
Web Mining in Cloud Computing
Framework: RANKING

Project Report submitted in partial fulfillment of the requirement

for the degree of

Master of Technology

in

Computer Science & Engineering

under the supervision of

Suman Saha

By

Ashish Rawat (132207)

Jaypee University Of Information Technology

Waknaghat, Solan - 173234, HP, INDIA

May 2015

Certificate

This is to certify that project report entitled ”Web Mining in Cloud Computing

Framework: RANKING” , submitted by Ashish Rawat in partial fulfillment for

the award of degree of Master of Technology in Computer Science and Engineer-

ing to Jaypee University of Information Technology, Waknaghat, Solan has been

carried out under my supervision.

This work has not been submitted partially or fully to any other University or

Institute for the award of this or any other degree or diploma.

Date: Suman Saha

Assistant Professor

Acknowledgements

This project could not have been at the stage it is right now had it not been for

the cooperation of Mr. Suman Saha, our project guide, who was always there

to tell me how to go about my project in a systematic manner and who always

took out time to help me with our technical and non-technical doubts at various

stages of the project also he kept faith in my ability to complete the project well

and on time. Last but not the least; it was our fellow students who came to our

rescue whenever we got stuck in any piece of code or otherwise.

Date: Ashish Rawat

ii

CONTENTS

Certificate i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vi

Abstract vii

1 INTRODUCTION 1

1.1 Web Mining . 3

1.2 MapReduce . 4

1.2.1 Execution phase of a MapReduce Application 5

1.2.2 Fault Tolerance . 6

1.3 Ranking in Web . 6

1.4 Web Graph . 7

1.5 Problem Statement . 8

1.6 Motivation . 8

1.7 Objective . 9

2 Preliminaries and Background 10

2.1 Hyperlink Induced Topic Search . 11

2.1.1 Topic Specific Search . 11

2.1.2 Execution phase . 11

2.1.3 Example . 12

2.1.4 Simulation Results . 16

2.2 PageRank . 17

2.2.1 Damping Factor . 18

2.2.2 Random Surfer . 18

2.2.3 Example . 20

2.2.4 Simulation Results . 24

2.3 Online Page Importance Calculation 25

iii

Contents

2.4 Ranking hubs and Authorities using Matrix Function 26

2.4.1 Example . 27

2.4.2 Simulation Results . 29

3 Proposed Approach 32

3.1 Proposed Approach . 32

3.1.1 Pagerank computation on mapreduce framework 32

3.1.2 Processes . 36

3.1.3 Pagerank computation using spectral analysis on Map re-
duce framework . 38

3.1.4 Processes . 40

4 Implementation Details and Results 42

4.1 Platform . 42

4.2 Dataset . 43

4.3 Description . 43

4.4 Results . 44

4.4.1 Pagerank computation on mapreduce framework 44

4.4.2 Spectral pagerank algorithm on Mapreduce framework . . . 45

4.5 Analysis . 46

5 Application 50

6 Conclusion and Future Work 53

6.1 Conclusion . 53

6.2 Future Work . 53

iv

LIST OF FIGURES

1.1 Web Mining Process . 3

1.2 Data Partitioning . 4

1.3 Map Reduce Process . 5

1.4 Web ranking [1] . 7

2.1 HITS example . 13

2.2 Directed graph with 100 nodes . 16

2.3 PageRank example . 20

2.4 Directed graph with 100 nodes . 24

2.5 Example of four nodes . 27

2.6 The bipartite network with adjacency matrix A 28

2.7 Directed graph with 10 nodes . 29

2.8 Snapshot of matrix created in R . 30

2.9 Bipartite graph with 10 nodes . 30

3.1 Pagerank computation on Map Reduce framework. 34

3.2 Process flow in Pagerank computation on mapreduce framework . . 36

3.3 Spectral Pagerank computation on Map Reduce framework. 37

3.4 Process flow in Spectral pagerank algorithm on Mapreduce framework 40

4.1 Directed graph with 100 nodes . 44

4.2 Cosine similarity between PageRank, Mapreduce PageRank and
Spectral Mapreduce pagerank algorithms 47

4.3 Time execution graph between PageRank, Mapreduce PageRank
and Spectral Mapreduce pagerank algorithms 48

5.1 Time execution bar plot . 52

v

LIST OF TABLES

2.1 Hub and Authority vector . 16

2.2 Hub and Authority vector . 17

2.3 Pagerank vector . 23

2.4 PageRank vector . 25

2.5 In-degree and out-degree counts of the bipartite graph 28

2.6 In-degree and out-degree counts of the bipartite graph 31

4.1 MapReduce Rank vector . 45

4.2 PageRank vector . 45

4.3 Spectral Rank vector . 45

4.4 Time of execution in secs . 46

5.1 Mapreduce Rank vector . 51

5.2 PageRank vector . 51

5.3 Spectral Rank vector . 51

vi

Abstract

The dimension of World Wide Web (The Internet) is in billions in terms of web

pages and increasing rapidly. With the diversity of web pages available on the

web, the high degree relevant information retrieval becomes a major issue. Such

huge number of pages not only make the computation complex but also raises the

issues of fault tolerance and time complexity. Computing ranking for such large

number of web graph on a particular system, makes it prone to system failure and

time taking. The present work proposes a distributed ranking system to attain

fault tolerance and speedy calculation of Pagerank vector. The computation of

rank vector is performed by implementing Pagerank on Mapreduce framework.

The pagerank vector is calculated via spectral analysis to make the computation

even faster and the results are compared to traditional pagerank scores.

CHAPTER 1

INTRODUCTION

The information retrieval regarding any certain query, on the web, has several

replies which create challenges in a relevant information excavation. The most rel-

evant information excavation has become a vital issue among several billions of web

pages existing with the presence of malicious pages and programs to manipulate

the search result of search engines. There exist various ranking algorithms using

various approaches to rank the web pages, e.g.: PageRank, Hits, Opic Algorithm,

Ranking hubs and Authorities using Matrix Function etc. Among these algorithms

Pagerank algorithm has an advantage over others as it not only checks the link

from pages but also checks from which page it is coming from. In addition it

calculates single quality measure i.e., the pagerank vector. A detail description of

pagerank algorithm will be discussed in section ahead. Beyond such advantages of

pagerank, it takes underrepresented amount of time for the computation of pager-

ank vector. Computation of such complex algorithm on a single system makes it

single system failure prone system. So the time and single system failure are the

two problems we are addressing in this project. This work is fundamentally based

on computing pagerank on MapReduce frame work. MapReduce is a widespread

distributed programming model for processing complex and huge size data. Map

reduce was incorporated in the year of 2004, aiming web index, by Google. Ba-

sically it is a distributed programming model and an scalable implementation for

processing and generation of huge data sets.

The Pagerank computation is done by using the concept of spectral analysis. The

maximum eigenvalue is calculated using spectral analysis. In accordance to spec-

tral analysis the eigenvalue λ of a adjacency matrix M can be determined by the

following relation [2]

λ1 = max
Z

ZTMZ

ZTZ

1

Chapter 1. Introduction

Proof: Suppose M be a symmetric matrix with corresponding eigenvalues λ1 ≥
λ2 ≥ ≥ λn, and the corresponding orthogonal eigenvectors v1, v2,, vn

Let, Z = c1v1 + c2v2...cnvn ,be the characteristic equation for matrix A

Now

ZTMZ = (c1v1 + c2v2...cnvn)TM(c1v1 + c2v2...cnvn)

= (c1v1 + c2v2...cnvn)T ((c1λ1v1 + c2λ2v2...cnλnvn))

Since v1, v2,, vn are orthogonal.

=
n∑

i=1

c2iλi

Similarly ,

ZTZ = (c1v1 + c2v2...cnvn)T (c1v1 + c2v2...cnvn) =
n∑

i=1

c2i

So,

ZTMZ

ZTZ
=

n∑
i=1

c2iλi

n∑
i=1

c2i

≤ λ1

n∑
i=1

c2i

n∑
i=1

c2i

ZTMZ

ZTZ
= λ1

i.e., the maximum eigenvalue.

Note:

2

Chapter 1. Introduction

The whole scenario of this presentation is based on mining on the web. Let us

understand the term Web Mining first.

1.1 Web Mining

Web Mining is a large discipline and one of its form is Ranking, which is very pro-

ductive and useful form of information retrieval. It is the branch of Data Mining

that automatically discovers or extracts the information from web documents. We

can difine it as drawing out the interesting, implicit information and potentially

useful patterns from activity related to the World.

