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Preface

This text is an introduction to dynamical modeling in molecular cell biology. It is
not meant as a complete overview of modeling or of particular models in cell biology.
Rather, we use selected biological examples to motivate the concepts and techniques
used in computational cell biology. This is done through a progression of increasingly
more complex cellular functions modeled with increasingly complex mathematical and
computational techniques.

There are other excellent sources for material on mathematical cell biology, and
so the focus here truly is computer modeling. This does not mean that there are no
mathematical techniques introduced, because some of them are absolutely vital, but it
does mean that much of the mathematics is explained in a more intuitive fashion, while
we allow the computer to do most of the work. No former programming experience is
necessary, though basic programming experience and familiarity with computers will
be very helpful.

The target audience for this text is mathematically sophisticated cell biology or
neuroscience students or mathematics students who wish to learn about modeling in
cell biology. The ideal class would comprise both biology and applied math students,
who might be encouraged to collaborate on exercises or class projects. We assume as
little mathematical and biological background as we feel we can get away with, and
we proceed fairly slowly. The techniques and approaches covered in the Þrst half of the
book will form a basis for some elementary modeling or as a lead in to more advanced
topics covered in the second half of the book. Our goal for this text is to encourage
mathematics students to consider collaboration with experimentalists and to provide
students in cell biology and neuroscience with the tools necessary to access the modeling
literature and appreciate the value of theoretical approaches.
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The core of this book is a set of notes for a textbook written by Joel Keizer be-
fore his death in 1999. In addition to many other accomplishments as a scientist, Joel
founded and directed the Institute of Theoretical Dynamics at the University of Cal-
ifornia, Davis. It is currently the home of a training program for young scientists in
nonlinear dynamics in biology, funded by the National Science Foundation. As a part of
this training program Joel taught a course entitled �Computational Models of Cellular
Signaling,� which covered much of the material in the Þrst half of this book.

Joel took palpable joy from interaction with his colleagues, and in addition to his
truly notable accomplishments as a theorist in both chemistry and biology, perhaps his
greatest skill was his ability to bring diverse people together in successful collaboration.
It is in recognition of this gift that Joel�s friends and colleagues have brought this
text to completion. We have expanded the scope, but at the core, you will still Þnd
Joel�s hand in the approach, methodology, and commitment to the interdisciplinary
and collaborative nature of the Þeld. The royalties from the book will be donated to
the Joel E. Keizer foundation at the University of California at Davis, which promotes
interdisciplinary collaboration between mathematics, the physical sciences, and biology.

Audience: We have aimed this text at an advanced undergraduate or beginning
graduate audience in either mathematics or biology.

Prerequisites: We assume that students have taken full�year courses in calculus
and biology. Introductory courses in differential equations and molecular cell biology
are desirable but not absolutely necessary. Studens with more substantial background
in either biology or mathematics will beneÞt all the more from this text, especially the
second half. No former programming experience is needed, but a working knowledge of
using computers will make the learning curve much more pleasant. Note that we often
point students to other textbooks and monographs, both because they are important
references for later use and because they might be a better source for the material.
Instructors may want to have these sources available for students to borrow or consult.

Organization: We consider the Þrst six chapters, through intercellular communi-
cation, to be the core of the text. They cover the basic elements of compartmental
modeling, and they should be accessible to anyone with a minimum background in cell
biology and calculus. The remainder of the chapters cover more specialized topics that
can be selected from, based on the focus of the course. Chapters 7 and 8 introduce spa-
tial modeling, Chapters 9 and 10 discuss biochemical oscillations and the cell cycle, and
Chapters 11�13 cover stochastic methods and models. These chapters are of varying
degrees of difficulty.

Finally, in the Þrst appendix, some of the mathematical and computational con-
cepts brought up throughout the book are covered in more detail. This appendix is
meant to be a reference and a learning tool. Sections of it may be integrated into the
chapters as the topics are introduced. The second appendix contains an introduction to
the XPPAUT ODE package discussed below. The Þnal appendix contains psuedocode
versions of the code used to create some of the data Þgures in the text.

Internet Resources: This book will have its own web page, supported by Springer-
Verlag, which will contain a variety of resources. We will maintain a list of the inevitable
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mistakes and typos and will make available actual code for the Þgures in the book. A
solutions manual is being considered.

Software: We designed the text to be independent of any particular software, but
have included appendices in support of the XPPAUT package. XPPAUT has been
developed by Bard Ermentrout at the University of Pittsburgh, and it is currently
available free of charge. XPPAUT numerically solves and plots the solutions of ordinary
differential equations. It also incorporates a numerical bifurcation software and some
methods for stochastic equations. Versions are currently available for Windows, Linux,
and Unix systems. Recent changes in the Macintosh platform (OSX) make it possible
to use XPP there as well. Ermentrout has recently published an excellent user�s manual
available through SIAM [Ermentrout, 2002].

There are a large number of other software packages available that can accomplish
many of the same things as XPPAUT can, such as MATLAB, MapleV, Mathemat-
ica, and Berkeley Madonna. Programming in C or Fortran is also possible. However
XPPAUT is easy to use, requires minimal programming skills, has an excellent online
tutorial, and is distributed without charge. The aspect of XPPAUTwhich is available
in very few other places is the bifurcation software AUTO. The bifurcation tools in
XPPAUT are necessary only for selected problems, so many of the other packages will
suffice for most of the book. The the book and web site contain code that will repro-
duce many of the Þgures in the book. As students solve the exercises and replicate the
simulations using other packages, we would encourage the submission of the code to
the editors. We will incorporate this code into the web site and possibly into future
editions of the book.

There are many people to thank for their help with this project. Of course, we
are deeply indebted to the contributors, who Þrst completed or wrote from scratch the
chapters and then dealt with the numerous revisions necessary to homogenize the book
to a reasonable level. Carla Wofsy and Byron Goldstein, as well as Albert Goldbeter,
encouraged us to go forward with the project and provided valuable suggestions. We
thank Chris Dugaw and David Quinonez for their assistance with typesetting several
of the chapters, and Randy Szeto for his work with the graphic design of the book.
We thank James Sneyd for many helpful comments on the manuscript, and also Tim
Lewis for commenting on several of the chapters. Carol Lucas generously provided many
corrections for the Þrst half of the text. C.F., J.W., and E.M. were supported in part
by the Institute of Theoretical Dynamics at UC Davis during some of the preparation
of the manuscript.

We suspect that Joel, for a start, would have thanked Lee Segel, Jim Murray,
Leah Edelstein-Keshet and others whose pioneering textbooks in mathematical biology
certainly informed this one. We know that Joel would have thanked many friends and
colleagues for contributing to the true excitement he felt in his �second career� studying
biology. While we have dedicated this work to the memory of Joel, Joel�s dedication
might well have been to his wife, Susan; his daughter, Sarah; his son and daughter-in-
law, Sidney and Noelle; and his grandson, Justin Joel.
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We hope you enjoy this text, and we look forward to your comments and sugges-
tions. We strongly believe that a textbook such as this might serve to help to develop
the Þeld of computational cell biology by introducing students to the subject. This
textbook will be more successful in helping to forge a community if it represents what
most of us agree is necessary to teach beginning students. This is only a Þrst step,
and we truly look forward both to input about the material already presented and to
suggestions and contributions of additional material and topics for future editions.
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CHAPT E R 1

Dynamic Phenomena in Cells

Chris Fall and Joel Keizer

Over the past several decades, progress in the measurement of rates and interactions
of molecular and cellular processes has initiated a revolution in our understanding of
dynamic phenomena in cells. Spikes or bursts of plasma membrane electrical activity or
intracellular signaling via receptors, second messengers, or other networked biochemical
pathways in single cells, or more complex processes that involve small clusters of cells,
organelles, or groups of neurons, are examples of the complex behaviors that we know
take place on the cellular scale. The vast amount of quantitative information uncovered
in recent years leveraged by the intricate mechanisms already shown to exist results
in an array of possibilities that makes it quite hard to evaluate new hypotheses on
an intuitive basis. Using mathematical analysis and computer simulation we can show
that some seemingly reasonable hypotheses are not possible. Analysis and simulations
that conÞrm that a given hypothesis is reasonable can often result in quantitative
predictions for further experimental exploration. Rapid advances in computer hardware
and software technology combined with pioneering work giving structure to the interface
between mathematics and biology hava put the ability to test hypotheses and evaluate
mechanisms with simulations within the reach of all cell biologists and neuroscientists.

1.1 Scope of Cellular Dynamics

Generally speaking, the phrase dynamic phenomenon refers to any process or observ-
able that changes over time. Living cells are inherently dynamic. Indeed, to sustain the
characteristic features of life such as growth, cell division, intercellular communication,
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Figure 1.1 (A) Schematic diagram of the recording electrodes (a and b) used to detect action potentials
following a stimulus shock in an isolated giant axon from squid. Adapted from [Hille, 2001].(B) The
membrane potential recorded at electrodes a and b in the upper panel following a depolarizing shock.
Reprinted from [delCastillo and Moore, 1959].

movement, and responsiveness to their environment, cells must continually extract en-
ergy from their surroundings. This requires that cells function thermodynamically as
open systems that are far from static thermal equilibrium. Much energy is utilized by
cells in the maintenance of gradients of ions and metabolites necessary for proper func-
tion. These processes are inherently dynamic due to the continuous movement of ionic
and molecular species across the cell membrane.

Electrical activity of excitable cells is a widely studied example of cellular dynamics.
The classical behavior of an action potential in the squid giant axon is shown in Figure
1.1. This single spike of electrical activity, initiated by a small positive current applied
by an external electrode, propagates as a traveling pulse along the axonal membrane.
Hodgkin and Huxley were the Þrst to propose a satisfactory explanation for action
potentials that incorporated experimental measurements of the response of the squid
axon to depolarizations of the membrane potential. We will describe voltage gated ion
channel models in Chapter 2.

Membrane transporters allow cells to take up glucose from the blood plasma. Cells
then use glycolytic enzymes to convert energy from carbon and oxygen bonds to phos-
phorylate adenosine diphosphate (ADP) and produce the triphosphate ATP. ATP, in
turn, is utilized to pump Ca2+ and Na+ ions from the cell and K+ ions back into the
cell, in order to maintain the osmotic balance that helps give red cells the character-
istic shape shown in Figure 1.2. ATP is also used to maintain the concentration of
2,3-diphosphoglycerate, an intermediary metabolite that regulates the oxygen binding
conformation of hemoglobin. The Þnal products of glucose metabolism in red cells are
pyruvate and lactate, which move passively out of the cell down a concentration gradient
through speciÞc transporters in the plasma membrane. Because red cells possess nei-
ther a nucleus nor mitochondria, they are not capable of reproduction or energetically
demanding processes. Nonetheless, by continually extracting energy from the transfor-
mation of glucose to lactate, red blood cells maintain the capacity to shuttle oxygen
and carbon dioxide between the lungs and the capillaries. Remarkably, this efficient
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Figure 1.2 A normal red blood cell
with its characteristic discoid shape.
The cell is approximately 5 µm in di-
ameter. Reprinted from [Grimes, 1980].

biochemical factory is only 5 µm across, with a volume of less than 10−14 L. In later
Chapter 3 we will discuss models for the transport of glucose across the cell membrane.

Electrical activity and membrane transport are coupled cellular mechanisms. Ex-
perimental measurements of the membrane potential in pancreatic cells have revealed
regular bursts of electrical activity corresponding to insulin secretion that is stimulated
by increases in blood glucose levels. These oscillations occur at physiological levels of
glucose, as shown in the microelectrode recordings from a pancreatic beta cell in an
anesthetized rat in Figure 1.3. Recent work in vitro has shown that the rapid spikes of
electrical activity, known as action potentials, are caused by rapid inßux of Ca2+ from
the exterior of the beta cell followed by a slower efflux of K+. The periods of rapid
spiking are referred to as active phases of the burst, which are separated by intervals
referred to as silent phases. A variety of mechanisms have been proposed to explain
bursting behavior, and computer models of bursting were the Þrst to predict that oscil-
lations of Ca2+ within the cytoplasm should occur in phase with the electrical activity.
Oscillations in Ca2+ were recorded for the Þrst time in vitro eight years after they were
predicted by a theoretical model [Chay and Keizer, 1983]. These oscillations are impor-
tant physiologically, because cytoplasmic Ca2+ plays a major role in triggering insulin
secretion. This topic will be revisited in Chapter 5.

The control of cellular processes by interlocking molecular mechanisms can also
produce spatiotemporal oscillatory Ca2+ signals that are independent of electrical activ-
ity [Lechleiter and Clapham, 1992]. Figure 1.4 shows the spiral pattern of cytoplasmic
Ca2+ oscillations that occurs when an immature Xenopus leavis egg (an oocyte) is stim-
ulated by a microinjection of inositol 1,4,5-trisphosphate (IP3). IP3 is a phospholipid
membrane metabolite that is widely involved in signaling by receptors in the plasma
membrane and that triggers release of Ca2+ from the endoplasmic reticulum (ER). The
ER is an intracellular compartment that functions, among other purposes, as a stor-
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Figure 1.3 Periodic bursts of electrical activity recorded in vivo from a pancreatic beta cell from the
intact pancreas of an anesthetized rat. Reprinted from [Sanchez-Andres et al., 1995].

age region for Ca2+. The ER maintains an internal Ca2+ concentration ([Ca2+]ER) that
is comparable to that of the external medium (ca. 5 mM), whereas the cytoplasmic
Ca2+ concentration([Ca2+]i) is typically 1000-fold smaller. The spiral waves of Ca

2+

in Xenopus oocytes can be explained quantitatively by kinetic models of the feedback
mechanisms responsible for uptake and release of Ca2+ from the ER. Simple models of
regenerative Ca2+ release that are solved on a spatial domain provide insight into the
processes of self organization that result in spiral waves [Winfree, 1987]. These models
are discussed in Chapter 8.

Circadian rhythms are regular changes in cellular processes that have a period of
about 24 hours (from the Latin circa, about, and dies, day) and represent another
dynamical phenomenon that is widely observed in cells. A great deal about the mech-
anisms of circadian rhythms has been uncovered in recent years, and circadian biology
offers a rich source of unsolved modeling problems. Internal clocks provide an organism
with the ability to predict changes in the environment. For example, ßower opening
and insect-egg hatching occur in advance of the rising sun [Winfree, 1987]. Cell divi-
sion in Euglenids may also synchronize to light�dark cycles, as shown in Figure 1.5. The
dark/light bands correspond to periods of absence and presence of light that simulate
the normal dark/light cycle during a day. As shown in Figure 1.5, the growth rate of
Euglena is temperature dependent, and cell division sychronizes to a 24�hour dark/light
cycle only when the temperature is in the range found in its natural environment. At this
temperature the population doubling time is close to 24 hours. Recent experiments with
the fruit ßy Drosophila and other organisms suggest that circadian rhythms like this
are controlled by oscillations in gene transcription. Further consideration of circadian
rhythms will be given in Chapter 9.

The cell division cycle is the process by which a cell grows and divides into two
daughter cells that can repeat the process. The eukaryotic cell cycle consists of a regular
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Figure 1.4 A spiral wave of Ca2+ ions detected as
the bright ßuorescence from an indicator dye after
microinjection of IP3 into an immature frog egg. Pro-
vided by Drs. James Lechleiter and Patricia Camacho,
University of Texas Health Sciences Center.

sequence of events as shown in Figure 1.6: chromosome replication during a restricted
period of the cycle (S phase), chromosome segregation during metaphase and anaphase
(M phase), and Þnally cytokinesis, in which two daughter cells separate. This cycle
involves a cascade of molecular events that center on the proteins Cdc2 and cyclin,
which make up a complex known as M phase promoting factor, or MPF. This complex
has been shown to oscillate in synchrony with cell division and to be regulated by a
series of phosphorylation and dephosphorylation reactions. Related dynamical changes
occur during meiosis, in which germ line cells produce eggs and sperm. We will discuss
models of the cell cycle progression in Chapter 10.

After DNA replication is complete, each chromosome consists of two �sister chro-
matids,� which must be separated during mitosis so that each daugher nucleus gets one
and only one copy of each chromosome. Segregation of sister chromatids during mito-
sis is another complex dynamical process that involves self-organizing structures in the
cell that pull sister chromatids apart. This wonderfully coordinated dynamical behavior
is just one of many examples of motile cellular processes. Other important examples
include muscle contraction, cell movement, and projections of cell membrane called
pseudopodia. Molecular motors will discussed at length in Chapter 12 and Chapter 13.

1.2 Computational Modeling in Biology

Even the simplest of the dynamic phenomena described in the previous section are
exceedingly complex, and computer models have proven to be an important tool in
helping to dissect the molecular processes that control their evolution in time. In the
physical sciences, theoretical methods in combination with experimental measurements
have for many years provided rich insights into dynamical phenomena. The abundance
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Figure 1.5 Population growth of a mutant
Euglena strain shows log growth at 25◦C inde-
pendent of the light/dark cycle, indicated by the
alternating light/dark bands on the time axis. At
19◦C a circadian (approximatly 24 hour) growth
rhythm develops that entrains with the light/dark
cycle. Reprinted from [Edwards, Jr., 1988].

of quantitative experimental data now available at the cellular level has opened the
door to similar collaborations in neurobiology and cell physiology.

1.2.1 Cartoons, Mechanisms, and Models

The interplay of experiment, theory, and computation follows a conceptual framework
similar to that which has proven successful in the physical sciences:

1. Taking clues from experimental work, the Þrst step is to sort through possible
molecular mechanisms and focus on the most plausible ones. In most cases, this
step requires close consultation with experimentalists working on the problem.

2. The selection of mechanisms deÞnes the basis for a schematic representation, or
cartoon, that depicts the overall model. To be useful the cartoon should be explicit
enough to be translated into a series of elementary steps representing the individual
mechanisms.

3. Next, the basic laws of physics and chemistry can be used to translate the
elementary steps of the mechanism into mathematical expressions.

4. These expressions are then combined into time dependent differential equations
that quantify the changes described by the whole model.

5. Finally, careful study of the differential equations reveals whether or not the cartoon
is a successful model of the biological system.

The challenge of the theorist in biology then becomes similar to that in astrophysics
or quantum mechanics: to analyze the equations, simplify them if possible, solve them,
and, most importantly, make predictions that can be tested by further experiment.
Further experiments may uncover inconsistencies in a model that will require changes.
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Figure 1.6 The cell division cycle in Þssion yeast. Spindle formation initiates metaphase, where condensed
chromosomes pair up for segregation into daughter cells. The cycle is completed when cytokinesis cleaves
the dividing cell.

The process that we have outlined above and will revisit in later chapters is an iterative
cycle of ever improving approximation where the mathematical or computer model plays
the role of a quantitative hypothesis.

1.2.2 The Role of Computation

Advances in computer hardware and numerical analysis have made the solution of com-
plicated systems of ordinary differential equations fast, accurate, and relatively easy.
Indeed, the role of computation is critical because the differential equations describ-
ing biological processes nearly always involve control mechanisms that have nonlinear
components. Simple linear differential equations often can be solved analytically, which
means that we can obtain an exact solution using traditional mathematical methods.
Nonlinearities often make it difficult or impossible to obtain an exact solution; how-
ever, we can obtain quite good estimates using numerical methods implemented on
computers. Spatial variation is often an important feature in cellular mechanisms, so
one is confronted with analyzing and solving spatially explicit partial differential equa-
tions, which can be still more complicated and less analytically tractable than ordinary
differential equations.

Computer models permit one to test conditions that may at present be difficult
to attain in the laboratory or that simply have not yet been examined by experimen-
talists. Each numerical solution of the differential equations can therefore provide a
simulation of a real or potential laboratory experiment. These simulations can be used
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to help assess parameters, such as diffusion constants or kinetic constants, that may be
difficult to measure experimentally. Numerical simulations can test how intervention by
pharmacological agents might affect a process. With simulations one can test speciÞc
hypotheses about the role of individual mechanistic components or make predictions
that can be tested in the laboratory. Often the most important result of a simulation
is negative: A well�crafted model can rule out a particular mechanism as a possible
explanation for experimental observations.

1.2.3 The Role of Mathematics

The scope of mathematical techniques employed to investigate problems in mathemat-
ical biology spans almost all of applied mathematics. The modeling of processes is
discussed in detail here, but only the basics of the mathematics and the elementary
tools for the analysis of these models are introduced. Rigorous mathematics plays at
least three important roles in the computational modeling of cell biology. One role is
in the development of the techniques and algorithms that make up the tools of numer-
ical analysis. In its essence, the computation of solutions to mathematical problems on
computers is fundamentally a process of estimation, and the accuracy and efficiency of
these methods of estimation are the subjects of much study. We will introduce brießy a
few ideas from numerical analysis at the end of this chapter and in appropriate places
throughout the rest of this book.

The process of developing model mechanisms that we described above is also funda-
mentally a process of approximation due to the simpliÞcations that must be introduced
to produce a useful model. Not only must these simpliÞcations make sense in terms of
the physical process being studied, but they must also be valid from a mathematical
standpoint. We will learn the basics about more mathematical concepts such as the
reduction of scale and stochastic methods in later chapters.

It is one thing to solve the differential equations that result from the formulation
of a model, but another thing to understand why a model behaves as it does. Mathe-
maticians have developed techniques and tools for the analysis of systems of differential
equations that describe complex interrelated processes. These tools reveal the structure,
properties, and dynamical behavior of the system much as anatomical, physiological,
and molecular biological techniques reveal the physical basis of the model. In partic-
ular, such analysis reveals details about behaviors in a model such as the oscillations
and other complex behaviors that often motivate study of such biological phenomena.
These techniques are covered in several chapters and in the appendices.

Rigorous analysis of complicated differential equations requires specialized training,
because there are many subtleties that are appreciated only with experience. Similarly,
choosing proper numerical methods and selecting valid simpliÞcations requires caution.
While the creation and manipulation of simple models is within the reach of all cell bi-
ologists, the careful scientist will seek collaborations with experienced mathematicians,
particularly for the valid simpliÞcation of complicated models into more tractable ones.
In the middle ground between established disciplines such as biology and mathemat-
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Closed Open

Figure 1.7 Mechanistic cartoon of a gated ionic channel
showing an aqueous pore that is selective to particular types
of ions. The portion of the transmembrane protein that forms
the �gate� is sensitive to membrane potential, allowing the pore
to be in an open or closed state.

ics, fruitful scientiÞc work can be done, and all parties gain valuable insight from the
interdisciplinary experience.

1.3 A Simple Molecular Switch

In this section we illustrate, with a simple model of channel conformation, the kinds of
phenomena that are investigated in detail in subsequent chapters. We introduce some
of the methods underlying the analysis of these models and also try to demonstrate the
basic conceptual modeling framework utilized throughout the book.

We begin with a simple channel because it is an intuitively clear example of tran-
sition between different molecular states corresponding to different conformations of a
macromolecule. Let us be clear that we are modeling only proteins that are switching
between an �open� state and a �closed� state and nothing more at this point. The
simplest cartoon of gating is a channel with two states, one with the pore open and
the other with it closed, corresponding to the mechanism shown in Figure 1.7. This
kinetic �cartoon� is easily translated into a conventional kinetic model of the sort often
employed in biochemistry.

The model takes the form of the diagram in (1.1). Diagrams like this, which will
be used extensively in this book, represent molecular states or entities by symbols and
transitions between states by solid lines or arrows:

C

k+

*)

k−

O. (1.1)

The C in (1.1) corresponds to the closed state, theO corresponds to the open state of the
channel, and the arrows represent elementary molecular processes. These states repre-
sent a complex set of underlying molecular states in which the pore is either permeable
or impermeable to ionic charge. The transitions between C and O are unimolecular
processes because they involve only the channel molecule (bimolecular processes will
be introduced in Chapter 3). An important aspect of transitions between molecular
states is that they are reversible, which is a consequence of microscopic reversibility of
molecular processes.
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Using special techniques, transitions between closed and open states can be mea-
sured for single channel molecules. However, here the focus is on the average change for
a collection of channels. Because it is not unusual to have several thousand channels
of a given type in the plasma membrane of a cell, the average behavior of the entire
ensemble of channels is often what determines the cellular dynamics.

The rate of an elementary process in a kinetic diagram is determined by the so-called
law of mass action. (Despite the name, mass action is not technically a physical law, but
rather is a constitutive relation that holds as a very good approximation for any well�
mixed system.) This �law,� which dates back to the early studies of chemical kinetics,
states that the rate of a process is proportional to the product of the concentrations
of the molecular species involved in the process. If we deÞne k+ as the proportionality
constant or the rate constant, the rate of the transition from state C to state O is given
by J+ = k

+[C], where the square brackets denote concentration, with [C] representing
the concentration of channel molecules in state C. In this case k+ is unimolecular, with
practical units of s−1. Similarly, the rate of the reverse reaction, C ← O, is given by
J− = k−[O] with the unimolecular rate constant k−.

To translate the mechanism in (1.1) into an equation, the law of mass action is
applied to the concentration of channels in states C and O. For cellular mechanisms,
a variety of measures of �concentration� can be used. For example, if the channels are
in intact cells, concentration is often expressed in terms of total cell volume. Another
measure in common use involves total weight of protein in a sample. The total number
of transporters is useful for single cells. Here we choose the latter to deÞne concentration
so that [O] = fO = NO/N , where fO will refer to the fraction of open channels, and
N and NO the total number of channels and open channels, respectively (similarly, fC
and NC refer to the closed state).

Because the kinetic model involves only interconversion of channel states, the total
number of channels should be preserved. This introduces the idea of a conservation
law, NC + NO = N , which states mathematically that channels are neither created
nor destroyed. Using conservation relations, one of the dependent variables can be
eliminated because NC = N −NO. The differential equation for NC therefore becomes
redundant, and the number of differential equations to be solved is reduced to only one
along with the algebraic equation for NC. The fraction of channels in the closed state
is therefore 1− fO.

Having established the correspondence of the diagram with rate expressions, it is
easy to write down the differential equations that the diagram represents. To do so one
must keep track of the change that each elementary process in the diagram makes for
each state, which we refer to as a ßux. Thus the process connecting states O and C
causes a loss of state O in the reverse direction and again in the forward direction. These
small whole numbers that correspond to losses or gains of a state (e.g., −1 for state
C in the process C → O) are called the stoichiometric coefficients for the mechanism.
Using the coeÞcients in conjunction with the kinetic diagram, the ordinary differential
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equations follow for the rate of change in the states:

ßux O→ C = j− = k
−fO, (1.2)

ßux C → O = j+ = k
+(1− fO). (1.3)

The difference between the two ßuxes represents the change in fO over time:

dfO
dt

= j+ − j−
= −k−fO + k+(1− fO)
= − (k− + k+)

µ
fO − k+

(k− + k+)

¶
. (1.4)

DeÞning τ = 1/(k− + k+) and f∞ = k
+/(k− + k+), we have

dfO
dt

=
−(fO − f∞)

τ
. (1.5)

The example that we have presented here shows the basic framework under which
all of the models in this book are developed and understood. With the formulation
of the model equations, the Þrst steps in the modeling process are completed. What
remains is the analysis of the equations.

1.4 Solving and Analyzing Differential Equations

Many students have worked with differential equations in their studies of the physical
sciences or elementary mathematics, and they may have been introduced to solution
techniques explicitly in an advanced calculus course. In general, the differential equa-
tions that arise for the rate of change in cellular properties will be complicated and
difficult or impossible to solve exactly using analytical techniques. One example that

t
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0

2

4

6

8

Figure 1.8 A selection from the family of solutions to
(1.6) for τ = 2.
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can be solved is the simple linear equation

dX

dt
=
−X
τ
. (1.6)

In order to solve (1.6), we seek a function X(t) whose derivative is proportional to itself
with proportionality constant 1/τ . Remembering that the derivative of the exponential
function is still an exponential function, we guess that the exact solution to (1.6) is

X = Ce−t/τ . (1.7)

It can be veriÞed that (1.7) is indeed a solution of (1.6) by differentiating the solution
with respect to t, thereby recovering our original equation

dX

dt
=
d

dt

¡
Ce−t/τ

¢
= −1

τ

¡
Ce−t/τ

¢
=
−X(t)
τ

. (1.8)

Because a differential equation describes how a variable changes for all time, the
solution for a differential equation has to prescribe both how a variable evolves and
at what value it begins. Thus there is a family of solutions to a differential equation,
and the correct one is chosen by specifying an initial condition. This is an important
concept that is particularly relevant to the numerical solution of differential equations.
We choose a particular solution to (1.6) from the general solution given by (1.7) by
adjusting the constant C such that the initial condition X = X(0) is satisÞed at time
t = 0, or

X(0) = Ce−0/τ , (1.9)

which means that C = X(0). Together this gives the particular solution

X = X(0)e−t/τ (1.10)

for the initial condition X(0). Representatives from the family of exact solutions for
different values of X(0) are shown in Figure 1.8 for τ = 2.

A deep understanding of the rules of differentiation and integration from calculus
is not required for the level of modeling and mathematics that will be encountered in
the Þrst half of this book. The exponential function is encountered frequently, and so a
review of its properties as given in elementary calculus textbooks is advisable. It is also
helpful when analyzing experimental literature to understand the difference between
the time constant τ and the half-time t1/2 in the context of the exponential function.
The half-time is the time at which the value of the function decays to 1

2
of the initital

value, or the solution of

X(0)e−t/τ =
X(0)

2
, (1.11)

or

e−t/τ =
1

2
, (1.12)
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which is t = τ ln 2. In contrast, after one time constant or at time t = τ , the value of
X is given by

X = X(0)e−τ/τ = X(0)e−1 ≈ X(0) · 0.37 (1.13)

Note that these principles apply to growing as well as decaying functions.
The solution X(t) always �relaxes� or decays to zero at long times. (Note that

to mathematicians an equation decays to steady state whether it approaches a value
greater or smaller than the initial value.) An equation related to the simple exponential
decay equation given in (1.6) is the exponential approach to a steady state other than
zero. The single channel model given in (1.5) describes exponential decay (or growth) to
a steady state fraction of open channels, f∞. We rewrite it here to aid the presentation:

dfO
dt

=
−(fO − f∞)

τ
. (1.14)

It is easy to solve (1.14) if we make a variable substitution. If we create a new
variable Z and deÞne it as

Z = fO − f∞, (1.15)

then because f∞ is a constant, and therefore

dZ

dt
=
dfO
dt
, (1.16)

we can rewrite (1.14) as

dZ

dt
=
Z

τ
. (1.17)

We saw in (1.10) that the solution to this equation is

Z = Z(0)e−t/τ . (1.18)

Recalling that Z = fO − f∞ (and therefore that Z(0) = fO(0)− f∞, we can once again
exchange the variables and arrive at the analytic solution to (1.14) for a given initial
condition fO(0):

fO(t) = f∞ + (fO(0)− f∞)e−t/τ . (1.19)

1.4.1 Numerical Integration of Differential Equations

Even if (1.14) were more complicated and could not be solved exactly, a numerical
approximation could still be calculated. The simplest and perhaps the oldest method
of numerical solution goes back to the mathematician Euler and is easy to understand.
The method is called the forward Euler method and it is a prototype for all other
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Figure 1.9 The Euler method of numerical integra-
tion relies upon a series of short linear approximations
using the derivative at the old time point. The solution
to (1.6) with τ = 2 is shown in solid, the linear approx-
imation using the derivative at t = 0 (−0.5) is shown
in dots, and the difference between these two curves is
shown in dashes. Note that by t = 2, the error between
the actual and approximate functions is equal to the
value of the actual funtion.

methods of solving ODEs numerically. Consider an approximation to the derivative in
(1.6)

dX

dt
≈ ∆X

∆t
=
X(t+∆t)−X(t)

∆t
, (1.20)

where ∆X and ∆t are small, but not inÞnitesimal like the differentials dX and dt. If
this approximation to the derivative is substituted into the differential equation, the
resulting equation can be solved for X(t+∆t), giving

dX

dt
=
−X(t)
τ

,

X(t+∆t)−X(t)
∆t

=
−X(t)
τ

,

X(t+∆t) = X(t)− X(t)∆t
τ

. (1.21)

The smaller ∆t is, the better the Euler approximation of the derivative will be.
Also, because the Euler approximation gives a piecewise linear estimate of the solution,
the further from linear the problem is, the smaller ∆t must become to give an accurate
solution (see Figure 1.9). The essence of numerical integration is that we start at some
value and crawl along the solution in increments of ∆t by estimating the change over
that interval. If ∆t is very small, our estimate of the rate of change is good and our
solution is accurate, but it may take a very long time to compute the solution. This is
termed computationally expensive, because it either requires a faster (more expensive)
computer or a longer time to run.

Two solutions to (1.19) obtained by integrating the equation using the Euler method
are shown in Figure 1.10A. The time step was chosen to be dt = 0.03, and two different
initial conditions were used, fO(0) = 1 and fO(0) = 0. Independent of the initial
condition, fO(t) relaxes to its steady state value f∞ = 0.5. This steady state is sometimes
called an equilibrium. It corresponds to the point where the rate vanishes, as can be
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Figure 1.10 (A) The exponential decay of the open fraction of channels. Initial conditions at either 1
or 0 both decay to the steady�state value of 0.5. (B) The effect of the step size in the Euler method
for the simulation in panel A starting with the initial condition fO(0) = 1. The exact solution, fO(t) =
0.5(1 + exp(−t/3)), is given by the full line. (C) Plot of the rate of change of n as a function of n. (D)
Phase portrait with the arrows representing the direction and relative magnitude of the rate for each value
of fO . All the arrows point toward the steady state, f∞ = 0.5.

seen graphically in Figure 1.10A. The rate at which the steady state is approached
depends on the value of τ , which is 3 in these simulations.

The solution to the equation in the Euler method depends on step size as shown in
Figure 1.10B. Only step sizes that are more than an order of magnitude smaller than the
value of τ do a reasonable job of approximating the exact exponential solution, which
for the parameter values used is fO(t) = 0.5(1 + exp(−t/3)). Unreasonably large step
sizes like ∆t = 6 give approximations that are not even close to the exact solution. In
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fact, the numerical method has become unstable, and the computed solution oscillates
around the true solution.

There are many other methods of numerical integration that give better approx-
imations to the derivative. These methods are generally more complicated, but have
fewer restrictions on ∆t. These more complicated methods also address some other im-
portant problems such as numerical stability. There are many Þne texts on numerical
analysis that discuss these issues and explain the various advantages and disadvantages
of each method. As mentioned above, however, the best way to ensure an optimal and
valid means of solution is to collaborate with a mathematician who has experience in
scientiÞc computation or numerical analysis.

There is a different way to plot the results of solving the differential equation that
frequently gives insight into the properties of the solution. This is demonstrated in
Figure 1.10C, where the function dfO/dt = −(fO − f∞)/τ is plotted versus the value
of fO for the two initial conditions in Figure 1.10A. Since fO is restricted on physical
grounds to be between 0 and 1, the plot shows that f∞ is the unique steady state by
making it clear that when fO > 0.5, n decreases with time because dfO/dt < 0, and
when fO < 0.5, fO(t) increases with time.

To further emphasize this concept, arrows in Figure 1.10D show the direction in
which fO is changing. This type of plot is called a phase portrait, in one dimension.
Phase portraits are particularly useful for analyzing ODEs with two variables, where
they are typically called phase plane diagrams. Phase plane diagrams are discussed in
Appendix A. Because phase portrait diagrams will be used extensively in the remainder
of the text, it would be a useful digression to review that material now.

1.4.2 Introduction to Numerical Packages

While it is important to understand the limitations of whichever numerical algorithm
is used for the solution of a problem, fortunately it is not necessary to face the task
of implementing these algorithms on a computer from scratch. Several excellent soft-
ware programs have been developed that not only solve ODEs, but represent solutions
graphically and allow their dynamical properties to be analyzed. These packages include
very sophisticated commercial mathematical packages such as Matlab and Mathemat-
ica, which can often be obtained at reduced cost in the form of student versions. There
are also myriad university produced packages such as Berkeley Madonna that are de-
signed to solve ODEs. A new direction for computational cell biology is the creation of
several highly sophisticated packages such as The Virtual Cell, which is an integrated
database and computational system expressly designed for cell biology modeling.

Among the best for our purposes here is a public domain package, XPPAUT,
that has been developed by Bard Ermentrout at the University of Pittsburgh
[Ermentrout, 2002]. The name of the program evolved from a DOS version that was
called PhasePlane, refering to the program�s ability to carry out phase plane analysis. A
version that ran in X-windows under Unix or linux was then developed and was called
X-PhasePlane (or Xpp for short). Finally, when the automatic bifurcation tool AUTO
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developed by E. Doedel, was added it became X-PhasePlane-Auto, or XPPAUT. XP-
PAUT is an excellent tool for solving and analyzing ordinary differential equations, one
that provides very sophisticated tools without automating the process too much to be
useful for our didactic objectives. Moreover, XPPAUT is free and available for both
Unix/Linux, Windows, and MacOSX. We adopt it as the basic software program for
use with this text.

Suggestions for Further Reading

At the end of each chapter will be listed several sources for further reading, together
with short descriptions. Because Chapter 1 serves as an introduction to the whole book,
we have listed here several sources that might serve as companions to the whole book.
Because of their applicability to more than one chapter, those listed here may be listed
again later.

� Modeling Dynamic Phenomena in Molecular and Cellular Biology, Lee Segel. A
great place to start for a more mathematical treatment of some of the contents of
this book [Segel, 1984].

� Mathematical Models in Biology, Leah Edelstein-Keshet. A classic introductory
textbook for general mathematical biology, and a good source for a different per-
spective on topics such as reduction of scale (Chapter 4), phase plane analysis
(Chapter 2 and Appendix A), and elementary numerical analysis as applied to
biological problems [Edelstein-Keshet, 1988].

� Understanding Nonlinear Dynamics, Daniel Kaplan and Leon Glass. An extremely
readable entry�level book on nonlinear dynamics, including sections on chaos,
fractals, and data analysis [Kaplan and Glass, 1995].

� Mathematical Physiology, James Keener and James Sneyd. Keener and Sneyd treat
many of the topics presented in this book from a more analytic perspective as
opposed to the computational focus presented here [Keener and Sneyd, 1998].

� Computer Methods for Ordinary Differential Equations and Differential-Algebraic
Equations, U.M Acher and L.R. Petzold [Asher and Petzold, 1998].

� Cellular Biophysics, Volumes 1 and 2, Thomas Weiss. These two volumes cover in
more detail the biophysics of transport processes and electrical properties in cells
[Weiss, 1996].

� Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT
for Researchers and Students, by Bard Ermentrout. A complete user�s manual for
the public domain ODE package XPP [Ermentrout, 2002].

� Mathematical Biology, James Murray. While not especially didactic, this volume is
recognized as an essential handbook describing models throughout mathematical
biology [Murray, 1989].



20 1: Dynamic Phenomena in Cells

Exercises

1. Find the XPPAUT site on the World Wide Web (see Appendix B). Install
XPPAUT on your computer and follow the web-based tutorial.

2. Verify by differentiation (or by integration) that (1.7) is the solution to (1.6) and
that (1.19) is the solution to (1.14).

3. Create a program that is suitable for solving the ODE in (1.19) and explore what
happens to the solution when the intial condition and characteristic time τ are
changed. Compare to the analytical solution.

4. Suggest three processes in biology not listed here that might be modeled on the
computer.

5. Explain how the list of steps in Section 1.2.1 is carried out in the example begun
in Section 1.3.
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CHAPT E R 2

Voltage Gated Ionic Currents

Chris Fall and Joel Keizer

In Chapter 1 we introduced models of simple channel behavior but ignored the idea that
something might ßow through such a channel. In this chapter we will learn how to model
current ßowing through ion channels and how to include the feedback regulation of the
channel behavior by voltage. But let us be very clear about what we are modeling in
this chapter. Only in the most idealized sense are we modeling the behavior of excitable
cells like neurons. In fact, we will be creating point models of patches of membrane, with
only implicit consideration through the use of ion concentrations of the idea that the
membrane encloses a compartment. We do not consider at all that a neuron is a highly
complicated cell that integrates signals within dendrites and a soma before producing
action potentials in an excitable axon. Some of the diverse neuronal shapes are shown
in Figure 2.1.

Electrophysiology is the study of ionic currents and electrical activity in cells and
tissues. Because this Þeld has its roots in classical physics, traditionally it has been the
most quantitative Þeld in cell physiology. The groundbreaking work of the physiologists
Hodgkin and Huxley and others in elucidating the mechanism of action potentials
in the squid giant axon before and after the Second World War was the Þrst major
breakthrough of dynamical modeling in physiology. In the latter half of the twentieth
century, the introduction of the patch-clamp technique established Þrmly that ionic
currents are carried by proteins that act as gated ionic pores. More recently, genetic
engineering techniques have been employed to clone, modify, and characterize the gating
mechanisms of many types of channels [Hille, 2001].

In this chapter we focus on voltage gated ionic currents. We begin by reviewing the
basic concepts of electrical behavior in cells. Next, we describe classical activation and
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Scale Bar = 100 µm
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Layer V Pyramidal Cell Purkinje Cell α-motoneuron

Figure 2.1 Examples of the diverse shapes of mammalian neurons. Reprinted from [Koch and Segev, 2000].

inactivation kinetics and how the voltage clamp technique can be used to study these
currents. We use the Morris�Lecar model for action potentials in the giant barnacle
muscle to illustrate how voltage gated channels can interact to produce oscillations and
action potentials. The Morris�Lecar model is nonlinear but involves only two variables.
With only two variables, we can analyze the dynamics of the equations for this model
using phase plane techniques. For completeness, we close with brief introductions to
the Hodgkin�Huxley model of the squid giant axon and FitzHugh�Nagumo models.
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Table 2.1 Important DeÞnitions in Electrophysiology

DeÞnition Abbreviation Value

Avogadro�s number N 6.02 · 1023 /mol
Faraday�s constant F 9.648 · 104 C/mol
elementary charge e 1.602 · 10−19 C
gas constant R 8.315 J/(mol · K)
joule J 1 V · C
volt V 1 J/C

ampere A 1 C/s
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Figure 2.2 The basis of the ionic battery. Adapted from [McCormick, 1999].

2.1 Basis of the Ionic Battery

The electrical behavior of cells is based upon the transfer and storage of charge. We
are used to thinking about electricity as the movement of electrons, but current can be
carried by any charged particle, including ions such as K+, Na+, and Ca2+ in solution.
As we will see, the ability of cells to generate electrical signals is entirely dependent on
the evolution of ion�speciÞc pumps and pores that allow the transfer of charge up and
down gradients. Recall several important deÞnitions from elementary physics listed in
Table 2.1. An ion�s valence is the number of charges, plus or minus, that it carries. A
given number of divalent Ca2+ ions would carry twice the amount of charge as the same
number of univalentK+ ions. Using these relationships, we see that the transfer of 1 mole
of K+ ions in a period of one second would carry a current equal to Faraday�s constant.
Ion pumps use energy in the form of ATP to transport ions against a concentration



24 2: Voltage Gated Ionic Currents

gradient. It requires one joule of energy to separate one coulomb of charge across one
volt of potential (which is the deÞnition of volt).

2.1.1 The Nernst Potential: Charge Balances Concentration

Biological ßuids such as cytoplasm and extracellular ßuid contain numerous ions. Con-
sider the case where the two ions K+ and any monovalent anion A− are in solution
such that the concentration is different across the impermeable membrane but the two
ions are equal in concentration on the same side of the membrane. As shown in Figure
2.3A, before we make any changes, there is no potential difference across the membrane
because the charge between the K+ ions and the A− ions is balanced on each side due
to the equivalent concentrations. As shown in Figure 2.3B, if we insert a nonselective
pore into the membrane, concentration and charge equilibrate such that there are equal
concentrations of each ion on both sides of the membrane, and the voltage across the
membrane is again zero.

It is when we insert into the membrane an ion-selective channel that allows only
the passage of K+ that the phenomenon shown in Figure 2.3C occurs. Because [K+] is
greater on one side of the membrane, K+ ions diffuse through the K+ pore down the
concentration gradient. Because the membrane is not permeable to the anion A−, each
K+ ion that passes down the concentration gradient carries a positive charge that is
not balanced by an accompanying A−. Because the transfer of these charges establishes
an electrical potential gradient, K+ ions continue to move from high concentration to
low concentration until the growing force due to the electrical potential difference is

K+

A-

K+

A-

0 mv

K+

A-

0 mv

K+

A-

K+

∆V=δg

K+

A-A-

A CB

Figure 2.3 (A) Concentration and charge are balanced on each side of the membrane, so there is no ∆V
across the membrane. (B) Due to the nonselective pore, charge and concentration are balanced everywhere,
and so there is no∆V across the membrane. (C) A K+ selective pore allows K+ but not A− to pass through
the membrane. K+moves to equilibrate concentration until counterbalanced by the accumulating negative
charge, because A− cannot move.
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balanced by the force generated by the chemical potential, δg, contained in the residual
concentration difference.

The equilibrium potential, where the electrical and chemical forces are balanced, is
given by the Nernst equation. The Nernst equation is derived from the expression for
the change in Gibbs free energy when one mole of an ion of valence z is moved across
a membrane:

∆G = RT ln
[ion]in
[ion]out

+∆V Fz. (2.1)

At equilibrium, ∆G is zero. Rearranging gives us the Nernst potential:

∆V = Vm =
RT

zF
ln
[ion]in
[ion]out

= 2.303
RT

zF
log10

[ion]in
[ion]out

=
61.5

z
log10

[ion]in
[ion]out

(at 37◦C)

(2.2)

where R and F are given in Table 2.1, T is temperature (in kelvin), and z is the valence
of the ion as previously deÞned. At body temperature, RT/F is approximately 60 mV.
Therefore, a 10�fold difference in the concentration of a monovalent ion like K+would
result in approximately 60 mV of potential difference across a membrane. Because the
Nernst potential represents the equilibrium of the thermodynamic system, the potential
difference evolves to that given by the Nernst equation regardless of the initial starting
potential. This tendency for the system to move toward the equilibrium potential is
the basis of the ionic battery used in the modeling of electrophysiological phenomena.
In electrophysiology, the equilibrium potential is called the reversal potential, because
departure from that point of zero current ßux results in the positive or negative ßow
of ions.

2.1.2 The Resting Membrane Potential

The Nernst potential is the equilibrium potential for one permeant ion. In reality, no
channel is perfectly selective for a given ion, and there are various channels selective
for various ions in a given cell as well. The Goldman�Hodgkin�Katz (GHK) equation
is related to the Nernst equation, but considers the case where there are multiple
conductances. The GHK equation determines the resting membrane potential of a cell
from a weighted sum of the various conductances:

Vm =
RT

F
ln
PK[K

+]out + PNa[Na
+]out + PCl[Cl

−]in
PK[K+]in + PNa[Na+]in + PCl[Cl−]out

(2.3)
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Table 2.2 Resting Ion Concentrations (Taken from [McCormick, 1999].)

Cytoplasmic Extracellular

Ion Concentration (mM) Concentration (mM)

Squid Giant Axon

K+ 400 20

Na+ 50 440

Cl− 40 560

Mammalian Neuron

K+ 135 3

Na+ 18 145

Cl− 7 120

where Pi is the relative permeability for ion i, which must be determined experimen-
tally. While it looks like a straightforward extension of the Nernst equation, the GHK
equation requires assumptions about both the interaction of ions and their ability to
diffuse within channels.

We are not going to deal with these complicating details here, and in addition,
we will assume perfect selectivity for our ion channels. If we deÞne the conductance ,
g = 1/R as the reciprocal of the resistance, we can use a similar weighted�sum formalism
for calculating the membrane potential of a cell:

Vm =

P
i(Vi · gi)P

i gi
, (2.4)

where Vi is the Nernst�equation�derived reversal potential for ion i calculated using
(2.2). For example, the membrane potential for a cell containing Na+, K+, and Cl− ions
would be

Vm =
(VNa · gNa) + (VK · gK) + (VCl · gCl)

gNa + gK + gCl
. (2.5)

Because the resting membrane potential is the weighted average of Nernst potentials
for the various ions, the ion with the greatest permeability contributes the most (see
Exercise 1c).

2.2 The Membrane Model

membrane model�( We know from Ohm�s law that current ßows down a voltage
gradient in proportion to the resistance in the circuit. Current is therefore expressed as

I =
V

R
= gV. (2.6)
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Figure 2.4 The equivalent electrical circuit for an electrically active membrane. The capacitance is due
to the phospholipid bilayer separating the ions on the inside and the outside of the cell. The three ionic
currents, one for Na+, one for K+, and one for a non�speciÞc leak, are indicated by resistances. The
conductances of the Na+ and K+ currents are voltage dependent, as indicated by the variable resistances.
The driving force for the ions is indicated by the symbol for the electromotive force, which is given in the
model by the difference between the membrane potential V = Vin − Vout and the reversal potential.

To a Þrst approximation, our task in modeling electophysiological phenomena is to
describe how the conductance of the membrane to various ions changes with time and
then to keep track of the changes in current and voltage that result.

The conceptual idea behind contemporary electrophysiological models originates in
the work of K.S. Cole, who pioneered the notion that cell membranes could be likened to
an electronic circuit [Cole, 1968]. Cole�s basic circuit elements are (1) the phospholipid
bilayer, which acts as a capacitor in that it accumulates ionic charge as the electrical
potential across the membrane changes; (2) the ionic permeabilities of the membrane,
which act as resistors in an electronic circuit; and (3) the electrochemical driving forces,
which act as batteries driving the ionic currents. These ionic and capacitive currents are
arranged in a parallel circuit, as shown in Figure 2.4. This analogy to electrical circuits
is now widely relied upon for developing models of electrical activity in membranes.
membrane model�)

2.2.1 Equations for Membrane Electrical Behavior

The Nernst potential represents the chemical equilibrium, and the GHK equation rep-
resents the steady state. Given the several conductances and their reversal potentials,
we calculate what the membrane potential will be after the system has stabilized. These
equations tell us nothing about how the system evolves to the steady state. Because
we are interested in the time course of the membrane voltage, we have to study the
dynamics of the various currents that ßow in and out of the cell.
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We can approximate the current ßow through a single K+ channel using Ohm�s law
and an assumption that the reversal potential stays constant:

IK = gK(V − VK). (2.7)

Here gK is the conductance of the K
+ channel. VK is the K

+ reversal potential determined
by the Nernst equation, and V − VK represents the driving force across the membrane
provided by the ionic battery. We assume that the reversal potential for a given ion
remains constant, which is equivalent to assuming that restorative mechanisms such as
ionic pumps can keep pace with electrical activity on a time scale that prevents the
ionic battery from running down. This is a reasonable assumption for a large cell, which
would have a small surface area to volume ratio. In a small cell, with a large surface to
volume ratio, the ion transfer necessary to change the membrane potential might have
a large effect on the intracellular ionic concentration and thus the strength of the ionic
battery (see Exercise 2e).

Of course, numerous ions are responsible for the electrical behavior in a cell, and
the total current is the sum of the individual ionic currents.

Iion =
X

Ii =
X

gi(V − Vi) = gK(V − VK) + gNa(V − VNa) + · · · . (2.8)

To translate the electric circuit diagram into ODEs, we use the traditional interpre-
tation of each circuit element along with Kirchoff�s law. Assuming that the membrane
acts as a capacitor, the capacitive current across the membrane can be written

Icap = C
dV

dt
, (2.9)

where C is the capacitance of the membrane and V is the membrane potential, deÞned
as the electrical potential difference between the inside and outside of the cell. To
establish the differential equation satisÞed by the voltage V , Kirchoff�s law of charge
conservation is applied to the circuit in Figure 2.4. Kirchoff�s law dictates that capacitive
current must balance with the ionic current and any currents that might be applied,
say, through experimental manipulation. This implies that

Icap =
X
i

Ii + Iapp, (2.10)

where the sum is over all the ionic currents. Using the expressions in (2.9)�(2.10) this
can be rewritten

C
dV

dt
= −

X
i

gi(V − Vi) + Iapp. (2.11)

If the forms of the gated conductances gi are known, (2.11) provides a differential equa-
tion for the voltage. In general, the gi will not be linear functions of V , and therefore the
problem is to Þnd the time and possible voltage dependence of the various conductances.
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Figure 2.5 Mechanistic cartoon of a gated ionic
channel showing an aqueous pore that is selective to
particular types of ions. The portion of the trans-
membrane protein that forms the �gate� is sensitive
to membrane potential, allowing the pore to be in an
open or closed state. Reprinted from [Hille, 2001].

2.3 Activation and Inactivation Gates

Channels can be thought to have gates that regulate the permeability of the pore
to ions, as illustrated schematically in Figure 2.5. These gates can be controlled by
membrane potential, producing voltage gated channels; by chemical ligands, produc-
ing ligand gated channels; or by a combination of factors. In a series of experiments,
Alan Hodkgin, Andrew Huxley, and others established experimentally the voltage de-
pendence of ion conductances in the electrically excitable membrane of the squid giant
axon [Hodgkin and Huxley, 1939]. Hodgkin and Huxley shared a Nobel Prize with John
Eccles in 1963 for work on nerve signaling.

2.3.1 Models of Voltage�Dependent Gating

The mathematical description of voltage�dependent activation and inactivation gates
is based on the mechanism

C

k+

*)

k
−

O, (2.12)

which was presented in Chapter 1. What distinguishes a voltage�dependent gating
mechanism from a passive mechanism is the voltage dependence of the rate constants.
Recall from (1.1)�(1.5) that the fraction of open channels fO satisÞes the differential
equation

dfO
dt

=
−(fO − f∞)

τ
, (2.13)



30 2: Voltage Gated Ionic Currents

where

f∞ =
k+

k+ + k−
and τ =

1

k+ + k−
. (2.14)

Because ionic channels are composed of proteins with charged amino acid side
chains, the potential difference across the membrane can inßuence the rate at which the
transitions from the open to closed state occur. According to the Arrhenius expression
for the rate constants, the membrane potential V contributes to the energy barrier for
these transitions:

k+ ∝ exp
µ−∆V +

RT

¶
and k− ∝ exp

µ−∆V −

RT

¶
. (2.15)

The rate constants will have the form

k+(V ) = k+o exp(−αV ) and k−(V ) = k−o exp(−βV ), (2.16)

where k+o and k
−
o are independent of V . Substituting the relationships in (2.16) into

the expressions for f∞ and τ and rearranging, we obtain

f∞(V ) =
1

1 + k−o /k
+
o exp((α− β)V )

, (2.17)

τ(V ) =
1

k+o exp(−αV )
· 1

1 + k−o /k
+
o exp((α− β)V )

. (2.18)

We can deÞne

So =
1

β − α (2.19)

and

Vo =
ln(k−o /k

+
o )

β − α . (2.20)

If we substitute Soand Vointo (2.17) and (2.18) (see Exercise 4), we have

f∞(V ) =
1

1 + exp(−(V − Vo)/So) (2.21)

τ(V ) =
exp(αV )

k+o
· 1

1 + exp(−(V − Vo)/So) . (2.22)

Finally, both of these expressions can be rewritten in terms of hyperbolic functions
(Exercise 5):

f∞(V ) = 0.5(1 + tanh((V − Vo)/2So)), (2.23)

τ(V ) =
exp(V (α+ β)/2)

2
p
k+o k

−
o cosh((V − Vo)/2So)

. (2.24)
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Figure 2.6 (A) Equilibrium open fractions (f∞) for an inactivation gate (Vo = −50 mV and So = −2
mV) and activation gate (Vo = −25 mV and So = 5 mV) as a function of voltage. (B) The characteristic
relaxation times τ for the activation and inactivation gates in (A) as a function of voltage, which are
peaked around the values of Vo and have a width determined by So.

Recall that f∞(V ) gives the fraction of channels open at equilibrium at the membrane
potential V . Thus for a Þxed value of V it gives the open fraction after transient changes
in fO have damped out with a characteristic time τ(V ).

An activation gate tends to open and an inactivation gate tends to close when the
membrane is depolarized. Whether a gate activates or inactivates with depolarization
is determined by the sign of So: a positive sign implies activation and a negative sign
inactivation. This is illustrated in Figure 2.6A, where the dependence of f∞ on V
has been plotted for an activation gate with Vo = −25 mV and So = 5 mV and an
inactivation gate with Vo = −50 mV and So = −2 mV.

Notice that the magnitude of Sodetermines the steepness of the dependence of f∞
on V , whereas the value of Vodetermines the voltage at which half of the channels are
open. The dependence of τ on V for these activation and inactivation gates is illustrated
in Figure 2.6B (assuming that α = −β and 2pk+o k−o = 0.2 ms−1). When α = −β and
φ = 1/

¡
2
p
k+o k

−
o

¢
,

τ(V ) =
φ

cosh((V − Vo)/2So) . (2.25)

2.3.2 The Voltage Clamp

In order to measure the voltage across a cell membrane or the current ßowing through
a membrane, microelectrodes are inserted into cells. These electrodes can be used both
to measure current and voltage and to apply external current. In order to measure the
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Figure 2.7 Simulation of voltage clamp experiment using (2.28) and (2.29). (A) Current records resulting
from 40 ms depolarizations from the holding potential of −60 mV to the indicated test potentials. (B) the
maximum (steady state) current as a function of test potential taken from records like those in (A).

voltage dependence of the activation and inactivation of ion conductances, a technique
called the voltage clamp is used. This is an electronic feedback device that adjusts
the applied current Iapp to match and counter the membrane currents such that the
membrane voltage is held constant. To see what this accomplishes, consider a membrane
with a single gated ionic current. If we assume that the total conductance is the result
of the activation of many channels, the conductance g that we have used above can
be deÞned as the product of the maximum possible conductance ḡ and the fraction of
open channels fO that we have already encountered.

g = fOḡ. (2.26)

Table 2.3 Consistent Electrical Units

Name (Symbol) Units Abbreviation

voltage (V ) 10−3 volt mV

time (t) 10−3 second ms

conductance (g) 10−9 siemens nS

capacitance (C) 10−12 farad pF

current (I) 10−12 ampere pA
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We can include this new relationship in the differential equation for membrane
potential that we have already seen:

C
dV

dt
= −fO ḡ(V − Vrev) + Iapp(t), (2.27)

where Vrev is the reversal potential given by the Nernst equation. If we can apply a
current that is equal and opposite to the current ßowing through the membrane,

Iapp(t) = ḡξ(V − Vrev), (2.28)

then the right�hand side of (2.27) is zero and the voltage must be constant. Because
V is constant, ξ = fO and the time dependence of the applied current comes only from
the dependence of fO on t as determined by the gating equation covered in Chapter 1:

dξ(t, V )

dt
=
−(fO(t)− f∞(V ))

τ(V )
. (2.29)

Thus the time dependence of the applied current provides a direct measurement of the
gated current at a Þxed voltage. Note that throughout the remainder of the text we
will drop the overbar with the understanding that conductances gi refer to maximum
conductances to be scaled by gating variables.

To carry out a voltage clamp measurement like this it is necessary to block all
but a single type of current. While this is not always possible, speciÞc toxins and
pharmacological agents have proven useful. For example, tetrodotoxin (TTX) from the
puffer Þsh selectively blocks voltage gated Na+ currents.

It is not difficult to simulate a voltage clamp measurement using (2.28)�(2.29).
However, to carry out either an experimental measurement or a simulation, a consistent
set of electrical units must be used. As we have seen, the standard unit for membrane
potential is millivolts (mV), and because the characteristic times for voltage�dependent
gates τ(V ) are in milliseconds (ms), this is taken as the standard unit of time. Currents
are typically expressed in µA/cm2 and capacitances as µ F/cm2. For a typical cell of
area 10−6 cm2, this translates to a whole�cell current of picoamperes (1 pA = 10−12 A)
and a whole cell capacitance of picofarads (1 pF = 10−12 F). Cellular dimensions are
usually reported in micrometers (�microns�), and there are 10−8 square centimeters per
square micron. Because most biological channels have a conductance g on the order of
1 to 150 pS, whole�cell conductances of nanosiemens are usually expressed in mS/cm2,
because the units of V −Vrev are mV. This standard set of units is summarized in Table
2.3. An alternative consistent set of units uses current in femtoamperes (1 fA = 10−15

A), conductance in pS, and capacitance in fF.
To simulate a voltage clamp experiment we have solved (2.29) and plotted the re-

sulting current given by (2.28). The simulation shown in Figure 2.7A represents a typical
set of experiments in which the membrane potential is clamped at a holding potential
(−60 mV in Figure 2.7), then changed to various test potentials for a Þxed interval (40
ms), and Þnally returned to the holding potential. The value of the holding potential
generally is chosen so that there is little or no current through the channel. This greatly
simpliÞes the interpretation of the current at the test voltages. Figure 2.7A shows the
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Figure 2.8 Depolarization-induced elec-
trical activity in giant barnacle muscle
Þbers; the arrows indicated the start
and end of the depolarizating currents.
Reprinted from [Morris and Lecar, 1981].

current that develops during this protocol for 5 test voltages Vtest. The increase in cur-
rent when the potential is clamped at the test values is governed by the exponential
increase in fO with characteristic time τ(Vtest). When the potential is clamped again
at the holding potential, the resulting current is called the tail current. Its decline is
also exponential, but because V = −60 mV during this period, the characteristic time
is now τ(−60 mV).

Figure 2.7B gives a plot of the steady�state current as a function of the test voltage.
According to (2.28) it can be expressed as I(V ) = gf∞(V )(V − Vrev). Thus for an
activating current like that in the simulations, when V is large enough, f∞(V ) ≈ 1 and
the current is a linear function of V . The curvature in Figure 2.7B at lower voltages is
caused by the shape of the activation function f∞(V ). In the jargon of circuit theory,
currents like this are said to rectify. The delay in the onset of the maximum current,
which is determined by the value of τ(V ), has led to channels like the one simulated in
Figure 2.7 being referred to as delayed rectiÞers.

2.4 Interacting Ion Channels: The Morris�Lecar
Model

Application of a depolarizing current to barnacle muscle Þbers produces a broad range
of electrical activity. Figure 2.8 illustrates the sort of oscillations that are induced by
current injections of 180, 540, and 900 µA/cm−2 into these Þbers. Careful experimental
work by a number of research groups has indicated that the giant barnacle muscle
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Þber contains primarily voltage gated K+ and Ca2+ currents along with a K+ current
that is activated by intracellular Ca2+, a so-called K+

Ca current. Neither of the voltage
gated currents shows signiÞcant inactivation in voltage clamp experiments. The trains
of depolarization-induced action potentials in Figure 2.8 must occur via a mechanism
different from that proposed by Hodgkin and Huxley for the squid giant axon, which,
as we will see later, include channel inactivation.

Morris and Lecar proposed a simple model to explain the observed electrical be-
havior of the barnacle muscle Þber [Morris and Lecar, 1981]. Their model involves only
a fast activating Ca2+ current, a delayed rectiÞer K+ current, and a passive leak. They
tested the model against a number of experimental conditions in which the interior of
the Þber was perfused with the Ca2+ chelator EGTA in order to reduce activation of
the KCa current. Their simulations provide a good explanation of their experimental
measurements. The model translates into two equations:

C
dV

dt
= −gCam∞(V − VCa)− gKw(V − VK)− gL(V − VL) + Iapp, (2.30)

dw

dt
=
φ(w∞ −w)

τ
. (2.31)

Here m∞ is the fraction of voltage-dependent Ca
2+channels open, and this is a function

of voltage but not time. Furthermore, w is the fraction of open channels for the delayed
rectiÞer K+ channels, and the conductances gL, gCa, and gK are for the leak, Ca2+, and
K+ currents, respectively. We use w rather than the previously used fO for the fraction
of open channels for historical reasons. The functions

m∞(V ) = 0.5[1 + tanh((V − v1)/v2)], (2.32)

w∞(V ) = 0.5[1 + tanh((V − v3)/v4)], (2.33)

τ(V ) = 1/ cosh((V − v3)/(2 · v4)), (2.34)

are the equilibrium open fractions for the Ca2+ current and the K+ current, and the
activation time constant for the delayed rectiÞer. Representative parameters are given
in Table 2.4. Again note thatm is not a dynamic variable. The reason for this is that we
have assumed that the time constant for m is short enough that m is always in steady
state, m = m∞(V ). The idea of fast and slow processes is arguably one of the most
important concepts in modeling. Although we make the assumption without argument
here, its implications in modeling are addressed in a more mathematical context in
Chapter 4 and Appendix A.

We have solved the Morris�Lecar equations for four values of the applied current
Irmapp and plotted the time series for V (t) in Figure 2.9A. Current in the Morris�Lecar
model is speciÞed in µA/cm2 however to simplify notation somewhat we will assume
that the cell has a total surface area of 10−6 cm2, so that µA/cm2 = pA. In the absence
of applied current the equations have a stable steady state near −60 mV. Although
increasing Iapp to 60 pA produces a brief transient action potential, the effect of the
depolarization simply produces a steady state near −35 mV. Depolarization with a
current of 150 pA, on the other hand, produces a steady train of action potentials
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Figure 2.9 (A) Voltage simulation for the Morris�Lecar equations using the indicated applied currents
and parameters as in Table 2.4. Oscillations occur at Iapp = 150 pA. (B) The phase plane for the Morris-
Lecar model for Iapp = 150 pA. The heavy line is the limit cycle corresponding to the oscillation in (A), and
the lighter lines are short trajectories that circulate in the counter�clockwise direction toward the stable
limit cycle. The short arrows indicate the vector Þeld. The V -nullcline is the long-dashed line and the
w-nullcline is the short-dashed line. (C) Nullclines for several values of Iapp. (D) A bifurcation diagram that
catalogues the dynamical states of the Morris�Lecar model as a function of Iapp with the other parameters
Þxed. The maximum and minimum of V on the limit cycle are represented by the heavy lines. Compare
the values for Iapp = 150 pA (long-dashed line) with the voltage record in (A).

reminiscent of those observed experimentally in Figure 2.8. In the presence of depolar-
izing currents much greater than this, the simulated barnacle cell can no longer sustain
continuous spiking, as shown at Iapp = 300pA.
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Table 2.4 Morris�Lecar Oscillator Parameters (Type II)

Parameter Value

C 20µF/cm2

VK −84 mV
gK 8 mS/cm2

VCa 120 mV

gCa 4.4 mS/cm2

Vleak −60 mV
gleak 2 mS/cm2

v1 −1.2 mV
v2 18 mV

v3 2 mV

v4 30 mV

φ 0.04/ms

2.4.1 Phase Plane Analysis

The mechanistic features underlying continuous spiking and action potentials can be
understood easily using phase plane analysis. Because of the ease of representation in
two dimensions, two variable models such as the Morris�Lecar model are particularly
amenable to this technique. Phase plane analysis is a powerful way to determine how the
behavior of a system will change with changes in the various parameters in a system.
Several types of plots are utilized as part of what is generically called phase plane
analysis:

� a phase portrait consists of the variables describing a system plotted against each
other rather than as a function of time to produce a trajectory in phase space. A
phase portrait tells us how the variables interact for a given set of parameters.

� A vector Þeld shows us the direction in which a system will evolve from any location
in phase space.

� Nullclines are plotted in phase space, and show us the values of a pair of variables
at which one of the variables does not change. In other words, for a coupled system
of equations X(x, y, t) and Y (x, y, t) nullclines are the solutions to the equations

dX

dt
= 0,

dY

dt
= 0 (2.35)

Note that there is a nullcline for each variable. The points of intersection of two
nullclines are particularly interesting points in phase space that we will discuss
below.

Phase plane analysis plots for the Morris�Lecar model are shown in Figure 2.9B and
Figure 2.9C. Figure 2.9B shows trajectories, nullclines, and the vector Þeld for Iapp =
150 pA, which leads to the pattern of repetitive spiking. The phase portrait consists
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of a number of representative trajectories together with a unique, closed trajectory
indicated by the heavy line. This trajectory is called a stable limit cycle because it is
the cyclic curve to which all the neighboring trajectories converge no matter where
in phase space they originate. The trajectories circulate around the steady state in a
counterclockwise direction as indicated by the velocity vector Þeld, which is shown as
small arrows.

The nullclines are indicated by the lighter segmented lines. The V -nullcline, which
has the inverted �N� shape, is given by the long-dashed line. It is the solution to

0 = −gCam∞(V − VCa)− gKw(V − VK)− gL(V − VL) + Iapp (2.36)

for each value of w.
The w-nullcline is the solution to

0 =
φ(w∞ −w)

τ
(2.37)

for each value of V .
Note that the limit cycle in Figure 2.9B circulates around the intersection of the

two nullclines. We saw in Figure 2.9A that different values of Iapp lead to different
behaviors and that Iapp = 150 pA was the only value of the four tested that results
in oscillations. Figure 2.9C shows how changing the value of Iapp affects the nullclines
of the system. We see that increasing Iapp from 60 pA to 150 pA and then to 300 pA
raises the V nullcline but leaves the w nullcline unaltered. If we examine Figure 2.9A
and Figure 2.9C carefully, we notice something interesting: As we saw above, the limit
cycle obtained when Iapp = 150 pA circulates around the intersection of the nullclines
at that parameter value. At Iapp = 300 pA the system evolves to a steady state that
corresponds to the intersection of the nullclines obtained for that Iapp. The same is true
for Iapp = 60 pA. We know that a point on a nullcline corresponds to a point at which
the variable of interest is not changing, and so it makes sense that the intersection of
nullclines represents a combination of variables for which the system as a whole does
not change. The intersection of the nullclines for Iapp = 60 pA and Iapp = 300 pA are
examples of Þxed points, and represent stable steady states. What is different about the
intersection of nullclines obtained when Iapp = 150 pA?

2.4.2 Stability Analysis

The heart of answer lies in the fact that �Þxed points� can be either stable or unstable
and that the intersection of nullclines obtained when Iapp = 150 pA is an unstable
Þxed point. Notice that the two trajectories that start nearest to the intersection of the
nullclines in Figure 2.9B diverge away from the intersection and toward the limit cycle.
The trajectory of the system is thus driven away from the intersection of the nullclines
while at the same time being constrained to orbit around it. The existence of a stable
limit cycle should be no more surprising than the existence of stable steady states. It
corresponds to a closed trajectory to which all neighboring trajectories converge. The
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tools provided for phase plane analysis and stability analysis in some ODE packages
make it easy to determine steady states, limit cycles, and stability, and therefore how
a system like the Morris�Lecar model will behave.

Appendix A reviews how the eigenvalues determine the global stability properties
of a linear system. Exponentials of the eigenvalues describe the solution of the linear
system: Negative real eigenvalues indicate a stable solution, positive real eigenvalues in-
dicate an unstable solution, and complex eigenvalues indicate the presence of oscillations
in the solution. Stability analysis for nonlinear systems is not quite so straightforward,
in that we can only determine the stability in such a system in a very small region
around the a Þxed point. In essence, we analytically (with a Taylor series as described
in Appendix A) or numerically (with a software package) linearize the system, and
then use the same tools that we used for the linear system in the small linearized region
around the Þxed point in the nonlinear system.

This book emphasizes the use of computational tools rather than mathematical
analysis. An intuitive understanding of the concept of stability can be obtained with-
out mathematical rigor. However, it must be stressed that there are myriad subtleties
that can be appreciated only with an understanding of the underlying mathemat-
ics. The topic of stability analysis of linear and nonlinear equations is covered in
more depth in Appendix A, and the student should be familiar with the analyt-
ical techniques discussed there in order to appreciate the output of computational
tools. Other excellent sources covering this material on a reasonably introductory level
are available [Edelstein-Keshet, 1988, Kaplan and Glass, 1995], and a particularly de-
tailed analysis of the Þring proterties of the Morris�Lecar system has been published
[Rinzel and Ermentrout, 1998a].

The simulations in Figure 2.9A show that a stable limit cycle occurs for the Morris�
Lecar model only for certain values of Iapp, such as Iapp = 150 pA. We can determine the
stability of the Þxed points corresponding to different values of Iapp using a numerical
package. The intersection of the nullclines for Iapp = 150 pA indicated by the open
circle in Figure 2.9B is an unstable steady state at V = −.460 and w = 0.459, a
Þxed point with eigenvalues λ± = 0.264 and 0.033 (values are rounded). It is unstable
because the eigenvalues are positive real numbers, and yet these parameters result in
stable oscillations. This is an excellent example of how the local stability of a Þxed

Table 2.5 Fixed Points and Their Eigenvalues

Iapp V w Eigenvalue Eigenvalue

0 pA −60.855 V 0.015 −0.037 −0.096
60 pA −37.755 V 0.070 −0.055 + i0.063 −0.055− i0.063
110 pA −19.219 V 0.196 0.055 + i0.045 0.055− i0.045
150 pA −0.460 V 0.459 0.264 0.033

180 pA 6.656 V 0.577 0.025 + i0.139 0.025− i0.139
300 pA 14.302 V 0.694 −0.137 + i0.117 −0.137− i0.117
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point does not tell the whole story for a nonlinear system. Unlike the case with linear
systems (covered in Appendix A), here positive eigenvalues can be associated with
stable oscillations in phase space around the unstable Þxed point.

Using a systematic stepping procedure, we can test the stability of the system over
a wide range of parameter values. Table 2.5 shows the eigenvalues for the values of Iapp
that we have examined plus some additional intermediate values. As Iapp is increased
from Iapp = 0, the eigenvalues are seen to change from negative (stable node) to complex
with negative real parts (stable focus), to complex with positive real parts (unstable
focus) as oscillations emerge. The oscillations at Iapp = 150 correspond to eigenvalues
that are both real and positive (unstable node). As Iapp is increased further, the eigen-
values become complex again with positive real parts, and eventually become complex
with negative real parts as oscillations cease. Fixed points at which the qualitative
character of the solution changes with a change in a parameter are called bifurcation
points. The mathematical properties of bifurcations are also treated in more detail in
Appendix A. In particular, Appendix A discusses the Hopf bifurcation theorem, which
establishes the conditions that result in the limit cycle oscillations that we see here.

By making even smaller changes in Iapp and testing the stability of the steady
state, it is possible to locate the speciÞc values at which the stability of the steady state
changes. This procedure could become very laborious, and so numerical algorithms have
been developed that allow investigation of bifurcations to be done automatically. In the
bifurcation diagram shown in Figure 2.9D, the characteristic values of the membrane
potential are plotted on the ordinate as a function of Iapp. The thin full and dashed lines
are the steady�state values of V for each value of Iapp, with the full lines representing
stable steady states and the dashed lines unstable states. The points Iapp ≈ 94 pA and
212 pA are bifurcation points where the stability of the steady state changes. Near
these points two new dynamical features appear: a stable limit cycle and an unstable
limit cycle. This type of bifurcation is called a subcritical Hopf bifurcation, as discussed
in Appendix A. Note that while the detail is not apparent in Figure 2.9D, the unstable
limit cycle turns back and then coalesces at a turning point bifurcation with the stable
limit cycle at a value of Iapp that is smaller than the bifurcation point, and therefore
there is a small region of bistability. The bifurcation diagram in Figure 2.9D also records
the maximum and minimum values of V on the limit cycles with heavy full lines. For
example, at Iapp = 150 pA the points on the heavy line correspond to the maximum
and minimum of the spikes in Figure 2.9A.

2.4.3 Why Do Oscillations Occur?

If the following three conditions on the Morris�Lecar equations hold, then oscillations
will occur:

� the V nullcline has the inverted �N� shape like that in Figure 2.9B;
� a single intersection of the V - and w-nullclines occurs between the maximum and
minimum of the �N;�
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Figure 2.10 (A) The K+, Ca2+, and total current (ICa +IK + Ileak− Iapp) when w = 0.35. States 1 and 3
are stable steady states, and state 2 is unstable as indicated by the velocity vectors. (B) The phase plane
for the Morris�Lecar model for Iapp = 150 pA, except that τ (V ) has been increased by a factor of ten. The
values w = 0.468 and 0.251 correspond to the maximum and minimum of the V -nullcline. The points 1,
2, and 3 at w = 0.350 are the steady states in (A). Inset shows the voltage record for a single spike.

� the rate of change of V is much greater than w.

All three conditions are met for the parameter values in Table 2.4, giving rise to
oscillations in Figure 2.9A. The importance of the slow change in w, i.e., the �delay� of
the delayed rectiÞer, can be seen by examining the trajectories in Figure 2.9B. If the rate
of change of w were large with respect to V , then the trajectories would not depolarize
and hyperpolarize rapidly as they do in Figure 2.9A. This is tested by decreasing the
value of the parameter φ, thereby increasing the value of the characteristic time for
relaxation of w.

By altering the time scale we see why oscillations occur when the rate of change of
V is very much faster than w and the nullclines have the shape in Figure 2.9. In this
case, we can treat changes in V under the assumption that w is constant, and we need
only to consider the voltage equation with w Þxed:

C
dV

dt
= −gCam∞(V − VCa)− gKw(V − VK)− gL(V − VL) + Iapp. (2.38)

Because only the voltage is changing on this time scale, we can examine its dynamical
behavior using the one�dimensional phase portrait, rather than a phase plane. This
is shown in Figure 2.10A, where the total current, which is proportional to the rate
of change of V , is plotted along with the Ca2+ and K+ currents for w = 0.35 and
Iapp = 150 pA. The total current vanishes at three points, which are the steady states
for the voltage when w is Þxed. States 1 and 3 are stable, and state 2 is unstable, as
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indicated by the velocity vectors in the Þgure. Note that at state 1 the membrane is
polarized and the outward K+ current dominates the Ca2+ inward current, whereas the
opposite holds true at state 3. As we shall see, the oscillations can be thought of as
transitions back and forth between the polarized and depolarized states, driven by slow
changes in activation of the delayed rectiÞer current.

Figure 2.10A also explains why the V -nullcline in the Morris�Lecar model has the
inverted �N� shape: The K+ and leak currents exceed the inward Ca2+ current at
polarized voltages between states 1 and 2, whereas the Ca2+ current exceeds the other
currents between states 2 and 3. This voltage-dependent competition between inward
and outward currents leads to a maximum and minimum in total current and therefore
the inverted �N� shape for the nullcline.

The three steady states of the voltage also can be found graphically in the phase
plane of Figure 2.10B by locating the intersection of the line w = 0.35 with the V -
nullcline. It is clear from the Þgure that if w exceeds 0.468 (the maximum on the right
branch of the V -nullcline), then the voltage has only a single polarized steady state
(intersection with w) on the far left branch of the V -nullcline. Similarly, if w is smaller
than 0.251 (the minimum on the left branch of the V -nullcline), then the voltage has
only a single depolarized steady state on the right branch. For 0.251 ≤ w ≤ 0.468 two
stable steady states and one unstable state occur, and the voltage is said to be bistable.

To understand how bistability on the fast time scale (neglecting w) leads to oscilla-
tions in the complete system, we need to understand how w changes on the longer time
scale. Assume that initially, the membrane is polarized at state 1 in Figure 2.10B, with
w = 0.35. Because w = 0.35 is above the w-nullcline at point 1, w will decrease. As w
decreases, V will stay close to the V -nullcline because it relaxes rapidly to the closest
steady�state value. The trajectory thus follows the polarized branch, as indicated by
the heavy line, until the minimum at w = 0.251 is reached. Beyond the minimum (near
a), stable polarized states no longer exist, and V rapidly relaxes to the only remaining
steady state (near b), which is on the depolarized, far right branch of the V -nullcline.
During the depolarization, however, the w-nullcline is crossed. Thus on the depolarized
branch, w increases and tracks the V -nullcline upward until the maximum at w = 0.468
is reached (near c) and the membrane rapidly repolarizes to the polarized branch (near
d).

The abrupt transitions from the polarized to depolarized branch and back again
have led to the name relaxation oscillator for systems of equations that have well-
separated time scales. For the parameters in Figure 2.9, the Morris�Lecar model is
not a relaxation oscillator. However, when the characteristic time for w is increased by
a factor of 10 (by decreasing φ), the limit cycle (heavy line in Figure 2.10B) closely
approximates that for a relaxtion oscillator. If the characteristic time were increased
sufficiently, or the characteristic time for V were decreased sufficiently by altering the
capacitance, then the trajectory would coincide with the bistable portions of the V -
nullclines, and the rapid excursions of the voltage would occur precisely at w = 0.251
and 0.468. The inset in Figure 2.10B shows a single voltage spike that illustrates the
rapid upstroke and downstroke for the limit cycle. The inset also illustrates that the
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Figure 2.11 Excitability in the Morris�Lecar model for Iapp = 60 pA. (A) An initial deviation of the
voltage to −22 mV relaxes rapidly to the steady�state voltage, whereas a deviation to −17 mV produces
an action potential. (B) The trajectories in (A) represented in the phase plane. When V changes much
faster than w, the location of the V -nullcline (long-dashed line) sets the threshold for action potential
spikes.

shape of the depolarized and polarized portions of the spike reßects the shape of the
two branches of the V -nullcline.

2.4.4 Excitability and Action Potentials

Another dynamical feature of the Morris�Lecar model is excitability. A useful working
deÞnition of excitability is that a system is excitable when small perturbations return
to the steady state, but larger (i.e., above a threshold) perturbations cause large tran-
sient deviations away from the steady state. An example of this is shown in Figure
2.11A, where the time course of the voltage with an applied current of 60 pA and ini-
tial conditions of w(0) = wss = 0.070 and either V (0) = −22 or −17 mV are used. For
subthreshold V (0) such as −22 mV, the voltage increases only slightly before it de-
creases monotonically to its steady state�value of about −37 mV. For suprathreshold
deviations, like that for V (0) = −17 mV, the voltage increases dramatically, producing
an action potential spike before returning to steady�state.

The explanation for excitability can be understood most easily in the phase plane.
In Figure 2.11B we have plotted the trajectories for the two initial conditions in Figure
2.11A along with the two nullclines. The trajectories for subthreshold initial conditions
like V (0) ≤ −22 mV start at points in phase space above the V -nullcline and below the w
nullcline. This implies that the initial velocity vector, and therefore the initial trajectory,
points in the direction of smaller potentials and larger values of the activation of the



44 2: Voltage Gated Ionic Currents

Fr
eq

ue
nc

y 
(H

z)

i i

A B

Fr
eq

ue
nc

y 
(H

z)

30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

80 100 120 140 160 180 200 220
0

2

4

6

8

10

12

14

16

18

20

Figure 2.12 Examples of voltage�freqency plots for the Morris�Lecar model with parameters that result
in (A) Type I dynamics and (B) Type II dynamics. Note that the axes are somewhat different. Plotted
according to [Rinzel and Ermentrout, 1998a].

delayed rectiÞer K+ current. Thus the voltage begins to decrease and continues to do so
because the K+ current activates as w increases. This contrasts with the trajectory that
starts at V (0) = −17 mV, for which the initial velocity vector points in the direction of
increasing voltage. Even though w is increasing in this region, which is also below the
w-nullcline, the rate of increase of voltage exceeds that of w, and the trajectory moves
to higher voltages until it crosses the V -nullcline and begins to decrease.

The threshold value of V (0) above which action potentials occur depends on the
shape of the nullclines and the rate of activation of w (altered by φ). However, it is close
to the point where a line drawn parallel to the V axis at wss crosses the V -nullcline.
It is not hard to check that it will approach this point as w is made to change more
slowly than V .

2.4.5 Type I and Type II Spiking

Many investigators are now interested in applying biophysical models of neurons
and other spike�generating mechanisms to the study of information transfer using
information�theoretic measures. It is particularly important, therefore, that the dy-
namical behavior of a model be characterized over the space of parameters and that
the characteristics of the spike generating model match the intended use. Both the
Hodgkin�Huxley model, described below, and the Morris�Lecar model produce trains
of action potentials with commonly used parameter sets and when sufficiently depolar-
ized. Muscle Þber and axons innervating muscle Þber are examples of situations where
a strong, consistent signal is required. In our investigations of the Morris�Lecar model,
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we have seen that depolarization beyond threshold results in oscillations that begin at a
characteristic nonzero frequency. This behavior has been deÞned as a Type II oscillator
[Rinzel and Ermentrout, 1998a].

Many neurons exhibit Þring properties that are fundamentally different from
those of the Type II oscillator. Models of these cells can produce arbitrarily
low frequencies of oscillations. These models are classiÞed as Type I oscillators
[Rinzel and Ermentrout, 1998a]. The Morris�Lecar model can exhibit Type I or Type
II behavior, depending on the parameters that are chosen, and the Hodgkin�Huxley
model also can be modiÞed to show this behavior. See Table 2.6 for the Morris�Lecar
Type I parameters that differ from Type II parameters. Examples of voltage�frequency
plots for the Morris�Lecar model in these two regimes are shown in Figure 2.12. The
Morris�Lecar Type II oscillator might not be appropriate for the study of subtle aspects
of information transfer or intra�neuronal coupling. We have seen that Type II spiking
results from a subcritical Hopf bifurcation as input current is increased. Type I spiking
results from a saddle-node bifurcation. The difference between these two bifurcations
is discussed in Appendix A. We also note that there are other levels of complexity
for spiking and oscillating models. Models of bursting cells, which exhibit trains of os-
cillations separated by periods of quiescence, require additional slow variables. These
models will be discussed in detail in Chapter 5.

2.5 The Hodgkin�Huxley Model

Ordinarily, a discussion of membrane electrophysiology might begin with the fa-
mous squid giant axon model developed by Hodgkin and Huxley (the HH model)
[Hodgkin and Huxley, 1952]. Our goal here has been to facilitate a clear mathemati-
cal understanding of oscillatory behavior in systems of ion channels. While it remains
a seminal accomplishment in the history of physiology, the HH model is complicated
and not amenable to the phase plane methods of analysis that we have used to under-
stand dynamical electrical behavior in cells. The student should be familiar with the
HH model, for historical reasons and because it is still widely used. We cannot cover
the work of Hodgkin and Huxley in the detail it deserves, but the concepts learned
in the study of the Morris�Lecar oscillator will aid the student in understanding the
HH model. We recommend that the student consult Bertil Hille�s Ionic Channels of

Table 2.6 Morris�Lecar Type I Oscillator Parameters

Parameter Value

gCa 4 mS/cm2

v3 12 mV

v4 17.4 mV

φ 0.066/ms
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Figure 2.13 (A) The solution of the Hodgkin-Huxley equations for three different initial values of the
membrane potential and no applied current. When the initial value exceeds ca.−59 mV, an action potential
is produced. (B) Continuous spiking occurs under the same conditions with an applied current Iapp = 15.

Excitable Membranes [Hille, 2001], which contains one of the best treatments of the
HH model and the history behind it. �Hille� is also the best consolidated source of in-
formation about the biophysics of ion channels, and it should be familiar to any person
attempting to model electrical behavior.

The HH model is empirical [Hodgkin and Huxley, 1952]. Many voltage clamp exper-
iments were performed by Hodgkin and Huxley, and their data were Þt to expressions
that they incorporated into the model without consideration of an underlying mecha-
nism for the channel gates. One of the remarkable aspects of Hodgkin and Huxley�s work
is that their model was developed without a molecular understanding of the mechanism.
In fact, it required almost thirty years of intensive research after their work to formulate
a realistic cartoon of the mechanisms underlying the ionic currents in cells. Although
Hodgkin and Huxley justiÞed these expressions on empirical grounds, it is possible
to derive the gating expression used in the Hodgkin�Huxley model using mechanistic
models.

From their voltage clamp and other measurements, Hodgkin and Huxley deduced
that the sodium conductance involved two voltage-dependent �gates,� an activation
gate and an inactivation, gate and that the potassium conductance had a single activa-
tion gate. Note that the presence of an inactivation gate differs from the Morris�Lecar
model. To account for these facts they represented the ionic conductances in the
following form:

gNa = ḡNam
3h, (2.39)
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gK = ḡKn
4, (2.40)

where the terms ḡ represent maximal conductances, and m and n are the activation
gating variables and h the inactivation. The exponents on m and n were chosen for
the best Þt to experimental data. These gating variables were postulated to satisfy
linear differential equations where the variables �relax� to voltage�dependent values,
e.g., m∞(V ), that vary between zero and one with voltage-dependent time constants,
e.g., τm(V ).

Putting the ODEs for the gating variables together with (2.11) gives the primary
equations for the Hodgkin�Huxley model:

CdV/dt = −ḡNam3h(V − VNa)− ḡKn4(V − VK),
− ḡleak(V − Vleak) + Iapp, (2.41)

dm/dt = −(m−m∞(V ))/τm(V ), (2.42)

dh/dt = −(h− h∞(V ))/τh(V ), (2.43)

dn/dt = −(n− n∞(V ))/τn(V ). (2.44)

Hodgkin and Huxley added the third conductance ḡleak to their voltage equation to
account for a small voltage-independent conductance that they attributed to a �leak� in
the membrane, possibly through their microelectrode. The nonlinear terms in (2.41) are
obvious in the activation and inactivation gates. Not so obvious are the nonlinearities in
(2.42)�(2.44). However, all the voltage-dependent terms in those equations are nonlinear
functions of V as well.

The student should solve the HH equations to provide a basis for comparison and
further exploration (Exercise 9b). The equations for the Hodgkin�Huxley spike gener-
ator are readily available from other sources, and it is not difficult to run simulations
with a package for solving ODEs. One must be careful to choose a suitable numerical
method of solution due to the nonlinear equations. Figure 2.13 shows several simula-
tions that can be made with the HH equations. The Runge�Kutta method has been
used with a time step of 0.05, which is appropriate because reducing the time step to
0.01 gives no noticeable change in the results.

Figure 2.13A shows calculations with Iapp = 0, but with V (0) = −65, −60, and
−57 mV. The steady state for the voltage with these parameters is clearly −65 mV;
however, if the initial value of V exceeds about −59 mV, then the equations produce
an action potential spike, and we have another example of a Type II oscillator. The
Hodgkin-Huxley equations can also produce repetitive Þring of action potentials. This
is illustrated in Figure 2.13B. The parameters in that simulation are identical to those
in Figure 2.13A, except that Iapp = 15.
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2.6 FitzHugh�Nagumo Class Models

We have seen that a fast variable with a cubic nullcline for voltage and a slower variable
with a monotonically increasing nullcline for channel opening are sufficient to produce
oscillations. In some cases, and particularly for mathematical analysis, it may be ben-
eÞcial to completely abstract the mathematical equations for an oscillator from the
underlying physical processes in order to understand general properties of these sys-
tems. Because two�variable systems are useful for the phase plane methods we have
discussed, we can contrive such a system.

The two differential equations will be functions of both state variables:

dv

dt
= f(v,w),

dw

dt
= g(v, w).

(2.45)

By deÞnition, the nullcline is obtained by setting the right�hand side of the equation
to zero and plotting the function in the (v, w) phase plane. We can create the behavior
we desire by specifying the shapes of f(v, w) and g(v, w). The slow variable, w, is
easiest, because we want g(v, w) to be similar to a line describing the increase of v with
w. Note that v here is the dependent variable for the equation for a line:

g(v,w) : v = γw, (2.46)

and therefore

dw

dt
= v − γw (2.47)

where γ is the slope parameter.
The fast variable v will have a form similar to (2.47) with w as the dependent

variable:

f(v, w) : w = f(v), (2.48)

and therefore

dv

dt
= f(v)−w. (2.49)

Because we know that w needs to be a cubic function of v, let us try

f(v) = Bv(v − β)(δ − v), (2.50)

where A is a parameter to scale the amplitude of the curve. The equations for the
complete system are therefore
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dv

dt
= Av(v − β)(δ − v)−Cw,

dw

dt
= ²(v − γw).

(2.51)

The parameter ² has been added to more easily control the speed of one variable
relative to the other, and the parameter C affects the coupling strength. For an appro-
priate choice of all of the parameters, we would expect that this system of abstracted
differential equations would produce oscillations (Exercise 10b).

This dynamical paradigm appeared Þrst in cellular neuroscience in simpliÞcations
of the Hodgkin�Huxley equations by FitzHugh [FitzHugh, 1961], and later as part
of an independent development by Nagumo et al. [Nagumo et al., 1962]. In fact, the
various parameters we have contrived have physical interpretations in the context of a
simpliÞcation of the Hodgkin�Huxley circuit diagram we discussed earlier. This type
of system, involving a linear nullcline for the slow variable and a cubic nullcline that
has the inverted �N� shape for the fast variable, are given the generic name FitzHugh�
Nagumo (or FH-N) models. The FH-N model is discussed in more detail in Section
7.5.2 and in Appendix B.

2.7 Summary

Voltage gated ion channels and the currents that ßow through them underlie much of
the electrical behavior of cells. We derived a mechanism�based model for ion channels
and found that we could produce oscillatory behavior in electrical membranes with only
two variables. Therefore, we could analyze the underlying dynamics with phase plane
techniques and other methods of dynamical systems analysis. The dynamical features
of �slow� variables coupled to �fast� variables with either �N�-shaped or inverted �N�-
shaped nullclines are characteristic of FitzHugh�Nagumo type oscillators common to
many biological mechanisms at the cellular level. In addition to producing oscillations in
the barnacle muscle, the same dynamical structures will appear in mechanistic models
of insulin secretion (Chapter 4) and Ca2+ oscillations (Chapter 5).

Suggestions for Further Reading

Because of the introductory nature of this material, there are several excellent books
to serve as resources for further study and a different perspective:

� Principles of Neural Science, edited by Eric Kandel, James Schwartz, and Thomas
Jessel, and Fundamental Neuroscience, edited by Michael Zigmond, Floyd Bloom,
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Story Landis, James Roberts, and Larry Squire. These are general introduc-
tory textbooks on neuroscience, including chapters on ion channels and electrical
behavior [Kandel et al., 2000] [Zigmond et al., 1999].

� Ionic Channels of Excitable Membranes, Bertil Hille. As discussed in the text above,
this is the �bible� of ion channels, with a particularly complete treatment of the
Hodgkin�Huxley axon model and the work behind it by those and other scientists
[Hille, 2001].

� Cellular Biophysics, Volume 2, Thomas Weiss. Volume two of this two�volume set
is a more expanded discussion of the electrical properties of cells, and also contains
a chapter on the Hodgkin�Huxley model [Weiss, 1996].

� Foundations of Cellular Neurophysiology, Daniel Johnston and Samuel Wu. Covers
the introductory material discussed here as well as advanced topics such as trans-
mitter release, plasticity, elementary networks, and extracellular electrical behavior
[Johnston and Wu, 1995].

� Methods in Neuronal Modeling, Christof Koch and Idan Segev, editors. This is
a compilation of chapters from various authors on a wide variety of topics re-
lated to neuronal modeling. Particularly relevant is the chapter by John Rinzel
and Bard Ermentrout on the �Analysis of Neural Excitability and Oscillations,�
which describes phase plane methods in the context of the Morris�Lecar model
[Koch and Segev, 1998].

� Mathematical Models in Biology, Leah Edelstein-Keshet. This is a great introduc-
tory textbook on general mathematical biology. Chapter 8 contains material on the
FH-N oscillator and a general treatment of oscillations and phase plane analysis
[Edelstein-Keshet, 1988].

� Mathematical Physiology, James Keener and James Sneyd. Keener and Sneyd treat
the topics presented in this chapter, as well as many other topics in physiology,
from a more analytic perspective as opposed to the computational focus presented
here [Keener and Sneyd, 1998].

Exercises

1. The following problems explore calclulation of the Nernst potential and the resting
membrane potential.

(a) Fill in the missing values in the following table:

Cytoplasmic Extracellular Equilibrium
Ion Concentration (mM) Concentration (mM) Potential (mV)

K+ 400 20

Na+ 50 440

Cl− 40 560
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(b) Calculate the resting membrane potential given the following conductances:

gNa = 0.5 · 10−6 S,
gK = 10 · 10−6 S,
gCl = 2.5 · 10−6 S.

(c) Fill in the missing information in the following table:

Conductance Ion Membrane Potential
Change Action Change

large gK increase

Na+ enters

V moves to VCl

2. Assume that a proto-cell has a membrane capacitance of 1 µF/cm2 and contains
only K+ selective channels. The initial intracellular and extracellular concentrations
for K+ are given in the table above, and there are intracellular and extracellular
anions A− equal in concentration to K+.

(a) If the membrane K+ channels are opened, what is the steady�state voltage
across the membrane assuming that ion concentrations do not change?

(b) How many K+ ions must move out of the cell per cm2 to achieve a voltage
difference equal to that in part (a)?

(c) Assuming that our proto-cell is perfectly round and that the extracellular K+

concentration does not change, plot the Þnal intracellular K+ concentration as
a function of the diameter of the cell. Use a range of realistic diameter values
and the number of ions transfered that you calculated in part (b).

(d) Assuming that the extracellular K+ concentration remains constant, what
would the reversal potential be for the range of intracellular K+ concentrations
calculated in part (c).

(e) How do you reconcile parts (a) and (d)?

3. Derive (2.3) from (2.8). Hint: ssume Iapp = 0.
4. Verify the steps between (2.16) and (2.22).
5. Use the results in Exercise 4 to verify that the expressions in (2.23)�(2.24) are
correct. Show that a special case of (2.24) when α = −β is

τ(V ) =
1

2
p
k+o k

−
o cosh((V − Vo)/2So)

. (2.52)

[Hint: Recall that tanh(x) = (ex − e−x)/(ex + e−x) and cosh(x) = (ex + e−x)/2.]
6. It is possible to estimate a characteristic time for the relaxation of the membrane po-
tential using (2.27). When the channels are completely open, show that the equation
can be written

dV/dt = −(V − Vrev)/�τ + Iapp/C, (2.53)
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where �τ = C/ḡ. Show that �τ is the characteristic time for relaxation of the voltage
to a steady�state value V ss = Vrev + Iapp/ḡ.

7. For biological membranes a typical capacitance per unit area is 1 µF/cm2, whereas
conductances per unit area are in the range 10−4 to 10−3 S/cm2. Using these es-
timates, show that typical relaxation times for the membrane potential are in the
range of 1 to 10 ms.

8. Write a program suitable for simulating the Morris�Lecar equations (2.30)�(2.34)
for the parameter values given in Table 2.4 and the initial conditions V (0) = −60
and w(0) = 0.01.

(a) Use the program to solve the Morris�Lecar model for the four values of Iapp
given in Figure 2.9A.

(b) Plot the nullclines and simulate this model in the phase plane to verify that
there is a unique stable limit cycle. Locate the steady states and calculate the
eigenvalues for representative values of Iapp.

(c) Show that the time constant of the delayed rectiÞer in the Morris�Lecar model
determines whether or not the steady state at Iapp = 150 pA is stable or
unstable and also determines the maximum and minimum values of the voltage
on the limit cycle.

(d) For Iapp = 60 pA check that the value of V (0) above which action potentials
occur is close to the point where a line drawn parallel to the V axis at wss

crosses the V -nullcline. Also verify that it will be exactly at that point in the
limit that w changes much more slowly than the voltage. [Hint: Increasing the
parameter φ increases the time constant for w.]

(e) Explain how you could locate the unstable limit cycles near the bifurcation
point in the Morris�Lecar model in Figure 2.9 by integrating the equations
backwards in time. Use a plot to demonstrate this.

9. Exploration of the Hodgkin�Huxley equations.

(a) Read Chapter 2 of Hille�s Ionic Channels of Excitable Membranes [Hille, 2001].
Write a paragraph explaining in words how the HH model works, and include
an explanatory diagram.

(b) Research the voltage�dependent expressions for time constants and the
asymptotic limits in (2.42)�(2.44), together with parameters. Replicate Fig-
ure 2.13. [Hint: See [Hodgkin and Huxley, 1952] or another source such as
[Keener and Sneyd, 1998].]

10. system (2.51) constitutes a FitzHugh�Nagumo model. Select parameters for these
equations that are likely to result in oscillatory behavior.

(a) Sketch or calculate the nullclines.
(b) Add a parameter to apply external current, and simulate action potentials by

solving the equations in time.
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CHAPT E R 3

Transporters and Pumps

Eric Marland and Joel Keizer

Ionic channels are not the only mechanism that cells use to transport impermeant
species across membranes. Cells have developed a great variety of transport proteins for
moving both ions and molecules from one cellular compartment to another. For example,
to maintain the concentration imbalance of Na+, K+, and Ca2+ across the plasma
membrane it is necessary to pump ions against signiÞcant concentration gradients. In
the case of Ca2+ ions the ratio of concentrations outside to inside is greater than four
orders of magnitude (ca. 2 mM outside and 0.1 µM inside). In addition to pumps,
there are numerous speciÞc cotransporters and exchangers that allow ions and small
molecules to be transported selectively into internal compartments or out of the cell.
Unlike ionic channels, for which the driving force is a passive combination of electrical
potential and ionic concentration differences, most transporters and pumps expend
considerable energy. In many animal cells, for example, it has been estimated that
nearly 25% of the ATP that is utilized is devoted to maintaining low cytoplasmic Na+

and high cytoplasmic K+ concentrations via Na+/K+ pumps [Cooper, 1997].
In this chapter we provide an overview of some of the mechanisms, other than

ionic channels, that cells use to pump and transport small molecules and ions. We
Þrst introduce the ideas behind passive transport, using a passive glucose transporter
(GLUT) as an example. We then introduce analytic, diagrammatic, and numerical
methods for calculating rates of transport and apply them to a simplÞed model of GLUT
transporter. Using the cotransport of glucose and Na+ as an example, we then discuss
how to create models of transporters and how this transporter functions physiologically
in intestinal epithelial cells. A great deal is known about the kinetic steps involved in
the pumping of Ca2+ by Ca2+ pumps in internal stores, and we use this mechanism
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to illustrate how phosphorylation by ATP drives the pumping mechanism. In the Þnal
section of the chapter we focus on the cyclic nature of these mechanisms and describe
additional transporters that operate via comparable kinetic cycles.

3.1 Passive Transport

We must be a little careful about what we call passive transport, because there is no free
lunch. The following example is not without its energy costs, but it uses background
thermal energy rather than the explicit energy in a particular molecule such as ATP.

Glucose is a six�carbon sugar that is a major fuel for intermediary metabolism
in animals. It is derived from carbohydrates in the gut and is transported through
epithelial cells in the intestines into the blood stream and thence to the brain, pancreas,
liver, muscle, and other organs. There glucose is taken up and metabolized via glycolytic
enzymes. Although uptake from the gut involves active cotransport of glucose with
sodium ions, peripheral tissues such as fat, muscle, and liver transport glucose via
a class of passive membrane transporters referred to as GLUT transporters. Because
glucose is a major energy source for cells, understanding the rate of glucose transport
into cells via GLUT is important physiologically.

At least six isotypes of GLUT transporters have been isolated [Bell et al., 1993],
GLUT1 through GLUT6, each of which is prevalent in one or more types of tissue.
GLUT2, for example, is found in glucose-sensing pancreatic beta cells that secrete in-
sulin from pancreatic tissue, as well as in liver cells. Extensive kinetic experiments
have lead to a cartoon description of the steps involved in the tranport processes
[Whitesell et al., 1991]. The transitions of the transporter itself, facing the inside of
the cell to facing the outside of the cell, is driven by heat or thermal ßuctuation. Thus
the heat of the system and the concentration gradient of glucose are the only driving
forces in the system. Because no other energy is needed, it is called passive transport.
It is similar in this sense to diffusion, which we discuss in Chapter 7.

Figure 3.1A shows four different states of the transporter. State S1 has an empty
binding site for glucose exposed to the exterior of the cell. When glucose binds to this
state, the transporter makes a transition to state S2, with glucose bound and facing
the exterior. In S2, a glucose molecule is bound to the transporter, which is still facing
the exterior. State S3 is the state with the transporter then facing the interior. When
glucose dissociates from GLUT and ends up inside the cell, the transporter is left in
state S4. Finally, the cycle can repeat if S4 makes the conformational transition to S1.
All of these processes are reversible.

This kinetic �cartoon� is easily translated into a conventional kinetic model of
the sort often employed in biochemistry [Hill, 1977]. Here the model takes the form
of the diagram in Figure 3.1B. The labeled corners in Figure 3.1B correspond to the
states S1�S4 of a GLUT transporter described in the previous paragraph, and the lines
represent elementary molecular processes. The transition from S1 to S2 is a bimolecular
process, because it requires the interaction of a glucose molecule (indicated as [G]out
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Figure 3.1 (A) Cartoon of four states of a GLUT transporter, showing the empty pore facing the exterior
of the cell, glucose bound facing the exterior, glucose bound facing the interior, and the open pore facing
the interior of the cell. Adapted from [Leinhard et al., 1992], (B) Four�state kinetic diagram of a GLUT
transporter based on the cartoon in (A).

in the diagram) and the GLUT molecule in S1. The transition from S2 to S1, on the
other hand, involves only the GLUT molecule and is therefore unimolecular: Thus only
S2 appears at the end of the line connecting S2 to S1. This illustrates an important
aspect of transitions between molecular states: They are reversible, corresponding to
the property of microscopic reversibility of molecular processes.

The rates of the elementary processes depicted in the kinetic diagram are deter-
mined again by the law of mass action as we discussed in Chapter 1. Thus the rate
of the transition from S1 to S2 is given by J12 = k12[G]outx1, where the square brack-
ets denote concentration, and x1 represents the fraction of the GLUT molecules in S1,
x1 = N1/N , where N is the total number of transporters. The factor k12 is the rate
constant, in this case bimolecular, with practical units of s−1mM−1. Similarly the rate
of the reverse reaction, 2 → 1, is given by J21 = k21x2 with k21 a unimolecular rate
constant (with units s−1). Table 3.1 lists the forward and reverse rate expressions for
all of the processes in the kinetic diagram.
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Table 3.1 Rate Expressions for Glut Transporter

Forward Process Rate Reverse Process Rate

S1 → S2 k12[G]out x1 S2 → S1 k21 x2

S2 → S3 k23 x2 S3 → S2 k32 x3

S3 → S4 k34 x3 S4 → S3 k43[G]in x4

S4 → S1 k41 x4 S1 → S4 k14 x1

Having established the correspondence of the diagram with rate expressions, we can
write down the differential equations that the diagram represents. To do so we must
keep track of the change that each elementary process in the diagram makes for each
state. Thus the fraction x1 of transporters in S1 decreases with the transition to S2 or
S4, and increases with transitions from S1 or S4. Using this idea, in conjunction with
the kinetic diagram and Table 3.1, the ordinary differential equations follow for the rate
of change in the number of states:

dx1/dt = −k12[G]out x1 + k21x2 + k41x4 − k14x1,
dx2/dt = k12[G]out x1 − k21x2 − k23x2 + k32x3,
dx3/dt = k23x2 − k32x3 − k34x3 + k43[G]in x4,
dx4/dt = k34x3 − k43[G]in x4 − k41x4 + k14x1. (3.1)

Because the kinetic model involves only interconversion of GLUT states, the total
number of transporters should be preserved. Again we use a conservation law, N1+N2+
N3 +N4 = N or x1 + x2 + x3 + x4 = 1, to ensure that transporters are neither created
nor destroyed. This condition can be checked by adding together the expressions on
the right�hand side of (3.1). It is easily veriÞed that all of the terms cancel, leading to
the result d(x1 + x2 + x3 + x4)/dt = 0, which shows that the sum of the fractions of
transporters in different states does not change. That is, x1+x2+x3+x4 has a constant
value, which in this case is 1.

We see again that one of the dependent variables can be eliminated using the
conservation law by writing x4 = 1 − x1 − x2 − x3. The differential equation for x4
becomes redundant and the number of differential equations to be solved is reduced to
only three along with the algebraic equation for x4:

dx1/dt = m11x1 +m12x2 +m13x3 − k41,
dx2/dt = m21x1 +m22x2 +m23x3,

dx3/dt = m31x1 +m32x2 +m33x3 + k43[G]in,

x4 = 1− x1 − x2 − x3. (3.2)

where the 3 × 3 array mij is a matrix whose elements can be found by substituting
x4 = 1− x1 − x2 − x3 into the Þrst three equations of (3.1). We leave it to the reader
to verify, for example, that m11 = −(k12[G]out + k14) and m33 = −(k32 + k34 + k43[G]in).
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With the formulation of the model equations, the Þrst steps in the modeling process
are completed. What remains is the analysis of the equations. We will leave the analysis
of this model for an exercise, and we will use a reduced model to demonstrate several
ways to analyze the transport rates for transporters.

3.2 Transporter Rates

In the previous section we described a four-state model of a GLUT-type glucose trans-
porter. Like all models of transporters, the �states� are distinct molecular arrangements
of the transporter protein and the small molecules (ligands) that interact with it. These
states are the basic kinetic ingredients of the kinetic mechanism, and we identify the
states by numbering them S1, S2, . . . , SM, where M is the total number. For the GLUT
transporter, we summarize the mechanism by a kinetic diagram with lines between the
states representing possible transitions. Each line stands for a forward and reverse step
that can be either unimolecular or bimolecular. Which states are connected together and
the nature of the transitions connecting the states must be determined experimentally,
and the resulting diagrams summarize succinctly a great deal of kinetic information. As
we have seen, these state diagrams can easily be translated into differential equations
that describe how the number of transporters in each state changes with time.

What is important physiologically is not the rate at which states of a transporter
change with time but rather the rate at which the ions or molecules that are trans-
ported get across the membrane. This can be determined from the kinetic mechanism
but requires additional analysis, because the transport rate is a property of the entire
mechanism rather than an individual step. To make this distinction clear, consider the
simpliÞed three-state version of the mechanism for a GLUT transporter in Figure 3.2.
In this simpliÞcation, S1 and S4 in the four-state diagram in Figure 3.1 have been
treated as a single state. The reasons why we can make this type of simpliÞcation of
a mechanism are described more fully in Chapter 4. The three transitions represented
are the binding of glucose to the transporter from the exterior (S1�S2) and interior
(S1�S3) of the cell and the conformation change in which the glucose moves from the
exterior to the interior (S2�S3). Using xi to represent the fraction of the total number
of transporters in state Si = S1, S2, S3, the kinetic equations for this diagram are

dx1/dt = −J12 + J31,

1

2 3

[G]out [G]
in

Figure 3.2 A simpliÞed three-state diagram for the GLUT transporter.
S1 and S4 in the four-state diagram in Figure 3.1 have been treated as a
single state.
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dx2/dt = J12 − J23,
dx3/dt = J23 − J31. (3.3)

Here the Jij are the net rates for the indicated transition, with the i → j direction
taken as positive. Thus,

J12 = k
∗
12[G]outx1 − k21x2, (3.4)

J23 = k23x2 − k32x3, (3.5)

J31 = k31x3 − k∗13[G]inx1. (3.6)

In these equations we use a superscript ∗ to indicate a bimolecular rate constant. Net
rates often appear in analyzing transport rates, and we will refer to the Jij as ßuxes.
We can see by adding equations (3.3) together that the total number of tranporters is
conserved: x1 + x2 + x3 = 1 is already satisÞed.

Experimentally, the rate at which glucose is transported into the cell is determined
by the rate at which the concentration of glucose accumulates inside the cell in the
absence of metabolism. Because [G]in is measured in millimoles, its rate of change of
can be determined from the diagram and the rate equations (3.3) to be

d[G]in
dt

=
millimoles of transporter

cellular volume
· J31 =

µ
103N

VinA

¶
· J31 = Rin, (3.7)

where A is Avogadro�s number, Vin is the cellular volume in liters, and the factor 103N/A
converts the total number of transporters N to millimoles. A related measure of the
transport rate is the rate of change of [G]out, which give a measure of the transport
rate Rout based on the loss of glucose from outside the cell. In analogy to (3.7), Rout is
easily seen to be given by

− d[G]out
dt

=

µ
103N

VoutA

¶
· J12 = Rout. (3.8)

In order to simplify the interpretation of experiments, Vout is usually chosen to be much
greater than Vin, and so to a good approximation [G]out can be taken as a constant.

