

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

DATA STRUCTURES AND

ALGORITHMS USING C#
C# programmers: no more translating data structures from C++ or Java to
use in your programs! Mike McMillan provides a tutorial on how to use data
structures and algorithms plus the first comprehensive reference for C# imple-
mentation of data structures and algorithms found in the .NET Framework
library, as well as those developed by the programmer.

The approach is very practical, using timing tests rather than Big O nota-
tion to analyze the efficiency of an approach. Coverage includes array and
ArrayLists, linked lists, hash tables, dictionaries, trees, graphs, and sorting
and searching algorithms, as well as more advanced algorithms such as prob-
abilistic algorithms and dynamic programming. This is the perfect resource
for C# professionals and students alike.

Michael McMillan is Instructor of Computer Information Systems at Pulaski
Technical College, as well as an adjunct instructor at the University of
Arkansas at Little Rock and the University of Central Arkansas. Mike’s previ-
ous books include Object-Oriented Programming with Visual Basic.NET, Data
Structures and Algorithms Using Visual Basic.NET, and Perl from the Ground Up.
He is a co-author of Programming and Problem-Solving with Visual Basic.NET.
Mike has written more than twenty-five trade journal articles on programming
and has more than twenty years of experience programming for industry and
education.

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

DATA STRUCTURES AND

ALGORITHMS USING C#

MICHAEL MCMILLAN
Pulaski Technical College

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-87691-9

ISBN-13 978-0-521-67015-9

© Michael McMillan 2007

2007

Information on this title: www.cambridge.org/9780521876919

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the permission of Cambridge University Press.

ISBN-10 0-521-87691-5

ISBN-10 0-521-67015-2

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

hardback

llausv

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

Contents

Preface page vii

Chapter 1
An Introduction to Collections, Generics, and the
Timing Class 1

Chapter 2
Arrays and ArrayLists 26

Chapter 3
Basic Sorting Algorithms 42

Chapter 4
Basic Searching Algorithms 55

Chapter 5
Stacks and Queues 68

Chapter 6
The BitArray Class 94

Chapter 7
Strings, the String Class, and the StringBuilder Class 119

Chapter 8
Pattern Matching and Text Processing 147

v

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

vi CONTENTS

Chapter 9
Building Dictionaries: The DictionaryBase Class and the
SortedList Class 165

Chapter 10
Hashing and the Hashtable Class 176

Chapter 11
Linked Lists 194

Chapter 12
Binary Trees and Binary Search Trees 218

Chapter 13
Sets 237

Chapter 14
Advanced Sorting Algorithms 249

Chapter 15
Advanced Data Structures and Algorithms for Searching 263

Chapter 16
Graphs and Graph Algorithms 283

Chapter 17
Advanced Algorithms 314

References 339

Index 341

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

Preface

The study of data structures and algorithms is critical to the development
of the professional programmer. There are many, many books written on
data structures and algorithms, but these books are usually written as college
textbooks and are written using the programming languages typically taught
in college—Java or C++. C# is becoming a very popular language and this
book provides the C# programmer with the opportunity to study fundamental
data structures and algorithms.

C# exists in a very rich development environment called the .NET Frame-
work. Included in the .NET Framework library is a set of data structure classes
(also called collection classes), which range from the Array, ArrayList, and
Collection classes to the Stack and Queue classes and to the HashTable and
the SortedList classes. The data structures and algorithms student can now see
how to use a data structure before learning how to implement it. Previously,
an instructor had to discuss the concept of, say, a stack, abstractly until the
complete data structure was constructed. Instructors can now show students
how to use a stack to perform some computation, such as number base con-
versions, demonstrating the utility of the data structure immediately. With
this background, the student can then go back and learn the fundamentals of
the data structure (or algorithm) and even build their own implementation.

This book is written primarily as a practical overview of the data struc-
tures and algorithms all serious computer programmers need to know and
understand. Given this, there is no formal analysis of the data structures and
algorithms covered in the book. Hence, there is not a single mathematical
formula and not one mention of Big Oh analysis (if you don’t know what this
means, look at any of the books mentioned in the bibliography). Instead, the
various data structures and algorithms are presented as problem-solving tools.

vii

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

viii PREFACE

Simple timing tests are used to compare the performance of the data structures
and algorithms discussed in the book.

PREREQUISITES

The only prerequisite for this book is that the reader have some familiarity
with the C# language in general, and object-oriented programming in C# in
particular.

CHAPTER-BY-CHAPTER ORGANIZATION

Chapter 1 introduces the reader to the concept of the data structure as a
collection of data. The concepts of linear and nonlinear collections are intro-
duced. The Collection class is demonstrated. This chapter also introduces the
concept of generic programming, which allows the programmer to write one
class, or one method, and have it work for a multitude of data types. Generic
programming is an important new addition to C# (available in C# 2.0 and
beyond), so much so that there is a special library of generic data structures
found in the System.Collections.Generic namespace. When a data structure
has a generic implementation found in this library, its use is discussed. The
chapter ends with an introduction to methods of measuring the performance
of the data structures and algorithms discussed in the book.

Chapter 2 provides a review of how arrays are constructed, along with
demonstrating the features of the Array class. The Array class encapsulates
many of the functions associated with arrays (UBound, LBound, and so on)
into a single package. ArrayLists are special types of arrays that provide
dynamic resizing capabilities.

Chapter 3 is an introduction to the basic sorting algorithms, such as the
bubble sort and the insertion sort, and Chapter 4 examines the most funda-
mental algorithms for searching memory, the sequential and binary searches.

Two classic data structures are examined in Chapter 5: the stack and the
queue. The emphasis in this chapter is on the practical use of these data
structures in solving everyday problems in data processing. Chapter 6 covers
the BitArray class, which can be used to efficiently represent a large number
of integer values, such as test scores.

Strings are not usually covered in a data structures book, but Chapter 7
covers strings, the String class, and the StringBuilder class. Because so much

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

PREFACE ix

data processing in C# is performed on strings, the reader should be exposed
to the special techniques found in the two classes. Chapter 8 examines the
use of regular expressions for text processing and pattern matching. Regular
expressions often provide more power and efficiency than can be had with
more traditional string functions and methods.

Chapter 9 introduces the reader to the use of dictionaries as data structures.
Dictionaries, and the different data structures based on them, store data as
key/value pairs. This chapter shows the reader how to create his or her own
classes based on the DictionaryBase class, which is an abstract class. Chap-
ter 10 covers hash tables and the HashTable class, which is a special type of
dictionary that uses a hashing algorithm for storing data internally.

Another classic data structure, the linked list, is covered in Chapter 11.
Linked lists are not as important a data structure in C# as they are in a
pointer-based language such as C++, but they still have a role in C# program-
ming. Chapter 12 introduces the reader to yet another classic data structure—
the binary tree. A specialized type of binary tree, the binary search tree, is
the primary topic of the chapter. Other types of binary trees are covered in
Chapter 15.

Chapter 13 shows the reader how to store data in sets, which can be useful in
situations in which only unique data values can be stored in the data structure.
Chapter 14 covers more advanced sorting algorithms, including the popular
and efficient QuickSort, which is the basis for most of the sorting procedures
implemented in the .NET Framework library. Chapter 15 looks at three data
structures that prove useful for searching when a binary search tree is not
called for: the AVL tree, the red-black tree, and the skip list.

Chapter 16 discusses graphs and graph algorithms. Graphs are useful for
representing many different types of data, especially networks. Finally, Chap-
ter 17 introduces the reader to what algorithm design techniques really are:
dynamic algorithms and greedy algorithms.

ACKNOWLEDGEMENTS

There are several different groups of people who must be thanked for helping
me finish this book. First, thanks to a certain group of students who first
sat through my lectures on developing data structures and algorithms. These
students include (not in any particular order): Matt Hoffman, Ken Chen, Ken
Cates, Jeff Richmond, and Gordon Caffey. Also, one of my fellow instructors
at Pulaski Technical College, Clayton Ruff, sat through many of the lectures

P1: FCW
0521670152pre CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 20:59

x PREFACE

and provided excellent comments and criticism. I also have to thank my
department dean, David Durr, and my department chair, Bernica Tackett, for
supporting my writing endeavors. I also need to thank my family for putting
up with me while I was preoccupied with research and writing. Finally, many
thanks to my editors at Cambridge, Lauren Cowles and Heather Bergman, for
putting up with my many questions, topic changes, and habitual lateness.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

CHAPTER 1

An Introduction to
Collections, Generics,
and the Timing Class

This book discusses the development and implementation of data structures
and algorithms using C#. The data structures we use in this book are found
in the .NET Framework class library System.Collections. In this chapter, we
develop the concept of a collection by first discussing the implementation of
our own Collection class (using the array as the basis of our implementation)
and then by covering the Collection classes in the .NET Framework.

An important addition to C# 2.0 is generics. Generics allow the C# pro-
grammer to write one version of a function, either independently or within a
class, without having to overload the function many times to allow for differ-
ent data types. C# 2.0 provides a special library, System.Collections.Generic,
that implements generics for several of the System.Collections data structures.
This chapter will introduce the reader to generic programming.

Finally, this chapter introduces a custom-built class, the Timing class, which
we will use in several chapters to measure the performance of a data structure
and/or algorithm. This class will take the place of Big O analysis, not because
Big O analysis isn’t important, but because this book takes a more practical
approach to the study of data structures and algorithms.

1

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

2 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

COLLECTIONS DEFINED

A collection is a structured data type that stores data and provides operations
for adding data to the collection, removing data from the collection, updating
data in the collection, as well as operations for setting and returning the values
of different attributes of the collection.

Collections can be broken down into two types: linear and nonlinear. A
linear collection is a list of elements where one element follows the previous
element. Elements in a linear collection are normally ordered by position
(first, second, third, etc.). In the real world, a grocery list is a good example
of a linear collection; in the computer world (which is also real), an array is
designed as a linear collection.

Nonlinear collections hold elements that do not have positional order
within the collection. An organizational chart is an example of a nonlinear
collection, as is a rack of billiard balls. In the computer world, trees, heaps,
graphs, and sets are nonlinear collections.

Collections, be they linear or nonlinear, have a defined set of properties that
describe them and operations that can be performed on them. An example
of a collection property is the collections Count, which holds the number of
items in the collection. Collection operations, called methods, include Add
(for adding a new element to a collection), Insert (for adding a new element
to a collection at a specified index), Remove (for removing a specified element
from a collection), Clear (for removing all the elements from a collection),
Contains (for determining if a specified element is a member of a collec-
tion), and IndexOf (for determining the index of a specified element in a
collection).

COLLECTIONS DESCRIBED

Within the two major categories of collections are several subcategories.
Linear collections can be either direct access collections or sequential access
collections, whereas nonlinear collections can be either hierarchical or
grouped. This section describes each of these collection types.

Direct Access Collections

The most common example of a direct access collection is the array. We define
an array as a collection of elements with the same data type that are directly
accessed via an integer index, as illustrated in Figure 1.1.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

Collections Described 3

Item ø Item 1 Item 2 Item 3 . . . Item j Item n−1

FIGURE 1.1. Array.

Arrays can be static so that the number of elements specified when the array
is declared is fixed for the length of the program, or they can be dynamic, where
the number of elements can be increased via the ReDim or ReDim Preserve
statements.

In C#, arrays are not only a built-in data type, they are also a class. Later
in this chapter, when we examine the use of arrays in more detail, we will
discuss how arrays are used as class objects.

We can use an array to store a linear collection. Adding new elements to an
array is easy since we simply place the new element in the first free position
at the rear of the array. Inserting an element into an array is not as easy (or
efficient), since we will have to move elements of the array down in order
to make room for the inserted element. Deleting an element from the end of
an array is also efficient, since we can simply remove the value from the last
element. Deleting an element in any other position is less efficient because,
just as with inserting, we will probably have to adjust many array elements
up one position to keep the elements in the array contiguous. We will discuss
these issues later in the chapter. The .NET Framework provides a specialized
array class, ArrayList, for making linear collection programming easier. We
will examine this class in Chapter 3.

Another type of direct access collection is the string. A string is a collection
of characters that can be accessed based on their index, in the same manner we
access the elements of an array. Strings are also implemented as class objects
in C#. The class includes a large set of methods for performing standard
operations on strings, such as concatenation, returning substrings, inserting
characters, removing characters, and so forth. We examine the String class in
Chapter 8.

C# strings are immutable, meaning once a string is initialized it cannot be
changed. When you modify a string, a copy of the string is created instead of
changing the original string. This behavior can lead to performance degrada-
tion in some cases, so the .NET Framework provides a StringBuilder class that
enables you to work with mutable strings. We’ll examine the StringBuilder in
Chapter 8 as well.

The final direct access collection type is the struct (also called structures
and records in other languages). A struct is a composite data type that holds
data that may consist of many different data types. For example, an employee

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

4 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

record consists of employee’ name (a string), salary (an integer), identification
number (a string, or an integer), as well as other attributes. Since storing each
of these data values in separate variables could become confusing very easily,
the language provides the struct for storing data of this type.

A powerful addition to the C# struct is the ability to define methods for
performing operations stored on the data in a struct. This makes a struct
somewhat like a class, though you can’t inherit or derive a new type from
a structure. The following code demonstrates a simple use of a structure
in C#:

using System;

public struct Name {

private string fname, mname, lname;

public Name(string first, string middle, string last) {
fname = first;

mname = middle;

lname = last;

}

public string firstName {
get {

return fname;

}

set {
fname = firstName;

}
}
public string middleName {

get {
return mname;

}

set {
mname = middleName;

}
}

public string lastName {
get {

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

Collections Described 5

return lname;

}

set {
lname = lastName;

}
}

public override string ToString() {
return (String.Format("{0} {1} {2}", fname, mname,

lname));

}

public string Initials() {
return(String.Format("{0}{1}{2}",fname.Substring(0,1),

mname.Substring(0,1), lname.Substring(0,1)));

}
}

public class NameTest {
static void Main() {

Name myName = new Name("Michael", "Mason", "McMillan");

string fullName, inits;

fullName = myName.ToString();

inits = myName.Initials();

Console.WriteLine("My name is {0}.", fullName);

Console.WriteLine("My initials are {0}.", inits);

}
}

Although many of the elements in the .NET environment are implemented as
classes (such as arrays and strings), several primary elements of the language
are implemented as structures, such as the numeric data types. The Integer
data type, for example, is implemented as the Int32 structure. One of the
methods you can use with Int32 is the Parse method for converting the string
representation of a number into an integer. Here’s an example:

using System;

public class IntStruct {
static void Main() {

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

6 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

int num;

string snum;

Console.Write("Enter a number: ");

snum = Console.ReadLine();

num = Int32.Parse(snum);

Console.WriteLine(num);

}
}

Sequential Access Collections

A sequential access collection is a list that stores its elements in sequential
order. We call this type of collection a linear list. Linear lists are not limited
by size when they are created, meaning they are able to expand and contract
dynamically. Items in a linear list are not accessed directly; they are referenced
by their position, as shown in Figure 1.2. The first element of a linear list is
at the front of the list and the last element is at the rear of the list.

Because there is no direct access to the elements of a linear list, to access an
element you have to traverse through the list until you arrive at the position
of the element you are looking for. Linear list implementations usually allow
two methods for traversing a list—in one direction from front to rear, and
from both front to rear and rear to front.

A simple example of a linear list is a grocery list. The list is created by
writing down one item after another until the list is complete. The items are
removed from the list while shopping as each item is found.

Linear lists can be either ordered or unordered. An ordered list has values
in order in respect to each other, as in:

Beata Bernica David Frank Jennifer Mike Raymond Terrill

An unordered list consists of elements in any order. The order of a list makes
a big difference when performing searches on the data on the list, as you’ll see
in Chapter 2 when we explore the binary search algorithm versus a simple
linear search.

1st 2nd 3rd 4th nth. . .

Front Rear

FIGURE 1.2. Linear List.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

Collections Described 7

Push

David

Raymond

Mike

Bernica Pop

David

Raymond

Mike

Bernica

FIGURE 1.3. Stack Operations.

Some types of linear lists restrict access to their data elements. Examples
of these types of lists are stacks and queues. A stack is a list where access is
restricted to the beginning (or top) of the list. Items are placed on the list
at the top and can only be removed from the top. For this reason, stacks are
known as Last-in, First-out structures. When we add an item to a stack, we
call the operation a push. When we remove an item from a stack, we call that
operation a pop. These two stack operations are shown in Figure 1.3.

The stack is a very common data structure, especially in computer systems
programming. Stacks are used for arithmetic expression evaluation and for
balancing symbols, among its many applications.

A queue is a list where items are added at the rear of the list and removed
from the front of the list. This type of list is known as a First-in, First-out struc-
ture. Adding an item to a queue is called an EnQueue, and removing an item
from a queue is called a Dequeue. Queue operations are shown in Figure 1.4.

Queues are used in both systems programming, for scheduling operating
system tasks, and for simulation studies. Queues make excellent structures
for simulating waiting lines in every conceivable retail situation. A special
type of queue, called a priority queue, allows the item in a queue with the
highest priority to be removed from the queue first. Priority queues can be
used to study the operations of a hospital emergency room, where patients
with heart trouble need to be attended to before a patient with a broken arm,
for example.

The last category of linear collections we’ll examine are called generalized
indexed collections. The first of these, called a hash table, stores a set of data

Mike

Raymond

David

Beata

Bernica

Beata

Mike

Raymond

David

Bernica

En Queue

De Queue

FIGURE 1.4. Queue Operations.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

8 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

“Paul E. Spencer”

“Information Systems”

37500

5

FIGURE 1.5. A Record To Be Hashed.

values associated with a key. In a hash table, a special function, called a hash
function, takes one data value and transforms the value (called the key) into
an integer index that is used to retrieve the data. The index is then used to
access the data record associated with the key. For example, an employee
record may consist of a person’s name, his or her salary, the number of years
the employee has been with the company, and the department he or she works
in. This structure is shown in Figure 1.5. The key to this data record is the
employee’s name. C# has a class, called HashTable, for storing data in a hash
table. We explore this structure in Chapter 10.

Another generalized indexed collection is the dictionary. A dictionary is
made up of a series of key–value pairs, called associations. This structure
is analogous to a word dictionary, where a word is the key and the word’s
definition is the value associated with the key. The key is an index into the
value associated with the key. Dictionaries are often called associative arrays
because of this indexing scheme, though the index does not have to be an
integer. We will examine several Dictionary classes that are part of the .NET
Framework in Chapter 11.

Hierarchical Collections

Nonlinear collections are broken down into two major groups: hierarchical
collections and group collections. A hierarchical collection is a group of items
divided into levels. An item at one level can have successor items located at
the next lower level.

One common hierarchical collection is the tree. A tree collection looks like
an upside-down tree, with one data element as the root and the other data
values hanging below the root as leaves. The elements of a tree are called
nodes, and the elements that are below a particular node are called the node’s
children. A sample tree is shown in Figure 1.6.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

Collections Described 9

Root

FIGURE 1.6. A Tree Collection.

Trees have applications in several different areas. The file systems of most
modern operating systems are designed as a tree collection, with one directory
as the root and other subdirectories as children of the root.

A binary tree is a special type of tree collection where each node has no
more than two children. A binary tree can become a binary search tree, making
searches for large amounts of data much more efficient. This is accomplished
by placing nodes in such a way that the path from the root to a node where
the data is stored is along the shortest path possible.

Yet another tree type, the heap, is organized so that the smallest data value
is always placed in the root node. The root node is removed during a deletion,
and insertions into and deletions from a heap always cause the heap to reor-
ganize so that the smallest value is placed in the root. Heaps are often used
for sorts, called a heap sort. Data elements stored in a heap can be kept sorted
by repeatedly deleting the root node and reorganizing the heap.

Several different varieties of trees are discussed in Chapter 12.

Group Collections

A nonlinear collection of items that are unordered is called a group. The three
major categories of group collections are sets, graphs, and networks.

A set is a collection of unordered data values where each value is unique.
The list of students in a class is an example of a set, as is, of course, the integers.
Operations that can be performed on sets include union and intersection. An
example of set operations is shown in Figure 1.7.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

10 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

2 4

B

6

8 10 12

11 3

A A intersection B A union B

2

1 5 7 2 4 6

8 10 12

1 2 3

5 7 11

1 63
5 7 2

11

4
8 10

12

FIGURE 1.7. Set Collection Operations.

A graph is a set of nodes and a set of edges that connect the nodes. Graphs
are used to model situations where each of the nodes in a graph must be visited,
sometimes in a particular order, and the goal is to find the most efficient way
to “traverse” the graph. Graphs are used in logistics and job scheduling and
are well studied by computer scientists and mathematicians. You may have
heard of the “Traveling Salesman” problem. This is a particular type of graph
problem that involves determining which cities on a salesman’s route should
be traveled in order to most efficiently complete the route within the budget
allowed for travel. A sample graph of this problem is shown in Figure 1.8.

This problem is part of a family of problems known as NP-complete prob-
lems. This means that for large problems of this type, an exact solution is not
known. For example, to find the solution to the problem in Figure 1.8, 10
factorial tours, which equals 3,628,800 tours. If we expand the problem to
100 cities, we have to examine 100 factorial tours, which we currently cannot
do with current methods. An approximate solution must be found instead.

A network is a special type of graph where each of the edges is assigned a
weight. The weight is associated with a cost for using that edge to move from
one node to another. Figure 1.9 depicts a network of cities where the weights
are the miles between the cities (nodes).

We’ve now finished our tour of the different types of collections we are going
to discuss in this book. Now we’re ready to actually look at how collections

Rome
Washington

Moscow

LA

Tokyo

Seattle

Boston

New York

London

Paris

FIGURE 1.8. The Traveling Salesman Problem.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

The CollectionBase Class 11

A

D

142

B

C

91

20
2

72

186

FIGURE 1.9. A Network Collection.

are implemented in C#. We start by looking at how to build a Collection class
using an abstract class from the .NET Framework, the CollectionBase class.

THE COLLECTIONBASE CLASS

The .NET Framework library does not include a generic Collection class
for storing data, but there is an abstract class you can use to build your
own Collection class—CollectionBase. The CollectionBase class provides the
programmer with the ability to implement a custom Collection class. The
class implicitly implements two interfaces necessary for building a Collection
class, ICollection and IEnumerable, leaving the programmer with having to
implement just those methods that are typically part of a Collection class.

A Collection Class Implementation Using ArrayLists

In this section, we’ll demonstrate how to use C# to implement our own Col-
lection class. This will serve several purposes. First, if you’re not quite up
to speed on object-oriented programming (OOP), this implementation will
show you some simple OOP techniques in C#. We can also use this section to
discuss some performance issues that are going to come up as we discuss the
different C# data structures. Finally, we think you’ll enjoy this section, as well
as the other implementation sections in this book, because it’s really a lot of
fun to reimplement the existing data structures using just the native elements
of the language. As Don Knuth (one of the pioneers of computer science)
says, to paraphrase, you haven’t really learned something well until you’ve
taught it to a computer. So, by teaching C# how to implement the different
data structures, we’ll learn much more about those structures than if we just
choose to use the classes from the library in our day-to-day programming.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

12 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

Defining a Collection Class

The easiest way to define a Collection class in C# is to base the class on an
abstract class already found in the System.Collections library—the Collection-
Base class. This class provides a set of abstract methods you can implement
to build your own collection. The CollectionBase class provides an underly-
ing data structure, InnerList (an ArrayList), which you can use as a base for
your class. In this section, we look at how to use CollectionBase to build a
Collection class.

Implementing the Collection Class

The methods that will make up the Collection class all involve some type of
interaction with the underlying data structure of the class—InnerList. The
methods we will implement in this first section are the Add, Remove, Count,
and Clear methods. These methods are absolutely essential to the class, though
other methods definitely make the class more useful.

Let’s start with the Add method. This method has one parameter – an
Object variable that holds the item to be added to the collection. Here is the
code:

public void Add(Object item) {
InnerList.Add(item);

}

ArrayLists store data as objects (the Object data type), which is why we
have declared item as Object. You will learn much more about ArrayLists
in Chapter 2.

The Remove method works similarly:

public void Remove(Object item) {
InnerList.Remove(item);

}

The next method is Count. Count is most often implemented as a prop-
erty, but we prefer to make it a method. Also, Count is implemented in the

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

The CollectionBase Class 13

underlying class, CollectionBase, so we have to use the new keyword to hide
the definition of Count found in CollectionBase:

public new int Count() {
return InnerList.Count;

}

The Clear method removes all the items from InnerList. We also have to use
the new keyword in the definition of the method:

public new void Clear() {
InnerList.Clear();

}

This is enough to get us started. Let’s look at a program that uses the
Collection class, along with the complete class definition:

using System;

using System.Collections;

public class Collection : CollectionBase<T> {

public void Add(Object item) {
InnerList.Add(item);

}

public void Remove(Object item) {
InnerList.Remove(item);

}

public new void Clear() {
InnerList.Clear();

}

public new int Count() {
return InnerList.Count;

}
}

class chapter1 {

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

14 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

static void Main() {
Collection names = new Collection();

names.Add("David");

names.Add("Bernica");

names.Add("Raymond");

names.Add("Clayton");

foreach (Object name in names)

Console.WriteLine(name);

Console.WriteLine("Number of names: " + names.

Count());

names.Remove("Raymond");

Console.WriteLine("Number of names: " + names.

Count());

names.Clear();

Console.WriteLine("Number of names: " + names.

Count());

}
}

There are several other methods you can implement in order to create a
more useful Collection class. You will get a chance to implement some of
these methods in the exercises.

Generic Programming

One of the problems with OOP is a feature called “code bloat.” One type of
code bloat occurs when you have to override a method, or a set of methods,
to take into account all of the possible data types of the method’s parameters.
One solution to code bloat is the ability of one value to take on multiple data
types, while only providing one definition of that value. This technique is
called generic programming.

A generic program provides a data type “placeholder” that is filled in by a
specific data type at compile-time. This placeholder is represented by a pair
of angle brackets (< >), with an identifier placed between the brackets. Let’s
look at an example.

A canonical first example for generic programming is the Swap function.
Here is the definition of a generic Swap function in C#:

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

The CollectionBase Class 15

static void Swap<T>(ref T val1, ref T val2) {
T temp;

temp = val1;

val1 = val2;

val2 = temp;

}

The placeholder for the data type is placed immediately after the function
name. The identifier placed inside the angle brackets is now used whenever a
generic data type is needed. Each of the parameters is assigned a generic data
type, as is the temp variable used to make the swap. Here’s a program that
tests this code:

using System;

class chapter1 {
static void Main() {

int num1 = 100;

int num2 = 200;

Console.WriteLine("num1: " + num1);

Console.WriteLine("num2: " + num2);

Swap<int>(ref num1, ref num2);

Console.WriteLine("num1: " + num1);

Console.WriteLine("num2: " + num2);

string str1 = "Sam";

string str2 = "Tom";

Console.WriteLine("String 1: " + str1);

Console.WriteLine("String 2: " + str2);

Swap<string>(ref str1, ref str2);

Console.WriteLine("String 1: " + str1);

Console.WriteLine("String 2: " + str2);

}

static void Swap<T>(ref T val1, ref T val2) {
T temp;

temp = val1;

val1 = val2;

val2 = temp;

}
}

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

16 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

The output from this program is:

Generics are not limited to function definitions; you can also create generic
classes. A generic class definition will contain a generic type placeholder after
the class name. Anytime the class name is referenced in the definition, the type
placeholder must be provided. The following class definition demonstrates
how to create a generic class:

public class Node<T> {

T data;

Node<T> link;

public Node(T data, Node<T> link) {
this.data = data;

this.link = link;

}
}

This class can be used as follows:

Node<string> node1 = new Node<string>("Mike", null);

Node<string> node2 = new Node<string>("Raymond", node1);

We will be using the Node class in several of the data structures we examine
in this book.

While this use of generic programming can be quite useful, C# provides a
library of generic data structures already ready to use. These data structures
are found in the System.Collection.Generics namespace and when we discuss
a data structure that is part of this namespace, we will examine its use. Gener-
ally, though, these classes have the same functionality as the nongeneric data

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

The CollectionBase Class 17

structure classes, so we will usually limit the discussion of the generic class
to how to instantiate an object of that class, since the other methods and their
use are no different.

Timing Tests

Because this book takes a practical approach to the analysis of the data struc-
tures and algorithms examined, we eschew the use of Big O analysis, preferring
instead to run simple benchmark tests that will tell us how long in seconds
(or whatever time unit) it takes for a code segment to run.

Our benchmarks will be timing tests that measure the amount of time it
takes an algorithm to run to completion. Benchmarking is as much of an art
as a science and you have to be careful how you time a code segment in order
to get an accurate analysis. Let’s examine this in more detail.

An Oversimplified Timing Test

First, we need some code to time. For simplicity’s sake, we will time a sub-
routine that writes the contents of an array to the console. Here’s the code:

static void DisplayNums(int[] arr) {
for(int i = 0; i <= arr.GetUpperBound(0); i++)

Console.Write(arr[i] + " ");

}

The array is initialized in another part of the program, which we’ll examine
later.

To time this subroutine, we need to create a variable that is assigned the
system time just as the subroutine is called, and we need a variable to store
the time when the subroutine returns. Here’s how we wrote this code:

DateTime startTime;

TimeSpan endTime;

startTime = DateTime.Now;

endTime = DateTime.Now.Subtract(startTime);

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

18 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

Running this code on my laptop (running at 1.4 mHz on Windows XP
Professional), the subroutine ran in about 5 seconds (4.9917). Although this
code segment seems reasonable for performing a timing test, it is completely
inadequate for timing code running in the .NET environment. Why?

First, the code measures the elapsed time from when the subroutine was
called until the subroutine returns to the main program. The time used by
other processes running at the same time as the C# program adds to the time
being measured by the test.

Second, the timing code doesn’t take into account garbage collection per-
formed in the .NET environment. In a runtime environment such as .NET,
the system can pause at any time to perform garbage collection. The sample
timing code does nothing to acknowledge garbage collection and the result-
ing time can be affected quite easily by garbage collection. So what do we do
about this?

Timing Tests for the .NET Environment

In the .NET environment, we need to take into account the thread our program
is running in and the fact that garbage collection can occur at any time. We
need to design our timing code to take these facts into consideration.

Let’s start by looking at how to handle garbage collection. First, let’s discuss
what garbage collection is used for. In C#, reference types (such as strings,
arrays, and class instance objects) are allocated memory on something called
the heap. The heap is an area of memory reserved for data items (the types
mentioned previously). Value types, such as normal variables, are stored on
the stack. References to reference data are also stored on the stack, but the
actual data stored in a reference type is stored on the heap.

Variables that are stored on the stack are freed when the subprogram in
which the variables are declared completes its execution. Variables stored on
the heap, on the other hand, are held on the heap until the garbage collection
process is called. Heap data is only removed via garbage collection when there
is not an active reference to that data.

Garbage collection can, and will, occur at arbitrary times during the exe-
cution of a program. However, we want to be as sure as we can that the
garbage collector is not run while the code we are timing is executing. We can
head off arbitrary garbage collection by calling the garbage collector explic-
itly. The .NET environment provides a special object for making garbage

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

The CollectionBase Class 19

collection calls, GC. To tell the system to perform garbage collection, we
simply write:

GC.Collect();

That’s not all we have to do, though. Every object stored on the heap has
a special method called a finalizer. The finalizer method is executed as the
last step before deleting the object. The problem with finalizer methods is
that they are not run in a systematic way. In fact, you can’t even be sure an
object’s finalizer method will run at all, but we know that before we can be
sure an object is deleted, it’s finalizer method must execute. To ensure this,
we add a line of code that tells the program to wait until all the finalizer
methods of the objects on the heap have run before continuing. The line of
code is:

GC.WaitForPendingFinalizers();

We have one hurdle cleared and just one left to go – using the proper
thread. In the .NET environment, a program is run inside a process, also
called an application domain. This allows the operating system to separate
each different program running on it at the same time. Within a process, a
program or a part of a program is run inside a thread. Execution time for a
program is allocated by the operating system via threads. When we are timing
the code for a program, we want to make sure that we’re timing just the
code inside the process allocated for our program and not other tasks being
performed by the operating system.

We can do this by using the Process class in the .NET Framework. The
Process class has methods for allowing us to pick the current process (the
process our program is running in), the thread the program is running in, and
a timer to store the time the thread starts executing. Each of these methods
can be combined into one call, which assigns its return value to a variable to
store the starting time (a TimeSpan object). Here’s the line of code (okay, two
lines of code):

TimeSpan startingTime;

startingTime = Process.GetCurrentProcess.Threads(0).

UserProcessorTime;

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

20 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

All we have left to do is capture the time when the code segment we’re
timing stops. Here’s how it’s done:

duration =

Process.GetCurrentProcess.Threads(0).UserProcessorTime.

Subtract(startingTime);

Now let’s combine all this into one program that times the same code we
tested earlier:

using System;

using System.Diagnostics;

class chapter1 {
static void Main() {

int[] nums = new int[100000];

BuildArray(nums);

TimeSpan startTime;

TimeSpan duration;

startTime =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime;

DisplayNums(nums);

duration =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime.

Subtract(startTime);

Console.WriteLine("Time: " + duration.TotalSeconds);

}

static void BuildArray(int[] arr) {
for(int i = 0; i <= 99999; i++)

arr[i] = i;

}

static void DisplayNums(int[] arr) {
for(int i = 0; i <= arr.GetUpperBound(0); i++)

Console.Write(arr[i] + " ");

}
}

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

The CollectionBase Class 21

Using the new and improved timing code, the program returns 0.2526.
This compares with the approximately 5 seconds returned using the first
timing code. Clearly, there is a major discrepancy between these two timing
techniques and you should use the .NET techniques when timing code in the
.NET environment.

A Timing Test Class

Although we don’t need a class to run our timing code, it makes sense to
rewrite the code as a class, primarily because we’ll keep our code clear if we
can reduce the number of lines in the code we test.

A Timing class needs the following data members:

� startingTime—to store the starting time of the code we are testing
� duration—the ending time of the code we are testing

The starting time and the duration members store times and we chose to use
the TimeSpan data type for these data members. We’ll use just one constructor
method, a default constructor that sets both the data members to 0.

We’ll need methods for telling a Timing object when to start timing code
and when to stop timing. We also need a method for returning the data stored
in the duration data member.

As you can see, the Timing class is quite small, needing just a few methods.
Here’s the definition:

public class Timing {

TimeSpan startingTime;

TimeSpan duration;

public Timing() {
startingTime = new TimeSpan(0);

duration = new TimeSpan(0);

}

public void StopTime() {
duration =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime.Subtract(startingTime);

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

22 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

}

public void startTime() {
GC.Collect();

GC.WaitForPendingFinalizers();

startingTime =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime;

}

public TimeSpan Result() {
return duration;

}
}

Here’s the program to test the DisplayNums subroutine, rewritten with the
Timing class:

using System;

using System.Diagnostics;

public class Timing {

TimeSpan startingTime;

TimeSpan duration;

public Timing() {
startingTime = new TimeSpan(0);

duration = new TimeSpan(0);

}

public void StopTime() {
duration =

Process.GetCurrentProcess().Threads[0].

UserProcessorTime.

Subtract(startingTime);

}

public void startTime() {
GC.Collect();

GC.WaitForPendingFinalizers();

startingTime =

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

The CollectionBase Class 23

Process.GetCurrentProcess().Threads[0].

UserProcessorTime;

}

public TimeSpan Result() {
return duration;

}
}

class chapter1 {
static void Main() {

int[] nums = new int[100000];

BuildArray(nums);

Timing tObj = new Timing();

tObj.startTime();

DisplayNums(nums);

tObj.stopTime();

Console.WriteLine("time (.NET): " & tObj.Result.

TotalSeconds);

}

static void BuildArray(int[] arr) {
for(int i = 0; i < 100000; i++)

arr[i] = I;

}
}

By moving the timing code into a class, we’ve cut down the number of lines
in the main program from 13 to 8. Admittedly, that’s not a lot of code to cut
out of a program, but more important than the number of lines we cut is the
clutter in the main program. Without the class, assigning the starting time to
a variable looks like this:

startTime = Process.GetCurrentProcess().Threads[0)].

UserProcessorTime;

With the Timing class, assigning the starting time to the class data member
looks like this:

tObj.startTime();

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

24 INTRODUCTION TO COLLECTIONS, GENERICS, AND TIMING CLASS

Encapsulating the long assignment statement into a class method makes our
code easier to read and less likely to have bugs.

SUMMARY

This chapter reviews three important techniques we will use often in this book.
Many, though not all of the programs we will write, as well as the libraries we
will discuss, are written in an object-oriented manner. The Collection class
we developed illustrates many of the basic OOP concepts seen throughout
these chapters. Generic programming allows the programmer to simplify the
definition of several data structures by limiting the number of methods that
have to be written or overloaded. The Timing class provides a simple, yet
effective way to measure the performance of the data structures and algorithms
we will study.

EXERCISES

1. Create a class called Test that has data members for a student’s name and
a number indicating the test number. This class is used in the following
scenario: When a student turns in a test, they place it face down on the
desk. If a student wants to check an answer, the teacher has to turn the stack
over so the first test is face up, work through the stack until the student’s
test is found, and then remove the test from the stack. When the student
finishes checking the test, it is reinserted at the end of the stack.

Write a Windows application to model this situation. Include text boxes
for the user to enter a name and a test number. Put a list box on the form
for displaying the final list of tests. Provide four buttons for the following
actions: 1. Turn in a test; 2. Let student look at test; 3. Return a test; and 4.
Exit. Perform the following actions to test your application: 1. Enter a name
and a test number. Insert the test into a collection named submittedTests; 2.
Enter a name, delete the associated test from submittedTests, and insert the
test in a collection named outForChecking; 3. Enter a name, delete the test
from outForChecking, and insert it in submittedTests; 4. Press the Exit
button. The Exit button doesn’t stop the application but instead deletes all
tests from outForChecking and inserts them in submittedTests and displays
a list of all the submitted tests.

Use the Collection class developed in this chapter.

P1: IBE
0521670152c01 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:2

Exercises 25

2. Add to the Collection class by implementing the following methods:
a. Insert
b. Contains
c. IndexOf
d. RemoveAt

3. Use the Timing class to compare the performance of the Collection class
and an ArrayList when adding 1,000,000 integers to each.

4. Build your own Collection class without deriving your class from
CollectionBase. Use generics in your implementation.

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

CHAPTER 2

Arrays and ArrayLists

The array is the most common data structure, present in nearly all program-
ming languages. Using an array in C# involves creating an array object of
System.Array type, the abstract base type for all arrays. The Array class pro-
vides a set of methods for performing tasks such as sorting and searching that
programmers had to build by hand in the past.

An interesting alternative to using arrays in C# is the ArrayList class. An
arraylist is an array that grows dynamically as more space is needed. For
situations where you can’t accurately determine the ultimate size of an array,
or where the size of the array will change quite a bit over the lifetime of a
program, an arraylist may be a better choice than an array.

In this chapter, we’ll quickly touch on the basics of using arrays in C#,
then move on to more advanced topics, including copying, cloning, test-
ing for equality and using the static methods of the Array and ArrayList
classes.

ARRAY BASICS

Arrays are indexed collections of data. The data can be of either a built-in
type or a user-defined type. In fact, it is probably the simplest just to say that
array data are objects. Arrays in C# are actually objects themselves because
they derive from the System.Array class. Since an array is a declared instance

26

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Array Basics 27

of the System.Array class, you have the use of all the methods and properties
of this class when using arrays.

Declaring and Initializing Arrays

Arrays are declared using the following syntax:

type[] array-name;

where type is the data type of the array elements. Here is an example:

string[] names;

A second line is necessary to instantiate the array (since it is an object of
System.Array type) and to determine the size of the array. The following line
instantiates the names array just declared:

names = new string[10];

and reserves memory for five strings.
You can combine these two statements into one line when necessary to do

so:

string[] names = new string[10];

There are times when you will want to declare, instantiate, and assign data
to an array in one statement. You can do this in C# using an initialization
list:

int[] numbers = new int[] {1,2,3,4,5};

The list of numbers, called the initialization list, is delimited with curly braces,
and each element is delimited with a comma. When you declare an array
using this technique, you don’t have to specify the number of elements. The
compiler infers this data from the number of items in the initialization
list.

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

28 ARRAYS AND ARRAYLISTS

Setting and Accessing Array Elements

Elements are stored in an array either by direct access or by calling the Array
class method SetValue. Direct access involves referencing an array position by
index on the left-hand side of an assignment statement:

Names[2] = "Raymond";

Sales[19] = 23123;

The SetValue method provides a more object-oriented way to set the value
of an array element. The method takes two arguments, an index number and
the value of the element.

names.SetValue[2, "Raymond"];

sales.SetValue[19, 23123];

Array elements are accessed either by direct access or by calling the
GetValue method. The GetValue method takes a single argument—an index.

myName = names[2];

monthSales = sales.GetValue[19];

It is common to loop through an array in order to access every array element
using a For loop. A frequent mistake programmers make when coding the loop
is to either hard-code the upper value of the loop (which is a mistake because
the upper bound may change if the array is dynamic) or call a function that
accesses the upper bound of the loop for each iteration of the loop:

(for int i = 0; i <= sales.GetUpperBound(0); i++)

totalSales = totalSales + sales[i];

Methods and Properties for Retrieving Array Metadata

The Array class provides several properties for retrieving metadata about an
array:

� Length: Returns the total number of elements in all dimensions of an array.
� GetLength: Returns the number of elements in specified dimension of an

array.

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Array Basics 29

� Rank: Returns the number of dimensions of an array.
� GetType: Returns the Type of the current array instance.

The Length method is useful for counting the number of elements in a
multidimensional array, as well as returning the exact number of elements in
the array. Otherwise, you can use the GetUpperBound method and add one
to the value.

Since Length returns the total number of elements in an array, the
GetLength method counts the elements in one dimension of an array. This
method, along with the Rank property, can be used to resize an array at run-
time without running the risk of losing data. This technique is discussed later
in the chapter.

The GetType method is used for determining the data type of an array in
a situation where you may not be sure of the array’s type, such as when the
array is passed as an argument to a method. In the following code fragment,
we create a variable of type Type, which allows us to use call a class method,
IsArray, to determine if an object is an array. If the object is an array, then the
code returns the data type of the array.

int[] numbers;

numbers = new int[] {0,1,2,3,4};
Type arrayType = numbers.GetType();

if (arrayType.IsArray)

Console.WriteLine("The array type is: {0}", arrayType);

else

Console.WriteLine("Not an array");

Console.Read();

The GetType method returns not only the type of the array, but also lets us
know that the object is indeed an array. Here is the output from the code:

The array type is: System.Int32[]

The brackets indicate the object is an array. Also notice that we use a format
when displaying the data type. We have to do this because we can’t convert
the Type data to string in order to concatenate it with the rest of the displayed
string.

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

30 ARRAYS AND ARRAYLISTS

Multidimensional Arrays

So far we have limited our discussion to arrays that have just a single dimen-
sion. In C#, an array can have up to 32 dimensions, though arrays with more
than three dimensions are very rare (and very confusing).

Multidimensional arrays are declared by providing the upper bound of each
of the dimensions of the array. The two-dimensional declaration:

int[,] grades = new int[4,5];

declares an array that consists of 4 rows and 5 columns. Two-dimensional
arrays are often used to model matrices.

You can also declare a multidimensional array without specifing the dimen-
sion bounds. To do this, you use commas to specify the number of dimensions.
For example,

double[,] Sales;

declares a two-dimensional array, whereas

double[,,] sales;

declares a three-dimensional array. When you declare arrays without provid-
ing the upper bounds of the dimensions, you have to later redimension the
array with those bounds:

sales = new double[4,5];

Multidimensional arrays can be initialized with an initialization list. Look
at the following statement:

Int[,] grades = new int[,] {{1, 82, 74, 89, 100},
{2, 93, 96, 85, 86},
{3, 83, 72, 95, 89},
{4, 91, 98, 79, 88}}

First, notice that the upper bounds of the array are not specified. When you
initialize an array with an initialization list, you can’t specify the bounds of

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Array Basics 31

the array. The compiler computes the upper bounds of each dimension from
the data in the initialization list. The initialization list itself is demarked with
curly braces, as is each row of the array. Each element in the row is delimited
with a comma.

Accessing the elements of a multidimensional array is similar to accessing
the elements of a one-dimensional array. You can use the traditional array
access technique,

grade = Grades[2,2];

Grades(2,2) = 99

or you can use the methods of the Array class:

grade = Grades.GetValue[0,2]

You can’t use the SetValue method with a multidimensional array because the
method only accepts two arguments: a value and a single index.

It is a common operation to perform calculations on all the elements of
a multidimensional array, though often based on either the values stored in
the rows of the array or the values stored in the columns of the array. Using
the Grades array, if each row of the array is a student record, we can calculate
the grade average for each student as follows:

int[,] grades = new int[,] {{1, 82, 74, 89, 100},
{2, 93, 96, 85, 86},
{3, 83, 72, 95, 89},
{4, 91, 98, 79, 88}};

int last_grade = grades.GetUpperBound(1);

double average = 0.0;

int total;

int last_student = grades.GetUpperBound(0);

for(int row = 0; row <= last_student; row++) {
total = 0;

for (int col = 0; col <= last_grade; col++)

total += grades[row, col];

average = total / last_grade;

Console.WriteLine("Average: " + average);

}
}

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

32 ARRAYS AND ARRAYLISTS

Parameter Arrays

Most method definitions require that a set number of parameters be provided
to the method, but there are times when you want to write a method defini-
tion that allows an optional number of parameters. You can do this using a
construct called a parameter array.

A parameter array is specified in the parameter list of a method definition
by using the keyword ParamArray. The following method definition allows
any amount of numbers to be supplied as parameters, with the total of the
numbers returned from the method:

static int sumNums(params int[] nums) {
int sum = 0;

for(int i = 0; i <= nums.GetUpperBound(0); i++)

sum += nums[i];

return sum;

}

This method will work with the either of the following calls:

total = sumNums(1, 2, 3);

total = sumNums(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

When you define a method using a parameter array, the parameter array
arguments have to be supplied last in the parameter list in order for the
compiler to be able to process the list of parameters correctly. Otherwise, the
compiler wouldn’t know the ending point of the parameter array elements
and the beginning of other parameters of the method.

Jagged Arrays

When you create a multidimensional array, you always create a structure that
has the same number of elements in each of the rows. For example, look at
the following array declaration:

int sales[,] = new int[12,30]; ' Sales for each day of

each month

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Array Basics 33

This array assumes each row (month) has the same number of elements
(days), when we know that some months have 30 days, some have 31, and
one month has 29. With the array we’ve just declared, there will be several
empty elements in the array. This isn’t much of a problem for this array, but
with a much larger array we end up with a lot of wasted space.

The solution to this problem is to use a jagged array instead of a two-
dimensional array. A jagged array is an array of arrays where each row of
an array is made up of an array. Each dimension of a jagged array is a one-
dimensional array. We call it a “jagged” array because the number of elements
in each row may be different. A picture of a jagged array would not be square
or rectangular, but would have uneven or jagged edges.

A jagged array is declared by putting two sets of parentheses after the array
variable name. The first set of parentheses indicates the number of rows in
the array. The second set of parentheses is left blank. This marks the place for
the one-dimensional array that is stored in each row. Normally, the number
of rows is set in an initialization list in the declaration statement, like this:

int[][] jagged = new int[12][];

This statement looks strange, but makes sense when you break it down. jagged
is an Integer array of 12 elements, where each of the elements is also an Integer
array. The initialization list is actually just the initialization for the rows of
the array, indicating that each row element is an array of 12 elements, with
each element initialized to the default value.

Once the jagged array is declared, the elements of the individual row
arrays can be assigned values. The following code fragment assigns values
to jaggedArray:

jagged[0][0] = 23;

jagged[0][1] = 13;

. . .

jagged[7][5] = 45;

The first set of parentheses indicates the row number and the second set
indicates the element of the row array. The first statement accesses the first
element of the first array, the second element access the second element of
the first array, and the third statement accesses the sixth element of the eighth
array.

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

34 ARRAYS AND ARRAYLISTS

For an example of using a jagged array, the following program creates an
array named sales (tracking one week of sales for two months), assigns sales
figures to its elements, and then loops through the array to calculate the
average sales for one week of each of the two months stored in the array.

using System;

class class1 {
static void Main[] {

int[] Jan = new int[31];

int[] Feb = new int[29];

int[][] sales = new int{Jan, Feb};
int month, day, total;

double average = 0.0;

sales[0][0] = 41;

sales[0][1] = 30;

sales[0][0] = 41;

sales[0][1] = 30;

sales[0][2] = 23;

sales[0][3] = 34;

sales[0][4] = 28;

sales[0][5] = 35;

sales[0][6] = 45;

sales[1][0] = 35;

sales[1][1] = 37;

sales[1][2] = 32;

sales[1][3] = 26;

sales[1][4] = 45;

sales[1][5] = 38;

sales[1][6] = 42;

for(month = 0; month <= 1; month++) {
total = 0;

for(day = 0; day <= 6; day++)

total += sales[month][day];

average = total / 7;

Console.WriteLine("Average sales for month: " +

month + ": " + average);

}
}

}

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Array Basics 35

The ArrayList Class

Static arrays are not very useful when the size of an array is unknown in
advance or is likely to change during the lifetime of a program. One solu-
tion to this problem is to use a type of array that automatically resizes itself
when the array is out of storage space. This array is called an ArrayList
and it is part of the System.Collections namespace in the .NET Framework
library.

An ArrayList object has a Capacity property that stores its size. The initial
value of the property is 16. When the number of elements in an ArrayList
reaches this limit, the Capacity property adds another 16 elements to the
storage space of the ArrayList. Using an ArrayList in a situation where the
number of elements in an array can grow larger, or smaller, can be more
efficient than using ReDim Preserver with a standard array.

As we discussed in Chapter 1, an ArrayList stores objects using the Object
type. If you need a strongly typed array, you should use a standard array or
some other data structure.

Members of the ArrayList Class

The ArrayList class includes several methods and properties for working with
ArrayLists. Here is a list of some of the most commonly used methods and
properties:

� Add(): Adds an element to the ArrayList.
� AddRange(): Adds the elements of a collection to the end of the ArrayList.
� Capacity: Stores the number of elements the ArrayList can hold.
� Clear(): Removes all elements from the ArrayList.
� Contains(): Determines if a specified item is in the ArrayList.
� CopyTo(): Copies the ArrayList or a segment of it to an array.
� Count: Returns the number of elements currently in the ArrayList.
� GetEnumerator(): Returns an enumerator to iterate over the ArrayList.
� GetRange(): Returns a subset of the ArrayList as an ArrayList.
� IndexOf(): Returns the index of the first occurrence of the specified

item.
� Insert(): Insert an element into the ArrayList at a specified index.
� InsertRange(): Inserts the elements of a collection into the ArrayList starting

at the specified index.

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

36 ARRAYS AND ARRAYLISTS

� Item(): Gets or sets an element at the specified index.
� Remove(): Removes the first occurrence of the specified item.
� RemoveAt(): Removes an element at the specified index.
� Reverse(): Reverses the order of the elements in the ArrayList.
� Sort(): Alphabetically sorts the elements in the ArrayList.
� ToArray(): Copies the elements of the ArrayList to an array.
� TrimToSize(): Sets the capacity of the ArrayList to the number of elements

in the ArrayList.