Figure 1.1: Web Mining Process

Web Mining Process

1. Resource finding: It includes the task of retrieving concerned web docu-

ments.

2. Information selection and pre-processing: It Includes the automatic

selection and pre-processing of specific information from retrieved web Re-

sources.

3. Generalization: It automatically discovers general Patterns across all the

information exist on web.

4. Analysis: It involves the validation and interpretation of the mined patterns[3].

3

Chapter 1. Introduction

Note:

After understanding the Process Web Mining. As per the title of my Dissertation

”Web Mining in Cloud Computing Framework” lets now understand the concept

of MapReduce.

Reason: MapReduce is scalable, reliable computing model which optimizes the

system performance but is hardly used in ranking mechanism.

1.2 MapReduce

MapReduce is a general-purpose parallel programming plateform for complex and

huge size data computing.Map reduce was incorporated in the year of 2004, aiming

web index, by Google.

MapReduce is a distributed programming model and an accompanying implemen-

tation for operating and generation of huge data sets.

1. A map function that performs a function with a key/value pair to generate

a set of intermediate key/value pairs.

2. A reduce function that collects the intermediate results by various map

functions and computes on the result provided by map function [4].

Figure 1.2: Data Partitioning

4

Chapter 1. Introduction

Prior to Map reduce phase prepossessing of data is required. Data is to be par-

titioned into equal size chunks. Chunks of data need to be partitioned into equal

size, as intermediate results are further merged by reducer process.

Figure 1.3: Map Reduce Process

As you can see in the Figure 1.3 first of all Master process assigns the chunks to

various Mapper process. Now every Mapper process will read the the assigned

chunks and produce the intermediate results. Now every Mapper process will

send their intermediate results to reducer process. In next phase the reducer pro-

cess will sort and merge the intermediate results dent by various mapper process.

Finally reducer process will apply the user defined function to produce final result.

1.2.1 Execution phase of a MapReduce Application

1. Master function of MapReduce partitioned files/data into number of pieces

and copies called chunks.

2. Master picks a jobless worker i.e. mapper and allocates a map task.

3. The mapper function analyze the key/value pairs of the input chunk(data)

and produces the intermediate results.

4. The mapper sends the output key/value pair in the memory. Now forwards

these intermediate key/value pair to the master and then master further

forwards it to the reducer.

5. After collecting the intermediate results, the reducer sort and merge them .

5

Chapter 1. Introduction

6. Now for every intermediate results, the reduce function apply the corre-

sponding processing.

Note:

After detail information of both Web mining and MapReudce, we need to under-

stand how the ranking of web pages is achieved.

1.2.2 Fault Tolerance

Map reduce is designed to deal with huge size data. Various machine/process

working in parallel must be fault tolerant to deal against system failure. To handle

with the issue of fault tolerance the Master process pings every mapper process

in certain interval. If no response is generated from any mapper process and it is

considered dead and its task has been assigned to some other idle mapper process.

Now reducer process has been notified about the change i.e. re computation of

particular task so that in case non responding mapper sends their result, it will

be discarded.

1.3 Ranking in Web

Web ranking signifies the rank of web pages with respect to the quality if infor-

mation they comprises. The quality of information contained, can be jugged by

the endorsement that other pages provide to certain other pages via hyperlink.

When the user fires a query, the index is consulted to get the documents most

relevant to the query. The relevant documents are then ranked according to their

degree of relevance, importance etc.

Notations: Web gives us a unique way to measure the importance of a document.

With the web, documents are connected using hyperlinks. If a page B has a link

to page A, then it says page A has a backlink from page B. We can view backlinks

as a type of endorsement. The more backlinks a page have, the more important

the page is.

6

Chapter 1. Introduction

Figure 1.4: Web ranking [1]

Note:

Before we discuss the various best algorithms in ranking we need to understand

the concept of Web Graph, where these algorithms are actually going to be im-

plemented.

1.4 Web Graph

• Web is a collection of hyperlinked documents. We can view the web as a

directed graph where each page is a node and a hyperlink from one page to

another is captured by a directed edge.

• If page A has a link to page B, then there should be a directed edge from

node A to node B. Every page has a number of forward edges (out edges)

and backlinks (in edges). Page A has a backlink from page B if there is a

hyperlink from page A to page B.

• Backlink can be viewed as a type of endorsement and the count of backlinks

is regarded as a measure of importance of a page.

• This idea was used earlier in the field of citation analysis. But deciding the

importance of a page based on backlink count pose another problem in terms

7

Chapter 1. Introduction

of link farms. Link farms are a group of web pages that link to each other.

In this way the vicious web page owner can have a high backlink count by

setting up another n number of web pages each having a hyperlink to that

page.

• There exist various algorithms that solves this problem by not only counting

the backlinks, but also noting the page from which the link is coming from.

These algorithms are discussed in ahead section Literature survey.

1.5 Problem Statement

The relevant information retrieval on the web create challenges with thousands of

web pages increasing every day and problem becomes more severe with a variety

of web pages exist on the web. The most relevant information retrieval becomes

a major issue at present with the existence of billions of web pages along with

malicious web pages to manipulate the search result. Such large number of pages

takes unprecedented amount of time in calculation if rank of web pages.

On the context of problem discussed above there is a need to devise a well defined

algorithm which not only facilitate users with most appropriate and relevant replies

of their fired query but also compute rank in fewer timer.

1.6 Motivation

• The size of the World Wide Web (The Internet) is 3.2 billion web pages[5]

and increasing rapidly. The information retrieval creates new challenges on

web every day.

• With the diversity of web pages exist on the web. The most relevant infor-

mation retrieval becomes a major issue among billions of web pages specially

in the presence of a malicious creator of a web pages and programs to ma-

nipulate the search result of search engines.

• This arises the need of a Ranking algorithm which delivers the most relevant

information and do it in timely manner.

8

Chapter 1. Introduction

1.7 Objective

• A Distributed Ranking system which returns the most relevant information

about the query.

• The calculation of Pagerank of web graph on Mapreduce framework by split-

ting web graph into equal size of chunks. Now varies mapper will be allocated

one or more than one chunks to compute the pagerank and particular map-

per will send the result to reducer. In last reducer will sort the result from

various mapper and compute the pagerank vector of the given web graph.

9

CHAPTER 2

PRELIMINARIES AND BACKGROUND

Most cited and Popular Ranking algorithms

1. HITS Algorithm [Classical][6].

2. PageRank algorithm [Classical][7].

3. PageRank without hyperlinks[8].

4. Ranking hubs and Authorities using Matrix Function[9].

5. OPIC Algorithm[10].

6. Full-text and Topic Based Author Rank and Enhanced Publication Ranking[11].

7. and so on.

10

Chapter 2. Preliminaries and Background

2.1 Hyperlink Induced Topic Search

• Hyperlink Induced Topic Search, in short HITS algorithm is a link analysis

algorithm developed by Jon Kleinberg [6].

• This algorithm computes two values for any page:-

1. Hub Score: The value of its links to other pages.

~h(v) =
∑
v→y

a(y)

2. Authority Score:The value of the page’s content.

~a(v) =
∑
y→v

h(y)

2.1.1 Topic Specific Search

HITS algorithm is a topic specific search. At prior a subset of web pages containing

based on query keywords is created. This is carried off by first firing the query and

determining an initial set of documents feasible to the query (say 100 documents)

. This set is termed as root set for the particular query. The subset of these pages

is formed by appending every page that is either link to any of the pages in the

root set or is linked by some page contend the root set. The idea behind this

procedure is as follows. A good authoritative page in the fired query perhaps not

be made up of text of the fired query (for example, home page of Apple does not

consist of the term computer). So, it might not be fetched as a query result. But

the good hub pages are supposed to contain the query words only. If we able to

acquire good hub pages, we concatenate the good authoritative pages by going

through the ”out-going links” of the particular page.

2.1.2 Execution phase

The HITS algorithm works as follows:

• It determines the root set of the compatible documents by launching the

query at first.

11

Chapter 2. Preliminaries and Background

• Then the base set of hubs and authorities from the root set is created.

• After that it determines the values of AAT and ATA , from the adjacency

matrix of the base set of documents (subset of web-graph).

• It then computes the eigenvalues and eigenvectors.

• Finally, it outputs the top scoring hubs and authorities.