These two measures of the rate of transport of glucose are generally not proportional
to one another, because J12 6= J31. Inspection of (3.3) shows, however, that the two
ßuxes are equal at steady�state, in which case

J ss12 = J
ss
23 = J

ss
31 = J

ss. (3.9)

This state condition can be inferred directly from the diagram in Figure 3.2 by noting
that the total ßux into and out of each state must vanish for the number of transporters
in each state to be steady. Thus at steady�state J ss provides a unique measure of the
transport rate, which can be written

Rss =

µ
103N

VinA

¶
· J ss. (3.10)

This rate is achieved, however, only after a transient period during which the states of
the transporter come to steady�state.
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To calculate the transport rate using (3.10) it is necessary to calculate the value
of J ss, and this, in turn, requires the steady �tate values of the xi. There are three
ways that this can be done: numerically, by solving the differential equations; with
linear algebra, which gives an analytical expression for the xi; or using diagrammatic
methods. The Þrst method is explored in the exercises.

3.2.1 Algebraic Method

We can obtain the steady�state value of the transport rate by solving the linear equa-
tions for the xi. Substituting the expressions for the ßuxes given in (3.4)�(3.6) into (3.3)
and eliminating x3 using the conservation condition x3 = 1 − x1 − x2 gives the 2 × 2
linear equations

dx/dt = �Ax+ y (3.11)

with

�A =

Ã −(k12 + k13 + k31) k21 − k31
k12 − k32 −(k21 + k23 + k32)

!
and y =

Ã
k31

k32

!
. (3.12)

To simplify notation we have introduced the pseudo�unimolecularrate constants

k12 = k
∗
12[G]out and k13 = k

∗
13[G]in. (3.13)

The steady state of (3.11) is determined by the algebraic equation

�Axss = −y. (3.14)

This equation has the solution

xss = −�A−1y, (3.15)

with �A−1 the inverse matrix of �A. Using the explicit expression for the �A−1 given in
Appendix A, (3.15) gives

xss1 = (a22y1 − a12y2) det �A,
xss2 = (−a21y1 + a11y2) det �A,
xss3 = 1− xss1 − xss2 . (3.16)

To evaluate the transport rate using the algebraic method we need to substitute
the expressions in (3.16) into one of the expressions in (3.9) for J ss. For example, using
the Þrst expression gives

J ss12 =
1

det �A
(k12(a22y1 − a12y2)− k21(−a21y1 + a11y2)). (3.17)

To get an explicit expression in terms of the rate constants kij using (3.17) we need to
substitute the expressions for the matrix elements aij given in (3.12) and then calculate
the determinant of �a. The resulting expression is messy and offers numerous opportuni-
ties for making algebraic mistakes. An alternative is to use the diagrammatic method,
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1/2

1/4

1/16
1/32

1/8

... Figure 3.3 A diagram representing the geometric series
in (3.18)

which circumvents all of these algebraic difficulties.

3.2.2 Diagrammatic Method

Diagrams that represent mathematical expressions are in common use in both quantum
electrodynamics (�Feynman diagrams�) and statistical mechanics but are signiÞcantly
less familiar in biology. Although the diagrammatic method for obtaining J ss involves
a few new ideas, it leads to vastly simpler, more transparent expressions for the ßuxes
than those provided by the algebraic method. To help motivate the use of diagrams,
consider the following inÞnite sum:

1

2
+
1

4
+ · · ·+ 1

2n
+ · · · =

∞X
n=1

1

2n
. (3.18)

Even if the reader has previously encountered this geometric series, few probably re-
member that the sum converges exactly to the value one. On the other hand, a simple
glance at the diagram in Figure 3.3 makes the answer clear immediately.

Diagrams of the sort that are used in solving for the ßuxes for the three-state
GLUT transporter are shown in Figure 3.4. In general, a diagram is a set of vertices
(representing the states) and lines representing unimolecular (or pseudo�unimolecular)
transitions between states. A complete diagram for the GLUT transporter, which in-
cludes all of the lines and all of the vertices in the model, is shown in Figure 3.4A. Note
that it differs from the kinetic diagram in Figure 3.1, because the glucose concentrations
have been absorbed into the pseudounimolecular rate constants as in (3.13). The three
partial diagrams for the model (with the vertices unlabeled) are shown in Figure 3.4B.
Partial diagrams are obtained from the complete diagram by removing lines, and they
have the maximum number of lines possible without forming a cycle. A third type of
diagram, called a , directional diagram can be constructed from the partial diagrams.
Directional diagrams have arrowheads attached to the lines such that all of the lines
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Figure 3.4 (A)The complete diagram, (B)partial diagrams,
and (C) directed diagrams for state S1 of the 3-state GLUT
transporter model.

�ßow� into a single vertex. The directional diagrams for state S1 are given in Figure
3.4C. Note that for ease in writing, the arrowhead on a line will be dropped whenever
its direction is obvious, as in the Þrst and second directional diagrams in Figure 3.4C.
Three comparable directional diagrams can be drawn for states S2 and S3.

These diagrams represent algebraic expressions just as the areas in the diagram for
the geometric series in Figure 3.3 represent fractions. For these diagrams each line with
an arrowhead (a directed line) represents the unimolecular or pseudounimolecular rate
constant for the indicated transition. For example, the two lines in the third diagram
of Figure 3.4C represent k21 and k31. Diagrams with several directed lines represent the
product of all the indicated rate constants. Thus the the directional diagrams stand for
products of two rate constants. For example, the Þrst directional diagram in Figure 3.4C
is shorthand notation for the product k23k31, whereas the second and third diagrams
represent k21k32 and k21k31, respectively.

There is a general theorem that connects the directional diagrams with the frac-
tional occupancy of states in the kinetic diagram. In particular, the fractional occupancy
of state Si is given by the expression

xssi =
sum of all state Si directional diagrams

sum of all directional diagrams
. (3.19)

For xss1 this yields the expressions given in Figure 3.5, where we have adopted the symbol
Σ to represent the sum of all directional diagrams. The division by Σ ensures thatP

i x
ss
i = 1.
Although the expression for xssi in (3.19) can be proven for any mechanism that

can be represented by a kinetic diagram, we give a proof only for the three-state GLUT
model. Because the steady�state solution for this model is unique, we need only show
that the expression in (3.19) leads to the equality of all the ßuxes Jij at steady�state.
Rather than write out the algebra, we use the diagrams themselves to complete the
proof. This is illustrated in Figure 3.6, where J ss12 is calculated. The second equality
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Figure 3.5 A diagrammatic expression for the fractional
occupancy of GLUT transporters in state S1 at steady
state.

uses (3.19), and in the third we have used the directed lines corresponding to the rate
constants k12 and k21 to add extra directed lines to the diagram. Two pairs of terms
cancel to give the Þnal equality, in which only the difference of the two cyclic diagrams
appears. A cyclic diagram is derived from a partial diagram with one additional ßux
added to produce a cycle. Similar manipulations show that the third equality also holds
for J ss23 and J

ss
31 (Exercise 5). Thus J

ss
12 = J ss23 = J ss31, which is the condition for steady

state.
The Þnal equality in Figure 3.6 is a corollary that can be generalized for any kinetic

diagram, i.e.,

J ssij =
sum of differences of cyclic diagrams with i, j in the cycle

Σ
. (3.20)

Thus the steady�state ßux for the three-state model is given by the difference of the
two cyclic ßuxes (counterclockwise − clockwise) divided by the sum over all partial
diagrams for the complete diagram.

3.2.3 Rate of the GLUT Transporter

We need one more key fact about cyclic diagrams in order to simplify the expression
for the transport rate: The product of the bimolecular and unimolecular rate constants

=

=
Σ
- ( )+ +( )+ +

Σ

-k
12

k
21 ( )+ +( )+ +

Σ
=

-

J
SS

12
=

Σ

-k
12

k
21

X X
21

ss ss

Figure 3.6 Calculation of J ss12 using dia-
grams.
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in the counterclockwise direction of a cycle equals that of those in the clockwise di-
rection. This is called the thermodynamic restriction on the rate constants because it
is a consequence of the laws of chemical thermodynamics. To see why the thermo-
dynamic restriction is true, consider the situation in which no transport occurs, i.e.,
[G]out = [G]in. If we revert to the notation for chemical reactions, then the three steps
in the cycle for the three-state GLUT transporter can be written

Gout + S1 = S2 with equilibrium constant K12 = k21/k
∗
12,

S2 = S3 with equilibrium constant K23 = k32/k23,

S3 = S1 +Gin with equilibrium constant K31 = k
∗
13/k31. (3.21)

where S1, S2, and S3 represent the three states of the transporter. It is easy to show that
the equilibrium constants Kij for the �reactions� are the ratios of the rate constants, as
indicated next to each reaction in (3.21) (see Exercise 6). If we add these three chemical
reactions together we get the net reaction

Gout = Gin. (3.22)

A basic property of equilibrium constants is that when reactions are added, the equilib-
rium constants are multiplied. Therefore, the equilibrium constant for the net reaction
(3.22) is

Knet = K12K23K31 =
k21k32k

∗
13

k∗12k23k31
. (3.23)

But at chemical equilibrium the concentrations of product (Gin) and reactant (Gout)
in (3.22) are equal, so that Knet = [G]eqin/[G]

eq
out = 1. Using this fact in (3.23) and

rearranging gives the following thermodynamic restriction on the rate constants:

k∗13k32k21 = k
∗
12k23k31. (3.24)

When constructing models, it is essential that the thermodynamic restriction on rate
constants be satisÞed for all cycles. Otherwise, the model will violate the second law of
thermodynamics.

Using the results in the previous sections we can write an explicit expression for the
rate of the three-state GLUT transporter. Combining (3.10) with the Þnal equation in
Figure 3.6, we obtain

Rss =
103N

VinA
· k

∗
12[G]outk23k31 − k∗13[G]ink32k21

Σ
=
103Nk∗12k23k31([G]out − [G]in)

VinAΣ
, (3.25)

where in the second equality we have used (3.24), the thermodynamic restriction on
the rate coefficients. According to (3.25), the steady�state transport rate is positive
when the concentration of glucose outside of the cell exceeds that inside, and vanishes
when the two concentrations are the same. This is a consequence of the thermody-
namic restriction on the rate constants and is just what is expected for a passive
transport mechanism. In the next section we consider the Na+/glucose cotransporter,
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which utilizes a gradient of Na+ to transport glucose from a low concentration to a
higher concentration.

For a symmetric transporter there is no difference between the kinetic steps occur-
ring inside and outside of the cell. This means that the rate constants for the transitions
2→ 3 and 2← 3 are the same and that the association and dissociation rate constants
are the same inside and outside as well. In this case there are only three different rate
constants:

k∗12 = k
∗
13 = k

+ (glucose association),

k21 = k31 = k
− (glucose dissociation),

k23 = k32 = k (transport). (3.26)

It is not difficult to evaluate the sum Σ of the directed diagrams explicitly in this case,
which is

Σ = k+(2k + k−) (K + [G]out + [G]in) , (3.27)

where we have written the dissociation constant K = (k−/k+). Thus for the symmetric
GLUT transporter model the transport rate can be written

Rss =
Rmax([G]out − [G]in))
K + ([G]out + [G]in)

, (3.28)

where the maximal rate is

Rmax =
103Nkk−

(2k + k−)VinA
. (3.29)

Equations (3.28) and (3.29) provide explicit expressions for the transport rate for the
symmetric transporter in terms of the rate constants for the model.

Glucose uptake can be measured experimentally using 3-O-methyl glucose, a non-
metabolizable analogue of glucose. This further simpliÞes the expressions, because the
concentration of the analogue is initially zero, [G]in = 0, inside the cell. As a practical
matter experiments involve large numbers of cells rather than a single cell. However,
both N and Vin increase in proportion to the number of cells, so that the value of Rmax

is still characteristic of a single cell. So for this type of experiment the rate expression
in (3.28) can be written

Rss =
Rmax[G]out
K + [G]out

. (3.30)

E-L E*-LE
L

E-L E E*
hν

E-L M-E-L
M

E-ATP E~P
ADP

Figure 3.7 Elementary kinetic processes for transporters representing ligand (L) binding, ligand transport,
phosphorylation, light excitation, and multiple ligand binding.
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One way to analyze the experimental rate of glucose uptake is using an Eadie�
Hofstee plot. The Eadie�Hofstee plot is a graph of the experimental rate of glucose
uptake R versus R/[G]out for a range of values of [G]out. According to (3.30) this plot
should give a straight line with y-intercept equal to Rmax and slope equal to K. This
can be seen by Þrst rearranging (3.30) to get

R/[G]out =
Rmax

K + [G]out
. (3.31)

Then we multiply both sides by K + [G]out and divide by R/[G]out, rearranging to
obtain:

[G]out =
Rmax

R/[G]out
−K. (3.32)

If this expression for [G]out is substituted in the second factor in the identity

R =
R

[G]out
· [G]out, (3.33)

we obtain

R = Rmax − R

[G]out
·K, (3.34)

which is the Eadie�Hofstee expression for the rate. Exercise 9 illustrates how transport
rates can be simulated for the four-state model of a GLUT transport and how to analyze
the results using an Eadie�Hofstee plot.

3.3 The Na+/Glucose Cotransporter

A great variety of specialized proteins have evolved to transport speciÞc substances
across membranes in cells. Whereas the mechanisms of these transporters differ in detail,
they also share a number of common features. For example, all of the known transporters
bind the ligand or ligands that they transport, and of course, they must dissociate them
as well. These steps must occur on both sides of the membrane for transport to occur,
so there must be a process or processes in which the ligands are transported across the
membrane. Figure 3.7 illustrates some of the elementary kinetic processes that are found
for transporters, including chemical modiÞcation of the transporter by phosphorylation,
light-induced conformational changes, and multiple ligand binding.

From the point of view of chemical physics, the transport step can be viewed as
energetic rearrangements that involve both the transporter protein and the ligand being
transported. Figure 3.8A is a schematic representation of what the energy proÞle across
a GLUT transporter might look like when the glucose concentration outside is high
and inside is low. The energy proÞle is the Gibbs free energy, rather than the potential
energy: For the average kinetic events that we are considering the inßuence of entropy
effects must be taken into account. The reason that the free energy of glucose is higher
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C Figure 3.8 (A) Schematic representation of the free
energy proÞle across a membrane for a transporter
protein. Two possibilities for state changes for the
transport step 2 to 3 for the GLUT transporter are
indicated: (B) simple barrier crossing; and (C), barrier
crossing via a conformational transition.

outside is simply that the concentration of glucose is higher outside the cell than inside.
The peaks of the free energy represent barriers to the movement of glucose across
the transporter. Two possibilities for the transition from state 2 to state 3 are shown
in Figure 3.8Band Figure 3.8C. The Þrst represents a barrier crossing in which the
transition 2 → 3 does not inßuence the shape of the energy proÞle. In the second, on
the other hand, the energy proÞle is different after the transition, as might be the case
if the transition involved a conformational change.

Although understanding the transport step is an important feature of building a
model of a transporter, it describes neither how a transporter works nor the rate of
transport, which was seen in Section 3.2 to be a property of the complete model, not a
single step. To illustrate how a complete model of a transporter is created, we consider
the Na+/glucose cotransporter from intestinal epithelial cells. This transporter utilizes a
concentration gradient of Na+ to transport glucose from the intestine into the epithelial
cells that line the gut. This is �uphill� transport, because the concentration of glucose
in the epithelial cells exceeds that in the intestine. As shown schematically in Figure
3.9, the cotransporter works in concert with a Na+/K+ ATPase and passive transport of
glucose by GLUT transporters, both at the basolateral side of the epithelium, to move
glucose from the intestine to the blood stream. The Na+/K+ ATPase helps eliminate
the Na+ that accompanies glucose uptake during cotransport, thereby maintaining a
low concentration of Na+ inside of the cell.

A model for any transporter must incorporate a number of basic experimental
facts. One of these is stoichiometry, which for the cotransporter is the number of Na+
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Figure 3.9 A cartoon representing the cotransport of glucose and Na+ into intestinal epithelium, followed
by the passive transport of glucose into the blood. Energy stored in the gradient of Na+ (higher in the
lumen of the gut) is utilized to transport glucose from a high concentration to a low concentration. Na+

that accumulates in the epithelial cells is removed by active transport into the blood by the Na+/K+

ATPase. Adapted from [Alberts et al., 1994].

ions transported per glucose molecule. Experimental measurements on the Na+/glucose
cotransporter from intestine yield a stoichiometry of 2 Na+ to 1 glucose. Another impor-
tant fact about the cotransporter is the absolute requirement for Na+. If Na+ is absent
from the external medium, glucose is not transported. In addition, the cotransporter is
electrogenic, because transport generates an electrical current due to the transport of
Na+.

These observations require 2 Na+ and 1 glucose association steps on each side of
the membrane. A partial skeleton for the cotransporter might contain the kinetic steps
connected together as shown in Figure 3.10A. It is also possible that the second sodium
binds after the glucose as in Figure 3.10B. However, this can be ruled out if the states
with Na+ and glucose bound from the outside are connected by conformational transi-
tions to comparable states inside (as indicated by the dashed lines). In that case the six
state cycle in Figure 3.10B (E to E-Na+ to G-E-Na+ to G-E∗-Na+ to E∗-Na+ to E∗ to E)
would transport only a single Na+ for every glucose molecule, implying a stoichiometry
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Figure 3.10 Two possible skeleton diagrams representing binding of Na+ and glucose for the Na+/glucose
cotransporter. Only (A) agrees with the experimental stoichiometry.

at steady state less than 2:1. The third possibility, not shown in Figure 3.10, is that
glucose binds Þrst. This is ruled out, however, by the experimental observation that
the cotransporter supports Na+ currents even in the absence of glucose. For details see
[Parent et al., 1992a]. Thus we are left with the ordered binding of ligands indicated
on the left in Figure 3.10.

If we number the eight states on the left in Figure 3.10 sequentially S1 through S8,
starting at �E� and moving counterclockwise, there are a number of possibilities for
conformational changes connecting the left and right sides of the diagram. Figure 3.11
illustrates six alternatives. Alternative (B) is easily eliminated, because it does not
transport glucose. Although diagram (C) does transport glucose (S4 to S5), it does not
includes steps that transport only Na+, and therefore conßicts with the fact that the
transporter produces a Na+ current in the absense of glucose. Diagram (D) can be ruled
out because it has the wrong stoichiometry (1 Na+:1 glucose). This leaves as possible
mechanisms diagram (A), which is fully connected, and diagrams (E) and (F), each of
which is missing Na+ transport steps.

All three of these diagrams are compatible with the experimental evidence, and all
three can be �reduced� to a diagram with the 6-state skeleton givenin Figure 3.12A.
This method of reducing diagrams uses the rapid equilibrium approximation that applies
to steps for which the forward and reverse rates are rapid with respect to other steps
in the diagram. The details of how this method works are explained in Chapter 4,
although the basic idea can be seen by comparing Figure 3.12A and Figure 3.12B. The
experimental values of rate constants for the six�state model have been assigned by
Parent and colleagues [Parent et al., 1992b]. Step S4 to S5 in the six�state model is the
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Figure 3.11 Six possible diagrams for the Na+/glucose transporter with transport steps included. Only
(A), (E), and (F) are compatible with experiment.
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Figure 3.12 (A) six-state and (B) Þve-state simpliÞcation of the eight-state diagram for the Na+/glucose
cotransporter.

dissociation of glucose inside the cell, and this step is extremely fast. This permits the
two states to be approximated as a single combined state (state S4,5 in Figure 3.12B and
reduces the diagram to Þve states as shown. We must be careful in doing so to readjust
the rates to account for the reduction. The details of the process for doing this is given
in Chapter 4, but it is not difficult. In short, only a portion of the combined state S4,5
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reacts to the other states. The portion to be used in each reaction is determined as a
result of the reduction using simple algebra.

It is possible to write diagrammatic expressions for the transport rate for either the
Þve-state or six-state models in Figure 3.12. However, the number of directed diagrams
and cyclic diagrams increases quickly with the complexity of cycles in the complete
diagram. For example, for the Þve-state model there are 6 pairs of cyclic diagrams and
55 directed diagrams. Nonetheless, the general expressions in (3.19) and (3.20) remain
valid and can be used to obtain explicit expressions for the steady�state ßuxes. The
diagrammatic method does not, however, provide information about the transient time-
dependence of the ßuxes. This is most conveniently obtained by numerical integration
of the equations.

3.4 SERCA Pumps

The Ca2+ -ATPase that is found in the endoplasmic reticulum (ER) and sarcoplasmic
reticulum (SR) of muscle is typical of transporters that utilize the chemical energy
stored in ATP to pump ions against a gradient. Typical free cytosolic Ca2+ concentra-
tions [Ca2+]iare of the order of 0.1 µM, whereas Ca

2+ concentrations in the ER and
SR are in the range of 0.1 to 1 mM. These pumps, which are abbreviated SERCA for
�Sarco-Endoplasmic Reticulum Ca2+ ATPase,� therefore have to surmount a 3 to 4 or-
der of magnitude concentration difference. Topologically, the SR and ER are equivalent
to the �outside� of the cell, and both compartments function to store Ca2+ for a variety
of cellular processes. In muscle, Ca2+ release from the SR is involved in triggering mus-
cle contraction, whereas Ca2+ release from the ER is involved in stimulating hormone
secretion and other intracellular signaling cascades. Pumping of Ca2+ by SERCA is the
primary mechanism by which SR and ER Ca2+ stores are maintained. A different type
of Ca2+ pump (PMCA), which is found in the plasma membrane, functions to pump
Ca2+ out of the cell.

Although there are several isotypes of SERCA found in different tissues, the rate at
which they pump Ca2+ has a simple dependence on [Ca2+]i. The pumping rate can be
measured using vesicles prepared from either SR or ER membranes. The rate of vesicle
accumulation of 45Ca2+, a radioactive isotope of Ca2+, can then be used to determine
the pumping rate. Experimentally, the rate has a sigmoidal dependence on [Ca2+]i with

I A

2Ca 2+   Ca 2+

I I*

  Ca 2+

A

A B

Figure 3.13 Two simpliÞed models explaining the Ca2+ dependence of the experimental SERCA pump
rate. (A) a single binding event versus (B) two sequential binding events.
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a Hill coefficient close to two, i.e.,

R =
Rmax[Ca2+]i

2

K2 + [Ca2+]i
2 . (3.35)

The Hill coefficient is related to the stoichiometry of the SERCA pump, which is known
to be 2Ca2+:1ATP. X-ray diffraction of SERCA pumps in bilayers has produced a low-
resolution structure with three segments: a stalk region just outside the bilayer close to
the binding sites for Ca2+, a head region that contains the ATP binding site, and a large
transmembrane region through which the Ca2+ is transported. Binding experiments
have revealed two binding sites for Ca2+.

A simple model that is consistent with the Ca2+ dependence of the pump rate
can be constructed using only two states: an inactive state I and an active state A
connected by the mechanism shown in Figure 3.13A. This model leads to the rate
expression in (3.35) if we assume that the two states rapidly equilibrate and that only
the active state transports Ca2+. Rapid equilibration implies the balance of the forward
and reverse rates in Figure 3.13A. This leads to the equilibrium condition

k−/k+ = Keq =
[Ca2+]i

2
[I]

[A]
, (3.36)

where [I] and [A] are the per unit area concentrations of SERCA pumps in the two
states, and the equilibrium constant Keq is the ratio of the rate constants. Solving
(3.36) for [I], substituting that expression into the conservation condition [I]+[A] = N ,
and then solving for [A] gives the concentration of active SERCAs:

[A] =
N [Ca2+]i

2

K2 + [Ca2+]i
2 . (3.37)

Here we have deÞned K =
p
Keq, which has the units of concentration. As can be seen

from (3.37), the numerical value of K equals the concentration of Ca2+ at which half
of the SERCAs are in the active state. A small value of K is said to correspond to a
high affinity binding site, and a large value to a low affinity site. If the rate constant
for the active state to transport Ca2+ is k, then (3.37) gives the transport rate

R = k[A] =
Rmax[Ca

2+]i
2

K2 + [Ca2+]i
2 (3.38)

with Rmax = kN .
Although this mechanism agrees with the measured transport rate and provides an

expression for Rmax, there are several things wrong with it. First, it assumes the simul-
taneous binding of two Ca2+, which is highly improbable. Second, it doesn�t provide an
explanation for the transport rate constant k. Third, it doesn�t explain how ATP might
be involved. We can eliminate the Þrst criticism by expanding the model to include
sequential binding of two Ca2+, as indicated in Figure 3.13B. For this mechanism there
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Figure 3.14 A twelve�state model of the SERCA pump. Note the two sequential Ca2+ binding steps on
the left�hand side. Although the cycle is driven by the hydrolysis of ATP, all of the steps in the diagram
contribute to the steady�state rate. Redrawn from [Lauger, 1991].

are two simultaneous binding equilibria:

K1 =
[Ca2+]i[I]

[I∗]
and K2 =

[Ca2+]i[I
∗]

[A]
. (3.39)

In analogy to what was done for the previous model, these equations can be combined
with the conservation condition [I] + [I∗] + [A] = N to obtain

[A] =
N

1 +
¡
K1K2/[Ca2+]i

2¢
+K2/[Ca2+]i

. (3.40)

This agrees with the rate expression in (3.35) under the condition that K2 ¿
[Ca2+]i and K2 ¿ K1. In this case [A] is approximately given by (3.37) with K =√
K1K2, the geometric mean of the two dissociation constants. Although this does not

explain the pumping rate, it does suggest that the binding of Ca2+ might be sequential
with the Þrst site of much lower affinity than the second, i.e., K1 À K2.

Constructing a complete kinetic model of the SERCA pump requires more experi-
mental information than is contained in the pumping rate. In fact, a great deal is known
about the other steps involved in the transport cycle. Figure 3.14 gives a 12-state model
that includes rate constants for all of the steps indicated. The two conformations of the
transporter, E1 and E2, correspond to the bound Ca

2+ facing the cytosol and inside
(lumen) of the ER, respectively. The cycle is initiated by ATP binding to E1, followed
by the binding of two Ca2+ from the cytosol. Using the fact that the Ca2+ binding steps
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are fast, the equilibrium constants can be calculated from the forward and reverse rate
constants (K = k−/k+) to be K1 = 1 · 10−5 M and K2 = 2.5 · 10−8 M. So in agreement
with the two�state binding model, this model involves sequential binding of Ca2+, with
the Þrst step having much lower affinity than the second. In fact, using the expression
K =

√
K1K2 gives K = 5 · 10−7 M, which is close to the experimental value obtained

from rate measurements in vesicles. The cycle in Figure 3.14 is driven by the phospho-
rylation of SERCA, which facilitates the conformational transition that exposes bound
Ca2+ to the lumen.

3.5 Transport Cycles

Like enzymes, transporters are unchanged by the transport process. Indeed, trans-
porters can be thought of as enzymes whose primary purpose is to alter the location
of a molecule rather than its chemical state. If we take the more general point of view
suggested by nonequilibrium thermodynamics, an enzyme and a transporter are simply
different classes of the same generic type of protein that catalyze a change in free en-
ergy. As we noted in the previous section, a transporter accomplishes this by altering
the concentration that the molecule experiences. An enzyme, on the other hand, alters
the chemical bonds in the molecule.

The catalytic nature of a transporter is apparent in the cyclic structure of the
transport mechanism. The GLUT transporter, the Na+/glucose cotransporter, and the
SERCA pump described in Section 3.1�Section 3.4 all function in cycles that leave the
transporter unchanged. Three additional examples of transport cycles that have been
used to explain experimental transport rates are given in Figure 3.15 and Figure 3.16:
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Figure 3.15 (A) A six�state cycle for a P-type proton ATPase. The phosphorylation step precedes and
facilitates dissociation of the proton outside of the cell. (B) Five�state cycle for the adenine nucleotide
translocator from mitochondria. The cycle 1-2-3-1 exchanges an ADP3− from the cytoplasm for an ATP4−

from the mitochondria. Because the two ions have different charges, the translocator is electrogenic. Steps
1-4 and 1-5 slow the translocation rate by tying up the translocator in states not involved in the cycle.
Redrawn from (A) [Petrobon and Caplan, 1985] and (B) [Bohnensack, 1982].
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a P-type proton pump, the adenine nucleotide transporter from mitochondria, and
bacteriorhodopsin, a light-driven proton pump.

In a transport cycle a ligand is moved from one cellular compartment to another
by some type of driving force. In passive transport, like that for the GLUT transporter,
the driving force is simply the concentration difference of ligand. For transporters that
involve more than one ligand, such as the Na+/glucose cotransporter or the adenine
nucleotide transporter in Figure 3.14B, the driving force is a combination of ligand
concentration differences. For ATP-dependent pumps, on the other hand, the driving
force is the chemical energy stored in the terminal phosphate bond of ATP, which
is transferred in a phosphorylation step (cf. Figure 3.14 and Figure 3.15A) to the
transporter. Phosphorylation maintains the high�energy state, and the high�energy
phosphate bond facilitates conformational transitions that lead to the transport and
dissociation of the transported ion. A third form of driving force is light, as indicated
in the transport cycle for bacteriorhodopsin in Figure 3.16. In this case energy from a
photon excites a state of the transporter causing a trans to cis conformational change
in the structure of retinal that is otherwise inaccessible to thermal motion, thereby
releasing a proton at the exterior face of the membrane.

As long as we are interested in the average properties of a transporter, it is correct
to picture transport cycles as occurring in a Þxed direction governed by the driving
forces. Dynamic changes in an individual transporter molecule, on the other hand, are
stochastic. This is a result of the microscopic reversibility of the kinetic steps in a
cycle. Although it is more probable that an individual GLUT transporter will move
glucose from a high concentration to a low concentration, the reverse will occur with
nonvanishing probability. In fact, any step in a transport cycle can and will occur
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in the opposite direction to the average transport rate. This reversibility has been
demonstrated experimentally for a number of transporters, one of the most convincing
being the reversal of SERCA pumps to produce ATP by reversing the Ca2+ gradient.
Thus the dynamic changes in an individual transporter molecule consist of a series of
random positive and negative steps around the cycle that over time lead to an average
transport rate in the direction dictated by the driving forces.

Cycles are a common feature of other cellular processes with some of the most
complex cycles governing muscle contraction, the rotary motion of ßagella, and other
so-called molecular motors. In metabolism the operation of the F0F1 ATPase, which
is responsible for converting proton gradients and ADP into ATP, is governed by a
combined catalytic-transport cycle.

Suggestions for Further Reading

The material introduced here is relatively straightforward and appears in many Þne
texts. Some that may be particularly useful at an elementary level are worth mentioning
speciÞcally:

� Free Energy Transduction and Biochemical Cycle Kinetics, Terrell L. Hill. There
are many books that introduce the basic concepts of transport rates. However,
this book stands out in explaining both the basic concepts and the diagrammatic
method in a concise and complete fashion. Hill also has numerous more advanced
books on the subject [Hill, 1977].

� The Fluctuating Enzyme, edited by G. Rickey Welch. For a somewhat higher
level discussion of transporter kinetics, see the chapter �Not Just Catalysts:
Molecular Machines in Bioenergetics� by G. Rickey Welch and Douglas B Kell
[Welch and Kell, 1986].

� Electrogenic Ion Pumps, Peter Läuger. This chapter gives a development of the
basic physical chemical basis behind many of the electrogenic ion pumps covered
here [Lauger, 1991].

Exercises

1. Verify that the fraction of transporters in states 1 and 2 for the three-state GLUT
model satisÞes (3.11) and (3.12).

2. Carry out the matrix multiplication indicated in (3.15) to verify that the expressions
for the fractional occupany in (3.16) are correct.

3. Write down the directional diagrams for states 2 and 3 for the three-state GLUT
transporter model shown in Figure 3.2 and the algebraic expressions that they
represent.
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4. There are 9 directional diagrams for the three-state GLUT transporter model. Write
down the algebraic expression for their sum, which is the denominator Σ in (3.20)
and Figure 3.6.

5. Show that manipulations like those in Figure 3.6 give the same Þnal expression for
J ss23 and J

ss
31 as a difference between directed cycle diagrams.

6. The equilibrium constant for a chemical reaction is given by the ratio of the product
of the concentrations of �products� divided by the ratio of the product of concen-
trations of �reactants.� (By convention reactants are the chemical species on the
left�hand side of the equation and the products are on the right�hand side.) Show
for the three reactions in (3.21) that the equilibrium constants are the ratio of the
rate constants as indicated in the equations. [Hint: Recall that �equilibrium� for a
reaction occurs when the rate of the forward reaction equals the rate of the reverse
reaction.]

7. Using the deÞnition of the equilibrium constant in Exercise 6, show that the equilib-
rium constant for the sum of two chemical reactions is the product of the equilibrium
constants for the individual reactions.

8. Verify that the expression for the sum of the directed diagrams, Σ, for the symmetric
three-state GLUT transporter model is given by (3.27).

9. Write a program to simulate the 4-state model of a GLUT transporter Shown in
Figure 3.1B. Using this program and the values of the rate constants given below
simulate data for an Eadie�Hofstee plot of the rate of transport of glucose when
[G]in = 0 mM. Make an Eadie�Hofstee plot of the rate using a plotting program
and determine Rmax and K. Use the rate constants k12 = k43 = 2.4 mM−1min−1,
k21 = k34 = 42 min

−1, k14 = k14 = k41 = k23 = k32 = 1000 min
−1. The transport rate

is given by R = c · J ss34, where c = 2 mM is the concentration of GLUT transporters
per unit volume of cells. [Hints: Because of the size of the rate constant k14, etc you
will need to use a small step size (try 0.0001min). For the same reason you only
will need to integrate for about 0.3min.]

10. Write down the 6 pairs of cyclic diagrams and the 11 directed diagrams for state
1 for the Þve-state diagram in Figure 3.12B. What are the directed diagrams for
state 4,5?

11. The cardiac form of the Na+/Ca2+ exchanger is electrogenic with a stoichiometry
of 3Na+:1Ca2+. Assuming that the 3 Na+ bind sequentially to sites of decreasing
affinity, how do you anticipate that the transport rate will depend on [Na+]out?
Prove your answer.
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CHAPT E R 4

Reduction of Scale

James Keener and Joel Keizer

One of the hallmarks of cellular processes is their complexity. For example, in Chapter
3 we described a detailed model for the SERCA pump that might require 11 ODEs
and 22 kinetic constants for its analysis. Similarly, the Hodgkin�Huxley model, which
includes only three currents in the squid giant axon, involves 4 differential equations
and information about three voltage gated currents. As complex as these processes are,
they do not begin to represent the true complexity of cellular processes like muscle
contraction or insulin secretion, which depend on the coupling of numerous dynamic
components. In Chapter 5 we describe some examples of �whole-cell� modeling that
attempt to deal with these larger issues.

With a view toward this more complex type of modeling, here we describe several
techniques that can be used to simplify the molecular mechanisms that make up these
models. These techniques rely on the separation of variables into ones that are �fast�
and ones that are �slow.� This type of separation has already been used implicitly
to simplify previous models. In the Morris-Lecar model (Section 2.4), for example,
the rate of activation of the Ca2+ current was assumed to be instantaneous, and in
Section 3.2 transient behavior was ignored in deÞning transport rates. In this chapter
we introduce two important methods to simplify molecular models: the rapid equilibrium
approximation and time�scale analysis. These methods are closely related, and both can
be used to eliminate variables and simplify the analysis of the differential equations.
First, however, we motivate the discussion with the following example.
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Figure 4.1 Whole-cell currents for L-type channels from a neuron in the sea hare Aplysia. From
[Eckert and Tillotson, 1981] as reproduced in [Hille, 2001].

4.1 The Rapid Equilibrium Approximation

The voltage clamp measurements in Figure 4.1 show typical whole-cell Ca2+ currents
for L-type channels from a neuron in the sea hare Aplysia. The control curve in Figure
4.1A shows that these channels rapidly activate and then slowly inactivate when the
cell is depolarized to 20 mV. The Ca2+ dependence of the inactivation step is illustrated
by the slowing of inactivation when the mobile Ca2+ chelator EGTA is injected into
the cell. The Ca2+ dependence of inactivation is conÞrmed by the experiment in Figure
4.1B, in which Ba2+ replaces Ca2+ outside the cell.

A cartoon for the mechanism underlying Ca2+ inactivation of L-type channels is
given in Figure 4.2A. The cartoon illustrates the formation of a domain of elevated
Ca2+ at the cytoplasmic face of an open Ca2+ channel (i.e., a small localized region in
the vicinity of the channel in which Ca2+ concentration can be quite high). Domains
like this have been predicted to form within a few microseconds of the opening of a
channel due to the combined effects of high Ca2+ concentrations outside the cell (ca. 2
mM) and low basal concentrations in the cytosol (ca. 0.1 µM). When this is combined
with slow diffusion of Ca2+ within the cell, calculations predict Ca2+ domains with
peak values approaching 200�500 µM within nanometers of the channel. The slow rate
of diffusion of Ca2+ is caused by tight binding of Ca2+ to numerous buffering sites in
the cytoplasm, which greatly retards its ability to diffuse. The high concentration of
Ca2+ in a domain suggests that an open channel may be subject to direct block of the
open state by binding of a Ca2+ ion at the cytoplasmic face of the channel. A simple
mechanism that accounts for this is given in Figure 4.2B.
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Figure 4.2 (A) Cartoon of domain calcium. (B) State diagram for Ca2+ channel.

The three states C, O, and I represent closed, open, and inactivated states of the
channel. Step 1 is the activation step, whereas step 2 represents the binding of domain
Ca2+, written as Ca+2d . The mechanism postulates a low affinity site for Ca2+ binding,
which means that the inactivated state can be reached only when the channel is open
and the Ca2+ domain has formed. Since simulations show that the peak concentration
in a domain falls rapidly when a Ca2+ channel closes, it is possible to associate a unique
value of domain Ca2+ with the open state, whose value depends only on the current
through the open channel.

This mechanism is easily translated into a mathematical model. All the steps are
unimolecular, except for the bimolecular binding of domain Ca2+. If we represent the
fractions of channels in the three states by xC, xO, and xI , then the kinetic equations
for the model can be written

dxC/dt = −V1, (4.1)

dxO/dt = V1 − V2, (4.2)

with xI = 1− xC − xO and with
V1 = k

+
1 xC − k−1 xO, (4.3)

V2 = k
+
2 [Ca

2+]dxO − k−2 (1− xC − xO) (4.4)

the rates of steps 1 and 2. Because the concentration of Ca2+ in the domain, [Ca2+]d,
depends only on the current, it is a function of the electrical driving force and the single�
channel conductance. (In general, the value of [Ca2+]d depends on the external Ca

2+

concentration and the membrane potential and is proportional to the single channel
conductance; cf. Exercise 6. SpeciÞc values for the rate constants are given in Exercise
3. Figure 4.3 shows a simulation with the model that depicts the Ca2+ current for a cell
that is depolarized at t = 10 ms to a voltage where the channel is open. Simulations
like this have been used to duplicate the time course of voltage clamp measurements for
L-type Ca2+ currents in pancreatic beta cells. Key evidence that supports the domain
model has come from recent experiments with genetically engineered L-type channels,



80 4: Reduction of Scale

20 40 60 80

t  (ms)

0.0

0.2

0.4

0.6

0.8

100
0.0

full model

approximate equationsx O

1.0

Figure 4.3 Computed solution and approximate
solution for open fraction of L-type calcium channels.

and it now seems certain that the essential ideas of the model are correct.
In both the experiments and the simulations, activation of the channel is fast com-

pared to inactivation. In the model this is due to the fact that both the rate constants
for step 1 are much larger than those for step 2. For example, the forward rate for V1
is about 47 times faster than that for V2. Because of this, step 1 rapidly �equilibrates�
the states C and O.

To see how this equilibration takes place, it is a good approximation to ignore V2,
at least at Þrst. Assuming that xC(0) = 1 (all channels are initially closed), it follows
that xI = 0 and xC + xO = 1. We use this to calculate that

dxO/dt = −
µ
xO − 1

1 +K1

¶
/τact (4.5)

with K1 = k−1 /k
+
1 and τact = 1/(k+1 + k

−
1 ). The number τact is the time constant for

activation. Because this process is fast, within a few milliseconds V1 ≈ 0. This condition
continues to hold even as the fractional occupancies xC, xO, and xI change.

The rapid equilibrium approximation is a method to exploit this observation that
some kinetic steps are �fast.� By �fast� we mean �faster than the time scales of phys-
iological interest,� i.e., faster than the slowest times scales in the process. Here the
fast process is the process V1, and for most times after the short initial phase, V1 ≈ 0.
According to (4.3), the condition V1 = 0 implies that

xC = (k
−
1 /k

+
1 )xO = K1xO, (4.6)

which is the equilibrium condition for step 1 in the mechanism.
Now, it might be tempting to set V1 = 0 in (4.2), but this is the wrong thing to do.

Instead, we recognize that since xC and xO are in equilibrium, the quantity of interest
is the total number of channels in the states C and O. Notice that by adding (4.1) and
(4.2) together, V1 is eliminated, and we Þnd the rate of change of the combined state
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y = xC + xO to be

d(xC + xO)/dt = −V2. (4.7)

Using the equilibrium condition (4.6), we Þnd that

xO =
1

1 +K1

y and xC =
K1

1 +K1

y,

so that

dy/dt = k−2 (1− y)−
k+2 [Ca

2+]d
1 +K1

y. (4.8)

This ODE can be rearranged into the familiar form

dy/dt =
y∞([Ca

2+]d)− y
τ([Ca2+]d)

, (4.9)

where

τ([Ca2+]d) =
1 +K1

k+2 [Ca2+]d + k
−
2 (K1 + 1)

, (4.10)

y∞([Ca
2+]d) = k

−
2 τ([Ca

2+]d). (4.11)

Written this way, (4.9) has the same form as (4.7) for a voltage gated channel, except
that now [Ca2+]d replaces the voltage.

The only tricky part remaining about the solution to (4.9), which is an exponential,
is Þnding the correct initial condition. Since we have assumed that step 1 is fast, the
initial condition for (4.9) must take into account the rapid initial equilibration of C
and O. As in Figure 4.1 the initial condition typically is at a hyperpolarized potential
where all the channels are closed and xC(0) = 1. After the initial equilibration, some
of the channels will have moved to state O, so that y = xC + xO = 1. This gives the
equilibrated initial condition for (4.9) as

y(0) = 1. (4.12)

Using this initial condition, the solution to the rapid equilibrium approximation for the
model is plotted as the dashed line in Figure 4.3. Two things are notable in comparing
the approximation to the complete solution. First, by neglecting the rapid activation of
the channel, the approximation slightly overestimates the peak current, which is given
analytically using the initial condition in (4.12) as Ipeak = g(1/(1 +K1))(V − VCa) (see
Exercise 6). Second, the exponential decline in current predicted by (4.9) does a good
job of approximating the rate of inactivation of the current. The approximation works
well because the time scale for the fast process (ca. 1 ms) is much faster than that
for inactivation (ca. 45 ms). As long as the time constant for the fast process is at
least an order of magnitude faster than the remaining processes, the rapid equilibrium
approximation provides a reasonable approximation to the complete model.
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The rapid equilibrium approximation is a useful way to reduce the complexity
of models. For the domain Ca2+ inactivation model, the simpliÞcation is not really
necessary, because the full model involves only two linear differential equations that
can be analyzed by the matrix methods in Appendix A. However, the fact that the
equation for the simpliÞed model resembles that for voltage�gated channels provides a
conceptual bridge to the properties of ligand�gating of channels.

4.2 Time�Scale Analysis

Mathematicians have developed a more systematic method of dealing with fast and
slow variables called asymptotic analysis. Although we do not work through all the
intracacies of this technique here, the central idea of asymptotics is easy to understand,
and it can be applied proÞtably to many modeling problems in cell and neurobiology.
The idea is to deÞne the fast and slow time scales in the model, and then to rescale
time so that on this new scale only the slow, or alternatively only the fast, variables
are changing.

To illustrate the idea we reexamine the model of Ca2+ currents for L-type channels
introduced in the previous section. As we saw in that analysis, the two time scales
are the time scale of activation τact = 1/(k+1 + k

−
1 ) and the time scale of inactivation

τ([Ca2+]d).
Having identiÞed the fast and slow time scales, we proceed to nondimensionalize

all of the variables in (4.1)�(4.4), including time. Nondimensionalization is simply elim-
inating the units of a variable by dividing by a parameter in the model that has the
same units as the variable. In this case the variables xC , xO, and xI are percentages, and
so are already nondimensional. The only variable having dimensions is t. The choice of
a nondimensional time determines whether our analysis focuses on the fast or the slow
time scale.

To nondimensionalize time using the slow time scale, we could set �t = τ([Ca2+]d)t.
However, it is somewhat easier and essentially equivalent to set �t = k−2 t. In terms of
this new time scale, (4.1) and (4.2) become

²dxC/d�t = −k
+
1

k−1
xC + xO, (4.13)

²dxO/d�t =
k+1
k−1
xC − xO − ²k

+
2

k−2
[Ca2+]dxO + ²(1− xC − xO), (4.14)

where ² = k−2 /k
−
1 is a small number.

The important observation is that since ² is small, unless the right�hand side of
(4.13) is small, xC changes rapidly. However, if we add the two equations (4.13) and
(4.14) together and divide by ² we Þnd an equation that is independent of ²,

d(xC + xO)/d�t = −k
+
2

k−2
[Ca2+]dxO + (1− xC − xO). (4.15)
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The basic idea of asymptotic analysis is to treat ² not as a Þxed number, but as
a parameter that can be varied. In the asymptotic limit that ² → 0, we Þnd that the
right hand�side of (4.13) is zero. This is the lowest�order solution in the asymptotic
analysis on the slow time scale, and is exactly the same as (4.6). This approximation is
sometimes called the quasi-steady state approximation, where �quasi� emphasizes that
k+1 xC − k−1 xO is nearly, but not exactly, zero. We complete the slow time scale analysis
by using (4.13) to Þnd xC and xO in terms of y = xC + xO, and then using (4.15) to
Þnd an equation describing the evolution of y. This equation turns out to be exactly
(4.8).

The analysis on the fast time scale is similar. This time we choose a nondimensional
time �t = k−1 t, and write equations (4.1) and (4.15) as

dxC/d�t = −k
+
1

k−1
xC + xO, (4.16)

d(xC + xO)/d�t = ²(−k
+
2

k−2
[Ca2+]dxO + (1− xC − xO)). (4.17)

This time, in the asymptotic limit that ²→ 0, equation (4.17) reduces to

d(xC + xO)/d�t = 0, (4.18)

so that xC + xO = 1 and

dxC/d�t = −k
+
1

k−1
xC + 1− xC, (4.19)

at least for a short time.
This type of time�scale analysis can be summarized by Þve steps, as follows:

� Analyze the parameters of the model to assess whether there are time scales that
can be separated into �fast� and �slow.�

� DeÞne time constants for each time domain whose ratios deÞne a small parameter
².

� Select appropriate parameters in the model to nondimensionalize the dependent
variables.

� Nondimensionalize the differential equations in each time domain and see which
terms can be neglected as ²→ 0.

� Analyze the simpliÞed equations, which represent the behavior of the variables on
the two time scales.

In the next sections we describe how to carry out this analysis for several different
arrangements of fast and slow reactions.

4.3 Glucose�Dependent Insulin Secretion

Insulin is secreted from β-cells in the pancreas in an oscillatory fashion. Glucose must
be metabolized by the β-cell to stimulate insulin secretion, and the insulin, which is
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V {bed

G0

Figure 4.4 Flow system for experimental study of insulin secretion. Vbed is the vol-
ume of the reaction bed, f is the volume ßow rate, andG0 is the inßow concentration
of glucose. Redrawn from [Maki and Keizer, 1995].

prepackaged in secretory vesicles, is secreted from the β-cell into the capillary system
by exocytosis. However, the secreted insulin affects the transport of glucose into the cell
by activating GLUT1 transporters and inactivating GLUT2 transporters. Thus, there
is both positive and negative feedback, necessary ingredients for sustained oscillations.

These oscillations have been studied experimentally in a ßow system depicted in
Figure 4.4. A thin layer of insulin-secreting β-cells is sandwiched between beads and
exposed to a steady ßow of solution. By collecting the solution exiting the bed, one
can determine how the rate of insulin release from the cells in the bed depends on the
composition and ßow rate of the inßux solution.

A mathematical model of this process must involve (at least) three variables: the
extracellular glucose and insulin concentrations and the intracellular glucose concen-
tration. We assume that the volume of islets behaves like a well stirred chemical ßow
reactor so that the concentration of any quantity is uniform throughout the bed (jus-
tiÞcation of this assumption is complicated and goes beyond the level of the discussion
given here). Thus, the rate of change of the average concentration of a species in the
ßow is the rate of change due to production or uptake by cells in the bed plus the rate
of change due to the ßow. Note that we use a nonbracketed notation for concentra-
tion in order to correspond to the original paper that forms the basis of this section
[Maki and Keizer, 1995]. For glucose, G, the relation is

dG

dt
= −R1 −R2 − k0(G−G0), (4.20)

where R1 and R2 are the uptake (or release) rates for glucose through GLUT1 and
GLUT2 receptors, respectively, and G0 is the glucose concentration in the inßow. For
insulin, I,

dI

dt
= Rs − k0(I − I0), (4.21)
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IG G I i Figure 4.5 Schematic diagram of an insulin secreting cell.
The plus sign represents positive feedback and the negative
sign represents negative feedback. Insulin positively affects
both uptake and release for GLUT1. Insulin negatively affects
only uptake and has no effect on release for GLUT2. Internal
insulin, Ii, remains approximately constant. Rewrawn from
Maki and Keizer [Maki and Keizer, 1995].

where Rs is the rate of insulin secretion and I0 is the insulin concentration in the inßow.
In both cases, k0 = f/Vbed is the inverse of the residence time for this reactor bed. (A
schematic diagram of a secreting cell is shown in Figure 4.5).

Since there is no ßow associated with the intracellular space, the intracellular
glucose concentration Gi is found by keeping track of productions rates, via

dGi

dt
= R1 +R2 −Rm (4.22)

where Rm is the rate of glucose usage through metabolism.
Now we must specify the transfer rates. As described in Chapter 3, the GLUT

transporters can be described by four states, two glucose free states and two glucose
bound states. If we assume that transporter is always in quasi-equilibrium, then the
ßux through the transporter is given by

RGLUT =
KGVmax(G−Gi)

(KG +G)(KG +Gi)
. (4.23)

The speciÞc transporters GLUT1 and GLUT2 have ßuxes of this form with the modi-
Þcation that GLUT1 is activated by insulin, and GLUT2 is inhibited by insulin. Thus,
for the GLUT1 transporter we take

R1 =
K1Vmax1(G−Gi)

(K1 +G)(K1 +Gi)
· In

Kn
i + In

, (4.24)

and for the GLUT2 transporter

R2 =
K2Vmax2(GJ

m −Gi)

(K2 +G)(K2 +Gi)
, (4.25)

where n = 1 and m = 2. The variable J is a (phenomenological) inhibition variable,
related to I. The variable J acts to shut down the inward ßux of glucose when I is
large, and satisÞes the differential equation

dJ/dt =
J∞ − J
τ

, (4.26)
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where J∞(I) = 1/(I + KI), and τ is the time constant associated with this time�
dependent process.

The metabolism of internal glucose is an enzymatic process, the Þrst step of which is
that glucose is phosphorylated by glucokinase, in a reaction that is Michaelis�Menten-
like, and so is well described by the Michaelis�Menten rate law

Rm =
VmGi

Km +Gi

. (4.27)

(A derivation of rate laws of this type is given at the end of this chapter.)
The detailed mechanism underlying the secretion of insulin is not fully understood,

so a phenomenological equation describing the rate of secretion as a function of the
rate of metabolism is used:

Rs =
Vs (R

4
m + L

4)

K4
s +R

4
m + L

4
. (4.28)

Notice that with L 6= 0 there is secretion of insulin even when Rm = 0. Now that the
model is complete, we can begin an analysis of it. To do so we need to know something
about the parameters. In Table 4.1 are listed the parameters that are Þxed by the
experiment, experimentally variable, and adjustable.

To reduce the complexity of the model we would like to determine whether there
are any (relatively) fast or slow variables. One way to do this is to numerically simulate
the full system of equations using typical parameter values and observe whether there
are some variables that change much faster than others. However, we suspect that there
are differences in time scales here for the simple reason that the ratio of the two time
constants k0 and τ in Table 4.1 is large, being τk0 = 8×103. This suggests that the ßow
processes (involving G and I) are fast compared to inhibition through J . To be sure

Table 4.1 Standard Dimensional Parameters

Fixed by experiment Vm 0.24 mM/min

Km 9.8 mM

Vs 0.034 mM/min

Ks 0.13 mM/min

Vmax2 32.0 mM/min

K2 17.0 mM

Vmax1 120.0 mM/min

K1 1.4 mM

L 0.01 mM/min

Experimentally variable k0 400.0/min

I0 0.0 mM

G0 8-22 mM

Adjustable in the model KI 1× 10−6 mM
Ki 4.0× 10−5 mM
τ 20.0 min
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that this is correct, we introduce dimensionless parameters and variables �G = G/Km,
�Gi = Gi/Km, �G0 = G0/Km, �I = I/KI, and �t = t/τ , and obtain the four dimensionless
differential equations

d�G/d�t = −�R1 − �R2 − �k0( �G− �G0), (4.29)

d�Gi/d�t = �R1 + �R2 − �Rm, (4.30)

d�I/d�t = �Rs − �k0�I, (4.31)

dJ/d�t = �J∞(I)− J, (4.32)

where

�R1 =
�K1
�Vmax1( �G− �Gi)

( �K1 + �G)( �K1 + �Gi)
·

�In

�Kn
i + �I

n
, (4.33)

�R2 =
�K2
�Vmax2( �GJ

m − �Gi)

( �K2 + �G)( �K2 + �Gi)
, (4.34)

�Rm =
�Vm �Gi

1 + �Gi

, (4.35)

�Rs =
�Vs( �R4

m + �L
4)

�K4
s + �R4

m + �L
4
, (4.36)

�J∞ =
1

1 + �I
. (4.37)

The deÞnitions of the dimensionless parameters and their values are given in Table 4.2.
The Þrst noticeable feature from Table 4.2 is that there are two numbers, �Vs and

�k0, that are quite large. Since these parameters both occur in (4.31) for I, this implies
that �I is a fast variable, so that �I changes rapidly in order to bring the right�hand side

Table 4.2 Standard Dimensionless Parameters

Dimensionless parameter Dimensional deÞnition Standard value
�Vm τVm/Km 0.50
�Vs τVs/KI 6.8× 105
�Ks τKs/Km 0.27
�Vmax2 τVmax2/Km 65.3
�K2 K2/Km 1.7
�Vmax1 τVmax1/Km 245.0
�K2 K1/Km 0.14
�L τL/Km 0.02
�k0 τk0 8× 103
�G0 G0/Km 0.8-2.2
�Ki Ki/KI 40.0
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Figure 4.6 Phase portrait of glucose oscillations in the
phase plane. Redrawn from [Maki and Keizer, 1995].

of (4.31) close to zero. Thus, our Þrst quasi-steady-state approximation is to take

�I =
1
�k0
�Rs =

�Vs
�k0

Ã
�R4
m +

�L4

�K4
s +

�R4
m +

�L4

!
. (4.38)

Our second observation is that because �k0 is a large number, �G, governed by (4.29), is
also a rapidly equilibrating variable, so we take the quasi-steady-state approximation

�G = �G0 − 1
�k0
�R1 − 1

�k0
�R2. (4.39)

However, since �Vmax1/�k0 = 3.06 × 10−2 and �Vmax2/�k0 = 8.2 × 10−3 are small, it is
legitimate to ignore �R1/�k0 and �R2/�k0 in (4.39) and take

�G = �G0. (4.40)

With these simpliÞcations we are left with a two�variable model that we can readily
analyze and simulate. We leave this simulation as an exercise, to verify that indeed there
are glucose oscillations with a period of about 1 (about 20 minutes in dimensional time).
So that you can check your answer, in Figure 4.6 is shown the phase portrait for this
oscillation.

4.4 Ligand Gated Channels

The Ca2+-activated potassium channel provides another example in which some tran-
sitions are much faster than others, and this can be used to derive simpliÞed kinetics.
This channel has two open states and two closed states. The channel has two binding
sites for Ca2+ and opens when one of the sites is occupied. Thus, the closed state may
have zero or one Ca2+ ion bound, and the open state may have one or two ions bound.
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Figure 4.7 Diagram for the calcium-activated potassium channel. Opening of the channel occurs after
binding one calcium ion in either of two binding sites.

The binding process is considered a fast process, while the transition between open and
closed states is slow.

To describe this process mathematically, we let the variables x1, x2, x3, and x4 de-
note the fractional occupancies of states C1, C2, O1, and O2. Then the transition rates
between these states are Va, Vb, and Vc, where

Va = k+a [Ca
2+]ix1 − k−a x2, (4.41)

Vb = k+b x2 − k−b x3, (4.42)

Vc = k+c [Ca
2+]ix3 − k−c x4. (4.43)

Of course, x1 + x2 + x3 + x4 = 1.
Since we assume that Va and Vc (the association/dissociation steps for binding Ca

2+)
are fast, we use the rapid equilibrium assumption to set Va = Vc = 0. This implies that

x1 =

µ
Ka

[Ca2+]i

¶
x2 (4.44)

x3 =

µ
Kc

[Ca2+]i

¶
x4, (4.45)

with dissociation constants

Ka = k
−
a /k

+
a , Kc = k

−
c /k

+
c . (4.46)

Next, to Þnd the evolution of the slow states, we combine states x1 and x2 into the
closed state xC and combine states x3 and x4 into the open state xO, with

x1 + x2 = xC , x3 + x4 = xO. (4.47)

Of course, because of our rapid equilibrium assumption,

x2 =
xC

1 +Ka/[Ca2+]i
, (4.48)

x4 =
xO

1 +Kc/[Ca2+]i
. (4.49)
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The reduced equations follow from

dxC
dt

= −Va + Va − Vb = −Vb (4.50)

and, of course, xC + xO = 1. Therefore,

dxO
dt

= Vb = k
+
b x2 − k−b x3 =

k+b xC
1 +Ka/[Ca2+]i

− (Kc/[Ca
2+]i)k

−
b xO

1 +Kc/[Ca2+]i
= k+xC − k−xO,

where

k+ =
k+b

1 +Ka/[Ca2+]i
, k− =

(Kc/[Ca
2+]i)k

−
b

1 +Kc/[Ca2+]i
.

In other words, this process is equivalent to the two�state process

C

k+

*)

k
−

O .

Parameters are known from experiments to be k+b = 480/s, k−b = 280/s, Ka =
k−a /k

+
a = 180e

−V/15.5µM, and Kc = k−c /k
+
c = 11e−V/13µM, where V , the voltage, is in

units of mV.

4.5 The Neuromuscular Junction

A similar analysis works to Þnd a model of the acetylcholine receptor (AchR) in the
postsynaptic membrane of neuromuscular junctions. Neuromuscular junctions consist
of a presynaptic cell and a postsynaptic cell that are separated by a small synaptic cleft,
as depicted in Figure 4.8. When an action potential reaches the nerve terminal, several
processes lead to the release of a chemical neurotransmitter, such as acetylcholine, from
the presynaptic cell into the synaptic cleft. The neurotransmitter binds to receptors

Ach

Pre

Post

AchR  

synaptac
    cleft {

Figure 4.8 Diagram of a neuromuscular junction with
acetylcholine receptor as the neurotransmitter.
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Figure 4.9 Four-state model for the Ach receptor. The channel opens after two binding events.

on the postsynaptic membrane that act as channels for some ion, such as sodium or
potassium.

A model for the opening and closing of the Ach receptor (see Figure 4.9) is based
on the idea that a receptor is a four-state device, with three closed states and one open
state. The three closed states have 0, 1, or 2 Ach molecules bound to the receptor, and
the open state requires that two Ach molecules be bound. We assume that the binding
of Ach is a fast process and the opening and closing of the channel is slow in contrast.

Using the rapid equilibrium approxmation, it is a straightforward exercise to
combine the three closed states into one and to reduce this process to an equivalent
two�state process. In fact, it is readily found that if xO is the proportion of receptors
in the open state, then

dxO/dt = k34
k23[Ach]

k32

k12[Ach]

k32 (k21 + k12[Ach] + k12[Ach]k23[Ach])
(1− xO)− k43xO. (4.51)

4.6 The Inositol Trisphosphate (IP3) receptor

The IP3 receptor is a Ca
2+ channel located in the endoplasmic reticulum that is regu-

lated both by IP3 and by Ca2+. Each receptor consists of three independent subunits,
each of which must be in the open state for the channel to be open. Each subunit
has one binding site for IP3 and two binding sites for calcium. Thus there are eight
possible states for the subunit. Binding with IP3 �potentiates� the subunit. The two
calcium binding sites activate and inactivate the subunit, and a subunit is in the open
state when IP3 and the activating calcium site are bound but the inactivating site is
unbound.

To make a mathematical model for this receptor we must Þrst give names to the
eight different states. We denote by xi the proportion of receptors in state i, where i is
the label of the vertex on the cube in Figure 4.10. Thus, for example, x1 represents the
state in which all binding sites are unbound, and x6 is the open state of the subunit.

For these eight different states, there are 24 different rate constants kij. However,
since each cycle must satisfy the thermodynamic constraint on kinetic constants, there
are six restrictions on these 24 parameters. Notice that the rate constants that involve
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Figure 4.10 (A) Transition diagram for the eight-state IP3 receptor. (B) Relative rates of reaction for
transitions in (A).

binding of a substrate must be proportional to the concentration of that substrate.
Thus, k15, k26, k37, and k48 are proportional to the concentration of IP3, while the eight
rate constants k12, k14, k23, k43, k58, k56, k67, and k87 are all proportional to the Ca2+

concentration. Now we make two simplifying assumptions. First we assume that the
rate constants are independent of whether activating Ca2+ is bound or not, and second
we assume that the kinetics of Ca2+ activation are independent of IP3 binding and Ca

2+

inactivation. The Þrst of these implies that k14 = k23, k15 = k26, k58 = k67, and k48 = k37,
as well as for the reverse reactions. The second implies that k12 = k56 = k87 = k43 and
similarly for the reverse reactions. Thus we are left with only 10 rate constants. The
parameter values that were used by DeYoung and Keizer are displayed in Table 4.3.
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Figure 4.11 Open probability for IP3 receptor for
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Table 4.3 Rate Constants for the Eight�State IP3 Receptor [DeYoung and Keizer, 1992].

k15 = 400[IP3] µM−1s−1 k51 = 52 s−1

k58 = 0.2[Ca2+]i µM
−1s−1 k85 = 0.21 s−1

k48 = 400[IP3] µM
−1s−1 k84 = 377.2 s

−1

k14 = 0.2[Ca2+]i µM
−1s−1 k41 = 0.029 s−1

k12 = 20[Ca2+]i µM
−1s−1 k21 = 1.64 s−1

An examination of the rate constants in Table 4.3 reveals that some processes are
much faster than others. In fact, according to this table, the binding (and unbinding)
of inactivating calcium is a slow process compared to the binding of IP3 and activating
calcium. For example, k15 and k48 are much larger than k58, k14, and k12. Therefore, we
lump the eight variables into two groups with

y = x1 + x2 + x5 + x6, (4.52)

1− y = x3 + x4 + x7 + x8. (4.53)

Next, we assume that all the fast processes are in quasi-equilibrium. That is, we assume
that the processes 1-5, 2-6, 3-7, 4-8, in which IP3 is bound, and the processes 5-6, 8-7,
1-2, 4-3, in which activating calcium is bound, are in quasi-equilibrium. This gives us
a set of algebraic relationships that can be solved to Þnd the variables xi in terms of y.
For example,

x6 =
k15k12

(k51 + k15)(k21 + k12)
y. (4.54)

We substitute these into the differential equation for y,

dy

dt
= k41x4 + k85x8 + k76x7 + k32x3 − (k14x1 + k58x5 + k67x6 + k23x2) (4.55)

and obtain the equation

dy

dt
=

µ
d1 + k85[IP3]

d2 + [IP3]

¶
(1− y)− d3[Ca2+]i y, (4.56)

where the di are combinations of the rate coefficients. Using the parameter values given
in Table 4.3, we Þnd that d1 = 0.027 µM s−1, d2 = 0.94 µM, d3 = 0.2 µM

−1s−1. This
equation is readily converted (see Exercise 2) to an equation of the form

dy

dt
= −y − y

∞([Ca2+]i, [IP3])

τ(Ca2+, [IP3])
(4.57)

with an open probability

xO = x
3
6 =

µ
[IP3][Ca

2+]iy

(K1 + [IP3])(K2 + [Ca2+]i)

¶3
. (4.58)
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The relationship of constants K1 and K2 to the rate coefficients are determined in
Exercise 2. Of course, the equilibrium open probability is

x∞O =

µ
[IP3][Ca

2+]iy
∞

(K1 + [IP3])(K2 + [Ca2+]i)

¶3
. (4.59)

A plot of the equilibrium open probability x∞O is plotted in Figure 4.11 for several values
of [IP3]. Notice that the maximum open probability increases with increasing [IP3], and
the peak of the curve shifts to the right with increasing [IP3]. Both of these features
are observed experimentally.

4.7 Michaelis�Menten Kinetics

One of the most important reductions of a complex reaction is associated with the
names of Michaelis and Menten, and in fact, this reduction is used in several places
in this book. In many texts this reduction is used to introduce the ideas and methods
of time scale reduction. However, the reduction of Michaelis and Menten is slightly
different from the reductions discussed so far in this chapter, because it does not rely
on large differences in reaction rates. Instead, the difference in time scale of reaction
comes from an entirely different source, which we now discuss.

Working in the early part of the twentieth century, Michaelis and Menten set
about to explain several key experimental facts regarding the conversion of substrate
to product catalyzed by simple enzymes. Figure 4.12 illustrates their results for the
enzyme invertase, which converts sucrose to glucose and fructose. These graphs give
the time course of accumulation of product (measured as the change in optical rotation
of the solution) for a Þxed total enzyme concentration [E]T. In the three curves the
initial concentration of sucrose, [S]T, is increased from 5.2 mM to 10.4 mM to 20.8 mM.
The initial rate of increase of product, given by the slope of the three curves (V (0)),
is plotted for these and similiar experiments in Figure 4.12. As the concentration of
sucrose increases, the initial rate saturates at the value Vmax. This function is hyperbolic
and can be Þt with the expression:

V (0) = Vmax[S]T/([S]T +Km). (4.60)

The concentration of substrate at which V (0) = Vmax/2 is called the Michaelis constant
or Km for the enzyme. In further experiments Michaelis and Menten established that
for a Þxed concentration of sucrose, V (0) increased linearly with [E]T. This hyperbolic
dependence of the rate on [S]T and linear dependence on [E]T has been established for
a number of enzymes, and Michaelis and Menten proposed a kinetic model to explain
these facts.

Their work was motivated by Victor Henri, who had suggested earlier that enzyme
and substrate might form a complex. Using the notation E to represent the free enzyme
in solution, S the substrate, P the product, and ES the enzyme�substrate complex,
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Figure 4.12 (A) Experimental rate of loss of optical activity of sucrose for three initial concentra-
tions of sucrose and Þxed concentrations of the enzyme. Data of Michaelis and Menten, replotted from
[Wong, 1975]. (B): The initial rate V (0) in (A) of the invertase catalyzed reaction plotted as a function
of sucrose concentration. (C) Two�state diagram for the Michaelis�Menten model.

Michaelis and Menten proposed that the kinetics could be described by the two chemical
reactions

E + S

k+1

*)

k
−
1

ES,

ES

k
+
2

→ P +E. (4.61)

This scheme can be recast easily as a diagram for enzyme states like that used in Figure
3.2 for the GLUT transporter. This is done in Figure 4.12C, where the two states of
the enzyme are the free form (E) and the complex (ES). This two�state model actually
involves four variables, because S and P also vary. However, the total concentration of
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enzyme ([E]T = [E] + [ES]) and of substrate ([S]T = [S] + [ES] + PC) are conserved, so
that only two of the concentrations change independently.

In this analysis we choose the concentration of substrate [S] and enzyme�substrate
complex [ES] as variables and eliminate the concentration of enzyme using the con-
servation condition [E] = [E]T − [ES]. Because the catalytic process is irreversible, the
concentration of product PC does not appear in the kinetic equations for [S] and [ES],
which can be obtained from the mass action laws applied to (4.61):

d[S]/dt = −k+1 [E]T[S] + (k−1 + k+1 [S])[ES], (4.62)

d[ES]/dt = k+1 [E]T[S]− (k−1 + k+2 + k+1 [S])[ES]. (4.63)

The two important time scales in the Michaelis�Menten model are the time that it
takes for substrate to be converted into product, and the time scale on which enzyme�
substrate complex forms. Thus, the important rates are k+1 [E]T and k

+
1 [S]. Now if we

assume, as did Michaelis and Menten, that there is very little enzyme compared to
substrate, then we also expect there to be very little complex compared to substrate.
This means that the rate k+1 [E]T is much smaller than the rate k

+
1 [S], at least initially

before a lot of product has been made. Thus, it is the small ratio of the concentration
of catalyst to total concentration of substrate ([S]T), i.e., ² = [E]T/[S]T, that makes the
two time scales widely different. The two natural time scales in the model are therefore
τs = 1/k

+
1 [E]T (slow) and τf = 1/k

+
1 [S]T (fast).

Having identiÞed the fast and slow time scales, we proceed to nondimensionalize all
of the variables in (4.62) and (4.63), including the time. We deÞne the nondimensional
dependent variables �s = [S]/[S]T and �es = [ES]/[E]T. The choice of a nondimensional
time then determines whether our analysis focuses on the fast or the slow time scale.

If we nondimensionalize time using the slow time scale, then �t = t/τs = tk+1 [E]T,
and we restrict ourselves to slow changes. Substituting these nondimensional variables
into (4.62) and (4.63) gives

d�s/d�t = −�s+
µ

k−1
k+1 [S]T

+ �s

¶
�es, (4.64)

²d �es/d�t = �s−
µ
k−1 + k

+
2

k+1 [S]T
+ �s

¶
�es. (4.65)

The small dimensionless parameter ² appears as a multiplicative factor on the left�
hand side of (4.65). If we think of the asymptotic limit as ² → 0, then we can set the
right�hand side of (4.64) equal to zero. This is the lowest�order term in the asymptotic
analysis on the slow time scale, which allows us to solve explicitly for �es and obtain

�es =
�s

(k−1 + k
+
2 )/(k

+
1 [S]T) + �s

. (4.66)

Substituting this expression into the right�hand side of (4.64) gives the rate of change
of substrate

d�s/d�t = −
�Vmax�s

�s+ �Km

, (4.67)
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with

�Vmax =
k+2

k+1 [S]T
, �Km =

k−1 + k
+
2

k+1 [S]T
. (4.68)

Equation (4.67) can be written in terms of the original dimensional variables as

d[S]/dt = − Vmax[S]

[S] + Km

, (4.69)

with Vmax = k+2 [E]T and Km = (k−1 +k
+
2 )/k

+
1 . This is identical to the expression obtained

by Michaelis and Menten for the initial rate of product formation (4.60). However, time�
scale analysis suggests that this expression is valid on the slow time�scale τs = 1/k

+
1 [E]T

and is not restricted to the initial period of the catalytic process.
To see how the model simpliÞes on the fast time�scale τf = 1/k

+
1 [S]T, we nondimen-

sionalize the dependent variables in the same fashion, but now introduce the rescaled
time �t = tk+1 [S]T. This leads to the equations

d�s/d�t = −²
µ
�s−

µ
k−1

k+1 [S]T
+ �s

¶
�es

¶
, (4.70)

d �es/d�t = �s+

µ
k−1 + k

+
2

k+1 [S]T
+ �s

¶
�es. (4.71)

On this time scale when ²→ 0, the left�hand side of (4.70) vanishes. Thus, d�s/d�t = 0,
and �s = [S]/[S]T is constant. Using this result in (4.71) and reverting to dimensional
variables gives, after a bit of algebra,

d[ES]/dt = k+1 [S]([E]T − [ES])− (k−1 + k+2 )[ES]. (4.72)

This equation describes the exponential increase of the enzyme�substrate complex con-
centration to its steady�state value [ES]

ss
= [E]T[S]/(Km + [S]). This is precisely the

dimensional form of the expression for �es on the slow time scale in (4.66). For this
reason, this approximation is often referred to as the quasi-steady-state approximation,
where �quasi� emphasizes that the value of [ES]

ss changes in time, but only on a slow
time scale.

Suggestions for Further Reading

� Mathematical Models in Biology, Leah Edelstein-Keshet. This is a great introduc-
tory textbook on general mathematical biology. Chapter 7 contains material on
reduction of scale and molecular events [Edelstein-Keshet, 1988].

� Principles of Applied Mathematics, James Keener. This book contains a good
treatment of perturbation theory as well as other approximation techniques
[Keener, 1999].

� Applied Mathematics, J. David Logan. This book also contains a good treatment
of perturbation theory [Logan, 1997].
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Exercises

1. Consider the system of linear differential equations

dx/dt = −3x+ y, dy/dt = 100(2x− y), (4.73)

subject to initial conditions y(0) = 0, x(0) = 1.
For this system, which is the fast variable and which is the slow variable?
What is the quasi-steady-state approximation for this system? Use the quasi-steady-
state approximation to eliminate y and then show that the solution of the simpliÞed
system is x(t) = exp(−t), y(t) = 2 exp(−t).
Show that the exact solution of this system is

x(t) = 0.02 exp(−102.02t) + 0.98 exp(−0.98t), (4.74)

y(t) = −1.98 exp(−102.02t) + 1.98 exp(−0.98t). (4.75)

Compare the approximate solution with the exact solution. When do they agree
and when do they disagree?

2. Verify the graph in Figure 4.11 by Þnding y∞, K1, and K2 and graphing X0 in
(4.59).

3. Create a program for solving the domain Ca2+ inactivation mechanism in Figure
4.2. Use the parameter values k+1 = 0.7ms−1, k−1 = 0.2 ms−1, k+2 = 0.05 mM−1

ms−1, k−2 = 0.005 ms
−1, and [Ca2+]d = 0.3 mM. Include in your model an auxiliary

variable for calculating whole cell Ca2+ currents using ICa = gxO(V − VCa), with
g = 5 nS, V = 20 mV, and VCa = 60 mV. Use the results to conÞrm the results in
Figure 4.3.

4. Use the data in Exercise 1 to create the simpliÞed version of the domain Ca2+

inactivation model based on the rapid equilibrium approximation. Using the initial
condition in (4.12), solve the ODE and compare your result for the Ca2+ current
(ICa = gxO(V −VCa)) to that in Figure 4.3. Use (4.9), (4.10) and (4.11) to calculate
the numerical value of the relaxation time τ and the Ca2+ current after inactivation
is complete. Verify that (4.12) is correct and use it to show that the peak current
is given by the expression Ipeak = g(1/(1 +K1))(V − VCa).

5. On the fast time scale it is a good approximation to neglect step 2 in the do-
main Ca2+ inactivation model in Figure 4.2. Assuming that xC(0) = 1, use the
approximation to verify that on the fast time scale

dxO/dt = −
µ
xO − 1

1 +K1

¶
/τact (4.76)

with K1 = k
−
1 /k

+
1 and τact = 1/(k

+
1 + k

−
1 ), the time constant for activation. Using

the parameters in Exercise 1, evaluate τact.
6. A model that simulates the voltage dependence of domain Ca2+ activation of
L-type Ca2+ channels in the pancreatic beta cell of mouse was developed by
Sherman, Keizer, and Rinzel using the mechanism in Figure 4.2. They Þt data



4.7: Michaelis�Menten Kinetics 99

to experimental voltage clamp records using the voltage-dependent kinetic con-
stants: k+1 (V ) = 0.78/(1 + exp[−(3 + V )/10]) ms−1, k−1 = (0.78 − k+1 (V )) ms−1,
k+2 [Ca

2+]d = 7.56 · 10−4[Ca2+]outV/(1− exp(V/13.4) mM−1 ms−1, k−2 = 0.002 ms
−1,

with the external Ca2+ concentration [Ca2+]out = 3 mM and V in mV.
Create a program for this model with the current as an auxiliary variable using
the expression ICa = gxO[Ca

2+]outV/(1 − exp(V/13.4) (This is a special case of
the Goldman-Hodgkin-Katz expression [ion]zoutV/(1 − exp(zFV/RT ) for the driv-
ing force, which is based on consideration of the rate at which an ion of charge z
can diffuse through a pore with a linear gradient of electrical potential. This gener-
alization of the Nernst expression has proven particularly useful for modeling Ca2+

currents.) Use the program to simulate voltage clamp currents in which the voltage
is increased from a holding potential of −100 mV to depolarized test potentials
with a duration of 250 msec. Record the peak and Þnal equilibrium currents and
plot them as a function of the test potential. Explain the inverted bell-shaped I
versus V curves.

7. Verify (4.51) as a model for the Ach receptor.
8. What are the six thermodynamic constraints that must hold for the kinetic pa-
rameters of the full IP3receptor model? Verify that these constraints hold for the
parameter values in Table 4.3.

9. Use (4.56) to calculate y∞([Ca2+]i, [IP3])). Plot the equilibrium open probability for
several values of IP3.

10. Derive a model for ryanodine (RyR) receptors in cardiac cells. Assume that each
subunit of a receptor has two binding sites for Ca2+, one that activates the subunit
when Ca2+ is bound and one that inactivates the subunit when Ca2+ is bound.
Assume further that the binding of activating Ca2+ is independent of inactivating
Ca2+, and that the binding of inactivating Ca2+ is independent of activating Ca2+.
Show that as a result there are four independent rate constants, and that the
thermodynamic constraint is automatically satisÞed.
Let x0 be the fraction of receptors with no Ca

2+ bound, x1 the fraction of receptors
with only activating Ca2+ bound, x3 the fraction of receptors with only inactivating
Ca2+ bound, and x4 the fraction of receptors with both binding sites bound. Draw
a diagram of this reaction mechanism. Which of the rate constants are proportional
to the Ca2+ concentration?
Using the rate constants k12 = 15[Ca

2+]i µM
−1s−1, k13 = 0.8[Ca

2+]i µM
−1s−1, k21 =

7.6 s−1, k31 = 0.84 s
−1, identify which processes are fast and which are slow. Use the

quasi-steady-state approximation to compress this into a two-state model. What
are the effective rate constants for this compressed two�state model?

11. Find the reduced slow time scale equations for a four-state transporter, such as the
GLUT transporter described in Chapter 3 (see Figure 4.13). Assume that the 1-4
and 2-3 transitions are rapid compared to other transitions by lumping states 1 and
4 and states 2 and 3 into two variables,

x1 + x4 = y1, x2 + x3 = y2, (4.77)
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Figure 4.13 Transition diagrams for sodium and GLUT four-state transporters.

where y1 + y2 = 1, and show that

dy1/dt = −k12x1 + k21x2 + k34x3 − k43x4. (4.78)

Solve the equilibrium conditions for x1 and x4 in terms of y1 and for x2 and x3 in terms
of y2. Show that

dy1/dt = −1
τ
(y1 − yss1 ) , (4.79)

where

yss1 =
k(a)21 + k

(b)
21

k(a)12 + k
(a)
21 + k

(b)
12 + k

(b)
21

,

τ =
1

k(a)12 + k
(a)
21 + k

(b)
12 + k

(b)
21

.

k(a)12 =
k12

1 +K0 , k(a)21 =
k21
1 +K

, k(b)12 =
k43K

0

1 +K0 , k(b)21 =
k34K

1 +K
. (4.80)

Notice that this equation describes the transition between states 1 and 2 by two different
processes, depicted in Figure 4.14 as processes �a� and �b.�

12. Verify (4.69) and (4.72) by expressing (4.67) and (4.71) in dimensional variables.

a

y1

b

out Na+
in Na+

y2
Figure 4.14 Transition diagram for the reduced four-state
sodium transporter.
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CHAPT E R 5

Whole�Cell Models

Arthur Sherman, Yue-Xian Li, and Joel Keizer

In modeling whole cells we try to understand complex properties of cells by combining
interlocking transport and regulatory mechanisms. We use a modular approach and
develop models of each individual process separately using available experimental data.
We then construct progressively more complete models by combining components to
understand how they work together. Sometimes, we proceed in the opposite order,
beginning with a comprehensive model, which we simplify in order to determine the
minimal essential elements. One particularly useful simpliÞcation technique is to exploit
separation of time scales to set fast processes to equilibrium as described in Chapter 4.

Three model systems are investigated in this chapter; the bullfrog sympathetic
ganglion neuron (Figure 5.2), the pituitary gonadotroph (Figure 5.11), and the pan-
creatic β-cell (Figure 5.18). The order chosen is pedagogical and is in fact opposite to
the historical order in which the models were developed. These models focus on the
consequences of integrating plasma membrane (PM) and endoplasmic reticulum (ER)
membrane ßuxes into a coordinated system for control of membrane potential and Ca2+

concentrations. The concentration of cytoplasmic Ca2+, [Ca2+]i, is of great importance
for the life and death of cells. It is a key regulator of many cell processes, such as secre-
tion, gene transcription, and apoptosis. We will restrict our attention to models with
a small number of discrete, well-mixed compartments; diffusion in spatially extended
compartments will be treated in Chapter 7. Other models for these particular systems
can be found [Keener and Sneyd, 1998, Tang et al., 1996].

These simpliÞed models incorporate ion pumps and voltage and ligand gated chan-
nels like those discussed in previous chapters, and provide illustrations of the modular
approach. A common dynamical theme in all three models is oscillations, some driven
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by the ER, some by the plasma membrane, and some by interactions between the two.
We will see, as previously in Chapter 2, that the combination of fast positive feedback
with slow negative feedback is a ubiquitous way for cells to produce oscillations.

5.1 Models of ER and PM Calcium Handling

The most striking feature of Ca2+ in cells is its low concentration, approximately 0.1
µM at rest, and only 1 µM or so at its peak. In contrast, Na+ and K+ are found
in millimolar concentrations. Cells need to keep [Ca2+]i so low because Ca2+ binds
to many proteins and modiÞes their enzymatic properties. Thus, rises in Ca2+ must
be kept brief and highly localized to avoid runaway activation of enzymatic cascades.
These needs are met by two basic mechanisms, buffering and sequestration. Buffers
are specialized Ca2+-binding proteins that soak up 95�99% of the Ca2+ in the cy-
tosol. Ca2+ is sequestered in internal stores�the sarcoplasmic reticulum (SR) in muscle
cells, and the endoplasmic reticulum (ER) in other cells�by proteins that hydrolyze
ATP to move Ca2+ against steep concentration gradients. These proteins are called
sarco/endoplasmic Ca2+-ATPase (SERCA) pumps. Other pumps, plasma membrane
Ca2+-ATPases (PMCA), remove Ca2+ from the cell. ER and SR membranes contain
ion channels, analogous to but different from plasma membrane channels, that allow
Ca2+ back out of the stores into the cytoplasm when needed. See Figure 5.1. Whereas all
cells have Ca2+ pumps for negative feedback and homeostasis, some cells have evolved
ion channels such as the ryanodine receptor (RyR) and the IP3-Receptor, which are
both activated and inhibited by Ca2+ and provide both positive and negative feedback.
The large ratios of bound to free Ca2+ and sequestered to cytoplasmic Ca2+ mean
that brief channel openings can lead to large excursions of free cytoplasmic Ca2+ or
oscillations that can be exploited for signaling.
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Mitochondria and vesicles may also act as Ca2+ reservoirs and have their own
specialized uptake and release mechanisms for Ca2+ and other ions. These have not
been modeled as extensively, and will be treated only in passing here.

Ca2+ indicator dyes, which are exogenous buffers that ßuoresce differentially de-
pending on [Ca2+]i are the most common way to measure the concentration of free
Ca2+. As we will see below, buffers change (generally, slow down) the dynamics of
Ca2+ in cells. The optical measurement of Ca2+ is discussed further in Chapter 8.
Some cells possess Ca2+-dependent K+ or Cl− channels, and one can use the currents
generated by these channels as an alternative measurement. A third approach is to use
aequorin, a naturally occurring protein found in jellyÞsh, which luminesces when bound
to Ca2+. Aequorin can be targeted to Ca2+ stores in cells of other organisms by genetic
techniques.

5.1.1 Flux Balance Equations with Rapid Buffering

We begin with a general description applicable to any cell with a cytosolic compartment
(subscripted by i, originally for �intracellular�) and an ER (subscripted by ER) and
one species of Ca2+ buffer in each compartment. That gives a total of four species, with
bound and free Ca2+ in each of the two compartments.

We deÞne Ni = total number of Ca2+ ions, bound and free, in the cytoplasm and
NER = total number of Ca

2+ ions in the ER. Then

[Ca2+]toti =
Ni

V i

, [Ca2+]totER =
NER

V ER

, (5.1)

where the V �s representing the volumes of the cytosol and ER have overbars to
distinguish them from membrane potentials.

The fundamental physical principle used in constructing equations for the four Ca2+

concentrations is conservation of Ca2+ ions. The number of ions in each compartment
changes due to ßuxes across each of the membranes separating the compartments:

dNi

dt
= J inPM − JoutPM − J inER + JoutER (5.2)

dNER

dt
= J inER − JoutER . (5.3)

The J �s have units of µmoles/s and represent common ßuxes found in cells (see Figure
5.1 and Table 5.1). In terms of concentrations we have

d[Ca2+]toti
dt

=
1

V i

(J inPM − JoutPM − J inER + JoutER ) = j
in
PM − joutPM − jinER + joutER , (5.4)

d[Ca2+]totER
dt

=
1

V ER

(J inER − JoutER ) =
V i

V ER

(jinER − joutER ), (5.5)

where we have absorbed the volumes into the j�s, giving them units of concentra-
tion/time, typically µM/s.
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Table 5.1 Key to Ca2+ Levels and Fluxes

Ca2+ levels [Ca2+]toti bound (buffered) + free cytosolic Ca2+

[Ca2+]totER bound + free ER Ca2+

[Ca2+]i free cytosolic Ca2+

[Ca2+ · B]i bound cytosolic Ca2+

Fluxes J inPM inßux through PM Ca2+ channel

jinPM J inPM divided by cytosolic volume V i
JoutPM extrusion by plasma membrane Ca2+ ATP-ase

joutPM JoutPM divided by cytosolic volume V i
J inER pumping into ER by SERCAs

JoutER ßux from ER to cytosol through IP3R or RYR

Now we come to grips with the buffering equations. The term [Ca2+]tot consists of
free Ca2+ plus Ca2+ bound to buffer B. In the cytosol,

[Ca2+]i + [Ca
2+ · B]i = [Ca2+]toti , (5.6)

[B]i + [Ca
2+ · B]i = [B]toti , (5.7)

with similar expressions for the ER. We avoid adding a differential equation to describe
these reactions by assuming rapid equilibrium (see Section 4.1) between Ca2+ and
buffer:

[Ca2+]i =
Ki[Ca2+ · B]i

[B]i
. (5.8)

Methods for treating Ca2+ buffering are discussed in more detail in Chapter 8.
Combining (5.6) and (5.8) gives

[Ca2+]toti = [Ca2+]i

µ
1 +

[B]i
Ki

¶
. (5.9)

Combining (5.7) and (5.8) gives

[B]toti = [B]i

µ
1 +

[Ca2+]i
Ki

¶
. (5.10)

Finally, solving (5.10) for [B]i and substituting into (5.9) gives the desired algebraic
relation between [Ca2+]toti and [Ca2+]i:

[Ca2+]toti = [Ca2+]i

µ
1 +

[B]toti
Ki + [Ca2+]i

¶
. (5.11)

To get the balance equation for [Ca2+]i, we apply the chain rule and (5.11) to obtain

d[Ca2+]toti
dt

=
d[Ca2+]toti
d[Ca2+]i

d[Ca2+]i
dt

=
1

fi([Ca2+]i)

d[Ca2+]i
dt

, (5.12)
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where

fi([Ca
2+]i) =

µ
1 +

Ki[B]
tot
i

(Ki + [Ca2+]i)2

¶−1
. (5.13)

This is a form of the rapid buffering approximation (RBA) [Wagner and Keizer, 1994],
specialized to cells that may be considered spatially homogeneous. The extension to
situations in which diffusion of [Ca2+]i and buffer cannot be ignored is taken up in
Chapter 8.

In general, fi is a function of [Ca
2+]i, but for low�affinity buffers Ki À [Ca2+]i, and

fi can be taken as constant:

fi ≈ 1

1 + ([B]toti /Ki)
. (5.14)

In this case, fi can be interpreted as the fraction of [Ca
2+]toti that is free. Typical

measured values for fi are 0.01�0.05.
Combining (5.12) and the corresponding equation for the ER with (5.4) and (5.5)

gives

d[Ca2+]i
dt

= fi(j
in
PM − joutPM − jinER + joutER ) (5.15)

d[Ca2+]ER
dt

=
V ifER

V ER

(jinER − joutER ). (5.16)

Note that as [B]toti increases, fi decreases and [Ca
2+]i becomes slower. This can be a

problem when measuring [Ca2+]i using ßuorescent dyes, which are themselves Ca
2+

buffers. On the other hand, changing the cell�s buffering power with dyes or other
exogenous buffers can also be a useful experimental tool.

Equation (5.16) is often rewritten

d[Ca2+]ER
dt

=
fi
σ
(jinER − joutER ), (5.17)

where

σ =
V ERfi

V ifER
. (5.18)

We can interpret V ER/fER and V i/fi as the �effective volumes� of the ER and cytosol,
respectively, that is, the volumes taking into account the fraction of Ca2+ that is free in
each compartment. Then σ is the ratio of effective volumes, an important dimensionless
quantity that captures the combined effects of volume and buffering differences between
the ER and the cytosol. Note that (5.15) and (5.17) have two fewer parameters than
the original set (5.15) and (5.16). Thus, two of the parameters have been revealed
to be redundant by this simple substitution. A more extensive example of the use of
dimensionless parameters is given in Section 5.3 for the gonadotroph model.
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If we multiply (5.17) by σ and add it to (5.15), the ER ßux terms cancel, and we
obtain

d[Ca2+]T
dt

= fi(j
in
PM − joutPM), (5.19)

where

[Ca2+]T = [Ca
2+]i + σ[Ca

2+]ER. (5.20)

The reader may check that

[Ca2+]T =
fi(Ni +NER)

V i

(5.21)

and [Ca2+]T may thus be interpreted as the �total free Ca
2+� of the cell with the

cytosolic volume as the reference volume.
In several examples to follow we will Þnd it convenient to replace [Ca2+]ER by

[Ca2+]T. For example, if the plasma membrane is impermeable to Ca
2+ (the closed-cell

model), then jinPM = j
out
PM = 0 and [Ca

2+]T is constant, even if [Ca
2+]i and [Ca

2+]ER ßuc-
tuate. This allows us to eliminate one differential equation. Because Ca2+ is conserved,
no information is lost, and we can recover [Ca2+]ER from the algebraic relation

[Ca2+]ER = ([Ca
2+]T − [Ca2+]i)/σ. (5.22)

Although the ER is necessarily smaller in volume than the cytosol, it can have
greater surface area because it is convoluted. If pump density is the same, the ER ßuxes
will then be larger than the plasma membrane ßuxes. One can study the inßuence of
ER surface area by multiplying the ER ßuxes by a common factor, but it may be more
convenient to factor out the ratio and make it explicit in the equations:

d[Ca2+]i
dt

= fi

µ
jinPM − joutPM −

1

λER
(jinER − joutER )

¶
(5.23)

d[Ca2+]ER
dt

=
fi
σλER

(jinER − joutER ) . (5.24)

The ratio of ER to plasma membrane surface area λER will be important in understand-
ing the gonadotroph and β-cell models below. Note that, in order to avoid introducing
yet more notation here, we have used the same j�s as in (5.15) and (5.16), however
(5.23) and (5.24) do not follow literally from (5.15) and (5.16).

5.1.2 Expressions for the Fluxes

The Þnal step in specifying a particular model is to replace the general terms
jinPM, j

out
PM, j

in
ER, and j

out
ER by appropriate biophysical expressions. Efflux from the cell is

generally mediated by a pump ßux, jPMCA, and inßux into the ER from the cytosol by
jSERCA. Similar pumps were discussed in detail in Chapter 3. In whole cell models we
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generally use empirical, Hill-type formulas for pump rate, of the form

jSERCA =
vSERCA · [Ca2+]2i
K2
SERCA + [Ca2+]

2
i

, (5.25)

rather than detailed kinetic models. The maximal pump rate vSERCA is proportional to
the total number of SERCA or PMCA pumps and to the rate of a single pump, and is
typically expressed here in µM/s.

Efflux from the ER to the cytosol often includes a constant, unregulated leak
conductance of the form

jLEAK = vLEAK · ([Ca2+]ER − [Ca2+]i), (5.26)

where vLEAK is the leak permeability (also expressed in µM/s) and ([Ca
2+]ER− [Ca2+]i)

is the thermodynamic driving force for a symmetric channel (see Exercise 2). Note that
there is no contribution of membrane potential to the ER driving force. It is generally,
though not universally, believed that there is no signiÞcant ER membrane potential
because of counterions that balance the ßuxes of Ca2+.

Interesting dynamics such as oscillations generally require nonlinear feedback on
the efflux rate by Ca2+. This can be mediated by the RyR, for which a detailed model
is presented in Section 5.2, or the IP3R, which was discussed in Chapter 4 and is further
developed in Section 5.3.

Ca2+ generally enters cells through ion channels. Ionic currents are measured in pA
(10−12 C/s) or nA (10−9 C/s), so an additional factor is needed to convert to µmoles:

jinPM = −αICa, (5.27)

where α = 1/(2FV i), F = 96480 C/mol is Faraday�s constant (F = eA = the ele-
mentary charge × Avogadro�s number), and the factor 2 accounts for the two positive
charges of a Ca2+ ion. As an example, if ICa is measured in pA, and cytosolic volume is
measured in µm3, then jinPM will have units of M/ms. Note that by the Hodgkin�Huxley
convention, an inward cation current such as ICa is negative, so the ßux is positive.

100 
 nM

60 sec

Figure 5.2 Steady state [Ca2+]i oscillations recorded from a
fura-2 loaded bullfrog sympathetic neuron during continuous ex-
posure to caffeine (5 mM) under mildly depolarizing conditions
(30 mM K+). Data provided by Dr. David Friel, Case Western
Reserve University.
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5.2 Calcium Oscillations in the Bullfrog Sympathetic
Ganglion Neuron

Bullfrog sympathetic ganglion neurons (BFSG) are excitable cells with a full com-
plement of voltage-dependent ion channels (see [Yamada et al., 1998]). However, the
Ca2+ oscillations modeled here are driven by nonlinearity in the ER, with the
plasma membrane playing only a passive role. As early as 1976, Kuba and Nishi
[Kuba and Nishi, 1976] observed rhythmic hyperpolarizations of the resting membrane
potential when the neurons were exposed to caffeine. See Figure 5.2. The BFSG is a
good model system for studying RyR-mediated Ca2+ oscillations in neurons.

These caffeine-induced oscillations also occur when the membrane voltage is
clamped at a Þxed value, suggesting that voltage-gated ion channels on the plasma
membrane are not involved in producing the oscillations. Caffeine has been found to
activate the RyR by shifting the Ca2+ dependence of channel opening to lower lev-
els of [Ca2+]i. Ryanodine, a speciÞc ligand of the RyR, blocks the response of these
neurons to caffeine by locking them into a low�conductance state. The oscillations in-
duced by caffeine have a very long period (several minutes), and the [Ca2+]i spikes
are characterized by a sharp upstroke followed by a plateau phase and a subsequent
downstroke. The upstroke is associated with the dumping of Ca2+ by the ER store;
the plateau phase is largely due to Ca2+ extrusion; and the downstroke is due to Ca2+

uptake by the store. Sustained Ca2+ entry is required during the interspike intervals,
suggesting that store reÞlling driven by Ca2+ inßux is necessary after each spike for the
generation of the subsequent spike. Therefore, increasing the rate of Ca2+ entry by de-
polarizing the membrane leads to shortened interspike interval and increased amplitude
[Friel and Tsien, 1992, Friel, 1995, Nohmi et al., 1992].

Figure 5.3 Adaptation response of cardiac RyR in lipid bilayers to release of caged Ca2+. Reprinted from
[Györke and Fill, 1993].
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5.2.1 Ryanodine Receptor Kinetics: The Keizer�Levine Model

Experimental investigations of the Ca2+-dependent gating properties of the RyR chan-
nels have provided data for the development of a mathematical model based on channel
kinetics. We begin with equations for the RyR receptor itself as studied in conditions
where [Ca2+]i is a parameter imposed by the experimenter. For example, in the exper-
iments of Györke and Fill [Györke and Fill, 1993], cardiac RyRs in lipid bilayers were
exposed to controlled Ca2+ elevations by ßash photolysis of a caged Ca2+ compound,
DM-nitrophen.

Here we present a minimal model designed to capture the key features observed
by Györke and Fill. (For an alternative model see [Tang and Othmer, 1994].) Like the
IP3 receptor, the RyR exhibits fast activation and slow inactivation in response to a
rise in Ca2+(Figure 5.3). A particularly interesting feature is that a second Ca2+ ßash
can �wake up� the channel and elicit more current. Another difference with the IP3
receptor is that the steady-state open probability is monotonic with respect to [Ca2+]i,
not bell-shaped. Keizer and Levine [Keizer and Levine, 1996] developed a model to
account for all three features observed in those experiments. The state diagram they
devised (Figure 5.5) consists of two closed states, C1 and C2, and two open states, O1

and O2. At rest (corresponding to a background [Ca
2+]i level of 0.1 µM), most of the

receptors are in state C1.
Both open states have the same conductance, so the net open probability is PO =

PO1 +PO2. The receptors respond to a step increase in Ca
2+ with a rapid rise in PO as

states O1 and O2 are populated, followed by a slow decline to a steady, plateau level as

[ ]

Figure 5.4 Dependence of peak and steady-state RyR current on Ca2+. Reprinted from [Györke and Fill, 1993].
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Figure 5.5 Kinetic states of the Keizer-Levine model for the
RyR.

states ßow into C2 (Figure 5.6A, solid curve). Figure 5.6B shows the peak and plateau
values attained after a step from [Ca2+]i = 0.1 µM to the indicated value. (Note that
the jump to the peak depends on the initial conditions, which determine the number
of receptors in C1 available to be recruited by the Ca

2+ step.) During the short time
shown in Figure 5.6, there is little back ßow out of C2, but a further increase in [Ca

2+]i
draws more receptors out of C1 into the open states (Figure 5.6A, arrow and dashed
curve).

The full four�state model is described by three independent ODEs plus a conser-
vation condition for the total number of channels: PO1 + PO2 + PC1 + PC2 = 1. We can
apply the methods of Chapter 4 to derive a quasi-steady-state approximation (Exercise
3) assuming that PC2 is slow, while the other states are in rapid equilibrium:

PO ≈ P slow
O =

w · (1 + ([Ca2+]i/Kb)
3)

1 + (Ka/[Ca2+]i)4 + ([Ca2+]i/Kb)3
, (5.28)

where P slow
O is proportional to w = 1 − PC2, which is the fraction of noninactivated

receptors. In terms of probabilities,

Pr{Open} = Pr{Not Inactivated} · Pr{Open|Not Inactivated}.
Given [Ca2+]i, w is calculated from the differential equation

dw

dt
=
(w∞([Ca

2+]i)−w)
τ([Ca2+]i)

(5.29)

with

w∞([Ca
2+]i) =

1 + (Ka/[Ca
2+]i)

4 + ([Ca2+]i/Kb)
3

1 + (1/Kc) + (Ka/[Ca2+]i)4 + ([Ca2+]i/Kb)3
(5.30)

and

τ([Ca2+]i) =
w∞([Ca

2+]i)

k−c
. (5.31)

As we did for the gating variables in Chapter 2, it is natural to write a pseudo-
exponential rate equation for w because changes in w are exponential for Þxed [Ca2+]i.
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Figure 5.6 Keizer�Levine model: (A) Time course of response of PO to a step increase in [Ca
2+]i from

0.1 to 0.35 µM (solid). Dotted curve shows �adaptation� when a second step to 0.7 µM is applied at t = 2
s. (B) Peak and steady-state levels of PO for different values of [Ca2+]i. (see [Keizer and Levine, 1996],
Figure 5.3, and Figure 5.4, this chapter.) Parameters: k+a = 1500 µM−4/s, k−a = 28.8/s, k+b = 1500
µM−3/s, k−b = 385.9/s, k

+
c = 1.75/s, k

−
c = 0.1/s).

Note that the rate constants of the fast processes no longer appear, just the dissociation
constants, deÞned by K4

a = k
−
a /k

+
a , K

3
b = k

−
b /k

+
b , and Kc = k−c /k

+
c . The slow time scale

τ is inversely proportional to k−c , the rate of transition out of state C2.

5.2.2 Bullfrog Sympathetic Ganglion Neuron Closed�Cell Model

We proceed to write down the equations for a closed cell using (5.15) (with jinPM = j
out
PM =

0) together with appropriate expressions for the ßuxes due to the ryanodine receptors,
a leak out of the ER, and a SERCA pump:

d[Ca2+]i
dt

= fi(jRyR + jLEAK − jSERCA). (5.32)

The RyR ßux is

jRyR = vRyRPO · ([Ca2+]ER − [Ca2+]i), (5.33)

where vRyR (also in µM/s) is proportional to the number of RyRs and PO is the proba-
bility that a receptor is open. (Note that here we are generalizing (5.26) for a symmetric
leak channel, but symmetry is only an approximation for the RyR. See Exercise 2.) We
use the quasi-steady-state approximation (5.28)�(5.31) of the previous section for PO.
Because of conservation of ions, we do not need a differential equation for [Ca2+]ER, but
just the algebraic relation (5.22).
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The leak is given by

jLEAK = vLEAK · ([Ca2+]ER − [Ca2+]i), (5.34)

and the pump ßux is

jSERCA = vSERCA · [Ca2+]2i
[Ca2+]2i +K

2
SERCA

. (5.35)

The closed cell model consists of the two differential equations for [Ca2+]i (5.32)
and w (5.29) plus the associated algebraic equations.

With the parameters given in Figure 5.7, the model is not able to produce os-
cillations, but instead is bistable; it can assume either a high-[Ca2+]i steady state or
a low-[Ca2+]i steady state. This behavior can be understood by examining the phase
plane, which is possible because we reduced the kinetic equations for the RyR to one
slow equation. In the closed-cell model total Ca2+ ([Ca2+]T) is constant, and this is
a natural parameter to use to characterize the system. For low values of [Ca2+]T, the
steady-state [Ca2+]i is low, and w is high (few receptors are adapted). For high values
of [Ca2+]T, steady-state [Ca

2+]i is high, and w is low (many receptors are adapted).
For intermediate values of [Ca2+]T there are three steady states. Examination of the
eigenvalues of the Jacobian in this case reveals that the low and high steady states
are stable nodes (see Appendix A), while the middle steady state is a saddle. Sample
nullclines are plotted in Figure 5.7A, and the summary of how the steady states vary
with [Ca2+]T (i.e., the bifurcation diagram) is plotted in Figure 5.7B. This global view
reveals a large region of bistability or hysteresis bracketed by two saddle-node bifurca-
tions (the turning points, where the determinant changes sign) that give birth to all of
the steady states in the system.

There is also a value of [Ca2+]T near the bottom turning point where there is a Hopf
bifurcation (the trace of the Jacobian changes sign; see Appendix A). Geometrically, the
w-nullcline intersects the [Ca2+]i-nullcline with a more negative slope. The oscillations
born at this point, however, are small in amplitude and unstable. By making a small
change in the Ca2+-handling parameters it is possible to obtain stable oscillations with
the closed-cell model (see Exercise 4). Nonetheless, Keizer and Levine concluded that
that this is not a good model for the oscillations observed by Friel and Tsien; they
are not robust (i.e., the oscillations only exist for a small range of [Ca2+]T), and it is
difficult to get oscillations with period greater than one minute. This is because the
time scale of the oscillations is determined by the reciproal of k−c , which is about 10
seconds. In order to obtain robust oscillations on the minute time scale, it is necessary
to add another, slower process to the system, which we do in the next section.

5.2.3 Bullfrog Sympathetic Ganglion Neuron Open�Cell Model

In the previous section we saw that adaptation of the RyR is not likely the mechanism
behind slow oscillations in the BFSG cell, and that another, slower, process is needed.
A natural extension suggested by the analysis of the closed cell is to make [Ca2+]T a
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Figure 5.7 Closed-cell Keizer�Levine model: (A) Nullclines for [Ca2+]i (solid) and w (dashed). (B) In-
tersections of nullclines (steady�states) in (A) for various values of [Ca2+]T. Parameters: As in Figure 5.5
plus: fi = 0.01, vRyR = 5/s, vLEAK = 0.2/s, vSERCA = 100 µM/s, KSERCA = 0.2 µM, σ = 0.02, Ka = 0.4
µM, Kb = 0.6 µM, Kc = 0.1 µM, k

−
c = 0.1/s, and [Ca

2+]T is in µM as indicated.
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Figure 5.8 Reduced open-cell Keizer�Levine model.
At time = 50 seconds, oscillations are initiated by
stepping jIN from 0 to 1.5. At time = 400 seconds,
oscillations are terminated by reducing jIN back to 0.
Parameters as in Figure 5.7 plus: vPMCA = 5.0 µM/s,
KPMCA = 0.6 µM, jIN = 1.5 µM/s (cf. Figure 5,
[Keizer and Levine, 1996]).

slow variable rather than a constant parameter. Biophysically, this allows for larger
variation in the Þlling state of the ER. We will see that in each cycle the stores almost
completely empty and reÞll. In other words, the net ßux in and out of the cell over a
cycle is 0, but there is a large efflux at some points in the cycle that is balanced by a
large inßux at other points.

The open�cell model expands on the closed�cell model by adding an equation to
describe changes in [Ca2+]T due to ßuxes into the cell and PMCA pumps that remove



114 5: Whole�Cell Models

Ca2+:

d[Ca2+]T
dt

= fi(jIN − jPMCA). (5.36)

The PMCA ßux is given by

jPMCA =
vPMCA[Ca

2+]2i
K2
PMCA + [Ca2+]

2
i

. (5.37)

Since oscillations occur under voltage clamp, we can represent inßux of Ca2+ as a
constant jIN (understood as inßux across the plasma membrane, in µM/s). The plasma
membrane ßuxes must also be included in the equation for [Ca2+]i:

d[Ca2+]i
dt

= fi(jRyR + jLEAK − jSERCA + jIN − jPMCA). (5.38)

The open cell model thus consists of three differential equations (5.29), (5.36), and
(5.38) and associated algebraic expressions for the ßuxes. We can collapse this system
back into just two equations for [Ca2+]i and [Ca

2+]T. This is justiÞed because variation in
w is fast compared to the oscillation period (see Exercise 6). We eliminate the equation
for w by writing w = w∞([Ca

2+]i). The RyR channel ßux is then given by

jRyR = vRyR · w∞([Ca
2+]i)(1 + ([Ca

2+]/Kb)
3)

1 + (Ka/[Ca2+]i)4 + ([Ca2+]i/Kb)3
([Ca2+]ER − [Ca2+]i) . (5.39)

Solutions of the reduced open cell model ((5.36) and (5.38) with jRyR replaced by the
expression in (5.39)) are shown in Figure 5.8. With adequate Ca2+ inßux, oscillations
of the right shape and duration are seen. However, if Ca2+ inßux is suppressed, say by
removal of external Ca2+, the oscillations cease immediately, also in agreement with
experiment [Friel and Tsien, 1992].

The closed cell model can be viewed as the fast subsystem of the open cell. That
is, the bifurcation diagram of the closed cell model with [Ca2+]T as a parameter is

1.2 2.2 3.2
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[ C
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2+
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Figure 5.9 The bifurcation diagram of the closed�
cell Keizer�Levine model Figure 5.7 reinterpreted as
a phase plane of the reduced open�cell model Fig-
ure 5.8, with superimposed trajectory and [Ca2+]T
nullcline (horizontal line). Direction of motion along
trajectory indicated by arrows. Parameters as in Fig-
ure 5.7 but with jIN = 1.5µM/s (cf. Figure 3
[Keizer and Levine, 1996]).
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Figure 5.10 Bifurcation diagram of the reduced open
cell version of Keizer�Levine, showing the behavior of
the model as in Figure 5.7 and Figure 5.8 for a range of
values of jIN (cf. Figure 8 [Keizer and Levine, 1996]).

a phase plane of the reduced open cell model with [Ca2+]T as a slow variable (slow
compared to [Ca2+]i). We illustrate this by projecting the trajectory of the open cell
onto the diagram computed with the closed cell, supplemented with the nullcline for
[Ca2+]T (Figure 5.9). Moreover, we can predict from this that if jIN is increased so that
the [Ca2+]T nullcline intersects the S-shaped [Ca

2+]i nullcline above the upper limit
point or below the lower limit point, there will be no oscillations (see Exercise 5). This
is conÞrmed by the bifurcation diagram of the reduced open cell with respect to jIN
(Figure 5.10). Within the oscillatory range, variation of jIN produces a broad range
of frequencies, but almost no change in amplitude. This follows from the relaxation
oscillator character of the model (compare with discussion of the Morris�Lecar model,
Chapter 2).

5.3 The Pituitary Gonadotroph

Our next example of a whole�cell model is the coupling of electrical signaling and
Ca2+ signaling in gonadotrophs. Gonadotrophs are hormone�secreting (endocrine) cells
in the anterior part of the pituitary gland. Their physiological function is to release
gonadotropins (gonad-stimulating hormones) when they themselves are stimulated by
a hormone, gonadotropin-releasing hormone (GnRH), that is secreted by endocrine
neurons in the hypothalamus of the brain. Ca2+ signaling is crucial for these cells to
fulÞll their secretory functions, which are part of the complex neuro-endocrine control
of reproduction in mammals. Physiological levels of GnRH have been shown to trigger
large�amplitude Ca2+ oscillations in cultured gonadotrophs. It has further been shown
that these oscillatory Ca2+ signals are directly coupled to the exocytosis of hormone-
containing vesicles in these cells [Tse et al., 1993]. These Ca2+ signals can become more
complex, because gonadotrophs are excitable cells capable of generating Ca2+ action
potentials that drive Ca2+ from the extracellular medium into the cell in an oscillatory
manner. Thus, gonadotrophs are equipped with two distinct mechanisms of generating
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Figure 5.11 Burst Þring driven by repetitive releases of Ca2+ from the ER in a pituitary gonadotroph
stimulated by GnRH. Data provided by Drs. Stanko Stojilković and Fred van Goor, National Institute of
Child Health and Development, N.I.H.

dynamic Ca2+ signals, one due to voltage gated Ca2+ entry (PM oscillator) and the
other due to the oscillatory release of Ca2+ from the intracellular store (ER oscillator).
These two dynamic signaling systems are coupled by the Ca2+ and Ca2+-activated K+

ion channels in the plasma membrane. This makes the gonadotroph an ideal system
to study complex Ca2+ signaling mechanisms and to apply the modular approach of
model development.

