Data Structures
Using

Second Edition

Reema Thareja

Assistant Professor
Department of Computer Science
Shyama Prasad Mukherjee College for Women
University of Delhi

OXTFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press
YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2011, 2014
The moral rights of the author/s have been asserted.

First Edition published in 2011
Second Edition published in 2014

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-809930-7
ISBN-10: 0-19-809930-4

Typeset in Times New Roman
by Pee-Gee Graphics, New Delhi
Printed in India by Radha Press, New Delhi 110031

I dedicate this book to my family
and
my uncle Mr B.L. Thareja

Preface to the First Edition

A data structure is defined as a group of data elements used for organizing and storing data. In order
to be effective, data has to be organized in a manner that adds to the efficiency of an algorithm, and
data structures such as stacks, queues, linked lists, heaps, and trees provide different capabilities
to organize data.

While developing a program or an application, many developers find themselves more interested
in the type of algorithm used rather than the type of data structure implemented. However, the
choice of data structure used for a particular algorithm is always of the utmost importance. Each
data structure has its own unique properties and is constructed to suit various kinds of applications.
Some of them are highly specialized to carry out specific tasks. For example, B-trees with their
unique ability to organize indexes are well-suited for the implementation of databases. Similarly,
stack, a linear data structure which provides ‘last-in-first-out’ access, is used to store and track
the sequence of web pages while we browse the Internet. Specific data structures are essential
components of many efficient algorithms, and make possible the management of large amounts of
data, such as large databases and Internet indexing services. C, as we all know, is the most popular
programming language and is widespread among all the computer architectures. Therefore, it is
not only logical but also fundamentally essential to start the introduction and implementation of
various data structures through C. The course data structures is typically taught in the second or
third semester of most engineering colleges and across most engineering disciplines in India. The
aim of this course is to help students master the design and applications of various data structures
and use them in writing effective programs.

About the Book

This book is aimed at serving as a textbook for undergraduate engineering students of computer
science and postgraduate level courses of computer applications. The objective of this book is to
introduce the concepts of data structures and apply these concepts in problem solving. The book
provides a thorough and comprehensive coverage of the fundamentals of data structures and the
principles of algorithm analysis. The main focus has been to explain the principles required to
select or design the data structure that will best solve the problem.

A structured approach is followed to explain the process of problem solving. A theoretical
description of the problem is followed by the underlying technique. These are then ably supported
by an example followed by an algorithm, and finally the corresponding program in C language.

The salient features of the book include:

e Explanation of the concepts using diagrams

e Numerous solved examples within the chapters

e Glossary of important terms at the end of each chapter

e Comprehensive exercises at the end of each chapter

e Practical implementation of the algorithms using tested C programs

e Objective type questions to enhance the analytical ability of the students

Preface to the First Edition ix

e Annexures to provide supplementary information to help generate further interest in the
subject
The book is also useful as a reference and resource to young researchers working on efficient
data storage and related applications, who will find it to be a helpful guide to the newly established
techniques of a rapidly growing research field.

Acknowledgements

The writing of this textbook was a mammoth task for which a lot of help was required from many
people. Fortunately, I have had the fine support of my family, friends, and fellow members of the
teaching staff at the Institute of Information Technology and Management (IITM). My special
thanks would always go to my father Mr Janak Raj Thareja and mother Mrs Usha Thareja, my
brother Pallav and sisters Kimi and Rashi who were a source of abiding inspiration and divine
blessings for me. I am especially thankful to my son Goransh who has been very patient and
cooperative in letting me realize my dreams. My sincere thanks go to my uncle Mr B.L. Thareja
for his inspiration and guidance in writing this book.

I would also like to thank my students and colleagues at IITM who had always been there to
extend help while designing and testing the algorithms. Finally, I would like to thank the editorial
team at Oxford University Press for their help and support.

Comments and suggestions for the improvement of the book are welcome. Please send them
to me at reemathareja@gmail.com

Reema Thareja

Preface to the Second Edition

A data structure is the logical or mathematical arrangement of data in memory. It considers not
only the physical layout of the data items in the memory but also the relationships between these
data items and the operations that can be performed on these items. The choice of appropriate
data structures and algorithms forms the fundamental step in the design of an efficient program.
Thus, a thorough understanding of data structure concepts is essential for students who wish to
work in the design and implementation of software systems. C, a general-purpose programming
language, having gained popularity in both academia and industry serves as an excellent choice
for learning data structures.

This second edition of Data Structures Using C has been developed to provide a comprehensive
and consistent coverage of both the abstract concepts of data structures as well as the implementation
ofthese concepts using C language. The book utilizes a systematic approach wherein the design of
each of the data structures is followed by algorithms of different operations that can be performed
on them, and the analysis of these algorithms in terms of their running times.

New to the Second Edition

Based on the suggestions from students and faculty members, this edition has been updated and
revised to increase the clarity of presentation where required. Some of the prominent changes
are as follows:

e New sections on omega and theta notations, multi-linked lists, forests, conversion of
general trees into binary trees, 2-3 trees, binary heap implementation of priority queues,
interpolation search, jump search, tree sort, bucket hashing, cylinder surface indexing

e Additional C programs on header linked lists, parentheses checking, evaluation of prefix
expressions, priority queues, multiple queues, tree sort, file handling , address calculation
sort

e New appendices on dynamic memory allocation, garbage collection, backtracking,
Johnson’s problem

e Stacks and queues and multi-way search trees are now covered in separate chapters with
a more comprehensive explanation of concepts and applications

Extended Material

Chapter I—This chapter has been completely restructured and reorganized so that it now provides
a brief recapitulation of C constructs and syntax. Functions and pointers which were included as
independent chapters in the first edition have now been jointly included in this chapter.

Chapter 2—New sections on primitive and non-primitive data structures, different approaches
to designing algorithms, omega, theta, and little notations have been included. A number of new
examples have also been added which show how to find the complexity of different functions.
Chapter 5—This chapter now includes brief sections on unions, a data type similar to structures.
Chapter 6—This chapter has been expanded to include topics on multi-linked lists, multi-linked
list implementation of sparse matrices, and a C program on header linked lists.

vi

Preface to the Second Edition

Chapter 7—New C programs on parenthesis checking and evaluation of prefix expressions have
been added. Recursion, which is one of the most common applications of stacks, has been moved
to this chapter.

Chapter —New C programs on priority queues and multiple queues have been included.
Chapter 9—This chapter now includes sections on general trees, forests, conversion of general
trees into binary trees, and constructing a binary tree from traversal results.

Chapter 10—An algorithm for in-order traversal of a threaded binary tree has been added.

Chapter 11—A table summarizing the differences between B and B+ trees and a section on 2-3
trees have been included.

Chapter 12—A brief section on how binary heaps can be used to implement priority queues has
been added.

Chapter 13—This chapter now includes a section which shows the adjacency multi-list
representation of graphs.

Chapter 14—As a result of organization, the sections on linear and binary search have been
moved from Chapter 3 to this chapter. New search techniques such as interpolation search, jump
search, and Fibonacci search have also been included. The chapter also extends the concept of
sorting by including sections on practical considerations for internal sorting, sorting on multiple
keys, and tree sort.

Chapter 15—New sections on bucket hashing and rehashing have been included.

Chapter 16—This chapter now includes a section on cylinder surface indexing which is one of
the widely used indexing structures for files stored in hard disks.

Content and Coverage
This book is organized into 16 chapters.

Chapter 1, Introduction to C provides a review of basic C constructs which helps readers to
familiarize themselves with basic C syntax and concepts that will be used to write programs in
this book.