Note: With the advancement of time lots of changes have been made in HITS

algorithm. So the latest version of HITS algorithm is follows:

Algorithm 1 HITS

Require: Web Graph.

Ensure: Top hubs and authorities.

1. Analyze the web graph.

2. Computes the values of AAT and ATA from the adjacency matrix of the

web-graph.

3. Computes the value of ~h and ~a by computing the values eigenvectors of

AAT and ATA respectively.

• The adjacency matrix AAT and ATA are computed from given matrix A.

• Now the value of ~h and ~a are computed as the values eigenvectors of AAT

and ATA respectively

• Finally, the top scoring hubs and authorities are examined, where authority

vector represents the rank vector.

2.1.3 Example

The Hits can be explained using the following example. Assume a collection of

five documents 1, 2, 3, 4 & 5. Here is the example of a graph of 5 nodes created in

R. Directed graph representing the hyperlinks from one page to another. As you

can see in the Figure 2.1 an arrow heading from node 1 to node 3, representing

the edge from node 1 to node 3.

12

Chapter 2. Preliminaries and Background

Figure 2.1: HITS example

Now converting the above graph into transition matrix. The transition matrix of

size 5× 5 is.

A =

0 1 1 1 0

1 0 1 1 1

0 1 0 0 0

1 0 0 0 1

1 0 0 1 0

Initializing the hub vector ~h by unity.

~h =

.2

.2

.2

.2

.2

13

Chapter 2. Preliminaries and Background

Calculating normalized authority vector, ~a = At~h

~a =

.25

.16

.16

.25

.16

Calculating normalized hub vector, ~h = A~a

~h =

.23

.33

.06

.16

.20

Second Iteration

~a =

.24

.10

.20

.27

.17

~h =

.22

.35

.04

.16

.20

14

Chapter 2. Preliminaries and Background

Third iteration.

~a =

.25

.09

.20

.27

.18

~h =

.22

.35

.03

.17

.20

Forth iteration.

~a =

.25

.09

.20

.27

.18

~h =

.22

.35

.03

.17

.20

Since the state of equilibrium is achieved, so we can come up to the conclusion

that,

~a =

.25

.09

.20

.27

.18

is the rank vector for the graph shown in Figure 2.1

15

Chapter 2. Preliminaries and Background

Index Hub Authority Rank

1 0.22 0.25 2

2 0.35 0.09 5

3 0.03 0.20 3

4 0.17 0.27 1

5 0.20 0.18 4

Table 2.1: Hub and Authority vector

The table 2.1 representing Hub , Authority Vectors and Rank of nodes. The rank

of the nodes are decided by there authority score. Node with high authority score

is ranked up.

2.1.4 Simulation Results

A directed graph of 100 nodes have been used to simulate HITS algorithm. Di-

rected edges of the graph represents the hyperlink from one node to another. The

graph created in R is as follows:

1 2

34

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43

44

45

46

47
48 49

50
5152

53

54

55

56

57

58

59

60

61

62

63
64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97
98

99

100

Figure 2.2: Directed graph with 100 nodes

16

Chapter 2. Preliminaries and Background

Index Hub Authority

1 0.073 0.084

2 0.080 0.045

3 0.106 0.081

4 0.053 0.027

5 0.038 0.048

6 0.020 0.015

7 0.056 0.111

: : :

: : :

98 0.155 0.061

99 0.077 0.040

100 0.08 0.01

Table 2.2: Hub and Authority vector

These are Hubs and Authority score of all the nodes of graph where authority

score represents rank of the node. Node with high authority score is ranked up.

2.2 PageRank

PageRank is a link evaluation process that determines the importance of a doc-

ument by analyzing the link structure of a hyperlinked set of documents and its

a way of measuring the importance of a website. It is developed by Larry Page

(co-founder of Google).

The idea behind the Page Rank is the importance of the web page that can be

determined by glancing at the pages linked to it [7]. The simple backlink count

was sufficient for well controlled document collection of citation analysis. But in

web, there is hardly any control. Millions of pages can be automatically created

and linked with each other to manipulate the backlink count [2]. As web consists

of conflicting profit making ventures, any evaluation strategy which counts replica-

tion features of web pages is bound to be manipulated. PageRank extends the idea

of backlink by ”not evaluating links from every page equally, and by normalizing

by the count of links on a page.” [7].

17

Chapter 2. Preliminaries and Background

2.2.1 Damping Factor

The Page rank algorithm states that an imaginary surfer who is randomly going

on links, may stop surfing after some time. The probability, at any step, that the

person will continue to surf is a damping factor
1− d
N

(N is the total count of

pages). The constant d is a damping factor which can be set between 0 and 1. We

have taken d as 0.85.

2.2.2 Random Surfer

The Page rank algorithm follows the model of random surfer who after following

several links and stride to any other page at random. The value Page Rank of

a certain page represents the possibility that the random surfer will move on to

a page by clicking on the link. If a page has no outbound links, it becomes the

sink and abolish the random surfing spree. If random surfer get onto a sink page,

it randomly picks another URL and carry on surfing again. While pages with no

outbound links are assumed to link each and every page in the collection as stated

by pagerank algorithm. The Page rank score are therefore distributed evenly to

rest of the pages.

Algorithm 2 Pagerank

Require: G = (V,E)

Ensure: Rank(V)

1. Given a graph G, where V is the vector and E is the edges in adjacency

Matrix.

2. Analysis of G = (V,E)

3. Determine transition matrix of the given graph G.

4. PageRank vector,

PR(u) =
1− d
N

+ d
∑

v∈<u,v>

PR(v)

L(v)

• PR(u) denotes the pagerank of node u ,which is the summation of pagerank

PR(v) of all v nodes pointing to it, where L(v) are the number of outgoing

links from node v [12].

18

Chapter 2. Preliminaries and Background

• Here N is the number of nodes in the web graph and parameter d is a

damping factor which can be set between 0 and 1. We usually set d to 0.85

[7].

• In terms of matrices, PageRank values are the entries of eigenvector R, Let

say u1, u2, u3....un are the various web pages in the graph so R is the solution

of equation [10].

R =

PRu1

PRu2

PRu3

...

PRun

• Exploding the matrix.

Rn =

1− d
N

1− d
N
...

1− d
N

+ d

f(u1, u1) f(u1, u2) · · · f(u1, un)

f(u2, u1) f(u2, u2) · · · f(u2, un)
...

...
. . .

...

f(un, u1) f(un, u2) · · · f(un, un)

Rn−1

where f(ui, uj) indicates the presence of a link from page ui to ui.

• If there’s no link present in between,

f(ui, uj) = 0

• Else it is normalized so that for each j ,

∑
f(ui, uj) = 1.

19

Chapter 2. Preliminaries and Background

2.2.3 Example

The PageRank can be explained using the following example. Assume a collection

of four documents 1, 2, 3 & 4. Since PageRank is the probability of arriving at a

document, the initial probability for each of the document is equal at 1.

Figure 2.3: PageRank example

In this example, since every page should transfer its weightage to all the outgoing

links i.e. pages. So generally a with initial pagerank value 1 and x outgoing links,

will give endorsement of
1

x
to every x page [13]. The transition matrix for the

above example will be.

A =

0 1 1
1

2
1

3
0 1 0

1

3

1

2
1

1

2
1

3

1

2
0 0

Lets initialize the rank vector v by value .25 for every page i.e. all sum to 1.

Every incoming link adds up the importance of a web page, so we upgrade the

20

Chapter 2. Preliminaries and Background

rank of each page by increasing the current value with the endorsement value of the

incoming links. Or we can simply multiply the matrix A with v . Now At first step

the new importance vector is v1 = Av. The process will now follow iterative steps,

thus at second step the upgraded importance vector will be v2 = A(Av) = A2v.

Further computations is as follows:

Initializing rank vector,

v =

.25

.25

.25

.25

First iteration:

Av =

.37

.08

.33

.20

Second iteration:

A2v =

.43

.12

.28

.19

Third iteration:

A3v =

.35

.14

.29

.20

Forth iteration:

A4v =

.39

.11

.29

.19

21

Chapter 2. Preliminaries and Background

Fifth iteration:

A5v =

.39

.13

.28

.19

Sixth iteration:

A6v =

.38

.14

.29

.19

Seventh iteration:

A7v =

.38

.12

.29

.19

Eighth iteration:

A8v =

.38

.12

.39

.19

22

Chapter 2. Preliminaries and Background

Since after few steps equilibrium is achieved, so we can come up to the conclusion

that,

A7v =

.38

.12

.29

.19

is the rank vector for the graph shown in Figure 2.2

Index Pagerank Score Rank

1 0.38 1

2 0.12 4

3 0.29 2

4 0.19 3

Table 2.3: Pagerank vector

The table 2.2 representing Pagerank score and Rank of nodes. The rank of the

nodes are decided by there Pagerank score. Node with high Pagerank score is

ranked up.

