Table 1 Description of the datasets used in our experiments comparing sampling-based matrix

approximations

Data set No. of Instance No. of attribute Kernel

Random data 1000 10000 Linear

Letters 16000 16 RBF

Abalone 4177 8 RBF

We compare the results of the all three datasets for sampling methods (standard Nystrom

and efficient Nystrom). Random data having large error as compare to real datasets. All

the same datasets used in the kernel methods such as support vector machine. In the

application part, we will show how approximation works for kernel methods. Table 1

represents the three data set, random data set, letters and abalone. We will compare

standard Nystrom method and efficient Nystrom method based on the results of these

data sets. Random data is self-generated and letter data set and abalone data set is

available on the UCI repository. UCI repository is online resource for data sets [9][10].

59

6.2 System requirements

1. Hardware requirements

 Windows 7 operating system or Ubuntu 12.04

 2 GB RAM

 2.4 GHz dual core processor

 160 GB hard drive

2. Software requirements

For statistical computing and graphics, there exists a programming language named R. T

language is widely used by the data miners and the statisticians for analyzing the data and

developing statistical software.

R was developed by the Ross Ihaka and Robert Gentleman and R Development Core

Team at the University of Auckland, New Zealand. R is named partly after the first letter

of first name of its first two authors and partly as the generalization of S language.

R is a GNU project. R is primarily written in C and FORTRAN. It is freely available

under the GNU General Public License. Pre-compiled versions of R are provided for

different operating systems. A command line interface is used by R. Graphical front-ends

are available for developing the user-friendly application in R. Various GUIs are

available for R programming like RStudio, Deduvcer, and Java GUI for R, Rattle GUI, R

Comander, RGUI, RWeka RKWard etc.

RStudio is used for simulating the proposed approach

RStudio is a free and cross-platform open source IDE (integrated development

environemnt) for R. Two editions are available for RStudio: RStudio Desktop and

RStudio Server. RStudio Desktop runs locally as a regular desktop application. Via

RServer, RStudio can be accessed using web browser. The R-Server runs on remote

Linux server. RStudio desktop is available for Microsoft Windows, Linux and Mac OS

X. RStudio is written in C++. Its GUI is developed by using Qt framework [26].

6.3 Results of matrix approximation

In the results section, we compare sampling methods for low rank approximation.

Comparisons of the approximation methods based on the error bound. The error bound is

calculated suing the Frobenius norm and spectral norm. We will show the comparisons of

the sampling methods based on the three types of data set. One is random data set and

reaming two is the real data sets. Results of the low rank approximation methods are

60

simulated in R. To implement the sampling based approximation, we have to need some

R-package such as matrix, kernlab, etc.

Table 2 Analysis of two sampling methods based on random generated data with various ranks of the

matrix in Frobenius norm

Target rank Standard Nystrom method Efficient Nystrom method

90 313.8549 305.1442

80 319.1229 310.2205

70 326.0917 315.2669

60 332.444 322.5728

50 340.3372 330.8423

Table 2 shows the results based on the Frobenius norm. Frobenius norm shows the

quality of the approximation. Efficient Nystrom method has good quality of low rank

approximation as compared the standard Nystrom method. As the rank of the matrix

increase the approximation error becomes less. Means we select more spectral feature as

increase the rank. In the table 2, we take the rank form 50 to 90. When the rank is 90 the

Frobenius error for efferent Nystrom is 305.1442 and for standard Nystrom is 313.8549.

And decrease the rank up to 50 then this error become 330.8423 for the efficient Nystrom

method and 340.3372 for standard Nystrom method. So the results show that efficient

Nystrom method has better quality bound.

Figure 3 represents the comparison graph between the standard Nystrom method and

efficient Nystrom method. Plots show that efficient Nystrom method has low

reconstruction error as compare to the standard Nystrom method. These errors known as

the Frobenius error that gives the quality of low rank approximation.