Chapter 2, Introduction to Data Strctures and Algorithms introduces data structures and algorithms
which serve as building blocks for creating efficient programs. The chapter explains how to
calculate the time complexity which is a key concept for evaluating the performance of algorithms.

From Chapter 3 onwards, every chapter discusses individual data structures in detail.

Chapter 3, Arrays provides a detailed explanation of arrays that includes one-dimensional, two-
dimensional, and multi-dimensional arrays. The operations that can be performed on such arrays
are also explained.

Chapter 4, Strings discusses the concept of strings which are also known as character arrays. The
chapter not only focuses on reading and writing strings but also explains various operations that
can be used to manipulate the character arrays.

Chapter 5, Structures and Unions deals with structures and unions. A structure is a collection of
related data items of different types which is used for implementing other data structures such
as linked lists, trees, graphs, etc. We will also read about unions which is also a collection of
variables of different data types, except that in case of unions, we can only store information in
one field at any one time.

Chapter 6, Linked Lists discusses different types of linked lists such as singly linked lists, doubly
linked lists, circular linked lists, doubly circular linked lists, header linked lists, and multi-linked
lists. Linked list is a preferred data structure when it is required to allocate memory dynamically.

Preface to the Second Edition vii

Chapter 7, Stacks focuses on the concept of last-in, first-out (LIFO) data structure called stacks.
The chapter also shows the practical implementation of these data structures using arrays as well
as linked lists. It also shows how stacks can be used for the evaluation of arithmetic expressions.
Chapter 8, Queues deals with the concept of first-in, first-out (FIFO) data structure called queues.
The chapter also provides the real-world applications of queues.

Chapter 9, Trees focuses on binary trees, their traversal schemes and representation in memory.
The chapter also discusses expression trees, tournament trees, and Huffman trees, all of which
are variants of simple binary trees.

Chapter 10,Efficient Binary Trees broadens the discussion on trees taken up in Chapter 9 by going
one step ahead and discussing efficient binary trees. The chapter discusses binary search trees,
threaded binary trees, AVL trees, red-black trees, and splay trees.

Chapter 11, Multi-way Search Trees explores trees which can have more than one key value in a
single node, such as M-way search trees, B trees, B+ trees, tries, and 2-3 trees.

Chapter 12, Heaps discusses three types of heaps—binary heaps, binomial heaps, and Fibonacci
heaps. The chapter not only explains the operations on these data structures but also makes a
comparison, thereby highlighting the key features of each structure.

Chapter 13, Graphs contains a detailed explanation of non-linear data structure called graphs.
It discusses the memory representation, traversal schemes, and applications of graphs in the real
world.

Chapter 14, Searching and Sorting covers two of the most common operations in computer
science, i.e. searching and sorting a list of values. It gives the technique, complexity, and program
for different searching and sorting techniques.

Chapter 15, Hashing and Collision deals with different methods of hashing and techniques to
resolve collisions.

Chapter 16, the last chapter of the book, Files and Their Organization, discusses the concept
related to file organization. It explains the different ways in which files can be organized on the
hard disk and the indexing techniques that can be used for fast retrieval of data.

The book also provides a set of seven appendices.
Appendix A introduces the concept of dynamic memory allocation in C programs.

Appendix B provides a brief discussion of garbage collection technique which is used for automatic
memory management.

Appendix C explains backtracking which is a recursive algorithm that uses stacks.

Appendix D discusses Johnson’s algorithm which is used in applications where an optimal order
of execution of different activities has to be determined.

Appendix E includes two C programs which show how to read and write binary files.

Appendix F includes a C program which shows how to sort a list of numbers using address
calculation sort.

Appendix G provides chapter-wise answers to all the objective questions.

Reema Thareja

Brief Contents

Preface to the Second Edition v

Preface to the First Edition viii

1. Introduction to C 1
2. Introduction to Data Structures and Algorithms 43
3. Arrays 66
4. Strings 115
5. Structures and Unions 138
6. Linked Lists 162
7. Stacks 219
8. Queues 253
9. Trees 279
10. Efficient Binary Trees 298
11. Multi-way Search Trees 344
12. Heaps 361
13. Graphs 383
14. Searching and Sorting 424
15. Hashing and Collision 464
16. Files and Their Organization 489

Appendix A: Memory Allocation in C Programs 505
Appendix B: Garbage Collection 512

Appendix C: Backtracking 514

Appendix D: Josephus Problem 516

Appendix E: File Handling in C 518

Appendix F: Address Calculation Sort 520
Appendix G: Answers 522

Index 528

Detailed Contents

Preface to the Second Edition v
Preface to the First Edition viii

1. Introduction to C 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction /
Identifiers and Keywords 2
Basic Data Types 2
Variables and Constants 3
Writing the First C Program 5
Input and Output Functions 6
Operators and Expressions 9
Type Conversion and Typecasting 16
Control Statements /7
1.9.1 Decision Control Statements
22
1.9.3 Break and Continue Statements

1.10 Functions 28

1.10.1 Why are Functions Needed? 29
29

1.10.3 Passing Parameters to
Functions 3/

34
1.11.1 Declaring Pointer Variables

17
1.9.2 Iterative Statements
27

1.10.2 Using Functions

1.11 Pointers
35

1.11.2 Pointer Expressions and Pointer
Arithmetic 36
1.11.3 Null Pointers 36
1.11.4 Generic Pointers 36
1.11.5 Pointer to Pointers 37

1.11.6 Drawback of Pointers 38

2. Introduction to Data Structures

and Algorithms 43

2.1 Basic Terminology 43

2.1.1 Elementary Data Structure
Organization 45

22
23
24
2.5
2.6

2.7
2.8

2.9
2.10
2.11
2.12

3. Arrays

3.1
3.2
33

34
35

45
49

Classification of Data Structures
Operations on Data Structures
Abstract Data Type 350

50

Different Approaches to Designing an
Algorithm 57

Control Structures Used in Algorithms

Algorithms

52
Time and Space Complexity 54

2.8.1 Worst-case, Average-case,
Best-case, and Amortized
Time Complexity 54
2.8.2 Time—Space Trade-off 55
2.8.3 Expressing Time and Space
Complexity 55
2.8.4 Algorithm Efficiency 355
Big O Notation 57
Omega Notation (QQ) 60
Theta Notation (©) 61
Other Useful Notations 62

66

Introduction 66
67
Accessing the Elements of an Array 68

3.3.1 Calculating the Address of Array
Elements 68

3.3.2 Calculating the Length of an
Array 69

Storing Values in Arrays

Declaration of Arrays

69
Operations on Arrays 71
3.5.1 Traversing an Array 71

Detailed Contents xiii

3.6

3.7
3.8
3.9

3.10

3.11

3.12

3.13
3.14

3.15
3.16

4. Strings

4.1

42
43
44

5. Structures and Unions

5.1

3.5.2 Inserting an Element in an
Array 76

3.5.3 Deleting an Element from an
Array 79

3.5.4 Merging Two Arrays
Passing Arrays to Functions

82

86

3.6.1 Passing Individual Elements

3.6.2 Passing the Entire Array 87
90

92

Two-dimensional Arrays

86

Pointers and Arrays

Arrays of Pointers

93

3.9.1 Declaring Two-dimensional

93

3.9.2 Initializing Two-dimensional
Arrays 95

3.9.3 Accessing the Elements of

Arrays

Two-dimensional Arrays 96

Operations on Two-Dimensional
Arrays 99

Passing Two-dimensional Arrays to
Functions 703

Pointers and Two-dimensional
Arrays 105

Multi-dimensional Arrays 107

Pointers and Three-dimensional

Arrays 109
Sparse Matrices 110

Applications of Arrays 111

115

Introduction 115
4.1.1 Reading Strings
4.1.2 Writing Strings
Operations on Strings
129
132