Major differences between HITS and Page Rank algorithm

• HITS algorithm calculates two quality measures on every document i.e., hub

and authority, as opposed to a single score in case of PageRank.

• HITS is not commonly used by search engines.

• PageRank is more robust against spam web pages as it is not easy for a web

page owner to get links from highly ranked web pages.

Note:

The PageRank algorithm favors the older pages than recent ones. As older pages

are expected to have more number of citations from the important pages than a

page just introduced. Hence, page rank should not be used as a standalone metric.

It should be used parameter only.

23

Chapter 2. Preliminaries and Background

2.2.4 Simulation Results

A directed graph of 100 nodes have been used to simulate page rank algorithm.

Directed edges of the graph represents the hyperlink from one node to another.

The graph created in R is as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46
47

48

49
50

51

52

53

54

55

56
57

58

59
60

61

62

63

64

65

66

67

68

69

70

71

72
73

74 75

76

77

78

79

80

81

82

83

84

85
86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Figure 2.4: Directed graph with 100 nodes

The implementation of pagerank algorithm is done again in R language. The im-

plementation results of pagerank algorithm are taken as ground truth to compare

the results of proposed approach.

24

Chapter 2. Preliminaries and Background

Index PageRank

1 0.0097

2 0.0086

3 0.0089

4 0.0120

5 0.0065

6 0.0076

7 0.0098

: :

: :

98 0.0088

99 0.0089

100 0.0015

Table 2.4: PageRank vector

Table 2.4 depicts the pagerank score of above example, in Figure 2.4. The page/n-

ode with highest pagerank score ranks first among all.

2.3 Online Page Importance Calculation

• Online Page Importance Calculation (OPIC) is a link analysis algorithm

that can compute the page importance at the time of crawling i.e., digitally

online and with finite resource [10].

• This algorithm maintains two values for each page: cash and history. All

pages are given some initial cash. When the page is crawled, it distributes

its current cash equally to all pages it points to.

• The cash of a node records the sum of the cash obtained from the page since

the last time it was crawled.

• The history variable stores the sum of the cash acquired from the page since

the go-off of the algorithm till the last time it was crawled.

• The importance of a page is given by the value in the history of the page.

The idea is that the flux of cash at a page is proportional to its importance

[10].

25

Chapter 2. Preliminaries and Background

2.4 Ranking hubs and Authorities using Matrix

Function

• The notions of sub-graph centrality and connectivity, of the adjacency ma-

trix of the given graph, have been used with efficaciously in the analysis of

undirected networks[9].

• An expanse of these effective measures to directed networks is incorporated

for ranking web pages i.e,. hubs and authorities.

• The comprehension of bipartization is applied in this work.

• The bipartite graph algorithm for determining hubs and authorities is com-

pared to the traditional HITS algorithm .

Algorithm 3 Ranking Hubs and Authorities using Matrix Function

Require: Web Graph.

Ensure: Bipartite graph with In and Out Degrees.

1. Analyze the web graph.

2. Convert the Web graph into Bipartite graph .

3. Computes the quality measure, In-degree In and Out-degree Out.

4. Juxtaposition the results with HITS algorithm.

• The In-degree and Out-degree represents the Hubs and Authority score re-

spectively, where authority score represents rank of the node. Node with

highest In-degree score is ranked up among all.

• The notions of sub-graph centrality and communicability, of the adjacency

matrix of the underlying graph, have been effectively used in the analysis of

undirected networks[9].

• An extension of these measures to directed networks is incorporated for

ranking web pages i.e,. hubs and authorities.

• The concept of bipartization is used in this algorithm.

• The bipartite graph method for computing hubs and authorities is compared

to the well known HITS algorithm [14].

26

Chapter 2. Preliminaries and Background

2.4.1 Example

Figure 2.5: Example of four nodes

Considering one example of an small directed network, and its matrix A

A =

0 1 1 0

1 0 1 0

1 0 1 0

0 1 0 0

Now converting above example into bipartite graph. A bipartite graph is a graph

which divides its vertices into two sets. The two sets are partite sets such that every

vertex of first set contains an edge to atleast one vertex in second set. Now the

outgoing edges of first set represents the outdegree of vertices while the incoming

edges in second set represents the indegree of the vertices. The bipartite graph of

Figure 2.5 is shown in Figure 2.6

27

Chapter 2. Preliminaries and Background

Figure 2.6: The bipartite network with adjacency matrix A

The corresponding bipartite graph as shown in previous figure, the hubs and au-

thorities scores are computed simply using in-degree and out-degree counts and

the result is as follows:

Node Out-degree In-degree

1 2 1

2 2 3

3 2 2

4 1 1

Table 2.5: In-degree and out-degree counts of the bipartite graph

Note: These are In-degree and Out-degree which represents the Hubs and Au-

thority score respectively, of every node in graph where authority score represents

rank of the node. Node with higher In-degree score is ranked up.

28

Chapter 2. Preliminaries and Background

2.4.2 Simulation Results

A directed graph of 10 nodes have been used to simulate ”Ranking Hubs and

Authorities using Matrix function”. Directed edges of the graph represents the

hyperlink from one node to another. The graph created in R Studio is as follows:

Figure 2.7: Directed graph with 10 nodes

As you can see in the Figure 2.8 the adjacency matrix of 10 × 10 is created in R

studio. Here function AM(v, e) is created to build the adjacency matrix which

take vertices v and edges e as input while discarding the self loop.

29

Chapter 2. Preliminaries and Background

Figure 2.8: Snapshot of matrix created in R

Figure 2.9: Bipartite graph with 10 nodes

Next step is to create the Bipartite graph graph of above example, Figure 2.9 .

Bipartite graph as shown in Figure 2.8, again created in R studio. The number of

30

Chapter 2. Preliminaries and Background

outgoing edges vertices blue in color is the outdegree of vertices while the incoming

edges on green color vertices represents the indegree of the vertices.

Index Indegree Outdegree

1 3 4

2 5 6

3 7 5

4 6 4

5 4 6

6 3 6

7 5 3

8 6 2

9 5 5

10 1 3

Table 2.6: In-degree and out-degree counts of the bipartite graph

Table 2.4 represents the In-degree and Out-degree which further represents the

Hubs and Authority score, respectively, of every node in graph. The authority

score represents rank score of the node. Node with higher In-degree score is ranked

up.

31

CHAPTER 3

PROPOSED APPROACH

3.1 Proposed Approach

The proposed work is two fold, first is pagerank computation on mapreduce frame-

work and other one is using the concept of spectral analysis to compute pagerank

again on mapreduce framework. Both these approaches goal at distributed, fault

tolerant and time efficient ranking system.

3.1.1 Pagerank computation on mapreduce framework

In context to the problem of fault tolerance and time of computation we proposed

the distributed ranking system. The framework of map reduce has been used here.

This approach deals with Map reduce implementation of pagerank algorithm. The

prim motive is to reduce time of computation, make the system fault tolerant while

no information loss. The implementation of this approach is done in R language.

The algorithm has been tasted over varying size of directed graph and found to

be working well for every graph. The Proposed Approach can be formalized in

algorithmic form as follows:

32

Chapter 3. Proposed Approach

Algorithm 4 Mapreduce pagerank algorithm

Require: G = (V,E)

Ensure: Rank(V)

1. Given a graph G, where V is the vector and E is the edges in adjacency

Matrix.

2. Analysis of G = (V,E)

3. Partition of G in Sn chunks.

4. map(S1, PR1)

return list(S1, PR1)

5. reduce(S1, list(PR1))

return Rank(V)

Description: Consider a directed graph G = (V,E) such that, V is the vertices

and E is the edges in adjacency Matrix of web pages. After the analysis of the

matrix and it is divided into n chunks say S1, S2, ...Sn of equal sizes. Now these

chunks assigned to mapper function. Mapper function will calculate the Pagerank

Matrix equation PR. After that various mapppers will send their intermediate

results to reducer. Now reducer will sort the intermediate results and calculate

the Rank(V) vector.