61

Figure 3 Plot between standard Nystrom method and efficient Nystrom method

using Frobenius norm for the random data

Efficient Nystrom method and standard Nystrom method are based on sampling method.

We perform the approximation only same columns of the original matrix instead of the

whole matrix. We select the sampled columns using uniform sampling algorithms

without replacement. If we found the 100% accuracy, then the Frobenius error becomes

zero. Means there is no error in the approximation.

Table 3 Analysis of two sampling methods based on random generated data with various ranks of the

matrix in spectral norm

Target rank Standard Nystrom method Efficient Nystrom method

90 30.20235 27.44825

80 31.46203 28.92563

70 34.61651 32.02353

60 34.20472 33.62095

50 36.94372 35.45737

Table 3 shows the analysis of the results based on spectral norm. It shows the comparison

between standard Nystrom method and the efficient Nystrom method based on the

spectral norm.

280

290

300

310

320

330

340

350

90 80 70 60 50

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

Rank of the matrix

Standard Nystrom method

Efficient Nystrom method

62

We show the result based on the Frobenius norm and spectral norm. Both of norms show

the quality of the approximation so efficient Nystrom method has the good approximation

because it has a low reconstruction error. Frobenius and spectral norm shows the error

bound with various ranks the approximation.

Figure 4 Plot between standard Nystrom method and efficient Nystrom method

using spectral norm for the random data

Figure 4 shows the plots of the spectral error. The efficient Nystrom method has a low

reconstruction error as compared to the standard Nystrom method. Here, we only show

the comparisons between the sampling based methods. There exist other approximation

methods, but they have a high time complexity, so we prefer only the sampling methods.

Sampling methods are much faster than other approximation methods such as truncated

SVD. But sampling methods suffer from high inaccuracy, but that inaccuracy is tolerable

so we prefer sampling methods and try to improve the quality of bounds in Frobenius

norm and spectral norm.

20

22

24

26

28

30

32

34

36

38

90 80 70 60 50

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

Rank of the matrix

Standard Nystrom method

Efficient Nystrom method

63

Table 4 Analysis of two sampling methods based on letter data set with various ranks of the matrix in

Frobenius norm

Target rank Standard Nystrom method Efficient Nystrom method

50 35.97377 34.26584

60 35.30443 33.93821

70 34.83593 33.65025

80 34.48521 33.37971

90 34.14554 33.00249

100 33.82525 32.76092

Table 4 shows the analysis of the sampling based methods on the letter data set.

Description about the letter date set discussed in the 6.1. It shows the error bound based

on the Frobenius norm and compare both the sampling methods so efficient Nystrom

methods has a low reconstruction error. For the letter data set, we use radial basis

function kernel to make kernel matrix with sigma value 0.1.

If the target rank is 50 then the standard Nystrom method gives 35.97277 error bound

while efficient Nystrom method gives 34.2684. And when we choose the target rank 100

then qualities of approximation improve. We have done the simulation on the different

target range, and then analyze the results.

Figure 5 : Plot between standard Nystrom method and efficient Nystrom method

using Frobenius norm for the letter data set

31

32

33

34

35

36

37

50 60 70 80 90 100

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

Rank of Matrix

Standard nystrom

Efficient nystrom

64

Figure 5 shows the plot between the standard Nystrom method and efficient Nystrom

method for the letter data set based on the Frobenius norm. Figure 4 represents the

spectral error for the sampling methods. If the target rank increase then the spectral error

decrease. If we increase the target rank then approximated matrix become very close to

the original matrix.

Table 5 Analysis of two sampling methods based on letter data set with various ranks of the matrix in

Frobenius norm

Target rank Standard Nystrom method Efficient Nystrom method

50 5.837304 5.074329

60 5.048819 4.601283

70 5.031492 4.538082

80 5.03018 4.489118

90 5.029517 4.453372

100 5.026945 4.282975

Table 5 shows the analysis of the results for the sampling methods. It shows the spectral

error for the standard Nystrom method and efficient Nystrom method. If target rank is 50

then spectral error for the standard Nystrom is 5.837304 and spectral error for the

efficient Nystrom method. As we increase the target rank then spectral error decreases.