Using the ArrayList Class

ArrayLists are not used like standard arrays. Normally, items are just added
to an ArrayList using the Add method, unless there is a reason why an item
should be added at a particular position, in which case the Insert method
should be used. In this section, we examine how to use these and the other
members of the ArrayList class.

The first thing we have to do with an ArrayList is declare it, as follows:

ArrayList grades = new ArrayList();

Notice that a constructor is used in this declaration. If an ArrayList is not
declared using a constructor, the object will not be available in later program
statements.

Objects are added to an ArrayList using the Add method. This method
takes one argument—an Object to add to the ArrayList. The Add method also
returns an integer indicating the position in the ArrayList where the element
was added, though this value is rarely used in a program. Here are some
examples:

grades.Add(100);

grades.Add(84);

int position;

position = grades.Add(77);

Console.WriteLine("The grade 77 was added at position:

" + position);

The objects in an ArrayList can be displayed using a For Each loop. The
ArrayList has a built-in enumerator that manages iterating through all the

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Array Basics 37

objects in the ArrayList, one at a time. The following code fragment demon-
strates how to use a For Each loop with an ArrayList:

int total = 0;

double average = 0.0;

foreach (Object grade in grades)

total += (int)grade;

average = total / grades.Count;

Console.WriteLine("The average grade is: " + average);

If you want to add an element to an ArrayList at a particular position,
you can use the Insert method. This method takes two arguments: the index
to insert the element, and the element to be inserted. The following code
fragment inserts two grades in specific positions in order to preserve the
order of the objects in the ArrayList:

grades.Insert(1, 99);

grades.Insert(3, 80);

You can check the current capacity of an ArrayList by calling the Capacity
property and you can determine how many elements are in an ArrayList by
calling the Count property:

Console.WriteLine("The current capacity of grades is:

" + grades.Capacity);

Console.WriteLine("The number of grades in grades is:

" + grades.Count);

There are several ways to remove items from an ArrayList. If you know
the item you want to remove, but don’t know what position it is in, you can
use the Remove method. This method takes just one argument—an object to
remove from the ArrayList. If the object exists in the ArrayList, it is removed. If
the object isn’t in the ArrayList, nothing happens. When a method like Remove
is used, it is typically called inside an If–Then statement using a method that
can verify the object is actually in the ArrayList, such as the Contains method.
Here’s a sample code fragment:

if (grades.Contains(54))

grades.Remove(54)

else

Console.Write("Object not in ArrayList.");

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

38 ARRAYS AND ARRAYLISTS

If you know the index of the object you want to remove, you can use the
RemoveAt method. This method takes one argument—the index of the object
you want to remove. The only exception you can cause is passing an invalid
index to the method. The method works like this:

grades.RemoveAt(2);

You can determine the position of an object in an ArrayList by calling the
IndexOf method. This method takes one argument, an object, and returns
the object’s position in the ArrayList. If the object is not in the ArrayList, the
method returns -1. Here’s a short code fragment that uses the IndexOf method
in conjunction with the RemoveAt method:

int pos;

pos = grades.IndexOf(70);

grades.RemoveAt(pos);

In addition to adding individual objects to an ArrayList, you can also add
ranges of objects. The objects must be stored in a data type that is derived
from ICollection. This means that the objects can be stored in an array, a
Collection, or even in another ArrayList.

There are two different methods you can use to add a range to an ArrayList.
These methods are AddRange and InsertRange. The AddRange method adds
the range of objects to the end of the ArrayList, and the InsertRange method
adds the range at a specified position in the ArrayList.

The following program demonstrates how these two methods are used:

using System;

using System.Collections;

class class1 {
static void Main() {

ArrayList names = new ArrayList();

names.Add("Mike");

names.Add("Beata");

names.Add("Raymond");

names.Add("Bernica");

names.Add("Jennifer");

Console.WriteLine("The original list of names: ");

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Array Basics 39

foreach (Object name in names)

Console.WriteLine(name);

Console.WriteLine();

string[] newNames = new string[] {"David", "Michael"};
ArrayList moreNames = new ArrayList();

moreNames.Add("Terrill");

moreNames.Add("Donnie");

moreNames.Add("Mayo");

moreNames.Add("Clayton");

moreNames.Add("Alisa");

names.InsertRange(0, newNames);

names.AddRange(moreNames);

Console.WriteLine("The new list of names: ");

foreach (Object name in names)

Console.WriteLine(name);

}
}

The output from this program is:

David

Michael

Mike

Bernica

Beata

Raymond

Jennifer

Terrill

Donnie

Mayo

Clayton

Alisa

The first two names are added at the beginning of the ArrayList because
the specified index is 0. The last names are added at the end because the
AddRange method is used.

Two other methods that many programmers find useful are the ToArray
method and the GetRange method. The GetRange method returns a range of
objects from the ArrayList as another ArrayList. The ToArray method copies

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

40 ARRAYS AND ARRAYLISTS

all the elements of the ArrayList to an array. Let’s look first at the GetRange
method.

The GetRange method takes two arguments: the starting index and the
number of elements to retrieve from the ArrayList. GetRange is not destruc-
tive, in that the objects are just copied from the original ArrayList into the
new ArrayList. Here’s an example of how the method works, using the same
aforementioned program:

ArrayList someNames = new ArrayList();

someNames = names.GetRange(2,4);

Console.WriteLine("someNames sub-ArrayList: ");

foreach (Object name in someNames)

Console.WriteLine(name);

The output from this program fragment is:

Mike

Bernica

Beata

Raymond

The ToArray method allows you to easily transfer the contents of an
ArrayList to a standard array. The primary reason you will use the ToArray
method is because you need the faster access speed of an array.

The ToArray method takes no arguments and returns the elements of the
ArrayList to an array. Here’s an example of how to use the method:

Object[] arrNames;

arrNames = names.ToArray();

Console.WriteLine("Names from an array: ");

for(int i = 0; i <= arrNames.GetUpperBound(0); i++)

Console.WriteLine(arrNames[i]);

The last part of the code fragment proves that the elements from the ArrayList
have actually been stored in the array arrNames.

SUMMARY

The array is the most commonly used data structure in computer program-
ming. Most, if not all, computer languages provide some type of built-in array.

P1: JZP
0521670152c02 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:5

Exercises 41

For many applications, the array is the easiest data structure to implement
and the most efficient. Arrays are useful in situations where you need direct
access to “far away” elements of your data set.

The .NET Framework introduces a new type of array called an ArrayList.
ArrayLists have many of the features of the array, but are somewhat more
powerful because they can resize themselves when the current capacity of the
structure is full. The ArrayList also has several useful methods for performing
insertions, deletions, and searches. Since C# does not allow a programmer to
dynamically resize an array as you can in VB.NET, the ArrayList is a useful data
structure for situations where you can’t know in advance the total number of
items for storage.

EXERCISES

1. Design and implement a class that allows a teacher to track the grades
in a single course. Include methods that calculate the average grade, the
highest grade, and the lowest grade. Write a program to test your class
implementation.

2. Modify Exercise 1 so that the class can keep track of multiple courses.
Write a program to test your implementation.

3. Rewrite Exercise 1 using an ArrayList. Write a program to test your imple-
mentation and compare its performance to that of the array implementation
in Exercise 1 using the Timing class.

4. Design and implement a class that uses an array to mimic the behavior of
the ArrayList class. Include as many methods from the ArrayList class as
possible. Write a program to test your implementation.

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

CHAPTER 3

Basic Sorting Algorithms

The two most common operations performed on data stored in a computer
are sorting and searching. This has been true since the beginning of the com-
puting industry, which means that sorting and searching are also two of the
most studied operations in computer science. Many of the data structures dis-
cussed in this book are designed primarily to make sorting and/or searching
easier and more efficient on the data stored in the structure.

This chapter introduces you to the fundamental algorithms for sorting
and searching data. These algorithms depend on only the array as a data
structure and the only “advanced” programming technique used is recursion.
This chapter also introduces you to the techniques we’ll use throughout the
book to informally analyze different algorithms for speed and efficiency.

SORTING ALGORITHMS

Most of the data we work with in our day-to-day lives is sorted. We look up
definitions in a dictionary by searching alphabetically. We look up a phone
number by moving through the last names in the book alphabetically. The
post office sorts mail in several ways—by zip code, then by street address,
and then by name. Sorting is a fundamental process in working with data and
deserves close study.

42

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

Sorting Algorithms 43

As was mentioned earlier, there has been quite a bit of research performed
on different sorting techniques. Although some very sophisticated sorting
algorithms have been developed, there are also several simple sorting algo-
rithms you should study first. These sorting algorithms are the insertion sort,
the bubble sort, and the selection sort. Each of these algorithms is easy to
understand and easy to implement. They are not the best overall algorithms
for sorting by any means, but for small data sets and in other special circum-
stances, they are the best algorithms to use.

An Array Class Test Bed

To examine these algorithms, we will first need a test bed in which to imple-
ment and test them. We’ll build a class that encapsulates the normal operations
performed with an array—element insertion, element access, and displaying
the contents of the array. Here’s the code:

class CArray {

private int [] arr;

private int upper;

private int numElements;

public CArray(int size) {
arr = new int[size];

upper = size-1;

numElements = 0;

}

public void Insert(int item) {
arr[numElements] = item;

numElements++;

}

public void DisplayElements() {
for(int i = 0; i <= upper; i++)

Console.Write(arr[i] + " ");

}

public void Clear() {
for(int i = 0; i <= upper; i++)

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

44 BASIC SORTING ALGORITHMS

arr[i] = 0;

numElements = 0;

}
}

static void Main() {
CArray nums = new CArray();

for(int i = 0; i <= 49; i++)

nums.Insert(i);

nums.DisplayElements();

}

The output looks like this:

Before leaving the CArray class to begin the examination of sorting and
searching algorithms, let’s discuss how we’re going to actually store data in a
CArray class object. In order to demonstrate most effectively how the different
sorting algorithms work, the data in the array needs to be in a random order.
This is best achieved by using a random number generator to assign each
array element to the array.

Random numbers can be created in C# using the Random class. An object of
this type can generate random numbers. To instantiate a Random object, you
have to pass a seed to the class constructor. This seed can be seen as an upper
bound for the range of numbers the random number generator can create.

Here’s another look at a program that uses the CArray class to store num-
bers, using the random number generator to select the data to store in the
array:

static void Main() {
CArray nums = new CArray();

Random rnd = new Random(100);

for(int i = 0; i < 10; i++)

nums.Insert((int)(rnd.NextDouble() * 100));

nums.DisplayElements();

}

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

Sorting Algorithms 45

The output from this program is:

Bubble Sort

The first sorting algorithm to examine is the bubble sort. The bubble sort is
one of the slowest sorting algorithms available, but it is also one of the simplest
sorts to understand and implement, which makes it an excellent candidate
for our first sorting algorithm.

The sort gets its name because values “float like a bubble” from one end of
the list to another. Assuming you are sorting a list of numbers in ascending
order, higher values float to the right whereas lower values float to the left.
This behavior is caused by moving through the list many times, comparing
adjacent values and swapping them if the value to the left is greater than the
value to the right.

Figure 3.1 illustrates how the bubble sort works. Two numbers from the
numbers inserted into the array (2 and 72) from the previous example are
highlighted with circles. You can watch how 72 moves from the beginning of
the array to the middle of the array, and you can see how 2 moves from just
past the middle of the array to the beginning of the array.

72 54 59 30 31 78 2 77 82 72

54 58 30 31 72 2 77 78 72 82

54 30 32 58 2 72 72 77 78 82

30 32 54 2 58 72 72 77 78 82

30 32 2 54 58 72 72 77 78 82

30 2 32 54 58 72 72 77 78 82

2 30 32 54 58 72 72 77 78 82

FIGURE 3.1. The Bubble Sort.

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

46 BASIC SORTING ALGORITHMS

The code for the BubbleSort algorithm is shown as follows:

public void BubbleSort() {
int temp;

for(int outer = upper; outer >= 1; outer--) {
for(int inner = 0; inner <= outer-1;inner++)

if ((int)arr[inner] > arr[inner+1]) {
temp = arr[inner];

arr[inner] = arr[inner+1];

arr[inner+1] = temp;

}
}

}

There are several things to notice about this code. First, the code to swap
two array elements is written in line rather than as a subroutine. A swap
subroutine might slow down the sorting since it will be called many times.
Since the swap code is only three lines long, the clarity of the code is not
sacrificed by not putting the code in its own subroutine.

More importantly, notice that the outer loop starts at the end of the array
and moves toward the beginning of the array. If you look back at Figure 3.1,
the highest value in the array is in its proper place at the end of the array.
This means that the array indices that are greater than the value in the outer
loop are already in their proper place and the algorithm doesn’t need to access
these values any more.

The inner loop starts at the first element of the array and ends when it
gets to the next to last position in the array. The inner loop compares the
two adjacent positions indicated by inner and inner +1, swapping them if
necessary.

Examining the Sorting Process

One of the things you will probably want to do while developing an algorithm
is viewing the intermediate results of the code while the program is running.
When you’re using Visual Studio.NET, it’s possible to do this using the Debug-
ging tools available in the IDE. However, sometimes, all you really want to see
is a display of the array (or whatever data structure you are building, sorting,

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

Sorting Algorithms 47

or searching). An easy way to do this is to insert a displaying method in the
appropriate place in the code.

For the aforementioned BubbleSort method, the best place to examine how
the array changes during the sorting is between the inner loop and the outer
loop. If we do this for each iteration of the two loops, we can view a record
of how the values move through the array while they are being sorted.

For example, here is the BubbleSort method modified to display interme-
diate results:

public void BubbleSort() {
int temp;

for(int outer = upper; outer >= 1; outer--) {
for(int inner = 0; inner <= outer-1;inner++) {

if ((int)arr[inner] > arr[inner+1]) {
temp = arr[inner];

arr[inner] = arr[inner+1];

arr[inner+1] = temp;

}
}
this.DisplayElements();

}
}

The DisplayElements() method is placed between the two For loops. If the
main program is modified as follows:

static void Main() {
CArray nums = new CArray(10);

Random rnd = new Random(100);

for(int i = 0; i < 10; i++)

nums.Insert((int)(rnd.NextDouble() * 100));

Console.WriteLine("Before sorting: ");

nums.DisplayElements();

Console.WriteLine("During sorting: ");

nums.BubbleSort();

Console.WriteLine("After sorting: ");

nums.DisplayElements();

}

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

48 BASIC SORTING ALGORITHMS

the following output is displayed:

Selection Sort

The next sort to examine is the Selection sort. This sort works by starting at
the beginning of the array, comparing the first element with the other elements
in the array. The smallest element is placed in position 0, and the sort then
begins again at position 1. This continues until each position except the last
position has been the starting point for a new loop.

Two loops are used in the SelectionSort algorithm. The outer loop moves
from the first element in the array to the next to last element, whereas the inner
loop moves from the second element of the array to the last element, looking
for values that are smaller than the element currently being pointed at by the
outer loop. After each iteration of the inner loop, the most minimum value
in the array is assigned to its proper place in the array. Figure 3.2 illustrates
how this works with the CArray data used before.

The code to implement the SelectionSort algorithm is shown as follows:

public void SelectionSort() {
int min, temp;

for(int outer = 0; outer <= upper; outer++) {
min = outer;

for(int inner = outer + 1; inner <= upper; inner++)

if (arr[inner] < arr[min])

min = inner;

temp = arr[outer];

arr[outer] = arr[min];

arr[min] = temp;

}
}

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

Sorting Algorithms 49

72 54 59 30 31 78 2 77 82 72

2 54 59 30 31 78 72 77 82 72

2 30 59 54 31 78 72 77 82 72

2 30 31 54 59 78 72 77 82 72

2 30 31 54 59 78 72 77 82 72

2 30 31 54 59 78 72 77 82 72

2 30 31 54 59 72 78 77 82 72

2 30 31 54 59 72 72 77 82 78

2 30 31 54 59 72 72 77 82 78

2 30 31 54 59 72 72 77 78 82

FIGURE 3.2. The Selection Sort.

To demonstrate how the algorithm works, place a call to the showArray()
method right before the Next statement that is attached to the outer loop. The
output should look something like this:

The final basic sorting algorithm we’ll look at in this chapter is one of the
simplest to understand—the Insertion sort.

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

50 BASIC SORTING ALGORITHMS

Insertion Sort
The Insertion sort is an analog to the way we normally sort things numerically
or alphabetically. Let’s say that I have asked a class of students to turn in index
card with their names, id numbers, and a short biographical sketch. The
students return the cards in random order, but I want them to be alphabetized
so I can build a seating chart.

I take the cards back to my office, clear off my desk, and take the first card.
The name on the card is Smith. I place it at the top left position of the desk
and take the second card. It is Brown. I move Smith over to the right and
put Brown in Smith’s place. The next card is Williams. It can be inserted at
the right without having to shift any other cards. The next card is Acklin.
It has to go at the beginning of the list, so each of the other cards must be
shifted one position to the right to make room. That is how the Insertion sort
works.

The code for the Insertion sort is shown here, followed by an explanation
of how it works:

public void InsertionSort() {
int inner, temp;

for(int outer = 1; outer <= upper; outer++) {
temp = arr[outer];

inner = outer;

while(inner > 0 && arr[inner-1] >= temp) {
arr[inner] = arr[inner-1];

inner -= 1;

}
arr[inner] = temp;

}
}

The Insertion sort has two loops. The outer loop moves element by element
through the array whereas the inner loop compares the element chosen in the
outer loop to the element next to it in the array. If the element selected by the
outer loop is less than the element selected by the inner loop, array elements
are shifted over to the right to make room for the inner loop element, just as
described in the preceding example.

Now let’s look at how the Insertion sort works with the set of numbers
sorted in the earlier examples. Here’s the output:

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

Timing Comparisons of the Basic Sorting Algorithms 51

This display clearly shows that the Insertion sort works not by making
exchanges, but by moving larger array elements to the right to make room for
smaller elements on the left side of the array.

TIMING COMPARISONS OF THE BASIC SORTING
ALGORITHMS

These three sorting algorithms are very similar in complexity and theoretically,
at least, should perform similarly when compared with each other. We can
use the Timing class to compare the three algorithms to see if any of them
stand out from the others in terms of the time it takes to sort a large set of
numbers.

To perform the test, we used the same basic code we used earlier to
demonstrate how each algorithm works. In the following tests, however,
the array sizes are varied to demonstrate how the three algorithms perform
with both smaller data sets and larger data sets. The timing tests are run for
array sizes of 100 elements, 1,000 elements, and 10,000 elements. Here’s the
code:

static void Main() {
Timing sortTime = new Timing();

Random rnd = new Random(100);

int numItems = 1000;

CArray theArray = new CArray(numItems);

for(int i = 0; i < numItems; i++)

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

52 BASIC SORTING ALGORITHMS

theArray.Insert((int)(rnd.NextDouble() * 100));

sortTime.startTime();

theArray.SelectionSort();

sortTime.stopTime();

Console.WriteLine("Time for Selection sort: " +

sortTime.getResult().

TotalMilliseconds);

theArray.Clear();

for(int i = 0; i < numItems; i++)

theArray.Insert((int)(rnd.NextDouble() * 100));

sortTime.startTime();

theArray.BubbleSort();

sortTime.stopTime();

Console.WriteLine("Time for Bubble sort: " +

sortTime.getResult().

TotalMilliseconds);

theArray.Clear();

for(int i = 0; i < numItems; i++)

theArray.Insert((int)(rnd.NextDouble() * 100));

sortTime.startTime();

theArray.InsertionSort();

sortTime.stopTime();

Console.WriteLine("Time for Selection sort: " +

sortTime.getResult().

TotalMilliseconds);

}

The output from this program is:

showing that the Selection and Bubble sorts perform at the same speed and
the Insertion sort is about half as fast (or twice as slow).

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

Summary 53

Now let’s compare the algorithms when the array size is 1,000 elements:

Here we see that the size of the array makes a big difference in the performance
of the algorithm. The Selection sort is over 100 times faster than the Bubble
sort and over 200 times faster than the Insertion sort.

When we increase the array size to 10,000 elements, we can really see the
effect of size on the three algorithms:

The performance of all three algorithms degrades considerably, though the
Selection sort is still many times faster than the other two. Clearly, none of
these algorithms is ideal for sorting large data sets. There are sorting algo-
rithms, though, that can handle large data sets more efficiently. We’ll examine
their design and use in Chapter 16.

SUMMARY

In this chapter, we discussed three algorithms for sorting data—the Selection
sort, the Bubble sort, and the Insertion sort. All of these algorithms are fairly
easy to implement and they all work well with small data sets. The Selec-
tion sort is the most efficient of the algorithms, followed by the Bubble sort
and the Insertion sort. As we saw at the end of the chapter, none of these
algorithms is well suited for larger data sets (i.e., more than a few thousand
elements).

P1: JzG
0521670152c03 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:7

54 BASIC SORTING ALGORITHMS

EXERCISES

1. Create a data file consisting of at least 100 string values. You can create the
list yourself, or perhaps copy the values from a text file of some type, or you
can even create the file by generating random strings. Sort the file using
each of the sorting algorithms discussed in the chapter. Create a program
that times each algorithm and outputs the times similar to the output from
the last section of this chapter.

2. Create an array of 1,000 integers sorted in numerical order. Write a program
that runs each sorting algorithm with this array, timing each algorithm, and
compare the times. Compare these times to the times for sorting a random
array of integers.

3. Create an array of 1,000 integers sorted in reverse numerical order. Write
a program that runs each sorting algorithm with this array, timing each
algorithm, and compare the times.

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

CHAPTER 4

Basic Searching Algorithms

Searching for data is a fundamental computer programming task and one
that has been studied for many years. This chapter looks at just one aspect of
the search problem—searching for a given value in a list (array).

There are two fundamental ways to search for data in a list: the sequential
search and the binary search. Sequential search is used when the items in the
list are in random order; binary search is used when the items are sorted in
the list.

SEQUENTIAL SEARCHING

The most obvious type of search is to begin at the beginning of a set of
records and move through each record until you find the record you are
looking for or you come to the end of the records. This is called a sequential
search.

A sequential search (also called a linear search) is very easy to implement.
Start at the beginning of the array and compare each accessed array element
to the value you’re searching for. If you find a match, the search is over. If you
get to the end of the array without generating a match, then the value is not
in the array.

55

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

56 BASIC SEARCHING ALGORITHMS

Here is a function that performs a sequential search:

bool SeqSearch(int[] arr, int sValue) {
for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return true;

return false;

}

If a match is found, the function immediately returns True and exits.
If the end of the array is reached without the function returning True,
then the value being searched for is not in array and the function returns
False.

Here is a program to test our implementation of a sequential search:

using System;

using System.IO;

public class Chapter4 {

static void Main() {
int [] numbers = new int[100];

StreamReader numFile =

File.OpenText("c:\\numbers.txt");
for (int i = 0; i < numbers.Length-1; i++)

numbers[i] =

Convert.ToInt32(numFile.ReadLine(), 10);

int searchNumber;

Console.Write("Enter a number to search for: ");

searchNumber = Convert.ToInt32(Console.ReadLine(),

10);

bool found;

found = SeqSearch(numbers, searchNumber);

if (found)

Console.WriteLine(searchNumber + " is in the

array.");

else

Console.WriteLine(searchNumber + " is not in the

array.");

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

Sequential Searching 57

}

static bool SeqSearch(int[] arr, int sValue) {
for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return true;

return false;

}

}

The program works by first reading in a set of data from a text file. The data
consists of the first 100 integers, stored in the file in a partially random order.
The program then prompts the user to enter a number to search for and calls
the SeqSearch function to perform the search.

You can also write the sequential search function so that the function returns
the position in the array where the searched-for value is found or a −1 if the
value cannot be found. First, let’s look at the new function:

static int SeqSearch(int[] arr, int sValue) {
for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return index;

return -1;

}

The following program uses this function:

using System;

using System.IO;

public class Chapter4 {

static void Main() {
int [] numbers = new int[100];

StreamReader numFile =_

File.OpenText("c:\\numbers.txt");
for (int i = 0; i < numbers.Length-1; i++)

numbers[i] = Convert.ToInt32(numFile.ReadLine(),

10);

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

58 BASIC SEARCHING ALGORITHMS

int searchNumber;

Console.Write("Enter a number to search for: ");

searchNumber = Convert.ToInt32(Console.ReadLine(),

10);

int foundAt;

foundAt = SeqSearch(numbers, searchNumber);

if (foundAt >= 0)

Console.WriteLine(searchNumber + " is in the_

array at position " + foundAt);

else

Console.WriteLine(searchNumber + " is not in the

array.");

}

static int SeqSearch(int[] arr, int sValue) {
for (int index = 0; index < arr.Length-1; index++)

if (arr[index] == sValue)

return index;

return -1;

}

}

Searching for Minimum and Maximum Values

Computer programs are often asked to search an array (or other data structure)
for minimum and maximum values. In an ordered array, searching for these
values is a trivial task. Searching an unordered array, however, is a little more
challenging.

Let’s start by looking at how to find the minimum value in an array. The
algorithm is:

1. Assign the first element of the array to a variable as the minimum value.
2. Begin looping through the array, comparing each successive array element

with the minimum value variable.
3. If the currently accessed array element is less than the minimum value,

assign this element to the minimum value variable.
4. Continue until the last array element is accessed.
5. The minimum value is stored in the variable.

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

Sequential Searching 59

Let’s look at a function, FindMin, which implements this algorithm:

static int FindMin(int[] arr) {
int min = arr[0];

for(int i = 0; i < arr.Length-1; i++)

if (arr[index] < min)

min = arr[index];

return min;

}

Notice that the array search starts at position 1 and not at position 0. The
0th position is assigned as the minimum value before the loop starts, so we
can start making comparisons at position 1.

The algorithm for finding the maximum value in an array works in the same
way. We assign the first array element to a variable that holds the maximum
amount. Next we loop through the array, comparing each array element with
the value stored in the variable, replacing the current value if the accessed
value is greater. Here’s the code:

static int FindMax(int[] arr) {
int max = arr[0];

for(int i = 0; i < arr.Length-1; i++)

if (arr[index] > max)

max = arr[index];

return max;

}

An alternative version of these two functions could return the position of
the maximum or minimum value in the array rather than the actual value.

Making Sequential Search Faster: Self-Organizing Data

The fastest successful sequential searches occur when the data element being
searched for is at the beginning of the data set. You can ensure that a success-
fully located data item is at the beginning of the data set by moving it there
after it has been found.

The concept behind this strategy is that we can minimize search times
by putting frequently searched-for items at the beginning of the data set.

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

60 BASIC SEARCHING ALGORITHMS

Eventually, all the most frequently searched-for data items will be located at
the beginning of the data set. This is an example of self-organization, in that
the data set is organized not by the programmer before the program runs, but
by the program while the program is running.

It makes sense to allow your data to organize in this way since the data being
searched probably follows the “80–20” rule, meaning that 80% of the searches
conducted on your data set are searching for 20% of the data in the data set.
Self-organization will eventually put that 20% at the beginning of the data set,
where a sequential search will find them quickly.

Probability distributions such as this are called Pareto distributions, named
for Vilfredo Pareto, who discovered these distributions studying the spread of
income and wealth in the late nineteenth century. See Knuth (1998, pp. 399–
401) for more on probability distributions in data sets.

We can modify our SeqSearch method quite easily to include self-
organization. Here’s a first stab at the method:

static bool SeqSearch(int sValue) {
for(int index = 0; i < arr.Length-1; i++)

if (arr[index] == sValue) {
swap(index, index-1);

return true;

}
return false;

}

If the search is successful, the item found is switched with the element at
the first of the array using a swap function, shown as follows:

static void swap(ref int item1, ref int item2) {
int temp = arr[item1];

arr[item1] = arr[item2];

arr[item2] = temp;

}

The problem with the SeqSearch method as we’ve modified it is that fre-
quently accessed items might be moved around quite a bit during the course
of many searches. We want to keep items that are moved to the first of the

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

Sequential Searching 61

data set there and not moved farther back when a subsequent item farther
down in the set is successfully located.

There are two ways we can achieve this goal. First, we can only swap found
items if they are located away from the beginning of the data set. We only
have to determine what is considered to be far enough back in the data set to
warrant swapping. Following the “80–20” rule again, we can make a rule that
a data item is relocated to the beginning of the data set only if its location is
outside the first 20% of the items in the data set. Here’s the code for this first
rewrite:

static int SeqSearch(int sValue) {
for(int index = 0; i < arr.Length-1; i++)

if (arr[index] == sValue && index > (arr.Length *_

0.2)) {
swap(index, index-1);

return index;

} else

if (arr[index] == sValue)

return index;

return -1;

}

The If–Then statement is short-circuited because if the item isn’t found in
the data set, there’s no reason to test to see where the index is in the data set.

The other way we can rewrite the SeqSearch method is to swap a found item
with the element that precedes it in the data set. Using this method, which
is similar to how data is sorted using the Bubble sort, the most frequently
accessed items will eventually work their way up to the front of the data set.
This technique also guarantees that if an item is already at the beginning of
the data set, it won’t move back down.

The code for this new version of SeqSearch is shown as follows:

static int SeqSearch(int sValue) {
for(int index = 0; i < arr.Length-1; i++)

if (arr[index] == sValue) {
swap(index, index-1);

return index;

}
return -1;

}

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

62 BASIC SEARCHING ALGORITHMS

Either of these solutions will help your searches when, for whatever reason,
you must keep your data set in an unordered sequence. In the next section, we
will discuss a search algorithm that is more efficient than any of the sequen-
tial algorithms mentioned, but that only works on ordered data—the binary
search.

Binary Search

When the records you are searching through are sorted into order, you can
perform a more efficient search than the sequential search to find a value. This
search is called a binary search.

To understand how a binary search works, imagine you are trying to guess
a number between 1 and 100 chosen by a friend. For every guess you make,
the friend tells you if you guessed the correct number, or if your guess is too
high, or if your guess is too low. The best strategy then is to choose 50 as
the first guess. If that guess is too high, you should then guess 25. If 50 is to
low, you should guess 75. Each time you guess, you select a new midpoint
by adjusting the lower range or the upper range of the numbers (depending
on if your guess is too high or too low), which becomes your next guess.
As long as you follow that strategy, you will eventually guess the correct
number. Figure 4.1 demonstrates how this works if the number to be chosen
is 82.

We can implement this strategy as an algorithm, the binary search algo-
rithm. To use this algorithm, we first need our data stored in order (ascending,
preferably) in an array (though other data structures will work as well). The
first steps in the algorithm are to set the lower and upper bounds of the search.
At the beginning of the search, this means the lower and upper bounds of the
array. Then, we calculate the midpoint of the array by adding the lower and
upper bounds together and dividing by 2. The array element stored at this
position is compared to the searched-for value. If they are the same, the value
has been found and the algorithm stops. If the searched-for value is less than
the midpoint value, a new upper bound is calculated by subtracting 1 from the
midpoint. Otherwise, if the searched-for value is greater than the midpoint
value, a new lower bound is calculated by adding 1 to the midpoint. The
algorithm iterates until the lower bound equals the upper bound, which indi-
cates the array has been completely searched. If this occurs, a -1 is returned,
indicating that no element in the array holds the value being searched
for.

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

Sequential Searching 63

Guessing Game-Secret number is 82

25 50 75 82
1 100

Answer : Too low

First Guess : 50

75 82
51 100

Answer : Too low

Second Guess : 75

82 88
76 100

Answer : Too high

Third Guess : 88

81 82
76 87

Answer : Too low

Fourth Guess : 81

84
82 87

Answer : Too high

Midpoint is 82.5, which is rounded to 82

Fifth Guess : 84

Answer : Correct

Sixth Guess : 82

82 83

FIGURE 4.1. A Binary Search Analogy.

Here’s the algorithm written as a C# function:

static int binSearch(int value) {
int upperBound, lowerBound, mid;

upperBound = arr.Length-1;

lowerBound = 0;

while(lowerBound <= upperBound) {
mid = (upperBound + lowerBound) / 2;

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

64 BASIC SEARCHING ALGORITHMS

if (arr[mid] == value)

return mid;

else

if (value < arr[mid])

upperBound = mid - 1;

else

lowerBound = mid + 1;

}
return -1;

}

Here’s a program that uses the binary search method to search an array:

static void Main(string[] args)

{
Random random = new Random();

CArray mynums = new CArray(9);

for(int i = 0; i <= 9; i++)

mynums.Insert(random.next(100));

mynums.SortArr();

mynums.showArray();

int position = mynums.binSearch(77, 0, 0);

if (position >= -1)

{
Console.WriteLine("found item");

mynums.showArray();

} else

Console.WriteLine("Not in the array");

Console.Read();

}

A Recursive Binary Search Algorithm

Although the version of the binary search algorithm developed in the previ-
ous section is correct, it’s not really a natural solution to the problem. The
binary search algorithm is really a recursive algorithm because, by constantly
subdividing the array until we find the item we’re looking for (or run out of
room in the array), each subdivision is expressing the problem as a smaller

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

Sequential Searching 65

version of the original problem. Viewing the problem this ways leads us to
discover a recursive algorithm for performing a binary search.

In order for a recursive binary search algorithm to work, we have to make
some changes to the code. Let’s take a look at the code first and then we’ll
discuss the changes we’ve made:

public int RbinSearch(int value, int lower, int upper) {
if (lower > upper)

return -1;

else {
int mid;

mid = (int)(upper+lower) / 2;

if (value < arr[mid])

RbinSearch(value, lower, mid-1);

else if (value = arr[mid])

return mid;

else

RbinSearch(value, mid+1, upper)

}
}

The main problem with the recursive binary search algorithm, as compared
to the iterative algorithm, is its efficiency. When a 1,000-element array is sorted
using both algorithms, the recursive algorithm is consistently 10 times slower
than the iterative algorithm:

Of course, recursive algorithms are often chosen for other reasons than effi-
ciency, but you should keep in mind that anytime you implement a recursive
algorithm, you should also look for an iterative solution so that you can
compare the efficiency of the two algorithms.

Finally, before we leave the subject of binary search, we should mention that
the Array class has a built-in binary search method. It takes two arguments,

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

66 BASIC SEARCHING ALGORITHMS

an array name and an item to search for, and it returns the position of the item
in the array, or -1 if the item can’t be found.

To demonstrate how the method works, we’ve written yet another binary
search method for our demonstration class. Here’s the code:

public int Bsearh(int value) {
return Array.BinarySearch(arr, value)

}

When the built-in binary search method is compared with our custom-
built method, it consistently performs 10 times faster than the custom-built
method, which should not be surprising. A built-in data structure or algorithm
should always be chosen over one that is custom-built, if the two can be used
in exactly the same ways.

SUMMARY

Searching a data set for a value is a ubiquitous computational operation. The
simplest method of searching a data set is to start at the beginning and search
for the item until either the item is found or the end of the data set is reached.
This searching method works best when the data set is relatively small and
unordered.

If the data set is ordered, the binary search algorithm is a better choice.
Binary search works by continually subdividing the data set until the item
being searched for is found. You can write the binary search algorithm using
both iterative and recursive codes. The Array class in C# includes a built-in
binary search method, which should be used whenever a binary search is
called for.

EXERCISES

1. The sequential search algorithm will always find the first occurrence of
an item in a data set. Create a new sequential search method that takes a
second integer argument indicating which occurrence of an item you want
to search for.

2. Write a sequential search method that finds the last occurrence of an item.
3. Run the binary search method on a set of unordered data. What happens?

P1: JzG
0521670152c04 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:10

Exercises 67

4. Using the CArray class with the SeqSearch method and the BinSearch
method, create an array of 1,000 random integers. Add a new private Inte-
ger data member named compCount that is initialized to 0. In each of the
search algorithms, add a line of code right after the critical comparison
is made that increments compCount by 1. Run both methods, searching
for the same number, say 734, with each method. Compare the values of
compCount after running both methods. What is the value of compCount
for each method? Which method makes the fewest comparisons?

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

CHAPTER 5

Stacks and Queues

Data organize naturally as lists. We have already used the Array and ArrayList
classes for handling data organized as a list. Although those data structures
helped us group the data in a convenient form for processing, neither structure
provides a real abstraction for actually designing and implementing problem
solutions.

Two list-oriented data structures that provide easy-to-understand abstrac-
tions are stacks and queues. Data in a stack are added and removed from
only one end of the list, whereas data in a queue are added at one end and
removed from the other end of a list. Stacks are used extensively in program-
ming language implementations, from everything from expression evaluation
to handling function calls. Queues are used to prioritize operating system pro-
cesses and to simulate events in the real world, such as teller lines at banks
and the operation of elevators in buildings.

C# provides two classes for using these data structures: the Stack class
and the Queue class. We’ll discuss how to use these classes and look at some
practical examples in this chapter.

STACKS, A STACK IMPLEMENTATION AND THE STACK CLASS

The stack is one of the most frequently used data structures, as we just men-
tioned. We define a stack as a list of items that are accessible only from the

68

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Stacks, a Stack Implementation and the Stack Class 69

Push 1

1

Pop

1

Push 3

1

2

3

Push 2

1

2

Pop

1

2

Push 4

1

4

FIGURE 5.1. Pushing and Popping a Stack.

end of the list, which is called the top of the stack. The standard model for
a stack is the stack of trays at a cafeteria. Trays are always removed from the
top, and the when the dishwasher or busboy puts a tray back on the stack, it
is placed on the top also. A stack is known as a Last-in, First-out (LIFO) data
structure.

Stack Operations

The two primary operations of a stack are adding items to the stack and taking
items off the stack. The Push operation adds an item to a stack. We take an
item off the stack with a Pop operation. These operations are illustrated in
Figure 5.1.

The other primary operation to perform on a stack is viewing the top item.
The Pop operation returns the top item, but the operation also removes it
from the stack. We want to just view the top item without actually removing
it. This operation is named Peek in C#, though it goes by other names in other
languages and implementations (such as Top).

Pushing, popping, and peeking are the primary operations we perform
when using a stack; however, there are other operations we need to perform
and properties we need to examine. It is useful to be able to remove all the
items from a stack at one time. A stack is completed emptied by calling the
Clear operation. It is also useful to know how many items are in a stack at any
one time. We do this by calling the Count property. Many implementations
have a StackEmpty method that returns a true or false value depending on the
state of the stack, but we can use the Count property for the same purposes.

The Stack class of the .NET Framework implements all of these operations
and properties and more, but before we examine how to use them, let’s look
at how you would have to implement a stack if there wasn’t a Stack class.

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

70 STACKS AND QUEUES

A Stack Class Implementation

A Stack implementation has to use an underlying structure to hold data. We’ll
choose an ArrayList since we don’t have to worry about resizing the list when
new items are pushed onto the stack.

Since C# has such great object-oriented programming features, we’ll imple-
ment the stack as a class, called CStack. We’ll include a constructor method
and methods for the above-mentioned operations. The Count property is
implemented as a property in order to demonstrate how that’s done in C#.
Let’s start by examining the private data we need in the class.

The most important variable we need is an ArrayList object to store the
stack items. The only other data we need to keep track off is the top of the
stack, which we’ll do with a simple Integer variable that functions as an index.
The variable is initially set to −1 when a new CStack object is instantiated.
Every time a new item is pushed onto the stack, the variable is incremented
by 1.

The constructor method does nothing except initialize the index variable
to −1. The first method to implement is Push. The code calls the ArrayList
Add method and adds the value passed to it to the ArrayList. The Pop method
does three things: calls the RemoveAt method to take the top item off the
stack (out of the ArrayList), decrements the index variable by 1, and, finally,
returns the object popped off the stack.

The Peek method is implemented by calling the Item method with the
index variable as the argument. The Clear method simply calls an identical
method in the ArrayList class. The Count property is written as a read-only
property since we don’t want to accidentally change the number of items on
the stack.

Here’s the code:

class CStack

{
private int p_index;

private ArrayList list;

public CStack()

{
list = new ArrayList();

p_index = -1;

}

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Stacks, a Stack Implementation and the Stack Class 71

public int count

{
get

{
return list.Count;

}
}

public void push(object item)

{
list.Add(item);

p_index++;

}

public object pop()

{
object obj = list[p_index];

list.RemoveAt(p_index);

p_index--;

return obj;

}

public void clear()

{
list.Clear();

p_index = -1;

}

public object peek()

{
return list[p_index];

}
}

Now let’s use this code to write a program that uses a stack to solve a problem.
A palindrome is a string that is spelled the same forward and backward.

For example, “dad”, “madam”, and “sees” are palindromes, whereas “hello” is
not a palindrome. One way to check strings to see if they’re palindromes is to
use a stack. The general algorithm is to read the string character by character,
pushing each character onto a stack when it’s read. This has the effect of
storing the string backwards. The next step is to pop each character off the

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

72 STACKS AND QUEUES

stack, comparing it to the corresponding letter starting at the beginning of
the original string. If at any point the two characters are not the same, the
string is not a palindrome and we can stop the program. If we get all the way
through the comparison, then the string is a palindrome.

Here’s the program, starting at Sub Main since we’ve already defined the
CStack class:

static void Main(string[] args)

{
CStack alist = new CStack();

string ch;

string word = "sees";

bool isPalindrome = true;

for(int x = 0; x < word.Length; x++)

alist.push(word.Substring(x, 1));

int pos = 0;

while (alist.count > 0)

{
ch = alist.pop().ToString();

if (ch != word.Substring(pos,1))

{
isPalindrome = false;

break;

}
pos++;

}
if (isPalindrome)

Console.WriteLine(word + " is a palindrome.");

else

Console.WriteLine(word + " is not a palindrome.");

Console.Read();

}

THE STACK CLASS

The Stack class is an implementation of the ICollection interface that rep-
resents a LIFO collection, or a stack. The class is implemented in the .NET

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

The Stack Class 73

Framework as a circular buffer, which enables space for items pushed on the
stack to be allocated dynamically.

The Stack class includes methods for pushing, popping, and peeking values.
There are also methods for determining the number of elements in the stack,
clearing the stack of all its values, and returning the stack values as an array.
Let’s start with discussing how the Stack class constructors work.

The Stack Constructor Methods

There are three ways to instantiate a stack object. The default constructor
instantiates an empty stack with an initial capacity of 10 values. The default
constructor is called as follows:

Stack myStack = new Stack();

A generic stack is instantiated as follows:

Stack<string> myStack = new Stack<string>();

Each time the stack reaches full capacity, the capacity is doubled.
The second Stack constructor method allows you to create a stack object

from another collection object. For example, you can pass the constructor as
an array and a stack is built from the existing array elements:

string[] names = new string[] {"Raymond", "David", "Mike"};
Stack nameStack = new Stack(names);

Executing the Pop method will remove “Mike” from the stack first.
You can also instantiate a stack object and specify the initial capacity of

the stack. This constructor comes in handy if you know in advance about
how many elements you’re going to store in the stack. You can make your
program more efficient when you construct your stack this way. If your stack
has 20 elements in it and it’s at total capacity, adding a new element will
involve 20 + 1 instructions because each element has to be shifted over to
accommodate the new element.

The code for instantiating a Stack object with an initial capacity looks like
this:

Stack myStack = new Stack(25);

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

74 STACKS AND QUEUES

The Primary Stack Operations

The primary operations you perform with a stack are Push and Pop. Data is
added to a stack with the Push method. Data is removed from the stack with
the Pop method. Let’s look at these methods in the context of using a stack
to evaluate simple arithmetic expressions.

This expression evaluator uses two stacks: one for the operands (numbers)
and another one for the operators. An arithmetic expression is stored as a
string. We parse the string into individual tokens, using a For loop to read
each character in the expression. If the token is a number, it is pushed onto
the number stack. If the token is an operator, it is pushed onto the operator
stack. Since we are performing infix arithmetic, we wait for two operands to
be pushed on the stack before performing an operation. At that point, we
pop the operands and an operand and perform the specified arithmetic. The
result is pushed back onto the stack and becomes the first operand of the next
operation. This continues until we run out of numbers to push and pop.

Here’s the code:

using System;

using System.Collections;

using System.Text.RegularExpressions;

namespace csstack

{
class Class1

{
static void Main(string[] args)

{
Stack nums = new Stack();

Stack ops = new Stack();

string expression = "5 + 10 + 15 + 20";

Calculate(nums, ops, expression);

Console.WriteLine(nums.Pop());

Console.Read();

}

// IsNumeric isn't built into C# so we must define it

static bool IsNumeric(string input)

{
bool flag = true;

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

The Stack Class 75

string pattern = (@"^\d+$");
Regex validate = new Regex(pattern);

if(!validate.IsMatch(input))

{
flag = false;

}
return flag;

}

static void Calculate(Stack N, Stack O, string exp)

{
string ch, token = "";

for(int p = 0; p < exp.Length; p++)

{
ch = exp.Substring(p, 1);

if (IsNumeric(ch))

token + = ch;

if (ch == " " || p == (exp.Length - 1))

{
if (IsNumeric(token))

{
N.Push(token);

token = "";

}
}
else if (ch == "+" || ch == "-" || ch == "*" ||

ch == "/")

O.Push(ch);

if (N.Count == 2)

Compute(N,O);

}
}

static void Compute(Stack N, Stack O)

{
int oper1, oper2;

string oper;

oper1 = Convert.ToInt32(N.Pop());

oper2 = Convert.ToInt32(N.Pop());

oper = Convert.ToString(O.Pop());

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

76 STACKS AND QUEUES

switch (oper)

{
case "+" :

N.Push(oper1 + oper2);

break;

case "-" :

N.Push(oper1 - oper2);

break;

case "*" :

N.Push(oper1 * oper2);

break;

case "/" :

N.Push(oper1 / oper2);

break;

}
}

}
}

It is actually easier to use a Stack to perform arithmetic using postfix
expressions. You will get a chance to implement a postfix evaluator in the
exercises.

The Peek Method

The Peek method lets us look at the value of an item at the top of a stack
without having to remove the item from the stack. Without this method, you
would have to remove an item from the stack just to get at its value. You will
use this method when you want to check the value of the item at the top of
the stack before you pop it off:

if (IsNumeric(Nums.Peek())

num = Nums.Pop():

The Clear Method

The Clear method removes all the items from a stack, setting the item count
to zero. It is hard to tell if the Clear method affects the capacity of a stack,

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

The Stack Class 77

since we can’t examine the actual capacity of a stack, so it’s best to assume the
capacity is set back to the initial default size of 10 elements.

A good use for the Clear method is to clear a stack if there is an error
in processing. For example, in our expression evaluator, if a division by 0
operation occurs, that is an error and we want to clear the stack:

if (oper2 == 0)

Nums.Clear();

The Contains Method

The Contains method determines if a specified element is located in a stack.
The method returns True if the element is found; False otherwise. We can use
this method to look for a value in the stack but not currently at the top of the
stack, such as a situation where a certain character in the stack might cause a
processing error:

if (myStack.Contains(" "))

StopProcessing();

else

ContinueProcessing();

The CopyTo and ToArray Methods

The CopyTo method copies the contents of a stack into an array. The array
must be of type Object since that is the data type of all stack objects. The
method takes two arguments: an array and the starting array index to begin
placing stack elements. The elements are copied in LIFO order, as if they were
popped from the stack. Here’s a short code fragment demonstrating a CopyTo
method call:

Stack myStack = new Stack();

for(int i = 20; i > 0; i--)

myStack.Push(i);

object [] myArray = new object[myStack.Count];

myStack.CopyTo(myArray, 0);

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

78 STACKS AND QUEUES

The ToArray method works in a similar manner. You cannot specify a start-
ing array index position, and you must create the new array in an assignment
statement. Here’s an example:

Stack myStack = new Stack();

for(int i = 0; i > 0; i++)

myStack.Push(i);

object [] myArray = new object[myStack.Count];

myArray = myStack.ToArray();

A Stack Class Example: Decimal to
Multiple-Bases Conversion

Although decimal numbers are used in most business applications, some sci-
entific and technical applications require numbers to be presented in other
bases. Many computer system applications require numbers to be in either
octal or binary format.

One algorithm that we can use to convert numbers from decimal to octal or
binary makes use of a stack. The steps of the algorithm are listed as follows:

Get number

Get base

Loop

Push the number mod base onto the stack

Number becomes the number integer-divided by the base

While number not equal to 0

Once the loop finishes, you have the converted number, and you can simply
pop the individual digits off the stack to see the results. Here’s one implemen-
tation of the program:

using System;

using System.Collections;

namespace csstack

{
class Class1

{
static void Main(string[] args)

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

The Stack Class 79

{
int num, baseNum;

Console.Write("Enter a decimal number: ");

num = Convert.ToInt32(Console.ReadLine());

Console.Write("Enter a base: ");

baseNum = Convert.ToInt32(Console.ReadLine());

Console.Write(num + " converts to ");

MulBase(num, baseNum);

Console.WriteLine(" Base " + baseNum);

Console.Read();

}

static void MulBase(int n, int b)

{
Stack Digits = new Stack();

do

{
Digits.Push(n % b);

n /= b;

} while (n != 0);

while (Digits.Count > 0)

Console.Write(Digits.Pop());

}
}

}

This program illustrates why a stack is a useful data structure for many
computational problems. When we convert a decimal number to another
form, we start with the right-most digits and work our way to the left. Pushing
each digit on the stack as we go works perfectly because when we finish, the
converted digits are in the correct order.

Although a stack is a useful data structure, some applications lend them-
selves to being modeled using another list-based data structure. Take, for
example, the lines that form at the grocery store or your local video rental
store. Unlike a stack, where the last one in is the first one out, in these lines
the first one in should be the last one out (FIFO). Another example is the
list of print jobs sent to a network (or local) printer. The first job sent to the
printer should be the first job handled by the printer. These examples are
modeled using a list-based data structure called a queue, which is the subject
of the next section.

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

80 STACKS AND QUEUES

A A arrives in queue

A B

B C

B arrives in queue

A

C

C arrives in queue

B A departs from queue

C B departs from queue

FIGURE 5.2. Queue Operations.

QUEUES, THE QUEUE CLASS AND A QUEUE CLASS IMPLEMENTATION

A queue is a data structure where data enters at the rear of a list and is removed
from the front of the list. Queues are used to store items in the order in which
they occur. Queues are an example of a first-in, first-out (FIFO) data structure.
Queues are used to order processes submitted to an operating system or a print
spooler, and simulation applications use queues to model customers waiting
in a line.

Queue Operations

The two primary operations involving queues are adding a new item to the
queue and removing an item from the queue. The operation for adding a new
item is called Enqueue, and the operation for removing an item from a queue is
called Dequeue. The Enqueue operation adds an item at the end of the queue
and the Dequeue operation removes an item from the front (or beginning) of
the queue. Figure 5.2 illustrates these operations.

The other primary operation to perform on a queue is viewing the beginning
item. The Peek method, like its counterpoint in the Stack class, is used to view
the beginning item. This method simply returns the item without actually
removing it from the queue.

There are other properties of the Queue class we can use to aid in our
programming. However, before we discuss them let’s look at how we can
implement a Queue class.