The algorithm starts with analysis of directed web graph. Analyses phase starts

with counting number of vertices and the edges present in the directed web graph.

Analyses concludes that the matrix of web graph is sparse, where most of the

entries are 0. The sparse matrix generated by directed graph is converted into

transition matrix form. The transition matrix states links present between two

pages/nodes. Now existence of an directed edge from page ui to page vj the

(ui, vj) entry will be 1 else 0 in the matrix. The self loops are renounced at the

time of analysis phase i.e., the value (ui, ui) for every ith is 0 or we can say that

the diagonal of the transition matrix is 0.

33

Chapter 3. Proposed Approach

F
ig
u
r
e
3
.1
:

P
ag

er
an

k
co

m
p
u

ta
ti

on
on

M
ap

R
ed

u
ce

fr
am

ew
or

k
.

34

Chapter 3. Proposed Approach

After analyses phase the transition matrix is divided into equal size chucks as

depicted in Figure 3.1. The partitioning is done to distribute the load among

different machines. Now system will jump to map phase where master function

will assigned the particular task to mappers. Each mapper will read the chunk

assigned to it and computes the matrix pagerank equation for the same. Individual

mappers will now process on their assigned chunks and generate their results which

are termed as intermediate results in our system. The matrix pagerank equation

Rn as described above in algorithm2 [7].

Rn =

1− d
N

1− d
N
...

1− d
N

+ d

f(u1, u1) f(u1, u2) · · · f(u1, un)

f(u2, u1) f(u2, u2) · · · f(u2, un)
...

...
. . .

...

f(un, u1) f(un, u2) · · · f(un, un)

Rn−1

Every intermediate result will be sent to the reducer function. Once intermediate

result of every partitioned chunk are received by reducer, it will sort and merge

them all. Now the eigenvalueλ and corresponding to this eigenvalue, eigenvec-

tor R of merged result be computed by reduce function. The equation used for

computing eigenvalue and eigenvector is:

(M − λI)R = 0

,where M is the transition matrix and I is the identity matrix.This eigenvector

R represents the rank vector of the input directed graph. The page with top

eigenvalue in corresponding eigenvector will be ranked top most among all the

pages.

Using above relation to compute eigenvalue and eigenvector gives the absolute re-

sults but with the complexity of O(n3) per step in practice. This takes huge time to

determine the rank vector of the transition matrix and the problem becomes more

severe when matrix size reaches in millions. To overcome this problem we used

concept of spectral analysis to compute the highest eigenvalue of the transition

matrix.

35

Chapter 3. Proposed Approach

3.1.2 Processes

Figure 3.2: Process flow in Pagerank computation on mapreduce framework

Three different processes comprises the whole system. The algorithm starts with

Master process which assigns task to various Mapper process and in last Reducer

process will feed intermediate results from every mapper to produce final output.

The functioning of these processes in this algorithm are as follows:

1. Master process: The transition matrix of the given directed will be the input

of master process. The transition matrix will be partitioned into equal size

chunks here and each of these chunks will be assigned to an idle mapper.

2. Mapper process: Assigned chunks will be processed here by mapper process

to compute the Pagerank matrix equation which will be termed as interme-

diate results. The intermediate results will now be forwarded to reducer

process.

3. Reducer process: All the intermediate results i.e. Pagerank matrix equation

from various mappers will now be merged together. Once the whole interme-

diate results are merged, the user defined function to calculate the eigenvalue

of the regenerated matrix will be applied. Corresponding to largest eigen-

value the eigenvector will be computed. This eigenvector is the output of

the algorithm i.e. Mapreduce Rank Vector.

36

Chapter 3. Proposed Approach

F
ig
u
r
e
3
.3
:

S
p

ec
tr

al
P

ag
er

an
k

co
m

p
u
ta

ti
on

on
M

ap
R

ed
u

ce
fr

a
m

ew
o
rk

.

37

Chapter 3. Proposed Approach

3.1.3 Pagerank computation using spectral analysis on Map

reduce framework

The Second Proposed Approach comprise of couple of reducer phase. This ap-

proach deals with the concept of Spectral analysis for the computation of eigen-

vector of matrix. The approach can be formalized in algorithmic form as follows:

Algorithm 5 Spectral pagerank algorithm on Mapreduce framework

Require: G = (V,E)

Ensure: Rank(V)

1. Given a graph G, where V is the vector and E is the edges in adjacency

Matrix.

2. Analysis of G = (V,E)

3. Partition of G in Sn chunks.

4. map(S1, PR1)

return list(S1, PR1)

5. Reducer Phase I reduce(S1, list(PR1))

return list(SIV1)

6. Reducer Phase II reduce(list(SIV1))

return Rank(V) ∈ largesteigenvalue

Description: Consider a directed graph G = (V,E) such that, V is the vertices

and E is the edges in adjacency Matrix of web pages. After the analysis of the

matrix and it is divided into n chunks say S1, S2, ...Sn of equal sizes. Now these

chunks assigned to mapper function. Mapper function will calculate the Pagerank

Matrix equation PR. After that various mapppers will send their intermediate

results to reducer. The reducer process is divided into two phase here. The

Reducer phase I deals with sorting intermediate results given by mappers and

calculate the Spectral eigen vector, SIV1. A list of several Spectral eigen vector,

list(SIV1) will be sent to second Reducer phase. Reducer phase II will compare

the list and outputs the largest Spectral eigen vector, SIV which will be the rank

vector Rank(V).

38

Chapter 3. Proposed Approach

The concept of spectral analysis to compute eigenvalue, as described in introduc-

tion section, gives the following relation:

λ1 = max
Z

ZTMZ

ZTZ

, where Z is a random vector having normalized values between 0 to 1 and λ1

represent the maximum eigenvalue.[2]

We have used a hierarchy of reducer function as shown in Figure 3.2. There are

two levels of reducer function are there. At first level we have two reducer func-

tion namely reducer1 and reducer2. Both these functions will receive the inter-

mediate results from various mapper functions and compute their corresponding

eigenvalue and eigenvector. A set of 500 random vectors have been fed to each

reducer function, reducer1 and reducer2. The vector which will return the max-

imum eigenvalue among 500 random vectors will be the returned to the third

reducer function reducer3. Now intermediate results form both the function will

be processed by reducer3 which will further outputs the highest eigenvalue and

corresponding eigenvector. The eigenvector returned by reducer3 will be the rank

vector of the input graph.

The results of both the approaches and the time taken are compared with tradi-

tional pagerank algorithm. The results of pagerank cumputation on map reduce

are computed exactly similar to traditional pagerank algorithm with considerable

amount of time saved. The results of spectral analysis based approach when com-

pared with traditional pagerank algorithm lies between 75% to 95% accurate. But

the time difference between the two algorithms are exceptionally different, the re-

markable amount of time has been saved. The spectral analysis based approach

saved 80% − 90% of the time as compared to pagerank algorithm. To check the

accuracy between results we have used the cosine similarity function.According to

Euclidean product [15] the cosine of two vectors is:

a · b = ||a||||b||cosθ

39

Chapter 3. Proposed Approach

The cosine similarity between two vectors A and B is given by [16]:

similarity = cosθ =
A ·B
||A||||B||

3.1.4 Processes

Figure 3.4: Process flow in Spectral pagerank algorithm on Mapreduce frame-
work

Three different processes comprises the whole system. The algorithm starts with

Master process which assigns task to various Mapper process and in last Reducer

process will feed intermediate results from every mapper to produce final output.

The functioning of these processes in this algorithm are as follows:

1. Master process: The transition matrix of the given directed will be the input

of master process. The transition matrix will be partitioned into equal size

chunks here and each of these chunks will be assigned to an idle mapper.

2. Mapper process: Assigned chunks will be processed here by mapper process

to compute the Pagerank matrix equation which will be termed as interme-

diate results. The intermediate results will now be forwarded to reducer

process.

The Reducer phase I deals with sorting intermediate results given by mappers

and calculate the Spectral eigen vector, SIV1. A list of several Spectral eigen

vector, list(SIV1) will be sent to second Reducer phase.