For the target rank is 100 then spectral errors for standard Nystrom is 5.026945 and

efficient Nystrom method is 4.282975. These results show the quality of the

approximation in terms of the spectral norm. We use radial basis function kernel to make

for letter data set as kernel matrix with sigma=0.1.

Efficient Nystrom method has low construction error for the real data sets as compare to

the standard Nystrom method. If matrix having good spectral feature then we get good

approximation. Our proposed sampling based low rank approximation method having

low construction error.

65

Figure 6 Plot between standard Nystrom method and efficient Nystrom method

using spectral norm for the letter data set

Figure 6 shows the plot between the standard Nystrom method and efficient Nystrom

method. It shows error bound for the sampling methods. These results are based on the

letter data sets using spectral norm. Approximation error shows the quality of the

approximation. Target rank of the matrix is increased then spectral error will decrease so

that shows the approximation error of the targeted low rank matrix.

All these results show the quality of matrix approximation based on the sampling method.

The efficient Nystrom method has a low construction error as compared the standard

Nystrom method. As compared to previous data sets for the spectral error, letter data set

has a low reconstruction error. Because letter data set having high dimensions so it gives

less error. Matrix approximation works well for the large data sets. For the application

point of view, we use the small matrix instead of large matrix. Matrix approximation

helps to speed up the kernel method because we use the small matrix to find the kernel of

the matrix. For example, support vector machine used for the classification. For large

data, SVM does not work well, so we have to apply the matrix approximation over the

large data. Matrix approximation helps to speed up the kernel method such as support

vector machine, kernel principal component analysis and kernel ridge regression.

3

3.5

4

4.5

5

5.5

6

50 60 70 80 90 100

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

Target rank of matrix

Standard nystrom

Efficient nystrom

66

Table 6 Analysis of two sampling methods based on abalone data set with various ranks of the matrix

in Frobenius norm

Target rank Standard Nystrom method Efficient Nystrom method

50 56.20786 54.2193

60 51.36662 49.03168

70 43.0483 42.3812

80 40.4295 39.0392

90 38.59548 37.18314

100 36.05404 34. 489118

Table 6 shows the analysis of standard Nystrom method and efficient Nystrom method

based on the Frobenius norm for the abalone data set. If the target rank is 50 then

Frobenius error for the standard Nystrom method is 56.20786 and for the efficient

Nystrom method is 54.2193. So Frobenius norm gives the error bound for the quality of

matrix approximation for the abalone data set. For abalone data, we use radial basis

function kernel with sigma = 1.

Figure 7 Plot between standard Nystrom method and efficient Nystrom method

using Frobenius norm for the abalone data set

Figure 7 shows the plot between the standard Nystrom and efficient Nystrom method for

the abalone dataset using Frobenius norm. After the analysis of the plot, efficient

30

35

40

45

50

55

60

50 60 70 80 90 100

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

Target rank of the matrix

Standard nystrom
method

Efficient Nystrom
method

67

Nystrom has low reconstruction error as compared standard Nystrom for the abalone data

set based on the Frobenius norm. We increase the target rank for the approximation, then

we get low reconstruction error for the abalone data set. After the increasing the rank of

the approximated matrix, we get the quality of the approximation. Means highly rank

with minimum error, but our target is low rank and minimum error. We have to minimize

the error of the approximation so our proposed algorithms having minimum

reconstruction error.

Table 7 Analysis of two sampling methods based on abalone data set with various ranks of the

matrix in spectral norm

Target rank Standard Nystrom method Efficient Nystrom method

50 38.71982 36.03871

60 37.31203 35.4216

70 29.60764 25.52193

80 28.04498 24.83014

90 26.55803 22.01872

100 24.10108 21.28443

Table 7 shows the error analysis of the standard Nystrom and efficient Nystrom method

based on spectral norm for the abalone data set. Abalone data set also gives the low

construction error for the efficient Nystrom method. These three data sets used in the

application to show the effectiveness of the approximation in the kernel based methods.