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Queues, the Queue Class and a Queue Class Implementation 81

A Queue Implementation

Implementing the Queue class using an ArrayList is practically a no-brainer,
as was our implementation of the Stack class. ArrayLists are excellent imple-
mentation choices for these types of data structures because of their built-in
dynamics. When we need to insert an item into our queue, the Arraylist Add
method places the item in the next free element of the list. When we need to
remove the front item from the queue, the ArrayList moves each remaining
item in the list up one element. We don’t have to maintain a placeholder,
which can lead to subtle errors in your code.

The following Queue class implementation includes methods for EnQueue,
DeQueue, ClearQueue (clearing the queue), Peek, and Count, as well as a
default constructor for the class:

public class CQueue

{
private ArrayList pqueue;

public CQueue()

{
pqueue = new ArrayList();

}

public void EnQueue(object item)

{
pqueue.Add(item);

}

public void DeQueue()

{
pqueue.RemoveAt(0);

}

public object Peek()

{
return pqueue[0];

}

public void ClearQueue()

{
pqueue.Clear();

}

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

82 STACKS AND QUEUES

public int Count()

{
return pqueue.Count;

}
}

The Queue Class: A Sample Application

We’ve already mentioned the primary methods found in the Queue class and
seen how to use them in our Queue class implementation. We can explore
these methods further by looking at a particular programming problem that
uses a Queue as its basic data structure. First, though, we need to mention a
few of the basic properties of Queue objects.

When a new Queue object is instantiated, the default capacity of the queue
is 32 items. By definition, when the queue is full, it is increased by a growth
factor of 2.0. This means that when a queue is initially filled to capacity, its new
capacity becomes 64. You are not limited to these numbers however. You can
specify a different initial capacity when you instantiate a queue. Here’s how:

Queue myQueue = new Queue(100);

This sets the queue’s capacity to 100 items. You can change the growth
factor as well. It is the second argument passed to the constructor, as in:

Queue myQueue = new Queue(32, 3);

A generic Queue is instantiated like this:

Queue<int> numbers = new Queue<int>();

This line specifies a growth rate of 3 with the default initial capacity. You have
to specify the capacity even if it’s the same as the default capacity since the
constructor is looking for a method with a different signature.

As we mentioned earlier, queues are often used to simulate situations where
people have to wait in line. One scenario we can simulate with a queue is the
annual Single’s Night dance at the Elks Lodge. Men and women enter the lodge
and stand in line. The dance floor is quite small and there is room for only

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Queues, the Queue Class and a Queue Class Implementation 83

three couples at a time. As there is room on the dance floor, dance partners are
chosen by taking the first man and woman in line. These couples are taken
out of the queue and the next set of men and women are moved to the front
of the queue.

As this action takes place, the program announces the first set of dance
partners and who the next people are in line. If there is not a complete couple,
the next person in line is announced. If no one is left in line, this fact is
displayed.

First, let’s look at the data we use for the simulation:

F Jennifer Ingram
M Frank Opitz
M Terrill Beckerman
M Mike Dahly
F Beata Lovelace
M Raymond Williams
F Shirley Yaw
M Don Gundolf
F Bernica Tackett
M David Durr
M Mike McMillan
F Nikki Feldman

We use a structure to represent each dancer. Two simple String class methods
(Chars and Substring) are used to build a dancer. Now here’s the program:

using System;

using System.Collections;

using System.IO;

namespace csqueue

{

public struct Dancer

{
public string name;

public string sex;

public void GetName(string n)

{
name = n;

}

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

84 STACKS AND QUEUES

public override string ToString()

{
return name;

}

}

class Class1

{

static void newDancers(Queue male, Queue female)

{
Dancer m, w;

m = new Dancer();

w = new Dancer();

if (male.Count > 0 && female.Count > 0)

{
m.GetName(male.Dequeue ().ToString());

w.GetName(female.Dequeue().ToString());

}
else if ((male.Count > 0) && (female.Count ==

0))

Console.WriteLine("Waiting on a female

dancer.");

else if ((female.Count > 0) && (male.Count ==

0))

Console.WriteLine("Waiting on a male

dancer.");

}
static void headOfLine(Queue male, Queue female)

{
Dancer w, m;

m = new Dancer();

w = new Dancer();

if (male.Count > 0)

m.GetName(male.Peek().ToString());

if (female.Count > 0)

w.GetName(female.Peek().ToString());

if (m.name ! = " " && w.name ! = "")

Console.WriteLine("Next in line are: " +

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Queues, the Queue Class and a Queue Class Implementation 85

m.name + "\t"
+ w.name);

else

if (m.name ! = "")

Console.WriteLine("Next in line is: " +

m.name);

else

Console.WriteLine("Next in line is: " +

w.name);

}

static void startDancing(Queue male, Queue female)

{
Dancer m, w;

m = new Dancer();

w = new Dancer();

Console.WriteLine("Dance partners are: ");

Console.WriteLine();

for(int count = 0; count <= 3; count++)

{
m.GetName(male.Dequeue().ToString());

w.GetName(female.Dequeue().ToString());

Console.WriteLine(w.name + "\t" + m.name);

}
}

static void formLines(Queue male, Queue female)

{
Dancer d = new Dancer();

StreamReader inFile;

inFile = File.OpenText("c:\\dancers.dat");
string line;

while(inFile.Peek() ! = -1)

{
line = inFile.ReadLine();

d.sex = line.Substring(0,1);

d.name = line.Substring(2, line.Length -2);

if (d.sex == "M")

male.Enqueue(d);

else

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

86 STACKS AND QUEUES

female.Enqueue(d);

}
}

static void Main(string[] args)

{
Queue males = new Queue();

Queue females = new Queue();

formLines(males, females);

startDancing(males, females);

if (males.Count > 0 || females.Count > 0)

headOfLine(males, females);

newDancers(males, females);

if (males.Count > 0 || females.Count > 0)

headOfLine(males, females);

newDancers(males, females);

Console.Write("press enter");

Console.Read();

}
}

}

Here’s the output from a sample run using the data shown:

Sorting Data With Queues

Another application for queues is sorting data. Back in the old days of com-
puting, programs were entered into a mainframe computer via punch cards,
where each card held a single program statement. Cards were sorted using a

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Queues, the Queue Class and a Queue Class Implementation 87

mechanical sorter that utilized bin-like structures. We can simulate this pro-
cess by sorting data using queues. This sorting technique is called a radix sort.
It will not be the fastest sort in your programming repertoire, but the radix
sort does demonstrate another interesting use of queues.

The radix sort works by making two passes over a set of data, in this case
integers in the range 0–99. The first pass sorts the numbers based on the 1’s
digit and the second pass sorts the numbers based on the 10’s digit. Each
number is then placed in a bin based on the digit in each of these places.
Given these numbers:

91 46 85 15 92 35 31 22

The first pass results in this bin configuration:

Bin 0:
Bin 1: 91 31
Bin 2: 92 22
Bin 3:
Bin 4:
Bin 5: 85 15 35
Bin 6: 46
Bin 7:
Bin 8:
Bin 9:

Now put the numbers in order based on which bin they’re in:

91 31 92 22 85 15 35 46

Next, take the list and sort by the 10’s digit into the appropriate bins:

Bin 0:
Bin 1: 15
Bin 2: 22
Bin 3: 31 35
Bin 4: 46
Bin 5:
Bin 6:
Bin 7:
Bin 8: 85
Bin 9: 91 92

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

88 STACKS AND QUEUES

Take the numbers from the bins and put them back into a list, which results
in a sorted set of integers:

15 22 31 35 46 85 91 92

We can implement this algorithm by using queues to represent the bins.
We need nine queues, one for each digit. We use modulus and integer division
for determining the 1’s and 10’s digits. The rest is a matter of adding numbers
to their appropriate queues, taking them out of the queues to resort based on
the 1’s digit, and then repeating the process for the 10’s digit. The result is a
sorted list of integers.

Here’s the code:

using System;

using System.Collections;

using System.IO;

namespace csqueue

{
class Class1

{
enum DigitType {ones = 1, tens = 10}

static void DisplayArray(int [] n)

{
for(int x = 0; x <= n.GetUpperBound(0); x++)

Console.Write(n[x] + " ");

}

static void RSort(Queue[] que, int[] n, DigitType

digit)

{
int snum;

for(int x = 0; x <= n.GetUpperBound(0); x++)

{
if (digit == DigitType.ones)

snum = n[x] % 10;

else

snum = n[x] / 10;

que[snum].Enqueue(n[x]);

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Queues, the Queue Class and a Queue Class Implementation 89

}
}

static void BuildArray(Queue[] que, int[] n)

{
int y = 0;

for(int x = 0; x >= 9; x++)

while(que[x].Count > 0)

{
n[y] =

Int32.Parse(que[x].Dequeue().ToString());

y++;

}

}

static void Main(string[] args)

{
Queue [] numQueue = new Queue[10];

int [] nums = new int[]

{91, 46, 85, 15, 92, 35, 31, 22};
int[] random = new Int32[99];

// Display original list

for(int i = 0; i < 10; i++)

numQueue[i] = new Queue();

RSort(numQueue, nums, DigitType.ones);

//numQueue, nums, 1

BuildArray(numQueue, nums);

Console.WriteLine();

Console.WriteLine("First pass results: ");

DisplayArray(nums);

// Second pass sort

RSort(numQueue, nums, DigitType.tens);

BuildArray(numQueue, nums);

Console.WriteLine();

Console.WriteLine("Second pass results: ");

// Display final results

DisplayArray(nums);

Console.WriteLine();

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

90 STACKS AND QUEUES

Console.Write("Press enter to quit");

Console.Read();

}
}

}

The RSort subroutine is passed the array of queues, the number array, and
a descriptor telling the subroutine whether to sort the 1’s digit or the 10’s
digit. If the sort is on the 1’s digit, the program calculates the digit by taking
the remainder of the number modulus 10. If the sort is on the 10’s digit,
the program calculates the digit by taking the number and dividing (in an
integer-based manner) by 10.

To rebuild the list of numbers, each queue is emptied by performing succes-
sive Dequeue operations while there are items in the queue. This is performed
in the BuildArray subroutine. Since we start with the array that is holding the
smallest numbers, the number list is built “in order.”

Priority Queues: Deriving From the Queue Class

As you know now, a queue is a data structure where the first item placed in the
structure is the first item taken out of the structure. The effect of the behavior
is the oldest item in the structure that is removed first. For many applications,
though, a data structure is needed where an item with the highest priority is
removed first, even if it isn’t the “oldest” item in the structure. There is a special
case of the Queue made for this type of application—the priority queue.

There are many applications that utilize priority queues in their operations.
A good example is process handling in a computer operating system. Certain
processes have a higher priority than other processes, such as printing pro-
cesses, which typically have a low priority. Processes (or tasks) are usually
numbered by their priority, with a Priority 0 process having a higher priority
than a Priority 20 task.

Items stored in a priority queue are normally constructed as key–value
pairs, where the key is the priority level and the value identifies the item. For
example, an operating system process might be defined like this:

struct Process {
int priority;

string name;

}

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Queues, the Queue Class and a Queue Class Implementation 91

We cannot use an unmodified Queue object for a priority queue. The
DeQueue method simply removes the first item in the queue when it is called.
We can, though, derive our own priority queue class from the Queue class,
overriding Dequeue to make it do our bidding.

We’ll call the class PQueue. We can use all of the Queue methods as is,
and override the Dequeue method to remove the item that has the high-
est priority. To remove an item from a queue that is not at the front of
the queue, we have to first write the queue items to an array. Then we
can iterate through the array to find the highest priority item. Finally,
with that item marked, we can rebuild the queue, leaving out the marked
item.

Here’s the code for the PQueue class:

public struct pqItem {
public int priority;

public string name;

}

public class PQueue : Queue {

public PQueue {
base();

}
public override object Dequeue() {

object [] items;

int x, min, minindex;

items = this.ToArray();

min = (pqItem)items[0].priority;

for(int x = 1; x <= items.GetUpperbound(0); x++)

if ((pqItem)items[x].Priority < min) {
min = (pqItem)items[x].Priority;

minindex = x;

}
this.Clear();

for(int x = 0; x <= items.GetUpperBound(0); x++)

if (x != minindex && (pqItem)items[x].name != "")

this.Enqueue(items[x]);

return items[minindex];

}
}

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

92 STACKS AND QUEUES

The following code demonstrates a simple use of the PQueue class. An
emergency waiting room assigns a priority to patients who come in for
treatment. A patient presenting symptoms of a heart attack is going to be
treated before a patient who has a bad cut. The following program simulates
three patients entering an emergency room at approximately the same time.
Each patient is seen by the triage nurse, assigned a priority, and added to the
queue. The first patient to be treated is the patient removed from the queue
by the Dequeue method.

static void Main() {
PQueue erwait = new PQueue();

pqItem[] erPatient = new pqItem[4];

pqItem nextPatient;

erPatient[0].name = "Joe Smith";

erPatient[0].priority = 1;

erPatient[1].name = "Mary Brown";

erPatient[1].priority = 0;

erPatient[2].name = "Sam Jones";

erPatient[2].priority = 3;

for(int x = 0; x <= erPatient.GetUpperbound(0); x++)

erwait.Enqueue(erPatient[x]);

nextPatient = erwait.Dequeue();

Console.WriteLine(nextPatient.name);

}

The output of this program is “Mary Brown”, since she has a higher priority
than the other patients.

SUMMARY

Learning to use data structures appropriately and efficiently is one of the
skills that separates the expert programmer from the average programmer.
The expert programmer recognizes that organizing a program’s data into an
appropriate data structure makes it easier to work with the data. In fact,
thinking through a computer programming problem using data abstraction
makes it easier to come up with a good solution to the problem in the first
place.

We discussed using two very common data structures in this chapter:
the stack and the queue. Stacks are used for solving many different types

P1: IBE
0521670152c05 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:13

Exercises 93

of problems in computer programming, especially in systems’ programming
areas such as interpreters and compilers. We also saw how we can use stacks
to solve more generic problems, such as determining if a word is a palindrome.

Queues also have many applications. Operating systems use queues for
ordering processes (via priority queues) and queues are used quite often for
simulating real world processes. Finally, we used the Queue class to derive a
class for implementing a priority queue. The ability to derive new classes from
classes in the .NET Framework class library is one of the major strengths of
the .NET version of C#.

EXERCISES

1. You can use a Stack to check if a programming statement or a formula
has balanced parentheses. Write a Windows application that provides a
text box for the user to enter an expression with parenthesis. Provide a
Check Parens button that, when clicked, runs a program that checks the
number of parentheses in the expression and highlights a parenthesis that
is unbalanced.

2. A postfix expression evaluator works on arithmetic statements that take
this form: op1 op2 operator . . . Using two stacks, one for the operands
and one for the operators, design and implement a Calculator class that
converts infix expressions to postfix expressions and then uses the stacks
to evaluate the expressions.

3. This exercise involves designing a help-desk priority manager. Help
requests are stored in a text file with the following structure: priority, id
of requesting party, time of request The priority is an integer in the range
1–5 with 1 being the least important and 5 being the most important.
The id is a four-digit employee identification number and the time is in
TimeSpan.Hours, TimeSpan.Minutes, TimeSpan.Seconds format. Write a
Windows application that, during the Form˙Load event, reads five records
from the data file containing help requests, prioritizes the list using a pri-
ority queue, and displays the list in a list box. Each time a job is completed,
the user can click on the job in the list box to remove it. When all five jobs
are completed, the application should automatically read five more data
records, prioritize them, and display them in the list box.

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

CHAPTER 6

The BitArray Class

The BitArray class is used to represent sets of bits in a compact fashion. Bit
sets can be stored in regular arrays, but we can create more efficient programs
if we use data structures specifically designed for bit sets. In this chapter, we’ll
look at how to use this data structure and examine some problems that can
be solved using sets of bits. The chapter also includes a review of the binary
numbers, the bitwise operators, and the bitshift operators.

A MOTIVATING PROBLEM

Let’s look at a problem we will eventually solve using the BitArray class. The
problem involves finding prime numbers. An ancient method, discovered
by the third-century B.C. Greek philosopher Eratosthenes, is called the sieve
of Eratosthenes. This method involves filtering numbers that are multiples
of other numbers, until the only numbers left are primes. For example, let’s
determine the prime numbers in the set of the first 100 integers. We start with
2, which is the first prime. We move through the set removing all numbers
that are multiples of 2. Then we move to 3, which is the next prime. We move
through the set again, removing all numbers that are multiples of 3. Then we
move to 5, and so on. When we are finished, all that will be left are prime
numbers.

94

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

A Motivating Problem 95

We’ll first solve this problem using a regular array. The approach we’ll use,
which is similar to how we’ll solve the problem using a BitArray, is to initialize
an array of 100 elements, with each element set to the value 1. Starting with
index 2 (since 2 is the first prime), each subsequent array index is checked
to see first if its value is 1 or 0. If the value is 1, then it is checked to see if it
is a multiple of 2. If it is, the value at that index is set to 0. Then we move to
index 3, do the same thing, and so on.

To write the code to solve this problem, we’ll use the CArray class developed
earlier. The first thing we need to do is create a method that performs the sieve.
Here’s the code:

public void GenPrimes() {
int temp;

for(int outer = 2; outer <= arr.GetUpperBound(0);

outer++)

for(int inner = outer+1; inner <= GetUpperBound(0);

inner++)

if (arr[inner] == 1)

if ((inner % outer) == 0)

arr[inner] = 0;

}

Now all we need is a method to display the primes:

public void ShowPrimes() {
for(int i = 2; i <= arr.GetUpperBound(0); i++)

if (arr[i] == 1)

Console.Write(i + " ");

}

And here’s a program to test our code:

static void Main() {
int size = 100;

CArray primes = new CArray(size-1);

for(int i = 0; i <= size-1; i++)

primes.Insert(1);

primes.GenPrimes();

primes.ShowPrimes();

}

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

96 THE BITARRAY CLASS

This code demonstrates how to use the sieve of Eratosthenes using integers
in the array, but it suggests that a solution can be developed using bits, since
each element in the array is a 0 or a 1. Later in the chapter we’ll examine how
to use the BitArray class, both to implement the sieve of Eratosthenes and for
other problems that lend themselves to sets of bits.

BITS AND BIT MANIPULATION

Before we look at the BitArray class, we need to discuss how bits are used
in VB.NET, since working at the bit level is not something most VB.NET
programmers are familiar with. In this section, we’ll examine how bits are
manipulated in VB.NET, primarily by looking at how to use the bitwise oper-
ators to manipulate Byte values.

The Binary Number System

Before we look at how to manipulate Byte values, let’s review a little about
the binary system. Binary numbers are strings of 0s and 1s that represent base
10 (or decimal) numbers in base 2. For example, the binary number for the
integer 0 is:

00000000

whereas the binary number for the integer 1 is:

00000001

Here are the integers 0–9 displayed in binary:

00000000—0d (where d signifies a decimal number)
00000001—1d
00000010—2d
00000011—3d
00000100—4d
00000101—5d
00000110—6d
00000111—7d
00001000—8d
00001001—9d

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

Bits and Bit Manipulation 97

The best way to convert a binary number to its decimal equivalent is to
use the following scheme. Each binary digit, starting with the rightmost digit,
represents a successively larger power of 2. If the digit in the first place is a
1, then that represents 2◦. If the second position has a 1, that represents 2 1,
and so on.

The binary number:

00101010

is equivalent to:

0 + 21 + 0 + 23 + 0 + 25 + 0 + 0 =
0 + 2 + 0 + 8 + 0 + 32 + 0 + 0 = 42

Bits are usually displayed in sets of eight bits, which makes a byte. The
largest number we can express in eight bits is 255, which in binary is:

11111111

or

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 = 255

A number greater than 255 must be stored in 16 bits. For example, the binary
number representing 256 is:

00000001 00000000

It is customary, though not required, to separate the lower eight bits from the
upper eight bits.

Manipulating Binary Numbers: The Bitwise
and Bit-shift Operators

Binary numbers are not operated on using the standard arithmetic operators.
You have to use the bitwise operators (And, Or, Not) or the bit-shift operators
(<<, >>, and >>>). In this section, we explain how these operators work and
demonstrate in later sections their use via VB.NET applications.

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

98 THE BITARRAY CLASS

First, we’ll examine the bitwise operators. These are the logical operators
most programmers are already familiar with—they are used to combine rela-
tional expressions in order to compute a single Boolean value. With binary
numbers, the bitwise operators are used to compare two binary numbers bit
by bit, yielding a new binary number.

The bitwise operators work the same way they do with Boolean values.
When working with binary numbers, a True bit is equivalent to 1 and a False
bit is equivalent to 0. To determine how the bitwise operators work on bits,
then, we can use truth tables just as we would with Boolean values. The first
two columns in a row are the two operands and the third column is the result
of the operation. The truth table (in Boolean) for the And operator is:

True True True
True False False
False True False
False False False

The equivalent table for bit values is:

1 1 1
1 0 0
0 1 0
0 0 0

The Boolean truth table for the Or operator is:

True True True
True False True
False True True
False False False

The equivalent table for bit values is:

1 1 1
1 0 1
0 1 1
0 0 0

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

A Bitwise Operator Application 99

Finally, there is the Xor operator. This is the least known of the bitwise
operators because it is not used in logical operations performed by com-
puter programs. When two bits are compared using the Xor operator, the
result bit is a 1 if exactly one bit of the two operands is 1. Here is the
table:

1 1 0
1 0 1
0 1 1
0 0 0

With these tables in mind, we can combine binary numbers with these
operators to yield new binary numbers. Here are some examples:

00000001 And 00000000 -> 00000000
00000001 And 00000001 -> 00000001
00000010 And 00000001 -> 00000000

00000000 Or 00000001 -> 00000001
00000001 Or 00000000 -> 00000001
00000010 Or 00000001 -> 00000011

00000000 Xor 00000001 -> 00000001
00000001 Xor 00000000 -> 00000001
00000001 Xor 00000001 -> 00000000

Now let’s look at a VB.NET Windows application that better shows how
the bitwise operators work.

A BITWISE OPERATOR APPLICATION

We can demonstrate how the bitwise operators work in C# using a Win-
dows application that applies these operators to a pair of values. We’ll use
the ConvertBits method developed earlier to help us work with the bitwise
operators.

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

100 THE BITARRAY CLASS

First, let’s look at the user interface for the application, which goes a long
way to explaining how the application works:

Two integer values are entered and the user selects one of the bitwise
operator buttons. The bits that make up each integer value are displayed
along with the bit string resulting from the bitwise operation. Here is one
example, ANDing the values 1 and 2:

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

A Bitwise Operator Application 101

Here is the result of ORing the same two values:

Here is the code for the operation:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

{
private System.Windows.Forms.Button btnAdd;

private System.Windows.Forms.Button btnClear;

private System.Windows.Forms.Button btnOr;

private System.Windows.Forms.Button btnXor;

private System.Forms.Label lblInt1Bits;

private System.Forms.Label lblInt2Bits;

private System.Forms.TextBox txtInt1;

private System.Forms.TextBox txtInt2;

// other Windows app code here

private void btnAdd_Click(object sender,_

System. EventArgs e)

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

102 THE BITARRAY CLASS

{
int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

}

private StringBuilder ConvertBits(int val)

{
int dispMask = 1 << 31;

StringBuilder bitBuffer = new StringBuilder(35);

for(int i = 1; i <= 32; i++) {
if ((val && bitMask) == 0)

bitBuffer.Append("0");

else

bitBuffer.Append("1");

val <<= 1;

if ((i % 8) == 0)

bitBuffer.Append(" ");

}
return bitBuffer;

}

private void btnClear_Click(object sender,_

System. Eventargs e)

{
txtInt1.Text = "";

txtInt2.Text = "";

lblInt1Bits.Text = "";

lblInt2Bits.Text = "";

lblBitResult.Text = "";

txtInt1.Focus();

}

private void btnOr_Click(object sender,_

System.EventsArgs e)

{
int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

A Bitwise Operator Application 103

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

lblBitResult.Text = ConvertBits(val1 ||

val2).ToString();

}

private void btnXOr_Click(object sender,_

System.EventsArgs e)

{
int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

lblBitResult.Text = ConvertBits(val1 ^ val2).

ToString();

}
}

The BitShift Operators

A binary number consists only of 0s and 1s, with each position in the number
representing either the quantity 0 or a power of 2. There are three operators
you can use in C# to change the position of bits in a binary number. They are:
the left shift operator (<<) and the right shift operator (>>).

Each of these operators takes two operators: a value (left) and the number
of bits to shift (right). For example, if we write:

1 << 1

the result is 00000010. And we can reverse that result by writing 2 >> 1.
Let’s look at a more complex example. The binary number representing the
quantity 3 is:

00000011

If we write 3 << 1, the result is:

00000110

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

104 THE BITARRAY CLASS

And if we write 3 << 2, the result is:

00001100

The right shift operator works exactly in reverse of the left shift operator.
For example, if we write:

3 >> 1

the result is 00000001.
In a later section, we’ll see how to write a Windows application that demon-

strates the use of the bit shift operators.

AN INTEGER-TO-BINARY CONVERTER APPLICATION

In this section, we demonstrate how to use a few of the bitwise operators
to determine the bit pattern of an integer value. The user enters an integer
and presses the Display Bits button. The integer value converted to binary is
displayed in four groups of eight bits in a label.

The key tool we use to convert an integer into a binary number is a mask.
The conversion function uses the mask to hide some of the bits in a number
while displaying others. When the mask and the integer value (the operands)
are combined with the AND operator, the result is a binary string representing
the integer value.

First, let’s look at several integer values and their representative binary
values:

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

An Integer-to-Binary Converter Application 105

Binary representation of negative integers in computers is not always so
straightforward, as shown by this example. For more information, consult
a good book on assembly language and computer organization.

As you can see, this last value, 65535, is the largest amount that can fit into
16 bits. If we increase the value to 65536, we get the following:

Finally, let’s look at what happens when we convert the largest number we
can store in an integer variable in C#:

If we try to enter value 2147483648, we get an error. You may think that the
leftmost bit position is available, but it’s not because that bit is used to work
with negative numbers.

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

106 THE BITARRAY CLASS

Now let’s examine the code that drives this application. We’ll display the
listing first and then explain how the program works:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

{
// Windows generated code omitted here

private void btnOr_Click(object sender,

System.EventsArgs e)

{
int val1, val2;

val1 = Int32.Parse(txtInt1.Text);

val2 = Int32.Parse(txtInt2.Text);

lblInt1Bits.Text = ConvertBits(val1).ToString();

lblInt2Bits.Text = ConvertBits(val2).ToString();

lblBitResult.Text = ConvertBits(val1 || val2).

ToString();

}
private StringBuilder ConvertBits(int val)

{
int dispMask = 1 << 31;

StringBuilder bitBuffer = new StringBuilder(35);

for(int i = 1; i <= 32; i++) {
if ((val && bitMask) == 0)

bitBuffer.Append("0");

else

bitBuffer.Append("1");

val <<= 1;

if ((i % 8) == 0)

bitBuffer.Append(" ");

}
return bitBuffer;

}
}

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

A Bit Shift Demonstration Application 107

Most of the work of the application is performed in the ConvertBits func-
tion. The variable dispMask holds the bit mask and the variable bitBuffer holds
the string of bits built by the function. bitBuffer is declared as a StringBuilder
type in order to allow us to use the class’s Append method to build the string
without using concatenation.

The binary string is built in the For loop, which is iterated 32 times since
we are building a 32-bit string. To build the bit string, we AND the value with
the bit mask. If the result of the operation is 0, a 0 is appended to the string.
If the result is 1, a 1 is appended to the string. We then perform a left bit shift
on the value in order to then compute the next bit in the string. Finally, after
every eight bits, we append a space to the string in order to separate the four
8-bit substrings, making them easier to read.

A BIT SHIFT DEMONSTRATION APPLICATION

This section discusses a Windows application that demonstrates how the
bit-shifting operators work. The application provides text boxes for the two
operands (a value to shift and the number of bits to shift), as well as two
labels that are used to show both the original binary representation of the left
operand and the resulting bits that result from a bit shifting operation. The
application has two buttons that indicate a left shift or a right shift, as well as
a Clear and an Exit button.

Here’s the code for the program:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

{
// Windows generated code omitted

private StringBuilder ConvertBits(int val)

{
int dispMask = 1 << 31;

StringBuilder bitBuffer = new StringBuilder(35);

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

108 THE BITARRAY CLASS

for(int i = 1; i <= 32; i++) {
if ((val && bitMask) == 0)

bitBuffer.Append("0");

else

bitBuffer.Append("1");

val <<= 1;

if ((i % 8) == 0)

bitBuffer.Append(" ");

}
return bitBuffer;

}

private void btnOr_Click(object sender,

System.EventsArgs e)

{
txtInt1.Text = "";

txtBitShift.Text = "";

lblInt1Bits.Text = "";

lblOrigBits.Text = "";

txtInt1.Focus();

}

private void btnLeft_Click(object sender,

System.EventsArgs e)

{
int value = Int32.Parse(txtInt1.Text);

lblOrigBits.Text = ConvertBits(value).ToString();

value <<= Int32.Parse(txtBitShift.Text);

lblInt1Bits.Text = ConvertBits(value).ToString();

}

private void btnRight_Click(object sender,

System.EventsArgs e)

{
int value = Int32.Parse(txtInt1.Text);

lblOrigBits.Text = ConvertBits(value).ToString();

value >>= Int32.Parse(txtBitShift.Text);

lblInt1Bits.Text = ConvertBits(value).ToString();

}
}

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

A Bit Shift Demonstration Application 109

Following are some examples of the application in action.
Here is 4 << 2:

Here is 256 >> 8:

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

110 THE BITARRAY CLASS

THE BITARRAY CLASS

The BitArray class is used to work with sets of bits. A bit set is used to efficiently
represent a set of Boolean values. A BitArray is very similar to an ArrayList, in
that BitArrays can be resized dynamically, adding bits when needed without
worrying about going beyond the upper bound of the array.

Using the BitArray Class

A BitArray is created by instantiating a BitArray object, passing the number
of bits you want in the array into the constructor:

BitArray BitSet = new BitArray(32);

The 32 bits of this BitArray are set to False. If we wanted them to be True, we
could instantiate the array like this:

BitArray BitSet = new BitArray(32, True);

The constructor can be overloaded many different ways, but we’ll look at
just one more constructor method here. You can instantiate a BitArray using
an array of Byte values. For example:

byte[] ByteSet = new byte[] {1, 2, 3, 4, 5};
BitArray BitSet = new BitArray(ByteSet);

The BitSet BitArray now contains the bits for the byte values 1, 2, 3, 4, and 5.
Bits are stored in a BitArray with the most significant bit in the leftmost

(index 0) position. This can be confusing to read when you are accustomed to
reading binary numbers from right to left. For example, here are the contents
of an eight-bit BitArray that is equal to the number 1:

True False False False False False False False

Of course, we are more accustomed to viewing a binary number with the
most significant bit to the right, as in:

0 0 0 0 0 0 0 1

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

The BitArray Class 111

We will have to write our own code to change both the display of bit values
(rather than Boolean values) and the order of the bits.

If you have Byte values in the BitArray, each bit of each Byte value will
display when you loop through the array. Here is a simple program fragment
to loop through a BitArray of Byte values:

byte[] ByteSet = new byte[] {1, 2, 3, 4, 5};
BitArray BitSet = new BitArray(ByteSet);

for (int bits = 0; bits <= bitSet.Count-1; bits++)

Console.Write(BitSet.Get(bits) + " ");

Here is the output:

This output is next to impossible to read and it doesn’t really reflect what is
stored in the array. We’ll see later how to make this type of BitArray easier to
understand. First, though, we need to see how to retrieve a bit value from a
BitArray.

The individual bits stored in a BitArray are retrieved using the Get method.
This method takes an Integer argument, the index of the value wished to be
retrieved, and the return value is a bit value represented by True or False. The
Get method is used in the preceding code segment to display the bit values
from the BitSet BitArray.

If the data we are storing in a BitArray are actually binary values (that
is, values that should be shown as 0s and 1s), we need a way to display
the actual 1s and 0s of the values in the proper order—starting at the
right rather than the left. Although we can’t change the internal code the
BitArray class uses, we can write external code that gives us the output we
want.

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

112 THE BITARRAY CLASS

The following program creates a BitArray of five Byte values (1,2,3,4,5) and
displays each byte in its proper binary form:

using System;

class chapter6 {
static void Main() {

int bits;

string[] binNumber = new string[8];

int binary;

byte[] ByteSet = new byte[] {1,2,3,4,5};
BitArray BitSet = new BitArray(ByteSet);

bits = 0;

binary = 7;

for(int i = 0; i <= BitSet.Count-1; i++) {
if (BitSet.Get(i) == true)

binNumber[binary] = "1";

else

binNumber[binary] = "0";

bits++;

binary--;

if ((bits % 8) == 0) {
binary = 7;

bits = 0;

for(int i = 0; i <= 7; i++)

Console.Write(binNumber[i]);

}
}

}
}

Here is the output:

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

The BitArray Class 113

There are two arrays used in this program. The first array, BitSet, is a BitArray
that holds the Byte values (in bit form). The second array, binNumber, is just
a string array that is used to store a binary string. This binary string will be
built from the bits of each Byte value, starting at the last position (7) and
moving forward to the first position (0).

Each time a bit value is encountered, it is first converted to 1 (if True) or 0
(if False) and then placed in the proper position. Two variables are used to tell
where we are in the BitSet array (bits) and in the binNumber array (binary).
We also need to know when we’ve converted eight bits and are finished with
a number. We do this by taking the current bit value (in the variable bits)
modulo 8. If there is no remainder then we’re at the eighth bit and we can
write out a number. Otherwise, we continue in the loop.

We’ve written this program completely in Main(), but in the exercises at
the end of the chapter you’ll get an opportunity to clean the program up by
creating a class or even extending the BitArray class to include this conversion
technique.

More BitArray Class Methods and Properties

In this section, we discuss a few more of the BitArray class methods and
properties you’re most likely to use when working with the class.

The Set method is used to set a particular bit to a value. The method is
used like this:

BitArray.Set(bit, value)

where bit is the index of the bit to set, and value is the Boolean value you wish
to assign to the bit. (Although Boolean values are supposed to be used here,
you can actually use other values, such as 0s and 1s. You’ll see how to do this
in the next section.)

The SetAll method allows you to set all the bits to a value by passing the
value in as the argument, as in BitSet.SetAll(False).

You can perform bitwise operations on all the bits in a pair of BitArrays
using the And, Or, Xor, and Not methods. For example, given that we have
two BitArrays, bitSet1 and bitSet2, we can perform a bitwise Or like this:

bitSet1.Or(bitSet2)

The following expression:

bitSet.Clone()

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

114 THE BITARRAY CLASS

returns a shallow copy of a BitArray, whereas the expression:

bitSet.CopyTo(arrBits)

copies the contents of the BitArray to a standard array named arrBits.
With this overview, we are now ready to see how we can use a BitArray to

write the Sieve of Eratosthenes.

USING A BITARRAY TO WRITE THE SIEVE OF ERATOSTHENES

At the beginning of the chapter, we showed you how to write a program to
implement the Sieve of Eratosthenes using a standard array. In this section,
we demonstrate the same algorithm, this time using a BitArray to implement
the sieve.

The application we’ve written accepts an integer value from the user, deter-
mines the primacy of the number, and also shows a list of the primes from 1
through 1024. Following are some screen shots of the application:

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

Using a BitArray To Write the Sieve of Eratosthenes 115

Here is what happens when the number is not prime:

Now let’s look at the code:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

public class Form1 : System.Windows.Forms.Form

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

116 THE BITARRAY CLASS

{
// Windows generated code omitted

private void btnPrime_Click(object sender,

System.EventsArgs e)

{
BitArray[] bitSet = new BitArray[1024];

int value = Int32.Parse(txtValue.Text);

BuildSieve(bitSet);

if (bitSet.Get(value))

lblPrime.Text = (value + " is a prime number.");

else

lblPrime.Text = (value + " is not a prime

number.");

}

private void BuildSieve(BitArray bits) {
string primes;

for(int i = 0; i <= bits.Count-1; i++)

bits.Set(i, 1);

int lastBit = Int32.Parse(Math.

Sqrt (bits.Count));

for(int i = 2; i <= lastBit-1; i++)

if (bits.Get(i))

for (int j = 2 ∗ i; j <= bits.Count-1; j++)

bits.Set(j, 0);

int counter = 0;

for (int i = 1; i <= bits.Count-1; i++)

if (bits.Get(i)) {
primes += i.ToString();

counter++;

if ((counter % 7) == 0)

primes += "\n";
else

primes += "\n";
}
txtPrimes.Text = primes;

}
}

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

Comparison of BitArray Versus Array for Sieve of Eratosthenes 117

The sieve is applied in this loop:

int lastBit = Int32.Parse(Math.Sqrt(bits.Count));

for(int i = 2; i <= lastBit-1; i++)

if (bits.Get(i))

for (int j = 2 ∗ i; j <= bits.Count-1; j++)

bits.Set(j, 0);

The loop works through the multiples of all the numbers up through the
square root of the number of items in the BitArray, eliminating all multiples
of the numbers 2, 3, 4, 5, and so on.

Once the array is built using the sieve, we can then make a simple call to
the BitArray:

bitSet.Get(value)

If the value is found, then the number is prime. If the value is not found, then
it was eliminated by the sieve and the number is not prime.

COMPARISON OF BITARRAY VERSUS ARRAY
FOR SIEVE OF ERATOSTHENES

Using a BitArray class is supposed to be more efficient for problems that
involve Boolean or bit values. Some problems that don’t seem to involve these
types of values can be redesigned so that a BitArray can be used.

When the Sieve of Eratosthenes method is timed using both a BitArray and
a standard array, the BitArray method is consistently faster by a factor of 2.
You will get an opportunity to check these results for yourself in the exercises.

SUMMARY

The BitArray class is used to store sets of bits. Although bits are normally
represented by 0s and 1s, the BitArray class stores its values as True (1) or
False (0) values instead. BitArrays are useful when you need to store a set of
Boolean values, but they are even more useful when you need to work with

P1: JZP
0521670152c06 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:19

118 THE BITARRAY CLASS

bits, since we can easily move back and forth between bit values and Boolean
values.

As is shown in the chapter and one of the exercises, problems that can be
solved using arrays of numbers can be more efficiently solved using arrays
of bits. Although some readers may see this as just fancy (or not so fancy)
programming tricks, the efficiency of storing bit values (or Boolean values)
cannot be denied for certain situations.

EXERCISES

1. Write your own BitArray class (without inheriting from the BitArray class)
that includes a conversion method that takes Boolean values and converts
them to bit values. Hint: use a BitArray as the main data structure of the
class but write your own implementation of the other methods.

2. Reimplement the class in Exercise 1 by inheriting from the BitArray class
and adding just a conversion method.

3. Using one of the BitArray classes designed in Exercises 1 and 2, write a
method that takes an integer value, reverses its bits, and displays the value
in base 10 format.

4. In his excellent book on programming, Programming Pearls (Bentley
2000), Jon Bentley discusses the solution to a programming problem that
involves using a BitArray, although he calls it a bit vector in his book.
Read about the problem at the following web site: http://www.cs.bell-
labs.com/cm/cs/pearls/cto.html and design your own solution to at least
the data storage problem using VB.NET. Of course, you don’t have to use a
file as large as the one used in the book, just pick something that adequately
tests your implementation.

5. Write a program that compares the times for both the BitArray implemen-
tation of the Sieve of Eratosthenes and the standard array implementation.
What are your results?

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

CHAPTER 7

Strings, the String Class, and
the StringBuilder Class

Strings are common to most computer programs. Certain types of programs,
such as word processors and web applications, make heavy use of strings,
which forces the programmer of such applications to pay special attention
to the efficiency of string processing. In this chapter, we examine how C#
works with strings, how to use the String class, and finally, how to work with
the StringBuilder class. The StringBuilder class is used when a program must
make many changes to a String object because strings and String objects are
immutable, whereas StringBuilder objects are mutable. We’ll explain all this
later in the chapter.

WORKING WITH THE STRING CLASS

A string is a series of characters that can include letters, numbers, and other
symbols. String literals are created in C# by enclosing a series of characters

119

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

120 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

within a set of double quotation marks. Here are some examples of string
literals:

"David Ruff"

"the quick brown fox jumped over the lazy dog"

"123-45-6789"

"mmcmillan@pulaskitech.edu"

A string can consist of any character that is part of the Unicode character
set. A string can also consist of no characters. This is a special string called the
empty string and it is shown by placing two double quotation marks next to
each other (“ ”). Please keep in mind that this is not the string that represents
a space. That string looks like this—“ ”.

Strings in C# have a schizophrenic nature—they are both native types and
objects of a class. Actually, to be more precise, we should say that we can work
with strings as if they are native data values, but in reality every string created
is an object of String class. We’ll explain later why this is so.

Creating String Objects

Strings are created like this:

string name = "Jennifer Ingram";

though you can of course, declare the variable and assign it data in two separate
statements. The declaration syntax makes name look like it is just a regular
variable, but it is actually an instance of a String object.

C# strings also allow you to place escape characters inside the strings. C
and C++ programmers are familiar with this technique, but it may be new to
someone coming from a VB background. Escape characters are used to place
format characters such as line breaks and tab stops within a string. An escape
character begins with a backslash (\) and is followed by a single letter that
represents the format. For example, \n indicates a newline (line break) and \t
indicates a tab. In the following line, both escape characters are used within
a single string:

string name = "Mike McMillan\nInstructor, CIS\tRoom 306";

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 121

Frequently Used String Class Methods

Although there are many operations you can perform on strings, a small set of
operations dominates. Three of the top operations are as follows: 1. finding a
substring in a string, 2. determining the length of a string, and 3. determining
the position of a character in a string.

The following short program demonstrates how to perform these opera-
tions. A String object is instantiated to the string “Hello world”. We then break
the string into its two constituent pieces: the first word and the second word.
Here’s the code, followed by an explanation of the String methods used:

using System;

class Chapter7

{

static void Main() {
string string1 = "Hello, world!";

int len = string1.Length;

int pos = string1.IndexOf(" ");

string firstWord, secondWord;

firstWord = string1.Substring(0, pos);

secondWord = string1.Substring(pos+1,

(len-1)-(pos+1));

Console.WriteLine("First word: " + firstWord);

Console.WriteLine("Second word: " + secondWord);

Console.Read();

}
}

The first thing we do is use Length property to determine the length of the
object string1. The length is simply the total number of all the characters in
the string. We’ll explain shortly why we need to know the length of the string.

To break up a two-word phrase into separate words, we need to know what
separates the words. In a well-formed phrase, a space separates words and so
we want to find the space between the two words in this phrase. We can do
this with the IndexOf method. This method takes a character and returns the
character’s position in the string. Strings in C# are zero-based and therefore
the first character in the string is at position 0, the second character is at

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

122 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

position 1, and so on. If the character can’t be found in the string, a −1 is
returned.

The IndexOf method finds the position of the space separating the two
words and is used in the next method, Substring, to actually pull the first
word out of the string. The Substring method takes two arguments: a starting
position and the number of characters to pull. Look at the following example:

string s = "Now is the time";

string sub = s.Substring(0,3);

The value of sub is “Now”. The Substring method will pull as many characters
out of a string as you ask it to, but if you try to go beyond the end of the string,
an exception is thrown.

The first word is pulled out of the string by starting at position 0 and
pulling out pos number of characters. This may seem odd, since pos contains
the position of the space, but because strings are zero-based, this is the correct
number.

The next step is to pull out the second word. Since we know where the space
is, we know that the second word starts at pos+1 (again, we’re assuming we’re
working with a well-formed phrase where each word is separated by exactly
one space). The harder part is deciding exactly how many characters to pull
out, knowing that an exception will be thrown if we try to go beyond the
end of the string. There is a formula of sorts we can use for this calculation.
First, we add 1 to the position where the space was found and then subtract
that value from the length of the string. That will tell the method exactly how
many characters to extract.

Although this short program is interesting, it’s not very useful. What we
really need is a program that will pull out the words out of a well-formed phrase
of any length. There are several different algorithms we can use to do this.

The algorithm we’ll use here contains the following steps:

1. Find the position of the first space in the string.
2. Extract the word.
3. Build a new string starting at the position past the space and continuing

until the end of the string.
4. Look for another space in the new string.
5. If there isn’t another space, extract the word from that position to the end

of the string.
6. Otherwise, loop back to step 2.

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 123

Here is the code we built from this algorithm (each word extracted from the
string is stored in a collection named words):

using System;

class Chapter7 {

static void Main() {
string astring = "Now is the time";

int pos;

string word;

ArrayList words = new ArrayList();

pos = astring.IndexOf(" ");

While (pos > 0) {
word = astring.Substring(0,pos);

words.Add(word);

astring = astring.Substring(pos+1, astring.Length

− (pos + 1));

pos = astring.IndexOf(" ");

if (pos == -1) {
word = astring.Substring(0, asstring.Length);

words.Add(word);

}
Console.Read();

}
}

Of course, if we were going to actually use this algorithm in a program we’d
make it a function and have it return a collection, like this:

using System;

using System.Collections;

class Chapter7 {

static void Main() {
string astring = "now is the time for all good

people ";

ArrayList words = new ArrayList();

words = SplitWords(astring);

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

124 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

foreach (string word in words)

Console.Write(word + " ");

Console.Read();

}

static ArrayList SplitWords(string astring) {
string[] ws = new string[astring.Length-1];

ArrayList words = new ArrayList();

int pos;

string word;

pos = astring.IndexOf(" ");

while (pos > 0) {
word = astring.Substring(0, pos);

words.Add(word);

astring = astring.Substring(pos+1,

astring.Length-(pos+1));

if (pos == -1) {
word = astring.Substring(0, astring.Length);

words.Add(word);

}
}
return words;

}
}

It turns out, though, that the String class already has a method for splitting a
string into parts (the Split method) as well as a method that can take a data
collection and combine its parts into a string (the Join method). We look at
those methods in the next section.

The Split and Join Methods

Breaking up strings into individual pieces of data is a very common function.
Many programs, from Web applications to everyday office applications, store
data in some type of string format. To simplify the process of breaking up
strings and putting them back together, the String class provides two methods
to use: the Split method for breaking up strings and the Join method for making
a string out of the data stored in an array.

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 125

The Split method takes a string, breaks it into constituent pieces, and puts
those pieces into a String array. The method works by focusing on a separating
character to determine where to break up the string. In the example in the
last section, the SplitWords function always used the space as the separator.
We can specify what separator to look for when using the Split method. In
fact, the separator is the first argument to the method. The argument must
come in the form of a char array, with the first element of the array being the
character used as the delimiter.

Many application programs export data by writing out strings of data sep-
arated by commas. These are called comma-separated value strings or CSVs
for short. Some authors use the term comma-delimited. A comma-delimited
string looks like this:

“Mike, McMillan,3000 W. Scenic,North Little Rock,AR,72118”

Each logical piece of data in this string is separated by a comma. We can put
each of these logical pieces into an array using the Split method like this:

string data = "Mike,McMillan,3000 W. Scenic,North Little

Rock,AR,72118";

string[] sdata;

char[] delimiter = new char[] {','};
sdata = data.Split(delimiter, data.Length);

Now we can access this data using standard array techniques:

foreach (string word in sdata)

Console.Write(word + " ");

There is one more parameter we can pass to the Split method—the number
of elements we want to store in the array. For example, if I want to put the
first string element in the first position of the array and the rest of the string
in the second element, I would call the method like this:

sdata = data.Split(delimiter,2);

The elements in the array are

0th element—Mike
1st element—McMillan,3000 W. Scenic,North Little Rock,AR,72118

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

126 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

We can go the other way, from an array to a string, using the Join method.
This method takes two arguments:the original array and a character to separate
the elements. A string is built consisting of each array element followed by the
separator element. We should also mention that this method is often called as
a class method, meaning we call the method from the String class itself and
not from a String instance.

Here’s an example using the same data we used for the Split method:

using System;

class Chapter7 {

static void Main() {
string data = "Mike,McMillan,3000 W. Scenic,North

Little Rock,AR,72118";

string[] sdata;

char[] delimiter = new char[] {','};
sdata = data.Split(delimiter, data.Length);

foreach (string word in sdata)

Console.Write(word + " ");

string joined;

joined = String.Join(',', sdata);

Console.Write(joined);

}

}

string2 now looks exactly like string1.
These methods are useful for getting data into your program from another

source (the Split method) and sending data out of your program to another
source (the Join method).

Methods for Comparing Strings

There are several ways to compare String objects in C#. The most obvious
ways are to use the relational operators, which for most situations will work
just fine. However, there are situations where other comparison techniques
are more useful, such as if we want to know if a string is greater than, less

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 127

than, or equal to another string, and for situations like that we have to use
methods found in the String class.

Strings are compared with each other much as we compare numbers. How-
ever, since it’s not obvious if “a” is greater than or less than “H”, we have to
have some sort of numeric scale to use. That scale is the Unicode table. Each
character (actually every symbol) has a Unicode value, which the operating
system uses to convert a character’s binary representation to that character.
You can determine a character’s Unicode value by using the ASC function.
ASC actually refers to the ASCII code of a number. ASCII is an older numeric
code that precedes Unicode, and the ASC function was first developed before
Unicode subsumed ASCII.

To find the ASCII value for a character, simply convert the character to an
integer using a cast, like this:

int charCode;

charCode = (int)'a';

The value 97 is stored in the variable.
Two strings are compared, then, by actually comparing their numeric codes.

The strings “a” and “b” are not equal because code 97 is not code 98. The
compareTo method actually lets us determine the exact relationship between
two String objects. We’ll see how to use that method shortly.

The first comparison method we’ll examine is the Equals method. This
method is called from a String object and takes another String object as its
argument. It then compares the two String objects character-by-character. If
they contain the same characters (based on their numeric codes), the method
returns True. Otherwise, the method returns False. The method is called like
this:

string s1 = "foobar";

string s2 = "foobar";

if (s1.Equals(s2))

Console.WriteLine("They are the same.");

else

Console.WriteLine("They are not the same.");

The next method for comparing strings is CompareTo. This method also
takes a String as an argument but it doesn’t return a Boolean value. Instead,
the method returns either 1, −1, or 0, depending on the relationship between

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

128 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

the passed-in string and the string instance calling the method. Here are some
examples:

string s1 = "foobar";

string s2 = "foobar";

Console.WriteLine(s1.CompareTo(s2)); // returns 0

s2 = "foofoo";

Console.WriteLine(s1.CompareTo(s2)); // returns -1

s2 = "fooaar";

Console.WriteLine(s1.CompareTo(s2)); // returns 1

If two strings are equal, the CompareTo method returns a 0; if the passed-in
string is “below” the method-calling string, the method returns a −1; if the
passed-in string is “above” the method-calling string, the method returns a 1.

An alternative to the CompareTo method is the Compare method, which
is usually called as a class method. This method performs the same type of
comparison as the CompareTo method and returns the same values for the
same comparisons. The Compare method is used like this:

static void Main() {
string s1 = "foobar";

string s2 = "foobar";

int compVal = String.Compare(s1, s2);

switch(compVal) {
case 0 : Console.WriteLine(s1 + " " + s2 + " are

equal");

break;

case 1 : Console.WriteLine(s1 + " is less than " +

s2);

break;

case 2 : Console.WriteLine(s1 + " is greater than

" + s2);

break;

default : Console.WriteLine("Can't compare");

break;

}

}

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 129

Two other comparison methods that can be useful when working with
strings are StartsWith and EndsWith. These instance methods take a string
as an argument and return True if the instance either starts with or ends with
the string argument.

