
S P R I N G E R  B R I E F S  I N  CO M P U T E R  S C I E N C E

Xuxian Jiang · Yajin Zhou

Android Malware



SpringerBriefs in Computer Science

Series Editors

Stan Zdonik
Peng Ning
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin Shen
Borko Furht
V. S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028


Xuxian Jiang • Yajin Zhou

Android Malware

123



Xuxian Jiang
Yajin Zhou
North Carolina State University
Raleigh, NC
USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4614-7393-0 ISBN 978-1-4614-7394-7 (eBook)
DOI 10.1007/978-1-4614-7394-7
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013938162

� The Author(s) 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



For Matthew, Grace, and Rainna



Acknowledgments

This book is based on our years-long research conducted to systematically analyze
emerging Android malware. Some of our earlier research results and findings were
reported in an IEEE conference paper entitled Dissecting Android Malware:
Characterization and Evolution, which was presented at the IEEE Symposium on
Security and Privacy (often mentioned as Oakland conference in the security
community) in May, 2012 [77]. During and after the conference, we were pleased
to receive and hear inquiries from colleagues with encouraging comments on the
systematization of knowledge work that has been conducted in our conference
paper. Partially because of that, we are motivated to expand our work and hope
such efforts will be of service to the security and privacy community. Further, as
part of that, we have released corresponding malware dataset for our study under
the name Android Malware Genome Project to the community.

With that, we want to take this opportunity to thank our collaborators, Dongyan
Xu, Peng Ning, Xinyuan Wang, Shihong Zou, and others, whose valuable insights
and comments greatly enriched our work. The authors are also grateful to col-
leagues in the Cyber Defense Lab at NC State University, especially Tyler Bletsch,
Zhi Wang, Michael Grace, Deepa Srinivasan, Minh Q. Tran, Chiachih Wu, Wu
Zhou, and Kunal Patel. Special thanks also go to Susan Lagerstrom-Fife and our
publisher for their great help and patience!

This research was supported in part by the US National Science Foundation
(NSF) under Grants 0855297, 0855036, 0910767, and 0952640. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, for the NSF.

vii



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A Survey of Android Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Malware Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Malware Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Malware Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Malicious Payloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Permission Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Malware I: Plankton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Phoning Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Dynamic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Malware II: DroidKungFu . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Root Exploits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Command and Control (C&C) Servers . . . . . . . . . . . . . 24
3.2.3 Payloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Obfuscation, JNI, and Others . . . . . . . . . . . . . . . . . . . . 26

3.3 Malware III: AnserverBot. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Anti-Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Command and Control (C&C) Servers . . . . . . . . . . . . . 28

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1 Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Malware Detection and Defense . . . . . . . . . . . . . . . . . . 33
5.1.2 Smartphone (Apps) Security. . . . . . . . . . . . . . . . . . . . . 34

5.2 Conference and Workshop Proceedings . . . . . . . . . . . . . . . . . . 34

ix

http://dx.doi.org/10.1007/978-1-4614-7394-7_1
http://dx.doi.org/10.1007/978-1-4614-7394-7_1
http://dx.doi.org/10.1007/978-1-4614-7394-7_2
http://dx.doi.org/10.1007/978-1-4614-7394-7_2
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec8
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec8
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec9
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec9
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec14
http://dx.doi.org/10.1007/978-1-4614-7394-7_2#Sec14
http://dx.doi.org/10.1007/978-1-4614-7394-7_3
http://dx.doi.org/10.1007/978-1-4614-7394-7_3
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-7394-7_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-7394-7_4
http://dx.doi.org/10.1007/978-1-4614-7394-7_4
http://dx.doi.org/10.1007/978-1-4614-7394-7_5
http://dx.doi.org/10.1007/978-1-4614-7394-7_5
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-7394-7_5#Sec4


6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x Contents

http://dx.doi.org/10.1007/978-1-4614-7394-7_6
http://dx.doi.org/10.1007/978-1-4614-7394-7_6


Acronyms

ACM Association for Computing Machinery
AES Advanced Encryption Standard
AOSP Android Open Source Project
API Application Programming Interface
ASLR Address Space Layout Randomization
C&C Command and Control
CCS Computer and Communications Security
CNN Cable News Network
DES Data Encryption Standard
DRM Digital Rights Management
DVM Dalvik Virtual Machine
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IMEI International Mobile Equipment Identity
J2ME Java 2 Platform Micro Edition
JAR Java Archive
JNI Java Native Interface
MMS Multimedia Messaging Service
OS Operating System
PC Personal Computer
QR Code Quick Response Code
SHA1 Secure Hashing Algorithm 1
SIM Subscriber Identification Module
SMS Short Message Service
SQL Structured Query Language
SSL Secure Sockets Layer
UI User Interface
URL Uniform Resource Locator
WAP Wireless Application Protocol
WIFI Wireless Fidelity
XN eXecute Never

xi



Chapter 1
Introduction

Recent years have witnessed an explosive growth in smartphone sales and adoption.
According to CNN [39], smartphone shipments have tripled in the past three years
from 40 million to about 120 million. The year of 2011 even marks as the first time
in history that smartphones have outsold personal computers. Unfortunately, the
increasing adoption of smartphones comes with the growing prevalence of mobile
malware. As the most popular mobile platform, Google’s Android overtook others
(e.g., Symbian) to become the top mobile malware platform. A recent Kaspersky
report [22] highlights that “among all mobile malware, the share of Android-based
malware is higher than 46 % and still growing rapidly.” Another similar report from
Juniper Networks [17] also alerts that there is “400 percent increase in Android-based
malware since summer 2010.”

Recognizing the rampant growth of Android malware, this book aims to
de-mysterize emerging Android malware and present a systematic characterization
of them. One main purpose here is to help readers to gain an in-depth understanding
of Android malware so that an effective mitigation solution can be practically devel-
oped and deployed. In addition, we realize that the community is largely constrained
by the lack of a comprehensive mobile malware dataset to start with. To change that
and also engage the research community to better our understanding and defense, we
accordingly release our dataset to the community under the name Android Malware
Genome Project 1 Our dataset so far contains 1260 Android malware samples (with
distinct SHA1 values) in 49 different Android malware families and covers the major-
ity of existing Android malware, ranging from their debut in August 2010 to recent
ones in October 2011. The dataset is made possible from more than one year effort in
collecting related malware samples, including manual or automated crawling from
a number of Android marketplaces.

Based on the collected malware samples, we perform a relatively comprehen-
sive survey and aim to characterize these malware based on their detailed behavior

1 The Android Malware Genome Project is accessible at http://www.malgenomeproject.org/. To
prevent our dataset from being misused, we may require verifying user identity or request necessary
justification before the dataset can be downloaded. More details will be described in Chap. 2.

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science, 1
DOI: 10.1007/978-1-4614-7394-7_1, © The Author(s) 2013

http://www.malgenomeproject.org/
http://dx.doi.org/10.1007/978-1-4614-7394-7_2


2 1 Introduction

break-down, including their installation methods, activation, and built-in malicious
payloads. We believe such survey is instrumental to not only detecting possible out-
breaks of certain Android malware in the wild, but also facilitating our understanding
and shedding light on possible defenses.

As an example, from the collected 1260 malware samples, we find that 1083 of
them (or 86.0 %) are repackaged versions of legitimate applications with malicious
payloads, which indicates the policing need of detecting repackaged applications
in the current Android marketplaces. Also, we observe that more recent Android
malware families are adopting update attacks and drive-by downloads to infect users,
which are more stealthy and difficult to detect. Further, when analyzing the carried
payloads, we notice a number of alarming statistics: (1) Around one third (36.7 %) of
the collected malware samples leverage root-level exploits to fully compromise the
Android security, posing the highest level of threats to users’ security and privacy;
(2) More than 90 % communicate with remote servers and/or turn the compromised
phones into a botnet controlled through network or short messages. (3) Among the 49
malware families, 28 of them (with 571 or 45.3 % samples) have the built-in support
of sending out background short messages (to premium-rate numbers) or making
phone calls without user awareness. (4) Last but not least, 27 malware families (with
644 or 51.1 % samples) are harvesting user’s information, including user accounts
and short messages stored on the phones.

Following the general survey of existing Android malware, we further zoom in
on a few representative Android malware and study their evolution in the wild. We
are amazed by their rapid evolution and uneasy to notice that existing anti-malware
solutions are seriously lagging behind. For example, it is not uncommon for Android
malware to have encrypted root exploits or obfuscated command and control (C&C)
servers. The adoption of various sophisticated techniques greatly raises the bar for
their detection. In addition, our zoom-in study shows that malware authors are quickly
learning from each other to create hybrid threats. For example, one recent Android
malware, i.e., AnserverBot [27] (reported in September 2011), is clearly inspired
from Plankton [30] (reported in June 2011) to have the dynamic capability of fetching
and executing payload at runtime, posing significant challenges for the development
of next-generation anti-mobile-malware solutions.

The rest of this book is organized as follows: Chap. 2 presents a survey on exist-
ing Android malware in the wild, including detailed timeline analysis and behavioral
break-down of their infection. After that, Chap. 3 presents several case studies on rep-
resentative Android malware samples as well as their evolution in the wild. Chapter 4
discusses possible ways for future improvement. In this book, while we aim to make
it accessible to those new to the area, we do not intend to provide a comprehensive
tutorial on various aspects of Android malware. Instead, we refer the interested read-
ers to various references and additional readings, particularly those highlighted in
Chap. 5 Lastly, we summarize this book in Chap. 6.

http://dx.doi.org/10.1007/978-1-4614-7394-7_2
http://dx.doi.org/10.1007/978-1-4614-7394-7_3
http://dx.doi.org/10.1007/978-1-4614-7394-7_4
http://dx.doi.org/10.1007/978-1-4614-7394-7_5
http://dx.doi.org/10.1007/978-1-4614-7394-7_6


Chapter 2
A Survey of Android Malware

In this chapter, we present a survey of existing Android malware. Particularly, with
more than one year effort, we have collected a large dataset of existing Android
malware. Based on this dataset, we are able to systematically characterize exist-
ing Android malware from various aspects, including their installation, activation
methods, and malicious payloads.

2.1 Malware Dataset

When the very first Android malware, i.e., the FakePlayer malware [28], was discov-
ered in August 2010, we realized the importance of collecting them for systematic
examination. Specifically, to that end, we take two main approaches to actively col-
lect Android malware samples. The first one is to obtain relevant information of
new Android malware by following up with any Android malware announcements,
threat reports, and event blog contents from existing mobile anti-virus companies and
active researchers [8, 13, 16, 21, 31, 32] as exhaustively as possible and then dili-
gently requesting malware samples from them. The second one is to crawl malware
samples directly from existing Android marketplaces, including both third-party and
official Android Market.1

With more than one year effort (i.e., from August 2010 to October 2011), we have
successfully collected 1260 Android malware samples in 49 malware families. In
Fig. 2.1, we show the list of the 49 Android malware families in our dataset along
with the time when each particular malware family is discovered. If we take a look at
the Android malware history [23] from the very first Android malware FakePlayer in
August 2010 to recent ones in October 2011, it spans slightly more than one year with
around 52 Android malware families reported. Our dataset so far has 1260 samples in
49 different malware families, indicating a very decent coverage of existing Android
malware.