We will extract the small amount of information from the original training data. Spectral

norm gives the information related to the error of the approximation. But Frobenius norm

gives the best approximation error as compared to the spectral norm. Real data set works

well for the approximation as compared to the random dataset. In the implementation, we

show the approximation error with the three datasets. After analyze the results, efficient

Nystrom method has minimum reconstruction error as compared to the standard Nystrom

method. If target rank is 50 then the spectral error for the standard Nystrom method is

38.71982 and for efficient Nystrom method are 36.03871. When target rank is 100 then

spectral norms for the standard Nystrom method is 24.10108 and for the efficient

Nystrom method is 21.28443. According these norms we find the conclusion that

efficient Nystrom gives better accuracy.

68

Figure 8 Plot between standard Nystrom method and efficient Nystrom method

using norm for the abalone data set

Figure 8 shows the results of the abalone data set based on the spectral norm. After

analysis the graph, we found that efficient Nystrom method has a good approximation for

the kernel matrix. Here, Radius Basis Function is used in the implementation.

6.4 Results of the support vector machine

Here, we show the application of the matrix approximation. Matrix approximation helps

to speed up the kernel algorithms such as support vector machine, kernel ridge

regression, and kernel principal component analysis. Here, we show the computation time

of the support vector machine. We take approximated matrix instead of original matrix as

the training data. And the approximated matrix is small as comparison of the original

matrix. So it reduced the computation time. At the time of calculating the kernel of the

training data, we use small matrix for calculating the kernel. Size of the small matrix is

 and it contains the orthogonal matrix and square root of the diagonal matrix. After

calculating the kernel of the matrix, small kernel matrix multiplies by its transpose that is

same as the kernel of the original matrix. But there is some error in the training data. And

these errors are tolerable for the application. We will show computation with three data

sets. Description of the data sets already explained in the section 6.1. First is random data

and remaining two are real data sets.

15

20

25

30

35

40

50 60 70 80 90 100

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

Target rank of the matrix

Standard Nystrom
method

Efficient nystrom
method

69

Table 8 Computation time of Support vector machine without approximation and using the standard

Nystrom method and efficient Nystrom method

Target Rank Computation time of SVM

using standard Nystrom

method (in seconds)

Computation time of

SVM using efficient

Nystrom method (in

seconds)

50 1.356364 1.4600258

60 1.4280241 1.4990289

70 1.4590261 1.5270288

80 1.479027 1.581033

90 1.5410309 1.594034

100 1.553031 1.600034

Table 8 shows the computation time of the approximation methods. Efficient Nystrom

has better accuracy as compare to the standard Nystrom method. But for random data set,

efficient Nystrom method is having more computation time as compare to the standard

Nystrom. Computation time for the support vector machine is 4.471313 seconds without

approximation. After applying the standard Nystrom and efficient Nystrom method,

computation time becomes very less. In table 8, computation time for various rank of the

matrix using Nystrom method and efficient Nystrom method. As we increase the rank of

approximated matrix, the computation time increase. When target rank of the matrix 50

then computation time is 1.356364 seconds using standard Nystrom method and

computation time for the efficient Nystrom method is 1.4600258 seconds. If we increase

the target rank 100 then the computation time is 1.553031 seconds using standard

Nystrom method and computation time is 1.600034 second for the efficient Nystrom

method.

70

Figure 9 Plot between the computation time of standard Nystrom method and

efficient Nystrom for random data in SVM

Figure 9 represents the computation time of the support vector machine using the

approximated matrix. For the random data set, standard Nystrom work well in terms of

the computation time. Regression problems are solved by the support vector machine. For

large scale data set, support vector machine having high time complexity. Due to such

reason, need to be an efficient implementation using the matrix approximation.