117
118
118
Arrays of Strings
Pointers and Strings

138

Introduction 138

5.1.1 Structure Declaration /38
139
5.1.3 Initialization of Structures

5.1.2 Typedef Declarations
140

5.1.4 Accessing the Members of a

Structure 741
5.1.5 Copying and Comparing
Structures 742
5.2 Nested Structures 144
5.3 Arrays of Structures 146
5.4 Structures and Functions 148
5.4.1 Passing Individual Members 749
5.4.2 Passing the Entire Structure /49
5.4.3 Passing Structures through
Pointers 152
5.5 Self-referential Structures 155
5.6 Unions 155
5.6.1 Declaring a Union 156
5.6.2 Accessing a Member of a
Union 156
5.6.3 Initializing Unions 156
5.7 Arrays of Union Variables 157
5.8 Unions Inside Structures 158
6. Linked Lists 162
6.1 Introduction /762
6.1.1 Basic Terminologies 162
6.1.2 Linked Lists versus Arrays 164

6.2

6.3

6.4

6.1.3 Memory Allocation and
De-allocation for a Linked
List 165

Singly Linked Lists 167
6.2.1 Traversing a Linked List

6.2.2 Searching for a Value in a
Linked List 167

6.2.3 Inserting a New Node in a
Linked List 168

6.2.4 Deleting a Node from a
Linked List 172

Circular Linked Lists 180

6.3.1 Inserting a New Node in a
Circular Linked List 787

6.3.2 Deleting a Node from a
Circular Linked List 7182

Doubly Linked Lists /88

6.4.1 Inserting a New Node in a
Doubly Linked List 788

167

xiv Detailed Contents

6.5

6.6
6.7
6.8

7. Stacks

7.1
7.2
7.3

7.4
7.5

7.6
7.7

8. Queues

8.1
8.2
8.3
8.4

8.5

6.4.2 Deleting a Node from a
Doubly Linked List 791

Circular Doubly Linked Lists 799

6.5.1 Inserting a New Node in a
Circular Doubly Linked List 200

6.5.2 Deleting a Node from a Circular
Doubly Linked List 201

Header Linked Lists 207
Multi-linked Lists 270

Applications of Linked Lists 2171
6.8.1 Polynomial Representation 21/

219

219
Array Representation of Stacks
Operations on a Stack 221
7.3.1 Push Operation 221
7.3.2 Pop Operation 221
7.3.3 Peek Operation 222
Linked Representation of Stacks 224
Operations on a Linked Stack 224
7.5.1 Push Operation 224

7.5.2 Pop Operation 225

Multiple Stacks 227

Applications of Stacks 230

7.7.1 Reversing a List 230

7.7.2 Implementing Parentheses
Checker 231

7.7.3 Evaluation of Arithmetic
Expressions 232

7.7.4 Recursion 243

Introduction to Stacks
220

253

253
Array Representation of Queues
Linked Representation of Queues
260
8.4.1 Circular Queues
8.4.2 Deques 264
8.4.3 Priority Queues
8.4.4 Multiple Queues
Applications of Queues

Introduction to Queues
254
256
Types of Queues
260

268
272
275

9. Trees

9.1

9.2

9.3

94

9.5
9.6

10. Efficient Binary Trees

10.1
10.2

10.3

279

Introduction 279
9.1.1 Basic Terminology 279
Types of Trees 280
9.2.1 General Trees
9.2.2 Forests 280
9.2.3 Binary Trees

280

281

9.2.4 Binary Search Trees 285
285
9.2.6 Tournament Trees 286

Creating a Binary Tree from a
General Tree 286

Traversing a Binary Tree

9.2.5 Expression Trees

287
287

288

289
289

9.4.5 Constructing a Binary Tree from
Traversal Results 290

290
Applications of Trees

9.4.1 Pre-order Traversal
9.4.2 In-order Traversal

9.4.3 Post-order Traversal
9.4.4 Level-order Traversal

Huffman’s Tree
294

298

298
Operations on Binary Search Trees

Binary Search Trees
300

10.2.1 Searching for a Node in a
Binary Search Tree 300

Inserting a New Node in a Binary
Search Tree 301

Deleting a Node from a Binary
Search Tree 30!

Determining the Height of a Binary
Search Tree 303

Determining the Number of
Nodes 303

Finding the Mirror Image of
a Binary Search Tree 305

Finding the Smallest Node in a
Binary Search Tree 305

Finding the Largest Node in a
Binary Search Tree 306

311

10.3.1 Traversing a Threaded Binary
Tree 314

10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.8
10.2.9

Threaded Binary Trees

Detailed Contents xv

10.4 AVL Trees 316
10.4.1 Operations on AVL Trees
Searching for a Node in
an AVL Tree 317
10.5 Red-Black Trees 327
10.5.1 Properties of Red-Black Trees

10.5.2 Operations on Red-Black
Trees 330

10.5.3 Applications of Red-Black
Trees 337

10.6 Splay Trees 337
10.6.1 Operations on Splay Trees 338
10.6.2 Advantages and Disadvantages

317

328

of Splay Trees 340
11. Multi-way Search Trees 344
11.1 Introduction to M-Way Search Trees 344

11.2 B Trees 345

11.2.1 Searching for an Element in a B
Tree 346

11.2.2 Inserting a New Element in a B
Tree 346

11.2.3 Deleting an Element from a B
Tree 347

11.2.4 Applications of B Trees
11.3 B+ Trees 351

11.3.1 Inserting a New Element in a B+
Tree 352

11.3.2 Deleting an Element from a B+
Tree 352
11.4 2-3 Trees 353

11.4.1 Searching for an Element in a
2-3 Tree 354

11.4.2 Inserting a New Element in a
2-3Tree 354

11.4.3 Deleting an Element from a
2-3 Tree 356

11.5 Trie 358

350

12. Heaps 361

12.1 Binary Heaps 361

12.1.1 Inserting a New Element in a
Binary Heap 362

12.1.2 Deleting an Element from a Binary
Heap 364

12.1.3 Applications of Binary Heaps
12.2 Binomial Heaps 3635

12.2.1 Linked Representation of
Binomial Heaps 366

12.2.2 Operations on Binomial
Heaps 366

12.3 Fibonacci Heaps 373
12.3.1 Structure of Fibonacci Heaps

364

373

12.3.2 Operations on Fibonacci
Heaps 374

12.4 Comparison of Binary, Binomial, and

Fibonacci Heaps 379
12.5 Applications of Heaps 379

13. Graphs

13.1 Introduction 383
13.2 Graph Terminology 384
13.3 Directed Graphs 385

13.3.1 Terminology of a Directed
Graph 385

13.3.2 Transitive Closure of a Directed
Graph 386

13.4 Bi-connected Components

383

387
13.5 Representation of Graphs 388

13.5.1 Adjacency Matrix
Representation 388

13.5.2 Adjacency List Representation 390

13.5.3 Adjacency Multi-List
Representation 391

13.6 Graph Traversal Algorithms

13.6.1 Breadth-First Search
Algorithm 394

13.6.2 Depth-first Search Algorithm 397

13.7 Topological Sorting 400

13.8 Shortest Path Algorithms 405
13.8.1 Minimum Spanning Trees
13.8.2 Prim’s Algorithm 407
13.8.3 Kruskal’s Algorithm 409
13.8.4 Dijkstra’s Algorithm 413
13.8.5 Warshall’s Algorithm 474