1 Android Market is now part of Google Play.

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science, 3
DOI: 10.1007/978-1-4614-7394-7_2, © The Author(s) 2013



4 2 A Survey of Android Malware

Fig. 2.1 The timeline of 49 Android malware families in our study

To engage the research community and better our defense, we released this dataset
in May 2012 to community under the name Android Malware Genome Project.
Immediately following the release, we received numerous requests and have so far



2.1 Malware Dataset 5

Fig. 2.2 The cumulative growth of new malware samples in our collection

shared our dataset with more than 160 universities, research labs and companies from
five continents (except Antarctica) across the world. We have the reason to believe
that the earlier efforts of sample collection, analysis, and sharing are useful to the
community and therefore are motivated to continue to do so.

In order to characterize Android malware growth in the wild, we show the monthly
cumulative growth of Android malware in Fig. 2.2. The figure clearly indicates that
starting summer 2011, Android malware has experienced an exponential growth. The
outbreaks of several major Android malware families, such as DroidKungFu (June,
2011) and AnserverBot (September, 2011), greatly contribute to the trend: among
these 1260 samples in our dataset, 37.5 % of them are related to DroidKungFu [29]
and its variants; 14.8 % are AnserverBot [27]. Most of these malicious apps are still
actively evolving and we will have a detailed study of them in Chap. 3.

2.2 Malware Characterization

Based on the dataset, we next present a systematic characterization of existing
Android malware. By doing so, we can possibly understand how they infect mobile
users and what kinds of damage that might be caused. Also we will compare the
list of permissions often requested by malware with popular benign apps (e.g., from
official Android Market) and illustrate key differences between the two.

2.2.1 Malware Installation

To infect mobile users, malicious apps typically lure users into downloading and
installing them. By manually analyzing them, we categorize their attack tech-
niques into the following ones: repackaging, update attack, and drive-by download.

http://dx.doi.org/10.1007/978-1-4614-7394-7_3


6 2 A Survey of Android Malware

Repackaging is one of most widely-adopted techniques in Android malware, which
basically works by first downloading popular benign apps, repackaging them with
additional malicious payloads, and then uploading repackaged ones to various
Android marketplaces. Update attack does not directly inject malicious payloads
into benign apps. Instead, the malicious payloads are disguised as the “updated” ver-
sion of legitimate apps. Drive-by download is similar to traditional web-based attack
that is launched to redirect users to download malware, e.g., by using aggressive
in-app advertisement or malicious QR code.

2.2.1.1 Repackaging

As mentioned earlier, repackaging is one of the most common techniques malware
authors use to piggyback malicious payloads into popular apps. In essence, malware
authors may locate and download popular apps, disassemble them, enclose malicious
payloads, re-assemble and then submit the new apps to official and/or alternative
Android markets. Users could be vulnerable by being enticed to download and install
these infected apps.

To quantify the use of repackaging technique among our dataset, we take the
following approach: if a sample shares the same package name with an app in the
official Android Market, we then download the official app and manually compare
the difference, which typically contains the malicious payload added by malware
authors. If the original app is not available, we choose to disassemble the malware
sample and manually determine whether the malicious payload is a natural part of
the main functionality of the host app. If not, it is considered as repackaged app.

In total, among the 1260 malware samples, 1083 of them (or 86.0 %) are repack-
aged. By further classifying them based on each individual family (Table 2.1), we find
that within the total 49 families in our collection, 25 of them infect users by these
repackaged apps while 25 of them are standalone apps, which are designed to be
spyware in the first place. One malware family, i.e., GoldDream, utilizes both for its
infection. Among these repackaged apps, we find that malware authors have chosen
a variety of apps for repackaging, including paid apps, popular game apps, powerful
utility apps (including security updates), as well as porn-related apps. For instance,
one AnserverBot malware sample repackaged a paid app com.camelgames.mxmotor
available on the official Android Market and injected its malicious payload. Another
BgServ [6] malware sample repackaged the security tool released by Google to
remove DroidDream from infected phones.

Possibly due to the attempt to hide piggybacked malicious payloads, malware
authors tend to use the class-file names which look legitimate and benign. For exam-
ple, AnserverBot malware uses a package name com.sec.android.provider.drm for its
payload, which looks like a module that provides legitimate DRM functionality. The
first version of DroidKungFu chooses to use com.google.ssearch to disguise as the
Google search module and its follow-up versions use com.google.update to pretend
to be an official Google update.



2.2 Malware Characterization 7

Ta
bl

e
2.

1
A

n
ov

er
vi

ew
of

ex
is

tin
g

A
nd

ro
id

m
al

w
ar

e
(P

ar
tI

:i
ns

ta
lla

tio
n

an
d

ac
tiv

at
io

n)

In
st

al
la

tio
n

A
ct

iv
at

io
n

R
ep

ac
ka

gi
ng

U
pd

at
e

D
ri

ve
-b

y
do

w
nl

oa
d

St
an

da
lo

ne
B

O
O

T
SM

S
N

E
T

C
A

L
L

U
SB

PK
G

B
A

T
T

SY
S

A
D

R
D

√
√

√
√

A
ns

er
ve

rB
ot

√
√

√
√

√
√

√
√

A
sr

oo
t

√
B

as
eB

ri
dg

e
√

√
√

√
√

√
√

B
ea

nB
ot

√
√

√
B

gS
er

v
√

√
√

C
oi

nP
ir

at
e

√
√

√
C

ru
se

w
in

√
√

√
D

og
W

ar
s

√
D

ro
id

C
ou

po
n

√
√

√
√

√
D

ro
id

D
el

ux
e

√
D

ro
id

D
re

am
√

D
ro

id
D

re
am

L
ig

ht
√

√
√

D
ro

id
K

un
gF

u1
√

√
√

√
D

ro
id

K
un

gF
u2

√
√

√
√

D
ro

id
K

un
gF

u3
√

√
√

√
D

ro
id

K
un

gF
u4

√
√

√
√

D
ro

id
K

un
gF

uS
ap

p
√

√
√

√
D

ro
id

K
un

gF
uU

pd
at

e
√

√
E

nd
of

da
y

√
√

√
Fa

ke
N

et
fli

x
√

Fa
ke

Pl
ay

er
√

G
am

bl
er

SM
S

√
√

G
ei

ni
m

i
√

√
√

(C
on

tin
ue

d)



8 2 A Survey of Android Malware

Ta
bl

e
2.

1
(C

on
tin

ue
d)

In
st

al
la

tio
n

A
ct

iv
at

io
n

R
ep

ac
ka

gi
ng

U
pd

at
e

D
ri

ve
-b

y
do

w
nl

oa
d

St
an

da
lo

ne
B

O
O

T
SM

S
N

E
T

C
A

L
L

U
SB

PK
G

B
A

T
T

SY
S

G
G

T
ra

ck
er

√
√

√
√

√
G

in
ge

rM
as

te
r

√
√

G
ol

dD
re

am
√

√
√

√
√

G
on

e6
0

√
G

PS
SM

SS
py

√
√

H
ip

po
SM

S
√

√
√

Ji
fa

ke
√

√
jS

M
SH

id
er

√
√

K
M

in
√

√
L

ov
et

ra
p

√
√

√
N

ic
ky

B
ot

√
√

√
N

ic
ky

sp
y

√
√

Pj
ap

ps
√

√
√

√
Pl

an
kt

on
√

√
R

og
ue

L
em

on
√

√
R

og
ue

SP
Pu

sh
√

√
SM

SR
ep

lic
at

or
√

√
Sn

dA
pp

s
√

√
Sp

itm
o

√
√

√
√

Ta
pS

na
ke

√
√

W
al

ki
nw

at
√

Y
Z

H
C

√
√

zH
as

h
√

√
Z

itm
o

√
√

√
Z

so
ne

√
√



2.2 Malware Characterization 9

It is interesting to note that one malware family— jSMSHider —uses a publicly
available private key (serial number: b3998086d056cffa) that is distributed in the
Android Open Source Project (AOSP). The current Android security model allows
the apps signed with the same platform key of the phone firmware to request the
permissions which are otherwise not available to normal third-party apps. One such
permission includes the installation of additional apps without user intervention.
Unfortunately, a few (earlier) popular custom firmware images were signed by the
default key distributed in AOSP. As a result, the jSMSHider-infected apps may obtain
privileged permissions to perform dangerous operations (installing another app which
can send SMS messages to premium-rate numbers) without user’s awareness.

2.2.1.2 Update Attack

The first technique typically piggybacks the entire malicious payloads into host
apps, which could potentially expose their presence. The second technique makes it
difficult for detection. Specifically, it may still repackage popular apps. But instead of
enclosing the payload as a whole, it only includes an update component that will fetch
or download the malicious payloads at runtime. As a result, static scanning of host
apps may fail to capture the malicious payloads. In our dataset, there are four malware
families, i.e., BaseBridge, DroidKungFuUpdate, AnserverBot, and Plankton, that
adopt this attack (Table 2.1).

The BaseBridge malware has a number of variants. While some embed root
exploits that allow for silent installation of additional apps without user intervention,
we here focus on other variants that use the update attacks without root exploits.
Specifically, when a BaseBridge-infected app runs, it will check whether an update
dialogue needs to be displayed. If yes, by essentially saying that a new version is
available, the user will be offered to install the updated version (Fig. 2.3a) (The new
version is actually stored in the host app as a resource or asset file). If the user accepts,
an “updated” version with the malicious payload will then be installed (Fig. 2.3b).
Because the malicious payload is in the “updated” app, not the original app itself,
it is more stealthy than the first technique that directly includes the entire malicious
payload in the first place.

The DroidKungFuUpdate malware is similar to BaseBridge. But instead of carry-
ing or enclosing the “updated” version inside the original app, it chooses to remotely
download a new version from network. Moreover, it takes a stealthy route by notifying
the users through a third-party library [35] that provides the (legitimate) notification
functionality. (Note the functionality is similar to the automatic notification from the
Google’s Cloud to Device Messaging framework.) Once downloaded, the “updated”
version turns out to be the DroidKungFu3 malware. By leveraging the service pro-
vided by legitimate library to download Android malware, it becomes stealthy and
hard to detect.