3. Reducer process: The hierarchy Reducer process is used here and is divided

into two phase, Reducer phase I and Reducer phase II. All the intermediate

results i.e. Pagerank matrix equation from various mappers will now be

merged together. Once the whole intermediate results are merged at reducer

40

Chapter 3. Proposed Approach

phase I, the user defined function to calculate the Spectral eigen vector,

SIV1 of regenerated matrix will be applied. A list of 500 Spectral eigen

vector, list(SIV1) each by two reducers, at Reducer phase I, will be sent

to Reducer phase II. Reducer phase II will compare the list and outputs

the largest vector. This largest vector is the output of the algorithm i.e.

Spectral Rank Vector.

41

CHAPTER 4

IMPLEMENTATION DETAILS AND

RESULTS

4.1 Platform

• The proposed work has been implemented in R language, R is a programming

language and software environment for statistical computing and graphics.

It compiles and runs on a broad variety of Windows, UNIX and Mac OS

platforms.

• The R language is very popular among statisticians and data miners for

developing statistical software and data analysis.

• Ross Ihaka and Robert Gentleman developed this language at the University

of Auckland, New Zealand. R is named partly after the first names of the

first two R authors.

• R is a very useful and light weight tool for data mining and processing

purpose. One of R’s potency is the amenities with which well-designed

publication-quality plots can be generated, in addition mathematical sym-

bols and formulas where required.

• The source code for the R software environment is written primarily in C,

Fortran, and R.

• R is open source language under the GNU General Public License, and pre-

compiled binary versions are provided for various operating systems.

• We have used 64 bit operating system windows 7 having processor with

2.30GHZ frequency working on 4GB RAM.

42

Chapter 5. Results and Analysis

• R provides a wide variety of statistical and graphical techniques, including

time-series analysis, classification, clustering, and others.

• Open source GUI interface, R Stdio is the software to perform computations

in R

4.2 Dataset

We have used simulated data first to evaluate our proposed work. Figure 4.1.

is the example of one of the various size directed graph used to observe results

of our work. Its a directed graph of node size 100. We have also used google

web graph dataset ,downloaded from Stanford Network Analysis Project website

[17]. We have also created random binary adjacency matrix of varying size . The

adjacency matrix represent the directed graph. The entries of matrix are 1 and

0 representing the presence of link between two nodes, 1 indicates the presence

of link else 0. The varying size of matrix is used for comparison and analysis on

results of proposed approaches in contrast to traditional pagerank algorithm .

4.3 Description

The implementation starts with the analysis of web graph. The web graph is then

converted into transition matrix where vertices/nodes represent the web pages. If

a page has link to any other page represented by 1 else by 0.

The matrix is then partitioned into equal size chunks as described in Figure

3.1.These chunks of web graph will be the input for map functions. Further chunks

are assigned to different mappers, for the computation of intermediate PageRank

matrix. Now every mapper function will send their intermediate results to reducer

function which will further compute the PageRank vector. To make the algorithm

even faster we have used the concept of Spectral analysis for the calculation of

largest eigenvector of the given graph.

43

Chapter 5. Results and Analysis

4.4 Results

We have performed computation and analysis on different size of directed graphs.

Variable size of data sets have been used to excavate patterns from our results.

We have implemented both of our approaches and also the traditional pagerank

algorithm to compare the results from it. All the results are computed in R

language. The graphs also generated using R language in R Studio. The results

and there comparison with traditional pagerank algorithm are as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

4344

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80
81

82

83

84

85

86

87

88

89

90

91
92

93

94

95

96
97

98

99

100

Figure 4.1: Directed graph with 100 nodes

4.4.1 Pagerank computation on mapreduce framework

The computation of our algorithm requires a directed graph as a input. The

vertices of directed represents page/node and edges between two nodes represents

the directed link between them. These links serves are the basis of endorsement

that a page give to another. Figure 4.1 is the example of a directed graph that

we have created in R studio. The size of directed graph in Figure 4.1. is 100

nodes and 500 edges. The transition for same graph will be of size 100 ∗ 100.

These transition matrix is divided into 4 chunks of size 25 ∗ 25 and each chunk

has been assigned to a mapper function. The collective results from each mapper

function is then processed by reducer function. The result generated by reducer

function corresponding to above graph Figure 4.1. by our first approach, Pagerank

computation on mapreduce framework, i.e. the rank vector is shown in Table I. The

44

Chapter 5. Results and Analysis

Index Rank

1 0.021865397

2 0.010075798

3 0.008116314

4 0.006808011

5 0.007312947

6 0.015225163

7 0.024353988

8 0.014635842

9 0.006767254

10 0.02090701

11 0.011939445

12 0.005560608

13 0.012121461

14 0.006352905

15 0.007826322

: :

: :

: :

98 0.005089991

99 0.019823114

100 0.0015

Table 4.1: MapReduce
Rank vector

Index Rank

1 0.021865397

2 0.010075798

3 0.008116314

4 0.006808011

5 0.007312947

6 0.015225163

7 0.024353988

8 0.014635842

9 0.006767254

10 0.02090701

11 0.011939445

12 0.005560608

13 0.012121461

14 0.006352905

15 0.007826322

: :

: :

: :

98 0.005089991

99 0.019823114

100 0.0015

Table 4.2: PageRank
vector

Index Rank

1 0.010395083

2 0.005409302

3 0.004750988

4 0.007859531

5 0.012075618

6 0.003609199

7 0.016540683

8 0.008464667

9 0.001267025

10 0.005864148

11 0.001650276

12 0.000212519

13 0.001240579

14 0.0017786997

15 0.000907024

: :

: :

: :

98 0.013422966

99 0.011004575

100 0.003075954

Table 4.3: Spectral
Rank vector

results are compared with traditional pagerank algorithm in Table II. The results

of Pagerank computation on mapreduce framework approach came similar to that

traditional pagerank algorithm. This approaches seems to be saving sufficient time

quantum with no information loss.

4.4.2 Spectral pagerank algorithm on Mapreduce frame-

work

The second approach is based on spectral analysis for computation of maximum

eigenvalue and corresponding eigenvector. The system design is also changed in

this approach where the reducer phase is split into 2 levels as depicted in Figure

45

Chapter 5. Results and Analysis

Nodes Pagerank
MR-
Pagerank

Spectral-
Pagerank

2000 86.90 80.48 36.02

4000 513.97 452.16 122.69

6000 1516.47 1348.78 388.78

8000 3962.53 3178.81 609.72

10000 8048.20 6016.63 843.12

12000 14043.40 9019.32 1173.99

14000 22410.69 13561.28 1622.83

Table 4.4: Time of execution in secs

3.3. At level 1 two reducer processes are assigned the resultant matrix from

various mappers and each reducer process will compute be fed with 500 random

vectors. Now both processes will work in parallel to compute their the maximum

eigenvalue. Result of both the reducer process will be compared at 2 level of

reducer phase and the highest among among them will be the rank vector. An

example where we computed rank vector of the directed graph, Figure 4.1. The

results of Spectral based rank vector (Table III), are then compared with tradition

pagerank algorithm (Table II). The comparison between two vectors is done via

cosine similarity, stated above in introduction section. The cosine similarity score

between table II & table III is 0.88730 i.e. 88.73% similar. The difference among

time of execution between our approaches and traditional pagerank algorithm is

very encouraging. The time line for different size of directed graph comparing all

3 algorithms is described in next section.

4.5 Analysis

The directed graph size ranging upto 14000 nodes i.e. the transition matrix of

range upto 14000 ∗ 14000 is used to excavate the pattern of results from both the

approaches. The results of first approach, pagerank computation on mapreduce

framework, in table I matches exactly with traditional pagerank score in table II

and in addition a considerable amount of time is saved as well. The cosine similar-

ity score between results of our second approach, Spectral pagerank algorithm on

46

Chapter 5. Results and Analysis

Cosine Similarity

Nodes in thousands

si
m

ila
rit

y
sc

or
e

PageRank
MR-PageRank
Spectral-MR-Pagerank

2000 4000 6000 8000 10000 12000 14000

0

1

0.0
0.2
0.0

0.4

0.0

0.6

0.0

0.8

Figure 4.2: Cosine similarity between PageRank, Mapreduce PageRank and
Spectral Mapreduce pagerank algorithms

mapreduce framework, (in table III) and results traditional pagerank algorithm(in

table II) ranges between 0.7431 to 0.9168 i.e. 74%→ 91% . But when it comes to

time of execution the exceptional amount of time is saved by our second approach,

Spectral pagerank algorithm on mapreduce framework. The time of execution of

all the 3 algorithms for graph size ranging 2000 → 14000 is depicted in table IV.