393

405

xvi Detailed Contents

13.8.6 Modified Warshall’s
Algorithm 417

13.9 Applications of Graphs 4179

14. Searching and Sorting 424

14.1
14.2
14.3
14.4
14.5
14.6

Introduction to Searching 424
Linear Search 424

Binary Search 426
Interpolation Search 428
Jump Search 430
Introduction to Sorting 433
14.6.1 Sorting on Multiple Keys

14.6.2 Practical Considerations for
Internal Sorting 434

14.7 Bubble Sort 434
14.8 Insertion Sort 438
14.9 Selection Sort 440
14.10 Merge Sort 443
14.11 Quick Sort 446
14.12 Radix Sort 450
14.13 Heap Sort 454

14.14 Shell Sort 456

14.15 Tree Sort 458

14.16 Comparison of Sorting Algorithms
14.17 External Sorting 460

433

460

15. Hashing and Collision 464

15.1 Introduction 464

15.2 Hash Tables 465

15.3 Hash Functions 466

15.4 Different Hash Functions 467
15.4.1 Division Method 467

Appendix A: Memory Allocation in C
Programs 505

Appendix B: Garbage Collection 512
Appendix C: Backtracking 514
Appendix D: Josephus Problem 516
Appendix E: File Handling in C 518
Appendix F: Address Calculation Sort
522

520
Appendix G: Answers

Index 528

15.4.2 Multiplication Method 467
15.4.3 Mid-Square Method 468
15.4.4 Folding Method 468

15.5 Collisions 469

15.5.1 Collision Resolution by Open
Addressing 469

15.5.2 Collision Resolution By
Chaining 481
15.6 Pros and Cons of Hashing 485
15.7 Applications of Hashing 485
Real World Applications of Hashing 486

16. Files and Their
Organization

16.1 Introduction 489
16.2 Data Hierarchy 489
16.3 File Attributes 490
16.4 Text and Binary Files
16.5 Basic File Operations
16.6 File Organization 493
16.6.1 Sequential Organization 493
16.6.2 Relative File Organization 494
16.6.3 Indexed Sequential File
Organization 495
16.7 Indexing 496
16.7.1 Ordered Indices 496
16.7.2 Dense and Sparse Indices 497
16.7.3 Cylinder Surface Indexing 497
16.7.4 Multi-level Indices 498
16.7.5 Inverted Indices 499
16.7.6 B-Tree Indices 500
16.7.7 Hashed Indices 501

489

491
492

CHAPTER

Introduction to C

LEARNING OBJECTIVE

This book deals with the study of data structures through C. Before going into a
detailed analysis of data structures, it would be useful to familiarize ourselves with
the basic knowledge of programming in C. Therefore, in this chapter we will learn
about the various constructs of C such as identifiers and keywords, data types,
constants, variables, input and output functions, operators, control statements,
functions, and pointers. y

1.1 INTRODUCTION

The programming language ‘C’ was developed in the early 1970s by Dennis Ritchie at Bell
Laboratories. Although C was initially developed for writing system software, today it has become
such a popular language that a variety of software programs are written using this language. The
greatest advantage of using C for programming is that it can be easily used on different types of
computers. Many other programming languages such as C++ and Java are also based on C which
means that you will be able to learn them easily in the future. Today, C is widely used with the
UNIX operating system.

Structure of a C Program

A C program contains one or more functions, where a function is defined as a group of statements
that perform a well-defined task. Figure 1.1 shows the structure of a C program. The statements in
a function are written in a logical sequence to perform a specific task. The main() function is the
most important function and is a part of every C program. Rather, the execution of a C program
begins with this function.

From the structure given in Fig. 1.1, we can conclude that a C program can have any number of
functions depending on the tasks that have to be performed, and each function can have any number

2 Data Structures Using C

. of statements arranged according to specific meaningful sequence. Note
Taln() that programmers can choose any name for functions. It is not mandatory
Statement 1; to write Functionl, Function2, etc., with an exception that every program
Statement 2; must contain one function that has its name as main().
............ 1.2 IDENTIFIERS AND KEYWORDS
Statement N;
} Every word in a C program is either an identifier or a keyword.
Function1() Identifiers
{
Statement 1; Identifiers are basically names given to program elements such as variables,
Statement 2; arrays, and functions. They are formed by using a sequence of letters (both
"""""" uppercase and lowercase), numerals, and underscores.
ctatement N) Following are the rules for forming identifier names:
}) o Identifiers cannot include any special characters or punctuation marks
z””Ctmnz() (like #, $, », 2, ., etc.) except the underscore “ .
Statement 1; e There cannot be two successive underscores.
Statement 2; Keywords cannot be used as identifiers.
------------ e The case of alphabetic characters that form the identifier name is
"""""" significant. For example, ‘FIRST” is different from ‘first” and ‘First’.
Statement N; . . .
} o Identifiers must begin with a letter or an underscore. However, use
,,,,,,,,,,,,,,,,,, of underscore as the first character must be avoided because several
.................. complier-defined identifiers in the standard C library have underscore
FunctionN() as their first character. So, inadvertently duplicated names may cause
{ definition conflicts.
Statement 1; . .
Statement 2; e Identifiers can be of any reasonable length. They should not contain
,,,,,,,,,,,, more than 31 characters. (They can actually be longer than 31, but the
------------ compiler looks at only the first 31 characters of the name.)
Statement N;
} Keywords
Like every computer language, C has a set of reserved words often known
Figure 1.1 Structure ofa C as keywords that cannot be used as an identifier. All keywords are basically
program a sequence of characters that have a fixed meaning. By convention, all
keywords must be written in lower case letters. Table 1.1 contains the list
of keywords in C.
Table 1.1 Keywords in C language
auto break case char const continue default do
double else enum extern float for goto if
int long register return short signed sizeof static
struct switch typedef union unsigned void volatile while

1.3 BASIC DATA TYPES

Data type determines the set of values that a data item can take and the operations that can be
performed on the item. C language provides four basic data types. Table 1.2 lists the data types,
their size, range, and usage for a C programmer.

The char data type is of one byte and is used to store single characters. Note that C does not
provide any data type for storing text. This is because text is made up of individual characters.You

Introductionto C 3

might have been surprised to see that the range of char is given as —128 to 127. char is supposed to
store characters not numbers, so why this range? The answer is that in the memory, characters are
stored in their ASCII codes. For example, the character ‘A’ has the ASCII code of 65. In memory

we will not store ‘A’ but 65 (in binary number format).

Table 1.2 Basic data typesin C

Data Type Size in Bytes Range Use
char 1 -128 to 127 To store characters
int 2 -32768 to 32767 To store integer numbers
float 4 3.4E-38 to 3.4E+38 To store floating point numbers
double 8 1.7E-308 to 1.7E+308 To store big floating point numbers

In addition, C also supports four modifiers—two sign specifiers (signed and unsigned) and two
size specifiers (short and long). Table 1.3 shows the variants of basic data types.

Table 1.3 Basic data types and their variants

Data Type Size in Bytes Range
char 1 -128 to 127
unsigned char 1 0 to 255
signed char 1 -128 to 127
int 2 -32768 to 32767
unsigned int 2 0 to 65535
signed int 2 -32768 to 32767
short int 2 -32768 to 32767
unsigned short int 2 0 to 65535
signed short int 2 -32768 to 32767
long int 4 -2147483648 to 2147483647
unsigned long int 4 0 to 4294967295
signed long int 4 -2147483648 to 2147483647
float 4 3.4E-38 to 3.4E+38
double 8 1.7E-308 to 1.7E+308
long double 10 3.4E-4932 to 1.1E+4932

m When the basic data type is omitted from a declaration, then automatically type int is assumed.