One dramatic manifestation of the ER�plasma membrane interaction is shown in
Figure 5.11. The unstimulated gonadotroph exhibits low-frequency spiking and low
[Ca2+]i. After GnRH is applied, Ca

2+ oscillations due to repetitive releases of Ca2+ from
the ER appear. Each Ca2+ rise turns on Ca2+-activated K+ channels and transiently
interrupts the Þring, resulting in repetitive bursting.

We begin with the ER oscillator and then add in the plasma membrane oscillator,
culminating in a comprehensive model that can reproduce the burst pattern like that
in Figure 5.11.

5.3.1 The ER Oscillator in a Closed Cell

As for the BFSG, it is useful to study the gonadotroph Þrst in the closed-cell case, when
the ER oscillator is decoupled from the PM oscillator. This allows us to concentrate on
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the intracellular mechanisms that are independent of the inßuence of Ca2+ exchange
across the plasma membrane.

ER-mediated Ca2+ oscillations in gonadotrophs are linked to the activation of IP3
receptor channels. In contrast to the caffeine-induced Ca2+ oscillations in the bull-
frog sympathetic neurons, mediated by the RyR, the ER-dependent Ca2+ oscillations
in gonadotrophs are induced by the endogenous intracellular messenger IP3 produced
when the physiological ligand GnRH binds to its receptors on the surface of the cell.
Agonist-induced Ca2+ oscillations in a large number of cell types including gonadotrophs
are generated by the dynamic interactions between IP3 channels and SERCA pumps
expressed in the membrane of the intracellular Ca2+ store (ER or SR). Of crucial im-
portance are the Ca2+-dependent gating properties of the IP3 channels. As discussed
in Chapter 4, cytosolic free Ca2+ can both activate and inactivate the opening of IP3
channels. This leads to the characteristic bell-shaped Ca2+-dependence of steady-state
channel opening with the peak typically located at the mid-submicromolar level of
Ca2+ (see Figure 4.11 in Chapter 4; [Iino, 1990, Bezprozvanny et al., 1991]). It has
also been shown that Ca2+-dependent activation occurs on a faster time scale than
Ca2+-dependent inactivation [Parker and Ivorra, 1990, Finch et al., 1991].

The De Young�Keizer model [DeYoung and Keizer, 1992] that was discussed in
Chapter 4 was the Þrst model to incorporate all these experimental data. Other
models based on similar data were developed later, including important simpliÞ-
cations by Li and Rinzel [Li and Rinzel, 1994], Atri et al. [Atri et al., 1993], and
Othmer and Tang [Othmer and Tang, 1993]. These models have in common that
both positive and negative feedback reside in the IP3R itself, in contrast with two
earlier classes of models. In one class of models, oscillations depend on the inter-
action of two separate internal pools of Ca2+, one responsive to IP3 and one to
Ca2+[Kuba and Takeshita, 1981, Goldbeter et al., 1990a]. In another, IP3 itself had
to oscillate [Meyer and Stryer, 1988, Cuthbertson and Chay, 1991]. It is possible that
the latter class of models corresponds to a distinct class of oscillations in cells
[Thomas et al., 1996]. Yet another model that differs from all of the above in that
it neither requires IP3 nor involves calcium-induced calcium release is proposed in
[Dolmetsch and Lewis, 1994]. Though we will not describe these other models in detail,
they make good starting points for independent study.

Differences in the time scales of channel gating are attributed to differences in the
binding constants of IP3 and Ca

2+ to their binding sites on the IP3 channels. This
assumption, although not necessarily an accurate description of the real system, leads
to a simple model that gives results that are identical to the observed ones. Even if
the time scale differences are actually due to mechanisms other than differences in the
binding constants, the resulting model would be qualtitatively the same mathematically.
Here we use a simpliÞed version of the model due to Li and Rinzel [Li and Rinzel, 1994].
For a closed cell at a Þxed level of IP3, the Li�Rinzel simpliÞcation involves only two
dynamic variables: [Ca2+]i and h, the fraction of channels not inactivated by Ca

2+ and
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hence available to open. The equations are

d[Ca2+]i
dt

=
fi

V i

(JoutER − J inER) , (5.40)

dh

dt
= A [Kd − ([Ca2+]i +Kd)h] , (5.41)

with A a variable to control the relative time scale between the two differential equa-
tions. This simpliÞed model gives as good a Þt to the experimental data as the original
model it was based on. Filling in expressions for JoutER , which is the sum of a small con-
stitutive leak and the [Ca2+]i and IP3 regulated ßux through the IP3 receptors, and for
J inER we have

JoutER =

"
L+

PIP3R[IP3]
3
[Ca2+]3i h

3

([IP3] +Ki)3([Ca2+]i +Ka)3

#
([Ca2+]ER − [Ca2+]i), (5.42)

J inER =
VSERCA[Ca

2+]2i
[Ca2+]2i +K

2
SERCA

, (5.43)

where PIP3R is the maximum total permeability of IP3 channels (in pL/s for consistency)
L is the ER leak permeability (also in pL/s) and VSERCA is the nonscaled maximum
SERCA pump rate (in aMol/s = 10−18mol/s). The constantKSERCA is the Ca

2+ level for
half maximal activation of the SERCA pump and Ki, Ka, and Kd are the dissociation
constants of IP3, Ca

2+-activation, and Ca2+-inactivation sites on the IP3R, respectively
(all expressed in µM). As for the BSFG closed-cell model, [Ca2+]T is a given constant,
and we obtain [Ca2+]ER from ([Ca2+]T − [Ca2+]i)/σ.

For any model, it can greatly deepen our understanding to scale the variables and
parameters to achieve a dimensionless form of the equations. This process often reveals
that some of the parameters do not affect the dynamical behavior independently, and
they can be combined. In the present case, the number of parameters can be reduced
from 10 in the original equations (including σ) to 6 in the scaled form. (Compare (5.42)
and (5.43) with (5.44) and (5.45).) There are often multiple ways of scaling the same
system. One strategy is to scale the dependent variables so that their magnitudes are
of order one, which facilitates comparison of magnitudes, and to achieve a maximum
reduction in the number of independent parameters. The h variable in the equations
above is already dimensionless. We can scale [Ca2+]i by either Ka or Kd. We choose Kd,
because this leaves only one independent parameter in the h equation. Once we have
made this choice, [Ca2+]ER, [Ca

2+]T, Ka, and KSERCA should also be scaled by Kd:

�c = [Ca2+]i/Kd,

�cE = [Ca
2+]ER/Kd,

�cT = [Ca
2+]T/Kd,

�ka = Ka/Kd,

�kS = KSERCA/Kd.
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It is natural to scale the IP3 concentration by Ki, and as a result, L and VSERCA
need to be scaled accordingly:

�õ = I/Ki,

�l = L/PIP3R,

�vS =

µ
σ

KdPIP3R

¶
VSERCA.

Finally, scaling time as follows cleans up all the constants on the left�hand side of
the [Ca2+]i equation:

�t =

µ
PIP3Rfi

σV i

¶
t,

which leaves the following to clean up the h equation:

�a =

Ã
σV iKd

PIP3Rfi

!
A.

The Þnal result is

d�c

d�t
=

"
�l +

Ã
�õ�ch

(�õ+ 1)(�c+ �ka)

!3#
(�cT − σ1�c)− �vS�c2

�c2 + �k2S
, (5.44)

dh

d�t
= �a[1− (�c+ 1)h], (5.45)

where σ1 = 1+ σ and �cE can be recovered from �cE = (�cT −�c)/σ. Note that, in order to
have Ca2+ and time come out as recognizable quantities, the plots to follow in Section
5.3 have all been created with the dimensional forms of the models discussed, and
therefore are expressed in �real world� units. Several exercises consist of comparing the
dimensional and dimensionless versions of the models.

Agonist-induced and IP3R Ca2+ oscillations in different cell types can have very
different frequency, amplitude, and spiking proÞles. However, they all share the follow-
ing features: (1) oscillations occur only at intermediate levels of IP3 concentration; (2)
the oscillation amplitude is almost constant for different levels of IP3; (3) the oscilla-
tion period decreases as the IP3 level increases; (4) the oscillations can occur without
a constant Ca2+ inßux from the extracellular medium, even if the stores are depletable
(Ca2+ just shuttles back and forth between the ER and the cytosol). Because the above
model was based on key experimental data and is a general model of IP3-triggered Ca

2+

oscillations, it should reproduce all these common features. Feature (4) is automatically
satisÞed here, because the model is for a closed cell that is isolated from the extracel-
lular medium. Figure Figure 5.12, created with the dimensional version of the model,
shows that the model indeed exhibits all the other features. Properties (2) and (3)
suggest that the agonist concentration is transmitted to the cell in terms of frequency
rather than amplitude, termed frequency encoding [Goldbeter et al., 1990a].
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Figure 5.12 Closed-cell gonadotroph model (dimensional equations (5.40)�(5.43)): (A) Steady-state
(curves) and periodic (circles) solutions plotted against [IP3]. Dotted curves and open circles denote
unstable steady-state and periodic solutions. The amplitude remains almost unchanged within the range of
[IP3] values that produce oscillations. (B) Oscillation period is a decreasing function of [IP3]. Parameters:
fi = 0.01, V i = 4 pL, L = 0.37 pL/s, PIP3R = 26640 pL/s, Ki = 1.0 µM, Ka = 0.4 µM, VSERCA = 400
aMol/s, KSERCA = 0.2 µM, A = 0.5/s, Kd = 0.4 µM, σ = 0.185, [Ca2+]T = 2 µM, [IP3] = µM as
indicated.

This very simple model not only reproduces well-established experimental observa-
tions but also predicts other possible ways Ca2+ oscillations can be induced. These can
easily be shown by the phase plane analysis of (5.44)�(5.45). The equations for the two
nondimensional nullclines can be solved explicitly:

The �c-nullcline: h =
(1 +�õ)(�c+ �ka)

�õ�c

"
�vS�c

2

(�c2 + �k2S) (�cT − σ1�c)
−�l
#1/3

, (5.46)

The h-nullcline: h =
1

1 + �c
. (5.47)

If we look at plots of the dimensional versions of the nullclines shown in Figure
5.13, the [Ca2+]i-nullcline is �N-shaped� between two asymptotes: One is the vertical
axis (i.e., [Ca2+]i = 0) where h approaches negative inÞnity, and the other one is at
[Ca2+]i = [Ca2+]T/σ1 where h approaches positive inÞnity. This nullcline crosses the
horizontal axis at [Ca2+]i ≈ [Ca2+]i

∗
= KSERCA

p
L[Ca2+]T/VSERCA. The value [Ca

2+]i
∗

is also the approximate value of the basal level of Ca2+ at equilibrium. This expression
thus shows the dependence of the basal Ca2+ level on the key parameters KSERCA, L,
[Ca2+]T and VSERCA. The h-nullcline is a monotonically decreasing function of [Ca

2+]i.
These two nullclines can intersect each other at either one single point or at three points
depending on the choice of parameter values. Since we are interested in the conditions
for the occurrence of oscillations, we focus here on the case in which the two intersect
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Figure 5.13 Phase plane diagrams for the dimensional version of closed-cell gonadotroph model showing
how the [Ca2+]i-nullcline moves in response to changes in (A) [IP3], (B) SERCA pump rate VSERCA, and
(C) the leak permeability L. In each panel, the monotonically decreasing h-nullcline is always plotted in
thick, solid curve while the [Ca2+]i-nullclines are plotted in different line types, because they correspond
to different parameter values. The thick, solid [Ca2+]i-nullcline in each panel corresponds to the parameter
value that destabilizes the steady state and yields oscillations. Parameters as in Figure 5.12 except as
indicated in the Þgure.
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at one single point (Figure 5.13). This point is the equilibrium, or steady-state, solution
of the system at which the rate of Ca2+ release from the store exactly matches the rate
of Ca2+ uptake. Oscillations occur when this steady state becomes unstable.

Phase plane analysis (Figure 5.13) indicates that instability of the steady state
can be achieved in several possible ways. In all cases, the presence of a basal level of
IP3 is a prerequisite. Notice that the h-nullcline is independent of any parameter and
remains unchanged in all panels (the solid, monotonically decreasing curve). In the top
panel, the [Ca2+]i-nullcline is plotted for three different values of [IP3]. The [Ca

2+]i-
nullcline moves downward as [IP3] increases such that the intersection between the two
nullclines occurs at a larger value of [Ca2+]i and a lower value of h. The following is an
intuitive explanation of why this is the natural consequence when [IP3] is increased. In
order to maintain balanced rates of Ca2+ release and uptake at the equilibrium when
Ca2+ permeability of IP3 channels is increased, more channels need to be inactivated at
the same level of [Ca2+]i. Because increased inactivation happens at lower values of h,
the nullcline moves downward when [IP3] increases. Instability occurs at intermediate
values of [IP3], i.e., when the [Ca2+]i-nullcline is moved downward so that it crosses the
h-nullcline at locations where its slope is more negative. But the downward movement
of the [Ca2+]i-nullcline can also be achieved at Þxed basal [IP3] levels that are not
themselves high enough to destabilize the equilibrium. One alternative is to decrease
the value of VSERCA (middle panel). This can be achieved experimentally by applying a
drug called thapsigargin that speciÞcally blocks the SERCA pump. Another alternative
is to increase the leak permeability of the ER membrane (bottom panel). This can be
realized by applying ionomycin, a drug that makes holes in the ER membrane. There
are two other ways to cause instability at basal levels of [IP3] (Exercise 7). One is to
lower the value of Ka, which means increased affinity of the activation site for Ca

2+.
The other is to increase [Ca2+]T. This is equivalent to overloading the ER store, which
is known experimentally to result in increased excitability of the system.

5.3.2 Open�Cell Model with Constant Calcium Inßux

Now let us study the same model in the case where the cell is no longer closed. In an
open cell, Ca2+ can ßow into the cell from the extracellular medium and vice versa. As
in the BFSG, �cT is no longer a constant since unbalanced Ca

2+ exchange across the
cell surface will change its value. Returning again to the nondimensional form, such an
open cell model involves three dynamical variables, �c, �cE, and h, satisfying

d�c

d�t
= �rel(�c, h,�cT)− �Þl(�c) + ² [�in − �out(�c)] , (5.48)

d�cE

d�t
= −[�rel(�c, h,�cT)− �Þl(�c)]/σ, (5.49)

dh

d�t
= �a [1− (�c+ 1)h] , (5.50)
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where �rel and �Þl are the nondimensional ER ßuxes from (5.44)�(5.45):

�rel =

"
l +

Ã
�õ�ch

(�õ+ 1)(�c+ �ka)

!3#
(�cT − σ1�c),

�Þl =
�vS�c

2

�c2 + �k2S
,

and

�out =
�vP�c

2

�c2 + �k2P
(5.51)

is the nondimensional form (see Exercise 8) of the plasma membrane PMCA pump
(5.37).

Note that the plasma membrane ßux terms in (5.48) are multiplied by a small
dimensionless parameter ² = 1/λER, which is the ratio of plasma membrane to ER
surface area (see (5.23) and (5.24)). The ßuxes, jinPM, j

out
PM, j

in
ER, and j

out
ER are implicitly

proportional to the surface area of the respective membranes, whereas the introduction
of ² allows explicit comparison between the magnitudes of the respective Ca2+ ßuxes.

Using �cT = �c+ σ�cE, we can replace the �cE equation with an equation for �cT:

d�cT

d�t
= ²

"
�in − �vp�c

2

�c2 + �k2p

#
. (5.52)

The nondimensional formulation makes it clear that �cT is a slow variable because plasma
membrane ßuxes are much smaller than ER ßuxes in the gonadotroph, and hence ² is
very small.

For simplicity, we Þrst study the case where �in is a constant. This corresponds to the
experimental situation in which the cells are voltage clamped [Kukuljan et al., 1994].
Figure 5.14 shows a case, for the dimensional version of the model, in which the cell is
clamped Þrst at a voltage that is not too negative and JIN is large enough to sustain
large�amplitude Ca2+ oscillations and a Þlled store. However, when the clamping voltage
is switched to a more negative value (at t = 40), JIN is nearly 0, so that there is only
Ca2+ extrusion but no Ca2+ inßux at the cell surface. A similar situation can occur when
the cells are placed in Ca2+-deÞcient or zero Ca2+ medium. Contrary to the caffeine-
induced Ca2+ oscillations in bullfrog sympathetic neurons of Figure 5.8, the absence of
Ca2+ inßux does not kill the oscillation immediately. Instead, the amplitude gradually
decreases as the store empties and stops only when the store is nearly depleted (Figure
5.14B).

This phenomenon can be understood by the bifurcation analysis of the �fast sub-
system� of the open cell model. Recall that �cT is a �slow� variable and can be treated
as a parameter of the fast subsystem. Assuming that ² = 0, this fast subsystem is
identical to the closed�cell model presented in the previous subsection. The bifurcation
diagram for the dimensional version of this model with respect to [Ca2+]T for a Þxed
value of [IP3] is shown in Figure 5.15A. It shows that oscillations can occur only at
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Figure 5.14 Open-cell gonadotroph
model (dimensional form of (5.48)�
(5.52)) with constant Ca2+ inßux JIN.
Time series for [Ca2+]i (A) and [Ca

2+]T
(B) are shown for two different values of
JIN. When JIN = 1200 (time between 0
and 40), sustained oscillations in [Ca2+]i
are obtained with high [Ca2+]T. After
JIN is switched from 1200 to 0 (time
> 40), the oscillations continue, but the
amplitude and the frequency decrease.
Eventually, the store becomes depleted,
as reßected by the low level of [Ca2+]T.
The oscillations stop when the store be-
comes depleted. Parameters as in Figure
5.12 except: [IP3] = 0.9 µM, ² = 0.01,
VPMCA = 2000 aMol/s, KPMCA = 0.3
µM, JIN aMol/s as indicated.

intermediate values of [Ca2+]T and that the oscillation amplitude decreases as [Ca2+]T
decreases. Figure 5.15B shows that the oscillation period increases (i.e., the frequency
decreases) as [Ca2+]T decreases. Superimposed on the bifurcation diagram in Figure
5.15A are the projected trajectories taken from Figure 5.14A.

5.3.3 The Plasma Membrane Oscillator

Extensive studies of the plasma membrane (PM) oscillator have revealed the major
types of ion channels that are expressed in gonadotrophs as well as the detailed gating
properties of these channels. The oscillations in the PM potential occur spontaneously
in the absence of any hormonal signal. They are generated by several voltage-gated ion
currents including L-type (noninactivating) and T-type (transient) Ca2+ currents, a Na+

current that is not essential, and a delayed rectiÞer K+ current. There exists another K+

channel that is of great importance to this cell: the K(Ca) (Ca2+-activated K+) channel
that is sensitive to apamin (see, e.g., [Hille, 2001]). Although the K(Ca) channels are
not involved in producing the voltage spikes, they provide the key link between the ER
oscillator and the PM oscillator. This is because these channels are activated when the
cytosolic Ca2+ level reaches peak values, resulting in the disruption of tonic spiking in
PM potential and the hyperpolarization of the cell. A realistic model of this oscillator
based on experimental data can be found in [Li et al., 1995b]. Here, however, we use a
much simpler model of the PM oscillator based on a modiÞed Morris�Lecar model to
demonstrate how the system works.
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Figure 5.15 Bifurcation in the dimensional version of the open-cell gonadotroph model: (A) Steady states
(curves) and periodic solutions (circles) versus the total intracellular Ca2+ level [Ca2+]T. The oscillation
amplitude decreases signiÞcantly as [Ca2+]T decreases. (B) The oscillation period increases as [Ca

2+]T
decreases. Superimposed on the bifurcation diagram in (A) are the projected trajectories for JIN = 1200
(dashed) and JIN = 0 (solid) from Figure 5.14.

All we need is a model that generates Ca2+ action potentials spontaneously such
that each AP spike is associated with the entry of a quantum of Ca2+ into the cell.
The Morris�Lecar model (see Section 2.4) is the simplest possible model of this kind,
involving only an L-type Ca2+ current and a delayed rectiÞer K+ current. The main
modiÞcation involves introducing the K(Ca) current, which is absent in the original
Morris�Lecar model but is crucial for gonadotrophs. Note that Iapp and the leak cur-
rents are removed from the original model (2.30)�(2.34). The equations governing the
gonadotroph plasma membrane oscillator are then

Cm
dV

dt
= −gCam∞(V − VCa)−

"
gKw +

gK(Ca)[Ca
2+]i

4

[Ca2+]i
4
+K4

K(Ca)

#
(V − VK), (5.53)

dw

dt
= φ(w∞ −w)/τ, (5.54)

where [Ca2+]i is again the Ca
2+ level in the cytosol but is here a parameter for the

plasma membrane model.
The voltage�dependent equilibrium open fractions for the channel states and the

voltage�dependent activation time constant for the delayed rectiÞer are, as before:

m∞(V ) = 0.5[1 + tanh((V − v1)/v2)],
w∞(V ) = 0.5[1 + tanh((V − v3)/v4)],
τ(V ) = 1/ cosh((V − v3)/(2 · v4)).
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At low levels of [Ca2+]i, the system generates continuous spiking. When [Ca2+]i is
larger than a certain threshold value, it hyperpolarizes the membrane potential. Also,
when the plasma membrane voltage undergoes tonic spiking, Ca2+ enters the cell and
increases [Ca2+]i. We take this into account in the next section.

5.3.4 Bursting Driven by the ER in the Full Model

A full model of Ca2+ signaling in agonist-stimulated gonadotrophs involves both the
ER oscillator and the PM oscillator. Having studied all the ingredients of this model,
we now combine the modules into a complete, realistic model described by the following
Þve differential equations:

dV

d�t
= −�õCa −�õK −�õK(Ca), (5.55)

dw

d�t
= φ(w∞ −w)/�τ , (5.56)

d�c

d�t
= �jrel(�c, h,�cT)− �jÞl(�c) + ²

"
−�α�õCa − �vp�c

2

�c2 + �k2p

#
, (5.57)

dh

d�t
= �a[1− (�c+ 1)h], (5.58)

d�cT

d�t
= ²

"
−�α�õCa − �vp�c2

�c2 + �k2p

#
, (5.59)

where

�õCa = �gCam∞(V − VCa),
�õK = �gKw(V − VK),

�õK(Ca) = �gK(Ca)
�c4

�c4 + �k4K(Ca)
(V − VK),

and �α is the non-dimensionalized factor that converts the current ßux into the ion ßux
of Ca2+ (5.27). Note that IK(Ca) is now expressed in terms of the nondimensional �c

(with �kK(Ca) = KK(Ca)/Kd), and the conductances have been scaled, eliminating Cm as
a parameter. For example,

�gCa = gCa

Ã
σV i

CmPIP3Rfi

!
.

The nondimensional voltage�dependent time constant τ(V ) is given by

�τ(V ) = τ(V )

µ
PIP3Rfi

σV i

¶
.

The effects of the ER oscillator on the PM oscillator are determined by IK(Ca).
Whenever �c is high, it activates IK(Ca), which hyperpolarizes the PM potential and
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Figure 5.16 Full gonadotroph model (Equations (5.55)�(5.59) in dimensional form): bursting as a result
of interaction between the plasma membrane oscillator and the ER oscillator. Plasma membrane voltage V
(A), cytosolic calcium level [Ca2+]i (B), and the store calcium content [Ca

2+]ER (C) are shown. Each spike
in [Ca2+]i hyperpolarizes the plasma membrane by activating calcium�sensitive potassium channels. ER
parameters as in Figure 5.14 except: L = 1.48 pL/s, P = 2960 pL/s, Ki = 0 µM, A = 2/s, VSERCA = 480
aMol/s, Vp = 400 aMol/s. Plasma membrane (Morris�Lecar) parameters: VK = −85 mV, VCa = 120 mV,
KK(Ca) = 0.5 µM, Cm = 1 µF/cm

2, gK = 20 µS/cm
2, gCa = 20 µS/cm

2, gK(Ca) = 8 µS/cm
2, φ = 12/s,

v1 = −3 mV, v2 = 30 mV, v3 = −20 mV, v4 = 30 mV, α = 0.2 (aMol·cm2)/nC.

inhibits the PM oscillator. The effects of the PM oscillator on the ER oscillator are
mediated by the term −αICa, which describes the Ca2+ inßux through voltage gated
Ca2+ channels. As shown in the previous section, this inßux leads to a fuller ER store
and makes the ER more excitable. Thus, the voltage spikes activate the ER oscillator.
The interaction of the two oscillators gives rise to bursting of the PM potential (Figure
5.16). Compare with Figure 5.11. Such bursting is mainly driven by the ER oscillator,
which periodically hyperpolarizes the plasma membrane. However, the PM oscillations
are indispensable for maintaining the bursting, because the Ca2+ entry that accompa-
nies each voltage spike compensates the loss of Ca2+ to the extracellular medium and is
thus key in preventing the store from depleting (see [Li et al., 1997] for details of such
interactions).
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Figure 5.17 Full gonadotroph model: bifurcation
diagram for the dimensional form of the fast subsys-
tem (plasma membrane oscillator) with superimposed
trajectory from Figure 5.16.

In Figure 5.17 the dimensional bifurcation diagram of the fast subsystem (the PM
oscillator) with respect to [Ca2+]i is shown with the trajectory of the bursting oscil-
lations in the top panel of Figure 5.16 superimposed. Notice that the PM voltage V
follows the diagram well during the spiking phase, when [Ca2+]i changes slowly. But
during the [Ca2+]i spike, which is fast, the trajectory does not follow the diagram closely.

5.4 The Pancreatic Beta Cell

Pancreatic β-cells secrete insulin, the hormone that maintains blood plasma glucose
within narrow limits in the face of variable food ingestion and physical activity pat-
terns. Insulin allows muscle to take up glucose for immediate energy, causes the liver to
store glucose as glycogen for medium-term energy storage, and signals fat cells to use
glucose for fat deposition for long-term energy storage. Diabetes is a disease in which
glucose is chronically elevated, leading to blindness, kidney failure, limb amputation,
cardiovascular disease, and death. Type I (�juvenile�) diabetes is the result of an ab-
solute lack of insulin following auto-immune destruction of the β-cells. Type II (�adult
onset�) diabetes, the more common variety, involves a relative lack of insulin, usually
as a result of two defects: insulin resistance (higher than normal concentrations of in-
sulin are required for glucose processing) and failure of the β-cells to produce enough
insulin to compensate. The rising tide of diabetes in the industrialized nations suggests
that Type II diabetes is a maladaptive response to a toxically energy-rich food envi-
ronment, with genes governing the susceptibility of individuals. For an entree into the
vast literature on glucose homeostasis and diabetes see [Porte, Jr., 1990, Taylor, 1999].

A number of aspects of this system have been modeled, including the kinetics of
insulin secretion [Grodsky, 1972], the etiology of diabetes as β-cells fail to compensate
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Figure 5.18 Simultaneous recording of membrane potential bursts and Ca2+ oscillations from a pancreatic
islet of Langerhans. V recorded by perforated patch on a peripheral β-cell. [Ca2+]i recorded from whole
islet using fura-2. Data provided by Drs. Les Satin and Min Zhang, Virginia Commonwealth University.

[Topp et al., 2000], insulin action [Quon and CampÞeld, 1991a, Quon and CampÞeld, 1991b],
and whole-body plasma insulin oscillations (see [Keener and Sneyd, 1998, Chapter 19]).

Here we limit our attention to the electrical activity and Ca2+ oscillations used by
the β-cell to regulate insulin secretion. In terms of cell physiology, the β-cell closely
resembles the pituitary gonadotroph. Both are endocrine cells in which secretion is
controlled by [Ca2+]i, which is in turn regulated to a large degree by bursting, and they
share many mechanistic elements such as K(Ca) channels and IP3 receptors. However,
there are important and interesting differences from that point on. Bursting in β-cells
is primarily driven by the plasma membrane oscillator, though the ER probably plays
a signiÞcant role at least in modulating the burst mechanism.

These characteristics are shared with many neurons, and β-cells provided an
early paradigm for modeling of bursting. See [Rinzel and Ermentrout, 1998b] or
[Keener and Sneyd, 1998].

The models discussed in this section are complementary to the Keizer�Maki model
in Chapter 4. The latter considers insulin oscillations but does not explicitly treat the
Ca2+ inßux that leads to insulin secretion. Here we treat Ca2+ inßux in detail, but
assume that secretion increases with mean [Ca2+]i.
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We will focus on membrane-potential-driven [Ca2+]i oscillations, though β-cells have
occasionally been observed to exhibit oscillations driven by the ER, similar to those in
gonadotrophs. Ironically, the Keizer�DeYoung model for the IP3 receptor was originally
developed to explain this marginal phenomenon in β-cells, and was then ready at hand
for application to gonadotrophs.

One indication of the differences between β-cell and gonadotroph bursting is ap-
parent in Figure 5.18. This simultaneous recording of membrane potential and [Ca2+]i
oscillations shows that [Ca2+]i is high during the depolarized spiking phase of the bursts,
rather than during the hyperpolarized silent phase. Compare with Figure 5.11.

An important aspect of β-cell function that we will also have to neglect in this
chapter is the organization of the cells into electrically coupled populations, called the
islets of Langerhans. Here we take advantage of the observation that the cells in an
islet are synchronized. That is why the voltage of the single peripheral cell shown in
Figure 5.18B is in register with the [Ca2+]i signal (Figure 5.18A), which comes from
many cells in the islet. This allows us to study a simple single-cell model, which can be
taken as representative of the whole islet. More subtle effects of electrical coupling will
be discussed in Chapter 6. See also [Sherman, 1997].

5.4.1 Chay�Keizer Model

The model we use to illustrate β-cell bursting is based loosely on [Sherman et al., 1988],
recast in Morris�Lecar form. Bursting occurs in response to glucose, so no applied
current is needed. Morris�Lecar by itself can account for the spiking during the active
phase of a burst. In order to obtain cycling between bursting and silent phases, we need
to add a slow negative�feedback current. The Þrst hypothesis, proposed by Atwater,
Rojas, and colleagues [Atwater et al., 1980] and made into a mathematical model by
Chay and Keizer [Chay and Keizer, 1983], was that bursting was mediated by a K(Ca)
current. The idea was that [Ca2+]i would build up slowly during the spiking phase until
the inhibitory effect of the increased K+ current reached a sufficiently high level to
terminate the spiking. The K(Ca) current is represented as

IK(Ca) = gK(Ca)
[Ca2+]i

KK(Ca) + [Ca2+]i
(V − VK), (5.60)

and the modiÞed Morris�Lecar equations, supplemented by a slow equation for [Ca2+]i,
are

Cm
dV

dt
= −ICa(V )− IK(V, n)− IL(V )− IK(Ca)(V, [Ca2+]i), (5.61)

dw

dt
= φ

w∞(V )−w
τ(V )

, (5.62)

d[Ca2+]i
dt

= fi(−αICa(V )− vLPM[Ca2+]i). (5.63)
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Figure 5.19 Bursting and glucose sensing of the Chay�Keizer model, (5.61)�(5.63). Parameters: Cm =
5300 fF, gCa = 1000 pS, VCa = 25 mV, gK = 2700 pS, VK = −75 mV, Iapp = 0, v1 = −20 mV, v2 = 24,
v3 = −16 mV, v4 = 11.2 mV, φ = 0.035/ms, gL = 150 pS, VL = −75 mV, gK(Ca) = 2000 pS, KK(Ca) = 5
µM, f = 0.001, α = 4.5× 10−6 µM/(fA· ms), and vLPM as indicated.

Here fi is the fraction of free [Ca
2+]i, and α = 103/(2FV i) converts current in fA

to µM/ms (cf. (5.27)). The term vLPM[Ca
2+]i is a linearized representation of the

PMCA. We will refer to this model as �Chay�Keizer� for brevity because it is based on
the same mechanisms, but see [Chay and Keizer, 1983] for details of the original. For
nondimensionalization and applications, see [Pernarowski et al., 1992].

Numerical results are shown in Figure 5.19. Focusing Þrst on panels B and C, we
see that bursting can occur without participation of the ER; all that is needed is a slow
negative�feedback process, here supplied by [Ca2+]i.

Because [Ca2+]i varies very slowly, we can analyze the dynamics by decomposing
the system into simpler components, one fast and one slow. The Þrst step is to view
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[Ca2+]i as a parameter that controls the behavior of the fast subsystem, consisting of
V and n. In analogy to Figure 5.9, we construct the bifurcation diagram of the fast
subsystem with respect to [Ca2+]i. Figure 5.20A shows the resulting three-branched
Z-shaped curve (Z-curve) of steady states. The Z-curve is actually the projection into
the V -[Ca2+]i plane of the three-dimensional curve on which V and n are at steady
state. When [Ca2+]i is high, gK(Ca) is large, and the system goes to the lower branch
of low-voltage steady states. When [Ca2+]i is low, gK(Ca) is small, and V rises above
the threshold for activation of the voltage-dependent Ca2+ and K+ currents, generating
the depolarized upper branch. For intermediate values of [Ca2+]i there are three steady
states. The new steady states are born via saddle-node bifurcations, with the saddle
points making up the middle branch of the Z-curve.

The fast subsystem consists of two variables, not just one as was the case in Figure
5.9, so it can itself undergo oscillations, even with [Ca2+]i Þxed. These oscillations arise
via a Hopf bifurcation on the upper branch and correspond to the fast spikes during
a burst. For intermediate values of [Ca2+]i, the system is bistable: It can either be at
rest on the lower branch of the Z-curve or oscillate on the upper branch. Bursting is a
repetitive alternation between these two states. In order for this to occur, [Ca2+]i must
have appropriate slow dynamics, such that it increases when V is high and decreases
when V is low. We can interpret this geometrically by ignoring n and viewing the V -
[Ca2+]i bifurcation diagram as a V -[Ca2+]i phase plane (Figure 5.20B). The Z-curve
serves as a nullcline for V , and we add a nullcline for [Ca2+]i, which increases when
the phase point is above the [Ca2+]i nullcline and decreases when the point is below
the nullcline. Thus, in order for [Ca2+]i to rise during the active phase of each burst
and fall during the silent phase, the [Ca2+]i-nullcline must intersect the middle branch
of the Z-curve. If instead the [Ca2+]i-nullcline intersects the lower branch, the cell will
remain silent. If the [Ca2+]i-nullcline intersects the spiking branch, the cell can Þre
continuously; the inßux of [Ca2+]i during each spike exactly balances the removal.

To understand this analysis in depth, it is helpful to construct the phase planes
corresponding to different values of [Ca2+]i (Exercise 13). Of particular interest is the
key role of the homoclinic orbit (labeled HC in Figure 5.20A) in terminating the active
phase of each burst. See also [Sherman, 1997] or [Rinzel and Ermentrout, 1998b].

Returning to Figure 5.19, the sequence of panels illustrates how β-cells modify their
electrical activity according to the level of glucose. As glucose concentration increases,
the rate of the PMCA is here hypothesized to increase as well. For low glucose (low
pump rate), the cell is electrically silent (top panel). For glucose above a threshold
concentration, bursting appears (second panel). Further increases in glucose result in
longer active spiking phases, or plateaus, and shorter silent phases (third panel). Fi-
nally, for very high glucose, the cell remains permanently in the active phase, spiking
continuously. Comparing these stattements to the bifurcation analysis (Figure 5.20), we
Þnd that those about glucose and pump rate are equivalent to statements about how
the [Ca2+]i-nullcline intersects the Z-curve. An alternative scenario for glucose sensing
is described in Exercise 10.
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Figure 5.20 (A) Bifurcation diagram of Chay�Keizer fast equations (5.61)�(5.62) using [Ca2+]i as a
parameter. Hopf bifurcation (HB � square); saddle-nodes (SN � diamonds); homoclinic orbit (HC � circles).
(B) Projection of V -[Ca2+]i trajectory for vLPM = 0.13 ms

−1 onto the bifurcation diagram. Vertical arrow
next to trajectory indicates direction of increasing time. Nullclines for [Ca2+]i are shown for three cases:
vLPM = 0.10 (bottom), vLPM = 0.13 (middle), and vLPM = 0.20 (top). The corresponding solutions are
silent, bursting, and continuously spiking, respectively. Compare with Figure 5.19.

5.4.2 Chay�Keizer with an ER

The ER is signiÞcant in β-cells for two reasons. One is that an important potentia-
tor of insulin secretion, acetylcholine (ACh), works by promoting production of IP3
and dumping the stores, similar to GnRH in gonadotrophs. This has been modeled in
[Bertram et al., 1995, Chay, 1997].

The second reason is that the ER strongly inßuences the kinetics of [Ca2+]i, and
hence all [Ca2+]i-dependent processes. Here we consider only the latter aspect, showing
that even a passive ER, which does not actively dump Ca2+, can have profound effects
on bursting. To do this we append an equation for [Ca2+]ER to the Chay�Keizer model
and add appropriate ßux terms, a passive conductance and a linearized version of the
SERCA pump (with leading constant vLSP), to the [Ca2+]i equation:

Cm
dV

dt
= −ICa − IK − IK(ATP) − IK(Ca), (5.64)

dw

dt
= φ

w∞(V )−w
τ(V )

, (5.65)

d[Ca2+]i
dt

= fi(−αICa(V )− vLPM[Ca2+]i)

+
fi
λ
(PIP3R([Ca

2+]ER − [Ca2+]i)− vLSP [Ca2+]i) , (5.66)
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Figure 5.21 Bursting in the Chay�Keizer model with ER, (5.64)�(5.67). Parameters as in Figure 5.19,
except fi = 0.01, with the following parameters added for the ER: PIP3R = 0.0008/ms, λ = 2, σ = 0.032,
vLSP = 0.6/ms.

d[Ca2+]ER
dt

=
fi
σλ
(−PIP3R([Ca2+]ER − [Ca2+]i) + vLSP [Ca2+]i) . (5.67)

Although [Ca2+]ER does not directly affect the plasma membrane, it has indirect effects
through IK(Ca). This model is essentially equivalent to Theresa Chay�s last β-cell model
[Chay, 1997].

Bursting with this model is shown in Figure 5.21. Here fi has been increased to
0.01, which means that in the absence of the ER only very fast bursting can occur (see
Exercise 12). In this case, bursting with periods of 10�60 seconds, as typically observed
in islets, depends on slow kinetics supplied by the ER. Note that [Ca2+]ER rises and
falls slowly the way [Ca2+]i does in the original Chay�Keizer model (cf. Figure 5.19).
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In contrast, [Ca2+]i shows two distinct time scales, fast jumps at the beginning and
end of each burst, a slowly rising plateau during the active phase, and a slow tail
during the silent phase. The fast jumps reßect the intrinsic kinetics of [Ca2+]i, while
the slow portions reßect slow uptake and release of Ca2+ by the ER. This complex
time course matches the characteristics of [Ca2+]i seen in experiments (see Figure 5.18
and also [Valdeolmillos et al., 1989]) better than Chay�Keizer (Figure 5.19). It also
demonstrates that it is possible for slow negative feedback to operate through the
K(Ca) channel, or some other Ca2+-sensitive channel, even though [Ca2+]i does not
itself appear to be slow.

The examples discussed here represent only the tip of the iceberg of the β-cell Þeld.
The precise contributions of the mechanisms we have treated, K(Ca) channels, gK(ATP)
channels, and the ER, as well as some that we have not treated, such as inactivation of
Ca2+ channels, are not settled. However, it seems likely that complex interactions of all
of these will be necessary to explain the diverse phenomena observed. The mechanisms
of other important regulators of cell electrical activity and [Ca2+]i, such as cAMP and
epinephrine, remain to be elucidated. Nonetheless, the basic mechanisms and concepts
presented here should prepare the reader sufficiently to explore the exercises and the
literature on his or her own.

Suggestions for Further Reading

1. Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca2+ os-
cillations, Joel Keizer and Leslie Levine. This paper is the original source for the
Keizer�Levine model [Keizer and Levine, 1996].

2. Ca2+ excitability of the ER membrane: an explanation for IP3-induced Ca
2+ oscilla-

tions,Yue Xian Li, Joel Keizer, Stanko S. Stojilković, and John Rinzel. A review of
how the gonadotroph model described here was developed, with some equations and
discussion of scaling and references to the physiolgical literature [Li et al., 1995a].

3. InsP3-induced Ca2+ excitability of the endoplasmic reticulum, Joel Keizer, Yue Xian
Li, Stanko Stojilković, and John Rinzel. Another review of the gonadotroph, but
in words and pictures. This review contains many references to the physiological
literature [Keizer et al., 1995].

4. Contributions of modeling to understanding stimulus-secretion coupling in pancre-
atic β-cells, Arthur Sherman. A review of β-cell modeling oriented toward biologists
[Sherman, 1996].

5. Calcium and membrane potential oscillations in pancreatic β-cells, Arthur Sherman.
A mathematical tutorial centered on β-cell models with some connections to general
modeling of bursting. Covers phase plane and bifurcation analysis [Sherman, 1997].
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Exercises

1. Generalize (5.13) to the case of (a) two and (b) arbitrarily many buffers.
2. The expression for ER leak (5.26) can be derived from a symmetric cycle model
(Fig. 5.22) representing a pore that can exist in either an unbound state (1) or a
bound state (2) and bind Ca2+ on either the ER or the cytosolic side. A cycle from
1 to 2, binding Ca2+ on the ER side, and back to 1, releasing Ca2+ on the cytosolic
side transports 1 ion from the ER to the cytosol. Assume symmetry, that is, the
rates of binding [Ca2+]i and [Ca

2+]ER are equal, k
a∗
12 = k

b∗
12 = k

∗
12, and the rates of

releasing [Ca2+]i and [Ca
2+]ER are equal, k

a
21 = k

b
21 = k21, and use the diagrammatic

method of Chapter 3 to show that

J ss = J ssb21 =
k∗12
2
([Ca2+]ER − [Ca2+]i) (5.68)

in an appropriate limit. (The quantity [Ca2+]ER − [Ca2+]i is called the thermody-
namic driving force.)

3. (a) Write down the mass action equations corresponding to the Keizer�Levine ki-
netic diagram in Figure 5.5 and calculate the steady-state fraction of open
channels (those in states O1 or O2) as a function of Ca2+. Compare to the
plateau curve in Figure 5.6.

(b) Approximate the peak open fraction following a step of Ca2+ from rest by
assuming that C2 does not change over short times. Compare to the peak
curve in Figure 5.6.

(c) Derive the quasi-steady-state approximation (5.28)�(5.31). Hint: Combine the
result in (b) with a differential equation for w = 1−PC2 assuming that transi-
tions among O1, O2, and C1 are in rapid equilibrium. Simulate the two-pulse
experiment of Figure 5.6 and verify that the quasi-steady-state approximation
retains the feature of adaptation.

(d) Draw the reduced diagram. What are the expressions for the reduced rate
constants?

b

1

a

Ca 2+
i

Ca 2+
ER

2 Figure 5.22 Kinetic diagram for ER leak.
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4. (a) By calculating the Jacobian of the closed-cell Keizer�Levine model (Section
5.2.2), show that for oscillations to arise via a Hopf bifurcation, it is necessary
for the w and [Ca2+]i nullclines to intersect with negative slope and with the
w nullcline steeper.

(b) Using the result of (a), Þnd parameter values for which there are stable oscil-
lations graphically, by plotting the nullclines, or analytically, by solving the w
and [Ca2+]i equations in terms of w. Hint: One way is to play with the affinity
of the SERCA pump.

(c) (optional) Construct the bifurcation diagram for the modiÞed system and plot
the period vs. [Ca2+]T. Correlate changes in the period with changes in the
phase plane, particularly the invariant sets of the saddle point.

(d) Find the s-curve analytically by isolating [Ca2+]T.
5. (a) Plot period vs. jIN for the reduced open-cell Keizer�Levine model (Section

5.2.3).
(b) Compare the range of jIN for which there are oscillations predicted by the phase

plane to those calculated in the bifurcation diagram. Using the phase plane in
Figure 5.9, explain the variation in period.

(c) (optional) Compare the variation in period with that in the Chay�Keizer β-cell
model when gK(Ca) is varied (Figure 5.19, Figure 5.20).

6. (a) Solve the Keizer�Levine open-cell system and Þnd values of jIN that support
oscillations. Compare the extent of store dumping with the closed�cell oscilla-
tions (Exercise 4). Plot the ßuxes across the plasma membrane and ER through
the cycle.

(b) Investigate the effect of increasing k−c and explain what this implies about the
reduced open�cell model with w = w∞([Ca

2+]i).
(c) (optional) Construct the bifurcation diagram with jIN as a parameter and

compare to Figure 5.10.
7. (a) Create a table of nondimensional parameter values from the dimensional pa-

rameters corresponding to Figure 5.12 for the closed-cell gonadotroph model
(Section 5.3.1).

(b) Implement and solve both the dimensional and nondimensional forms of closed-
cell gonadotroph model (Section 5.3.1) at [IP3] = 1.0 and compare the results.

(c) For the same parameter values as in Figure 5.13B (dotted curve), show that
oscillations can occur by either decreasing the value of Ka (Ca

2+ sensitivity of
the activation gate) or increasing the value of [Ca2+]T.

8. (a) Show how to arrive at the nondimensional parameters in (5.51) from (5.37).
Note that �vP, like �vS, is nondimensionalized using σ.

(b) Simulate the open-cell gonadotroph model (5.48)�(5.52) with the same
parameter values as in Figure 5.14.

(c) Show that at small, positive, and constant values of �in, intermittent inter-
mittent or waxing-and-waning type of �bursting� can ooccur in the open-cell
gonadotroph model.
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(d) Explain this phenomenon by using a bifurcation diagram similar to that in
Figure 5.15.

9. Slow, inßux-driven Ca2+ oscillations observed in bullfrog sympathetic neurons (see
Figure 5.8) can also occur in cells that express only IP3R channels. This can be
demonstrated by the open-cell gonadotroph model (Section 5.3.2) described by
(5.48)�(5.52).

(a) Let ² = 0. Plot the bifurcation diagram of the resulting 2-variable closed-
cell model as a function of �cT at decreasing values of �kS while keeping other
parameter values identical to those given in Figure 5.15. Determine a value of
�kS that yields an �S�-shaped, bistable diagram similar to that in Figure 5.7B.
Then, simulate the whole model to generate slow oscillations similar to those
in Figure 5.8.

(b) For the same parameter values used in (a), show that you get almost identical
slow oscillations by eliminating the h equation and replacing h with h∞ =
1/(1 + �c) in the other two equations. Explain why.

10. One criticism of the glucose-sensing in the Chay�Keizer model (Figure 5.19) is
that even though the cell visually appears to be more active electrically in higher
glucose, mean [Ca2+]i does not increase much. An alternative model that addresses
this problem uses the K(ATP) channel, a K+ channel that is inhibited by ATP
and activated by ADP. It is thus a natural link between glucose metabolism and
membrane potential.

(a) Starting with Chay�Keizer, set gL = 0 and add the current

IK(ATP) = gK(ATP)(V − VK) (5.69)

to the V -equation. Calculate the solution for gK(ATP) = 160, 150, 135, and 130
and describe the changes in plateau fraction and [Ca2+]i compared to Figure
5.19.

(b) Explain your results in terms of the biophysics of gK(ATP).
(c) Derive a formula for the Z-curve by solving for [Ca2+]i. Describe algebraically

and geometrically the effect of varying gK(ATP).
(d) Using the result of (c) or just constructing bifurcation diagrams for different

values of gK(ATP), explain geometrically the effects of gK(ATP).

11. Keizer and Magnus [Keizer and Magnus, 1989] proposed that gK(ATP) played not
simply a modulatory role in bursting, but could itself provide slow negative feed-
back. They hypothesized that a rise in [Ca2+]i would lead to mitochondrial uptake of
Ca2+ and dissipate the mitochondrial membrane potential that provides the energy
for ATP synthesis. Thus, as [Ca2+]i rises, ATP falls and ADP rises.

(a) Show, assuming that ATP and ADP compete for the same binding site, that

gK(ATP) = ḡK(ATP)
1 + [ADP]/K1

1 + [ADP]/K1 + [ATP]/K2

. (5.70)
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(b) Add the following simpliÞed equation for mitochondrial dynamics to Chay�
Keizer (with IK(ATP) as in (5.69) included in the V equation):

d[ADP]

dt
= vMITO

µ
[ATP]− [ADP] exp

µ
R

µ
1− [Ca

2+]i
R1

¶¶¶
. (5.71)

Assume that

[ADP] + [ATP] = 1 mM (5.72)

and simulate the solution to get bursting using the parameter values from
Figure 5.19 except that Kc = 0.15/ms, gK(Ca) = 0 pS, gL = 0 pS, fi = 0.01,
and add the following new parameters for metabolic feedback: ḡK(ATP) = 6000
pS, K1 = 0.45 mM, K2 = 0.012 mM, R = 0.9, R1 = 0.35 mM, vMITO =
5.0× 10−5/ms.

(c) Show that the parameter R can function as a glucose sensor. Should R increase
or decrease with glucose?

12. (a) Remove the ER from the Chay�Keizer model with ER and solve, retaining all
other parameters from Figure 5.21. What is the burst period?

(b) Add the ER back, and construct the bifurcation diagram of the model (5.64)�
(5.67) using [Ca2+]ER as the bifurcation parameter. Explain how [Ca2+]ER can
act as a slow variable even though it does not appear in the V equation. Use
the diagram to explain how varying σ (5.67) changes the burst period.

(c) Make another bifurcation diagram for this model using [Ca2+]i as the bifur-
cation parameter, with [Ca2+]ER held constant. Overlay the [Ca

2+]i nullcline.
How does the diagram change as [Ca2+]ER is varied?

(d) Increase PIP3R (5.66) to 0.008/ ms. Use the two bifurcation diagrams from
(b) and (c) to analyze the effect of PIP3R on burst frequency. Compare with
[Chay, 1997].

(e) (optional) Restore PIP3R to 0.0008/ms and increase λ (5.66) to 800. Use the
bifurcation diagram from (c) to explain why the burst frequency increases.

13. Construct phase planes of the Chay�Keizer fast subsystem (5.61), (5.62) with
[Ca2+]i as a parameter and correlate the various patterns with the bifurcation dia-
gram Figure 5.20. Look for stable and unstable nodes, saddle points, and periodic
orbits. Choose values in each of the regimes deÞned by the bifurcation diagram:

� just to the left and just to the right of the Hopf bifurcation
� just to the left and just to the right of the point labeled SN
� just to the left and just to the right of the point labeled HC (for homoclinic
orbit).

Explain why the period increases sharply as the HC is approached from the left.
Explain why the period solution disappears at HC. It will help to draw the stable
and unstable manifolds of the saddle point.
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CHAPT E R 6

Intercellular Communication

John Rinzel

Orchestrating the activity of cell populations for physiological functioning of the brain,
organs, and musculature depends on transmission of signals, learning and memory
devices, and feedback control systems. By what biophysical mechanisms do cells com-
municate in order to coordinate their activity as local ensembles, as multimodal circuits,
and across system levels? Here we only scratch the surface of this fascinating topic. We
will focus on electrically active cells; for this, you can have in mind, for example, cardiac
cells, many types of secretory cells, and neurons.

We know that ionic currents underlie cellular electrical activity. Hence, one way
that cells can interact is by directly passing ionic current between each other. Perhaps
the simplest mechanism for such communication is the analogue of resistive coupling
between units, i.e., with the intercellular current being proportional to the voltage
difference between cells. Heart cells, and many other types of cells, communicate in this
manner, with the ions ßowing directly between two coupled cells. In this case, referred
to as electrical coupling (and sometimes, in the neural context, electrotonic coupling),
the current ßows through channel proteins that span the plasma membranes of both
cells as shown in Figure 6.1. The clusters of such channel proteins that are found at
cell-to-cell contacts are called gap junctions.

While gapjunctions are occasionally found in neural circuits, they seem to be less
uncommon during development or they may not constitute an exclusive means of in-
teraction. Neurons have a rich repertoire of other ways for exciting or inhibiting other
target neurons, via the indirect means of chemical synaptic transmission depicted in
Figure 6.5. At a terminal of a neuron�s axon the neurotransmitter of one type or another
is bundled in vesicles that are released with increased probability when the terminal is
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V1 V2

l 2,1

Figure 6.1 Schematic of gap junctions between
two cells. Coupling current from cell #1 to #2
is I2,1 = gc(V2 − V1), the exact negative of I1,2.
Redrawn from [Hille, 2001].

active (depolarized). The transmitter, released into the extracellular space in the termi-
nal region, diffuses and binds to receptors on the postsynaptic cell�s nearby membrane.
These receptors may be part of a receptor�channel complex or be linked indirectly
through second messengers to a nearby channel. The activated channels then lead to
the postsynaptic current and action. The variety of transmitters and receptors enable
many different time scales and �sign� of the input that is being delivered to the target
cell. We Þnd synapses that are excitatory or inhibitory; they can be fast or slow; they
can be shunting; their synaptic parameters can change with usage, either, depressing
or facilitating; they can be voltage gated or not on the postsynaptic side.

Gap-junctional coupling is typically localized, certainly for cells without spatially
extended processes, to nearby neighbors. Prime examples include the heart and islets of
Langerhans in the pancreas. In contrast, neurons can interact across distances that are
many times greater than a cell body diameter, by means of their potentially far-reaching
axonal and dendritic arbors. The synaptic interactions enable them to participate in
local calculations and with distant assemblies, on selective time scales, fast or slow and
to various degrees. For long�distance communication between cells propagated action
potentials typically mediate signal transfer to the synapses via axons.

Given the variety of coupling mechanisms and connectivity patterns there are
many possible behavioral modes, spontaneous and/or stimulus-driven, that such cir-
cuits may exhibit. Obviously we cannot elaborate on many of these behaviors; we
will restrict attention to a few examples and focus on pairwise interactions. Also we
choose not to present here some other mechanisms for intercellular interaction such as
coupling by cell-generated electrical Þelds, diffusion and exchange of ions (that effect
Nernst equilibrium potentials) and second messengers, mechanical and hormonal effects
[Keener and Sneyd, 1998].
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Figure 6.2 Two identical Morris�Lecar
neuron models, auto-rhythmic, synchronize
with electrical coupling (turned on at t =
100 ms). Parameter values for the model
are those of Chapter 2 with the follow-
ing exceptions: v3 = −5 mV, v4 = 10
mV, φ = 0.5, gCa = 8 mS/cm2, Iapp =
−10µA/cm2. Net gap junction coupling
conductance is gc = 2 mS/cm2. Initial
conditions: V1 = −20 mV, w1 = 0.2,
V2 = −30 mV, w2 = 0.

6.1 Electrical Coupling and Gap Junctions

The proteins that constitute the channels at gap junctions are of the connexin fam-
ily. Connexin molecules in the plasma membrane of one cell link up those in an
adjacent cell to form the channels. These channels pass most ions as well as vari-
ous molecules up to molecular weights of tens of kilodaltons, including those involved
in second messenger systems such as IP3. The single channel conductance can be in
the range of 75�150 pS, and in most known instances they are relatively voltage-
independent. The variety of connexins provides a rich repertoire for diverse modulatory
possibilities by changes in intracellular pH, second messengers, neurotransmitters,
or voltage [Perez Velasquez and Carlen, 2000]. For example, the reduction of gap�
junctional coupling due to increasing levels of Ca2+ is described as a protection
mechanism.

For cell-level modeling we typically represent the net conductance of a gap junction
as a constant, the product of the mean number of open channels at the junction and
the single channel conductance. Simultaneous pairwise recordings, at least for geomet-
rically simple neighboring cells, can be used to estimate this conductance. For spatially
extended cells, like neurons with branching dendrites, such measurements would be con-
founded especially if the gap junctions are at electrically remote sites. Gap junctions
may also be detected by dye coupling, although this method is problematic without
good controls to test how readily the dye passes.

6.1.1 Synchronization of Two Oscillators

Consider the case of two cells idealized as isopotential compartments as shown in
Figure 6.1. The gap�junctional current I2,1 that ßows from cell 1 into cell 2 is written
as gc(V1−V2), where gc is the net coupling conductance of all the gap junctions formed
between the two cells. This current appears as a source term in the current balance
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Figure 6.3 Time courses of V1, V2
showing antiphase behavior when weak
gap�junctional coupling is turned on at
t = 100 ms. Same initial conditions and
parameters as in Figure 6.2, except that
here gc = 1 mS/cm

2.

equation for cell 2. DeÞned as such, with the current as leaving from cell 1, it appears
as a sink term for cell 1 (or equivalently, gc(V2 − V1) is a source term into cell 1). Thus
we have

dV1
dt

=
−Iion(V1, w1) + Iapp + gc(V2 − V1)

Cm
, (6.1)

dV2
dt

=
−Iion(V2, w2) + Iapp + gc(V1 − V2)

Cm
, (6.2)

where w1, w2 correspond to the set of gating variables in each cell. Let us Þrst predict
the behavior, say in the case where the gap junction conductance is large. This means
that the cells are very tightly electrically coupled. We would then expect them to have
approximately the same voltage. Indeed if the cells are identical, then V1 = V2 is always
a solution: The coupling current would be zero in this case. Of course, a perturbation
(e.g., brief current pulse) to just one cell would make their V �s differ, transiently. By
subtracting the two equations and then dividing by gc we see, after dropping the term
of order 1/gc, that

τc
d(V1 − V2)

dt
≈ −(V1 − V2), (6.3)

where τc = Cm/gc. This shows that the cells will re-establish uniformity with an effective
time constant of τc, that is very short when gc is large.

This is illustrated in Figure 6.2 for two Morris�Lecar cells that are tuned into an
oscillatory regime (as discussed in Chapter 2). In this example the cells are initially
out of phase and uncoupled. Synchronization occurs promptly after the coupling is
introduced at t = 100 ms.

6.1.2 Asynchrony Between Oscillators

While electrical coupling is typically considered as a mechanism for uniformizing cells,
one should be aware that the outcome depends considerably on coupling strength and
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dynamic features of the individual cells. For example, the same cells used above when
coupled weakly with gap junctions do not synchronize. Instead, they establish a rhythm
with the two cells in a stable antiphase�locked pattern: just the opposite of togetherness
(Figure 6.3). Also, for this situation the period of the network oscillation depends on
the value of gc. This is not true for the in-phase pattern. When the coupling strength
is large enough, the period (for a pair of identical cells) is that of the isolated cell and
is therefore independent of gc.

6.1.3 Cell Ensembles, Electrical Coupling Length Scale

Such synchronization also occurs for spatially distributed multicell systems; even though
electrical coupling is localized it can, when large enough, synchronize a population
that might be spread over a sizable spatial region. In order to formalize this, one can
introduce the concept of an electrical length scale that involves coupling conductance
as well as leakage conductance. This emphasizes the relativeness of intercellular current
to the current ßowing across a cell�s plasma membrane. By using this notion we can
refer to the �electrical size� of a cellular array; it could be quite compact even though
the spatial extent might not be.

In order to formalize this notion we consider the simple case of Figure 6.4, where
we have a chain of gap-junction-coupled cells that have passive membrane properties,
i.e., Iion = gmV . Thus we have the equation for a typical cell, cell j:

dVj
dt

=
gc(Vj−1 − Vj)− gmVj + gc(Vj+1 − Vj)

Cm
. (6.4)

Suppose that we have a very long chain of cells (and for now, ignore end effects)
and suppose we voltage clamp the cell in the middle for which j = 0 (j > 0 refers to
cells to the right and j < 0 is for cells to the left). In this passive system the voltage
distribution will go to a steady state after some transient, and the voltage will decrease
from V0 as |j| increases. This attenuation occurs as current spreads from one cell to the
next away from j = 0 and as current is lost through the �leaky� membrane of each cell.

Vj-1 Vj Vj+1

gm

gcgc ......

...... Cell jCell j-1 Cell j+1

Cm

Figure 6.4 Schematic of linear array of passive cells coupled (nearest neighbor) by gap junctions.
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The steady voltage decays in an exponential fashion with distance. The decay �rate�
γ can be found by considering the steady�state case of (6.4) (i.e., setting dVj/dt = 0)
and seeking a solution of the form Vj = V0γj . This leads to a quadratic equation for γ:

γ2 − (2 + gm/gc)γ + 1 = 0. (6.5)

Hence, there are two values of γ:

γ± = 1+ gm/(2gc)±
q
[1 + gm/(2gc)]2 − 1. (6.6)

Note that both roots are positive with γ+ > 1 and γ− < 1.
For a voltage proÞle that decays with distance to the right of j = 0 we must disallow

γ+ (such a term would grow with j). Thus, if we ignore end effects due to termination
of the chain, the steady state proÞle for j ≥ 0 has the form

Vj = V0γ
j
−. (6.7)

The solution for j ≤ 0 is Vj = V0γj+ = V0γ−j− , since γ+γ−1− = 1.
We can test our intuition by considering some limiting cases. When gm/gc is large,

the leakage conductance is dominant and the voltage should attenuate rapidly with
distance from j = 0. Indeed, γ− ≈ gc/gm, so that Vj decays steeply. On the other hand,
when gm/gc is small, then γ− ≈ 1−

p
gm/gc and the spatial decay is gradual.

Pursuing this latter case a bit more, if cell-to-cell attenuation is small and the
spatial proÞle changes smoothly, we might treat the one-dimensional cellular array ap-
proximately as a continuum with position x ≈ j∆x, where ∆x is a cell�size parameter,
considered small. The leakage conductance gm is proportional to a cell�s surface area,
which is the perimeter of a cross section times ∆x. We will take some care with the
representation of gc. Let�s think about the reciprocal, rc = 1/gc, the resistance to lon-
gitudinal current ßow between cells, say from one cell center to the next. Then, rc
involves resistance due to the gap junctions as well as cytoplasmic resistance along the
cell�s axial direction. If there are many gap junctions between adjacent cells, then the
major contribution to rc will be the cytoplasmic term, which is proportional to the area
of a cross section times ∆x. Consequently, the ratio gm/gc (= gmrc) is proportional to
∆x2 and may be written as (∆x/λ)2. Finally, combining this with our expression for
γ− (from (6.6) for small gm/gc) and noting that log(γ−) ≈ −

p
gm/gc, we see that the

solution form for the continuum approximation is

V (x) = Vj = V0 exp(j log γ−) ≈ V0 exp(−j∆x/λ) = V0 exp(−x/λ). (6.8)

Thus, λ is the electrical length constant for the continuum approximation.
This treatment relates nicely to continuum models for current spread in individual

cells that have extended processes, like neurons with their dendrites or axons. These
processes behave like electrical cables; current ßows along the axis and leaks through
the membrane. In this case of a neuronal process, we could think of it for simulation
purposes as a chain of short compartments (length ∆x) each with a membrane sur-
face area and connected by axial resistances; there are no gap junctions between the
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Þctitious adjacent compartments. If d is the diameter of the cross section, then we
would have gm = ∆xπdGm, where Gm is the leak conductance density (S/cm2) and
rc = ∆x4Ri/(πd2) where Ri is the cytoplasmic�speciÞc resistivity (ohm·cm). Putting
this together we obtain for the electrical length constant of a passive neuronal den-
drite or axon λ =

p
d/(4GmRi). As an illustration, for some neurons estimates are

in the range Gm = 0.25 mS/cm2, Ri = 100 Ω·cm, so that with d = 2.5 µm yields
λ = 500 µm. This means that for a dendritic branch of physical length 250 µm, the
corresponding electrotonic length is about 0.5. Therefore, we do not expect excessive
attenuation for steady or slow voltage changes. Transients decay more abruptly. Also,
the attenuations are more severe from dendritic locations to the cell body than vice
versa. In electrically coupled excitable systems with weaker gap junctions or extended
electrical size (physical length larger than λ) synchrony is not quickly established, and
localized perturbations may lead to waves or other spatiotemporal patterning.

The treatment of dendrites as cables and the compartmental method is discussed
in Chapter 7, and in more depth in [Johnston and Wu, 1995], [Koch and Segev, 1998],
[Koch, 1999], and [Keener and Sneyd, 1998]. We note that this discretization of neu-
ronal cable-like processes is called the compartmental method and was Þrst developed
by Rall for treating the effect of spatiotemporally distributed synaptic inputs over a
neuron�s somatic-dendritic area [Segev et al., 1995].

6.2 Synaptic Transmission Between Neurons

In the preceding section we saw that strong gap junctions can be used for coordinating
cellular electrical activity, subserving functions in which cells might work together in
approximate synchrony. The bidirectionality and instantaneous nature of gap�junction
coupling are well suited for achieving these goals. In the nervous system there are
demands for more complex patterning. Individual cells generally are likely involved in
numerous different computations, with possibly different time scales, sometimes being
called into action with a brief wake-up call but in other cases only after a long barrage
of inputs. In some cases the precise timing of action potentials might be important,
and we would expect fast coupling mechanisms. But when Þring rate, rather than
spike timing, is more important for signaling, perhaps the synchronization properties
of fast coupling may be less critical and slower coupling mechanisms might dominate.
Some ßexibility for multiplexing of these signaling modes is attainable by exploiting the
potentially large variety of intrinsic mechanisms, i.e., the many different ionic channels
and modulators for them. Even greater computational power can be achieved, however,
by selective adjustment of the many synpses on a cell, maybe in an activity�dependent
fashion. One can imagine a great many neural ensembles with possibly shared units
that can be dynamically constructed, recruited, and dismissed as needed for memory
storage, sensory processing and perception, and executive command functions.

It is hard to imagine how instantaneous bidirectional coupling could allow in an
efficient way such a rich set of alternatives. However, the one-way signaling via chemical
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synapses enables the system to employ a few transmitters but yet enrich the possibilities
for postsynaptic response by having many choices for the postsynaptic receptors and
channels. Sites for modulatory action can be implemented on either the postsynaptic
or presynaptic side. Thus while vesicle-packaged transmitter is released in punctate
fashion, like the action potential, the time scale and even the �sign� of the response are
determined by the machinery on the postsynaptic cell.

6.2.1 Kinetics of Postsynaptic Current

We will formulate an idealized model for the current generated in a postsynaptic cell due
to transmitter release by a presynaptic cell in which an action potential has occurred.
The sender�s action potential opens voltage gated calcium channels at the axon terminal
where vesicles are poised ready to fuse with the membrane and release transmitter.

Whether or not release occurs is a probabilistic event. The failure rate can be high
at some, e.g., cortical, synapses. There is also a small probability of spontaneous re-
lease. Experiments at the neuromuscular junction and central synapses use the quantal
release hypothesis to analyze the statistics of postsynaptic responses for spontaneous
and evoked release to estimate the number of active sites, quantal content, and re-
lease probability [Johnston and Wu, 1995]. We will not consider these issues here, nor
the details of transmitter diffusion in and removal from the synaptic cleft, the small
extracellular space between the pre- and postsynaptic sites.

nerve
terminal

A B C

Action potential
causes Ca2+ entry
through channels

Ca2+ entry causes
vesicle fusion and
transmitter release

Channels open,
Na+ enters and
vesicles recycle

post synaptic
cell

Ca2+ Ca2+

Na+ Na+Na+

Figure 6.5 Steps in chemical synaptic transmission. Action potential arrives at terminal of presynaptic
axon; depolarization opens voltage gated calcium channels. Resulting calcium inßux causes vesicle fusion
and transmitter release. Transmitter diffuses, reaches postsynaptic membrane, and binds to receptors. The
activated receptors cause postsynaptic channels to open. Depending on which type of ions are allowed to
pass (sodium shown here) the postsynaptic response can be depolarization or hyperpolarization. Adapted
from [Koch, 1999].
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We suppose that transmitter is available brießy, and that during this time it can
bind to receptors, actually receptor�channel complexes, on the postsynaptic membrane.
For this simple model we imagine a two-state channel. Binding of transmitter to a
receptor molecule favors opening of the channel and unbinding leads to closing. A
kinetic scheme for this is the following:

C + T

α0

*)

β0
O.

If s is the fraction of complexes in the open state O, then 1− s is the fraction closed,
and we have, given a transmitter concentration [T],

ds

dt
= α0[T](1− s)− β0s. (6.9)

This representation assumes unlimited transmitter and receptor availability. Also, it
requires us to specify a time course for [T]; for example, we might assume a square pulse
over some time duration (perhaps with a modest delay, on the order of a millisecond or
less) when the presynaptic cell Þres. We will adopt a simpler, and easy to implement,
scheme, supposing that maximal transmitter is available when the presynaptic mem-
brane potential Vpre is above some level, say θsyn. This would mean [T] = Tmaxs∞(Vpre)
with s∞(Vpre) = H(Vpre − θsyn), where H(x) is the Heaviside step function. We will
smooth this out using a sigmoidal function for s∞. RedeÞning the rate constants,
which we view as adjustable depending on the desired time course of postsynaptic
conductance, we get

ds

dt
= αs∞(Vpre)(1− s)− βs, (6.10)

with s∞(V ) = 1/[1 + exp(−(V − θsyn)/ksyn)], with ksyn positive. The current through
the post-synaptic membrane is

Isyn = gsyns(V − Vsyn), (6.11)

where the reversal potential Vsyn depends on the concentration differences for the ion
species that ßow through the open receptor channels in the postsynaptic membrane;
gsyn is the maximal conductance at the synapse if all the available channels are open.

6.2.2 Synapses: Excitatory and Inhibitory; Fast and Slow

This type of model has been used to describe some common types of excitatory and
inhibitory synapses that have relatively simple kinetics. The different transmitters and
different receptors and different ions that pass through the synaptic channels lead to a
variety of synaptic types. The most commonly known transmitter that is used for ex-
citatory synapses is glutamate. It can activate AMPA receptor channels that typically
pass inward current (carried mostly by sodium ions, but also some potassium and other
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ions). The postsynaptic conductance is relatively fast with a rise time (≈ α−1) of order
1 millisecond and decay times (≈ β−1) of a few to tens of milliseconds. Expressions such
as (6.10) have been used for these synapses. The value of Vsyn in this case is typically
about 100 mV above rest. Glutamate can also evoke slower postsynaptic responses by
activating NMDA receptors (fast rise, of order milliseconds, and slow decay, of order
many tens to hundreds of ms) or a number of different types of metabotropic glutamate
receptors with very slow rise and slow decay of order seconds. The conductance associ-
ated with NMDA receptors is, curiously, also gated by the postsynaptic voltage Vpost.
If Vpost is not adequately above Vrest, the NMDA-associated channels are blocked by
magnesium ions from the outside; sufficient depolarization relieves this block, and the
channels can open. The dependence of synaptic current on pre- and postsynaptic ac-
tivity implicate the NMDA conductance in various models for associative learning and
synaptic plasticity generally. The very slow metabotropic glutamate�mediated effects
are believed to be primarily modulatory, acting, for example, to effectively change the
Þring threshold of a cell. In the examples below of excitatory synaptic coupling we will
be thinking primarily of AMPA-mediated excitatory synapses, for which (6.10) is a good
Þrst approximation. More complete descriptions, even for this simple receptor-channel
complex, might involve kinetic models with additional states [Destexhe et al., 1998].

Fast inhibitory synapses are activated by the transmitter GABA when they bind to
GABAA receptor channels. The postsynaptic conductance has a fast rise time, one or a
few milliseconds, and somewhat slower decay than the AMPA-excitatory conductance,
on the order of tens of milliseconds. The current is carried largely by chloride ions.
Interestingly, the value for Vsyn can be quite variable, typically −60 mV to −80 mV but
in some cases as depolarized as −35 mV; this variability likely reßects different types
or activities of chloride pumps that regulate intracellular Cl− concentration. If a cell is
sitting near its resting potential of say −65 mV, the synaptic current that is generated
by activating these channels would be outward (hyperpolarizing) if Vsyn is below −65
mV or inward (depolarizing) if Vsyn is above −65mV . It is not uncommon for GABAA-
mediated currents to be depolarizing in developing neural tissue. Thus it is not strictly
correct, although frequently done, to refer to GABA as an inhibitory transmitter. One
should take care in describing a GABAA- mediated synapse as inhibitory; the current�s
sign depends on where Vsyn is relative to V . Note that if V is close to Vsyn, little
synaptic current will be generated, even if a large conductance gsyns is activated. On
the other hand, the membrane potential would be effectively clamped to Vsyn until the
conductance deactivates. In this case the GABAA synapse acts as a strong shunt in the
membrane; other modest-sized synaptic inputs would be ignored during this time.

The transmitter GABA acting through GABAB receptors can lead to a very slow
inhibition with a conductance that rises and decays on the order of 100 or more mil-
liseconds. The current is carried primarily by K+, ions and so the reversal potential may
be −70 to −90 mV. The simple model in (6.10) cannot account for this slow current.
One shortcoming is that the model predicts a peak shortly after the depolarization of
Vpre, while GABAB�mediated inhibition peaks only much later. A minimal model for
this current would involve at least two dynamic variables.
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Typical sizes of Isyn at a single synapse are a few picoamperes and may evoke
responses (e.g., in cortical neurons) of 0.1 to 1 mV. A number of inputs must be summed
in order to bring the neuron to Þring threshold. Generally, the postsynaptic response to
multiple inputs, even in the subthreshold regime, is not, however, a linear summation
of individual inputs. This is because the synaptic current depends on Vpost, in particular
through the driving force Vpost − Vsyn. If Vpost is far from Vsyn, then the dependence on
Vpost is very weak, as, say, for AMPA-mediated excitation if Vpost is near rest. But in
other cases, say for a GABAA-mediated synapse, we would not get linear summation:
Doubling, say, the number of inputs does not double the synaptic current. This is easy
to see for a passive membrane system, as we considered above, with steady synaptic
conductance input gs = constant = gsyns. The steady response V would be

V = Vsyngs/(gm + gs), (6.12)

saturating for large gs at Vsyn, as we expect. While increasing gs drives Vpost closer to
Vsyn, the increment in synaptic current diminishes for large gs: dIsyn/dgs behaves like
g−2s for large gs; this is the sublinear summation effect.

When synaptic inputs are activated repeatedly the response may not remain uni-
form from one stimulus to the next in a train. This dynamic aspect may involve
facilitation or depression of successive responses on a range of time scales. For ex-
ample, the response might be depressed by 50% or more to a steady level after less
than ten stimulus repeats (say at 50 Hz), and then recovery may take a second or
so [O�Donovan et al., 1998]. A favored mechanism for depression is presynaptic de-
pletion of ready-to-release transmitter. Synaptic depression is analogous to receptor
desensitization in other contexts, such as hormonal communication [Goldbeter, 1996].

Various possible functional roles for such synaptic dynamics in network activity
have been suggested. One hypothesis is that synaptic depression could mediate phasic
behavior of a feedforward network. That is, if the steady response saturates beyond
some input rate (so the tonic output conveys no information about the input rate), the
network could still be responsive to transient changes in input rate; just after a sudden
increase in input rate the synapses would not yet be adapted to their new target level
of depression, so the network�s output would brießy rise and then fall back to the
saturation level. In the context of recurrently connected networks synaptic depression
provides a mechanism of slow negative feedback for the intercellular coupling. This can
underlie rhythmic population activity even if isolated units are capable only of tonic
Þring for steady inputs; here the autocatalysis could be provided by recurrent excitatory
connections [Tabak et al., 2000].

6.3 When Synapses Might (or Might Not)
Synchronize Active Cells

In order to illustrate some effects of mutual synaptic coupling between cells we will
consider the simple case of two identical cells, each of which is autorhythmic, and
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examine conditions for which the cells tend to Þre together or apart. We are asking
about the synchronization patterns in this simple two-cell network. Classical notions
are that mutual excitation tends to make cells synchronous (in phase), while mutual
inhibition pushes them apart, leading to antiphase behavior. That is, if two excitatory
cells are somewhat out of phase, the Þring of the leading cell encourages the follower to
Þre sooner, thus bringing the cells more nearly in phase, while for inhibitory cells that
are somewhat out of phase the leading cell�s Þring will delay the follower, increasing
their phase difference. Successive cycles would increase their phase difference to 180◦

but not beyond, since then the follower would act as the leader, pushing the phase
difference back toward 180◦. These expectations and some surprises will be illustrated
below when we consider the effects of synaptic time scales.

Here we will use the Morris�Lecar model in Type I mode (see Chapter 2), so
that near the threshold for repetitive Þring the steady Þring frequency can be made
arbitrarily low. We dictate here that the gating variable�s kinetics are relatively slow
and that the stimulating current is adjusted so that the cell model is Þring slowly, about
15 Hz.

First we consider the case of mutual excitation. In panels A and B of Figure 6.6A we
conÞrm the expectation that the cells will Þre together. The cells are substantially out of
phase before we actually implement the coupling, but then afterwards they converge to
a pattern of near synchrony, with one cell preceding the other by just a slight bit. When
the coupling is Þrst turned on the follower cell immediately advances, and throughout
the transient phase of synchronization the cells are causing each other to Þre faster.
Interestingly, as synchrony is established the cells slow down to nearly their intrinsic
frequencies, as if the coupling is only to synchronize them. When comparing the time
courses we see that during the transient phase the leader cell�s voltage is more affected
than the follower�s. The synaptic current from the follower at Þrst reduces the leader�s
postspike hyperpolarization. Then, as the follower catches up, this synaptic current is
delivered when the leader is still strongly depolarized, and its intrinsic conductances
swamp the perturbing effect of the synaptic input.

For the preceding example the synaptic conductance time course has fast rise and
fast decay phases; the conductance is essentially activated only during the presynaptic
depolarization. If we allow for the synaptic decay to be much slower, with all other
parameters and initial conditions unchanged, we Þnd that these two cells now Þre in
antiphase, as shown in Figure 6.6C and D. The frequency of each cell is nearly twice
that of an isolated cell. This is understandable. Since the synaptic current decays more
slowly, it provides a longer-lived depolarizing inßuence, and it is strongest during a
cell�s trajectory as it rises toward threshold, when it is most responsive to depolarizing
inßuences. Note that if the output of this two-cell network converges onto a common
target, the effective delivery rate, because of the antiphase pattern, is twice that of
each, four times that of an individual cell.

For the examples in this section we have chosen parameter values in order to
emphasize the importance of synaptic time scales in determining Þring patterns in
networks. This is an active area of research; for example, see [Wang and Rinzel, 1992,
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Figure 6.6 The kinetics of synaptic excitation affect synchronization properties of cells, as illustrated
with two identical coupled cells. Neuron models are uncoupled until t = 200 ms. (A and B) fast excitatory
synapses lead to synchrony; time courses of V1, V2 in (A) and of instantaneous interspike interval in (B).
(C and D) antiphase pattern evolves with slow excitatory synapses; time courses of V1, V2 in (C) and of
instantaneous interspike interval in (D). Parameter values for v3, v4, gCa are as in Figure 6.2�Figure 6.3,
except that here, φ = 0.1 and Iapp = 15 µA/cm

2; for the synaptic kinetics, θsyn = 20 mV, ksyn = 2 mV
with α = 3/ms, β = 1/ms in (A and B) and α = 3/ms, β = 0.1/ms in (C and D). Initial conditions:
V1 = −44 mV, w1 = s1 = 0, V2 = 0 mV, w2 = 0.3, s2 = 0.3.

Vreeswijk et al., 1994]. Deeper understanding will be achieved, and for now, we caution
that it should not be taken as universal that fast (slow) excitatory synaptic coupling
leads to in-phase (antiphase) Þring. In fact, for the example in Figure 6.6A and B,
different initial conditions to such coupled cells can lead to antiphase locking even for
these fast synapses.
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Next we consider the case of two cells (the same cells as above) coupled with
inhibitory synapses. We start the cells with different initial voltages and watch them
settle slowly into an antiphase rhythm (Figure 6.7) during the Þrst 800 ms of the
simulation. During this portion the inhibitory synapses have fast kinetics, and we are
conÞrming the classical expectation that inhibition leads to antiphase Þring between a
cell pair. In these voltage time courses one can clearly see the hyperpolarizing effect of
the synaptic inputs. As a cell�s voltage rises from its minimum the partner Þres and
sends a brief pulse of outward current, which halts transiently the rising voltage. At
t = 800 ms the decay rate of inhibition is slowed from β = 1/ms to β = 0.1/ms. Within
a few cycles the cells lock into perfect synchrony. Slowly decaying mutual inhibition
can lead to in-phase locking among neural oscillators. This behavior has been proposed
as the mechanism for gamma rhythms that are seen in various brain regions, and are
believed to have a functional role in some cognitive processes [Wang and Buzsaki, 1996,
Traub et al., 1996].

As a secondary note, although we do not show it here, this particular network
with the fast inhibitory synapses is bistable. In addition to the antiphase behavior (for
t < 800 ms) it also has a stable in-phase behavior for some set of initial states.

The examples above are highly idealized and primarily directed toward rhythmicity.
The parameters have been chosen in order for us to illustrate several features about
temporal patterning in mutually coupled pairs with just minimal adjustments from
one case to the next. Important questions arise about how these features might carry
over to larger networks. In a case of mixed fast and slow synaptic coupling are the
synchronizing or desynchronizing effects more important? Are the patterns robust to
effects of noise and heterogeneity? What if there is a mixture of gap�junctional and
synaptic coupling, in regimes where their effects counteract each other?
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Figure 6.7 Kinetics of synaptic inhibition
can affect synchronization. Fast inhibition
leads to antiphase behavior for t < 800
ms; switching to slowly decaying inhibition
for t > 800 ms leads to in-phase behavior.
Parameters are the same as in Figure 6.6
except that here β = 1/ms for t < 800
ms and β = 0.1/ms for t > 800 ms. Initial
conditions: V1 = −55 mV, w1 = s1 = 0,
V2 = −20 mV, w2 = s2 = 0.



154 6: Intercellular Communication

6.4 Neural Circuits as Computational Devices

Up to this point we have examined how various coupling mechanisms can coordi-
nate cellular electrical activity in the context of stereotypical steady Þring patterns:
synchronous or antisynchronous oscillations. Beyond these examples one seeks to un-
derstand, in the context of neural systems, how circuits (cells and their connectivity)
might be implemented to carry out various computations or computational strategies.

We will develop examples to illustrate idealized mechanisms for carrying out a few
computational tasks: temporally speciÞc addition or coincidence detection, temporally
speciÞc subtraction or vetoing, and direction selectivity. The setup will be similar in
each case. There will be two input units, R1 and R2, that we might think of as sensory
neurons, receptors to the outside world. They feed into a target neuron that does
the computation. (Figure 6.8A). This is a feedforward circuit. The information will
be passed by means of chemical synapses. Depending on the combined synaptic input
(triggered by the Þrings of R1 and R2) the target neuron may or may not elicit a spike.
The �answer� from the computation will simply be yes or no, whether the target neuron
Þres or does not Þre an action potential for our speciÞed input pattern. This will depend
on whether R1 and R2 are both activating excitatory synapses (Figure 6.8A) or one of
them is sending inhibition and the other excitation (Figure 6.8B), and of course the
relative timing will matter.

For a neuron in which inputs are distributed over the dendritic tree, the spatial
as well the temporal distribution of incoming signals determines the net response. For
example, suppose there is simultaneously timed excitation and inhibition delivered at
different locations along one dendritic branch. An inhibitory synapse located closer to
the soma will be more effective at reducing the response to the excitatory input than
if it is located more distally on the branch.

Let s1(t) and s2(t) be the (fractional) postsynaptic conductances that arise in the
target cell from activity of R1 and R2, respectively. We will consider the results of only
a single Þring of each of the input neurons. The conductances s1(t) and s2(t) will be
determined from the kinetics as in (6.10). The kinetic parameters are chosen so that an
excitatory conductance time course is brief and an inhibitory conductance is slower, on
time scales comparable to spike dynamics. For simplicity we do not describe the action
potentials of R1 and R2 in detail. Instead, we represent the receptor voltage responses,
V R
1 (t) and V

R
2 (t), as brief (2 ms), square-pulse, depolarizing events. These will yield

appropriate time courses for s1(t) and s2(t).
The parameters for our Morris�Lecar target neurons are the standard ones from

Table 2.4 for Type II behavior; here, we set Iapp = 0. The equations that govern the
response of the target neuron then are as follows:

C
dV

dt
= −Iion(V,w)− g1s1(V − Vsyn,1)− g2s2(V − Vsyn,2), (6.13)

dw

dt
=
φ[w∞(V )−w]

τw(V )
, (6.14)
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Figure 6.8 Schematic of receptors (R1, R2), neurons and connections for implementing neural com-
putations. (A) R1 and R2 activate excitatory inputs on target neuron. (B) R1 sends inhibition; R2 sends
excitation. (C) First�layer neuron N1 (same conÞguration as in (B) sends inhibition to second�layer neuron
N2, which also receives direct excitation from R2.

ds1
dt

= α1s∞(V
R
1 (t))(1− s1)− β1s1, (6.15)

ds2
dt

= α2s∞(V
R
2 (t))(1− s2)− β2s2. (6.16)

The parameters g1 and g2 represent the synaptic weights, the maximum postsynaptic
conductances that can be evoked by activity coming from R1 and R2. The values of
Vsyn,1 and Vsyn,2, the synaptic reversal potentials, will determine whether the synapse
is excitatory (with Vsyn far above Vrest, so that the postsynaptic current is inward) or
inhibitory (with Vsyn below Vrest, say equal to VK).

We begin with a simple case in which R1 and R2 both deliver brief excitatory input
to the target neuron. The initiation times of V R

1 (t) and V
R
2 (t) are respectively t1 and

t2. In our examples, we will Þx t2 and vary t1, where t1 = t2 + ∆t so that the input
from R1 precedes by |∆t| the input from R2 (if ∆t is negative; a positive value of ∆t
means that R2 Þred before R1). Suppose that the synapses are excitatory and identical,
having the same synaptic weights and the same time courses except for initiation times.
Assume that each input is subthreshold, but when delivered simultaneously they can
Þre the target cell. We see in Figure 6.9A that when R1 Þres far earlier than R2 then
two nearly identical input current events are seen in the target cell, and neither leads
to a target cell Þring. No nonlinearities are evident in this case. However, when the
inputs are delivered within a restricted time window they can cause the target cell to
Þre (Figure 6.9B,C). Thus the neuron�s integration and threshold properties make it
act like a coincidence detector for excitatory input. The regenerative spike�generating
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Figure 6.9 Coincidence detection for excitatory inputs. V (t) time courses of target neuron (upper records)
for excitatory inputs (lower records are synaptic currents) from receptor cells R1, R2 that are offset in time
by ∆t. Results for three different values of ∆t (in ms): −40 in (A), −10 in (B), 0 in (C). Note: The current
record shown dashed in (C) is reproduced from (A) to show the effect of reduced driving force when inputs
occur simultaneously. (D) Response plot of peak of V (t) (following second input) versus ∆t. Parameter
values for excitatory synaptic inputs: α1 = α2 = 1.0/ms, β1 = β2 = 0.3/ms, Vsyn,1 = Vsyn,2 = 100 mV,
θsyn = 20 mV, ksyn = 2 mV; g1 = g2 = 1.0 mS/cm2. At t = 0 neurons are at rest, V = −60.9 mV,
w = 0.0149 and synaptic gating variables are zero.

mechanism is quite nonlinear; its output does not reßect linear summation of inputs:
one plus one is not necessarily equal to two.
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The response plot (Figure 6.9D) summarizes the sensitivity to ∆t; it is the tuning
curve for the target cell as a coincidence detector. Notice how sharp the sensitivity is. If
this target neuron activates synapses that feed higher order neurons and if the synapses
require pre-synaptic depolarization above 0 mV, then the next level would effectively
see the yes/no answer. Emphasizing the computational analogy one might say that the
target neuron is performing the logical AND operation. Notice further that the tuning
curve is symmetric about ∆t = 0, as expected. Since the inputs are identical, the target
cell�s response is the same for R1 preceding or following R2 by ∆t.

In Section 6.2 we demonstrated the feature of sublinear addition of synaptic inputs
that are generated by conductance changes. The basis for this is that the synaptic
current depends on the membrane potential through the driving potential V (t)− Vsyn.
Thus the current for a given postsynaptic conductance is reduced when V (t) operates
closer to Vsyn. This effect is seen in Figure 6.9B for the case of nearly (but not exactly)
simultaneous transient inputs. When |∆t| is small enough the target neuron is still
depolarized when the second input arrives. Hence current injected by this second input
is smaller than that resulting from the earlier input. Similarly, when the two inputs
occur simultaneously there is a reduction in the unitary input (compare solid with
dashed records in the lower part of Figure 6.9C), but the effect is less pronounced,
since the input current is complete before signiÞcant depolarization occurs.

Next we illustrate the vetoing power that inhibition can exercise over a suprathresh-
old excitatory input. For this case R2 yields an excitatory conductance as in Figure 6.9
except doubled in size, adequate to evoke by itself a spike in the target neuron. Also,
R1 activates an inhibitory synaptic conductance that has a slower time course than an
excitatory one. If inhibition is delivered sufficiently in advance of excitation, then it
has no deleterious effect on the response to excitation (Figure 6.10A1). However, if it
occurs in a narrow temporal window that starts just before excitation, it can overrule
the excitation, vetoing an action potential in the target cell (Figure 6.10A2). Even if it
occurs slightly after the excitatory input, it can still prevent spiking or at least shorten
the target neuron�s action potential (Figure 6.10A3). The tuning curve for this vetoing
or subtraction effect is not symmetric (Figure 6.10A4). The inhibition with its slowly
decaying tail is more effective if delivered with or reasonably before the excitation.
But it is ineffective if delivered afterward even by a modest amount. Once the intrinsic
spike-generating conductances are activated only a very strong and not too delayed
inhibition can cancel the spike. Such an input�output relation might be likened to the
logical AND-NOT operation: An output spike occurs only if R2 Þres and R1 does not.

If one imagines that the receptor cells R1 and R2 are activated in temporal sequence
(with delay ∆t) by a moving stimulus in the environment, our target neuron shows
sensitivity to the direction of this movement. Suppose that a stimulus moving from left
to right activates R1 and then R2. In this case our tuning curve shows that vetoing
occurs far more effectively for movement from left to right (∆t negative) than from
right to left (∆t positive). Now suppose that we want to go the next step by having
an output neuron that acts as a directionally selective motion detector. Can we create
a unit that Þres only when the stimulus moves across the receptor pair from left to
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Figure 6.10 (A1�A4) Implementing subtraction with excitation and inhibition. (A1�A3) membrane po-
tential time courses V (t) of target neuron for excitatory input from receptor cell R2 and inhibitory input
from R1, offset in time by ∆t (see schematic in Figure 6.8B). Results for different values of ∆t, −40, −10,
20 ms, are shown in (A1�A3), respectively. (A4) Response plot of peak of V (t) (associated with input
from R1) versus ∆t. Parameter values for excitatory inputs as in Figure 6.9; for inhibitory input kinetics:
α1 = 0.5/ms, β1 = 0.1/ms, Vsyn,1 = −84 mV, θsyn = 20 mV, ksyn = 2 mV, g1 = 2.5 mS/cm2, g2 = 2.0
mS/cm2. (B1�B4) Directionally selective, motion�detecting neuron. (B1�B3) membrane potential time
courses V2(t) of second layer neuron (Figure 6.8C) neuron N2 that receives excitatory input from receptor
cell R2 and inhibitory input from N1 (A1�A4). Results for different values of ∆t, −40, −10, 20 ms, are
shown in panels (B1�B3), respectively. (B4) Response plot of peak of V2(t) versus ∆t. Parameter values
for N1 and the inputs to N1 are same as in the left panels; for N2 and input kinetics and their weights
onto N2 the parameter values are identical as onto N1 (with g2,1 = 2.5 mS/cm2, g2,R2 = 2.0 mS/cm2.
Input from R2 to N2 is delayed in each case by 10 ms. At t = 0 neurons are at rest, V = −60.9 mV,
w = 0.0149 and synaptic gating variables are zero.
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right and in a conÞned range of ∆t (this means either that the stimulus is moving fast
enough or it is assumed of moderate speed and in the spatially localized receptive Þelds
of these receptors)? We want a tuning curve that looks like Figure 6.10B4.

A simple way to solve conceptually this design task is to imagine subtracting the
tuning curve of Figure 6.10A4 from the response curve of R2 delivered alone to the target
neuron (the latter being just ßat at 32 mV, independent of ∆t). One way to implement
this in neuralware is by introducing a downstream neuron N2 (with voltage V2(t)) whose
tuning curve will have this property. Let us refer to the target neuron in earlier examples
as N1 (with voltage V1(t)). The two Morris�Lecar units N1, N2 have identical intrinsic
properties. To carry out the subtraction we now feed excitatory input from R2 into
N2, with some propagation delay, and have N1 inhibit N2 (Figure 6.8C). Thus for large
|∆t| the inhibition from N1 vetoes the excitation from R2 with the result that N2 does
not Þre (Figure 6.10B1,B3). For modest |∆t| the inhibition is preferentially absent for
∆t negative and N2 can Þre (Figure 6.10B2). Figure 6.10B4 shows the tuning curve
of the output neuron N2. With this conÞguration we identify N1 and N2 as neurons
in the Þrst and second processing layers after the network�s input layer of receptor
units. Other types of feedforward connectivities can lead to different feature�detecting
properties; e.g., in the primary visual cortex there are neurons (�simple cells�) that
respond to bars of light with speciÞc orientation, and the sensory signals coming to
these neurons are mapped with speciÞc alignments from the thalamus (which shows,
to Þrst approximation, no orientation speciÞcity).

The examples above have exploited the sensitivity of the model neuron�s responsive-
ness to timing of its inputs. There is good evidence that sound localization as carried
out by the auditory system (in some frequency ranges) can involve neurons capable
of coincidence discriminations at submillisecond time scales. These neurons have been
shown in some species to have potassium currents that are believed to render them
unresponsive to tonic inputs but highly sensitive to transient inputs [Trussell, 1999].
Whether or not neural computations generally are performed based on precise spike
timing raises interesting questions about the nature of the neural code and mechanisms
[Shadlen and Newsome, 1998, Rieke et al., 1997, Dayan and Abbott, 2001]. How could
spike timing be preserved in the face of neural variability, including the possible sources
of heterogeneity of neuronal and coupling properties, sparseness of coupling, and the
stochastic nature of synaptic transmission? Can some type of population averaging or
multi�layer processing recover timing information, or must it necessarily be degraded
as activity passes through successive layers? In some contexts Þring rate (short time
averaged) is likely the code carrier.

6.5 Large�Scale Networks

The previous sections have dealt with simple 2 or 3-cell networks, but how does one
develop and implement formulations to treat large cellular ensembles? One approach, of
course, is just to extend to N units the cell-based descriptions that we have been using
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above. This means specifying the biophysical details of each unit, the coupling dynamics
(e.g., synaptic conductances or diffusion of intercellular messengers), and the coupling
topology (e.g., nearest�neighbor or all-to-all coupling or something intermediate). In the
case of spiking units this would mean that we are attempting to keep track of each spike
in the network and time course of intrinsic variables (membrane potential and gating
variable for ionic conductances at all times) and coupling variables associated with
the intercellular communication. Such approaches have been used to model electrical
activity in the heart [Keener and Sneyd, 1998], the dynamics of hormonal secretory
systems like the pancreas [Sherman, 1996], and behaviors of neural systems like epileptic
waves in brain slices [Traub et al., 1999] or receptive Þeld properties of visual cortex
[Troyer et al., 1998, McLaughlin et al., 2000].

An alternative approach to such detailed cell-based models is to use mean Þeld
descriptions. For this one assumes that the space and time scales of interest do not
demand knowing what each individual unit is doing at every moment in time; that the
amount of heterogeneity and ßuctation in the system is enough but not too much so
that averaging over cellular properties and small time and space scales is allowable to
yield a description for the dynamics of the ensemble averages. For example, instead
of instantaneous membrane potential (for each cell, on the time scale of milliseconds)
being the primary observable, we might use the Þring rate of a cell on the time scale
of tens of milliseconds and a spatial scale that includes several cells in a unit length.
If you think about it, the Hodgkin-Huxley model of electrical excitability is a mean
Þeld description at the cellular level with respect to the population of ionic channels.
The random openings and closings of individual channels are not described; only the
probability or fraction of gating variables being in a particular state is represented
(see Chapter 11, as well as [Johnston and Wu, 1995] and [Koch, 1999]). An implicit
assumption in using the mean Þeld is that the individuals are behaving asynchronously.
We would not use the HH model if we thought that the channels were all opening and
closing precisely together in lock step. Similarly, using a mean Þeld model for a cellular
network means that we assume that the cells are not synchronized on a Þne temporal
scale, say spike for spike. Consequently, we would not use the mean Þeld models to
answer questions about precise spike timing, as we have been doing in the previous
sections.

So how does one obtain the mean Þeld model for an ensemble? This is a difficult and
signiÞcant question, or several questions, actually: How do you retain some information
about biophysical properties of cells and synapses when you go from a �micro� to a
�macro� description? Can you be sure if you do a cell-based network simulation that
your units will actually behave asynchronously? How do you decide whether your mean
Þeld model should retain explicitly some form of cell heterogeneity? How does one
average over the different sources of stochasticity? These issues will keep researchers in
computational cell biology quite busy over the next several years.

In practice, mean Þeld or population-averaged models in cell/neuro biology are
typically not derived from Þrst principles. They are more or less developed from a set
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of assumptions that involve disregarding some of the difficult issues. One may lose some
connection with the biophysical details in this way.

Here�s one example along these lines of a derivable mean Þeld description. Suppose
we treat a spike as an event without considering the ionic currents that generate the
spike. The leaky integrate-and-Þre model of neuronal excitability does this. Here one
assumes that below �Þring threshold� the neuron has a linear I-V relation and the
membrane potential is described by an RC circuit:

Cm
dV

dt
= − V

Rm

− Isyn + Iapp, (6.17)

where Isyn is the summed synaptic input from the other cells making synaptic contact
with this one.

When V reaches threshold Vth then we say that a spike occurred, and V is reset
to some level, typically to Vrest. In a case like this the model is linear except for the
resetting events, and on the face of it each cell has one variable, V . So, what about the
synaptic variables? One could assume a very simple model for a synaptic input that
given a presynaptic spike the postsynaptic V jumps instantaneously up or down by a
speciÞed amount. This assumption throws away the time course of the postsynaptic
conductance. However, on the plus side one may now derive legitimately a mean Þeld
population model, getting a (partial) differential equation for the probability density
function p(v, t) of membrane potential (say for Vrest ≤ V ≤ Vth) as a function of time.
This description does indeed well describe a network of n such integrate-and-Þre cells,
sparsely coupled, in the limit of large n. It has been used to describe a variety of
behaviors [Nykamp and Tranchina, 2000, Omurtag et al., 2000]. However, as one seeks
to restore some of the biophysical variables, the description can become impractical.
Each new dynamic variable, synaptic or intrinsic, that one includes becomes another
independent variable in p(v, . . . , t) leading to a high-dimensional system growing geo-
metrically in size. In contrast, the problem size grows linearly if one adds additional
variables in the case of an n-cell integrate-and-Þre system. One of the insights that
emerge from approaches like these is that if cells are really asynchronous, then at each
instant in time they will have V -values spread over the interval, and one should expect
that some fraction (perhaps small) of cells are near to Vth. Consequently, a transient
excitatory input will lead to almost instantaneous Þring of some cells. This means that
the network can exhibit very fast response times for some inputs.

A less rigorously supported but attractive mean Þeld model was popularized by
Wilson and Cowan [Wilson and Cowan, 1972]. This formulation jumps right to mean
Þeld quantities, which in the simplest interpretation are the probabilities of Þring (per
unit time) of the typical, or �mean,� cell in the given populations: E(t) and I(t) for,
say, excitatory and inhibitory subpopulations of interacting neurons. Note that this
Wilson�Cowan formulation implicitly assumes random, sparse coupling without spatial
structure. One assumes that the neurons have input/output relations represented by
fE and fI so that under steady input to, say, the �E� cells, they would Þre with steady
rate fE(inputE) (and analogously for �I� cells). The shape of fE is usually taken to be
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Figure 6.11 Graphical depiction for determination
of steady states to single population of recurrently
connected excitatory neurons. Left� and right�hand
sides of (6.20), plotted as functions of E, Þring rate.
DeÞnitions: fE(u) = 1/[1 + exp(−u)] and pE − 5;
right-hand side plotted for three different values a =
6, 10, 14.

sigmoidal, the rate increasing to a saturation level as inputE grows large. The network
is considered not able to equilibrate instantaneously to dynamic inputs but that it
�integrates� with a time constant τE.

For now, consider an isolated population of mutually excitatory cells. We would
have

τE
dE

dt
= −E + fE(inputE), (6.18)

where inputE includes input to the E population from both extrinsic sources PE and
from the other cells in the network. In the mean Þeld approach the other cells are also
Þring at rate E, so the synaptic Þeld is proportional to E. Thus, inputE = a ·E + PE.
Note that the parameter a incorporates the transformation from presynaptic Þring
rate to postsynaptic conductance and to postsynaptic current, etc. One should also
appreciate that in using the sigmoidal-like input/output relation there is not a strict
threshold for cell Þring. The Þring probability decreases toward zero for decreasing input
strength, but it is never really zero even for negative inputs. An implicit assumption
here is that noise in the system smoothes the abrupt thresholds as found in frequency�
current relations of, say, cellular models like Morris�Lecar without noise. Also, in any
real network cells are not prefectly identical, so this heterogeneity also contributes to
such smoothing in the mean Þeld models.

Now let us warm up by considering just the isolated E network and ask what steady
states of activity are possible. At steady state we must have

dE

dt
= 0, (6.19)

so that from (6.18),

E = fE(a ·E + PE). (6.20)

The solutions to this nonlinear transcendental equation are most easily analyzed graph-
ically. That is, plot the left-hand side and the right-hand side on the same axes as
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functions of E. Their intersections correspond to the possible solutions. The parameter
a acts primarily on the steepness of the sigmoidal curve, while PE is more related to
left/right translation. In Figure 6.11 we can see that for each value of a there is an in-
tersection near E = 0. That is, the network has a stable rest state for these parameter
values. On the other hand, we see that if a is large enough, then there are multiple
steady states. For this one-dimensional dynamical system the middle state of moderate
activity is unstable, while the upper state of high activity is stable. In this parameter
regime the network is bistable. If the cells are at rest (very low Þring rate) and no
transient input is given, then they will remain at rest. However, if a sufficiently strong
brief input is delivered, then the cells will become active and because of the recurrent
excitation in the network the cells will continue to drive each other, and the network
reaches a steady state of high activity. This recurrent excitation is the autocatalytic
mechanism that underlies the bistability. We may view a as the relative weight of the
autocatalytic feedback, the strength of excitatory interactions. Note that because the
input/output relation is saturating the activity level does not grow without bound.

Now we are ready to consider the two populations of excitatory and inhibitory cells.
Extending the development above, we write down the model equations as

τE
dE

dt
= −E + fE(a · E − b · I + PE), (6.21)

τI
dI

dt
= −I + fI(c · E − d · I + PI). (6.22)

This pair of ordinary differential equations governs the behavior, in the mean Þeld sense,
of the interacting E and I populations. Note the signs of the interaction terms inside of
fE and fI . Positive a means recurrent excitation, autocatalysis; positive c means that
I is driven by E; positive c · b (with the minus sign on b) means that negative feedback
through I onto E; and −d · I means I cells inhibit each other.

The model equations can be analyzed with phase plane methods. For the case shown
in Figure 6.12 the network has a stable rest state (the only intersection of the E� and I�
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Figure 6.12 Network excitability. Phase plane por-
trait for Þring-rate model of neuronal network with
interacting excitatory and inhibitory subpopulations,
based on (6.22). The cellular input/output relations
(rate vs. input) are fE(u) = fI(u) = 1/[1 +
exp(−u)] as in Figure 6.11. The E�nullcline is the
cubic-shaped dashed line; I�nullcline is the sigmoidal
dashed line. Trajectories (solid), for three different
initial conditions that represent perturbations from
rest to the E cells, all tend back to the rest state for
large time. Parameter values: a = 16, b = 12, c =
16, d = 5, PE = −5, PI = −4, τE = τI = 1.
Note that the model equations have been expressed
in dimensionless form.
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nullclines) with both populations at very low Þring rate. This state is globally attracting.
For any initial conditions the network has a transient response and then returns to rest.
The three different trajectories correspond to responses of E and I for brief stimuli to
the E population. For a small stimulus only a few E cells Þre, not enough to amplify the
excitatory activity. However, with a larger initial level of E we see some regenerative
effects. First, E grows beyond its starting value: Some nonlinear ampliÞcation occurs.
Then, E peaks as the I population is recruited, driven by the Þring of the excitatory
cells. Eventually, all cells return to the rest state. This illustrates the excitability of the
network.

The phase plane portrait of the network is qualitatively similar to that of the basic
Morris�Lecar model of cellular electrical excitability. The activator variable (in this
case E) has a cubic-shaped nullcline; the left, middle, and right branches correspond to
the three roots of (6.20) for a Þxed level of PE − b · I. The variable I here corresponds
to a recovery process like w in the Morris�Lecar model. Its nullcline is monotonic.

If we vary the parameter PE, the E�nullcline changes, while the I�nullcline remains
Þxed. For example, increasing a bit the extrinsic input to the E population, say imag-
ining more feedforward excitation onto the E cells from some other network, will cause
them to Þre faster, and thereby recruit more inhibition. The steady state will migrate
to the right and upward along the I�nullcline. If one increases PE enough, then the
steady state will move onto the middle branch and perhaps destabilize. This is seen in
Figure 6.13A, where the network is now in an oscillatory mode, having gone through
a Hopf bifurcation. The negative�feedback inhibition lags somewhat behind the exci-
tatory activity, seen in this phase plane portrait as well as in the time courses shown
in Figure 6.13B. If the E-population is driven hard enough, the system stops oscillat-
ing. The steady state, for large enough PE, restabilizes and is on the right branch of
the E-nullcline. This corresponds to a balanced state with strong steady Þring in each
population.

These examples are only illustrative of this class of mean Þeld Þring�rate mod-
els. Some speciÞc neural systems where such formulations have been applied include
[Pinto et al., 1996, Ermentrout, 1998, Hansel and Sompolinsky, 1998]; in the paper by
Pinto et al. you will Þnd a pseudo-derivation of the model based on cellular properties.

Suggestions for Further Reading

� Spikes, Fred Rieke, David Warland, Rob de Ruyter van Steveninck, and William
Bialek. This inßuential book treats neuronal communication from a highly
information-theoretic point of view [Rieke et al., 1997].

� Neural networks as spatio-temporal pattern-forming systems, Bard Ermentrout.
This paper reviews pattern formation in neural networks, including the continuous
networks discussed in this chapter [Ermentrout, 1998].

� Mathematical Physiology, James Keener and James Sneyd. Keener and Sneyd treat
some of the cellular level topics presented in this chapter, as well as many other
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Figure 6.13 Network oscillations. (A) Phase plane and (B) time courses for the Þring rate model, with
increased input to the excitatory population: PE = −1. Other parameters are as in Figure 6.12. Dashed
line is for E�nullcline in (A) and E vs. t in (B); solid line is for I�nullcline in (A) and for I vs. t in (B).
Darker solid curve in (A) is the phase plot.

topics in systems level physiology, from a more analytic perspective as opposed to
the computational focus presented here [Keener and Sneyd, 1998].

� Methods in Neuronal Modeling, Christof Koch and Idan Segev, editors. This
is a compilation of chapters from various authors on a wide variety of top-
ics related to neuronal modeling, both at the cell and at the network level
[Koch and Segev, 1998].

� Foundations of Cellular Neurophysiology, Daniel Johnston and Samuel Wu. Covers
in more depth topics such as transmitter release, plasticity, elementary networks
and extracellular electrical behavior [Johnston and Wu, 1995].

� Theoretical Neuroscience: Computational and Mathematical Modeling of Neural
Systems, Peter Dayan and Larry Abbott. This book addresses neural coding issues
with several different types of models [Dayan and Abbott, 2001].

� Biophysics of Computation, Christof Koch. This book covers many aspects of cell-
based neurophysiology from a modeling perspective [Koch, 1999].

Exercises

1. Consider the dynamics of two identical electrically passive cells with gap�junctional
coupling:

dV1
dt

= (−gm ∗ V1 + gc ∗ (V2 − V1) + I1)/Cm,
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dV2
dt

= (−gm ∗ V2 + gc ∗ (V1 − V2) + I2)/Cm.

Let gm = 0.05 mS/cm2, Cm = 1 µ F/cm2. Consider gc = 0.1 mS/cm2 (Note: We
have divided the equations by cell area). For now, let I1 = I2 = 0.

(a) Solve the equations with V1(0) = 1, V2(0) = 0 and observe, over 60 ms, the
convergence and eventual decay back to rest of both cells.

(b) This is a linear system. Its solution is a sum of two exponentials. Find the
characteristic decay rates (eigenvalues) and the corresponding time constants.
(Hint: Find singular points.)

(c) Evaluate and plot Vs = (V1+V2)/2 and Vd = (V1−V2). Notice that they appear
to be single exponentials. ConÞrm this by plotting Vs and Vd on a semilog scale
and identify the slopes with the eigenvalues.

(d) Derive differential equations for Vs and Vd by adding and subtracting the equa-
tions for V1 and V2. See that these equations are uncoupled, and so each of
Vs and Vd decays as a single exponential. Identify the eigenvalue for Vd as the
reciprocal of the system�s equalization time constant.

(e) Do the eigenvalues change if I1 and/or I2 are nonzero?

2. Determine the two time constants of the following system: See that compartment
1 acts as a driver for compartment 2:

dV1
dt

= (−gm ∗ V1 + α ∗ gc ∗ (V2 − V1) + I1)/Cm,
dV2
dt

= (−gm ∗ V2 + gc ∗ (V1 − V2) + I2)/Cm.

Let gm = 0.05 mS/cm2, Cm = 1µF/cm2, gc = 0.1 mS/cm2. Noting that we have
divided the equations by cell area, α is the ratio of areas: Cell 2�s area divided by
cell 1�s. Consider α = 1 or 0.1. For now, let I1 = I2 = 0. Note: In this formulation
gc is the total gap junctional conductance divided by the area of cell 2.

(a) Compute and plot the time courses for V1, V2 (on the same axes) for the two
values of α. Interpret the results. Why does V1 decay more slowly for α = 0.1?
What happened to the early decaying component?

(b) Estimate (analytically) the eigenvalues in the limit of α very small. Explain
the differences between these eigenvalues for the two cases of α, 1 or small.

(c) How well is the behavior of V1 and V2 approximated for small α if you just set
α = 0 in the equations? Discuss the behavior in terms of cell 1 being a driver
of cell 2 (think of the larger membrane area in the dendrites). Now do the
simulation with initial conditions V1(0) = 0, V2(0) = 0. How effectively does
compartment 2 drive compartment 1?