Particular row in table IV represents the time taken by individual algorithm, for

a particular node size, in seconds. It can be seen clearly that the difference in

time between proposed approaches and the traditional algorithm is promising. To

understand the variance in behavior of these three algorithms more preciously, we

have plotted the graph as per there results. There are two parameters taken in

consideration to evaluate results of our proposed approaches.

• The cosine similarity.

• The time of execution.

47

Chapter 5. Results and Analysis

Time Execution graph

Nodes in thousands

T
im

e
in

 th
ou

sa
nd

 s
ec

s

PageRank
MR-PageRank
Spectral-MR-Pagerank

2000 4000 6000 8000 10000 12000 14000

0
40

00
12

00
0

20
00

0

Figure 4.3: Time execution graph between PageRank, Mapreduce PageRank
and Spectral Mapreduce pagerank algorithms

Figure 4.2. depicts the cosine similarity between three specified algorithms in

which x axis represents nodes in thousands and y axis represents the cosine simi-

larity score of the algorithms. The cosine similarity score of computed between pro-

posed approaches and the traditional pagerank algorithm. In Figure 4.2. red line

represents the traditional pagerank algorithm, green line represents our first algo-

rithm i.e. Pagerank computation on mapreduce framework and blue line represents

our second algorithm i.e. Spectral pagerank algorithm on mapreduce framework.

As you can see the green line overlaps over red line, this indicates that the results

of our first approach are 100% accurate in comparison to traditional pagerank

algorithm. The blue line has deflection between 0.7431 to 0.9168 which says the

results of Spectral pagerank algorithm on mapreduce framework has 74%→ 91%

accuracy as compared to traditional pagerank algorithm.

In Figure 4.3. which is the time execution graph the difference of time taken for

execution by each three algorithms has been framed. The x axis represents nodes

48

Chapter 5. Results and Analysis

in thousands and y axis represents the time of execution of the algorithms across

various node size. Here again the red, green and blue line represents the traditional

pagerank algorithm, the Pagerank computation on mapreduce framework and the

Spectral pagerank algorithm on mapreduce framework , respectively. As you can

clearly that red line is inclining speedily as the number of nodes increasing while

green line seems to be saving considerable amount of time. But in case of blue line

which is the Spectral pagerank algorithm on mapreduce framework, the remarkable

amount of time is saved. The difference between timeline of traditional pagerank

and the spectral pagerank on mapreduce framework is exceptional.

49

CHAPTER 5

APPLICATION

There exist various domain where we can find the application of ranking algo-

rithms. The domains like business, education, search engine optimization and

many more. Product ranking, recommend system, best advertisement selection

etc are the example where we can use efficient and fast computing ranking algo-

rithm. One of the major issue that scholars face is, searching best publication

from huge citation network. One can take the number of citation as the measure

of quality but some group of authors cite each other to get high citation score.

In addition there exist several journals and conference which allow bogus publica-

tions with imitative results. So searching for most relevant publication is a well

known problem that we scholar face. The quality of a publication can be judged

by number of citation it gets from other quality publications. The citation from a

good publication can be taken as measure of endorsement.

We have taken data sets of, High-energy physics theory citation network [18].

The data set is the citation graph consists of 27,770 papers with 352,807 edges.

The citation graph has directed edges among nodes. If a publication say u has an

citation to publication v, then there is a directed edge from u to v. If a publication

cites, or is cited by, a publication exclusive the dataset, the graph does not contain

any information about it.

We have computed rank vector for this citation graph network using both our

approaches. The results are again compared to traditional pagerank algorithm.

The results of first approach (table VII) matches exactly with traditional pagerank

results (table V). The rank top 10 of publications are listed in the table VII., com-

puted by ”Pagerank computation on Mapreduce framework” approach where ID

50

Chapter 6. Application

Rank ID Rank Score

1 27749 0.087557354

2 26661 0.087363177

3 27688 0.072259625

4 27728 0.069806224

5 26671 0.069780612

6 27766 0.067153008

7 27551 0.062072703

8 26638 0.029286035

9 26660 0.029250671

10 27636 0.017826953

Table 5.1: Mapreduce
Rank vector

Rank ID Rank Score

1 27749 0.087557354

2 26661 0.087363177

3 27688 0.072259625

4 27728 0.069806224

5 26671 0.069780612

6 27766 0.067153008

7 27551 0.062072703

8 26638 0.029286035

9 26660 0.029250671

10 27636 0.017826953

Table 5.2: PageRank
vector

Rank ID Rank Score

1 27749 0.000197891

2 26661 0.000197831

3 27688 0.000197801

4 27109 0.000197800

5 26671 0.000197793

6 27636 0.000197792

7 27766 0.000197771

8 1422 0.000197743

9 26660 0.000197343

10 4422 0.000197742

Table 5.3: Spectral Rank vector

denotes the publication ID and rank score is the value of rank vector correspond-

ing to publication ID. The results of ”Spectral pagerank algorithm on Mapreduce

framework” approach are listed iin table VI. The results are seems to be close to

that of traditional pagerank (in table V). While grouping the publication based on

some criteria can have more accurate result using second approach e.g. grouping

based on some threshold rank score.

The time taken by both of our approaches were sufficient less in contrast to tra-

ditional pagerank algorithm. Figure 5.1. is a bar plot representing time taken

by three algorithms to compute rank vector of above discussed citation network

graph. The time taken in minutes by traditional pagerank algorithm is represented

by red bar, the green bar represents time of execution for our first approach while

blue bar represents time taken by the spectral analysis based approach to compute

rank of citation network graph. As you can see in Figure 5.1. the performance of

51

Chapter 6. Application

Pagerank MR-Pagerank Spectral MR-Pagerank

0

100

200

300

400

500

600

T
im

e
of

 E
xe

cu
tio

n
(in

 m
in

ut
es

)

Figure 5.1: Time execution bar plot

spectral based approach came out to be best in comparison to other two as far as

time is concerned.

52

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

With the enormous processing of huge size directed graph, we conquer many prob-

lems like processing of large size graphs, communication among various processes

running in parallel, system configuration limitations etc. We have proposed two

approaches for distributed, fault tolerant and time efficient ranking system. First

is ”Pagerank computation on mapreduce framework” and second, ”Spectral pager-

ank algorithm on Mapreduce framework”. Both the approaches are time efficient

as compared to traditional pagerank algorithm. The first approach i.e. Pagerank

computation on mapreduce framework, has 100% accurate results and consider-

able amount of time saved as compared to traditional pagerank algorithm, hence

it can replace traditional algorithm in areas where high accuracy results is the

first priority and in addition a distributed, fault tolerant and considerable time

saving system, in need .The second approach i.e. ”Spectral pagerank algorithm on

Mapreduce framework” can be used in areas where time is money and some loss of

information can be acceptable e.g. group ranking. On the cost of few information

loss this approach guarantees distributed, fault tolerant system with remarkable

quantum of time saved.

6.2 Future Work

Till now the Rank vector calculation on Mapreduce Framework and Spectral rank

vector calculation on Mapreduce Framework has been done. Further approach is

to perform block diagonal approximation of the adjacency matrix. Now we have

53

Bibliography

number of blocks representing together the whole matrix. Assigning those blocks

to mapper functions and then following the whole concept of cloud computing i.e

Mapreduce computation would be the theme of future work. Another approach

would to using logs of the web server for determining the number of hits a web

page gets, based on which we evaluate the importance of web page.

54

BIBLIOGRAPHY

[1] J. P. D. A. Ponce, “Ranking-paginas-web-ecuador,” 2015,

http://blog.formaciongerencial.com/wp-content/uploads/

2015/01/thailand-website-ranking.jpg.

[2] R. Kannan and S. Vempala, “Spectral algorithms,” Found.

Trends Theor. Comput. Sci., vol. 4, no. 3–4, pp.

157–288, Mar. 2009. [Online]. Available: http://dx.doi.org/10.

1561/0400000025

[3] R. Kosala and H. Blockeel, “Web mining research: A survey,”

SIGKDD Explor. Newsl., vol. 2, no. 1, pp. 1–15, Jun. 2000.

[Online]. Available: http://doi.acm.org/10.1145/360402.360406

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data pro-

cessing on large clusters,” 2004.

[5] M. de Kunder, “The size of the world wide web (the internet),”

2015, http://www.worldwidewebsize.com.