For example,
long var;

//int is implied

While the smaller data types take less memory, the larger data types incur a performance penalty.
Although the data type we use for our variables does not have a big impact on the speed or
memory usage of the application, we should always try to use int unless there is a need to use

any other data type.

1.4 VARIABLES AND CONSTANTS

A variable is defined as a meaningful name given to a data storage location in the computer
memory. When using a variable, we actually refer to the address of the memory where the data
is stored. C language supports two basic kinds of variables.

4 Data Structures Using C

Numeric Variables

Numeric variables can be used to store either integer values or floating point values. Modifiers like
short, long, signed, and unsigned can also be used with numeric variables. The difference between
signed and unsigned numeric variables is that signed variables can be either negative or positive
but unsigned variables can only be positive. Therefore, by using an unsigned variable we can
increase the maximum positive range. When we omit the signed/unsigned modifier, C language
automatically makes it a signed variable. To declare an unsigned variable, the unsigned modifier
must be explicitly added during the declaration of the variable.

Character Variables

Character variables are just single characters enclosed within single quotes. These characters
could be any character from the ASCII character set—Iletters (‘a’, ‘A’), numerals (‘2”), or special
characters (‘&’).

Declaring Variables

To declare a variable, specify the data type of the variable followed by its name. The data type
indicates the kind of values that the variable can store. Variable names should always be meaningful
and must reflect the purpose of their usage in the program. In C, variable declaration always ends
with a semi-colon. For example,

int emp_num;

float salary;

char grade;

double balance_amount;

unsigned short int acc_no;
In C, variables can be declared at any place in the program but two things must be kept in mind.
First, variables should be declared before using them. Second, variables should be declared closest
to their first point of use so that the source code is easier to maintain.

Initializing Variables
While declaring the variables, we can also initialize them with some value. For example,
int emp_num = 7;
float salary = 9800.99
char grade = ‘A’;
double balance_amount = 100000000;

Constants

Constants are identifiers whose values do not change. While values of variables can be changed at
any time, values of constants can never be changed. Constants are used to define fixed values
like pi or the charge on an electron so that their value does not get changed in the program even
by mistake.

Declaring Constants

To declare a constant, precede the normal variable declaration with const keyword and assign it
a value.
const float pi = 3.14;

Introductionto C 5

1.5 WRITING THE FIRST C PROGRAM

To write a C program, we first need to write the code. For that, open a text editor. If you are a
Windows user, you may use Notepad and if you prefer working on UNIX/Linux, you can use emac
or vi. Once the text editor is opened on your screen, type the following statements:

#include <stdio.h>

int main()

{
printf("\n Welcome to the world of C ");// prints the message on the screen
return 0;// returns a value O to the operating system

}

After writing the code, select the directory of your choice and save the file as first.c.

#include <stdio.h> This is the first statement in our code that includes a file called stdio.h.
This file has some in-built functions. By simply including this file in our code, we can use these
functions directly. stdio basically stands for Standard Input/Output, which means it has functions
for input and output of data like reading values from the keyboard and printing the results on the
screen.

int main() Every C program contains a main() function which is the starting point of the
program. int is the return value of the main function. After all the statements in the program have
been executed, the last statement of the program will return an integer value to the operating
system. The concepts will be clear to us when we read this chapter in toto. So even if you do not
understand certain things, do not worry.

{ } The two curly brackets are used to group all the related statements of the main function.

Table 1.4 Escape sequences

Escape Purpose
Sequence
\a Audible signal
\b Backspace
\t Tab
\n New line
\v Vertical tab
\f New page\Clear screen
\r Carriage return

printf("\n Welcome to the world of C "); Theprintf
function is defined in the stdio.h file and is used to print
text on the screen. The message that has to be displayed
on the screen is enclosed within double quotes and put
inside brackets.

\n is an escape sequence and represents a newline character.
It is used to print the message on a new line on the screen.
Other escape sequences supported by C language are shown
in Table 1.4.

return 0; Thisis a return command that is used to return
value 0 to the operating system to give an indication that
there were no errors during the execution of the program.

Im Every statement in the main function ends with a semi-colon (;).

first.c.

If you are a Windows user, then open the command prompt by clicking Start—Run
and typing “command” and clicking Ok. Using the command prompt, change to the directory in

which you saved your file and then type:
C:\>tc first.c

In case you are working on UNIX/Linux operating system, then exit the text editor and type

$cc first.c -ofirst

The -o is for the output file name. If you leave out the -o, then the file name a.out is used.

6 Data Structures Using C

This command is used to compile your C program. If there are any mistakes in the program,
then the compiler will tell you what mistake(s) you have made and on which line the error has
occurred. In case of errors, you need to re-open your .c file and correct the mistakes. However,
if everything is right, then no error(s) will be reported and the compiler will create an .exe file for
your program. This .exe file can be directly run by typing

“first.exe" for Windows and *./first* for UNIX/Linux operating system

When you run the .exe file, the output of the program will be displayed on screen. That is,
Welcome to the world of C

m The printf and return statements have been indented or moved away from the left side. This is done
to make the code more readable.

Using Comments
Comments are a way of explaining what a program does. C supports two types of comments.

e //is used to comment a single statement.
e /*is used to comment multiple statements. A /* is ended with */ and all statements that lie
between these characters are commented.
Note that comment statements are not executed by the compiler. Rather, they are ignored by the
compiler as they are simply added in programs to make the code understandable by programmers
as well as other users. It is a good habit to always put a comment at the top of a program that tells
you what the program does. This helps in defining the usage of the program the moment you open it.

Standard Header Files

Till now we have used printf() function, which is defined in the stdio.h header file. Even in
other programs that we will be writing, we will use many functions that are not written by us. For
example, to use the stremp() function that compares two strings, we will pass string arguments
and retrieve the result. We do not know the details of how these functions work. Such functions
that are provided by all C compilers are included in standard header files. Examples of these
standard header files include:

string.h : for string handling functions

stdlib.h : for some miscellaneous functions

stdio.h : for standardized input and output functions
math.h : for mathematical functions

® alloc.h : for dynamic memory allocation

® conio.h : for clearing the screen

All the header files are referenced at the start of the source code file that uses one or more functions
from these files.

1.6 INPUT AND OUTPUT FUNCTIONS

The most fundamental operation in a C program is to accept input values from a standard input

device and output the data produced by the program to a standard output device. As shown in

Section 1.4, we can assign values to variables using the assignment operator ‘=". For example,
int a = 3;

What if we want to assign value to variable a that is inputted from the user at run-time? This is done

by using the scanf function that reads data from the keyboard. Similarly, for outputting results of

Introduction to C 7

the program, printf function is used that sends results to a terminal. Like printf and scanf, there
are different functions in C that can carry out the input—output operations. These functions are
collectively known as Standard Input/Output Library. A program that uses standard input/output
functions must contain the following statement at the beginning of the program:

#include <stdio.h>

scanf()
The scanf()function is used to read formatted data from the keyboard. The syntax of the scanf()
function can be given as,
scanf ("control string", argl, arg2, arg3...argn);
The control string specifies the type and format of the data that has to be obtained from the
keyboard and stored in the memory locations pointed by the arguments, arg1, arg2, ...,argn.
The prototype of the control string can be given as,
%[*][width][modifier]type
* is an optional argument that suppresses assignment of the input field. That is, it indicates that
data should be read from the stream but ignored (not stored in the memory location).
width is an optional argument that specifies the maximum number of characters to be read.
However, if the scanf function encounters a white space or an unconvertible character, input is
terminated.
modifier is an optional argument (h, 1, or L) , which modifies the type specifier. Modifier h is
used for short int or unsigned short int, 1is used for long int, unsigned long int, Or double values.
Finally, L is used for long double data values.
type specifies the type of data that has to be read. It also indicates how this data is expected to
be read from the user. The type specifiers for scanf function are given in Table 1.5.