Following are two short programs that demonstrate the use of these meth-
ods. First, we’ll demonstrate the EndsWith method:

using System;

using System.Collections;

class Chapter7 {

static void Main() {
string[] nouns = new string[] {"cat", "dog", "bird",

"eggs", "bones"};
ArrayList pluralNouns = new ArrayList();

foreach (string noun in nouns)

if (noun.EndsWith("s"))

pluralNouns.Add(noun);

foreach (string noun in pluralNouns)

Console.Write(noun + " ");

}
}

First, we create an array of nouns, some of which are in plural form. Then
we loop through the elements of the array, checking to see if any of the nouns
are plurals. If so, they’re added to a collection. Then we loop through the
collection, displaying each plural.

We use the same basic idea in the next program to determine which words
start with the prefix “tri”:

using System;

using System.Collections;

class Chapter7 {

static void Main() {
string[] words = new string[]{"triangle",

"diagonal",

"trimester","bifocal",

"triglycerides"};
ArrayList triWords = new ArrayList();

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

130 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

foreach (string word in words)

if (word.StartsWith("tri"))

triWords.Add(word);

foreach (string word in triWords)

Console.Write(word + " ");

}
}

Methods for Manipulating Strings

String processing usually involves making changes to strings. We need to
insert new characters into a string, remove characters that don’t belong any-
more, replace old characters with new characters, change the case of certain
characters, and add or remove space from strings, just to name a few opera-
tions. There are methods in the String class for all of these operations, and in
this section we’ll examine them.

We’ll start with the Insert method. This method inserts a string into another
string at a specified position. Insert returns a new string. The method is called
like this:

String1 = String0.Insert(Position, String)

Let’s look at an example:

using System;

class chapter7 {

static void Main() {
string s1 = "Hello, . Welcome to my class.";

string name = "Clayton";

int pos = s1.IndexOf(",");

s1 = s1.Insert(pos+2, name);

Console.WriteLine(s1);

}
}

The output is

Hello, Clayton. Welcome to my class.

The program creates a string, s1, which deliberately leaves space for a name,
much like you’d do with a letter you plan to run through a mail merge. We

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 131

add two to the position where we find the comma to make sure there is a
space between the comma and the name.

The next most logical method after Insert is Remove. This method takes
two Integer arguments: a starting position and a count, which is the number
of characters you want to remove. Here’s the code that removes a name from
a string after the name has been inserted:

using System;

class chapter7 {

static void Main() {
string s1 = "Hello, . Welcome to my class.";

string name = "Ella";

int pos = s1.IndexOf(",");

s1 = s1.Insert(pos+2, name);

Console.WriteLine(s1);

s1 = s1.Remove(pos+2, name.Length);

Console.WriteLine(s1);

}
}

The Remove method uses the same position for inserting a name to remove
the name, and the count is calculated by taking the length of the name variable.
This allows us to remove any name inserted into the string, as shown by this
code fragment and output screen:

Dim name As String = "William Shakespeare"

Dim pos As Integer = s1.IndexOf(",")

s1 = s1.Insert(pos + 2, name)

Console.WriteLine(s1)

s1 = s1.Remove(pos + 2, name.Length())

Console.WriteLine(s1)

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

132 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

The next logical method is the Replace method. This method takes two
arguments: a string of characters to remove and a string of characters to
replace them with. The method returns the new string. Here’s how to use
Replace:

using System;

class chapter7 {

static void Main() {
string[] words = new string[]{"recieve", "decieve",_

"reciept"};
for(int i = 0; i <= words.GetUpperBound(0); i++) {

words[i] = words[i].Replace("cie", "cei");

Console.WriteLine(words[i]);

}
}

}

The only tricky part of this code is the way the Replace method is called.
Since we’re accessing each String object via an array element, we have to
use array addressing followed by the method name, causing us to write this
fragment:

words(index).Replace("cie", "cei");

There is no problem with doing this, of course, because the compiler knows
that words(index) evaluates to a String object. (We should also mention that
Intellisense allows this when writing the code using Visual Studio.NET.)

When displaying data from our programs, we often want to align the data
within a printing field in order to line the data up nicely. The String class
includes two methods for performing this alignment: PadLeft and PadRight.
The PadLeft method right-aligns a string and the PadRight method left-aligns
a string. For example, if you want to print the word “Hello” in a 10-character
field right-aligned, you would write this:

string s1 = "Hello";

Console.WriteLine(s1.PadLeft(10));

Console.WriteLine("world");

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 133

The output is

Hello

world

Here’s an example using PadRight:

string s1 = "Hello";

string s2 = "world";

string s3 = "Goodbye";

Console.Write(s1.PadLeft(10));

Console.WriteLine(s2.PadLeft(10));

Console.Write(s3.PadLeft(10));

Console.WriteLine(s2.Padleft(10));

The output is

Hello world

Goodbye world

Here’s one more example that demonstrates how we can align data from an
array to make the data easier to read:

using System;

class chapter7 {

static void Main() {
string[,] names = new string[,]

{{"1504", "Mary", "Ella", "Steve", "Bob"},
{"1133", "Elizabeth", "Alex", "David", "Joe"},
{"2624", "Joel", "Chris", "Craig", "Bill"}};

Console.WriteLine();

Console.WriteLine();

for(int outer = 0; outer <= names.GetUpperBound(0);

outer++) {
for(int inner = 0; inner <=

names.GetUpperBound(1); inner++)

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

134 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

Console.Write(names[outer, inner] + " ");

Console.WriteLine();

}
Console.WriteLine();

Console.WriteLine();

for(int outer = 0; outer <= names.GetUpperBound(0);

outer++) {
for(int inner = 0; inner <=_

names.GetUpperBound(1);inner++)

Console.Write _

(names[outer, inner].PadRight(10) + " ");

Console.WriteLine();

}
}

}

The output from this program is

The first set of data is displayed without padding and the second set is dis-
played using the PadRight method.

We already know that the & (ampersand) operator is used for string con-
catenation. The String class also includes a method Concat for this purpose.
This method takes a list of String objects, concatenates them, and returns the
resulting string. Here’s how to use the method:

using System;

class chapter7 {

static void Main() {

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Working with the String Class 135

string s1 = "hello";

string s2 = "world";

string s3 = "";

s3 = String.Concat(s1, " ", s2);

Console.WriteLine(s3);

}
}

We can convert strings from lowercase to uppercase (and vice versa) using
the ToLower and ToUpper methods. The following program fragment demon-
strates how these methods work:

string s1 = "hello";

s1 = s1.ToUpper();

Console.WriteLine(s1);

string s2 = "WORLD";

Console.WriteLine(s2.ToLower());

We end this section with a discussion of the Trim and TrimEnd methods.
When working with String objects, they sometimes have extra spaces or other
formatting characters at the beginning or at the end of the string. The Trim
and TrimEnd methods will remove spaces or other characters from either end
of a string. You can specify either a single character to trim or an array of
characters. If you specify an array of characters, if any of the characters in the
array are found, they will be trimmed from the string.

Let’s first look at an example that trims spaces from the beginning and end
of a set of string values:

using System;

class chapter7 {

static void Main() {
string[] names = new string[] {" David", " Raymond",

"Mike ", "Bernica "};
Console.WriteLine();

showNames(names);

Console.WriteLine();

trimVals(names);

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

136 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

Console.WriteLine();

showNames(names);

}
static void showNames(string[] arr) {

for(int i = 0; i <= arr.GetUpperBound(0); i++)

Console.Write(arr[i]);

}

static void trimVals(string[] arr) {
char[] charArr = new char[] {' '};
for(int i = 0; i<= arr.GetUpperBound(0); i++) {

arr[i] = arr[i].Trim(charArr[0]);

arr[i] = arr[i].TrimEnd(charArr[0]);

}
}

}

Here is the output:

Here’s another example where comments from a page of HTML code are
stripped of HTML formatting:

using System;

class chapter7 {

static void Main() {
string[] htmlComments = new string[]

{"<!-- Start Page Number Function -->",

"<!-- Get user name and password -->",

"<!-- End Title page -->",

"<!-- End script -->"};
char[] commentChars = new char[] {'<', '!', '-',

'>'};

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

The StringBuilder Class 137

for(int i = 0; i <= htmlComments.GetUpperBound(0);

i++) {
htmlComments[i] = htmlComments[i].

Trim(commentChars);

htmlComments[i] = htmlComments[i].

TrimEnd(commentChars);

}
for(int i = 0; i <= htmlComments.GetUpperBound(0);

i++)

Console.WriteLine("Comment: " + htmlComments[i]);

}
}

Here’s the output:

THE STRINGBUILDER CLASS

The StringBuilder class provides access to mutable String objects. Objects of
the String class are immutable, meaning that they cannot be changed. Every
time you change the value of a String object, a new object is created to hold the
value. StringBuilder objects, on the other hand, are mutable. When you make
a change to a StringBuilder object, you are changing the original object, not
working with a copy. In this section, we discuss how to use the StringBuilder
class for those situations where many changes are to be to the String objects
in your programs. We end the section, and the chapter, with a timing test
to determine if working with the StringBuilder class is indeed more efficient
than working with the String class.

The StringBuilder class is found in the System.Text namespace so you must
import this namespace into your program before you can use StringBuilder
objects.

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

138 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

Constructing StringBuilder Objects

You can construct a StringBuilder object in one of three ways. The first way
is to create the object using the default constructor:

StringBuilder stBuff1 = new StringBuilder();

This line creates the object stBuff1 with the capacity to hold a string 16
characters in length. This capacity is assigned by default, but it can be changed
by passing in a new capacity in a constructor call, like this:

StringBuilder stBuff2 = New StringBuilder(25);

This line builds an object that can initially hold 25 characters. The final
constructor call takes a string as the argument:

StringBuilder stBuff3 = New StringBuilder("Hello,

world");

The capacity is set to 16 because the string argument didn’t exceed 16 char-
acters. Had the string argument been longer than 16, the capacity would have
been set to 32. Every time the capacity of a StringBuilder object is exceeded,
the capacity is increased by 16 characters.

Obtaining and Setting Information
about StringBuilder Objects

There are several properties in the StringBuilder class that you can use to
obtain information about a StringBuilder object. The Length property specifies
the number of characters in the current instance and the Capacity property
returns the current capacity of the instance. The MaxCapacity property returns
the maximum number of characters allowed in the current instance of the
object (though this is automatically increased if more characters are added to
the object).

The following program fragment demonstrates how to use these properties:

StringBuilder stBuff = new StringBuilder("Ken

Thompson");

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

The StringBuilder Class 139

Console.WriteLine _

("Length of stBuff3: " & stBuff.Length());

Console.WriteLine _

("Capacity of stBuff3: " & stBuff.Capacity());

Console.WriteLine _

("Maximum capacity of stBuff3: " +

stBuff.MaxCapacity);

The Length property can also be used to set the current length of a String-
Builder object, as in

stBuff.Length = 10;

Console.Write(stBuff3);

This code outputs “Ken Thomps”.
To ensure that a minimum capacity is maintained for a StringBuilder

instance, you can call the EnsureCapacity method, passing in an integer that
states the minimum capacity for the object. Here’s an example:

stBuff.EnsureCapacity(25);

Another property you can use is the Chars property. This property either
returns the character in the position specified in its argument or sets the
character passed as an argument. The following code shows a simple example
using the Chars property.

StringBuilder stBuff = New StringBuilder("Ronald

Knuth");

If (stBuff.Chars(0) <> "D"c)

stBuff.Chars(0) = "D";

Modifying StringBuffer Objects

We can modify a StringBuilder object by appending new characters to the end
of the object, inserting characters into an object, replacing a set of characters
in an object with different characters, and remove characters from an object.
We will discuss the methods responsible for these operations in this section.

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

140 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

You can add characters to the end of a StringBuilder object by using the
Append method. This method takes a string value as an argument and con-
catenates the string to the end of the current value in the object. The following
program demonstrates how the Append method works:

Using System.Text;

class chapter7 {

static void Main() {
StringBuilder stBuff As New StringBuilder();

String[] words = new string[] _

{"now ", "is ", "the ", "time ", "for ", "all ",

"good ", "men ", "to ", "come ", "to ", "the ",

"aid ", "of ", "their ", "party"}
For(int i = 0; i <= words.GetUpperBound(0); i++)

stBuff.Append(words(index));

Console.WriteLine(stBuff);

}
}

The output is, of course

Now is the time for all good men to come to the aid of

their party

A formatted string can be appended to a StringBuilder object. A formatted
string is a string that includes a format specification embedded in the string.
There are too many format specifications to cover in this section, so we’ll
just demonstrate a common specification. We can place a formatted number
within a StringBuilder object like this:

Using System.Text

class chapter7 {

static void Main() {
StringBuilder stBuff = New StringBuilder();

Console.WriteLine();

stBuff.AppendFormat("Your order is for {0000}
widgets.", 234);

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

The StringBuilder Class 141

stBuff.AppendFormat("\nWe have {0000} widgets

left.", 12);

Console.WriteLine(stBuff);

}
}

The output from this program is

The format specification is enclosed within curly braces that are embedded
in a string literal. The data after the comma is placed into the specification
when the code is executed. See the C# documentation for a complete list of
format specifications.

Next is the Insert method. This method allows us to insert a string into the
current StringBuilder object. The method can take up to three arguments. The
first argument specifies the position to begin the insertion. The second argu-
ment is the string you want to insert. The third argument, which is optional,
is an integer that specifies the number of times you want to insert the string
into the object.

Here’s a small program that demonstrates how the Insert method is used:

Using System.Text;

class chapter7 {

static void Main()

StringBuilder stBuff = New StringBuilder();

stBuff.Insert(0, "Hello");

stBuff.Append("world");

stBuff.Insert(5, ", ");

Console.WriteLine(stBuff);

char chars[] = new char[]{'t', 'h', 'e', 'r', 'e'};
stBuff.Insert(5, " " & chars);

Console.WriteLine(stBuff);

}
}

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

142 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

The output is

Hello, world

Hello there, world

The following program utilizes the Insert method using the third argument
for specifying the number of insertions to make:

StringBuilder stBuff = New StringBuilder();

stBuff.Insert(0, "and on ", 6);

Console.WriteLine(stBuff);

The output is

and on and on and on and on and on and on

The StringBuilder class has a Remove method for removing characters from
a StringBuilder object. This method takes two arguments: a starting position
and the number of characters to remove. Here’s how it works:

StringBuilder stBuff = New StringBuilder("noise in

+++++string");

stBuff.Remove(9, 5);

Console.WriteLine(stBuff);

The output is

noise in string

You can replace characters in a StringBuilder object with the Replace
method. This method takes two arguments: the old string to replace and
the new string to put in its place. The following code fragment demonstrates
how the method works:

StringBuilder stBuff = New StringBuilder("recieve _

decieve reciept");

stBuff.Replace("cie", "cei");

Console.WriteLine(stBuff);

Each “cie” is replaced with “cei”.

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Comparing the Efficiency of the String Class to StringBuilder 143

When working with StringBuilder objects, you will often want to convert
them to strings, perhaps in order to use a method that isn’t found in the
StringBuilder class. You can do this with the ToString. This method returns a
String instance of the current StringBuilder instance. An example is shown:

Using System.Text;

class chapter7 {

static void Main() {
StringBuilder stBuff =

New StringBuilder("HELLO WORLD");

string st = stBuff.ToString();

st = st.ToLower();

st = st.Replace(st.Substring(0, 1),

st.Substring(0, 1).ToUpper());

stBuff.Replace(stBuff.ToString, st);

Console.WriteLine(stBuff);

}
}

This program displays the string “Hello world” by first converting stBuff to
a string (the st variable), making all the characters in the string lowercase,
capitalizing the first letter in the string, and then replacing the old string in
the StringBuilder object with the value of st. The ToString method is used in
the first argument to Replace because the first parameter is supposed to be a
string. You can’t call the StringBuilder object directly here.

COMPARING THE EFFICIENCY OF THE STRING CLASS
TO STRINGBUILDER

We end this chapter with a discussion of how the String class and the String-
Builder class compare in efficiency. We know that String objects are immutable
and StringBuilder objects are not. It is reasonable to believe, then, that the
StringBuilder class is more efficient. However, we don’t want to always use the
StringBuilder class because the StringBuilder class is lacking several methods
we need to perform reasonably powerful string processing. It is true that we
can transform StringBuilder objects into String objects (and then back again)
when we need to use String methods (see the previous section), but we need

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

144 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

to know when we need to use StringBuilder objects and when it’s okay to just
stick with String objects.

The test we use is very simple. Our program has two subroutines: one that
builds a String object of a specified size and another that builds a StringBuilder
object of the same size. Each of the subroutines is timed, using objects from
the Timing class we developed at the beginning of the book. This procedure
is repeated three times, first for building objects of 100 characters, then for
1,000 characters, and finally for 10,000 characters. The times are then listed
in pairs for each size. Here’s the code we used:

Using Timing;

Using System.Text;

class chapter7 {

static void Main() {
int size = 100;

Timing timeSB = New Timing();

Timing timeST = New Timing();

Console.WriteLine();

for(int i = 0; i <= 3; i++) {
timeSB.startTime();

BuildSB(size);

timeSB.stopTime();

timeST.startTime();

BuildString(size);

timeST.stopTime();

Console.WriteLine _

("Time (in milliseconds) to build StringBuilder

" + "object for " & size & " elements: " +

timeSB.Result.TotalMilliseconds);

Console.WriteLine _

("Time (in milliseconds) to build String object

" + "for " & size & " elements: " +

timeST.Result.TotalMilliseconds);

Console.WriteLine();

size *= 10;

}
}

static void BuildSB(int size) {
StringBuilder sbObject = New StringBuilder();

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

Summary 145

for(int i = 0; i <= size; i++)

sbObject.Append("a");

}
static void BuildString(int size) {

string stringObject = "";

for(int i = 0; i <= size; i++)

stringObject & = "a";

}
}

Here are the results:

For relatively small objects, there is really no difference between String
objects and StringBuilder objects. In fact, you can argue that for strings of
up to 1,000 characters, using the String class is just as efficient as using the
StringBuilder class. However, when we get to 10,000 characters, there is a
vast increase in efficiency for the StringBuilder class. There is, though, a vast
difference between 1,000 characters and 10,000 characters. In the exercises,
you’ll get the opportunity to compare objects that hold more than 1,000 but
less than 10,000 characters.

SUMMARY

String processing is a common operation in most C# programs. The String
class provides a multitude of methods for performing every kind of operation
on strings you will need. Although the “classic” built-in string functions (Mid,
InStr, etc.) are still available for use, you should prefer the String class methods
to these functions, both for performance and for clarity.

P1: JZP
0521670152c07 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:24

146 STRINGS, STRING CLASS, AND STRINGBUILDER CLASS

String class objects in C# are immutable, meaning that every time you make
a change to an object, a new copy of the object is created. If you are creating
long strings, or are making many changes to the same object, you should use
the StringBuffer class instead. StringBuffer objects are mutable, allowing for
much better performance. This is shown in timing tests when String objects
and StringBuilder objects of over 1,000 characters in length are created.

EXERCISES

1. Write a function that converts a phrase into pig Latin. A word is converted
to pig Latin by removing the first character of the word, placing it at the
back of the word, and adding the characters “ay” to the word. For example,
“hello world” in pig Latin is “ellohay orldway.” Your function can assume
that each word consists of at least two letters and that each word is separated
by one space, with no punctuation marks.

2. Write a function that counts the occurrences of a word in a string. The
function should return an integer. Do not assume that just one space sep-
arates words and a string can contain punctuation. Write the function so
that it works with either a String argument or a StringBuilder object.

3. Write a function that takes a number, such as 52, and returns the number
as a word, as in fifty-two.

4. Write a subroutine that takes a simple sentence in noun-verb-object form
and parses the sentence into its different parts. For example, the sentence
“Mary walked the dog” is parsed into this:

Noun: Mary
Verb: walked
Object: the dog

This function should work with both String objects and StringBuilder
objects.

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

CHAPTER 8

Pattern Matching and
Text Processing

Whereas the String and StringBuilder classes provide a set of methods
that can be used to process string-based data, the RegEx and its supporting
classes provide much more power for string-processing tasks. String process-
ing mostly involves looking for patterns in strings (pattern matching) and it is
performed via a special language called a regular expression. In this chapter,
we look at how to form regular expressions and how to use them to solve
common text processing tasks.

AN INTRODUCTION TO REGULAR EXPRESSIONS

A regular expression is a language that describes patterns of characters in
strings, along with descriptors for repeating characters, alternatives, and
groupings of characters. Regular expressions can be used to perform both
searches in strings and substitutions in strings.

A regular expression itself is just a string of characters that define a pattern
you want to search for in another string. Generally, the characters in a regular
expression match themselves, so that the regular expression “the” matches
that sequence of characters wherever they are found in a string.

A regular expression can also include special characters that are called
metacharacters. Metacharacters are used to signify repetition, alternation, or
grouping. We will examine how these metacharacters are used shortly.

147

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

148 PATTERN MATCHING AND TEXT PROCESSING

Most experienced computer users have used regular expressions in their
work, even if they weren’t aware they were doing so at the time. Whenever
someone types the following command at a command prompt:

C:\>dir myfile.exe

the regular expression is “myfile.exe”. The regular expression is passed to
the dir command and any files in the file system matching “myfile.exe” are
displayed on the screen.

Most users have also used metacharacters in regular expressions. When
you type:

C:\>dir *.cs

your are using a regular expression that includes a metacharacter. The regular
expression is “∗.cs”. The asterisk (∗) is a metacharacter that means “match
zero or more characters”, whereas the rest of the expression, “.vb” are just
normal characaters found in a file. This regular expression states “match all
files that have any file name and the extension ‘vb’.” This regular expression
is passed to the dir command and all files with a. vb extension are displayed
on the screen.

Of course, there are much more powerful regular expressions we can build
and use, but these first two examples serve as a good introduction. Now let’s
look at how we use regular expressions in C# and how to useful regular
expressions.

Working With Regular Expressions: An Overview

To use regular expressions, we have to import the RegEx class into our pro-
grams. This class is found in the System.Text.RegularExpressions namespace.

Once we have the class imported into our program, we have to decide
what we want to do with the RegEx class. If we want to perform matching,
we need to use the Match class. If we’re going to do substitutions, we don’t
need the Match class. Instead, we can use the Replace method of the RegEx
class.

Let’s start by looking at how to match words in a string. Given a sample
string, “the quick brown fox jumped over the lazy dog”, we want to find out

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

An Introduction to Regular Expressions 149

where the word “the” is found in the string. The following program performs
this task:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

Regex reg = New Regex("the");

string str1 = "the quick brown fox jumped over

the lazy dog";

Match matchSet;

int matchPos;

matchSet = reg.Match(str1)

If (matchSet.Success) {
matchPos = matchSet.Index;

Console.WriteLine("found match at position:" +

matchPos);

}
}

}

The first thing we do is create a new RegEx object and pass the constructor
the regular expression we’re trying to match. After we initialize a string to
match against, we declare a Match object, matchSet. The Match class pro-
vides methods for storing data concerning a match made with the regular
expression.

The If statement uses one of the Match class properties, Success, to deter-
mine if there was a successful match. If the value returns True, then the regular
expression matched at least one substring in the string. Otherwise, the value
stored in Success is False.

There’s another way a program can check to see if a match is successful.
You can pre-test the regular expression by passing it and the target string to
the IsMatch method. This method returns True if a match is generated by the
regular expression and False otherwise. The method works like this:

If (Regex.IsMatch(str1, "the")) {
Match aMatch;

aMatch = reg.Match(str1);

}

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

150 PATTERN MATCHING AND TEXT PROCESSING

One problem with the Match class is that it only stores one match. In the
preceding example, there are two matches for the substring “the”. We can
use another class, the Matches class, to store multiple matches with a regular
expression. We can store the matches in a MatchCollection object in order to
work with all the matches found. Here’s an example (only the code inside the
Main function is included):

using System;

using System.Text.RegularExpressions;

class chapter8

{
static void Main()

{
Regex reg = new Regex("the");

string str1 = "the quick brown fox jumped over

the lazy dog";

MatchCollection matchSet;

matchSet = reg.Matches(str1);

if (matchSet.Count > 0)

foreach (Match aMatch in matchSet)

Console.WriteLine("found a match at: " +

aMatch.Index);

Console.Read();

}
}

Next, we examine how to use the Replace method to replace one string
with another string. The Replace method can be called as a class method with
three arguments: a target string, a substring to replace, and the substring to
use as the replacement. Here’s a code fragment that uses the Replace method:

string s = "the quick brown fox jumped over the brown

dog";

s = Regex.Replace(s, "brown", "black");

The string now reads, “the quick black fox jumped over the black dog”.

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

Quantifiers 151

There are many more uses of the RegEx and supporting classes for pattern
matching and text processing. We will examine them as we delve deeper into
how to form and use more complex regular expressions.

QUANTIFIERS

When writing regular expressions, we often want to add quantity data to a
regular expression, such as “match exactly twice” or “match one or more
times”. We can add this data to our regular expressions using quantifiers.

The first quantifier we’ll look at is the plus sign (+). This quantifier indicates
that the regular expression should match one or more of the immediately
preceding character. The following program demonstrates how to use this
quantifier:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string[] words = new string[] {"bad", "boy", "baaad",
"bear", "bend"};

foreach (string word in words)

if (Regex.IsMatch(word, "ba+"))

Console.WriteLine(word);

}
}

The words matched are “bad” and “baaad”. The regular expression specifies
that a match is generated for each string that starts with the letter “b” and
includes one or more of the letter “a” in the string.

A less restrictive quantifier is the asterisk (∗). This quantifier indicates
that the regular expression should match zero or more of the immediately
preceding character. This quantifier is very hard to use in practice because
the asterisk usually ends up matching almost everything. For example, using
the preceding code, if we change the regular expression to read “ba∗”, every
word in array is matched.

The question mark (?) is a quantifier that matches exactly zero or one time.
If we change the regular expression in the preceding code to “ba?d”, the only
word that matches is “bad”.

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

152 PATTERN MATCHING AND TEXT PROCESSING

A more definite number of matches can be specified by placing a number
inside a set of curly braces, as in {n}, where n is the number of matches to
find. The following program demonstrates how this quantifier works:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string[] words = new string[] {"bad", "boy", "baad",
"baaad", "bear", "bend"};

foreach (string word in words)

if (Regex.IsMatch(word, "ba{2}d"))
Console.WriteLine(word);

}
}

This regular expression matches only the string “baad”.
You can specify a minimum and a maximum number of matches by pro-

viding two digits inside the curly braces: {n,m}, where n is the minimum
number of matches and m is the maximum. The following regular expression
will match “bad”, “baad”, and “baaad” in the string above:

"ba{1,3}d"

We could have also matched the same number of strings here by writ-
ing “ba{1,}d”, which specifies at least one match, but without specifying a
maximum number.

The quantifiers we’ve discussed so far exhibit what is called greedy behavior.
They try to make as many matches as possible, and this behavior often leads
to matches that you didn’t really mean to make. Here’s an example:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string[] words = new string[]{"Part", "of", "this",

"string", "is", "bold"};
string regExp = "<.*>";

MatchCollection aMatch;

foreach (string word in words) {

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

Using Character Classes 153

if (Regex.IsMatch(word, regExp)) {
aMatch = Regex.Matches(word, regExp);

for(int i = 0; i < aMatch.Count; i++)

Console.WriteLine(aMatch[i].Value);

}
}

}
}

We expect this program to return just the two tags: and. Instead,
because of greediness, the regular expression matches string. We
can solve this problem using the lazy quantifier: the question mark (?), which
is also a quantifier. When the question mark is placed directly after a quantifier,
it makes the quantifier lazy. Being lazy means the regular expression the lazy
quantifier is used in will try to make as few matches as possible, instead of as
many as possible.

Changing the regular expression to read “< .+ >“ doesn’t help either. We
need to use the lazy quantifier, and once we do, “< .+? >”, we get the right
matches: and. The lazy quantifier can be used with all the quanti-
fiers, including the quantifiers enclosed in curly braces.

USING CHARACTER CLASSES

In this and the following sections, we examine how to use the major elements
that make up regular expressions. We start with character classes, which allow
us to specify a pattern based on a series of characters.

The first character class we discuss is the period (.). This is a very easy
character class to use but it is also very problematic. The period matches any
character in a string. Here’s an example:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string str1 = "the quick brown fox jumped over the

lazy dog";

MatchCollection matchSet;

matchSet = Regex.Matches(str1, ".");

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

154 PATTERN MATCHING AND TEXT PROCESSING

foreach (Match aMatch in matchSet)

Console.WriteLine("matches at: " + aMatch.Index);

}
}

The output from this program illustrates how the period works:

The period matches every single character in the string.
A better way to use the period is to use it to define a range of characters

within a string that are bound by a beginning and/or an ending character.
Here’s one example, using the same string:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string str1 = "the quick brown fox jumped over the

lazy dog one time";

MatchCollection matchSet;

matchSet = Regex.Matches(str1, "t.e");

foreach (Match aMatch in matchSet)

Console.WriteLine("Matches at: " + aMatch.Index);

}
}

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

Using Character Classes 155

The output from this program is:

matches: the at: 0

matches: the at: 32

When using regular expressions, we often want to check for patterns that
include groups of characters. We can write a regular expression that con-
sists of such a group by enclosing the group in brackets ([]). The characters
inside the brackets are called a character class. If we wanted to write a regular
expression that matched any lowercase alphabetic character, we would write
the expression like this: [abcdefghijklmnopqrstuvwxyz]. But that’s fairly hard
to write, so we can write a shorter version by indicating a range of letters
using a hyphen: [a-z].

Here’s how we can use this regular expression to match a pattern:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string str1 = "THE quick BROWN fox JUMPED over THE

lazy DOG";

MatchCollection matchSet;

matchSet = Regex.Matches(str1, "[a-z]");

foreach (Match aMatch in matchSet)

Console.WriteLine("Matches at: " + aMatch.Index);

}
}

The letters matched are those that make up the words “quick”, “fox”, “over”,
and “lazy”.

Character classes can be formed using more than one group. If we want to
match both lowercase letters and uppercase letters, we can write this regular
expression: “[A-Za-z]”. You can also write a character class consisting of digits,
like this: [0–9], if you want to include all ten digits.

We can create the reverse, or negation, of a character class by placing a
caret (∧) before the character class. For example, if we have the character class
[aeiou] representing the class of vowels, we can write [∧aeiou] to represent
the consonants, or nonvowels.

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

156 PATTERN MATCHING AND TEXT PROCESSING

If we combine these three character classes, we form what is called a
word in regular expression parlance. The regular expression looks like this:
[A-Za-z0–9]. There is also a shorter character class we can use to express this
same class: \w. The negation of \w, or the regular expression to express a
nonword character (such as a mark of punctuation) is expressed by \W.

The character class for digits ([0–9]) can also be written as \d (note that
because a backslash followed by another character can be an escape sequence
in C#, codes such as \d are written \\d in C# code to indicate a regular
expression and not an escape code) the first backslash), and the character
class for nondigits ([∧0–9]) can be written as \D. Finally, because a white
space plays such an important role in text processing, \s is used to represent
white space characters whereas \S represents non-white-space characters. We
will examine using the white space character classes later when we examine
the grouping constructs.

MODIFYING REGULAR EXPRESSIONS USING ASSERTIONS

C# includes a set of operators you can add to a regular expression that change
the behavior of the expression without causing the regular expression engine
to advance through the string. These operators are called assertions.

The first assertion we’ll examine causes a regular expression to find matches
only at the beginning of a string or a line. This assertion is made using the
caret symbol (∧). In the following program, the regular expression matches
strings that have the letter “h” only as the first character in the string. An “h”
in other places is ignored. Here’s the code:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string[] words = new string[]{"heal", "heel",

"noah", "techno"};
string regExp = "^h";

Match aMatch;

foreach (string word in words)

if (Regex.IsMatch(word, regExp)) {
aMatch = Regex.Match(word, regExp);

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

Using Grouping Constructs 157

Console.WriteLine("Matched: " + word + " at

position: " + aMatch.Index);

}
}

}

The output of this code shows that just the strings “heal” and “heel” match.
There is also an assertion that causes a regular expression to find matches

only at the end of the line. This assertion is the dollar sign ($). If we modify
the previous regular expression as:

string regExp = "h$";

“noah” is the only match found.
Another assertion you can make in a regular expression is to specify that

all matches can occur only at word boundaries. This means that a match can
only occur at the beginning or end of a word that is separated by spaces. This
assertion is made with \b. Here’s how the assertion works:

string words = "hark, what doth thou say, Harold? ";

string regExp = "\\bh";

This regular expression matches the words “hark” and “Harold” in the string.
There are other assertions you can use in regular expressions, but these are

three of the most commonly used.

USING GROUPING CONSTRUCTS

The RegEx class has a set of grouping constructs you can use to put success-
ful matches into groups, which make it easier to parse a string into related
matches. For example, you are given a string of birthday dates and ages and
you want to identify just the dates. By grouping the dates together, you can
identify them as a group and not just as individual matches.

Anonymous Groups

There are several different grouping constructs you can use. The first construct
is formed by surrounding the regular expression in parentheses. You can think

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

158 PATTERN MATCHING AND TEXT PROCESSING

of this as an anonymous group, since groups can also be named, as we’ll see
shortly. As an example, look at the following string:

"08/14/57 46 02/25/29 45 06/05/85 18 03/12/88 16

09/09/90 13"

This string is a combination of birthdates and ages. If we want to match just the
ages, not the birthdates, we can write the regular expression as an anonymous
group:

(\\s\\d{2}\\s)

By writing the regular expression this way, each match in the string is identified
by a number, starting at one. Number zero is reserved for the entire match,
which will usually include much more data. Here is a little program that uses
an anonymous group:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string words = "08/14/57 46 02/25/59 45 06/05/85 18" +

"03/12/88 16 09/09/90 13";

string regExp1 = "(\\s\\d{2}\\s)";
MatchCollection matchSet = Regex.Matches(words,

regExp1);

foreach (Match aMatch in matchSet)

Console.WriteLine(aMatch.Groups[0].Captures[0]);

}
}

Named Groups

Groups are more commonly built using names. A named group is easier to
work with because we can refer to the group by name when retrieving matches.
A named group is formed by prefixing the regular expression with a question
mark and a name enclosed in angle brackets. For example, to name the group

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

Using Grouping Constructs 159

in the previous program code “ages”, we write the regular expression like this:

(?<ages>\\s\\d{2}\\s)
The name can also be surrounded by single quotes instead of angle brackets.

Now let’s modify this program to search for dates instead of ages, and use
a grouping construct to organize the dates. Here’s the code:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string words = "08/14/57 46 02/25/59 45 06/05/85 18 " +

"03/12/88 16 09/09/90 13";

string regExp1 = "(?<dates>(\\d{2}/\\d{2}/\\d{2}))\\s";
MatchCollection matchSet = Regex.Matches(words,

regExp1);

foreach (Match aMatch in matchSet)

Console.WriteLine("Date: {0}", _

aMatch.Groups["dates"]);

}
}

Here’s the output:

Let’s focus on the regular expression used to generate the output:

(\\d{2}/\\d{2}/\\d{2}))\\s

You can read this expression as “two digits followed by a slash, followed by
two more digits and a slash, followed by two more digits and a slash, followed

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

160 PATTERN MATCHING AND TEXT PROCESSING

by a space.” To make the regular expression a group, we make the following
additions:

(?<dates>(\\d{2}/\\d{2}/\\d{2}))\\s

For each match found in the string, we pull out the group by using the Groups
method of the Match class:

Console.WriteLine("Date: {0}", aMatch.Groups("dates"));

Zero-Width Lookahead and Lookbehind Assertions

Assertions can also be made that determine how far into a match a regular
expression will look for matches, going either forward or backward. These
assertions can be either positive or negative, meaning that the regular expres-
sion is looking for either a particular pattern to match (positive) or a partic-
ular pattern not to match (negative). This will be clearer when we see some
examples.

The first of these assertions we examine is the positive lookahead assertion.
This assertion is stated like this:

(?= reg-exp-char)

where reg-exp-char is a regular expression character or metacharacter. This
assertion states that a match is continued only if the current subexpression
being checked matches at the specified position on the right. Here’s a code
fragment that demonstrates how this assertion works:

string words = "lions lion tigers tiger bears,bear";

string regExp1 = "\\w+(?=\\s)";

The regular expression indicates that a match is made on each word that is
followed by a space. The words that match are “lions”, “lion”, “tigers”, and
“tiger”. The regular expression matches the words but does not match the
space. That is very important to remember.

The next assertion is the negative lookahead assertion. This assertion
continues a match only if the current subexpression being checked does

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

The CapturesCollection Class 161

not match at the specified position on the right. Here’s an example code
fragment:

string words = "subroutine routine subprocedure

procedure";

string regExp1 = "\\b(?!sub)\\w+\\b";

This regular expression indicates that a match is made on each word that
does not begin with the prefix “sub”. The words that match are “routine” and
“procedure”.

The next assertions are called lookbehind assertions. These assertions look
for positive or negative matches to the left instead of to the right. The following
code fragment demonstrates how to write a positive lookbehind assertion:

string words = "subroutines routine subprocedures

procedure";

string regExp1 = "\\b\\w+(?<=s)\\b";

This regular expression looks for word boundaries that occur after an “s”. The
words that match are “subroutines” and “subprocedures”.

A negative lookbehind assertion continues a match only if the subexpres-
sion does not match at the position on the left. We can easily modify the
above-mentioned regular expression just to match only words that don’t end
with the letter “s” like this:

string regExp1 = "\\b\\w+(?<!s)\\b";

THE CAPTURESCOLLECTION CLASS

When a regular expression matches a subexpression, an object called a Cap-
ture is created and is added to a collection called a CapturesCollection. When
you use a named group in a regular expression, that group has its own col-
lection of captures.

To retrieve the captures collected from a regular expression that uses a
named group, you call the Captures property from a Match objects Groups
property. This is easier to see in an example. Using one of the regular
expressions from the previous section, the following code returns all the dates

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

162 PATTERN MATCHING AND TEXT PROCESSING

and ages found in a string, properly grouped:

using System;

using System.Text.RegularExpressions;

class chapter8 {
static void Main() {

string dates = "08/14/57 46 02/25/59 45 06/05/85 18 " +

"03/12/88 16 09/09/90 13";

string regExp =

"(?<dates>(\\d{2}/\\d{2}/\\d{2}))\\s(?<ages>

(\\d{2}))\\s";
MatchCollection matchSet;

matchSet = Regex.Matches(dates, regExp);

Console.WriteLine();

foreach (Match aMatch in matchSet) {
foreach (Capture aCapture in aMatch.Groups

["dates"].Captures)

Console.WriteLine("date capture: " +

aCapture.ToString());

foreach (Capture aCapture in_

aMatch.Groups["ages"].Captures)

Console.WriteLine("age capture: " +

aCapture.ToString());

}
}

}

The output from this program is:

The outer loop moves through each match, whereas the two inner loops move
through the different Capture collections, one for the dates and one for the
ages. Using the CapturesCollection in this way ensures that each group match
is captured and not just the last match.

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

Regular Expression Options 163

REGULAR EXPRESSION OPTIONS

There are several options you can set when specifying a regular expression.
These options range from specifying the multiline mode so that a regular
expression will work properly on more than one line of text to compiling a
regular expression so that it will execute faster. The following table lists the
different options you can set.

Before we view the table, we need to mention how these options are set.
Generally, you can set an option by specifying the options constant value as
the third argument to one of the RegEx class’s methods, such as Match as
Matches. For example, if we want to set the Multiline option for a regular
expression, the line of code looks like this:

matchSet = Regex.Matches(dates, regexp,_

RegexOptions.Multiline);

This option, along with the other options, can either be typed in directly or
be selected with Intellisense.

Here are the options available:

RegexOption
member

Inline
character Description

None N/A Specifies that no options are set.

IgnoreCase I Specifies case-insensitive matching.

Multiline M Specifies multi-line mode.

ExplicitCapture N Specifies that the only valid captures are
explicitly named or numbered groups.

Compiled N/A Specifies that the regular expression
will be compiled to assembly.

Singleline S Specifies single-line mode.

IgnorePatternWhiteSpace X Specifies that unescaped white space is
excluded from the pattern and enables
comments following a pound sign (#)

RightToLeft N/A Specifies that the search is from right
to left instead of from left to right.

ECMAScript N/A Specifies that ECMAScript-compliant
behavior is enabled for the expression.

P1: JZP
0521670152c08 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:27

164 PATTERN MATCHING AND TEXT PROCESSING

SUMMARY

Regular expressions present powerful options for performing text processing
and pattern matching. Regular expressions can run the gamut from ridicu-
lously simple (“a”) to complex combinations that look more like line noise
than executable code. Nonetheless, learning to use regular expressions will
allow you to perform text processing on texts you would not even consider
using tools such as the methods of the String class.

This chapter is only able to hint at the power of regular expressions. To
learn more about regular expressions, consult Friedel (1997).

EXERCISES

1. Write regular expressions to match the following:
� a string consists of an “x”, followed by any three characters, and

then a “y”
� a word ending in “ed”
� a phone number
� an HTML anchor tag

2. Write a regular expression that finds all the words in a string that contain
double letters, such as “deep” and “book”.

3. Write a regular expression that finds all the header tags (<h1>, <h2>,
etc.) in a Web page.

4. Write a function, using a regular expression that performs a simple search
and replace in a string.

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

CHAPTER 9

Building Dictionaries:
The DictionaryBase Class
and the SortedList Class

A dictionary is a data structure that stores data as a key–value pair. The
DictionaryBase class is used as an abstract class to implement different data
structures that all store data as key–value pairs. These data structures can be
hash tables, linked lists, or some other data structure type. In this chapter,
we examine how to create basic dictionaries and how to use the inherited
methods of the DictionaryBase class. We will use these techniques later when
we explore more specialized data structures.

One example of a dictionary-based data structure is the SortedList. This
class stores key–value pairs in sorted order based on the key. It is an interesting
data structure because you can also access the values stored in the structure
by referring to the value’s index position in the data structure, which makes
the structure behave somewhat like an array. We examine the behavior of the
SortedList class at the end of the chapter.

165

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

166 BUILDING DICTIONARIES

THE DICTIONARYBASE CLASS

You can think of a dictionary data structure as a computerized word dictionary.
The word you are looking up is the key, and the definition of the word is the
value. The DictionaryBase class is an abstract (MustInherit) class that is used
as a basis for specialized dictionary implementations.

The key–value pairs stored in a dictionary are actually stored as Dictio-
naryEntry objects. The DictionaryEntry structure provides two fields, one for
the key and one for the value. The only two properties (or methods) we’re
interested in with this structure are the Key and Value properties. These meth-
ods return the values stored when a key–value pair is entered into a dictionary.
We explore DictionaryEntry objects later in the chapter.

Internally, key–value pairs are stored in a hash table object called Inner-
HashTable. We discuss hash tables in more detail in Chapter 12, so for now
just view it as an efficient data structure for storing key–value pairs.

The DictionaryBase class actually implements an interface from the Sys-
tem.Collections namespace, IDictionary. This interface is actually the basis
for many of the classes we’ll study later in this book, including the ListDic-
tionary class and the Hashtable class.

Fundamental DictionaryBase Class
Methods and Properties

When working with a dictionary object, there are several operations you want
to perform. At a minimum, you need an Add method to add new data, an Item
method to retrieve a value, a Remove method to remove a key–value pair, and
a Clear method to clear the data structure of all data.

Let’s begin the discussion of implementing a dictionary by looking at a
simple example class. The following code shows the implementation of a
class that stores names and IP addresses:

public class IPAddresses : DictionaryBase {

public IPAddresses() {

}

public void Add(string name, string ip) {
base.InnerHashtable.Add(name, ip);

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

The DictionaryBase Class 167

}
public string Item(string name) {

return base.InnerHashtable[name].ToString();

}

public void Remove(string name) {
base.InnerHashtable.Remove(name);

}
}

As you can see, these methods were very easy to build. The first method
implemented is the constructor. This is a simple method that does nothing
but call the default constructor for the base class. The Add method takes a
name/IP address pair as arguments and passes them to the Add method of the
InnerHashTable object, which is instantiated in the base class.

The Item method is used to retrieve a value given a specific key. The key is
passed to the corresponding Item method of the InnerHashTable object. The
value that is stored with the associated key in the inner hash table is returned.

Finally, the Remove method receives a key as an argument and passes
the argument to the associated Remove method of the inner hash table. The
method then removes both the key and its associated value from the hash
table.

There are two methods we can use without implementing them: Count
and Clear. The Count method returns the number of DictionaryEntry objects
stored in the inner hash table, whereas Clear removes all the DictionaryEntry
objects from the inner hash table.

Let’s look at a program that utilizes these methods:

class chapter9 {
static void Main() {

IPAddresses myIPs = new IPAddresses();

myIPs.Add("Mike", "192.155.12.1");

myIPs.Add("David", "192.155.12.2");

myIPs.Add("Bernica", "192.155.12.3");

Console.WriteLine("There are " + myIPs.Count +

" IP addresses");

Console.WriteLine("David's ip address: " +

myIPs.Item("David"));

myIPs.Clear();

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

168 BUILDING DICTIONARIES

Console.WriteLine("There are " + myIPs.Count +

" IP addresses");

}
}

The output from this program is:

One modification we might want to make to the class is to overload the
constructor so that we can load data into a dictionary from a file. Here’s the
code for the new constructor, which you can just add into the IPAddresses
class definition:

public IPAddresses(string txtFile) {
string line;

string[] words;

StreamReader inFile;

inFile = File.OpenText(txtFile);

while(inFile.Peek() != -1) {
line = inFile.ReadLine();

words = line.Split(',');

this.InnerHashtable.Add(words[0], words[1]);

}

inFile.Close();

}

Now here’s a new program to test the constructor:

class chapter9 {
static void Main() {

for(int i = 0; i < 4; i++)

Console.WriteLine();

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

The DictionaryBase Class 169

IPAddresses myIPs = _

new IPAddresses("c:\\data\\ips.txt");
Console.WriteLine("There are {0} IP addresses",

myIPs.Count);

Console.WriteLine("David's IP address: " +

myIPs.Item("David"));

Console.WriteLine("Bernica's IP address: " +

myIPs.Item("Bernica"));

Console.WriteLine("Mike's IP address: " +

myIPs.Item("Mike"));

}

}

The output from this program is:

Other DictionaryBase Methods

There are two other methods that are members of the DictionaryBase class:
CopyTo and GetEnumerator. We discuss these methods in this section.

The CopyTo method copies the contents of a dictionary to a one-
dimensional array. The array should be declared as a DictionaryEntry array,
though you can declare it as Object and then use the CType function to convert
the objects to DictionaryEntry.

The following code fragment demonstrates how to use the CopyTo method:

IPAddresses myIPs = new IPAddresses("c:\ips.txt");
DictionaryEntry[] ips = _

new DictionaryEntry[myIPs.Count-1];

myIPs.CopyTo(ips, 0);

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

170 BUILDING DICTIONARIES

The formula used to size the array takes the number of elements in the dic-
tionary and then subtracts one to account for a zero-based array. The CopyTo
method takes two arguments: the array to copy to and the index position to
start copying from. If you want to place the contents of a dictionary at the
end of an existing array, for example, you would specify the upper bound of
the array plus one as the second argument.

Once we get the data from the dictionary into an array, we want to work
with the contents of the array, or at least display the values. Here’s some code
to do that:

for(int i = 0; i <= ips.GetUpperBound(0); i++)

Console.WriteLine(ips[i]);

The output from this code is:

Unfortunately, this is not what we want. The problem is that we’re storing
the data in the array as DictionaryEntry objects, and that’s exactly what we
see. If we use the ToString method:

Console.WriteLine(ips[ndex]ToString())

we get the same thing. In order to actually view the data in a DictionaryEntry
object, we have to use either the Key property or the Value property, depending
on if the object we’re querying holds key data or value data. So how do we
know which is which? When the contents of the dictionary are copied to the
array, the data is copied in key–value order. So the first object is a key, the
second object is a value, the third object is a key, and so on.

Now we can write a code fragment that allows us to actually see the data:

for(int i = 0; i <= ips.GetUpperBound(0); i++) {
Console.WriteLine(ips[index].Key);

Console.WriteLine(ips[index].Value);

}

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

The Generic KeyValuePair Class 171

The output is:

THE GENERIC KEYVALUEPAIR CLASS

C# provides a small class that allows you to create dictionary-like objects that
store data based on a key. This class is called the KeyValuePair class. Each
object can only hold one key and one value, so its use is limited.

A KeyValuePair object is instantiated like this:

KeyValuePair<string, int> mcmillan =

new KeyValuePair<string, int>("McMillan", 99);

The key and the value are retrieved individually:

Console.Write(mcmillan.Key);

Console.Write(" " + mcmillan.Value);

The KeyValuePair class is better used if you put the objects in an array. The
following program demonstrates how a simple grade book might be imple-
mented:

using System;

using System.Collections.Generic;

using System.Text;

namespace Generics

{
class Program

{
static void Main(string[] args)

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

172 BUILDING DICTIONARIES

{
KeyValuePair<string, int>[] gradeBook = new

KeyValuePair<string, int>[10];

gradeBook[0] = new KeyValuePair<string,

int>("McMillan", 99);

gradeBook[1] = new KeyValuePair<string,

int>("Ruff", 64);

for (int i = 0; i <= gradeBook.GetUpperBound(0); i++)

if (gradeBook[i].Value != 0)

Console.WriteLine(gradeBook[i].Key + ": " +

gradeBook[i].Value);

Console.Read();

}
}

}

THE SORTEDLIST CLASS

As we mentioned in the Introduction section of this chapter, a SortedList is a
data structure that stores key–value pairs in sorted order based on the key. We
can use this data structure when it is important for the keys to be sorted, such
as in a standard word dictionary, where we expect the words in the dictionary
to be sorted alphabetically. Later in the chapter, we’ll also see how the class
can be used to store a list of single, sorted values.

Using the SortedList Class

We can use the SortedList class in much the same way we used the classes
in the previous sections, since the SortedList class is a specialization of the
DictionaryBase class.

To demonstrate this, the following code creates a SortedList object that
contains three names and IP addresses:

SortedList myips = New SortedList();

myips.Add("Mike", "192.155.12.1");

myips.Add("David", "192.155.12.2");

myips.Add("Bernica", "192.155.12.3");

The name is the key and the IP address is the stored value.