The previous two update attacks require user approval to download and install
new versions. Others such as AnserverBot and Plankton advance the update attack
by stealthily upgrading certain components in the host apps not the entire app. As a



10 2 A Survey of Android Malware

(a) (b)

Fig. 2.3 An update attack from BaseBridge. a The update dialog. b Installation of a new version

result, it does not require user approval. In particular, Plankton directly fetches and
runs a JAR file maintained in a remote server while AnserverBot retrieves a public
(encrypted) blog entry, which contains the actual payloads for update! Apparently, the
stealthy nature of these update attacks poses significant challenges for their detection.
We will analyze these two malware families in Chap. 3.

2.2.1.3 Drive-by Download

The third technique applies the traditional drive-by download attacks to mobile space.
Though they are not directly exploiting mobile browser vulnerabilities, they are
essentially enticing users to download “interesting” or “feature-rich” apps. In our
collection, we have four such malware families, i.e., GGTracker [14], Jifake [18],
Spitmo [12] and ZitMo [37]. The last two are designed to steal user’s sensitive banking
information.

The GGTracker malware starts from in-app advertisements. In particular, when
a user clicks a special advertisement link, it will redirect the user to a malicious
website, which claims to be analyzing the battery usage of user’s phone and will
redirect the user to a fake Android Market to download an app (for the purpose of
improving battery efficiency). Unfortunately, the downloaded app is not one that
focuses on improving the efficiency of battery, but a malware that will subscribe to
a premium-rate service without user’s knowledge.

http://dx.doi.org/10.1007/978-1-4614-7394-7_3


2.2 Malware Characterization 11

Similarly, the Jifake malware is downloaded when users are redirected to a mali-
cious website. However, it is not using in-app advertisements to attract and redirect
users. Instead, it uses a malicious QR code [24], which when scanned will redirect
the user to another URL containing the Jifake malware. This malware itself is the
repackaged mobile ICQ client, which sends several SMS messages to a premium-rate
number. While QR code-based malware propagation has been warned earlier [34],
this is the first time that this attack actually occurred in the wild.

The last two Spitmo and ZitMo are ported versions of nefarious PC malware, i.e.,
SpyEye and Zeus. They work in a similar manner: when a user is doing online banking
with a comprised PC, the user will be redirected to download a particular smartphone
app, which is claimed to better protect online banking activities. However, the down-
loaded app is actually a malware, which can collect and send mTANs (a credential
for online banking) or SMS messages to a remote server. These two malware families
rely on the comprised desktop browsers to launch the attack. Though it may seem
hard to infect real users, the fact that they can steal sensitive bank information raises
serious alerts to users.

2.2.1.4 Others

We have so far presented three main social engineering-based techniques that have
been used in existing Android malware. Next, we examine the rest samples that do
not fall in the above three categories. In particular, our dataset has 1083 repackaged
apps, which leaves 177 standalone apps. We therefore look into those standalone
apps and organize them into the following four groups.

The first group is considered spyware as claimed by themselves—they intend to
be installed to victim’s phones on purpose. That probably explains why attackers
have no motivations or the need to lure victim for installation. GPSSMSSpy is an
example that listens to SMS-based commands to record and upload the victim’s
current location.

The second group includes those fake apps that masquerade as the legitimate
apps but stealthily perform malicious actions, such as stealing users’ credentials or
sending background SMS messages. FakeNetflix is an example that steals a user’s
Netflix account and password. Note that it is not a repackaged version of Netflix app
but instead disguises to be the Netflix app with the same user interface. FakePlayer
is another example that masquerades as a movie player but does not provide the
advertised functionality at all. All it does is to send SMS messages to premium-rate
numbers without user awareness.

The third group contains apps that also intentionally include malicious func-
tionality (e.g., sending unauthorized SMS messages or subscribing to some value-
added services automatically). But the difference from the second group is that they
are not fake ones. Instead, they can provide the functionality they claimed. But
unknown to users, they also include certain malicious functionality. For example,
one RogueSPPush sample is an astrology app. But it will automatically subscribe



12 2 A Survey of Android Malware

to premium-rate services by intentionally hiding and automatically replying to
subscription-confirming SMS messages.

The last group includes those apps that rely on the root privilege to function
well. However, without asking the user to grant the root privilege to these apps,
they leverage known root exploits to escape from the built-in security sandbox.
Though these apps may not clearly demonstrate malicious intents, the fact of using
root exploits without user permission seems cross the line. Examples in this group
include Asroot and DroidDeluxe.

2.2.2 Activation

Next, we examine the system-wide Android events of interest to existing Android
malware. By registering for the related system-wide events, Android malware can rely
on the built-in support of automated event notification and callbacks on Android to
flexibly trigger or launch its payloads. For simplicity, we abbreviate some frequently-
used Android events in Table 2.2 (and use them in Table 2.1).

Among all available system events, BOOT_COMPLETED is the most interested
one to existing Android malware. This is not surprising as this particular event will be
triggered when the system finishes its booting process—a perfect timing for malware
to kick off its background services. By listening to this event, the malware can start

Table 2.2 The (abbreviated) Android events/actions of interest to existing malware

Abbreviation Events Abbreviation Events

BOOT BOOT_COMPLETED SMS SMS_RECEIVED
(Boot (SMS/MMS) WAP_PUSH_RECEIVED
Completed)

CALL PHONE_STATE USB UMS_CONNECTED
(Phone NEW_OUTGOING (USB Storage) UMS_DISCONNECTED
Events) _CALL

PKG PACKAGE_ADDED BATT
(Package) PACKAGE_REMOVED (Power/ ACTION_POWER_CONNECTED

PACKAGE_CHANGED Battery) ACTION_POWER
_DISCONNECTED

PACKAGE_REPLACED BATTERY_LOW
PACKAGE_RESTARTED BATTERY_OKAY
PACKAGE_INSTALL BATTERY_CHANGED_ACTION

SYS USER_PRESENT NET CONNECTIVITY_CHANGE
(System INPUT_METHOD (Network)
Events) _CHANGED

SIG_STR PICK_WIFI_WORK
SIM_FULL



2.2 Malware Characterization 13

itself without user’s intervention. In our dataset, 29 (with 83.3 % of the samples)
malware families listen to this event.

The SMS_RECEIVED comes second with 21 malware families interested in it.
This event will be broadcasted to the whole system when a new SMS message is
being received. By listening to this event, the malware can be keen in intercepting or
responding to particular incoming SMS messages. As an example, Zsone listens to
this SMS_RECEIVED event and intercepts or removes all SMS message from par-
ticular originating numbers such as “10086” and “10010”. The RogueSPPush listens
to this event to automatically hide and reply to incoming premium-rate service sub-
scription SMS message. In fact, the malware can even discard this SMS_RECEIVED
event and stop it from further spreading in the system by calling abortBroadcast()
function. As a result, other apps (including system SMS messaging app) do not even
know the arrival of this new SMS message.

During our analysis, we also find that certain malware registers for a variety
of events. For example, AnserverBot registers for callbacks from 10 different events
while BaseBridge is interested in 9 different events. The registration of a large number
of events is expected to allow the malware to reliably or quickly launch the carried
payloads.

In addition, we also observe some malware samples directly hijack the entry activ-
ity of the host apps, which will be triggered when the user clicks the app icon on
the home screen or an intent with action ACTION_MAIN is received by the app. The
hijacking of the entry activity allows the malware to immediately bootstrap its service
before starting the host app’s primary activity. For example, DroidDream replaces
the original entry activity with its own com.android.root.main so that it can gain con-
trol even before the original activity com.codingcaveman.SoloTrial.SplashActivity is
launched. Some malware may also hijack certain UI interaction events (e.g., button
clicking). An example is the Zsone malware that invokes its own SMS sending code
inside the onClick() function of the host app.

2.2.3 Malicious Payloads

As existing Android malware can be largely characterized by their carried payloads,
we also survey our dataset and partition the payload functionalities into four differ-
ent categories: privilege escalation, remote control, financial charges, and personal
information stealing.

2.2.3.1 Privilege Escalation

The Android platform is a complicated system that consists of not only the Linux ker-
nel, but also the entire Android framework with more than 90 open-source libraries,



14 2 A Survey of Android Malware

Table 2.3 The list of platform-level root exploits and their uses in existing Android malware

Vulnerable
program

Root exploit Release date Malware with the exploit

Linux kernel Asroot [7] 2009/08/16 Asroot
init (<= 2.2) Exploid [5] 2010/07/15 DroidDream, zHash,

DroidKungFu[1235]
adbd (<= 2.2.1) RATC [9] 2010/08/21 DroidDream, BaseBridge
zygote (<= 2.2.1) Zimperlich [38] 2011/02/24 DroidKungFu [1235],

DroidDeluxe
DroidCoupon

ashmem (<= 2.2.1) KillingInThe
NameOf [3]

2011/01/06 –

vold (<= 2.3.3) GingerBreak [36] 2011/04/21 GingerMaster
libsysutils (<= 2.3.6) zergRush [26] 2011/10/10 –

including WebKit, SQLite, and OpenSSL. The complexity naturally introduces soft-
ware vulnerabilities that can be potentially exploited for privilege escalation. In
Table 2.3, we show the list of known Android platform-level vulnerabilities that can
be exploited for privilege exploitations. Inside the table, we also show the list of
Android malware that actively exploit these vulnerabilities to facilitate the execution
of their payloads.

Overall, there are a small number of platform-level vulnerabilities that are being
actively exploited in the wild. The top three exploits are exploid, RATC (or RageA-
gainstTheCage), and Zimperlich. We point out that if the RATC exploit is launched
within a running app, it is effectively exploiting the bug in the zygote daemon, not the
intended adbd daemon, thus behavoring as the Zimperlich exploit. Considering the
similar nature of these two vulnerabilities, we use RATC to represent both of them.

From our analysis, one alarming result is that among 1260 samples in our dataset,
463 of them (36.7 %) embed at least one root exploit (Table 2.4). In terms of the
popularity of each individual exploit, there are 389, 440, 4, and 8 samples that contain
exploid, RATC, GingerBreak, and Asroot, respectively. Also, it is not uncommon for
a malware to have two or more root exploits to maximize its chances for successful
exploitations on multiple platform versions. (In our dataset, there are 378 samples
with more than one root exploit.)

2.2.3.2 Remote Control

During our analysis to examine the remote control functionality among the malware
payloads, we are surprised to note that 1172 samples (93.0 %) communicate with
remote servers or turn the infected phones into bots for remote control. Specifically,
there are 1171 samples that use the HTTP-based web traffic to communicate with
remote servers and receive bot commands from their C&C servers.



2.2 Malware Characterization 15

Ta
bl

e
2.