Table 1.5 Type specifiers

Type Qualifying Input
%C For single characters

%d, %i For integer values

%e , %E , %f,%g , %G For floating point numbers

%0 For octal numbers
%S For a sequence of (string of) characters
%U For unsigned integer values

%X 5 %X For hexadecimal values

The scanf function ignores any blank spaces, tabs, and newlines entered by the user. The
function simply returns the number of input fields successfully scanned and stored.

As we have not studied functions till now, understanding scanf function in depth will be a bit
difficult here, but for now just understand that the scanf function is used to store values in memory
locations associated with variables. For this, the function should have the address of the variables.
The address of the variable is denoted by an & sign followed by the name of the variable. Look

at the following code that shows how we can input value in a variable of int data type:
int num;
scanf(" %4d ", &num);

The scanf function reads first four digits into the address or the memory location pointed by num.

8 Data Structures Using C

m In case of reading strings, we do not use the & sign in the scan+ function.

printf()
The printf function is used to display information required by the user and also prints the values
of the variables. Its syntax can be given as:

printf ("control string", argl,arg2,arg3,...,argn);

After the control string, the function can have as many arguments as specified in the control
string. The control string contains format specifiers which are arranged in the order so that they
correspond with the arguments in the variable list. It may also contain text to be printed such as
instructions to the user, identifier names, or any other text to make the text readable.

Note that there must be enough arguments because if there are not enough arguments, then
the result will be completely unpredictable. However, if by mistake you specify more number of
arguments, the excess arguments will simply be ignored. The prototype of the control string can
be given as below:

%[flags][width][.precision][modifier]type
Each control string must begin with a % sign.

flags is an optional argument, which specifies output justification like decimal point, numerical
sign, trailing zeros or octadecimal or hexadecimal prefixes. Table 1.6 shows different types of
flags with their descriptions.

Table 1.6 Flags in printf()

Flags Description

- Left-justify within the given field width

Displays the data with its numeric sign (either + or -)

Used to provide additional specifiers like o, x, X, 0, Ox, or OX for
octal and hexadecimal values respectively for values different than zero

0 The number is left-padded with zeroes (0) instead of spaces

width is an optional argument which specifies the minimum number of positions that the output
characters will occupy. If the number of output characters is smaller than the specified width,
then the output would be right justified with blank spaces to the left. However, if the number of
characters is greater than the specified width, then all the characters would be printed.
precision is an optional argument which specifies the number of digits to print after the decimal
point or the number of characters to print from a string.
modifier field is same as given for scanf() function.
type is used to define the type and the interpretation of the value of the corresponding argument.
The type specifiers for printf function are given in Table 1.5.

The most simple printf statement is

printf ("Welcome to the world of C language");
The function when executed prompts the message enclosed in the quotation to be displayed

on the screen.
For float x = 8900.768, the following examples show output under different format specifications:

printf ("%f", x) [8 [o [o o] . [7]6] 8|

printf("%10f", x);

| e fefofof |7 e |5 |

Introductionto C 9

printf("%9.2f", x);

| fefo Jodol- |7 |7 |

printf("%6f", x);

slo Jofo . [7 [s |8 |

1.7 OPERATORS AND EXPRESSIONS
C language supports different types of operators, which can be used with variables and constants
to form expressions. These operators can be categorized into the following major groups:
e Arithmetic operators e Relational operators

e Equality operators o Logical operators

¢ Unary operators ¢ Conditional operator
¢ Bitwise operators e Assignment operators
e Comma operator e Sizeof operator

We will now discuss all these operators.

Arithmetic Operators
Consider three variables declared as,

int a=9, b=3, result;
We will use these variables to explain arithmetic operators. Table 1.7 shows the arithmetic operators,
their syntax, and usage in C language.

Table 1.7 Arithmetic operators

Operation Operator Syntax Comment Result
Multiply & a*hb result = a * b 27
Divide / al/b result =a /b 3
Addition + a+b result = a + b 12

Subtraction - a-b result = a - b 6
Modulus % a%b result = a % b 0

In Table 1.7, a and b (on which the operator is applied) are called operands. Arithmetic operators
can be applied to any integer or floating point number. The addition, subtraction, multiplication,
and division (+, -, *, and /) operators are the usual arithmetic operators, so you are already familiar
with these operators.

However, the operator % might be new to you. The modulus operator (%) finds the remainder
of an integer division. This operator can be applied only on integer operands and cannot be used
on float or double operands.

While performing modulo division, the sign of the result is always the sign of the first operand
(the dividend). Therefore,

16 % 3 = 1
-16 % 3= -1
16 % -3 = 1
-16 % -3 = -1

When both operands of the division operator (/) are integers, the division is performed as
an integer division. Integer division always results in an integer result. So, the result is always
rounded-off by ignoring the remainder. Therefore,

9/4 = 2 and -9/4 = -3

10 Data Structures Using C

Table 1.8 Relational operators

m It is not possible to divide any number by zero. This is an illegal operation that results in a run-time
_ division-by-zero exception thereby terminating the program.

Except for modulus operator, all other arithmetic operators can accept a mix of integer and
floating point numbers. If both operands are integers, the result will be an integer; if one or both
operands are floating point numbers then the result would be a floating point number.

All the arithmetic operators bind from left to right. Multiplication, division, and modulus operators
have higher precedence over addition and subtraction operators. Thus, if an arithmetic expression
consists of a mix of operators, then multiplication, division, and modulus will be carried out first
in a left to right order, before any addition and subtraction can be performed. For example,

3+4*7
3 + 28
31

Relational Operators

A relational operator, also known as a comparison operator, is an operator that compares two
values or expressions. Relational operators return true or false value, depending on whether the
conditional relationship between the two
operands holds or not.

For example, to test if x is less than vy,

Operator Meaning Example relational operator < is used as x < y. This

Less than 3 <5 gives 1 expression will return true value if x is less than

e —- 7 > 9 gives 0 y; otherwise the value of the expression will

be false. C provides four relational operators

Less than or equal to | 100 <= 100 gives 1 . . .
which are illustrated in Table 1.8. These

Greater than equal to| 50 >=100 gives O

operators are evaluated from left to right.

Table 1.9 Equality operators

Equality Operators

C language also supports two equality operators to compare operands for strict equality or
inequality. They are equal to (==) and not equal to (!=) operators. The equality operators have
lower precedence than the relational operators.

The equal-to operator (==) returns true (1) if operands

Operator Meaning on both sides of the operator have the same value;

== Returns 1 if both operands are otherwise, it returns false (0). On the contrary, the not-

equal, 0 otherwise equal-to operator (!=) returns true (1) if the operands do

I= Returns 1 if operands do not not have the same value; else it returns false (0). Table 1.9
have the same value, 0 otherwise summarizes equality operators.

Logical Operators

C language supports three logical operators. They are logical AND (&&), logical OR (||), and logical
NOT (!). As in case of arithmetic expressions, logical expressions are evaluated from left to right.