Table 9 Computation time of Support vector machine using the standard Nystrom method and

efficient Nystrom method for abalone dataset

Target Rank Standard Nystrom Efficient Nystrom

50 1.2580152 1.2560141

60 1.295017 1.2800162

70 1.292016 1.2740159

80 1.327019 1.292017

90 1.3360188 1.301017

100 1.35602 1.3100178

Table 9 represents the computation time of the support vector machine for the abalone

dataset. Efficient Nystrom method takes low computation time as compare to the

standard Nystrom method if such approximation used for the matrix approximation. If

Support Vector Machine (SVM) uses original training data set for classification then it

takes 3.596205 seconds in computation. And with approximation it takes 1.2580152

seconds if the target rank is 50 and if target rank is 100 then it takes 1.35602 seconds.

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

50 60 70 80 90 100

C
o

m
p

u
ta

io
n

 t
im

e
(i

n
 s

e
co

n
d

s)

Target rank

Standard Nystrom

Efficient nystrom

71

Figure 10 Plot between the computation time of standard Nystrom method and

efficient Nystrom for abalone data set in SVM

Figure 10 represents the computation time of the efficient Nystrom method and standard

Nystrom method in the abalone dataset. Efficient Nystrom method is having low

computation cost. If we use original training dataset in the classification using support

vector machine. Then support vector machine is having high computation cost so we

have to apply low rank approximation on the training data to speed up the kernel

methods.

Table 10 Computation time of Support vector machine using the standard Nystrom method and

efficient Nystrom method for letter dataset

Target Rank Standard Nystrom Efficient Nystrom

50 1.2690151 1.2590139

60 1.2750161 1.272016

70 1.2800159 1.2870159

80 1.3290188 1.2860172

90 1.3320189 1.2940171

100 0.34202 1.3160191

Table 10 shows the results of the computation time of the support vector machine for the

letter data set. Original dataset takes 3.3070168 seconds to classify the data using support

vector machine. After the approximating, the training dataset is becomes smaller as

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

50 60 70 80 90 100

C
o

m
p

u
ta

io
n

 t
im

e
 (

In
 s

e
co

n
d

s)

Target rank

Standard Nystrom

Efficient Nystrom

72

compared to the original dataset. So, efficient implementation of the SVM takes

1.2690151 seconds to classify the data.

Figure 11 Plot between the computation time of standard Nystrom method and

efficient Nystrom for letter data set in SVM

Figure 11 represents the comparison between the computation time of the efficient

Nystrom method and the standard Nystrom method. Both of the sampling based

approximation methods helps to speed up the kernel methods. As we increase the target

rank of the matrix, computation time will increase. Without approximation it takes

3.3070168 seconds.

6.5 Summary
In this chapter, we discuss the effectiveness of low rank approximation in support vector

machine. We compare various sampling methods for matrix approximation. Our

proposed method is superior for other sampling based methods. We have done the

experiments on various dataset such as letter dataset and abalone dataset. Based on the

results of these datasets, we claim that efficient Nystrom method is superior than standard

Nystrom.

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

50 60 70 80 90 100

C
o

m
p

u
ta

io
n

 t
im

e
 (

in
 s

e
co

n
d

s)

Target rank

Standard Nystrom

Efficient Nystrom

73

Chapter 7

Conclusion

We addressed the question how can large scale data handled by the machine learning

algorithm. We focused on this problem and find the effective solution of this problem; we

have to generate the low rank approximations based on sampling methods. In chapter 5,

we discussed efficient Nystrom method to generate the low rank approximation. In

chapter 6, our result shows that efficient Nystrom method is superior for large datasets.

We showed the effectiveness of low rank approximation on the kernel methods. We

showed the various comparisons of the sampling based methods. In chapter 2, we

discussed various decomposition methods. SVD is superior method for matrix

decomposition. In chapter 3, we discussed previous work as literature survey. In efficient

Nystrom method, we introduced new sampling method which is superior as previously

discussed.