4
A

n
ov

er
vi

ew
of

ex
is

tin
g

A
nd

ro
id

m
al

w
ar

e
(P

ar
tI

I:
m

al
ic

io
us

pa
yl

oa
ds

)

Pr
iv

ile
ge

es
ca

la
tio

n
R

em
ot

e
co

nt
ro

l
Fi

na
nc

ia
lc

ha
rg

es
Pe

rs
on

al
in

fo
rm

at
io

n
st

ea
lin

g
E

xp
lo

id
R

A
T

C
G

in
ge

r
br

ea
k

A
sr

oo
t

N
E

T
SM

S
Ph

on
e

ca
ll

SM
S

B
lo

ck
SM

S
SM

S
Ph

on
e

nu
m

be
r

U
se

r
ac

co
un

t

A
D

R
D

√
A

ns
er

ve
rB

ot
√

√ †
A

sr
oo

t
√

B
as

eB
ri

dg
e

√
√

√
√

†
√

B
ea

nB
ot

√
√

√
†

√
√

B
gS

er
v

√
√

†
√

√
C

oi
nP

ir
at

e
√

√
†

√
√

C
ru

se
w

in
√

√
√

√
D

og
W

ar
s

√
D

ro
id

C
ou

po
n

√
√

D
ro

id
D

el
ux

e
√

D
ro

id
D

re
am

√
√

√
D

ro
id

D
re

am
L

ig
ht

√
√

D
ro

id
K

un
gF

u1
√

√
√

√
D

ro
id

K
un

gF
u2

√
√

√
√

D
ro

id
K

un
gF

u3
√

√
√

√
D

ro
id

K
un

gF
u4

√
D

ro
id

K
un

gF
u5

√
√

√
√

D
ro

id
K

un
gF

uU
pd

at
e

E
nd

of
da

y
√

√
√

Fa
ke

N
et

fli
x

√
Fa

ke
Pl

ay
er

√
‡

G
am

bl
er

SM
S

√
G

ei
ni

m
i

√
√

√
†

√
√

√
(C

on
tin

ue
d)



16 2 A Survey of Android Malware

Ta
bl

e
2.

4
(C

on
tin

ue
d)

Pr
iv

ile
ge

es
ca

la
tio

n
R

em
ot

e
co

nt
ro

l
Fi

na
nc

ia
lc

ha
rg

es
Pe

rs
on

al
in

fo
rm

at
io

n
st

ea
lin

g
E

xp
lo

id
R

A
T

C
G

in
ge

r
br

ea
k

A
sr

oo
t

N
E

T
SM

S
Ph

on
e

ca
ll

SM
S

B
lo

ck
SM

S
SM

S
Ph

on
e

nu
m

be
r

U
se

r
ac

co
un

t

G
G

T
ra

ck
er

√
‡

√
√

√
G

in
ge

rM
as

te
r

√
√

√
G

ol
dD

re
am

√
√

√
†

√
√

G
on

e6
0

√
G

PS
SM

SS
py

√
H

ip
po

SM
S

√
‡

√
Ji

fa
ke

√
‡

jS
M

SH
id

er
√

√
†

√
√

K
M

in
√

√
†

√
L

ov
et

ra
p

√
†

√
N

ic
ky

B
ot

√
√

√
N

ic
ky

sp
y

√
√

√
Pj

ap
ps

√
√

†
√

√
Pl

an
kt

on
√

R
og

ue
L

em
on

√
√

†
√

√
R

og
ue

SP
Pu

sh
√

‡
√

SM
SR

ep
lic

at
or

√
√

Sn
dA

pp
s

√
Sp

itm
o

√
√

†
√

√
√

Ta
pS

na
ke

W
al

ki
nw

at
√

Y
Z

H
C

√
√

‡
√

√
zH

as
h

√
Z

itm
o

√
Z

so
ne

√
‡

√



2.2 Malware Characterization 17

We also observe that some malware families attempt to be stealthy by encrypting
the URLs of remote C&C servers as well as their communication with C&C servers.
For example, Pjapps develops its own encoding scheme to encrypt the C&C server
addresses. One of its samples encodes its C&C server mobilemeego91.com into
2maodb3ialke8mdeme3gkos9g1icaofm. DroidKungFu3 employs the standard AES
encryption scheme and uses the key Fuck_sExy-aLl!Pw to hide its C&C servers.
Geinimi similarly applies DES encryption scheme (with the key 0x01020304050607-
08) to encrypt its communication to the remote C&C server.

During our study, we also find that most C&C servers are registered in domains
controlled by attackers themselves. However, we also identify cases where the C&C
servers are hosted in public clouds. For instance, the Plankton spyware dynamically
fetches and runs its payload from a server hosted in the Amazon cloud. Most recently,
attackers are even turning to public blog servers as their C&C servers. AnserverBot
is one example that uses two popular public blog services, i.e., Sina and Baidu, as
its C&C servers to retrieve the latest payloads and new C&C URLs (Chap. 3).

2.2.3.3 Financial Charge

Beside privilege escalation and remote control, we also look into the motivations
behind malware infection. In particular, we study whether malware will intentionally
cause financial charges to infected users.

One profitable way for attackers is to surreptitiously subscribe to (attacker-
controlled) premium-rate services, such as by sending SMS messages. On Android,
there is a permission-guarded function sendTextMessage that allows for sending
an SMS message in the background without user’s awareness. We are able to con-
firm this type of attacks targeting users in Russia, United States, and China. The
very first Android malware FakePlayer sends SMS message “798657” to multiple
premium-rate numbers in Russia. GGTracker automatically signs up the infected
user to premium services in US without user’s knowledge. Zsone sends SMS mes-
sages to premium-rate numbers in China without user’s consent. In total, there are
55 samples (4.4 %) falling in 7 different families (tagged with ‡ in Table 2.4) that
send SMS messages to the premium-rate numbers hardcoded in the infected apps.

Moreover, some malware choose not to hard-code premium-rate numbers. Instead,
they leverage the flexible remote control to push down the numbers at runtime. In our
dataset, there are 13 such malware families (tagged with † in Table 2.4). Apparently,
these malware families are stealthier than earlier ones because the destination number
will not be known by simply analyzing the infected apps.

In our analysis, we also observe that by automatically subscribing to premium-rate
services, these malware families need to reply to certain SMS messages. This may
due to the second-confirmation policy required in some countries such as China.
Specifically, to sign up a premium-rate service, the user must reply to a confirm-
ing SMS message sent from the service provider to finalize or activate the service
subscription. To avoid users from being notified, they will take care of replying
to these confirming messages by themselves. As an example, RogueSPPush will

http://dx.doi.org/10.1007/978-1-4614-7394-7_3


18 2 A Survey of Android Malware

automatically reply “Y” to such incoming messages in the background; GGTracker
will reply “YES” to one premium number, 99735, to activate the subscribed service.
Similarly, to prevent users from knowing subsequent billing-related messages, they
choose to filter these SMS messages as well. This behavior is present in a number of
malware, including Zsone, RogueSPPush, and GGTracker.

Besides these premium-rate numbers, some malware also leverage the same func-
tionality by sending SMS messages to other phone numbers. Though less serious
than previous ones, they still result in certain financial charges especially when the
user does not have an unlimited messaging plan. For example, DogWars sends SMS
messages to all the contacts in the phone without user’s awareness. Other malware
may also make background phone calls. With the same remote control capability, the
destination number can be provided from a remote C&C server, as shown in Geinimi.

2.2.3.4 Information Collection

In addition to the above payloads, we also find that malware are actively harvesting
various information on the infected phones, including SMS messages, phone numbers
as well as user accounts. In particular, there are 13 malware families (138 samples)
in our dataset that collect SMS messages, 15 families (563 samples) gather phone
numbers, and 3 families (43 samples) obtain and upload the information about user
accounts. For example, SndApps collects users’ email addresses and sends them
to a remote server. FakeNetflix gathers users’ Netflix accounts and passwords by
providing a fake but seeming identical Netflix UI.

We consider the collection of users’ SMS messages is a highly suspicious behavior.
The user credential may be included in SMS messages. For example, both Zitmo (the
Zeus version on Android) and Spitmo (the SpyEpy version on Android) attempt to
intercept SMS verification messages and then upload them to a remote server. If
successful, the attacker may use them to generate fraudulent transactions on behalf
of infected users.

2.2.4 Permission Usage

For Android apps without root exploits, their capabilities are strictly constrained by
the permissions users grant to them. Therefore, it will be interesting to compare top
permissions requested by these malicious apps in the dataset with top permissions
requested by benign ones. To this end, we have randomly chosen 1260 top free apps
downloaded from the official Android Market in the first week of October, 2011. The
results are shown in Fig. 2.4.

Based on the comparison, Android permissions such as INTERNET, READ_
PHONE_STATE, ACCESS_NETWORK_STATE, and WRITE_EXTERNAL_STO-
RAGE are widely requested in both malicious and benign apps. The first two
are typically needed to allow for the embedded ad libraries to function properly.



2.2 Malware Characterization 19

1232INTERNET 1122

1179READ PHONE STATE 433

1023ACCESS NETWORK STATE 913

847WRITE EXTERNAL STORAGE 488

804ACCESS WIFI STATE 134

790READ SMS 17

688RECEIVE BOOT COMPLETED 137

658WRITE SMS 9

553SEND SMS 43

499RECEIVE SMS 24

483VIBRATE 287

480ACCESS COARSE LOCATION 263

457READ CONTACTS 71

432ACCESS FINE LOCATION 285

425WAKE LOCK 218

424CALL PHONE 114

398CHANGE WIFI STATE 34

374WRITE CONTACTS 19

349WRITE APN SETTINGS 3

333RESTART PACKAGES 33

0 200 400 600 800 1000 1200

Fig. 2.4 The comparison of top 20 requested permissions by malicious apps (the bar) and
benign apps (the bar)

But malicious apps clearly tend to request more frequently on the SMS-related
permissions, such as READ_SMS, WRITE_SMS, RECEIVE_SMS, and SEND_SMS.
Specifically, there are 790 samples (62.7 %) in our dataset that request the READ_SMS
permission, while 17 benign apps (or 1.3 %) request this permission. These results
are consistent with the fact that 28 malware families in our dataset (or 45.3 % of the
samples) that have the SMS-related malicious functionality.

Also, we observe 688 malware samples request the RECEIVE_BOOT_COMPLE-
TED permission. This number is five times of that in benign apps (137 samples).
This could be due to the fact that malware is more likely to run background services
without user’s intervention. Note that there are 398 malware samples requesting
CHANGE_WIFI_STATE permission, which is an order of magnitude higher than
that in benign apps (34 samples). That is mainly because the Exploid root exploit
requires certain hot plug events such as changing the WIFI state, which is related to
this permission.

Finally, we notice that malicious apps tend to request more permissions than
benign ones. In our dataset, the average number of permissions requested by



20 2 A Survey of Android Malware

malicious apps is 11 while the average number requested by benign apps is 4. Among
the top 20 permissions, 9 of them are requested by malicious apps on average while
3 of them on average are requested by benign apps.



Chapter 3
Case Studies

In this chapter, we examine three representative Android malware families, i.e.,
Plankton, DroidKungFu, and AnserverBot, and present a detailed analysis of them.