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

The SortedList Class 173

The generic version of the SortedList class allows you to decide the data
type of both the key and the value:

SortedList<Tkey, TValue>

For this example, we could instantiate myips like this:

SortedList<string, string> myips =

new SortedList<string, string>();

A grade book sorted list might be instantiated as follows:

SortedList<string, int> gradeBook =

new SortedList<string, int>();

We can retrieve the values by using the Item method with a key as the
argument:

Foreach(Object key In myips.Keys)

Console.WriteLine("Name: " & key + "\n" +

"IP: " & myips.Item(key))

This fragment produces the following output:

Alternatively, we can also access this list by referencing the index num-
bers where these values (and keys) are stored internally in the arrays, which
actually store the data. Here’s how:

for(int i = 0; i < myips.Count; i++)

Console.WriteLine("Name: " + myips.GetKey(i) + "\n" +

"IP: " & myips.GetByIndex(i));

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

174 BUILDING DICTIONARIES

This code fragment produces the exact same sorted list of names and IP
addresses:

A key–value pair can be removed from a SortedList by either specifying a
key or specifying an index number, as in the following code fragment, which
demonstrates both removal methods:

myips.Remove("David");

myips.RemoveAt(1);

If you want to use index-based access into a SortedList but don’t know the
indexes where a particular key or value is stored, you can use the following
methods to determine those values:

int indexDavid = myips.GetIndexOfKey("David");

int indexIPDavid = _

myips.GetIndexOfValue(myips.Item("David"));

The SortedList class contains many other methods and you are encouraged
to explore them via VS.NET’s online documentation.

SUMMARY

The DictionaryBase class is an abstract class used to create custom dictionaries.
A dictionary is a data structure that stores data in key–value pairs, using a
hash table (or sometimes a singly linked list) as the underlying data structure.
The key–value pairs are stored as DictionaryEntry objects and you must use
the Key and Value methods to retrieve the actual values in a DictionaryEntry
object.

The DictionaryBase class is often used when the programmer wants to
create a strongly typed data structure. Normally, data added to a dictionary

P1: JZP
0521670152c09 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:30

Exercises 175

is stored as Object, but with a custom dictionary, the programmer can cut
down on the number of type conversions that must be performed, making the
program more efficient and easier to read.

The SortedList class is a particular type of Dictionary class, one that stores
the key–value pairs in order sorted by the key. You can also retrieve the
values stored in a SortedList by referencing the index number where the value
is stored, much like you do with an array. There is also a SortedDictionary
class in the System.Collections.Generic namespace that works in the same as
the generic SortedList class.

EXERCISES

1. Using the implementation of the IPAddresses class developed in this chap-
ter, write a method that displays the IP addresses stored in the class in
ascending order. Use the method in a program.

2. Write a program that stores names and phone numbers from a text file in a
dictionary, with the name being the key. Write a method that does a reverse
lookup, that is, finds a name given a phone number. Write a Windows
application to test your implementation.

3. Using a dictionary, write a program that displays the number of occurrences
of a word in a sentence. Display a list of all the words and the number of
times they occur in the sentence.

4. Rewrite Exercise 3 to work with letters rather than words.
5. Rewrite Exercise 2 using the SortedList class.
6. The SortedList class is implemented using two internal arrays, one that

stores the keys and one that stores the values. Create your own SortedList
class implementation using this scheme. Your class should include all the
methods discussed in this chapter. Use your class to solve the problem
posed in Exercise 2.

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

CHAPTER 10

Hashing and the Hashtable
Class

Hashing is a very common technique for storing data in such a way the
data can be inserted and retrieved very quickly. Hashing uses a data structure
called a hash table. Although hash tables provide fast insertion, deletion, and
retrieval, operations that involve searching, such as finding the minimum or
maximum value, are not performed very quickly. For these types of operations,
other data structures are preferred (see, for example, Chapter 12 on binary
search trees).

The .NET Framework library provides a very useful class for working with
hash tables, the Hashtable class. We will examine this class in the chapter, but
we will also discuss how to implement a custom hash table. Building hash
tables is not very difficult and the programming techniques used are well
worth knowing.

AN OVERVIEW OF HASHING

A hash table data structure is designed around an array. The array consists of
elements 0 through some predetermined size, though we can increase the size
later if necessary. Each data item is stored in the array based on some piece
of the data, called the key. To store an element in the hash table, the key is
mapped into a number in the range of 0 to the hash table size using a function
called a hash function.

176

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

Choosing a Hash Function 177

The ideal goal of the hash function is to store each key in its own cell in
the array. However, because there are an unlimited number of possible keys
and a finite number of array cells, a more realistic goal of the hash function is
to attempt to distribute the keys as evenly as possible among the cells of the
array.

Even with a good hash function, as you have probably guessed by now, it is
possible for two keys to hash to the same value. This is called a collision and
we have to have a strategy for dealing with collisions when they occur. We’ll
discuss this in detail in the following.

The last thing we have to determine is how large to dimension the array
used as the hash table. First, it is recommended that the array size be a prime
number. We will explain why when we examine the different hash functions.
After that, there are several different strategies for determining the proper
array size, all of them based on the technique used to deal with collisions, so
we’ll examine this issue in the following discussion also.

CHOOSING A HASH FUNCTION

Choosing a hash function depends on the data type of the key you are using.
If your key is an integer, the simplest function is to return the key modulo
the size of the array. There are circumstances when this method is not recom-
mended, such as when the keys all end in zero and the array size is 10. This
is one reason why the array size should always be prime. Also, if the keys are
random integers then the hash function should more evenly distribute the
keys.

In many applications, however, the keys are strings. Choosing a hash
function to work with keys is more difficult and should be chosen care-
fully. A simple function that at first glance seems to work well is to add
the ASCII values of the letters in the key. The hash value is that value mod-
ulo the array size. The following program demonstrates how this function
works:

using System;

class chapter10 {
static void Main() {

string[] names = new string[99];

string name;

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

178 HASHING AND THE HASHTABLE CLASS

string[] someNames = new string[]{"David",
"Jennifer", "Donnie", "Mayo", "Raymond",

"Bernica", "Mike", "Clayton", "Beata", "Michael"};
int hashVal;

for(int i = 0; i < 10; i++) {
name = someNames[i];

hashVal = SimpleHash(name, names);

names[hashVal] = name;

}
ShowDistrib(names);

}

static int SimpleHash(string s, string[] arr) {
int tot = 0;

char[] cname;

cname = s.ToCharArray();

for(int i = 0; i <= cname.GetUpperBound(0); i++)

tot += (int)cname[i];

return tot % arr.GetUpperBound(0);

}

static void ShowDistrib(string[] arr) {
for(int i = 0; i <= arr.GetUpperBound(0); i++)

if (arr[i] != null)

Console.WriteLine(i + " " + arr[i]);

}
}

The output from this program is:

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

Choosing a Hash Function 179

The showDistrib subroutine shows us where the names are actually placed
into the array by the hash function. As you can see, the distribution is not
particularly even. The names are bunched at the beginning of the array and
at the end.

There is an even bigger problem lurking here, though. Not all of the names
are displayed. Interestingly, if we change the size of the array to a prime
number, even a prime lower than 99, all the names are stored properly. Hence,
one important rule when choosing the size of your array for a hash table (and
when using a hash function such as the one we’re using here) is to choose a
number that is prime.

The size you ultimately choose will depend on your determination of the
number of records stored in the hash table, but a safe number seems to be
10,007 (given that you’re not actually trying to store that many items in your
table). The number 10,007 is prime and it is not so large that enough memory
is used to degrade the performance of your program.

Sticking with the basic idea of using the computed total ASCII value of
the key in the creation of the hash value, this next algorithm provides for a
better distribution in the array. First, let’s look at the code, followed by an
explanation:

static int BetterHash(string s, string[] arr) {
long tot = 0;

char[] cname;

cname = s.ToCharArray();

for(int i = 0; i <= cname.GetUpperBound(0); i++)

tot += 37 * tot + (int)cname[i];

tot = tot % arr.GetUpperBound(0);

if (tot < 0)

tot += arr.GetUpperBound(0);

return (int)tot;

}

This function uses Horner’s rule to computer the polynomial function (of 37).
See (Weiss 1999) for more information on this hash function.

Now let’s look at the distribution of the keys in the hash table using this
new function:

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

180 HASHING AND THE HASHTABLE CLASS

These keys are more evenly distributed though it’s hard to tell with such a
small data set.

SEARCHING FOR DATA IN A HASH TABLE

To search for data in a hash table, we need to compute the hash value of the
key and then access that element in the array. It is that simple. Here’s the
function:

static bool InHash(string s, string[] arr) {
int hval = BetterHash(s, arr);

if (arr[hval] == s)

return true;

else

return false;

}

This function returns True if the item is in the hash table and False oth-
erwise. We don’t even need to compare the time this function runs versus
a sequential search of the array since this function clearly runs in less time,
unless of course the data item is somewhere close to the beginning of the
array.

HANDLING COLLISIONS

When working with hash tables, it is inevitable that you will encounter situa-
tions where the hash value of a key works out to a value that is already storing
another key. This is called a collision and there are several techniques you

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

Handling Collisions 181

can use when a collision occurs. These techniques include bucket hashing,
open addressing, and double hashing (among others). In this section, we will
briefly cover each of these techniques.

Bucket Hashing

When we originally defined a hash table, we stated that it is preferred that
only one data value resides in a hash table element. This works great if there
are no collisions, but if a hash function returns the same value for two data
items, we have a problem.

One solution to the collision problem is to implement the hash table using
buckets. A bucket is a simple data structure stored in a hash table element that
can store multiple items. In most implementations, this data structure is an
array, but in our implementation we’ll make use of an arraylist, which will
allow us not to worry about running out of space and to allocate more space.
In the end, this will make our implementation more efficient.

To insert an item, we first use the hash function to determine which arraylist
to store the item. Then we check to see if the item is already in the arraylist. If
it is we do nothing, if it’s not, then we call the Add method to insert the item
into the arraylist.

To remove an item from a hash table, we again first determine the hash
value of the item to be removed and go to that arraylist. We then check to
make sure the item is in the arraylist, and if it is, we remove it.

Here’s the code for a BucketHash class that includes a Hash function, an
Add method, and a Remove method:

public class BucketHash {

private const int SIZE = 101;

ArrayList[] data;

public BucketHash() {
data = new ArrayList[SIZE];

for(int i = 0; i <= SIZE-1; i++)

data[i] = new ArrayList(4);

}

public int Hash(string s) {
long tot = 0;

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

182 HASHING AND THE HASHTABLE CLASS

char[] charray;

charray = s.ToCharArray();

for(int i = 0; i <= s.Length-1; i++)

tot += 37 ∗ tot + (int)charray[i];

tot = tot % data.GetUpperBound(0);

if (tot < 0)

tot += data.GetUpperBound(0);

return (int)tot;

}

public void Insert(string item) {
int hash_value;

hash_value = Hash(value);

if (data[hash_value].Contains(item))

data[hash_value].Add(item);

}

public void Remove(string item) {
int hash_value;

hash_value = Hash(item);

if (data[hash_value].Contains(item))

data[hash_value].Remove(item);

}
}

When using bucket hashing, the most important thing you can do is
keep the number of arraylist elements used as low as possible. This mini-
mizes the extra work that has to be done when adding items to or remov-
ing items from the hash table. In the preceding code, we minimize the size
of the arraylist by setting the initial capacity of each arraylist to 1 in the
constructor call. Once we have a collision, the arraylist capacity becomes
2, and then the capacity continues to double every time the arraylist fills
up. With a good hash function, though, the arraylist shouldn’t get too
large.

The ratio of the number of elements in the hash table to the table size is
called the load factor. Studies have shown that hash table performance is best
when the load factor is 1.0, or when the table size exactly equals the number
of elements.

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

Handling Collisions 183

Open Addressing

Separate chaining decreases the performance of your hash table by using
arraylists. An alternative to separate chaining for avoiding collisions is open
addressing. An open addressing function looks for an empty cell in the hash
table array to place an item. If the first cell tried is full, the next empty cell
is tried, and so on until an empty cell is eventually found. We will look at
two different strategies for open addressing in this section: linear probing and
quadratic probing.

Linear probing uses a linear function to determine the array cell to try for
an insertion. This means that cells will be tried sequentially until an empty
cell is found. The problem with linear probing is that data elements will tend
to cluster in adjacent cells in the array, making successive probes for empty
cells longer and less efficient.

Quadratic probing eliminates the clustering problem. A quadratic function
is used to determine which cell to attempt. An example of such a function is:

2 * collNumber - 1

where collNumber is the number of collisions that have occurred during the
current probe. An interesting property of quadratic probing is that an empty
cell is guaranteed to be found if the hash table is less than half empty.

Double Hashing

This simple collision-resolution strategy is exactly what it says it is—if a
collision is found, the hash function is applied a second time and then probe
at the distance sequence hash(item), 2hash(item), 4hash(item), etc. until an
empty cell is found.

To make this probing technique work correctly, a few conditions must be
met. First, the hash function chosen must not ever evaluate to zero, which
would lead to disastrous results (since multiplying by zero produces zero).
Second, the table size must be prime. If the size isn’t prime, then all the array
cells will not be probed, again leading to chaotic results.

Double hashing is an interesting collision resolution strategy, but it has been
shown in practice that quadratic probing usually leads to better performance.

We are now finished examining custom hash table implementations. For
most applications using C#, you are better off using the built-in Hashtable

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

184 HASHING AND THE HASHTABLE CLASS

class that is part of the .NET Framework library. We begin our discussion of
this class in the next section.

THE HASHTABLE CLASS

The Hashtable class is a special type of Dictionary object, storing key–value
pairs, where the values are stored based on the hash code derived from the
key. You can specify a hash function or use the one built in (we’ll discuss it
later) for the data type of the key. The Hashtable class is very efficient and
should be used in place of custom implementations whenever possible.

The strategy the class uses to avoid collisions is the concept of a bucket.
A bucket is a virtual grouping of objects together that have the same hash
code, much like we used an ArrayList to handle collisions when we discussed
separate chaining. If two keys have the same hash code, they are placed in
the same bucket. Otherwise, each key with a unique hash code is placed in
its own bucket.

The number of buckets used in a Hashtable objects is called the load factor.
The load factor is the ratio of the elements to the number of buckets. Initially,
the factor is set to 1.0. When the actual factor reaches the initial factor, the
load factor is increased to the smallest prime number that is twice the current
number of buckets. The load factor is important because the smaller the load
factor, the better the performance of the Hashtable object.

Instantiating and Adding Data to a Hashtable Object

The Hashtable class is part of the System.Collections namespace, so you must
import System.Collections at the beginning of your program.

A Hashtable object can be instantiated in one of three ways (actually there
are several more, including different types of copy constructors, but we stick
to the three most common constructors here). You can instantiate the hash
table with an initial capacity or by using the default capacity. You can also
specify both the initial capacity and the initial load factor. The following code
demonstrates how to use these three constructors:

Hashtable symbols = new Hashtable();

HashTable symbols = new Hashtable(50);

HashTable symbols = new Hashtable(25, 3.0);

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

The Hashtable Class 185

The first line creates a hash table with the default capacity and the default load
factor. The second line creates a hash table with a capacity of 50 elements and
the default load factor. The third line creates a hash table with an initial
capacity of 25 elements and a load factor of 3.0.

Key–value pairs are entered into a hash table using the Add method. This
method takes two arguments: the key and the value associated with the key.
The key is added to the hash table after computing its hash value. Here is
some example code:

Hashtable symbols = new Hashtable(25);

symbols.Add("salary", 100000);

symbols.Add("name", "David Durr");

symbols.Add("age", 43);

symbols.Add("dept", "Information Technology");

You can also add elements to a hash table using an indexer, which we discuss
more completely later in this chapter. To do this, you write an assignment
statement that assigns a value to the key specified as the index (much like an
array index). If the key doesn’t already exist, a new hash element is entered
into the table; if the key already exists, the existing value is overwritten by
the new value. Here are some examples:

Symbols["sex"] = "Male";

Symbols["age"] = 44;

The first line shows how to create a new key–value pair using the Item method,
whereas the second line demonstrates that you can overwrite the current value
associated with an existing key.

Retrieving the Keys and the Values Separately
From a Hash Table

The Hashtable class has two very useful methods for retrieving the keys and
values separately from a hash table: Keys and Values. These methods create
an Enumerator object that allows you to use a For Each loop, or some other
technique, to examine the keys and the values.

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

186 HASHING AND THE HASHTABLE CLASS

The following program demonstrates how these methods work:

using System;

using System.Collections;

class chapter10 {
static void Main() {

Hashtable symbols = new Hashtable(25);

symbols.Add("salary", 100000);

symbols.Add("name", "David Durr");

symbols.Add("age", 45);

symbols.Add("dept", "Information Technology");

symbols["sex"] = "Male";

Console.WriteLine("The keys are: ");

foreach (Object key in symbols.Keys)

Console.WriteLine(key);

Console.WriteLine();

Console.WriteLine("The values are: ");

foreach (Object value in symbols.Values)

Console.WriteLine(value);

}
}

Retrieving a Value Based on the Key

Retrieving a value using its associated key can be accomplished using an
indexer, which works just like an indexer for an array. A key is passed in as
the index value, and the value associated with the key is returned, unless the
key doesn’t exist, in which a null is returned.

The following short code segment demonstrates how this technique works:

Object value = symbols.Item["name"];

Console.WriteLine("The variable name's value is: " +

value.ToString());

The value returned is “David Durr”.
We can use an indexer along with the Keys method to retrieve all the data

stored in a hash table:

using System;

using System.Collections;

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

The Hashtable Class 187

class chapter10 {
static void Main() {

Hashtable symbols = new Hashtable(25);

symbols.Add("salary", 100000);

symbols.Add("name", "David Durr");

symbols.Add("age", 45);

symbols.Add("dept", "Information Technology");

symbols["sex"] = "Male";

Console.WriteLine();

Console.WriteLine("Hash table dump - ");

Console.WriteLine();

foreach (Object key in symbols.Keys)

Console.WriteLine(key.ToString() + ": " +

symbols[key].ToString());

}
}

The output is:

Utility Methods of the Hashtable Class

There are several methods in the Hashtable class that help you be more pro-
ductive with Hashtable objects. In this section, we examine several of them,
including methods for determining the number of elements in a hash table,
clearing the contents of a hash table, determining if a specified key (and value)
is contained in a hash table, removing elements from a hash table, and copying
the elements of a hash table to an array.

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

188 HASHING AND THE HASHTABLE CLASS

The number of elements in a hash table is stored in the Count property,
which returns an integer:

int numElements;

numElements = symbols.Count;

We can immediately remove all the elements of a hash table using the Clear
method:

symbols.Clear();

To remove a single element from a hash table, you can use the Remove
method. This method takes a single argument, a key, and the method removes
both the specified key and its associated value. Here’s an example:

symbols.Remove("sex");

foreach(Object key In symbols.Keys)

Console.WriteLine(key.ToString() + ": " +

symbols[key].ToString());

Before you remove an element from a hash table, you may want to check to
see if either the key or the value is in the table. We can determine this infor-
mation with the ContainsKey method and the ContainsValue method. The
following code fragment demonstrates how to use the ContainsKey method:

string aKey;

Console.Write("Enter a key to remove: ");

aKey = Console.ReadLine();

if (symbols.ContainsKey(aKey))

symbols.Remove(aKey);

Using this method ensures that the key–value pair to remove exists in the
hash table. The ContainsValue method works similarly with values instead of
keys.

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

A Hashtable Application: Computer Terms Glossary 189

A HASHTABLE APPLICATION: COMPUTER TERMS GLOSSARY

One common use of a hash table is to build a glossary, or dictionary, of terms.
In this section, we demonstrate one way to use a hash table for just such a
use—a computer terms glossary.

The program works by first reading in a set of terms and definitions from a
text file. This process is coded in the BuildGlossary subroutine. The structure
of the text file is: word,definition, with the comma being the delimiter between
a word and the definition. Each word in this glossary is a single word, but the
glossary could easily work with phrases instead. That’s why a comma is used
as the delimiter, rather than a space. Also, this structure allows us to use the
word as the key, which is the proper way to build this hash table.

Another subroutine, DisplayWords, displays the words in a list box so the
user can pick one to get a definition. Since the words are the keys, we can use
the Keys method to return just the words from the hash table. The user can
then see which words have definitions.

To retrieve a definition, the user simply clicks on a word in the list box.
The definition is retrieved using the Item method and is displayed in the text
box.

Here’s the code:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.IO;

namespace Glossary

{
public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.ListBox lstWords;

private System.Windows.Forms.TextBox txtDefinition;

private Hashtable glossary = new Hashtable();

private System.ComponentModel.Container

components = null;

public Form1()

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

190 HASHING AND THE HASHTABLE CLASS

{
InitializeComponent();

}

protected override void Dispose(bool disposing)

{
if(disposing)

{
if (components != null)

{
components.Dispose();

}
}
base.Dispose(disposing);

}

#region Windows Form Designer generated code

[STAThread]

static void Main()

{
Application.Run(new Form1());

}
private void BuildGlossary(Hashtable g)

{
StreamReader inFile;

string line;

string[] words;

inFile = File.OpenText("c:\\words.txt");
char[] delimiter = new char[]{','};
while (inFile.Peek() != -1)

{
line = inFile.ReadLine();

words = line.Split(delimiter);

g.Add(words[0], words[1]);

}
inFile.Close();

}

private void DisplayWords(Hashtable g)

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

A Hashtable Application: Computer Terms Glossary 191

{
Object[] words = new Object[100];

g.Keys.CopyTo(words, 0);

for(int i = 0; i <= words.GetUpperBound(0); i++)

if (!(words[i] == null))

lstWords.Items.Add((words[i]));

}

private void Form1_Load(object sender,

System.EventArgs e)

{
BuildGlossary(glossary);

DisplayWords(glossary);

}

private void lstWords_SelectedIndexChanged

(object sender, System.EventArgs e)

{
Object word;

word = lstWords.SelectedItem;

txtDefinition.Text = glossary[word].ToString();

}
}

}

The text file looks like this:

adder,an electronic circuit that performs an addition operation on binary
values

addressability,the number of bits stored in each addressable location in
memory

bit,short for binary digit
block,a logical group of zero or more program statements
call,the point at which the computer begins following the instructions in

a subprogram
compiler,a program that translates a high-level program into machine code
data,information in a form a computer can use
database,a structured set of data
. . .

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

192 HASHING AND THE HASHTABLE CLASS

Here’s how the program looks when it runs:

If a word is entered that is not in the glossary, the Item method returns Nothing.
There is a test for Nothing in the GetDefinition subroutine so that the string
“not found” is displayed if the word entered is not in the hash table.

SUMMARY

A hash table is a very efficient data structure for storing key–value pairs. The
implementation of a hash table is mostly straightforward, with the tricky part
having to do with choosing a strategy for collisions. This chapter discussed
several techniques for handling collisions.

For most C# applications, there is no reason to build a custom hash table,
when the Hashtable class of the .NET Framework library works quite well.
You can specify your own hash function for the class or you can let the class
calculate hash values.

P1: JZP
0521670152c10 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:33

Exercises 193

EXERCISES

1. Rewrite the computer terms glossary application using the custom-
designed Hash class developed in this chapter. Experiment with different
hash functions and collision-resolution strategies.

2. Using the Hashtable class, write a spelling checker program that reads
through a text file and checks for spelling errors. You will, of course, have
to limit your dictionary to several common words.

3. Create a new Hash class that uses an arraylist instead of an array for the
hash table. Test your implementation by rewriting (yet again) the computer
terms glossary application.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

CHAPTER 11

Linked Lists

For many applications, data are best stored as lists, and lists occur naturally
in day-to-day life: to-do lists, grocery lists, and top-ten lists. In this chapter, we
explore one particular type of list, the linked list. Although the .NET Frame-
work class library contains several list-based collection classes, the linked
list is not among them. The chapter starts with an explanation of why we
need linked lists, then we explore two different implementations of the data
structure—object-based linked lists and array-based linked lists. The chapter
finishes up with several examples of how linked lists can be used for solving
computer programming problems you may run across.

THE PROBLEM WITH ARRAYS

The array is the natural data structure to use when working with lists. Arrays
provide fast access to stored items and are easy to loop through. And, of
course, the array is already part of the language and you don’t have to use
extra memory and processing time using a user-defined data structure.

But as we’ve seen, the array is not the perfect data structure. Searching
for an item in an unordered array is slow because you have to possibly visit
every element in the array before finding the element you’re searching for.
Ordered (sorted) arrays are much more efficient for searching, but insertions

194

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Linked Lists Defined 195

Milk Bread Eggs Bacon Nothing

FIGURE 11.1. An Example Linked List.

and deletions are slow because you have to shift the elements up or down to
either make space for an insertion or remove space with a deletion. Not
to mention that in an ordered array, you have to search for the proper space
to insert an element into the array.

When you determine that the operations performed on an array are too
slow for practical use, you can consider using the linked list as an alternative.
The linked list can be used in almost every situation where an array is used,
except if you need random access to the items in the list, when an array is
probably the best choice.

LINKED LISTS DEFINED

A linked list is a collection of class objects called nodes. Each node is linked to
its successor node in the list using a reference to the successor node. A node
is made up of a field for storing data and the field for the node reference. The
reference to another node is called a link. An example linked list is shown
in Figure 11.1.

A major difference between an array and a linked list is that whereas the
elements in an array are referenced by position (the index), the elements of
a linked list are referenced by their relationship to the other elements of the
array. In Figure 11.1, we say that “Bread” follows “Milk”, not that “Bread” is
in the second position. Moving through a linked list involves following the
links from the beginning node to the ending node.

Another thing to notice in Figure 11.1 is that we mark the end of a linked
list by pointing to the value null. Since we are working with class objects in
memory, we use the null object to denote the end of the list.

Marking the beginning of a list can be a problem in some cases. It is common
in many linked list implementations to include a special node, called the
“header”, to denote the beginning of a linked list. The linked list of Fig-
ure 11.1 is redesigned with a header node in Figure 11.2.

Bacon NothingHeader Milk Bread Eggs

FIGURE 11.2. A Linked List with a Header Node.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

196 LINKED LISTS

Bacon NothingHeader Milk Bread Eggs

Cookies

FIGURE 11.3. Inserting Cookies.

Insertion becomes a very efficient task when using a linked list. All that
is involved is changing the link of the node previous to the inserted node to
point to the inserted node, and setting the link of the new node to point to
the node the previous node pointed to before the insertion. In Figure 11.3,
the item “Cookies” is added to the linked list after “Eggs”.

Removing an item from a linked list is just as easy. We simply redirect the
link of the node before the deleted node to point to the node the deleted
node points to and set the deleted node’s link to null. The diagram of this
operation is shown in Figure 11.4, where we remove “Bacon” from the linked
list.

There are other methods we can, and will, implement in the LinkedList
class, but insertion and deletion are the two methods that define why we use
linked lists over arrays.

AN OBJECT-ORIENTED LINKED LIST DESIGN

Our design of a linked list will involve at least two classes. We’ll create a Node
class and instantiate a Node object each time we add a node to the list. The
nodes in the list are connected via references to other nodes. These references
are set using methods created in a separate LinkedList class. Let’s start by
looking at the design of the Node class.

The Node Class

A node is made up of two data members: Element, which stores the node’s
data; and Link, which stores a reference to the next node in the list. We’ll use
Object for the data type of Element, just so we don’t have to worry about what

Bacon NothingHeader Milk Bread Eggs Cookies

FIGURE 11.4. Removing Bacon.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

An Object-Oriented Linked List Design 197

kind of data we store in the list. The data type for Link is Node, which seems
strange but actually makes perfect sense. Since we want the link to point to
the next node, and we use a reference to make the link, we have to assign a
Node type to the link member.

To finish up the definition of the Node class, we need at least two construc-
tor methods. We definitely want a default constructor that creates an empty
Node, with both the Element and Link members set to null. We also need a
parameterized constructor that assigns data to the Element member and sets
the Link member to null.

Here’s the code for the Node class:

public class Node {

public Object Element;

public Node Link;

public Node() {
Element = null;

Link = null;

}

public Node(Object theElement) {
Element = theElement;

Link = null;

}
}

The LinkedList Class

The LinkedList class is used to create the linkage for the nodes of our linked
list. The class includes several methods for adding nodes to the list, removing
nodes from the list, traversing the list, and finding a node in the list. We also
need a constructor method that instantiates a list. The only data member in
the class is the header node.

public class LinkedList {

protected Node header;

public LinkedList() {

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

198 LINKED LISTS

header = new Node("header");

}
. . .

}

The header node starts out with its Link field set to null. When we add
the first node to the list, the header node’s Link field is assigned a refer-
ence to the new node, and the new node’s Link field is assigned the null
value.

The first method we’ll examine is the Insert method, which we use to put
a node into our linked list. To insert a node into the list, you have to specify
the node you want to insert before or after. This is necessary to adjust all the
necessary links in the list. We’ll choose to insert a new node after an existing
node in the list.

To insert a new node after an existing node, we have to first find the “after”
node. To do this, we create a Private method, Find, that searches through the
Element field of each node until a match is found.

private Node Find(Object item) {
Node current = new Node();

current = header;

while(current.header != item)

current = current.Link;

return current;

}

This method demonstrates how we move through a linked list. First, we
instantiate a Node object, current, and assign it as the header node. Then
we check to see if the value in the node’s Element field equals the value we’re
searching for. If not, we move to the next node by assigning the node in the
Link field of current as the new value of current.

Once we’ve found the “after” node, the next step is to set the new node’s
Link field to the Link field of the “after” node, and then set the “after” node’s
Link field to a reference to the new node. Here’s how it’s done:

public void Insert(Object newItem, Object after) {
Node current = new Node();

Node newNode = new Node(newItem);

current = Find(after);

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

An Object-Oriented Linked List Design 199

newNode.Link = current.Link;

current.Link = newNode;

}

The next linked list operation we explore is Remove. To remove a node
from a linked list, we simply have to change the link of the node that points
to the removed node to point to the node after the removed node.

Since we need to find the node before the node we want to remove, we’ll
define a method, FindPrevious, that does this. This method walks down the
list, stopping at each node and looking ahead to the next node to see if that
node’s Element field holds the item we want to remove.

private Node FindPrevious(Object n) {
Node current = header;

while(!(current.Link == null) && (current.Link.

Element != n))

current = current.Link;

return current;

}

Now we’re ready to see how the code for the Remove method looks:

public void Remove(Object n)

Node p = FindPrevious(n);

if (!(p.Link == null))

p.Link = p.Link.Link;

}

The Remove method removes the first occurrence of an item in a linked list
only. You will also notice that if the item is not in the list, nothing happens.

The last method we’ll define in this section is PrintList, which traverses the
linked list and displays the Element fields of each node in the list.

public void PrintList() {
Node current = new Node();

current = header;

while (!(current.Link == null)) {
Console.WriteLine(current.Link.Element);

current = current.Link;

}
}

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

200 LINKED LISTS

LINKED LIST DESIGN MODIFICATIONS

There are several modifications we can make to our linked list design in order
to better solve certain problems. Two of the most common modifications are
the doubly linked list and the circularly linked list. A doubly linked list makes
it easier to move backward through a linked list and to remove a node from the
list. A circularly linked list is convenient for applications that move more than
once through a list. We’ll look at both of these modifications in this section.
Finally, we’ll look at a modification to the LinkedLast class that is common
only to object-oriented implementations of a linked list—an Iterator class for
denoting position in the list.

The Doubly Linked List

Although traversing a linked list from the first node in the list to the last node
is very straightforward, it is not as easy to traverse a linked list backward. We
can make this procedure much easier if we add a field to our Node class that
stores the link to the previous node. When we insert a node into the list, we’ll
have to perform more operations in order to assign data to the new field, but
we gain efficiency when we have to remove a node from the list, since we
don’t have to look for the previous node. Figure 11.5 illustrates graphically
how a doubly linked list works.

We first need to modify the Node class to add an extra link to the class.
To distinguish between the two links, we’ll call the link to the next node the
FLink, and the link to the previous node the BLink. These fields are set to
Nothing when a Node is instantiated. Here’s the code:

public class Node {

public Object Element;

public Node Flink;

public Node Blink;

public Node() {
Element = null;

Header

Points to Nothing

David Mike Raymond Nothing

FIGURE 11.5. A Doubly Linked List.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Linked List Design Modifications 201

Flink = null;

Blink = null;

}

public Node(Object theElement) {
Element = theElement;

Flink = null;

Blink = null;

}
}

The Insertion method is similar to the same method in a singularly linked
list, except we have to set the new node’s back link to point to the previous
node.

public void Insert(Object newItem, Object after) {
Node current = new Node();

Node newNode = new Node(newItem);

current = Find(after);

newNode.Flink = current.Link;

newNode.Blink = current;

current.Flink = newNode;

}

The Remove method for a doubly linked list is much simpler to write than
for a singularly linked list. We first need to find the node in the list; then we
set the node’s back link property to point to the node pointed to in the deleted
node’s forward link. Then we need to redirect the back link of the link the
deleted node points to and point it to the node before the deleted node.

Figure 11.6 illustrates a special case of deleting a node from a doubly linked
list when the node to be deleted is the last node in the list (other than the
Nothing node).

Header

Points to Nothing Nothing

David Mike Raymond Nothing

FIGURE 11.6. Removing a Node From a Doubly Linked.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

202 LINKED LISTS

The code for the Remove method of a doubly linked list is as follows.

public void Remove(Object n) {
Node p = Find(n);

if (!(p.Flink == null)) {
p.Blink.Flink = p.Flink;

p.Flink.Blink = p.Blink;

p.Flink = null;

p.Blink = null;

}
}

We’ll end this section on implementing doubly linked lists by writing a
method that prints the elements of a linked list in reverse order. In a singularly
linked list, this could be somewhat difficult, but with a doubly linked list, the
method is easy to write.

First, we need a method that finds the last node in the list. This is just a
matter of following each node’s forward link until we reach a link that points
to null. This method, called FindLast, is defined as follows:

private Node FindLast() {
Node current = new Node();

current = header;

while(!(current.Flink == null))

current = current.Flink;

return current;

}

Once we find the last node in the list, to print the list in reverse order we
just follow the backward link until we get to a link that points to null, which
indicates we’re at the header node. Here’s the code:

public void PrintReverse() {
Node current = new Node();

current = FindLast();

while (!(current.Blink == null)) {
Console.WriteLine(current.Element);

current = current.Blink;

}
}

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Linked List Design Modifications 203

Header David Mike Raymond

FIGURE 11.7. A Circularly Linked List.

The Circularly Linked List

A circularly linked list is a list where the last node points back to the first
node (which may be a header node). Figure 11.7 illustrates how a circularly
linked list works.

This type of linked list is used in certain applications that require the last
node pointing back to the first node (or the header). Many programmers
choose to use circularly linked lists when a linked list is called for.

The only real change we have to make to our code is to point the Header
node to itself when we instantiate a new linked list. If we do this, every time
we add a new node the last node will point to the Header, since that link is
propagated from node to node.

The code for a circularly linked list is shown. For clarity, we show the
complete class (and not just to pad book page length):

public class Node {

public Object Element;

public Node Flink;

public Node Blink;

public Node() {
Element = null;

Flink = null;

Blink = null;

}

public Node(Object theElement) {
Element = theElement;

Flink = null;

Blink = null;

}
}

public class LinkedList {
protected Node current;

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

204 LINKED LISTS

protected Node header;

private int count;

public LinkedList() {
count = 0;

header = new Node("header");

header.Link = header;

}

public bool IsEmpty() {
return (header.Link == null);

}

public void MakeEmpty() {
header.Link = null;

}

public void PrintList() {
Node current = new Node();

current = header;

while (!(current.Link.Element = "header")) {
Console.WriteLine(current.Link.Element);

current = current.Link;

}
}

private Node FindPrevious(Object n) {
Node current = header;

while (!(current.Link == null) && current.Link.

Element != n)

current = current.Link;

return current;

}

private Node Find(Object n) {
Node current = new Node();

current = header.Link;

while (current.Element != n)

current = current.Link;

return current;

}

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Linked List Design Modifications 205

public void Remove(Object n) {
Node p = FindPrevious(n);

if (!(p.Link == null)

p.Link = p.Link.Link;

count--;

}

public void Insert(Object n1, n2) {
Node current = new Node();

Node newnode = new Node(n1);

current = Find(n2);

newnode.Link = current.Link;

current.Link = newnode;

count++;

}

public void InsertFirst(Object n) {
Node current = new Node(n);

current.Link = header;

header.Link = current;

count++;

}

public Node Move(int n) {
Node current = header.Link;

Node temp;

for(int i = 0, i <= n; i++)

current = current.Link;

if (current.Element = "header")

current = current.Link;

temp = current;

return temp;

}
}

In the .NET Framework Library, the ArrayList data structure is imple-
mented using a circularly linked list. There are also many problems that can
be solved using a circularly linked list. We look at one typical problem in the
exercises.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

206 LINKED LISTS

USING AN ITERATOR CLASS

One problem the LinkedList class has is that you can’t refer to two positions
in the linked list at the same time. We can refer to any one position in the
list (the current node, the previous node, etc.), but if we want to specify
two or more positions, such as if we want to remove a range of nodes from
the list, we’ll need some other mechanism. This mechanism is an iterator
class.

The iterator class consists of three data fields: a field that stores the linked
list, a field that stores the current node, and a field that stores the current
node. The constructor method is passed a linked list object, and the method
sets the current field to the header node of the list passed into the method.
Let’s look at our definition of the class so far:

public class ListIter {

private Node current;

private Node previous;

LinkedList theList;

public ListIter(LinkedList list) {
theList = list;

current = theList.getFirst();

previous = null;

}

The first thing we want an Iterator class to do is allow us to move from
node to node through the list. The method nextLink does this:

public void NextLink() {
previous = current;

current = current.link;

}

Notice that in addition to establishing a new current position, the previous
node is also set to the node that is current before the method has finished
executing. Keeping track of the previous node in addition to the current node
makes insertion and removal easier to perform.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Using An Iterator Class 207

The getCurrent method returns the node pointed to by the iterator:

public Node GetCurrent()

return current;

}

Two insertion methods are built in the Iterator class: InsertBefore and
InsertAfter. InsertBefore inserts a new node before the current node;
InsertAfter inserts a new node after the current node. Let’s look at the Insert-
Before method first.

The first thing we have to do when inserting a new node before the current
object is check to see if we are at the beginning of the list. If we are, then we
can’t insert a node before the header node, so we throw an exception. This
exception is defined below. Otherwise, we set the new node’s Link field to the
Link field of the previous node, set the previous node’s Link field to the new
node, and reset the current position to the new node. Here’s the code:

public void InsertBefore(Object theElement) {
Node newNode = new Node(theElement);

if (current == header)

throw new InsertBeforeHeaderException();

else {
newNode.Link = previous.Link;

previous.Link = newNode;

current = newNode;

}
}

The InsertBeforeHeader Exception class definition is:

public class InsertBeforeHeaderException {

public InsertBeforeHeaderException() {
base("Can't insert before the header node.");

}
}

The InsertAfter method in the Iterator class is much simpler than the
method we wrote in the LinkedList class. Since we already know the position

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

208 LINKED LISTS

of the current node, the method just needs to set the proper links and set the
current node to the next node.

public void InsertAfter(Object theElement) {
Node newnode = new Node(theElement);

newNode.Link = current.Link;

current.Link = newnode;

NextLink();

}

Removing a node from a linked list is extremely easy using an Iterator
class. The method simply sets the Link field of the previous node to the node
pointed to by the current node’s Link field:

public void Remove() {
prevous.Link = current.Link;

}

Other methods we need in an Iterator class include methods to reset the
iterator to the header node (and the previous node to null) and a method to
test if we’re at the end of the list. These methods are shown as follows.

public void Reset()

current = theList.getFirst();

previous = null;

}

public bool AtEnd() {
return (current.Link == null);

}

The New LinkedList Class

With the Iterator class doing a lot of the work now, we can slim down the
LinkedList class quite a bit. Of course, we still need a header field and a
constructor method to instantiate the list.

public class LinkedList() {

private Node header;

public LinkedList() {

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Using An Iterator Class 209

header = new Node("header");

}

public bool IsEmpty() {
return (header.Link == null);

}

public Node GetFirst() {
return header;

}

public void ShowList() {
Node current = header.Link;

while (!(current == null)) {
Console.WriteLine(current.Element);

current = current.Link;

}
}

}

Demonstrating the Iterator Class

Using the Iterator class, it’s easy to write an interactive program to move
through a linked list. This also gives us a chance to put all the code for both
the Iterator class and the LinkedList class in one place.

using System;

public class Node

{

public Object Element;

public Node Link;

public Node()

{

Element = null;

Link = null;

}

public Node(Object theElement)

{

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

210 LINKED LISTS

Element = theElement;

Link = null;

}
}

public class InsertBeforeHeaderException : System.

ApplicationException

{

public InsertBeforeHeaderException(string message) :

base(message)

{
}

}

public class LinkedList {

private Node header;

public LinkedList() {
header = new Node("header");

}

public bool IsEmpty() {
return (header.Link == null);

}

public Node GetFirst() {
return header;

}

public void ShowList() {
Node current = header.Link;

while (!(current == null)) {
Console.WriteLine(current.Element);

current = current.Link;

}
}

}

public class ListIter {

private Node current;

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Using An Iterator Class 211

private Node previous;

LinkedList theList;

public ListIter(LinkedList list) {
theList = list;

current = theList.GetFirst();

previous = null;

}

public void NextLink() {
previous = current;

current = current.Link;

}

public Node GetCurrent() {
return current;

}

public void InsertBefore(Object theElement) {
Node newNode = new Node(theElement);

if (previous.Link == null)

throw new InsertBeforeHeaderException

("Can't insert here.");

else {
newNode.Link = previous.Link;

previous.Link = newNode;

current = newNode;

}
}

public void InsertAfter(Object theElement) {
Node newNode = new Node(theElement);

newNode.Link = current.Link;

current.Link = newNode;

NextLink();

}
public void Remove() {

previous.Link = current.Link;

}

public void Reset() {

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

212 LINKED LISTS

current = theList.GetFirst();

previous = null;

}

public bool AtEnd() {
return (current.Link == null);

}
}

class chapter11 {
static void Main() {

LinkedList MyList = new LinkedList();

ListIter iter = new ListIter(MyList);

string choice, value;

try

{
iter.InsertAfter("David");

iter.InsertAfter("Mike");

iter.InsertAfter("Raymond");

iter.InsertAfter("Bernica");

iter.InsertAfter("Jennifer");

iter.InsertBefore("Donnie");

iter.InsertAfter("Michael");

iter.InsertBefore("Terrill");

iter.InsertBefore("Mayo");

iter.InsertBefore("Clayton");

while (true)

{
Console.WriteLine("(n) Move to next node");

Console.WriteLine("(g)Get value in current node");

Console.WriteLine("(r) Reset iterator");

Console.WriteLine("(s) Show complete list");

Console.WriteLine("(a) Insert after");

Console.WriteLine("(b) Insert before");

Console.WriteLine("(c) Clear the screen");

Console.WriteLine("(x) Exit");

Console.WriteLine();

Console.Write("Enter your choice: ");

choice = Console.ReadLine();

choice = choice.ToLower();

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Using An Iterator Class 213

char[] onechar = choice.ToCharArray();

switch(onechar[0])

{
case 'n' :

if (!(MyList.IsEmpty()) &&

(!(iter.AtEnd())))

iter.NextLink();

else

Console.WriteLine("Can' move to

next link.");

break;

case 'g' :

if (!(MyList.IsEmpty()))

Console.WriteLine("Element: " +

iter.GetCurrent().Element);

else

Console.WriteLine ("List is empty.");

break;

case 'r' :

iter.Reset();

break;

case 's' :

if (!(MyList.IsEmpty()))

MyList.ShowList();

else

Console.WriteLine("List is empty.");

break;

case 'a' :

Console.WriteLine();

Console.Write("Enter value to insert:");

value = Console.ReadLine();

iter.InsertAfter(value);

break;

case 'b' :

Console.WriteLine();

Console.Write("Enter value to insert:");

value = Console.ReadLine();

iter.InsertBefore(value);

break;

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

214 LINKED LISTS

case 'c' :

// clear the screen

break;

case 'x' :

// end of program

break;

}
}

}
catch (InsertBeforeHeaderException e)

{
Console.WriteLine(e.Message);

}
}
}

Yes, this program is a Console application and doesn’t use a GUI. You will
get a chance to remedy this in the exercises, however.

THE GENERIC LINKED LIST CLASS AND THE GENERIC NODE CLASS

The System.Collections.Generic namespace provides two generic classes for
building linked lists: the LinkedList class and the LinkedListNode class. The
Node class provides two data fields for storing a value and a link, whereas the
LinkedList class implements a doubly linked list with methods for inserting
before a node as well as inserting after a node. The class also provides method
for removing nodes, finding the first and last nodes in the linked list, as well
as other useful methods.

A Generic Linked List Example

Like other generic classes, LinkedListNode and LinkedList require a data type
placeholder when instantiating objects. Here are some examples:

LinkedListNode<string> node1 = new LinkedListNode<string>_

(“Raymond");

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

The Generic Linked List Class and the Generic Node Class 215

LinkedList<string> names = new LinkedList<string>();

From here, it’s just a matter of using the classes to build and use a linked
list. A simple example demonstrates how easy it is to use these classes:

using System;

using System.Collections.Generic;

using System.Text;

class Program {

static void Main(string[] args) {
LinkedListNode<string> node = new

LinkedListNode<string>("Mike");

LinkedList<string> names = new LinkedList<string>();

names.AddFirst(node);

LinkedListNode<string> node1 = new

LinkedListNode<string>

("David");

names.AddAfter(node, node1);

LinkedListNode<string> node2 = new

LinkedListNode<string>

("Raymond");

names.AddAfter(node1, node2);

LinkedListNode<string> node3 = new LinkedListNode

<string>(null);

LinkedListNode<string> aNode = names.First;

while(aNode != null) {
Console.WriteLine(aNode.Value);

aNode = aNode.Next;

}
aNode = names.Find("David");

if (aNode != null) aNode = names.First;

while (aNode != null) {
Console.WriteLine(aNode.Value);

aNode = aNode.Next;

}
Console.Read()

}
}

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

216 LINKED LISTS

The linked list in this example does not use a header node because
we can easily find the first node in the linked list with the First prop-
erty. Although it wasn’t used in this example, there is also a Last property
that could be used in the previous While loop to check for the end of the
list:

while (aNode != names.Last) {
Console.WriteLine(aNode.Value);

aNode = aNode.Next;

}

There are two other methods, not shown here, that could prove useful in a
linked list implementation: AddFirst and AddLast. These methods can help
you implement a linked list without having to provide header and tail nodes
in your list.

SUMMARY

In the traditional study of computer programming, linked lists are often the
first data structure studied. In C#, however, it is possible to use one of the
built-in data structures, such as the ArrayList, and achieve the same result
as implementing a linked list. However, it is well worth every programming
student’s time to learn how linked lists work and how to implement them.
The .NET Framework library uses a circularly linked list design to implement
the ArrayList data structure.

C# 2.0 provides both a generic linked list class and a generic Node class.
These classes make it easier to write linked lists that can adapt to different
data type values for the nodes in the list.

There are several good books that discuss linked lists, though none of them
use C# as the target language. The definitive source, as usual, is Knuth’s The
Art of Computer Programming, Volume I, Fundamental Algorithms. Other books
you might consult for more information include Data Structures with C++,
by Ford and Topp, and, if you’re interested in Java implementations (and you
should be because you can almost directly convert a Java implementation to
C#) consult Data Structures and Algorithm Analysis In Java, by Mark Allen
Weiss.

P1: JZP
0521670152c11 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:36

Exercises 217

EXERCISES

1. Rewrite the Console application that uses an iterator-based linked list as a
Windows application.

2. According to legend, the first century Jewish historian, Flavius Josephus,
was captured along with a band of 40 compatriots by Roman soldiers during
the Jewish–Roman war. The captured soldiers decided that they preferred
suicide to being captured and devised a plan for their demise. They were
to form a circle and kill every third soldier until they were all dead. Joseph
and one other decided they wanted no part of this and quickly calculated
where they needed to place themselves in the circle so that they would both
survive. Write a program that allows you to place n people in a circle and
specify that every m person will be killed. The program should determine
the number of the last person left in the circle. Use a circularly linked list
to solve the problem.

3. Write a program that can read an indefinite number of lines of VB.NET code
and store reserved words in one linked list and identifiers and literals in
another linked list. When the program has finished reading input, display
the contents of each linked list.

4. Design and implement a ToArray method for the LinkedList class that takes
a linked list instance and returns an array.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

CHAPTER 12

Binary Trees and Binary
Search Trees

Trees are a very common data structure in computer science. A tree is a
nonlinear data structure that is used to store data in a hierarchical manner.
We examine one primary tree structure in this chapter, the binary tree, along
with one implementation of the binary tree, the binary search tree. Binary
trees are often chosen over more fundamental structures, such as arrays and
linked lists, because you can search a binary tree quickly (as opposed to a
linked list) and you can quickly insert data and delete data from a binary tree
(as opposed to an array).

THE DEFINITION OF A TREE

Before we examine the structure and behavior of the binary tree, we need to
define what we mean by a tree. A tree is a set of nodes connected by edges. An
example of a tree is a company’s organization chart (see Figure 12.1).

The purpose of an organization chart is to communicate to the viewer the
structure of the organization. In Figure 12.1, each box is a node and the
lines connecting the boxes are the edges. The nodes, obviously, represent
the entities (people) that make up an organization. The edges represent the
relationship between the entities. For example, the Chief Information Officer
(CIO), reports directly to the CEO, so there is an edge between these two

218

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

The Definition of a Tree 219

CEO

CIO VP SalesVP Finance

Support
Tech

Support
Tech

Development
Manager

Operations
Manager

FIGURE 12.1. A Partial Organizational Chart.

nodes. The IT manager reports to the CIO so there is an edge connecting
them. The Sales VP and the Development Manager in IT do not have a direct
edge connecting them, so there is not a direct relationship between these two
entities.

Figure 12.2 displays another tree that defines a few terms we need when
discussing trees. The top node of a tree is called the root node. If a node is
connected to other nodes below it, the top node is called the parent, and

Level 0

Level 1 (Left child of 23)

Level 2

Level 3

Subtree

13

23

(Leaf)

7 159

9 15

7746

42

54

Key value

root
(Parent of 13 and 54)

(Right child of 23)

Path from
 23

13

7

to 46

FIGURE 12.2. Parts of a Tree.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

220 BINARY TREES AND BINARY SEARCH TREES

the nodes below it are called the parent’s children. A node can have zero,
one, or more nodes connected to it. Special types of trees, called binary trees,
restrict the number of children to no more than two. Binary trees have certain
computational properties that make them very efficient for many operations.
Binary trees are discussed extensively in the sections of this chapter. A node
without any child node is called a leaf.

Continuing to examine Figure 12.2, you can see that by following cer-
tain edges, you can travel from one node to other nodes that are not
directly connected. The series of edges you follow to get from one node
to another is called a path (depicted in the figure with dashed lines). Vis-
iting all the nodes in a tree in some particular order is known as a tree
transversal.

A tree can be broken down into levels. The root node is at Level 0, its
children at Level 1, those node’s children are at Level 2, and so on. A node at
any level is considered the root of a subtree, which consists of that root node’s
children, its children’s children, and so on. We can define the depth of a tree
as the number of layers in the tree.

Finally, each node in a tree has a value. This value is sometimes referred to
as the key value.

BINARY TREES

A binary tree is defined as a tree where each node can have no more than
two children. By limiting the number of children to 2, we can write efficient
programs for inserting data, deleting data, and searching for data in a binary
tree.