[6] J. M. Kleinberg, “Authoritative sources in a hyperlinked

environment,” J. ACM, vol. 46, no. 5, pp. 604–632, Sep. 1999.

[Online]. Available: http://doi.acm.org/10.1145/324133.324140

[7] S. Brin and L. Page, “The anatomy of a large-scale

hypertextual web search engine,” Comput. Netw. ISDN Syst.,

vol. 30, no. 1-7, pp. 107–117, Apr. 1998. [Online]. Available:

http://dx.doi.org/10.1016/S0169-7552(98)00110-X

55

http://blog.formaciongerencial.com/wp-content/uploads/2015/01/thailand-website-ranking.jpg
http://blog.formaciongerencial.com/wp-content/uploads/2015/01/thailand-website-ranking.jpg
http://dx.doi.org/10.1561/0400000025
http://dx.doi.org/10.1561/0400000025
http://doi.acm.org/10.1145/360402.360406
http://www.worldwidewebsize.com
http://doi.acm.org/10.1145/324133.324140
http://dx.doi.org/10.1016/S0169-7552(98)00110-X

Bibliography

[8] O. Kurland and L. Lee, “Pagerank without hyperlinks:

Structural re-ranking using links induced by language models,”

pp. 306–313, 2005. [Online]. Available: http://doi.acm.org/10.

1145/1076034.1076087

[9] M. Benzi, E. Estrada, and C. Klymko, “Ranking hubs and au-

thorities using matrix functions,” CoRR, vol. abs/1201.3120,

2012.

[10] S. Abiteboul, M. Preda, and G. Cobena, “Adaptive on-line

page importance computation,” pp. 280–290, 2003. [Online].

Available: http://doi.acm.org/10.1145/775152.775192

[11] X. L. J Zhang, “Full-text and topic based authorrank and

enhanced publication ranking,” pp. 393–394, 2013. [Online].

Available: http://doi.acm.org/10.1145/2467696.2467748

[12] L. Page, S. Brin, R. Motwani, and T. Winograd, “The

pagerank citation ranking: Bringing order to the web,”

in Proceedings of the 7th International World Wide Web

Conference, Brisbane, Australia, 1998, pp. 161–172. [Online].

Available: citeseer.nj.nec.com/page98pagerank.html

[13] RalucRemus, “Pagerank algorithm - the mathematics of

google search,” 2009, http://www.math.cornell.edu/∼mec/

Winter2009/RalucaRemus/Lecture3/lecture3.html.

[14] ——, “Hits algorithm -hubs and authorities on the inter-

net,” 2009, http://www.math.cornell.edu/∼mec/Winter2009/

RalucRemus/Lecture4/lecture4.html.

[15] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time

euclidean distance transform algorithms,” IEEE Transactions

56

http://doi.acm.org/10.1145/1076034.1076087
http://doi.acm.org/10.1145/1076034.1076087
http://doi.acm.org/10.1145/775152.775192
http://doi.acm.org/10.1145/2467696.2467748
citeseer.nj.nec.com/page98pagerank.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
http://www.math.cornell.edu/~mec/Winter2009/RalucRemus/Lecture4/lect ure4.html
http://www.math.cornell.edu/~mec/Winter2009/RalucRemus/Lecture4/lect ure4.html

Bibliography

on Pattern Analysis and Machine Intelligence, vol. 17, pp. 529–

533, 1995.

[16] A. Singhal, “Modern information retrieval: a brief overview,”

BULLETIN OF THE IEEE COMPUTER SOCIETY TECH-

NICAL COMMITTEE ON DATA ENGINEERING, vol. 24, p.

2001, 2001.

[17] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W.

Mahoney, “Community structure in large networks: Natural

cluster sizes and the absence of large well-defined clusters,”

CoRR, vol. abs/0810.1355, 2008. [Online]. Available: http:

//arxiv.org/abs/0810.1355

[18] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over

time: Densification laws, shrinking diameters and possible

explanations,” in Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery in Data

Mining, ser. KDD ’05. New York, NY, USA: ACM, 2005,

pp. 177–187. [Online]. Available: http://doi.acm.org/10.1145/

1081870.1081893

[19] T. Haveliwala and S. Kamvar, “The second eigenvalue of the

google matrix,” 2003. [Online]. Available: citeseer.ist.psu.edu/

haveliwala03second.html

[20] K. Bryan and T. Leise, “The $ 25,000,000,000 eigenvector: the

linear algebra behind google,” SIAM Review, vol. 48, pp. 569–

581, 2006.

[21] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.

Golub, “Extrapolation methods for accelerating pagerank com-

putations,” pp. 261–270, 2003.

57

http://arxiv.org/abs/0810.1355
http://arxiv.org/abs/0810.1355
http://doi.acm.org/10.1145/1081870.1081893
http://doi.acm.org/10.1145/1081870.1081893
citeseer.ist.psu.edu/haveliwala03second.html
citeseer.ist.psu.edu/haveliwala03second.html

Bibliography

[22] A. D. Sarma, S. Gollapudi, and R. Panigrahy, “Estimating

pagerank on graph streams,” J. ACM, vol. 58, no. 3, p. 13,

2011.

[23] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized

pagerank on mapreduce,” in Proceedings of the 2011 ACM SIG-

MOD International Conference on Management of data. ACM,

2011, pp. 973–984.

[24] F. Tian and K. Chen, “Towards optimal resource provisioning

for running mapreduce programs in public clouds,” in Cloud

Computing (CLOUD), 2011 IEEE International Conference on.

IEEE, 2011, pp. 155–162.

[25] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,

J. Qiu, and G. Fox, “Twister: a runtime for iterative mapre-

duce,” in Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing. ACM, 2010, pp.

810–818.

[26] K. Chakrabarti, D. Xin, and B. Bahmani, “Fast personalized

page rank on map reduce,” Oct. 7 2014, uS Patent 8,856,047.

[27] F. Can, R. Nuray, and A. B. Sevdik, “Automatic performance

evaluation of web search engines,” in INFORMATION PRO-

CESSING AND MANAGEMENT, 2004, p. 2004.

[28] F. Chung, “A brief survey of pagerank algorithms,” 2014.

[29] N. E. Friedkin, “Generalization of the pagerank model,” arXiv

preprint arXiv:1401.4740, 2014.

[30] A. D. Sarma, A. R. Molla, G. Pandurangan, and E. Upfal, “Fast

distributed pagerank computation,” Theoretical Computer Sci-

ence, vol. 561, pp. 113–121, 2015.

58

Bibliography

[31] C.-I. Gheorghiu, Spectral methods for non-standard eigenvalue

problems: fluid and structural mechanics and beyond (springer-

briefs in mathematics). Springer, 2014.

[32] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “A study of

skew in mapreduce applications,” Open Cirrus Summit, 2011.

[33] J. Lin, “Mapreduce is good enough? if all you have is a hammer,

throw away everything that’s not a nail!” Big Data, vol. 1, no. 1,

pp. 28–37, 2013.

59

	Certificate
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abstract
	1 INTRODUCTION
	1.1 Web Mining
	1.2 MapReduce
	1.2.1 Execution phase of a MapReduce Application
	1.2.2 Fault Tolerance

	1.3 Ranking in Web
	1.4 Web Graph
	1.5 Problem Statement
	1.6 Motivation
	1.7 Objective

	2 Preliminaries and Background
	2.1 Hyperlink Induced Topic Search
	2.1.1 Topic Specific Search
	2.1.2 Execution phase
	2.1.3 Example
	2.1.4 Simulation Results

	2.2 PageRank
	2.2.1 Damping Factor
	2.2.2 Random Surfer
	2.2.3 Example
	2.2.4 Simulation Results

	2.3 Online Page Importance Calculation
	2.4 Ranking hubs and Authorities using Matrix Function
	2.4.1 Example
	2.4.2 Simulation Results

	3 Proposed Approach
	3.1 Proposed Approach
	3.1.1 Pagerank computation on mapreduce framework
	3.1.2 Processes
	3.1.3 Pagerank computation using spectral analysis on Map reduce framework
	3.1.4 Processes

	4 Implementation Details and Results
	4.1 Platform
	4.2 Dataset
	4.3 Description
	4.4 Results
	4.4.1 Pagerank computation on mapreduce framework
	4.4.2 Spectral pagerank algorithm on Mapreduce framework

	4.5 Analysis

	5 Application
	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