(d) Suppose the steady input I1 is delivered to compartment 1. Find the attenuation
factor for the steady response from the dendrite to the soma; V1/V2. Do the
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same for I2 given to compartment 2. Compare and discuss the two attenuation
factors and their differences.

3. Consider two Morris�Lecar cells with gap�junction coupling; use the same intrinsic
params as in Figure 6.2 and Figure 6.3 (except I1 = I2 = −5, unless stated
otherwise).

(a) Formulate the equations, as in Exercise 2, allowing for possibly different areas.
(b) Consider Þrst an isolated cell. Show that it is bistable, with an attracting

oscillation mode in the depolarized regime and a stable steady state at low
membrane potential (look at and describe the phase plane: nullclines, steady
states, and their stability, etc.). Demonstrate this bistability over a range of I
values.

(c) Show that for weak gap�junction conductance gc, the pair can exist with one
cell, say cell 1, in the �upper� (oscillating) state and cell 2 in the lower (steady)
state. But as gc increases to intermediate values (say beyond gc = 0.3), the cells
tend to be in the same state. If gc is not too large (say ¿0.3 but ¡*) the cells
can oscillate in antiphase but for for large gc the cells oscillate in-phase. Show
that there is some range of gc where both oscillating states coexist.

(d) Consider the effect of unequal areas. Suppose cell 1 (as in Exercise 2) is
larger and aratio is the ratio of their areas (as deÞned in Exercise 2): ara-
tio=area2/area1. Let gc = 0.3. Verify that the state of cell 1 up (and oscillating)
with cell 2 down is still valid. Compare its frequency to that of the control case
(area ratio=1) and explain the difference. Of course can also get the state w/
both up and oscillating. But now with a different phase relationship than con-
trol. In what way and why? Is there an analog here for the two states of in-phase
and anti-phase as in (c)? Give an example if you say Yes.

4. We have discussed the Wilson�Cowan paradigm in excitable and in oscillatory
modes.

(a) Using a numerical package, compute the bifurcation diagram with stimulation
to �E� cells as a parameter. I think you be SNIC at one end and Hopf at the
other... have students do this and

(b) Plot frequency vs stimulation and examine the low frequency behavior.
(c) Can you Þnd other parameters that would give a bistable network?

5. Consider just an excitatory population. As a function of input, this population
shows a range of bistability.

(a) Introduce a slow negative feedback, Q, as an intrinsic property. Q should
grow with the Þring rate of the excitatory cells, and result in spike frequency
adaptation. The Q dynamics could be something like

dQ

dt
= (Q∞(E)−Q)/τq
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The sigmoid Q∞ should be positioned in the E-Q plane to create oscillations
or excitability. This is one way to give the single population some interesting
dynamics in the context of a rate model like Wilson-Cowan.

(b) Try using θQ (the location of Q∞ = 0.5) as the slow variable.
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CHAPT E R 7

Spatial Modeling

James Keener and Joel Keizer

All of the models considered in previous chapters have relied on the implicit assump-
tion that chemical concentrations are uniform in space. This assumption is reasonable
when the region of space in which the reaction takes place is conÞned and quite small.
However, there are many situations in which chemical concentrations are not uniform
in space. A well-known example in which nonuniform distributions are crucial is the
propagation of an action potential along the axon of a nerve Þber (Figure 1.1). When
a nerve cell �Þres,� a wave of membrane depolarization is initiated at the base of the
axon (where it connects to the cell body; see Figure 2.1) and propagates along the axon
out to its terminus. During propagation, large spatial gradients in membrane poten-
tial and local currents are created. The interaction between these spatial gradients and
voltage-sensitive ion channels in the axonal membrane drives the wave along the axon.
In order to understand the propagation of a nerve impulse, we must Þrst master the
basic principles of molecular diffusion and the interactions between chemical reaction
and diffusion.

Many other questions arise in molecular cell biology that demand at least an ele-
mentary understanding of molecular diffusion. For instance, how long does it take for
a chemical signal generated at the cell membrane to diffuse to the nucleus? Why are
expensive transport systems required to move some materials in cells, for example be-
tween a nerve cell body and synapses in axons and dendrites? How fast can molecules
or ions pass through protein channels in membranes?

In Chapter 4 and Chapter 5 we faced the problem of nonuniform Ca2+ concentration
in the vicinity of Ca2+ channels. There we made a simplifying assumption that the
Ca2+ concentration is high in a small region adjacent to the channel (domain Ca2+). To



172 7: Spatial Modeling
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Figure 7.1 Spatial phenomena in cell biology. (A) Waves of aggregation in Þelds of slime mold amoebae.
The light and dark bands correspond to regions where the amoebae are actively moving or not. The amoebae
collect at the center of each pattern, where they form a multicellular slug. The collective motion of the cells
is organized by waves of cyclic AMP that propagate throught the extracellular medium. Courtesy of Peter
Newell. (B) Stripes of gene expression (ftz and eve) in a fruit ßy embryo at (left) 3 hr. after fertilization
and (right) 3 1/2 hr. after fertilization. Reprinted from [Lawrence, 1992] For an introductory discussion of
the segmentation genes in Drosophila, see [Alberts et al., 1994]. (C) Pigmentation patterns on sea shells.
From [Meinhardt, 1998] (D)The cleavage furrow in a dividing cell. Reprinted from [Alberts et al., 1994];
original by Yoshio Fukui. A dividing slime mold amoeba is stained for actin and myosin. The actomyosin
ring in the center of the cell contracts like a purse-string to divide the cell in half.

improve on the domain Ca2+ approximation and other simpliÞed approaches to spatial
nonuniformity, we will need the spatial modeling principles described here.

A more sophisticated example of spatiotemporal organization in living cells is the
phenomenon of Ca2+ waves that propagate through eggs after fertilization. These waves
will be modeled in great detail in Chapter 8, after we have studied reaction�diffusion
equations in this chapter. Similar to Ca2+ waves in eggs are waves of cyclic AMP that
propagate through Þelds of slime mold amoebae shown in Figure 7.1A. By directing



7.1: One-Dimensional Formulation 173

the motion of the amoebae, these chemical waves organize the complex behaviors of
this primitive multicellular organism: aggregation of simple amoebae into a multicellular
slug, motility of the slug, and formation of the fruiting body. Other interesting examples
of spatial organization include gap-gene expression in early fruit ßy embryos (Figure
7.1B), seashell patterns (Figure 7.1C), and medial ring placement at cell division (Figure
7.1D). Although we will not attempt to model any of these phenomena in this book, a
starting point for such investigations is this chapter.

The chapter is organized along the following lines: First, we consider diffusion in one
dimension, such as we might Þnd in a long thin tube like a nerve axon. We distinguish
between a conservation law (how the law of conservation of matter relates molecular
ßux to local changes in concentration) and a constitutive relation (how molecular ßux
is determined by concentration gradients, ßuid transport, and electrophoresis). These
principles are expressed in the precise mathematical terms of partial differential equa-
tions (PDEs). We show the exact solution to these equations for a number of important
illustrative cases. Because PDEs cannot be solved exactly in most realistic situations,
we next describe a numerical procedure, called the method of lines, that is easily imple-
mented. Also, because very few spatial nonuniformities are effectively one-dimensional,
we show how to formulate the conservation law and constitutive relations in two and
three dimensions. We then couple molecular diffusion to nonlinear chemical reactions
in order to study wave propagation in one spatial dimension. The theory is applied to
the FitzHugh�Nagumo equations of nerve impulse propagation introduced in Chapter
2.

7.1 One-Dimensional Formulation

7.1.1 Conservation in One Dimension

Many equations in biology are consequences of conservation laws. A conservation law is
simply a mathematical statement describing how some quantity is created or destroyed
or it moves about.

Consider a chemical species C whose concentration c(x, t) varies in time and space,
where the spatial variation is restricted to one spatial variable x. This situation is
illustrated in Figure 7.2, where the chemical species C is contained in a long, thin
tube with constant cross-sectional area A. In any Þxed region R along the tube, the

A

xa xb

dx

Jxa
f

Jxb

Figure 7.2 Conservation in one dimension.
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conservation of C can be expressed in words as

time rate of change of the total amount of C within R =

rate at which C ßows in to R

− rate at which C ßows out of R
+ rate at which C is produced within R

− rate at which C is destroyed within R. (7.1)

The total amount of chemical C contained in a small slice of tube between x and
x + dx is c(x, t)Adx. At any time t, the total amount of C in some arbitrary interval
xa < x < xb can be computed by integrating c(x, t)A over that interval:

total amount of C in the interval [xa, xb] =

Z xb

xa

c(x, t)Adx. (7.2)

It is important to distinguish between concentration (amount/ volume) and the �total
amount.� If c has units of micromolar (micromol/liter), then the total amount has units
of micromoles.

Now suppose that C is free to move about inside the tube, so that C moves in and
out of the interval by crossing the boundaries of the interval at x = xa and x = xb. If
we denote by J(x, t) the rate at which C moves across the boundary at position x from
left to right at time t, then the net movement, or ßux, of C into the interval is

net rate of entry of C = AJ(xa, t)−AJ(xb, t). (7.3)

Since the net rate of entry has units of amount/time and A has units of area, the
ßux rate J(x, t) has units of amount/area/time. It is also important to remember that
J(x, t) is positive when C moves to the right, and negative when C moves to the left.

The total amount of C in the interval can also change because of the production or
destruction of C within the interval. If we let f(x, t, c) denote the net rate of increae of
C (production − destruction) per unit volume at location x and time t, then the total
amount of C produced in the interval at time t is

net rate of production of C =

Z xb

xa

f(x, t, c(x, t))Adx. (7.4)

Note that the presence of c in the deÞnition of f allows for the possibility that the rate
of production of C depends on c itself. Since the units of the net rate of production of
C are amount/time, the units of f must be amount/time/volume. When f is positive,
the region is a source (leading to an increase in the total amount of C), and when f is
negative, it is a sink. The function f is often called a source function.

The conservation law (7.1) can now be written in mathematical symbols as

d

dt

Z b

a

c(x, t) dx = J(xa, t)− J(xb, t) +
Z xb

xa

f(x, t, c(x, t)) dx, (7.5)
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where the constant A has been factored out. The ßux terms can be replaced by

J(xb, t)− J(xa, t) =
Z xb

xa

∂

∂x
J(x, t) dx, (7.6)

allowing all the terms in (7.5) to be written as integrals:

d

dt

Z xb

xa

c(x, t) dx =

Z xb

xa

∂

∂x
J(x, t) dx+

Z xb

xa

f(x, t, c(x, t)) dx. (7.7)

If the function c(x, t) is smooth enough, then the differentiation and integration can be
interchanged, and (7.7) can be rewritten asZ xb

xa

∙
∂

∂t
c(x, t) dx− ∂

∂x
J(x, t)− f(x, t, c(x, t))

¸
dx = 0. (7.8)

Since the interval is arbitrary, the only way this equality can hold is if the integrand is
zero. Therefore, we replace (7.8) by the equivalent conservation law in differential form:

∂c

∂t
− ∂J
∂x

= f(x, t, c). (7.9)

Notice that in this equation there are two independent variables (x and t), and that
the equation contains partial derivatives with respect to both of these. Such equations
are called partial differential equations. Since time is one of the independent variables,
and this equation describes the evolution of c(x, t) in time, (7.9) is called an evolution
equation because it describes how the concentration of C evolves (changes) as time
proceeds.

7.1.2 Fick�s Law of Diffusion

Equation (7.9) is underdetermined because it is a single equation relating two unknowns:
the concentration c and the ßux J . To resolve this problem, an additional equation
relating c and J is needed.

In contrast to the conservation law (7.9), which follows indubitably from the general
principle of material conservation, the relation between c and J must be determined
empirically and is not universally valid. To make this distinction, the secondary relation
between c and J is usually called a constitutive equation.

One such constitutive relation is called Fick�s law, and states that C moves from
regions of high concentration to regions of low concentration, at a rate proportional to
the concentration gradient. In mathematical symbols, this diffusive ßux is

J(x, t) = −D ∂

∂x
c(x, t), (7.10)

where the proportionality constant D is called the diffusion constant. The negative sign
signiÞes that C moves spontaneously from regions of high concentrations to regions of
low concentrations. The value of D depends on the size of C, as well as properties of the
medium in which it is diffusing. The constant D has units of length2/time. Diffusion
coefficients of some typical biochemicals are given in Table 7.1.
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Table 7.1 Molecular Weight and Diffusion Coefficients of Some Biochemical Substances in Dilute
Aqueous Solution.

Substance Molecular Weight D/107cm2/s

glucose 192 660

insulin 5734 210

cytochrome c 13,370 11.4

myoglobin 16,900 11.3

β-lacroglobulin 37,100 7.5

serum albumin 68,500 6.1

hemoglobin 64,500 6.9

catalase 247,500 4.1

urease 482,700 3.46

Þbrinogen 339,700 1.98

myosin 524,800 1.10

tobacco mosaic virus 40,590,000 0.46

Using Fick�s law, (7.9) becomes the reaction�diffusion equation

∂c

∂t
− ∂

∂x

µ
D
∂c

∂x

¶
= f(x, t, c). (7.11)

In this equation, the term ∂

∂x

¡
D ∂c

∂x

¢
is the diffusion term, and f is the reaction term.

When f is zero, that is, when there are no sources or sinks, (7.11) becomes the diffusion
equation

∂c

∂t
=
∂

∂x

µ
D
∂c

∂x

¶
. (7.12)

7.1.3 Advection

Suppose that there is a uniform macroscopic ßow of the solvent, with speed v along
the x-axis, which carries solutes along with it. Then, during a small time ∆t, all of the
C between x = xa and x = xa − v∆t will cross the point x = xa. The total amount
of C crossing xa during this time is found by multiplying the concentration c(x, t) by
the ßuid volume Av∆t. The corresponding ßux is therefore (after dividing by ∆t to get
amount per unit time)

J(x, t) = vc(x, t). (7.13)

This ßux is called the advective ßux. Note that whereas the diffusive ßux was pro-
portional to the concentration gradient, the advective ßux is proportional to the
concentration itself.
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If there is both diffusive ßux and advective ßux, then the total ßux is the sum of
the two:

J(x, t) = vc(x, t)−D ∂

∂x
c(x, t). (7.14)

Using this constitutive relation, (7.9) becomes a reaction�advection�diffusion equation,

∂c

∂t
+
∂

∂x

µ
vc−D ∂c

∂x

¶
= f(x, t, c). (7.15)

7.1.4 Flux of Ions in a Field

If the substance C is an ion and there is an electrical potential gradient, then there will
also be a ßux of C because of the inßuence of the potential on the ion. In this case the
ßux of ions is given by the Nernst�Planck equation

J = −D
µ
∂c

∂x
+
zF

RT
c
∂φ

∂x

¶
, (7.16)

where φ is the electric potential, z is the number of positive charges on the ion (a nega-
tive integer if the ion is negatively charged), F is Faraday�s constant, R is the universal
gas constant, and T is absolute temperature. Notice that according to this equa-
tion, there is movement because of both the concentration gradient and the potential
gradient.

7.1.5 The Cable Equation

Suppose that our long one-dimensional tube is bounded by a membrane, as in a nerve
axon. In this case, we wish to keep track of the electrical potential across the mem-
brane, rather than some chemical species within the tube. Nonetheless, the rules of
conservation are the same, so the derivation of the governing equation is similar.

Suppose the total current along the interior of the axon is I, positive From left to
right, and the transmembrane current per unit membrane area is IT, positive outward.
Then, conservation of current implies that

I(xa, t)− I(xb, t) =
Z xb

xa

SITdx, (7.17)

where S is the circumference of the tube. This conservation law can be expressed using
integrals as

−
Z xb

xa

∂I

∂x
dx =

Z xb

xa

SITdx, (7.18)

and since the interval is arbitrary, the integrands must be equal, so that

− ∂I

∂x
= SIT. (7.19)
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Recall from Chapter 1 that the total transmembrane current consists of two
components, a capacitive current and the ionic currents

− ∂I

∂x
= S

µ
Cm
∂V

∂t
+ Iion

¶
, (7.20)

where V is the transmembrane potential. Finally, the relationship between current and
potential is given by the constitutive relationship known as Ohm�s law (also called the
core conductor assumption),

I = − A
Rc

∂φi
∂x
, (7.21)

where Rc is the cytoplasmic resistance (with units Ohms length), and φi is the
intracellular potential. With this constitutive relationship, our equation becomes

∂

∂x

µ
A

Rc

∂φi
∂x

¶
= S

µ
Cm
∂V

∂t
+ Iion

¶
. (7.22)

Finally, we close the model by assuming that the membrane is in a highly conductive
bath, so that the extracellular potential φe is a constant. Since V = φi − φe, we arrive
at the cable equation

∂

∂x

µ
A

Rc

∂V

∂x

¶
= S

µ
Cm
∂V

∂t
+ Iion

¶
. (7.23)

For a tube of uniform circular cross section and diameter d, A/s = d/4. Typical
parameter values for a variety of cells are shown in Table 7.2.

7.1.6 Boundary and Initial Conditions

In the study of ordinary differential equations, it is necessary to specify initial data
before one can Þnd a solution trajectory. With partial differential equations, one must
specify both initial data and boundary data before a solution can be found. Roughly
speaking, there must be one condition for each degree of freedom. Thus, since reaction�
diffusion equations are of Þrst order in time, there must be one initial condition for each

Table 7.2 Typical Parameter Values for a Variety of Excitable Cells. From [Keener and Sneyd, 1998].

parameter d Rc Rm Cm λm
units 10−4 cm Ω cm 103 Ω cm2 µF/cm2 cm

squid giant axon 500 30 1 1 0.65

lobster giant axon 75 60 2 1 0.25

crab giant axon 30 90 7 1 0.24

earthworm giant axon 105 200 12 0.3 0.4

marine worm giant axon 560 57 1.2 0.75 0.54

mammalian cardiac cell 20 150 7 1.2 0.15

barnacle muscle Þber 400 30 .23 20 0.28
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unknown function. Since they are of second order in space, there must be two boundary
conditions (conditions at some points in space) for each unknown function.

Initial conditions usually specify the values of the dependent variables at some ini-
tial time (usually t = 0) at which the solution is known or speciÞed by experimental
conditions. Boundary conditions reßect certain physical conditions of the experiment.
For example, if the concentration c is speciÞed to be some function f(t) at some
boundary point, say x = xa, then the condition c(xa, t) = f(t) is applied, called a
Dirichlet boundary condition. If, on the other hand, the ßux at a point is speciÞed,
then the condition −D ∂c

∂x
(xa, t) = g(t), called a Neumann boundary condition, is ap-

plied. If the ßux is related to the value of c at the boundary, then the Robin condition,
−D ∂c

∂x
(xa, t) = h(t)− αc(xa, t), is applied.

It is often convenient to assume that a domain is inÞnite, even though there is no
such thing as an inÞnitely long tube. Even with inÞnite domains, however, boundary
conditions must be speciÞed as constraints on the behavior of the dependent variable
in the limit that x→ ±∞.

7.2 Important Examples with Analytic Solutions

7.2.1 Diffusion Through a Membrane

Consider a membrane separating two large regions of space that contain some chemical
C. The concentration on the left is c1, and the concentration on the right is c2 (Figure
7.3). There is a small pore in the membrane (a one-dimensional channel of length L)
through which the chemical C can freely pass. Suppose that the two regions of space
are so large that their concentrations are not changing, even if chemical is ßowing from
one region to the other.

Let us assume that the transport of C across the membrane has been going on
for some time, so that the process is at steady state, i.e., the concentration c(x, t) is
independent of time ( ∂c

∂t
= 0). In this case, c(x) must satisfy the �boundary value

problem�

∂2c

∂x2
= 0, c(0) = c1, c(L) = c2. (7.24)

x = 0 x = L

Inside Outside

cell membrane

[C] = c1
[C] = c2

Figure 7.3 Simple diagram of a pore through a mem-
brane.
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The solution of this problem is quite easy to Þnd, being

c(x) = c1
³
1− x

L

´
+ c2

x

L
. (7.25)

Consequently, the steady ßux through the channel is proportional to the concentration
difference across the membrane,

J = −Dcx = D

L
(c1 − c2). (7.26)

7.2.2 Ion Flux Through a Channel

Suppose that the chemical moving through the channel is an ion, and that there is a
potential difference across the channel, with φ(0) = φ1 and φ(L) = φ2. We make the
simplifying approximation that the potential gradient through the channel is constant:

dφ

dx
=
∆φ

L
=
V

L
, where V = φ1 − φ2. (7.27)

If the process is in steady state so that the ion ßux everywhere in the channel is
the same constant, then, from (7.16),

J = −D
µ
cx + αc

V

L

¶
, (7.28)

where α = zF/RT . We solve this differential equation for c(x) subject to the boundary
condition that c(0) = c1 and Þnd that

c(x) = c1e
−αV x

L − JL

DαV

¡
1− e−α∆φx/L¢ . (7.29)

Now we can determine the ßux J by requiring that c(L) = c2, so that

J = −D
L
αV

µ
c2 − c1e−αV
1− e−αV

¶
. (7.30)

This expression for ßux can be converted to an ionic current Ic by multiplying by zF ,
in which case we obtain

Ic = −D
L
zFαV

µ
c2 − c1e−αV
1− e−αV

¶
. (7.31)

This expression is the famous Goldman�Hodgkin�Katz current equation, and it has the
important property that Ic = 0 when

∆V =
RT

zF
ln
c1
c2
, (7.32)

which is called the reversal potential or Nernst potential for the channel. The Nernst
potential is the transmembrane potential when the ion is at equilibrium across the
membrane for a given transmembrane concentration ratio c1/c2.
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Figure 7.4 Gaussian at 0.1, 1, and 10 s

7.2.3 Voltage Clamping

A typical experiment in electrophysiology is to hold Þxed the transmembrane potential
at some place on the membrane. For example, with a long axon, one might clamp the
voltage at one end and determine the resulting voltage proÞle along the axon.

For a passive membrane (e.g., a dendritic membrane), the voltage proÞle should
satisfy (7.23) with Iion = V/Rm, where Rm is the membrane viscocity (ohm· cm2). The
steady�state voltage proÞle V (x) must satisfy

A

Rc

∂2V

∂2x
=
SV

Rm

, (7.33)

subject to the boundary conditions V (0) = VÞxed and
∂V

∂x
(L) = 0 if the far end is sealed.

The solution of this problem is

V (x) = VÞxed
e(L−x)/λm − e(x−L)λm
eL/λm − e−L/λm , (7.34)

where λm =
q

ARm
SRc

is the length constant for the axon. For a long axon (L is many

length constants), this solution reduces to

V (x) = VÞxede
− x
λm , (7.35)

a simple exponential decay away from the voltage�clamped end. Some examples of
space constants for a variety of excitable tissues are included in Table 7.2.

7.2.4 Diffusion in a Long Dendrite

All of the above examples examined steady behavior, after initial transients have
decayed. However, reaction�diffusion equations also contain information about the
temporal evolution of the process to steady state.

Consider calcium diffusing in a long dendrite. Suppose caged calcium is photore-
leased from a small region around x = 0. If we denote by c(x, t) the concentration of
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calcium along the length of the dendrite at each time t, then the model becomes

∂c

∂t
= D

∂2c

∂x2
, −∞ < x <∞, t > 0, (7.36)

c(x, 0) = C0δ(x), (7.37)

where C0 is the total amount of released calcium, and δ(x) is the Dirac delta function.
Because the dendrite is long, we view the domain as inÞnite. Since we do not expect
the concentration of calcium to become appreciable at x = ±∞ in any Þnite time, we
require limx→±∞ c(x, t) = 0.

It can be shown (Exercise 3) that the solution of this model is

c(x, t) =
C0√
4πDt

exp

µ
− x2

4Dt

¶
, (7.38)

which is illustrated in Figure 7.4. For each Þxed t, this solution is a Gaussian function,
and over time, the function becomes wider and the maximal value (at x = 0) declines,

c(0, t) =
C0√
4πDt

. (7.39)

At any other point x 6= 0, the solution is biphasic, initially increasing to a maximum
value and then decreasing back to zero. The maximum is attained when Dt/x2 = 1

2
.

This time behavior is illustrated in Figure 7.5.
We can readily calculate that

hx2i =
Z ∞

−∞
x2c(x, t) dx = 2Dt, (7.40)

so that the �root mean square� (rms) distance moved in time t isq
hx2i = xrms =

√
2Dt. (7.41)
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Figure 7.5 Plot of c(0, t) and c(x 6= 0, t) from (7.38).
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7.2.5 Diffusion into a Capillary

Suppose that a long capillary (open at one end) Þlled with water is inserted into a
solution of known chemical concentration C0, and the chemical species diffuses into
the capillary through the open end. The concentration of the chemical species should
depend only on the distance down the tube and so is governed by the diffusion equation

∂c

∂t
= D

∂2c

∂x2
, 0 < x <∞, t > 0, (7.42)

where for convenience we assume that the capillary is inÞnitely long. Because the solute
bath in which the capillary sits is large, it is reasonable to assume that the chemical
concentration at the tip is Þxed at C(0, t) = C0, and because the tube is initially Þlled
with pure water, C(x, 0) = 0.

The solution of this problem is given by

C(x, t) = 2C0

µ
1− 1√

2π

Z z

−∞
exp

µ
−s

2

2
ds

¶¶
, z =

x√
2Dt

. (7.43)

If the cross-sectional area of the capillary is A, then the total number of molecules
that enter the capillary in a Þxed time T is

N = A

Z ∞

0

C(x, t)dx = 2C0A

r
TD

π
. (7.44)

From this equation it is possible to determine the diffusion coefficient by solving (7.44)
for D, yielding

D =
πN 2

4C2
0A

2T
. (7.45)

Segel, Chet, and Henis [Segel et al., 1977] used this formula to estimate the diffusion
coefficient for bacteria. With C0 at 7 × 107/ml, and times T = 2, 5, 10, 12.5, 15, and
20 minutes, they counted N of 1800, 3700, 4800, 5500, 6700, and 8000 bacteria in a
capillary of length 32 mm with 1 µl total capacity. In addition, with concentrations C0
of 2.5, 4.6, 5.0, and 12.0 ×107 bacteria per milliliter, counts of 1350, 2300, 3400, and
6200 were found at T = 10 minutes. Using (7.45) a value of D in the range of 0.1�0.3
cm2/hour was found.

A second useful piece of information is found from (7.43) by observing that
C(x, t)/C0 is constant on any curve for which z is constant. Thus, the curve t = x

2/D
is a level curve for the concentration, and gives a measure of how fast the substance is
moving into the capillary. The time t = x2/D is called the diffusion time for the pro-
cess. To give some idea of the effectiveness of diffusion in various cellular contexts, in
Table 7.3 are shown typical diffusion times for a variety of cellular structures. Clearly,
diffusion is quite effective when distances are short, but totally inadequate for longer
distances, such as along a nerve axon. Obviously, biological systems must employ other
transport mechanisms in these situations in order to survive.
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Table 7.3 Estimates of Diffusion Times for Cellular Dtructures of Typical Dimensions, Computed from
the Relation t = x2/D using D = 10−5cm2/s.

x t Example

10 nm 100 ns thickness of cell membrane

1µm 1 ms size of mitochondrion

10µm 100 ms radius of small mammalian cell

100µm 10s diameter of a large muscle Þber

250µm 60 s radius of squid giant axon

1 mm 16.7 min half-thickness of frog sartorius muscle

2 mm 1.1 h half-thickness of lens in the eye

5 mm 6.9 h radius of mature ovarian follicle

2 cm 2.6 d thickness of ventricular myocardium

1 m 31.7 yrs length of a nerve axon

7.3 Numerical Solution of the Diffusion Equation

In order to attack more complex situations of reaction and diffusion, it is usually neces-
sary to resort to numerical solutions of the partial differential equation. With the advent
of cheap powerful computers, this approach has become increasingly useful. Here we
describe the simplest numerical method to solve reaction�diffusion equations. While
other more sophisticated numerical methods are available, this method is adequate for
our purposes, and can be readily implemented using your favorite numerical integrator.

Consider the problem of determining calcium concentration following the photore-
lease of caged calcium in a sealed dendrite 40 microns long. We deÞne the spatial
variable x to extend from 0 to 40 microns, and the starting time t = 0 to be the time
at which the caged calcium is released. The equations we wish to solve are

∂c

∂t
= D

∂2c

∂x2
, (7.46)

where

c(x, 0) =

(
C0 20 µm < x < 30 µm

0 elsewhere
(7.47)

(7.48)

and

cx(0, t) = cx(40, t) = 0, (7.49)

and where C0 is the concentration of calcium released. Because the dendrite is closed
to calcium ßux at its ends, no-ßux boundary conditions are speciÞed at both ends. The
caged calcium is initially conÞned to the region between 20 and 30 microns.

To solve this problem numerically, we subdivide the spatial domain (0 < x < 40)
into N equal intervals, with ∆x = 40/N denoting the length of each interval. If the
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N +1 endpoints of these intervals are denoted by xn, where n = 0, 1, 2, . . . ,N , then we
deÞne an approximation to c(x, t) at these points by c(xn, t) = cn(t).

Recall from calculus that the deÞnition of the partial derivative of c is

∂c(x, t)

∂x
= lim

∆x→0

c(x+∆x, t)− c(x, t)
∆x

. (7.50)

It follows that if ∆x is small, but not zero, we have an approximation to the partial
derivative:

∂c(x, t)

∂x
≈ c(x+∆x, t)− c(x, t)

∆x
. (7.51)

In a similar way an approximation to the second partial derivative is found with ∆x
small, but not zero:

∂2c(x, t)

∂x2
≈ c(x+∆x, t)− 2c(x, t) + c(x−∆x, t)

∆x2
. (7.52)

Using this approximation at each spatial grid point x = xn, we derive a set of
ordinary differential equations

∂cn(t)

∂t
=

D

∆x2
(cn+1(t)− 2cn(t) + cn−1(t)). (7.53)

Notice that this approximation is valid only at interior grid points with n = 1, 2, . . . , N−
1, since for n = 0 or n = N equation (7.53) references points c−1 and cN+1 that are
outside the domain, and therefore are not known. However, if we invoke the no-ßux
boundary conditions, and use the approximation (7.51), we learn that

c−1(t) = c0(t), cN+1(t) = cN(t). (7.54)

These we apply to (7.53) for n = 0 and n = N and obtain

∂c0(t)

∂t
=

D

∆x2
(c1(t)− c0(t)) , (7.55)

and

∂cN(t)

∂t
=

D

∆x2
(cN−1(t)− cN(t)) . (7.56)

The system of ordinary differential equations (7.53), (7.55), and (7.56) is a closed
system of N+1 equations in N+1 unknowns that can be simulated with any standard
differential equation solver. This conversion of a partial differential equation to a sys-
tem of ordinary differential equations using difference approximations for the spatial
derivatives is called the method of lines.

The initial conditions are found directly from the initial condition for the par-
tial differential equation, with one minor adjustment. Since cn(t) = c(xn, t), we set
cn(0) = c(xn, 0), wherever that is well-deÞned. However, the initial proÞle has a jump
discontinuity at x = 20 and x = 30, so it is preferable to deÞne the value of c at these
points to be the average of the limiting values from the left and right.

The solution of this problem is shown in Figure 7.6.
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Figure 7.6 Numerical solution of the equations
(7.46)�(7.49).

7.4 Multidimensional Problems

The multidimensional formulation of a reaction�diffusion equation is an easy general-
ization from one dimension. The primary difference is that in multiple dimensions, ßux
is a vector rather than a scalar. As a vector, ßux indicates not only the rate, but also
the direction, of transport, and the derivation of the conservation law is an exercise in
multidimensional calculus.

7.4.1 Conservation Law in Multiple Dimensions

Consider a chemical species C whose concentration c(x, y, z, t) varies in both time and
in some three-dimensional region with volume V . The verbal expression of conservation
(7.1) remains valid. At any time t, the total amount of C in the volume can be computed
by integrating c(x, y, z, t) over the volume:

total amount of C =

Z
V

c(x, y, z, t) dV. (7.57)

Now suppose that C is free to move about randomly, so that C moves in and out of
the volume by passing through the volume�s surface S. The ßux J(x, y, z, t) is a vector,
since C can move in any direction. If we denote by n(x, y, z) the outward unit normal
vector on S (see Figure 7.7), then the net ßux of C into the region is given by

net rate of entry of C = −
Z
S

J(x, y, z, t) · n(x, y, z) dA, (7.58)

where dA is the surface integration element. Because n is the outward normal, J · n
is positive when the motion is from inside to outside, which accounts for the negative
sign in this equation. The rate of production of C in the volume can be written as
f(x, y, z, t, c), where as before, this rate is allowed to depend on c itself. Thus, the total
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S

dA
n

Figure 7.7 Schematic diagram of a multi�dimensional region.

rate of production of C in the region is given by

net rate of production of C =

Z
V

f(x, y, z, t, c(x, y, z, t)) dV. (7.59)

The conservation equation can now be expressed mathematically as

d

dt

Z
V

c dV = −
Z
S

J · n dA+
Z
V

f dV. (7.60)

The surface integral can be replaced by a volume integral using the divergence theorem,
which yields the multidimensional integral form

d

dt

Z
V

c dV = −
Z
V

∇ · J dV +
Z
V

f dV, (7.61)

where ∇· is the divergence operator. As before, if the function c(x, y, z, t) is smooth
enough, and since the volume V is arbitrary, we can rewrite (7.8) in differential form:

∂c

∂t
+∇ · J = f. (7.62)

Note that there are four independent variables (x, y, z, and t) and that the equation
contains partial derivatives with respect to all four variables.

7.4.2 Fick�s Law in Multiple Dimensions

Fick�s law states that C moves from regions of high concentration to regions of low
concentration, at a rate proportional to the concentration gradient. Thus, in multiple
dimensions, Fick�s law takes the form

J(x, y, z, t) = −D∇c(x, y, z, t), (7.63)

where the diffusion constant D is the proportionality constant, and the negative sign
ensures that C moves down the concentration gradient. Even in multiple dimensions,
the units of D are length2/time.
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Using Fick�s law, (7.62) can be rewritten as a reaction�diffusion equation:

∂c

∂t
−∇ · (D∇c) = f. (7.64)

7.4.3 Advection in Multiple Dimensions

Multidimensional advective ßux has the same appearance as in the one-dimensional
case:

J(x, y, z, t) = vc(x, y, z, t). (7.65)

Notice, however, that the velocity v is a vector, so the ßux vector points in the direction
of the velocity vector.

If the random and biased directional motions coexist, the total ßux is the vector
sum of the diffusive and drift ßuxes:

J(x, y, z, t) = vc(x, y, z, t)−D∇c(x, y, z, t). (7.66)

Using this constitutive relation in (7.62), the multidimensional reaction�advection�
diffusion equation is

∂c

∂t
+ v∇c−∇ · (D∇c) = f. (7.67)

7.4.4 Boundary and Initial Conditions for Multiple Dimensions

As in one dimension, we must specify both initial and boundary conditions to pose
the problem completely. The only difference here is that the functions involved
are multidimensional, and so, when the spatial domain is complex, can be quite
complicated.

The Dirichlet boundary condition in multiple dimensions speciÞes the values of
the dependent variable c on the boundary, via c(x, y, z, t) = f(x, y, z, t) with x, y, z
restricted to the boundary. Similarly, the Neumann boundary condition speciÞes the
ßux of c on the boundary via n · ∇c = g. Finally, the Robin condition speciÞes some
relationship between the ßux of c and the value of c on the boundary via −n ·D∇c =
h+ αc.

7.4.5 Diffusion in Multiple Dimensions: Symmetry

If the diffusion constant D does not vary in space or time, then the diffusive term can
be written

∇ · (D∇c) = D∇ · (∇c) = D∇2c. (7.68)
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In this expression, ∇2 is the �Laplacian operator,� which in Cartesian coordinates is

∇2c =
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2
. (7.69)

If the spatial domain is more naturally described by other coordinate systems, then the
representation of the Laplacian changes accordingly. For example, if the domain is a
long cylindrical tube, and the concentration is not expected to be uniform in tubular
cross-sections, then cylindrical coordinates (r, θ, z), where x = r cos θ, y = r sin θ, are
most appropriate. In these coordinates

∇2c =
1

r

∂

∂r

µ
r
∂c

∂r

¶
+
1

r2
∂2c

∂θ2
+
∂c2

∂z2
. (7.70)

If the domain is a sphere, then spherical coordinates (r, θ,φ), where x = r sinφ cos θ, y =
r sinφ sin θ, z = r cosφ, are most appropriate, in which case the Laplacian operator is

∇2 c =
1

r2
∂

∂r

µ
r2
∂c

∂r

¶
+

1

r2 sin θ

∂

∂θ

µ
sin θ

∂c

∂θ

¶
+

1

r2 sin2 θ

∂2c

∂φ2
. (7.71)

An important reason for using other coordinate systems is that there may be sym-
metries that allow the problem to be reduced. For example, suppose that a spherical cell
of radius R is suddenly immersed into a large bath containing a high concentration of
glucose, and that the glucose can move across the membrane and then diffuse through-
out the cell. If the concentration of glucose in the cell is initially uniform (c = c0), then
the solution should be independent of φ and θ for all time. This implies that

∂c

∂θ
=
∂c

∂φ
=
∂2c

∂φ2
= 0. (7.72)

Thus, a reasonable model for this problem is

∂c

∂t
=
D

r2
∂

∂r

µ
r2
∂c

∂r

¶
, (7.73)

c(r, 0) = c0, (7.74)

D
dc

dr
= j at r = R, (7.75)

where c0 is the initial cytosolic glucose concentration, and j is the rate of entry of
glucose through the plasma membrane.

7.5 Traveling Waves in Nonlinear
Reaction�Diffusion Equations

Consider a reaction�diffusion equation with a nonlinear source term:

∂c

∂t
= D

∂2c

∂x2
+ f(c), (7.76)
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where f(c) is the cubic polynomial f(c) = Ac(1− c)(c−α), with 0 < α < 1

2
. While real

chemical reactions are not modeled exactly by a cubic polynomial, the reaction term
has features that resemble those of several more realistic reactions, and so is worthy
of our attention. This equation can be (and has been) used to understand features of
action potential propagation in nerve axons, calcium fertilization waves in frog eggs,
and cyclic AMP waves in slime molds.

A key feature of this reaction term is that it has three zeros (0, α, and 1), two of
which (0 and 1) are stable. Linear stability is determined by the sign of f 0(c) at the
rest point, and if f 0(c0) < 0, the rest point c0 is stable. In this problem, however, there
is a stronger type of stability in that the solution of the ordinary differential equation
dc

dt
= f(c) approaches either c = 0 or c = 1 starting from any initial position except

c = α.
The function f(c) can be thought of as a switch. If c is somehow pushed slightly

away from 0, it returns quickly to 0. However, if c is pushed away from 0 and exceeds
α, then it goes to 1. Thus, the level α is a threshold for c. Because it has two stable
rest points, equation (7.76) is often called the bistable equation.

7.5.1 Traveling Wave Solutions

An interesting and important problem is to determine the behavior of the bistable
equation when a portion of the region is initially above the threshold α and the re-
mainder is initially at zero. To get some idea of what to expect it is useful to perform a
numerical simulation. For this numerical simulation we use the method of lines to solve
the differential equations

dc0
dt
=

D

∆x2
(c1(t)− c0(t)) + f(c0), (7.77)

dcn
dt

=
D

∆x2
(cn+1(t)− 2cn(t) + cn−1(t)) + f(cn), n = 1, 2, . . . , N − 1, (7.78)

dcN
dt

=
D

∆x2
(cN−1(t)− cN(t)) + f(cN). (7.79)

The simulation shows that the variable c quickly changes into a proÞle that is a
transition between c = 0 on the bottom and c = 1 on the top (Figure 7.8). After this
transitional proÞle is formed, it moves without change of shape from top to bottom at
(what appears to be) a constant velocity.

This numerical solution suggests that we should try to Þnd a translationally invari-
ant solution. A translationally invariant solution is one that does not change its value
along any straight line x + st = x0, for an appropriately chosen value of s, the wave
speed. Thus, we look for special solutions of the bistable equation of the form

c(x, t) = U(x+ st), (7.80)
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Figure 7.8 Numerically computed solution of the
bistable equation, with A = 1, α=0.1 and D = 1.

with the additional property that limξ→−∞ U(ξ) = 0, limξ→∞ U(ξ) = 1. Notice that
since

∂c(x, t)

∂x
=
d

dξ
U(ξ)

∂ξ

∂x
=
d

dξ
U(ξ) and

∂c(x, t)

∂t
=
d

dξ
U(ξ)

∂ξ

∂t
= s

d

dξ
U(ξ), (7.81)

in this translating coordinate system, the bistable equation becomes the ordinary
differential equation

s
dU

dξ
= D

d2U

dξ2
+ f(U). (7.82)

There are two ways to try to solve (7.82). An exact solution can be found in the
special case that f is a cubic polynomial. There are several other examples of functions
f for which exact solutions can be found, but this method does not work in most cases.
A more general method is to examine (7.82) in the phase plane, which we will do below.

The exact solution can be found for the cubic polynomial f as follows. Since we
want limξ→−∞ U(ξ) = 0, limξ→∞ U(ξ) = 1, we guess a relationship between dU/dξ and
U of the form

dU

dξ
= aU(1− U), (7.83)

for some positive number a. It follows that

d2U

dξ2
= a(1− 2U)dU

dξ
. (7.84)

Substituting this into (7.82) and factoring out U(1− U), we Þnd that
as = a2D(1− 2U) +A(U − α). (7.85)

This identity holds for all U only if

a2 =
A

2D
, s =

q
AD/2 · (1− 2α). (7.86)
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The solution is found by quadrature from (7.83) to be

U(ξ) =
1

2
+
1

2
tanh

Ã
1

2

r
A

2D
ξ

!
. (7.87)

The analysis used for Þnding traveling waves using phase portraits works for
any bistable function f . We begin by writing the traveling wave (7.82) as the
two-dimensional system

dU

dξ
=W, (7.88)

dW

dξ
= sW − f(U). (7.89)

This system has three critical points, at (U,W ) = (0, 0), (α, 0), and (1,0). The
linearized stability of these critical points is determined by the roots of the characteristic
equation

λ2 − sλ+ f 0(U0) = 0, (7.90)

where U0 is any one of the three steady rest values of U .
If f 0(U0) is negative, then the critical point (U0, 0) is a saddle point. To Þnd a trav-

eling wave solution, we seek a trajectory that leaves the saddle point at (U,W ) = (0, 0)
and ends up at the saddle point at (U,W ) = (1, 0). We can implement this (almost)
numerically. If we start with an initial point close to the origin along the straight line
W = λU in the positive quadrant, with λ the positive root of the characteristic equa-
tion λ2 − sλ + f 0(0) = 0, and integrate for a while, one of two things will occur. If s
is relatively small, the trajectory will cross the U�axis before reaching U = 1, while
if s is relatively large, the trajectory will increase beyond U = 1 and become quite
large. By adjusting the parameter s one can Þnd trajectories that barely miss hitting
the point (U,W ) = (1, 0) by crossing the U�axis or by exceeding U = 1 and becoming

0.20

0.15

0.10

0.05

0.00

W

1.00.80.60.40.2

U

s=1

s = 0.57

s = 0.56s = 0

0.0

Figure 7.9 Phase plane portrait of possible travel-
ing wave trajectories.
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large (Figure 7.9). A trajectory that comes close to the saddle point at (U,W ) = (1, 0)
is a numerical approximation to the traveling wave solution, and the value of s for
which this nearly connecting trajectory is attained is a good approximation for the
wave speed.

7.5.2 Traveling Wave in the Fitzhugh�Nagumo Equations

As we have seen in earlier chapters, chemical reaction schemes in cell biology can be
quite complicated, involving many species. Furthermore, some species may be free to
move, while others are not. Models of nerve axons, for example, include both diffusing
species (transmembrane potential) and nondiffusing variables (the ion-gating variables,
because ion channels are embedded in the membrane and do not move on the millisecond
time scale of an action potential). Similarly, the Ca2+ wave induced by fertilization of a
frog egg involves both cytosolic calcium, which is a diffusing variable, and ER calcium
which, (to a Þrst approximation) is not.

Perhaps the best known example of a reaction�diffusion system is the Hodgkin�
Huxley equations discussed in Section 2.5, which describe action potential propagation
in a nerve axon. In this model there are four dependent variables: transmembrane
potential V and three gating variables, m, n, and h. The equation for transmembrane
potential V (x, t) is the cable equation

Cm
∂V

∂t
=
R

2ρ

∂2V

∂x2
+ Iion(V,m,n, h), (7.91)

where Cm is the membrane capacitance, R is the axonal radius, ρ is the axoplasmic
resistivity, and Iion is the current carried into the axon by ions crossing through voltage-
sensitive channels, and R

2ρ

∂2V

∂x2
is the net current along the axon carried by ions in

response to spatial gradients of intracellular potential. For the giant axon of the squid,
Hodgkin and Huxley report that R = 240 µm, ρ = 0.35 Ω·m, and Cm = 0.01 F/m2.

In the Hodgkin�Huxley equations given in Section 2.5, Iion is a complicated function
of transmembrane potential and the gating variables. To simplify the function, FitzHugh
lumped the three gating variables into one (called w). The resulting equations in spatial
form are

∂V

∂t
= D

∂2V

∂x2
+

B

V1V2
V (V − V1)(V2 − V )−C

p
V1V2w, (7.92)

∂w

∂t
=

²√
V1V2

(V − V3w), (7.93)

where D = R/(2ρCm) ≈ 0.03 m2/s (for squid giant axon), V1, V2, and V3 are positive
�voltage� constants, and B, C, and ² are rate constants with units 1/s. It is also assumed
that ²¿ B,C.
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By deÞning v = V/
√
V1V2, we transform (7.92) and (7.93) into

∂v

∂t
= D

∂2v

∂x2
+Bv(v − β)(δ − v)−Cw, (7.94)

∂w

∂t
= ²(v − γw), (7.95)

where β = V1/
√
V1V2, δ = V2/

√
V1V2, and γ = V3/

√
V1V2. Because ²¿ B,C, we can use

reduction of scale arguments (see Chapter 4) to justify the assumption that w(x, t) =
w0 = constant. In this case, (7.94) and (7.95) reduce to a single reaction�diffusion
equation:

∂v

∂t
= D

∂2v

∂x2
+Bv(v − β)(δ − v)− Cw0. (7.96)

Let us assume that the �reaction� part of (7.96), G(v) = Bv(v − β)(δ − v)−Cw0,
has three real steady states

G(vi) ≡ Bvi(vi − β)(δ − vi)−Cw0 = 0, for i = 1, 2, 3; v1 < v2 < v3.
By deÞning c = (v− v1)/(v3− v1), (7.96) becomes identical to (7.76), with A now some
nonlinear function of B, β, δ, and Cw0. Hence, from the results leading to (7.86), we
know that for appropriate choices of β, δ, and Cw0, (7.96) supports traveling wave
solutions of velocity

s =
q
AD/2 · (1− 2α).

To estimate the velocity of propagation of an action potential wave front, we must
have, in addition to D ≈ 0.03 m2/s, estimates of the rate constant A and the threshold
α in the f(c) term of (7.76). Given that the amplitude of an action potential is ≈ 100
mV, and that the threshold for initiation is ≈ 20 mV (from rest), we set α ≈ 0.2.
During the rise of an action potential, V increases with a doubling time of a fraction of
a millisecond (say, 0.2 ms). Trajectories of the reaction equation dc/dt = f(c) depart
from the unstable steady state according to

c(t)− α = (c0 − α) exp(Aα(1− α)t). (7.97)

To verify this, set c = y+α and linearize dc/dt = f(c) to get dy/dt = f 0(α)y and then
solve to obtain (7.97). The doubling time for departure from the unstable steady state
is

ln 2

Aα(1− α) ≈ 0.2 ms.

or A ≈ 2 · 104/s. Hence, if the upstroke of the action potential can be approximated by
the FitzHugh�Nagumo equations, it should propagate at velocity

s ≈
s
(2 · 104/s)(3 · 102m2/s)

2
· (1− 0.4),
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or approximately 10 m/s. This compares favorably with the observed velocity of 20
m/s.

Suggestions for Further Reading

� Random Walks in Biology, Howard Berg. This is a lovely introductory book on
diffusion processes in biology [Berg, 1993].

� Mathematical Problems in the Biological Sciences, S. Rubinow. Chapter 5 gives a
nice introduction to diffusion processes [Rubinow, 1973].

� Diffusional mobility of golgi proteins in membranes of living cells, N.B. Cole, C.L.
Smith, N. Sciaky, M. Terasaki, and M. Edidin. This paper gives an example of how
diffusion coefficients are measured in a speciÞc biological context [Cole et al., 1996].

� Complex patterns in a simple system, John Pearson. Reaction diffusion equations
are used to model many interesting phenomena. A sampler of the kinds of patterns
that are seen in reaction diffusion systems is given in this paper [Pearson, 1993].

� The theoretical foundation of dendritic function, Idan Segev, John Rinzel, and Gor-
don Shepard. This book contains the collected papers of Wilfrid Rall, a pioneer in
the application of cable theory and compartment modeling to neuronal dendrites
[Segev et al., 1995].

� Mathematical Physiology, James Keener and James Sneyd. Several of the topics
presented in this chapter are covered here in more depth [Keener and Sneyd, 1998].

Exercises

1. A rule of thumb (derived by Einstein) is that the diffusion coefficient for a globular
molecule satisÞes D ≈ M−1/3 where M is the molecular weight. Determine how
well this relationship holds for the substances listed in Table 7.1 by plotting D and
M on a log-log plot.

2. A ßuorescent dye with a diffusion coefficient of D = 10−7 cm2/s and binding equi-
librium of Keq = 30 mM is used to track the spread of hydrogen (D = 10−5 cm2/s).
Under these conditions the measured diffusion coefficient is 10−6 cm2/s. How much
dye is present. (Assume that the dye is a fast buffer of hydrogen.)

3. (a) Verify that the solution of (7.36)�(7.37) is given by (7.38). Verify (7.41).
(b) Show that the total amount of C, given by

R∞
−∞ c(x, t) dx, is constant for all

time. What is the constant?
4. Verify that (7.43) satisÞes the diffusion equation with boundary data c(0, t) = C0
and initial data c(x, 0) = 0.

5. Using the data given in the text and equation (7.45), estimate the diffusion
coefficient for bacteria.

6. Numerically simulate the differential equations (7.53), (7.55), and (7.56) with initial
data corresponding to c(x, 0) = 1 for 20 < x < 30 and c(x, 0) = 0 elsewhere, using
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N = 40 discrete intervals andD = 2.25×10−6 cm2/s as a typical diffusion coefficient
for calcium. What is the Þnal steady�state distribution of calcium and what is the
approximate time constant of decay to this steady solution?

7. Numerically simulate a voltage�clamp experiment on a spatial domain that is 4
space constants long with V (0, t) = 1, and V (x, 0) = 0, using constants appropriate
for barnacle Þber and squid giant axon. What are the observable differences between
these two simulations?

8. (a) Show that the function

c(r, t) =
1

4πDt
e
¡
− r2

4Dt

¢
satisÞes the diffusion equation in two spatial dimensions,

ct =
D

r

∂

∂r

µ
r
∂c

∂r

¶
,

where r2 = x2 + y2.
(b) Show that the total amount of C, given by 2π

R∞
0
c(r, t)rdr, is constant for all

time. What is the constant?
(c) Evaluate rrms where r

2
rms = 2π

R∞
0
r2c(r, t)rdr.

(d) When is the maximal value of c(r, t) achieved and what is the maximal value?
9. (a) Show that the function

c(r, t) =
1

(4πDt)3/2
e
¡
− r2

4Dt

¢
satisÞes the diffusion equation in three spatial dimensions,

ct =
D

r2
∂

∂r

µ
r2
∂c

∂r

¶
,

where r2 = x2 + y2 + z2.
(b) Show that the total amount of C, given by 4π

R∞
0
c(r, t)r2dr, is constant for all

time. What is the constant?
(c) Evaluate rrms where r

2
rms = 4π

R∞
0
r2c(r, t)r2dr.

(d) When is the maximal value of c(r, t) achieved and what is the maximal value?
10. A quantitative estimate of the way proteins diffuse on membranes is provided by

ßuorescence recovery after photobleaching (FRAP) studies, wherein cells are treated
with a ßuorescent reagent that binds to a speciÞc surface protein, which is uniformly
distributed on the surface. A laser light is then focused onto a small area of the
surface, irreversibly bleaching the bound reagent and thus reducing the ßuorescence
in the illuminated area. In time, the ßuorescence of the bleached area increases
because the unbleached ßuorescent surface molecules diffuse into the bleached area
while the bleached molecules diffuse out.
Model and simulate this experiment in two ways:

(a) Make a one�dimensional model for a domain 10 microns long, with no-ßux
boundary conditions at both ends. Assume that the Þrst micron is initially
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bleached and the remaining space is initially unbleached. Assume that the
diffusion coefficient of the molecules is 10−7 cm2/s. Determine the spatial proÞle
as a function of time, and the Þnal uniform distribution of unbleached protein.

(b) Make a two�dimensional model for a perfectly circular domain of radius 10 mi-
crons with a one�micron circular region at the center that is initially bleached.
Assume that ∂c/∂r = 0 at both r = 0 and r = 10 µm. Use the discretization
of the diffusion operator given by

1

r

∂

∂r

µ
r
∂c

∂r

¶
≈ 1

2rn
((rn+1 + rn)(cn+1 − cn)− (rn−1 + rn)(cn − cn−1)) .

Determine the spatial proÞle as a function of time and the Þnal uniform dis-
tribution. What differences are there between the two-dimensional and the
one-dimensional models?

11. Simulate the bistable equation starting from initial data having V (x, 0) > α for a
small region on the left end of the domain, and V (x, 0) = 0 elsewhere. What is the
speed of the traveling wave that forms?

12. Numerically simulate an experiment on an idealized nerve axon that is stimulated
at one end with a time�dependent current input. The equations are

∂φ

∂t
=
∂2φ

∂x2
+ f(φ)−w, f(φ) = φ(φ− 1)(0.1− φ),

∂w

∂t
= 0.01(φ− 0.5w),

subject to boundary conditions ∂φ(0, t)/∂x = I(t), ∂φ(10, t)/∂x = 0. Pick I(t) to
be a square pulse. Vary the height and length of the pulse in order to initiate a
traveling wave. Describe the response when the amplitude and/or duration of the
stimulating pulse is too small to initiate a traveling wave.

13. Using the method described in Section 7.5.1, compute a traveling wavefront solution
to the Morris�Lecar equations described in Section 2.4:

∂V

∂t
= D

∂2V

∂x2
− gCam∞(V )(V − VCa)− gkw(V − VK)− gL(V − VL) + Iapp

where m∞(V ) = 0.5[1 + tanh((V − v1)/v2)]. Use D = 300 cm2/s, Iapp = 60 pA,
and all other parameter values as in Table 2.4. In this approximation, assume that
w(x, t) = w0 = constant; try w0 = 0.1. Plot V (x, t) as in Figure 7.8, and estimate
the speed of propagation of the wavefront in cm/s.
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CHAPT E R 8

Modeling Intracellular
Calcium Waves and Sparks

Gregory Smith, John Pearson, and Joel Keizer

In this chapter we shall discuss a variety of intracellular Ca2+ wave phenomena, but
always from the perspective that the distance scales of interest are large enough that
Ca2+ transport is well-modeled by conservation equations based on a continuum de-
scription of matter (recall Chapter 7). Although recent experimental and theoretical
work suggests that the macroscopic behavior of propagating Ca2+ waves (e.g., wave
speed) may depend in subtle ways on the density and distribution of intracellular Ca2+

release channels, we postpone consideration of intracellular heterogeneities such as clus-
ters of Ca2+ release channels until later in the chapter. This makes sense because both
the mathematics and simulation methods used to study nonlinear wave propagation
in homogeneous media are simpler than the heterogeneous case. This simplicity should
facilitate the development of intuition regarding nonlinear wave propagation. Through-
out the chapter a recurring theme will be the manner in which Ca2+ buffers, through
their important association with free Ca2+, can inßuence wave phenomena dependent
on diffusion. The chapter concludes with calculations of localized Ca2+ elevations due
to intracellular Ca2+ release, i.e., Ca2+ �puffs� or �sparks,� elementary events that sum
to produce Ca2+ waves.

8.1 Microßuorometric Measurements

Chapter 5 described several examples of global or cell-wide Ca2+ excitability and oscil-
lations. Experimental observations of such intracellular Ca2+ dynamics are often made
using microßuorimetry, an experimental technique that involves loading Ca2+ indicator
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Figure 8.1 Microßuorimetric images of sperm-induced
fertilization calcium waves in mature Xenopus laevis
eggs loaded with the indicator dye Ca2+-green dextran.
The wave takes approximately 5 minutes to cross the
length of the egg (1.2 mm). Image provided by Richard
Nuccitelli, University of California at Davis.

dyes into cells and instrumentation that optically excites these indicators and mea-
sures emission. These Ca2+ indicator dyes are themselves Ca2+ buffers (often highly
mobile) that can potentially affect intracellular Ca2+ signaling. For example, the dif-
ferential fraction of free to bound cytosolic Ca2+, denoted by fi ([Ca

2+]i) in (5.13), will
be determined by both exogenous as well as endogenous Ca2+ buffers.

Although a measured ßuorescence signal is only indirectly related to the dynam-
ics of intracellular Ca2+, it is relatively straightforward to determine the free Ca2+

concentration during a cell-wide Ca2+ response using the time course of measured ßu-
orescence [Grynkiewicz et al., 1985]. If the Ca2+ and indicator dye concentrations are
homogeneous throughout the cell, the equilibrium relation

[CaB] =
[Ca2+]i[B]T
K + [Ca2+]i

(8.1)

is valid as long as [Ca2+]i changes slowly compared to the equilibration time of the
buffers. Because this equilibration time is on the order of milliseconds, this condition
is usually satisÞed for global Ca2+ responses, which occur with a time scale of seconds
or tens of seconds.

If the equilibrium relation (8.1) accurately describes the relationship between the
concentration of bound indicator dye ([CaB]) and free Ca2+ ([Ca2+]i), then it is a
simple matter to �backcalculate� the free Ca2+ concentration as a function of time. For
a single excitation wavelength measurement (e.g., using a nonratiometric dye such as
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ßuo-3 at low concentration), we can idealize the indicator ßuorescence as the sum of
two components,

F = ηB[B] + ηCaB[CaB], (8.2)

where ηB and ηCaB are proportionality constants for free and bound dye, respectively.
When ηB < ηCaB, the maximum and minimum observable ßuorescences are given by
Fmin = lim[Ca2+]i→0 F = ηB[B]T and Fmax = lim[Ca2+]i→∞ F = ηCaB[B]T. Using the
equilibrium relation it can be shown (see Exercise 1) that

[Ca2+]i = K
[CaB]

[B]
= K

F − Fmin
Fmax − F . (8.3)

If only the Ca2+-bound indicator ßuoresces strongly, then F ≈ ηCaB[CaB], and a slightly
simpler expression results from substituting Fmin = 0 in (8.3).

It should be noted that the validity of (8.3) relies on the stability of instrument sen-
sitivity, optical path length, and dye concentration between measurements of F , Fmin,
and Fmax. Because determining Fmin and Fmax usually involves titrating the indicator
released from lysed cells, this is difficult to achieve in practice [Grynkiewicz et al., 1985].

In whole-cell Ca2+ measurements, ßuorescence intensities can be measured at two
excitation wavelengths (λ and λ0) using indicator dyes such as fura-2. Such ratiometric
measurements can be related to the underlying free Ca2+ signal by supplementing (8.2)
with

F 0 = η0B[B] + η
0
CaB[CaB], (8.4)

where the primes indicate the second excitation wavelength. Using the Þrst equality of
(8.3), the ßuorescence ratio R = F/F 0 can be inverted to give (see Exercise 2)

[Ca2+]i = K
ηB − η0BR

η0CaBR− ηCaB
= K

µ
R−Rmin

Rmax −R
¶µ

η0B
η0CaB

¶
, (8.5)

where for the second equality we use Rmin = lim[Ca2+]i→0 F/F
0 = ηB/η

0
B and Rmax =

lim[Ca2+]i→∞ F/F
0 = ηCaB/η

0
CaB. If λ

0 is chosen to be a wavelength at which the cal-
ibration spectra at different Ca2+ concentrations cross one another, then η0B ≈ η0CaB,
and the last factor in (8.5) is eliminated. An advantage of the ratiometric method is
its insensitivity to changes in dye concentration and instrument sensitivity between
measurements.

8.2 A Model of the Fertilization Calcium Wave

When mature Xenopus laevis oocytes (eggs) are loaded with an indicator dye (e.g.,
Ca2+-green dextran) and stimulated by the fusion of sperm, a propagating wave of in-
tracellular Ca2+ release can be observed by backcalculating the free Ca2+ concentration
([Ca2+]i(x, t)) from a time-dependent ßuorescence signal (F (x, t)) according to (8.3) or
(8.5). This fertilization Ca2+ wave is an important step in early development. It triggers



8.2: A Model of the Fertilization Calcium Wave 201

Figure 8.2 Schematic diagram of the fertilization
Ca2+ wave model. Ca2+ enters the cytosol from the
ER via a passive leak and the IP3R, which is acti-
vated by both Ca2+ and IP3 on a fast time scale
and inhibited by Ca2+ on a slow time scale, all at
the cytoplasmic face. The ER is reÞlled by a SERCA-
type Ca2+-ATPase pump. Diffusion of Ca2+ in both
the cytosol and ER is accounted for using effective
diffusion coefficients (constant) that account for in-
teractions with Ca2+ buffers (not shown) and the
volume fractions of both compartments. Reprinted
from [Jafri and Keizer, 1994].

the fusion of cortical granules (vesicles) with the plasma membrane, a process that ini-
tiates the raising of the viteline envelope and a long-lasting block to polyspermy. The
cell divisions that initiate development of Xenopus begin only after the fertilization
Ca2+ wave has propagated throughout the entire cell. The eggs of many species, from
starÞsh to mammals, exhibit propagating Ca2+ waves upon fertilization.

Because fertilization Ca2+ waves such as those shown in Figure 8.1 still occur when
the extracellular medium is nominally Ca2+ free, the phenomenon appears to be largely
independent of Ca2+ inßux. On the other hand, the fertilization Ca2+ wave absolutely
requires functional IP3 receptors. When IP3-mediated Ca

2+ release is blocked by any
one of several experimental manipulations (e.g., upon introduction of heparin into the
cytosol), the fertilization Ca2+ wave is not observed [Nuccitelli et al., 1993].

We expect Ca2+ diffusion to play an important role in the fertilization Ca2+ wave
because Xenopus laevis eggs are large (approximately 1.2 mm in diameter). Indeed,
Figure 8.1 indicates that the Ca2+ concentration within the egg depends very much on
both spatial position and time. For this reason a whole cell model of this phenomenon
would be deÞcient, and instead researchers mathematically describe the fertilization
Ca2+ wave in the Xenopus egg and other cell types using a combination of spatial
modeling and whole�cell modeling approaches [Atri et al., 1993, Girard et al., 1992,
Dupont and Goldbeter, 1994, Jafri and Keizer, 1994, Wagner et al., 1998].

Here we introduce such a spatial whole�cell model of the fertilization Ca2+ wave by
recalling that the Li�Rinzel reduction of the DeYoung�Keizer model of the IP3R can
be combined with sigmoidal SERCA pump kinetics and a passive ER leak to create
a whole�cell model of Ca2+ handling in pituitary gonadotrophs (Section 5.3). Using a
variation of this model to represent Ca2+-induced Ca2+ release (CICR) and reuptake by
the endoplasmic reticulum (ER), we follow Section 7.5.2 and account for Ca2+ diffusion
in both the cytosol and ER by writing the following reaction�diffusion system:

∂[Ca2+]i
∂t

= fi [Di∇2[Ca2+]i + jIP3R + jLEAK − jSERCA] , (8.6)

∂w

∂t
= [w∞ ([Ca

2+]i, [IP3])−w] /τ, (8.7)
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∂[Ca2+]ER
∂t

= fER
£
DER∇2[Ca2+]ER − (V i/V ER) (jIP3R − jLEAK + jSERCA)

¤
, (8.8)

where jLEAK = vLEAK ([Ca
2+]ER − [Ca2+]i), jIP3R = vIP3Rm

3
∞w

3 ([Ca2+]ER − [Ca2+]i),
jSERCA = vSERCA[Ca

2+]i
2
/
¡
[Ca2+]i

2
+K2

SERCA

¢
, and V �s are the volumes as before. In

these equations, w is the fraction of IP3Rs not inactivated and the open probability
of the IP3Rs is given by PO = m3

∞w
3 where the fraction of activated IP3Rs (m

3
∞) is

assumed to be an instantaneous function of Ca2+ and IP3 concentrations,

m3
∞ =

µ
[IP3]

[IP3] + d1

¶3 µ
[Ca2+]i

[Ca2+]i + d5

¶3
. (8.9)

Although the Li�Rinzel reduction of the DeYoung�Kiezer model gives a time constant
of IP3R inactivation that is dependent on Ca2+ and IP3 concentration, τ ([Ca2+]i, [IP3]),
for simplicity we will assume that τ is constant (2 sec). A diagram of the fertilization
Ca2+ wave model components and ßuxes is presented in Figure 8.2.

Note that in (8.6)�(8.8) the maximum conductance of IP3-mediated Ca
2+ release

(vIP3R), passive leak rate (vLEAK), and maximum rate of ATP-dependent reuptake
(vSERCA) are constants. Thus, the model assumes homogeneous Ca

2+ release and re-
uptake dynamics, that is, a uniform and high density of inositol 1,4,5-trisphosphate
(IP3) receptors and sarco-endoplasmic reticulum Ca2+-ATPases. Also note that (8.7)
includes no diffusion term for the simple reason that IP3Rs (and thus the gating vari-
able representing their inactivation) has a Þxed spatial location and does not diffuse.
Throughout this chapter we will assume that [IP3] is uniform and constant (but see
[Wagner et al., 1998]).

8.3 Including Calcium Buffers in Spatial Models

In this spatial whole�cell model given by (8.6)�(8.8), the quantities fi and fER multiply
both reaction and diffusion terms. As discussed in Chapter 5, these factors scale the
Ca2+ release and reuptake rates to account for the proportion of Ca2+ bound to buffer
in both cytosolic and ER compartments.

Note that the coefficients of the Laplacians in (8.6) and (8.8) imply constant effective
diffusion coefficients for the cytosol and ER given by Deff

i = fiDi and Deff
ER = fERDER,

both of which are expected to be much smaller than the free Ca2+ diffusion coefficient.
This assumption is here made for convenience and is strictly true only for low�affinity
Ca2+ buffers.

To see that this is the case, consider how one Ca2+ buffer (perhaps representing a
Ca2+ indicator dye) would be added to the fertilization Ca2+ wave model. The asso-
ciation and dissociation of Ca2+ with the indicator dye would contribute bimolecular
reaction terms in the cytosolic compartment, giving

∂[Ca2+]i
∂t

= DC∇2[Ca2+]i +R+ jT, (8.10)
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∂[B]

∂t
= DB∇2[B] +R, (8.11)

∂[CaB]

∂t
= DCB∇2[CaB]−R, (8.12)

where DC, DB, and DCB are diffusion constants for free Ca
2+, free buffer, and bound

buffer, respectively,

R = −k+[B][Ca2+]i + k−[CaB],
and jT = jIP3R + jLEAK − jSERCA is the sum of all Ca2+ ßuxes into and out of the ER.

Notice that if the diffusion of buffer doesn�t depend on whether or not Ca2+ is
bound (DB ≈ DCB), then (8.11) and (8.12) can be summed to give

∂[B]T
∂t

= DB∇2[B]T,

where [B]T = [B] + [CaB] is the total buffer concentration proÞle (free plus bound).
This equation implies that if [B]T is initially uniform (not a function of position), it will
remain uniform for all time. We can thus eliminate (8.11) and obtain a reduced system
given by (8.10) and (8.12) with

R = −k+ ([B]T − [CaB]) [Ca2+]i + k−[CaB].

8.4 The Effective Diffusion Coefficient

If the buffer reactions are rapid with respect to the diffusion, it is possible to sim-
plify our model further using the rapid buffer approximation (recall Chapter 5)
[Wagner and Keizer, 1994]. Assuming local equilibrium (i.e., chemical equilibrium at
every point in space), we can write an equilibrium expression for total cell Ca2+

concentration:

[Ca2+]T = [Ca
2+]i + [CaB] = [Ca

2+]i +
[Ca2+]i[B]T
[Ca2+]i +K

.

Next, we eliminate reactions terms (and the fast time scale) by adding (8.10) and (8.12),
to give

∂[Ca2+]T
∂t

=
∂[Ca2+]i
∂t

+
∂[CaB]

∂t
= DC∇2[Ca2+]i +DB∇2[CaB] + jT. (8.13)

In Exercise 3 the reader can conÞrm that substituting [Ca2+]T and [CaB] in terms of
[Ca2+]i and taking derivatives gives the so-called rapid buffer approximation,

∂[Ca2+]i
∂t

= β

µ
(DC +DBγ)∇2[Ca2+]i − 2γDB

K + [Ca2+]i
(∇2[Ca2+]i)

2
+ jT

¶
, (8.14)
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where γ = K[B]T/(K+[Ca
2+]i)

2 and β = 1/(1+γ). Although this equation may appear
ominous, note that using the rapid buffer approximation we have been able to eliminate
the two extra equations (for [B] and [CaB]) needed to explicitly account for an indicator
dye in the cytosolic compartment.

Another valuable feature of (8.14) is that it provides some insight into the effect of
Ca2+ buffers on Ca2+ transport in cells by allowing us to identify the Ca2+-dependent
effective diffusion coefficient,

Deff = β (DC + γDB) .

Furthermore, if this buffer has low affinity so that [Ca2+]i ¿ K and γ ≈ [B]T/K, then
as promised at the beginning of this section this diffusion coefficient is approximately
constant:

Deff ≈ K

K + [B]T

µ
DC +

[B]T
K
DB

¶
.

For simplicity the remainder of this chapter assumes a rapid and low�affinity buffer.

8.5 Simulation of a Fertilization Calcium Wave

Now that we have justiÞed the reduced effective diffusion coefficients used in the fer-
tilization Ca2+ wave model, let us further simplify (8.6)�(8.8) by assuming that ER
depletion is minimal, i.e., [Ca2+]ER = cER is approximately constant. We will also as-
sume that the dynamics of [Ca2+]i are much slower than the gating variable for Ca

2+

inactivation of the IP3R, so that w is well approximated by w∞([Ca
2+]i). With these

assumptions, (8.6) and (8.7) reduce to the single-variable reaction�diffusion equation

∂c

∂t
= D∇2c+ f(c), (8.15)
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Figure 8.3 Using parameters as in Exercise 4, the
cubic rate function dc/dt = f(c) of the fertiliza-
tion Ca2+ wave model, (8.15), leads to a bistable
phase portrait (x-axis). Equilibrium point 1 repre-
sents a stable resting state at basal [Ca2+]i (ER
replete) while equilibrium 3 is a stable resting point
at high [Ca2+]i (ER empty). Equilibrium 2 lies be-
tween points 1 and 3, is unstable, and corresponds
to a threshold for Ca2+-induced Ca2+ release.
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where we have written c = [Ca2+]i, D = fiDi, and

f(c) = fi

µ
[vLEAK + vIP3R(c)] [cER − c]−

vSERCAc
2

c2 +K2
SERCA

¶
, (8.16)

and where

vIP3R(c) = [m∞(c)w∞(c)]
3
.

Using parameters given in Exercise 4, Figure 8.3 shows that f(c) is a cubic function
with three zeros. Equilibrium point 1 represents a stable resting state at basal [Ca2+]i
(ER replete), while equilibrium 3 is a stable resting point at high [Ca2+]i (ER empty).
Equilibrium 2 lies between points 1 and 3, is unstable, and corresponds to a threshold
for Ca2+-induced Ca2+ release.

8.6 Simulation of a Traveling Front

We follow Section 7.3 to simulate our minimal model of a fertilization Ca2+ wave given
by (8.15). Assuming a one-dimensional geometry (0 ≤ x ≤ L), we discretize space so
that cj(t) is an approximation to c(xj , t), where xj = j∆x, 0 ≤ j ≤ J , and ∆x = L/J .
In this way we arrive at the system of ODEs

dc0
dt
= D

c1 − c0
(∆x)2

+ f(c0),

dcj
dt
= D

cj+1 − 2cj + cj−1
(∆x)2

+ f(cj),

dcJ
dt

= D
cJ−1 − cJ
(∆x)2

+ f(cJ), (8.17)

where the equations for c0 and cJ are found using a discretized version of no�ßux
boundary conditions ∂c/∂x|

x=0,L
= 0 to specify values at the �ghost points� c−1 = c0

and cJ+1 = cJ .
Figure 8.4 shows a simulation of a fertilization Ca2+ wave calculated using (8.17).

Our assumed one dimensional geometry suggests that we interpret the calculation as a
propagating planar signal ([Ca2+]i not a function of y or z, but only x). Initial conditions
are chosen so that elevated [Ca2+]i in a small region triggers a wave traveling leftwards at
a velocity of 3.45 µm/s. The basal [Ca2+]i before the front passes is given by equilibrium
point 1 (0.01µM), and after the front passes elevated [Ca2+]i is given by equilibrium
point 3 (0.53µM). Because [Ca2+]i doesn�t return to basal values after the wave passes,
this type of traveling wave is referred to as a propagating front.

In the fertilization Ca2+ wave model, we could say that the physiological state of
the cell cytoplasm is bistable, that is, if the spatial component of the model is neglected
(for example, by setting D = 0 in (8.15)), the scalar ODE (dc/dt = f(c)) that remains
exhibits bistability. Alternatively, imagine walling off (or lifting out) a small region of
the spatial model and investigating its dynamics. If the region is small enough, the
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Figure 8.4 Simulation of a fertilization Ca2+ wave following (8.15) results in a traveling front. (A) Time
courses c(xi, t) (the Ca

2+ proÞle) at three spatial positions xi = 30, 40, 50µm. (B) An array plot of c(x, t).
The slope of the front gives a velocity of 3.45 µm/s. Parameters as in Exercise 4 and Exercise 6.

time scale for diffusion in the isolated region (T = L2/D) will be much faster than
the dynamics associated with the reaction terms f(c). Thus, the Ca2+ proÞle will be
approximately uniform (∂c/∂x = 0), and the region will behave as a compartmental
model in which diffusion no longer plays a role. The propagating front observed in the
spatial model, Figure 8.4, is possible precisely because any such isolated compartmental
model would exhibit bistability. Indeed, if the physiological state of the cytosol were not
bistable, the basal and elevated [Ca2+]i at the wave front and back could not persist.
We will see below that spatial phenomena observed in reaction�diffusion models can
be categorized by the qualitative dynamics of the ODEs obtained by assuming that all
proÞles are uniform.

Following Section 7.5.1 we can analyze the fertilization Ca2+ wave model (8.15) by
looking for a (rightward) traveling wave solution c(x, t) = C(x − vt) = C(z). Mak-
ing this substitution as well as ∂C/∂x = (dC/dz)(∂z/∂x) = dC/dz and ∂C/∂t =
(dC/dz)(∂z/∂t) = −v dC/dz into this reaction�diffusion equation gives

− vdC
dz

= D
d2C

dz2
+ f(C), (8.18)

which can be written as the Þrst�order system

dC

dz
= G, (8.19)
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Figure 8.5 The reaction�diffusion equation model
of the fertilization Ca2+ wave, (8.17), can be trans-
formed into traveling wave coordinates (z = x − vt)
resulting in a Þrst�order system of ODEs, (8.19)�
(8.20). C(z) is Ca2+ concentration and G(z) =
dC/dz is the rate function. Nullclines for C and
G are shown (dotted and solid lines, respectively).
When wave speed is v = 4.96µm/s a heteroclinic
orbit (dashed line) connects the two stable equilibria
(points 3 and 1), representing the Ca2+ concentration
before and after wave passage. See Exercise 6.

dG

dz
= − 1

D
[vG+ f(C)] . (8.20)

The phase portrait in Figure 8.5 is a plot of the rate function C 0 = G versus Ca2+

concentration C. In Exercise 6 the reader can numerically demonstrate the existence of
a well-behaved heteroclinic orbit when v = 4.96µm/s. This heteroclinic orbit does not
exist for smaller or large values of v and corresponds to the traveling front presented
in Figure 8.4.

Intuitively, we expect the speed of traveling front solutions such as those presented
in Figure 8.4 and Figure 8.5 to depend on the diffusion coefficient D. Indeed, when the
rate function f(c) is a cubic polynomial as in Chapter 7, the wave speed is proportional
to the square root of the diffusion coefficient. This is clear from the discussion in Section
7.5.1. Although in the fertilization Ca2+ wave model f(c) is not a polynomial, we can
demonstrate the same principle by noting that the substitution D∗ = α2D in (8.18)
can be offset by scaling the wave speed (v∗ = αv). To see this, we deÞne a scaled wave
coordinate z∗ = x− v∗t that implies −v∗ dC/dz∗ = −v dC/dz or dC/dz∗ = α−1dC/dz.
Thus, any solution of (8.18) is also a solution of

v∗
dC

dz∗
= D∗ d

2C

dz∗2
+ f(C).

In Exercise 8 the reader can repeat the simulations of Figure 8.4 and/or Figure 8.5 to
numerically conÞrm that the traveling front velocity is proportional to the square root
of the diffusion coefficient. Interestingly, exogenous buffers have been shown to alter
the speed of Ca2+ waves in mature Xenopus oocytes [Nuccitelli et al., 1993], an effect
that may be due to changes in the effective diffusion coefficient for Ca2+.

The astute reader may have noticed that we have reported two different wave
velocities for two different calculations of the same traveling front. Recall that Figure 8.4
used the method of lines to simulate the fertilization Ca2+ wave model (8.15) and that
we observed a speed of 3.45 µm/s. On the other hand, Figure 8.5 shows that the Þrst�
order system of ODEs resulting from a transformation into traveling wave coordinates,
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(8.19)�(8.20), has a heteroclinic orbit that connects the two stable equilibria for wave
velocity of v = 4.96µm/s. In Exercise 9 the reader can show that the later calculation is
more accurate. The suppression of the wave speed in the calculation using the method
of lines is due to discretization error. Figure 8.4 corresponds to Figure 8.5 as the mesh
is reÞned (∆x→ 0).

8.7 Calcium Waves in the Immature Xenopus
Oocycte

Although we have begun our discussion of models of intracellular Ca2+ waves by focusing
on traveling fronts in mature Xenopus laevis eggs, IP3-dependent Ca

2+ responses occur
in many cell types and take various forms. It is instructive to note here that Ca2+ wave
phenomena in the immature X. laevis oocyte (such as the spiral Ca2+ wave shown in
Figure 1.4) are qualitatively distinct from the traveling fronts discussed above. Although
there are many differences between immature and mature Xenopus oocytes/eggs, from a
dynamical point of view these different Ca2+ wave phenomena are the result of different
underlying dynamics of Ca2+ handling that could be distinguished even in the absence
of diffusion. While our model of the fertilization Ca2+ wave demonstrated how bistable
cellular dynamics can lead to a traveling front, the ER of the immature Xenopus oocyte
is excitable (and may even be oscillatory) as opposed to bistable.

Figure 8.6 presents phase planes for the reaction terms of the fertilization Ca2+

wave model (8.6)�(8.7), which illustrate the qualitative difference between excitable
and bistable dynamics. To make this comparison, we relax our assumption that the
dynamics of [Ca2+]i are much slower than the gating variable for Ca2+ inactivation of the
IP3R (so that w is once again given by (8.7) rather than w∞([Ca

2+]i)). The model now
has two dynamic variables ([Ca2+]i and w), the nullclines of which are shown in panel
A of Figure 8.6. The intersections of these nullclines imply three equilibria (as before,
points 1 and 3 are stable, while 2 is unstable). Conversely, panel B of Figure 8.6 presents
the (w, [Ca2+]i) phase portrait with adjusted IP3R parameter values (Ca

2+-dependence
of inactivation). The reaction terms of the model now represent excitable cytoplasm. A
small perturbation in Ca2+ concentration results in a long excursion of the trajectory
representing Ca2+ release from the ER, IP3R inactivation, and ATP-dependent Ca2+

reuptake.

8.8 Simulation of a Traveling Pulse

A simulation of Ca2+ wave phenomena mediated by ER Ca2+ excitability can be im-
plemented in a manner similar to (8.17) (see Exercise 7). To do this we discretize the
gating variable wj ≈ w(xj, t) at J+1 mesh points (0 ≤ j ≤ J) representing the fraction
on noninactivated IP3Rs at each location in space (xj = j∆x). Of course, there will be
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Figure 8.6 The (w, [Ca2+]i) phase plane for the reaction terms of the fertilization Ca
2+ wave model

(8.6)�(8.7) can exhibit bistability (A) or excitability (B) with a change of IP3R parameters. Parameters as
in Exercise 4 except d2 = 2µM in the bistable case, while d2 = 1µM in the excitable case. In the Li�Rinzel
reduction of the DeYoung�Keizer IP3R model, this change in d2 increases equilibrium IP3R inactivation
(note the downward/leftward shift in w nullcline) and eliminates the high [Ca2+]i equilibrium present in
(A).

no Laplacian term in the equations for wj because the IP3Rs (and thus their state) do
not diffuse. The model now takes the form

dc0
dt
= D

c1 − c0
(∆x)2

+ g(c0, w0),
dw0
dt

= [w∞ (c0)−w0] /τ,

dcj
dt
= D

cj+1 − 2cj + cj−1
(∆x)2

+ g(cj , wj),
dwj
dt

= [w∞ (cj)−wj ] /τ, (8.21)

dcJ
dt

= D
cJ−1 − cJ
(∆x)2

+ g(cJ , wJ),
dwJ
dt

= [w∞ (cJ)−wJ ] /τ.

Figure 8.7 shows a propagating Ca2+ wave that results when the cytosol, modeled
using (8.21), is excited with the same initial conditions as in Figure 8.4. In this case,
[Ca2+]i returns to basal as the Ca

2+ transient propagates past a given point, and the cel-
lular response is referred to as a traveling pulse. Traveling pulses produced by excitable
dynamics are often called �trigger waves,� because a perturbation at one end of the
excitable medium triggers a signal that may propagate with undiminished amplitude.
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Figure 8.7 [Ca2+]i time courses and array plot similar to Figure 8.4 except that parameters are changed
so that the (w, [Ca2+]i) phase plane is excitable as in (B) of Figure 8.6. The simulation is implemented
using (8.21) and results in a traveling pulse similar to Ca2+ responses in the immature Xenopus oocyte.
The slope of the front gives a velocity of 5 µm/s. Parameters given in Exercise 7.

8.9 Simulation of a Kinematic Wave

In previous sections we have discussed how the cytoplasm�s physiological state inßuences
Ca2+ wave propagation. When the cytoplasm is bistable, a likely wave phenomenon is a
traveling front; conversely, an excitable cytoplasm will likely support trigger waves, i.e.,
traveling pulses. These observations suggest that we consider the case of an oscillatory
cytoplasm. As discussed in Chapter 5, IP3-mediated whole�cell Ca

2+ responses are
oscillatory in many cell types. Figure 8.8 demonstrates that it is an easy matter to
adjust IP3R parameters (Ca

2+-dependence of activation and inactivation) in our model
so that the (w, [Ca2+]i) phase plane is oscillatory and a large�amplitude (0.01µM <
[Ca2+]i < 0.65µM) stable limit cycle exists.

Even in the absence of diffusion an oscillatory medium will support kinematic waves.
Figure 8.9 illustrates this possibility using an array of clocks. Depending on initial
conditions (i.e., the time to which the clocks are initially set), the absence of physical
coupling between the clocks does not preclude the appearance of a traveling wave.
Regardless of initial condition, all the clocks will have returned to their initial state.
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as in Figure 8.6 except d2 = 0.5µM and d5 =
0.15µM. In the Li�Rinzel reduction of the DeYoung�
Keizer IP3R model, d5 and d2 affect IP3R activation and
inactivation, respectively.

Thus, kinematic waves are distinct from traveling fronts and pulses in that they can
occur with arbitrary shape.

Although a kinematic wave can be of arbitrary shape, deceptively shaped waves may
look like traveling waves when there is a certain relationship between wavelength and the
oscillatory frequency of the medium. To see this, let c(x, 0) = c0(x) and w(x, 0) = w0(x)
be the initial Ca2+ proÞle for our model tuned to exhibit limit cycle oscillations with
period τ . If we choose (c0(x), w0(x)) �on� the limit cycle (for all x), then in the absence
of Ca2+ diffusion the [Ca2+]i will be temporally periodic at every spatial location, i.e.,
c(x, t+τ) = c(x, t). If the initial condition also happens to be spatially periodic, so that
c0(x + λ) = c0(x) (and similarly for w0), then [Ca

2+]i will remain spatially periodic,
i.e., c(x+ λ, t) = c(x, t), where λ is the spatial period (the wavelength). As illustrated
using the clock analogy in Figure 8.9, this simultaneous spatial and temporal periodicity
implies a solution of the form c(z) = c(x+ vt) if v = λ/τ .

Using the parameters that generated the limit cycle shown in Figure 8.8, Figure 8.10
demonstrates that oscillatory IP3-mediated Ca2+ release may lead to kinematic waves.
Initial conditions are chosen so that the phase of the oscillation is uniform throughout
the medium, except for a central region that is phase advanced. Because Ca2+ diffusion
is included in these simulations following (8.21), the distribution of phases evolves as
a function of time (note the changing shape of the wave peak with each oscillation).
Because diffusion is now coupling cytoplasmic oscillations, pure kinematic waves no
longer exist. Nevertheless, at each spatial location the solution remains �near� the
limit cycle of Figure 8.8.

Although beyond the scope of this chapter, it can be shown that in the limit of slow
diffusion (as expected here due to Ca2+ buffers), the relative phases of the oscillations,
referred to as the phase gradient, evolve according to Burgers� equation [Murray, 1989,
Jafri and Keizer, 1997]. The important conceptual point is that buffered Ca2+ diffusion
causes the phase of the oscillations to synchronize over time. Figure 8.10A illustrates this
with time courses [Ca2+]i(xi, t) from two spatial positions. Notice that the oscillations at
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Figure 8.9 An array of clocks illus-
trates a kinematic wave. The peak of
the wave coincides with the hand of the
clock pointing to 12 o�clock. The tem-
poral period (τ) is the time it takes for
the hand at a given location to make
one complete clockwise revolution. The
minimum distance between clocks with
the same phase is the spatial period,
or wavelength (λ). A wave takes τ sec-
onds to travel one wavelength, so that
the wave speed is v = λ/τ . From
[Jafri and Keizer, 1994].

these two locations synchronize; the (apparent) velocity of the repetitive wave between
these two points increases. Indeed, the velocity of a kinematic wave can be arbitrarily
large because it is not a propagating signal. In the array plot of Figure 8.10B, the
diminution of the phase gradient with each cycle is striking.

As discussed at length in previous sections, the presence of endogenous and exoge-
nous Ca2+ buffers slows Ca2+ diffusion. If the physiological state of a cell�s cytoplasm
is oscillatory, observed wave phenomena may very well be kinematic in nature, and
the inßuence of Ca2+ diffusion on propagation of the wave may be primarily through
the evolution of the phase gradient. Conversely, an excitable cytosol absolutely re-
quires diffusion to support a propagating fronts (i.e., trigger waves). While kinematic
waves can exist even in the absence of diffusion, the wave speed of a propagating
front scales with the effective diffusion coefficient in a predictable manner (at least in
the limit of low affinity Ca2+ buffers) [Jafri and Keizer, 1994, Jafri and Keizer, 1997,
Sneyd et al., 1998]. These distinctions are important and one may easily be deceived.
For example, the observation of repetitive waves (i.e., a wave train) may suggest an oscil-
latory medium. On the other hand, such a wave train may be due to periodic forcing (or
recurrent entry) of an excitable medium, as in target patterns and spiral waves imaged
in the immature Xenopus oocyte. Is it obvious from Figure 1.4 whether the physiological
state of the immature Xenopus oocyte cytoplasm is excitable or oscillatory?

8.10 Spark-Mediated Calcium Waves

Throughout this discussion we have, without exception, made the so-called continuum
approximation. That is, we have made no attempt to explicitly model the stochastic
dynamics of individual Ca2+ ions undergoing Brownian motion. Indeed, an averag-
ing process is implicit in any continuum description of matter. Consider that small
molecules (such as free Ca2+ ions) in micromolar solution are essentially point particles
with mean intermolecular spacing of approximately 100 nm; that is, in a volume of
(100 nm)

3 a single solute molecule will be found on average. On a distance scale of 10
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Figure 8.10 [Ca2+]i time courses and array plot similar to Figure 8.7 except that the (w, [Ca
2+]i) phase

plane is oscillatory as in Figure 8.8. The simulation is implemented using (8.21) and results in kinematic
wave (also called a phase wave). (A) Time courses c(xi, t) at xi = 50 and 63µm show that diffusion
causes oscillations at different regions to synchronize. (B) An array plot illustrates the smoothing of the
relative phases of the oscillations.

nm (a factor of ten smaller) the medium is highly heterogeneous. If thermal motion
of both solvent and solute could be stopped, only one out of a thousand volume ele-
ments with dimension (10 nm)

3
would be found to contain a solute molecule. Clearly,

at distance scales of 10 nm (or less) a continuum description is invalid.
On the other hand, if a ßuorescent molecule at micromolar concentrations is

optically detected using a microscope with micron resolution, the relevant volume
(1µm3 = 109 nm3) is likely to contain a thousand molecules. Though the actual number
of molecules in the volume will vary as a function of time due to diffusion, these density
ßuctuations will be small. Thus, on a distance scale of a micron the medium appears
spatially homogeneous, and the continuum approximation is legitimate.

The phrase �continuum approximation� can also refer to the fact that in our spatial
whole�cell models we are assuming that the ER can be represented as a compartment
continuously distributed throughout the cytosol, albeit with prescribed volume frac-
tion given by fER in (8.8). Although it can sometimes be rigorously justiÞed, anyone
familiar with the mathematics of diffusion in heterogeneous media will recognize that
this assumption is made largely for convenience [Crank, 1975]. Intracellular hetero-
geneities abound, and only sometimes can these heterogeneities be �averaged out� in
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Figure 8.11 Confocal line-scan images of isolated Ca2+ sparks, wave initiation, and a spark-mediated
propagating Ca2+ wave in cardiac myocytes. Time is vertical (bar is 100 ms except for second panel which
is 200 ms) and space is horizontal (bar is 5 µm). Image subtraction shows spatially localized Ca2+ release
originating from sites separated by ≈ 2µm. From [Cheng et al., 1996].

a way that justiÞes a bidomain description (i.e., a mathematical technique known as
homogenization).

One important cellular inhomogeneity known to have a profound impact on propa-
gating IP3-mediated Ca2+ waves is the distribution of IP3Rs. In the immature Xenopus
oocyte, for example, IP3Rs occur in clusters of 10�100 with intercluster spacing on
the order of a few microns [Berridge, 1997]. Under some conditions this organization
of Ca2+ release sites reveals itself in caulißower-like wave fronts. Localized Ca2+ eleva-
tions due to the activation of a single Ca2+ release site (a Ca2+ puff) and even a single
channel (a Ca2+ blip) are now regularly observed [Yao et al., 1995, Parker et al., 1996].

Localized Ca2+ elevations due to intracellular Ca2+ release have been observed in
other cell types as well. When a Ca2+ release event is mediated by ryanodine recep-
tors (RyRs), as in cardiac myocytes, the phenomenon is referred to as a Ca2+ spark
[Cheng et al., 1993]. Spark-mediated waves in cardiac myocytes are amenable to mod-
eling because Ca2+ waves often propagate along the longitudinal axis of a myocyte,
i.e., perpendicular to the orientation of the sarcomeric Z-lines. The Z-lines, trans-
verse tubules, and Ca2+ release sites are oriented in the transverse direction and are
regularly spaced with a separation of 2 µm. The ultrastructure of cardiac myocytes
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Figure 8.12 Simulation of Fire�Diffuse�Fire model in both continuous (A) and saltatory (B) regimes
using (8.26). The separation between release sites is d = 2µm. The continuous wave (τR = 1 s) is traveling
11.3µm/s, while the saltatory wave (τR = 10ms) is traveling 67µm/s. Parameters as in Exercise 12.

thus lends itself to one-dimensional modeling in which the cellular heterogeneity along
the longitudinal axis is represented. Figure 8.11 shows some examples of propagating
spark-mediated waves and isolated sparks in cardiac myocytes.

One such modeling approach [Keizer et al., 1998] is to augment the continuum bido-
main description (8.8) with a spatially periodic maximum conductance for Ca2+ release,
say, vRyR(x) in analogy to vIP3R in the IP3-mediated wave model. Numerical studies show
that spark-mediated Ca2+ waves propagate in a saltatory manner, similar to experi-
ment. In the following section we will consider a related and even more idealized model
of spark-mediated Ca2+ waves, the Þre�diffuse�Þre model.

8.11 The Fire�Diffuse�Fire Model

The essence of minimal models of spark-mediated Ca2+ waves is to model Ca2+

release sites as idealized point sources, that is, an array of Dirac delta functions, denoted
by δ(x − xi), where xi is the spatial position of the ith release site. While the Dirac
delta function is actually not a function at all (rather, it is a distribution, the limit of a
sequence of functions), it is often thought of as a sharply peaked function that is zero
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everywhere except x = xi. In addition, the delta function is normalized so thatZ ∞

−∞
δ(x− xi)dx = 1, (8.22)

and it has the so-called sifting propertyZ ∞

−∞
f(x)δ(x− xi)dx = f(xi). (8.23)

Armed with delta functions, we can model spark-mediated Ca2+ waves by modifying
the propagating front model (8.15) so that Ca2+ release occurs only at regularly spaced
release sites, that is,

∂c

∂t
= D

∂2c

∂x2
+ f(c)

X
i

δ(x− xi), (8.24)

where xi is the location of the ith release site with kinetics given by f(c) [Keener, 2000].
We can further idealize this model for spark-mediated waves by removing the Ca2+-

dependence of the release rate f(c). Instead, assume that the source strength fi(t) of
each release site is a square pulse function of time,

fi(t) =
σ

τR
H(t− ti)H(ti + τR − t).

In this expression H(t) is the Heaviside step function, so that H(t) = 0 for t < 0,
H(t) = 1 for t ≥ 0. The product of these Heaviside functions represents the source
turning �on� at time t = ti and remaining on for duration τR, i.e., it turns �off� at
time t = ti + τR. The constant σ represents the source amplitude and has units of
µM · µm because from (8.22) we see that the delta function has units of 1/µm. The
normalization factor (1/τR) is chosen so thatZ ∞

−∞
fi(t) dt = σ. (8.25)

Substituting this form for the Ca2+ release rate into (8.24) gives the �Þre�diffuse�Þre�
model of spark-mediated Ca2+ wave propagation,

∂c

∂t
= D

∂2c

∂x2
+
σ

τR

X
i

δ(x− xi)H(t− ti)H(ti + τR − t). (8.26)

To Þnish our presentation of the Þre�diffuse�Þre model, we must specify the lo-
cation of each release site (xi) and the times (ti) at which Ca

2+ release begins. If we
further assume a regular array of release sites, then xi = id where d is the site spac-
ing. Because we have Ca2+-induced Ca2+ release in mind, we assume that Ca2+ release
at site i begins when the local Ca2+ concentration c(xi, t) achieves a Þxed threshold
Ca2+ concentration cθ (here 0.1µM). In Exercise 12 the reader can implement such a
Þre�diffuse�Þre simulation.

Interestingly, Figure 8.12 shows that the Þre�diffuse�Þre model supports continuous
as well as propagating Ca2+ signals. In Figure 8.12A, the time constant for Ca2+ release,



8.11: The Fire�Diffuse�Fire Model 217

τR, is 1 s and the propagating signal is similar to the traveling front solutions presented
earlier in this chapter. Conversely, Figure 8.12B presents a simulation using τR = 10ms.
Here spark�like Ca2+ releases lead to a propagating signal that is distinctly saltatory.
Note that the continuous wave is traveling at 11.3µm/s. while the saltatory wave is
traveling at 67µm/s. The long duration of Ca2+ release in the continuous case appears
to slow the velocity of the propagating signal.

The Þre�diffuse�Þre model can be analyzed to give insight into the continuous and
saltatory limits of Ca2+ wave propagation. As the reader may expect, it is not τR
alone but rather a dimensionless parameter that determines the existence and form of
propagating signals. Indeed, it can be shown that the relevant dimensionless quantity
is DτR/d

2. The continuous limit corresponds to DτR/d
2 À 1 and the saltatory limit to

DτR/d
2 ¿ 1. Below we study these two limits separately to determine (you guessed it)

how diffusion inßuences wave velocity in both limits.

Analysis of the Continuous Limit

The continuous limit pertains when DτR/d
2 À 1, that is, when diffusion is fast and

the release time long compared to the intersite separation. This limit could be achieved
in a simulation by increasing the density of release sites (d→ 0) while simultaneously
decreasing the release rate (σ) so that the release per unit length (σ/d) is constant.

Because the thresholding that determines Ca2+ release times (ti) is the only nonlin-
ear part of our model (8.26), we can convolve the release rates fi(t) with the diffusion
kernel to write an explicit expression for c(x, t):

c(x, t) =
σ

τR

N−1X
i=−(N−1)

Z min(t,ti+τR)

ti

dt0p
4πD(t− t0) exp

∙
− (x− xi)2
4D(t− t0)

¸
, for t > tN−1,

(8.27)

where we have assumed a symmetric proÞle c(x, t) and the Þring of N−1 sites on either
side of the origin. Equation (8.27) is not yet a solution because we have the unknown
parameters ti to determine. To Þnd the time at which site N Þres we evaluate (8.27)
at (t = tN , x = xN) and set c(xN , tN) = cθ. This yields

cθ =
σ

τR

N−1X
i=−(N−1)

Z min(tN ,ti+τR)

ti

dt0p
4πD(tN − t0)

exp

∙
− (xN − xi)2
4D(tN − t0)

¸
,

an expression that can be solved for tN . At this point we seek traveling�wave like
solutions with regular Þring times. This implies that ti = i∆, where ∆ is the time
interval between adjacent site Þrings and a velocity of propagation given by v = d/∆.
By substituting ∆ = tN/N and solving for ∆ it can be shown [Keizer et al., 1998]
that the velocity of such a propagating wave has the following dependence on model
parameters:

v ≈
sµ

σ

dcθ

¶µ
D

τR

¶
. (8.28)
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Figure 8.13 Relationship between α = cθd/σ and
the dimensionless Þring interval (∆ = 1/v) for the
Þre�diffuse�Þre model in the saltatory limit. Since
g(∆) < 1, waves do not propagate for α > 1. From
[Keizer et al., 1998].

Notice that the factor of
p
D/τR is similar to what we have seen before for traveling

fronts and pulses. The existence of traveling wave solutions depends on
p
σ/dcθ.

Analysis of the Saltatory Limit

The saltatory limit of the Þre�diffuse�Þre model corresponds to DτR/d
2 ¿ 1 in

(8.26), that is, when diffusion is slow and release time short compared to the intersite
separation. This limit could be achieved in a simulation by decreasing the time constant
for Ca2+ release (τR) while maintaining a Þxed density of release sites (d constant).
Because the normalization factor (1/τR) is chosen to satisfy (8.25) regardless of τR, the
release rate per unit length (σ/d) remains constant as τR → 0, and (8.26) becomes

∂c

∂t
= D

∂2c

∂x2
+ σ

X
i

δ(x− xi) δ(t− ti). (8.29)

We now nondimensionalize space (x∗ = x/d, x∗i = xi/d = i), time (t∗ = tD/d2, t∗i =
tiD/d

2), and concentration (c∗ = c/cθ) and drop asterisks to write

∂c

∂t
=
∂2c

∂x2
+
1

α

X
i

δ(x− xi) δ(t− ti), (8.30)

where α = cθd/σ. Using the diffusion kernel we obtain an implicit expression for c(x, t),

c(x, t) =
X
i

H(t− ti)
s

1

4πα2(t− ti) exp
∙
− (x− i)

2

4(t− ti)
¸
, (8.31)

where the presence of the Heaviside function indicates no contribution from sites that
have not yet Þred.

Assuming that the sites for which −N < i < N have Þred at times ti through
tN (left and right pairs simultaneously) we want to determine tN+1. The dimensionless
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Figure 8.14 For a range of values for α, the salta-
tory limit of the Þre�diffuse�Þre model is simulated by
successively calculating the dimensionless Þring inter-
val (∆) for n = 1, 2, · · · using (8.32) and the criterion
c(n, ti) = 1. The wave was initiated by simultane-
ously Þring all sites for −15 < n < 15. A period
doubling cascade begins at α ≈ 0.512 and terminates
near α ≈ 0.535, beyond which waves do not propagate.
From [Keizer et al., 1998].

threshold for Þring is now c = 1, so from (8.31) we have

c(xN+1, tN+1) = 1 =
NX

i=−N

s
1

4πα2(tN+1 − ti) exp
∙
−(N + 1− i)2
4(tN+1 − ti)

¸
. (8.32)

Because we are interested only in long time solutions, we consider the large N limit and
neglect all the terms in the above sum with i ≤ 0, that is, we are following a rightward
traveling wave that eventually is not inßuenced by the sites to the left of the origin.
Under this approximation (8.32) simpliÞes to

α =
NX
i=1

s
1

4π(tN+1 − ti) exp
∙
−(N + 1− i)

2

4(tN+1 − ti)
¸
. (8.33)

This expression is an implicit map for tN+1 as a function of all the previous Þring times,
(tN , tN−1, . . . , t1)→ tN+1. traveling-wave-like solutions correspond to Þxed points of this
map with regular Þrings, that is, tN+1 = tN+∆ with constant∆ (giving a dimensionless
velocity of v = 1/∆). Substituting ∆ = tN+1 − tN in (8.33) we obtain

α =
NX
i=1

s
1

4π∆(N + 1− i) exp
∙
−(N + 1− i)

4∆

¸
. (8.34)

DeÞning n = N + 1− i and taking the limit N →∞ we obtain

α =
∞X
n=1

r
1

4πn∆
exp (−n/4∆) ≡ g(∆). (8.35)

It can be shown that 0 ≤ g(∆) ≤ 1. The Þrst equality holds in the high�velocity
limit (∆ → 0) and the second for low velocity (∆ → ∞). Since g(∆) is monotonic,
we can numerically calculate a unique solution ∆ = g−1(α) when 0 < α < 1, i.e., the
range of g(∆). At this point it is worth remembering that α = cθd/σ. Thus, a necessary
condition for the existence of a velocity is that α < 1. If the sites are too far apart or
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too weak or the threshold too high, there can be no propagating waves. Interestingly,
it can be shown that propagation failure occurs through a sequence of instabilities as
α is increased well before the condition α = 1 is reached (see further reading). When α
is small (σ/dcθ À 1), propagating wave solutions exist and are stable. It can be shown
that the dimensional velocity v in this saltatory propagation limit is given by

v ≈ 4D

d
ln

µ
σ

dcθ

¶
; (8.36)

that is, it scales linearly with D, quite unlike propagating waves in the continuous limit,
which have velocity that scales with

√
D as in (8.28). If fact, whenever τR is sufficiently

small (even if α is not particularly small), the saltatory wave velocity predicted by the
Þre�diffuse�Þre model scales linearly with D.

8.12 Modeling Localized Calcium Elevations

Our discussion of spark-mediated Ca2+ wave propagation began with a discussion of
cellular heterogeneity. During this discussion of Ca2+ wave phenomena it is important
to remember that many cellular processes (including synaptic transmission, activity-
dependent synaptic plasticity, and regulation of neuronal excitability) can be initiated
by changes in intracellular Ca2+ concentration in the absence of a global response
such as a Ca2+ oscillation or wave. For this reason, Ca2+ sparks, puffs, and localized
Ca2+ elevations near voltage gated plasma membrane Ca2+ channels (sometimes called
Ca2+ microdomains) are cellular signals of great interest. Localized Ca2+ elevations are
not only the �building blocks� of global Ca2+ release events, but also highly speciÞc
regulators of cellular function [Berridge, 1997, Berridge, 1998].

As discussed above in the context of experimental observations of Ca2+ waves, the
interpretation of microßuorometric measurements of Ca2+ puffs and sparks is com-
plicated by the diffusion of Ca2+, endogenous buffers, and indicator, all of which
contribute to the dynamics of a ßuorescence signal during and after Ca2+ release.
While in the case of global Ca2+ responses and Ca2+ waves the equilibrium relation
(8.1) will likely hold between Ca2+ and indicator, this is not so easily demon-
strated in the case of localized Ca2+ elevations (though it remains true in some cases
[Smith et al., 1996]). A further complicating factor in interpreting confocal microßuoro-
metric measurements is the optical blurring that occurs due to limited spatial resolution
[Smith et al., 1998, Pratusevich and Balke, 1996].

The reaction�diffusion equations for the buffered diffusion of intracellular Ca2+,
(8.10)�(8.12), are the starting point of a theoretical understanding the dynamics of
localized Ca2+ elevations. In the simplest scenario, a Ca2+ puff or spark is due to Ca2+

release through one channel or a tight cluster of channels. If Ca2+ is released from
intracellular Ca2+ stores deep within a large cell (so that the plasma membrane is far
away and doesn�t inßuence the time�course of the event), and the intracellular milieu is
homogeneous and isotropic, then we have spherical symmetry. In this case, the evolving
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proÞles of Ca2+ and buffer (though a function of time and distance from the source) will
not be functions of the polar (φ) or azimuthal (θ) angle. In the case of such spherical
or radial symmetry the Laplacian reduces to

∇2 =
1

r2
∂

∂r

∙
r2
∂

∂r

¸
=
∂2

∂r2
+
2

r

∂

∂r
. (8.37)

Figure 8.15 shows a spherically symmetric calculation of a localized Ca2+ elevation
using the full equations for the buffered diffusion of Ca2+, (8.10)�(8.12), with parameters
consistent with measurements of the effective diffusion coefficient in Xenopus oocyte
cytoplasm [Allbritton et al., 1992]. Figure 8.15 is a numerically calculated snapshot of
the concentration proÞles for each species after an elapsed time of 1 ms. The concen-
tration [Ca2+]i is elevated near the source (thick solid line). Because released free Ca

2+

reacts with buffer, the concentration of bound buffer (thin solid and thick dashed lines)
is elevated near the source. Conversely, the concentration of free buffer (thin dotted and
dashed lines) decreases near the source. In this simulation, 250 µM stationary buffer
was included in addition to 50 µM mobile buffer (both with K of 10 µM). A source
amplitude of 5 pA was used, corresponding to a tight cluster of IP3Rs. Interestingly,
Figure 8.15 shows that the mobile buffer is less easily saturated than stationary buffer,
in spite of the fact that the stationary buffer is at Þvefold higher concentration (note
arrows).

Simulations such as these have played a role in understanding the dynamics of puffs
and sparks. Figure 8.16 shows a Ca2+ spark simulated using parameters consistent with
experimental observation in cardiac myocytes [Smith et al., 1998]. Such simulations
conÞrm that the timecourse of observed ßuorescence can be explained by a 2 pA, 15 ms
Ca2+-release event from a tight cluster of RyRs located on the sarcoplasmic reticulum
membrane.

Parameter studies using this model indicate that Ca2+ spark properties (such as
brightness, full width at half maximum, and decay time constant) are very dependent
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Figure 8.16 Effects of indicator dye parameters on Ca2+ spark properties. Source amplitude is 2 pA for 15
ms and simulated ßuo-3 has K of 1.13 µM. (A,B,C) Time course of normalized blurred ßuorescence signal
estimated according to (8.2) with ηB = 0. (D) Snapshot of [Ca

2+]i and [CaB] proÞles before termination
of Ca2+ release. Dotted line shows the Ca2+ proÞle with no ßuo-3. For details of the simulated confocal
point spread function and buffer parameters see [Smith et al., 1998].

on indicator dye parameters (such as association rate constant, concentration, and dif-
fusion coefficient). These relationships are not always intuitive. For example, increasing
indicator dye concentration decreases the brightness of the simulated Ca2+ spark in
Figure 8.16. This is partly due to the fact that spark brightness is a normalized mea-
sure (peak/basal ßuorescence), and partly due to the fact that high concentrations of
indicator perturb the underlying free Ca2+ signal.
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8.13 Steady-State Localized Calcium Elevations

Numerical simulations like those in Figure 8.15 conÞrm that localized Ca2+ eleva-
tions achieve steady�state values very rapidly (within microseconds) near point sources.
Steady�state solutions to the full equations are thus of interest because they allow es-
timates of �domain� Ca2+ concentration near open Ca2+ channels. These steady-state
solutions lend themselves to analysis, giving insight into the limiting (long time) �shape�
of localized Ca2+ elevations. In the case of one mobile buffer, steady-state solutions to
(8.10)�(8.12) will satisfy the following boundary value problem [Roberts, 1994]:

0 = DC∇2[Ca2+]i − k+[B][Ca2+]i + k− ([B]T − [B]) , (8.38)

0 = DB∇2[B]− k+[B][Ca2+]i + k− ([B]T − [B]) , (8.39)

with associated boundary conditions

lim
r→0

½
−4πr2DC

d[Ca2+]i
dr

¾
= σ, lim

r→∞
[Ca2+]i = [Ca

2+]∞,

lim
r→0

½
−4πr2DB

d[B]

dr

¾
= 0, lim

r→∞
[B] = [B]∞ =

K[B]T
K + [Ca2+]∞

.
(8.40)

Here we have eliminated the equation for [CaB] (rather than [B] as before) and written
DC and DB for the diffusion coefficients of free Ca

2+and free buffer, respectively.
Fixed buffers, while important for the time-dependent evolution of localized Ca2+

elevations, have no inßuence on steady states. This can be seen by inspecting (8.10)�
(8.12), where DCB = 0 implies R = −k+[B][Ca2+]i + k−[CaB] = 0 at steady state.

As discussed in Chapter 4 and Chapter 5, there are many advantages to
nondimensionalizing equations before preceding to analyze them. A convenient nondi-
mensionalization of (8.38)�(8.40) begins by scaling [Ca2+]i and [B] by representative
concentrations, the dissociation constant (K) and total concentration of buffer ([B]T)
[Smith et al., 2001]. This gives two dimensionless dependent variables, �c and �b, given
by �c = [Ca2+]i/K and �b = [B]/[B]T.