Before we discuss building a binary tree in C#, we need to add two
terms to our tree lexicon. The child nodes of a parent node are referred
to as the left node and the right node. For certain binary tree implemen-
tations, certain data values can only be stored in left nodes and other data
values must be stored in right nodes. An example binary tree is shown in
Figure 12.3.

Identifying the child nodes is important when we consider a more specific
type of binary tree—the binary search tree. A binary search tree is a binary tree
where data with lesser values are stored in left nodes and values with greater
values are stored in right nodes. This property provides for very efficient
searches, as we shall soon see.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Binary Trees 221

22

56

10 30 9277

81

FIGURE 12.3. A Binary Tree.

Building a Binary Search Tree

A binary search tree is made up of nodes, so we need a Node class that is
similar to the Node class we used in the linked list implementation. Let’s look
at the code for the Node class first:

public class Node {

public int Data;

public Node left;

public Node right;

public void DisplayNode() {
Console.Write(iData);

}
}

We include Public data members for the data stored in the node and for
each child node. The displayNode method allows us to display the data stored
in a node. This particular Node class holds integers, but we could adopt the
class easily to hold any type of data, or even declare iData of Object type if we
need to.

Next we’re ready to build a BinarySearchTree (BST) class. The class consists
of just one data member—a Node object that represents the root node of the
BST. The default constructor method for the class sets the root node to null,
creating an empty node.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

222 BINARY TREES AND BINARY SEARCH TREES

We next need an Insert method to add new nodes to our tree. This method
is somewhat complex and will require some explanation. The first step in
the method is to create a Node object and assign the data the Node holds
to the iData variable. This value is passed in as the only argument to the
method.

The second step to insertion is to see if our BST has a root node. If not,
then this is a new BST and the node we are inserting is the root node. If this
is the case, then the method is finished. Otherwise, the method moves on to
the next step.

If the node being added is not the root node, then we have to prepare to
traverse the BST in order to find the proper insertion point. This process is
similar to traversing a linked list. We need a Node object that we can assign
to the current node as we move from level to level. We also need to position
ourselves inside the BST at the root node.

Once we’re inside the BST, the next step is to determine where to put the
new node. This is performed inside a while loop that we break once we’ve
found the correct position for the new node. The algorithm for determining
the proper position for a node is as follows:

1. Set the parent node to be the current node, which is the root node.
2. If the data value in the new node is less than the data value in the current

node, set the current node to be the left child of the current node. If the
data value in the new node is greater than the data value in the current
node, skip to Step 4.

3. If the value of the left child of the current node is null, insert the new node
here and exit the loop. Otherwise, skip to the next iteration of the While
loop.

4. Set the current node to the right child node of the current node.
5. If the value of the right child of the current node is null, insert the new

node here and exit the loop. Otherwise, skip to the next iteration of the
While loop.

The code for the Insert method, along with the rest of the code for the BST
class (that has been discussed) and the Node class is as follows:

public class Node {

public int Data;

public Node Left;

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Binary Trees 223

public Node Right;

public void DisplayNode() {
Console.Write(Data + " ");

}
}

public class BinarySearchTree {

public Node root;

public BinarySearchTree() {
root = null;

}

public void Insert(int i) {
Node newNode = new Node();

newNode.Data = i;

if (root == null)

root = newNode;

else {
Node current = root;

Node parent;

while (true) {
parent = current;

if (i < current.Data) {
current = current.Left;

if (current == null) {
parent.Left = newNode;

break;

}
else {

current = current.Right;

if (current == null) {
parent.Right = newNode;

break;

}
}

}
}

}

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

224 BINARY TREES AND BINARY SEARCH TREES

Traversing a Binary Search Tree

We now have the basics to implement the BST class, but all we can do so far
is insert nodes into the BST. We need to be able to traverse the BST so that we
can visit the different nodes in several different orders.

There are three traversal methods used with BSTs: inorder, preorder, and
postorder. An inorder traversal visits all the nodes in a BST in ascending order
of the node key values. A preorder traversal visits the root node first, followed
by the nodes in the subtrees under the left child of the root, followed by the
nodes in the subtrees under the right child of the root. Although it’s easy
to understand why we would want to perform an inorder traversal, it is less
obvious why we need preorder and postorder traversals. We’ll show the code
for all three traversals now and explain their uses in a later section.

An inorder traversal can best be written as a recursive procedure. Since the
method visits each node in ascending order, the method must visit both the left
node and the right node of each subtree, following the subtrees under the left
child of the root before following the subtrees under the right side of the
root. Figure 12.4 diagrams the path of an inorder traversal.

Here’s the code for a inorder traversal method:

public void InOrder(Node theRoot) {
if (!(theRoot == null)) {

InOrder(theRoot.Left);

theRoot.DisplayNode();

InOrder(theRoot.Right);

}
}

7010

50

5 8015 60

FIGURE 12.4. Inorder Traversal Order.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Binary Trees 225

To demonstrate how this method works, let’s examine a program that inserts
a series of numbers into a BST. Then we’ll call the inOrder method to display
the numbers we’ve placed in the BST. Here’s the code:

static void Main() {
BinarySearchTree nums = new BinarySearchTree();

nums.Insert(23);

nums.Insert(45);

nums.Insert(16);

nums.Insert(37);

nums.Insert(3);

nums.Insert(99);

nums.Insert(22);

Console.WriteLine("Inorder traversal: ");

nums.inOrder(nums.root);

}

Here’s the output:

Inorder traversal:

3 16 22 23 37 45 99

This list represents the contents of the BST in ascending numerical order,
which is exactly what an inorder traversal is supposed to do.

Figure 12.5 illustrates the BST and the path the inorder traversal follows.

4516

23

3 9922 37

FIGURE 12.5. Inorder Traversal Path.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

226 BINARY TREES AND BINARY SEARCH TREES

Now let’s examine the code for a preorder traversal:

public void PreOrder(Node theRoot) {
if (!(theRoot == null)) {

theRoot.displayNode();

preOrder(theRoot.Left);

preOrder(theRoot.Right);

}
}

Notice that the only difference between the preOrder method and the inOrder
method is where the three lines of code are placed. The call to the displayN-
ode method was sandwiched between the two recursive calls in the inOrder
method and it is the first line of the preOrder method.

If we replace the call to inOrder with a call to preOrder in the previous
sample program, we get the following output:

Preorder traversal:

23 16 3 22 45 37 99

Finally, we can write a method for performing postorder traversals:

public void PostOrder(Node theRoot) {
if (!(theRoot == null)) {

PostOrder(theRoot.Left);

PostOrder(theRoot.Right);

theRoot.DisplayNode();

}
}

Again, the difference between this method and the other two traversal
methods is where the recursive calls and the call to displayNode are placed.
In a postorder traversal, the method first recurses over the left subtrees and
then over the right subtrees. Here’s the output from the postOrder method:

Postorder traversal:

3 22 16 37 99 45 23

We’ll look at some practical programming examples using BSTs that use
these traversal methods later in this chapter.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Binary Trees 227

Finding a Node and Minimum/Maximum Values
in a Binary Search Tree

Three of the easiest things to do with BSTs are find a particular value, find the
minimum value, and find the maximum value. We examine these operations
in this section.

The code for finding the minimum and maximum values is almost trivial
in both cases, due to the properties of a BST. The smallest value in a BST will
always be found at the last left child node of a subtree beginning with the left
child of the root node. On the other hand, the largest value in a BST is found
at the last right child node of a subtree beginning with the right child of the
root node.

We provide the code for finding the minimum value first:

public int FindMin() {
Node current = root;

while (!(current.Left == null))

current = current.Left;

return current.Data;

}

The method starts by creating a Node object and setting it to the root node
of the BST. The method then tests to see if the value in the left child is null. If
a non-Nothing node exists in the left child, the program sets the current node
to that node. This continues until a node is found whose left child is equal to
null. This means there is no smaller value below and the minimum value has
been found.

Now here’s the code for finding the maximum value in a BST:

public int FindMax() {
Node current = root;

while (!(current.Right == null))

current = current.Right;

return current.Data;

}

This method looks almost identical to the FindMin() method, except the
method moves through the right children of the BST instead of the left
children.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

228 BINARY TREES AND BINARY SEARCH TREES

The last method we’ll look at here is the Find method, which is used to
determine if a specified value is stored in the BST. The method first creates a
Node object and sets it to the root node of the BST. Next it tests to see if the
key (the data we’re searching for) is in that node. If it is, the method simply
returns the current node and exits. If the data isn’t found in the root node, the
data we’re searching for is compared to the data stored in the current node.
If the key is less than the current data value, the current node is set to the
left child. If the key is greater than the current data value, the current node is
set to the right child. The last segment of the method will return null as the
return value of the method if the current node is null (Nothing), indicating
the end of the BST has been reached without finding the key. When the While
loop ends, the value stored in current is the value being searched for.

Here’s the code for the Find method:

public Node Find(int key) {
Node current = root;

while (current.iData != key) {
if (key < current.iData)

current = current.Left;

Else

current = current.Right;

if (current == null)

return null;

}
return current;

}

Removing a Leaf Node From a BST

The operations we’ve performed on a BST so far have not been that compli-
cated, at least in comparison with the operation we explore in this section—
removal. For some cases, removing a node from a BST is almost trivial; for
other cases, it is quite involved and demands that we pay special care to the
code we right, otherwise we run the risk of destroying the correct hierarchical
order of the BST.

Let’s start our examination of removing a node from a BST by discussing
the simplest case—removing a leaf. Removing a leaf is the simplest case since
there are no child nodes to take into consideration. All we have to do is set

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Binary Trees 229

each child node of the target node’s parent to null. Of course, the node will
still be there, but there will not be any references to the node.

The code fragment for deleting a leaf node is as follows (this code also
includes the beginning of the Delete method, which declares some data mem-
bers and moves to the node to be deleted):

public Node Delete(int key) {
Node current = root;

Node parent = root;

bool isLeftChild = true;

while (current.Data != key) {
parent = current;

if (key < current.Data) {
isLeftChild = true;

current = current.Right;

else {
isLeftChild = false;

current = current.Right;

}
if (current == null)

return false;

}
if ((current.Left == null) & (current.Right == null))

if (current == root)

root == null;

else if (isLeftChild)

parent.Left = null;

else

parent.Right = null;

}

// the rest of the class goes here

}

The while loop takes us to the node we’re deleting. The first test is to see if
the left child and the right child of that node are null. Then we test to see if
this node is the root node. If so, we set it to null, otherwise, we either set the
left node of the parent to null (if isLeftChild is true) or we set the right node
of the parent to null.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

230 BINARY TREES AND BINARY SEARCH TREES

Deleting a Node With One Child

When the node to be deleted has one child, there are four conditions we have
to check for: 1. the node’s child can be a left child; 2. the node’s child can be
a right child; 3. the node to be deleted can be a left child; or 4. the node to be
deleted can be a right child.

Here’s the code fragment:

else if (current.Right == null)

if (current == root)

root = current.Left;

else if (isLeftChild)

parent.Left = current.Left;

else

parent.Right = current.Right;

else if (current.Left == null)

if (current == root)

root = current.Right;

else if (isLeftChild)

parent.Left = parent.Right;

else

parent.Right = current.Right;

First, we test to see if the right node is null. If so, then we test to see if we’re
at the root. If we are, we move the left child to the root node. Otherwise, if the
node is a left child we set the new parent left node to the current left node,
or if we’re at a right child, we set the parent right node to the current right
node.

Deleting a Node With Two Children

Deletion now gets tricky when we have to delete a node with two children.
Why? Look at Figure 12.6. If we need to delete the node marked 52, what do
we do to rebuild the tree. We can’t replace it with the subtree starting at the
node marked 54 because 54 already has a left child.

The answer to this problem is to move the inorder successor into the place
of the deleted node. This works fine unless the successor itself has children,

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Binary Trees 231

Node
to

delete

Can’t
move
subtree49

52

45

46 50 5553

54

FIGURE 12.6. Deleting A Node With Two Children.

but there is a way around that scenario also. Figure 12.7 diagrams how using
the inorder successor works.

To find the successor, go to the original node’s right child. This node has
to be larger than the original node by definition. Then it begins following left
child paths until it runs out of nodes. Since the smallest value in a subtree
(like a tree) must be at the end of the path of left child nodes, following this
path to the end will leave us with the smallest node that is larger than the
original node.

Move
in order
successor49

52

45

46 50 5553

54

FIGURE 12.7. Moving the Inorder Successor.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

232 BINARY TREES AND BINARY SEARCH TREES

Here’s the code for finding the successor to a deleted node:

public Node GetSuccessor(Node delNode) {
Node successorParent = delNode;

Node successor = delNode;

Node current = delNode.Right;

while (!(current == null)) {
successorParent = current;

successor = current;

current = current.Left;

}
if (!(successor == delNode.Right)) {

successorParent.Left = successor.Right;

successor.Right = delNode.Right;

}
return successor;

}

Now we need to look at two special cases: the successor is the right child
of the node to be deleted and the successor is the left child of the node to be
deleted. Let’s start with the former.

First, the node to be deleted is marked as the current node. Remove this
node from the right child of its parent node and assign it to point to the
successor node. Then, remove the current node’s left child and assign to it
the left child node of the successor node. Here’s the code fragment for this
operation:

else {
Node successor = GetSuccessor(current);

if (current == root)

root = successor;

else if (isLeftChild)

parent.Left = successor;

else

parent.Right = successor;

successor.Left = current.Left;

}

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Binary Trees 233

Now let’s look at the situation when the successor is the left child of the
node to be deleted. The algorithm for performing this operation is as follows:

1. Assign the right child of the successor to the successor’s parent left child
node.

2. Assign the right child of the node to be deleted to the right child of the
successor node.

3. Remove the current node from the right child of its parent node and assign
it to point to the successor node.

4. Remove the current node’s left child from the current node and assign it to
the left child node of the successor node.

Part of this algorithm is carried out in the GetSuccessor method and part of it
is carried out in the Delete method. The code fragment from the GetSuccessor
method is:

if (!(successor == delNode.Right)) {
successorParent.Left = successor.Right;

successor.Right = delNode.Right;

}

The code from the Delete method is:

if (current == root)

root = successor;

else if (isLeftChild)

parent.Left = successor;

else

parent.Right = successor;

successor.Left = current.Left;

This completes the code for the Delete method. Because this code is some-
what complicated, some binary search tree implementations simply mark
nodes for deletion and include code to check for the marks when performing
searches and traversals.

Here’s the complete code for Delete:

public bool Delete(int key) {
Node current = root;

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

234 BINARY TREES AND BINARY SEARCH TREES

Node parent = root;

bool isLeftChild = true;

while (current.Data != key) {
parent = current;

if (key < current.Data) {
isLeftChild = true;

current = current.Right;

} else {
isLeftChild = false;

current = current.Right;

}
if (current == null)

return false;

}
if ((current.Left == null) && (current.Right == null))

if (current == root)

root = null;

else if (isLeftChild)

parent.Left = null;

else

parent.Right = null;

else if (current.Right == null)

if (current == root)

root = current.Left;

else if (isLeftChild)

parent.Left = current.Left;

else

parent.Right = current.Right;

else if (current.Left == null)

if (current == root)

root = current.Right;

else if (isLeftChild)

parent.Left = parent.Right;

else

parent.Right = current.Right;

else

Node successor = GetSuccessor(current);

if (current == root)

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

Exercises 235

root = successor;

else if (isLeftChild)

parent.Left = successor;

else

parent.Right = successor;

successor.Left = current.Left;

}
return true;

}

SUMMARY

Binary search trees are a special type of data structure called a tree. A tree is
a collection of nodes (objects that consist of fields for data and links to other
nodes) that are connected to other nodes. A binary tree is a specialized tree
structure where each node can have only two child nodes. A binary search
tree is a specialization of the binary tree that follows the condition that lesser
values are stored in left child nodes and greater values are stored in right
nodes.

Algorithms for finding the minimum and maximum values in a binary
search tree are very easy to write. We can also simply define algorithms for
traversing binary search trees in different orders (inorder, preorder, postorder).
These definitions make use of recursion, keeping the number of lines of code
to a minimum while making their analysis a bit harder.

Binary search trees are most useful when the data stored in the structure
are obtained in a random order. If the data in the tree are obtained in sorted or
close-to-sorted order, the tree will be unbalanced and the search algorithms
will not work as well.

EXERCISES

1. Write a program that generates 10,000 random integers in the range of
0–9 and store them in a binary search tree. Using one of the algorithms
discussed in this chapter, display a list of each of the integers and the
number of times they appear in the tree.

2. Add a function to the BinarySearchTree class that counts the number of
edges in a tree.

P1: JZP
0521670152c12 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:38

236 BINARY TREES AND BINARY SEARCH TREES

3. Rewrite Exercise 1 so that it stores the words from a text file. Display all
the words in the file and the number of times they occur in the file.

4. An arithmetic expression can be stored in a binary search tree. Modify the
BinarySearchTree class so that an expression such as 2 + 3 ∗ 4 / 5 can be
properly evaluated using the correct operator precedence rules.

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

CHAPTER 13

Sets

A set is a collection of unique elements. The elements of a set are called
members. The two most important properties of sets are that the members of
a set are unordered and no member can occur in a set more than once. Sets
play a very important role in computer science but are not included as a data
structure in C#.

This chapter discusses the development of a Set class. Rather than providing
just one implementation, however, we provide two. For nonnumeric items, we
provide a fairly simple implementation using a hash table as the underlying
data store. The problem with this implementation is its efficiency. A more
efficient Set class for numeric values utilizes a bit array as its data store. This
forms the basis of our second implementation.

FUNDAMENTAL SET DEFINITIONS, OPERATIONS AND PROPERTIES

A set is defined as an unordered collection of related members in which
no member occurs more than once. A set is written as a list of members
surrounded by curly braces, such as {0,1,2,3,4,5,6,7,8,9}. We can write a set
in any order, so the previous set can be written as {9,8,7,6,5,4,3,2,1,0} or
any other combination of the members so that all members are written just
once.

237

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

238 SETS

Set Definitions

Here are some definitions you need to know in order to work with sets.

1. A set that contains no members is called the empty set. The universe is the
set of all possible members.

2. Two sets are considered equal if they contain exactly the same members.
3. A set is considered a subset of another set if all the members of the first set

are contained in the second set.

Set Operations

The following describes the fundamental operations performed on sets.

1. Union: A new set is obtained by combining the members of one set with
the members of a second set.

2. Intersection: A new set is obtained by adding all the members of one set
that also exist in a second set.

3. Difference: A new set is obtained by adding all the members of one set
except those that also exist in a second set.

Set Properties

The following properties are defined for sets.

1. The intersection of a set with the empty set is the empty set. The union of
a set with the empty set is the original set.

2. The intersection of a set with itself is the original set. The union of a set
with itself is the original set.

3. Intersection and union are commutative. In other words, set1 intersection
set2 is equal to set2 intersect set1, and the same is true for the union of the
two sets.

4. Intersection and union are associative. set1 intersection (set2 intersection
set3) is equal to (set1 intersection set2) intersection s3. The same is true
for the union of multiple sets.

5. The intersection of a set with the union of two other sets is distribu-
tive. In other words, set1 intersection (set2 union set3) is equal to (set1

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

A First Set Class Implementation Using a Hash Table 239

intersection set2) union (set1 intersection set3). This also works for the
union of a set with the intersection of two other sets.

6. The intersection of a set with the union of itself and another set yields the
original set. This is also true for the union of a set with the intersection of
itself and another set. This is called the absorption law.

7. The following equalities exist when the difference of the union or inter-
section of two sets is taken from another set. The equalities are:

set1 difference (set2 union set3) equals (set1 difference set2) intersection
(set1 difference set3)
and
set1 difference (set2 intersection set3) equals (set1 difference set2) union
(set1 difference set3)

These equalities are known as DeMorgan’s Laws.

A FIRST SET CLASS IMPLEMENTATION USING A HASH TABLE

Our first Set class implementation will use a hash table to store the members
of the set. The HashTable class is one of the more efficient data structures
in the.NET Framework library and it should be your choice for most class
implementations when speed is important. We will call our class CSet since
Set is a reserved word in C#.

Class Data Members and Constructor Method

We only need one data member and one constructor method for our CSet class.
The data member is a hash table and the constructor method instantiates the
hash table. Here’s the code:

public class CSet {

private Hashtable data;

public CSet() {

data = new Hashtable();

}
// More code to follow

}

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

240 SETS

The Add Method

To add members to a set, the Add method needs to first check to make sure the
member isn’t already in the set. If it is, then nothing happens. If the member
isn’t in the set, it is added to the hash table.

public void Add(Object item) {
if (!(data.ContainsValue(item))

data.Add(Hash(item), item);

}

Since items must be added to a hash table as a key–value pair, we calculate
a hash value by adding the ASCII value of the characters of the item being
added to the set. Here’s the Hash function:

private string Hash(Object item) {
char[] chars;

string s = item.ToString();

chars = s.ToCharArray();

for(int i = 0; i <= chars.GetUpperBound(0); i++)

hashValue += (int)chars[i];

return hashValue.ToString();

}

The Remove and Size Methods

We also need to be able to remove members from a set and we also need to
determine the number of members (size) in a set. These are straightforward
methods:

public void Remove(Object item) {
data.Remove(Hash(item));

}
public int Size() {

return data.Count;

}

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

A First Set Class Implementation Using a Hash Table 241

The Union Method

The Union method combines two sets using the Union operation discussed
previously to form a new set. The method first builds a new set by adding all
the members of the first set. Then the method checks each member of the
second set to see if it is already a member of the first set. If it is, the member
is skipped over, and if not, the member is added to the new set.

Here’s the code:

public CSet Union(CSet aSet) {
CSet tempSet = new CSet();

foreach (Object hashObject in data.Keys)

tempSet.Add(this.data[hashObject]);

foreach (Object hashObject in aSet.data.Keys)

if (!(this.data.ContainsKey(hashObject)))

tempSet.Add(aSet.data[hashObject]);

return tempSet;

}

The Intersection Method

The Intersection method loops through the keys of one set, checking to see if
that key is found in the passed-in set. If so, the member is added to the new
set and skipped otherwise.

public CSet Intersection(CSet aSet) {
CSet tempSet = new CSet();

foreach (Object hashObject in data.Keys)

if (aSet.data.Contains(hashObject))

tempSet.Add(aSet.GetValue(hashObject))

return tempSet;

}

The isSubset Method

The first requirement for a set to be a subset of another set is that the first
set must be smaller in size in the second set. The Subset method checks the

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

242 SETS

size of the sets first, and if the first set qualifies, then checks to see that every
member of the first set is a member of the second set. The code is shown as
follows:

public bool Subset(CSet aSet) {
if (this.Size > aSet.Size)

return false;

else

foreach(Object key in this.data.Keys)

if (!(aSet.data.Contains(key)))

return false;

return true;

}

The Difference Method

We’ve already examined how to obtain the difference of two sets. To perform
this computationally, the method loops over the keys of the first set, looking
for any matches in the second set. A member is added to the new set if it exists
in the first set and is not found in the second set. Here’s the code (along with
a ToString method):

public CSet Difference(CSet aSet) {
CSet tempSet = new CSet();

foreach (Object hashObject in data.Keys)

if (!(aSet.data.Contains(hashObject)))

tempSet.Add(data[hashObject]);

return tempSet;

}
public override string ToString() {

string s;

foreach(Object key in data.Keys)

s += data[key] + " ";

return s;

}

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

A First Set Class Implementation Using a Hash Table 243

A Program to Test the CSet Implementation

Here’s a program that tests our implementation of the CSet class by cre-
ating two sets, performing a union of the two sets, an intersection of the
two sets, finding the subset of the two sets, and the difference of the two
sets.

Here is the program:

static void Main() {
CSet setA = new CSet();

CSet setB = new CSet();

setA.add("milk");

setA.add("eggs");

setA.add("bacon");

setA.add("cereal");

setB.add("bacon");

setB.add("eggs");

setB.add("bread")

CSet setC = new CSet();

setC = setA.Union(setB);

Console.WriteLine();

Console.WriteLine("A: " & setA.ToString());

Console.WriteLine("B: " & setB.ToString())

Console.WriteLine("A union B: " & setC.ToString());

setC = setA.Intersection(setB);

Console.WriteLine("A intersect B: " &

setC.ToString());

setC = setA.Difference(setB);

Console.WriteLine("A diff B: " & setC.ToString());

setC = setB.Difference(setA);

Console.WriteLine("B diff A: " & setC.ToString());

if (setB.isSubset(setA))

Console.WriteLine("b is a subset of a");

else

Console.WriteLine("b is not a subset of a");

}

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

244 SETS

The output from this program is:

If we comment out the line where “bread” is added to setB, we get the
following output:

In the first example, setB could not be a subset of subA because it contained
bread. Removing bread as a member makes setB a subset of subA, as shown
in the second screen.

A BITARRAY IMPLEMENTATION OF THE CSET CLASS

The previous implementation of the CSet class works for objects that are not
numbers, but is still somewhat inefficient, especially for large sets. When we
have to work with sets of numbers, a more efficient implementation uses the
BitArray class as the data structure to store set members. The BitArray class
was discussed in depth in Chapter 7.

Overview of Using a BitArray Implementation

There are several advantages to using a BitArray to store integer set members.
First, because we are really only storing Boolean values, the storage space

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

A BitArray Implementation of the CSet Class 245

requirement is small. The second advantage is that the four main operations
we want to perform on sets (union, intersection, difference, and subset) can
be performed using simple Boolean operators (And, Or, and Not). The imple-
mentations of these methods are much faster than the implementations using
a hash table.

The storage strategy for creating a set of integers using a BitArray is as
follows: Consider adding the member 1 to the set. We simply set the array
element in index position 1 to True. If we add 4 to the set, the element at
position 4 is set to True, and so on.

We can determine which members are in the set by simply checking to
see if the value at that array position is set to True. We can easily remove a
member from the set by setting that array position to False.

Computing the union of two sets using Boolean values is simple and effi-
cient. Since the union of two sets is a combination of the members of both
sets, we can build a new union set by Oring the corresponding elements of
the two BitArrays. In other words, a member is added to the new set if the
value in the corresponding position of either BitArray is True.

Computing the intersection of two sets is similar to computing the union;
only for this operation we use the And operator instead of the Or operator.
Similarly, the difference of two sets is found by executing the And operator
with a member from the first set and the negation of the corresponding mem-
ber of the second set. We can determine if one set is a subset of another set by
using the same formula we used for finding the difference. For example, if:

setA(index) && !(setB(index))

evaluates to False then setA is not a subset of setB.

The BitArray Set Implementation

The code for a CSet class based on a BitArray is shown as follows:

public class CSet {
private BitArray data;

public BitArray() {
data = new BitArray(5);

}
public void Add(int item) {

data[item] = true;

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

246 SETS

}
public bool IsMember(int item) {

return data[item];

}
public void Remove(int item) {

data[item] = false;

}
public CSet Union(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

tempSet.data[index] = (this.data[index ||
aSet.data[index]);

return tempSet;

}
public CSet Intersection(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

tempSet.data[index] = (this.data[index] &&

aSet.data[index]);

return tempSet;

}
public CSet Difference(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

tempSet.data[index] = (this.data[index] &&

(!(aSet.data[index])));

return tempSet;

}
public bool IsSubset(CSet aSet) {

CSet tempSet = new CSet();

for(int i = 0; i <= data.Count-1; i++)

if (this.data[index] && (!(aSet.data[index])))

return false;

return true;

}
public override string ToString() {

string s = "";

for(int i = 0; i <= data.Count-1; i++)

if (data[index])

str += index;

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

A BitArray Implementation of the CSet Class 247

return st;

}
}

Here’s a program to test our implementation:

static void Main()

CSet setA = new CSet();

CSet setB = new CSet();

setA.Add(1);

setA.Add(2);

setA.Add(3);

setB.Add(2);

setB.Add(3);

CSet setC = new CSet();

setC = setA.Union(setB);

Console.WriteLine();

Console.WriteLine(setA.ToString());

Console.WriteLine(setC.ToString());

setC = setA.Intersection(setB);

Console.WriteLine(setC.ToString());

setC = setA.Difference(setB);

Console.WriteLine(setC.ToString());

Dim flag As Boolean = setB.isSubset(setA);

if (flag)

Console.WriteLine("b is a subset of a");

else

Console.WriteLine("b is not a subset of a");

}

The output from this program is:

P1: JZP
0521670152c13 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:41

248 SETS

SUMMARY

Sets and set theory provide much of the foundation of computer science
theory. Although some languages provide a built-in set data type (Pascal),
and other languages provide a set data structure via a library (Java), C# does
not provide a set data type or data structure.

The chapter discussed two different implementations of a set class, one
using a hash table as the underlying data store and the other implementation
using a bit array as the data store. The bit array implementation is only appli-
cable for storing integer set members, whereas the hash table implementation
will store members of any data type. The bit array implementation is inher-
ently more efficient than the hash table implementation and should be used
any time you are storing integer values in a set.

EXERCISES

1. Create two pairs of sets using both the hash table implementation and the
bit array implementation. Both implementations should use the same sets.
Using the Timing class, compare the major operations (union, intersec-
tion, difference, isSubset) of each implementation and report the actual
difference in times.

2. Modify the hash table implementation so that it uses an ArrayList to store
the set members rather than a hash table. Compare the running times of
the major operations of this implementation with the hash table imple-
mentation. What is the difference in times?

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

CHAPTER 14

Advanced Sorting Algorithms

In this chapter, we examine algorithms for sorting data that are more
complex than the algorithms examined in Chapter 4. These algorithms are
also more efficient, and one of them, the QuickSort algorithm, is generally
considered to be the most efficient sort to use in most situations. The other
sorting algorithms we’ll examine are the ShellSort, the MergeSort, and the
HeapSort.

To compare these advanced sorting algorithms, we’ll first discuss how each
of them is implemented, and in the exercises you will use the Timing class to
determine the efficiency of these algorithms.

THE SHELLSORT ALGORITHM

The ShellSort algorithm is named after its inventor Donald Shell. This algo-
rithm is fundamentally an improvement of the insertion sort. The key concept
in this algorithm is that it compares items that are distant rather than adjacent
items, as is done in the insertion sort. As the algorithm loops through the data
set, the distance between each item decreases until at the end the algorithm
is comparing items that are adjacent.

ShellSort sorts distant elements by using an increment sequence. The
sequence must start with 1, but can then be incremented by any amount.

249

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

250 ADVANCED SORTING ALGORITHMS

A good increment to use is based on this code fragment:

while (h <= numElements / 3)

h = h * 3 + 1;

where numElements is the number of elements in the data set being sorted,
such as an array.

For example, if the sequence number generated by the code is 4, every
fourth element of the data set is sorted. Then a new sequence number is
chosen, using this code:

h = (h - 1) / 3;

Then the next h elements are sorted, and so on.
Let’s look at the code for the ShellSort algorithm (we are using the Array-

Class code from Chapter 4):

public void ShellSort() {
int inner, temp;

int h = 1;

while (h <= numElements / 3)

h = h * 3 + 1;

while (h > 0) {
for(int outer = h; h <= numElements-1;h++) {

temp = arr[outer];

inner = outer;

while ((inner > h-1) && arr[inner-h] >= temp) {
arr[inner] = arr[inner-h];

inner -= h;

}
arr[inner] = temp;

}
h = (h-1) / 3;

}
}

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

The MergeSort Algorithm 251

Here’s some code to test the algorithm:

static void Main() {
const int SIZE = 19;

CArray theArray = new CArray(SIZE);

For(int index = 0; index <= SIZE; index++)

theArray.Insert(Int(100 * Rnd() + 1));

Console.WriteLine();

theArray.showArray();

Console.WriteLine();

theArray.ShellSort();

theArray.showArray();

}

The output from this code is:

The ShellSort is often considered a good advanced sorting algorithm to use
because it is fairly easy to implement but its performance is acceptable even
for data sets in the tens of thousands of elements.

THE MERGESORT ALGORITHM

The MergeSort algorithm is a very good example of a recursive algorithm. This
algorithm works by breaking the data set up into two halves and recursively
sorting each half. When the two halves are sorted, they are brought together
using a merge routine.

The easy work comes when sorting the data set. Let’s say we have the
following data in the set: 71 54 58 29 31 78 2 77. First, the data set is bro-
ken up into two separate sets: 71 54 58 29 and 31 78 2 77. Then each half

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

252 ADVANCED SORTING ALGORITHMS

is sorted: 29 54 58 71 and 2 31 77 78. Then the two sets are merged, 2
29 31 54 58 71 77 78. The merge process compares the first two elements
of each data set (stored in temporary arrays), copying the smaller value to
yet another array. The element not added to the third array is then com-
pared to the next element in the other array. The smaller element is added
to the third array, and this process continues until both arrays are out of
data.

But what if one array runs out of data before the other? This is likely to
happen and the algorithm makes provisions for this situation. Two extra loops
are used that are called only if one or the other of the two arrays still has data
in it after the main loop finishes.

Now we can see the code for performing a MergeSort. The first two methods
are the MergeSort and the recMergeSort methods. The first method simply
launches the recursive subroutine recMergeSort, which performs the sorting
of the array:

public void MergeSort() {
int[] tempArray = new int[numElements];

RecMergeSort(tempArray, 0, numElements-1);

}
public void RecMergeSort(int[] tempArray, int lbount,

int ubound) {
if (lbound == ubound)

return

else {
int mid = (int)(lbound + ubound) / 2;

RecMergeSort(tempArray, lbound, mid);

RecMergeSort(tempArray, mid+1, ubound);

RecMergeSort(tempArray, lbound, mid+1, ubound);

}
}

In RecMergeSort, the first if statement is the base case of the recursion,
returning to the calling program when the condition becomes true. Otherwise,
the middle point of the array is found and the routine is called recursively
on the bottom half of the array (the first call to RecMergeSort) and then on
the top half of the array (the second call to RecMergeSort). Finally, the entire
array is merged by calling the merge method.

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

The MergeSort Algorithm 253

Here is the code for the merge method:

public void Merge(int[] tempArray, int lowp, int highp,

int ubound) {
int lbound = lowp;

int mid = highp - 1;

int n = (ubound-lbound) + 1;

while ((lowp <= mid) && (highp <= ubound))

if (arr[lowp] < arr[highp]) {
tempArray[j] = arr[lowp];

j++;

lowp++;

} else {
tempArray[j] = arr[highp];

j++;

highp++;

}
}

while (lowp <= mid) {
tempArray[j] = arr[lowp];

j++;

lowp++;

}
while (highp <= ubound) {

tempArray[j] = arr[highp];

j++;

highp++;

}
for(int j = 0; j <= n-1; j++)

arr[lbound+j] = tempArray[j];

}

This method is called each time the recMergeSort subroutines perform a
preliminary sort. To demonstrate better how this method works along with
recMergeSort, let’s add one line of code to the end of the merge method:

this.showArray();

With this one line, we can view the array in its different temporary states
before it is completely sorted. Here’s the output:

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

254 ADVANCED SORTING ALGORITHMS

The first line shows the array in the original state. The second line shows
the beginning of the lower half being sorted. By the fifth line, the lower half
is completely sorted. The sixth line shows that the upper half of the array is
beginning to be sorted and the ninth line shows that both halves are completely
sorted. The tenth line is the output from the final merge and the eleventh line
is just another call to the showArray method.

THE HEAPSORT ALGORITHM

The HeapSort algorithm makes use of a data structure called a heap. A heap
is similar to a binary tree, but with some important differences. The Heap-
Sort algorithm, although not the fastest algorithm in this chapter, has some
attractive features that encourage its use in certain situations.

Building a Heap

The heap data structure, as we discussed earlier, is similar to a binary tree,
but not quite the same. First, heaps are usually built using arrays rather than
using node references. Also, there are two very important conditions for a
heap: 1. a heap must be complete, meaning that each row must be filled in;
and 2. each node contains data that is greater than or equal to the data in the
child nodes below it. An example of a heap is shown in Figure 14.1. The array
that stores the heap is shown in Figure 14.2.

The data we store in a heap is built from a Node class, similar to the nodes
we’ve used in other chapters. This particular Node class, however, will hold
just one piece of data, its primary, or key, value. We don’t need any references

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

The HeapSort Algorithm 255

77

71 31

29

78

58 2

82

54

FIGURE 14.1. A Heap.

to other nodes but we like using a class for the data so we can easily change
the data type of the data being stored in the heap if we need to. Here’s the
code for the Node class:

public class Node {
Public int data;

public void Node(ByVal key As Integer) {
data = key;

}
}

Heaps are built by inserting nodes into the heap array, whose elements are
nodes of the heap. A new node is always placed at the end of the array in
an empty array element. The problem is that doing this will probably break
the heap condition because the new node’s data value may be greater than
some of the nodes above it. To restore the array to the proper heap condition,
we must shift the new node up until it reaches its proper place in the array.
We do this with a method called ShiftUp. Here’s the code:

public void ShiftUp(int index) {
int parent = (index − 1) / 2;

82 77 78 71 31 58 2 54 29

0 1 2 3 4 5 6 7 8

FIGURE 14.2. An Array For Storing the Heap in Figure 14.1.

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

256 ADVANCED SORTING ALGORITHMS

Node bottom = heapArray[index];

while ((index > 0) && (heapArray[parent].data <

bottom.data)) {
heapArray[index] = heapArray[parent];

index = parent;

parent = (parent − 1) / 2;

}
heapArray[index] = bottom;

}

And here’s the code for the Insert method:

public bool Insert(int key) {
if (currSize == maxSize)

return False;

Node newNode = new Node(key);

heapArray[currSize] = newNode;

ShiftUp[currSize];

currSize++;

return true;

}

The new node is added at the end of the array. This immediately breaks the
heap condition, so the new node’s correct position in the array is found by the
ShiftUp method. The argument to this method is the index of the new node.
The parent of this node is computed in the first line of the method. The new
node is then saved in a Node variable, bottom. The while loop then finds the
correct spot for the new node. The last line then copies the new node from
its temporary location in bottom to its correct position in the array.

Removing a node from a heap always means removing the node with highest
value. This is easy to do because the maximum value is always in the root node.
The problem is that once the root node is removed, the heap is incomplete
and must be reorganized. There is an algorithm for making the heap complete
again:

1. Remove the node at the root.
2. Move the node in the last position to the root.
3. Trickle the last node down until it is below.

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

The HeapSort Algorithm 257

When this algorithm is applied continually, the data is removed from the
heap in sorted order. Here is the code for the Remove and TrickleDown
methods:

public Node Remove() {
Node root = heapArray[0];

currSize--;

heapArray[0] = heapArray[currSize];

ShiftDown(0);

return root;

}
public void ShiftDown(int index) {

int largerChild;

Node top = heapArray[index];

while (index < (int)(currSize / 2)) {
int leftChild = 2 * index + 1;

int rightChild = leftChild + 1;

if ((rightChild < currSize) &&

heapArray[leftChild].data

< heapArray[righChild].data)

largerChild = rightChild;

else

largerChild = leftChild;

if (top.data >= heapArray[largerChild].data)

break;

heapArray[index] = heapArray[largerChild];

index = largerChild;

}
heapArray[index] = top;

}

This is all we need to perform a heap sort, so let’s look at a program that
builds a heap and then sorts it:

static void Main() {
const int SIZE = 9;

Heap aHeap = new Heap(SIZE);

Node sortedHeap = new Node[SIZE];

for(int i = 0; i < SIZE; i++) {

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

258 ADVANCED SORTING ALGORITHMS

Random RandomClass = new Random();

int rn = RandomClass.Next(1,100);

Node aNode = new Node(rn);

aHeap.InsertAt(i, aNode);

aHeap.IncSize();

}
Console.Write("Random: ");

aHeap.ShowArray();

Console.WriteLine();

Console.Write("Heap: ");

for(int i = (int)SIZE/2-1; i >= 0; i--)

aHeap.ShiftDown(i);

aHeap.ShowArray();

for(int i = SIZE-1; i >= 0; i--) {
Node bigNode = aHeap.Remove();

aHeap.InsertAt(i, bigNode);

}
Console.WriteLine();

Console.Write("Sorted: ");

aHeap.ShowArray();

}

The first for loop begins the process of building the heap by inserting
random numbers into the heap. The second loop heapifies the heap and the
third for loop then uses the Remove method and the TrickleDown method to
rebuild the heap in sorted order. Here’s the output from the program:

HeapSort is the second fastest of the advanced sorting algorithms we exam-
ine in this chapter. Only the QuickSort algorithm, which we discuss in the
next section, is faster.

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

The QuickSort Algorithm 259

THE QUICKSORT ALGORITHM

QuickSort has a reputation, deservedly earned, as the fastest algorithm of
the advanced algorithms we’re discussing in this chapter. This is true only
for large, mostly unsorted data sets. If the data set is small (100 elements or
less), or if the data is relatively sorted, you should use one of the fundamental
algorithms discussed in Chapter 4.

The QuickSort Algorithm Described

To understand how the QuickSort algorithm works, imagine you are a teacher
and you have to alphabetize a stack of student papers. You will pick a let-
ter that is in the middle of the alphabet, such as M, putting student papers
whose name starts with A through M in one stack and names starting with
N through Z in another stack. Then you split the A–M stack into two stacks
and the N–Z stack into two stacks using the same technique. Then you do
the same thing again until you have a set of small stacks (A–C, D–F, . . . ,
X–Z) of two or three elements that sort easily. Once the small stacks are
sorted, you simply put all the stacks together and you have a set of sorted
papers.

As you should have noticed, this process is recursive, since each stack
is broken up into smaller and smaller stacks. Once a stack is broken down
into one element, that stack cannot be further broken up and the recursion
stops.

How do we decide where to split the array into two halves? There are many
choices, but we’ll start by just picking the first array element:

mv = arr[first];

Once that choice is made, we next have to understand how to get the array
elements into the proper “half ” of the array. (The reason the word half is in
quotes in the previous sentence is because it is entirely possible that the two
halves will not be equal, depending on the splitting point.) We accomplish
this by creating two variables, first and last, storing the second element in first
and the last element in last. We also create another variable, theFirst, which
stores the first element in the array. The array name is arr for the sake of this
example.

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

260 ADVANCED SORTING ALGORITHMS

87 91 65 72 84 99 89

theFirst first last

a.

87 91 65 72 84 99 89

theFirst first last

Increment first until it is >= split value
first stops at 91 (figure a.)

Increment first until > split value or > last
Decrement last until <= split value or < first

last is before first (or first is after last)
so swap elements at theFirst and last

Repeat process

Decrement last until <= split value

87 84 65 72 91 99 89

theFirst first last

87 84 65 72 91 99 89

65 84 87 72 91 99 89

theFirst firstlast

Swap elements at first and last

1

2

3

4

5

6

split value = 87

FIGURE 14.3. The Splitting an Array.

Figure 14.3 describes how the QuickSort algorithm works.

Code for the QuickSort Algorithm

Now that we’ve reviewed how the algorithm works, let’s see how it’s coded in
C#:

public void QSort() {
RecQSort(0, numElements-1);

}
public void RecQSort(int first, int last) {

if ((last-first) <= 0)

return;

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

The QuickSort Algorithm 261

else {
int pivot = arr[last];

int part = this.Partition(first, last);

RecQSort(first, part-1);

RecQSort(part+1, last);

}
}
public int Partition(int first, int last) {

int pivotVal = arr[first];

int theFirst = first;

bool okSide;

first++;

do {
okSide = true;

while (okSide)

if (arr[first] > pivotVal)

okSide = false;

else {
first++;

okSide = (first <= last);

}
okSide = (first <= last);

while (okSide)

if (arr[last] <= pivotVal)

okSide = false;

else {
last--;

okSide = (first <= last);

if (first < last) {
Swap(first, last);

this.ShowArray();

first++;

last--;

}
} loop while (first <= last);

Swap(theFirst, last);

this.ShowArray();

return last;

}

P1: JZP
0521670152c14 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:44

262 ADVANCED SORTING ALGORITHMS

public void Swap(int item1, int item2) {
int temp = arr[item1];

arr[item1] = arr[item2];

arr[item2] = temp;

}

An Improvement to the QuickSort Algorithm

If the data in the array is random, then picking the first value as the “pivot”
or “partition” value is perfectly acceptable. Otherwise, however, making this
choice will inhibit the performance of the algorithm.

A popular choice for picking this value is to determine the median value in
the array. You can do this by taking the upper bound of the array and dividing
it by 2. For example:

theFirst = arr[(int)arr.GetUpperBound(0) / 2]

Studies have shown that using this strategy can reduce the running time of
the algorithm by about 5 percent (see Weiss 1999, p. 243).

SUMMARY

The algorithms discussed in this chapter are all quite a bit faster than the
fundamental sorting algorithms discussed in Chapter 4, but it is universally
accepted that the QuickSort algorithm is the fastest sorting algorithm and
should be used for most sorting scenarios. The Sort method that is built
into several of the .NET Framework library classes is implemented using
QuickSort, which explains how dominant QuickSort is over other sorting
algorithms.

EXERCISES

1. Write a program that compares all four advanced sorting algorithms dis-
cussed in this chapter. To perform the tests, create a randomly generated
array of 1,000 elements. What is the ranking of the algorithms? What hap-
pens when you increase the array size to 10,000 elements and then 100,000
elements?

2. Using a small array (less than 20), compare the sorting times between
the insertion sort and QuickSort. What is the difference in time? Can you
explain why?

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

CHAPTER 15

Advanced Data Structures
and Algorithms for Searching

In this chapter, we present a set of advanced data structures and algorithms
for performing searching. The data structures we cover include the red–black
tree, the splay tree, and the skip list. AVL trees and red–black trees are two
solutions to the problem of handling unbalanced binary search trees. The
skip list is an alternative to using a tree-like data structure that foregoes the
complexity of the red–black and splay trees.

AVL TREES

Another solution to maintaining balanced binary trees is the AVL tree. The
name AVL comes from the two computer scientists who discovered this data
structure, G. M. Adelson-Velskii and E. M. Landis, in 1962. The defining
characteristic of an AVL tree is that the difference between the height of the
right and left subtrees can never be more than one.

AVL Tree Fundamentals

By continually comparing the heights of the left and right subtrees of a tree,
the AVL tree is guaranteed to always stay “in balance.” AVL trees utilize a
technique, called a rotation, to keep them in balance.

263

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

264 ADVANCED DATA STRUCTURES AND ALGORITHMS

40

20

FIGURE 15.1.

To understand how a rotation works, let’s look at a simple example that
builds a binary tree of integers. Starting with the tree shown in Figure 15.1, if
we insert the value 10 into the tree, the tree becomes unbalanced, as shown
in Figure 15.2. The left subtree now has a height of 2, but the right subtree
has a height of 0, violating the rule for AVL trees. The tree is balanced by
performing a single right rotation, moving the value 40 down to the right, as
shown in Figure 15.3.

Now look at the tree in Figure 15.4. If we insert the value 30, we get the
tree in Figure 15.5. This tree is unbalanced. We fix it by performing what is
called a double rotation, moving 40 down to the right and 30 up to the right,
resulting in the tree shown in Figure 15.6.

The AVL Tree Implementation

Our AVL tree implementation consists of two classes: a Node class used to
hold data for each node in the tree, and the AVLTree class, which contains the
methods for inserting nodes and rotating nodes.

The Node class for an AVL tree implementation is built similarly to nodes
for a binary tree implementation, but with some important differences. Each
node in an AVL tree must contain data about its height, so a data member
for height is included in the class. We also have the class implement the
IComparable interface in order to compare the values stored in the nodes.
Also, because the height of a node is so important, we include a ReadOnly
Property method to return a node’s height.

Here is the code for the Node class:

public class Node : IComparable {

public Object element;

public Node left;

public Node right;

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

AVL Trees 265

40

20

10

FIGURE 15.2.

20

10 40

FIGURE 15.3.

20

40

FIGURE 15.4.

20

40

30

FIGURE 15.5.

30

20 40

FIGURE 15.6.

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

266 ADVANCED DATA STRUCTURES AND ALGORITHMS

public int height;

public Node(Object data, Node lt, Node rt) {
element = data;

left = lt;

right = rt;

height = 0;

}

public Node(Object data) {
element = data;

left = null;

right = null;

}

public int CompareTo(Object obj) {
return (this.element.CompareTo((Node)obj.element));

}

public int GetHeight() {
if (this == null)

return -1;

else

return this.height;

}
}

The first method in the AVLTree class we examine is the Insert method.
This method determines where to place a node in the tree. The method is
recursive, either moving left when the current node is greater than the node
to be inserted or moving right when the current node is less than the node to
be inserted.

Once the node is in its place, the difference in heights of the two subtrees is
calculated. If it is determined the tree is unbalanced, a left or right, or double
left or double right rotation is performed. Here’s the code (the code for the
different rotation methods is shown after the Insert method):

private Node Insert(Object item, Node n) {
if (n == null)

n = new Node(item, null, null);

else if (item.CompareTo(n.element) < 0) {

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

AVL Trees 267

n.left = Insert(item, n.left);

if (height(n.left) - height(n.right) == 2)

n = RotateWithLeftchild(n);

else

n = DoubleWithLeftChild(n);

}
else if (item.CompareTo(n.element) > 0) {

n.right = Insert(item, n.right);

if ((height(n.right) - height(n.left)) == 2)

if (item.CompareTo(n.right.element) > 0)

n = RotateWithRightChild(n);

else

n = DoubleWithRightChild(n);

else

;// do nothing, duplicate value

n.height = Math.Max(height(n.left), height(n.right)) + 1;

return n

}

The different rotation methods are shown as follows:

private Node RotateWithLeftChild(Node n2) {
Node n1 = n2.left;

n2.left = n1.right;

n1.right = n2;

n2.height = Math.Max(height(n2.left), height

(n2.right)) + 1

n1.height = Math.Max(height(n1.left), n2.height) + 1

return n1

}

private Node RotateWithRightChild(Node n1) {
Node n2 = n1.right;

n1.right = n2.left;

n2.left = n1;

n1.height = Math.Max(height(n1.left),

height(n1.right)) + 1);

n2.height = Math.Max(height(n2.right), n1.height) + 1;

return n2;

}

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

268 ADVANCED DATA STRUCTURES AND ALGORITHMS

private Node DoubleWithLeftChild(Node n3) {
n3.left = RotateWithRightChild(n3.left);

return RotateWithLeftChild(n3);

}

private Node DoubleWithRightChild(Node n1) {
n1.right = RotateWithLeftChild(n1.right);

return RotateWithRightChild(n1);

}

There are many other methods we can implement for this class, that is,
the methods from the BinarySearchTree class. We leave the implementation
of those methods to the exercises. Also, we have purposely not implemented
a deletion method for the AVLTree class. Many AVL tree implementations use
lazy deletion. This system of deletion marks a node for deletion but doesn’t
actually delete the node from the tree. The performance cost of deleting nodes
and then rebalancing the tree is often prohibitive. You will get a chance to
experiment with lazy deletion in the exercises.

RED–BLACK TREES

AVL trees are not the only solution to unbalanced binary search tree. Another
data structure you can use is the red–black tree. A red-black tree is the one in
which the nodes of the tree are designated as either red or black, depending on
a set of rules. By properly coloring the nodes in the tree, the tree stays nearly
perfectly balanced. An example of a red–black tree is shown in Figure 15.7
(black nodes are shaded):

56

20

10 30

60

9050

85 95405

10

55

40

FIGURE 15.7. A Red–Black Tree.