Table 1.10 Truth table of logical AND ~ Logical AND (&&)

A B A 88 B Logical AND is a binary operator, which simultaneously evaluates
0 0 0 two values or relational expressions. If both the operands are true,
0 1 0 then the whole expression is true. If both or one of the operands is
1 0 0 false, then the whole expression evaluates to false. The truth table
1 1 1 of logical AND operator is given in Table 1.10.

Introduction to C 11

Table 1.11 Truth table of logical OR

For example,
(a < b) & (b >)
The whole expression is true only if both expressions are true, i.e., if b is greater than a and c.
Logical OR (J|)

Logical OR returns a false value if both the operands are false.

AllB Otherwise it returns a true value. The truth table of logical OR

operator is given in Table 1.11. For example,

The whole expression is true if either b is greater than a or b is greater

P Rr|O|O|>

k| O |, O W

0
1 (a<b) || (b>c)
1
1

than ¢ or b is greater than both a and c.

Logical NOT (!)

Table 1.12 Truth table of logical NOT ~ The logical NOT operator takes a single expression and produces a

A 1A zero if the expression evaluates to a non-zero value and produces a

1 1 if the expression produces a zero. The truth table of logical NOT

operator is given in Table 1.12. For example,
1 0

int a = 10, b;

b = la;

Now the value of b = 0. This is because value of a = 10. !a = 0. The value of !a is assigned to b,
hence the result.

Unary Operators

Unary operators act on single operands. C language supports three unary operators. They are
unary minus, increment, and decrement operators.

Unary Minus (-)
Unary minus operator negates the value of its operand. For example, if a number is positive then it
becomes negative when preceded with a unary minus operator. Similarly, if the number is negative,
it becomes positive after applying the unary minus operator. For example,

int a, b = 10;

a = -(b);
The result of this expression is a = -10, because variable b has a positive value. After applying unary
minus operator (—) on the operand b, the value becomes —10, which indicates it has a negative value.

Increment Operator (++) and Decrement Operator (--)

The increment operator is a unary operator that increases the value of its operand by 1. Similarly,
the decrement operator decreases the value of its operand by 1. For example, --x is equivalent
to writing x = x - 1.

The increment/decrement operators have two variants: prefix and postfix. In a prefix
expression (++x or --x), the operator is applied before the operand while in a postfix expression
(x++ or x--), the operator is applied after the operand.

An important point to note about unary increment and decrement operators is that ++x is not
same as x++. Similarly, - -x is not the same as x- -. Although, x++ and ++x both increment the value
of x by 1, in the former case, the value of x is returned before it is incremented. Whereas in the
latter case, the value of x is returned after it is incremented. For example,

12 Data Structures Using C

int x = 10, y;

y = x++; 1S equivalent to writing
y = X;
X =X+ 1;

Whereas y = ++x; is equivalent to writing

The same principle applies to unary decrement operators. Note that unary operators have a higher
precedence than the binary operators. And if in an expression we have more than one unary operator
then they are evaluated from right to left.

Conditional Operator

The syntax of the conditional operator is
expl ? exp2 : exp3
expl is evaluated first. If it is true, then exp2 is evaluated and becomes the result of the expression,
otherwise exp3 is evaluated and becomes the result of the expression. For example,
large = (a >b) ? a : b
The conditional operator is used to find the larger of two given numbers. First exp1, that is
a > b, is evaluated. If a is greater than b, then large = a, else large = b. Hence, large is equal to
either a or b, but not both.
Conditional operators make the program code more compact, more readable, and safer to use
as it is easier to both check and guarantee the arguments that are used for evaluation. Conditional
operator is also known as ternary operator as it takes three operands.

Bitwise Operators

As the name suggests, bitwise operators perform operations at the bit level. These operators
include: bitwise AND, bitwise OR, bitwise XOR, and shift operators.

Bitwise AND

Like boolean AND (& &), bitwise AND operator (&) performs operation on bits instead of bytes,
chars, integers, etc. When we use the bitwise AND operator, the bit in the first operand is ANDed
with the corresponding bit in the second operand. The truth table is the same as we had seen in
logical AND operation. The bitwise AND operator compares each bit of its first operand with the
corresponding bit of its second operand. If both bits are 1, the corresponding bit in the result is 1
and 0 otherwise. For example,

10101010 & 01010101 = 00000000

Bitwise OR

When we use the bitwise OR operator (|), the bit in the first operand is ORed with the corresponding
bit in the second operand. The truth table is the same as we had seen in logical OR operation.
The bitwise OR operator compares each bit of its first operand with the corresponding bit of its
second operand. If one or both bits are 1, the corresponding bit in the result is 1 and 0 otherwise.
For example,

10101010 | 01010101 = 11111111

Bitwise XOR
When we use the bitwise XOR operator, the bit in the first operand is XORed with the corresponding

Introduction to C 13

Table 1.13 Truth table of bitwise XOR bit in the second operand. The truth table of bitwise XOR operator

is shown in Table 1.13. The bitwise XOR operator compares each
A B ATB bit of its first operand with the corresponding bit of its second
0 0 0 operand. If one of the bits is 1, the corresponding bit in the result
0 1 1 is 1 and 0 otherwise. For example,
1 0 1 10101010 ~ 01010101 = 11111111
1 1 0 Bitwise NOT (~)

The bitwise NOT or complement is a unary operator that performs
logical negation on each bit of the operand. By performing negation of each bit, it actually produces
the one’s complement of the given binary value. Bitwise NOT operator sets the bit to 1 if it was
initially 0 and sets it to 0 if it was initially 1. For example,

~10101011 = 01010100

Shift Operators
C supports two bitwise shift operators. They are shift left (<<) and shift right (>>). The syntax
for a shift operation can be given as

operand op num
where the bits in the operand are shifted left or right depending on the operator (left, if the operator
is << and right, if the operator is >>) by number of places denoted by num. For example, if we have

x = 0001 1101
then x << 1 produces 0011 1010

When we apply a left shift, every bit in x is shifted to the left by one place. So, the MSB (most

significant bit) of x is lost, the LSB (least significant bit) of x is set to 0. Therefore, if we have x
= 0001 1101, then

X << 3 gives result = 1110 1000
On the contrary, when we apply a right shift, every bit in x is shifted to the right by one place.
So, the LSB of x is lost, the MSB of x is set to 0. For example, if we have x = 0001 1101, then

x >> 1 gives result = 0000 1110
Similarly, if we have x = 0001 1101, then

x >> 4 gives result = 0000 0001

m The expression x << y is equivalent to multiplication of x by 2. And the expression x >> y is
equivalent to division of x by 2v if x is unsigned or has a non-negative value.