In Exercise 13 the reader can conÞrm that nondimensionalizing the independent
variable (�ρ = r/L with L = σ/4πDCK) simpliÞes (8.38) and (8.39) to

�εc∇2
�ρ�c−

³
�c�b+�b− 1

´
= 0, (8.41)

�εb∇2
�ρ
�b−

³
�c�b+�b− 1

´
= 0, (8.42)

where the subscript on the Laplacian indicates that differentiation is with respect to �ρ.
Two dimensionless diffusion coefficients (�εc and �εb) appear in these equations. In

terms of the original dimensional parameters of the problem, they are given by �εc = ²α
and �εb = ²D, where α = K/[B]T is a buffering factor (small when buffer is at high
concentration compared to the dissociation constant),D = DB/DC is a relative diffusion
coefficient between buffer and Ca2+, and the common factor ² is given by

² = (4π)2D3
CK/σ

2k+, (8.43)
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a quantity that is small for strong sources and/or fast buffers.

8.13.1 The Steady�State Excess Buffer Approximation (EBA)

The dimensionless steady-state equations for the buffered diffusion of Ca2+ near a point
source, (8.41) and (8.42), are nonlinear, and no general analytical solution is known
for these equations. However, we can begin to understand the behavior of solutions
(and the effect of Ca2+ buffers on Ca2+ domains) by considering (8.41) and (8.42) in
limiting parameter regimes. The Þrst such limit we will consider is called the �excess
buffer approximation.� If buffer is in excess, then the parameter α = K/[B]T will be
very small, and �εc = ²α will also be small when ² = O(1). Therefore, we consider in
detail (8.41) and (8.42) when �εc ≈ 0, which in physical terms implies that the diffusion
coefficient of c is small compared to the size of the reaction terms in (8.41).

The mathematically inclined reader will notice that this is a singular perturbation
problem. Because this technique goes beyond the scope of this chapter, we present only
a heuristic analysis here. The interested reader is invited to consult [Smith et al., 2001]
for a more rigorous treatment.

With this caveat, we formally set �εc = 0 in (8.41), giving

�c�b+�b− 1 = 0, (8.44)

which implies that (8.42) simpliÞes to

∇2�b = 0.

When combined with the boundary conditions for b (see Exercise 13), this equation
implies

�b = �b∞, (8.45)

where �b∞ = 1/ (1 + �c∞) is the fraction of free buffer far from the source. Thus, our as-
sumption that buffer is in excess (�εc = 0) implies that the buffer is not perturbed from its
equilibrium value �b∞. Substituting (8.45) into (8.41) gives [Carslaw and Jaeger, 1959,
Crank, 1975]

�εc∇2�c− �b∞ (�c− �c∞) = 0.
This is a linear equation satisÞed by

�c =
1

�ρ
e−�ρ/Λ +�c∞, (8.46)

where the dimensionless space constant Λ =
q
�εc/�b∞ and �c∞ = [Ca2+]i/K are chosen

to satisfy the boundary conditions on �c that can be derived from (8.40).
When this result is expressed in dimensional form, we have

[Ca2+]i =
σ

4πDCr
e−r/λ + [Ca2+]∞, (8.47)
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where λ is the characteristic length constant for the mobile Ca2+ buffer given by λ =p
DC/k+[B]∞. This excess buffer approximation, Þrst derived by Neher [Neher, 1986], is

valid when mobile buffer is in high concentration and/or when the source amplitude is
small, that is, limr→0 [B] ≈ [B]∞ [Neher, 1986, Smith et al., 1996]. Note that λ decreases
with increasing association rate constant (k+) and free buffer concentration far from
the source ([B]∞). When a buffer is in excess, we thus expect further increases in con-
centration to restrict localized Ca2+ elevations. In addition, buffers with fast�reaction
kinetics are expected to restrict localized Ca2+ elevations more than slow buffers.

8.13.2 The Steady�State Rapid Buffer Approximation (RBA)

The steady-state rapid buffer approximation near a point source for Ca2+ can be derived
by noticing in (8.43) that rapid buffer (large k+) leads to small values of ². This results
in small values for both �εc and �εb, which in physical terms implies that the diffusion
coefficient of both �c and �b are small compared to the size of the reaction terms in (8.41)
and (8.42).

If we formally set �εc = �εb = 0 in these equations, we Þnd that, as before, (8.44)
holds. Solving for �b, we Þnd that at every spatial location �b is given by

�b =
1

1 + �c
, (8.48)

or in dimensional terms,

[B] =
K[B]T

K + [Ca2+]i
. (8.49)

These equations are statements of local equilibrium, the fundamental assumption used
in deriving the rapid buffer approximation in the context of traveling waves (recall
(8.57)).

We proceed with this derivation of the steady-state RBA by subtracting (8.42) from
(8.41) to give

∇2
�ρ

³
�εc�c− �εb�b

´
= 0. (8.50)

In physical terms this expression is equivalent to the statement that at steady state the
ßux of total Ca2+, diffusing in both free and bound forms across any spherical surface
centered on the source is equal to the ßux entering through the source (see Exercise 14).
Integrating twice with respect to �ρ and using the boundary conditions to determine the
integration constants gives

�εc�c− �εb�b = �εc
�ρ
+ �εc�c∞ − �εb�b∞. (8.51)

Substituting (8.48) into this equation gives

�εc�c− �εb
µ

1

1 + �c

¶
=
�εc
�ρ
+ �εc�c∞ − �εb�b∞, (8.52)
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which upon solving for �c and converting back into dimensional form gives the steady-
state RBA [Smith, 1996]

[Ca2+]i =
1

(2DC)

Ã
−DCK +

σ

4πr
+DC[Ca

2+]∞ −DB[B]∞

+

r³
DCK +

σ

4πr
+DC[Ca2+]∞ −DB[B]∞

´2
+ 4DCDB[B]TK

!
. (8.53)

The steady�state RBA tends to be valid when ² is small, e.g., when buffers have large
association and dissociation rate constants (k+ and k−). Interestingly, a sufficiently
large source amplitude (σ) can compensate for modest binding rates, also causing ² to
be small and the steady-state RBA to be valid [Smith et al., 1996].

8.13.3 Complementarity of the Steady-State EBA and RBA

The fundamental assumptions used in deriving the steady-state excess and rapid buffer
approximations are signiÞcantly different. In the case of the RBA (8.53) we assumed
that buffer and Ca2+ were in local equilibrium, (8.49). Because [Ca2+]i →∞ as r → 0
in (8.53), we see that according to the steady-state RBA

lim
r→0

[B] ≈ 0 (RBA). (8.54)

Thus, the steady-state RBA cannot be valid unless the source is strong enough to
saturate the buffer. On the other hand, in our derivation of the EBA we assumed that
the buffer is not perturbed from its equilibrium value, (8.45). If this is true even near
the source, then

lim
r→0

[B] ≈ [B]∞ (EBA). (8.55)

Thus, we expect the EBA and RBA approximations to be complementary, in the sense
that the steady-state solution to the full equations for the buffered diffusion of Ca2+

near a point source (the correct answer) cannot simultaneously be EBA-like, as in
(8.55), and RBA-like, as in (8.54). In the process of extending both the EBA and RBA
to higher order, this expectation has been conÞrmed [Smith et al., 2001].

Suggestions for Further Reading

� Simulation of the fertilization calcium wave in Xenopus laevis eggs, John Wag-
ner, Yue Xian Li, John Pearson, Joel Keizer. Modeling study of the fertilization
Ca2+ wave that suggests inhomogeneities in the Ca2+ release properties near the
plasma membrane are required to explain the shape and speed of these waves
[Wagner et al., 1998].
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� Diffusion of inositol 1,4,5-trisphosphate but not Ca2+ is necessary for a class of
inositol 1,4,5-trisphosphate-induced Ca2+ waves, Saleet Jafri and Joel Keizer. A
modeling study of kinematic IP3-mediated Ca2+ waves [Jafri and Keizer, 1994].

� Mathematical Biology, James D. Murray. Advanced mathematical treatment of
biological wave phenomena [Murray, 1989].

� Propagation of waves in an excitable medium with discrete release sites, James
Keener. Mathematical analysis of wave propagation in inhomogeneous bistable
media [Keener, 2000].

� Fire�diffuse�Þre model of dynamics of intracellular calcium waves, Silvia Ponce-
Dawson, Joel Keizer, John Pearson. The Þre�diffuse�Þre model is analyzed to
illuminate the differences between continuous and saltatory Ca2+ wave propagation
[Ponce-Dawson et al., 1999].

� Asymptotic analysis buffered Ca2+ diffusion near a point source, Greg Smith, Longx-
iang Dai, Robert Miura, and Arthur Sherman. Details the rapid and excess buffer
approximations appropriate for modeling the steady�state Ca2+ and buffer proÞles
of localized Ca2+ elevations [Smith et al., 2001].

� Modeling local and global Ca2+ signals using reaction�diffusion equations, Greg
Smith. This book chapter provides more discussion on the effect of buffers on propa-
gating Ca2+ waves as well as simulations utilizing the rapid buffering approximation
outside the low�affinity limit [Smith, 2001].

Exercises

1. Show that the assumed form of the indicator dye ßuorescence (8.2) and the
equilibrium relation (8.1) imply the �backcalculation� formula (8.3).

2. Assuming (8.2) and (8.4), derive the backcalculation formula for a ratiometric
indicator, (8.5).

3. Beginning with (8.13), Þnish the derivation of the rapid�buffer approximation by
substituting equilibrium values for [Ca2+]T and [CaB],

∂

∂t

µ
[Ca2+]i +

[Ca2+]i[B]T
[Ca2+]i +K

¶
= ∇2

µ
DC[Ca

2+]i +DB

[Ca2+]i[B]T
[Ca2+]i +K

¶
+ jT,

and taking spatial and temporal derivatives to obtain

1

β

∂[Ca2+]i
∂t

= (DC +DBγ)∇2[Ca2+]i − 2γDB

K + [Ca2+]i
(∇2[Ca2+]i)

2
+ jT

where γ = K[B]T/(K + [Ca2+]i)
2 and β = 1/(1 + γ).

4. Beginning with (8.16), numerically calculate f(c) and conÞrm that it is a cubic
function with three zeros as shown in Figure 8.3. Parameters are [IP3] = 0.7µM,
a2 = 0.2µM/s, [Ca2+]ER = 1µM, d1 = 0.1µM, d2 = 2µM, d3 = 0.2µM, d5 =
0.2µM, fivIP3R = 20µM/s, fivLEAK = 0.004µM/s, fivSERCA = 1.2µM/s, KSERCA =
0.15µM.
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5. Using (8.17) reproduce the traveling front simulation shown in Figure 8.4.
Parameters: D = 16µm2/s, ∆x = 10µm.

6. Analytically conÞrm that (8.15) can be transformed into traveling wave coordinates
resulting in a Þrst�order system of ODEs, (8.19)�(8.20). Follow Figure 8.5 and
numerically check that a heteroclinic orbit connects the two stable equilibria (points
1 and 3) for v = 4.96µm/s. Parameters as in Exercise 4 and Exercise 5 with
C(0) = 0.52687µM, G(0) = 0µM/µm (i.e., units of dC/dz).

7. Implement a traveling pulse of Ca2+-induced Ca2+ release using (8.21). Parameters
as in Exercise 4 and Exercise 6 except d2 = 1µM and τ = 2 s.

8. Repeat the simulations of Figure 8.5 using a range of values of D and numerically
conÞrm that the traveling front velocity is proportional to the square root of the
diffusion coefficient. Plot each observed traveling front velocity against

√
D to see

a linear relation.
9. When Figure 8.4 uses the method of lines to simulate the fertilization Ca2+ wave
model (8.15), the traveling front is observed to have a speed of 3.45 µm/s. On the
other hand, Figure 8.5 shows that the Þrst�order system of ODEs (8.19)�(8.20) has
a heteroclinic orbit that connects the two stable equilibria for a wave velocity of
v = 4.96µm/s. This discrepancy is due to discretization error, i.e., the choice of
∆x = 10µm in Figure 8.4. Repeat Exercise 8 with different values of ∆x and show
that v → 4.96 as ∆x → 0 (∆x = 1µm works reasonably well). As you reÞne the
mesh, remember to simultaneously let ∆t→ 0, so that (∆x)2/∆t remains constant
(to maintain numerical stability).

10. Implement a kinematic wave following (8.21) with parameters such that the
(w, [Ca2+]i) phase plane is oscillatory as in Figure 8.8. Parameters as in Exercise 7
except d2 = 0.5µM, d5 = 0.15µM.

11. The delta function is the limit of a sequence of tall narrow functions of unit area.
For example, show that the function

dT (x− x0) =


1

T
forx ∈ (x0 − T/2, x0 + T/2),

0 otherwise,

approaches δ(x − x0) as T → 0 and that the sifting property (8.23) holds in this
limit.

12. Implement a Þre�diffuse�Þre simulation following (8.26) and reproduce Figure
8.12 in both the continuous and saltatory regimes. Parameters for panel A:
D = 30µm2/s, ∆x = 0.2µm, σ = 5µM · µm, τR = 0.01 s, cθ = 0.1µM. Re-
lease site separation is d = 2µm (i.e., every tenth mesh point). Parameters for
panel B are identical except τR = 1 s. The inititial conditions are c(x, 0) = 0 with
the one (three) leftmost release site(s) active in the saltatory (continuous) case.
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13. ConÞrm that nondimensionalizing (8.38)�(8.39) as described in text results in
(8.41)�(8.42). Show that the boundary conditions (8.40) become

lim
ρ→0

½
−�ρ2 d�c

dρ

¾
= 1, lim

�ρ→∞
�c = �c∞, (8.56)

lim
�ρ→0

½
−ρ2 db

dρ

¾
= 0, lim

�ρ→∞
�b = �b∞ =

1

1 + �c∞
. (8.57)

where �c∞ = [Ca2+]∞/K and and �b∞ = [B]∞/[B]T.
14. Show that (8.50) implies that the steady�state ßux of total Ca2+ (diffusing in

both free and bound forms) across any spherical surface centered on the source is
equal to the source amplitude. First, convert (8.50) into dimensional form. Then
substitute [B] = [B]T − [CaB] and [B]∞ = [B]T − [CaB]∞ and simplify. Finally, use
this expression to calculate Jtotal = Jfree + Jbound, where

Jfree = −4πr2DC

d[Ca2+]i
dr

Jbound = −4πr2DB

d[CaB]

dr
,

and conÞrm that Jtotal = σ.
15. To rigorously derive the steady-state EBA and RBA, asymptotic methods are re-

quired [Smith et al., 2001]. An alternative analysis of the steady-state equations for
the buffered diffusion of Ca2+ involves linearizing the equations around the equi-
librium concentrations of Ca2+ and buffer, �c∞ and �b∞ [Naraghi and Neher, 1997,
Pape et al., 1998, Stern, 1992, Neher, 1998]. Begining with the dimensionless equa-
tions, deÞne δ�c = �c− �c∞ and δ�b = �b− �b∞. Substitute these expressions into (8.41)
and (8.42) and drop the quadratic terms δ�c, δ�b to obtain

�εc∇2
�ρδ�c−

h
(1 + �c∞) δ�b+�b∞δ�c

i
= 0, (8.58)

�εb∇2
�ρδ
�b−

h
(1 + �c∞) δ�b+�b∞δ�c

i
= 0, (8.59)

and associated boundary conditions

lim
�ρ→∞

δ�c = 0, lim
�ρ→0

µ
−�ρ2dδ�c

d�ρ

¶
= 1, lim

�ρ→∞
δ�b = 0, lim

�ρ→0

Ã
−�ρ2 dδ

�b

d�ρ

!
= 0.

When this system of linear equations is solved and the result converted back to
dimensional form, the following steady-state proÞles for Ca2+ and buffer result:

[Ca2+]i = [Ca
2+]∞ +

σ

4πr (DC + γ∞DB)

∙
1 +

γ∞DB

DC

e−r/λ
¸
, (8.60)

[B] = [B]∞ +
σγ∞

4πr (DC + γ∞DB)

£
e−r/λ − 1¤ , (8.61)

where

1

λ2
=
1

τ

µ
1

DB

+
γ∞
DC

¶
,

1

τ
= k+[Ca2+]∞ + k

−, γ∞ =
K[B]T

(K + [Ca2+]∞)
2 . (8.62)
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Convert (8.60)�(8.61) into dimensionless form to Þnd expressions for δc and δb and
show that these satisfy (8.58)�(8.59). Also show that when γ∞ is large (lots of
buffer), (8.60) reduces to (8.47).

16. Substitute the spherical polar Laplacian (8.37) into (8.57) and show that the steady-
state RBA can be found by integrating [Smith, 1996].
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CHAPT E R 9

Biochemical Oscillations

John J. Tyson

Biochemical and biophysical rhythms are ubiquitous characteristics of living organ-
isms, from rapid oscillations of membrane potential in nerve cells to slow cycles of
ovulation in mammals. One of the Þrst biochemical oscillations to be discovered was
the periodic conversion of sugar to alcohol (�glycolysis�) in anaerobic yeast cultures
[Chance et al., 1973]. The oscillation can be observed as periodic changes in ßuores-
cence from an essential intermediate, NADH; see Figure 9.1. In the laboratories of
Britton Chance and Benno Hess, these oscillations were shown to arise from a curious
property of the enzyme phosphofructokinase (PFK), which catalyzes the phosphoryla-
tion of fructose-6-phosphate to fructose-1,6-bisphosphate using ATP as the phosphate
donor; Figure 9.1B. Although PFK consumes ATP, the glycolytic pathway produces
more ATP than it consumes. To properly regulate ATP production, ATP inhibits PFK
and ADP activates PFK. Hence, if the cell is energy �rich� (ATP high, ADP low), then
PFK activity is inhibited, and the ßux of sugars into the glycolytic pathway is shut
down. As ATP level drops and ADP level increases, PFK is activated and glycolysis
recommences. In principle, this negative feedback loop should stabilize the energy sup-
ply of the cell. However, because ATP is both a substrate of PFK and an inhibitor of
the enzyme (likewise, ADP is both a product of PFK and an activator of the enzyme),
the steady-state ßux through the glycolytic pathway can be unstable, as we shall see,
and the regulatory system generates sustained oscillations in all intermediates of the
pathway.

Another classic example of rhythmic behavior in biology is periodic growth and
division of well-nourished cells. This phenomenon will be studied thoroughly in the
next chapter, but for now, to illustrate some basic ideas, we focus on the periodic
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Table 9.1 Biochemical and Cellular Rhythms Source: [Goldbeter, 1996], [Rapp, 1979].

Rhythm Period

Membrane potential oscillations 10 ms�10 s

Cardiac rhythms 1 s

Smooth muscle contraction seconds � hours

Calcium oscillations seconds�minutes

Protoplasmic streaming 1 min

Glycolytic oscillations 1 min�1 h

cAMP oscillations 10 min

Insulin secretion (pancreas) minutes

Gonadotropic hormone secretion hours

Cell cycle 30 min�24 h

Circadian rhythms 24 h

Ovarian cycle weeks�months

accumulation and degradation of cyclins during the division cycle of yeast cells; Fig-
ure 9.2. Kim Nasmyth and others have shown that these oscillations are intimately
connected to dynamical interactions between CLN-type cyclins and CLB-type cyclins;
Figure 9.2 [Nasmyth, 1996]. CLNs (in combination with a kinase subunit called CDC28)
activate their own synthesis (product activation or �autocatalysis�) and inhibit the
degradation of CLBs. As CLBs accumulate, they inhibit the synthesis of CLNs, caus-
ing CLN-dependent kinase activity to drop and CLB degradation to increase. The
mutual interplay of CLN and CLB generate the periodic appearance of their associated
kinase activities, which drive the crucial events of the budding yeast cell cycle (bud
emergence, DNA synthesis, mitosis, and cell division).

The third example that we shall use in this chapter concerns periodic changes in
physiological properties (physical activity, body temperature, reproduction, etc.) en-
trained to the 24 h cycle of light and darkness so prevalent to life on earth. These
rhythms are not driven solely by the external timekeeper, because they persist under
constant conditions of illumination and temperature; Figure 9.3A. Under constant con-
ditions, the organism exhibits its own �endogenous� rhythm, which is close to, but not
exactly, 24 h (hence �circadian,� or �nearly daily�). The basic molecular mechanism of
circadian rhythms has been uncovered only recently, by research in the laboratories
of Michael Rosbash, Michael Young, Jay Dunlap, and others [Dunlap, 1999]. Cen-
tral to the mechanism is a protein called PER, which, after being synthesized in the
cytoplasm, moves into the nucleus to inhibit the transcription of its own mRNA; Fig-
ure 9.3B. Hence, the regulatory mechanism for PER synthesis contains a time-delayed
negative-feedback loop (Figure 9.3C), which, as we shall see, is another common theme
in biochemical oscillators.
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Hexoses F6P FBP 2 Pyruvate. . .
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Figure 9.1 (A) Sustained oscillations in
NADH ßuorescence in yeast cells Sac-
charomyces cerevisiae. Reprinted from
[Pye, 1971]. (B) The control proper-
ties of the enzyme phosphofructokinase
(PFK) are thought to be responsible
for the generation of oscillations in the
glycolytic pathway. PFK catalyzes the
conversion of fructose-6-phosphate (F6P)
into fructose-1,6-bisphosphate (FBP), us-
ing ATP as phosphate-group donor. PFK
activity is allosterically modulated by ATP
(inhibitor) and ADP (activator). F6P is
steadily supplied to PFK by a sugar source
(�Hexoses�) and FBP is steadily utilized
in the production of metabolites (�Pyru-
vate�). ADP and ATP are also recycled by
other metabolic processes. (C) SimpliÞed
mechanism. Reaction 1 is a steady sup-
ply of substrate Y for reaction 2, whose
product X is removed by reaction 3. X
activates the enzyme (PFK) catalyzing
reaction 2. Roughly speaking, Y = F6P
+ ATP, X = FBP + ADP, �source� =
hexoses, and �sink� = pyruvate.

9.1 Biochemical Kinetics and Feedback

In general, a biochemical reaction network is a schematic diagram of �boxes and
arrows.� Each box is a chemical species. Solid arrows represent chemical reactions
producing or consuming a molecule. Dashed arrows represent control by one species
of a chemical reaction involving other species. Regulatory signals may be activatory
(barbed end) or inhibitory (blunt end).

To each reaction in a biochemical network is associated a rate law (with accom-
panying kinetic parameters). Hence, the network implies a set of rate equations of the
form

dx

dt
= vin1 + vin2 + · · ·− vout1 − vout2 − · · · = f(x; p), (9.1)

where t = time, x = concentration of species X, and vin1, vout1, . . . are the rates of the
various reactions that produce and consume X. We lump together all these rate laws
into a nonlinear function f(x; p), where p is a vector of kinetic parameters. In general,
we can think of x as a vector of concentrations of all the time-varying components in
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Figure 9.2 Cyclin ßuctuations during the cell cy-
cle in budding yeast. (A) Samples are taken at
increasing time points (left to right) from a syn-
chronous culture of budding yeast cells and analyzed
for CLN2/CDC28 protein content (top row) and
CLN2/CDC28 kinase activity (last row, labeled �H1�).
Reprinted from [Tyers et al., 1993]. β-tubulin serves as
a control, nonoscillating, protein. (B) In a similar exper-
iment, a synchronous culture of yeast cells is analyzed
for CLB2/CDC28 activity (labeled �H1�; each col-
umn represents a 7 min increment). Reprinted from
[Surana et al., 1991]. (C) Mechanism of cyclin oscilla-
tions. Budding yeast cells contain two classes of cyclins:
CLN and CLB. These cyclins combine with a kinase
partner (CDC28) to make active dimers. CDC28 sub-
units are always in excess, so dimer activity is limited
by cyclin availability (i.e., cyclin synthesis and degrada-
tion, arrows 1-4 in the diagram). CLN/CDC28 activates
the transcription factor that promotes CLN synthesis
and inhibits the proteolytic enzymes that degrade CLB.
In return, CLB/CDC28 inhibits the transcription factor
that promotes CLN synthesis.

the reaction network, xi = [Xi], and f as a vector-valued function. In component form,

dxi
dt

= fi(x1, x2, . . . , xn; p1, p2, . . . , pr), i = 1, . . . , n. (9.2)

A �steady-state� solution (x∗1, x
∗
2, . . . , x

∗
n) of the kinetic equations satisÞes the algebraic

equations

fi(x1, x2, . . . , xn; p1, p2, . . . , pr) = 0, i = 1, . . . , n. (9.3)

Notice that steady-state concentrations depend on the parameter values x∗i =
x∗i (p1, . . . , pr). Moreover, the algebraic equations are generally nonlinear, so there may
be multiple steady-state solutions. Of course, since we are dealing with chemical reaction
systems, we are interested only in solutions that satisfy xi ≥ 0 for all i.

In the theory of biochemical oscillations, based on rate equations of this sort, a
crucial role is played by elements of the Jacobian matrix J = [aij ], where aij = ∂fi/∂xj
evaluated at a steady-state solution. The matrix J is a square matrix (n×n) dependent
on parameter values and the steady state under consideration. The diagonal elements of
the Jacobian matrix of a chemical reaction system are usually negative, aii < 0, because
vout terms in (9.1) are always proportional to the concentration of the substance being
destroyed, so ∂fi/∂xi always has one or more negative terms. Positive contributions to
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Figure 9.3 Endogenous circadian rhythm of activ-
ity. The black bars represent the sleep episodes of a
human being isolated from all external temporal cues
(variable light, temperature, etc.). The sleep episodes
are plotted twice on each line to emphasize that the
endogenous period of sleepiness is longer than 24
h. Data redrawn from [Siffre, 1975]. (B) A protein
called PER is known to play a crucial role in circa-
dian rhythms in fruit ßies and mice. The per gene is
transcribed in the nucleus, with the help of two tran-
scription factors, CLK and CYC. Then per mRNA is
transported to the cytoplasm, where it codes for PER
protein. PER protein is processed in the cytoplasm
by phosphorylation and by binding to other proteins,
such as TIM and CRY. Properly processed PER then
moves into the nucleus, where it disrupts the bind-
ing of CLK and CYC, turning off the transcription of
per. (C) A schematic representation of the negative-
feedback loop in panel A. This is Goodwin�s classical
mechanism for periodic protein expression, driven by
feedback repression of transcription [Goodwin, 1965].

aii are rare because autocatalysis (reactions that produce Xi at a rate that increases
with [Xi]) is rare.

Common to biochemical networks are complex feedback loops, whereby the prod-
ucts of one reaction affect the rates of other reactions. A steady-state feedback loop
can be deÞned as a set of nonzero elements of the Jacobian matrix that connect in a
loop: aijajkakl · · · ami 6= 0.

Representative feedback loops are illustrated in Figure 9.4.
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Figure 9.4 Representative feedback loops.

(A) Autocatalysis (aii > 0), though rare, plays a major role in biochemical oscilla-
tions, as will become clear. We have already seen examples of autocatalysis in the
mechanisms of glycolysis and yeast division; Figure 9.1 and Figure 9.2.

(B) Autocatalysis also occurs when a chemical decelerates the rate of its own
destruction.

(C) Indirect autocatalysis occurs through a positive feedback loop (aij and aji > 0),
whereby Xi activates the production of Xj , and Xj returns the favor.

(D) A two-component positive-feedback loop is also created by a pair of antagonistic
species (aij < 0 and aji < 0).

(E) A two-component negative-feedback loop (aijaji < 0) is created when Xi activates
the production of Xj , and Xj inhibits the production of Xi.

(F) Longer negative feedback loops are common.
(G) Long feedback loops are either positive or negative, depending on the sign of the

product a1nan,n−1 · · · a43a32a21.

Before we can speak deÞnitively about the effects of feedback in biochemical reaction
networks, we need to know how to characterize the rates of enzyme-catalyzed reactions
that are subject to regulation by �distant� effectors, i.e., chemical species other than
the reactants and products of the enzyme.
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9.2 Regulatory Enzymes

Regulatory enzymes are usually multisubunit proteins with binding sites for reactants
and products (on the catalytic subunits) and for activators and inhibitors (on the regula-
tory subunits). Although there are more sophisticated and accurate ways to characterize
the binding of small molecules to multisubunit proteins, we shall limit ourselves to a
straightforward generalization of the Michaelis�Menten equation from Section 4.7. For
simplicity, consider a two-subunit enzyme (EE) that converts substrate (S) into product
(P). The binding constant and turnover number of each subunit depend on whether
the other (identical) subunit is bound to S or not. The mechanism can be written

EE + S ↔ EES dissociation constant = k−1/k1,
EES → EE + P rate constant = k3,
EES + S ↔ SEES dissociation constant = k−2/k2,
SEES → EES + P rate constant = k4.

As in Section 4.1, we can make rapid-equilibrium approximations on the enzyme�
substrate complexes:

[EES]

[EE]T
=

[S]/Km1

1 + ([S]/Km1) + ([S]
2
/(Km1Km2))

,

[SEES]

[EE]T
=

[S]
2
/Km1Km2

1 + ([S]/Km1) + ([S]
2/(Km1Km2))

,

where [EE]T = [EE] + [EES] + [SEES],Km1 = (k−1 + k3)/k1, and Km2 = (k−2 + k4)/k2.
Here Km1 is the Michaelis constant for the interaction of the enzyme with the Þrst
substrate to bind; Km1 is inversely proportional to the affinity of the enzyme for the
Þrst substrate; Km2 is inversely proportional to the affinity of the enzyme for the second
substrate to bind.

Now it is easy to write an equation for the rate of the reaction:

v =
d[P ]

dt
= −d[S]

dt
=
[EE]T

³
[S]

Km1

´³
k3 + k4

³
[S]

Km2

´´
1 +

³
[S]

Km1

´
+
³

[S]2

Km1Km2

´ . (9.4)

We can distinguish two interesting limiting cases of (9.4).

Hill equation: Km1 →∞,Km2 → 0, such that Km1Km2 = K
2
m = constant,

v =
Vmax([S]/Km)2

1 + ([S]/Km)2
, Vmax = k4[EE]T; (9.5)

Substrate inhibition: k3 → ∞,Km1 → ∞,Km2 → 0, such that Km1Km2 = K2
m =

constant, k3Km2 →∞, and k3[EE]TKm/Km1 = Vmax = constant,

v =
Vmax[S]/Km

1 + ([S]/Km)2
. (9.6)

Equations (9.5) and (9.6) are plotted in Figure 9.5.
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Figure 9.5 Rate laws for activation and inhibition of multisubunit enzymes by cooperative binding.

Rate laws like (9.4) are said to express �cooperative� kinetics. The �empty� enzyme
(EE) has low affinity for substrate (Km1 large), but as the enzyme picks up its Þrst
substrate molecule, the two subunits change their conformation to a high affinity form
(Km2 small, such that Km = (Km1Km2)

1/2 is physiologically signiÞcant).
If the subunits do not exhibit cooperative binding, then k1 = 2k2, 2k−1 = k−2, k4 =

2k3, and hence

v =
Vmax[S]

Km + [S]
. (9.7)

That is, we regain the Michaelis�Menten rate law, with Vmax = 2k3 and Km = 2(k−1 +
k3)/k1.

Cooperative binding of ligands to a multisubunit enzyme is not limited to sub-
strates. Other small molecules may bind to the enzyme and alter its catalytic properties
(either its affinity for substrates or its rate of converting bound substrates into
products). Such enzymes are called �allosteric� because in addition to substrate-
binding sites, they have �other sites� for binding regulatory molecules that either
activate or inhibit the enzyme. Allosteric proteins play crucial roles in the regulation
of metabolic pathways, membrane transport, gene expression, etc. Relatively simple
algebraic expressions for allosteric effects can be derived by the reasoning behind (9.4).

For instance, consider a tetrameric enzyme, with two catalytic subunits (EE) and
two regulatory subunits (RR), which bind substrate (S) and ligand (L), respectively.
In this case, the holoenzyme may exist in nine different forms. If each association�
dissociation reaction is in rapid equilibrium at given concentrations of substrate and
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ligand, then

[ET ] = [EE00]

Ã
1 +

[S]

Km1

+
[S]

2

Km1Km2

!Ã
1 +

[L]

Kn1

+
[L]

2

Kn1Kn2

!

where [E]T = total concentration of enzyme in all nine forms, [EE00] = concentration of
holoenzyme unbound to substrate or ligand, [S] = substrate concentration, [L] = ligand
concentration, Km�s = Michaelis constants for substrate binding (e.g., Km1 = k−1/k1),
and Kn�s = Michaelis constants for ligand binding (deÞned similarly). If, for example,
the only form of the enzyme with signiÞcant catalytic activity is"

SEES

LRRL

#
,

then the rate of the reaction is

v = Vmax
[S]

2
/(Km1Km2)

1 + [S]/Km1 + [S]
2
/(Km1Km2)

· [L]
2
/(Kn1Kn2)

1 + [L]/Kn1 + [L]
2
/(Kn1Kn2)

. (9.8)

In this case, the ligand is an allosteric activator of the enzyme. For an allosteric inhibitor,
the enzyme is most active when no ligand is bound to the regulatory subunits; hence

v = Vmax
[S]

2
/(Km1Km2)

1 + [S]/Km1 + [S]
2/(Km1Km2)

· 1

1 + [L]/Kn1 + [L]
2/(Kn1Kn2)

. (9.9)

A comprehensive and accurate kinetic theory of allosteric enzymes [Rubinow, 1980,
Goldbeter, 1996] is much more complicated than what has been presented, but (9.8)
and (9.9) will serve our purposes in this chapter.

Finally, suppose EE and S above are not �multisubunit enzyme� and �substrate�
but �dimeric transcription factor� and �ligand.� The active form of the transcription
factor promotes the expression of some gene, and the presence of ligand alters the distri-
bution of transcription factor among its various forms: EE, EES, and SEES. Depending
on which form of transcription factor is most active, the rate of gene expression can be
activated and/or inhibited by ligand:

ligand effect active form relative rate of gene expression

inhibition EE 1

1+([S]/Km1)+([S]
2/Km1Km2)

,

activation SEES [S]2/Km1Km2

1+([S]/Km1)+([S]
2/Km1Km2)

,

mixed EES [S]/Km1

1+([S]/Km1)+([S]
2/Km1Km2)

.
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9.3 Two-Component Oscillators Based on
Autocatalysis

First, we consider two minimal requirements for oscillations in chemical reaction
systems.

1. If the �network� is absurdly simple, with only one time-varying component, then os-
cillations are, generally speaking, impossible. (Proof: For x(t) to be periodic, dx/dt
must take on both positive and negative values at some values of x, which is im-
possible if f(x; p) is a continuous single-valued function of x.) Thus, to understand
biochemical oscillations, we must start with two-component networks, described by
a pair of ODEs

dx

dt
= f(x, y),

dy

dt
= g(x, y), (9.10)

where x and y are (nonnegative) concentrations of the two components, and we
have suppressed the dependence of f and g on parameters, for the time being.

2. Bendixson�s negative criterion states that if ∂f/∂x + ∂g/∂y is of constant sign in
some region R of the x, y plane, then there can be no periodic solution of system
(9.10) in R. Since ∂f/∂x and ∂g/∂y are usually negative (refer to our earlier discus-
sion of the Jacobian matrix), Bendixson�s criterion requires that a two-component
chemical reaction system have an autocatalytic step (∂f/∂x > 0 or ∂g/∂y > 0) in
order to exhibit sustained oscillations.

In general, we can expect system (9.10) to have one or more steady-state solutions
(x∗, y∗), satisfying f(x∗, y∗) = 0 and g(x∗, y∗) = 0. The stability of such steady states
is determined by the eigenvalues of the Jacobian matrix evaluated at the steady state

J =

"
fx(x

∗, y∗) fy(x
∗, y∗)

gx(x
∗, y∗) gy(x

∗, y∗)

#
=

"
a11 a12

a21 a22

#
.

The eigenvalues of J are the roots of the characteristic equation λ2− (a11+a22)λ+
(a11a22 − a12a21) = 0, namely,

λ± =
1

2

∙
a11 + a22 ±

q
(a11 + a22)2 − 4(a11a22 − a12a21)

¸
.

For the steady state to be stable, Re (λ) must be negative for both eigenvalues. If
a11a22 − a12a21 = det(J) < 0, then J has one positive and one negative eigenvalue, and
the steady state is a saddle point. If det(J) > 0 and a11 + a22 = tr (J) < 0, then the
steady state is stable, whereas, if det(J) > 0 and tr (J) > 0, then the steady state is
an unstable node or focus.

In general, the trace and determinant of J depend continuously on the kinetic
parameters in f and g. If by varying one of these parameters (call it p1) we can
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carry tr(J) from negative to positive values, with det(J) > 0, then the steady
state loses stability at tr(J) = 0 (when p1 = pcrit, say). At the bifurcation point,
tr (J) = a11 + a22 = 0, the eigenvalues are pure imaginary numbers, λ± = ±iω,
ω =

p
(a11 + a22)2 − 4(a11a22 − a12a21). Close to the bifurcation point, i.e., p1 ≈ pcrit,

small�amplitude limit�cycle solutions surround the steady state, and the period of os-
cillation is close to 2π/ω. We say that periodic solutions arise by a Hopf bifurcation
at p1 = pcrit (Section A.5.2).

Biochemical oscillations usually arise by this mechanism, so we will consider Þrst
the requirements for Hopf bifurcation in a two-component network. In chemical reaction
systems the diagonal elements of the Jacobian matrix are usually negative numbers,
reßecting the various steps by which species X is transformed into something else. If both
a11 and a22 are always negative, then tr(J) never changes sign, and a Hopf bifurcation
cannot occur. At least one of them must be positive for some values of the kinetic
parameters. For a diagonal element to be positive, species X must be �autocatalytic;�
i.e., with increasing [X], the rates of production of X increase faster than the rates of
destruction. If a11 and a22 are of opposite sign, then a12 and a21 must also be of opposite
sign in order for det(J) to be positive. Thus we have two characteristic sign patterns
for Jacobian matrices that typically produce Hopf bifurcations in chemical reaction
systems with two time-dependent components:

J =

"
+ +

− −

#
and J =

"
+ −
+ −

#
. (9.11)

Next, we describe the sorts of biochemical networks that produce these sign patterns
and generate periodic solutions via Hopf bifurcations.

9.3.1 Substrate�Depletion Oscillator

The simplest oscillatory mechanism is probably the linear pathway in Figure 9.1C.
Species Y is converted into X by an enzyme that is activated by its product. Hence,
the production of X is autocatalytic; the reaction speeds up as [X] increases, until the
substrate Y is depleted so much that the reaction ceases.

Using a rate law for the allosteric enzyme like those derived in Section 9.2, we can
write a pair of ODEs describing this mechanism:

d[X]

dt
= v2[Y]

²2 + ([X]/Kn)
2

1 + ([X]/Kn))2
− k3[X],

d[Y]

dt
= k1 − v2[Y] ²

2 + ([X]/Kn)2

1 + ([X]/Kn))2
. (9.12)

The rational function

²2 + ([X]/Kn)
2

1 + ([X]/Kn))2
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Figure 9.6 Phase plane portrait of a typical substrate�
depletion oscillator, (9.13). Parameter values: ν = 1,κ =
0.2, ² = 0.05. The solid lines are the x-nullcline (marked
by short vertical arrows) and the y-nullcline (horizontal
arrows). The nullclines intersect at an unstable steady
state (o). The dashed line is the stable limit cycle solution
(periodic orbit) of the dynamical system.

represents activation of the allosteric enzyme by binding of product X to the enzyme�s
regulatory sites. The constant ²2 is the activity of the enzyme with no product bound
relative to its activity when its regulatory sites are saturated by product molecules. We
assume that product-binding to regulatory sites is highly cooperative, so that we can
neglect the fraction of enzyme with only one product molecule bound. We shall also
assume that ²¿ 1.

It is convenient to deÞne �dimensionless� variables x = [X]/Kn, y = [Y]/Kn, and
t0 = k3t, and a new variable z = x+ y, and write system (9.12) as

dx

dt0
= ν(z − x)²

2 + x2

1 + x2
− x,

dz

dt0
= κ− x, (9.13)

where ν = v2/k3 and κ = k1/(k3Kn). The steady state for this model satisÞes x∗ = κ
and ν(z∗ − κ) = κ(1 + κ2)/(²2 + κ2). For the Jacobian matrix of system (9.13) at the
steady state, it is easy to show that det(J) = ν(²2 + κ2)/(1 + κ2) > 0 and

tr (J) = −1− ν ²
2 + κ2

1 + κ2
+

2κ2(1− ²2)
(²2 + κ2)(1 + κ2)

= −(1 + ν)κ
4 − (1− 3²2 − 2ν²2)κ2 + ²2(1 + ν²2)

(²2 + κ2)(1 + κ2)
. (9.14)

It should be obvious from (9.14) that tr (J) < 0 and the steady state is stable if κ
is either close to 0 or very large. On the other hand, tr (J) > 0, and the steady state
is unstable if κ takes on intermediary values. For ² small, the steady state is unstable
when κ2 − ²2 > 0 and when −(1 + ν)κ4 + κ2 > 0, i.e., when

² < κ < (1− ν)−1/2, (9.15)



9.3: Two-Component Oscillators Based on Autocatalysis 243

which may, alternatively, be expressed as conditions on the input rate of Y:

² <
k1
k3Kn

<

s
k3

k3 + v2
. (9.16)

Between these limits the system executes stable limit cycle oscillations.
As we have often seen in this book, for two-component dynamical systems it is

informative to plot nullclines in the phase plane. For system (9.13),

x�nullcline: z = x+
x(1 + x2)

ν(²2 + x2)
,

z�nullcline: x = κ.

These nullclines are plotted in Figure 9.6. The x�nullcline has extrema at the roots
of

(1 + ν)x4 − (1− 3²2 − 2ν²2)x2 + ²2(1 + ν²2) = 0.
Notice that the steady state loses stability exactly when the steady state passes through
the extrema of the x�nullcline.

9.3.2 Activator�Inhibitor Oscillator

Looking back to (9.11), we see that there are two sign patterns consistent with Hopf
bifurcation in a two-component biochemical reaction system. The Þrst is illustrated
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Figure 9.7 Phase plane portrait of a typical activator�inhibitor system, (9.17). The solid lines are null-
clines, intersecting at stable (�) or unstable (◦) steady states. The dashed lines are representative orbits
of the dynamical system. (A) Oscillation, for a = 0.1, b = 0.1, c = 100, ² = 0.1, τ = 5. (B) Bistability, for
a = 0.1, b = 1.5, c = 1, ² = 0.1, τ = 5.
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by the substrate�depletion oscillator in Figure 9.1, and the second by the activator�
inhibitor model in Figure 9.2. The ODEs describing Figure 9.2 are

d[X]

dt
= v1

²2 + ([X]/Km)
2

1 + ([X]/Km)2
· 1

1 + ([Y]/Kn)
− k2[X],

d[Y]

dt
= k3 − k4[Y]

1 + ([X]/Kj)2
,

where X = CLN/CDC28 and Y = CLB/CDC28. In terms of dimensionless variables
(x = [X]/Km, y = [Y]/Kn, t

0 = v1t/Km), these equations become

dx

dt0
=
²2 + x2

1 + x2
· 1

1 + y
− ax,

τ
dy

dt0
= b− y

1 + cx2
, (9.17)

where a = k2Km/v1, b = k3/(k4Kn), c = (Km/Kj)
2, and τ = v1/(k4Km).

Rather than analyze the stability of the steady state algebraically, which is difficult,
we go directly to phase plane portraits of Figure 9.7. It is easy to Þnd parameter values
that produce either limit cycle oscillations or bistability.

Intuitively, the origin of the oscillations is clear. When Y is rare, X increases auto-
catalytically. Abundant X stimulates accumulation of Y (by inhibiting Y�s degradation),
which feeds back to inhibit the production of X. After X disappears, Y is also destroyed,
and then X can make a comeback. Mechanisms like this one, whose Jacobian matrix
has sign pattern "

+ −
+ −

#
,

are called activator�inhibitor models.
Two-component mechanisms with autocatalysis easily generate oscillations and

bistabilty, as we have just seen. They also exhibit a rich structure of bifurcations to
more complicated behavior [Boissonade and De Kepper, 1980, Guckenheimer, 1986].

9.4 Three-Component Networks Without
Autocatalysis

In the previous section we have seen that two-component reaction systems can oscillate
if they have autocatalysis (a11 or a22 positive) and negative feedback (a12 and a21
opposite sign). In this section we examine networks of three components (x, y, z) with
Jacobian matrices of the form

J± =

 −α 0 ±φ
c1 −β 0

0 c2 −γ

 ,
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where α, β, γ, c1, c2, φ are all positive constants. Since the diagonal elements of the
Jacobian are all negative, the system lacks autocatalysis. The Jacobian J+ describes a
system with a positive feedback loop, and J− one with a negative feedback loop.

9.4.1 Positive Feedback Loop and the Routh�Hurwitz Theorem

First, let us see whether Hopf bifurcations are possible in a system with a pure positive�
feedback loop, i.e., a Jacobian of the form J+ at the steady state. Recall that the
condition for a Hopf bifurcation is that the Jacobian matrix has a pair of purely imag-
inary eigenvalues λ± = ±iω. The eigenvalues of J+ are roots of the characteristic
equation

G(λ) = λ3 + (α+ β + γ)λ2 + (αβ + βγ + γα)λ+ αβγ − c1c2φ
= λ3 +Aλ2 +Bλ+C

= 0.

The roots of this equation can be characterized by the Routh�Hurwitz theorem. Let
G(λi) = 0 for i = 1, 2, 3. Then Re (λi) < 0 for i = 1, 2, 3 if and only if (i) A > 0, (ii)
C > 0, and (iii) AB > C. (For a proof, see [Gantmacher, 1959], p. 190.) Hence, in order
for the steady state of the positive feedback loop to be unstable, we must insist that
C = αβγ− c1c2φ < 0. In this case, J+ has at least one real positive root, call it λ1 > 0.
Then, G(λ) = (λ − λ1)H(λ), where H(λ) = λ2 +Dλ + E and D = A + λ1 > 0, E =
−C/λ1 > 0. From the quadratic formula, it follows that the two roots of H(λ) = 0
must have Re (λi) < 0. Hence, it is impossible for a steady state with Jacobian matrix
J+ to undergo a Hopf bifurcation.

It is possible for a positive feedback loop to have multiple steady state solutions,
with two stable nodes separated by a saddle point. At the saddle point, λ1 > 0 and
Re (λi) < 0 for i = 2, 3. For an example, see Exercise 9.6.

9.4.2 Negative Feedback Oscillations

The Jacobian J− determines the stability of the steady state in a three-variable system
with a pure negative feedback loop. In this case,

G(λ) = λ3 + (α+ β + γ)λ2 + (αβ + βγ + γα)λ+ αβγ + c1c2φ = 0,

and the Routh�Hurwitz theorem implies that the steady state is unstable if and only if

(α+ β + γ)(αβ + βγ + γα) < αβγ + c1c2φ.

Furthermore, if equality holds, then G(λ) = (λ + A)(λ2 + B), so G(λ) has conjugate
roots on the imaginary axis at λ = ±i√αβ + βγ + γα.
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9.4.3 The Goodwin Oscillator

The quintessential example of a biochemical oscillator based on negative feedback alone
(Figure 9.3C) was invented by Brian Goodwin ([Goodwin, 1965, Goodwin, 1966]; see
also [Griffith, 1968a]). The kinetic equations describing this mechanism are

d[X1]

dt
=

v0
1 + ([X3]/Km)p

− k1[X1],

d[X2]

dt
= v1[X1]− k2[X2],

d[X3]

dt
= v2[X2]− k3[X3].

Here [X1], [X2], and [X3] are concentrations of mRNA, protein, and end product, respec-
tively; v0, v1, and v2 determine the rates of transcription, translation, and catalysis; k1,
k2, and k3 are rate constants for degradation of each component; 1/Km is the binding
constant of end product to transcription factor; and p is a measure of the cooperativity
of end product repression.

Next we introduce dimensionless variables:

x1 =
v1v2[X1]

k2k3Km

,

x2 =
v2[X2]

k3Km

,

x3 = [X3]/Km,

t0 = αt,

where α = (v0v1v2)/(Kmk2k3).
In terms of these new variables, the dynamical system becomes

dx1
dt0

=
1

1 + xp3
− b1x1,

dx2
dt0

= b2(x1 − x2),
dx3
dt0

= b3(x2 − x3),

where bi = ki/α.
Furthermore, to make the example easier, we shall assume that b1 = b2 = b3. In

this case, the dynamical system has a steady state at x1 = x2 = x3 = ξ, where ξ is the
unique real positive root of 1/(1 + ξp) = bξ. The Jacobian matrix at this steady state
is J−, with α = β = γ = b, c1 = c2 = b, and φ = (pξp−1)/(1 + ξp)2 = bp(1 − bξ) > 0.
Hence, the characteristic equation is (b+ λ)3 + b2φ = 0, whose roots are

λ1 = −b− b 3

q
p(1− bξ) < 0,
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λ2,3 = −b+ b 3

q
p(1− bξ) [cos(π/3)± i sin(π/3)] .

The steady state of Goodwin�s model is unstable if Re (λ2,3) > 0, i.e., if −b +
(b/2) 3

p
p(1− bξ) > 0. This condition is equivalent to p(1 − bξ) > 8, or bξ < (p −

8)/p. Hence, if p (the cooperativity of end product repression) is greater than 8, then
we can choose k small enough to destabilize the steady�state solution of Goodwin�s
equations. At the critical value of k, when Re (λ2,3) = 0, the steady state undergoes a
Hopf bifurcation, spinning off small-amplitude periodic solutions with period close to
2π/Im (λ2,3) = 2π/(b

√
3).

In Exercise 8 you are asked to generalize this derivation to negative feedback loops
with an arbitrary number n of components. You will Þnd that the steady state is
unstable when bξ < (p−pmin)/p, where pmin = secn(π/n). Notice that pmin → 1+ as n→
∞, i.e., the minimum cooperativity of endproduct repression required for oscillations
becomes small as the length of the feedback loop increases.

The analysis of Hopf bifurcations in Goodwin�s model uncovers a number
of problems with his negative�feedback mechanism for biochemical oscillations
[Griffith, 1968a]. In a three-variable system (mRNA, protein, end product), the co-
operativity of feedback must be very high, p > 8. Also, it is necessary, in this case, for
the degradation rate constants of the three components to be nearly equal. If not, pmin
increases dramatically; e.g., if one of the ki�s is tenfold larger than the other two, then
pmin = 24. The value of pmin can be reduced by lengthening the loop, but one must still
ensure that the ki�s are nearly equal.

Bliss, Painter and Marr [Bliss et al., 1982] Þxed these problems by a slight
modiÞcation of Goodwin�s equations:

dx1
dt

=
a

1 + x3
− b1x1,

dx2
dt

= b1x1 − b2x2,
dx3
dt

= b2x2 − cx3
K + x3

.

Notice that the feedback step is no longer cooperative (p = 1), and the uptake of
end product is now a Michaelis�Menten function. The steady state of this system is
x∗1 = a/(b1(1+ξ)), x

∗
2 = a/(b2(1+ξ)), x

∗
3 = ξ, where ξ is the unique real positive root of

a/(1+ ξ) = cξ/(K + ξ). The stability of this steady state is determined by the roots of
the characteristic equation (b1+λ)(b2+λ)(β+λ)+ b1b2φ = 0, where β = cK/(K+ ξ)

2

and φ = a/(1 + ξ)2.
The characteristic equation is hard to solve in this completely general case. In

order to get a start on it, we make some simplifying assumptions. First, suppose that

K = 1, so ξ = a/c. Next, suppose b1 = b2 < c, and choose a = c
³p

c/b1 − 1
´
, so that

β = b1 as well. In this case, φ = b1a/c, and the characteristic equation becomes (λ +

b)3+ b31a/c = 0. The solutions of this characteristic equation are λ1 = −b1
³
1 + 3

p
a/c

´
,
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Figure 9.8 Locus of Hopf bifurcations in the Bliss�
Painter�Marr equations given in system (9.18), for b1 =
b2 = 0.2. We also plot loci of constant period (18 � 27)
within the region of limit cycle oscillations.

λ2,3 = −b1+b1 3
p
a/c[cos(π/3)±i sin(π/3)]. The dynamical system has a Hopf bifurcation

when Re (λ2,3) = 0, i.e., when a = 8c. Hence, at the Hopf bifurcation, c = 81b1 and a =
8c = 648b1. If we set b1 = 0.2, then the Hopf bifurcation occurs at c = 16.2, a = 129.6. At
this Hopf bifurcation the period of oscillation is close to 2π/Im (λ2,3) = 2π/(b1

√
3) = 18.

Starting at this point, we can trace out the locus of Hopf bifurcations numerically as a
and c vary at Þxed b1. See Figure 9.8.

9.5 Time-Delayed Negative Feedback

In Goodwin�s equations and Bliss�Painter�Marr�s modiÞed version, we assumed implic-
itly that there are no time delays in the processes of transcription, translation, or end
product repression. However, there are surely some delays in transcription and trans-
lation associated with mRNA and protein processing in the nucleus and cytoplasm,
respectively. And there are also bound to be delays in the feedback term, because the
end product must move into the nucleus, bind with transcription factors, and interact
with the �upstream� regulatory sites of the gene to affect its rate of transcription. If we
lump all these delays together, we can write a delayed-differential equation for negative
feedback:

d[X]

dt
=

a

1 + (Z/Km)p
− b[X], (9.18)

where Z(t) is a functional of the past history of [X](t). For a discrete time lag,

Z(t) = [X](t− τ), (9.19)

with τ =constant. For a distributed time lag,

Z(t) =

tZ
−∞

[X](s)Gn
c (t− s)ds, with Gn

c (s) =
cn+1

n!
sne−cs. (9.20)
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sn/c

Gc(s)
n

0
Figure 9.9 The shape of the kernel Gn

c (s) for
distributed time lag in (9.20).

The kernel Gn
c (s) is plotted in Figure 9.9. In Exercise 11 you are asked to show

that Gn
c has a maximum at s = n/c. As n and c increase, with n/c Þxed, the kernel

approaches a delta function, and the distributed time lag approaches the discrete time
lag with τ = n/c. In the same exercise, you are asked to prove that d/ds(Gn

c (s)) =
c[Gn−1

c (s)−Gn
c (s)], a fact that we shall presently put to good use.

9.5.1 Distributed Time Lag and the Linear Chain Trick

Let us introduce a family of Zj�s,

Zj(t) =

tZ
−∞

[X](s)Gj
c(t− s)ds, j = 0, 1, . . . , n.

Notice that Zn(t) is just the functional Z(t) in (9.20). Differentiating the deÞnite
integral, we Þnd that

dZj
dt

= [X](t)Gj
c(0) +

tZ
−∞

[X](s)
d

dt
Gj
c(t− s)ds, j = 0, 1, . . . , n.

Since G0
c(0) = c and G

j
c(0) = 0 for j = 1, . . . , n, we see that

dZ0
dt

= c[X](t) +

tZ
−∞

[X](s)[−cG0
c(t− s)]ds,

dZj
dt

=

tZ
−∞

[X](s)[cGj−1
c (t− s)− cGj

c(t− s)]ds, j = 1, . . . , n.

Hence, (9.18) with Z deÞned in (9.20) can be written equivalently as a set of ODEs:

d[X]

dt
=

a

1 + (Zn/Km)p
− b[X],
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dZ0
dt

= c([X]− Z0),
dZj
dt

= c(Zj−1 − Zj), j = 1, 2, . . . , n.

That is, the distributed time-delay model, with kernel Gn
c (s), is identical to a Good-

win negative feedback loop of length n + 2. To see this, scale [X], Z0, . . . , Zn by Km

and t by Km/a to put these equations into the classical, dimensionless form of Good-
win�s equations, (9.18). For simplicity, let c = b. Then, according to the results of
Exercise 8, the loop has a Hopf bifurcation at (bKm)/a = (p − pmin)/(ξp), where
pmin = [sec (π/(n+ 2))]

n+2
and the dimensionless number ξ is the unique real positive

root of ξp+1 + ξ − a/(bKm) = 0.
As an example, suppose n = 6 and p = 4. In this case, pmin = 1.884 and the Hopf

bifurcation occurs at 0.529 = (bKm/a)ξ = 1/(1 + ξ4), or ξ = 0.9714. Hence, the critical
value of b is bcrit = 0.5446a/Km, and oscillations occur for b < bcrit. The period of
oscillation close to the Hopf bifurcation is 2π/(bcrit

√
3) ≈ 6.66Km/a.

9.5.2 Discrete Time Lag

For the case of a discrete time lag, we must solve the delay-differential equation

dx

dt
=

1

1 + x(t− τ)p − bx, (9.21)

where x and t have been scaled to eliminate the parameters a and Km from (9.18). (To
do this, let x = [X]/Km, dimensionless time = at/Km, and dimensionless �b� = bKm/a.)
Then (9.21) has a steady�state solution x∗ satisfying xp+1+x− b−1 = 0. To investigate
the stability of the steady state, we use Taylor�s theorem to expand (9.21) in terms of
small deviations from the steady state, y(t) = x(t)− x∗,

dy

dt
= −φy(t− τ)− by(t) + higher�order terms,

φ =
p(x∗)p−1

(1 + (x∗)p)
2 = pb(1− bx∗) =

pb

1 + (x∗)−p
.

Looking for solutions of the form y(t) = y0eλt, we Þnd that λ must satisfy the char-
acteristic equation λ + b = −φe−λτ . At a Hopf bifurcation, the eigenvalue λ must be
purely imaginary; λ = ±iω. Thus, for (9.21) to exhibit periodic solutions at a Hopf
bifurcation, we must insist that

b = −φ cos(ωτ), ω = φ sin(ωτ). (9.22)

From these equations we can determine the oscillatory frequency (ω) and critical time
delay (τcrit) at the onset of limit cycle oscillations:

ω =
p
φ2 − b2 = b

q
[p/(1 + (x∗)−p)]2 − 1,
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Figure 9.10 Loci of Hopf bifurcations in (9.21). We plot τcrit and period (2π/ω) as functions of b, for
three values of p: 2 (solid line), 2.5 (dashed line), and 4 (dotted line). Oscillatory solutions lie within the
U-shaped domains. Notice that for p = 4, b = 0.5, as calculated in the text, τcrit = 2.418 and period =
7.255.

τcrit =
cos−1 (−[1 + (x∗)−p]/p)
b
p
[p/(1 + (x∗)−p)]2 − 1 . (9.23)

Because the domain of cos−1 is [−1, 1], a necessary condition for Hopf bifurcation is
1+(x∗)−p < p. For example, if p = 4, then x∗ must be > (1/3)1/4 ≈ 0.760, which implies
that b = (xp+1+x)−1 < 35/4/4 ≈ 0.987. If b = 1/2, then x∗ = 1 and ω = √3/2. Because
cos(ωτ) = −b/φ = −1/2, τ = 4π√3/9. Hence, for b = 1/2 and p = 4, small�amplitude
oscillations, with period = 2π/ω ≈ 7.255, bifurcate from the steady state as the time
delay increases beyond 2.418. In Figure 9.10 we show how the characteristics of these
Hopf bifurcations (τcrit and period) depend on b, for Þxed values of p.

9.6 Circadian Rhythms

Everyone is familiar with his or her own 24-hour sleep�wake cycle. Many other as-
pects of human physiology also exhibit daily rhythms, including body temperature,
urine production, hormone secretion, and skin cell division. Such rhythms are observed
in all kinds of plants, animals, and fungi, as well as unicellular organisms, and even
cyanobacteria. Because these rhythms persist in the absence of external cues (light in-
tensity, temperature, etc.), they reßect an endogenous oscillator within cells that runs
at a period close to 24 h.
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Biologists have long been puzzled by the molecular basis of circadian rhythms.
Although a fundamental breakthrough was made by Konopka and Benzer in 1971
[Konopka and Benzer, 1971], with their discovery of the per gene in Drosophila (muta-
tions of which alter the endogenous circadian rhythm of affected ßies), it was 25 years
before the molecular details of the circadian oscillator began to become clear. We know
now that PER protein inhibits transcription of the per gene, through a complicated
process involving phosphorylation by DBT kinase, binding to TIM subunits, transport
into the nucleus, and interaction with the transcription factors (CLK and CYC).

It is clear to all that the control system is dominated by a time-delayed negative�
feedback loop, quite close in principle to Goodwin�s original negative feedback oscillator.
Numerous theoreticians have exploited the interesting nonlinear dynamics of delayed
negative feedback in order to model certain characteristics of circadian rhythms.
Ruoff and Rensing have explored the capabilities of Goodwin�s Equation (9.18), with
p = 9, to account for temperature compensation, entrainment, and phase resetting
[Ruoff and Rensing, 1996].

Goldbeter proposed a more complicated model, based loosely on Goodwin�s idea,
supplemented with reversible phosphorylation steps and nuclear transport; see Figure
9.11 [Goldbeter, 1995]. The kinetic equations describing this mechanism are

dM

dt
=

vs
1 + (PN/KI)4

− vmM

Km1 +M
,

dP0
dt

= ksM − V1P0
K1 + P0

+
V2P1
K2 + P1

,

dP1
dt

=
V1P0
K1 + P0

− V2P1
K2 + P1

− V3P1
K3 + P1

+
V4P2
K4 + P2

,

dP2
dt

=
V3P1
K3 + P1

− V4P2
K4 + P2

− k1P2 + k2PN − vdP2
Kd + P2

,

dPN
dt

= k1P2 − k2PN .
The basal parameter values are:

vs = 0.76 µM/h, vm = 0.65 µM/h, vd = 0.95 µM/h,

vs

vm

v1

v2

v3

v4

vd

k
1

k
2

k
s PER0

(P0)
PER1
(P1)

PER2
(P2)

per mRNA
(M )

per
transcription

Nuclear
PER (PN)

Figure 9.11 Goldbeter�s model of circadian
rhythms [Goldbeter, 1995]. PER protein is syn-
thesized in the cytoplasm, where it is successively
phosphorylated, as indicated by subscripts. The
doubly phosphorylated form enters the nucleus
and represses transcription of the per gene.
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A B

Figure 9.12 Simulations of Goldbeter�s model. (A) mRNA and protein concentrations as functions of
time. (B) Period of oscillation as a function of vd. Figures are reprinted from [Goldbeter, 1995].

ks = 0.38 h
−1, k1 = 1.9 h

−1, k2 = 1.3 h
−1,

V1= 3.2 µM/h, V2 = 1.58 µM/h, V3 = 5 µM/h, V4 = 2.5 µM/h,

K1= K2 = K3 = K4 = 2 µM,KI = 1µM,Km1 = 0.5 µM,Kd = 0.2 µM.

Figure 9.12A shows a numerical simulation of this system of ODEs, with a pe-
riod close to 24 h. Figure 9.12B shows how the period of oscillation depends on
vd, the degradation rate of PER. Goldbeter suggested that the short-period mu-
tant of per (perS has an autonomous period of 19 h) encodes a more stable form
of PER, and the long-period mutant (perL has an autonomous period of 28 h) en-
codes a less stable form of PER [Goldbeter, 1995]. In subsequent papers, Leloup and
Goldbeter have studied temperature compensation and phase resetting in this model
[Leloup and Goldbeter, 1998, Leloup and Goldbeter, 1999].

Perhaps the simplest model of circadian rhythms is negative feedback with discrete
time delay described by (9.18) and (9.19), which has been explored in a recent paper by
Lema, Golombek, and Echave [Lema et al., 2000]. In this case, X is PER, a =maximum
rate of PER synthesis, b= rate constant for PER degradation, Km = PER concentration
at half-maximal synthesis rate, and τ = time delay (because the rate of synthesis of
PER at the present moment depends on its cytoplasmic concentration some time in
the past). (Lema et al. chose a = 1 h−1, b = 0.4 h−1, Km = 0.04, τ = 8 h, and p = 2.5.)
In Section 9.5.2 we showed how to do stability analysis of the steady state of this
delay-differential equation, in order to Þnd the points of Hopf bifurcation to periodic
solutions. Letting x∗ be the unique real positive root of xp+1 + x − [a/(bKm)] = 0,
we Þnd that periodic solutions exist for τ > (Km/a)τcrit, with τcrit (dimensionless)
given by (9.23). The period of oscillation of the bifurcating solutions is close to 2π/ω,
where ωτ = cos−1 (−[1 + (x∗)−p]/p). For the parameter values chosen by Lema et al.,
a/(bKm) = 62.5, x∗ = 3.21, and τcrit = 58.1. Hence, for τ > 2.33 h., their model
oscillates with period close to 2π/ω = πτ ≈ 7.32 h. To get a period close to 24 h, they
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Figure 9.13 An alternative model of circadian
rhythms [Tyson et al., 1999]. The circadian protein
PER is synthesized in the cytoplasm, where it can form
homodimers, PER:PER. (Multimeric protein com-
plexes with TIM are neglected in this simple model.)
PER monomers are rapidly phosphorylated by a pro-
tein kinase called DBT, and phosphorylated PER
is rapidly degraded. PER dimers are only slowly
phosphorylated by DBT.

chose τ = 8 h. In their paper Lema et al. explored entrainment by phase-resetting in
response to light pulses, assuming that light interacts with PER dynamics at either the
synthesis (a) or degradation (b) step.

Tyson and coworkers have taken a different approach, noting that phosphorylation
of PER by DBT induces rapid degradation of PER, but multimers of PER and TIM are
not readily phosphorylated by DBT; see Figure 9.13 [Tyson et al., 1999]. They describe
this mechanism by three ODEs

dM

dt
=

vm
1 + (P2/A)2

− kmM,
dP1
dt

= vpM − k1P1
J + P1 + 2P2

− k3P1 − 2kaP 2
1 + 2kdP2 +

2k2P2
J + P1 + 2P2

+ 2k3P2,

dP2
dt

= kaP
2
1 − kdP2 −

2k2P2
J + P1 + 2P2

− 2k3P2,

where

M = [per mRNA], P1 = [PER monomer], P2 = [PER dimer],
vm, vp = rate constants for synthesis of mRNA and protein,
km, k3 = rate constants for non-speciÞc degradation of mRNA and protein,
k1, k2 = rate constants for phosphorylation of monomer and dimer
ka, kd = rate constants for association and dissociation of dimer,
J,A = Michaelis constants for the binding of PER to phosphatase and transcrip-
tional regulation factors.

If the dimerization reaction is in rapid equilibrium, then P1 = qPT and P2 =
((1− q)/2)PT, where PT = P1 + 2P2 = [total protein], and

q =
2

1 +
√
1 + 8KPT

,

where K = ka/kd = the equilibrium binding constant for dimer formation. In this case,
the system of three ODEs reduces to a pair of ODEs:

dM

dt
=

vm
1 + (P2/A)2

− kmM,
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A B

Figure 9.14 Simulations of the model of [Tyson et al., 1999]. Basal parameter values: vm = 1, vp =
0.5, km = k3 = 0.1, k1 = 10, k2 = 0.03, J = 0.05, K = 200, A = 0.1 (A) mRNA and protein concentra-
tions as functions of time. (B) Locus of Hopf bifurcations (H) in dependence on k1 and K. Also indicated
are loci of limit cycles of constant period (24 h,25 h,...,40 h).

dPT
dt

= vpM − k1P1 + 2k2P2
J + PT

− k3PT,
with P1 and P2 given as functions of PT by the equations above. Figure 9.14A shows
a phase plane portrait for this system, with limit cycle oscillations of period close to
24 h. Figure 9.14B shows how these oscillations depend on k1, the rate constant for
phosphorylation of PER monomers by DBT, and K, the equilibrium binding constant
for dimer formation.

Suggestions for Further Reading

� Jospeh Higgins published the Þrst comprehensive theory of biochemical oscillators,
and it is still valuable reading today [Higgins, 1967].

� The earliest collection of articles on biological and biochemical oscillators was edited
by Chance, Pye, Ghosh, and Hess, B. [Chance et al., 1973].

� For a comparative survey of cellular oscillators see [Berridge and Rapp, 1979].
� Sol Rubinow�s 1980 chapter is one of the best summaries of the kinetics of regulatory
enzymes [Rubinow, 1980].

� Although not easy reading, Albert Goldbeter�s 1996 book Biochemical Oscilla-
tors and Cellular Rhythms is comprehensive, authoritative, and well motivated
[Goldbeter, 1996].

Acknowledgment: JJT thanks Emery Conrad for help in writing this chapter.

Exercises
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X Y
E

in

in

out

Figure 9.15 Exercise 1

1. Activator�inhibitor system. Consider the mechanism in Figure 9.15, which can be
described by the (scaled) differential equations

dx

dt
=

a+ bx2

1 + x2 + ry
− x,

dy

dt
= ²(cx+ y0 − y).

Basal parameter values: a = 1, b = 5, c = 4, r = 1, y0 = 0, ² = 0.1.

(a) Why is this called an activator�inhibitor system?
(b) Draw a phase plane portrait (nullclines and typical trajectories) for the basal

parameter values.
(c) Vary c and Þnd the Hopf bifurcation points.
(d) As you vary both c and y0, how many qualitatively different phase plane

portraits can you Þnd? Sketch them.

2. Substrate-depletion system. Consider the mechanism in Figure 9.16, which can be
described by the (scaled) differential equations

dx

dt
= a− xy2, dy

dt
= ²+ xy2 − by

Basal parameter values: a = 0.5, b = 1, ² = 0.05

(a) Why is this called a substrate�depletion system?
(b) Rewrite the ODEs in terms of y and z = x+ y.
(c) Draw a phase plane portrait (nullclines and typical trajectories) for the basal

parameter values.
(d) Classify the stability of the steady state as a varies.

3. Substrate�inhibition oscillator [Murray, 1981]. Perhaps the simplest example of
a biochemical oscillator is illustrated in Figure 9.17. The rate equations for this

E

in

X Yin out Figure 9.16 Exercise 2
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X

Y

Xo

Yo

P
E

Cell membrane Figure 9.17 Exercise 3

mechanism are

dX

dt
= a(X0 −X)− vXY

Km1 +X + (X2/Km2)
,

dY

dt
= b(Y0 − Y )− vXY

Km1 +X + (X2/Km2)
,

where a, b are membrane permeabilities, v is a rate constant, and the Km�s are
dissociation constants of the enzyme�substrate complexes. Basal parameter values:
a = 1, b = 0.15, X0 = 1, Y0 = 6, v = 30, Km1 = 1, Km2 = 0.005.

(a) Plot nullclines and some characteristic trajectories.
(b) Find points of Hopf bifurcation as Y0 varies.
(c) For b = 1, X0 = 1.5, Y0 = 4, plot nullclines and trajectories.
(d) For b = 1, Þnd the region of bistability in the (X0, Y0) plane.

4. Gene expression [Keller, 1995]. Consider a bacterial operon expressing two genes,
genX and genY, as in Figure 9.18. The proteins X and Y form homodimers X2 and
Y2, which then bind to the upstream regulatory sequence and affect the expression
of genX and genY. X2-binding stimulates gene expression, but Y2-binding inhibits

X:X

Y:Y

X

Y

gen X

gen Y

Figure 9.18 Exercise 4
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it. Assume that the homodimers are very stable and that they bind to the regulatory
sequence with equal affinity.

(a) Show that the mechanism can be described by a pair of (scaled) ODEs,

dx

dt
= 1 +

αx2

1 + x2 + y2
− βx, dy

dt
= ²

µ
1 +

αx2

1 + x2 + y2

¶
− γy,

where ² is the rate of expression of Y relative to that of X.
(b) Construct a phase plane portrait for this system when α = 50,β = 10, γ =

1, ² = 0.2.
(c) Would you describe this oscillator as activator�inhibitor or substrate�depletion?
(d) Find the locus of Hopf bifurcations in the (β, γ) parameter plane.

5. Glycolysis. In Section 9.3.1 we studied a simple model of the glycolytic oscillator,
system (9.12), and found that oscillations exist within a limited range of substrate
injection rates, k1lo < k1 < k1hi, where k1lo = ²k3Kn, and k1hi = (k3Kn)/(

√
1 + ν),

with ν = v2/k3 (See (9.16)).

(a) Show that the period of oscillation close to the two Hopf bifurcation points is
given by

Tlo =
2π

k3²
√
2ν
, Thi =

2π

k3

r
2 + ν

ν
.

(b) Hess and Boiteux [Chance et al., 1973] reported that k1lo = 0.33 mM/min,
Tlo = 8.6 min, and k1hi = 2.5 mM/min, Thi = 3.5 min. Supposing that ν ¿ 1,
show that ² ∼= k1lo/k1hi = 0.13 and Thi/Tlo ∼= 2² ∼= 0.25, which is not too far
from the observed ratio 0.4.

(c) For the parameter values ²2 = 0.017,Kn = 0.25 mM, v2 = 1 min
−1 and k3 = 10

min−1, use a numerical bifurcation package to compute klo, Tlo, k1hi, and Thi,
and compare your results to the observations of Hess and Boiteux.

6. Positive feedback on gene transcription [Griffith, 1968b]. Consider the simple case
of a protein that activates transcription of its own gene, as in Figure 9.19. This
mechanism is described by a pair of ODEs:

d[M]

dt
= v1

²2 + (PC/Kl)
2

1 + (PC/Kl)
2 − k2[M],

dPC
dt

= k3[M]− k4PC .

mRNAgene

protein acids
amino

00
00

00
00

Figure 9.19 Exercise 6
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(a) How must the variables be scaled to write the ODEs in dimensionless form:

dx

dτ
=
²2 + y2

1 + y2
− x, dy

dτ
= κ(σx− y)?

(b) Assume that ² = 0.2,κ = 1, and draw phase plane portraits for several values
of σ.

(c) Find the bifurcation values of σ.
(d) Plot y (the steady�state concentration of P) as a function of σ.

7. Generalize the positive feedback system in the previous problem to a loop of
arbitrary length.

(a) Show that, when properly scaled, the steady state solution of the dynamical
equations is given by the roots of

φz =
²p + zp

1 + zp
, (∗)

where φ = constant, p = an arbitrary exponent, and z = the scaled
concentration of end product.

(b) Show that the system has saddle-node bifurcation points when (∗) is satisÞed
simultaneously with

φ =
pzp−1(1− ²p)
(1 + zp)2

. (∗∗)

(c) For ²¿ 1, show that (∗) and (∗∗) are satisÞed simultaneously for
z ≈ (p− 1)1/p,
φ ≈ p−1(p− 1)(p−1)/p,

and

z ≈ ²(p− 1)−1/p,
φ ≈ p²p−1(p− 1)−(p−1)/p.

(d) Compute the saddle-node bifurcation points for p = 2, 3, 4, and compare to
numerical results (pick some small value of ²).

8. Goodwin�s equations. Generalize the analysis in Section 9.4.3 to a negative�feedback
loop with n components,

dx1
dt0

=
1

1 + xpn
− b1x1, dxj

dt0
= bj(xj−1 − xj), j = 2, 3, . . . , n.

Assume that b1 = b2 = · · · = bn = b, and show that the steady state (x1 = x2 =
· · · = xn = ξ) is unstable when bξ < (p−pmin)/p, where pmin = secn(π/n). Compute
pmin for n = 4, 8, 16.

9. Modify the Bliss-Painter-Marr equations given in Section 9.4.3, by replacing a/(1+
xp3) in the Þrst differential equation. Let a = 1, b1 = b2 = 0.1,K = 1. Plot the locus
of Hopf bifurcation points in the (p, c) parameter plane, for 0 < p < 10.
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10. Calcium-induced calcium release [Goldbeter et al., 1990b]. Consider a two-variable
model for Ca2+ oscillations in cells:

dX

dt
= v0 + v1β − V2 + V3 − k4X + k5Y,

dY

dt
= V2 − V3 − k5Y,

where

V2 = v2
X2

K2
2 +X

2
,

V3 = v3
Y 2

K2
R + Y 2

· X4

K4
A +X4

.

In these equations X = [Ca2+]cytosolic, Y = [Ca
2+]vesicular,

v0 = slow leak of Ca
2+ into the cytosol from extracellular ßuid,

v1β = IP3-induced release of Ca
2+ into the cytosol from intracellular stores,

V2 = ATP-dependent Ca
2+ pump,

V3 = Ca
2+-induced Ca2+ release from storage vesicles,

k4 = Ca
2+ elimination through the plasma membrane,

k5 = Ca
2+ leak from storage vesicles.

Goldbeter et al. estimated the parameters to be

v0 = 1 µM/s, v1 = 7.3 µM/s,β = 0, v2 = 65 µM/s,K2 = 1 µM,

v3 = 500 µM/s,KR = 2 µM,KA = 0.9 µM, k4 = 10 s
−1, k5 = 1 s

−1

(a) Draw a wiring diagram that corresponds to these equations.
(b) Draw a phase plane portrait for the basal parameter values.
(c) Increase β (the IP3 signal) from 0 to 1 (its maximum value), and Þnd values

that correspond to Hopf bifurcations.
(d) To simulate a pulse of IP3, let β(t) = β0e

−αt, with α = 0.25 s−1. Try β0 = 0.85
and 0.95. In each case, plot X(t).

11. For the distributed time lag deÞned in (9.20), show that

(a)

∞Z
0

Gn
c (s)ds = 1

(b)

d

ds
Gn
c (s) = c (G

n−1
c (s)−Gn

c (s))

(c)

Gn
c (s) has a maximum at s = n/c.
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Figure 9.20 Exercise 12. Laboratory induced autoimmune hemolytic anemia. Oscillations in circulating
hemoglobin and reticulocyte counts in rabbit during constant application of red blood cell iso-antibody.
From [Kirk et al., 1968], as presented in [Mackey, 1996].

Assume n is an integer ≥ 1.
12. Periodic hemolytic anemia [Mackey, 1996]. Mackey has introduced a time-delayed

negative-feedback model of an autoimmune disease that causes periodic crashes in
circulating red blood cells (RBC)(see Figure 9.20). When RBC level in the blood
is low, the cells produce a hormone, called erythropoietin, that stimulates the pro-
duction of RBC precursor cells. After a few days, these precursors become mature
RBCs and the production of erythropoietin is turned down. Hence, circulating RBC
level is controlled by a negative�feedback system with time delay (maturation time).
Mackey models this control system with equation (9.21):

dx

dt
=

1

1 + x(t− τ)p − bx,

where

[X] = concentration of circulating RBCs,
a = maximal rate of production of mature RBCs,
b = loss rate of RBCs from the blood stream,
Km = RBC concentration when production rate is cut in half,
τ = time required for RBC precursors to develop into mature, circulating RBCs.

The nonlinear term in (9.21) captures the fact that current production of mature
RBCs is a decreasing function of RBC concentration in the blood stream τ days ago;
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the parameter p controls the steepness of this feedback function. Mackey estimated
that in normal humans,

a = 7.62 · 1010 cell kg−1 day−1,
b = 2.31 · 10−2 day−1,
Km = 2.47 · 1011 cell kg−1,
τ = 5.7 day,
p = 7.6.

(a) Calculate the steady�state level of circulating RBCs in a normal human, and
show that this steady state is stable.

(b) Periodic hemolytic anemia is an autoimmune disease that can be induced in
rabbits by administration of RBC autoantibodies. The immune system destroys
RBCs, thereby increasing parameter b in the model. Treating b as a bifurcation
parameter, show that Mackey�s model undergoes a Hopf bifurcation at b =
5.12 ·10−2/day and that the resulting oscillation has a period close to 20.6 day.
Compare your results to the data in Figure 9.20.

(c) Show that if b is elevated beyond 0.27/day, then oscillations are lost by a reverse
Hopf bifurcation.

(d) Plot oscillation period and amplitude ([X]
max

and [X]
min
) as functions of b

between the two Hopf bifurcations.
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CHAPT E R 1 0

Cell Cycle Controls

John J. Tyson and Béla Novák

In recent years, molecular biologists have uncovered a wealth of information about the
proteins controlling cell growth and division in eukaryotes. The regulatory system is
so complex that it deÞes understanding by verbal arguments alone. To probe into the
details of cell cycle control requires mathematical modeling of the type practiced in
this book. We will start with an oversimpliÞed model of the molecular controls of cell
division in eukaryotes, in order to illustrate some of the basic principles involved. Then
we will construct a more serious model of the budding yeast cell cycle, suitable for
understanding wild-type and mutant cells. Next, a model of Þssion yeast introduces
a new level of molecular controls. We Þnish up with a model of the �stripped down�
cell cycles in early embryos, which leads into a discussion of whether the cell cycle is
controlled by a limit cycle oscillator or not.

Before diving into the models, we need to answer two questions. What are the basic
features of cell reproduction that we want to understand? And what are the molecular
interactions that regulate these features?

10.1 Physiology of the Cell Cycle in Eukaryotes

The cell cycle is the sequence of events by which a growing cell duplicates all its
components and divides into two daughter cells, each with sufficient machinery and
information to repeat the process, Figure 1.6. The most important components are the
cell�s chromosomes, which contain linear DNA molecules in association with proteins.
First, each DNA molecule must be accurately replicated, and then the two copies must
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Figure 10.1 The cell cycle. Outer ring illustrates the chromosome cycle. The nucleus of a newborn cell
contains unreplicated chromosomes (represented by a single bar). At Start, the cell enters S phase and
replicates its DNA (signiÞed by replication bubbles on the chromosome). At the end of S phase, each
chromosome consists of a pair of sister chromatids held together by tethering proteins. After a gap (G2
phase), the cell enters mitosis (M phase), when the replicated chromosomes are aligned on the metaphase
spindle, with sister chromatids attached by microtubules to opposite poles of the spindle. At Finish, the
tether proteins are removed so that the sister chromatids can be segregated to opposite sides of the cell
(anaphase). Shortly thereafter the cell divides to produce two daughter cells in G1 phase. The inner icons
represent the fundamental molecular machinery governing these transitions. Start is triggered by a protein
kinase, Cdk, whose activity depends on association with a cyclin subunit. Cdk activity drives the cell
through S phase, G2 phase, and up to metaphase. Finish is accomplished by proteolytic machinery, APC,
which destroys the tethers and cyclin molecules. In G1 phase, APC is active and Cdk inactive, because it
lacks a cyclin partner. At Start, the APC must be turned off so that cyclins may accumulate. Cdk and APC
are antagonistic proteins: APC destroys Cdk activity by degrading cyclin, and cyclin/Cdk dimers inactivate
APC by phosphorylating some of its subunits.

be carefully segregated to the daughter cells at division. In eukaryotic cells, these two
processes occur in the temporally distinct stages shown in Figure 10.1. During S phase,
a new copy of each chromosome is synthesized. (The two identical DNA molecules
are called sister chromatids.) Some time later, during M phase (mitosis), the sister
chromatids are separated so that each daughter cell receives a copy of each chromosome.

DNA synthesis and sister chromatid separation (alternating S and M phases) make
up the chromosome cycle of the cell. In parallel to it runs the growth cycle, whereby
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the cell�s �hardware� (proteins, RNA, phospholipid bilayers, carbohydrates) is also
duplicated and partitioned, more or less evenly, between daughters. During normal
cell proliferation, these two cycles turn at the same rate, so that each round of DNA
synthesis and mitosis is balanced by doubling of all other macromolecules in the cell. In
this way, the DNA/protein ratio of the cell is maintained within advantageous limits.
Of course, there are exceptions to this rule, such as oocytes, which grow very large
without dividing, and fertilized eggs (embryos), which divide rapidly in the absence of
growth. Nonetheless, the long-term viability of a cell line depends on balanced growth
and division.

The chromosome cycle is usually subdivided into four phases (G1, S, G2, M), but
it is better to think of it as two alternative �states� (G1 and S-G2-M) separated by two
transitions (Start and Finish), as in Figure 10.1 [Nasmyth, 1996]. In G1, chromosomes
are unreplicated and the cell is uncommitted to the replication�division process. At
Start (the transition from G1 to S phase), a cell conÞrms that internal and external
conditions are favorable for a new round of DNA synthesis and division, and commits
itself to the process. The decision is irreversible; once DNA synthesis commences, it
goes to completion.

During the process of DNA replication, sister chromatids are tethered together by
speciÞc proteins, called cohesins. As the mitotic spindle forms in M phase, microtubules
from the spindle poles attach to chromosomes and pull them into alignment at the center
of the spindle (metaphase). When DNA replication is complete and all chromosomes are
aligned, the second irreversible transition of the cycle (Finish) is triggered. The cohesins
are destroyed, allowing sister chromatids to be pulled to opposite poles of the spindle
(anaphase). Shortly thereafter, daughter nuclei form around the segregated chromatids
(telophase), and the incipient daughter cells separate.

These major events of the cell cycle must be tightly regulated. For instance, bal-
anced growth and division is achieved in most cells by a size requirement for the Start
transition. That is, cells must grow to a critical size before they can commit to chro-
mosome replication and division. If this requirement is compromised by mutation, cells
may become morbidly large or small. A second crucial regulatory constraint is to hold
off the Finish transition if there have been any problems with DNA replication or chro-
mosome alignment. Were anaphase to commence under such conditions, then daughter
nuclei would not receive a full complement of chromosomes, which is usually a fatal
mistake.

10.2 Molecular Mechanisms of Cell Cycle Control

Cell cycle events are controlled by a network of molecular signals, whose central com-
ponents are cyclin-dependent protein kinases (Cdks). Cdks, when paired with suitable
cyclin partners, phosphorylate many target proteins involved in cell cycle events (Figure
10.2A). For instance, by phosphorylating proteins bound to chromosomes at �origins
of replication� (speciÞc nucleotide sequences, where DNA replication can start), Cdks
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Figure 10.2 Cyclin�dependent kinase. (A) The role of a cyclin�dependent kinase (Cdk) is to phospho-
rylate certain target proteins using ATP as the phosphate donor. Cdk requires a cyclin partner in order
to be active and to recognize proper targets. Cdk targets include proteins involved in DNA replication,
chromosome condensation, spindle formation, and other crucial events of the cell cycle. (B) Cdk activity
can be regulated in three ways: By availability of cyclin subunits, by phosphorylation of the Cdk subunit,
and by stoichiometric binding to inhibitors (CKI = cyclin�dependent kinase inhibitor).

trigger the onset of DNA synthesis. By phosphorylating histones (proteins involved
in DNA packaging), Cdks initiate chromosome condensation at the G2-M transition.
Clearly, to understand the timing of these basic cell cycle events, one must understand
the patterns of activation and inactivation of Cdks.

Cdk activities can be regulated throughout the cell cycle in many ways (Figure
10.2B). In principle, cells could regulate the availability of Cdk subunits, but this is
uncommon; most Cdks are present in constant abundance throughout the cell cycle.
Their activity is regulated, instead, by the availability of cyclin partners. Cyclin abun-
dance is determined by the rates of cyclin synthesis and degradation, both of which can
be regulated during the cell cycle, as we shall see. Secondly, Cdk/cyclin dimers can be
put out of commission by binding a third partner, a stoichiometric inhibitor, generally
referred to as a CKI (cyclin-dependent kinase inhibitor). CKIs come and go, because
their synthesis and degradation rates are also cell-cycle regulated. Finally, Cdk activity
can be inhibited by phosphorylation of a speciÞc tyrosine residue, and the phosphory-
lation state of Cdk varies during the cell cycle as the activities of the tyrosine kinase
(Wee1) and tyrosine phosphatase (Cdc25) ßuctuate.

Because cells of higher eukaryotes contain many different Cdks and cyclins, �com-
binatorics� might play a major role in cell cycle progression, as the Cdk and cyclin
subunits change partners. However, lower eukaryotes accomplish all the same basic
tasks with many fewer components (one Cdk and 2-4 crucial cyclins), indicating that
one Cdk is sufficient and that Cdk/cyclin holoenzymes can substitute for one another,
to a large extent. Thus, progress through the cell cycle is not just a �square dance,�
with Cdks and cyclins swapping partners to a steady rhythm, as some textbook dia-
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grams might suggest, but rather a complex, nonlinear, dynamical system of interactions
between Cdk/cyclin dimers and their regulatory agents: transcription factors, degrada-
tion machinery, CKIs, and tyrosine-modifying enzymes. Our task will be to understand
the basic principles of this dynamical system, but Þrst we need some more mechanistic
details.

Nasmyth�s two cell-cycle states shown in Figure 10.1, G1 and S-G2-M, are correlated
with low and high Cdk activity, respectively. Cdk activity is low in G1 because its
obligate cyclin partners are missing. Cyclin levels are low in G1 because cyclin mRNA
synthesis is inhibited and cyclin protein is rapidly degraded. At Start, cyclin synthesis
is induced and cyclin degradation inhibited, causing a dramatic rise in Cdk activity,
which persists throughout S, G2, and M. The initial rise in Cdk activity is sufficient
to initiate DNA replication, but further increase is required to drive cells into mitosis
[Stern and Nurse, 1996].

At Finish, a group of proteins, making up the anaphase-promoting complex (APC),
is activated. The APC attaches a �destruction label� to speciÞc target proteins, which
are subsequently degraded by the cell�s proteolytic machinery. The APC consists of a
core complex of about a dozen polypeptides plus two auxiliary proteins, Cdc20 and
Cdh1, whose apparent roles (when active) are to recognize speciÞc target proteins and
present them to the core complex for labeling. Activation of Cdc20 at Finish is nec-
essary for degradation of cohesins at anaphase, and for activation of Cdh1. Together,
Cdc20 and Cdh1 label cyclins for degradation at telophase, allowing the control system
to return to G1. We must distinguish between these two different auxiliary proteins, be-
cause Cdc20 and Cdh1 are controlled differently by cyclin/Cdk, which activates Cdc20
and inhibits Cdh1.

10.3 A Toy Model of Start and Finish

A major challenge for theoretical molecular biologists is to explain the physiology of
cell proliferation in a variety of unicellular and multicellular organisms in terms of their
underlying molecular control systems. Of necessity, such connections will be made by
ambitious computational models that reßect some of the inescapable complexity of real
cell cycle controls. In order to design such models and understand how they work, we
Þrst need a solid grasp of the basic control principles of the cell cycle.

To this end, we draw attention to a simple theme that runs through the morass of
molecular details. The irreversible transitions of the cell cycle (Start and Finish) are
consequences of a hysteresis loop that derives from a fundamental antagonistic rela-
tionship between the central components of the machinery: The APC extinguishes Cdk
activity by destroying its cyclin partners, whereas cyclin/Cdk dimers inhibit APC ac-
tivity by phosphorylating Cdh1 (Figure 10.1). This antagonism creates two, alternative,
stable steady states of the control system: a G1 state, with high Cdh1/APC activity
and low cyclin/Cdk activity, and an S-G2-M state, with high cyclin/Cdk activity and
low Cdh1/APC activity.
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10.3.1 Hysteresis in the Interactions Between Cdk and APC

The biochemical reactions in the center of Figure 10.1 can be described by a pair of
nonlinear ordinary differential equations (ODEs):

dX

dt
= k1 − (k02 + k002Y )X, (10.1)

dY

dt
=
(k03 + k

00
3A)(1− Y )

J3 + 1− Y − k4mXY
J4 + Y

. (10.2)

In these equations, X and Y are the concentrations of cyclin/Cdk dimers and active
Cdh1/APC complexes, respectively; m is cell �mass� (not to be confused with M for
�mitosis�), and A represents the concentration of a protein (to be identiÞed later) that
activates Cdh1 at Finish.

In writing these equations, we assume that cyclin molecules are synthesized in the
cytoplasm, where they combine rapidly with an excess of Cdk subunits, and then the
dimers move into the nucleus, where their effective concentration increases as the cell
grows. Within the nucleus, the activity of cyclin/Cdk is proportional to m ·X. We also
assume that APC cores are in excess, and that the total Cdh1 concentration is constant
and scaled to 1. The k�s are rate constants, and the J �s are Michaelis constants.

The phase plane portrait for (10.1) and (10.2) is illustrated in Figure 10.3 The
nullclines are described by simple algebraic equations:

X nullcline: X =
β

J2 + Y
,

Y nullcline: X = p
(1− Y )(J4 + Y )
Y (J3 + 1− Y ) ,
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Figure 10.3 Phase plane portrait for the pair of non-
linear ODEs given in (10.1) and (10.2). Parameter values
are given in Table 10.1. Curves are nullclines (see text)
for A = 0, m = 0.3 and 0.6. Arrows indicate direction
Þeld for m = 0.3 only. For m = 0.3, the control sys-
tem has three steady states: a stable node (G1) at (X,
Y ) ≈ (0.039,0.97), a saddle point near (0.10, 0.36), and
another stable node (S-G2-M) near (0.90, 0.0045). Sup-
pose a newborn cell resides at G1 (Cdh1 active and cyclin
missing). As the cell grows (m increases), the G1 steady
state is lost by a saddle-node bifurcation (at m ≈ 0.53),
and the control system is forced to the S-G2-M steady
state.
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where β = k1/k
00
2 , J2 = k

0
2/k

00
2 , and p = (k

0
3+ k

00
3A)/(k4 ·m) . The X-nullcline is a simple

hyperbola. For J3 = J4 ¿ 1, the Y-nullcline is a sigmoidal curve passing through X = p
at Y = 1

2
.

The control system has steady�state solutions wherever the nullclines intersect in
Figure 10.4. The number of intersections depends on the value of p. For intermediate
values of p (p1 < p < p2), (10.1) and (10.2) have three steady states: two stable nodes
separated by a saddle point. The stable nodes we refer to asG1 (Cdh1 active, cyclin low)
and S-G2-M (Cdh1 inactive, cyclin high), in boldface to distinguish the theoretician�s
stable steady state from the experimentalist�s cell cycle phase. Progress through the
cell cycle can be thought of as a tour around the hysteresis loop in Figure 10.4. For
a small newborn cell in G1 phase (with A ≈ 0 and p ≈ k03/k4m > p1), the control
system is attracted to the stable G1 steady state. As the cell grows, m increases and
p decreases. Eventually, p drops below p1, and the G1 steady state disappears, forcing
the control system to jump irreversibly to the S-G2-M steady state. High cyclin/Cdk
activity initiates the processes of DNA synthesis and later mitosis, as the cell continues
to grow. We assume that when DNA replication is complete and the chromosomes are
properly aligned on the mitotic spindle, the parameter A increases abruptly, forcing
p to increase above p2. Consequently, the S-G2-M steady state is lost by a saddle-
node bifurcation, and the control system jumps irreversibly back to the G1 state. The
cell divides (m → m/2), A decreases back to 0, and the control system returns to its
starting condition.

In this toy model, the irreversible transitions of the cell cycle (Start and Finish)
are the abrupt jumps of the hysteresis loop at the saddle-node bifurcation points. The
G1→ S-G2-M transition is driven by cell growth, and the reverse transition is driven
by chromosome alignment on the mitotic spindle.
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Figure 10.4 Bifurcation diagram for (10.1) and
(10.2). The steady�state concentration of X = [cy-
clin/Cdk] is plotted as a function of the bifurcation
parameter, p = (k03 + k

00
3 A)/(k4 · m). Other parame-

ters: β = ² = 0.04. Saddle-node bifurcations occur at
p1 ≈ 0.05418 and p2 ≈ 0.2604.
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Figure 10.5 Bifurcation diagram for (10.1)�(10.3).
Asymptotic states of X are plotted as functions of cell
mass m. Solid lines: stable steady states; dashed lines:
unstable steady states; Þlled circles: stable limit cycles
(maximum and minimum values); open circles: unstable
limit cycles. (Notice that the bifurcation parameter p in
the previous Þgure is inversely proportional to m, so the
hysteresis loop is ßipped around.) There is a Hopf bifurca-
tions on the upper branch of steady states (at m ≈ 0.57),
from which arises a branch of unstable limit cycles that
disappear at an inÞnite�period saddle-loop bifurcation (at
m ≈ 0.47). A second branch of limit cycles at higher
m is stable. This branch originates at an inÞnite-period
saddle-node-loop bifurcation (at m ≈ 0.79) and termi-
nates at another inÞnite�period bifurcation (at m ≈ 2.35,
not shown).

10.3.2 Activation of the APC at Anaphase

To Þll out the picture in the previous section, we must identify the activator of
Cdh1/APC and describe why A increases abruptly at the metaphase → anaphase
transition and decreases in G1 phase. The activator is a phosphatase (Cdc14) that
removes from Cdh1 the inhibitory phosphate groups placed there by cyclin/Cdk. At
the metaphase→ anaphase transition, Cdc14 is activated indirectly by a complex path-
way: cyclin/Cdk turns on Cdc20/APC, which destroys an inhibitor of Cdc14. To keep
our toy model as simple as possible, we write an ODE for turnover of an �activator�
whose synthesis is promoted by cyclin/Cdk:

dA

dt
= k05 + k

00
5

(mX)n

Jn5 + (mX)
n
− k6A. (10.3)

Notice that cyclin (X), the activator (A), and Cdh1 (Y ) are involved in a long, negative
feedback loop: cyclin/Cdk turns on the activator, which indirectly activates Cdh1, which
destroys cyclin subunits.

As shown in Figure 10.5 the three-component model (10.1)�(10.3) has a richer
bifurcation diagram than the two-component model from Figure 10.4. The extended
model still has two saddle-node bifurcations that separate a G1 steady state (X low)
from an S-G2-M steady state (X high), but now the upper steady state is unstable with
respect to large�amplitude limit cycle oscillations generated by the negative feedback
loop. These oscillations are �born� at a critical cell mass (m ≈ 0.79) by an �inÞnite�
period bifurcation,� which is described in more detail in Exercise 3.

So far we have been assuming that cell mass is a parameter in our model. To
complete this simple model of cell cycle controls, we reinterpret m as a time-dependent
variable and provide a differential equation for cell growth:



10.4: A Serious Model of the Budding Yeast Cell Cycle 271

dm

dt
= µm

µ
1− m

m∗

¶
, (10.4)

where m∗ is the maximum size to which a cell may grow if it does not divide, and
µ is the speciÞc growth rate when m ¿ m∗. Our toy model consists of (10.1)�(10.4),
with the proviso that m → m/2 whenever the cell divides (i.e., when X drops below
some threshold level, taken to be 0.1). A typical simulation is presented in Figure 10.6.
This simple model fulÞlls all the requirements of a functional eukaryotic cell cycle, with
two irreversible transitions, Start (dependent on cell growth) and Finish (dependent on
chromosome alignment). However, all organisms that have been studied in detail have
additional layers of control on Cdk activity.

10.4 A Serious Model of the Budding Yeast Cell
Cycle

A more realistic model of the basic cell cycle engine in eukaryotes is illustrated in Fig-
ure 10.7. The model is patterned after our understanding of the controls in budding
yeast, but it applies to other organisms as well, as indicated in Table 10.2. The ba-
sic antagonism between cyclin/Cdk and Cdh1/APC is evident in the Þgure, as well
as the role of Cdc20 in activating Cdh1 at Finish. (From now on, we denote the
S-G2-M cyclin by CycB, to distinguish it from other types of cyclin molecules that
play different roles in the cell cycle.) The Þgure introduces additional levels of control.
Cdc20 is synthesized only during S-G2-M phase of the cell cycle, and it is activated
abruptly at the metaphase-to-anaphase transition. A Cdc20-activatory signal is gener-
ated by the mitotic process itself (represented by the �intermediary enzyme� IE), and
a Cdc20-inhibitory signal is generated by mitotic spindle abnormalities (through the
�Mad� pathway). Furthermore, CycB/Cdk is inhibited by a binding partner (CKI =
�cyclin-dependent kinase inhibitor�) that is prevalent in G1 phase of the cell cycle. The
abundance of this stoichiometric inhibitor is controlled by phosphorylation reactions,
which label CKI for rapid proteolysis. CKI can be phosphorylated by CycB/Cdk (note
the antagonism between these two components), but there is little or no CycB/Cdk
activity in G1 cells. In order to leave G1 and enter S phase, the cell must produce a
�starter kinase� (SK), whose job is to phosphorylate, and thereby remove, CKI. SK is
a dimer of Cdk and a different type of cyclin (called Cln2 in budding yeast, Cig2 in
Þssion yeast, and cyclin D in vertebrates). The starter kinase is not inhibited by CKI
and not destroyed by Cdh1, so when this alternative cyclin protein is produced in late
G1, SK can help CycB/Cdk to overcome its enemies.

Figure 10.7 can be converted into a set of nonlinear ODEs modeled after equations
(10.1)�(10.4):
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dm

dt
= µm

µ
1− m

m∗

¶
,

d[CycB]T
dt

= k1 − (k02 + k002 [Cdh1] + k0002 [Cdc20]A)[CycB]T,
d[Cdh1]

dt
=
(k03 + k

00
3 [Cdc20]A)(1− [Cdh1])
J3 + 1− [Cdh1] − (k4m[CycB] + k

0
4[SK])[Cdh1]

J4 + [Cdh1]
,

d[Cdc20]T
dt

= k05 + k
00
5

(m[CycB])n

Jn5 + (m[CycB])
n
− k6[Cdc20]T,
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Figure 10.7 The basic cell cycle engine
in eukaryotic cells. The generic components
in this mechanism correspond to speciÞc
gene products in well-studied organisms
(see Table 10.2). Dynamical properties of
this mechanism are determined by the set
of kinetic equations given in system (10.5).
A basal set of parameter values, suitable
for yeast cells, is given in Table 10.1. No-
tice that we have given Cdc20 some ability
to degrade cyclin B. This well-known in-
teraction enforces the negative feedback
loop at exit from mitosis: CycB activates
IE, which activates Cdc20, which degrades
CycB directly, as well as activating Cdh1.

d[Cdc20]A
dt

=
k7[IEP]([Cdc20]T − [Cdc20]A)
J7 + [Cdc20]T − [Cdc20]A − k8[Mad][Cdc20]A

J8 + [Cdc20]A
− k6[Cdc20]A,

d[IEP]

dt
= k9m[CycB](1− [IEP])− k10[IEP],

d[CKI]T
dt

= k11 − (k012 + k0012[SK] + k00012m[CycB])[CKI]T,
d[SK]

dt
= k013 + k

00
13[TF]− k14[SK],

d[TF]

dt
=
(k015m+ k

00
15[SK])(1− [TF])

J15 + 1− [TF] − (k
0
16 + k

00
16m[CycB])[TF]

J16 + [TF]
, (10.5)

where [CycB] = [CycB]T − [Trimer]. We have assumed that CKI/CycB/Cdk trimers
are always in equilibrium with CKI monomers and CycB/Cdk dimers: [Trimer] =
Keq[CycB][CKI] = Keq · ([CycB]T − [Trimer]) · ([CKI]T − [Trimer]), or

[Trimer] =
2[CycB]T[CKI]T

Σ+
p
Σ2 − 4[CycB]T[CKI]T

, (10.6)

where Σ = [CycB]T + [CKI]T +K
−1
eq .
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A simulation of system (10.5), with the parameter values given in Table 10.1, is
presented in Figure 10.8A. To understand how the control system works, let us �walk�
our way through the cell cycle, starting in early G1 phase (around t = 20 min in
the Þgure). In early G1, [CycB/Cdk] is low because CycB is rapidly degraded (Cdh1 is
active), and what little CycB/Cdk there is in the cell is inactive because the cell is full of
stoichiometric inhibitor (CKI). As the cell grows, starter kinase (SK) starts to increase
because the transcription factor (TF) for its cyclin component is activated by increasing
cell mass (the term k015m in the ODE for [TF]). As [SK] increases, [CKI] decreases,
because CKI is being phosphorylated by SK and subsequently degraded. When [CKI]
drops below [CycB/Cdk] (at t ≈ 100 min), then an active fraction of CycB/Cdk begins
to assert itself by phosphorylating CKI and, more importantly, by phosphorylating
and inactivating Cdh1. The latter effect stabilizes CycB and permits [CycB/Cdk] to
rise rapidly. CycB-dependent kinase activity initiates DNA synthesis at about the same
time (t ≈ 100−−120 min) that SK (Cln-dependent kinase activity) initiates a new bud.
Meanwhile, CycB/Cdk turns off TF and [SK] drops. But now [CycB/Cdk] is sufficiently
active to keep its enemies, CKI and Cdh1, in check. As CycB/Cdk drives the cell into
mitosis, Cdc20 is synthesized (in its inactive form) and IE is phosphorylated. When
k7[IEP] exceeds k8[Mad], Cdc20 is abruptly activated (t ≈ 140 min). Cdc20 �tips the
scales� in favor of Cdh1 and Sic1; CycB is destroyed, and the cell exits mitosis. When
[CycB/Cdk] drops below 0.1, the cell divides (m → m/2) and the process starts over
again.

With this �serious� model of the yeast cell cycle we can simulate the behavior of
mutant cells, in addition to wild-type cells. As shown in Figure 10.8B, mutants lacking
SK (k013 = k0013 = 0) block in G1 with abundant CKI and active Cdh1, which is the
phenotype of cells in which all Cln-cyclins are deleted (cln1∆ cln2∆ cln3∆). (Although
Cln3 plays a different role than Cln1-2, it can serve as their backup; so it too must be
deleted in order to observe the expected phenotype.) Because the only essential job of
the Cln-cyclins is to remove Sic1 (CKI), the quadruple-deletion mutant cln1∆ cln2∆
cln3∆ sic1∆ is viable; see Figure 10.8C. For a more thorough analysis of the budding
yeast cell cycle, consult [Chen et al., 2000].

10.5 Cell Cycle Controls in Fission Yeast

The fundamental regulatory proteins of the cell cycle engine are found in many different
types of eukaryotic cells (Table 10.2), and these components are wired together in
much the same way (Figure 10.7) in all organisms. Unlike budding yeast, most other
organisms have an additional level of control of cyclin-dependent kinase activity by
inhibitory phosphorylation of a tyrosine residue of the catalytic subunit (tyrosine-15 of
Cdk). This phosphorylation (which is carried out by a tyrosine kinase called Wee1) is
evident during S and G2 phases of the cell cycle: It permits DNA synthesis to occur, but
it prevents entry into M phase. Before the cell can enter mitosis, the phosphate group
must be removed from tyrosine-15, which is the job of a tyrosine phosphatase called
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eter values in Table 10.1, except µ = 0.005min−1. (B) Mutant cells lacking SK (k13� = 0) block in G1
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Table 10.1 Parameter Values

Component Rate constants (min−1) Dimensionless constants

CycB k1 = 0.04, k02 = 0.04, k
00
2 = 1, k

000
2 = 1 [CycB]threshold = 0.1

Cdh1 k03 = 1, k
00
3 = 10, k

0
4 = 2, k4 = 35 J3 = 0.04, J4 = 0.04

[Cdc20]T k05 = 0.005, k
00
5 = 0.2, k6 = 0.1 J5 = 0.3, n = 4

[Cdc20]A k7 = 1, k8 = 0.5 J7 = 10−3, J8 = 10−3, [Mad] = 1
IEP k9 = 0.1, k10 = 0.02

CKI k11 = 1, k
0
12 = 0.2, k

00
12 = 50, k

000
12 = 100 Keq = 1000

SK k013 = 0, k
00
13 = 1, k14 = 1, J15 = 0.01, J16 = 0.01

k015 = 1.5, k
00
15 = 0.05, k

0
16 = 1, k

00
16 = 3

Wee1 k0wee = 0.01, k00wee = 1, Jawee = 0.01, Jiwee = 0.01

Vawee = 0.25, V 0iwee = 0, V
00
iwee = 1

Cdc25 k025 = 0.05, k
00
25 = 5, Ja25 = 0.01, Ji25 = 0.01

V 0a25 = 0, V
00
a25 = 1, Vi25 = 0.25

m µ = 0.01 m∗ = 10

Table 10.2 Cell Cycle Regulatory Proteins in Yeasts and Vertebrates

Component Budding Fission Frog Mammalian

Yeast Yeast Egg Cell

Cdk Cdc28 Cdc2 Cdc2 Cdk1

CycB Clb1-6 Cdc13 Cyclin B Cyclin B

Cdh1 Cdh1 Ste9 Fizzy-related Cdh1

Cdc20 Cdc20 Slp1 Fizzy p55cdc

IE Cdc5? Plo1? Plx1? Plk1?

CKI Sic1 Rum1 Xic1 p27Kip1

SK Cln1-2 Cig2 Cyclin E? Cyclin D

Cdc25. Wee1 and Cdc25 are, in turn, targets of phosphorylation by CycB/Cdk: Wee1P
is less active and Cdc25P more active than the unphosphorylated forms. Thus, Wee1
and CycB/Cdk are antagonistic proteins, whereas Cdc25 and CycB/Cdk are involved
in a mutually enhancing feedback loop.

We can incorporate these regulatory signals into the model in the previous section
by noticing that [CycB]T is now the sum of four forms, [CycB/Cdk] + [CycB/CdkP]
+ [CKI/CycB/Cdk] + [CKI/CycB/CdkP]. Letting [Trimer] = [CKI/CycB/Cdk] +
[CKI/CycB/CdkP] and [PF] = [CycB/CdkP] + [CKI/CycB/CdkP], we can write a
differential equation for the phosphorylated forms (PF) that accounts for the actions
of Wee1 and Cdc25:

d[PF]

dt
= kwee([CycB]T − [PF])− k25[PF]− (k02 + k002 [Cdh1] + k0002 [Cdc20]A)[PF], (10.7)



10.6: Checkpoints and Surveillance Mechanisms 277

where

kwee = k
0
wee + k

00
weeG(Vawee, V

0
iwee + V

00
iwee[MPF], Jawee, Jiwee)

k25 = k
0
25 + k

00
25G(V

0
a25 + V

00
a25[MPF], Vi25, Ja25, Ji25).

We have assumed that Wee1 and Cdc25 function as Goldbeter�Koshland ultrasensi-
tive switches. The kinase that phosphorylates Wee1 and Cdc25 is CycB/Cdk (called
here MPF, �M-phase promoting factor�). Vawee and Vi25 refer to phosphatase activities
that oppose MPF. To compute [MPF] from [CycB]T, [Trimer], and [PF], we use the
approximate expression (Exercise 6)

[MPF] ≈ ([CycB]T − [Trimer])(1− ([PF]/[CycB]T)). (10.8)

Figure 10.9 shows a simulation of this model of the Þssion yeast cell cycle. Parameter
values for the Wee1-Cdc25 interactions have been chosen so that size control in wild�
type Þssion yeast occurs at the G2-M transition, rather than at G1-S. This is evident
from the large size of cells at birth and the short duration of G1 phase. A wee1∆mutant
(k00wee = 0) behaves much like Figure 10.8: Cells divide at about half the size of wild
type and have a long G1 phase, exactly as observed. (The wee1 mutant, discovered by
Paul Nurse in 1975, played a central role in unraveling the molecular machinery of the
cell cycle.) It should be clear that cdc25− is a lethal mutation, but the double mutant
cdc25− wee1− is viable and small (see Exercise 5).

10.6 Checkpoints and Surveillance Mechanisms

A basic job of the cell cycle engine shown in Figure 10.7 is to coordinate DNA synthesis
and mitosis with overall cell growth. We have seen how cell size (m) might feed into the
engine to ensure balanced growth and division. If cells are too small, the engine stops
at a stable steady state (G1 in Figure 10.8). Only when m exceeds some critical value
is this stable steady state lost by coalescence with an unstable steady state (saddle-
node bifurcation). When the G1 attractor is lost, the cell can proceed into S phase. In
this way, Start can be controlled by cell size. In Þssion yeast, size control operates at
the G2-M transition by the same principle: A stable G2 steady state (many inactive
CycB/CdkP dimers) is lost when cells grow beyond a critical size, phosphorylated MPF
is converted into active MPF, and the cell enters mitosis.