Though efficient Nystrom method reduces the error but still some improvements are

required which will be considered in future. I will try to implement efficient sampling

method to reduce the error.

74

References

[1] Olver, Peter J., and Chehrzad Shakiban. "Applied linear algebra." Upper Saddle River

journal, 2006.

[2] Krzysztof simek , “Properties of a singular value decomposition based dynamical

model of gene expression data, “ International Journals Applied Math. Computer

Science, Vol. 13, No. 3, pp. 337–345, 2003.

[3] Forsythe, George Elmer, and Cleve B. Moler. “Computer solution of linear algebraic

systems” Englewood Cliffs, Prentice-Hall, vol. 7, 1967.

[4] Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., & Willsky, A. S., “Rank-sparsity

incoherence for matrix decomposition”, SIAM Journal on Optimization, vol. 21, no. 2,

pp. 572-596, 2011.

[5] Parlett, Beresford N., “The symmetric eigenvalue problem”, Englewood Cliffs,

Prentice-Hall, Vol. 7, 1980.

[6] Belitskii, Genrikh Ruvimovich, and Yurii I. Lyubich. "Matrix norms and their

applications”, Springer, 1988.

[7] Hofmann, T., Schölkopf, B., & Smola, A. J.” Kernel methods in machine learning”,

The annals of statistics, pp. 1171-1220, 2008.

[8] Aditya Krishna Menon and Charles Elkan “Fast Algorithms for Approximating the

Singular Value Decomposition,” ACM Transactions on Knowledge Discovery from

Data, TKDD- 2011, vol. 5, no. 2, article no. 13, pp. 1-36, feb. 2011.

[9] David J. Slate,”Letter Recognition Data Set”, UCI Machine Learning Repository,

available: https://archive.ics.uci.edu/ml/datasets/Letter+Recognition.

[10] Warwick J Nash, Tracy L Sellers, Andrew J Cawthorn and Wes B Ford(1994),”

Abalone DataSet”, Availeble: https://archive.ics.uci.edu/ml/datasets/Abalone.

https://archive.ics.uci.edu/ml/datasets/Letter+Recognition

75

[11] Golub, G. H. and Van loan, C. F., “Matrix Computations,” 3rd Ed. Johns Hopkins

University Press, Baltimore, MD, USA pp. 374-426, 1996.

[12] Watson, G. Alistair, "Characterization of the subdifferential of some matrix norms",

Linear Algebra and its Applications, vol. 170, 33-45, 1992.

[13] Zhang, Jimeng Sun Yinglian Xie Hui, and Christos Faloutsos, "Less is more:

Compact matrix decomposition for large sparse graphs," Proceedings of the Seventh

SIAM International Conference on Data Mining. Society for Industrial Mathematics, Vol.

127, p.366, 2007.

[14] Ameet Talwalkar, Sanjiv Kumar, Mehryar Mohri and Henry Rowley, “Large-scale

SVD and Manifold Learning,” Journal of Machine Learning Research vol. 14, pp. 3129-

3152,jan 2013.

[15] Petros Drineas , Michael W. Mahoney, “On the Nystrom Method for Approximating

a Gram Matrix for Improved Kernel-Based Learning,” Journal of Machine Learning

Research, vol. 6,pp. 2153-2175, 2005.

[16] Zhang, K., Tsang, I., & Kwok, J., “Improved Nystrom low-rank approximation and

error analysis,” Proceedings of the 25th international conference on Machine learning,

pp. 1232-1239, 2008.

[17] Dimitris Achlioptas and McSherry ,“Fast Computation of Low Rank Matrix

Approximations,” Journal of the ACM,vol. 54 pp. 601-618, 2007.

[18] Krzysztof Simek ,“properties of a singular value decomposition based dynamical

model of gene expression data,“ International Journal of applied mathematics and

computer science, Vol. 13 , No. 3, 337–345, 2003.