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

Red–Black Trees 269

56

30

10 35

80

9070

85 956010

20

75

50 65

40

FIGURE 15.8.

Red–Black Tree Rules

The following rules are used when working with red–black trees:

1. Every node in the tree is colored either red or black.
2. The root node is colored black.
3. If a node is red, the children of that node must be black.
4. Each path from a node to a null reference must contain the same number

of black nodes.

The consequence of these rules is that a red–black tree stays in very good
balance, which means searching a red–black tree is quite efficient. As with AVL
trees, though, these rules also make insertion and deletion more difficult.

Red–Black Tree Insertion

Inserting a new item into a red–black tree is complicated because it can lead
to a violation of one of the rules shown in the earlier section. For example,
look at the red-black tree in Figure 15.8.

We can insert a new item into the tree as a black node. If we do so, we are
violating rule 4. So the node must be colored red. If the parent node is black,

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

270 ADVANCED DATA STRUCTURES AND ALGORITHMS

56

30

10 35

70

8060

75 90

85 95

5010

20

65

45

40

FIGURE 15.9.

everything is fine. If the parent node is red, however, then rule 3 is violated.
We have to adjust the tree either by having nodes change color or by rotating
nodes as we did with AVL trees.

We can make this process more concrete by looking at a specific example.
Let’s say we want to insert the value 55 into the tree shown in Figure 15.8. As
we work our way down the tree, we notice that the value 60 is black and has
two red children. We can change the color of each of these nodes (60 to red,
50 and 65 to black), then rotate 60 to 80’s position, and then perform other
rotations to put the subtree back in order. We are left with the red–black tree
shown in Figure 15.9. This tree now follows all the red–black tree rules and
is well balanced.

Red–Black Tree Implementation Code

Rather than break up the code with explanations, we show the complete code
for a red–black tree implementation in one piece, with a description of the
code to follow. We start with the Node class and continue with the RedBlack
class.

public class Node {

public string element;

public Node left;

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

Red–Black Trees 271

public Node right;

public int color;

const int RED = 0;

const int BLACK = 1;

public Node(string element, Node left, Node right) {
this.element = element;

this.left = left;

this.right = right;

this.color = BLACK;

}

public Node(string element) {
this.element = element;

this.left = left;

this.right = right;

this.color = BLACK;

}
}

public class RBTree {

const int RED = 0;

const int BLACK = 1;

private Node current;

private Node parent;

private Node grandParent;

private Node greatParent;

private Node header;

private Node nullNode;

public RBTree(string element) {
current = new Node("");

parent = new Node("");

grandParent = new Node("");

greatParent = new Node("");

nullNode = new Node("");

nullNode.left = nullNode;

nullNode.right = nullNode;

header = new Node(element);

header.left = nullNode;

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

272 ADVANCED DATA STRUCTURES AND ALGORITHMS

header.right = nullNode;

}

public void Insert(string item) {
grandParent = header;

parent = grandParent;

current = parent;

nullNode.element = item;

while (current.element.CompareTo(item) ! = 0) {
Node greatParent = grandParent;

grandParent = parent;

parent = current;

if (item.CompareTo(current.element) < 0)

current = current.left;

else

current = current.right;

if ((current.left.color) = RED &&

(current.right.color) = RED)

HandleReorient(item);

}
if (!(current == nullNode)

return

current = new Node(item, nullNode, nullNode);

if (item.CompareTo(parent.element) < 0)

parent.left = current;

else

parent.right = current;

HandleReorient(item);

}

public string FindMin() {
if (this.IsEmpty())

return null;

Node itrNode = header.right;

while(!(itrNode.left == nullNode))

itrNode = itrNode.left;

return itrNode.element;

}

public string FindMax() {

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

Red–Black Trees 273

if (this.IsEmpty())

return null;

Node itrNode = header.right;

while (!(itrNode.right == nullNode))

itrNode = itrNode.right;

return itrNode.element;

}

public string Find(string e) {
nullNode.element = e;

Node current = header.right;

while (true)

if (e.CompareTo(current.element) < 0)

current = current.left;

else if (e.CompareTo(current.element) > 0)

current = current.right;

else if (! (current == nullNode))

return current.element;

else

return null

}

public void MakeEmpty() {
header.right = nullNode;

}

public bool IsEmpty() {
return (header.right == nullNode);

}

public void PrintRBTree() {
if (this.IsEmpty())

Console.WriteLine("Empty");

else

PrintRB(header.right);

}
public void PrintRB(Node n) {

if (!(n == nullNode)) {
PrintRB(n.left);

Console.WriteLine(n.element);

PrintRB(n.right);

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

274 ADVANCED DATA STRUCTURES AND ALGORITHMS

}

public void HandleReorient(string item) {
current.Color = RED;

current.left.color = BLACK;

current.right.color = BLACK;

if (parent.color == RED) {
grandParent.color = RED;

if ((item.CompareTo(grandParent.element) < 0) ! =

(item.CompareTo(parent.element))) {
current = Rotate(item, grandParent);

current.color = BLACK;

}
header.right.color = BLACK;

}
}

public Node Rotate(string item, Node parent) {
if (item.CompareTo(parent.element) < 0)

if (item.CompareTo(parent.left.element) < 0)

parent.left = RotateWithLeftChild(parent.left);

else

parent.elft = RotateWithRightChild(parent.left);

return parent.left;

else

if (item.CompareTo(parent.right.element) < 0)

parent.right = RotateWithLeftChild(parent.

right);

else

parent.right = RotateWithRightChild(parent.

right);

return parent.right;

}

public Node RotateWithLeftChild(Node k2) {
Node k1 = k2.left;

k2.left = k1.right;

k1.right = k2;

return k1;

}

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

Skip Lists 275

public Node RotateWithRightChild(Node k1) {
Node k2 = k1.right;

k1.right = k2.left;

k2.left = k1;

return k2;

}
}

Then HandleReorient method is called whenever a node has two red chil-
dren. The rotate methods are similar to those used with AVL trees. Also,
because dealing with the root node is a special case, the RedBlack class includes
a root sentinel node as well as the nullNode node, which indicates the node
is a reference to null.

SKIP LISTS

Although AVL trees and red–black trees are efficient data structures for search-
ing and sorting data, the rebalancing operations necessary with both data
structures to keep the tree balanced causes a lot of overhead and complex-
ity. There is another data structure we can use, especially for searching, that
provides the efficiency of trees without the worries of rebalancing. This data
structure is called a skip list.

Skip List Fundamentals

Skip lists are built from one of the fundamental data structures for searching—
the linked list. As we know, linked lists are great for insertion and deletion,
but not so good at searching, since we have to travel to each node sequentially.
But there is no reason why we have to travel each link successively. When we
want to go from the bottom of a set of stairs to the top and we want to get
there quickly, what do we do? We take the stairs two or three at a time (or
more if we’re blessed with long legs).

We can implement the same strategy in a linked list by creating different
levels of links. We start with level 0 links which point to the next node in
the list. Then we have a level 1 link, which points to the second node in
the list, skipping one node; a level 2 link, which points to the third node

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

276 ADVANCED DATA STRUCTURES AND ALGORITHMS

Header 1023 1033 1103 1133 1203 1223

Nothing

FIGURE 15.10. Basic Linked List.

in the list, skipping two nodes; and so on. When we search for an item, we
can start at a high link level and traverse the list until we get to a value
that is greater than the value we’re looking for. We can then back up to the
previous visited node, and move down to the lowest level, searching node by
node until we encounter the searched-for value. To illustrate the difference
between a skip list and a linked list, study the diagrams in Figure 15.10 and
15.11.

Let’s look at how a search is performed on the level 1 skip list shown in
Figure 15.11. The first value we’ll search for is 1133. Looking at the basic
linked list first, we have to travel to four nodes to find 1133. Using a skip
list, though, we only have to travel to two nodes. Clearly, using the skip list
is more efficient for such a search.

Now let’s look at how a search for 1203 is performed with the skip list. The
level 1 links are traversed until the value 1223 is found. This is greater than
1203, so we back up to the node storing the value 1133 and drop down one
level and start using level 0 links. The next node is 1203, so the search ends.
This example makes the skip list search strategy clear. Start at the highest link
level and traverse the list using those links until you reach a value greater
than the value you’re searching for. At that point, back up to the last node
visited and move down to the next link level and repeat the same steps.
Eventually, you will reach the link level that leads you to the searched-for
value.

It turns out that we can make the skip list even more efficient by adding
more links. For example, every fourth node can have a link that points four
nodes ahead, every sixth node can have a link that points six nodes ahead,

Header
1023

1033
1103

1133
1203

1223

Nothing

FIGURE 15.11. Skip List With Links 2 Nodes Ahead (Level 1).

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

Skip Lists 277

and so on. The problem with this scheme is that when we insert or delete a
node, we have to rearrange a tremendous number of node pointers, making
our skip list much less efficient.

The solution to this problem is to allocate nodes to the link levels randomly.
The first node (after the header) might be a level 2 node, whereas the second
node might be a level 4 node, the third node a level 1 node again, and so
on. Distributing link levels randomly makes the other operations (other than
search) more efficient, and it doesn’t really affect search times. The probability
distribution used to determine how to distribute nodes randomly is based on
the fact that about half the nodes in a skip list will be level 0 nodes, whereas a
quarter of the nodes will be level 1 nodes, 12.5% will be level 2 nodes, 5.75%
will be level 3 nodes, and so on.

All that’s left to explain is how we determine how many levels will be used
in the skip list. The inventor of the skip list, William Pugh, a professor of Com-
puter Science currently at the University of Maryland, worked out a formula in
his paper that first described skip lists (ftp://ftp.cs.umd.edu/pub/skipLists/).
Here it is, expressed in C# code:

(int)(Math.Ceiling(Math.Log(maxNodes) / Math.Log(1 /

PROB)) - 1);

where maxNodes is an approximation of the number of nodes that will be
required and PROB is a probability constant, usually 0.25.

Skip List Implementation

We need two classes for a skip list implementation: a class for nodes and a
class for the skip list itself. Let’s start with the class for nodes.

The nodes we’ll use for this implementation will store a key and a value,
as well as an array for storing pointers to other nodes. Here’s the code:

public class SkipNode {

int key;

Object value;

SkipNode[] link;

public SkipNode(int level, int key, Object value) {

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

278 ADVANCED DATA STRUCTURES AND ALGORITHMS

this.key = key;

this.value = value;

link = new SkipValue[level];

}
}

Now we’re ready to build the skip list class. The first thing we need to do is
determine which data members we need for the class. Here’s what we’ll need:

� maxLevel: stores the maximum number of levels allowed in the skip list
� level: stores the current level
� header: the beginning node that provides entry into the skip list
� probability: stores the current probability distribution for the link levels
� NIL: a special value that indicates the end of the skip list
� PROB: the probability distribution for the link levels

public class SkipList {

private int maxLevel;

private int level;

private SkipNode header;

private float probability;

private const int NIL = Int32.MaxValue;

private const int PROB = 0.5;

The constructor for the SkipList class is written in two parts: a Public
constructor with a single argument passing in the total number of nodes in
the skip list, and a Private constructor that does most of the work. Let’s view
the methods first before explaining how they work:

private SkipList(float probable, int maxLevel) {
this.probability = probable;

this.maxLevel = maxLevel;

level = 0;

header = new SkipNode(maxLevel, 0, null);

SkipNode nilElement = new SkipNode(maxLevel, NIL, null);

for(int i = 0; i <= maxLevel-1; i++)

header.link(i) = nilElement;

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

Skip Lists 279

}

public SkipList(long maxNodes) {
this.New(PROB, (int)(Math.Ceiling(Math.Log(maxNodes) /

Math.Log(1/PROB)-1));

}

The Public constructor performs two tasks. First, the node total is passed
into the constructor method as the only parameter in the method. Second,
the Private constructor, where the real work of initializing a skip list object is
performed, is called with two arguments. The first argument is the probability
constant, which we’ve already discussed. The second argument is the formula
for determining the maximum number of link levels for the skip list, which
we’ve also already discussed.

The body of the Private constructor sets the values of the data members,
creates a header node for the skip list, creates a “dummy” node for each of
the header’s links, and then initializes the links to that element.

The first thing we do with a skip list is insert nodes into the list. Here’s the
code for the Insert method of the SkipList class:

public void Insert(int key, Object value) {
SkipNode[] update = new SkipNode[maxLevel];

SkipNode cursor = header;

for(int i = level; i > = level; i--) {
while(cursor.link[i].key < key)

cursor = cursor.link[i];

update[i] = cursor;

}
cursor = cursor.link[0];

if (cursor.key = key)

cursor.value = value;

else {
int newLevel = GenRandomLevel();

if (newlevel > level) {
for(int i = level+1; i <= newLevel-1; i++)

update[i] = header;

level = newLevel;

}
cursor = new SkipNode(newLevel, key, value);

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

280 ADVANCED DATA STRUCTURES AND ALGORITHMS

for(int i = 0; i <= newLevel-1; i++) {
cursor.link[i] = update[i].link[i];

update[i].link[i] = cursor;

}
}

}

The first thing the method does is determine where in the list to insert
the new SkipNode (the first for loop). Next, the list is checked to see if the
value to insert is already there. If not, then the new SkipNode is assigned a
random link level using the Private method genRandomLevel (we’ll discuss
this method next) and the item is inserted into the list (the line before the last
for loop).

Link levels are determined using the probabilistic method genRandom-
Level. Here’s the code:

private int GenRandomLevel() {
int newLevel = 0;

int ran = Random.Next(0);

while ((newLevel < maxLevel) && (ran < probability))

newLevel++;

return newLevel;

}

Before we cover the Search method, which is the focus of this section, let’s
look at how to perform deletion in a skip list. First, let’s view the code for the
Delete method:

public void Delete(int key) {
SkipNode[] update = new SkipNode[maxLevel+1];

SkipNode cursor = header;

for(int i = level; i > = level; i--) {
while (cursor.link[i].key < key)

cursor = cursor.link[i];

update[i] = cursor;

}
cursor = cursor.link[0];

if (cursor.key == key) {

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

Skip Lists 281

for(int i = 0; i < level-1; i++)

if (update[i].link[i] == cursor)

update[i].link[i] == cursor.link[i];

while((level > 0) && (header.link[level].key == NIL))

level--;

}
}

This method, like the Insert method, is split into two parts. The first part,
highlighted by the first for loop, finds the item to be deleted in the list. The
second part, highlighted by the if statement, adjusts the links around the
deleted SkipNode and readjusts the levels.

Now we’re ready to discuss the Search method. The method starts at the
highest level, following those links until a key with a higher value than the
key being searched for is found. The method then drops down to the next
lowest level and continues the search until a higher key is found. It drops
down again and continues searching. The method will eventually stop at level
0, exactly one node away from the item in question. Here’s the code:

public Object Search(int key) {
SkipNode cursor = header;

for(int i = level; i <= level-1; i--) {
SkipNode nextElement = cursor.link[i];

while (nextElement.key < key) {
cursor = nextElement;

nextElement = cursor.link[i];

}
cursor = cursor.link[0];

if (cursor.key == key)

return cursor.value;

else

return "Object not found";

}

We’ve now provided enough functionality to implement a SkipList class.
In the exercises at the end of the chapter, you will get a chance to write code
that uses the class.

P1: JZP
0521670152c15 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:47

282 ADVANCED DATA STRUCTURES AND ALGORITHMS

Skip lists offer an alternative to tree-based structures. Most programmers
find them easier to implement and their efficiency is comparable to tree-like
structures. If you are working with a completely or nearly sorted data set, skip
lists are probably a better choice than trees.

SUMMARY

The advanced data structures discussed in this chapter are based on the discus-
sions in Chapter 12 of Weiss (1999). AVL trees and red–black trees offer good
solutions to the balancing problems experienced when using fairly sorted data
with binary search trees. The major drawback to AVL and red–black trees is
that the rebalancing operations come with quite a bit of overhead and can
slow down performance on large data sets.

For extremely large data sets, skip lists offer an alternative even to AVL
and red–black trees. Because skip lists use a linked-list structure versus a tree
structure, rebalancing is unnecessary, making them more efficient in many
situations.

EXERCISES

1. Write FindMin and FindMax methods for the AVLTree class.
2. Using the Timing class, compare the times for the methods implemented

in Exercise 1 to the same methods in the BinarySearchTree class. Your
test program should insert a sorted list of approximately 100 randomly
generated integers into the two trees.

3. Write a deletion method for the AVLTree class that utilizes lazy deletion.
There are several techniques you can use, but a simple one is to simply
add a Boolean field to the Node class that signifies whether or not the node
is marked for deletion. Your other methods must then take this field into
account.

4. Write a deletion method for the RedBlack class that adheres to the red-black
rules.

5. Design and implement a program that compares AVL trees and red–black
trees to skip lists. Which data structure performs the best?

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

CHAPTER 16

Graphs and Graph Algorithms

The study of networks has become one of the great scientific hotbeds of this
new century, though mathematicians and others have been studying networks
for many hundreds of years. Recent developments in computer technology
(i.e., the Internet), and in social theory (the social network, popularly con-
ceived in the concept of “six degrees of separation”), have put a spotlight on
the study of networks.

In this chapter, we look at how networks are modeled with graphs. We’re
not talking about the graphs such as pie graphs or bar graphs. We define
what a graph is, how they’re represented in VB.NET, and how to implement
important graph algorithms. We also discuss the importance of picking the
correct data representation when working with graphs, since the efficiency of
graph algorithms is dependent on the data structure used.

GRAPH DEFINITIONS

A graph consists of a set of vertices and a set of edges. Think of a map of your
state. Each town is connected with other towns via some type of road. A map
is a type of graph. Each town is a vertex and a road that connects two towns
is an edge. Edges are specified as a pair, (v1, v2), where v1 and v2 are two
vertices in the graph. A vertex can also have a weight, sometimes also called
a cost.

283

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

284 GRAPHS AND GRAPH ALGORITHMS

A B C

D E F

G H

FIGURE 16.1. A Digraph (Directed Graph).

A graph whose pairs are ordered is called a directed graph, or just a digraph.
An ordered graph is shown in Figure 16.1. If a graph is not ordered, it is
called an unordered graph, or just a graph. An example of an unordered graph
is shown in Figure 16.2.

A path is a sequence of vertices in a graph such that all vertices are connected
by edges. The length of a path is the number of edges from the first vertex in
the path to the last vertex. A path can also consist of a vertex to itself, which
is called a loop. Loops have a length of 0.

A cycle is a path of at least 1 in a directed graph so that the beginning vertex
is also the ending vertex. In a directed graph, the edges can be the same edge,
but in an undirected graph, the edges must be distinct.

An undirected graph is considered connected if there is a path from every
vertex to every other vertex. In a directed graph, this condition is called
strongly connected. A directed graph that is not strongly connected, but is
considered connected, is called weakly connected. If a graph has a edge between
every set of vertices, it is said to be a complete graph.

REAL WORLD SYSTEMS MODELED BY GRAPHS

Graphs are used to model many different types of real world systems. One
example is traffic flow. The vertices represent street intersections and the

1 2 3

4 5 6

FIGURE 16.2. An Unordered Graph.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

The Graph Class 285

edges represent the streets themselves. Weighted edges can be used to rep-
resent speed limits or the number of lanes. Modelers can use the system
to determine best routes and streets that are likely to suffer from traffic
jams.

Any type of transportation system can be modeled using a graph. For exam-
ple, an airline can model their flight system using a graph. Each airport is a
vertex and each flight from one vertex to another is an edge. A weighted
edge can represent the cost of a flight from one airport to another, or per-
haps the distance from one airport to another, depending on what is being
modeled.

THE GRAPH CLASS

At first glance, a graph looks much like a tree and you might be tempted to try
to build a graph class like a tree. There are problems with using a reference-
based implementation, however, so we will look at a different scheme for
representing both vertices and edges.

Representing Vertices

The first step we have to take to build a Graph class is to build a Vertex class
to store the vertices of a graph. This class has the same duties the Node class
had in the LinkedList and BinarySearchTree classes.

The Vertex class needs two data members: one for the data that iden-
tifies the vertex, and the other a Boolean member we use to keep track
of “visits” to the vertex. We call these data members label and wasVisited,
respectively.

The only method we need for the class is a constructor method that allows
us to set the label and wasVisited data members. We won’t use a default con-
structor in this implementation because every time we make a first reference
to a vertex object, we will be performing instantiation.

Here’s the code for the Vertex class:

public class Vertex {

public bool wasVisited;

public string label;

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

286 GRAPHS AND GRAPH ALGORITHMS

public Vertex(string label) {
this.label = label;

wasVisited = false;

}
}

We will store the list of vertices in an array and will reference them in the
Graph class by their position in the array.

Representing Edges

The real information about a graph is stored in the edges, since the edges
detail the structure of the graph. As we mentioned earlier, it is tempting to
represent a graph like a binary tree, but doing so would be a mistake. A
binary tree has a fairly fixed representation, since a parent node can only
have two child nodes, whereas the structure of a graph is much more flexi-
ble. There can be many edges linked to a single vertex or just one edge, for
example.

The method we’ll choose for representing the edges of a graph is called an
adjacency matrix. This is a two-dimensional array where the elements indicate
whether an edge exists between two vertices. Figure 16.3 illustrates how an
adjacency matrix works for the graph in the figure.

The vertices are listed as the headings for the rows and columns. If
an edge exists between two vertices, a 1 is placed in that position. If an
edge doesn’t exist, a 0 is used. Obviously, you can also use Boolean values
here.

V0 0 0 1 0 0

V0 V1 V2 V3 V4

V1 0 0 1 0 0

V2 1 1 0 1 1

V3 0 0 1 0 0

V4 0 0 1 0 0
3 4

0

2

1

FIGURE 16.3. An Adjacency Matrix.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

The Graph Class 287

Building a Graph

Now that we have a way to represent vertices and edges, we’re ready to build
a graph. First, we need to build a list of the vertices in the graph. Here is some
code for a small graph that consists of four vertices:

int nVertices = 0;

vertices[nVertices] = new Vertex("A");

nVertices++;

vertices[nVertices] = new Vertex("B");

nVertices++;

vertices[nVertices] = new Vertex("C");

nVertices++;

vertices[nVertices] = new Vertex("D");

Then we need to add the edges that connect the vertices. Here is the code
for adding two edges:

adjMatrix[0,1] = 1;

adjMatrix[1,0] = 1;

adjMatrix[1,3] = 1;

adjMatrix[3,1] = 1;

This code states that an edge exists between vertices A and B and that an edge
exists between vertices B and D.

With these pieces in place, we’re ready to look at a preliminary definition
of the Graph class (along with the definition of the Vertex class):

public class Vertex {

public bool wasVisited;

public string label;

public Vertex(string label) {
this.label = label;

wasVisited = false;

}
}

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

288 GRAPHS AND GRAPH ALGORITHMS

public class Graph {

private const int NUM_VERTICES = 20;

private Vertex[] vertices;

private int[,] adjMatrix;

int numVerts;

public Graph() {
vertices = new Vertex[NUM_VERTICES];

adjMatrix = new int[NUM_VERTICES, NUM_VERTICES];

numVerts = 0;

for(int j = 0; j <= NUM_VERTICES; j++)

for(int k = 0; k <= NUMVERTICES-1; k++)

adjMatrix[j,k] = 0;

}

public void AddVertex(string label) {
vertices[numVerts] = new Vertex(label);

numVerts++;

}

public void AddEdge(int start, int eend) {
adjMatrix[start, eend] = 1;

adjMatrix[eend, start] = 1;

}

public void ShowVertex(int v) {
Console.Write(vertices[v].label + " ");

}
}

The constructor method redimensions the vertices array and the adjacency
matrix to the number specified in the constant NUM VERTICES. The data
member numVerts stores the current number in the vertex list so that it is
initially set to zero, since arrays are zero-based. Finally, the adjacency matrix
is initialized by setting all elements to zero.

The AddVertex method takes a string argument for a vertex label, instanti-
ates a new Vertex object, and adds it to the vertices array. The AddEdge method
takes two integer values as arguments. These integers represent to vertices and
indicate that an edge exists between them. Finally, the showVertex method
displays the label of a specified vertex.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

A First Graph Application: Topological Sorting 289

CS 1 CS 2 . . .

Algorithms

Assembly Language

Data
Structures

Operating
Systems

FIGURE 16.4. A Directed Graph Model of Computer Science Curriculum Sequence.

A FIRST GRAPH APPLICATION: TOPOLOGICAL SORTING

Topological sorting involves displaying the specific order in which a sequence
of vertices must be followed in a directed graph. The sequence of courses a
college student must take on their way to a degree can be modeled with a
directed graph. A student can’t take the Data Structures course until they’ve
had the first two introductory Computer Science courses, as an example.
Figure 16.4 depicts a directed graph modeling part of the typical Computer
Science curriculum.

A topological sort of this graph would result in the following sequence:

1. CS1
2. CS2
3. Assembly Language
4. Data Structures
5. Operating Systems
6. Algorithms

Courses 3 and 4 can be taken at the same time, as can 5 and 6.

An Algorithm for Topological Sorting

The basic algorithm for topological sorting is very simple:

1. Find a vertex that has no successors.
2. Add the vertex to a list of vertices.
3. Remove the vertex from the graph.
4. Repeat Step 1 until all vertices are removed.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

290 GRAPHS AND GRAPH ALGORITHMS

Of course, the challenge lies in the details of the implementation but this is
the crux of topological sorting.

The algorithm will actually work from the end of the directed graph to the
beginning. Look again at Figure 16.4. Assuming that Operating Systems and
Algorithms are the last vertices in the graph (ignoring the ellipsis), neither
of them have successors and so they are added to the list and removed from
the graph. Next come Assembly Language and Data Structures. These vertices
now have no successors and so they are removed from the list. Next will be
CS2. Its successors have been removed so it is added to the list. Finally, we’re
left with CS1.

Implementing the Algorithm

We need two methods for topological sorting—a method to determine if a
vertex has no successors and a method for removing a vertex from a graph.
Let’s look at the method for determining no successors first.

A vertex with no successors will be found in the adjacency matrix on a row
where all the columns are zeroes. Our method will use nested for loops to
check each set of columns row by row. If a 1 is found in a column, then the
inner loop is exited and the next row is tried. If a row is found with all zeroes
in the columns, then that row number is returned. If both loops complete
and no row number is returned, then a −1 is returned, indicating there is no
vertex with no successors. Here’s the code:

public int NoSuccessors() {
bool isEdge;

for(int row = 0; row <= numVertices-1; row++) {
isEdge = false;

for(int col = 0 col <= numVertices-1; col++)

if (adjMatrix[row, col] > 0) {
isEdge = true;

break;

}
}
if (!(isEdge))

return row;

}
return -1;

}

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

A First Graph Application: Topological Sorting 291

Next we need to see how to remove a vertex from the graph. The first thing
we have to do is remove the vertex from the vertex list. This is easy. Then we
need to remove the row and column from the adjacency matrix, followed by
moving the rows and columns above and to the right of the vertex are moved
down and to the left to fill the void left by the removed vertex.

To perform this operation, we write a method named delVertex, which
includes two helper methods, moveRow and moveCol. Here is the code:

public void DelVertex(int vert)

if (vert ! = numVertices-1) {
for(int j = vert; j <= numVertices-1; j++)

vertices[j] = vertices[j+1];

for(int row = vert; row <= numVertices-1; row++)

moveRow[row, numVertices];

for(int col = vert; col <= numVertices-1; col++)

moveCol[row, numVertices-1];

}
}

private void MoveRow(int row, int length) {
for(int col = 0; col <= length-1; col++)

adjMatrix[row, col] = adjMatrix[row+1, col];

}

private void MoveCol(int col, int length) {
for(int row = 0; row <= length-1; row++)

adjMatrix[row, col] = adjMatrix[row, col+1];

}

Now we need a method to control the sorting process. We’ll show the code
first and then explain what it does:

public void TopSort() {
int origVerts = numVertices;

while(numVertices > 0) {
int currVertex = noSuccessors();

if (currVertex == -1) {
Console.WriteLine("Error: graph has cycles.");

return;

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

292 GRAPHS AND GRAPH ALGORITHMS

}
gStack.Push(vertices[currVertex].label);

DelVertex(currVertex);

}
Console.Write("Topological sorting order: ");

while (gStack.Count > 0)

Console.Write(gStack.Pop() + " ");

}

The TopSort method loops through the vertices of the graph, finding a
vertex with no successors, deleting it, and then moving on to the next vertex.
Each time a vertex is deleted, its label is pushed onto a stack. A stack is a
convenient data structure to use because the first vertex found is actually the
last (or one of the last) vertices in the graph. When the TopSort method is
complete, the contents of the stack will have the last vertex pushed down to
the bottom of the stack and the first vertex of the graph at the top of the stack.
We merely have to loop through the stack popping each element to display
the correct topological order of the graph.

These are all the methods we need to perform topological sorting on a
directed graph. Here’s a program that tests our implementation:

static void Main() {
Graph theGraph = new Graph();

theGraph.AddVertex("A");

theGraph.AddVertex("B");

theGraph.AddVertex("C");

theGraph.AddVertex("D");

theGraph.AddEdge(0, 1);

theGraph.AddEdge(1, 2);

theGraph.AddEdge(2, 3);

theGraph.AddEdge(3, 4);

theGraph.TopSort();

Console.WriteLine();

Console.WriteLine("Finished.");

}

The output from this program shows that the order of the graph is A B C D.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Searching a Graph 293

Now let’s look at how we would write the program to sort the graph shown
in Figure 16.4:

static void Main() {
Graph theGraph = new Graph();

theGraph.AddVertex("CS1");

theGraph.AddVertex("CS2");

theGraph.AddVertex("DS");

theGraph.AddVertex("OS");

theGraph.AddVertex("ALG");

theGraph.AddVertex("AL");

theGraph.AddEdge(0, 1);

theGraph.AddEdge(1, 2);

theGraph.AddEdge(1, 5);

theGraph.AddEdge(2, 3);

theGraph.AddEdge(2, 4);

theGraph.TopSort();

Console.WriteLine();

Console.WriteLine("Finished.");

}

The output from this program is:

SEARCHING A GRAPH

Determining which vertices can be reached from a specified vertex is a com-
mon activity performed on graphs. We might want to know which roads lead
from one town to other towns on the map, or which flights can take us from
one airport to other airports.

These operations are performed on a graph using a search algorithm. There
are two fundamental searches we can perform on a graph: a depth-first search
and a breadth-first search. In this section, we examine each of these search
algorithms.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

294 GRAPHS AND GRAPH ALGORITHMS

K

L

M

H

A

I

J

E

F

G

B

C

D

11

12

8

9

710 4

1

5

6

2

3

FIGURE 16.5. Depth-First Search.

Depth-First Search

Depth-first search involves following a path from the beginning vertex until it
reaches the last vertex, then backtracking and following the next path until it
reaches the last vertex, and so on until there are no more paths left. A diagram
of a depth-first search is shown in Figure 16.5.

At a high level, the depth-first search algorithm works like this: First, pick
a starting point, which can be any vertex. Visit the vertex, push it onto a stack,
and mark it as visited. Then you go to the next vertex that is unvisited, push
it on the stack, and mark it. This continues until you reach the last vertex.
Then you check to see if the top vertex has any unvisited adjacent vertices.
If it doesn’t, then you pop it off the stack and check the next vertex. If you
find one, you start visiting adjacent vertices until there are no more, check for
more unvisited adjacent vertices, and continue the process. When you finally
reach the last vertex on the stack and there are no more adjacent, unvisited
vertices, you’ve performed a depth-first search.

The first piece of code we have to develop is a method for getting an
unvisited, adjacent matrix. Our code must first go to the row for the specified
vertex and determine if the value 1 is stored in one of the columns. If so, then
an adjacent vertex exists. We can then easily check to see if the vertex has
been visited or not. Here’s the code for this method:

private int GetAdjUnvisitedVertex(int v) {
for(int j = 0; j <= numVertices-1; j++)

if ((adjMatrix(v,j) = 1) && (vertices[j].WasVisited_

== false))

return j;

return -1;

}

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Searching a Graph 295

Now we’re ready to look at the method that performs the depth-first search:

public void DepthFirstSearch() {
vertices[0].WasVisited = true;

ShowVertex(0);

gStack.Push(0);

int v;

while (gStack.Count > 0) {
v = GetAdjUnvisitedVertex(gStack.Peek());

if (v == -1)

gStack.Pop();

else {
vertices[v].WasVisited = true;

ShowVertex(v);

gStack.Push(v);

}
}
for(int j = 0; j <= numVertices-1; j++)

vertices[j].WasVisited = false;

}

Here is a program that performs a depth-first search on the graph shown
in Figure 16.5:

static void Main() {
Graph aGraph = new Graph();

aGraph.AddVertex("A");

aGraph.AddVertex("B");

aGraph.AddVertex("C");

aGraph.AddVertex("D");

aGraph.AddVertex("E");

aGraph.AddVertex("F");

aGraph.AddVertex("G");

aGraph.AddVertex("H");

aGraph.AddVertex("I");

aGraph.AddVertex("J");

aGraph.AddVertex("K");

aGraph.AddVertex("L");

aGraph.AddVertex("M");

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

296 GRAPHS AND GRAPH ALGORITHMS

aGraph.AddEdge(0, 1);

aGraph.AddEdge(1, 2);

aGraph.AddEdge(2, 3);

aGraph.AddEdge(0, 4);

aGraph.AddEdge(4, 5);

aGraph.AddEdge(5, 6);

aGraph.AddEdge(0, 7);

aGraph.AddEdge(7, 8);

aGraph.AddEdge(8, 9);

aGraph.AddEdge(0, 10);

aGraph.AddEdge(10, 11);

aGraph.AddEdge(11, 12);

aGraph.DepthFirstSearch();

Console.WriteLine();

}

The output from this program is:

Breadth-First Search

A breadth-first search starts at a first vertex and tries to visit vertices as close to
the first vertex as possible. In essence, this search moves through a graph layer
by layer, examining the layers closer to the first vertex first and moving down
to the layers farthest away from the starting vertex. Figure 16.6 demonstrates
how breadth-first search works.

The algorithm for breadth-first search uses a queue instead of a stack,
though a stack could be used. The algorithm is as follows:

1. Find an unvisited vertex that is adjacent to the current vertex, mark it as
visited, and add to a queue.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Searching a Graph 297

K

L

M

H

A

I

J

E

F

G

B

C

D

12

8

9

7

4

1

5

11

3

6

2

10

FIGURE 16.6. Breath-First Search.

2. If an unvisited, adjacent vertex can’t be found, remove a vertex from the
queue (as long as there is a vertex to remove), make it the current vertex,
and start over.

3. If the second step can’t be performed because the queue is empty, the
algorithm is finished.

Now let’s look at the code for the algorithm:

public void BreadthFirstSearch() {
Queue gQueue = new Queue();

vertices[0].WasVisited = true;

ShowVertex(0);

gQueue.EnQueue(0);

int vert1, vert2;

while (gQueue.Count > 0) {
vert1 = gQueue.Dequeue();

vert2 = GetAdjUnvisitedVertex(vert1);

while (vert2 ! = -1) {
vertices[vert2].WasVisited = true;

ShowVertex(vert2);

gQueue.Enqueue(vert2);

vert2 = GetAdjUnvisitedVertex(vert1);

}
}
for(int i = 0; i <= numVertices-1; i++)

vertices[index].WasVisited = false;

}

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

298 GRAPHS AND GRAPH ALGORITHMS

Notice that there are two loops in this method. The outer loop runs while
the queue has data in it, and the inner loop checks adjacent vertices to see if
they’ve been visited. The for loop simply cleans up the vertices array for other
methods.

A program that tests this code, using the graph from Figure 16.6, is shown
as follows:

static void Main() {
Graph aGraph = new Graph();

aGraph.AddVertex("A");

aGraph.AddVertex("B");

aGraph.AddVertex("C");

aGraph.AddVertex("D");

aGraph.AddVertex("E");

aGraph.AddVertex("F");

aGraph.AddVertex("G");

aGraph.AddVertex("H");

aGraph.AddVertex("I");

aGraph.AddVertex("J");

aGraph.AddVertex("K");

aGraph.AddVertex("L");

aGraph.AddVertex("M");

aGraph.AddEdge(0, 1);

aGraph.AddEdge(1, 2);

aGraph.AddEdge(2, 3);

aGraph.AddEdge(0, 4);

aGraph.AddEdge(4, 5);

aGraph.AddEdge(5, 6);

aGraph.AddEdge(0, 7);

aGraph.AddEdge(7, 8);

aGraph.AddEdge(8, 9);

aGraph.AddEdge(0, 10);

aGraph.AddEdge(10, 11);

aGraph.AddEdge(11, 12);

Console.WriteLine();

aGraph.BreadthFirstSearch();

}

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Minimum Spanning Trees 299

The output from this program is:

MINIMUM SPANNING TREES

When a network is first designed, it is possible that there can be more than
the minimum number of connections between the nodes of the network. The
extra connections are a wasted resource and should be eliminated, if possible.
The extra connections also just make the network unnecessarily complex for
others to study and understand. What we want is a network that contains just
the minimum number of connections necessary to connect the nodes. Such
a network, when applied to a graph, is called a minimum spanning tree.

A minimum spanning tree is called such because it is constructed from the
minimum of number of edges necessary to cover every vertex (spanning), and
it is in tree form because the resulting graph is acyclic. There is one important
point you need to keep in mind: One graph can contain multiple minimum
spanning trees; the minimum spanning tree you create depends entirely on
the starting vertex.

A Minimum Spanning Tree Algorithm

Figure 16.7 depicts a graph for which we want to construct a minimum span-
ning tree.

The algorithm for a minimum spanning tree is really just a graph search
algorithm (either depth-first or breadth-first) with the additional component
of recording each edge that is traveled. The code also looks similar. Here’s the
method:

public void Mst() {
vertices[0].WasVisited = true;

gStack.Push(0);

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

300 GRAPHS AND GRAPH ALGORITHMS

B

A

D

G

F

C

E

FIGURE 16.7. Graph For Minimum Spanning Tree.

int currVertex, ver;

while (gStack.Count > 0) {
currVertex = gStack.Peek();

ver = GetAdjUnvisitedVertex(currVertex);

if (ver == -1)

gStack.Pop();

else {
vertices[ver].WasVisited = true;

gStack.Push(ver);

ShowVertex(currVertex);

ShowVertex(ver);

Console.Write(" ");

}
}
for (int j = 0; j <= numVertices-1; j++)

vertices[j].WasVisited = false;

}

If you compare this method to the method for depth-first search, you’ll
see that the current vertex is recorded by calling the showVertex method
with the current vertex as the argument. Calling this method twice, as shown

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Minimum Spanning Trees 301

in the code, creates the display of edges that define the minimum spanning
tree.

Here is a program that creates the minimum spanning tree for the graph in
Figure 16.7:

static void Main() {
Graph aGraph = new Graph();

aGraph.AddVertex("A");

aGraph.AddVertex("B");

aGraph.AddVertex("C");

aGraph.AddVertex("D");

aGraph.AddVertex("E");

aGraph.AddVertex("F");

aGraph.AddVertex("G");

aGraph.AddEdge(0, 1);

aGraph.AddEdge(0, 2);

aGraph.AddEdge(0, 3);

aGraph.AddEdge(1, 2);

aGraph.AddEdge(1, 3);

aGraph.AddEdge(1, 4);

aGraph.AddEdge(2, 3);

aGraph.AddEdge(2, 5);

aGraph.AddEdge(3, 5);

aGraph.AddEdge(3, 4);

aGraph.AddEdge(3, 6);

aGraph.AddEdge(4, 5);

aGraph.AddEdge(4, 6);

aGraph.AddEdge(5, 6);

Console.WriteLine();

aGraph.Mst();

}

The output from this program is:

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

302 GRAPHS AND GRAPH ALGORITHMS

B

A

D

G

F

C

E

FIGURE 16.8. The Minimum Spanning Tree for Figure 16.7.

A diagram of the minimum spanning tree is shown in Figure 16.8.

FINDING THE SHORTEST PATH

One of the most common operations performed on graphs is finding the
shortest path from one vertex to another. For vacation, you are going to travel
to 10 major league baseball cities to watch games over a two-week period. You
want to minimize the number of miles you have to drive to visit all ten cities
using a shortest-path algorithm. Another shortest-path problem is creating a
network of computers, where the cost could be the time to transmit between
two computers or the cost of establishing and maintaining the connection. A
shortest-path algorithm can determine the most effective way you can build
the network.

Weighted Graphs

We mentioned weighted graphs at the beginning of the chapter. Each edge
in the graph has an associated weight, or cost. A weighted graph is shown
in Figure 16.9. Weighted graphs can have negative weights, but we will limit
our discussion here to positive weights. We also focus here only on directed
graphs.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Finding the Shortest Path 303

B C

HGF

A

D E4

4

4

4 3

5

5 4

5

5

5 5

FIGURE 16.9. A Weighted Graph.

Dijkstra’s Algorithm for Determining the Shortest Path

One of the most famous algorithms in computer science is Dijkstra’s algorithm
for determining the shortest path of a weighted graph, named for the late
computer science Edsger Dijkstra, who discovered the algorithm in the late
1950s.

Dijkstra’s algorithm finds the shortest path from any specified vertex to
any other vertex, and it turns out, to all the other vertices in the graph. It
does this by using what is commonly termed a greedy strategy or algorithm. A
greedy algorithm (about which we’ll have more to say in Chapter 17) breaks
a problem into pieces, or stages, determining the best solution at each stage,
with each subsolution contributing to the final solution. A classic example
of a greedy algorithm is making change with coins. For example, if you buy
something at the store for 74 cents using a dollar bill, the cashier, if he or
she is using a greedy algorithm and wants to minimize the number of coins
returned, will return to you a quarter and a penny. Of course, there are other
solutions to making change for 26 cents, but a quarter and a penny is the
optimal solution.

We use Dijkstra’s algorithm by creating a table to store known distances
from the starting vertex to the other vertices in the graph. Each adjacent vertex
from the original vertex is visited, and the table is updated with information
about the weight of the adjacent edge. If a distance between two vertices is
known, but a shorter distance is discovered by visiting a new vertex, that
information is changed in the table. The table is also updated by indicating
which vertex leads to the shortest path.

The following tables show us the progress the algorithm makes as it works
through the graph. The first table shows us the table values before vertex A is
visited (the value Infinity indicates we don’t know the distance, and in code
we use a large value that cannot represent a weight):

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

304 GRAPHS AND GRAPH ALGORITHMS

Vertex Visited Weight Via Path

A False 0 0

B False Infinity n/a

C False Infinity n/a

D False Infinity n/a

E False Infinity n/a

F False Infinity n/a

G False Infinity n/a

After A is visited, the table looks like this:

Vertex Visited Weight Via Path

A True 0 0

B False 2 A

C False Infinity n/a

D False 1 A

E False Infinity n/a

F False Infinity n/a

G False Infinity n/a

Next we visit vertex D:

Vertex Visited Weight Via Path

A True 0 0

B False 2 A

C False 3 D

D True 1 A

E False 3 D

F False 9 D

G False 5 D

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Finding the Shortest Path 305

The vertex B is next visited:

Vertex Visited Weight Via Path

A True 0 0

B True 2 A

C False 3 D

D True 1 A

E False 3 D

F False 9 D

G False 5 D

And so on until we visit the last vertex G:

Vertex Visited Weight Via Path

A True 0 0

B True 2 A

C True 3 D

D True 1 A

E True 3 D

F True 6 D

G False 5 D

Code for Dijkstra’s Algorithm

The first piece of code for the algorithm is the Vertex class, which we’ve seen
before:

public class Vertex {

public string label;

public bool isInTree;

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

306 GRAPHS AND GRAPH ALGORITHMS

public Vertex(string lab) {
label = lab;

isInTree = false;

}
}

We also need a class that helps keep track of the relationship between a
distant vertex and the original vertex used to compute shortest paths. This is
called the DistOriginal class:

public class DistOriginal {

public int distance;

public int parentVert;

public DistOriginal(int pv, int d) {
distance = d;

parentVert = pv;

}
}

The Graph class that we’ve used before now has a new set of methods
for computing shortest paths. The first of these is the Path() method, which
drives the shortest path computations:

public void Path() {
int startTree = 0;

vertexList[startTree].isInTree = true;

nTree = 1;

for(int j = 0; j <= nVerts-1; j++) {
int tempDist = adjMat(startTree, j);

sPath[j] = new DistOriginal(startTree, tempDist);

}
while (nTree < nVerts) {

int indexMin = GetMin();

int minDist = sPath[indexMin].distance;

currentVert = indexMin;

startToCurrent = sPath[indexMin].distance;

vertexList[currentVert].isInTree = true;

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Finding the Shortest Path 307

nTree++;

AdjustShortPath();

}
DisplayPaths();

nTree = 0;

for(int j = 0; j <= nVerts-1; j++)

vertexList[j].isInTree = false;

}

This method uses two other helper methods, getMin and adjustShortPath.
Those methods are explained shortly. The for loop at the beginning of the
method looks at the vertices reachable from the beginning vertex and places
them in the sPath array. This array holds the minimum distances from the
different vertices and will eventually hold the final shortest paths.

The main loop (the while loop) performs three operations:

1. Find the entry in sPath with the shortest distance.
2. Make this vertex the current vertex.
3. Update the sPath array to show distances from the current vertex.

Much of this work is performed by the getMin and adjustShortPath methods:

public int GetMin() {
double minDist = Double.PositiveInfinity;

int indexMin = 0;

for(int j = 1; j <= nVerts-1; j++)

if (!(vertexList[j].isInTree) &&

(sPath[j].distance < minDist)) {
minDist = sPath[j].distance;

indexMin = j;

}
return indexMin;

}

public void AdjustShortPath() {
int column = 1;

while (column < nVerts)

if (vertexList[column].isInTree)

column++;

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

308 GRAPHS AND GRAPH ALGORITHMS

else {
int currentToFringe = adjMat[currentVert, column];

int startToFringe = startToCurrent +

currentToFringe;

int sPathDist = sPath[column].distance;

if (startToFringe < sPathDist) {
sPath[column].parentVert = currentVert;

sPath[column].distance = startToFringe;

}
}

}
}

The getMin method steps through the sPath array until the minimum distance
is determined, which is then returned by the method. The adjustShortPath
method takes a new vertex, finds the next set of vertices connected to this
vertex, calculates shortest paths, and updates the sPath array until a shorter
distance is found.

Finally, the displayPaths method shows the final contents of the sPath array.
To make the graph available for other algorithms, the nTree variable is set to
0 and the isInTree flags are all set to false.

To put all this into context, here is a complete application that includes all
the code for computing the shortest paths using Dijkstra’s algorithm, along
with a program to test the implementation:

public class DistOriginal {

int distance;

int parentVert;

public DistOriginal(int pv, int d) {
distance = d;

parentVert = pv;

}
}

public class Vertex {
public string label;

public bool isInTree;

public Vertex(string lab) {
label = lab;

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Finding the Shortest Path 309

isInTree = false;

}
}
public class Graph {

private const int max_verts = 20;

int infinity = 1000000;

Vertex[] vertexList;

int[,] adjMat;

int nVerts;

int nTree;

DistOriginal[] sPath;

int currentVert;

int startToCurrent;

public Graph() {
vertexList = new Vertex(max_verts);

adjMat = new int(max_verts, max_verts);

nVerts = 0;

nTree = 0;

for(int j = 0; j <= max_verts-1; j++)

for(int k = 0;, <= max_verts-1; k++)

adjMat[j,k] = infinity;

sPath = new DistOriginal[max_verts];

}

public void AddVertex(string lab) {
vertexList[nVerts] = new Vertex[lab];

nVerts++;

}

public void AddEdge(int start, int theEnd, int weight){
adjMat[start, theEnd] = weight;

}

public void Path() {
int startTree = 0;

vertexList[startTree].isInTree = true;

nTree = 1;

for(int j = 0; j <= nVerts; j++) {
int tempDist = adjMat[startTree, j];

sPath[j] = new DistOriginal[startTree, tempDist];

}

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

310 GRAPHS AND GRAPH ALGORITHMS

while (nTree < nVerts) {
int indexMin = GetMin();

int minDist = sPath[indexMin].distance;

currentVert = indexMin;

startToCurrent = sPath[indexMin].distance;

vertexList[currentVert].isInTree = true;

nTree++;

AdjustShortPath();

}
DisplayPaths();

nTree = 0;

for(int j = 0; j <= nVerts-1; j++)

vertexList[j].isInTree = false;

}

public int GetMin() {
int minDist = infinity;

int indexMin = 0;

for(int j = 1; j <= nVerts-1; j++)

if (!(vertexList[j].isInTree) &&

sPath[j].distance < minDist)) {
minDist = sPath[j].distance;

indexMin = j;

}
return indexMin;

}

public void AdjustShortPath() {
int column = 1;

while (column < nVerts)

if (vertexList[column].isInTree)

column++;

else {
int currentToFring = adjMat[currentVert, column];

int startToFringe = startToCurrent +

currentToFringe;

int sPathDist = sPath[column].distance;

if (startToFringe < sPathDist) {
sPath[column].parentVert = currentVert;

sPath[column].distance = startToFringe;

}

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Finding the Shortest Path 311

column++;

}
}

}

public void DisplayPaths() {
for(int j = 0; j <= nVerts-1; j++) {

Console.Write(vertexList[j].label + "=");

if (sPath[j].distance = infinity)

Console.Write("inf");

else

Console.Write(sPath[j].distance);

string parent = vertexList[sPath[j].parentVert].

label;

Console.Write("(" + parent + ") ");

}
}

class chapter16 {
static void Main() {

Graph theGraph = new Graph();

theGraph.AddVertex("A");

theGraph.AddVertex("B");

theGraph.AddVertex("C");

theGraph.AddVertex("D");

theGraph.AddVertex("E");

theGraph.AddVertex("F");

theGraph.AddVertex("G");

theGraph.AddEdge(0, 1, 2);

theGraph.AddEdge(0, 3, 1);

theGraph.AddEdge(1, 3, 3);

theGraph.AddEdge(1, 4, 10);

theGraph.AddEdge(2, 5, 5);

theGraph.AddEdge(2, 0, 4);

theGraph.AddEdge(3, 2, 2);

theGraph.AddEdge(3, 5, 8);

theGraph.AddEdge(3, 4, 2);

theGraph.AddEdge(3, 6, 4);

theGraph.AddEdge(4, 6, 6);

theGraph.AddEdge(6, 5, 1);

Console.WriteLine();

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

312 GRAPHS AND GRAPH ALGORITHMS

Console.WriteLine("Shortest paths:");

Console.WriteLine();

theGraph.Path();

Console.WriteLine();

}
}

The output from this program is:

SUMMARY

Graphs are one of the most important data structures used in computer sci-
ence. Graphs are used regularly to model everything from electrical circuits
to university course schedules to truck and airline routes.

Graphs are made up of vertices that are connected by edges. Graphs can
be searched in several ways; the two most common are depth-first search
and breadth-first search. Another important algorithm performed on graph is
determining the minimum spanning tree, which is the minimum number of
edges necessary to connect all the vertices in a graph.

The edges of a graph can have weights, or costs. When working with
weighted graphs, an important operation is determining the shortest path
from a starting vertex to the other vertices in the graph. This chapter looked
at one algorithm for computing shortest paths, Dijkstra’s algorithm.