We believe that this is a general principle of cell cycle control. A checkpoint cor-
responds to a stable steady state of the cell cycle engine (no further progress). The
checkpoint is lifted by changes in crucial parameters, carrying the control system across
a bifurcation. The crucial parameters are controlled by surveillance mechanisms that
monitor the internal and external milieus of the cell. For instance, if DNA synthesis
stalls for any reason, an inhibitory signal suppresses mitosis until the genome is fully
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Figure 10.9 The Þssion yeast cell cy-
cle. Simulation of (10.5)�(10.8), with
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replicated. If DNA is damaged in G1 or G2 phases, other surveillance mechanisms sup-
press entry into S phase or M phase, respectively. If chromosome alignment on the
metaphase plate is delayed for any reason, Mad protein inactivates Cdc20 and blocks
progression from metaphase to anaphase.
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10.7 Division Controls in Egg Cells

The physiology of animal eggs is quite different from that of yeast cells. In the ovary,
oocytes grow very large without dividing: The cytoplasm is packed with supplies, and
the nucleus is arrested in G2 phase (DNA replicated, lots of CycB/CdkP, low MPF ac-
tivity). In response to hormone signals, a clutch of these �immature� oocytes leaves the
G2-arrested state and proceeds through meiosis I and II. Frog eggs stop at metaphase
of meiosis II (haploid complement of replicated chromosomes aligned on the spindle;
high MPF activity). In this state, the �mature� oocyte awaits fertilization. Sperm entry
triggers the egg to exit meiosis II; the sperm and egg nuclei replicate their DNA and
fuse to form a diploid G2 nucleus. In the frog, the Þrst mitotic cycle takes about 1 h and
is followed by eleven rapid (30 min), synchronous, mitotic cycles without checkpoints.
These cell cycles are not size-regulated (the cells get smaller at each division), they
are not stopped by drugs that block either DNA synthesis or spindle formation, and
there is little or no tyrosine phosphorylation of Cdk subunits during these cycles. In
the fertilized egg, the checkpoints (stable steady states) are missing, and the cell cycle
engine exhibits its capacity for free-running oscillation.

The cyclin/Cdk network controlling cell divisions in early embryos is a stripped-
down version of Figure 10.7, lacking CKI and Cdh1. With CKI missing, SK has no role to
play in the model. Also, Wee1 is inactivated, so we can neglect tyrosine phosphorylation
reactions. All the antagonistic interactions are gone, leaving only the delayed negative
feedback loop:

d[CycB]

dt
= k1 − (k02 + k0002 [Cdc20]A)[CycB], (10.9)

d[IEP]

dt
= k9[CycB](1− [IEP])− k10[IEP], (10.10)

25 50 75 1000.0

0.2

0.4

0.6
[IEP] [Cdc20]A

[CycB]

t  (min)

Figure 10.10 Spontaneous oscillations of CycB/Cdk ac-
tivity in early embryonic cells. Simulation of (10.9)�(10.11),
with parameter values in Table 10.1. Period = 41 min.
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d[Cdc20]A
dt

=
k7[IEP]([Cdc20]T − [Cdc20]A)
J7 + [Cdc20]T − [Cdc20]A − k8[Mad] · [Cdc20]A

J8 + [Cdc20]A
(10.11)

For simplicity, we assume that Cdc20 is a stable protein in the early embryo and
set [Cdc20]T = 1 in (10.11). Furthermore, [Mad] = 1, because the spindle assembly
checkpoint is inoperative. Cell size (m) does not appear in these equations, because the
embryo is not growing.

The system of equations given by (10.9)�(10.11) is a classical negative-feedback
oscillator; see Chapter 9 and Exercise 7. As shown in Figure 10.10, it has limit cycle
solutions, corresponding to spontaneous oscillations in activity of CycB/Cdk (usually
called MPF in the frog-egg literature). After 12 rapid synchronous divisions, the frog
egg undergoes an abrupt reorganization of the cell cycle (called the midblastula tran-
sition). Expression of zygotic genes provides the missing components of the cell cycle
checkpoints. Consequently, the pace of cell division slows, as the controls described in
Section 10.5 are put into place.

To describe the characteristic arrested states of frog oocytes we must add tyro-
sine phosphorylation of Cdk subunits to the negative-feedback oscillator above. So, to
(10.9)�(10.11) we add

d[MPF]

dt
= k1 − kwee[MPF] + k25([CycB]− [MPF])− (k02 + k0002 [Cdc20]A)[MPF]

(10.12)

where kwee and k25 are deÞned along with (10.7), and [CycB]−[MPF] is just the con-
centration of tyrosine-phosphorylated dimers. In (10.10) we must replace [CycB] by
[MPF], the active form of CycB/Cdk dimers.

The system given in (10.9)�(10.12) can be reduced to two variables and analyzed
by phase plane methods, if we make pseudo-steady-state approximations to [IEP] and
[Cdc20]A. In this case, we are left with (10.9) and (10.12), and

[Cdc20]A = G

µ
k7[MPF]

(k10/k9) + [MPF]
, k8, J7, J8

¶
. (10.13)

Phase plane portraits for this model are illustrated in Figure 10.11. With proper
choice of parameter values, one can observe stable G2 arrest (immature oocyte), sta-
ble metaphase arrest (mature oocyte), and stable limit cycle oscillations (reminiscent of
MPF oscillations in frog egg extracts, which exhibit periodic tyrosine phosphorylation).

The full model given by (10.9)�(10.13), with both positive and negative feedback
loops, can be studied by bifurcation theory [Borisuk and Tyson, 1998].

10.8 Growth and Division Controls in Metazoans

In multicellular organisms, cell growth and division are under additional �social� con-
straints, because most somatic cells, though they Þnd themselves bathed in a richly
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Figure 10.11 Phase plane portraits for
a model of frog oocytes: (10.9) and
(10.12),with [Cdc20]A given by (10.13).
Parameter values as in Table 10.1, except
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nutritious medium, are restrained from proliferating. Only if they receive speciÞc �per-
mission� from the body as a whole may these cells grow and divide. The permission
slips include growth factors (small polypeptides secreted into the blood stream or inter-
stitial ßuids), and signals that reßect cell�cell contacts and adhesion to the extracellular
matrix. Surveillance mechanisms monitor these signals and hold the cell in a resting
state (alive but not proliferating) until conditions permit cell growth and division. If
these surveillance mechanisms become mutated so that a cell loses crucial social con-
straints, it becomes transformed, in stages, to an invasive cancer, whose uncontrolled
proliferation eventually interferes with some vital function and kills the organism.

Kohn [Kohn, 1999] has recently summarized our knowledge of the molecular signals
controlling the cell cycle in mammals. The �wiring� diagram extends in Þne print over
four journal pages, and most people would agree that we are only beginning to unravel
the details. How are we to make sense of a control system of such complexity? In this
chapter we have seen that the molecular regulation of cell division can be understood
in terms of some basic building blocks. Antagonistic interactions between CycB and
Cdh1 and between CycB and CKI create the fundamental distinction between G1 and
S-G2-M, starter kinases trigger the G1-S transition (Start), tyrosine phosphorylation of
Cdk enforces a G2 checkpoint, and Cdc20 activation induces exit from mitosis (Finish).
Within the complex wiring diagram of mammalian cell cycle controls, we can easily
Þnd all these basic building blocks. In other words, the generalized cell cycle control
system in Section 10.3 applies equally well to mammalian cells as to yeast. Although
the full mammalian control system has many extra bells and whistles, at its core lies a
yeast-like cell cycle engine. What makes metazoans different from single-celled yeasts
are the �social controls� on the brakes and accelerators of the engine.

10.9 Spontaneous Limit Cycle or Hysteresis Loop?

Almost by deÞnition, the cell cycle is a periodic process, and for years this observation
has tempted theoreticians to think of cell-cycle progression as a limit cycle solution of
the underlying dynamical control system. By contrast, in this chapter we have been
emphasizing a quite different picture: the cell cycle as an alternation between two
self-maintaining states, G1 (unreplicated DNA) and S-G2-M (DNA replication and
mitosis). From a dynamical point of view, these two self-maintaining states are stable
steady states of the kinetic equations describing the production of cyclin/Cdk activity
and its destruction by cyclin proteolysis and CKI accumulation.

The control system is bistable because of the fundamental antagonism between
Cdk and its �enemies.� As expected for a dynamical system of this sort, bistability
is observed only within a restricted region of parameter space; the boundaries of this
region are parameter values where saddle-node bifurcations occur (e.g., Figure 10.4).
The control system can be driven from one state to the other by parameter changes
that carry the system across saddle-node bifurcation points. Because the stable state
initially occupied by the cell (G1) is lost at the saddle-node bifurcation, the cell is
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forced to make an irreversible transition (Start) to the other stable state (S-G2-M).
In general, the opposite transition (Finish) can be induced only by parameter changes
that carry the system across a different boundary, where the S-G2-M state is lost and
the system jumps irreversibly to G1. When traced out in a diagram like Figure 10.4,
these parameter changes and state transitions create a �hysteresis loop.�

The parameter changes that drive cells through Start and Finish are carried out
by additional components of the control system, called �helper� molecules. The role of
starter kinases is to inactivate Cdh1 and destroy CKI so that the cell can leave G1,
and the role of Cdc20 is to activate Cdh1 and stabilize CKI so that the cell can reenter
G1. The helpers do not participate in the antagonistic interactions: Starter kinases are
not inhibited by CKI and not degraded by Cdh1/APC, and Cdc20 is not inhibited by
cyclin/Cdk. Helper activity is only transient: It rises to induce a transition, but then
falls back down in preparation for the reverse transition. Were the helper activity to
stay high, it would impede the reverse transition. Mutations that interfere with the
rise and fall of helper proteins are usually inviable or severely compromised in progress
through the cell cycle.

If production and destruction of the helpers are included in the ODEs, converting
former parameters into dynamical variables, don�t we retrieve the notion of a limit
cycle solution to the expanded equations? For instance, isn�t Figure 10.8A a limit
cycle solution to system (10.5)? Indeed, it is a stable periodic solution, but it lacks
many of the properties that we usually associate with limit cycles. Our intuition about
limit cycles has been honed on continuous, autonomous ODEs, but system (10.5) is
discontinuous and nonautonomous, with m = m(t) given by solution of (10.4) and the
prescription that m→ m/2 whenever the cell exits mitosis. Hence, over a broad range
of parameter values, the period of the cell cycle rhythm is identical to the mass-doubling
time, Td ≈ ln 2/µ, and independent of all other kinetic parameters of the dynamical
system. In our opinion, it is more proÞtable to think of m not as a dynamical variable,
but as an external parameter that drives the control network, system (10.5), back and
forth between regions of stable steady states (Figure 10.5A, whenm is small) and stable
limit cycles (Figure 10.5B, when m is large).

The principle of balanced growth and division necessitates size control operating
somewhere in the cell cycle. If all size controls are removed by mutation (e.g., in Þssion
yeast, wee1ts removes size control at the G2 checkpoint and rum1∆ removes it at the
G1 checkpoint), then the underlying limit cycle oscillation of the cyclin/Cdk control
network is revealed. But it is fatal! The double mutation wee1ts rum1∆ is lethal:
Because its division cycle runs faster than its growth cycle, this cell divides at ever-
smaller size until it dies.

Fertilized eggs behave something like autonomous limit cycle oscillators, because
all checkpoint requirements have been bypassed. But this is a temporary affair. At the
midblastula transition, the rapid, synchronous, autonomous cycles of the early embryo
disappear as checkpoints are reinserted in the control system. The egg replaces limit
cycle oscillations by checkpoint-controlled progression (from one stable steady state to
another), and it is high time theoreticians did the same!
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Suggested Reading

� Molecular Biology of the Cell, Chapter 17, is the best short introduction to the
physiology, genetics, and biochemistry of the cell cycle [Alberts et al., 1994].

� The Cell Cycle. An Introduction, by Murray and Hunt, contains more details about
the physiology, genetics, and biochemistry of the cell cycle [Murray and Hunt, 1993].

� At the heart of the budding yeast cycle by Nasmyth argues for the notion that the
cell cycle is an alternation between two self-maintaining states (G1 and S-G2-M)
[Nasmyth, 1996].

� Molecular interaction map of the mammalian cell cycle control and DNA repair
systems by Kohn. Figure 6 has become an icon of the future challenges to the Þeld
of computational cell biology [Kohn, 1999].

� Chemical kinetic theory: understanding cell-cycle regulation by Tyson et al. is a
kinder, gentler introduction to modeling of the cell cycle [Tyson et al., 1996].

Exercises

1. The trail-blazing paper [Goldbeter and Koshland, 1981] showed that covalent mod-
iÞcation of proteins (like the phosphorylation of Cdh1 by cyclin-dependent kinases)
can generate abrupt, switch-like changes in activity of the modiÞed protein. Let Y
be the concentration of the active form of the protein, YP its inactive form, and as-
sume that the total protein concentration is constant and scaled to 1 (Y +YP = 1).
Then

dY

dt
=
Va(1− Y )
Ja + 1− Y − ViY

Ji + Y
.

If inactivation occurs by phosphorylation, then Va and Ja would be the activity
and Michaelis constant of the phosphatase, and similarly Vi and Ji for the kinase.
Clearly, the steady state activity of the protein is given by a quadratic equation,
AY 2 −BY +C = 0, where A = Vi − Va, B = Vi − Va + VaJi + ViJa, C = VaJi .
(a) Show that Y = G(Va, Vi, Ja, Ji) = (2C)(B +

√
B2 − 4AC).

(b) Why is it not a good idea (from a computational point of view) to write G =
(B −√B2 − 4AC)/2A?

2. The equations for the CycB and Cdh1 nullclines in Section 10.3.1, assuming J2 =
J3 = J4 = ², can be written

X =
β

²+ Y
, X = p

(1− Y )(²+ Y )
Y (²+ 1− Y ) .

Saddle-node (SN) bifurcations occur when these two curves �touch� each other
tangentially, i.e.,
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β/p

²+ Y
=
(1− Y )(²+ Y )
Y (²+ 1− Y ) ,

−β/p
(²+ Y )2

=
Y (²+ 1− Y )(1− ²− 2Y )− (1− Y )(²+ Y )(²+ 1− 2Y )

Y 2(²+ 1− Y )2 .

Show that if ²¿ 1, these equations have two solutions: Y ≈ ², β/p ≈ 4², and

Y = 1−√²+ ²+O ¡²3/2¢ , p/β = 1+ 2√²+O ¡²3/2¢
3. Equations (10.1)�(10.3) describe the interactions of cyclin/Cdk (X), Cdh1/APC
(Y ), and the activator (A) of Cdh1. We characterized the behavior of this system
by a one-parameter bifurcation diagram in Figure 10.5. To gain some insight into the
origin of the stable limit cycles in this diagram, it is useful to reduce (10.1)�(10.3)
to two components, so that we can investigate the dynamics of the control system
by phase plane techniques. To this end, we apply the �rapid equilibrium approx-
imation� of Section 4.1 to Cdh1/APC to obtain Y = G(k03 + k

00
3A, k4mX,J3, J4)

where G is the Goldbeter-Koshland function deÞned in Exercise 1. In this case,
(10.1)�(10.3) reduces to a pair of nonlinear ODEs:

dX

dt
= k1 − (k02 + k002G(k03 + k003A, k4mX,J3, J4))X,

dA

dt
= k05 + k

00
5

(mX)n

Jn5 + (mX)
n
− k6A.

(a) Draw phase portraits for this pair of ODEs for m = 0.5 and for m = 1. (All
other parameters as in Table 10.1.)

(b) Asm decreases from 1, show that the period of the limit cycle solution becomes
very long, until the limit cycle merges into a saddle-node loop at m ≈ 0.8.

(c) Create a one-parameter bifurcation diagram similar to Figure 10.5 for the
reduced system of ODEs.

(d) Using k002 as the second parameter, follow the saddle-node and Hopf bifurcation
points in part (a) to create a two-parameter bifurcation diagram.

4. Figure 10.8 was constructed from system (10.5) and the parameter values in Table
10.1. You should verify the results in Figure 10.8A for wild-type budding yeast cells
before continuing.

(a) Supposing DNA synthesis starts when CycB activity rises above 0.1 and cell
division occurs when CycB activity falls below 0.1, determine the durations of
G1 phase (time from birth to beginning of S phase) and S-G2-M phase (from
onset of DNA synthesis to cell division), and determine cell size at birth, at
onset of DNA synthesis, and at division. Check your results against Table 10.3.
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Table 10.3 Budding Yeast Mutants

Genotype Parameter Duration Duration Size at Size at Size at Phenotype

Changes of G1 S-G2-M Birth DNA Syn. Division

Wild type none 108 39 0.40 0.69 0.87 wild type

sk∆ k0013 = 0 - - - - - block in G1

sk∆cki∆ k11 = k0013 = 0 105 42 viable

cki∆ k11 = 0 viable

cdh∆ k002 = 0 viable

cki∆cdh∆ k11 = k
00
2 = 0 - - - - - block in M

cdc20ts k003 = k
000
2 = 0 - - - - - block in M

Cdc20OP k05 = 0.2 viable

SKOP k013 = 0.3 0.75 viable

SKOP k013 = 0.4 - - - - - inviable

CKI non- k0012 = 0
degradable k00012 = 0
Cdc20 non- k6 = 0.01

degradable

Notes: The duration of S-G2-M in the model is too short, compared to experimental observations (∼60 min).

(b) By simulation, conÞrm that sk∆ mutant cells are inviable (Figure 10.8B), but
sk∆ cki∆ double mutant cells are viable (Figure 10.8C). Fill in row 3 of Table
10.3.

(c) By simulation, show that cki∆ mutant cells are viable, and so are cdh1∆ mu-
tants, but cki∆cdh1∆ double mutants are inviable. Fill in rows 4�6 of Table
10.3.

(d) Finish the rest of Table 10.3.

5. In the same way that you investigated budding yeast mutants in the previous
problem, Þll in the missing elements in Table 10.4 for Þssion yeast mutants.

6. Show that (10.8) is exact if

[CycB/CdkP]

[CycB/Cdk]
=
[CKI/CycB/CdkP]

[CKI/CycB/Cdk]
.

Why should this condition be true?
7. Consider the negative�feedback oscillator (10.9)�(10.11) with [Cdc20]T = [Mad] =
1.

(a) Show that to Þnd the steady state one must solve a cubic equation in z =
[Cdc20]A:

k1k9
k0002 k10

=
k8z(J7 + 1− z)(z + ²)

k7(1− z)(J8 + z)− k8z(J7 + 1− z) ,

where ² = k02/k
000
2 .



10.9: Spontaneous Limit Cycle or Hysteresis Loop? 287

Table 10.4 Fission Yeast Mutants

Genotype Parameter Duration Duration Size at Size at Size at Phenotype

Changes of G1 S-G2-M Birth DNA Syn. Division

Wild type none 16 136 0.70 0.76 1.40 wild type

wee1− k00wee = 0.01 0.40 0.80 small

wee1−cki∆ k11 = 0,

k00wee = 0.01
cki∆ k11 = 0 wild type

cdh∆ k002 = 0 viable

cki∆cdh∆ k13 = k002 = 0
cdc25− k0025 = 0.05
wee1− k00wee = 0.01,
cdc25− k0025 = 0.05 viable

Notes: There are two major discrepancies between the model and observations. (1) The simulated double mutant wee1−

cki∆ is small but viable; whereas, in reality, these mutant cells become very small and die. (2) The simulated cdc25−

mutant grows very large but eventually divides; whereas in reality, these mutant cells block in G2.

(b) Show that if k7 > k8 and both J7 and J8 are ¿ 1, the steady state is given
approximately by

[Cdc20]A =

µ
k1k9
k002k10

¶µ
k7 − k8
k8

¶
− k02
k002
,

[IEP] =
k8
k7
,

[CycB] =
k10
k9

µ
k8

k7 − k8
¶
.

(c) Show that the characteristic equation, which determines the stability of this
steady state, is

λ

∙
λ+

k1k9(k7 − k8)
k8k10

)

¸ ∙
λ+

k7k10
k7 − k8

¸
+ k002k8k10 = 0.

(d) At a Hopf bifurcation, λ must be purely imaginary, λ = ±iω. Show that the
conditions for a Hopf bifurcation are

ω2 =
k1k7k9
k8

=
k002k

2
8k

2
10(k7 − k8)

k1k9(k7 − k8)2 + k7k8k210
.

(e) With all the parameters Þxed at their values in Table 10.1 except k9, show
that the conditions for a Hopf bifurcation are satisÞed when k9 ≈ 0.23 and
ω ≈ 0.135. What is the period of the limit cycle oscillation close to this Hopf
bifurcation?
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(f) Verify the results of (e) numerically. Show that there is a second Hopf
bifurcation at k9 ≈ 0.042.

(g) If you are adept with numerical bifurcation software, follow these Hopf
bifurcation points in two parameters, k9 and k

000
2 .

8. Suppose you are informed of a primitive eukaryotic organism lacking Cdh1. To
maintain itself in G1 phase, the organism relies only on the antagonism between
CycB/Cdk and CKI. You model this control system by a pair of nonlinear ODEs:

dX

dt
= k1 − k02Z − k002W,

dY

dt
= k11 − (k012 + k0012mZ)Y,

where X = [CycB]T, Y = [CKI]T, Z = [CycB] = X −W , and W = [Trimer] is
given by (10.6):

W =
2XY

X + Y +K +
p
(X + Y +K)2 − 4XY .

In this equation, K−1 is the equilibrium constant for the binding of CKI to
CycB/Cdk; hence, K = 0.001, according to Table 10.1. In writing the ODE for
X, we have assumed that CKI binding renders CycB unstable (k002 À k02).

(a) Draw phase portraits for this system. Show that cell growth can drive a Start
transition.

(b) To execute Finish, the organism, you are told, activates Cdc20, which degrades
CycB at anaphase. Modify the ODEs to incorporate this signal, and show how
Cdc20 activation returns the control system to G1.
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CHAPT E R 1 1

Modeling the Stochastic
Gating of Ion Channels

Gregory Smith and Joel Keizer

In previous chapters we have seen several diagrams representing various molecular states
and transitions between these states due to conformational changes and the binding or
unbinding of ligands. Up to this point we have assumed a large number of molecules
and written rate equations consistent with these transition-state diagrams. But how
should we interpret a transition-state diagram when we are considering only a single
molecule or a small number of molecules? The short answer to this question is that
transition rates can be interpreted as transition probabilities per unit time.

11.1 Single�Channel Gating and a Two-State Model

The time course of voltage changes in a whole cell is the result of the average behavior
of many individual channels. Our understanding of individual channel gating comes
largely from experiments using the patch clamp technique (see Figure 11.1). For exam-
ple, typical measurements from a so-called on-cell patch of T-type calcium currents in
guinea pig cardiac ventricular myocytes are shown in the middle panel of Figure 11.2.
The small current deviations in the negative direction indicate the opening of individual
T-type calcium channels gating in response to a command membrane voltage stepped
from −70 mV to −20 mV (top panel). Notice that two conductance states of the channel
are visable: a closed state with no current ßowing and an open state with unitary cur-
rent of ≈ 10−12 amperes (1 picoampere or 1 pA). While transitions between these two
conductance states are random in time, the mean of several hundred records (bottom
panel of Figure 11.2) smoothes out these current ßuctuations and demonstrates that on
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PULL

Cell-attached Whole-cell

micro pipette

Inside-out Outside-out

PULL

suction
perforated patch

Figure 11.1 Four methods of measuring electrical responses in cells with the patch clamp technique. In
the patch technique, a pipette with an opening of ≈ 1 µm is used to make a high�resistance (�gigaohm� =
109 ohm) seal onto a cellular membrane. In the on-cell patch conÞguration all the current into the pipette
ßows directly through the patch, which can contain as few as one or two ion channels. In the whole�cell
conÞguration, the patch is broken and a more accurate whole cell recording can be made as compared
with a relatively leaky sharp electrode puncture. In a perforated patch conÞguation, an ionophore such as
nystatin is introduced into the pipette in order to allow whole�cell-like access while minimizing exchange
of the cell contents with the contents of the pipette. Alternatively, patches of membrane can be torn off,
leading to inside-out and outside-out patches that can be studied in isolation. Adapted from [Hille, 2001].

average the stochastically gating channel activates and subsequently inactivates with
time constants of ≈ 5 ms and 50 ms, respectively. Interestingly, the average dynamics of
individual T-type calcium channels is strikingly similar to �whole cell� measurements
of the activation and inactivation of T-type calcium currents.

11.1.1 Modeling Channel Gating as a Markov Process

The stochastic gating of a single ion channel can be modeled as a continuous-time
Markov process. Consider the simple transition-state diagram encountered Þrst in Chap-
ter 1, the kinetic scheme for ion channel with two states, one closed (C) and the other
open (O),

C (closed)

k
+

*)

k−

O(open). (11.1)
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Figure 11.2 On-cell patch clamp mea-
surements of T-type calcium currents in
guinea pig cardiac ventricular myocytes.
The upper recordings show currents due
to one (or a few) stochastically gat-
ing single channels when the command
voltage is stepped from −70 mV to
−20 mV. The lower plot is an aver-
age of several hundred such records
that shows rapid activation followed
by slow inactivation, proportional to
macroscopic T-type calcium currents
measured in whole�cell conÞguration.
From [Hille, 2001].

DeÞne s to be a random variable taking values s ∈ {C,O} corresponding to these two
states, and write Prob{s = i, t} (or for short, Pi(t)) to represent the probability that
s(t) = i; that is, the molecule is in state i at time t. Because the molecule must always
be in one of the two states, total probability must be conserved and we have

PC(t) + PO(t) = 1.

Now consider the possibility that the two-state ion channel is in state C at time t. If
this is the case, then the rate k+ (e.g., with units of ms−1) is related to the probability
that in a short interval of time (∆t) the two-state ion channel will open. The relationship
is given by

k+∆t = Prob{s = O, t+∆t|s = C, t}, (11.2)

where k+∆t is dimensionless (a pure number) and Prob{s = O, t + ∆t|s = C, t} is
a short-hand notation for the probability, given that the channel is closed at time t,
of a C → O transition occurring in the interval [t, t +∆t]. Multiplying by PC(t), the
probability that the ion channel is indeed in state C, we Þnd that k+PC(t)∆t is the
probability that the transition C → O actually occurs.

The transition-state diagram (11.1) indicates two possible ways for the ion channel
to enter or leave the closed state. Accounting for both of these, we have

PC(t+∆t) = PC(t)− k+PC(t)∆t+ k−PO(t)∆t.
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Writing a similar equation relating PO(t+∆t) and PO(t) and taking the limit ∆t→ 0
gives the system of ODEs

dPC
dt

= −k+PC + k−PO, (11.3)

dPO
dt

= +k+PC − k−PO. (11.4)

Because conservation of probability ensures that PC(t) = 1 − PO(t), (11.3) can be
eliminated to give

dPO
dt

= k+ (1− PO)− k−PO.

Note that the similarity of this equation to (1.4), the kinetic equation derived in Chapter
1, is not accidental. The equation governing changes in probabilities for a single molecule
always has the same form as the rate equation for a large number of molecules.

11.1.2 The Transition Probability Matrix

From our analysis of the two-state ion channel above, we know that for a channel
closed at time t, k+∆t is the probability that it undergoes a transition and opens in the
time interval [t, t+∆t], provided that ∆t is small. By conservation, we also know that
the probability that the channel remains closed during the same interval is 1− k+∆t.
Because a similar argument applies when the channel is open at time t, we can write
the transition probability matrix

Q =

"
Prob{C, t+∆t|C, t} Prob{C, t+∆t|O, t}
Prob{O, t+∆t|C, t} Prob{O, t+∆t|O, t}

#
=

"
1− k+∆t k−∆t

k+∆t 1− k−∆t

#
,

(11.5)

where the elements of Qij (row i, column j) correspond to the transition probability
from state j to state i, and conservation of probability ensures that all the columns
sum to one, that is, for each column j,X

i

Qij = 1. (11.6)

The transition probability matrix is especially useful when we write the current state
of the channel as the vector

~P (t) =

"
Prob{C, t}
Prob{O, t}

#
. (11.7)

Using this notation, the state of the channel at t + ∆t is given by the matrix
multiplication

~P (t+∆t) = Q~P (t). (11.8)
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For example, if the channel is known to be closed at time t, then

~P (t) =

"
1

0

#
,

and the distribution of probability after one time step is

~P (t+∆t) =

"
1− k+∆t k−∆t

k+∆t 1− k−∆t

# "
1

0

#
=

"
1− k+∆t
k+∆t

#
.

Applying (11.8) iteratively, we see that if the channel is closed at time t, the probability
that it is closed or open at time t+ 2∆t is given by

~P (t+ 2∆t) = Q
h
Q~P (t)

i
,= Q2~P (t)

or more generally,

~P (t+ n∆t) = Qn~P (t). (11.9)

This iterative procedure can be used to calculate the evolution of the probability that
the two-state channel is in an open or closed state. It amounts to using Euler�s method
to integrate (11.3) and (11.4).

11.1.3 Dwell Times

Using the transition probability matrix, it is possible to derive an expression for the
average amount of time that the channel remains in the open or closed state, i.e., the
open and closed dwell times. We have already seen that if a channel is closed at time t,
the probability that it remains closed at time t+∆t is 1− k+∆t. The probability that
the channel remains closed for the following time step as well is thus (1− k+∆t)2. In
general, we can write

Prob{C, [t, t+ n∆t]|C, t} = (1− k+∆t)n . (11.10)

This expression is actually much simpler than (11.9) because here we are insisting that
the channel remain closed for the entire interval [t, t+ n∆t], while (11.9) accounts for
the possibility that the channel changes states multiple times. If we deÞne τ = n∆t, we
can rewrite (11.10) as

Prob{C, [t, t+ τ ]|C, t} =
µ
1− k

+τ

n

¶n
,

which is an approximate expression that becomes more accurate (for Þxed τ) as ∆t→ 0
and n→∞ simultaneously. Taking this limit and using

lim
n→∞

³
1− α

n

´n
= e−α,

we obtain

Prob{C, [t, t+ τ ]|C, t} = e−k+τ . (11.11)
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Thus, the probability that a channel closed at time t remains closed until t + τ is a
decreasing exponential function of τ .

In order to complete our calculation of the closed dwell time for the two-state
channel, we must consider the probability that a channel closed at time t stays closed
during the interval [t, t+ τ ] and then opens for the Þrst time in the interval [t+ τ, t+
τ +∆t]. This probability is given by

Prob{C, [t, t+ τ ]|C, t}Prob{O, t+ τ +∆t|C, t+ τ} = e−k+τk+∆t.
Thus, the average closed time will be given by

hτCi =
Z ∞

0

τe−k
+τk+dτ =

1

k+
,

where we have used Z ∞

0

te−tdt = 1.

Similarly, the average open time of the two-state channel model is

hτOi =
Z ∞

0

τe−k
−τk−dτ =

1

k−
.

11.1.4 Monte Carlo Simulation

The elements Qij of the transition probability matrix represent the probability of mak-
ing a transition from state j to state i in a time step of duration ∆t. A simple method
for simulating the transitions of a two-state channel is based on (11.6). Because con-
servation of probability ensures that each column of Q will sum to unity, we can divide
the interval [0,1] into regions, each corresponding to a possible change of state (or lack
of change of state). Next, we choose a random number Y uniformly distributed on the
interval [0,1], and make a transition (or not) based upon the subinterval in which Y
falls. For example, let us return to the transition probability matrix for the two-state
channel given by (11.5). If the current state is O (open), then a transition to the closed
state occurs if 0 ≤ Y < k−∆t, while the channel remains open if k−∆t ≤ Y ≤ 1,
an interval of length 1 − k−∆t. Similarly, if the channel is closed, it remains closed if
0 ≤ Y < 1− k+∆t, and a transition to the open state occurs if 1− k+∆t ≤ Y ≤ 1.

Several example simulations of stochastic gating of a two-state channel model using
the Monte Carlo method are shown in Figure 11.3. By comparing open probabilities and
dwell times in the three simulations shown, one can see how the transition probabilities
k+ and k− lead to distinct channel kinetics. In Exercise 10 the reader can use the Monte
Carlo method to simulate a more complicated model, the four�state GLUT transporter
model discussed in Section 3.1.
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Figure 11.3 A Monte Carlo simulation of the two-state ion channel. (A) k+ = 0.1/ms, k− = 0.1/ms,
giving an equilibrium open probability (dotted lines) of 0.5. (B) k+ changed to 0.3/ms, and now the
equilibrium open probability is 0.75. (C) transition probabilities increased by factor of 5 (k+ = 1.5/ms,
k− = 0.5/ms). Note that average open time and average close time are shorter in this case, as evidenced
by many more transitions between states.

11.1.5 Simulating Multiple Independent Channels

The gating of multiple independent channels can be simulated in one of several ways.
An obvious possible method for simulating a small number of independent two-state
ion channels is to implement N Markov variables with identical transition probability
matrices given by (11.5).

Under the assumption of identical and independent channels, an alternative method
is to simulate a single Markov process that accurately tracks the number of open chan-
nels. Note that for an ensemble of N two-state ion channels there are N+1 possibilities
for the number of open channels (i.e., {0, 1, 2, . . . , N − 2, N − 1, N}) and thus N + 1
distinguishable states for the ensemble. If we label these states S0 through SN , we can
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write the transition-state diagram

S0

Nk
+

*)

k−

S1

(N − 1) k+

*)

2k−

S2

(N − 2) k+

*)

3k−

· · ·
3k+

*)

(N − 2) k−

SN−2

2k+

*)

(N − 1) k−

SN−1

k
+

*)

Nk−

SN ,

(11.12)

where the factors modifying the rate constants k+ and k− account for combinatorics.
For example, the transition probability Nk+ leading out of state S0 accounts for the
fact that any one of N closed channels can open (at rate k+), resulting in one open
channel and ensemble conÞguration S1.

The transition probability matrix for the Markov process diagrammed in (11.12) is
tridiagonal

Q =



D0 k−∆t

Nk+∆t D1

(N − 1)k+∆t
. . .

(N − 1)k−∆t
DN−1 Nk−∆t

k+∆t DN


, (11.13)

where the diagonal terms are such that probability is conserved and each column sums
to 1:

D0 = 1−Nk+∆t,
D1 = 1− k−∆t− (N − 1)k+∆t,

DN−1 = 1− (N − 1)k−∆t− k+∆t,
DN = 1−Nk−∆t.

The reader is encouraged to implement a simulation of a small number (e.g., N = 4)
of identical and independent two-state channels.

11.1.6 Gillespie�s Method

Both of the simulation methods described above involve iterating a transition prob-
ability matrix and can be quite cumbersome when the number of ion channels being
considered is large. Fortunately, an alternative that works well for large N has been
devised [Gillespie, 1977].

Consider a single two-state ion channel obeying the transition-state diagram (11.1)
and recall that the probability that a channel closed at time t remains closed until t+ τ
is an exponentially decreasing function of τ given by (11.11). Thus the closed dwell time
(τC) of the two-state channel is an exponentially distributed random variable; that is,
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the probability distribution function of τC is

Prob{τ < τC ≤ τ + dτ} = k+e−k+τdτ.
Similarly, the open dwell time (τO) of the channel is an exponentially distributed random
variable with probability distribution function

Prob{τ < τO ≤ τ + dτ} = k−e−k−τdτ.
Thus, we can simulate a two-state ion channel by alternately choosing open and closed
dwell times consistent with these distributions. If one has no subroutine for simulating
an exponentially distributed random variable, simply choose a uniformly distributed
random variable U on the interval [0,1] and use the relations

τC = − 1

k+
lnU,

τO = − 1

k−
lnU.

Gillespie�s method is much faster computationally than the Monte Carlo methods de-
scribed above. Furthermore, because there is no time step involved, the method is
exact.

Gillespie�s method becomes more involved when the transition-state diagram indi-
cates that more than one possible transition contributes to the dwell time for a given
state. This possibility is handled by Þrst choosing an exponentially distributed random
number for the dwell time that accounts for all of the possible transitions out of the
current state (i.e., using the sum of the transition probabilities). After the length of
the dwell time in the current state is thus determined, the destination state is selected
by choosing a uniformly distributed random variable on an appropriately partitioned
interval, a process similar to the selection of transitions during Monte Carlo simulation
(see Section 11.1.4).

11.2 An Ensemble of Two-State Ion Channels

In the previous section we claimed that the equation governing changes in probabilities
for a single molecule has the same form as the rate equation for a large number of
molecules. This connection can be made more rigorous by specifying the number of
molecules we are considering in advance. To simplify calculations we will again consider
the two-state ion channel diagrammed in (11.1).

11.2.1 Probability of Finding N Channels in the Open State

Let us write N as the number of molecules, and let PO(n, t) and PC(n, t) be the proba-
bilies of having n molecules in states O and C, respectively. Because we will ultimately
be interested in the statistics of current ßuctuations, we will focus our attention on
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PO(n, t). In any case, the presence of n open channels implies N − n closed channels,
i.e.,

PC(n, t) = PO(N − n, t) (0 ≤ n ≤ N).
Assume that all N molecules are independent and consider a time interval [t, t +∆t]
short enough that only one molecule has appreciable probability of making a C → O
or O → C transition. During this short time interval, there are four events that can
inßuence PO(n, t), the probability that there are n open channels. For example, it is
possible that there are currently n open channels, and during the time interval [t, t+∆t]
one of these channels closes. This probability is given by

loss− = k
−nPO(n, t)∆t,

where the parameter k− is the transition probability for O→ C, P0(n, t) is the proba-
bility that there were n open channels to begin with, and the n scales this probability
to account for the fact that any one of the n independent open channels can close with
equivalent result. Similar reasoning leads to the expression

PO(n, t+∆t) = PO(n, t) + gain+ − loss+ + gain− − loss−, (11.14)

where

gain− = k
−(n+ 1)PO(n+ 1, t)∆t,

loss+ = k
+(N − n)PO(n, t)∆t,

gain+ = k
+(N − n+ 1)PO(n− 1, t)∆t.

To give one more example, the gain+ term in this equation represents a probability ßux
due to the possibility that there are n−1 open channels and one of the closed channels
opens. This transition probability is given by k+(N −n+1)PO(n−1, t)∆t, because any
one of the N − (n− 1) = N − n+ 1 closed channels can open with equivalent result.

Taking the limit ∆t→ 0 of (11.14) gives the ordinary differential equation

d

dt
PO(n, t) = k

+(N − n+ 1)PO(n− 1, t)− k+(N − n)PO(n, t)
+ k−(n+ 1)PO(n+ 1, t)− k−nPO(n, t). (11.15)

This rather complicated expression is called a master equation. It actually represents
N + 1 coupled ordinary differential equations, one for each PO(n, t) for 0 ≤ n ≤ N (all
possible values for the number of open channels).

The equilibrium solution to the master equation is N + 1 time-independent
probabilities P∞

O (n), given by the binomial distribution

P∞
O (n) =

Ã
N

n

!
pn(1− p)N−n, (11.16)
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Figure 11.4 For an equilibrium ensemble of N two-state channels with open probability p, the likelihood
of observing n open channels is given by the binomial probability distribution (11.16), with parameters N
and p. The binomial probability distribution has mean Np, variance Np(1−p), and coefficient of variation
[(1− p) /Np]1/2. Note that as the equilibrium open probability, p, increases the mean number of open
channels shifts rightward. The N−1/2 factor in the coefficient of variation is reßected in the narrowing of
the distributions (from left to right).

where p = k+/ (k+ + k−) and Ã
N

n

!
=

N !

n!(N − n)! .

Although this may not be obvious at Þrst, in Exercise 4 the mathematically inclined
reader can use the method of substitution to conÞrm that the binomial distribution
satisÞes a time-independent version of (11.15).

Figure 11.4 shows several binomial probability distributions with parameters N
and p varied. Given an ensemble of N two-state channels, these distributions represent
the equilibrium probability of Þnding n channels in the open state. In the top row,
the equilibrium open probability of p = 0.5 results in a centered distribution: The
likelihood of observing n open channels is equal to the likelihood of observing N − n
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open channels. In the bottom row p = 0.75, and the enhanced likelihood that channels
are open is evident in the rightward shift of the distributions.

11.2.2 The Average Number of Open Channels

The equilibrium solution to the master equation for the two-state channel given by
(11.16) is the binomial distribution, and thus the average number of open channels
at equilibrium is hNOi∞ = Np. But what about the time-dependence of the average
number of open channels? Because the average number of open channels is given by

hNOi =
NX
n=0

nPO(n, t), (11.17)

we can Þnd an equation for dhNOi/dt by multiplying (11.15) by n and summing. This
gives

dhNOi
dt

= k+
NX
n=0

n(N − n+ 1)PO(n− 1, t)− k+
NX
n=0

n(N − n)PO(n, t)

+ k−
NX
n=0

n(n+ 1)PO(n+ 1, t)− k+
NX
n=0

n(N − n)PO(n, t). (11.18)

In Exercise 6 the reader can show that this equation can be reduced to

dhNOi
dt

= k+ (N − hNOi)− k−hNOi, (11.19)

where

N − hNOi = hNCi. (11.20)

Note that (11.19) is identical to the rate equation for a population of two-state channels
derived by other means in Chapter 1. For the duration of this chapter we will refer to
such an equation as an average rate equation. Also note that the equilibrium average
number of open (hNOi∞) and closed (hNCi∞) channels can be found by setting the
left�hand side of (11.19) to zero, that is,

hNOi∞ = N k+

k+ + k−
= Np, (11.21)

hNCi∞ = N k−

k+ + k−
= N (1− p) , (11.22)

in agreement with our knowledge of the mean of a binomial distribution.
If we divide (11.19) by the total number of channels N , we Þnd the average rate

equation for the fraction of open channels

dhfOi
dt

= k+ (1− hfOi)− k−hfOi, (11.23)



11.2: An Ensemble of Two-State Ion Channels 301

where hfOi = hNOi/N , hfCi = hNCi/N , and (11.20) implies hfOi + hfCi = 1. The
equilibrium fractions of open and closed channels are hfOi∞ = k+/ (k+ + k−) = p and
hfCi∞ = k−/ (k+ + k−) = 1− p. We thus see explicitly for a two-state channel that the
master equation implies an average rate equation of the sort introduced in Chapter 2.
This is true in general.

11.2.3 The Variance of the Number of Open Channels

One advantage of beginning with a master equation is that in addition to the average
rate equation, an evolution equation for the variance in the number of open channels
can be derived. The variance in the number of open channels is deÞned as

σ2NO = h(NO − hNOi)2i =
NX
n=0

(n− hNOi)2 PO(n, t). (11.24)

Similarly, the variance in the number of closed channels is

σ2NC
= h(NC − hNCi)2i =

NX
n=0

(n− hNCi)2 PC(n, t). (11.25)

Again, we are ultimately interested in the statistics of current ßuctuations, so we focus
on σ2NO . For the two-state channel under consideration, it is shown in Exercise 8 that
these quantities are equal.

Beginning with (11.24) and the master equation (11.15), it can be shown that the
variance σ2NO

satisÞes the ODE

dσ2NO
dt

= −2 (k+ + k−)σ2NO + k+ (N − hNOi) + k−hNOi. (11.26)

The equilibrium variance
¡
σ2NO

¢
∞ is thus given by steady states of this equation. Setting

the left�hand side of this expression to zero, we obtain¡
σ2NO

¢
∞ = N

k+k−

(k+ + k−)
2 = Np(1− p). (11.27)

From this equation it is clear that the equilibrium variance is proportional to N , the
total number of channels. However, a relative measure of the variance known as the
coefficient of variation is more meaningful. The coefficient of variation of the number of
open channels, CV NO , is given by the ratio of the standard deviation σNO (the square
root of the variance) to the mean hNOi. At equilibrium, we have

(CV NO
)∞ =

(σNO)∞
hNOi∞ =

1√
N

r
k−

k+
=

s
1− p
Np

,

where the last equality is in agreement with the mean and variance of a binomially
distributed random variable being Np and Np(1−p), respectively. From this expression
it is clear that the equilibrium coefficient of variation for the number of open channels is
inversely proportional to the square root of the number of channels N . Thus, in order
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Figure 11.5 Variance and mean sodium
current measured from voltage-clamped
single myelinated nerve Þbers from Rana
pipiens depolarized to −15 mV after 50
ms prepulses to −105 mV. (A) Vari-
ance arising from the stochastic gating of
sodium channels (dots) and thermal noise
(solid line). (B) Mean current. (C) After
carefully accounting for contributions to
the variance due to thermal noise, the
parabolic relationship between variance
and mean current suggests N=20,400
sodium channels at this node of Ran-
vier each with single channel conductance
of iunit = 0.55 pA. Reprinted from
[Sigworth, 1980].

to decrease this relative measure of channel noise by a factor of two, the number of
channels must be increased by a factor of 4.

11.3 Fluctuations in Macroscopic Currents

When the voltage clamp technique is applied to isolated membrane patches, openings
and closings of single ion channels can be observed. Recall the single-channel record-
ings of T-type Ca2+ currents shown in the top panel of Figure 11.2. Importantly, the
bottom panel of Figure 11.2 shows that when several hundred single-channel record-
ings are summed, the kinetics of rapid activation and slower inactivation of the T-type
Ca2+ current are evident. In this summed trace, the relative size of the ßuctuations
in the macroscopic current is much smaller than those observed in the single-channel
recordings; however, the ßuctuations in ionic current are still noticeable.

During voltage clamp recordings of large numbers of ion channels, stochastic gating
leads to current ßuctuations. For example, Figure 11.5B shows the time evolution of the
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Figure 11.6 Acetylcholine�produced cur-
rent noise due to ßuctuations in ionic con-
ductance of voltage�clamped end-plates
of Rana pipiens nerve�muscle preparation.
Iontophoretic application of ACh resulted
in an increase in mean current as well
as variance. The second trace, labeled
�Rest,� also shows a spontaneous minia-
ture end-plate current. Reprinted from
[Anderson and Stevens, 1973].

mean sodium current measured from voltage-clamped single myelinated nerve Þbers of
Rana pipiens (frog) that were depolarized to −15 mV after 50 ms prepulses to −105
mV. After a careful accounting for contributions to the variance of the sodium current
due to thermal noise (Figure 11.5A, solid line), the variance arising from the stochastic
gating of sodium channels remains (Figure 11.5A, dots). Figure 11.6 shows macroscopic
current ßuctuations induced by the iontophoretic application of acetylcholine (ACh) to
voltage�clamped end-plates of a Rana pipiens nerve-muscle preparation. Interestingly,
iontophoretic application of ACh increased the variance of the end-plate current as
well as the mean. While the Þrst trace in Figure 11.6 shows a spontaneous miniature
end-plate current (sharp peak), the phenomenon of interest is the 10-fold increase in
variance observed throughout the duration of the second trace (as compared to the
Þrst).

In order to understand the relationship between ßuctuations in macroscopic cur-
rents and the underlying single-channel kinetics, consider the statistics of ionic current
implied by the two-state channel model presented in the previous section. In the sim-
plest case, the unitary current of each two-state channel will be a random variable
taking the value zero when the channel is closed or a Þxed value iunit when the channel
is open. That is, the unitary current will be a random variable Iunit given by

Iunit =

(
iunit = gunit (V − Vrev) when open,

0 when closed,
(11.28)

where V is a Þxed command voltage, Vrev is the reversal potential for the single�channel
conductance gunit, and iunit is directly proportional to the conductance of the open
channel. With these assumptions, it is straightforward to apply the results of Section
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Figure 11.7 Variance of conductance
ßuctuations as a function of mean end-
plate conductance of Rana pipiens nerve�
muscle preparation. Because the unitary
conductance of end-plate channels is small,
the relationship is linear and the slope
of 0.19 × 10−10 mho = 19 pS gives
the single�channel conductance. Reprinted
from [Anderson and Stevens, 1973]

11.2 and derive the statistics of a ßuctuating current that will result from N two-state
channels with unitary current given by (11.28). The ßuctuating macroscopic current
will be a random variable deÞned by

Imacro = NO iunit (0 ≤ NO ≤ N),
where NO is the number of open channels (also a random variable). Because the macro-
scopic current is directly proportional to NO, we can use (11.17) to Þnd the equilibrium
average macroscopic current

hImacroi∞ = iunithNOi∞.
Similarly, the equilibrium variance in the number of open channels, (σ2NO)∞, given by
(11.27), determines the equilibrium variance of the macroscopic current¡

σ2Imacro
¢
∞ = i

2
unit

¡
σ2NO

¢
∞ .

Recall that if we write p = k+/ (k+ + k−), the equilibrium mean and variance for
the number of open channels are given by hNOi∞ = Np and

¡
σ2NO

¢
∞ = Np(1 − p).

Thus, the equilibrium mean and variance for the macroscopic current are given by
hImacroi∞ = iunitNp and

¡
σ2Imacro

¢
∞ = i2unitNp(1 − p). Combining these expressions and

eliminating p gives ¡
σ2Imacro

¢
∞ = iunithImacroi∞ − hImacroi2∞/N, (11.29)

where both hImacroi∞ and
¡
σ2Imacro

¢
∞ are parameterized by p.

Equation (11.29) is the basis of a standard technique of membrane noise analysis
whereby current ßuctuations can be used to estimate the number of ion channels in
a membrane patch. By repeatedly manipulating the fraction of open channels p an
estimate of (σ2Imacro)∞ as a function of hImacroi∞ is obtained. According to (11.29), the
relationship will be parabolic with zero variance at hImacroi∞ = 0 and hImacroi∞ = iunitN
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and a maximum variance of
¡
σ2Imacro

¢
∞ = Ni2unit/4 at hImacroi∞ = iunitN/2. In Figure

11.5C this technique was applied to voltage-clamped single myelinated nerve Þbers from
Rana pipiens. Equation (11.29) and a visual Þt resulting in a maximum of

¡
σ2Imacro

¢
∞ =

2.5 × 10−21A2 at hImacroi∞ = 5nA suggests that N = hImacroi2∞/
¡
σ2Imacro

¢
∞ = 10, 000

and iunit = 1 pA. However, after carefully accounting for contributions to the variance
due to thermal noise, an adjusted Þt (solid line in Figure 11.5C) gives N = 20, 400
sodium channels at this node of Ranvier and a unitary current of iunit = 0.55 pA (see
Sigworth 1980).

In Figure 11.7 this technique was applied to end-plate conductance ßuctuations of
Rana pipiens nerve�muscle preparation. Here, the equilibrium variance of the macro-
scopic conductance

¡
σ2gmacro

¢
∞ is plotted against the mean conductance hgmacroi∞,

where the macroscopic conductance is related to the unitary conductance through
gmacro = Ngunit. Using (11.29) and the relations

hgmacroi∞ = hImacroi∞
V − Vrev , (σ2gmacro)∞ =

(σ2Imacro)∞

(V − Vrev)2
and iunit = gunit (V − Vrev) ,

the reader can conÞrm that this relationship is also expected to be parabolic, that is,¡
σ2gmacro

¢
∞ = gunithgmacroi∞ − hgmacroi2∞/N.

However, because the unitary end-plate channel conductance of Rana pipiens nerve�
muscle preparation is very small (quadratic term negligible), the relationship is nearly
linear: ¡

σ2gmacro
¢
∞ = gunithgmacroi∞.

Indeed, the slope of the line in Figure 11.7 gives a single channel conductance of 19 pS
for the open end-plate channel.
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Figure 11.8 The parabolic relationship be-
tween the variance and mean of ionic current
through N = 10, 000 two-state channels
each with single�channel conductance of
iunit = 0.01 pA. The parabolic relationship
between the variance

¡
σ2Imacro

¢
∞ and mean

hImacroi∞ of current ßuctuations is calculated
from 100 simultaneously integrated Langevin
equations.
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11.4 Modeling Fluctuations in Macroscopic Currents
with Stochastic ODEs

Figure 11.8 shows a simulation reproducing the parabolic relationship between the
variance

¡
σ2Imacro

¢
∞ and mean, hImacroi∞, of current ßuctuations due to the stochastic

gating of ion channels. This simulation includesN = 10, 000 identical two-state channels
with unitary conductance of iunit = 0.01 pA. A hundred trials were simultaneously
performed and averaged to calculate the mean and variance as the open probability
p ranged from 0 to 1. Because the methods discussed in Section 11.1.4 would require
the declaration of a Markov variable with 10,001 possible states, the reader may be
wondering how this simulation was performed.

Indeed, in simulating the stochastic gating of large numbers of ion channels,
Monte Carlo methods becomes impractical. However, when N is large, ßuctuations in
macroscopic currents can instead be described using a stochastic ordinary differential
equation, called a Langevin equation, that takes the form

df

dt
= g(f) + ξ. (11.30)

In this equation, the familiar deterministic dynamics given by g(f) are supplemented
with a rapidly varying random forcing term ξ(t). Because ξ is a random function of
time, solving (11.30) often means Þnding a solution f(t) that satisÞes the equation for
a particular instantiation of ξ. Alternatively, if the statistics of ξ are given, we may be
interested in deriving the statistics of the new random variable f(t) that is formally
deÞned by (11.30).

The most common ßuctuating force to consider are the increments of a Wiener
process. Similar to the unbiased random walk discussed in Chapter 12, a Wiener process
B(t) is a �Gaussian� random process that has zero mean

hBi = 0 (11.31)

and variance directly proportional to time,

σ2B = h(B − hBi)2i = hB2i = t. (11.32)

Indeed, the instantiations of a Wiener process B1 and B2 shown in Figure 11.9 are
similar to the random walks presented in Figure 12.4. Just as the increments of an
unbiased random walk are ±∆x with equal probability, resulting in an increment with
mean zero h∆Xi = 0, the increments of the numerical approximation to a Wiener
process shown in Figure 11.9 are normally distributed with mean zero,

h∆Bi = 0.
In order to understand the variance of the increments of this simulated Wiener

process, we must remember that unlike an unbiased random walk, a Wiener process
is a continuous function of time, B(t). A relevant statistic for the increments of a
Wiener process is the two-time covariance or autocorrelation function h∆B(t)∆B(t0)i.
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Figure 11.9 Two instantiations of a Wiener process, B1 and B2, have trajectories similar to the random
walks shown in Figure 12.4. The mean of 100 trials is near zero, while the variance of 100 trials increases
linearly with time. In these simulations the increments (∆B) are normally distributed with mean zero and
variance 1/∆t, where ∆t is the integration time step.

Because nonoverlapping increments of a Wiener process are statistically independent
and uncorrelated, h∆B(t)∆B(t0)i = 0 for t0 > t + ∆t in Figure 11.9. In the limit as
∆t→ 0 (i.e., for a �real� Wiener process), we might even write dB(t)/dt = ξ(t), where
hξ(t)i = 0 and

hξ(t)ξ(t0)i = δ (t− t0) , (11.33)

although technically this derivative does not exist. Equation (11.33) may appear un-
usual, especially if the reader is unfamiliar with the Dirac delta function, deÞned by
δ(t) = 0 for t 6= 0 and Z ∞

−∞
δ(t)dt = 1.
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AWiener process B(t) can be simulated by numerically integrating a piecewise con-
stant approximation to the Wiener increment ∆B(t). The Wiener increment (Figure
11.9B) is a normally distributed random variable with zero mean that is held Þxed dur-
ing the time interval [t, t+∆t] and updated after the integration time step is complete.
Integrating this erratic function of time results in the Wiener trajectories of Figure
11.9A and Figure 11.9C. If we rewrite (11.33) to account for this piecewise constant
approximation to the Wiener increments, we obtain

h∆B(t)∆B(t0)i =
(
1/∆t, t0 ∈ [t, t+∆t],
0 otherwise.

Like the unbiased random walk, the variance of this simulated Wiener process is
proportional to time as shown in Figure 11.9D. The reader can conÞrm through
simulations that in order to achieve this macroscopic behavior, the variance of the
Wiener increments ∆B(t) must be adjusted according to the integration time step (i.e.,
Var[∆B] = 1/∆t gives Var[B] = t).

11.4.1 Langevin Equation for an Ensemble of Two-State
Channels

In order to use a Langevin equation of the form of (11.30) to simulate a large number
of ion channels, we must make an appropriate choice for both the deterministic func-
tion g(f) as well as the statistics of the random variable ξ. Recalling the average rate
equation for the dynamics of the open fraction of channels (11.23), we write

dfO
dt

= k+ (1− fO)− k−fO + ξ (11.34)

= −fO − hfOi∞
τf

+ ξ, (11.35)

where fO = NO/N is a random variable, the ßuctuating fraction of open channels,
hfOi∞ = k+/ (k+ + k−), and τf = 1/ (k+ + k−). For (11.35) to be meaningful, we must
specify the statistics of ξ. An appropriate choice for ξ is a ßuctuating function of time
that has zero mean,

hξ(t)i = 0,
and an autocorrelation function given by

hξ(t)ξ(t0)i = γδ (t− t0) .
By methods of statistical physics beyond the scope of this book, the constant γ(fO) can
be shown to be inversely proportional to N and proportional to the sum of the rates of
both the O→ C and C → O transitions, that is,

γ(fO) =
k+ (1− fO) + k−fO

N
. (11.36)
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An appropriate choice for ξ is thus ξ =
√
γ∆B, where the ∆B are the increments of a

Wiener process.
Although we haven�t fully justiÞed this choice for ξ, we can check that this ran-

dom variable and (11.35) deÞne the random variable fO in a manner consistent with
the work in previous sections. To do this we use the ßuctuation�dissipation theorem
[Keizer, 1987, Gardiner, 1997] from statistical physics that relates γ, which occurs in
the correlation function of ξ, to the equilibrium variance of fO. The relationship depends
on the relaxation time constant τf and is given by

γ∞ =
2
¡
σ2fO

¢
∞

τf
. (11.37)

Using (11.27), and remembering that
¡
σ2fO

¢
∞ =

¡
σ2NO

¢
∞ /N

2, the reader can conÞrm
that the last equality holds at equilibrium.

Stochastic simulations of the open fraction, fO, of 1000 two-state ion channels
calculated by integrating (11.35) are shown in Figure 11.10. The transition rates used
were k+ = k− = 0.05/ms in panel (A) and k+ = k− = 0.005/ms in panel (B), giving
time constants (τf) of 10 and 100 ms and equilibrium open fraction hfOi∞ = p = 0.5 in
both cases. This difference in relaxation time constants is evident in the (normalized)
autocorrelation functions compared in C. It can be shown that for an inÞnitely long
simulation the autocorrelation functions for fO is

hfO(t)fO(t0)i =
¡
σ2fO

¢
∞ e

−|t−t0|/τf .

The narrower autocorrelation function in Figure 11.10C thus corresponds to the case
with small time constant τf . Note that although the time constant for relaxation to
hfOi∞ = 0.5 is faster in A than in B, the equilibrium variance

¡
σ2fO

¢
∞ shown in Figure

11.10D is approximately equal in the two cases, as expected according to (11.27).

11.4.2 Fokker�Planck Equation for an Ensemble of Two-State
Channels

Rather than calculating trajectories for the fraction of open channels fO using a
Langevin equation, an alternative is to calculate the evolution of the probability distri-
bution function (PDF) for fO. While the binomial distribution encountered in Section
11.2 is an example of a discrete probability distribution (NO takes on N + 1 discrete
values), the Langevin equation for fO (11.35) implies that fO can take on any value on
the interval [0,1]. Thus, the PDF for fO is continuous and deÞned as

P (f, t) df = Prob{f(t) < fO < f(t) + df},
where conservation of probability givesZ 1

0

P (f, t) df = 1. (11.38)
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Figure 11.10 (A,B) The open fraction fO of 1000 two-state ion channels simulated using a Langevin
equation. Transition rates are ten times faster in (A) than (B) so that the time constant τf is 10 and 100
ms, respectively. (C) Numerically calculated autocorrelation function of fO . (D) The equilibrium mean and
variance of fO are approximately equal in the two cases.

We can write an evolution equation for P (f, t), known as a Fokker�Planck equation,
that corresponds to the Langevin description given by (11.35):

∂P (f, t)

∂t
= − ∂

∂f
[Jadv (f, t) + Jdif (f, t)] . (11.39)

In this equation, Jadv(f, t) is a probability ßux due to advection (that is, transport)
governed by the deterministic terms in (11.35):

Jadv(f, t) = −f − hfOi∞
τf

P (f, t). (11.40)
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In contrast, Jdif(f, t) is a diffusive ßux that accounts for the spread of probability
induced by the random variable ξ. This diffusive probability ßux is given by

Jdif(f, t) = −1
2

∂

∂f
[γ(f)P (f, t)] , (11.41)

where γ is given by (11.36). Rewriting (11.40) in terms of the total probability ßux
Jtot = Jadv + Jdif , we have

∂P (f, t)

∂t
= −∂Jtot (f, t)

∂f
, (11.42)

with associated boundary conditions

Jtot(0, t) = Jtot(1, t) = 0

that imply no ßux of probability out of the physiological range for fO. An appropriate
choice of initial conditions would be P (f, 0) = δ(f − hfOi∞), implying that the system
is known to be in equilibrium at t = 0.

Setting the left�hand side of (11.39) equal to zero, we see that the equilibrium
probability distribution P∞(f) solves J∞tot = 0. That is,

− f − hfOi∞
τf

P∞(f)− 1
2

d

df
[γ(f)P∞(f)] = 0. (11.43)

This differential equation can be solved numerically. However, we obtain more insight
by approximating γ(f) by

γ∞ =
k+ (1− hfOi∞) + k−hfOi∞

N
.

This procedure is valid when ßuctuations of fO away from equilibrium, hfOi∞, are small
(that is, when N is large). If we make this approximation, it can be shown that the
probability distribution

P∞(f) = A exp

∙
f (2hfOi∞ − f)

γ∞τf

¸
(11.44)

satisÞes (11.43), where the normalization constant A is chosen to satisfy conservation of
probability (11.38). While this expression may not look familiar, when γ∞ is sufficiently
small (N is sufficiently large), P∞(f) is well approximated by the Gaussian

P∞(f) =
1√

2π
¡
σ2fO

¢
∞
exp

"
−(f − hfOi∞)

2

2
¡
σ2fO

¢
∞

#
.

At equilibrium fO will be a normally distributed random variable with mean hfOi∞
and variance

¡
σ2fO

¢
∞ = γ∞τf/2, in agreement with (11.37). The distribution P∞(f) is

approximately Gaussian for N = 1000 as shown in Figure 11.10D.



312 11: Modeling the Stochastic Gating of Ion Channels

0 100 200

t (ms)

-70

-40

-10

20

V (mV)

A

B

C

Figure 11.11 Membrane voltage ßuctu-
ations due to the stochastic gating of one
or more sodium channels. (A,B) Single
channel simulations. Transition probabil-
ities are a factor of two slower in (B),
leading to longer dwell times and fewer
transitions as evidenced by �kinks� in
graph. (C) Twenty channels are simulated.
As the number of sodium channels in-
creases, the variance in membrane voltage
decrease.

11.5 Membrane Voltage Fluctuations

In Section 11.3 we discussed macroscopic current ßuctuations experimentally observed
in voltage clamp recordings and a membrane noise analysis. In this section we will
simulate electrical recordings in which the membrane potential is not clamped, but
rather ßuctuates under the inßuence of two-state ion channels. Although a misnomer,
such measurements are referred to as current clamp recordings. For now we assume
that ion channel gating is voltage-independent.

Simulations of membrane voltage ßuctuations due to the stochastic gating of a
single sodium channel obeying the transition-state diagram (11.1) are shown in Figure
11.11A and Figure 11.11B. The gating of the two-state channel is simulated using Monte
Carlo methods, while membrane voltage is simultaneously calculated using the current
balance equation

C
dV

dt
= −gL (V − VL)− gNa (V − VNa) , (11.45)

where gL is leakage conductance with reversal potential VL = −70 mV, and gNa (a
random variable taking values of 0 or gmaxNa depending on channel state) is a sodium
conductance with reversal potential VNa = 60 mV. Because transition probabilities are
a factor of two slower in Figure 11.11B, longer dwell times and fewer transitions are
observed. For comparison, Figure 11.11C shows the result when twenty channels are
simulated. Here gNa takes on 21 possible values between 0 and g

max
Na and as a consequence

the variance in the ßuctuating membrane voltage decreases.
Membrane voltage ßuctuations such as those shown in Figure 11.11 can also be

modeled by tracking the evolution of probability distribution functions (PDFs) for
membrane voltage conditioned on the state of the ion channel. The governing equations
are coupled partial differential equations each of which is similar to the advective com-
ponent of the Fokker�Planck equations described above. We will refer to this method
as the ensemble density approach.
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If membrane voltage ßuctuations are due to a single two-state sodium channel,
there are two relevant conditional PDFs,

PC(v, t) dv = Prob{v < V < v + dv|C, t},
PO(v, t) dv = Prob{v < V < v + dv|O, t},

where PC(v, t) and PO(v, t) are conditioned on the channel being closed or open,
respectively. Conservation of probability impliesZ ∞

−∞
PC(v, t) dv = 1,

Z ∞

−∞
PO(v, t) dv = 1.

The equations for the evolution of these conditional PDFs are

∂

∂t
PC(v, t) = − ∂

∂v
JC(v, t)− k+PC(v, t) + k−PO(v, t), (11.46)

∂

∂t
PO(v, t) = − ∂

∂v
JO(v, t) + k

+PC(v, t)− k−PO(v, t), (11.47)

where JC(v, t) and JO(v, t) are advective probability ßuxes due to membrane voltage
obeying the current balance equation (11.45):

JC(v, t) = − 1
C
[gL (v − VL)]PC(v, t),

JO(v, t) = − 1
C
[gL (v − VL) + gmaxNa (v − VNa)]PO(v, t).

Notice that the sodium current term occurs only in JO(v, t), because if the channel
is closed, gNa = 0. The reaction terms that appear in (11.46) and (11.47) account
for probability ßux due to the stochastic gating of the sodium channel. Regardless of
membrane voltage, the conditional probability PC(v, t) can decrease due to channel
opening at a rate of k+PC(v, t) and increase due to closing of open channels at a rate of
k−PO(v, t). The reaction terms occur with opposite sign because any increase or decrease
in the conditional probability PC(v, t) due to a channel gating implies commensurate
change in PO(v, t).

The equilibrium conditional probability distribution functions for the membrane
voltage, P∞

C (v) and P
∞
O (v), calculated numerically from (11.46) and (11.47), are shown

in Figure 11.12A. The simulation ran for 1 second, corresponding to approximately 1000
changes in channel state. As expected, P∞

O (v) is shifted toward the right (depolarized
V ) relative to P∞

C (v). The astute reader will note that the PDFs are not symmetric,
indicating that when the channel is open probability advects toward VNa faster than it
advects toward VL when the channel is closed; i.e., an open sodium channel leads to a
smaller membrane time constant. In Figure 11.12B, the rate constants k+ and k− are a
factor of ten slower. In this case, more probability accumulates near both VL and VNa.
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Figure 11.12 Equilibrium conditional probability distribution functions (PDFs), P∞C (v) (dotted lines)
and P∞O (v) (solid lines) for the membrane voltage conditioned on the state of a single two-state sodium
channel. In (A), k+ = k− = 1/ms, while for (B) the transition probabilities are a factor of two slower.

11.5.1 Membrane Voltage Fluctuations with an Ensemble of
Two-State Channels

The ensemble density formulation described above can be extended to the case where
membrane voltage ßuctuations are due to an ensemble of N two-state channels. If we
write PO(n, v, t) for the conditional probability density for membrane voltage given n
open sodium channels, we have

∂

∂t
PO(n, v, t) = − ∂

∂v
JO(n, v, t)

+ k+(N − n+ 1)PO(n− 1, v, t)− k+(N − n)PO(n, v, t)
+ k−(n+ 1)PO(n+ 1, v, t)− k−nPO(n, v, t), (11.48)

where the reaction terms are based on the master equation formulation presented in
Section 11.2.1, JO(n, v, t) is given by

JO(n, v, t) = − 1
C

h
gL (v − VL) + gmaxNa

n

N
(v − VNa)

i
PO(n, v, t),

and gmaxNa is the sodium conductance when all N channels are open. Note that (11.48)
represents N + 1 coupled partial differential equations, one for each PO(n, v, t), where
0 ≤ n ≤ N .

Figure 11.13 shows equilibrium conditional PDFs P∞
O (n, v) for membrane voltage

ßuctuations induced by 20 two-state sodium channels. These PDFs are calculated by
numerically solving (11.48) until a steady state is achieved. Careful inspection of the
Þgure shows that in the case of high n (more open channels) the equilibrium distribu-
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Figure 11.13 Conditional probability distri-
bution functions for membrane voltage ßuctu-
ations due to stochastic gating of 20 two-state
sodium channels. Parameters as in Figure
11.12A.

tion of membrane voltage is shifted toward VNa. Note that these PDFs appear to be
consistent with a binomial distribution for the total equilibrium probability for a given
value of n. That is,

P∞
O (n) =

Z ∞

−∞
P∞
O (n, v) dv

is in agreement with (11.16).

11.6 Stochasticity and Discreteness in an Excitable
Membrane Model

Using the results of previous sections, we are prepared to explore the consequences
of stochasticity and discreteness in an excitable membrane model. The deterministic
Morris�Lecar model is

C
dV

dt
= Iapp − gL (V − VL)− gKw (V − VK)− gCam∞ (V − VCa) (11.49)

dw

dt
=
w∞ −w
τ

, (11.50)

where the activation function for the Ca2+ current, m∞(V ); the activation function for
the K+ current, w∞(V ); and voltage-dependent time scale for activation of K

+ current,
τ(V ), are given in Chapter 2.

In (11.50), w is usually thought to represent the fraction of open K+ channels.
However, we now understand that this differential equation is actually an average rate
equation similar to (11.23). To be clear, let us write this deterministic average rate
equation as

dhwi
dt

=
w∞ − hwi

τ
,
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where w (a random variable) represent the fraction of open K+ channels. The reader
can easily verify that this average rate equation corresponds to the two-state kinetic
scheme

C (closed)

α(V )

*)

β(V )

O (open),

where C and O indicate closed and open states of the K+ channel, and the voltage-
dependent transition rates α(V ) and β(V ) are given by

α(V ) =
w∞
τ

β(V ) =
1−w∞
τ

.

This, in turn, implies that the equilibrium fraction of open K+ channels is

hwi∞ = w∞(V ) = α

α+ β
,

and the time constant τ(V ) is

τ(V ) =
1

α+ β
.

With these preliminaries, we can see that a Morris�Lecar simulation that includes
channel noise due to a small number of K+ channels could be performed with several
Markov variables obeying the voltage-dependent transition probability matrix

Q =

"
1− α∆t β∆t

α∆t 1− β∆t

#

for each channel. Alternatively, a larger collection of N channels can be simulated by
tracking only a single Markov variable, the number of open K+ channels. In this case,
the following tridiagonal transition probability matrix would be used:

Q =



D0 β∆t

Nα∆t D1

(N − 1)α∆t
. . .

(N − 1)β∆t
DN−1 Nβ∆t

α∆t DN


,

with diagonal terms (D0, D1, . . . , DN−1, DN) such that each column sums to unity.
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Figure 11.14 Morris�Lecar simulations
including stochastic gating of 100 K+

channels. (A) spontaneous excitability driven
by channel noise is observed when Iapp =
10 and the deterministic model is excitable.
(B) Stochastic oscillations are observed
when Iapp = 12 and the deterministic
model is oscillatory. (C) Stochastic bista-
bility is observed when the deterministic
model is bistable (Iapp = 12 and v3 = 15
mV rather than standard value of 10 mV).

11.6.1 Phenomena Induced by Stochasticity and Discreteness

Figure 11.14 and Figure 11.15 show Morris�Lecar simulations that include stochas-
tic voltage-dependent gating of 100 K+ channels. Spontaneous action potentials are
induced by this simulated channel noise (Figure 11.14A). We will refer to this phe-
nomenon as �stochastic excitability,� because it is understood as a sampling of the
excitable phase space of the deterministic model made possible by membrane potential
ßuctuations due to the stochastic gating of K+ channels. The (V,w) phase plane trajec-
tories for Figure 11.14 are shown in Figure 11.15. The discreteness and stochasticity of
the K+ gating variable w allows trajectories to ßuctuate around the Þxed point of the
deterministic model seen in the lower left of Figure 11.15. Occasionally, K+ channels
spontaneously inactivate (w ßuctuates toward 0) and a regenerative Ca2+ current leads
to an action potential. This type of spontaneous activity has been observed in stochas-
tic versions of the Hodgkin�Huxley equations [Chow and White, 1996, Fox, 1997] and
is thought to inßuence subthreshold membrane potential oscillations and excitabil-
ity of stellate neurons of the medial entorhinal cortex of the hippocampal region
[White et al., 1995, White et al., 2000].

In Figure 11.14B parameters are such that the deterministic model (as N → ∞)
is oscillatory. However, when N = 100 channel noise results in irregular oscillations. In
Figure 11.14B stochastic bistability is observed. When parameters are chosen so that
the deterministic model is bistable, channel noise allows the alternate sampling of two
stable Þxed points in the (V,w) phase plane, a phenomenon known as basin hopping.
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Figure 11.15 Morris�Lecar simulations with
stochastic gating of 100 K+ channels shown
in the (V,w) phase plane. Panels correspond
to (A) stochastic excitability, (B) oscillations,
and (C) bistability shown in Figure 11.14.

11.6.2 The Ensemble Density Approach Applied to the
Stochastic Morris�Lecar Model

The ensemble density approach described in Section 11.4.2 can be applied to the
stochastic Morris�Lecar model described above. The evolution equations for the
conditional PDFs take the form

∂

∂t
PO(n, v, t) = − ∂

∂v
JO(n, v, t)

+ α(v)(N − n+ 1)PO(n− 1, v, t) (11.51)

− α(v)(N − n)PO(n, v, t)
+ β(v)(n+ 1)PO(n+ 1, v, t)− β(v)nPO(n, v, t).

This form is similar to (11.48) except that the transition probabilities are now voltage-
dependent, and the probability ßuxes JO(n, v, t) are given by the Morris�Lecar current
balance equation (11.49). That is,

JO(n, v, t) = − 1
C

h
Iapp − gL (v − VL)− gmaxK

n

N
(v − VK)− gCam∞ (v − VCa)

i
PO(n, v, t).

Figure 11.16 shows equilibrium PDFs for the membrane voltage of the stochastic
Morris�Lecar model conditioned on the number of open K+ channels. These equilib-
rium PDFs are steady-state solutions to (11.51) and correspond to the three types of
trajectories shown in Figure 11.15. The amount of time that trajectories spend in differ-
ent regions of the (V,w) phase plane is reßected in these distributions. It is clear from
Figure 11.15A that the Morris�Lecar model exhibiting stochastic excitability spends a
large proportion of time near the threshold for excitation.
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Figure 11.16 Probability distribution
functions for the membrane voltage of
the stochastic Morris�Lecar model con-
ditioned on the number of open K+

channels. The equilibrium PDFs show
evidence of stochastic excitability (A),
oscillations (B), and bistability (C), cor-
responding to the trajectories shown in
Figure 11.15.
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Figure 11.17 The stochastic Morris�
Lecar model simulated using a Langevin
equation for w, the fraction of open K+

channels. As the number of K+ chan-
nels is increased (N = 25, 50, 100,
500, or 1000) spontaneous action po-
tentials induced by stochastic gating are
eliminated. For large N , the model is
excitable, but essentially deterministic;
i.e., ßuctuations in w are small and
spontaneous action potentials are no
longer observed without applied current.

11.6.3 Langevin Formulation for the Stochastic Morris�Lecar
Model

To consider the behavior of the Morris�Lecar model under the inßuence of channel
noise from a large number of K+ channels, it is most convenient to use the Langevin
formulation presented in Section 11.4.1. We do this by supplementing the rate equation
for the average fraction of open K+ channels, (11.50), with a rapidly varying forcing
term

dw

dt
=
w∞ −w
τ

+ ξ,

where w is a random variable, hξi = 0, and the autocorrelation function of ξ is given
by

hξ(t)ξ(t0)i = γ(w, V )δ (t− t0) .
Following (11.36), γ (w, V ) is chosen to be

γ (w,V ) =
α (1−w) + βw

N
=
1

N

(1− 2w∞)w + w∞
τ

. (11.52)

Thus, ξ is a random variable deÞned by ξ =
p
γ (w, V )∆B, where the ∆B are the

increments of a Wiener process.
Figure 11.17 presents stochastic Morris�Lecar model simulations implemented us-

ing the Langevin formulation described above. Interestingly, the existence of stochastic
excitability depends on the the number of K+ channels included. When N is relatively
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small (N = 25, 50, 100) membrane potential ßuctuations are large, and spontaneous
action potentials are frequent. However, when more K+ channels are included (N =
500, 1000), the model becomes essentially deterministic. Although the model is still ex-
citable, as N →∞ ßuctuations in w become smaller, and spontaneous action potentials
are no longer observed.

Suggestions for Further Reading

� Handbook of stochastic methods for physics, chemistry, and the natural sciences,
G.W. Gardiner. This is an accessible introduction to stochastic methods including
Markov systems, stochastic differential equations, Fokker�Planck equations, and
master equations [Gardiner, 1997].

� Spontaneous action potentials due to channel ßuctuations, C.C. Chow and J.A.
White. A theoretical and numerical analysis of the Hodgkin�Huxley equations when
stochastic ion channel dynamics are included [Chow and White, 1996].

� Stochastic versions of the Hodgkin�Huxley equations, R.F. Fox. A presentation of
master equation and Langevin descriptions of the Hodgkin� Huxley equations with
stochastic ion channel dynamics [Fox, 1997].

� Channel noise in neurons, J.A. White, J.T. Rubinstein, and A.R. Kay. A good
review of stochastic gating of voltage-dependent ion channels and channel noise in
neurons [White et al., 2000].

Exercises

1. Consider a single GLUT molecule and the four states (S1, S2, S3, S4) and transitions
shown in Figure 3.1. DeÞne s to be a random variable taking values s ∈ {1, 2, 3, 4}
corresponding to these four states and write Pi(t) to represent the probability that
s(t) = i, that is, the molecule is in state i at time t. Write an equation that
indicates conservation of probability, that is, an equation resulting from the fact
that the molecule must be in one of the four states.

2. Consider the possibility that the GLUT transporter (see previous exercise) is in
state 1 at time t. What is the probability that in a short interval of time [t, t+∆t]
the GLUT transporter will associate with glucose, thereby transitioning out of state
1 and into state 2? What is the conditional probability, given that the channel is
in state 1, of a 1→ 2 transition occurring during this interval?

3. Figure 3.1 and Table 3.1 indicate four possible ways for the GLUT transporter to
enter or leave state 1. Accounting for all of these, we can write

P1(t+∆t) = P1(t)− k12[G]outP1(t)∆t− k14P1(t)∆t+ k21P2(t)∆t+ k41P4(t)∆t.
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Write three additional equations relating Pi(t + ∆t) and Pi(t) for i = {2, 3, 4}
and take the limit ∆t → 0 to derive the a system of ODEs governing changes in
probabilities for a single GLUT molecule being in states 1 through 4.

4. Use the method of substitution to conÞrm that the binomial distribution given by
(11.16) is the steady state of the master equation for the two-state ion channel
(11.15). Begin with a time-independent version of (11.15),

0 = k+(N−n+1)P∞
O (n−1)−k+(N−n)P∞

O (n)+k
−(n+1)P∞

O (n+1)−k−nP∞
O (n);

and subsitute P∞
O (n− 1), P∞

O (n), and P
∞
O (n+ 1) according to (11.16). Remember

that p = k+/(k++ k−) and 1− p = k−/(k++ k−). After some algebra you will Þnd
that in order to balance the k+ and k− terms, one must have

(N − n+ 1)
Ã

N

n− 1

!
= n

Ã
N

n

!
,

(n+ 1)

Ã
N

n+ 1

!
= (N − n)

Ã
N

n

!
,

as is indeed the case.
5. Using (11.17) as a guide, write an expression for the average number hNCi of closed
channels in terms of PC(n, t). Then show thatN−hNOi = hNCi, as stated in (11.20).
Hint: You will need to use PC(n, t) = PO(N − n, t) and PN

n=0 nPO(N − n, t) =PN

n=0(N − n)PO(n, t).
6. Using the result of Exercise 5, conÞrm that (11.18) is equivalent to (11.19). In order
to do so, you will need to show that

−hNOi =
NX
n=0

n (n+ 1)PO(n+ 1, t)−
NX
n=0

n2PO(n, t)

and

hNCi =
NX
n=0

n (N − n+ 1)PO(n− 1, t)−
NX
n=0

n (N − n)PO(n, t).

7. Equation (11.18) is the master equation for the two-state channel with kinetic
scheme given by (11.1). Derive the the master equation for the GLUT transporter
shown in Figure 3.1.

8. Show that in the case of the two-state channel, the variances deÞned with respect
to ßuctuations in open channel number (σ2NO) and closed channel number (σ

2
NC
),

are equal. You will need some of the relations from Exercise 5 as well as (11.24)
and (11.25).

9. ConÞrm (11.26), the equation for the time-dependence of the variance of the two-
state channel. Hint: Differentiate (11.24) to obtain

dσ2NO

dt
=

NX
n=0

∙
−2 (n− hNOi) dhNOi

dt
PO(n, t) + (n− hNOi)2 dPO(n, t)

dt

¸
. (11.53)
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Now check to see whether the right�hand sides of (11.26) and (11.53) are equal.
Use (11.19) and (11.15) as well as

NX
n=0

(n− hNOi)2 (N − n+ 1)PO(n− 1, t) =
N−1X
n=0

(n+ 1− hNOi)2 (N − n)PO(n, t),
NX
n=0

(n− hNOi)2 (n+ 1)PO(n+ 1, t) =
NX
n=1

(n− 1− hNOi)2 nPO(n, t).

10. Simulate the four-state GLUT transporter shown in Figure 3.1 by implementing a
Markov process with transition probability matrix

Q =


D1 k21∆t 0 k41∆t

k12[G]out∆t D2 k32∆t 0

0 k23∆t D3 k43∆t

k14∆t 0 k34[G]in∆t D4

 ,
where the diagonal entries (D1, D2, D3, D4) are such that each column sums to 1.

11. ConÞrm the form of the time-invariant conditional PDFs shown in Figure 11.12.
12. Reproduce simulations from Figure 11.14, Figure 11.15, and Figure 11.17.



This is page 324
Printer: Opaque this

CHAPT E R 1 2

Molecular Motors: Theory

Alex Mogilner, Tim Elston, Hongyun Wang, and George Oster

Evolution has created a class of proteins that have the ability to convert chemical energy
into mechanical force. Some of these use the free energy of nucleotide hydrolysis as fuel,
while others employ ion gradients. Some are �walking motors,� others rotating engines.
Some are reversible; others are unidirectional. Could there be any common principles
among such diversity?

The conversion of chemical energy into mechanical work is one of the main themes
of modern biology. Biochemists characterize energy transduction schemes by free energy
diagrams. But thermodynamics tells us only what cannot happen. Recent advances in
laser trap and optical technology along with advances in molecular structure deter-
mination can augment traditional biochemical kinetic and thermodynamic analyses to
make possible a more mechanistic view of how protein motors function. The result of
these advances has been data that yield load�velocity curves and motion statistics for
single molecular motors. This sort of data enables a more detailed, mechanistic level of
modeling.

At Þrst, the mechanics of proteins may seem counterintuitive because their mo-
tions are dominated by Brownian motion, the name given to the frequent changes in
velocity of a macromolecule as it is buffeted about by random thermal motions of
surrounding water molecules. In addition to �smearing out� deterministic trajectories,
Brownian motion serves asan effective �lubricant,� allowing molecules to pass over high
energy barriers that would arrest a deterministic system. More subtly, it makes possi-
ble �uphill� motions against an opposing force by �capturing� occasional large thermal
ßuctuations.



12: Molecular Motors: Theory 325

Portal
proteinds-DNA

Helicase

ss-DNA

ADP + P

ATP

H+

ATP
Synthase

+ END- END

MICROTUBULE

Kinesin

A

C D

B

Figure 12.1 Amazing variety of molecular motors: (A) Rotary motor DNA helicase translocates uni-
directionally along the DNA strand using nucleotide hydrolysis as a �fuel.� (B) Another rotary motor
hydrolyzing ATP, bacteriophage portal protein, drives DNA in and out. (C) Reversible rotary motor ATP
synthase either produces ATP using ion gradient or pumps protons hydrolyzing ATP. (D) Linear motor
kinesin is a �walking enzyme.� Utilizing chemical energy stored in ATP, it moves �head-over-head� toward
the plus end of the microtubule �track.� Some of these motors are discussed in this chapter.

In this chapter we will discuss protein motions on the molecular scale and derive
a mathematical formalism to model such motions. To illustrate the formalism, in the
Chapter 13 we will analyze (i) a �switch� controlling the direction of the bacterial
ßagellar motor, (ii) a polymerization ratchet, and (iii) a �toy� model related to the F0
motor of ATP synthase. These models are simple enough to yield analytical as well as
numerical results, and to illustrate many of the principles involved in mechanochemical
energy transduction.

There is some ambiguity in what one calls a �motor.� Here we take the narrow
view that the principal�and proximate�function of a molecular motor is to convert
chemical energy into mechanical force. This excludes, for example, ion pumps, which are
surely protein machines that generate forces, but whose purpose is not force production.
Chemical energy comes in various forms, for example, in transmembrane ion gradients
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and in the covalent bonds of nucleotides such as ATP and GTP, and the designs of
motor proteins are tailored to each energy form.

Energy stored in one form frequently is converted into intermediate forms be-
fore being released as mechanical work. For example, a polymerizing actin Þlament
or microtubule can generate a protrusive force capable of deforming a lipid vesicle
or pushing out the leading edge of a cell [Honda et al., 1999, Fygenson et al., 1997,
Dogterom and Yurke, 1997]. The energy source in this process is the free energy of
binding monomers to the polymer tip. This energy is used to rectify the Brownian mo-
tion of the load against which the polymer is pushing. Strictly speaking, the force is
generated by thermal ßuctuations of the load, and the binding free energy is used to
rectify its thermal displacements. Energy conversion here is relatively direct. However,
in the acrosomal process of the Limulus sperm, thermal ßuctuations are Þrst trapped
as elastic strain energy in the actin polymer by the binding of an auxiliary protein,
scruin. Later, this strain energy is released to generate the force required to push the
actin rod into the egg cortex [Mahadevan and Matsudaira, 2000].

Many motors use nucleotide hydrolysis to generate mechanical forces, and it is fre-
quently stated that the energy is stored in the γ-phosphate covalent bond. But releasing
this energy to perform mechanical work can be quite indirect. The F1 motor of ATP syn-
thase uses nucleotide hydrolysis to generate a large rotary torque [Yasuda et al., 1998].
However, the actual force�generating step takes place during the binding of ATP to
the catalytic site; the role of the hydrolysis step is to release the hydrolysis products,
allowing the cycle to repeat [Wang and Oster, 2000, Oster and Wang, 2000]. In some
motors, not all of the nucleotide binding energy is used immediately for force produc-
tion; some energy is stored in elastic deformation of the protein to be released later
as mechanical work. So energy transduction need not be a �pay as you go� process;
deferred payments are permissible and common.

The bacterial ßagellar motor and the F0 motor of ATP synthase both use trans-
membrane ion gradients to generate a rotary torque [Berg, 2000]. Models of this process
show how the chemical reaction of binding an ion onto a charged site creates an unbal-
anced electrostatic Þeld that rectiÞes the Brownian motion of the motor and/or creates
an electrostatic driving torque [Elston and Oster, 1997, Elston et al., 1998]. Although
the proximal energy transduction process is a chemical binding event, the motion itself
is produced by electrostatic forces and Brownian motion.

Thus a common theme in energy transduction is that chemical reactions power
mechanical motion using free energy released during binding events, but the Þ-
nal producttion of mechanical force may involve a number of intermediate energy
transductions.

The most important quality of molecular motors that distinguishes them from
macroscopic motors is the overwhelming importance of thermal ßuctuations. For this
reason, all protein motors must be regarded as �Brownian machines.� This means that
carelessly applying macroscopic physics, where Brownian motion is negligible, to mi-
croscopic situations inevitably leads to incorrect conclusions. Therefore, we must begin
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our discussion by examining how to model molecular motions dominated by thermal
ßuctuations.

12.1 Molecular Motions as Stochastic Processes

12.1.1 Protein Motion as a Simple Random Walk

Generally, a stochastic process refers to a random variable that evolves in time. An
example is a one-dimenisonal coordinate x(t) locating a protein diffusing in an aqueous
solution. We will begin by approximating the coordinate x(t) by a discrete random
variable. The rationale for this is twofold. Discrete random variables are conceptually
simpler than their continuous counterparts. The results for the discrete case are appli-
cable in studying continuous random processes because continuous random variables
represent limiting behavior of their discrete counterparts. Our discussion is restricted
to Markov processes. A Markov process is a mathematical idealization in which the
future state of a protein is affected by its current state but is independent of its past.
That is, the system has no memory of how it arrived at its current state. To a very
good approximation, all systems considered in this text satisfy the Markov property.
The mathematics involved in studying stochastic processes that are non-Markovian is
considerably more complicated.

In the discrete model, a protein is initially started at x = 0. In each time interval
∆t, it takes one step of length ∆x to the right with probability 1

2
or to the left with

probability 1

2
. Because the length of the step that the protein takes is always the same,

this example is referred to as a simple random walk. Let xn denote the protein�s position
at time t = n∆t and deÞne the set of random variables zm with m = 1, 2, . . . , n to be
independent and identically distributed with Prob[zm = 1] =

1

2
and Prob[zm = −1] = 1

2
.

Then we have

xn = ∆x(z1 + z2 + · · ·+ zn). (12.1)

The collection of random variables x = {x0, x1, x2, . . .} represents a spatially and tem-
porally discrete stochastic process. In Exercise 1, (12.1) is used to verify that hxni = 0
and Var[xn] = (∆x)2n = ((∆x)2/∆t)t. Here we use the notation h·i to denote the av-
erage (expectation), and Var[·] to denote the variance: Var[x] ≡ hx2i− hxi2. Note that
the variance in x grows linearly with time. This is a characteristic of diffusion; below
we show in what sense the quantity D = (∆x)2/(2∆t) can be interpreted as a diffusion
coefficient.

To fully characterize x requires knowledge of the probability density for Þnding the
particle at position xn after k steps of size ∆x: pk(n) = Prob[xn = k∆x]. Note that
pk(n) = 0 if n < |k|. This comes from the fact that the protein can take only one step
per time interval. At any time n∆t, the total number of steps taken by the protein
is n = Rn + Ln, where Rn is the number of steps taken to the right and Ln is the
number of steps taken to the left. Clearly, Rn is binomially distributed, like the number
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of �heads� in n ßips of a coin:

Prob[Rn = m] =

Ã
n

m

!µ
1

2

¶n
=

n!

n!(n−m)!
µ
1

2

¶n
. (12.2)

Using these deÞnitions, xn is written as

xn = ∆x(Rn − Ln) = ∆x(2Rn − n), (12.3)

or equivalently

Rn =
1

2

³ xn
∆x

+ n
´
. (12.4)

Thus xn/∆x = k if and only if Rn =
1

2
(n + k). Furthermore, xn/∆x must be even if

n is even and odd if n is odd, since Rn must be an integer. Therefore, we immediately
Þnd that the distribution for xn is

pk(n) =

Ã
n

(k + n)/2

!µ
1

2

¶n
(12.5)

for n ≥ |k| and k and n either both even or both odd.
Note that in (12.1) xn is written as the sum of n independent and identically

distributed random variables. Therefore, the central limit theorem of probability theory
guarantees that as n gets large the distribution for xn becomes progressively closer to
normal with hxni = 0 and Var[xn] = ((∆x)2/∆t)t = 2Dt. That is,

pk(n)

∆x
≈ p(x, t) = 1√

4πDt
exp

µ
− x2

4Dt

¶
, x = k∆x, t = n∆t. (12.6)

Figure 12.2 shows the probability distribution for xn and the normal approximation
for various values of n. By the time n = t/∆t = 15, the distribution of xn is close
to normal, and the agreement gets better as n is increased. Physically, the normal
approximation amounts to a �coarse graining� of the process in which only length
scales much larger than ∆x and time scales much larger than ∆t are resolved. In this
limit the random variable xn, which is discrete in both space and time, is approximated
by x(t), a random variable that is continuous in space and time. The value of ∆t can
be approximated well by the �thermalization� time τ = 10−13 sec, described in Section
12.2.1. Thus, the continuous and discrete models of a protein�s motion are equivalent
at all time and distance scales of interest to us.

As an exercise, the reader is asked to verify that p(x, t) satisÞes the diffusion
equation

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
, (12.7)

justifying our association of the quantity (∆x)2/(2∆t) with a diffusion coefficient.
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Figure 12.2 In the limit of large n, the binomial distribution is well approximated by a normal distribution.
In all three panels the bar graph represents the binomial probabilities and the solid line is the normal
approximation. (A) n = 3, (B) n = 8, (C) n = 15.

12.1.2 Polymer Growth

Let us consider another example of a stochastic process: the number N(t) of monomers
in a polymerizing biopolymer. There is an important distinction between the stochastic
variables x(t) and N(t). In the Þrst example, x(t) is a continuous random variable,
since it can take on any real value. On the other hand, the number of subunits in a
growing polymer is restricted to the positive integers, so that N(t) is a discrete random
variable.

Markov processes in which the random variable is discrete are often referred to as
Markov chains because they can be represented as a sequence of jumps between discrete
states. The simple random walk is an example of a spatially and temporally discrete
Markov chain. As an example of a Markov chain in which time is continuous we consider
a polymerizing biological polymer (Þlament), e.g., an actin Þlament or a microtubule.
Figure 12.3A depicts the type of process we have in mind. In this example, two events
change the length of the polymer by one monomer: polymerization and depolymeriza-
tion. Mathematically, the state of the system is speciÞed by a single number N(t), the
number of monomers in the Þlament at time t. The variable N(t) is random, because
we have no way to predict when the next polymerization or depolymerization event will
occur. A diagram of the Markov chain for this process is shown in Figure 12.3B.

There are two equivalent, but conceptually different, levels at which stochastic pro-
cesses can be studied. The Þrst is at the level of individual sample paths or realizations
of the process. To understand what is meant by a sample path, suppose that at t = 0
we start with three Þlaments that are each exactly 5 monomers long. As time goes on,
we observe that the number of monomers in each Þlament instantaneously changes, or
�jumps,� by ±1 at random times. Figure 12.4 graphically illustrates this behavior. Even



330 12: Molecular Motors: Theory
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rp
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Pn Pn+1Pn-1

Figure 12.3 A discrete Markov process (Markov chain). (A) A polymer Þlament grows by incorporating
monomers from the solution onto its tip (polymerization). The process is stochastic. The monomer on the
tip may dissociate from the Þlament into the solution (depolymerization). (B) A Markov chain model for
the Þlament polymerization; Pn represents the state of the Þlament when its length is n monomers, rp is
the polymerization rate, rd is the depolymerization rate. If rp > rd, the Þlament will grow over long times.

though each sample path starts with N(0) = 5, they all evolve differently, illustrating
the randomness of the process. The sample paths of a large ensemble of such Þlaments
can be used to determine the statistics of N(t).

The second approach is to ask how the probability pn(t) of having exactly n
monomers in the Þlament at time t changes in time. If pn(t) can be determined for
all t and n, then we have a complete characterization of the process. Both approaches
are equally valid and are useful methods for studying stochastic processes. The advan-
tages of staying at the level of sample paths are that in general it is easy to numerically
generate single realizations of the process, and sample paths allow us to see the dynam-
ics of the system. The advantage of working directly with the probability distribution
is that it fully characterizes the system without the need to average over many sample
paths to compute the statistics. Of course, there is no free lunch: Obtaining all this
information comes at a computational price. Below we describe numerical techniques
for treating both cases.

To begin our discussion we derive an equation that governs the evolution of pn(t).
Let us assume that we know pn(t) for a speciÞc value of t. At a slightly later time t+∆t,
we expect pn(t+∆t) to be equal to pn(t) plus a small correction. The key is to assume
that ∆t is so small that the probability of two events in the interval (t, t+∆t) is very
unlikely. Here an event means polymerization or depolymerization. Then we can write

pn(t+∆t) = Prob [N(t) = n and no event occurs in (t, t+∆t)]

+ Prob [N(t) = n− 1 and polym. occurs in (t, t+∆t)]
+ Prob [N(t) = n+ 1 and depol. occurs in (t, t+∆t)] , (12.8)

where the right�hand side follows from the fact that the three events described in the
square brackets are mutually exclusive. Next we make the reasonable assumption that
the probability of polymerization or depolymerization is independent of the length of the
Þlament. We also assume that these probabilities are proportional to ∆t, and let rp∆t
and rd∆t be the probabilities of polymerization and depolymerization, respectively, in
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(t, t+∆t). Under these assumptions (12.8) can be written as

pn(t+∆t) = pn(t)(1− (rp + rd)∆t) + pn−1(t)rp∆t+ pn+1(t)rd∆t
= pn(t) +∆t [rp pn−1(t) + rd pn+1(t)− (rp + rd)pn(t)] , (12.9)

where (1− (rp+rd)∆t) is probability of no event in ∆t. There are two important points
to be drawn from (12.9). First, it is clear that if we know pn(t) for all n at a given
time, then we have a mechanism for updating the probabilities at all later times. This
illustrates the Markov property. Secondly, (12.9) represents a numerical algorithm for
updating pn(t). That is, once a ∆t is chosen, we can write a computer program to
generate pn(t + k∆t), where k is positive integer. We now take the limit ∆t → 0 in
(12.9):

lim
∆t→0

pn(t+∆t)− pn(t)
∆t

=
dpn(t)

dt
= −(rp + rd)pn(t) + rp pn−1(t) + rd pn+1(t). (12.10)

Therefore, (12.9) is an algorithm for numerically solving the ordinary differential equa-
tion given by (12.10). This algorithm is called the forward Euler method, and is a very
useful numerical tool that works adequately for many situations. However, problems
may arise in using this scheme, as discussed below. Also, note that (12.10) can be in-
terpreted as a chemical rate equation, so that rp and rd are the rates of polymerization
and depolymerization, respectively.

12.1.3 Sample Paths of the Process

The next question we address is how to numerically generate sample paths that are
consistent with (12.10). To analyze this problem consider the following experiment. At
time t = 0, we start with a Þlament containing exactly m monomers. That is, pm(0) =
1. Next we watch the Þlament until the Þrst event occurs (either polymerization or
depolymerization). When this event occurs we record the time and start the experiment
again. After doing this experiment many times, we Þnd that the amount of time we
must wait for the Þrst event to occur is a random variable. Let us call it T . We are

5
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Figure 12.4 Three sample trajectories of the tip of a
growing Þlament. The polymerization process is stochastic
with occasional depolymerization events.
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after the probability density fT (t) for T . Let q(t) be the probability that no event has
occurred in (0, t). Under the conditions of the experiment and from the derivation of
(12.10), we have:

dq

dt
= −(rp + rd) q. (12.11)

Solving this equation, we obtain q(t) = exp(−(rp + rd)t). The probability q(t) starts
at 1 and decreases to 0 as time goes on. The probability that at least one event has
occurred in (0, t) is 1− q(t). Hence, we can use 1− q(t) to deÞne a probability density
funtion fT (t) for the waiting time distribution:

1− q(t) = Prob [Waiting time T < t] = 1− q(t) =
Z t

0

fT (t
0)dt0. (12.12)

By differentiating (12.12), we obtain the relationship

fT (t) = −dq(t)
dt

= (rp + rd) exp(−(rp + rd) t). (12.13)

That is, the waiting time until the next event occurs has an exponential distribution
with mean 1/(rp + rd). Thus, to produce realizations of N(t), we need to be able to
generate samples of an exponential random variable.

Most programming languages have built-in random number generators that produce
numbers that are uniformly distributed between 0 and 1. If R is such a random variable,
its probability density function is fR(t) = 1 in [0, 1]. The transformation that converts
R to an exponential random variable with mean 1/(rp + rd) is

T (R) = − 1

(rp + rd)
lnR. (12.14)

This can be veriÞed mathematically as follows:Z t

0

fT (t)dt = Prob [T (R) < t] (12.15)

= Prob [R > exp(−(rp + rd) t)]
= 1− exp(−(rp + rd) t) = 1− q(t). (12.16)

Given this way to compute when the next transition occurs, the next thing we need
to determine is whether polymerization or depolymerization takes place. Remember
that in any time interval of length ∆t the probability of polymerization is rp∆t. Like-
wise, the probability of depolymerization is rd∆t. Therefore, given that an event has
occurred, the probability that it was polymerization is

P [polymerization|an event occurred at t] = rp
rp + rd

. (12.17)

We may now generate sample paths of the stochastic process as follows: Start N with
a given value. Generate an exponentially distributed random number using (12.14).
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This determines when the next event takes place. To determine the type of event that
occurred, generate a uniformly distributed random number R2. If R2 < rp/(rp + rd),
then let N → N+1, otherwise N → N−1. Repeat the process and plot N as a function
of time. The trajectories shown in Figure 12.4 were generated in this way.

Before using this method to simulate protein motions, we brießy discuss the
statistical behavior of polymer growth.

12.1.4 The Statistical Behavior of Polymer Growth

Since the intervals of time between events of monomers assembly and/or disassembly
are random, one can measure only the statistical behavior of polymer growth, such
as the average velocity of the polymer�s tip, hV i = LhNi/t, where L is the size of a
monomer. Much useful information is buried in the statistical ßuctuations about this
mean velocity. One quantity that can be monitored as the polymer grows is the variance
of the tip�s displacement about the mean:

Var[x(t)] ≡ hx2i− hxi2 = L2(hN 2i− hNi2).
It is easy to show (see Exercise 4) that the average velocity of the polymer tip and the
variance of its displacement are

hV i = L(rp − rd), Var[x(t)] = L2(rp + rd) t.

Thus the variance grows linearly with time. In fact, a plot of Var[x(t)] vs t can be used
to deÞne an effective diffusion coefficient: Deff ≡ Var[x(t)]/2t [Wang et al., 1998]. The
coefficient Deff can be combined with the average velocity hV i to form a �randomness
parameter� [Schnitzer and Block, 1995]

r ≡ 2Deff

L · hV i . (12.18)

As an example of the utility of this randomness parameter, let us consider the case whre
there is no depolymerization: rd = 0. Then, Var[x(t)] = L2rpt, Deff = L2rp/2, hV i =
Lrp, and r = 1. Now suppose that each polymerization event involves a sequence of
reaction processes. Since chemical reactions are also stochastic processes, an additional
variance is added to the spatial diffusion, so that the total variance will grow faster,
and the randomness parameter is greater than 1. In this case, 1/r gives a lower bound
on the number of reaction processes per step (i.e., 1/r < number of reaction processes
per step) [Schnitzer and Block, 1995].

Similar arguments are applicable to some �walking� motors, e.g., kinesin, that take
a spatial step of constant size at random times. This time is determined by a sequence
of hydrolysis reactions. If there is only one reaction, the walking motor is equivalent to
the polymerizing Þlament, and is called a �Poisson stepper.� Such a stepper is char-
acterized by randomness parameter r = 1. In the next chapter we will show that
the average velocity of a molecular motor is a function of the load force resisting the
motor�s advancement. The importance of considering the effective diffusion coefficient
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(or, equivalently, the randomness parameter) is that just as load�velocity data give
information about the motor performance, load�variance data can provide independent
estimates of model parameters (see, for example [Peskin and Oster, 1995]).

12.2 Modeling Molecular Motions

The botanist Robert Brown Þrst observed Brownian movement in 1827. While studying
a droplet of water under a microscope he noticed tiny specks of plant pollen dancing
around. Brown Þrst guessed, and later proved, that these were not motile, although at
the time he had no clue as to the mechanism of their motion. It was not until Einstein
contemplated the phenomenon 75 years later that a quantitative explanation emerged.
In order to develop an intuition about molecular dynamics we begin with some simple
remarks on Brownian motion of proteins in aqueous solutions.

12.2.1 The Langevin Equation

The radius of a water molecule is about 0.1 nm, while proteins are two orders of mag-
nitude larger, in the range 2�10 nm. This size difference suggests that we can view the
ßuid as a continuum. A protein moving through the ßuid is acted on by frequent and
uncorrelated momentum impulses arising from the thermal motions of the ßuid. We
model these ßuctuations as a time-dependent random �Brownian force� fB(t) whose
statistical properties can be mimicked by a random number generator in a computer in
a fashion described below. At the same time, the ßuid continuum exerts on the moving
protein a frictional drag force fd proportional to the protein�s velocity: fd = −ζv, where
ζ is the frictional drag coefficient (see Section 12.6.1). Thus we can write Newton�s law
for the motion, x(t), of a protein moving in a one-dimensional domain of length L:

dx

dt
= v, m

dv

dt
= −ζv + fB(t), 0 ≤ x(t) ≤ L. (12.19)

The mass m of a typical protein is about 10−21 kg, and the drag coefficient is about
10−7 pN·sec/nm.

If we multiply (12.19) by x(t) and use the chain rule, we get

m

2

d2(x2)

dt2
−mv2 = −ζ

2

d(x2)

dt
+ x · fB(t). (12.20)

In order to see the consequences of (12.20) for molecular motions we Þrst must
average (12.20) over a large number of proteins so that the peculiarities of any particular
trajectory are averaged out. We use the notation h·i to denote this ensemble average:

m

2

d2hx2i
dt2

− hmv2i = −ζ
2

dhx2i
dt

+ hx · fB(t)i. (12.21)

Next we take advantage of a central result from statistical mechanics called the
equipartition theorem (Section 12.6.2), which states that each degree of freedom of a
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Brownian particle carries an average energy

hEi = 1

2
kBT [equipartition theorem], (12.22)

where kB is Boltzmann�s constant and T the absolute temperature [Landau et al., 1980].
Therefore, the second term in (12.21) is just twice the average kinetic energy of the
protein: hmv2i = kBT . At room temperature, the quantity kBT ' 4.1 pN·nm is the
�unit� of thermal energy.

Because the random impulses from the water molecules are uncorrelated with po-
sition, hx(t) · fB(t)i = 0. Introducing these two facts into (12.21) and integrating twice
between t = (0, t) with x(0) = 0, we obtain

dhx2i
dt

=
2kBT

ζ
(1− e−t/τ), hx2i = 2kBT

ζ
[t− τ(1− e−t/τ)], (12.23)

where we have introduced the time constant τ = m/ζ.
For very short times t ¿ τ we can expand the exponential in (12.23) to second

order to obtain

hx2i = kBT

m
t2 (t¿ τ). (12.24)

That is, at very short times the protein behaves like a ballistic particle moving with
a velocity v =

p
kBT/m. For a protein with m ≈ 10−21 kg [= 10−18 pN·sec2/nm],

v ≈ 2 m/s. However, in a ßuid the protein moves at this velocity only for a time
τ ≈ m/ζ = 10−13 sec, much shorter than any motion of interest in a molecular motor.
During this short time the protein travels a distance v · τ ∼ 0.01 nm before it collides
with another molecule. This is only a fraction of a diameter of a water molecule, so
the ballistic regime is very short�lived indeed! Very quickly, the kinetic energy of the
protein comes into thermal equilibrium (is �thermalized�) with the ßuid environment.
Thus when tÀ τ , the exponential term disappears, and (12.23) becomes

hx2i = 2kBT
ζ
t (tÀ τ). (12.25)

Einstein recognized that the frictional drag on a moving body is caused by random
collisions with the ßuid molecules, which is the same effect as the Brownian force fB(t)
that gives rise to the diffusive motion of the body. Therefore, there must be a connection
between the drag coefficient and diffusive motion. By comparing (12.25) to the relation
we previously derived between the mean square displacement of a diffusing particle and
its diffusion coefficient

hx2i = 2Dt, (12.26)

we arrive at the famous relation derived by Einstein in 1905:

D = kBT/ζ [Einstein relation], (12.27)
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where D is the diffusion coefficient of the protein, typically D ≈ 107 nm2/sec. For
diffusion in 2 and 3 dimensions the relation is

hx · xi = 2ν ·Dt = 2ν kBT
ζ
t,

where ν = 2, 3, respectively.
If an external force F acts on the protein, this can be added to (12.19), so that

the equation of motion for a protein becomes ζ · dx/dt = F (x, t) + fB(t) (the inertial
term has been neglected; see Section 12.6.1). In general, forces acting on proteins can
be characterized by a potential F (x, t) = −∂φ(x, t)/∂x, so the equation of motion for
a protein moving through a ßuid becomes

ζ
dx

dt
= −∂φ(x, t)

∂x
+ fB(t). (12.28)

Equation (12.28) is frequently referred to as a Langevin equation, although this term
more properly applies to the corresponding (12.19), which includes inertia.

12.2.2 Numerical Simulation of the Langevin Equation

Here we show how the stochastic algorithms developed above can be applied to a
continuous Markov process describing a protein diffusing in water. We want a numerical
algorithm for generating sample paths of (12.28). Let us integrate both sides of this
equation over the interval (t, t+∆t):

x(t+∆t) = x(t)− 1
ζ

Z t+∆t

t

∂φ(x, t0)

∂x
dt0 +

1

ζ

Z t+∆t

t

fB(t
0)dt0

≈ x(t)− 1
ζ

∂φ(x, t)

∂x
∆t+

1

ζ

Z t+∆t

t

fB(t
0)dt0. (12.29)

In Section 12.6.3 we demonstrate that the way to include the effect from the Brownian
force, fB(t), is to use the following numerical method for simulating (12.29):

x(t+∆t) ≈ x(t)− 1
ζ

∂φ

∂x
∆t+

√
2D∆tZ, (12.30)

where Z is a standard normal random variable, i.e., with mean 0 and variance 1. Many
numerical software packages have built-in random number generators that will generate
samples of a standard normal distribution. If one is not available, then a standard
normal random variable Z can be generated from two independent uniform random
variables R1 and R2:

Z = −
p
−2 lnR1 cos(2πR2). (12.31)

A derivation of this result is similar to the one presented above for generating an
exponential random variable.

Although simulating (12.30) on a computer is easy (see Exercise 6), it is also easy
to generate erroneous results, e.g., numerical instabilities that look much like random
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displacements due to Brownian motion, or currents that do not vanish at equilibrium.
In order to derive a numerical method of simulating random motions that does not
have these problems, we have to consider an alternative description of the molecular
motion.

12.2.3 The Smoluchowski Model

Consider a protein moving under the inßuence of a constant external force, for example,
an electric Þeld. Because of Brownian motion, no two trajectories will look the same.
Moreover, even a detailed examination of the path cannot distinguish whether a par-
ticular displacement �step� was caused by a Brownian ßuctuation or the effect of the
Þeld. Only by tracking the particle for a long time and computing the average position
vs. time can one detect that the diffusion of the particle exhibits a �drift velocity� in
the direction of the force. Therefore, a better way to think about stochastic motion is
to imagine a large collection of independent particles moving together. Then we can
deÞne the concentration of particles at position x and time t as c(x, t) [#/nm], and
track the evolution of this ensemble.