[19] Williams, C. K. I., & Seeger, M., “Using the Nystrom method to speed up kernel

machines,” Proceedings of the 14th Annual Conference on Neural Information

Processing Systems, pp. 682-688, 2000.

[20] Fowlkes, Charless, "Spectral grouping using the Nystrom method," Pattern Analysis

and Machine Intelligence, IEEE Transactions, vol.26 pp. 214-225, 2004.

76

[21] Sanjiv kumar, Meheyar mohri, Ameet Talwalkar, “Sampling methods for the

Nyström method,” The journal of Machine Learning Research vol 13, pp. 981-1006.

2012.

[22] Petros Drineas, Michael W. Mahoney, “On the Nystrom Method for Approximating

a Gram Matrix for Improved Kernel-Based Learning,” Journal of Machine Learning

Research,vol. 6,pp. 2153-2175, 2005.

[23] Zhang, K., Tsang, I. & Kwok, J.,” Improved Nystr¨om low-rank approximation and

error analysis,” International Conference on Machine Learning, pp. 1232-1239 2008.

[24] Aditya Krishna Menon and Charles Elkan, “Fast Algorithms for Approximating the

Singular Value Decomposition,” ACM transaction knowledge discovery data,vol. 5,pp.

1556-4681, feb, 2011.

[25] Kumar, Sanjiv, Mehryar Mohri, and Ameet Talwalkar, "Ensemble nystrom

method," Advances in Neural Information Processing System,vol. 22, pp. 1060-1068,

2009.

[26] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar, “On sampling-based

approximate spectral decomposition,” Proceedings of the 26th Annual International

Conference on Machine Learning, pp. 553-560, 2009

[27] Baatz, Wolfgang, Massimo Fornasier, and Jan Haskovec, "Mathematical methods

for spectral image reconstruction," Scientific Computing and Cultural Heritage. Springer

Berlin Heidelberg,pp. 3-10, 2013

[28] Zhang, Kai, Ivor W. Tsang, and James T. Kwok, "Improved Nyström low-rank

approximation and error analysis," Proceedings of the 25th international conference on

Machine learning, pp. 1232-1239, 2008

[29] Achlioptas, Dimitris, and Frank McSherry, "Fast computation of low rank matrix

approximations," Proceedings of the thirty-third annual ACM symposium on Theory of

computing, pp. 611-618, 2001

[30] Drineas, Petros, Ravi Kannan, and Michael W. Mahoney, "Fast Monte Carlo

algorithms for matrices II: Computing a low-rank approximation to a matrix," SIAM

Journal on Computing, vol. 36, no. 1, pp. 158-183, 2006

77

[31] LB Chang, Z Bai, SY Huang, CR Hwang, "Asymptotic error bounds for kernel-

based Nyström low-rank approximation matrices," Journal of Multivariate Analysis,vol

120, pp. 102-119, 2013

[32] Zhang, K., Lan, L., Wang, Z., & Moerchen, F. “Scaling up kernel SVM on limited

resources: A low-rank linearization approach”, International Conference on Artificial

Intelligence and Statistics pp. 1425-1434, 2012.

[33] Nguyen, XuanLong, Ling Huang, and Anthony D. Joseph. "Support vector

machines, data reduction, and approximate kernel matrices." Machine Learning and

Knowledge Discovery in Databases, Springer Berlin Heidelberg, pp. 137-153, 2008.

[34] Collobert, Ronan, and Samy Bengio. "SVMTorch: Support vector machines for

large-scale regression problems." The Journal of Machine Learning Research, vol. 1,

143-160, 2001.

[35] Kulis, Brian, Mátyás Sustik, and Inderjit Dhillon. "Learning low-rank kernel

matrices." Proceedings of the 23rd international conference on Machine learning, pp.

505-512, ACM, 2006.

[36] Ross Ihaka and Robert(2010), “R-Stdio”,Available: www.rstudio.com

[37] Auslander, Maurice, “Representation theory of Artin algebras”, Cambridge

University Press, Vol. 36,1997.

http://www.rstudio.com/