3.1 Malware I: Plankton

We discovered the Plankton spyware in early June, 2011. Different from other
Android malware,the Plankton spyware does not directly embed its malicious pay-
load in itself. Instead it downloads the payload from a remote server at runtime
and then leverages the dynamic loading capability of Dalvik Virtual Machine (or
DVM) to dynamically load the payload for execution. Plankton is considered the
first Android malware in the wild that exploits such dynamic class loading capability
to stay stealthy (and dynamically extend its own functionality). At the time when it
was discovered, we found more than ten instances of infected apps from different
developers on the official Android Market maintained by Google. Our further inves-
tigation shows that Plankton is mainly developed for the purpose of mobile adver-
tisement. However it obviously crosses the line of being an advertisement library by
stealthily and aggressively collecting user’s personal data and further employing bot-
like capability to execute commands retrieved from remote servers. The discovery of
Plankton also reveals the uneasy security and privacy threats of aggressive (mobile)
advertisement services. In the following, we illustrate how it works and highlight
various interesting aspects discovered in our examination.

3.1.1 Phoning Home

The Plankton spyware is included in a variety of host apps as a new back-
ground service. This background service, even removed from any host app, does
not affect in any way the functionality of the host app. This service is invoked

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science, 21
DOI: 10.1007/978-1-4614-7394-7_3, © The Author(s) 2013



22 3 Case Studies

Fig. 3.1 The captured HTTP POST message sent by Plankton

in the modified onCreate() method of the main activity inside the app. In other
words, when the infected app runs, it will immediately bring up the background
service. Then the background service will start to collect information, including the
device ID as well as the list of granted permissions to the infected app, and send
them back to a remote server through an HTTP POST message.

In Fig. 3.1, we show the captured HTTP POST message sent by Plankton to
its remote server. The message contains different types of information, including
the application identity (or applicationID), the version number, the current action
being taken, as well as the identify of the phone (i.e., IMEI number) and the list of
permissions requested by this current app. Note that sending the list of permissions
required by the app to the remote server is considered suspicious because the remote
server may now use this list to customize the payloads downloaded to the client for
targeted execution. Figure 3.1 also shows the corresponding HTTP response message
from the Plankton server.

3.1.2 Dynamic Execution

After receiving a specific request from a client, the Plankton server will push its
payload (in the form of a JAR file) back to the client. This payload contains the code
which can be dynamically loaded and executed by Plankton at runtime. Specifically,
Plankton leverages the dynamic class loading capability to load the downloaded
payload into memory and then invoke the code (via the Java reflection). By doing
so, Plankton becomes stealthy by making the runtime code unknown in advance.
As a result, it has the potential of completely bypassing static analysis employed



3.1 Malware I: Plankton 23

Fig. 3.2 The list of commands supported in Plankton

by most anti-virus engines. Such design also reflects an earlier research prototype
named RootStrap [25] that uses similar design to download and execute root exploits
at runtime.

During our investigation, we have successfully downloaded the Plankton pay-
load with two different versions: plankton_v0.0.3.jar and plankton_v0.0.4.jar. Our
analysis shows that while they do not contain root exploits, they support a number
of bot-related commands that can be remotely invoked. In Fig. 3.2, we show the list
of commands supported in version 0.0.4. In essence, the /bookmarks command col-
lects the bookmark information on the phone; /shortcuts allows for the installation or
removal of home screen shortcuts; /history steals browser history information; and
/dumplog essentially executes the logcat command to collect runtime log informa-
tion. Earlier reports show that highly sensitive private information may exist as plain
text in the runtime log. We also identified an interesting function that if invoked can
be used to collect user’s accounts. Though this function is not linked to any sup-
ported command, its presence as well as the capability of dynamically loading a new
payload can readily turn stealing user’s accounts or even launching root exploits into
reality.

3.2 Malware II: DroidKungFu

In the same month of June 2011, we also came across another Android malware
named DroidKungFu. This is a sophisticated malware by employing several tech-
niques that were not common in other Android malware at that time. After the initial
discovery, we also detected two variants (DroidKungFu2 and DroidKungFu3) in
July and August, respectively. These two variants evolve further to embed native
payloads and encrypted C&C servers to evade possible detection. Two months later,
the fourth variant (DroidKungFu4) was detected with both encrypted native payloads
and C&C servers. In the meantime, there is another variant called DroidKungFuUp-
date [10] that utilizes the update attack to download an “updated” version, which is
actually a malware. Also in the same time frame, we detected another variant called



24 3 Case Studies

DroidKungFuSapp. The flurry of new DroidKungFu variants clearly indicates the
rapid evolution of Android malware in the wild. In Table 3.1, we summarize these
six DroidKungFu variants. Next, we will zoom into these DroidKungFu variants and
illustrate various aspects of them.

3.2.1 Root Exploits

By employing root exploits, Android malware can potentially obtain root privilege
and bypass any built-in security mechanism in Android (e.g., without being con-
strained by Android permissions). Among the six variants we analyzed, we found
four of them actually contain root exploits.

However different from others that also embed root exploits, DroidKungFu
encrypts the actual root exploits and disguises them as local resource files under
assets directory (that by convention is typically used to store assets files, not the
code). To the best of our knowledge, it is the first time for an Android malware to
include encrypted root exploits. To further increase the chance of successfully “root-
ing” the system, DroidKungFu uses two different root exploits and can switch to
another one if the first try is failed.

The use of encryption is helpful for DroidKungFu to evade detection. And dif-
ferent variants tend to use different encryption keys to better protect themselves.
For example, the key used in DroidKungFu1 is Fuck_sExy-aLl!Pw, which has been
changed to Stak_yExy-eLt!Pw in DroidKungFu4.

It is interesting to notice that in DroidKungFu1, the file name with the encrypted
root exploit is “ratc”—the acronym of RageAgainstTheCage. In DroidKungFu2
and DroidKungFu3, this file name with the same root exploit has been changed to
“myicon”, pretending to be an icon file.

3.2.2 Command and Control (C&C) Servers

All DroidKungFu variants communicate with remote C&C servers to receive and
execute the corresponding commands. To hide the existence (and the addresses) of
C&C servers, the malware continuously changes the way to store theses addresses.
For instance, in DroidKungFu1, the address of C&C server is saved in plain-text
in a Java class file, which can be easily retrieved by disassembling the class. In
DroidKungFu2, this C&C server address is in plain-text but has been moved to a
native program, which is harder to understand than Java class file. Also the number
of C&C servers increases from 1 to 3 to make the connection to remote server more
reliable. In DroidKungFu3, similar with DroidKungFu1, the address is in Java class.
However this address is encrypted and cannot be obtained directly. In DroidKungFu4,
it moves the C&C address back to a native program as DroidKungFu2 but in cipertext.
In DroidKungFuSapp, it uses a totally new C&C server and a different home-made
encryption scheme.



3.2 Malware II: DroidKungFu 25

Ta
bl

e
3.

1
T

he
ov

er
vi

ew
of

si
x

D
ro

id
K

un
gF

u
m

al
w

ar
e

va
ri

an
ts

R
oo

te
xp

lo
its

C
&

C
M

al
ic

io
us

co
m

po
ne

nt
E

m
be

dd
ed

A
pk

E
xp

lo
id

R
A

T
C

E
nc

ry
pt

ed
In

na
tiv

e
In

Ja
va

E
nc

ry
pt

ed
N

um
be

r

D
ro

id
K

un
gF

u1
√

√
√

√
1

co
m

.g
oo

gl
e.

ss
ea

rc
h

pl
ai

nt
ex

t
D

ro
id

K
un

gF
u2

√
√

√
√

3
co

m
.e

gu
an

.s
ta

te
no

ne
D

ro
id

K
un

gF
u3

√
√

√
√

√
3

co
m

.g
oo

gl
e.

up
da

te
en

cr
yp

te
d

D
ro

id
K

un
gF

u4
√

√
3

co
m

.s
af

es
ys

no
ne

D
ro

id
K

un
gF

uS
ap

p
√

√
√

√
1

co
m

.m
jd

c.
sa

pp
no

ne
D

ro
id

K
un

gF
uU

pd
at

e
–

–
–

–
–

–
–

–
no

ne



26 3 Case Studies

3.2.3 Payloads

DroidKungFu variants are typically distributed in form of repackaged apps. They
infect the host apps by injecting malicious payloads, either in Dalvik bytecode or
native binary code, into these host apps. In addition, they also embed a child app
that contains almost identical functionality to the malicious payload injected to the
repackaged app. This embedded app can be installed silently without user’s awareness
once the malware successfully obtains the root privilege. As a result, the installation
of this embedded app will ensure that even the repackaged app has been removed,
it can continue to be functional. Moreover, in DroidKungFu1, the embedded app
will show a fake Google Search icon while in DroidKungFu2, the embedded app is
encrypted and will not display any icon on the infected phone.

3.2.4 Obfuscation, JNI, and Others

To prevent it from being analyzed, DroidKungFu also aggressively employs various
obfuscation techniques. For example, it not only encrypts constant strings in its
payloads, but also heavily makes use of encryption to hide the existence of root
exploits and C&C servers. Moreover it aggressively obfuscates the class name in the
malicious payload, and exploits JNI interfaces to increase the difficulty for analysis
and detection. For instance, both DroidKungFu2 and DroidKungFu4 use a native
program (through JNI) to communicate with and fetch bot commands from remote
servers.

The DroidKungFuUpdate variant takes a more stealthy approach by using the
update attack (Chap. 2) to launch its payloads. With its stealthiness, it managed into
the official Android Market for users to download, reflecting the evolution trend of
Android malware to be more stealthy in their design and infection. More specifically,
it embeds its own (obfuscated) malicious code in a host app. When this (“clean”)
host app is uploaded to Android Market, it does not exhibit any security problem.
However, when this app is downloaded to run on a user’s phone, it will display a pop-
up window to ask user to update the app (Fig. 3.3a). If the user chooses to update it, it
will immediately download another app from a remote server (Fig. 3.3b). It turns out
that the downloaded app is not the updated version, but the DroidKungFu4 malware.

3.3 Malware III: AnserverBot

Next, we examine the third representative Android malware named AnserverBot,
which we discovered in September 2011. This malware piggybacks on legitimate
apps and is being actively distributed among a few third-party Android market-
places. In terms of sophistication, the malware is comparable to earlier DroidKungFu

http://dx.doi.org/10.1007/978-1-4614-7394-7_2


3.3 Malware III: AnserverBot 27

(a) (b)

Fig. 3.3 An update attack from DroidKungFuUpdate. a The update dialog. b The HTTP traffic
(for malware downloading)

malware by aggressively exploiting several advanced techniques to evade detection
and analysis, which have not been seen before. After more than one-week in-depth
investigation [4], we believe this malware evolves from earlier BaseBridge malware
[11]. In the following, we will highlight key techniques employed by AnserverBot.