As the cloud of particles diffuses and drifts, we can write an expression for the
ßux J [#/area/time] of particles passing through a unit area; in one dimension Jx has
dimensions [#/sec]. The diffusive motion of the particles is modeled well by Fick�s law:
Jx = −D∂c/∂x. The external Þeld exerts a force F = −∂φ/∂x on each particle that, in
the absence of any diffusive motion would impart a drift velocity proportional to the
Þeld: v = F/ζ. Thus the motion of the body is the sum of the Brownian diffusion and
the Þeld-driven drift: Jx = −D∂c/∂x+ v · c, which can be written in several ways (see
also Section 12.6.4

Jx = −D ∂c
∂x| {z }

Diffusion ßux

−

Drift velocityz }| {µ
D

kBT
· ∂φ
∂x

¶
c| {z }

Drift ßux

= −D
µ
∂c

∂x
+
∂(φ/kBT )

∂x
· c
¶

= −1
ζ

µ
kBT

∂c

∂x
+ c

∂φ

∂x

¶
. (12.32)

At equilibrium the ßux vanishes: (kBT/ceq)(∂ceq/∂x)+∂φ/∂x = 0. Integrating with
respect to x shows that the concentration of particles at equilibrium in an external Þeld
φ(x) is given by the Boltzmann distribution:

ceq = c0e
−φ/kBT [Boltzmann distribution]. (12.33)

Since the number of particles in the swarm remains constant, c(x, t) must obey a
conservation law. This is simply a balance on a small volume element ∆x:

∂

∂t
(c∆x) = net ßux into ∆x = Jx(in)− Jx(out) = Jx(x)− Jx(x+∆x),
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or, taking the limit as ∆x→ 0,

∂c

∂t
= −∂Jx

∂x
[conservation of particles]. (12.34)

Rather than focusing our attention on the swarm of particles, we can rephrase
our discussion in terms of the probability of Þnding a single particle at (x, t). To do
this we normalize the concentration in (12.32) by dividing by the total population

p(x, t) ≡ c(x, t)/
³R L

0
c(x, t)dx

´
. Inserting (12.32) expressed in terms of p(x, t) into the

conservation law (12.34) yields the Smoluchowski equation

∂p

∂t
= D

 ∂

∂x

µ
p
∂(φ/kBT )

∂x

¶
| {z }

Drift

+
∂2p

∂x2|{z}
Diffusion

 [Smoluchowski equation]. (12.35)

Comparing this with the Langevin equation (12.28) shows that the Brownian force is
replaced by the diffusion term, and the effect of the deterministic forcing is captured
by the drift term.

We can nondimensionalize (12.35) by deÞning time and space scales. If the domain
is 0 ≤ x ≤ L, the spatial variable can be normalized as x/L. A time scale can be
deÞned by τ = L2/D. Introducing the space and time scales, (12.35) can be written in
dimensionless form as

∂p

∂t
=
∂

∂x

µ
p
∂φ

∂x

¶
+
∂2p

∂x2
, (12.36)

where t and x are now dimensionless, and the potential φ is measured in units of kBT .
Equation (12.36) must be augmented by appropriate boundary conditions specify-

ing the value of p(x = 0, t), p(x = L, t), and p(x, t = 0), where p(x, t) is deÞned on the
interval [0, L]. These will depend on the system being modeled.

12.2.4 First Passage Time

A very useful quantity in modeling protein motions is the average time it takes for
a diffusing protein to Þrst reach an absorbing boundary located at x = L, starting
from position 0 ≤ x ≤ L [Berg, 1993, Weiss, 1967]. Denote the mean Þrst passage time
(MFPT) to position L starting from position x by T (x, L). The equation governing
T (x, L) is derived as follows. A particle released at position x can diffuse either to
the right or to the left. After a time τ , it covers an average distance ∆, so that it is
located at x ± ∆ with equal probability 1

2
. The MFPT to L from the new positions

are T (x + ∆, L) and T (x − ∆, L). The average value of T (x, L) is just T (x, L) =
τ + (1/2)[T (x+∆, L) + T (x−∆, L)]. This equation can be rewritten in the form

1

∆

µ
(T (x+∆, L)− T (x))

∆
− (T (x)− T (x−∆, L))

∆

¶
+
2τ

∆2
= 0.
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Taking the limit as ∆ → 0 and τ → 0 (so that ∆2/2τ = const) and recognizing that
∆2/2τ is just the diffusion coefficient D, the MFPT equation becomes

D
∂2T

∂x2
= −1 [MFPT equation]. (12.37)

The boundary conditions for this equation are simple. At an absorbing boundary, T =
0 (it takes no time to get there). At a reßecting boundary, T is unchanged (i.e., a
constant), so ∂T/∂x = 0. For example, releasing a particle at a position x with a
reßecting boundary at x = L and an absorbing boundary at x = 0, the MFPT is
T (x, L) = (2Lx− x2)/2D. The special case where x = L (releasing the particle at the
reßecting boundary) is just T = L2/2D. Note the resemblance to the familiar equation
hx2i = 2Dt. This gives the mean squared distance diffused in time t, whereas the
MFPT gives hti = x2/2D, the mean time to diffuse a distance x. This suggests that
the MFPT equation might be related to the Smoluchowski diffusion equation; in fact,
they are adjoints of one another (see, for example, [Lindenberg and Seshadri, 1979]).
We will use this result to compute the average velocity of the perfect Brownian ratchet
in the next chapter.

12.3 Modeling Chemical Reactions

So far, we have paid attention exclusively to protein mechanics. To understand molec-
ular motors, we have to consider chemical reactions, which supply the energy to drive
molecular motors. Two of the most common energy sources are nucleotide hydroly-
sis and transmembrane protonmotive force. The former uses the energy stored in the
covalent bond that attaches the terminal phosphate (γ-phosphate) to the rest of the
nucleotide. The latter uses the electrical and entropic energy arising from a difference
in ion concentrations across a lipid bilayer. Hydrolysis is a complicated process, still
incompletely understood. Therefore, we will introduce the reaction model using the
simple example of a positively charged ion (e.g., H+) binding to a negatively charged
amino acid: H++A− ←→ H ·A. If we focus our attention on the amino acid, we see that
it exists in two states: charged (A−) and neutral (H · A ≡ A0), so that the neutralization
reaction from the viewpoint of the amino acid is simply

A−
k+ · [H+]
*)

k−

A0. (12.38)

Here we use the chemists� convention of denoting concentrations in brackets: k+ · [H+]
and k− are the forward and reverse rate constants; the forward rate constant depends
on the ion concentration [H+], which we will treat as a constant parameter (i.e. we
shorten our notation to k+ · [H+] ≡ k∗, where k∗ is called a pseudo�Þrst�order (or
pseudo�unimolecular) rate constant).
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The rate constants in reaction (12.38) conceal a great deal of physics, for the pro-
cess of even as simple a reaction as this is quite complex at the atomic level. To model
this reaction at a more microscopic level involves introducing additional coordinates
to describe the process by which an ionic chemical bond is made and broken. These
coordinates have a spatial scale much smaller than the motion of the motor itself (e.g.,
angstroms vs. nanometers), and a time scale much faster than any motion of the motor
(picoseconds vs. microseconds). This is because all reactions involve a redistribution of
electrons, and electrons, being very small, move very rapidly. Moreover, in all but the
simplest cases, their movements are governed by quantum mechanics rather than clas-
sical mechanics. Nevertheless, it is instructive to use the Smoluchowski model to derive
a more detailed expression for the rate constants. A deeper discussion can be found in
[Billing and Mikkelsen, 1996, Warshel, 1991, Naray-Szabo and Warshel, 1997].

The fundamental concept underlying the modeling of reactions is the notion of a
�reaction coordinate,� which we denote by ξ. In molecular dynamics simulations this
is actually a 1-D path through a very high dimensional state space along which the
system moves from reactants to products [Billing and Mikkelsen, 1996, Warshel, 1991,
Naray-Szabo and Warshel, 1997]. For the reaction (12.38), ξ(t) is the distance between
the ion (H+) and the amino acid charge (A−). The spatial scale of this coordinate is
much smaller (i.e. angstroms) than the spatial scale of the motor�s motion, but we can
imagine a �super�microscopic� view of the process as shown in Figure 12.5A, where we
have plotted the free energy change ∆G during a reaction as a function of the reaction
coordinate ξ. The reason for using free energy is that there are many �hidden� degrees
of freedom that must be handled statistically, as will become clear presently. Here the
chemical states of the amino acid, A−and A0, are pictured as energy wells separated by
barriers of heights ∆G1 and ∆G2, and whose difference in depth is ∆G. The �transition
state� (TrSt) is located at the top of the pass between the two wells.

For a Þxed H+ concentration, the forward chemical reaction A− → A0 proceeds with
a rate k∗ · [A−] [#/sec]. However, this rate is a statistical average over many �hidden�
events. For a particular reaction to take place, the proton must diffuse to within a
few angstroms of the amino acid charge so that the electrostatic attraction between
them is felt. Moreover, if the amino acid is located within a protein, there will be
steric diffusion barriers that must be circumvented before the two ions �see� each other
electrostatically. (Actually, protons inside proteins move by �hopping� along strings of
water molecules, or �water wires.�) As the concentration of H+ increases, there will be
more �tries� at neutralization (i.e., hops from the left well to the right well).

Similarly, the reverse reaction A− ← A0 takes place when a thermal ßuctuation
confers enough kinetic energy on the proton to overcome the electrostatic attraction.
Even then, the �free� proton will more often than not �jump� back and rebind to the
amino acid, especially if the route between the solution and the amino acid is tortuous.
Only when the proton manages a successful escape into solution (the left well) does it
count in computing k−.
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Figure 12.5 (A) Free energy diagram illustrating the chemical reaction A←→ B and the corresponding
Markov model. The transition state TrSt is ∆G+

1 above the left well and ∆G
+
2 above the right well. ∆G

is the free energy difference between the well bottoms. The equilibrium distribution between the wells
depends only on ∆G. (B) The effect of entropic factors on the reaction A ←→ B. Potential, rather
than free, energy is shown as a function of ξ, effective one-dimensional reaction coordinate that involves
concerted changes in both the chemical state and physical position along the path of the chemical reaction.
The equilibrium populations in each well remain the same, but the transition rates between the wells are
different due to the entropic effects of widening the transition state TrSt and the width W of the right
well.

The net ßux over the barrier is

Jξ = k
∗ · [A−]− k− · [A0]. (12.39)

After a long time the net ßux between the two wells will vanish, Jξ = 0, so that the popu-
lation of neutral and charged sites will distribute themselves between the wells in a Þxed
ratio, which we denote by Keq (the equilibrium constant): Keq ≡ [A0

eq]/[A
−
eq] = k

∗/k−. If
the transition state is high, then we can assume that population is apportioned between
the two wells according to the Boltzmann distribution (12.33): Keq = exp(∆G/kBT ),
where ∆G is a free energy. The value of ∆G determines how far the reaction goes, but
says nothing about the rate of the reaction. Now we know that ∆G = ∆H − T∆S (cf.
Section 12.6.4). The enthalpy term ∆H is due to the electrostatic attraction between
the proton and the charged site. The entropic term T∆S incorporates all the effects
that inßuence the diffusion of the proton to the site and its escape from it, the �hidden
coordinates.� Thus we see that a thermodynamic equilibrium state ∆G = 0 isa com-
promise between energy (∆H) and randomness (T∆S). The role of entropic factors is
discussed further in Section 12.6.5.
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There is one very signiÞcant effect in biochemical reactions that illustrates the
importance of entropic effects: hydration. Before a charged ion can bind to the amino
acid, it must divest itself of several �waters of hydration.� This is because water, being
a dipole, will tend to cluster about ions in solution, hindering them from binding to a
charged site that is also insulated by its own hydration shell. Suppose for the sake of
illustration that the energies binding the waters to the two reactants are just equal to
the electrostatic energy of binding between the reactants. Binding seems unfavorable,
since the ion will lose its translational and rotational degrees of freedom (≈ 3kBT
according to the equipartition theorem, Section 12.6.2). The binding reaction can still
proceed strongly because the liberation of the hydration waters is accompanied by a
large entropy increase, since each water gains ≈ 3kBT of rotational and translational
energy, and so the term −T∆S is strongly negative.

All of this means that the rate constants summarize the statistical behavior of a
large number of �hidden� coordinates that are very difficult to compute explicitly, but
may be easy to measure phenomenologically (see, for example [Hanggi et al., 1990]).
For our purposes, we shall adopt this phenomenological view of chemical reactions,
and assume that the rate constants can be speciÞed, so that the only entropic effect
we need to deal with explicitly is the concentrations of the reactants, such as H+ in
(12.38). Therefore, we can treat reactions using Markov chain theory, as indicated by
the 2-state model shown at the bottom of Figure 12.5A, whose equations of motion are

d[A0]

dt
= −d[A

−]

dt
= net ßow over the energy barrier = Jξ = k

∗[A−]− k−[A0],

or in vector form

d

dt
P = Jξ = K ·P, P =

µ
p−
p0

¶
, K =

µ
k∗ −k−
−k∗ k−

¶
. (12.40)

Here p− and p0 are the probabilities to have a negatively charged and neutral amino
acid, respectively. In general, the reaction ßux will have the form Jξ = K(P) ·P, where
the matrix K(P) is the matrix of transition rates, i.e., pseudo�Þrst�order rate con-
stants that may contain reactant concentrations that are held parametrically constant.
Implicit in this formulation are the assumptions that (i) the actual reaction takes place
instantaneously (electronic rearrangements are very fast), so that a substance remains
in a chemical state for an exponentially distributed mean time before jumping (react-
ing) to another state; (ii) the transition out of a state depends only on the state itself,
and not on any previous history.

12.4 A Mechanochemical Model

An important generalization is necessary to model molecular motors. We have spoken
of the potential φ(x, t) that provides the deterministic forcing as an external force.
However, a molecular motor φ(x, t) generally includes forces generated internally by
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the motor itself that drive the motor forward. Thus the potential term in (12.36) must
be broken into two parts:

φ(x, t) = φI(x, t)| {z }
internally generated forces

+ φL(x, t)| {z }
external load forces

,

where φI(x, t) is internally generated force and φL(x, t) is the external load force. A
common situation is that of is a constant load force FL , in which case φL = FL · x, so
that −∂φ/∂x = −FL; i.e., the load force acts to oppose the motor�s forward progress.
The internally generated force potential will generally depend on the chemical state
of the system. That is, the mechanical evolution of the system�s geometrical coordi-
nates governed by (12.36) is coupled to the chemical reactions described by a Markov
chain (12.40). Each chemical state is characterized by its own probability distribu-
tion pk(x, t), where k ranges over all the chemical states, and each chemical state is
typically characterized by a separate driving potential φk(x, t). Thus there will be a
Smoluchowski equation (12.36) for each chemical state, and these equations must be
solved simultaneously to obtain the motor�s motion.

For the neutralization reaction considered above, the total change in probability
p(x, ξ, t) is given by

∂

∂t

µ
p1
p2

¶
= net ßow in space + net ßow along reaction coordinates

=

z }| {
−
µ
(∂/∂x1)Jx1
(∂/∂x2)Jx2

¶
+

z }| {µ
Jξ1
Jξ2

¶

= −D
µ−(∂/∂x1)[p1∂(φ1/kBT )/∂x1 + (∂p1/∂x1)]
−(∂/∂x2)[p2∂(φ2/kBT )/∂x2 + (∂p2/∂x2)]

¶
+

µ
k−p2 − k∗p1
k∗p1 − k−p2

¶
,

(12.41)

where the probability densities pi(xi, t), i = 1, 2, now keep track of the motion along the
spatial and reaction coordinates, and Jξ1 = −Jξ2 keeps track of ßux along the reaction
coordinate (since the reaction is of Þrst order, i.e., has only two states). We can visualize
the mechanochemical coupling by plotting the spatial and reaction coordinates as shown
in Figure 12.6.

12.5 Numerical Simulation of Protein Motion

We return to the problem of simulating the protein�s motion numerically. Equation
(12.30) is a very useful and easy to implement numerical scheme. However, one of its
shortcomings is that it does not preserve the property of detailed balance. Detailed
balance is the constraint placed on ceq(x) to ensure that systems in equilibrium do
not experience a net drift. That is, when a system is in equilibrium, J in (12.32) is
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required to be identically zero. Detailed balance ensures that the equilibrium density
has a Boltzmann distribution.

It is important to understand the distinction between steady state and equilib-
rium. If we watch sample paths of x(t), it is consistent for the trajectories to move
with a mean velocity and for the system to have a steady state. In equilibrium the
sample paths must not exhibit a mean velocity. It can be shown that (12.30) produces
sample paths that show a net drift when the real system satisÞes detailed balance
[Elston and Doering, 1995]. Clearly, it is desirable to have an algorithm that preserves
detailed balance in equilibrium and can be used to simulate both equilibrium and
nonequilibrium processes.

12.5.1 Numerical Algorithm that Preserves Detailed Balance

To obtain an algorithm that has detailed balance built in, we convert the problem into
a Markov chain and and use the procedures described above to simulate it numerically.
The numerical algorithm given by (12.30) is based on the discretization of time. To
convert the problem into a Markov chain requires that we discretize space. Let xn =
(n − 1/2)∆x for n = 0,±1,±2,±3, . . . be the discrete sites on which the protein can
reside. Site xn is represented by the interval [xn−∆x/2, xn+∆x/2]. That is, when the
protein is in the interval [xn −∆x/2, xn +∆x/2], we treat it as being at site xn. If the
molecule is at site xn, then it can jump to either xn+1 or xn−1. A diagram of this process
is shown in Figure 12.7. The notation that we have adopted is that Fn+1/2 is the rate
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Figure 12.6 The mechanochemical phase
plane. A point is deÞned by its spatial and
reaction coordinates (x(t), ξ(t)). The ßow
of probability in the spatial direction is given
by the Smoluchowski model (12.35), and the
ßow in the reaction direction is given by the
Markov model (12.40).
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Figure 12.7 The numerical discretization in spatial di-
mension. A continuous Markov process (the Langevin
equation) is approximated by a discrete Markov process.
The particle is restricted to a set of discrete sites (xn) and
is allowed to jump only to the neighboring sites (xn−1,
xn+1). The site xn can be viewed as representing the
interval [xn −∆x/2, xn +∆x/2].
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at which the protein jumps from xn to xn+1 (F refers to a �forward� jump). Similarly,
Bn+1/2 is the rate at which the protein jumps from xn+1 to xn (B for �backward�).

For small enough ∆x, we have pn(t) ≈ p(x, t)∆x, where pn(t) is the probability
that the protein is at xn at time t. The governing equation for pn(t) is

dpn
dt

= −(Bn−1/2 + Fn+1/2)pn + Fn−1/2pn−1 +Bn+1/2pn+1

= (Fn−1/2pn−1 −Bn−1/2pn)− (Fn+1/2pn −Bn+1/2pn+1) = Jn−1/2 − Jn+1/2,(12.42)
where Jn+1/2 is the net ßux between the points xn and xn+1.

In addition to preserving detailed balance, our numerical scheme must approximate
the actual dynamics of the protein. In Section 12.6.6 we demonstrate that the following
jump rates preserve the mean drift motion as well as detailed balance:

Fn+1/2 =
D

(∆x)2
· ∆φn+1/2/(kBT )

exp (∆φn+1/2/(kBT ))− 1 , (12.43)

Bn+1/2 =
D

(∆x)2
· −∆φn+1/2/(kBT )
exp (−∆φn+1/2/(kBT ))− 1 , (12.44)

where

∆φn+1/2 = φ(xn+1)− φ(xn). (12.45)

12.5.2 Boundary Conditions

The algorithm described above must be complemented by boundary conditions. We
discuss three types of boundary conditions: periodic, reßecting, and absorbing. In each
case the total number of grid points within the interval is M , and ∆x = L/M , where
L is the length of the spatial domain. The placement of the grid has been chosen such
that xn = (n− 1/2)∆x for n = 1, 2 . . . ,M .

Periodic

Periodic boundary conditions require that pM+1(t) = p1(t) and p0(t) = pM(t). Using
these two equalities in (12.42) for p1(t) and pM(t) produces

dp1
dt

= −(B1/2 + F3/2)p1 + FM+1/2pM +B3/2p2, (12.46)

dpM
dt

= −(BM−1/2 + FM+1/2)pM + FM−1/2pM−1 +B1/2p1, (12.47)

where we have also made use of the fact that B1/2 = BM+1/2 and F1/2 = FM+1/2.

Reßecting

Figure 12.8A shows a reßecting boundary condition located midway between the grid
points M and M + 1. A reßecting boundary requires that

JM+1/2(t) = FM+1/2pM(t)−BM+1/2pM+1(t) = 0. (12.48)
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J = 0
Reflecting boundary

XM -1

x

FM -1/2
FM +1/2

BM -1/2

XM
X1 X2

B 1/2
B 3/2

F3/2

x

Absorbing boundary
ρ=0

A B

Figure 12.8 Numerical treatments for two types of boundaries. (A) At a reßecting boundary, the particle
is not allowed to jump through the boundary, and thus the ßux through the boundary is zero. (B) At an
absorbing boundary, the probability density is zero. Once the particle jumps out of the boundary, it should
not be allowed to come back. However, in the numerical discretization, blocking the particle from coming
back is not enough. The rate of the particle jumping out of the boundary has to be modiÞed.

We know that pM+1(t) = 0, since it is located outside of the reßecting boundary and is
inaccessible to the protein. Therefore, to enforce no ßux through the boundary, we set
F reßect
M+1/2 = 0. The equation for pM is then

dpM
dt

= −BM−1/2pM + FM−1/2pM−1. (12.49)

Absorbing

If the protein reaches an absorbing boundary it is instantaneously removed from the
solution. Therefore, the probability of Þnding the protein at an absorbing boundary is
zero. Figure 12.8B illustrates an absorbing boundary at x = 0. Thus, we must enforce
the condition p(0, t) = 0. In Section 12.6.7 we derive the appropriate jump rate at this
boundary:

Babsorb
1/2 =

D

(∆x)2
· α2

exp(α)− 1− α , α =
φ0 − φ1
kBT

. (12.50)

The equation for p1 is then

dp1
dt

= −
³
Babsorb
1/2 + F3/2

´
p1 +B3/2p2. (12.51)

It can be shown that this treatment of the absorbing boundary is accurate to second
order in ∆x and that it preserves the velocity of a perfect Brownian ratchet subject to
any load force (see Chapter 13).

Now we are ready to numerically integrate pn. However, before we turn to exam-
ples of implementing the algorithm, we must address the issue of numerical stability
and introduce an implicit method for the time integration as an alternative to Euler�s
method.
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12.5.3 Numerical Stability

For notational convenience let pn(k∆t) = p
k
n. Then Euler�s method has the form

pk+1n ≈ pkn −∆t
£
(Bn−1/2 + Fn+1/2)p

k
n + Fn−1/2p

k
n−1 +Bn+1/2p

k
n+1

¤
. (12.52)

Euler�s method is called an explicit method because pk+1n can be written explicitly
in terms of pkn. Each time we use the above technique to update p

k
n, we introduce a

small error due to the Þnite size of ∆t and round-off error. In the absence of round-off
error, we can achieve any desired accuracy by decreasing ∆t. However, there are some
problems with this approach. Usually, the biggest problem is the amount of computer
time required when we choose a very small ∆t. However, the round-off error incurred
in each step does not decrease with ∆t; rather it accumulates. It is possible that if ∆t
is too small, the total error is dominated by the round-off error. In that situation, the
more steps we take, the larger the accumulated error. So a careful choice of time step
is important.

Numerical stability is another issue with which we have to contend. That is, we do
not want our numerical solutions to run off to ±∞, when the real solution is bounded
for all time. It is possible to show that Euler�s method is stable only if

∆t < ∆tc = max
n

µ
1

Fn+1/2 +Bn+1/2

¶
, (12.53)

where max in the above equation means to use the value of n that produces the largest
value of the quantity in the parentheses. Figure 12.9 illustrates this change in stability
by using time steps slightly above and below ∆tc. To get an intuitive feel for this

3
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1

0

-0.5 0.0 0.5

200
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-200
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x x

ρ ρ

A B

∆t =
(F+B)

0.97 ∆t =
(F+B)

1.05

Figure 12.9 Numerical stability/instability. (A) When the time step is slightly below the critical step
size, the numerical solution is stable. (B) When the time step is slightly above the critical step size, the
numerical solution is unstable.
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instability, let us consider one time step of the numerical scheme. At t = 0, we take
p0m = 1 and p

0
n = 0 for n 6= m. From (12.52) we have

p1m = [1−∆t(Bm−1/2 + Fm+1/2)] p
0
m. (12.54)

It is clear that if ∆t > ∆tc, then p1m will be negative. Since p
1
m is a probability, negative

values clearly do not make sense. The condition on ∆t for stability is rather restrictive.
Using the jump rates given in (12.84) and (12.85), it is possible to show that

∆tc <
(∆x)2

2D
. (12.55)

This implies that in order to reduce the spatial step by a factor of 10 (which could be
necessary to model accurately spatial ßuctuations of the force, for example), the time
step must be reduced by a factor of 100.

12.5.4 Implicit Discretization

We now improve upon Euler�s method in two ways. First, we use a second�order algo-
rithm that improves the accuracy of the solution for Þxed ∆t. Second, we choose an
implicit method that is unconditionally stable. The implicit second�order algorithm we
employ is called the Crank�Nicolson method. For a simple one�dimensional differential
equation dx/dt = h(x), the Crank�Nicolson method has the form

xk+1 − xk
∆t

=
h (xk+1) + h (xk)

2
. (12.56)

For (12.42), this scheme becomes:

pk+1n − pkn
∆t

= − (Bn−1/2 + Fn+1/2) · p
k+1
n + pkn
2

+ Fn−1/2 · p
k+1
n−1 + p

k
n−1

2
+Bn+1/2 · p

k+1
n+1 + p

k
n+1

2
. (12.57)

If we now bring all the pk+1 terms to the left-hand side and use the vector notation

pk =


pk1

pk2
...

pkM

 , (12.58)

(12.57) can be written in matrix form as

A pk+1 = C pk, (12.59)

where A and C are tridiagonal matrices with elements

Ann = 1 +
∆t

2
(Bn−1/2 + Fn+1/2), An,n−1 = −∆t

2
Fn−1/2, An,n+1 = −∆t

2
Bn+1/2 (12.60)
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and

Cnn = 1− ∆t
2
(Bn−1/2 + Fn+1/2), Cn,n−1 =

∆t

2
Fn−1/2, Cn,n+1 =

∆t

2
Bn+1/2. (12.61)

Equation (12.59) reveals why this method is called implicit. At each time step we must
solve a linear set of coupled equations. Luckily, A is a sparse matrix, and it is therefore
computationally fast to solve (12.59) for pk+1.

12.6 Derivations and Comments

12.6.1 The Drag Coefficient

The natural units of distance and force on the molecular scale are nanometers (1 nm =
10−9 m) and piconewtons (1 pN = 10−12 N), respectively. In these units, the viscosity of
water at room temperature is η ≈ 10−9 pN·sec/nm2. Then, a typical value for the hy-
drodynamic drag coefficient of a sphere of radius R = 10 nm is ζ = 6πηR ≈ 10−7

pN·sec/nm. A dimensionless number that measures the ratio of inertial to viscous
forces is the Reynolds number: Re ≡ ρvR/η, where ρ is the density of water (103

kg/m3 = 10−21 pN·sec2/nm4) [Happel and Brenner, l986, Berg, 1993]. Typical veloci-
ties of molecular motors are v < 103 nm/sec, so on the molecular scale, the Reynolds
number is very small indeed: Re ≈ 10−8. This conÞrms our conjecture that we can
safely ignore the inertial term in (12.19). If the ßuid can truly be viewed as a contin-
uum, then ζ can be computed from hydrodynamics [Happel and Brenner, l986]. The
frictional drag coefficient ζ depends on the particle shape and size as well as the ßuid
viscosity: ζ = (dimensionless geometric drag coefficient) × (size factor) × (shape fac-
tor). For a sphere, ζ = 6πηR; drag coefficients for other shapes are given in [Berg, 1993],
a good source of intuition on Brownian motion.

12.6.2 The Equipartition Theorem

Let us consider a collision of two particles of masses m1 and m2 with velocities v1 and
v2 before the collision, and with velocities v01 and v

0
2 after the collision, respectively.

Conservation of energy and momentum guarantee conservation of the velocity of the
center of mass after the collision, as well as of the absolute value of the relative velocity
[Feynman et al., 1963]. One of the central assumptions of statistical mechanics is that
the velocities of the scattered particles are uncorrelated.

From this one can show that hm1v
02
1 i = hm2v

02
2 i. A more general result that can be

derived from statistical mechanics is that each quadratic degree of freedom (e.g., linear
or angular momentum) of a particle carries an average amount of energy hEi = kBT/2
[Reif, 1965]. Thus the mean kinetic energy of a point particle moving in the x direction
is hmv2x/2i = kBT/2, or hv2xi = kBT/m. If the particle is moving in a harmonic potential
well (i.e., on a spring), its mean potential energy is khx2i/2 = kBT/2. Thus the mean
total energy is hEi = hEkini+ hEpoti = kBT .
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12.6.3 A Numerical Method for the Langevin Equation

For (12.29) to be useful, we must specify the statistical properties of fB(t). Since fB(t)
models the net effect of many protein�water interactions, from the central limit the-
orem it seems reasonable to assume that fB(t) is normally distributed. Physically, we
also want hfB(t)i = 0, since a protein that is undergoing pure diffusion does not expe-
rience a net force. All that is left to fully characterize fB(t), is to specify its covariance
cov[fB(t)fB(s)]. Remember that a necessary condition for two random variables to be
independent is that their covariance is zero. Since the motion of the water molecules
is very fast as compared with the motion of the diffusing protein, we take fB(t) and
fB(s) to be statistically independent whenever t 6= s. When φ = 0, we should recover
diffusive motion. That is, the variance of a Brownian particle started at x(0) = 0 is

Var[x(t)] = hx(t)2i = 2Dt. (12.62)

We claim that an appropriate choice for the covariance is

cov[fB(t)fB(s)] = hfB(t)fB(s)i = 2kBT ζδ(t− s). (12.63)

The Dirac delta function δ(t − s) in (12.63) is a mathematical concept that is best
understood as the limit of a normal distribution centered at s as the variance goes to
zero:

δ(t− s) = lim
σ→0

1√
2πσ2

exp

µ
−(t− s)

2

2σ2

¶
. (12.64)

This is illustrated in Figure 12.10. The only property of the Dirac delta function that
we need is

R∞
−∞ g(t)δ(t − s)dt = g(s), which is easily understood when the Dirac delta

function is interpreted as a sharply peaked probability density. We now have a complete
description of fB(t). A random variable described as such is referred to as Gaussian
white noise.

0
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σ=1/8

σ=1/4
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σ=1

f (t,σ)

Figure 12.10 The delta function can be viewed as the
limit of a sequence of normal probability density functions
as the standard deviation goes to zero.
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Next we illustrate that our choice of fB(t) makes sense both mathematically and
physically. Note that from (12.28) with φ = 0 and x(0) = 0, we have

x(t) =
1

ζ

Z t

0

fB(t
0)dt0, (12.65)

from which it is clear that hx(t)i = 0. Assume without loss of generality that t > s.
One can show (from the theory of Dirac�s delta function) that

cov[x(t)x(s)] =
1

ζ2

¿µZ t

0

fB(t
0)dt0

¶µZ s

0

fB(t
00)dt00

¶À
= 2D

Z t

0

Z s

0

δ(t0 − t00)dt0dt00 = 2Ds, (12.66)

which is consistent with (12.62) when s = t. Furthermore, since fB(t) is a normal
stochastic variable, so is x(t).

If we deÞne the new random variable W (t) = x(t)/
√
2D, then W (t) is a normal

random variable characterized by

hW (t)i = 0, cov[W (t)W (s)] = min(t, s), (12.67)

where the min in (12.67) means to use the value of t or s that is smaller. The random
variable W (t) is referred to as a Wiener process and possesses some interesting math-
ematical properties, which we will not go into here. Note that from (12.29) what we
need for our numerical algorithm is actually the incremental Wiener process deÞned as

∆W (t) =W (t+∆t)−W (t) = 1√
2kBT ζ

Z t+∆t

t

fB(t
0)dt0. (12.68)

Following a procedure similar to that used in (12.66), it is straightforward to show that
∆W (t) is a normal random variable with mean zero and standard deviation

√
∆t. It is

also possible to show that all ∆W (t) and ∆W (s) are statistically independent for t 6= s.
This gives us a way to generalize Euler�s method to include Gaussian white noise. That
is, a numerical method for simulating (12.28) is (12.30).

12.6.4 Some Connections with Thermodynamics

Note that the ßux (12.32) can also be written as Jx = −(c/ζ)∂/∂x(kBT ln c+φ). There
can be many steady states characterized by a constant ßux Jx = const; one of these
is the special case of equilibrium: Jx = 0. At equilibrium, one can deÞne the quantity
µ = (kBT ln ceq+φ) called the chemical potential. The equilibrium distribution of ceq(x)
can be computed by setting the gradient in chemical potential to zero, so that µ =const;
this is exactly equivalent to enforcing a Boltzmann distribution (12.33).

The chemical potential is also the free energy per mole, G = µN , where N is the
mole number. A mole is an Avogadro�s number Na of objects (e.g., molecules), where
Na = 6.02 ·1023[#/mol]. At equilibrium we can deÞne the entropy S ≡ −kBN ln ceq and
the enthalpy H = φN . Then we arrive at the deÞnition of the free energy G = H−TS.
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These deÞnitions will prove useful when we discuss chemical reactions. Here we note
simply that diffusion smoothes out the concentration, leading to an increase in entropy.
Thus entropic increase accompanying the motion of the ensemble is handled by the
Fickian diffusion term in the ßux (12.32).

When the particles are charged (e.g., protons, H+), then the chemical potential
difference between two states, or across a membrane, is written as ∆µ = µ2 − µ1 =
(φ2 − φ1) + kBT (ln c2 − ln c1) = ∆φ− 2.3 kBT ∆pH. Here pH = −log10cH+ , where cH+

is the proton concentration. The protonmotive force is deÞned as p.m.f. = ∆µ/e =
∆ψ− 2.3 (kBT/e) ∆pH, where e is the electronic charge, and ∆ψ = ∆φ/e (mV) is the
transmembrane electric potential.

Consider the simple case where a protein motor is propelled by an internally gener-
ated motor force fM and opposed by a constant load force fL. For example, fM = ∆G/l,
where l is the length of the power stroke and ∆G is the free energy drop accompanying
one cycle of the chemical reaction that is supplying the energy to the motor. (This
would be an ideal motor: It uses all of the chemical energy to produce a constant�force
power stroke!) Then the Langevin equation (12.19) becomes

dx

dt
= v, m

dv

dt
= −ζv + fM − fL + fB(t). (12.69)

The diffusion equation associated with (12.69) for the probability density p(x, v, t) is
called the Kramers equation:

∂p

∂t
= − ∂

∂x
(vp)− 1

m

∂

∂v

∙
((fM − fL)− ζv)p−

µ
ζ
kBT

m

¶
∂p

∂v

¸
. (12.70)

The Smoluchowski diffusion equation (12.35) is a special case of the Kramers equation;
both are generically referred to as Fokker�Planck equations [Doi and Edwards, 1986,
Risken, 1989, Gardiner, 1997, Reif, 1965]. However, deriving (12.35) from (12.70) is
not trivial: It requires a singular perturbation treatment that is beyond the scope of this
chapter [Doering, 1990, Risken, 1989].

We set ∂p/∂t = 0 in (12.70) to look for the steady state. Multiplying by v2 and
taking the average by integrating over x and v, and using the equipartition theorem,
we obtain

0 = − ζhv2i| {z }
1

+ FMhvi| {z }
2

− FLhvi| {z }
3

+
kBT

m
ζ| {z }

4

. (12.71)

At constant temperature, the terms in (12.71) (see also Figure 12.11) have the following
interpretation:

� The rate at which the motor dissipates energy via frictional drag with the ßuid.
� The rate at which energy is being absorbed by the motor from the chemical reaction.
� The rate of work done by the load force against the motor.
� The rate at which the motor absorbs energy from the thermal ßuctuations of the
ßuid.
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Figure 12.11 Energy balance on a protein motor. Qout is
the heat dissipated by the motion of the motor (term 1).Qin

is the heat supplied to the motor by thermal ßuctuations
of the ßuid (term 4). The rate of work done by the load
force is −FL · hvi (term 3). The rate of work done by the
chemical reaction driving the motor is FM · hvi (term 2).

Thus we see that when the chemical reaction is turned off, ∆G = 0, the heat
absorbed by the motor from the thermal environment (term 4) is just equal to the
heat returned to the environment by frictional drag (term 1) in the absence of the load
force. If the reaction driving the motor were endothermic, then it is possible for the
motor to move by taking heat from the environment without violating the second law
of thermodynamics.

12.6.5 Jumping Beans and Entropy

An analogy may make the role of entropic factors clearer. Imagine that the left enthalpic
well in Figure 12.5B is Þlled with Mexican jumping beans whose hops are random
in height and angle. We can vary the equilibrium populations of beans in each well
without altering the height of the enthalpic barrier by simply increasing the width of
the transition state or of one of the wells. This is shown in Figure 12.5B. Now a bean
in the right well may execute many more futile jumps before hurdling the barrier: If it
jumps from the right side of the well, it will fall back into the well even if its jump is
high enough, or if it reaches the transition state it must diffuse (hop) along the plateau
randomly with a high probability of hopping back into the right well. Both of these
effects make it more difficult to escape from the right well, and so the equilibrium
population there will increase, as will Keq, the equilibrium population ratio.

The rate at which beans can pass the barrier from right to left will have the form

k− = ν · exp(∆G+
2 /kBT )

= ν|{z}
1

· exp(∆S/kB)| {z }
2

· exp(−∆H/kBT )| {z }
3

· exp(−∆FLL/kBT )| {z }
4

,

where (1) ν is a frequency factor (number of jumps/unit time). For reactions that involve
an atomic vibration, this is approximately kBT/h̄, where h̄ is Planck�s constant. For
diffusion controlled reactions this is of order D/L2, where D is the diffusion coefficient
and L a characteristic dimension. (2) The entropic term e∆S/kB accounts for geometric
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and �hidden variables� effects. (3) The enthalpic term e−∆H/kBT is a free energy �payoff�
for a successful jump; it accounts for the electrostatic and/or hydrophobic interactions.
(4) If the reaction involves a mechanical step that is opposed by a load force, FL, then
the fourth term accounts for the penalty exacted by performing work against the load.
All of these effects are contained in the kinetic rate constants and can estimated from
more detailed models [Hanggi et al., 1990, Risken, 1989].

Note that the height ∆G�
2 of the free energy barrier determines how fast the reaction

goes. The exponent exp(∆G�
2/kBT ) is called the Arrhenius factor. Because of this factor

the reaction rate depends dramatically on the height of the free energy barrier.

12.6.6 Jump Rates

Here we determine the appropriate values of Fn+1/2 and Bn+1/2 in (12.42). Suppose
the system, with proper boundary restrictions, attains an equilibrium as time goes to
inÞnity: p(eq)n = limt→∞ pn(t). Then the rates should preserve the property of detailed
balance. That is,

Jn+1/2 = Fn+1/2p
(eq)
n −Bn+1/2p

(eq)
n+1 = 0. (12.72)

Making use of the equilibrium distribution given by (12.33), we have

Fn+1/2
Bn+1/2

=
p(eq)n+1

p(eq)n

=
peq(xn+1)

peq(xn)
= exp

µ−∆φn+1/2
kBT

¶
, (12.73)

where

∆φn+1/2 = φ(xn+1)− φ(xn). (12.74)

Equation (12.73) is our Þrst constraint on the jump rates.
Besides preserving detailed balance, our numerical scheme must of course approx-

imate the actual dynamics of the protein. Let us consider the two simplest statistical
properties of the random variable x(t), namely, the mean and the variance. To simplify
the presentation, we make the assumption that φ(x) = −fx. That is, our Brownian
particle feels a constant force of strength f . For this problem (12.28) reduces to

dx

dt
=
f

ζ
+
fB(t)

ζ
. (12.75)

Assuming x(0) = 0, the above equation can be integrated to produce

x(t) =
f

ζ
t+

1

ζ

Z t

0

fB(s) ds. (12.76)

Using (12.76) the mean and variance of x(t) are found to be

hx(t)i = f

ζ
t, (12.77)

Var[x(t)] = 2Dt. (12.78)
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Remember that in the discrete version, x(t) = ∆xn(t). Since the force acting on the
protein is constant, the forward and backward rates are independent of n. Therefore,
we drop the subscripts and use F and B. Using (12.42), it is straightforward to show
that

hx(t)i = ∆xhn(t)i = (F −B)t, (12.79)

Var[x(t)] = (∆x)2Var[n(t)] = (∆x)2(F +B)t. (12.80)

Equating the mean and the variance given in (12.77) and (12.78) with those of (12.79)
and (12.80) gives us two more constraints on the jump rates. To summarize, we would
like F and B to satisfy the following three equations:

F

B
= exp

µ
f∆x

kBT

¶
[detailed balance], (12.81)

(F −B)∆x = f

ζ
[mean], (12.82)

(F +B)(∆x)2 = 2D [variance]. (12.83)

Generally, it is impossible to satisfy three equations with two unknowns. Let us ignore
the constraint on the variance for the time being. The rates that satisfy (12.81) and
(12.82) are

F =
D

(∆x)2
· −f∆x/(kBT )
exp (−f∆x/(kBT ))− 1 , (12.84)

B =
D

(∆x)2
· f∆x/(kBT )

exp (f∆x/(kBT ))− 1 . (12.85)

Additionally, this set of jump rates satisÞes (12.83) with an error of O ((∆x)2). We
point out that this choice of F and B is an improvement over the rates used by Elston
and Doering [Elston and Doering, 1995], since the mean is exactly preserved and F and
B have Þnite values as kBT → 0.

In general, the force f will not be constant, but will depend on x. In this case the
jump rates will depend on n, and are given by (12.43) and (12.44).

12.6.7 Jump Rates at an Absorbing Boundary

To derive an appropriate jump rate at this boundary, we approximate (12.35) near
x = 0 by

∂p

∂t
= D

∂

∂x

µ
− f

kBT
p+

∂p

∂x

¶
, (12.86)

where f = −(φ1 − φ0)/∆x is an approximation for −∂φ/∂x in (0,∆x). To derive a
second�order treatment of the boundary, we need only a Þrst�order approximation for
this derivative.

Next we assume that at any given time p(x, t) in the interval (0,∆x) is approxi-
mately at steady state. This assumption is valid because at small length scales diffusion
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is the dominant effect. The time scale for a particle with diffusion coefficient D to diffuse
a distance ∆x is ∆tdif = (∆x)2/2D, which is proportional to (∆x)2. The time scale for a
ßow with velocity v to travel a distance of ∆x is∆tßow = ∆x/v, which is proportional to
∆x. For small ∆x, ∆tdiff ¿ ∆tßow. At small length scales, diffusion relaxes the system
to steady state immediately after it is disturbed by the ßow. Thus, at any given time,
the local structure of the solution is given approximately by the steady-state solution.
At an absorbing boundary, the steady-state assumption in (0,∆x) can also be justiÞed
mathematically by examining (12.86) at x = 0. Because p(0, t) = 0, the left-hand side
of (12.86) is exactly zero at x = 0. Therefore, we set the left-hand side of (12.86) to zero
in the interval (0,∆x) and solve the resulting ordinary differential equation subject to
the following two conditions:

p(0) = 0,

Z ∆x

0

p(x)dx = p1. (12.87)

The solution is

p(x) = p1
exp(fx/(kBT ))− 1

kBT

f
[exp(f∆x/(kBT ))− 1]−∆x. (12.88)

Using the above expression for p(x), the ßux is found to be

J = D
f

kBT
p−D ∂p

∂x
= −p1 D

(∆x)2
· α2

exp(α)− 1− α , α =
f∆x

kBT
. (12.89)

In the numerical scheme, the ßux at the boundary is

J1/2 = −p1B1/2. (12.90)

This equation reßects the fact that once the protein is absorbed, it does not return to
the ßuid. Comparing (12.89) with (12.90), we get (12.50).

Suggestions for Further Reading

� Elementary Applications of Probability Theory, Henry Tuckwell. A good introduc-
tion to probability theory and stochastic processes with some applications to biology
[Tuckwell, 1995].

� Random Walks in Biology, Howard Berg. Introductory text on applying stochastic
processes to cellular and molecular biological systems. This book is written for
biologists [Berg, 1993].

� Handbook of Stochastic Methods, Crispin Gardiner. A good reference that covers
most important topics for studying stochastic processes. However, it is not a good
book for learning the subject [Gardiner, 1997].



12.6: Derivations and Comments 357

Exercises

1. Use (12.1) to verify that hxni = 0 and Var[xn] = (∆x)2n = ((∆x)2/∆t)t.
2. Use (12.6) to compute ∂p(x, t)/∂t and ∂2p(x, t)/∂x2. Substitute your results for
these two expressions into (12.7) to verify directly that p(x, t) satisÞes the diffusion
equation.

3. Let pn(t) be the probability that a biological Þlament has n subunits at time t.
Assume that the depolymerization rate of the growing Þlament is zero. Write down
the equations that govern pn(t). Assuming that p1(0) = 1 solve the equations for
p1(t), p2(t), and p3(t). Can you generalize your results for pn(t)? Compute the Þrst
passage time density for the time it takes the Þlament to grow 4 subunits long.

4. Use (12.10) to verify that hx(t)i = LhN(t)i = L(rp − rd)t and Var[x(t)] =
L2Var[N(t)] = L2(rp + rd)t.

5. For a 10 nm sphere of mass m = 10−21 kg moving in water, compute the
thermalization time τ .

6. Nondimensionalize (12.30) by choosing L as the spatial scale and a characteristic
time to diffuse across the domain [−2L, 2L] as the time scale. Simulate the resulting
equation on the computer for the double�well potential φ(x) = AkBT [(x/L)

4 −
(x/L)2], A = 0.1, 1, 10, and x(0) = −L and no ßux conditions at x = ±2L. Justify
your choice of the time steps. Run simulations until (i) tend = L2/D, (ii) tend =
10L2/D, (iii) tend = 100L

2/D. Discuss the results.
7. Use the computer to plot the Boltzmann distributions in the case of the double
well potential φ(x) = AkBT [(x/L)

4 − (x/L)2], −2L < x < 2L, for A = 0.1, 1, 10.
Discuss the results.

8. Solve equation (12.36) numerically on the interval [0, 1] with potential φ(x) = x,
no ßux boundary, and arbitrary initial conditions. Use any standard numerical
method. Run the simulations until the transients die out. Compare the solutions
with the corresponding Boltzmann distribution and discuss the results.

9. Derive (12.84) and (12.85) from (12.81) and (12.82).
10. Verify that the steady�state probability density given in (12.88) satisÞes (12.86)

and the conditions (12.87).
11. An Ornstein�Uhlenbeck process is characterized by the following stochastic

differential equation:

m
dV

dt
= −ζV + fB(t), hfB(t)i = 0, Cov[fB(t)fB(s)] = 2kBT ζδ(t− s).

Write down the diffusion equation that corresponds to this process. Solve the diffu-
sion equation for the equilibrium density. Using the numerical algorithm described
in this chapter, generate sample paths for this process. Use the sample paths to
generate a histogram of the particles velocities. Compare the histogram with the
analytic result for the equilibrium density.
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12. Write a program to numerically solve the diffusion equation (nondimensionalize
Þrst!)

∂p(x, t)

∂t
= D

∙
∂

∂x

µ
A sin

µ
2πx

L

¶
+ F

¶
p(x, t)

kBT
+
∂2p(x, t)

∂x2

¸
,

subject to periodic boundary conditions at x = 0 and x = L and the initial condition
p(x, 0) = δ(x−L/2). Plot the distribution at various times to observe the relaxation
to steady state. Use the steady-state distribution to compute the average velocity.
Investigate how the average velocity changes as the parameters F , A, and D are
varied.
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Molecular Motors: Examples

Alex Mogilner, Tim Elston, Hongyun Wang, and George Oster

13.1 Switching in the Bacterial Flagellar Motor

As an example of the numerical algorithm developed in Chapter 12, we consider
a model for switching in the bacterial ßagellar motor proposed by Scharf et al.
[Scharf et al., 1998]. Some bacteria, such as Escherichia coli, swim by spinning long
helical ßagella. Each cell has multiple ßagella, all of which have the same handed-
ness. When the ßagella are spun in the counterclockwise (CCW) direction, they come
together to from a bundle that propels the cell through the ßuid. The motor that is re-
sponsible for ßagella rotation is reversible. When spun in the clockwise (CW) direction,
the ßagella ßy apart and the cell undergoes a tumbling motion. Addition of a chemical
attractant causes the cell to suppress tumbling when moving toward this food source.
One of the proteins in the signaling pathway is CheY. The binding of phosphorylated
CheY to the portion of the motor located within the cytoplasm promotes CW rotation.
To model motor reversals, the protein complex that forms the rotor is assumed to exist
in two distinct conformational states that correspond to CW and CCW rotation. The
binding of CheY decreases the free energy of the CW state, while at the same time
increasing the free energy of the CCW by an equivalent amount. To capture this effect,
the free energy of the rotor is assumed to have the following form (see Figure 13.1A):

G(x) = 4∆Gnb

µ
x4

4
− x

2

2

¶
− 1
2
∆Gx, (13.1)

where x is an appropriate reaction coordinate, ∆G = G(−1)−G(1) is the free energy
difference between the CW and CCW states, and ∆Gnb = G(0) − G(−1) is the free
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Figure 13.1 (A) The free energy digram for the rotor at various levels of CheY concentration. (B)
Time series generated from the three potentials shown in A. (C) The stationary distributions for the three
potentials shown in A.

energy difference between the transition state and either the CW or CCW state when
the CheY concentration is such that ∆G = 0 (i.e., there is no bias toward CCW or CW
rotation).

To model the chemical kinetics of CheY, we assume that the binding of CheY to
the motor is a two�state processes with a single binding site being either empty or
occupied. Let pE(t) be the probability that the site is empty at time t and pO(t) be
the probability that the site is occupied. The probabilities satisfy the following set of
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coupled equations:

dpE(t)

dt
= −konpE(t) + koffpO(t), (13.2)

dpO(t)

dt
= −koffpO(t) + konpE(t), (13.3)

where koff is the dissociation rate constant and kon is the rate at which CheY binds
to the motor. From the law of mass action, kon should be proportional to the CheY
concentration. That is, kon = k

0
on[CheY], where k

0
on is a second�order rate constant and

the brackets stand for concentration. If the concentration of CheY is held constant, then
pE and pO will relax to their equilibrium values. These are found by solving (13.2) and
(13.3) with the time derivatives set equal to zero. Doing this yields pO = [CheY]/(Kd+
[CheY]) where Kd = koff/k

0
on = 9.1 µM is the dissociation constant.

There are approximately 26 binding sites on the motor, and the average number of
occupied sites is 26pO. In the absence of CheY, ∆G = ∆G0 = 14kBT and at saturating
concentrations of CheY, ∆G = ∆G∞ = −9kBT . Therefore, the change in ∆G from
low to high CheY concentrations is ∆∆G = ∆G0 −∆G∞ = 23kBT , where the symbol
∆∆G indicates that we are talking about a change in the value of ∆G. Thus each CheY
contributes roughly 0.88kBT toward changing the relative free energy of the CW and
CCW states. These considerations lead to the following expression for ∆G:

∆G = ∆G0 −∆∆G [CheY]

Kd + [CheY]
. (13.4)

Graphs of the free energy at various CheY concentrations are shown in Figure 13.1A,
with two minima located roughly at x = ±1. Generally, we shall measure distance x in
nanometers (nm) and force in piconewtons (pN). In these units kBT = 4.1 pN-nm at
room temperature (T = 298 K). The force that arises from changes in free energy is
−∂G/∂x. Therefore, the force vanishes at the minima. Additionally, if the conformation
of the rotor is slightly displaced from either minimum, it experiences a force that moves
it back toward that minimum. The force also vanishes at the local maximum located
near x = 0. However, when the conformation of the rotor is slightly displaced from
the origin, the force acts to move away from the rotor at x = 0 and toward one of the
two minima. Thus, we expect the rotor to spend most of its time near the minima.
To surmount the energy barrier between the minima requires a substantial thermal
ßuctuation.

The reaction coordinate x(t), which determines the state of the rotor, can take on
values anywhere between ±∞. Clearly, we cannot use an inÞnite interval in our nu-
merical algorithm. However, since G(x) → ∞ as x → ±∞, there is a strong restoring
force that drives the reaction coordinate back toward the origin when |x| is large. This
means that the probability of Þnding x(t) at distances far from the origin is small, and
ignoring large values of |x| will not signiÞcantly affect our numerical solutions. For the
parameters we shall consider, the interval (−2, 2) is wide enough to ensure numerical
accuracy. In practice, an appropriate interval can be determined by successively en-
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larging the length until the numerical results no longer change appreciably. At x = ±2
we enforce reßecting boundary conditions as described in Section 12.5.2. The diffusion
equation for this process is

∂p

∂t
= D

∂

∂x

µ
∂G(x)

∂x

p

kBT
+
∂p

∂x

¶
. (13.5)

To Þnd the equilibrium distribution for p(x, t), the above equation is solved with
∂p/∂t = 0. This yields

peq(x) =
exp

³
−G(x)

kBT

´
R∞
−∞ exp

³
−G(y)

kBT

´
dy
. (13.6)

The diffusion coefficient D in (13.5) represents an effective diffusion coefficient for the
reaction coordinate that includes many microscopic effects. For all the results presented
below, D = 70 nm2/s and ∆Gnb = 5kBT . These values were chosen to be consistent
with experimental observation that at 14 µM of CheY, motor reversals occur at an
average rate of 2/s (we expand on this point below). Figure 13.1B shows time series
generated by the three potentials shown in Figure 13.1A. The bistable nature of the
system is clearly evident. The time series can be used to produce histograms of the
reaction coordinate. An approximation for p(s)n is constructed by dividing the number
of points in each bin of the histogram by the total number of points in the time series.
Then we estimate p(xn) ≈ p(s)n /∆x. Figure 13.1C shows distributions generated in this
fashion. The solid lines are the exact results given by (13.6). As is clearly seen from the
Þgure, the numerical algorithm accurately reproduces the equilibrium distribution.

In the discussion of Markov chains and diffusion in the previous chapter, we encoun-
tered the idea of a waiting or Þrst passage time. This is a very important mathematical
concept that comes up in many different biological contexts. At a CheY concentration
of 14 µM the motor reverses roughly twice per second, and there is no bias toward CW
or CCW rotation. To compute the switching rate, we must compute the average time
for the system located at the reaction coordinate x to surmount the energy barrier at
x = 0. To this end, the reaction coordinate is started at x = −1 at t = 0 with an ab-
sorbing boundary at x = 0. Figure 13.2A shows the numerically generated probability
density at various times. To generate this Þgure, 61 grid points were used. Note that
the probability of Þnding the particle in the interval (−∞, 0) is continuously decreas-
ing, due to the absorbing boundary. This probability can be used to determine the Þrst
passage time density f(t) through the relation

f(t) = − d
dt
Prob [−∞ < x(t) < 0] = − d

dt

Z 0

−∞
p(x, t)dx

≈ − d
dt

MX
n=1

pn(t) = pMF
abs
M+1/2, (13.7)

where the last equality follows from (12.42) and the absorbing boundary condition.
Therefore, the numerical algorithm is well suited for computing Þrst passage time den-
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Figure 13.2 Numerical results of the Þrst passage time problem. The concentration of CheY has been
chosen such that ∆G = 0. At t = 0, the reaction coordinate is placed at x = −1. An absorbing
boundary is placed at x = 0 and a reßecting barrier at x = −2. The Þrst passage time is the time for the
reaction coordinate to reach the origin. (A) Time evolution of the probability density. As time increases,
the probability that the reaction coordinate remains inside the region decreases. (B) Probability density
of the Þrst passage time. Inset: an expanded view of the probability density near the origin showing the
nonexponential nature of the distribution.

sities. Figure 13.2B shows the Þrst passage time density. The solid line is the numerical
result. The dashed line is the Kramers approximation, which assumes that the process
has an exponential distribution with mean Þrst passage time

MFPT ≈ kBTπ

D
p
G00(−1)|G00(0)| exp

µ
G(0)−G(−1)

kBT

¶
=

kBTπ

D
√
32∆Gnb

exp

µ
∆Gnb

kBT

¶
. (13.8)

A derivation of this result can be found in [Gardiner, 1997]. Note that the most sig-
niÞcant factor in determining the mean Þrst passage time is ∆Gnb. The validity of the
Kramers approximation depends on ∆Gnb À kBT . As shown in the inset of Figure
13.2B, the Þrst passage time distribution is not exponentially distributed, since it must
be equal to zero at t = 0. However, if we ignore this very short initial time interval, the
distribution is approximated reasonably well with an exponential. Using the numerical
distribution to compute the mean Þrst passage time, we obtain MFPT = 0.253 s, and
using Kramers approximation (13.8) we Þnd MFPT = 0.236 s. An exact expression
[Gardiner, 1997] gives MFPT = 0.259 s. The agreement between this value and the
numerical result given above provides evidence that the algorithm is faithfully repro-
ducing the dynamics of the system. The switching rate is 1/(2 MFPT) = 1.98/s, where
the factor of 1

2
comes from the fact that half the time the reaction coordinate surmounts
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[Scharf et al., 1998].

the barrier, it falls back into the well from which it started. This justiÞes our choice of
D and ∆Gnb.

To test this simple model, we compute the CW bias as a function of CheY concen-
tration. The CW bias is the fraction of time that the motor spends rotating in the CW
direction. This can be computed by integrating (13.6) over the interval (−∞, 0). That
is,

CW bias =

R 0
−∞ exp

³
−G(x)

kBT

´
dxR∞

−∞ exp
³
−G(y)

kBT

´
dy
. (13.9)

Figure 13.3 shows a comparison of the model�s predictions to the experimental data of
Scharf et al. [Scharf et al., 1998]. The agreement between the data and the theoretical
curve provides evidence to support the model�s validity.

13.2 A Motor Driven by a �Flashing Potential�

The following process, called the ßashing ratchet [Doering, 1995, Doering, 1998], is a
paradigm for molecular motors. It is also a good application for the methods developed
in Chapter 12. Imagine a protein driven by alternating its exposure to two potential
energy proÞles: V1 (solid line) and V2 (dashed line), as shown in Figure 13.4. The Þrst
potential is a piecewise linear asymmetric sawtooth potential, while the second potential
is a constant. Thus, in the Þrst potential, the protein is localized near a local minimum,
while in the second potential the protein diffuses freely. While in either potential, the
motion of the particle is given simply by ζdx/dt = −dVi/dx+ fB(t), i = 1, 2. Switching
between the potentials is governed by a chemical reaction (vertical arrows), which occurs
with rate k.

Clearly, if the sawtooth potential is symmetric, the average displacement of the
protein must be zero. However, in the case of the asymmetric potential shown in Figure
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Figure 13.4 The ßashing ratchet. In
the Þrst potential, the protein is localized
near a local minimum. Alternatively, the
protein is free to diffuse. When the Þrst
potential is switched back on, the protein
settles into the nearest local minimum.

13.4, the protein moves on the average to the right, although all steps are reversible.
This phenomenon can be easily understood when the following inequalities are valid:

kBTL

FD
¿ 1

k
¿ L2

D
. (13.10)

Here L is the wavelength of the sawtooth potential, and F = −dV1/dx is the slope of
the Þrst potential, i.e., the force driving the protein to the right in the Þrst potential.
The corresponding drift rate of the protein is F/ζ = FD/kBT . The order of magnitude
of the time for the protein to drift into a local minimum is kBTL/FD. The diffusion in
the Þrst potential and the protein�s deviations from a local minimum can be neglected
if the slope of the sawtooth potential is very steep. Quantitatively, this means that
kBT ¿ FL (or kBTL¿ FL2; compare with (13.10).

The Þrst inequality (13.10)) means that the protein reaches a local minimum of the
sawtooth potential well before this potential switches off. The second inequality (13.10)
indicates that when the protein diffuses freely, it rarely can move farther than distance
L before the sawtooth potential is switched back on: the mean time between �ßashes�
of the potential, 1/k, is much less than the characteristic diffusion time L2/D. Thus
by the time the sawtooth potential is switched off, the protein is in a local minimum.
When the sawtooth potential is switched off, the protein diffuses with equal probability
to the left and to the right, and will not diffuse very far compared to the period of the
potential. If the protein diffuses to the left, then by the time the sawtooth potential is
switched back on, the protein is in the basin of attraction of the same local minimum
it started from. When the potential is on, the protein returns to the starting point of
the cycle. However, if the diffusion to the right took place, the protein is in the basin
of attraction of the next local minimum to the right. Thus, the protein either does not
move, or moves the distance L to the right, with equal probability. Said another way,
the diffusion in the ßat potential can be viewed as a spreading Gaussian distribution.
The asymmetry of the sawtooth potential, when it is switched on, cuts a larger portion
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of the distribution into the next domain of attraction. The corresponding average rate
of motion is hV i = Lk/4 (the mean duration of a cycle is 2/k, and on average, the
system steps a distance L per two cycles).

We considered the highly peculiar sawtooth potential with one of the slopes being
inÞnitely steep. For more regular smooth potentials, the velocity of the ßashing ratchet
is computed analytically in the so�called fast and slow ßashing limits [Doering, 1995].
In both of these limits, the protein advances very slowly. If the ßashing is too fast, the
protein does not have time to reach the local minimum, and the effect of asymmetry is
lost. The protein is effectively exposed to the average potential, which does not support
any steady movement. On the other hand, if the ßashing is too slow, the freely diffusing
protein moves too far from a local minimum, the information about its initial position
is lost, and the average displacement becomes very small. The mean velocity of the
ßashing ratchet reaches a maximum ≈ Lk/4 (for the smooth asymmetric potential,
such that δV ≈ kBT ) when k ≈ D/L2 (ßashing frequency is of the same order of
magnitude as the inverse time to diffuse over the potential�s period).

In the general case, the average velocity of the ßashing ratchet can be computed
only numerically. Following the methods of the previous chapter, we can describe the
ratchet by two coupled Smoluchowsky equations:

∂pi
∂t

= D
∂

∂x

∙
∂pi
∂x

+
∂Vi/∂x

kBT
pi

¸
+ k(−pi + pj), i = 1, 2, j 6= i. (13.11)

These equations must be solved numerically (see Exercise 2) on the Þnite domain [0, L]
with periodic boundary conditions and normalization condition

Z L

0

(p1(x, t = 0) + p2(x, t = 0))dx = 1.

When the probability distributions achieve steady state, the net current is

J = −D
∙
∂2(p1 + p2)

∂x2
+
∂V1/∂x

kBT
p1

¸
,

from which the average velocity can be found: hV i = LJ .
It is important to realize that in the process energy is consumed from the chemical

reaction that drives the switching between the two potentials. The motion down the
slope of the sawtooth potential 2→ 3 generates heat by frictional dissipation. Finally, if
a small load force directed to the left is applied to the protein, the movement slows down.
The load force is equivalent to tilting the potential to the left. Thus, the ßashing ratchet
is able to generate force, and has all characteristics of a molecular motor. However, there
is no direct correspondence of the ßashing ratchet mechanism to a real motor. In what
follows, we consider two simple models of actual molecular motors.
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13.3 The Polymerization Ratchet

Perhaps the simplest way to convert chemical energy into a mechanical force is by
polymerizing a Þlament against a load force (see the previous chapter). Here the energy
source is the free energy of binding of a monomer onto the tip of the polymer, ∆Gb.
If a polymer assembles against no resistance, the polymerization velocity (elongation
rate) is simply

Vp = L(konM − koff), (13.12)

where L (nm) is the size of the monomer, M (µM) the monomer concentration, and
kon (1/µM·s), koff (1/s) are the polymerization and depolymerization rate constants,
respectively.

If an object is placed ahead of the growing polymer, there are two mechanisms
by which the polymer can �push� the object: (i) by rectifying the Brownian motion
of the object; (ii) by actively �pushing� against the object, i.e., a power stroke. First,
we discuss the Brownian ratchet. We assume that the polymer is anchored at the left
end and is perfectly rigid. The object has a diffusion coefficient D = kBT/ζ. For the
moment, we neglect depolymerization (koff = 0). In order for a monomer to bind to the
end of the Þlament the object must open up a gap of size L by diffusing away from
the tip, and remaining there for a time ≈ (konM)−1 to allow a polymerization event to
take place. In the limiting case when polymerization is much faster than diffusion, i.e.,
konM À D/L2, we can consider the polymerization to happen instantaneously once a
gap of size L appears. Then the time for the load to diffuse a distance L is simply the
mean Þrst passage time hT i = L2/2D. To cover N such intervals takes N · τ time units,
so the average velocity is simply hVpi = NL/(N · hT i) = 2D/L. This is the speed of
an ideal Brownian ratchet. Note that by reducing the size of the monomer L, the speed
of the ratchet increases, since the likelihood of a thermal ßuctuation of size L increases
exponentially as L decreases. However, this is true only as long as our approximation
holds: konM À D/L2, or LÀp

D/(konM). For smaller values of L the polymerization
reaction becomes the limiting factor, so that Vp ≈ L · konM (cf. (13.12) with koff = 0).

We can picture the situation as shown in Figure 13.5B: the object diffuses on a
�staircase� sequence of identical free energy functions φ(x), each with a step height of
the monomer binding free energy ∆G = −kBT ln(konM/koff). If a load force FL opposes
the diffusive motion of the object, the potential becomes φ(x)−FLx. This corresponds
to tilting the potential so that the object must diffuse �uphill,� as shown in Figure
13.5B.

Including the depolymerization rate complicates the analysis considerably. However,
a diffusion equation can be formulated that can be solved exactly when konML,koffL¿
2D/L. In this regime, the approximate load�velocity relationship is given by the simple
formula [Peskin et al., 1993]

Vp = L(konMe
−fLL/kBT − koff). (13.13)
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Figure 13.5 The polymerization ratchet. (a) Monomers of length L polymerize onto the end of a growing
Þlament with rate constants kon, koff . An object with diffusion coefficientD has its thermal motions rectiÞed
by the insertion of each new monomer. A load force FL opposes the the motion of the object to the right.
(b) Free energy diagram of the polymerization process. The total free energy ∆G = ∆Gb + FLx where
the binding free energy satisÞes ∆Gb À kBT . Left panel: FL = 0; right panel: FL > 0 tilts the potential
so that the object must diffuse uphill. (c) The load-velocity curve for the polymerization ratchet given by
the approximation (13.13). The exact solution is shown by the dashed line [Peskin et al., 1993].

That is, the polymerization rate in (13.13) is weighted by a Boltzmann factor where
the exponent FLL/kBT is the work done by the load in moving the object one step
distance L. The stall load Fs is reached when the work done in moving the object a
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distance L is just equal to the free energy from the binding reaction, so that Vp = 0:

Fs =
kBT

L
ln

∙
konM

koff

¸
. (13.14)

Note that without depolymerization, koff → 0, there is no Þnite stall load.
Variations and elaborations on the polymerization ratchet have been used to model

a variety of cellular processes, including lamellipodial protrusion [Mogilner and Oster, 1996],
the polymerization of microtubules [Mogilner and Oster, 1999], the propulsion of intra-
cellular pathogens [Mogilner and Oster, 1996], and the translocation of proteins[Simon et al., 1992,
Peskin et al., 1993].

13.4 Model of a Simple Molecular Motor

To illustrate the formalism developed in the Chapter 12, we shall examine in detail a
simpliÞed model based on the principle of the ion-driven F0 motor of ATP synthase
[Elston et al., 1998, Dimroth et al., 1999]. This enzyme uses electrochemical energy
stored in a proton motive force across the inner membrane of mitochondria to produce
ATP. This will illustrate many of the principles of mechanochemical energy conversion
by proteins, but is sufficiently simple to analyze analytically and numerically. The mo-
tor is sketched schematically in Figure 13.6. It consists of two reservoirs separated by an
ion�impermeable membrane. The reservoir on the left is acidic (high proton concentra-
tion) with concentration cacid, and the reservoir on the right is basic (low concentration)
with concentration cbase. The motor itself consists of two �parts�: (i) a �rotor� carrying
negatively charged sites spaced a distance L apart that can be protonated and depro-
tonated; (ii) a �stator� consisting of a hydrophobic barrier that is penetrated by an
apolar strip that can allow a protonated site to pass through the membrane, but will
block the passage of an unprotonated site. (The height of the energy barrier blocking
passage of a charge between two media with different dielectric constants ²1 and ²2
is ∆G ≈ 200[(1/²1) − (1/²2)] ≈ 45kBT [Israelachvili, 1992, Dimroth et al., 1999]. This
energy penalty arises from the necessity of stripping hydrogen�bonded water molecules
from the rotor sites.)

Qualitatively, the motor works like this. Rotor sites on the acidic side of the mem-
brane are frequently protonated. In this state (a nearly neutral dipole) the rotor can
diffuse to the right, allowing the protonated site to pass through the membrane�stator
interface to the basic reservoir. Once exposed to the low proton concentration in the
basic reservoir, the proton quickly dissociates from the rotor site. In its charged state,
the rotor site cannot diffuse backwards across the interface: Its diffusion is �ratcheted.�
We will show that thermal ßuctuations will consistently drive the rotor to the right in
Figure 13.6.

Thus a rotor site can exist in two states: unprotonated and protonated. To specify
the mobility state of the rotor, we need to keep track only of the site immediately
adjacent to the membrane on the acidic side. In its unprotonated state, the site adjacent
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Figure 13.6 SimpliÞed model illustrating the principle of the F0 motor. The state of the rotor can be
pictured as a probability cloud (shown shaded) that drains from one potential to the next. φp is the potential
seen by the site adjacent to the left side of the membrane in the protonated state, and φd is the potential in
the deprotonated state. The potentials are tilted by an amout equal to the difference between the driving
force (FI = e · dψ/dx), and the load force, FL. In the deprotonated state the site is immobilized, and in
the protonated (almost neutral) state it can diffuse in the potential well φp. In the fast diffusion limit, the
probability cloud quickly settles into the exponential Boltzmann distribution inside φp, which determines
the probability of draining into the next deprotonated well, thus completing one step to the right.

to the membrane is immobilized, since it cannot pass into the stator, nor can it diffuse
to the left, since the next rotor site on the basic side of the membrane is almost always
deprotonated, and cannot diffuse to the left. (Of course, this depends on the thickness
of the membrane being the same as the rotor spacing; this is unrealistic, but the full
model treated in the references does not have this constraint.) Thus the progress of the
model can be pictured as a sequence of transitions between two potentials, as shown
in Figure 13.6. When deprotonated, the rotor is immobilized in potential φd, and when
protonated, it can move in potential φp. The effect of the load force FL is to tilt the
potentials upward, so the motion in potential φp is �uphill� (i.e., the total potential
when protonated can be written as φp(x)− FLx).
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Below, we consider two limiting cases. In the Þrst one, diffusion is much faster than
the chemical reaction rates. In the second one, the diffusion time scale is comparable
to the reaction rates in the basic reservoir. The Þrst case can be treated analytically,
while the second one will require numerical simulation.

13.4.1 The Average Velocity of the Motor in the Limit of Fast
Diffusion

The model can be formulated mathematically in terms of the probability of the depro-
tonated state pd(t) (non-dimensional), and the probability density of the protonated
state pp(x, t) (1/nm). Here x, 0 ≤ x ≤ L, is the distance of the protonated site from the
interface between the acidic reservoir and the membrane. The model equations have
the form

dpd
dt

= net deprotonated spatial ßux+ net reaction ßux

= Jxd + Jξ, (13.15)

∂pp
∂t

= net protonated spatial ßux− net reaction ßux

= Jxp − Jξ, (13.16)

where

Jxd = 0,

Jxp = D
∂

∂x

¡∂pp
∂x

− FI − FL
kBT

pp
¢
, Jxp(0) = Jxp(L) = 0,

Jξ = deprotonation at acidic reservoir

+ deprotonation at basic reservoir

− net protonation at both reservoirs

= kdpp(0) + kdpp(L)− k̄ppd.

Protonation rates are proportional to hyrogen ion concentration on either side of
the membrane, and the net protonation at both reserviors is k̄p = kpcacid+kpcbase. Note
that the rates of protonation and deprotonation have the dimensions k̄p (1/s) and kd
(nm/s), respectively. We assume that the deprotonation rates are the same at both
reservoirs.

First we nondimensionalize the model equations using the rescaled coordinate
(x/L)→ x, the rescaled time (kdt/L)→ t, and the following dimensionless parameters:

� Ratio of reaction to diffusion time scales: Λ = D/kdL.
� Net work done in moving the rotor a distance L: w = (FI − FL)L/kBT .
� Equilibrium constant: κ = k̄pL/kd.
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Here FI = e∆ψ/L is the electrical driving force, which is assumed to be constant.
Substituting these variables and parameters into equations (13.15) and (13.16) gives

dpd
dt

= −κpd + pp(0) + pp(1), (13.17)

∂pp
∂t

= κpd − pp(0)− pp(1) + Λ ∂
∂x

µ
∂pp
∂x

−wpp
¶
, (13.18)

where x, t are now the nondimensional coordinate and time, respectively.
In many situations it turns out that diffusion is much faster than the chemical

reaction rates: Λ À 1. (At D ≈ 107 nm2/s, L ≈ 10 nm, kd ≈ 103 nm/s, the order of
magnitude of the parameter Λ is 103.) This means that the time between dissociation
events is much longer than the time to diffuse a distance L, so the process is limited by
the speed of the reactions, not by the diffusion of the rotor. In other words, the diffusive
motion of the rotor is so fast that it achieves thermodynamic equilibrium, and so its
displacement can be described by a Boltzmann distribution. In this case we can express
the probability distribution as pp(x, t) = pp(t) · P (x), where pp(t) is the probability of
the site being in the protonated state and P (x) is the equilibrium spatial probability
density describing the rotor�s position relative to the stator.

We can obtain the steady�state Boltzmann distribution P (x) from (13.18). First,
we divide through by Λ and take advantage of the fact that ΛÀ 1: All terms but the
last are rendered negligible, so that the distribution of rotor positions in the protonated
state potential well φp (0 ≤ x ≤ 1) in Figure 13.6 is governed by

dP

dx
−wP = 0.

The solution must be normalized to 1, since it represents a probability density. The
result is:

P (x) =

µ
w

ew − 1
¶
ewx, 0 ≤ x ≤ 1, (13.19)

where the quantity in parentheses is the normalization factor. Thus, the rates of
protonation at time t are pp(0, t) = pp(t) · P (0) and pp(1, t) = pp(t) · P (1), respec-
tively. Substituting this into (13.17) and imposing the conservation of probability,
pd(t) + pp(t) = 1, we reduce the problem to the two�state Markov chain described
by:

dpd
dt

= −dpp
dt

= −κpd + (P+ + P−)pp, (13.20)

where P+(w) = w/(1−e−w), P−(w) = w/(ew−1). Therefore, the stationary probabilities
are obtained directly by setting the time derivatives equal to zero and solving for pp:

pd(w,κ) =
P+ + P−

κ+ P+ + P−
, pp(w,κ) =

κ

κ+ P+ + P−
, (13.21)
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or, in the dimensional variables:

pd(w,κ) =
kdP+ + kdP−

kp(cacid + cbase)L+ kdP+ + kdP−
, (13.22)

pp(w,κ) =
kp(c

acid + cbase)L

kp(cacid + cbase)L+ kdP+ + kdP−
. (13.23)

The average velocity of the motor can be found using the following heuristic ar-
gument. The rotor effectively moves to the right either from the protonated state,
when the proton is released to the basic reservoir with the effective rate kdP+, or from
the deprotonated state, when the protonation takes place at the acidic reservoir with
the effective rate kpc

acidL. The corresponding effective rate of movement to the right
is the sum of the corresponding rates weighted by the respective state probabilities:
hVri = kpcacidLpd+ kdP+pp. Similarly, the rotor effectively moves to the left either from
the protonated state, when the proton is released to the acidic reservoir with the effec-
tive rate kdP−, or from the deprotonated state, when the protonation takes place at the
basic reservoir with the effective rate kpc

baseL. The corresponding effective rate of move-
ment to the left is the sum of the corresponding rates weighted by the respective state
probabilities: hVli = kpcbaseLpd + kdP−pp. The net average velocity hV i = hVri − hVli,
can be obtained by using the expressions for the state probabilities (13.22), (13.23) and
some algebra:

hV i(FL) = kpkdLw(cacidew − cbase)
(ew − 1)kpL(cacid + cbase) + kdw(ew + 1) ,

w =
(FI − FL)L
kBT

. (13.24)

As a check, note that when there is no load (FL = 0), no membrane potential
(FI = 0), and no proton gradient (c

acid = cbase), the velocity vanishes, as it should. The
load�velocity relationship given by (13.24) looks very similar to the one in the next
limiting case, and is plotted in Figure 13.8C.

The stall force Fs is reached when the load force just brings the motor to a halt
(cacidew − cbase = 0):

Fs = FI +
kBT

L
ln

∙
cacid

cbase

¸
. (13.25)

Since the electrical driving force satisÞes FI = e∆ψ/L, (13.25) can be written as an
equilibrium thermodynamic relation in terms of the energy:

Fs · L = e∆ψ − 2.3kBT∆pH. (13.26)

This says that the reversible work done to move a rotor site across the membrane
is equal to the work done by the electrical Þeld plus the �entropic work� done by
the Brownian ratchet. (The term �reversible� in this context means that the velocity
is so slow (near stall) that we can neglect the viscous dissipation.) Dividing through
by the unit charge e gives the work per unit charge, which is just the protonmotive
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force discussed previously. One point about (13.26) is worth noting. Since the motor is
working against a conservative load force, as the motor approaches stall its efficiency
approaches 100%. For a motor working against a viscous load, a more sophisticated
treatment is required [Oster and Wang, 2000].

It may seem from (13.24) that there is a deÞnite average velocity of the motor
in the limit T → ∞. In other words, the motor continues to move in the absence of
thermal ßuctuation. The reason is that the solution of the Lengevin and Smoluchowski
equations cannot be treated as a regular perturbation problem in the limit of low
temperatures. This is a singlular perturbation problem, and the protein behavior at
absolute zero temperature cannot be quantiÞed as a simple limit of such behavior at
low temperatures.

13.4.2 Brownian Ratchet vs. Power Stroke

In the last example the motion of the rotor was driven by a combination of Brownian
motion and the membrane potential. The rotor diffusion is biased by the electrostatic
forces that are switched off and on by the binding and dissociation of protons to the
rotor sites. The membrane potential appears to drive the rotor unidirectionally without
the aid of Brownian motion. However, this cannot happen without the binding and
dissociation of protons, a stochastic process driven by thermally excited transitions.
Thus even the �power stroke� depends on Brownian motion, so that setting kBT = 0
in the model equations arrests the rotor motion. This is a fundamental distinction
between molecular and macroscopic motors. The distinction between a motor driven
by a �Brownian ratchet� and one driven by a �power stroke� may not be so clear in
other systems.

In the polymerization ratchet model described above, the movement of the load is
driven entirely by its Brownian motion. The chemical step simply rectiÞes, or biases, this
motion [Peskin et al., 1993]. By comparison, the F1 motor in ATP synthase is driven by
the hydrolysis of ATP. The conformational change in the protein that constitutes the
power stroke is known: Binding of ATP to the catalytic site drives the change in protein
shape that drives rotation. That is, the load is not driven signiÞcantly by Brownian
motion; it sees the protein�s conformational change as a �power stroke.�

However, a closer look at how ATP binds to the catalytic site reveals that it is
a multistep process involving the sequential annealing of hydrogen bonds between the
protein and the nucleotide. Each step in this process is driven by Brownian motion, i.e.,
a thermally activated process as illustrated in Figure 12.5. Therefore, the power stroke
itself can be viewed as a kind of Brownian ratchet, one that proceeds at a smaller length
scale than the protein (ATP synthase is ≈ 10 nm in diameter, while the catalytic site is
≈ 1 nm). Thus the distinction between a process driven by a Brownian ratchet and by
a power stroke can be largely a matter of size scale; a fuzzy boundary separates the two
notions. In the extreme case where the motion of the load is due only to its diffusion,
and the role of the chemical reaction is only to inhibit diffusion in one direction, we
can say that the motor is a Brownian ratchet.
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13.4.3 The Average Velocity of the Motor When Chemical
Reactions Are as Fast as Diffusion

Next we consider a different limiting case: where the diffusion time scale is comparable
to the reaction rates in the basic reservoir. In this case we have to change the mathe-
matical formulation of the model. We make the simplifying assumption that the proton
concentration in the acidic reservoir is so high that the binding sites on that side are
always protonated. Now we deÞne the right boundary of the membrane as the origin,
and the distance between the membrane and the binding site nearest the membrane
in the basic reservoir x is always between 0 and L. The chemical state of the rotor
is determined by the state of all the binding sites in the acidic reservoir. In general,
if there are N binding sites on this side, the total number of chemical states is 2N .
However, for now we focus on the binding site nearest the membrane. In this case there
are just two states: �off� if this site is unprotonated and �on� if it is protonated. In
Chapter 12 the mechanochemistry of the motor was described by the following set of
coupled diffusion equations:

∂pd
∂t

= D
∂

∂x

µ
FL − FI
kBT

pd +
∂pd
∂x

¶
− k̄ppd + kdpp, (13.27)

∂pp
∂t

= D
∂

∂x

µ
FL − FI
kBT

pp +
∂pp
∂x

¶
+ k̄ppd − kdpp, (13.28)

where pp(x, t) and pd(x, t) (1/nm) are the probability densities for being at position x
and in the protonated and deprotonated states, respectively, at time t. The proton as-
sociation and dissociation rates in basic reservoir are k̄p (1/s) and kd (1/s), respectively.
Note that dimensions of some of the model parameters and variables are different in
this limit.

We can nondimensionalize these equations using the rescaled coordinate (x/L)→ x,
the re-scaled time kdt → t, and the dimensionless parameters Λ = (D/kdL2), w =
(FI − FL)L/kBT , and κ = kp/kd. The nondimensional equations have the form

∂pd
∂t

= Λ
∂

∂x

µ
wpd +

∂pd
∂x

¶
− κpd + pp, (13.29)

∂pp
∂t

= Λ
∂

∂x

µ
wpp +

∂pp
∂x

¶
+ κpd − pp. (13.30)

Equations (13.29) and (13.30) are second�order partial differential equations. This
means that four boundary conditions are required in order to have a mathematically
complete description of the problem. One boundary condition is that x = 0 is reßecting:∙

wpd +
∂pd
∂x

¸
x=0

= 0, (13.31)

This takes into account the fact that an unprotonated site cannot pass back through the
membrane. The remaining three boundary condtions require knowing the state of all the
binding sites in the basic reservoir, which would necessitate solving a large number of
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Figure 13.7 In general, the chemical state of the motor
is determined by all the binding sites in the right chamber.
In the simpliÞed version of the model only the binding
site nearest the membrane is considered. The reßecting
boundary condition in the off state at x = 0 is due to the
fact that an unprotonated site cannot pass back through
the membrane. The reßecting boundary condition in the
on state at x = L is artiÞcial and is used to simplify the
problem.

coupled diffusion equations (one for each possible chemical state of the rotor). However,
to keep things simple, we construct a reßecting boundary condition at x = 1 (x is now
measured in units of L) when the rotor is in the protonated state. That is,∙

wpp +
∂pp
∂x

¸
x=1

= 0. (13.32)

If the proton dissociation rate is fast and the proton concentration is low in the basic
reservoir. we don�t expect this artiÞcial boundary condition to have much of an effect,
since in this limit the probability of the Þrst site being occupied when x = 1 is very
small, so that this boundary condition is rarely encountered.

When an unprotonated site moves to the right of x = 1, it brings a protonated
site out of the membrane channel and into the region 0 < x < 1. This protonated site
becomes the new site that we follow. The state of the motor goes from unprotonated
to protonated, and the coordinate of the motor goes from x = 1 to x = 0. Conversely,
when a protonated site moves into the membrane, it brings an unprotonated site into
the region 0 < x < 1. This unprotonated site becomes the new site we follow. The
state and the coordinate of the motor change accordingly. These considerations are
illustrated in Figure 13.7 by the arrows connecting the right end of pd to the left end
of pp. The boundary conditions that model this situation are:µ

wpd +
∂pd
∂x

¶
x=1

=

µ
wpp +

∂pp
∂x

¶
x=0

, pd(1, t) = pp(0, t), (13.33)

which is the mathematical statement of the fact that the rotor in the off state at x = 1 is
equivalent to the rotor in the on state at x = 0. Therefore, to implement these boundary
conditions numerically, we make use of the periodic boundary condition discussed in
the previous chapter. Note that there are two mechanisms for changing the chemical
state of the rotor: movement of the rotor and chemical kinetics.

We are now in a position to use the numerical algorithm to approximate (13.29)�
(13.33). The interval (0, 1) is divided into M segments. For each of the M grid points
there are two possible states of the rotor, off and on. Therefore, there are 2M possible
states in the discrete approximation of the process. Let the Þrst M states correspond
to the offstate, and the states M + 1 to 2M correspond to the onstate. The equations
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used in the numerical scheme for 1 < n < M are

dpn
dt

= (Fn−1/2pn−1 −Bn−1/2pn)− (Fn+1/2pn −Bn+1/2pn+1)− κpn + pn+M ,
dpn+M
dt

= (Fn−1/2pn−1+M −Bn−1/2pn+M)− (Fn+1/2pn+M −Bn+1/2pn+1+M)− pn+M + κpn,
(13.34)

and the equations used to implement the boundary conditions are

dp1
dt

= −(F3/2p1 −B3/2p2)− κp1 + pM+1, (13.35)

dpM
dt

= (FM−1/2pM−1 −BM−1/2pM)− (F1/2pM −B1/2pM+1)− κpM + p2M ,
(13.36)

dpM+1

dt
= (F1/2pM −B1/2pM+1)− (F3/2pM+1 −B3/2pM+2)− pM+1 + κp1,

(13.37)

dp2M
dt

= (FM−1/2p2M−1 −BM−1/2p2M)− p2M + κpM . (13.38)

The potential used in Fn and Bn is φ(x) = (FL − FI)x. Note that because of the
chemical kinetics, the matricesA andC required for the numerical scheme are no longer
tridiagonal. However, they are still sparse, so that solving (12.59) is not computationally
expensive.

Let us discuss brießy how to calculate the protonation and deprotonation rates k̄p
and kd. The chemical reaction is

site− +H+ ↔ site ·H. (13.39)

At equilibrium, protonation and deprotonation balance. That is,

k̄p[site
−] = kd[site ·H]. (13.40)

Proton concentrations are generally reported as a pH value:

pH = − log10[H+], [H+] = 10−pH. (13.41)

The higher the pH value, the lower the proton concentration. The pKa value of the
binding site is calculated from the measured concentration values of [site ·H] and [site−]
as

pKa = pH+ log10
[site ·H]
[site−]

. (13.42)

Combining (13.40) and (13.42), we see that the rates k̄p and kd are related to pH and
pKa by

k̄p
kd
= 10pKa−pH. (13.43)
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Generally, k̄p is limited by the rate at which protons diffuse to the binding site. In
this limit, the association rate can be computed from the Smoluchowski formula (this
rate is proportional to the proton concentration, cbase):

k̄p =

Ã
proton

concentration

!
·
Ã
absorption rate to a perfectly

absorbing disk of radius r

!
= 0.6 nm−3 · 10−pH| {z }

protons/nm
3

· 4 r Dproton| {z }
absorption rate

. (13.44)

Here Dproton is the diffusion coefficient of protons. If we know k̄p, kd can be determined
by (13.43). The table shown below lists typical parameter values for ATP synthase.

Parameter Name Parameter Value

Diffusion coefficient of the rod D = 104 nm2/s

pKa value of binding site pKa = 6.0

pH of the right compartment pH = 6.0 to 8.0 (variable)

External loadforce on the rod FL = 0 to 3 pN (variable)

Distance between binding sites L = 8 nm

Diffusion coefficient of proton Dproton = 10
10nm2/s

Absorbing radius of binding site r = 0.5nm

Note that at these values of the model parameters, at pH = 7, the values of the
nondimensional parameters are Λ ≈ 0.1,κ ≈ 0.1, w ≈ 1.

We now have all the necessary information to use the numerical scheme. Figure
13.8A shows the relaxation of the marginal density p(x, t) = pp(x, t)+pd(x, t) to steady
state. The (dimensional) average velocity is a steady-state property of the system and
is related to the total ßux by the relations

hV i = LJ = −LD
∙
FL − FI
kBT

³
p(s)p + p(s)d

´
+
∂

∂x

³
p(s)p + p(s)d

´¸
, (13.45)

where the superscript s in the above equation stands for steady state. Once steady state
is achieved, the average velocity hV i can then be computed from the relation

hV i = L(Fn−1/2pn−1 −Bn−1/2pn) + L(Fn−1/2pn−1+M −Bn−1/2pn+M) (13.46)

for 1 < n < M . Typical results for the mean velocity are shown in Figure 13.8B and
Figure 13.8C.

13.5 Other Motor Proteins

As we discussed in Chapter 12, there is such a variety of protein motors that no classi-
Þcation scheme can do justice to their diversity. However, for the purposes of discussion
we can identify several physical properties that delineate classes of motors. The liter-
ature on molecular motors is vast, so we shall restrict our discussion here to those for
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Figure 13.8 Numerical results of the simpliÞed F0 motor. Here pH is the pH value of the right compart-
ment. The external load force is FL. In all the Þgures the number of grid points used in the simulations
was M = 32. (A) Relaxation of the marginal density ρ = ρrmon + ρoff to steady state for pH = 8 and
no external load. (B) Motor velocity as a function of pH with no external load. (C) Motor velocity as a
function of the load force for pH = 7 and pH = 8.

which reasonably complete mathematical models exist as outlined in Table 13.5. Some
of the most important characteristics of molecular motors are the following:

Fuel. The two most common energy sources for molecular motors are nucleotide hy-
drolysis (e.g., ATP, GTP) and transmembrane ion gradients. Certain specialized motors
depend on stored elastic energy that has been captured during the assembly of the motor
(e.g., spasmoneme and the acrosome of Limulus [Mahadevan and Matsudaira, 2000]).

Mechanical escapement. Three common motor types are (i) rotary (e.g., the
bacterial ßagellar motor F0 ATPase); (ii) linear motors that run along a �track,� usu-
ally actin, microtubules, or nucleic acid polymers (e.g., myosin, kinesin, dynein, RNA
polymerase); (iii) polymerization or depolymerization motors that directly push or pull
against a load (e.g., the acrosome, cellular lamellipodia, the propulsive tail of Listeria).
The latter category suggests a subclassiÞcation into those that operate in a continuous
cycle (e.g., myosin, F1), and motors that are �one-shot� processes; i.e., they function
for but a single episode of polymerization, after which they are usually disassembled.

Cooperative vs. �loners.� Because of its small �duty cycle� (i.e., attachment
time to the load), myosin II must act in concert with many other partners to produce a
continuous force on an actin Þlament. Myosin V and kinesin, however, have longer duty
cycles, and so they can transport a vesicle without the cooperation of other motors.

These categories do not begin to delineate the variety of possibilities. However, one
common event generally commences the transduction process between chemical energy
and mechanical force. Because molecular motors can be viewed as enzymes, the binding
of a substrate onto the motor initiates the transduction process. However, this does not
really tell us much, since it is simply a restatement that chemical reactions (other than
isomerizations) begin by combining substrates. The feature that distinguishes molecular
motors from other enzyme reactions is that the binding event is directly or indirectly
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coupled to the creation of mechanical forces. For example, in F1 ATPase, the binding
of ATP to the catalytic site directly generates the power stroke. However, the coupling
may not always be so direct. For example, binding of a proton to the F0 rotor site
switches off the local electrostatic Þeld surrounding the rotor, permitting bidirectional
diffusion. The binding of monomers to polymerizing actin captures thermal ßuctuations
in elastic strain, which is subsequently released to power protrusion.

Several points are important. First, the role of thermal ßuctuations in all these
processes is central, so that none could operate when kBT = 0. Second, energy captured
by binding or dissociation events can be stored and released later, and in a different
location, to produce mechanical work. Third, the operation of every molecular motor
depends on its specialized protein geometry, so that models of motors that ignore
geometry are generally not useful to biologists.

Finally, we do not believe that the operation of molecular motors involves any
novel physics or chemistry. However, the amazing variety of protein shapes requires
that we treat each motor individually. General principles are not likely to provide more
than philosophical comfort in understanding any particular motor. In the words of
Katchalsky:

�It is easier to make a theory of everything, than a theory of something�

�Aharon Katchalsky
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Some Molecular Motors that Have Been Modeled Mathematically

Motor References

Acrosome [Mahadevan and Matsudaira, 2000,
Oster et al., 1982]

F1 ATPase [Oster and Wang, 2000,
Wang and Oster, 1998,
Oosawa and Hayashi, 1986]

F0 ATPase [Elston et al., 1998,
Dimroth et al., 1999,
Lauger, 1991,
Stein and Lauger, 1990]

Bacterial ßagellar motor [Elston and Oster, 1997,
Lauger, 1990, Berry, 1993]

HSP70 [Peskin et al., 1993,
Simon et al., 1992,
Elston, 2000,
Chauwin et al., 1998]

Kinesin [Peskin and Oster, 1995,
Fox and Choi, 2000,
Derenyi and Vicsek, 1996,
Keller and Bustamante, 2000]

Myosin [Huxley and Simmons, 1971,
Huxley, 1957, McMahon, 1984,
Smith and Geeves, 1995]

Polymerization [Peskin et al., 1993,
Mogilner and Oster, 1996,
Mogilner and Oster, 1999]

RNA polymerase [Wang et al., 1998,
Julicher and Bruinsma, 1998]

Suggestions for Further Reading

� Millennial musings on molecular motors, R. Vale [Vale, 2000].
� The mechanochemistry of molecular motors, D. Keller and C. Bustamante
[Keller and Bustamante, 2000].

� Mechanics of Motor Proteins and the Cytoskeleton, Jonathon Howard [Howard, 2001].
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Exercises

1. In the example of switching in the bacterial ßagellar motor, the Þrst passage time
density was calculated for the case ∆G = 0. Write a program that numerically
generates the Þrst passage time density for the case when ∆G 6= 0. Investigate
how the distribution changes as a function of CheY concentration. Do you expect
Kramer�s approximation for the mean Þrst passage time to be valid for all values
of CheY concentration?

2. Nondimensionalize equations (13.11) using the potentials

V1(x) = kBT [cos(x/L) + 0.3 sin(2x/L)], V2 = 0.

Use the parameters L = 10 nm, D = 105 nm2/s, 102/s ¡ k ¡ 104/s. Write a program
that solves equations (13.11) numerically and compute the velocity of the ßashing
ratchet for various values of k from the given range. Discuss the results.

3. Simulate two rigid Þlaments growing side by side against a �wall,� which diffuses
with the diffusion coefficient D. Assume that the rates of assembly and disassembly
of the monomers onto the polymer tips are known. Use the computer to model this
two-Þlament polymerization ratchet. Estimate the rate of growth in the absence of
the load force and compare it with the average velocity of the one-Þlament poly-
merization ratchet. Compare the corresponding stall forces. Do the results depend
on the mutual position of two Þlaments?

4. Consider the following model of a �walking� molecular motor that is roughly similar
to kinesin. The motor walks a 1-D track with equidistant binding sites. The motor
has two �legs� that either can be (i) attached to the adjacent binding sites, or (ii)
attached by one foot, while the other diffuses freely between the binding sites adja-
cent to the attached foot. The rate of dissociation of the front foot from the track is
different from that of the rear foot. Similarly, the rate of association of the diffusing
foot to the site in front of the bound foot is different from the rate of association
behind the bound foot. Describe this model with coupled Smoluchowski equations
and demonstrate that it is mathematically equivalent to the model considered in
Section 4.1.

5. Derive Langevin equations describing the model of the �walking� motor in the
previous exercise. Simulate the motor�s walk numerically. By changing the asso-
ciation/dissociation rates Þnd conditions under which the motor would move on
average to the right. Apply a load force to the free foot directed to the left and
estimate the stall force numerically.

6. Estimate numerically the average velocity and effective diffusion coefficient of the
walking motor at various values of the load force. Discuss the results.

7. Assume that the mechanochemical cycle of the �walking� motor is such that only
the rear foot dissociates from the track and that the diffusing foot binds only to
the site in front of the attached foot (i.e., the motor makes only forward steps).
Describe how to Þnd the ratio of the association and dissociation rates if you know
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from an experiment the average velocity and rate of growth of the displacement
variance.
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APPEND I X A

Qualitative Analysis of
Differential Equations

Bard Ermentrout and Joel Keizer

Nonlinear ordinary differential equations are notoriously difficult or impossible to solve
analytically. On the other hand, the solution to linear equations like those encountered
in the kinetic model of the GLUT transporter can be expressed in terms of simple
functions, and their behavior analyzed using standard results from linear algebra. In
the Þrst two sections, we cover some basic ideas in linear algebra and a review of power
series. These are concepts that are needed in the sections that follow. In Section A.3 we
summarize the main results for linear equations with two dependent variables. Although
one often encounters models like the GLUT transporter that involve more than two
variables, the basic ideas for two-variable ODEs carry over more or less unchanged for
larger sets of linear equations. Thus the intuition gained from understanding simple
two variable ODEs is enormously useful in understanding more complicated models.
To help to develop this intuition, we introduce the notion of the phase plane and use
phase plane analysis to help understand the solution of two-variable linear equations
in Section A.4. Another reason for focusing on linear equations is that the stability
of nonlinear ODEs can be understood by examining the behavior of small deviations
around steady or oscillatory states. In Section A.4.2 we show how the properties of
linearized equations can be used to understand stability of steady states for a system
of nonlinear equations such as a membrane with a gated ion channel.

Although we have tried to include a good brief synopsis of the most important tools
used in this book, more study on these topics may be necessary to fully appreciate some
of the more complex mathematical concepts. For more information on these topics,
please see the suggested readings listed at the end of this appendix.
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A.1 Matrix and Vector Manipulation

Matrices can be multiplied, added, multiplied by scalar numbers, and differentiated
according to the rules of linear algebra. Here we summarize these results for the 2× 2
matrices and two-component column vectors . The matrix �A multiplying the vector x
acts as a linear operator that produces a new vector, z, according to the formula

z = �Ax =

Ã
a11 a12

a21 a22

!Ã
x1

x2

!
=

Ã
a11x1 + a12x2

a21x1 + a22x2

!
. (A.1)

It can be veriÞed using (A.1) that the identity matrix �I =

Ã
1 0

0 1

!
leaves vectors

unchanged, i.e., z = �Ix = x. Matrices can be added together, as can vectors, using the
rules

�A+ �B =

Ã
a11 + b11 a12 + b12

a21 + b21 a22 + b22

!
and x+ y =

Ã
x1 + y1

x2 + y2

!
. (A.2)

To multiply either a matrix or a vector by a scalar c, each component is multiplied by
c, e.g.,

c�A = c

Ã
a11 a12

a21 a22

!
=

Ã
ca11 ca12

ca21 ca22

!
. (A.3)

Differentiation of matrices and vectors is also carried out on each component separately.
Thus

dx/dt =

Ã
dx1/dt

dx2/dt

!
. (A.4)

The trace, determinant, and descriminant are important scalars that characterize
matrices and that appear in the solution to (A.15). We use the shorthand notation tr�A
for the trace of �A, det�A for its determinant, and disc�A for the descriminant. In terms
of matrix elements they are deÞned as

tr �A = a11 + a22 (A.5)

det�A = a11a22 − a21a12 (A.6)

disc�A = (tr �A)2 − 4det�A (A.7)

For example, for the matrix

�A =

Ã
1 −1
3 6

!
, (A.8)

tr �A = 7, det �A = 9, and disc�A = 13.
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The inverse of a matrix is the generalization of division by a number. The inverse
of �A is written as �A−1 and is a matrix with the property that

�A�A−1 = �A−1 �A = �I (A.9)

with �I the identity matrix. The inverse of a matrix is useful in solving linear algebraic
equations. For example, the solution of the linear equation

�Ax = y (A.10)

is

x = �A−1y, (A.11)

which can be veriÞed by multiplying both sides of (A.10) on the left by �A−1 and using
(A.9). For a 2× 2 matrix it is easy to verify by carrying out the matrix multiplication
in (A.9) that if �A is not singular, i.e., as long as det�A 6= 0, then

�A−1 =
1

det�A

Ã
a22 −a12

−a21 a11

!
. (A.12)

A.2 A Brief Review of Power Series

One of the most useful tehniques in applied mathematics is the method of power series
expansion. The basic idea is that many functions can be expressed as a series in one or
more variables. For example, the familiar exponential function can be written as

et = 1 +
t

1!
+
t2

2!
+ · · ·+ t

n

n!
+ · · · ,

or more compactly as

et =
∞X
n=0

tn

n!
,

where we deÞne 0! = 1. The series converges for all t both real and complex. Given a
function f(t) and a point t = t0, suppose that all the derivatives of f at the point t0 are
deÞned. Then we can formally develop a power series approximation of the function f
around the point t0. The formal power series is

f(t) =
∞X
n=0

f (n)(t0)
(t− t0)n
n!

. (A.13)

Here f (k)(t0) is the kth derivative of the function f evaluated at the point t0. That is,
given the derivatives of a function at a point, we can approximate the function over
some interval containing that point by using a series approximation. This series is called
a Taylor series of f about the point t0. When the point t0 is 0 the series is often called
a Maclaurin series.
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If all of the derivatives of the given function exist at the point t0, then the Þnite
approximation to the Taylor series,

SN(t) =
NX
n=0

f (n)(t0)
(t− t0)n
n!

,

is also deÞned for all t, since it is just a Þnite sum of polynomials. We say that the series
converges for t in some interval I containing t0 if the limit of SN(t) exists as N → ∞
for all t in I. The interval I for which convergence is obtained is called the interval
of convergence for the series. For the exponential series given above, the interval of
convergence is the whole real line. InÞnite series do not always converge on the whole
line. For example, the geometric series

S(t) = 1 + t+ t2 + t3 + · · ·+ tn + · · ·
converges for |t| < 1. A useful test for the convergence of a series of the form

S =
∞X
n=0

an

is the ratio test. Let Rn = |an+1/an|. If
lim
n→∞

Rn < 1,

then the series converges. Let us apply this to the exponential series above. Since
an = t

n/n!, we have |an+1/an| = t/(n+ 1), and the limit of this as n goes to inÞnity is
zero for any Þnite t, so that the series converges for all t.

Here are some examples. Let us Þnd a series approximation for f(0) = sin(t) about
t = 0. Note that f(0) = 0, f 0(0) = 1, f 00(0) = 0, f 000(0) = −1, and the higher derivatives
just cycle among these numbers. That is, derivatives of order 1, 5, 9, etc., are equal to
1, those of order 3, 7, 11, etc., are equal to −1, and all others are zero. Thus

sin(t) = t− t
3

3!
+
t5

5!
+ · · ·+ (−1)m t2m+1

(2m+ 1)!
+ · · · .

The ratio |am+1/am| = t2/(2m+ 2)(2m+ 3), which tends to 0 as m goes to inÞnity, so
the sine series converges for all t.

You can similarly verify that

cos(t) =
∞X
m=0

(−1)m t2m

(2m)!
.

As a Þnal example, consider the series for the square root function evaluated at t = 1.
We have the following Þrst few derivatives:

f(1) = 1, f 0(1) =
1

2
, f 00(1) =

−1
2

1

2
, f 000(1) =

−3
2

−1
2

1

2
.

Thus the nth derivative (n > 1) is

cn = (−1)n+1 (2n− 3)(2n− 5) · · · 1
2n

.
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Thus, q
(t) = 1 +

1

2
(t− 1) +

∞X
n=2

(−1)n+1 cn(t− 1)
n

n!
.

We can apply the ratio test to this, noting that |cn+1/cn| = n− 1

2
, so that

Rn = |t− 1|
µ
n− 1

2

¶
/(n+ 1).

As n→∞ this ratio goes to |t− 1|. The interval of convergence satisÞes |t− 1| < 1, or
0 < t < 2.

A.3 Linear ODEs

The simplest time-dependent differential equations to solve are linear in the depen-
dent variables and of Þrst order in the time. First order implies that only the Þrst
time derivative appears on the left�hand side of the equations, and linear implies that
the right�hand side is a linear function of the dependent variables. The most general
equations of this type in n variables have the form

dx1/dt = a11x1 + a12x2 + · · ·+ a1nxn + y1,
dx2/dt = a21x1 + a22x2 + · · ·+ a2nxn + y2,

... (A.14)

dxn/dt = an1x1 + an2x2 + · · ·+ annxn + yn.
Here we consider only the case where the aij and yi are parameters that are independent
of time. For simplicity, we focus in this chapter on the special case of two variables,
which shares the main features of the more general case. Using the column vector and
matrix notation introduced in Section A.1, we can write these equations concisely as

dx/dt = �Ax+ y (A.15)

with

x =

Ã
x1

x2

!
, y =

Ã
y1

y2

!
, �A =

Ã
a11 a12

a21 a22

!
. (A.16)

Using the rules for differentiation of vectors, matrix multiplication, and vector addition
it is easy to verify that the vector equation (A.15), when written in terms of component
vectors, is the special case of (A.14) for two variables, i.e.,

dx1/dt = a11x1 + a12x2 + y1, (A.17)

dx2/dt = a21x1 + a22x2 + y2. (A.18)
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In this book we will be interested in equations for which there is a steady�state
solution, xss. In particular, we will be interested in what happens near these steady�
state solutions. This is a solution that is independent of time, so that setting the
left�hand side of (A.15) equal to zero and rearranging gives y = −�Axss. Using this
expression we can eliminate y from (A.15) by deÞning x0 = x− xss, to get

dx0/dt = �Ax0. (A.19)

This has the same form as (A.15) with y = 0, but now this equation concerns deviations,
or perturbations, from the steady�state solution. In the next section we will show how
to solve equations of this type using simple algebra.

A.3.1 Solution of Systems of Linear ODEs

The simplest way to solve an equation like (A.15) is to use the component form of the
equation to obtain a new equation that is of second order in time. For simplicity we
focus on the special case that y = 0 and introduce the notation úx1 for the Þrst time
derivative and ẍ1 for the second, so that

úx1 = a11x1 + a12x2, (A.20)

úx2 = a21x1 + a22x2. (A.21)

Thus differentiating both sides of (A.20) with respect to time gives

ẍ1 = a11 úx1 + a12 úx2

= a11 úx1 + a12(a21x1 + a22x2)

= a11 úx1 + a12a21x1 + a22(a12x2) (A.22)

= a11 úx1 + a12a21x1 + a22( úx1 − a11x1)
= a11 úx1 + a22 úx1 − a11a22x1 + a12a21x1,

where in rewriting the right�hand side we have Þrst used (A.21) to replace úx2 and
then used (A.20) to eliminate the term a12x2. Using the last equality in (A.22) and
the deÞnitions of the trace and determinant of �A in Section A.1 gives a second�order
equation for x1:

ẍ1 −
³
tr �A

´
úx1 +

³
det�A

´
x1 = 0. (A.23)

Using similar manipulations, an identical second order equation can be derived for x2
(exe??):

ẍ2 −
³
tr �A

´
úx2 +

³
det�A

´
x2 = 0. (A.24)

To solve (A.23), we try the exponential function x1(t) = c exp(λt) (c 6= 0).
Substituting this into the left�hand side of (A.23) gives

cλ2 exp(λt)− cλ exp(λt)tr �A+ c exp(λt)det�A. (A.25)
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Therefore, c exp(λt) is a solution to (A.23) if

λ2 − (tr �A)λ+ det�A = 0. (A.26)

This is called the characteristic equation of the matrix �A. It is a quadratic equation in
λ with the well-known solution

λ± =

tr �A±
µ³
tr �A

´2 − 4det�A¶1/2
2

. (A.27)

For example, if �A =

Ã
1 −1
3 6

!
, then tr �A = 7, det �A = 9, and λ± =

³
7±√13

´
/2. As

long as λ+ 6= λ−, then the solution to the characteristic equation gives two independent
solutions to (A.23). In this case, because (A.23) is linear, it is easy to verify that the
sum of these two solutions, c+ exp(λ+t) + c− exp(λ−t), is also a solution.

The argument of the square root in (A.27) is the discriminant of the matrix �A
deÞned in Section A.1. As long as disc�A 6= 0, then it is clear from (A.27) that there
are two independent solutions for x1(t). Using the result in (A.23), it follows that the
solution for x2(t) also has the same form. We write this concisely as

xi(t) = bi1 exp(λ+t) + bi2 exp(λ−t) (A.28)

with i = 1, 2. The values of the constants b1i and b2i need to be chosen to satisfy the
initial conditions. This is easily worked out, for example, for x1. Recall that there are
two initial conditions, x1(0) and x2(0), since there are two equations. Using (A.20) and
(A.28) it follows that

x1(0) = b11 + b12, (A.29)

úx1(0) = a11x1(0) + a12x2(0) = b11λ+ + b12λ−. (A.30)

Since x1(0), x2(0), λ+, and λ− are known, (A.29) and the second equality in (A.30)
provide two independent equations for the two unknowns b11 and b12. Solving these
using elementary algebra gives

b11 =
úx1(0)− λ−x1(0)

λ+ − λ− , (A.31)

b12 =
− úx1(0) + λ+x1(0)

λ+ − λ− . (A.32)

Since λ+ 6= λ−, the denominators of these equations are different from zero.
The time dependence of x1(t) is strongly dependent on the nature of the char-

acteristic values. There are three possibilities that are determined by the sign of the
discriminant and the trace. If disc�A > 0, then according to (A.27) the two characteristic
values will be distinct real numbers, since for a matrix with real components, tr �A is a
real number. However, if disc�A < 0, then the roots will be conjugate complex numbers
(if tr �A 6= 0), and will in fact be pure imaginary numbers (if tr �A = 0).
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When the characteristic values are complex, (A.28) can be expressed in terms of
sines, cosines, and exponentials. This follows from the representation of the exponential
of a complex number r + iω (with i =

√−1) as
exp(r + iω) = exp(r) exp(iω) = exp(r) (cos(ω) + i sin(ω)) . (A.33)

If we express the characteristic values in this fashion as λ± = r ± iω, then it is not
difficult to show using (A.28)�(A.32) that

x1(t) = exp(rt)

µ
x1(0) cos(ωt)− ( úx1(0)− rx1(0))

ω
sin(ωt)

¶
. (A.34)

Straightforward differentiation of this expression veriÞes that it satisÞes the initial
conditions and that it is identical to the expression in (A.28).