Weiss (1999) contains a more technical discussion of the graph algorithms
covered in this chapter, whereas LaFore (1998) contains very good practical
explanations of all the algorithms we covered here.

EXERCISES

1. Build a weighted graph that models a section of your home state. Use
Dijkstra’s algorithm to determine the shortest path from a starting vertex
to the last vertex.

P1: JZP
0521670152c16 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:50

Exercises 313

2. Take the weights off the graph in Exercise 1 and build a minimum spanning
tree.

3. Still using the graph from Exercise 1, write a Windows application that
allows the user to search for a vertex in the graph using either a depth-first
search or a breadth-first search.

4. Using the Timing class, determine which of the searches implemented in
Exercise 3 is more efficient.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

CHAPTER 17

Advanced Algorithms

In this chapter, we look at two advanced topics: dynamic programming and
greedy algorithms. Dynamic programming is a technique that is often consid-
ered to be the reverse of recursion—a recursive solution starts at the top and
breaks the problem down solving all small problems until the complete prob-
lem is solved; a dynamic programming solution starts at the bottom, solving
small problems and combining them to form an overall solution to the big
problem.

A greedy algorithm is an algorithm that looks for “good solutions” as it works
toward the complete solution. These good solutions, called local optima, will
hopefully lead to the correct final solution, called the global optimum. The term
“greedy” comes from the fact these algorithms take whatever solution looks
best at the time. Often, greedy algorithms are used when it is almost impossible
to find a complete solution, due to time and/or space considerations, yet a
suboptimal solution is acceptable.

DYNAMIC PROGRAMMING

Recursive solutions to problems are often elegant but inefficient. The C#
compiler, along with other language compilers, will not efficiently translate
the recursive code to machine code, resulting in an inefficient, though elegant
computer program.

314

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Dynamic Programming 315

Many programming problems that have recursive solutions can be rewrit-
ten using the techniques of dynamic programming. A dynamic programming
solution builds a table, usually using an array, which holds the results of the
different subsolutions. Finally, when the algorithm is complete, the solution
is found in a distinct spot in the table.

A Dynamic Programming Example: Computing
Fibonacci Numbers

The Fibonacci numbers can be described by the following sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

There is a simple recursive program you can use to generate any specific
number in this sequence. Here is the code for the function:

static long recurFib(int n) {
if (n < 2)

return n

else

return recurFib(n - 1) + recurFib(n - 2);

}

And here is a program that uses the function:

static void Main() {
int num = 5;

long fibNumber = recurFib(num);

Console.Write(fibNumber);

}

The problem with this function is that it is extremely inefficient. We can see
exactly how inefficient this recursion is by examining the tree in Figure 17.1.

The problem with the recursive solution is that too many values are recom-
puted during a recursive call. If the compiler could keep track of the values
that are already computed, the function would not be nearly so inefficient.
We can design an algorithm using dynamic programming techniques that is
much more efficient than the recursive algorithm.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

316 ADVANCED ALGORITHMS

recurFib 4

recurFib 3 recurFib 2

recurFib 3

recurFib 2 recurFib 1

recurFib 1 recurFib ørecurFib 1 recurFib ørecurFib 2 recurFib 1

recurFib 1 recurFib ø

recurFib 5

1

1 1 0

1 0

1 0

FIGURE 17.1. Tree generated from Recursive Fibonacci Computation.

An algorithm designed using dynamic programming techniques starts by
solving the simplest subproblem it can solve, using that solution to solve
more complex subproblems until the problem is solved. The solutions to
each subproblem are typically stored in an array for easy access.

We can easily comprehend the essence of dynamic programming by exam-
ining the dynamic programming algorithm for computing a Fibonacci num-
ber. Here’s the code followed by an explanation of how it works:

static long iterFib(int n) {
int[] val = new int[n];

if ((n == 1) || (n == 2))

return 1;

else {
val[1] = 1;

val[2] = 2;

for(int i = 3; i <= n-1; i++)

val[i] = val[i-1] + val[i-2];

}
return val[n-1];

}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Dynamic Programming 317

The array val is where we store our intermediate results. The first part of
the If statement returns the value 1 if the argument is 1 or 2. Otherwise, the
values 1 and 2 are stored in the indices 1 and 2 of the array. The for loop runs
from 3 to the input argument, assigning each array element the sum of the
previous two array elements, and when the loop is complete, the last value in
the array is returned.

Let’s compare the times it takes to compute a Fibonacci number using both
the recursive version and the iterative version. First, here’s the program we
use for the comparison:

static void Main() {
Timing tObj = new Timing();

Timing tObj1 = new Timing();

int num = 10;

int fibNumber;

tObj.StartTime();

fibNumber = recurFib(num);

tObj.StopTime();

Console.WriteLine("Calculating Fibonacci number: " +

num);

Console.WriteLine(fibNumber + " in: " +

tObj.Result.TotalMilliseconds);

tObj1.StartTime();

fibNumber = iterFib(num);

tObj1.StopTime();

Console.WriteLine(fibNumber + " in: " +

tObj.Result.TotalMilliseconds);

}

If we run this program to test the two functions for small Fibonacci num-
bers, we’ll see little difference, or even see that the recursive function is a little
faster:

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

318 ADVANCED ALGORITHMS

If we try a larger number, say 20, we get the following results:

For a really large number, such as 35, the disparity is even greater:

This is a typical example of how dynamic programming can help improve
the performance of an algorithm. As we mentioned earlier, a program using
dynamic programming techniques usually utilizes an array to store interme-
diate computations, but we should point out that in some situations, such as
the Fibonacci function, an array is not necessary. Here is the iterFib function
written without the use of an array:

static long iterFib1(int n) {
long last, nextLast, result;

last = 1;

nextLast = 1;

result = 1;

for(int i = 2; i <= n-1; i++) {
result = last + nextLast;

nextLast = last;

last = result;

}
return result;

}

Both iterFib and iterFib1 calculate Fibonacci numbers in about the same time.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Dynamic Programming 319

Finding the Longest Common Substring

Another problem that lends itself to a dynamic programming solution is find-
ing the longest common substring in two strings. For example, in the words
“raven” and “havoc”, the longest common substring is “av”.

Let’s look first at the brute force solution to this problem. Given two strings,
A and B, we can find the longest common substring by starting at the first
character of A and comparing each character to the characters in B. When a
nonmatch is found, move to the next character of A and start over with the
first character of B, and so on.

There is a better solution using a dynamic programming algorithm. The
algorithm uses a two-dimensional array to store the results of comparisons of
the characters in the same position in the two strings. Initially, each element
of the array is set to 0. Each time a match is found in the same position of the
two arrays, the element at the corresponding row and column of the array is
incremented by 1, otherwise the element is set to 0.

To reproduce the longest common substring, the second through the next
to last rows of the array are examined and a column entry with a value greater
than 0 corresponds to one character in the substring. If no common substring
was found, all the elements of the array are 0.

Here is a complete program for finding a longest common substring:

using System;

class chapter17 {

static void LCSubstring(string word1, string word2,

string[] warr1; string[]

warr2, int[,] arr) {
int len1, len2;

len1 = word1.Length;

len2 = word2.Length;

for(int k = 0; k <= word1.Length-1; k++) {
warr1[k] = word1.Chars(k);

warr2[k] = word2.Chars(k);

}
for(int i = len1-1; i >= 0; i--)

for(int j = len2-1; j >= 0; j--)

if (warr1[i] = warr2[j])

arr[i,j] = 1 + arr[i+1, j+1];

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

320 ADVANCED ALGORITHMS

else

arr[i,j] = 0;

}

static string ShowString(int[,] arr, string[] wordArr) {
string substr = "";

for(int i = 0; i <= arr.GetUpperBound(0))

for(int j = 0; j <= arr.GetUpperBound(1))

if (arr[i,j]>0)

substr + = wordArr[j];

return substr;

}

static void DispArray(int arr[,]) {
for(int row = 0; row <= arr.GetUpperBound(0))

for(int col = 0; col <= arr.GetUpperBound(1))

Console.Write(arr[row, col]);

Console.WriteLine();

}

static void Main() {
string word1 = "maven";

string word2 = "havoc";

string[] warray1 = new string[word1.Length];

string[] warray2 = new string[word2.Length];

string substr;

int[,] larray = new int[word1.Length, word2.Length];

LCSubstring(word1, word2, warray1, warray2, larray);

Console.WriteLine();

DispArray(larray);

substr = ShowString(larray, warray1);

Console.WriteLine();

Console.WriteLine("The strings are: " + word1 + " "

+ word2);

if (substr>"")

Console.WriteLine("The longest common substring

is: " + substr);

else

Console.WriteLine("There is no common substring");

}
}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Dynamic Programming 321

The function LCSubstring does the work of building the two-dimensional
array that stores the values that determine the longest common substring. The
first for loop simply turns the two strings into arrays. The second for loop
performs the comparisons and builds the array.

The function ShowString examines the array built in LCSubstring, check-
ing to see if any elements have a value greater than 0, and returning the
corresponding letter from one of the strings if such a value is found.

The subroutine DispArray displays the contents of an array, which we
use to examine the array built by LCSubstring when we run the preceding
program:

The encoding stored in larray shows us that the second and third characters
of the two strings make up the longest common substring of “maven” and
“havoc”. Here’s another example:

Clearly, these two strings have no common substring, so the array is filled
with zeroes.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

322 ADVANCED ALGORITHMS

The Knapsack Problem

A classic problem in the study of algorithms is the knapsack problem. Imagine
you are a safecracker and you break open a safe filled with all sorts of treasures
but all you have to carry the loot is a small backpack. The items in the safe
differ in both size and value. You want to maximize your take by filling your
backpack with those items that are worth the most.

There is, of course, a brute force solution to this problem but the dynamic
programming solution is more efficient. The key idea to solving the knapsack
problem with a dynamic programming solution is to calculate the maximum
value for every value up to the total capacity of the knapsack. See Sedgewick
(1990, pp. 596–598) for a very clear and succinct explanation of the knapsack
problem. The example problem in this section is based on the material from
that book.

If the safe in the example discussed earlier has five items, the items have a
size of 3, 4, 7, 8, and 9, respectively, and values of 4, 5, 10, 11, 13, respectively,
and the knapsack has a capacity of 16, then the proper solution is to pick items
3 and 5 with a total size of 16 and a total value of 23.

The code for solving this problem is quite short, but it won’t make much
sense without the context of the whole program, so let’s look at a program to
solve the knapsack problem:

using System;

class chapter17 {

static void Main() {
int capacity = 16;

int[] size = new int[] {3, 4, 7, 8, 9};
int[] values = new int[] {4, 5, 10, 11, 13};
int[] totval = new int[capacity];

int[] best = new int[capacity];

int n = values.Length;

for (int j = 0; j <= n-1; j++)

for (int i = 0; i <= capacity; i++)

if (i >= size[j])

if (totval[i] < (totval[i-size[j]] + values[j]){
totval[i] = totval[i-size[j]] + values[j];

best[i] = j;

}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Dynamic Programming 323

Console.WriteLine("The maximum value is: " +

totval[capacity]);

}
}

The items in the safe are modeled using both the size array and the values
array. The totval array is used to store the highest total value as the algorithm
works through the different items. The best array stores the item that has the
highest value. When the algorithm is finished, the highest total value will
be in the last position of the totval array, with the next highest value in the
next-to-last position, and so on. The same situation holds for the best array.
The item with the highest value will be stored in the last element of the best
array, the item with the second highest value in the next-to-last position, and
so on.

The heart of the algorithm is the second if statement in the nested for
loop. The current best total value is compared to the total value of adding the
next item to the knapsack. If the current best total value is greater, nothing
happens. Otherwise, this new total value is added to the totval array as the
best current total value and the index of that item is added to the best array.
Here is the code again:

if (totval[i] < totval[i - size[j]] + values[j]) {
totval[i] = totval[i - size[j]] + values[j];

best[i] = j;

}

If we want to see the items that generated the total value, we can examine
them in the best array:

Console.WriteLine("The items that generate this value

are: ");

int totcap = 0;

i = capacity;

while (totcap <= capacity) {
Console.WriteLine("Item with best value: " + best[i]);

totcap + = values[best[i]];

i--;

}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

324 ADVANCED ALGORITHMS

Remember, all the items that generate a previous best value are stored in the
array, so we move down through the best array, returning items until their
sizes equal the total capacity of the knapsack.

GREEDY ALGORITHMS

In the previous section, we examined dynamic programming algorithms that
can be used to optimize solutions that are found using some less-efficient
algorithm, often based on recursion. For many problems, though, resorting
to dynamic programming is overkill and a simpler algorithm will suffice.

One type of simpler algorithm is the greedy algorithm. A greedy algorithm
is the one that always chooses the best solution at the time, with no regard for
how that choice will affect future choices. Using a greedy algorithm generally
indicates that the implementer hopes that the series of “best” local choices
made will lead to a final “best” choice. If so, then the algorithm has produced
an optimal solution; if not, a suboptimal solution has been found. However,
for many problems, it is not worth the trouble to find an optimal solution, so
using a greedy algorithm works just fine.

A First Greedy Algorithm Example:
The Coin-Changing Problem

The classic example of following a greedy algorithm is making change. Let’s
say you buy some items at the store and the change from your purchase is
63 cents. How does the clerk determine the change to give you? If the clerk
follows a greedy algorithm, he or she gives you two quarters, a dime, and
three pennies. That is the smallest number of coins that will equal 63 cents
(given that we don’t allow fifty-cent pieces).

It has been proven that an optimal solution for coin changing can always
be found using the current American denominations of coins. However, if we
introduce some other denomination to the mix, the greedy algorithm doesn’t
produce an optimal solution.

Here’s a program that uses a greedy algorithm to make change (this code
assumes change of less than one dollar):

using System;

class chapter17 {

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Greedy Algorithms 325

static void MakeChange(double origAmount, double

remainAmount, int[] coins) {
if ((origAmount % 0.25) < origAmount) {

coins[3] = (int)(origAmount / 0.25);

remainAmount = origAmount % 0.25;

origAmount = remainAmount;

}
if ((origAmount % 0.1) < origAmount) {

coins[2] = (int)(origAmount / 0.1);

remainAmount = origAmount % 0.1;

origAmount = remainAmount;

}
if ((origAmount % 0.05) < origAmount) {

coins[1] = (int)(origAmount / 0.05);

remainAmount = origAmount % 0.05;

origAmount = remainAmount;

}
if ((origAmount % 0.01) < origAmount) {

coins[0] = (int)(origAmount / 0.01);

remainAmount = origAmount % 0.01;

}
}
static void ShowChange(int[] arr) {

if (arr[3] > 0)

Console.WriteLine("Number of quarters: " +

arr[3]);

if (arr[2] > 0)

Console.WriteLine("Number of dimes: " + arr[2]);

if (arr[1] > 0)

Console.WriteLine("Number of nickels: " + arr[1]);

if (arr[0] > 0)

Console.WriteLine("Number of pennies: " + arr[0]);

}
static void Main() {

double origAmount = 0.63;

double toChange = origAmount;

double remainAmount = 0.0;

int[] coins = new int[4];

MakeChange(origAmount, remainAmount, coins);

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

326 ADVANCED ALGORITHMS

Console.WriteLine("The best way to change " +

toChange + " cents is: ");

ShowChange(coins);

}
}

The MakeChange subroutine starts with the highest denomination, quar-
ters, and tries to make as much change with them as possible. The total
number of quarters is stored in the coins array. Once the original amount is
less than a quarter, the algorithm moves to dimes, again trying to make as
much change with dimes as possible. The algorithm proceeds to nickels and
then to pennies, storing the total number of each coin type in the coins array.
Here’s some output from the program:

As we mentioned earlier, this greedy algorithm always finds the optimal
solution using the standard American coin denominations. What would hap-
pen, though, if a new coin, say a 22-cent piece, is put into circulation? In the
exercises, you’ll get a chance to explore this question.

Data Compression Using Huffman Coding

Compressing data is an important technique for the practice of computing.
Data sent over the Internet needs to be sent as compactly as possible. There
are many different schemes for compressing data, but one particular scheme
makes use of a greedy algorithm—Huffman coding. Data compressed using a
Huffman code can achieve savings of 20% to 90%. This algorithm is named
for the late David Huffman, an information theorist and computer scientist
who invented the technique in the 1950s.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Greedy Algorithms 327

When data is compressed, the characters that make up the data are usually
translated into some other representation in order to save space. A typical com-
pression scheme is to translate each character to a binary character code, or bit
string. For example, we can encode the character “a” as 000, the character “b”
as 001, the character “c” as 010, and so on. This is called a fixed-length code.

A better idea, though, is to use a variable-length code, where the characters
with the highest frequency of occurrence in the string have shorter codes and
the lower frequency characters have longer codes, since these characters are
used as much. The encoding process then is just a matter of assigning a bit
string to a character based on the character’s frequency. The Huffman code
algorithm takes a string of characters, translates them to a variable-length
binary string, and creates a binary tree for the purpose of decoding the binary
strings. The path to each left child is assigned the binary character 0 and each
right child is assigned the binary character 1.

The algorithm works as follows: Start with a string of characters you want
to compress. For each character in the string, calculate its frequency of occur-
rence in the string. Then sort the characters into order from the lowest fre-
quency to the highest frequency. Take the two characters with the smallest
frequencies and create a node with each character (and its frequency) as chil-
dren of the node. The parent node’s data element consists of the sum of the
frequencies of the two child nodes. Insert the node back into the list. Continue
this process until every character is placed into the tree.

When this process is complete, you have a complete binary tree that can
be used to decode the Huffman code. Decoding involves following a path of
0s and 1s until you get to a leaf node, which will contain a character.

To see how all this works, examine Figure 17.2.
Now we’re ready to examine the C# code for constructing a Huffman code.

Let’s start with the code for creating a Node class. This class is quite a bit
different from the Node class for binary search trees, since all we want to do
here is store some data and a link:

public class Node {

HuffmanTree data;

Node link;

public Node(HuffmanTree newData) {
data = newData;

}
}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

328 ADVANCED ALGORITHMS

r 8 s 9 t 13 m 15 a 45

t 13 m 15 a 42

a 42

r 8 s 9

2817

r 8

a 42

s 9

17

1

2

3

4

5

a 42

87

t 13 m 15

28

r 8 s 9

17

45

t 13 m 15

r 8

0

0 1

1

s 9

0 1

28

0 1

0 10 1

0 1

0 10 1

0 1

17

45

t 13 m 15

FIGURE 17.2. Constructing a Huffman Code.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Greedy Algorithms 329

The next class to examine is the TreeList class. This class is used to store
the list of nodes that are placed into the binary tree, using a linked list as the
storage technique. Here’s the code:

public class TreeList {

private int count = 0;

Node first;

public void AddLetter(string letter) {
HuffmanTree hTemp = new HuffmanTree(letter);

Node eTemp = new Node(hTemp);

if (first == null)

first = eTemp;

else {
eTemp.link = first;

first = eTemp;

}
count++;

}

public void SortTree() {
TreeList otherList = new TreeList();

HuffmanTree aTemp;

while (!(this.first == null) {
aTemp = this.RemoveTree();

otherList.InsertTree(aTemp);

}
this.first = otherList.first;

}

public void MergeTree() {
if (!(first == null))

if (!(first.link == null)) {
HuffmanTree aTemp = RemoveTree();

HuffmanTree bTemp = RemoveTree();

HuffmanTree sumTemp = new HuffmanTree();

sumTemp.SetLeftChild(aTemp);

sumTemp.SetRightChild(bTemp);

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

330 ADVANCED ALGORITHMS

sumTemp.SetFreq(aTemp.GetFreq() +

bTemp.GetFreq());

InsertTree(sumTemp);

}
}

public HuffmanTree RemoveTree() {
if (!(first == null)) {

HuffmanTree hTemp;

hTemp = first.data;

first = first.link;

count--;

return hTemp;

}
return null;

}

public void InsertTree(HuffmanTree hTemp) {
Node eTemp = new Node(hTemp);

if (first == null)

first = eTemp;

else {
Node p = first;

while (!(p.link == null)) {
if ((p.data.GetFreq()<= hTemp.GetFreq()) &&

(p.link.data.GetFreq() >= hTemp.GetFreq())

break;

p = p.link;

}
eTemp.link = p.link;

p.link = eTemp;

}
count++;

}

public int Length() {
return count;

}
}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Greedy Algorithms 331

This class makes use of the HuffmanTree class, so let’s view that code now:

public class HuffmanTree {

private HuffmanTree leftChild;

private HuffmanTree rightChild;

private string letter;

private int freq;

public HuffmanTree() {
this.letter = letter;

}

public void SetLeftChild(HuffmanTree newChild) {
leftChild = newChild;

}

public void SetRightChild(HuffmanTree newChild) {
rightChild = newChild;

}

public void SetLetter(string newLetter) {
letter = newChild;

}

public void IncFreq() {
freq++;

}

public void SetFreq(int newFreq) {
freq = newFreq;

}

public HuffmanTree GetLeftChild() {
return leftChild;

}

public HuffmanTree GetRightChild() {
return rightChild;

}

public int GetFreq() {
return freq;

}
}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

332 ADVANCED ALGORITHMS

Finally, we need a program to test the implementation:

static void Main() {
string input;

Console.Write("Enter a string to encode: ");

input = Console.ReadLine();

TreeList treeList = new TreeList();

for(int i = 0; i < input.Length; i++)

treeList.AddSign(input.Chars(i));

treeList.SortTree();

int[] signTable = new int[input.Length];

int[] keyTable = new int[input.Length];

while(treeList.length > 1)

treeList.MergeTree();

MakeKey(treeList.RemoveTree(), "");

string newStr = translate(input);

for(int i = 0; i <= signTable.Length - 1; i++)

Console.WriteLine(signTable[i] + ": " +

keyTable[i]);

Console.WriteLine("The original string is " + input.

Length * 16 + " bits long.");

Console.WriteLine("The new string is " + newStr.Length

+ " bits long.");

Console.WriteLine("The coded string looks like this:

" + newStr);

}

static string translate(string original) {
string newStr = "";

for(int i = 0; i <= original.Length-1; i++

for(int j = 0; j <= signTable.Length-1; j++)

if (original.Chars(i) == signTable[j])

newStr + = keyTable[j];

return newStr;

}

static void MakeKey(HuffmanTree tree, string code) {
int pos = 0;

if (tree.GetLeftChild == null) {
signTable[pos] = tree.GetSign();

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Greedy Algorithms 333

keyTable[pos] = code;

pos++;

} else {
MakeKey(tree.GetLeftChild, code + "0");

MakeKey(tree.GetRightChild, code + "1");

}
}

A Greedy Solution to the Knapsack Problem

Earlier in this chapter, we examined the knapsack problem and wrote a pro-
gram to solve the problem using dynamic programming techniques. In this
section, we look at the problem again, this time looking for a greedy algorithm
to solve the problem.

To use a greedy algorithm to solve the knapsack problem, the items we are
placing in the knapsack need to be “continuous” in nature. In other words,
they must be items like cloth or gold dust that cannot be counted discretely. If
we are using these types of items, then we can simply divide the unit price by
the unit volume to determine the value of the item. An optimal solution is to
place as much of the item with the highest value in the knapsack as possible
until the item is depleted or the knapsack is full, followed by as much of the
second highest item as possible, and so on. The reason we can’t find an optimal
greedy solution using discrete items is that we can’t put “half a television” into
a knapsack.

Let’s look at an example. You are a carpet thief and you have a knapsack
that will store only 25 “units” of carpeting. Therefore, you want to get as
much of the “good stuff ” as you can in order to maximize your take. You
know that the carpet store you’re going to hit has the following carpet styles
and quantities on hand (with unit prices):

� Saxony: 12 units, $1.82
� Loop: 10 units, $1.77
� Frieze: 12 units, $1.75
� Shag: 13 units, $1.50

The greedy strategy dictates that you take as many units of Saxony as
possible, followed by as many units of Loop, then Frieze, and finally Shag.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

334 ADVANCED ALGORITHMS

Being the computational type, you first write a program to model your heist.
Here is the code you come up with:

public class Carpet : IComparable {

private string item;

private float val;

private int unit;

public Carpet(string i, float v, int u) {
item = i;

val = v;

unit = u;

}

public int CompareTo(Carpet c) {
return (this.val.CompareTo(c.val));

}

public int GetUnit() {
return unit;

}

public string GetItem() {
return item;

}

public float GetVal() {
return val * unit;

}

public float ItemVal() {
return val;

}
}

public class Knapsack {

private float quantity;

SortedList items = new SortedList();

string itemList;

public Knapsack(float max) {
quantity = max;

}

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Greedy Algorithms 335

public void FillSack(ArrayList objects) {
int pos = objects.Count-1;

int totalUnits = 0;

float totalVal = 0.0;

int tempTot = 0;

while (totalUnits < quantity) {
tempTot + = (Carpet)objects[pos].GetUnit();

if (tempTot <= quantity) {
totalUnits + = (Carpet)objects[pos].GetUnit();

totalVal + = (Carpet)objects[pos].GetVal();

items.Add((Carpet)objects[pos].GetItem(),

(Carpet)objects[pos].GetUnit());

} else {
float tempUnit = quantity - totalUnits;

float tempVal = (Carpet)objects[pos].ItemVal()*

tempUnit;

totalVal + = tempVal;

totalUnits + = (int)tempUnit;

items.Add((Carpet)objects[pos].GetItem(), tempUnit);

}
pos--;

}
}

public string GetItems() {
foreach (Object k in items.GetKeyList())

itemList + = k.ToString() + ": " + items[k].

ToString() + " ";

return itemList;

}
}

static void Main() {
Carpet c1 = new Carpet("Frieze", 1.75, 12);

Carpet c2 = new Carpet("Saxony", 1.82, 9);

Carpet c3 = new Carpet("Shag", 1.5, 13);

Carpet c4 = new Carpet("Loop", 1.77, 10);

ArrayList rugs = new ArrayList();

rugs.Add(c1);

rugs.Add(c2);

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

336 ADVANCED ALGORITHMS

rugs.Add(c3);

rugs.Add(c4);

rugs.Sort();

Knapsack k = new Knapsack(25);

k.FillSack(rugs)

Console.WriteLine(k.getItems);

}

The Carpet class is used for two reasons: to encapsulate the data about each
type of carpeting and to implement the IComparable interface, so we can sort
the carpet types by their unit cost.

The Knapsack class does most of the work in this implementation. It pro-
vides a list to store the carpet types and it provides a method, FillSack, to
determine how the knapsack gets filled. Also, the constructor method allows
the user to pass in a quantity that sets the maximum number of units the
knapsack can hold.

The FillSack method loops through the carpet types, adding as much of
the most valuable carpeting as possible into the knapsack, then moving on to
the next type. At the point where the knapsack becomes full, the code in the
Else clause of the If statement puts the proper amount of carpeting into the
knapsack.

This code works because we can cut the carpeting wherever we want. If
we were trying to fill the knapsack with some other item that does not come
in continuous quantities, we would have to move to a dynamic programming
solution.

SUMMARY

This chapter examined two advanced techniques for algorithm design:
dynamic programs and greedy algorithms. Dynamic programming is a tech-
nique where a bottom-up approach is taken to solving a problem. Rather than
working its way down to the bottom of a calculation, such as done with recur-
sive algorithm, a dynamic programming algorithm starts at the bottom and
builds on those results until the final solution is reached.

Greedy algorithms look for solutions as quickly as possible and then stop
before looking for all possible solutions. A problem solved with a greedy
algorithm will not necessarily be the optimal solution because the greedy

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

Exercises 337

algorithm will have stopped with a “sufficient” solution before finding the
optimal solution.

EXERCISES

1. Rewrite the longest common substring code as a class.
2. Write a program that uses a brute force technique to find the longest com-

mon substring. Use the Timing class to compare the brute force method
with the dynamic programming method. Use the program from Exercise 1
for your dynamic programming solution.

3. Write a Windows application that allows the user to explore the knapsack
problem. The user should be able to change the capacity of the knapsack,
the sizes of the items, and the values of the items. The user should also
create a list of item names that is associated with the items used in the
program.

4. Find at least two new coin denominations that make the greedy algorithm
for coin changing shown in the chapter produce suboptimal results.

5. Using a “commercial” compression program, such as WinZip, compress
a small text file. Then compress the same text file using a Huffman code
program. Compare the results of the two compression techniques.

6. Using the code from the “carpet thief” example, change the items being
stolen to televisions. Can you fill up the knapsack completely? Make
changes to the example program to answer the question.

P1: JZP
0521670152c17 CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 18, 2007 21:58

P1: JZP
0521670152ref CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:55

References

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Clifford-
Stein. Introduction to Algorithms. Cambridge, MA: The MIT Press, 2001.

Ford, William and William Topp. Data Structures with C++. Upper Saddle
River, NJ: Prentice Hall, 1996.

Friedel, Jeffrey E. F. Mastering Regular Expressions, Sebastopol, CA: O’Reilly
and Associates, 1997.

LaFore, Robert. Data Structures and Algorithms in Java, Corte Madera, CA:
Waite Group Press, 1998.

McMillan, Michael. Object-Oriented Programming With Visual Basic.NET, New
York: Cambridge University Press, 2004.

Sedgewick, Robert. Algorithms in C, Reading, MA: Addison-Wesley, 1998.

Weiss, Mark Allen. Data Structures and Algorithm Analysis in Java, Reading,
MA: Addison-Wesley, 1999.

339

P1: JZP
0521670152ref CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 17, 2007 21:55

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index

& (ampersand) operator 134
($) dollar sign, assertion

made by 157
.NET environment 18

application domain 19
as arrays and strings 5
timing test for 18

.NET Framework
array class 3
ArrayLists 41
collection classes in 1
dictionary classes 8
Stack class 69

.NET Framework class library
System

data structures 1
.NET Framework library 11

ArrayList 35
.NET version of c# 93
[] brackets, enclosing a

character class 155
\b assertion 157
\d character class 156
\D character class 156
\S character class 156
\w character class 156

\W character class 156

A
Add method 240

for a dictionary object 166
in a BucketHash class 181
of the arraylist 36
storing data in a collection 12

AddEdge method 288
AddRange method 38, 39
AddVertex method 288
Adelson-Velskii, G. M. 263
adjacency matrix 286, 288, 290,

291
adjustShortPath method 307, 308
advanced data structures

for searching 263
algorithms 1

advanced sorting 42, 249
binary search 62, 64, 66
Bubble Sort 45
determining node position 222
Dijkstra’s algorithms 303, 305,

312
greedy 152, 303, 314, 324
HeapSort 254

341

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

342 INDEX

algorithms (cont.)
implementation 290
Insertion Sort 49
iterative 65
knapsack problem 322
minimum spanning tree 299
QuickSort 259
recursive 65
selection sort 48
ShellSort 249
shortest-path 302
sorting 42
topological sorting 289

And operator 98, 245
anonymous group 158
append method 140
application domain 19
arithmetic expression, storing

as string 7, 74
Array Class 26

built-in binary search
method 65

for retrieving metadata 28
array class method 28
array elements 28
array Metadata 28
array object 26
array techniques 125
ArrayList class 26, 35

applications of 36
members of 35

ArrayList object 35
ArrayLists 3, 11, 12

addrange/insertrange
method 38

and resizing 41
as buckets 181
capacity property 37
comparing to arrays 26

contained in
CollectionBase class 12

indexof method 38
remove method 37

ArrayLists add method 81
ArrayLists object 70
arrays

as class objects 3
as linear collection storage 3
compared to BitArray Class 94
compared to linked list 194, 195
concerning issues with 194
declaring 27
heaps building 254
indexed data collections 26
initializing 27
Jagged Arrays 32
multidimensional arrays 30
new elements insertions to 3
parameter arrays 32
static/dynamic 3

arrBits 114
ASC function 127
ASCII code 127
ASCII values 177, 240
assertions 156, 160

Zero-Width Lookahead 160
Zero-Width Lookbehind 160

associations 8
asterisk (∗) 148

as quantifier 151
as the greedy opertaor

AVL trees 263
fundamentals 263
implementing 264
nodes in 264, 266
rotation 263

AVLTree class
deletion method 268

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index 343

B
benchmark tests 17
benchmarking. See timing

tests
Big O analysis 1
bin configuration 87
binary number

converting to decimal
equivalents 97

binary number system 96
binary numbers 94, 96

combining with bitwise
operators 99

comparing bit-by-bit 98
manipulating 97

binary search 55, 62
recursive 64

binary search algorithm 64
using iterative and

recursive code 66
binary search method 64, 66
binary search trees 218, 220, 235

building 221
finding node and

minimum/maximum
values in 227

handling unbalanced 263
inserting series of numbers

into 225
leaf node (with One Child)

removal 230
leaf node (with two

children) removal 230
leaf node removal 228
transversing 224

binary trees 9, 218, 220
BinarySearchTree (BST) class 221,

222, 268
binNumber 113

binNumber array (binary) 113
bins, queues representing 88
bit

index of bit to set 113
bit mask 107
bit pattern

for an integer value 104
Bit sets 94
bit shift

demonstration application 107
bit value

retrieving 111
BitArray

binNumber 113
BitSet 113
compared with array for

sieve of Eratosthenes 117
retrive a bit value 111
similar to arraylist 110
storing set of boolean

values 117
BitArray class 94, 110

data structure to store set
members 244

finding prime numbers 94
methods and properties 113
storing sets of bits 117
writing the seive of

Eratosthenes 94, 96
bitBuffer variable 107
Bits

in VB.NET 96
BitSet 113
bitshift operators 94, 97, 103
bitwise operators 94, 97, 98

and applicability 99
and ConvertBits method 99
similar to boolean values 98
truth tables 98

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

344 INDEX

black nodes 268
Boolean truth table 98
Boolean value 113
breadth-first search 293, 296
BubbleSort algorithm 45, 46
BubbleSort method 47
Bucket Hashing 181
buckets 181
BuildArray subroutine 90
BuildGlossary subroutine 189
Byte values 96, 111

C
C#

and arrays in 26
and regular expression 156
binary tree in 220
built-in Hashtable class 183
CStack 70
dimensions of arrays 30
in bitwise operators 99
peek operation 69
role of sets 237
strings as class object 3

C# code
for constructing Huffman

code 327
C# strings 3
C# struct 4
C#, arrays 3
Capacity property

of the ArrayList object 35
CapturesCollection Class 161
caret (∧) 155
Carpet class 336
carpet thief program 337
CArray class 44

in prime number sorting 95
storing numbers 44

CArray class object 44
case-insensitive matching 163
character array, instantiating a

string from 120
character classes 153, 155

[aeiou] 155
period (.) 153

characters
Unicode values of 127

Chars method 83
Chars property 139
child

deleting a node with one 230
Circular linked list 203
Class Data Members 239
class method 29
Clear method 13, 76

of the ArrayList Class 70
Coin-Changing Problem 324
Collection Classes 11, 12

built-in enumerator 11
implementing using arrays 11
in.NET Framework 1
storing class object 11

Collection operations 2
CollectionBase class 11

inner list 12
collections 1, 2

linear and nonlinear 2
collections count 2
Collision 177
collNumber 183
comma-delimited string 125
comma-separated value

strings (CSVs) 125
compareTo method 127
Compression of data 326
computer programming

role of stacks 93

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index 345

Concat method 134
connected unidirected graph 284
connections

between network 299
constructor method 239

for CSet class 239
for CStack 70
for String class 120

constructors
for Stack class 73

Contains method 37, 77
ContainsKey method 188
ContainsValue method 188
continuous items 333
ConvertBits function 107
ConvertBits method 99
copy constructors 184
CopyTo method 77, 169
cost. See also weight of the

vertex 283
Count method 12, 167
Count property 70

and stack operation 69
CSet class 243

BitArray implementation of 244
CSVs (comma-separated

value strings) 125
CType function 169
custom-built data structure or

algorithm 66
cycle 284

D
Data compression

Huffman code 326
data fields 206
data items, memory reserved

for 18
data members

for timing classes 21
data structures 1, 68
data structures and algorithms 1
data types

numeric 5
default capacity

hash table with 185
of queue 82

default constructor 21, 73
for base class 167

Delete method 233
delVertex. See also graphs 291
DeMorgan’s Laws 239
depth of a tree 220
depth-first search 293, 294
Dequeue method 91, 92
Dequeue operation 7, 80, 90
dictionary 8, 42, 165

key-value pairs 8
dictionary, associative arrays 8
DictionaryBase 166
DictionaryBase class, 165. See

also SortedList Class 172
DictionaryBase Methods 169
dictionary-based data

structure
SortedList 165

DictionaryEntry array 169
DictionaryEntry objects 166, 167,

170, 174
Difference method 242
digraph 284
Dijkstra, Edsger 303
Dijkstra’s algorithm 308
direct access collections 2

and struct 3
string 3

directed graph. See digraph
displaying method 47

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

346 INDEX

displayNode method 221, 226
displayPaths method 308
dispMask variable 107
DistOriginal class 306
distributive set property 238
Double Hashing 181, 183
double quotation marks

enclosing string literals 120
double rotation

in an AVL tree 264
doubly-linked list 200

node deletion 201
Remove method 201

duration members
of Timing class 21

dynamic programming 314
arrays for storing data 318

E
ECMAScript option

for regular expression 163
edges

nodes connected by 218
representing as graph 286

elements
accessing a arrays 28
accessing multidimensional

arrays 29, 31
adding to an array 3

empty set 238
empty string 120
EnQueue operation 7, 80
EnsureCapacity method 139
Enumerator object

for a hash table 185
equal set 238
equalities for set 239
equality, testing for 26
Equals method 127

equivalent table
for bit values 98

Eratosthenes 94
ExplicitCapture

for regular expression 163
expression evaluator 74, 77
extra connections

in a network 299

F
False bit 98
Fibonacci numbers 315

computaion using recursive
and iterative version 317

FIFO (First-In, First-Out)
structures 79, 80

FillSack method 336
finalizer method 19
FindLast method 202
FindMax method 282
FindMin function 59
FindMin() method 227
First-In, First-Out structures

(FIFO) 79, 80
fixed-length code 327
For Each loop 36
For loop 28, 107, 258,

280
formatted string 140
found item, swapping with

preceding 61
frequency of occurrence

for a character in a string 327
frequently searched-for items,

placing at beginning 59

G
garbage collection 18
garbage collector, calling 18

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index 347

generalized indexed
collections 7

generic class 16
Generic Linked List 214
Generic Linked List Class 214
Generic Node Class 214
generic program

data type placeholder 14
generic programming 1, 14
generic Queue 82
generic Swap function 14
generics 1
genRandomLevel method 280
Get method

BitSet BitArray 111
to retrieve bits stored 111

GetAdjUnvisitedVertex
method 294

getCurrent method 207
GetEnumerator method 169
GetLength method 29
getMin method 307, 308
GetRange method 39, 40
GetSuccessor method 233
GetType method 29

for data type of array 29
GetUpperBound method 29
GetValue method 28
global optimum 314
glossary, building with a hash

table 189
Graph Class 285, 306
graph search algorithm

minimum spanning tree 299
graphs 10

building 287
minimum spanning trees 299
real world systems modeled

by 284

represented in VB.NET 283
searching 293
topological sorting 289
vertex removal 291
weighted 302

Greedy algorithms 303, 314, 324
group

nonlinear collection,
unordered 9

group collections 9
Grouping Constructs 157

H
HandleReorient method 275
hash function 8, 176, 177, 181

in a BucketHash class 181
Hash table

addition/removal of
elements 182

building glossary or
dictionary 189

hash function 8
key/value pairs stored in 166
load factor 182
remove method 167
retrieving data 8
retrieving keys and values

from 185
Hashtable class 176, 184

.NET Framework library 176
methods of 74

Hashtable objects
instantiating and adding

data to 184
load factor 184

heap 18
building 254

heap sort 9
HeapSort Algorithm 254

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

348 INDEX

hierarchical collections 2, 8
and tree 8

hierarchical manner, storing
data 218

Horner’s rule 179
HTML anchor tag 164
HTML formatting 136
Huffman code 327
Huffman code algorithm 327
Huffman coding 326

data compression using 326
Huffman, David 326
HuffmanTree class 331

I
Icollection

and arraylists 38
ICollection interface 72
IComparable interface 264, 336
IDictionary interface 166
IEnumerable interface 11
If-Then statement,

short-circuiting 37, 61
IgnoreCase option

for regular expression 163
IgnorePatternWhiteSpace

option for regular
expression 163

immutable String objects 119
immutable strings 3
increment sequence 249
index-based access

into a SortedList 174
IndexOf method 38, 122
infix arithmetic 74
initial capacity

for a hash table 184
initial load factor

for a hash table 184

initialization list 27
inner loop

in an insertion sort 50
in an selectionSort 48

InnerHashTable 166
InnerHashTable object 167
InnerList 12
inOrder method 225, 226
inorder successor 230
inorder traversal method 224, 225
Insert method 141
InsertAfter method 207
InsertBefore method 207
InsertBeforeHeader Exception

class 207
Insertion method 201
Insertion Sort viii, 49

loops in 50
speed of 52

Int32 structure 5
Integer array 33
Integer data type 5
integer index, 2, 8. See also

direct access collections
integer set members 244, 248
Integer variable 70
integers

bit pattern determination 104
converting into binary

numbers 104
Integer-to-Binary converter

application 104
intersection 9, 238
Intersection method 241
invalid index 38
IP addresses 166, 172
IPAddresses class 168
isArray class method 29
IsMatch method 149

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index 349

isSubset Method 241
Item method

calling 70
key-value pair 185
of HashTable class 167
retrieving value 166, 167

Iterator class 200, 206
insertion methods 207

iterFib function 318

J
Jagged arrays 32
Join method 124

from an array to a string 124,
126

K
Key

retrieving value based on 186
Key property

for a dictionaryEntry object 170
key value, 220. See also key

value pairs
key-value pairs. See also key

value 165
KeyValuePair Class 171
KeyValuePair object

instantiating 171
knapsack class 336
knapsack problem 322

greedy solution to 333
Knuth, Don 11

L
Landis, E. M. 263
Last-In, First-Out (LIFO)

structures 7
lazy deletion 268
lazy quantifier 153

LCSubstring function 321
left shift operator (<<) 103
left-aligning a string 132
Length method

for multi-dimensional array 29
Length property 139

of StringBuilder class 138
levels

breaking tree into 220
determining for skip lists

of links 277
LIFO (Last-In, First-Out

structures) 7
Like operator
linear collections 7

and array 2
direct/sequential access 2
list of elements 2

linear list 6
direct access to elements 6
ordered or unordered 6
priority queue 7
sequential access

collections 6
stacks

last in, first-Out structures 7
stacks and queues 7

linear probing 183
link member

of node 197
linked list

design modifications in 200
doubly/circular linked list 200
insertion of items 196
object-oriented design 196
removal of items 196

LinkedList class 197, 206, 207,
208, 214, 217

LinkedListNode 214

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

350 INDEX

load factor 184
local optima 314
logical operators 98
Lookbehind assertions 160, 161
loop 284

M
machine code, translating

recursive code to 314
MakeChange subroutine 326
mask. See also bit mask 107

converting integer into a
binary number 104

Match class 148, 149
MatchCollection object 150
matches

at the beginning of a string
or a line 156

at the end of the line 157
specifying a definite

number of 152
specifying a minimum and

a maximum number of 152
specifying at word

boundaries 157
MaxCapacity property 138
merge method, called by

RecMergeSort 252
MergeSort algorithm 251
metacharacter 147

asterisk (∗) 148
minimum spanning tree

algorithm 299
modern operating systems

tree collection 9
moveRow method 291
multi-dimensional array 29, 30

accessing elements of 31

performing calculations on
all elements 31

Multiline option
for regular expression 163

MustInherit class 166
mutable String objects 137
myfile.exe 148

N
named groups 158
native data type 120
negative integers, binary

representation of 105
negative lookahead assertion 160
network graph 10
Node class 196, 200
nodes

connected by edges 10
in linked list 195
of a tree collection 8

nonlinear collections
hierarchical and group

collections 8
trees, heaps, graphs and

sets 2
unordered group 9

NP-complete problems 10
NUM VERTICES constant of

the graph class 288
numElements 250
numeric codes for characters 127

O
object-oriented programming

(OOP) 11, 70
code bloat 14

octal, converting numbers
from decimal to 78

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index 351

OOP (object-oriented
programming) 11

open addressing 181, 183
operations, performed on sets 238
optimal solution

for greedy algorithm 324
Or operator 245
ordered graph 284
ordered list 6
organizational chart 2
ORing 101

P
PadLeft method 132
PadRight method 132
palindrome 71, 93
ParamArray keyword 32
parameter arrays 32
parameterized constructor 197
parentheses (), surrounding

regular expression 157
Pareto distributions 60
Pareto, Vilfredo 60
Parse method

Int32 5
Path. See also vertices

sequence in graph 284
finding the shortest in

graph 302
Path() method 306
Pattern matching 147
Peek method. See Queue

operations
period (.)character class 153
period matches 154
pig Latin 146
pivot value 262
plus sign (+) quantifier 151

Pop method 70, 73
Pop operation. See stack

operations
postfix expression evaluator 93
postorder traversals 224, 226
PQueue class 91

code for 91
preorder traversal method 224
primary stack operations 74
PrintList method 199
Priority Queues 90

deriving from Queue class 90
Private constructor 279

for the SkipList class 278
probability distribution 277
Probability distributions 60
Process class 19
process handling 90
Property method 264
Public constructor 279
Pugh, william 277
punch cards 86
Push method 74

Q
Quadratic probing 183
quantifiers 151

asterisk (∗) 151
question mark (?)

quantifier 151
Queue class 68, 80,

90
implemention using an

ArrayList 81
sample application 82

Queue object 82
Queue operations 80

Peek method 70, 76, 80

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

352 INDEX

queues 68, 80
and applications 93
changing the growth factor 82
First-In, First-Out structure 7
for breadth-first search 296
used in sorting data 86

QuickSort algorithm 259
improvement to 262

R
radix sort 87
random number generator 44
range operators

in like comparisons
Rank property 29
readonly Property 264
rebalancing operations. See

AVL trees
recMergeSort method 252
recMergeSort subroutines 253
recursion

base case of 252
reverse of 314

recursive call 226, 315
recursive code, transting

to machine code 314
recursive program 315
RedBlack class 270,

275
red-black tree 263, 268

implementation code 270
insertion of items 269
rules for 269

Redim Preserve statements 3
reference types 18
RegEx class 147, 148
regular array 95
regular expressions 147

compiling options 163

for text processing and
pattern matching 164

in C# 148
metacharacters 147
modifying using assertions 156
myfile.exe 148
options 163
searches and substitution

in strings 147
surrounding parentheses 157
working with 148

Remove method 12
RemoveAt method 38
Replace method 150
right shift operator (>>) 103
root node 9, 219
RSort subroutine 90

S
searching 42
Searching Algorithms 55
Selection Sort 48

compared with other
sorting algorithms 53

SelectionSort algorithm 48
code to implementation 48

SeqSearch method 60
compared with Bubble sort 61
self-organisation 60

sequential access collections 6
Sequential search 55

implementation of 55
minimum and maximum

values search by 58
speeding up 59

Sequential search function 57
Set class 237

implementation using Hash
table 239

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index 353

Set method 113
set of edges 10
set of nodes 10
set operations 9
SetAll method 113
Sets 237

operations performed on 238
properties defined for 238
remove/size methods 240
unordered data values 9

SetValue method 28
comparing with

multidimensional array 31
Shell, Donald, 249. See also

ShellSort algorithm
ShellSort Algorithm 249
shortest-path algorithm 302
showVertex method 300
sieve of Eratosthenes 94, 117

using a BitArray to write 114
using integers in the array 96

skip lists 263, 275
fundamentals 275
implementation 277

SkipList class 281
public/private constructor 278

Sort method
in several. NET Framework

library classes 262
SortedList 165
SortedList class 165, 172
Sorting 42, 44, 45, 87

data with Queue 86
Sorting algorithms 42

Bubble Sort 45
time comparisons for all

sorting algorithms 51
Sorting data

algorithms for 53

Sorting process 46
sorting techniques 43
sPath array 308
splay tree 263
Split method 124

string into parts 124
Stack class 68, 70, 72, 73, 78
Stack Constructor Methods 73
stack object 73
stack operations 7, 74

Pop operation 69
pushing, popping, and

peeking 17
stacks 7, 18, 68

contains method 77
in programming language

implementations 68
Last-in, First-out (LIFO)

data structure 69
Stacks applications 7
stacks, data structure 79
string array 113, 125
String class 119

compared to StringBuilder 143
Like operator
methods involved 124
methods of 121
PadRight/PadLeft method 132

String class methods 83
string literals 119, 120, 141
String objects 119

comparing in VB.NET 126
concatenating 134
instantiating 120

string processing 119, 130, 145,
147

StringBuffer class 146
StringBuilder class viii, 3, 119,

137, 138, 142, 143, 145

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

354 INDEX

StringBuilder objects
and Append method 140
constructing 138
modifying 139
obtaining and setting

information about 138
strings 119

aligning data 132
breaking into indivisual

pieces of data 124
building from arrays 126
collection of characters 3
comparing to patterns
converting from lowercase

to uppercase 135
defining range of characters

in 154
finding longest common

substring 319
in VB.NET 121
length of 121, 122
matching any character in
methods for comparing 126
methods for manipulating 130
operation performed 121
palindrome 71
replacing one with another 142
StartsWith and EndsWith

comparison methods 129
struct 3
subroutine DispArray 321
Substring method 122
Swap function 14
System.Array class 26

T
text file 191
Text Processing 147
TimeSpan data type 21

Timing class 1
and data members 21
measurement of data

structure and algorithms 1
timing code 18, 19,

21
moving into a class 23

Timing Test class 21
Timing tests 17

for. NET environment 18
oversimplified example 17

ToArray method 39, 78
transfer of contents 40

topological sorting 289
methods of 290

TopSort method 292
ToString method 143, 170
Traveling Salesman problem 10
traversal methods 224
tree

leaf 220
set of nodes 218

tree collection 8
applications of 9
elements of 8

tree transversal 220
TreeList class 329
Trim method 135
TrimEnd methods 135
True bit 98
two-dimensional array 33

building LCSubstring
function 321

decleration 30
result storage 319

U
Unicode character set. See

strings

P1: IKB
0521670152ind CUNY656/McMillan Printer: cupusbw 0 521 67015 2 February 21, 2007 10:21

Index 355

Unicode table 127
Union 9, 238
Union method 241
Union operation 241
universe 238
unordered array, searching 58
unordered graph 284
unordered list 6
upper bound

of array 62, 110,
262

utility methods
of Hashtable class 187

V
value. See also Boolean value 113
Value property

for DictionaryEntry object 170
Value types 18
variable-length code 327
Variables

assigning the starting time
to 23

stored on heap 18
stored on stack 18

VB.NET
manipulation of Bits 96
skip list 277

VB.NET applications 97
vertex 283
Vertex class

building 285
for Dijkstra’s algorithms 305

Vertices
in graph 283, 284, 312
representing 285

Vertices sequence in graph 284
Visual Studio.NET 46

W
weight of the vertex 283
wildcards
Windows application

bit shifting operators 107

X
Xor operator 99

Z
zero-based array 170