3.3.1 Anti-Analysis

Though AnserverBot itself repackages legitimate apps for infection, it is designed
to detect whether it has been tampered with or not. Specifically, when it runs, it will
check the signature or the integrity of the current (repackaged) app before unfolding
its payloads. This mechanism is in place to thwart possible reverse engineering
efforts.

Moreover, AnserverBot aggressively obfuscates its internal classes, methods, and
fields to make them humanly unreadable. Also, it intentionally partitions the main
payload into three related apps: one is the host app and the other two are embedded
apps. The two embedded apps share the same name com.sec.android.touchScreen.
server but with different functionality. One such app will be installed through the
update attack while the other will be dynamically loaded without being actually
installed (similar to Plankton). The functionality partitioning and coordination, as
well as aggressive obfuscation, make its analysis very challenging.



28 3 Case Studies

We have the reason to believe that AnserverBot is inspired by the dynamic loading
mechanism from Plankton. In particular, the dynamic mechanisms to retrieve and
load remote code is not available in earlier BaseBridge malware. In other words,
it exploits the class loading feature in Dalvik virtual machine to load and execute
the malicious payload at run time. By employing this dynamic loading behavior,
AnserverBot can greatly protect itself from being detected by existing anti-virus
software. Moreover, with such dynamic capability in place, malware authors can
instantly upgrade the payloads while still taking advantage of current infection base.

Another related self-protection feature used in AnserverBot is that it can detect the
presence of certain mobile anti-virus software. If any of them is detected, AnserverBot
will attempt to stop it and further display a dialog window, informing the user that
the particular app is stopped unexpectedly.

3.3.2 Command and Control (C&C) Servers

One interesting aspect of AnserverBot is its C&C servers. In particular,it supports two
types of C&C servers. The first one is similar to traditional C&C servers from which
to receive the command. The second one instead is used to upgrade its payload and/or
the new address of the first type C&C server. Surprisingly, the second type is based on
(encrypted) blog contents, which are maintained by popular blog service providers.
In other words, AnserverBot connects to the public blog site to fetch the (encrypted)
current C&C server and the new (encrypted) payload. This functionality can ensure
that even if the first type C&C server is offline, the new C&C server can still be pushed
to the malware through this public blog. As an example, the content of a particular
blog entry is “v-----:HoiprJbh9CVN9wnQ0w7O84FePwnYPJShHIEO7x0pHxMO”,
which turns out to be an encrypted address “http://b3.8866.org:8080/jk.action”. This
is rather interesting as it is the first Android malware that exploits public blogs as its
C&C servers to deliver various payloads.

AnserverBot can also dynamically upgrade itself when a new version is available.
Specifically, if there is a new version, the C&C server, when contacted, will respond
back with the latest version number as well as the related download URL. After
receiving the response, AnserverBot will notice the newer version and then decide
whether to download it. If yes, it will fetch the newer version from the download URL
specified in the response. During our investigation, we have identified more than 20
different versions of payloads posted in this blog. Six of them were posted within
one single week, which clearly shows its rapid evolution in the wild. In Fig. 3.4, we
show the captured network traffic when AnserverBot downloads a newer version,
which was stored in the same public blog website as shown in Fig. 3.5.

Our investigation also shows that the AnserverBot payload is actually a recent
variant of BaseBridge, which was first discovered in May 2011. The BaseBridge
malware has been known to receive premium numbers from remote C&C servers
and then send out SMS text messages to them.

http://b3.8866.org:8080/jk.action


3.3 Malware III: AnserverBot 29

Fig. 3.4 The captured HTTP response when a new version is being downloaded

Fig. 3.5 The content of a particular public blog entry (to update AnserverBot itself)

All in all, the combination of Plankton-style stealthy dynamic code loading and
execution with various code/data obfuscation techniques eventually leads to the emer-
gence of the sophisticated AnserverBot malware.



Chapter 4
Discussion

Our study of existing Android malware, including an in-depth examination of
representative ones, has clearly shown that they pose a serious threat we are fac-
ing today. To make matters worse, with limited resources and battery, commodity
mobile devices also pose a stringent runtime environment that is different from our
desktop PCs. Such difference could preclude the deployment of sophisticated detec-
tion techniques that are developed for desktop PCs. From another perspective, the
presence of centralized marketplaces in current mobile ecosystems does provide
unique advantages in blocking mobile malware from entering the marketplaces in
the first place. In the following, we draw several insights from our characterization
to mitigate or defend against mobile malware in general.

First, our characterization shows that most existing Android malware (86.0 %)
repackage other legitimate (popular) apps, which indicates that we might be able
to effectively mitigate the threat by policing existing marketplaces for repackaging
detection. However, the challenges lie in the large volume of new apps uploaded on a
daily basis as well as the accuracy needed for repackaging detection. In addition, the
popularity of alternative marketplaces will also add significant challenges. Though
there is no clear solution in sight, we do argue for a joint effort involving all parties
in the ecosystem to spot and discourage repackaged apps.

Second, our characterization also indicates that more than one third (36.7 %) of
Android malware enclose platform-level exploits to escalate their privilege. Unfor-
tunately, the open Android platform has the well-known “fragmentation” problem,
which leads to a long vulnerable time window of current mobile devices before a
patch can be actually deployed. Worse, the current platform still lacks many desirable
security features. ASLR was not added until very recently in Android 4.0. Other secu-
rity features such as TrustZone and XN (eXecute-Never) need to be gradually rolled
out to raise the bar for exploitation. Moreover, our analysis reveals that the dynamic
loading ability of both native code and Dalvik code are being actively abused by
existing malware (e.g., DroidKungFu and AnserverBot). There is a need to develop
effective solutions to prevent them from being abused while still allowing legitimate
uses to proceed.

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science, 31
DOI: 10.1007/978-1-4614-7394-7_4, © The Author(s) 2013



32 4 Discussion

Third, our characterization shows that existing malware (45.3 %) tend to subscribe
to premium-rate services with background SMS messages. Related to that, most exist-
ing malware intercept incoming SMS messages (e.g., to block billing information
or sidestep the second-confirmation requirement). This problem might be rooted in
the lack of fine-grain control of related APIs (e.g., sendTextMessage). Specifically,
the coarse-grained Android permission model can be possibly expanded to include
additional context information to better facilitate users to make sound and informed
decisions.

Last but not least, during the process of collecting malware samples into our
current dataset, we felt the strong community need to unify our knowledge and
collectively elevate our defense capability, which does call for necessary cooperation
and innovation from academia, industry, and research labs. Such need also drives our
recent launch of the Android Malware Genome Project.



Chapter 5
Additional Reading

In this book, while we aim to make it accessible to those new to the area, we do not
intend to provide a comprehensive tutorial on various aspects of Android malware. In
the following, we provide relevant references and additional readings for interested
readers who want to have a broader understanding of this field.

5.1 Books

5.1.1 Malware Detection and Defense

Published in 2006, Christodorescu et al.’s book [44] covers various aspects in mal-
ware research. While it mainly studies PC malware, the fundamental concepts still
apply to mobile malware research. Another book [63] from Lee et al. provides vari-
ous methods to detect and analyze botnet behaviors, which can benefit the research
on Android malware as well. Especially, as our dataset shows that more than 90 %
of existing Android malware will communicate with remote servers and exhibit
bot-like behavior (Chap. 2), the insights gleaned from earlier botnet defense can be
equally applied here. As an example, the book (Chap. 7) describes an automatic way
to discover trigger behavior in traditional botnets, which can be readily applied to
detect Android botnets. Most recently, a new book [74] from Yin et al. proposes an
emulator-based system for automatic malware analysis. A similar system can be built
for Android malware as well. From another perspective, Masud et al.’s book [64]
explores the usage of data mining techniques for malware detection. They could lead
to interesting solutions for mitigating and detecting Android malware, especially due
to the large number of Android apps available for analysis.

One insight provided by our malware characterization (Chap. 2) is that 86.0 %
of existing Android malware are repackaged apps. Hence, how to detect repack-
aged apps and how to prevent apps from being repackaged become two interesting
research problems. Silvio et al.’s book [70] on software similarity can be leveraged to

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science, 33
DOI: 10.1007/978-1-4614-7394-7_5, © The Author(s) 2013

http://dx.doi.org/10.1007/978-1-4614-7394-7_2
http://dx.doi.org/10.1007/978-1-4614-7394-7_7
http://dx.doi.org/10.1007/978-1-4614-7394-7_2


34 5 Additional Reading

detect repackaged apps by comparing the similarity of different apps. From another
perspective, the book [45] from Collberg et al. contains different protection mech-
anisms for traditional software, which may be potentially used for smartphone app
protection.

5.1.2 Smartphone (Apps) Security

Dunham’s book [47] is one of the few that specialize on mobile malware attack
and defense. It describes the mobile malware history between 2000 and 2008. As
expected, they are primarily on the Symbian platform. It also discusses possible
protection mechanisms on various mobile platforms such as Symbian, BlackBerry,
J2ME, and Windows Mobile. While the targeted malware are likely outdated nowa-
days, by reading this book, readers can still gain a better knowledge of the history
as well as the ongoing arm race between offensive malware and their defense. The
managed code rootkit proposed in Metula’s book [65] also demonstrates a potential
attack to managed runtime environments, which are being used by Android and the
latest Windows Phone. To our best knowledge, this attack has not really appeared in
the wild yet. However, it does not mean such attack will not show up in the future.

Dwivedi et al.’s book [48] is another great reference especially for developers
who want to have a good understanding of various security mechanisms in existing
smartphone platforms. The first part examines different smartphone platforms and
studies their security features while the second part explores potential attack surfaces,
including mobile HTML, bluetooth and SMS, and further suggests possible solutions.
The book from Zdziarski [75] also similarly exposes possible attack surfaces related
to iOS apps.

From another perspective, Hoog’s books [59, 60] primarily focus on mobile foren-
sics on Android and iOS. They provide a relatively comprehensive coverage of both
platforms and also include additional security investigation from the forensic per-
spective. While these two books are not directly related to malware, the analysis
methodologies described in these books are applicable for mobile malware analysis.

5.2 Conference and Workshop Proceedings

Smartphone security and privacy has recently become an active topic. There exist
a few relevant academic conferences [2, 15, 20, 33] that solicit topics on various
aspects of security and privacy on smartphones and mobile devices. In addition,
there also exist two new annual academic workshops with an exclusive focus on
mobile security and privacy. They are ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM) [1] (in its second year as of 2012) and
Mobile Security Technologies [19] (in its first year as of 2012). In the following, we
also summarize most relevant papers in this field.