The solution to (A.23) is slightly different when disc�A = 0. In this case, according to
(A.27) λ+ = λ−, and there is only a single characteristic value λ = tr �A/2. In this case,
in addition to c exp(λt) there is a second solution to (A.23), which is c0t exp(λt). This
can be veriÞed using the facts that tr �A = 2λ and (since disc�A = (tr �A)2 − 4det�A = 0)
that det�A = λ2. Substituting these expressions for tr�A and det�A into (A.23) gives

ẍ1 − 2λ úx1 + λ2x1 = 0. (A.35)

It is easy to show then by substitution that c0t exp(λt) solves (A.35). Thus when disc�A =
0, the general solution to (A.23) is

x1(t) = b11 exp(λt) + b12t exp(λt). (A.36)

Using the initial conditions

x1(0) = b11, (A.37)

úx1(0) = a11x1(0) + a12x2(0) = λb11 + b12, (A.38)

it is easy to show that in this case

b11 = x1(0), (A.39)

b12 =
a11 − a22

2
x1(0) + a12x2(0). (A.40)

Although matrices with a vanishing discriminant are not typical, it is easy to con-

struct speciÞc examples, e.g., �A =

Ã −3 5

0 −3

!
. For this matrix tr �A = −6, det�A = 9,

disc�A = 0, and λ = −3, and the solution for x1 is easily found from (A.36)�(A.40) to
be

x1(t) = (x1(0) + 5tx2(0)) exp(−3t). (A.41)
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A.3.2 Numerical Solutions of ODEs

Although we have characterized the solutions to (A.20)�(A.21) analytically, it is just
as easy to solve them numerically by creating a system of ODEs in a numerical solver.

Consider the matrix �A =

Ã
1 −1
3 6

!
, with characteristic values λ± = (7±

√
13)/2 =

5.31 and 1.70. Since these values are distinct, we know that the solution is a sum of
two exponentials with positive exponents. Thus as long as x1(0) 6= 0 and x2(0) 6= 0, the
magnitude of x1 and x2 will increase exponentially with time. This is shown in Figure
A.1A, where the solution generated using a numerical package is plotted. Notice that
x1 rapidly declines, whereas x2 increases even more rapidly. The difference is due to
the coefficients of the two exponentials, which can be calculated explicitly from the
formulae in (A.31) and (A.32).

Figure A.1B shows another solution for the matrix �A =

Ã −1 −1
5 1

!
for which

disc�A = −16 and therefore λ± = ±4i. Since the characteristic values are imaginary,
(A.34) shows that the solution is a sum of sines and cosines, as shown in the Þgure. The

matrix �A =

Ã −2 −1
4 1

!
, on the other hand, has complex solutions with a real part

equal to − 1

2
. Thus the solution for this matrix will be a sum of sines and cosines multi-

plied by exp(−t). Numerical solution of the equations leads to the damped oscillations
shown in Figure A.1C.

A.3.3 Eigenvalues and Eigenvectors

The characteristic values of �A are also the eigenvalues corresponding to the eigenvectors
of the matrix. An eigenvector eλ of �A has the property that

�Aeλ = λeλ, (A.42)

where λ is a number called the eigenvalue. In other words, the matrix �A transforms an
eigenvector into a constant multiple of the eigenvector. This equation can be rewritten
in component form as

(a11 − λ)e1λ + a12e2λ = 0,
a21e1λ + (a22 − λ)e2λ = 0. (A.43)

The only way to have a nonzero solution to this equation for eλ is that the determinant
of the coefficients on the left-hand side of (A.43) vanishes, i.e.,

det�A =

Ã
a11 − λ a12

a21 a22 − λ

!
= 0. (A.44)

Expanding the determinant, one obtains the characteristic equation (A.26), which shows
that the eigenvalues are the same as the characteristic values of the matrix.
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Figure A.1 Solution of 2 × 2 linear equations using a numerical solver. Panels (A)�(C) give the time
course of the solutions for the three matrices descibed in the text.

The eigenvectors of a matrix are deÞned only up to a multiplicative constant, since
if eλ satisÞes (A.42), then so does ceλ. As long as λ+ 6= λ−, then it is not difficult to
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verify that the eigenvectors are given by the simple formula

eλ =

Ã
1

(λ− a11)/a12

!
. (A.45)

For example, for the matrix �A =

Ã
1 1

2 1

!
tr�A = 2, det�A = −1, and λ± = 1 ±√2.

Applying (A.45), the eigenvectors are

e+ =

Ã
1√
2

!
and e− =

Ã
1

−
√
2

!
. (A.46)

A useful property of eigenvectors of �A is that if eλ is the initial condition for (A.20)
and (A.21), then the solution is

x(t) = exp(λt)eλ. (A.47)

This result can be veriÞed by differentiating the right�hand side of (A.47) to get úx(t) =
λ exp(λt)eλ and then noticing that (A.42) implies that

�Ax(t) = �A exp(λt)eλ = exp(λt)�Aeλ = λ exp(λt)eλ, (A.48)

which shows that x(t) solves the equations. We apply this result in the following
sections.

A.4 Phase Plane Analysis

Obtaining a �solution� to Þrst�order ODEs means that you have expressed all of the
dependent variables as functions of time. In the case of the 2 × 2 linear equations in
Section A.3, this means that we have the time series for x1 and x2. A great deal can
be learned about these solutions by plotting the dependent variables as a function of
time as done in Figure A.1. However, there are other ways of plotting solutions that
give additional insight. For example, one can plot úx1 versus time, or some function of
x1 and x2 versus time. Perhaps the most useful plot is a phase plane plot, in which x2
is plotted versus x1 with time serving only as a parameter, as shown in Figure A.2 for
the numerical solutions shown in Figure A.1. This type of plot represents the trajectory
of the solution, just as the arc of a baseball thrown in the air is a trajectory in three
dimensional space.

Technically, the phase plane (or phase space for more than two variables) is a
Cartesian plane with coordinates (x1, x2). Since the initial condition for the ODEs is
arbitrary, any one of these points could be the initial point of a trajectory like those
in Figure A.2. Continuing the analogy of phase space trajectories to the trajectory of
a baseball, it makes sense to associate a velocity with the trajectory that goes through
a point in phase space. This can be done directly using the differential equations, since
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Figure A.2 The three solutions in Figure A.1(A)�(C) represented here in phase plane plots in corre-
sponding (A)�(C). The arrow represents the direction of the initial point on the trajectory, which is given
by the full line. The dashed line is the x2 nullcline, the broken dashed line is the x1 nullcline, and their
intersection is the steady state, which is unstable in (A), marginally stable in (B), and stable in (C).

the right�hand sides of the equations are explicit expressions for úx1 and úx2 as functions

of x1 and x2. Thus for the matrix �A =

Ã −2 −1
4 1

!
that gives rise to the trajectory

in Figure A.2C, the x1 component of the velocity at the point (x1, x2) is −2x1 − x2,
whereas the x2 component of the velocity is 4x1+x2. For the initial point (0.5, 0.5) of the
trajectory in Figure A.2C the velocity vector at that point has components (−1.5, 2.5).
In the Þgure, the head of the arrow on the velocity vector indicates its direction, and
the length is proportional to its magnitude. Just as the velocity of a baseball is parallel
to its trajectory, so is the velocity vector in phase space parallel to its trajectory.
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There are a number of important curves and points in the phase plane that are
deÞned by the differential equations. Isoclines are lines in the phase plane where the
time rate of change of a variable is constant. For example, for the matrix in the previous
paragraph, the isoclines for x1 are deÞned by c = −2x1 − x2, i.e., x2 = −2x1 + c, and
the isoclines for x1 are given by x2 = −4x1 + c, where c is a constant. A particularly
useful isocline is the nullcline, for which the time rate of change is zero, i.e., c = 0. So
for this special case the nullclines are given by the straight lines through the origin,
x2 = −2x1 and x2 = −4x1, shown in Figure A.2C. It is straightforward to show that
the nullclines for the general 2 × 2 linear equations (A.17)�(A.18) are also straight
lines. Since úx1 = 0 on the x1 nullcline, x1 cannot decrease if the trajectory crosses the
nullcline from the right and cannot increase if the trajectory crosses it from the left.
This means, as can be veriÞed by looking at Figure A.2, that the trajectory must cross
the x1 nullcline perpendicular to the x1 axis. Similary, the trajectory crosses the x2
nullcline perpendicular to the x2 axis.

Steady states are deÞned as points in the phase space at which both úx1 = 0 and
úx2 = 0. These points, which are also known as singular points, equilibrium points, or
stationary points, have the property that neither variable changes as a function of time.
They are determined graphically by the intersection of the nullclines. However, just
because the variables do not change in time at a steady state does not mean that
trajectories starting from nearby points will end up at the steady state. Three different
situations are illustrated in Figure A.2. In panel A the steady state is at the origin,
(0, 0). However, the trajectory starting at (0.5, 0.5) grows without bound. In panels B
and C the steady states are also at the origin, but the trajectory in B circles the origin
periodically, whereas in C it spirals into the steady state.

A.4.1 Stability of Steady States

As we saw in the preceding section, a steady state may or may not be an attractor for
nearby trajectories; i.e., just because an initial condition is close to the steady state, it
does not mean that after a time the trajectory will approach the steady state. However,
when this is the case, the steady state is said to be stable and attractive or asymptotically
stable. Three qualitatively different behaviors near steady state are illustrated by the
solutions of the linear ODEs in Figure A.2. The matrix for the ODEs in panel A has
positive eigenvalues, and the trajectory is repelled, not attracted, by the steady state.
So the steady state in panel A is asymptotically unstable. In panel B the trajectory
is circular and periodically returns to the initial condition (0.5, 0.5). In this case the
steady state is neither attractive nor repulsive and is said to be neutrally stable. Note
that if the steady state of a nonlinear problem is determined to be neutrally stable by
Þnding the eigenvalues of the linearized problem, we are not able to conclude anything
about the stability of the steady state. Neutral stability is a borderline case, and the
nonlinear parts of the equations can affect the stability in either direction. In these
cases, more analysis must be done to determine the stability. Finally, in panel C the
trajectory spirals into the steady state, which is stable and attractive.
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Figure A.3 Graphical representation of the
stability properties of 2× 2 matrices. The trace
is plotted on the x-axis and the determinant
on the y-axis. The eigenvalues in the cross�
hatched region are complex, and real elsewhere.
These two regions are separated by the parabola
det �A = tr �A2/4 on which disc �A = 0. Seven
regions with various degrees of stability are
indicated by the sign of the eigenvalues.

The attentive reader may have noticed a correlation between the eigenvalues of the
three matrices represented in Figure A.2 and the stability of the steady states. Indeed,
unstable states of linear equations are characterized by at least one eigenvalue with a
positive real part. If, in addition, both eigenvalues are positive, as in Figure A.2A, then
the state is called an unstable node. An asymptotically stable state like that in Figure
A.2C, on the other hand, has negative real parts for all of its eigenvalues. Marginal
(or neutral) stability occurs when the real part of a pair of eigenvalues vanishes, as
is the case in Figure A.2B. A two�variable linear equation has only two eigenvalues,
and a marginally stable steady state implies sinusoidal solutions. Another name for a
marginal state for a two�variable system is a center.

Because we have at our disposal the analytical form of the solutions for 2×2 linear
equations, it is possible to give a complete description of the stability of their steady
states. Figure A.3 gives a graphical representation of the stability behavior of a matrix
�A as a function of the trace (plotted on the x-axis) and the determinant (plotted on
the y-axis). The tr�A, det�Aplane in Figure A.3 is divided into seven distinct regions
separated by the two axes and the parabola det�A = tr �A2/4, which is the curve on
which disc�A = 0. According to the expression for the characteristic values in (A.27),
λ+ = λ− on the parabola, and in the quadrant with tr �A > 0 the eigenvalues are both
positive, whereas for tr �A < 0 both eigenvalues are negative. Marginal stability occurs
when the real part of both eigenvalues is zero, i.e., when tr �A = 0 and det�A > 0, which
occurs on the positive y-axis. Using (A.27) it is easy to verify that complex eigenvalues
occur only in the cross-hatched region above the parabola (since disc�A < 0 there). In
that region to the right of the y-axis, tr�A > 0, the eigenvalues have positive real parts,
and the steady states are unstable spirals (region 5), whereas in region 7 the spirals
are stable. When tr�A and det�A have values in regions 1 and 4, the steady state is a
stable or unstable node, respectively. Below the x-axis (where det�A < 0) the steady
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Figure A.4 Schematic representation of phase space trajectories near the steady states in the seven
regions shown in Figure A.3. Unstable states have trajectories that diverge from the steady state, whereas
stable steady states have converging trajectories, and neutrally stable states are surrounded by closed
trajectories. The states shown in 2 and 3 are saddle points, with both converging and diverging trajectories
in the directions of the eigenvectors of the matrix.

states are unstable with the property that they have two real eigenvalues, one positive
and one negative. Unstable states like this are called saddle points, because trajectories
that start in the direction of the positive eigenvector recede from the steady state
exponentially. Trajectories along the direction of the negative eigenvector move toward
the steady state, also exponentially.

Using Figure A.3 we can classify the qualitative behavior of phase plane trajectories
for 2×2 linear ODEs based on the value of their trace and determinant. Representative
trajectories are illustrated in Figure A.4 for each of the seven regions in Figure A.3.
Region 1 is a stable node, and the two trajectories correspond to the directions of
the two stable eigenvectors, which have velocity vectors directed at the steady state.
Regions 2 and 3 are saddle points, with eigenvectors that move toward or away from
the steady state, whereas the unstable node in region 4 has both eigenvectors moving
away. Regions 5 and 7 have trajectories that spiral away from or toward the steady
state. In region 6 the trajectories are circles, corresponding to sinusoidal oscillations.

A.4.2 Stability of a Nonlinear Steady State

What we have learned about stability of steady states for linear systems can be trans-
ferred partially to nonlinear ODEs. To be speciÞc, let us consider a biological membrane
with a gated ion channel. To do this we combine a model of ion gating with an expres-
sion that governs the membrane potential (see Chapter 1 and Chapter 2). For simplicity,
we will consider only one conductance. If n represents the gating variable and V the
voltage, then the two are coupled by the differential equations

CdV/dt = −gn(V − Vrev) + Iapp, (A.49)

dn/dt = −(n− n∞(V ))/τ, (A.50)
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where Vrev is the reversal potential. We assume that n∞ has the following voltage
dependence:

n∞(V ) =
1

1 + exp(−(V + V0.5)/S) (A.51)

with V0.5 and S positive constants. Equations (A.49) and (A.50) are both nonlinear due
to the factor n(V − Vrev) in (A.49) and the voltage dependence of n∞ in (A.50).

To analyze the stability of the steady states of these equations we Þrst must Þnd
the steady states by setting the right�hand sides of the equations equal to zero. This
gives

gnss(V ss − Vrev) = Iapp (A.52)

nss = n∞(V
ss), (A.53)

which can be written as a single nonlinear equation to solve for V ss:

Iapp
g
=

V ss − Vrev
1 + exp(−(V ss + V0.5)/S)

. (A.54)

This equation cannot be solved in closed form, and a much simpler way to locate the
steady state is graphically in the (V, n) phase plane using the nullclines. Setting the
left�hand sides of (A.49) and (A.50) separately equal to zero and solving for n as a
function of V gives

n(V ) =
Iapp

g(V − Vrev) (V-nullcline), (A.55)

n(V ) = n∞(V ) =
1

1 + exp(−(V + V0.5)/S) (n-nullcline). (A.56)

The V - and n-nullclines are plotted in Figure A.5A, along with representative tra-
jectories. Due to the nonlinearities in (A.49) and (A.50) the nullclines are curved rather
than straight lines. This curvature inßuences the shape of the trajectories, which must
cross the nullcline perpendicular to the axis of the variable. Close to the steady state,
however, both nullclines become approximately straight lines, as is seen in Figure A.5B,
which is the same phase plane as in Figure A.5A, but zoomed in around the steady
state.

If we restrict the initial conditions for trajectories to be close to the steady state,
then the nonlinear equations are well approximated by a 2× 2 linear system. This can
be seen in detail if we deÞne as new variables x1 = V − V ss and x2 = n − nss, the
deviations of the voltage and gating variable from their steady�state values. Since the
steady�state values are constants, it follows that dx1/dt = dV/dt and dx2/dt = dn/dt,
so that we can use (A.49) and (A.50) to obtain differential equations for x1 and x2. In
particular, if the initial conditions are close to the steady state, then we can substitute
V = V ss+x1 and n = n

ss+x2 into the right�hand sides of (A.49) and (A.50) and then
use a Taylor series expansion in the small deviations x1 and x2. Explicitly:
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Figure A.5 Phase plane plots for (A.49)-(A.51) showing typical trajectories (full lines), the V -nullcline
(dashed line), and the n-nullcline (broken dashed line). (B) is zoomed-in around the steady state, illustrating
that the nullclines are approximately straight lines near the steady state.

dx1/dt = (g(n
ss + x2)(V

ss + x1 − Vrev) + Iapp) /C
= [gnss(V ss − Vrev) + Iapp]/C + (gnssx1 + g(V ss − Vrev)x2)/C
+ gx1x2/C, (A.57)

dx2/dt = − (nss + x2 − n∞(V ss + x1)) /τ

= −[nss − n∞(V ss)]/τ + (dn∞/dV )
ssx1/τ − x2/τ

+ higher�order terms in x1. (A.58)

In the second equality in both (A.57) and (A.58) the terms in square brackets vanish
because of the steady�state conditions in (A.52) and (A.52); the second terms are linear
in x1 and x2; and the third terms are quadratic or of higher order in x1 and x2. Thus
keeping the lowest�order terms gives the linear equations

dx1/dt = (gn
ss/C)x1 + (g(V

ss − Vrev)/C)x2, (A.59)

dx2/dt = (dn∞/dV )
ssx1/τ − x2/τ. (A.60)

Once the elements of the matrix of this 2 × 2 linear equation have been evaluated,
the behavior of the solution in a neighborhood of the steady state can be evaluated.
This type of linear analysis, which gives information only about trajectories nearby the
steady state, is called linear stability analysis.

The trajectories in Figure A.5B make it clear that the steady state is asymptoti-
cally stable, and according to the catalogue of possibilities in Figure A.4, the steady
state is a stable spiral. It is also possible to Þnd the steady states numerically and,
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Figure A.6 Bifurcations of new Þxed points: (A) saddle-node bifurcation, (B) transcritcial bifurcation,
(C) supercritical pitchfork bifurcation, (D) subcritical pitchfork bifurcation. Stable Þxed points are solid,
and unstable are dashed.

in addition, determine the stability of the steady state by numerical evaluation of the
eigenvalues. Combining the analytical tools developed in this chapter with the numer-
ical tools available in various software packages, we are ready to explore the dynamics
of a variety of cellular and neural dynamical systems in the remaining chapters.

A.5 Bifurcation Theory

In many systems of differential equations there are parameters that we would like
to vary. As these parameters vary, we want to know whether the solutions to the
equations remain similar in nature. For example, as current is injected into a cell,
we want to know if the cell will remain at rest or whether some other phenomena
that are qualitatively different will take place. The changes in the qualitative nature of
solutions to differential equations as a parameter varies is called bifurcation theory. In
this section we will review simple bifurcations from equilibrium of ordinary differential
equations. Bifurcation from equilibrium solutions is intimately related to the stability
of equilibria, a subject described earlier in this chapter. Suppose that we have found
an equilibrium solution to a system of differential equations and study its stability as
some relevant parameter varies. The stability is determined from the eigenvalues of the
linearized system. There are two simple ways that stability can change as a parameter
varies: (i) A real negative eigenvalue can cross through zero and become positive; (ii)
a pair of complex conjugate eigenvalues with negative real parts crosses through the
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Figure A.7 Numerically computed bifurcation di-
agram for the autocatalytic chemical model. Stable
Þxed points are solid, and unstable are dashed.

imaginary axis and becomes a pair of complex eigenvalues with positive real parts. In a
fully nonlinear system these changes in stability will often lead to the appearance of new
solutions to the differential equations. Because these are new branches of solutions that
were not there previously, the system has undergone a qualitative change in behavior.

A.5.1 Bifurcation at a Zero Eigenvalue

Consider the differential equation

dx

dt
= λ− x2, (A.61)

where λ is a parameter. For λ < 0 there are no real equilibria. However, if λ > 0,
then there are two equililibrium solutions, x = ±√λ. Consider the case λ > 0. The
linearization about the positive Þxed point is −2√λ. Thus, it is a stable Þxed point.
Note that as λ tends to zero the eigenvalue of this 1×1 matrix goes to zero. Any time an
eigenvalue of the linearization around an equilibrium point crosses zero, we can expect
to see more than one Þxed point in the neighborhood of the parameter. The graph of
the equilibrium solution against the parameter along with the stability information is
called a bifurcation diagram. Figure A.6A shows the bifurcation diagram for (A.61).
This type of bifurcation is called a saddle node. The autocatalytic chemical model

dx

dt
= λ− 6x+ 10x2

1 + x2

has two saddle-node bifurcations as the input λ increases from 0. For 0 < λ < 0.9
there is a single equilibrium point. At λ ≈ 0.9 a new pair of equilibria appear at
x ≈ 0.8. As λ continues to increase these new equilibria drift apart, and at λ ≈ 1.02
the leftmost equilibrium merges with the middle one and disappears at x ≈ 0.4. We
can use a numerical package to draw a complete bifurcation diagram of this. Figure A.7
illustrates the complete bifurcation diagram. Note the two saddle-node bifurcations; for
λ between these two values there are three equilibria (two stable and one unstable),
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Figure A.8 Numerically computed bifurcation dia-
gram for the example transcritical bifurcation. Stable
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while for λ outside the two values there is a unique stable equilibrium point. Techniques
from nonlinear analysis can be used to show that every saddle-node bifurcation (no
matter what the dimension of the system) is equivalent and can be transformed into
(A.61).

Consider next the differential equation

dx

dt
= λx− x2. (A.62)

In some model systems there is always a �trivial� equilibrium point, no matter what
the parameter is. (In this case, 0 is always a solution.) For λ < 0, x = 0 is a stable
equilibrium, and for λ > 0 it is unstable. The equilbrium point x = λ is unstable
(stable) for λ < 0 (λ > 0). Thus as λ crosses zero the two Þxed points �exchange
stability.� This is called a transcritical or exchange of stability bifurcation. Figure A.6B
illustrates this bifurcation. For example, consider the system

dx

dt
= x(1− λy), dy

dt
= e−x − y.

Clearly, one Þxed point is (0, 1), and the Jacobian matrix for the linearization about
this point is

J =

Ã
1− λ 0

−1 −1

!
.

The eigenvalues are −1 and −1 + λ. Thus at λ = 1 we expect that there could be
a bifurcation. It is not a saddle node since there always exists the trivial equilibrium
(0, 1). Since there are no additional symmetries in the problem (see below), it is likely
a transcritical bifurcation. The diagram is shown in Figure A.8. As with the saddle-
node bifurcation, all transcritical bifurcations can be transformed into (A.62) near the
bifurcation.
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Many biological and chemical systems are characterized by symmetries. In this case,
the behavior as parameters vary is analogous to

dx

dt
= x(λ± x2). (A.63)

As with the transcritical bifurcation, x = 0 is always a solution to this problem. For
λ < 0, the Þxed point 0 is stable, and for λ > 0 this trivial Þxed point loses stability. At
λ = 0 the linearized system has a zero eigenvalue. There can be two additional solutions
depending on λ. Unlike the two bifurcations we previously described, the sign of the
nonlinearity is important in this one. If we take the negative sign in (A.63), then the
diagram in Figure A.6C is obtained. The new solutions are x = ±√λ; they are both
stable, and they occur for λ > 0. The branches open in the same direction as the trivial
Þxed point loses stability. This bifurcation is called a supercritical pitchfork bifurcation.
If we take instead the positive sign for the nonlinearity in (A.63), then there are two
solutions x = ±√−λ, and they occur for λ < 0. As can easily be shown, they are both
unstable. This is called a subcritical pitchfork bifurcation, since the branches open in
the direction opposite from the change of stability of the trivial equilibrium point.

For example, consider the simple coupled system

dx

dt
= −x+ λ y

1 + y2
,

dy

dt
= −y + λ x

1 + x2
.

It is easy to see that x = y = 0 is always a Þxed point and that it is stable as
long as λ < 1. At λ = 1 the Jacobian matrix has a zero eigenvalue, so we expect a
bifurcation to occur. Figure A.9 shows that it is a supercritical pitchfork bifurcation.
Every system that has a pitchfork bifurcation can be transformed into (A.63) near
the bifurcation point. Unlike the saddle-node and the transcritical bifurcations, the
details of the nonlinearity are crucial for determing the stability of the new branches
of solutions.
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Figure A.9 Numerically computed bifurcation dia-
gram for the coupled system showing a pitchfork
bifurcation. Stable Þxed points are solid, and unstable
are dashed.
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A.5.2 Bifurcation at a Pair of Imaginary Eigenvalues

Limit cycles and periodic solutions are extremely important in physiology. Thus, one
is often interested in whether or not they occur in a given system. Unlike Þxed points
that can be found exactly or graphically, it is much more difficult to determine whether
or not there are limit cycles in a system. There is one method that is arguably the best
and perhaps only systematic method of Þnding parameters where there may be periodic
solutions in any system of differential equations. The existence of periodic solutiuons
emanating from a Þxed point is established from the Hopf bifurcation theorem, which
we now state.

Hopf bifurcation theorem. Suppose that X 0 = F (X,λ) has an isolated Þxed point
X0(λ). Let A(λ) be the linearized matrix about this Þxed point. Suppose that the matrix
A has a pair of complex conjugate eigenvalues α(λ) ± iω(λ). Suppose the following
conditions hold for some λ0:

1. α(λ0) = 0;
2. ω(λ0) = ω0 > 0;
3. ν ≡ dα(λ)/dλ|λ=λ0 6= 0;
4. A(λ0) has no other eigenvalues with zero real part.

Then, the system contains an isolated limit cycle for |λ − λ0| small for either λ > λ0
or for λ < λ0. The magnitude of the limit cycle is proportional to

p|λ− λ0|, and the
frequency is close to ω0. If ν > 0 and the limit cycle exists for λ > λ0 or if ν < 0 and
the limit cycle exists for λ < λ0, then it is stable. Otherwise, it is unstable.

Thus, the best way to try to Þnd periodic solutions in a system of differential
equations is to look for parameter values where the stability of an equilibrium is lost as a
complex conjugate pair of eigenvalues crosses the imaginary axis. For a two-dimensional
system, this situation occurs when the determinant of A is positive and the trace of A
changes from negative to positive. The following system illustrates the theorem:

dx

dt
= λx− y ± x (x2 + y2) , (A.64)

dy

dt
= λy + x± y (x2 + y2) .

Clearly, (0, 0) is always a Þxed point. The eigenvalues of the linearization are λ± i, so
that as λ goes from negative to positive, there is a pair of eigenvalues with imaginary
real part at λ = 0. If we convert (A.65) to polar coordinates, x = r cos θ, y = r sin θ
then we obtain

dr

dt
= r (λ± r2) , dθ

dt
= 1.

The equation for r is just like (A.63), and thus the direction of bifurcation depends
on the sign of the nonlinearity. We see that r =

√∓λ. Clearly, the solution to the
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Figure A.10 Illustration of the Hopf bifurcation of limit cycles. As the parameter changes, a branch of
periodic solutions emerges from the Þxed point. (A) shows supercritical emergence of stable limit cycles
and (B) shows subcritical emergence of unstable periodic orbits.
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Figure A.11 Numerically computed bifurcation diagram
for the Brusselator as the parameter b varies. Stable Þxed
points are solid, and unstable are dashed. Stable periodic
orbits are Þlled circles.

θ equation is θ = t + C, where C is an arbitrary constant. We conclude that if the
nonlinearity has a positive sign, then there is an unstable periodic solution for λ < 0
given by (x(t), y(t)) =

√−λ(cos(t + C), sin(t+ C)). If the nonlinearity has a negative
sign, then the limit cycle exists for λ > 0, and it is stable. Figure A.10 illustrates the
behavior for both cases. We remark that every system that undergoes a Hopf bifurcation
can be transformed to (A.65).
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As an example, we consider the Brusselator, a classic model for chemical oscillations:

dx

dt
= a− (b+ 1)x+ x2y, dy

dt
= bx− x2y.

The Þxed points for this system are (x, y) = (a, b/a), and the linearization about the
Þxed point is

A =

Ã
b− 1 a2

−b −a2
!
.

The determinant of A is a2 > 0. The trace is b − 1 − a2. Thus, if b is the parameter,
then as b increases past 1 + a2 there will be a Hopf bifurcation. The full bifurcation
diagram is shown in Figure A.11.

A.6 Perturbation Theory

As we have noted, nonlinear differential equations are not readily solved. In fact, even
linear equations cannot always be solved in closed form if the coefficients are noncon-
stant in time. For this reason, one of the most powerful tools in applied mathematics
is perturbation theory. In perturbation theory we look for very good approximate solu-
tions. If some parameter in the equation is small, then a good initial approximation is
to set it to zero. This can result in a simpler system of equations, which may be able to
be solved. The idea is to assume that when the parameter is not zero, then we can use
the simple case as a starting solution and expand the full solution in a power series in
the small parameter. Typically, we need to expand the series to only one or two terms
to see the dominant characteristics of the solution.

A.6.1 Regular Perturbation

Let us Þrst consider the general solution and then work some examples. Consider

dx

dt
= f(x, ²), (A.65)

where ² is a small parameter. Suppose that we can solve the equation with ² = 0; that
is, we can Þnd a solution x0(t) to

dx

dt
= f(x, 0).

Formally, let us look for a solution of the form

x(t, ²) = x0(t) + ²x1(t) + ²
2x2(t) + · · · (A.66)

and substitute this into (A.65). This leads to a sequence of equations,
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dx0
dt

= f(x0, 0),

dx1
dt

= Dxf(x0, 0)x1 +D²f(x0, 0),

dx2
dt

= Dxf(x0, 0)x2 +Dx²f(x0, 0)x1 +
1

2
(Dxxf(x0, 0)x

2
1 +D²²f(x0, 0),

where Da is the derivative of f with respect to a evaluated at x = x0, ² = 0. Note that
all but the Þrst equation are linear. If the linear equation

dx

dt
−Dxf(x0, 0)x = g

is invertible, then we can continue this series method forever. As we will see later, when
the equation is not invertible, then we run into problems, and other techniques are re-
quired. Another situation that can arise is that in which the small parameter multiplies
dxk/dt for one of the variables xk.We will also consider this type of perturbation below.

Let us look at a simple example. Consider the differential equation for population
growth subject to periodic forcing:

dx

dt
= x(1 + ² sin(ωt)− x).

We are interested in the steady�state behavior; thus we want to Þnd solutions that are
periodic or constant. Obviously, x = 0 is a solution for any ², but this solution is of no
interest, since it is unstable. When ² = 0, another solution is x = 1. We will perturb
from this solution:

x(t, ²) = 1 + ²x1 + ²
2x2 + · · · .

Substituting this into the equation, we get

dx1
dt

= −x1 + sin(ωt),

0.0

0.5

1.0

1.5

2.0

x

100 104 108 112

t

Figure A.12 The true solution (solid lines) and the Þrst
two terms in the perturbation series for the linear time-
dependent logistic equation.
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dx2
dt

= −x2 +−x21 + x1 sin(ωt),
and so on. The x1 equation has a periodic solution:

x1(t) =
sin(ωt)− ω cos(ωt)

1 + ω2
.

Thus, to order ²,

x(t) = 1 + ²
sin(ωt)− ω cos(ωt)

1 + ω2
.

To do even better, we can go to the next order. A simple bit of calculus shows that

x2(t) =
2ω4 cos(2ωt)− 5ω3 sin(2ωt)− 4ω2 cos(2ωt) + ω sin(2ωt)

2 + 12ω2 + 18ω4 + 8ω6
.

Figure A.12 shows the numerical solution to the sample problem as well as the approx-
imations y1(t) = 1 + ²x1(t) and y2(t) = y1(t) + ²

2x2(t) for ² = 1 and ω = 0.5. (For
smaller values of ² and larger values of ω the approximation is much better.)

A.6.2 Resonances

In many applied problems the general perturbation scheme described above breaks
down. Typically, this arises when there is a family of solutions to the lowest�order
perturbation and the linear equations that arise from higher�order perturbations are
not invertible.

A typical example of this would be perturbation of eigenvalues of a matrix. For
example, suppose that the matrix A0 is simple and we can Þnd the eigenvalues easily.
We now ask what the eigenvalues of the matrix B = A0 + ²A1 are. Suppose that λ0 is
an eigenvalue and v0 is the corresponding eigenvector. That is,

A0v0 = λ0v0.

To Þnd the eigenvalue of B near λ0 we suppose that both the eigenvalue and the
eigenvector depend on ²:

v(²) = v0 + ²v1 + · · · ,
λ(²) = λ0 + ²λ1 + · · · .

Making the substitutions, we get

(A0 − λ0I)v1 = λ1v0 −A1v0 ≡ w. (A.67)

There are two unknowns, v1 and λ1. However, the matrix C = A0−λ0I is not invertible,
so we cannot expect to solve this unless λ1 is chosen so that w is in the range of the
matrix C. This condition uniquely determines the parameter λ1. Then we can solve for
v1.

How do we know when a vector w is in the range of a matrix M? The following
theorem tells us precisely the conditions:
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Fredholm Alternative Theorem. The matrix equation

My = w

has a solution y if and only if w · q = 0 for every solution q to the equation M ∗q = 0.
The matrix M∗ is the transpose complex conjugate of the matrix M.

An analogous theorem holds for many other linear operators. Returning to (A.67),
let q0 be the solution to

CT q0 = 0, q0 · v0 = 1.
Then the Fredholm alternative theorem implies that we must have

q0 · (λ1v0 −A1v0) = 0,

or

λ1 = q0 ·A1v0.

Another classic example is to Þnd a periodic solution to a weakly nonlinear
differential equation. The van der Pol oscillator is the standard example:

ẍ+ x = ² úx(1− x2). (A.68)

We seek periodic solutions to this problem. Expanding x(t) in ²,

x(t) = x0(t) + ²x1(t) + · · · ,
and substituting into (A.68) we get

ẍ0 + x0 = 0,

ẍ1 + x1 = úx0(1− x20).
The solution to the Þrst equation is

x0(t) = A cos t+B sin t.

Note that we can rewrite this as x0(t) = C cos(t+φ), where φ is a phase shift. Since the
equation is autononmous, there is always an arbitrary phase shift, so we can set this to
zero. In other words, we can assume x0(t) = A cos t, where A is an arbitrary amplitude
as yet unknown. The second equation is

ẍ1 + x1 = −A sin t(1−A2 cos t).

This does not generally have a periodic solution. In fact, it is easy to solve explicitly
(using a symbolic algebra program, like Maple). The key point is that the solution will
be of the form

x1(t) = P (t) + tQ(t),

where P (t),Q(t) are periodic. Unless Q(t) = 0, the perturbed solutions x1(t) will not
be periodic, so we must make Q(t) = 0. A simple calculation reveals that

Q(t) = A
4−A2

8
cos t.
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Thus, we choose A = 2, and to lowest order

x(t) = 2 cos t.

A.6.3 Singular Perturbation Theory

In many physiological systems there are vast differences in the time scales involved in
the phenomena. For example, in a bursting neuron there is the period between bursts
compared with the interspike interval of the action potential within a burst. Some
variables may act much more slowly than other variables, while others act much more
rapidly. Consider, for example, the simple linear differential equation

²
dx

dt
= y − x, dy

dt
= −x,

along with initial conditions y = 1, x = 0. We can easily solve this exactly using the
methods of the previous section for any value of ². However, typically, in a real problem,
the solutions are not so readily obtained. Let us suppose that we can set ² = 0. Then
we must have 0 = y − x, or x = y. Thus our problem is now

dy

dt
= −y, y(0) = 1,

which has a solution y(t) = exp(−t). Furthermore, since x = y, we also have x(t) =
exp(−t). Unfortunately, our �solution� does not satisfy the initial conditions x(0) = 0.
Because we have reduced the order of the differential equation from 2 to 1, we cannot
generally expect to Þnd a solution for all initial conditions. This is why the problem is
said to be singular.

The way that we can Þx this is to use a technique called matching. A complete
description of matching goes well beyond this book, so we will just sketch this and
another example. There are more examples throughout the text. The idea is to rescale
time. Since the problems we are having occur at t = t0 = 0, we introduce a new variable

(0,-1)

(0,1)

(2,-1)

(-2,1)

x = -y+1
y(t) = -1+ty(t) = 1-t

x = -y -1

Figure A.13 x-nullclines for the relax-
ation oscillator example.
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τ = (t− t0)/². Under this change of variables our equation is
dX

dτ
= Y −X, dY

dτ
= −²X.

(I have used capital letters to distinguish these solutions from the t-dependent solu-
tions.) Now, we see that Y is �slow� in the new time scale. Set ² = 0. This means that
dY/dτ = 0, so that Y is constant. The obvious constant to use is the initial value of Y ,
so we substitute Y = 1 into the X equation:

dX

dτ
= 1−X, X(0) = 0.

The solution to this is X(τ) = 1 − exp(−τ). Thus we have two sets of solutions,
(x(t), y(t)) and (X(τ), Y (τ)). The (X,Y ) solutions are valid for times near zero, and
the (x, y) are valid for larger times. Thus, to obtain the full solution, we add these two
together and subtract the �common� part. To see what the common part is, we replace
τ by t/² in the (X,Y ) system and t by ²τ in the (x, y) system. We take the limit as
² → 0 and obtain (1, 1) for both sets of limits. This is the common part. Thus, our
approximate solution is (X(τ)+x(t)− 1, Y (τ)+ y(t)− 1). Putting everything in terms
of the original time, t, we obtain

xc(t) = e
−t − e−t/², yc(t) = e

−t.

I close this section with another example that produces a singular nonlinear
oscillator. The equations are

²
dx

dt
= −x+ sgn(x)− y, dy

dt
= y + x,

where sgn(x) is the signum function; it is +1 for x > 0 and −1 for x < 0. The nullclines
are depicted in Figure A.13. For ² small, we expect that the solution will hug the
x-nullcline, since we must have −x+sgn(x)−y nearly zero. Setting ² = 0 we must solve

−x+ sgn(x)− y
for x in terms of y.Unfortunately, for y between−1 and 1 there are two roots x = −y±1.
For the moment, let us pick x = −y+1. We must have −y+1 > 0, since our choice of
+1 for sgn(x) assumes that x > 0. Substituting this into the y equation yields

dy

dt
= 1,

so that y(t) = y(0) + t. Notice that as long as y(t) < 1, this is a valid solution, since
x > 0. However, eventually y(t) will exceed 1, and our root x = −y + 1 is no longer
valid. So, what happens? Let t0 be the time at which y(t) = 1. To see what happens,
we must once again introduce a scaled time τ = (t− t0)/². Then our equations are

dX

dτ
= −X + sgn(X)− Y, dY

dτ
= ²(Y +X).
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Setting ² = 0, this means that Y must be constant. Since y(t0) = 1, we will take Y = 1
as the constant. We must solve

dX

dτ
= −X + sgn(X)− Y, X(0) = 0.

Note that for any τ > 0, X(τ) is negative, so that sgn(X) = −1 and
X(τ) = −2(1− exp(−τ)).

This says that in the expanded time scale, X(τ) will drop from 0 down to −2. All the
while, Y is essentially constant at 1. Once X has made the jump from 0 to −2, we can
set y = 1, x = −2 and solve the y(t) equation again. In this case, x + y = −1, since
sgn(x) = −1, and we must solve

dy

dt
= −1, y(0) = 1.

The solution to this is y(t) = 1 − t. As above, this is valid only as long as x = −y +
sgn(x) = −y − 1 is negative, that is, as long as y(t) > −1. Once y(t) crosses −1, then
x will be positive, and we will have to jump back across to x = +2 keeping y = −1
constant again using the rescaled time. In retrospect, we see now that in the calculation
on the right�hand branch (when x > 0) the correct initial condition for y is y(0) = −1.

This completes the calculation of the singular trajectory. Figure A.13 illustrates
this. We have the following:

y(t) = −1 + t, x(t) = 2− t for 0 < t < 2,

y(t) = 1− (t− 2), x(t) = −2 + (t− 2) for 2 < t < 4,

in the normal time coordinates. In the scaled time coordinates, x(t) jumps from 0 to
−2 while y = 1, satisfying

x(t) = −2(1− exp((t− 2)/²)),
and from 0 to 2 while y = −1, satisfying

x(t) = 2(1− exp(−(t− 4)/²)).
The period of the oscillation is 4 to lowest order. The function y(t) is continuous along
the trajectory. The complete solution for x(t) over one period is

x(t) = 2− t− 2 exp(−t/²) for 0 ≤ t < 2,
x(t) = t− 4 + 2 exp[(2− t))/²)] for 2 ≤ t < 4.

Suggested Readings

� Mathematical Models in Biology, Leah Edelstein-Keshet. This book details most
of the mathematical techniques presented in this chapter, and contains a particu-



414 A: Qualitative Analysis of Differential Equations

larly good discussion of phase plane analysis, including linearization, stability, and
qualitative analysis of systems of differential equations [Edelstein-Keshet, 1988].

� Applied Mathematics, J. David Logan. This book covers a range of more advanced
topics, in particular, perturbation and bifurcation theory [Logan, 1997].

Exercises

1. Using manipulations comparable to those used to obtain (A.23) show that x2 in
(A.18) also satisÞes the second order equation (A.23).

2. Show by substitution that if x0 and x are two different solutions to (A.19), then
c0x0 + cx is also a solution.

3. Show by substition into (A.35) that c0t exp(λt) is a second solution to (A.23) when
disc�A = 0. [Hint: Recall that ú(t exp(λt)) = (1 + λt) exp(λt); use this to show that

¨(t exp(λt)) = λ(2 + t) exp(λt).]

4. Show that any 2× 2 matrix of the form �A =

Ã
a b

0 a

!
with a and b arbitrary real

numbers has disc�A = 0 and λ = a.
5. Use the solution (A.27) to the characteristic equation for �A, to show that tr �A =
λ+ + λ− and det�A = λ+λ−.

6. Verify that the expression for the eigenvector of �A given in (A.45) is correct by
multiplying that expression by �A. Hint: You will need to use the fact that det�A =
λ2 − (a11 + a22)λ, which follows from (A.27).

7. Solve the general two-variable linear equations (A.17)�(A.18) numerically: Find

x1(t) and x2(t) for the matrices �A =

Ã
0 −1
1 0

!
, �A =

Ã
1 −1
1 1

!
, and �A =Ã −2 1

−3 1

!
and y1 = y2 = 0. Determine the characteristic values of all three

matrices and compare your numerical solutions to the solutions that you would
expect based on the characteristic values. Explore how the solutions change when
you change the values of y1 and y2.

8. Solve (A.17)�(A.18) numerically for the matrix �A =

Ã
1 −1
3 6

!
and y1 = 1 and

y2 = 2. Compare your result to that in (A.41).
9. Make a phase plane plot of the solutions to the linear ODEs plotted as time series
in Figure A.32A�C.

10. Show that the velocity vector for a point in phase space is parallel to the trajectory
at the point. Hint: Calculate the slope of the trajectory dx2/dx1 using the ODEs.

11. Show that the nullclines for the general 2 × 2 linear equations (A.17) and (A.18)
are linear.
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12. Using the result in (A.47) verify the statement in Section A.4.1 that saddle point
trajectories that start in the direction of the positive eigenvector grow away from the
steady state exponentially, while those in the direction of the negative eigenvector
approach the steady state exponentially.

13. Solve the ODEs for the voltage gated membrane in (A.49) and (A.50) numerically
using the parameters in the legend of Figure A.5 Draw the nullclines and Þnd
the steady states and eigenvalues. Show how the trajectories depend on various
initial conditions. Check that the trajectories cross the nullclines properly. Alter
the values of V0.5, Vrev, and Iapp to see how the nullclines change. How do these
parameter changes inßuence the stability of the steady state?

14. Construct the solution to the following initial value problem, which arises in enzyme
kinetics:

x0 = 1− xy, ²y0 = −xy + 1− y,
with the initial conditions x(0) = 0, y(0) = 0.

15. Find the periodic solution to

²x0 = f(x)− y y0 = x,

where

f(x) =


−x− 2 for x < −1,
x for −1 ≤ x ≤ 1,
−x+ 2 for x > 1.

16. Develop Taylor series for the following functions:

� cos(t) around t = 0
� ln(t) around t = 1.
� exp(t2) around t = 0. Hint: Use the exponential series we have already
determined.
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APPEND I X B

Solving and Analyzing
Dynamical Systems Using
XPPAUT

Bard Ermentrout

Most of the examples and exercises in the book have been designed to be solvable with
the ordinary differential equations solution and analysis package XPPAUT. One reason
that we emphasize the use of XPPAUT rather than one of the other available packages
is that XPPAUT is distributed at no cost and runs under both Unix and Windows
environments. XPPAUT will also run under the new Macintosh operating system
OSX with the appropriate Xwindows server. The second reason is that XPPAUT
incorporates the bifurcation package AUTO, which is not included in other packages.
The Windows version of XPPAUT, Winpp, uses a different bifurcation package, as
explained below.

XPPAUT can be obtained from the web site of Bard Ermentrout, the developer.
The site contains instructions for the installation of XPPAUT on various platforms, as
well as a very useful tutorial. The web site is: http://www.math.pitt.edu/ bard/xpp/xpp.html.

In addition, there is a full�length book describing the details of XPPAUT available
[Ermentrout, 2002]. The tutorial in this appendix will introduce the reader to the main
tools available in XPPAUT that are necessary to solve most of the exercises in this
book.
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B.1 Basics of Solving Ordinary Differential
Equations

B.1.1 Creating the ODE File

Consider the simple linear differential equation system

dx

dt
= ax+ by,

dy

dt
= cx+ dy, (B.1)

where a, b, c, d are parameters. We will explore the behavior of this two-dimensional
system using XPPAUT (even though it is easy to obtain a closed�form solution). To
analyze a differential equation using XPPAUT, you must create an input Þle that tells
the program the names of the variables and parameters, and deÞnes the equations. By
convention, these Þles have the Þle extension ode, and we will call them ODE Þles. Here
is an ODE Þle for system (B.1):

# linear2d.ode

#

# right hand sides

dx/dt=a*x+b*y

dy/dt=c*x+d*y

#

# parameters

par a=0,b=1,c=-1,d=0

#

# some initial conditions

init x=1,y=0

#

# we are done

done

We have included some comments indicated by lines starting with #; these are not
necessary but can make the Þle easier to understand. The rest of the Þle is fairly
straightforward. The values given to the parameters are optional; by default they are
set to zero. The init statement is also optional. The minimal Þle for this system is

dx/dt=a*x+b*y

dy/dt=c*x+d*y

par a,b,c,d

done

In contrast to the more elaborate Þle, with the minimal Þle all parameters and intital
conditions are set to zero. Use a text editor to type in the Þrst Þle exactly as it is
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shown. Name the Þle linear2d.ode and save it. Note also that XPPAUT accepts
other notation for equations, and you should not be surprised to see the more compact
version used in Appendix C or in ODE Þles you might Þnd on the XPPAUT web site
or in the XPPAUT user�s manual. For example, the minimal Þle could be written

x�=a*x+b*y

y�=c*x+d*y

par a,b,c,d

done

That�s it! You have written an ODE Þle. The minimal steps are as follows:

� Use an editor to open a text Þle.
� Write the differential equations in the Þle; one per line.
� Use the par statement to declare all the parameters in your system. Optionally
deÞne initial conditions with the init statement.

� End the Þle with the statement done.
� Save and close the Þle.

ODE FILE NOTES: The equation reader is case-insensitive, so that AbC and abC
are treated as identical. In statements declaring initial conditions and parameters, do
not put spaces between the variable and the �=� sign and the number. XPPAUT uses
spaces as a delimiter. Always write a=2.5 and never write a = 2.5.

B.1.2 Running the Program

Run XPPAUT by typing

xpp linear2d.ode

The name of the exacutable, here xpp, might be different for your system. Use the
name of your executable, along with all of the desired command line options (see on-line
help for details). (If you are using Winpp, click on the Winpp icon; then choose the
Þle from the Þle selection dialog box.)

Six windows will appear on the screen, or they may be iconiÞed (depending on the
command line options). If any of the windows appear �dead� or blank, iconify them
manually and then uniconify them. Next time run XPPAUT without the -iconify
command line option.

Menu commands will appear like this, Command , and single�letter keyboard short-

cuts will appear like this: A . Do not use the CapsLock key; all shortcuts are lowercase.
Every command can be accessed by a series of keystrokes. To make sure key clicks are
interpreted correctly, click on the title bar of the window for which the shortcut is
intended.
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Figure B.1 The main XPPAUT window

B.1.3 The Main Window

The Main Window contains a large region for graphics, menus, and various other
regions and buttons. It is illustrated in Figure B.1. Commands are given either by
clicking on the menu items in the left column with the mouse or tapping keyboard
shortcuts. After a while, as you become more used to XPPAUT, you will use the
keyboard shortcuts more and more. Both the full commands and the keyboard shortcuts
are included here. In general, the keyboard shortcut is the Þrst letter of the command
unless there is ambiguity (such as Nullcline and nUmerics ), and then, it is just

the capitalized letter ( N and U , respectively). Unlike Windows keyboard shortcuts,
the letter key alone is sufficient, and it is not necessary to press the Alt key at the
same time. The top region of theMain Window is for typed input such as parameter
values. The bottom of the Main Window displays information about various things
as well as a short description of the highlighted menu item. The three little boxes with
the words parameter are sliders to let you change parameters and initial data.

In addition to the Main Window, there are several other windows that appear.
The Equation Window, shown in Figure B.2, allows you to see the differential
equations that you are solving. We will describe the other windows as the tutorial
progresses.
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Figure B.2 The Equation Window.

Quitting the Program

To exit XPPAUT, click File Quit Yes ( F Q Y ).

B.1.4 Solving the Equations, Graphing, and Plotting.

Here, we will solve the ODEs, use the mouse to select different initial conditions, save
plots of various types, and create Þles for printing.

Computing the Solution

In theMain Window you should see a box with axis numbers. The title in the window
should say X vs T, which tells you that the variable X is along the vertical axis and T
along the horizontal. The plotting range is from 0 to 20 along the horizontal and −1
to 1 along the vertical axis. When a solution is computed, this view will be shown.
Click on Init Conds Go ( I G ) in theMain Window. A solution will be drawn
followed by a beep. As one would expect given the differential equations, the solution
looks like a few cycles of a cosine wave.

Changing the View

To plot Y versus T instead of X, just click on the command Xi vs t X and choose Y

by backspacing over X, typing in Y, and typing Enter .
Many times you may want to plot a phase plane instead, that is, X vs. Y. To do this,

click on Viewaxes 2D ( V 2 ), and a dialog box will appear. Fill it in as follows:

X-axis: X Xmax: 1

Y-axis: Y Ymax: 1

Xmin: -1 Xlabel:

Ymin: -1 Ylabel:

Click on OK when you are done. (Note that you could have Þlled in the labels if you
had wanted, but for now, there is no reason to.) You should see a nice elliptical orbit
in the window. This is the solution in the phase plane (cf. Figure B.3).
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Figure B.3 Phase plane (X vs Y) for the linear 2D problem (B.1).

Phase Plane Shortcuts

There is a very simple way to view the phase plane or view variables versus time. Look
at the Initial Data Window (Figure B.4). You will see that there are little boxes
next to the variable names. Check the two boxes next to X and Y. Then at the bottom
of the Initial Data Window, click the XvsY button. This will plot a phase plane and
automatically Þt the window to contain the entire trajectory. This is a shortcut and
does not give you the control that the menu command does. (For example, the window
is always Þt to the trajectory, and no labels are added or changed. Nor can you plot
auxiliary quantities with this shortcut.) To view one or more variables against time,
just check the variables you want to plot (up to 10) and click on the XvsT button in
the Initial Data Window.

You should have a phase plane picture in the window. (If not, get one by following

the above instructions or using the shortcut.) Click on Init Conds Mouse ( I M .)
Use the mouse to click somewhere in the window. You should see a new trajectory
drawn. This, too, is an ellipse. Repeat this again to draw another trajectory. If you
get tired of repeating this, try Init Conds mIce ( I I ), which, being �mice,� is
many mouses. Keep clicking in the window. When you are bored with this, click either
outside the window or tap the escape key, Esc .
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Figure B.4 The initial conditions win-
dow.

Click on Erase and then Restore ( E R ). Note that all the trajectories are
gone except the latest one. XPPAUT stores only the latest one. There is a way to
store many of them, but we will not explore that for now.

B.1.5 Saving and Printing Plots

XPPAUT does not directly send a picture to your printer. Rather, it creates a
PostScript Þle that you can send to your printer. If you do not have PostScript ca-
pabilities, then you probably will have to use the alternative method of getting hard
copy outlined below. (Note that Microsoft Word supports the import of PostScript and
Encapsulated PostScript, but can only print such pictures to a PostScript printer. You
can download a rather large program for Windows called GhostView which enables
you to view and print PostScript on nonPostScript printers. Linux and other UNIX
distributions usually have a PostScript viewer included.)

Here is how to make a PostScript Þle. Click on Graphics Postscript ( G P ),

and you will be asked for three things: (i) Black and White or Color (ii) Landscape
or Portrait; (iii) and the Fontsize for the axes. Accept all the defaults for now by just
clicking Enter . Finally, you will be asked for a Þle name. The File Selector box is
shown in Figure B.5. You can move up or down directory trees by clicking on the <>;
choose Þles by clicking on them; scroll up or down by clicking on the up/down arrows
on the left or using the arrow keys and the PageUp/PageDown keys on the keyboard;
change the wild card; or type in a Þle name. For now, you can just click on Ok and a
PostScript plot will be created and saved. The Þle will be called linear2d.ode.ps by
default, but you can call it anything you want.

Once you have the PostScript Þle, you can type

lpr filename

on UNIX. In Windows, if your computer is hooked up to a PostScript printer, then you
can print from a viewing application or type
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Figure B.5 File selector.

copy filename lpt1

from the command line (if available).

Other Ways to get Hard Copy

Another way to get hard copy that you can import into documents is to grab the image
from the screen. In Windows, click on Alt+PrtSc after making the desired window
active. Paste this into the MSPaint accessory and then use the tools in Paint to cut
out what you want. Pasting into Microsoft Word is useful for generating reports with
added text. Alternatively, you can download a number of programs that let you capture
areas of the screen. In the UNIX environment, you can capture a window using xv, an
excellent utility that is free and available for most UNIX versions. All of the screen
shots in this tutorial were captured with xv. Finally, you can capture the screen (or a
series of screen images) with the Kinescope Capture command and then write these

to disk with the Kinescope Save command. This produces a series of GIF Þles that

are usable by many software packages.



424 B: Solving and Analyzing Dynamical Systems Using XPPAUT

Figure B.6 The parameter window.

Getting a Good Window

If you have computed a solution and do not have a clue about the bounds of the graph,
let XPPAUT do all the work. Click on Window/zoom (F)it , and the window will

be resized to a perfect Þt. The shortcut is W F and you will likely use it a lot!

B.1.6 Changing Parameters and Initial Data

There are many ways to vary the parameters and initial conditions in XPPAUT. We
have already seen how to change the initial data using the mouse. This method works for
any n-dimensional system as long as the current view is a phase plane of two variables.
Here are two other ways to change the initial data:

� From the main menu click on Init Conds New and manually input the data at
the prompts. You will be prompted for each variable in order. (For systems with
hundreds of variables, this is not a very good way to change the data!)

� In the Initial Data Window you can edit the particular variable you want to
change. Just click in the window next to the variable and edit the value. Then click
on the Go button in the Initial Data Window. If there are many variables, you
can use the little scroll buttons on the right to go up and down a line or page
at a time. If you click the mouse in the text entry region for a variable, you can
use the PageUp , etc., keys to move around. Clicking Enter rolls around in the

displayed list of initial conditions. The Default button returns the initial data to
those with which the program started. If you do not want to run the simulation,
but have set the initial data, you must click on the Ok button in the Initial Data
Window for the new initial data to be recognized.

There are many ways to change parameters as well. Here are three of them:
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� From the Main Window, click on Parameters . In the command line of the
Main Window, you will be prompted for a parameter name. Type in the name
of a parameter that you want to change. Click on Enter to change the value and

Enter again to change another parameter. Click on Enter a few times to get rid
of the prompt.

� In the Parameter Window (shown in Figure B.6) type in values next to the
parameter you want to change. Use the scroll buttons or the keyboard to scroll
around. As in the Initial Data Window, there are four buttons across the top.
Click on Go to keep the values and run the simulation; click on Ok to keep

the parameters without running the simulation. Click on Cancel to return to

the values since you last pressed Go or Ok . The Default button returns the
parameters to the values when you started the program.

� Use the little sliders (Figure B.7). We will attach the parameter d to one of the
sliders. Click on one of the unused parameter sliders. Fill in the dialog box as
follows:

Parameter: d

Value: 0

Low: -1

High: 1

and click Ok . You have assigned the parameter d to one of the sliders and allowed
it to range between −1 and 1. Grab the little slider with the mouse and move it
around. Watch how d changes. Now click on the tiny go button in the slider.

The equations will be integrated. Move the slider some more and click on the go

button to get another solution.

B.1.7 Looking at the Numbers: The Data Viewer

In addition to the graphs that XPPAUT produces, it also gives you access to the actual
numerical values from the simulation. TheData Viewer shown in Figure B.8 has many
buttons, some of which we will use later in the book. The main use of this is to look at
the actual numbers from a simulation. The independent variable occupies the leftmost
column, and the dependent variables Þll in the remaining windows. Click on the top of
the Data Viewer to make it the active window. The arrow keys and the PageUp ,

Figure B.7 Left: Unused parameter slider. Right: parameter slider used for d.
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Figure B.8 The Data Viewer.

PageDown , Home , and End keys (as well as their corresponding buttons) do all
the obvious things. Left and right keys scroll horizontally, a useful feature if you have
many variables. Here we mention three buttons of use:

Find brings up a dialog box prompting you for the name of a column and a value. If

you click on Ok , XPPAUT will Þnd the entry that is closest and bring that row
to the top. You can Þnd the maximum and minimum, for example, of a variable.

Get loads the top line of the Data Viewer as initial data.

Write writes the entire contents of the browser to a text Þle that you specify.

B.1.8 Saving and Restoring the State of Simulations

Often you will have a view, a set of parameters, and initial data that you want to keep.
You can save the current state of XPPAUT by clicking on File Write set ( F

W ) in the Main Window. This brings up a Þle selection box. Type in a Þle name;
the default extension is .set. The resulting Þle is an ASCII Þle that is human and
computer readable. The Þrst and last few lines look like this:

## Set file for linear2d.ode on Fri Aug 4 13:53:31 2000

2 Number of equations and auxiliaries

4 Number of parameters
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# Numerical stuff

1 nout

40 nullcline mesh

.......

RHS etc ...

dX/dT=A*X+B*Y

dY/dT=C*X+D*Y

Once you quit XPPAUT, you can start it up again and then use the File

Read set to load up the parameters, etc., that you saved.
Now you should quit the program. We will look at a nonlinear equation next, Þnd

Þxed points, and draw some nullclines and direction Þelds. To quit, click on File

Quit Yes ( F Q Y ).

B.1.9 Important Numerical Parameters

XPPAUT has many numerical routines built into it, and thus there are many numerical
parameters that you can set. These will be dealt with in subsequent sections of the book
where necessary. However, the most common things you will want to change are the
total amount of time to integrate and the step size for integration. You may also want to
change the method of integration from the default Þxed�step Runge�Kutta algorithm.
To alter the numerical parameters, click on nUmerics ( U ), which produces a new
menu. This is a top�level menu, so you can change many things before going back to
the main menu. To go back to the main menu, just click on the [Esc]-exit or tap

Esc . There are many entries in the numerics menu. The following four are the most
commonly used:

Total sets the total amount of time to integrate the equations. (Shortcut: T .)

Dt sets the size of the time step for the Þxed step size integration methods and sets

the output times for the adaptive integrators. (Shortcut: D .)

Nout sets the number of steps to take before plotting an output point. Thus, to plot
every fourth point, change Nout to 4. For the variable step size integrators, this
should be set to 1.

Method sets the integration method. There are currently 13 available. (Shortcut:

M .) They are described in the user manual.

When you are done setting the numerical parameters, just click on Esc-exit or tap
the Esc key.
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B.1.10 Command Summary: The Basics

Initialconds Go computes a trajectory with the initial conditions speciÞed in the

Initial Data Window ( I G ).

Initialconds Mouse computes a trajectory with the initial conditions speciÞed by

the mouse. Initialconds m(I)ce lets you specify many initial conditions ( I

M or I I ).

Erase erases the screen ( E ).

Restore redraws the screen ( R ).

Viewaxes 2D lets you deÞne a new 2D view ( V 2 ).

Graphic stuff Postscript allows you to create a PostScript Þle of the current

graphics ( G P ).

Kinescope Capture allows you to capture the current view into memory, and

Kinescope Save writes this to disk.

Window/zoom (F)it Þts the window to include the entire solution (W F ).

File Quit exits the program ( F Q ).

File Write set saves the state of XPPAUT( F R ).

File Read set restores the state of XPPAUT from a saved .set Þle ( F R ).

B.2 Phase Planes and Nonlinear Equations

Here we want to solve a nonlinear equation. We will choose a planar system, since there
are many nice tools available for analyzing two-dimensional systems. A classic model
is the FitzHugh�Nagumo equations, which are used as a model for nerve conduction.
The equations are

dv

dt
= Bv(v − β)(δ − v)−Cw + Iapp, (B.2)

dw

dt
= ²(v − γw),

with parameters Iapp, B,C,β, δ, ², γ. Here we will use Iapp = 0, B = 1, C = 1,β = .1, δ =
1, γ = 0.25, and ² = .1. Let us write an ODE Þle for this:

# Fitzhugh-Nagumo equations

dv/dt=B*v*(v-beta)*(delta-v)-Cw+Iapp

dw/dt=epsilon*(v-gamma*w)

par Iapp=0,B=1,C=1,beta=.1,delta=1,gamma=.25,epsilon=.1

@ xp=V,yp=w,xlo=-.25,xhi=1.25,ylo=-.5,yhi=1,total=100

@ maxstor=10000

done
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We have already seen the Þrst four lines: (i) lines beginning with a # are comments,
(ii) the next two lines deÞne the differential equations, and (iii) the line beginning with
par deÞnes the parameters and their default values. The penultimate line beginning
with the @ sign is a directive to set some of the options in XPPAUT. These could all
be done within the program, but this way everything is all set up for you. Details of
these options are found in the user manual. For the curious, these options set the x-
axis (xp) to be the v variable, the y-axis (yp) to be the w variable, the plot range to
be [−.15, 1.25]× [−.5, 1], and the total amount of integration time to be 100. The last
option, @ maxstor=10000, is a very useful one. XPPAUT allocates enough storage to
keep 4000 time points. You can make it allocate as much as you want with this option.
Here we have told XPPAUT to allocate storage for 10000 points. Type this in and
save it as fhn.ode.

B.2.1 Direction Fields

Run the Þle by typing xpp fhn.ode. The usual windows will pop up. One of the stan-
dard ways to analyze differential equations in the plane is to sketch the direction Þelds.
Suppose that the differential equation is

dx

dt
= f(x, y),

dy

dt
= g(x, y).

The phase plane is divided into a grid, and at each point (x, y) in the grid a vector
is drawn with (x, y) as the base and (x + sf(x, y), y + sg(x, y)) as the terminal point,
where s is a scaling factor. This so-called direction Þeld gives you a hint about how
trajectories move around in the plane. XPPAUT lets you quickly draw the direction
Þeld of a system. Click on Dir.field/flow (D)irect Field ( D D ) and then

accept the default of 10 for the grid size by clicking Enter . A bunch of vectors will
be drawn on the screen, mainly horizontal. They are horizontal because ² is small so
that there is little change in the w variable. The length of the vectors is proportional
to the magnitude of the ßow at each point. At the head of each vector is a little bead.
If you want to have pure direction Þelds that do not take into account the magnitude
of the vector Þeld, just click on Dir.field (S)caled Dir. Fld ( D S ) and use
the default grid size. (We prefer pure direction Þelds, but this is a matter of taste.)

Click on Initialconds m(I)ce to experiment with a bunch of different trajec-
tories. Note how the vectors from the direction Þeld are tangent to the trajectories. See
Figure B.9.

B.2.2 Nullclines and Fixed Points

As discussed in earlier chapters, a powerful technique for the analysis of planar differ-
ential equations and related to the direction Þelds is the use of nullclines. Nullclines
are curves in the plane along which the rate of change of one or the other variable is
zero. The x-nullcline is the curve where dx/dt = 0, that is, f(x, y) = 0. Similarly, the
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Figure B.9 Direction Þelds and some trajectories for the FitzHugh�Nagumo equations.

y-nullcline is the curve where g(x, y) = 0. The usefulness of these curves is that they
break the plane up into regions along which the derivatives of each variable have a con-
stant sign. Thus, the general direction of the ßow is easy to determine. Furthermore,
any point where they intersect represents a Þxed point of the differential equation.

XPPAUT can compute the nullclines for planar systems. To do this, just click on
Nullcline New ( N N ). You should see two curves appear: a red one representing
the V -nullcline and a green one representing theW -nullcline. The green one is a straight
line, and the red is a cubic. They intersect just once: There is a single Þxed point. Move
the mouse into the phase plane area and hold it down as you move it. At the bottom of
theMain Window you will see the x and y coordinates of the mouse. The intersection
of the nullclines appears to be at (0, 0).

The stability of Þxed points is determined by linearizing the system of equations
about them and then Þnding the eigenvalues of the resulting linear matrix. XPPAUT
will do this for you quite easily. XPPAUT uses Newton�s method to Þnd the Þxed
points and then numerically linearizes the system about them to determine stability.
To use Newton�s method, a decent guess needs to be provided. For planar systems this
is easy to do; it is just the intersection of the nullclines. In XPPAUT Þxed points
and their stability are found using the Sing pts command, since �singular points�

is a term sometimes used for Þxed points or equilibrium points. Click on Sing pts
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Mouse ( S M ) and move the mouse to near the intersction of the nullclines. Click
the button, and a message box will appear on the screen. Click on No, since we do not
need the eigenvalues. A new window will appear that contains information about the
Þxed points. The stability is shown at the top of the window.

The nature of the eigenvalues follows: c+ denotes the number of complex eigenval-
ues with positive real part; c- is the number of complex eigenvalues with negative real
part; im is the number of purely imaginary eigenvalues; r+ is the number of positive
real eigenvalues; and r- is the number of negative real eigenvalues. Recall that a Þxed
point is linearly stable if all of the eigenvalues have negative real parts. Finally, the
value of the Þxed points is shown under the line. As can be seen from this example,
there are two complex eigenvalues with negative real parts: the Þxed point is (0, 0). (
XPPAUT reports a very small nonzero Þxed point due to numerical error.) Integrate
the system using the mouse, starting with initial conditions near the Þxed point. (In the

Main Window, tap I I .) Note how solutions spiral into the origin, as is expected
when there are complex eigenvalues with negative real parts.

For nonplanar systems of differential equations you must provide a direct guess.
Type your guess into the Initial Data Window and click on Ok in the Initial Data

Window. Then from the Main Window, click on Sing Pts Go ( S , G ).

Change the parameter I from 0 to 0.4 in the Parameter Window and click on
Ok in the Parameter Window. In theMain Window erase the screen and redraw

the nullclines: Erase Nullclines New ( E N N ). The Þxed point has moved

up. Check its stability using the mouse ( Sing pts Mouse ). The Þxed point should

be (0.1, 0.4). Use the mouse to choose a bunch of initial conditions in the plane. All
solutions go to a nice limit cycle. That is, they converge to a closed curve in the plane
representing a stable periodic solution.

We can make a nice picture that has the nullclines, the direction Þelds, and a few
representative trajectories. Since XPPAUT keeps only the last trajectory computed,
we will �freeze� the solutions we compute. We can freeze trajectories automatically
or one at a time, and we will do the former. Click on Graphic stuff (F)reeze

(O)n freeze ( G F O ) to permanently save computed curves. Up to 26 can be
saved in any window. Frist we use the mouse to compute a bunch of trajectories. Draw
the direction Þelds by clicking Dir.field/flow (D)irect Field ( D D ).

We can label the axes as follows: Click on Viewaxes 2D ( V 2 ), and the 2D
view dialog will come up. Change nothing but the labels (the last two entries), and put
V as theXlabel and w as the Ylabel. Click on Ok to close the dialog. Finally, since the

axes are confusing in the already busy picture, click on Graphic stuff aXes opts

( G X ) and in the dialog box change the 1�s in the entries X-org(1=on) and Y-

org(1=on) to 0�s to turn off the plotting of the X and Y axes. Click Ok when you
are done.
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Figure B.10 Nullclines,direction Þelds, trajectories for I = 0.4 in the Fitzhugh-Nagumo equations.

To create a PostScript Þle, follow Graphic stuff (P)ostscript ( G P ) and

accept all the defaults. Name the Þle whatever you want and click on Ok in the
Þle selection box. Figure B.10 shows the version that we made. Yours will be slightly
different. If you want to play around some more, turn off the automatic freeze option,
Graphic stuff Freeze Off freeze ( G F O ), and delete all the frozen curves,

Graphic stuff Freeze Remove all ( G F R ).

B.2.3 Command Summary: Phase Planes and Fixed Points

Nullcline New draws nullclines for a planar system ( N N ).

Dir.field/flow (D)irect Field draws direction Þelds for a planar system ( D

D ).

Sing pts Mouse computes Þxed points for a system with initial guess speciÞed by

the mouse ( S M ).

Sing pts Go computes Þxed points for a system with initial guess speciÞed by the

current initial conditions ( S G ).
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Graphic stuff Freeze On Freeze will permanently keep computed trajectories

in the current window ( G F O ).

Graphic stuff Freeze Off Freeze will toggle off the above option ( G F O ).

Graphic stuff Freeze Remove all deletes all the permanently stored curves

( G F R ).

Graphic stuff aXes opts lets you change the axes ( G X ).

Viewaxes 2D allows you to change the 2D view of the current graphics window and

to label the axes ( V 2D ).

B.3 Bifurcation and Continuation

Once we have found the critical points of a system of interest, we can then embark on
a continuation and bifurcation analysis of the solutions, as we mentioned in Appendix
A. Continuation analysis describes how solutions to differential equations evolve over
parameters, while bifurcation analysis refers, in particular, to how solutions appear
and disappear as parameters are varied. One of the main strengths of XPPAUT is
that it provides a convenient interface to many of the features found in the AUTO
package for continuation/bifurcation analysis. AUTO remains one of the best such
packages. However, the stand-alone versions of AUTO require coding compilation of the
equations with the FORTRAN computer language. Note that AUTO currently only is
available for the Unix version of XPPAUT. The Windows version uses a continuation
package called LOCBIF, and slight differences from the procedures outlined below are
explained in the user�s manual on the web site. While AUTO is powerful even as
implemented in XPPAUT, it is not foolproof. The results you obtain should be viewed
with a critical eye. Bifurcation analysis is discussed in more depth in an excellent book
by Kuznetsov [Kuznetsov, 1998]. It is useful to understand that the AUTO features
available in XPPAUT are independent of the other tools, but that parameters and
Þxed points are exchanged back and forth. Bifurcation diagrams can be imported into
XPPAUT for plotting.

B.3.1 General Steps for Bifurcation Analysis

� AUTO bifurcation analysis must start from a Þxed (or singular) point or from a
periodic orbit. Get rid of transients and Þnd a stable Þxed point by by integrating
several times: Click Initialconds Go and then click Initialconds Last

several times. For limit cycles, get a good estimate of the period and integrate one
full period only.

� Bring up the AUTO window by selecting File Auto ( F A ).

� Use the Parameter function to choose the parameters that will be varied.
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Figure B.11 FH-N system with Iapp=0.

� Use the Axes Hilo function to select the parameters to be plotted and the
range over which they will be varied. A one�parameter bifurcation diagram must
be completed before a second parameter can be varied.

� Use the Numerics function to deÞne direction, step size, etc.

� Run the analysis for Steady state or Periodic .

It is more difficult for AUTO to start from a periodic solution, and so some further
assistance is required. First, a good approximation of the period must be determined
from the data browser (use Find in conjunction with a large number to determine the
maximum) or by measuring the peak-to-peak period with the mouse. Integrate over
just that period by adjusting nUmerics Total to the period length. After starting

AUTO and selecting parameters and bounds, choose Run Periodic . AUTO may still
fail, and further adjustments to numerical parameters or a better approximation of the
period may be necessary.

B.3.2 Hopf Bifurcation in the FitzHugh�Nagumo Equations

We will continue with the FitzHugh-Nagumo example and explore the bifurcation
structure of this system. Using the FH-N equations from earlier, add the lines

v(0)=1,
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Figure B.12 FH-N system with Iapp=1.5.

w(0)=1,

to the ODE Þle to set initial conditions. Now we are ready to begin the analysis:

1. Start up XPPAUT with Iapp=0. Next, run the ODE Þle, ploting x vs t as dis-
cussed above. You should see v oscillate a bit and go to zero, as seen in Figure B.11.
Now run the simulation with Iapp=1.5. You should see the periodic solution shown
in Figure B.12. We want to understand how this change ocurrs as the parameter
Iapp is changed.

2. To set up the bifurcation analysis run the simulation again with Iapp=0: Click
Initialconds Go and then click Initialconds Last several times. This will
run the simulation until it is really at the steady state.

3. The next step is to bring up the AUTO window by selecting File Auto ( F

A ). Once the AUTO window is present, make sure that Iapp is listed as Par1

under Parameter . It should already be there if you typed the Þle in as written. If
not, select Iapp.

4. Set up the graphics axes with Axes Hilo . Fill in the dialog box as follows:
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Y-axis: V

Main Parm: Iapp

Xmin: -0.5

Ymin: -3

Xmax: 0.5

Ymax: 0.5

5. Set up the Numerics , and change only Par Min=0 and Par Max=3.5.

6. To begin, click Run Steady state . The beginning of the diagram should appear

with four points labeled as in Figure B.13. The bold line represents a stable steady
state, and the faint line represtents an unstable steady state.

7. Now choose Grab . This will allow you to see what the four marked points in the
diagram represent. A cross appears on the plot at marker 1, and below the plot,
a description will be present. Lab is the label for the point (1), Ty is the type of
point. EP stands for End point, where we started computing. Iapp is the value of
the parameter for that location of the graph.

8. Move the cursor over the (2). Under Ty should be the label HP, for Hopf bifurcation.
Point (3) should also be a Hopf bifurcation, and (4) will be the other end point.

9. With the cross back on (2), press Enter . This �grabs� that point as the beginning

of a new calculation. Click Run again. This time, the pop-up screen is labeled

as Hopf Pt, and we will choose Periodic to follow the periodic orbits as Iapp
changes. You should get something like Figure B.14. The darkened circles show that
the periodic orbits are stable. Open circles represent an unstable periodic solution.
Note that there are upper and lower points in the plot for the periodic solution,
showing the maximum and minimum values (of v) that the solution attains.

10. By using grab again, we can go to the periodic orbits, and their period will be

shown below the plot.
11. We can save the plot using the File menu as discussed above.

B.3.3 Hints for Computing Complete Bifurcation Diagrams

� Be sure to start at a Þxed point or clearly deÞned limit cycle. As discussed above,
get rid of transients and Þnd a stable Þxed point by integrating several times:
Click Initialconds Go and then Initialconds Last several times. For limit
cycles, get a good estimate of the period and integrate one full period only.

� Learn to navigate the diagram efficiently. Tab jumps to special points, Axes Fit

reDraw will Þt the entire diagram to the page, and Axes Zoom magniÞes a given
area.

� AUTO will try to follow all branches of Þxed points. However, AUTO may need
some assistance. Grab special points and Run in different directions by changing
the sign of Ds in the numerics dialog box.

� Try to Þnd the periodic solution from all Hopf points.
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Figure B.13 Initial bifurcation diagram and AUTO window for the FH-N system.

� Be sure also to change Ds for two parameter bifurcations.
� An initialMX label indicates that auto has failed and you may not have provided
a good Þxed point or periodic orbit.

� To erase the diagram and start again with different parameters, Grab the initial

starting point and destroy the diagram with File Reset diagram .

� If AUTO fails to continue, try making dsmin smaller; for periodic orbits and
boudary value problems make ntst larger.

� If AUTO clearly misses a bifurcation point, make dsmin smaller and recompute.

B.4 Partial Differential Equations: The Method of
Lines

XPPAUT doesn�t have any way to solve PDEs other than by discretizing space and
producing a series of ODEs using the method of lines. However, one does not have to
write all the differential equations down, one at a time. There are ODE Þle shortcuts
that make this easy to do. There is also a nice way of plotting the space�time behavior
of a one-dimensional PDE. We will go through one quick example here. Consider the
PDE

∂v

∂t
= f(v, w) +D

∂2v

∂x2
,

∂w

∂t
= g(v, w),
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Figure B.14 Final bifurcation diagram the FH-N system.

where f, g are the kinetics for the FitzHugh�Nagumo model or some other model. For
simplicity, we assume Neumann boundary conditions (see Chapter 7). This system can
be discretized with the method of lines, yielding the following system of ODEs:

dv0
dt

= f(v0, w0) +D(v1 − v0),
dvj
dt

= f(vj, wj) +D(vj+1 − 2vj + vj − 1), j = 1, . . . , N − 1,
dvN
dt

= f(vN , wN) +D(vN−1 − vN),
dwj
dt

= g(vj, wj), j = 0, . . . , N.

We will use the FitzHugh�Nagumo kinetics and make an ODE Þle of the discretized
system. Note that we have changed the parameter B=4, so that the system is more
excitable (see Chapter 7):

# fitzhugh-nagumo action potential

f(v,w)=B*v*(v-beta)*(delta-v)-Cw+Iapp

g(v,w)=epsilon*(v-gamma*w)

par Iapp=0,B=1,C=1,beta=.1,delta=1,gamma=.25,epsilon=.1

par D=.5
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Figure B.15 XPPAUT output of the spatial FitzHugh�Nagumo simulation.

dv0/dt=f(v0,w0)+D*(v1-v0)

dv[1..49]/dt=f(v[j],w[j])+D*(v[j+1]-2*v[j]+v[j-1])

dv50/dt=f(v50,w50)+D*(v49-v50)

dw[0..50]/dt=g(v[j],w[j])

@ total=200,dt=.25,meth=qualrk,tol=1e-6

@ xhi=200,yp=v20

done

XPPAUT actually expands this to 100 differential equations, and the variables are
named v0,w0,v1,w1 and so on up to v50,w50. You must always use the letter �j� for
the index. We have told XPPAUT to use a quality step size (adaptive) Runge�Kutta
routine with an output step size of 0.25. We integrate the equations for 200 time units.
We plot v20 so that the appearance of an action potential will be clear.

Run XPPAUT with this Þle. Now we will give some initial conditions. Rather than
type them in one by one, we will deÞne Vj(0) by a formula. Click on Initial conds

formUla . When prompted for the variable type in v[0..50] and type in heav(5-[j])
for the formula. Then tap the Enter key a few times. Note that the index is referred to
as [j] in the formula rather than just j. You should see an action potential appear on
the screen. Click on Graphic stuff Add curve and choose V40 for the y-axis and

color 7 (green) for the color. The potentials of the 20th and 40th points will appear. In
the Initial Data Window, click on the box next to V0. Scroll down and click on the
box next to V50. Now click on the button labeled arry . A new window will appear
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with the space�time plot of the potential that should look something like Figure B.15.
You can fool around with the parameters for this plot by clicking on the edit box in
the window.

As a last bit of analysis, we can look at the spatial proÞle at a Þxed point in time.
To do this, we will transpose all the space�time data so that the 51 columns of the
potential at a particular point in time become 51 rows in the second column; the Þrst
column will hold the indices. Click on File Transpose. Edit the dialog box so that
NCols=51 (the number of columns); Row 1=300 (the output time step is 0.25, so row
300 represents t = 75). Click OK to complete the transpose. (You can undo this by

clicking on File Transpose and then clicking Cancel in the dialog box.) Once you

have transposed the data, just plot V0 versus time. This is the spatial proÞle at t = 75.

B.5 Stochastic Equations

B.5.1 A Simple Brownian Ratchet

XPPAUT has many features useful for stochastic modeling. In particular, it can sim-
ulate Brownian motion and continuous Markov processes. Before turning to a sodium
channel simulation, we Þrst create an XPPAUT Þle for a ratchet that moves between
−1 and 1 and is not allowed to exit the boundaries. It is easiest to treat this in discrete
time. The function normal(0,1) produces a normally distributed random number with
mean 0 and standard deviation 1. Thus, the exercise can be written as the following
simple ODE Þle:

par f1=-5,f2=5,h=.1,q=2

@ total=1000,meth=discrete

init x=-1

xp=x+h*.5*(f1*(sign(-x)+sign(x+1))+f2*(sign(x)+sign(1-x)))

+sqrt(q*h)*normal(0,1)

dx/dt=max(min(xp,1),-1)

done

The statement meth=discrete tells XPPAUT to treat this as a map rather than
a continuous differential equation. In this mode, xp is the new value of x under the
random dynamics. However we do not want x to escape the boundaries of ±1, so when
we update the new value of x it is constrained by the function max(min(xp,1),-1).

B.5.2 A Sodium Channel Model

In the next example we simulate a sodium channel model due to Joe Patlak. The
functions αm,βm,αh are the usual voltage dependendent functions for the Hodgkin�
Huxley equations. XPPAUT can simulate a multi�state Markov process by deÞning
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a �Markov� variable (which has N states, 0, 1, . . . , N − 1) and the transition matrix.
Each row of the transition matrix is given on a single line following the declaration
of the Markov variable. Each entry is contained within the curly braces, { and }. For
example, suppose that you had a two state process with transition rates a from 0 to 1
and b from 1 to 0. Then you would write

markov z 2

{0} {a}

{b} {0}

Note that you can put anything you want in the diagonals, since they are ignored. Here
is a complete ODE Þle for the above process:

# two state markov model

par a=.2,b=.3

markov z 2

{0} {a}

{b} {0}

@ total=50,xhi=50,xp=z,yp=z,yhi=1.5,ylo=-.5

# ddummy/dt=0

done

The last line should be uncommented if your version of XPPAUT does not accept this
Þle. Older versions require at least one differential equation. Run this and integrate the
equations. See z ßip up and down.

Now with this trivial example in mind, we turn to the sodium channel model. Here
is the XPPAUT Þle:

# model for the hh Na channel

# due to patlack

#

par vhold=-100,vnew=10

par ton=1,toff=16,ena=50

par k1=.24,k2=.4,k3=1.5

v=vhold+heav(t-ton)*heav(toff-t)*(vnew-vhold)

am=.1*(v+40)/(1-exp(-(v+40)/10))

bm=4*exp(-(v+65)/18)

ah=.07*exp(-(v+65)/20)

markov z 5

{0} {3*am} {0} {0} {0}

{bm} {0} {2*am} {0} {k1}

{0} {2*bm} {0} {am} {k2}

{0} {0} {3*bm} {0} {k3}

{0} {0} {0} {0} {ah}

aux cond=(z==3)
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aux ina=(z==3)*(v-ena)/40

aux pot=v

@ meth=euler,dt=.01,total=16

@ yp=ina,ylo=-1.5,xlo=0,xhi=15,bound=100

done

The voltage is stepped from a value vhold to vnew. The Markov process has Þve states.
Only state 3 is conducting. Thus, the auxiliary variable cond=(z==3) is zero if the
channel is not conducting and 1 if it is. The current passed is given by the variable
ina. Euler�s method is used for this calculation, since that is usually the best method
to use for any stochastic model. Integrate this a few times to see the channel open
transiently. This is a transient channel, so even at high potentials it stays on only brießy.
The Hodgkin�Huxley equations arise by assuming that there are many independent
channels. Since they are assumed to be independent, we can simulate the effect of m
channels by just integrating the equationsm times and averaging the output. XPPAUT
does this for you. Click on nUmerics Stochastics Compute to tell XPPAUT how

many trials. Choose z as the variable to range over, 200 steps with Start=0 and
End=0. Then click Ok . The equations will be integrated 200 times; this is equivalent
to having 200 independent channels. Once XPPAUT has done this (you can keep
track by looking at the bottom), then click on stocHastics Mean to load the data

browser with the mean values of all its rows over the 200 trials. Click on Escape to

get back to the main menu and then click on Restore to see the mean value shown in
Figure B.16. This looks very similar to the deterministic solution. Try simulating fewer
channels (e.g., 10) and more channels, (e.g., 1000). Why do we have to take such small
steps?

B.5.3 A Flashing Ratchet

As a Þnal example of a stochastic equation, we simulate the �ßashing ratchet� model:
an asymmetric ratchet that ßashes on and off at a particular rate according to a Markov
process and subject to simple delta-correlated noise. Here is the model:

dx = −zf(x)dt+ σdξ,
where z is a two�state Markov process either off (0) or on (1) and f is just the deriva-
tive of an asymmetric potential. The potential should be made periodic. Here is the
XPPAUT Þle:

# ratchet

# -1 for 0<x<1

# 1/a for 1<x<1+a

ff(x)=if(x<1)then(-1)else(1/a)

f(x)=ff(mod(x,1+a))

par a=.25
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Figure B.16 XPPAUT results for the sodium channel simulation.

par alpha=.2,beta=.2

par sig=.5

wiener xi

dx/dt=f(x)*z+sig*xi

markov z 2

{0} {alpha}

{beta} {0}

@ total=200,bound=200,meth=euler

done

We Þrst deÞne the potential on the interval [0, 1+a) and then extend it to the whole line
modulo 1+a.We deÞne a two-state markov process that ßips randomly between 0 and
1. The wiener w declaration tells XPPAUT that this is a normally distributed number
scaled by the internal time step dt. Thus, if you change dt, the standard deviation is
scaled accordingly by

√
dt. Integrate the equations a few times. Next, do 50 simulations

and look at the mean trajectory. (Use nUmerics stocHastic Compute as was done

in the channel model.) You will see in Figure B.17 that there is persistent downward
drift. This is what is predicted by theory.
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Figure B.17 Stochastic simulation of a simple Brownian ratchet.
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APPEND I X C

Numerical Algorithms

This appendix contains samples of the different kinds of numerical constructs used to
produce the Þgures in this book. Each of the Þles produces a Þgure in the book and is
labeled accordingly. In general, each of the Þles contains a new construct not previously
used. However, several are included for easy comparison to one that is very similar. We
provide a one-line description of the intent of the code. It will be useful to look back at
the Þgures these Þles produce as well.

The Þles presented here are working XPPAUT code. XPPAUT uses concise
straightforward code, making it easy to translate to other languages and packages. The
code as written can be saved as an .ode Þle and run using XPPAUT or Winpp. The
code is commented heavily at the beginning and less so at the end, where the reader
will be able to pick up on the more obvious features.

This appendix provides a good overview, and it provides those with programming
experience a template for writing their own code. Furthermore, XPPAUT code for
every computational Þgure in the book is available for download on the web site for
the book, including the corresponding set Þles. As readers solve examples and exercises
using other packages such as Berkeley Madonna, MATLAB, and Mathematica. These
Þles will be included on the web site if they are submitted to us.
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Figure 1.10. This is the Þrst basic code to run. Once you have a simple XPPAUT
model running, it is straightforward to modify it to increase its complexity.

#solves single channel model

#this is basically the same equation with the steady

#state level changed to ninf rather than zero

#the initial condition on the open fraction

no(0)=1

#parameters

#ninf is the steady state value

#tau is the the time scale

param ninf=0.5,tau=3

#differential equation

dno/dt=-(no-ninf)/tau

#auxiliary function

#rate is the instantaneous rate of change

aux rate=-(no-ninf)/tau

done

Figure 2.6. This program provides a template for plotting functions with XPPAUT
using the aux functionality.

#.ode file for plotting the functions

#x is the dummy variable for plotting the auxiliary functions

#initial value of x

x(0)=-80

#differential equation

#the solution to this equation is x=t+x(0)

#it lets us plot functions f(x)

dx/dt=1

#equilibrium activation and inactivation

#auxillary functions to plot

aux ninfact=1/(exp(-(x+25)/5)+1)

aux ninfinact=1/(exp((x+50)/2)+1)

#the characteristic times to plot

aux tauact=5/cosh((x+25)/2*5)

aux tauinact=5/cosh(-(x+50)/2*2)

done

Figures 2.9, 2.10, 2.11, 2.12. This is a simple two-variable model (the Morris�Lecar
model) that includes function deÞnitions outside of the differential equations.

#simulation of the Morris-Lecar equations

dv/dt = (-gca*minf(V)*(V-Vca)-gk*w*(V-VK)-gl*(V-Vl)+Iapp)/C

dw/dt = phi*(winf(V)-w)/tauw(V)
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#initial conditions

v(0)=-60.855

w(0)=0.014915

#functional forms for the equations

#keep the functions separate from the differential equations makes

#the differential equations less complicated to sort through,

#but is not necessary.

minf(v)=.5*(1+tanh((v-v1)/v2))

winf(v)=.5*(1+tanh((v-v3)/v4))

tauw(v)=1/cosh((v-v3)/(2*v4))

#parameters

param Iapp=0,vk=-84,vl=-60,vca=120

param gk=8,gl=2,C=20

param v1=-1.2,v2=18

param v3=2,v4=30,phi=.04,gca=4.4

#numerical parameters:

#these are sometimes included to avoid needing to

#set them when the program is run

#total is the total time the simulation will run

#dt is the time step

#the rest of these parameters define the view in the graph

@ total=150,dt=.25,ylo=-75,yhi=45,xlo=0,xhi=150,xp=t,yp=va=4.4

done

Figures 5.8, 5.10. This Þle shows that the ordering of the program elements in
XPPAUT is not crucial.

#Keizer/Leslie: reduced open-cell model

#Parameter values slightly modified from original paper.

#Two figs generated:

#(1) osc_sympn.ps: jin=1.5 for 60<t<400 and jin=0.3 otherwise

#(2) bif_jin.ps: jin=0.1 to jin=4.5

#numerical parameters

@ meth=cvode, dtmax=1, dt=0.05, total=400, maxstor=1000000

@ bounds=100000000, xp=w, yp=w, toler=1.0e-6, atoler=1.0e-6

@ xlo=0, xhi=400, ylo=0, yhi=2.5

#initial conditions

C(0)=0.2, Cf(0)=1.

#parameters

params fi=0.01,k3=0.2

params ka=0.4,kb=0.6,kc=0.1,kcm=0.01

params vout=5, kout=0.6, jin=1.5

params v3=100,v13=0.05,v23=0.002,c1=0.02
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#function definitions

winf=(1+(ka/C)^4+(C/kb)^3)/(1+(1/kc)+(ka/C)^4+(C/kb)^3)

Cas=(Cf-C)/c1

tau(winf)=winf/kcm

R=winf*(1+(C/kb)^3)/(1+(ka/C)^4 + (C/kb)^3)

#differential equations

dC/dt=fi*(v3*((v13*R+v23)*(Cas-C)-C^2/(C^2+k3^2))\

-vout*C^2/(C^2+kout^2)+jin)

dCf/dt=fi*(jin-vout*C^2/(C^2+kout^2))

aux R=winf*(1+(C/kb)^3)/(1+(ka/C)^4 + (C/kb)^3)

done

Figure 5.14. Note here that the keyword for parameters is ßexible.

# Li-Rinzel open-cell model .ode file.

# Dimensional version

# The equations

dC/dt=fi/Vi*((L+P*((I*C*h)/((I+Ki)*(C+Ka)))^3)*(Ce-C)\

-Ve*C*C/(Ke*Ke+C*C)+eps*(Jin-Vp*C*C/(Kp*Kp+C*C)))

dh/dt=A*(Kd-(C+Kd)*h)

dCt/dt=fi/Vi*eps*(Jin-Vp*C*C/(Kp*Kp+C*C))

Ce=(Ct-C)/sigma

# The parameters

# Jin=aMol/s

par Jin=1200,fi=0.01

# Vi=pL

par Vi=4

# L,P=pL/s

par L=0.37,P=26640

# I,C,Ce,Ct,I,Ki,Ka,Ke,Kd,Kp=uM

par I=0.9,Ki=1.0,Ka=0.4

# Ve, Vp=aMol/s [sic]

par Ve=400,Ke=0.2,A=0.5,Kd=0.4

# sigma,eps,fi=unitless

par sigma=0.185,eps=0.01,Vp=2000,Kp=0.3

# The initial conditions

C(0)=0.2

h(0)=0.8

Ct(0)=4.0

aux Ce=Ce

@ TOTAL=300,DT=0.02,xlo=0,xhi=2,ylo=0,yhi=1.5

@ xplot=t,yplot=C

@ dsmin=1e-5,dsmax=.1,parmin=-.5,parmax=.5,autoxmin=-.5,autoxmax=.5

@ autoymax=.4,autoymin=-.5
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set vvst {xplot=c,yplot=h,xlo=0,xhi=1.5,ylo=0,yhi=1.5,total=100,\

dt=0.01,meth=qualrk}

done

Figures 5.19, 5.20. This simulation exhibits bursting behavior in the right parameter
range. Note here an alternative method for declaring initial conditions.

#Morris-Lecar-like beta-cell

init v=-65.0, n=0.00016, c=0.2

# equations

dv/dt=(i+gl*(vl-v)+gk*n*(vk-v)-Ica(v)-Ikca(v,c)+gkatp*(vk-v))/c

dn/dt=(ninf(v)-n)/tau(v)

dc/dt=f*(-alpha*ica(v) - kc*c)

# where

minf(v)=.5*(1+tanh((v-v1)/v2))

ninf(v)=.5*(1+tanh((v-v3)/v4))

tau(v)=1/(phi*cosh((v-v3)/(2*v4)))

# For bifurcation diagram, set auto=1 and use gkcastar

# as the bifurcation parameter:

param gkcastar=100.0, auto=0

param vk=-75, vl=-75, vca=25

param i=0, gk=2700, gl=150, gca=1000, c=5300

param v1=-20.0, v2=24, v3=-16, v4=11.2, phi=0.035

param gkca=2000.0, Kca=5.0

# Ikca

ikca(v,c) = auto*gkcastar*(v-vk)+(1-auto)*gkca/(1+(Kca/c))*(v-vk)

# Calcium Handling

par alpha=4.50e-6, kc=0.15, f=0.001

# Ikatp

par gkatp=0.0

ica(v) = gca*minf(v)*(v-vca)

# track some currents

aux Condkca=gkca/(1+(Kca/c))

aux Ica=gca*minf(V)*(V-Vca)

aux Ik=gk*n*(V-Vk)

aux Curkca=Ikca(v,c)

@ meth=cvode, atol=1.0e-6, tol=1.0e-6, dt=10.0

@ total=40000, maxstor=10000

@ xp=t, yp=v, bound=100000000

@ xlo=0, xhi=40000, ylo=-70, yhi=-10

done

Figures 6.2, 6.3. This Þle provides a template for simple coupled dynamics.

#mlgap.ode
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#gap-junction coupled cells.

#Morris-Lecar dynamics with modified parameters.

#Notably: vc=-5, vd=10, phi=0.5 (originally: 2, 30, 0.04, respectively)

#Use weak gc (=1) for antiphase and strong gc (=2) for inphase.

#differential equations

dV1/dt=(I-gca*minf(V1)*(V1-Vca)-gk*w1*(V1-VK)-gl*(V1-Vl)+\

gc*heav(t-ton)*(V2-V1))/c

dw1/dt = phi*(winf(V1)-w1)/tauw(V1)

dV2/dt = (I-gca*minf(V2)*(V2-Vca)-gk*w2*(V2-VK)-gl*(V2-Vl)+\

gc*heav(t-ton)*(V1-V2))/c

dw2/dt = phi*(winf(V2)-w2)/tauw(V2)

init V1=-20,w1=.2

init V2=-30,w2=0

minf(v)=.5*(1+tanh((v-va)/vb))

winf(v)=.5*(1+tanh((v-vc)/vd))

tauw(v)=1/cosh((v-vc)/(2*vd))

#parameters

param vk=-84,vl=-60,vca=120

param i=-10,gk=8,gl=1,c=20

param va=-1.2,vb=18,gc=2,ton=100

param vc=-5,vd=10,phi=0.5,gca=8

#numerical parameters

@ total=400,dt=.25,xhi=400,ylo=-40,yhi=30

done

Figure 6.9. This Þle includes a delay using a Heaviside function. This Þle also demon-
strates alternative notation for the equations. In particular, note that the dv/dt
notation may be substituted for v�.

# simple model for coincidence detection.

# ML cell receives two just-subthreshold inputs that are identical and

# excitatory - tdel represents timing difference between them.

# this ML model uses the standard ML (Type II) params from Chapt 2 of this

# book (same as Rinzel/Ermentrout in Koch and Segev�s book.

# Note: treat tdel as a variable (with ode: tdel�=0) so can do Poincare

# map for response tuning curve

isyn2=gsyne*s2*(Vsyne-v1)

isyn1=gsyne*s1*(Vsyne-v1)

#differential equations

v1� = (I-gca*minf(v1)*(v1-vca)-gk*w1*(v1-vk)-gl*(v1-vl)\

+isyn2+isyn1)/c

w1� = phi*(winf(v1)-w1)/tauw(v1)

s2� = alphae*sinf(vr2(t))*(1-s2)-betae*s2

s1� = alphae*sinf(vr1(t))*(1-s1)-betae*s1
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tdel�= 0

init v1=-60.9,w1=.0149,s2=0.,s1=0.,tdel=0

minf(v)=.5*(1+tanh((v-va)/vb))

winf(v)=.5*(1+tanh((v-vc)/vd))

tauw(v)=1/cosh((v-vc)/(2*vd))

sinf(v)=1/(1+exp(-(v-thetasyn)/ksyn))

# fix the start time of excitation from R2 and delay the

# start of excitation from R1 by tdel (if tdel<0, R1 input precedes

# R2 input)

vr2(t)=100*heav(t-t0)*heav(teon+t0-t)+vrest

vr1(t)=100*heav(t-t0-tdel)*heav(teon+t0+tdel-t)+vrest

param t0=100,teon=5,vrest=-60

param gsyne=1.5,vsyne=100

param vk=-84,vl=-60,vca=120

param i=0,gk=8,gl=2,c=20

param va=-1.2,vb=18,vc=2,vd=30,phi=.04,gca=4.

param thetasyn=20,ksyn=2,alphae=1,betae=0.3

# aux quantities

aux isyn2x=isyn2

aux isyn1x=isyn1

@ total=400,bound=100000,nout=2,dt=.25,xhi=400,ylo=-100,yhi=100

done

Figure 7.6. This is the basic diffusion equation. It demonstrates the two�dimensional
graphing capabilities of XPPAUT.

param D=1

param dx=1

c0�=D*(c1-c0)/(dx*dx)

c[1..39]�=D*(c[j+1]-2*c[j]+c[j-1])/(dx*dx)

c40�=D*(c39-c40)/(dx*dx)

init c[0..19]=0

init c20=0.5

init c[21..29]=1

init c30=0.5

init c[31..40]=0

Figure 7.8 This Þle provides a template for one-dimensional reaction�diffusion
equations.

param dx=1

f(x)=x*(1-x)*(x-0.1)

V0�=(V1-V0)/(dx*dx)+f(V0)

V[1..39]�=(V[j+1]-2*V[j]+V[j-1])/(dx*dx)+f(V[j])

V40�=(V39-V40)/(dx*dx)+f(V40)
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init V[0..30]=0

init V31=0.1

init V[32..40]=0.2

Figure 8.7. This Þle incorporates recovery, giving a traveling pulse with wave front
and back.

# Calcium wave simulation

#parameters

param ip3=.7, a2=.2, Caer=1

param d1=0.1, d2=1, d3=0.2, d5=0.2

param v1=20, v2=0.004, v3=1.2, k3=0.15, tau=2

param deff=16,dx=10

# dx in units of um

# deff in units of um^2/sec

#the initial condition, equation and a function

Ca[0..4](0)=.1

Ca[5..100](0)=.01

w[0..100](0)=.8652

dCa0/dt=f(Ca0,w0)+deff*(Ca1-Ca0)/dx^2

dCa[1..99]/dt=f(Ca[j],w[j])+deff*(Ca[j-1]-2*Ca[j]+Ca[j+1])/dx^2

dCa100/dt = f(Ca100,w100)+deff*(Ca99-Ca100)/dx^2

dw[0..100]/dt=(winf(Ca[j])-w[j])/tau

f(Ca,w)=(v2+v1*(w*Ca/(Ca+d5))^3)*(Caer-Ca)-v3*Ca^2/(k3^2+Ca^2)

winf(Ca)=(d2*ip3/(ip3+d3))/(Ca+(d2*(ip3+d1)/(ip3+d3)))

#program end

@ total=200,trans=0,DT=.1,xlo=0,xhi=200,ylo=0,yhi=1

@ maxstore=1000000,bounds=10000

@ xplot=x,yplot=Ca0

done

# A forcing term can be added if you want

# capp = i1*(heav(mod(t,period))*heav(duty*period-mod(t,period)))

Figure 8.12A,B. The following Þle is interesting because although there are discrete
release sites, one parameter set essentially results in continuous Ca2+ wave propagation
seen in Figure 8.12A while another results in discrete release and saltatory propagation
as seen in Figure 8.12B. To replicate the discrete release and saltatory propagation
seen in Figure 8.12B, set taur=0.01 and total=0.5. To replicate the continous wave
of Figure 8.12A set taur=1 and total=2.0. Use the 2DArray option in XPPAUT to
view the results.

# Fire-diffuse-fire model simulation

# time in s

# space in um

# d in um^2/s
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# parameters (here for continuous wave)

param d=30,dx=0.2,sigma=5,taur=1,taud=10000000,cth=0.1

#the initial condition, equation and a function

c[0..100](0)=0

s[0..20](0)=1.0

s[21..100](0)=0

#global 1 c0-cth {s0=1}

global 1 c10-cth {s10=1}

global 1 c20-cth {s20=1}

global 1 c30-cth {s30=1}

global 1 c40-cth {s40=1}

global 1 c50-cth {s50=1}

global 1 c60-cth {s60=1}

global 1 c70-cth {s70=1}

global 1 c80-cth {s80=1}

global 1 c90-cth {s90=1}

global 1 c100-cth {s100=1}

dc0/dt = sigma*heav(s0)/2/taur-c0/taud+d*(c1-c0)/dx^2

dc[1..99]/dt = sigma*heav(s[j])/taur-c[j]/taud+d*(c[j-1]-2*c[j]+c[j+1])/dx^2

dc100/dt = sigma*heav(s100)/2/taur-c100/taud+d*(c99-c100)/dx^2

ds[0..100]/dt = -heav(s[j])/taur

aux logc[0..100] = c[j]

#numerical parameters (total for continuous wave)

@ total=2,trans=0,dt=0.0001,xlo=0,xhi=2000,ylo=0,yhi=1

@ maxstore=1000000,bounds=10000

@ xplot=x,yplot=Ca10

done

Figure 9.10. This Þle incorporates an active delay into the equation.

# Discrete time lag oscillator

p p=4, b=.5, tau=2.5

dx/dt = 1/(1+delay(x,tau)^p) - b*x

x(0)=1.1

@ delay=10

done

Figure 11.3. This Þle shows the basic two-state stochastic model.

# Example two state channel simulation

# parameters

params kp=1.5, km=0.5, tau=1000

#initial condition

po(0)=0.5

#stochastic variable



454 C: Numerical Algorithms

markov n 2

{0}{kp}

{km}{0}

#differential equation

po�=-(po-n)/tau

aux n=n

#numerical parameters

@ total=100,trans=0,DT=.001,xlo=0,xhi=100,ylo=-0.1,yhi=1.1

@ maxstore=1000000,bounds=10000

@ xplot=t,yplot=n

#@ njmp=100

done

Figure 11.9. This Þles introduces Wiener variables.

#weiner variables

wiener w[0..99]

#differential equations

x[0..99]�=w[j]

mean = sum(0,99)of(shift(x0,i�))/100

aux mean = mean

aux var = sum(0,99)of((shift(x0,i�)-mean)^2)/100

aux w0 = w0

#numerical parameters

@ total=1000,trans=0,DT=0.1,xlo=0,xhi=1000,ylo=-100,yhi=100

@ maxstore=1000000,bounds=10000

@ xplot=t,yplot=x

@ njmp=1

done

Figure 11.11A. The next two Þles are used to explore the differences between twenty
states and two states in a Markov process. Notice that the rows and columns of the tran-
sition probability matrix follow the XPPAUT convention and are transposed relative
to (11.5). Diagonal entries are not used by XPPAUT.

#parameters

params kp=0.5, km=0.5

params c=2, gl=0.5, gch=1.0, vl=-70, vch=20

#initial condition

v(0)=0

#stochastic variable

markov n 2

{0}{kp}

{km}{0}

#differential equation
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v�=(-gl*(v-vl)-gch*n*(v-vch))/c

aux n=n

#numerical parameters

@ total=100,trans=0 ,DT=.001,xlo=0,xhi=100,ylo=-80,yhi=0

@ maxstore=1000000,bounds=10000

done

Figure 11.11C. This is the twenty�state Markov process. Again, the transition
probability matrix follows the XPPAUT convention and is transposed relative to
(11.13).

#parameters

params kp=0.5, km=0.5

params c=2, gl=0.5, gch=1.0, vl=-70, vch=20

#initial condition

v(0)=0

#stochastic variable

markov n 21

{0}{20*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{km}{0}{19*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{2*km}{0}{18*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{3*km}{0}{17*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{4*km}{0}{16*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{5*km}{0}{15*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{6*km}{0}{14*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{7*km}{0}{13*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{8*km}{0}{12*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{9*km}{0}{11*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{10*km}{0}{10*kp}{0}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{11*km}{0}{9*kp}{0}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{12*km}{0}{8*kp}{0}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{13*km}{0}{7*kp}{0}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{14*km}{0}{6*kp}{0}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{15*km}{0}{5*kp}{0}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{16*km}{0}{4*kp}{0}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{17*km}{0}{3*kp}{0}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{18*km}{0}{2*kp}{0}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{19*km}{0}{kp}

{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{20*km}{0}

#differential equation

v�=(-gl*(v-vl)-gch*n/20*(v-vch))/c

aux n=n

#numerical parameters

@ total=100,trans=0 ,DT=.001,xlo=0,xhi=100,ylo=-80,yhi=0
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@ maxstore=1000000,bounds=10000

done

Figure 11.14. This Þle incorporates stochastic dynamics into the differential equations
for the Morris�Lecar model.

# Deterministic Morris-Lecar model follows Rinzel and Ermentrout�s

# chapter in Koch & Segev. Stochastic ion channel dynamics added

# using Langevin formulation.

# For stochastic excitability, oscillations, and bistability use

# iapp = 10, 12, 10 and v3 = 10, 10, 15

#initial conditions

v(0)=-40

w(0)=1

#weiner variable

wiener b

#parameters

params n=100

params v1=-1,v2=15,v3=10,v4=14.5,gca=1.33,phi=.333

params vk=-70,vl=-50,iapp=10,gk=2.0,gl=.5,om=1

minf(v)=.5*(1+tanh((v-v1)/v2))

# The 0.05 is a modification needed to lift w nullcline

# so that stochastic excitability can be realized

ninf(v)=.5*(1+tanh((v-v3)/v4))+0.05

lamn(v)= phi*cosh((v-v3)/(2*v4))

ica=gca*minf(v)*(v-100)

#differential equations

v�= (iapp+gl*(vl-v)+gk*w*(vk-v)-ica)*om

w�= (lamn(v)*(ninf(v)-w))*om+sqrt(lamn(v)*((1-2*ninf(v))*w+ninf(v))/n)*b

aux I_ca=ica

#numerical parameters

@ total=500,trans=0,DT=.01,xlo=0,xhi=500,ylo=-60,yhi=50

@ maxstore=1000000,bounds=10000

@ xplot=t,yplot=v

done
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Markov process, 295�297
Markov variable, 300
master equation, 303
mathematics, role of, 10�11
matrix, 389�390
mean Þrst passage time, 343, 368, 372
membrane potential, 26, 28, 33
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Membrane transport, 4, 5
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kinetics, 96
rate law, 88
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Monte Carlo method, 299
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per gene, 256
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singular perturbation, 415�418
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phase space, 38
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phase space, 38
pituitary gonadotroph, 118�131
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positive feedback, 264
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postsynaptic current, 144
power series, 390�392
power stroke, 357, 372, 379, 380, 385
probability distribution function, 302
protonmotive force, 344, 357, 379

Quasi�steady�state approximation, 85, 99
quasi-steady-state approximation, 113, 114
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random walk, 311
randomness parameter, 338
rapid buffer approximation, 106�109, 230�231
rapid equilibrium approximation, 71, 80�84,
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rate constant, 12, 345, 347, 359
pseudo�Þrst�order, 345, 347
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ratiometric dye, 205
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reaction�advection�diffusion equation, 181
reaction�diffusion equation, 180, 186, 189,

194�199
relaxation oscillator, 43
reversal potential, 25, 26, 28, 185
reversibility, 56, 75
Reynolds number, 354
root mean square distance, 187
Routh-Hurwitz theorem, 250
ryanodine receptor, 111�118

S phase, 269
saddle point, 197
self organization, 6
SERCA pump, 71, 74
silent phase, 5
simulation, 10
single channel conductance, 308
slow synapse, 151�153
Smoluchowski model, 342�343
sodium/glucose cotransporter, 68, 74
sodium/potassium ATPase, 68
spherical coordinates, 193
squid giant axon, 21, 22, 35
stability, 40, 41, 400�405
analysis, 39

stability analysis, 39�43
limit cycle, 39

stall force, 378
steady state, 17, 40
stochastic
bistability, 323
excitability, 323
ODEs, 310�317
oscillations, 323

stoichiometric coefficients, 13
stoichiometry, 68
sublinear addition, 159
sublinear summation effect, 153
substate�depletion
oscillator, 261

substrate inhibition, 242
substrate-depletion oscillator, 246�248
substrate-inhibition oscillator, 262
symmetric transporter, 65
symmetry, 193�194
synaptic depression, 153
synaptic transmission, 143, 149�153

Taylor series, 39, 391
thermodynamic restriction, 63�65
time scale, 42, 84
trajectory, 37, 38
transition probability, 294
transition probability matrix, 321
transition rate, 294
transition-state diagram, 294
translationally invariant solution, 195
transporter, 66
traveling wave, 194�199
solution, 195�197
traveling front, 210�213
traveling pulse, 214�215

two-time covariance, 312
type I spiking, 44
type II spiking, 44

Unimolecular process, 11

Vector, 389�390
vector Þeld, 38
voltage clamp, 22, 32�34, 185�186
voltage gated ion channel, 29

Wave coordinate, 212
Wiener process, 311

Xenopus laevis
egg, 205�207
oocyte, 213
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basic commands, 433
bifurcation, 438�442
brownian ratchet, 445�446
continuation, 438�442
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Þxed point, 435�437
Þxed points command summary, 438
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integrating, 425
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plotting, 425
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saving and restoring, 432
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setting parameters, 430
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viewing data, 431
windows, 423