5.2 Conference and Workshop Proceedings 35

PiOS [49] and TaintDroid [50] are two recent systems that expose possible privacy
leaks of mobile apps on iOS and Android platforms. Comdroid [43, 54] and Wood-
pecker [56] expose the confused deputy problem [58] on Android, which prompts
a series of solutions [42, 46, 54]. Stowaway [52] exposes the overprivilege problem
(where an app requests more permissions than it uses) in existing apps. Schrittwieser
et al. [68] reports certain security flaws in network-facing messaging apps. Traynor
et al. [71] characterizes the impact of mobile botnets on the mobile network. AdRisk
[55] systematically identifies potential risks from in-app advertisement libraries.

To improve the smartphone security and privacy, a number of solutions have also
been proposed. Specifically, Apex [66], Aurasium [72], AppFence [61], MockDroid
[41] and TISSA [79] extend the current Android framework or repackage the apps to
provide find-grained access control of system resources from untrusted third-party
apps. Saint [67] protects the exposed interfaces of an app to others by allowing the
app developers to define related security policies for runtime enforcement. Kirin
[51] blocks the installation of suspicious apps by examining the existence of certain
dangerous permission combination. L4Android [62] and Cells [40] run multiply OSes
on a single smartphone for improved isolation and security. AdSplit [69] separates
the app itself from advertisement libraries.

With a focus on mobile malware, Felt et al. [53] surveys 46 samples on three
different mobile platforms, i.e., iOS, Android and Symbian, analyzes their incen-
tives, and discusses possible defenses. DroidRanger [78] and RiskRanker [57] detect
malicious apps in existing official and alternative Android markets. DroidMOSS [76]
uses fuzzy hashing to detect repackaged apps in third-party Android marketplaces.
DroidScope [73] reconstructs the semantic views of the OS and Dalvik for dynamic
Android malware analysis.



Chapter 6
Summary

In this book, we present an overview of existing Android malware and further sys-
tematically characterize their behavior from different perspectives. The character-
ization is made possible with our more than one-year effort in collecting 1260
Android malware samples in 49 different families, which covers the majority of
existing Android malware, ranging from its debut in August 2010 to the end of 2011.
By characterizing these malware samples from various aspects, our results show
that (1) 86.0 % of them repackage legitimate apps to include malicious payloads;
(2) 36.7 % contain platform-level exploits to escalate privilege; (3) 93.0 % commu-
nicate with remote servers and/or exhibit bot-like functionality. A further in-depth
evolution analysis of representative Android malware shows the rapid development
and increased sophistication, posing significant challenges for their detection. As
existing mobile security solutions still lag behind, these results call for the need to
better develop next-generation anti-mobile-malware solutions.

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science, 37
DOI: 10.1007/978-1-4614-7394-7_6, © The Author(s) 2013



References

1. Acm, CCS Workshop on Security and Privacy in Smartphones and Mobile Devices.
http://www.spsm-workshop.org/

2. ACM Conference on Computer and Communications Security. http://www.sigsac.org/ccs.html
3. Adb Trickery #2. http://c-skills.blogspot.com/2011/01/adb-trickery-again.html
4. An Analysis of the AnserverBot Trojan. http://www.csc.ncsu.edu/faculty/jiang/pubs/Anserver

Bot_Analysis.pdf
5. Android Trickery. http://c-skills.blogspot.com/2010/07/android-trickery.html
6. Android. Bgserv Found on Fake Google Security Patch. http://www.symantec.com/connect/

blogs/androidbgserv-found-fake-google-security-patch
7. Asroot. http://milw0rm.com/sploits/android-root-20090816.tar.gz
8. AVG Mobilation. http://free.avg.com/us-en/antivirus-for-android.tpl-crp
9. Droid2. http://c-skills.blogspot.com/2010/08/droid2.html

10. DroidKungFu Utilizes an Update Attack. http://www.f-secure.com/weblog/archives/00002
259.html

11. ‘‘Fee-Deduction’’ Malware Targeting Android Devices Spotted in the Wild. http://
www.securityweek.com/fee-deduction-malware-targeting-android-devices-spotted-wild

12. First SpyEye Attack on Android Mobile Platform now in the Wild. https://www.trusteer.
com/blog/first-spyeye-attack-android-mobile-platform-now-wild

13. Fortinet. http://www.fortinet.com/
14. GGTracker Technical Tear Down. http://blog.mylookout.com/wp-content/uploads/2011/

06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
15. IEEE Symposium on Security and Privacy. http://www.ieee-security.org/TC/SP-Index.html
16. Lookout Mobile Security. https://www.mylookout.com/
17. Malicious Mobile Threats Report 2010/2011. http://www.juniper.net/us/en/company/press-

center/press-releases/2011/pr_2011_05_10-09_00.html
18. Malicious QR Codes Pushing Android Malware. https://www.securelist.com/en/blog/

208193145/Its_time_for_malicious_QR_codes
19. Mobile Security Technologies. http://www.spsm-workshop.org/
20. NDSS Symposium. http://www.internetsociety.org/events/ndss-symposium
21. NetQin Mobile Security. http://www.netqin.com/en/
22. Number of the Week: at Least 34% of Android Malware Is Stealing Your Data. http://www.

kaspersky.com/about/news/virus/2011/
Number_of_the_Week_at_Least_34_of_Android_Malware_Is_Stealing_Your_Data

23. One Year Of Android Malware (Full List). http://paulsparrows.wordpress.com/2011/08/
11/one-year-of-android-malware-full-list/

24. QR code. http://en.wikipedia.org/wiki/QR_code
25. Remote Kill and Install on Google Android. http://jon.oberheide.org/blog/2010/06/25/

remote-kill-and-install-on-google-android/

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4614-7394-7, � The Author(s) 2013

39

http://www.spsm-workshop.org/
http://www.sigsac.org/ccs.html
http://c-skills.blogspot.com/2011/01/adb-trickery-again.html
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBot_Analysis.pdf
http://c-skills.blogspot.com/2010/07/android-trickery.html
http://www.symantec.com/connect/blogs/androidbgserv-found-fake-google-security-patch
http://www.symantec.com/connect/blogs/androidbgserv-found-fake-google-security-patch
http://milw0rm.com/sploits/android-root-20090816.tar.gz
http://free.avg.com/us-en/antivirus-for-android.tpl-crp
http://c-skills.blogspot.com/2010/08/droid2.html
http://www.f-secure.com/weblog/archives/00002259.html
http://www.f-secure.com/weblog/archives/00002259.html
http://www.securityweek.com/fee-deduction-malware-targeting-android-devices-spotted-wild
http://www.securityweek.com/fee-deduction-malware-targeting-android-devices-spotted-wild
https://www.trusteer.com/blog/first-spyeye-attack-android-mobile-platform-now-wild
https://www.trusteer.com/blog/first-spyeye-attack-android-mobile-platform-now-wild
http://www.fortinet.com/
http://blog.mylookout.com/wp-content/uploads/2011/06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
http://blog.mylookout.com/wp-content/uploads/2011/06/GGTracker-Teardown_Lookout-Mobile-Security.pdf
http://www.ieee-security.org/TC/SP-Index.html
https://www.mylookout.com/
http://www.juniper.net/us/en/company/press-center/press-releases/2011/pr_2011_05_10-09_00.html
http://www.juniper.net/us/en/company/press-center/press-releases/2011/pr_2011_05_10-09_00.html
https://www.securelist.com/en/blog/208193145/Its_time_for_malicious_QR_codes
https://www.securelist.com/en/blog/208193145/Its_time_for_malicious_QR_codes
http://www.spsm-workshop.org/
http://www.internetsociety.org/events/ndss-symposium
http://www.netqin.com/en/
http://www.kaspersky.com/about/news/virus/2011/Number_of_the_Week_at_Least_34_of_Android_Malware_Is_Stealing_Your_Data
http://www.kaspersky.com/about/news/virus/2011/Number_of_the_Week_at_Least_34_of_Android_Malware_Is_Stealing_Your_Data
http://www.kaspersky.com/about/news/virus/2011/Number_of_the_Week_at_Least_34_of_Android_Malware_Is_Stealing_Your_Data
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://paulsparrows.wordpress.com/2011/08/11/one-year-of-android-malware-full-list/
http://en.wikipedia.org/wiki/QR_code
http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/
http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/


26. Revolutionary - zergRush Local Root 2.2/2.3. http://forum.xda-developers.com/show
thread.php?t=1296916

27. Security Alert: AnserverBot, New Sophisticated Android Bot Found in Alternative Android
Markets. http://www.csc.ncsu.edu/faculty/jiang/AnserverBot/

28. Security Alert: First Android SMS Trojan Found in the Wild. http://blog.
mylookout.com/2010/08/security-alert-first-android-sms-trojan-found-in-the-wild/

29. Security Alert: New DroidKungFu Variant - AGAIN! - Found in Alternative Android
Markets. http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/

30. Security Alert: New Stealthy Android Spyware - Plankton - Found in Official Android
Market. http://www.csc.ncsu.edu/faculty/jiang/Plankton/

31. Symantec. http://www.symantec.com/
32. TrendMicro. http://www.virustotal.com/
33. USENIX Security Symposium. https://www.usenix.org/conferences/byname/108
34. Using QR tags to Attack SmartPhones (Attaging). http://kaoticoneutral.blogspot.com/2011/

09/using-qr-tags-to-attack-smartphones_10.html
35. WAPS. http://www.waps.cn/
36. Yummy Yummy, GingerBreak! http://c-skills.blogspot.com/2011/04/yummy-yummy-ginger

break.html
37. ZeuS-in-the-Mobile - Facts and Theories. http://www.securelist.com/en/analysis/

204792194/ZeuS_in_the_Mobile_Facts_and_Theories
38. Zimperlich sources. http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
39. Smartphone Shipments Tripled Since ’08. Dumb Phones Are Flat. http://tech.

fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat,
2011.

40. J. Andrus, C. Dall, A. Van’t Hof, O. Laadan, J. Nieh, Cells: A virtual mobile smartphone
architecture. in Proceedings of the 23rd ACM Symposium on Operating Systems Principles,
2011.

41. A.R. Beresford, A. Rice, N. Skehin, R. Sohan, MockDroid: Trading privacy for application
functionality on smartphones. in Proceedings of the 12th International Workshop on Mobile
Computing System and Applications, 2011.

42. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, B. Shastry, Towards taming
privilege-escalation attacks on android. in Proceedings of the 19th Annual Symposium on
Network and Distributed System, Security, 2012.

43. E. Chin, A.P. Felt, K. Greenwood, D. Wagner, Analyzing inter-application communication in
android. in 9th Annual International Conference on Mobile Systems, Applications, and
Services, 2011.

44. M. Christodorescu, S. Jha, D. Maughan, D. Song, C. Wang, Malware Defense (Springer, New
York, 2006).

45. C. Collberg, J. Nagra, Surreptitious software: obfuscation, watermarking, and tamperproofing
for software protection (Addison-Wesley Professional, Boston, 2009).

46. M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, D.S. Wallach, QUIRE: lightweight provenance for
smart phone operating systems. in Proceedings of the 20th USENIX Security, Symposium,
2011.

47. K. Dunham, Mobile Malware Attacks and Defense (Syngress, Boston, 2008).
48. H. Dwivedi, C. Clark, D. Thiel, Mobile Application Security (Mc Graw Hill, New York,

2010).
49. M. Egele, C. Kruegel, E. Kirda, G. Vigna, PiOS: detecting privacy leaks in iOS applications.

in Proceedings of the 18th Annual Symposium on Network and Distributed System, Security,
2011.

50. W. Enck, P. Gilbert, B.-g. Chun, L.P. Cox, J. Jung, P. McDaniel, A.N. Sheth, TaintDroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. in
Proceedings of the 9th USENIX Symposium on Operating Systems Design and
Implementation, 2010.

40 References

http://forum.xda-developers.com/showthread.php?t=1296916
http://forum.xda-developers.com/showthread.php?t=1296916
http://www.csc.ncsu.edu/faculty/jiang/AnserverBot/
http://blog.mylookout.com/2010/08/security-alert-first-android-sms-trojan-found-in-the-wild/
http://blog.mylookout.com/2010/08/security-alert-first-android-sms-trojan-found-in-the-wild/
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu3/
http://www.csc.ncsu.edu/faculty/jiang/Plankton/
http://www.symantec.com/
http://www.virustotal.com/
https://www.usenix.org/conferences/byname/108
http://kaoticoneutral.blogspot.com/2011/09/using-qr-tags-to-attack-smartphones_10.html
http://kaoticoneutral.blogspot.com/2011/09/using-qr-tags-to-attack-smartphones_10.html
http://www.waps.cn/
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://c-skills.blogspot.com/2011/04/yummy-yummy-gingerbreak.html
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://www.securelist.com/en/analysis/204792194/ZeuS_in_the_Mobile_Facts_and_Theories
http://c-skills.blogspot.com/2011/02/zimperlich-sources.html
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat,
http://tech.fortune.cnn.com/2011/11/01/smartphone-shipments-tripled-since-08-dumb-phones-are-flat,


51. W. Enck, M. Ongtang, P. McDaniel, On lightweight mobile phone application certification.
in Proceedings of the 16th ACM Conference on Computer and Communications, Security,
2009.

52. A.P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions demystied. in
Proceedings of the 18th ACM Conference on Computer and Communications, Security,
2011.

53. A.P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of mobile malware in the
wild. in Proceedings of the 1st Workshop on Security and Privacy in Smartphones and
Mobile Devices, 2011.

54. A.P. Felt, H.J. Wang, A. Moshchuk, S. Hanna, E. Chin, Permission re-delegation: attacks and
defenses. in Proceedings of the 20th USENIX Security, Symposium, 2011.

55. M. Grace, W. Zhou, X. Jiang, A.-R. Sadeghi, Unsafe exposure analysis of mobile In-App
advertisements. in Proceedings of the 5th ACM Conference on Security and Privacy in
Wireless and Mobile, Networks, 2012.

56. M. Grace, Y. Zhou, Z. Wang, X. Jiang, Systematic detection of capability leaks in stock
android smartphones. in Proceedings of the 19th Annual Symposium on Network and
Distributed System, Security, 2012.

57. M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, RiskRanker: scalable and accurate zero-day
android malware detection. in Proceedings of the 10th International Conference on Mobile
Systems, Applications and Services, 2012.

58. N. Hardy, The Confused Deputy: (or why capabilities might have been invented). in ACM
SIGOPS Operating Systems, Review, 22 Oct 1998.

59. A. Hoog, Android Forensics: Investigation, Analysis and Mobile Security for Google Android
(Syngress, Waltham, 2011).

60. A. Hoog, K. Strzempka, iPhone and iOS Forensics: Investigation, Analysis and Mobile
Security for Apple iPhone, iPad and iOS Devices (Syngress, Waltham, 2011).

61. P. Hornyack, S. Han, J. Jung, S. Schechter, D. Wetherall, These aren’t the droids you’re
looking for: retrofitting android to protect data from imperious applications. in Proceedings of
the 18th ACM Conference on Computer and Communications, Security, 2011.

62. M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, M. Peter, L4Android: a generic
operating system framework for secure smartphones. in Proceedings of the 1st Workshop on
Security and Privacy in Smartphones and Mobile Devices, 2011.

63. W. Lee, C. Wang, D. Dagon, Botnet Detection (Springer, New York, 2008).
64. M. Masud, L. Khan, B. Thuraisingham, Data Mining Tools for Malware Detection (CRC

Press, London, 2011).
65. E. Metula, Managed Code Rootkits: Hooking into Runtime Environments (Syngress,

Burlington, 2010).
66. M. Nauman, S. Khan, X. Zhang, Apex: extending android permission model and enforcement

with user-defined runtime constraints. in Proceedings of the 5th ACM Symposium on
Information, Computer and Communications, Security, 2010.

67. M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel, Semantically rich application-centric
security in android. in Proceedings of the 25th Annual Computer Security Applications
Conference, 2009.

68. S. Schrittwieser, P. Frhwirt, P. Kieseberg, M. Leithner, M. Mulazzani, M. Huber, E. Weippl,
Guess who’s texting you? evaluating the security of smartphone messaging applications. in
Proceedings of the 19th Annual Symposium on Network and Distributed System, Security,
2012.

69. S. Shekhar, M. Dietz, D.S. Wallach, AdSplit: separating smartphone advertising from
applications. in Proceedings of the 21th USENIX Security, Symposium, 2012.

70. C. Silvio, X. Yang, Software Similarity and Classification (Springer, New York, 2012).
71. P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, T.L. Porta, On cellular

botnets: measuring the impact of malicious devices on a cellular network core. in Proceedings
of the 16th ACM Conference on Computer and Communications, Security, 2009.

References 41



72. R. Xu, H. Saidi, R. Anderson, Aurasium: practical policy enforcement for android
applications. in Proceedings of the 21th USENIX Security, Symposium, 2012.

73. L.K. Yan, H. Yin, DroidScope: seamlessly reconstructing the OS and Dalvik semantic views
for dynamic android malware analysis. in Proceedings of the 21th USENIX Security,
Symposium, 2012.

74. H. Yin, D. Song, Automatic Malware Analysis: An Emulator based Approach (Springer, New
York, 2013).

75. J. Zdziarski, Hacking and Securing iOS Applications: Stealing Data, Hijacking Software, and
How to Prevent It (O’Reilly, Media, Sebastopol, 2012).

76. W. Zhou, Y. Zhou, X. Jiang, P. Ning, DroidMOSS: detecting repackaged smartphone
applications in third-party android marketplaces. in Proceedings of the 2nd ACM Conference
on Data and Application Security and Privacy, 2012.

77. Y. Zhou, X. Jiang, Dissecting android malware: characterization and evolution. in
Proceedings of the 33nd IEEE Symposium on Security and Privacy, 2012.

78. Y. Zhou, Z. Wang, W. Zhou, X. Jiang, Hey, you, get off of my market: detecting malicious
apps in official and alternative android markets. in Proceedings of the 19th Annual
Symposium on Network and Distributed System, Security, 2012.

79. Y. Zhou, X. Zhang, X. Jiang, V.W. Freeh, Taming information-stealing smartphone
applications (on android). in Proceeding of the 4th International Conference on Trust and
Trustworthy, Computing, 2011.

42 References



Index

A
Access control, 35
Advanced encryption standard (AES), 17
Android malware genome project, 1, 4
Android market, 3, 5, 6, 10, 18
Android marketplaces, 3, 6, 26, 35
AnserverBot, 2, 5, 6, 9, 10, 13, 17, 21, 26–28,

31
Android open source project (AOSP), 9
Asroot, 12, 14

B
BaseBridge, 9, 13, 27, 28
BgServ, 6
Botnet, 2, 33, 35
C&C, 2, 14, 17, 18, 23, 24, 26, 28
Characterization, 1, 5, 31–33, 37

D
Data encryption standard (DES), 17
Drive-by download, 2, 5, 10
DroidDream, 6, 13
DroidKungFu, 5, 6, 21, 23, 24, 26, 31
DroidKungFuUpdate, 9, 23, 26

E
Encryption, 17, 24, 26
Exploid, 14, 19

F
FakeNetflix, 11, 18
FakePlayer, 3, 11, 17
Financial charges, 13, 17, 18
Fuzzy hashing, 35

G
Geinimi, 17, 18
GGTracker, 10, 17, 18
GingerBreak, 14
GoldDream, 6

I
In-app advertisement, 6, 10, 11, 35

J
Jifake, 10, 11
jSMSHider, 9

M
Malicious payload, 2, 3, 6, 9, 37
Malware, 1–3, 5, 6, 9–14, 17–19, 21, 23, 24,

26–29, 31–35, 37

P
Plankton, 2, 9, 10, 17, 21–23, 27–29
Premium-rate number, 9, 11, 17, 18
Privilege escalation, 13

Q
QR Code, 6, 11

R
RATC, 14
Reflection, 22
Remote control, 13, 14, 17, 18
Remote server, 10, 11, 14, 18, 21, 22, 24, 33
Repackaging, 6, 31

X. Jiang and Y. Zhou, Android Malware, SpringerBriefs in Computer Science,
DOI: 10.1007/978-1-4614-7394-7, � The Author(s) 2013

43



RogueSPPush, 11, 13, 17, 18
Root exploit, 9, 12, 14, 18
Root privilege, 12, 24, 26
RootStrap, 23

S
Sandbox, 12
Short message service (SMS), 7–9, 11–13,

15–19, 28, 32, 34
SMS_RECEIVED, 13
Spitmo, 10, 11, 18
Spyware, 6, 11, 17, 21

T
Third-party app, 9, 35

U
Update attack, 2, 5, 9, 10, 23, 27

Z
Zimperlich, 14
ZitMo, 10, 11
Zsone, 13, 17, 18

44 Index


	Acknowledgments
	Contents
	Acronyms
	1 Introduction
	2 A Survey of Android Malware
	2.1 Malware Dataset
	2.2 Malware Characterization
	2.2.1 Malware Installation
	2.2.2 Activation
	2.2.3 Malicious Payloads
	2.2.4 Permission Usage


	3 Case Studies
	3.1 Malware I: Plankton
	3.1.1 Phoning Home
	3.1.2 Dynamic Execution

	3.2 Malware II: DroidKungFu
	3.2.1 Root Exploits
	3.2.2 Command and Control (C&C) Servers
	3.2.3 Payloads
	3.2.4 Obfuscation, JNI, and Others

	3.3 Malware III: AnserverBot
	3.3.1 Anti-Analysis
	3.3.2 Command and Control (C&C) Servers


	4 Discussion
	5 Additional Reading
	5.1 Books
	5.1.1 Malware Detection and Defense
	5.1.2 Smartphone (Apps) Security

	5.2 Conference and Workshop Proceedings

	6 Summary
	References
	Index