Assignment Operators

In C language, the assignment operator is responsible for assigning values to the variables. While
the equal sign (=) is the fundamental assignment operator, C also supports other assignment
operators that provide shorthand ways to represent common variable assignments.
When an equal sign is encountered in an expression, the compiler processes the statement on

the right side of the sign and assigns the result to the variable on the left side. For example,

int x;

X = 10;
assigns the value 10 to variable x. The assignment operator has right-to-left associativity, so the
expression

14 Data Structures Using C

Table 1.14 Assignment operators a=b=c=10;
operator Ber is evaluated as
/= float a=9.0; (a = (b =(c=10)));
float b=3.0; First 10 is assigned to c, then the value of c is assigned to b. Finally, the
. value of b is assigned to a. Table 1.14 contains a list of other assignment
\= AUIE E= 28 operators that are supported by C.
int b = 3;
a\=b; Comma Operator
) llnrlct ba== 93;; The comma operator, which is also called the sequential-evaluation
a *= b; operator, takes two operands. It works by evaluating the first expression
+= int a= 9; and discarding its value, and then evaluates the second expression and
lnat +b: =b 3 returns the value as the result of the expression. Comma-separated
_ P ;; expressions when chained together are evaluated in left-to-right
int b = 3; sequence with the right-most value yielding the result of the expression.
a-=b; Among all the operators, the comma operator has the lowest precedence.
&= int a = 10; Therefore, when a comma operator is used, the entire expression
1n'; z;b?o; evaluates to the value of the right expression. For example, the following
~ T — ;05 statement first increments a, then increments b, and then assigns the
int b = 20; value of b to x.
a=b int a=2, b=3, x=0;
«= int a= 9; x = (++a, b+=a);
int b = 3;
a <<= b; Now, the value of x = &.
>>= iinrlct o 93;; sizeof Operator
a >>= b; sizeof is a unary operator used to calculate the size of data types. This

operator can be applied to all data types. When using this operator, the
keyword sizeof is followed by a type name, variable, or expression. The operator returns the size
of the data type, variable, or expression in bytes. That is, the sizeof operator is used to determine
the amount of memory space that the data type/variable/expression will take.

When a type name is used, it is enclosed in parentheses, but in case of variable names and
expressions, they can be specified with or without parentheses. A sizeof expression returns an
unsigned value that specifies the size of the space in bytes required by the data type, variable, or
expression. For example, sizeof(char) returns 1, that is the size of a character data type. If we have,

int a = 10;

unsigned int result;

result = sizeof(a);
then result = 2, that is, space required to store the variable a in memory. Since a is an integer, it
requires 2 bytes of storage space.

Operator Precedence Chart

Table 1.15 lists the operators that C language supports in the order of their precedence (highest
to lowest). The associativity indicates the order in which the operators of equal precedence in an
expression are evaluated.

Introduction to C

15

Table 1.15 Operators precedence chart

Examples of Expressions Using the Precedence Chart

Operator Associativity If we have the following variable declarations:
O left-to-right inta=0,b=1, c=-1;
[} float x = 2.5, y = 0.0;
—-> then,
++(postfix) right-to-left (a) ag&b=0
= (postfix) : (b) a<b8& c<b=1
tfgﬁ:ﬁ:i; right-to-left () b+c||!a
+(unary) - (unary) =(b+c) |l (o)
I~ =0 ||1
~ (type) =1
Grerrction @ xtsmsl (o0
sizeof = ((x *5)8& 5) || (b/c)
* /% left-to-right = (12.5 & 5) || (1/-1)
+ - left-to-right =1
<< >> left-to-right (e) a<=108& x>=18Db
< <= left-to-right = ((a <=10) && (x >= 1)) & b
> >= = (18 1) &1
= = left-to-right =1
& left-to-right (f) 'x || 'c || b+c
A left-to-right = ((!x) || ('e)) || (b + c)
| left-to-right = |]lo)]]o
&& left-to-right =0
| left-to-right (8) x*y<a+b||c
?: right-to-left = ((x*y)<(a+b)) || c
= right-to-left =(0<1) || -1
= -= =1
*= /=
%e e (h) (x >y) + la || c++
A== = ((x > y) + (1a)) || (c++)
K= >>= =(1+1)]]o
, (comma) left-to-right =1

ProGRAMMING EXAMPLE

1.

Write a program to calculate the area of a circle.

#include <stdio.h>
#include <conio.h>
int main()

¥
Output

float radius;
double area;
clrscr();

printf("\n Enter the radius of the circle :

scanf("%f", &radius);

area = 3.14 * radius * radius;
printf(" \n Area = %.21f", area);
return O;

Enter the radius of the circle : 7

Area

153.86

");

16 Data Structures Using C

1.8 TYPE CONVERSION AND TYPECASTING

Type conversion or typecasting of variables refers to changing a variable of one data type into
another. While type conversion is done implicitly, casting has to be done explicitly by the programmer.
We will discuss both these concepts here.

Type Conversion

Type conversion is done when the expression has variables of different data types. So to evaluate
the expression, the data type is promoted from lower to higher level where the hierarchy of data
types can be given as: double, float, long, int, short, and char. For example, type conversion
is automatically done when we assign an integer value to a floating point variable. Consider the
following code:

float x;

int y = 3;

X =y;
Now, x = 3.0, as integer value is automatically converted into its equivalent floating point
representation.

Typecasting

Typecasting is also known as forced conversion. It is done when the value of one data type has to
be converted into the value of another data type. The code to perform typecasting can be given as:

float salary = 10000.00;

int sal;

sal = (int) salary;
When floating point numbers are converted to integers, the digits after the decimal are truncated.
Therefore, data is lost when floating point representations are converted to integral representations.

As we can see in the code, typecasting can be done by placing the destination data type

in parentheses followed by the variable name that has to be converted. Hence, we conclude
that typecasting is done to make a variable of one data type to act like a variable of another

type.

PRoGRAMMING EXAMPLE

2. Write a program to convert an integer into the corresponding floating point number.

#include <stdio.h>
#include <conio.h>
int main()

{
float f_num;
int i_num;
clrscr();
printf("\n Enter any integer: ");
scanf("%d", &i_num);
f_num = (float)i_num;
printf("\n The floating point variant of %d is = %f", i_num, f_num);
return O;

}

Output

Enter any integer: 56
The floating point variant of 56 is = 56.000000

Introduction to C 17

1.9 CONTROL STATEMENTS

Till now we know that the code in the C program is executed sequentially from the first line of the
program to its last line. That is, the second statement is executed after the first, the third statement
is executed after the second, so on and so forth. Although this is true, in some cases we want only
selected statements to be executed. Control flow statements enable programmers to conditionally
execute a particular block of code. There are three types of control statements: decision control
(branching), iterative (looping), and jump statements. While branching means deciding what
actions have to be taken, looping, on the other hand, decides how many times the action has to
be taken. Jump statements transfer control from one point to another point.

1.9.1 Decision Control Statements
C supports decision control statements that can alter the flow of a sequence of instructions. These
statements help to jump from one part of the program to another depending on whether a particular
condition is satisfied or not. These decision control statements include:

(a) if statement, (b) if-else statement,

(c) if-else-if statement, and (d) switch-case statement.

if Statement

if statement is the simplest decision control statement that is frequently used in decision making.
The general form of a simple if statement is shown in Fig. 1.2.

FALSE

Syntax of if Statement Test

Expression
if (test expression)
{
statement 1;
statement n; Statement Block 1
statement x; <

Y

Statement x

Figure 1.2 if statement construct

The if block may include 1 statement or n statements enclosed within curly brackets. First
the test expression is evaluated. If the test expression is true, the statements of the if block are
executed, otherwise these statements will be skipped and the execution will jump to statement x.

The statement in an if block is any valid C language statement, and the test expression is any
valid C language expression that evaluates to either true or false. In addition to simple relational
expressions, we can also use compound expressions formed using logical operators. Note that
there is no semi-colon after the test expression. This is because the condition and statement should
be put together as a single statement.

18 Data Structures Using C

#include <stdio.h>

int main()

{
int x=10;
if (x>0) x++;
printf("\n x = %d", x);
return O;

}

In the above code, we take a variable x and initialize it to 10. In the test expression, we check if

the value of x is greater than 0. As 10 > 0, the test expression evaluates to true, and the value of

x is incremented. After that, the value of x is printed on the screen. The output of this program is
x =11

Observe that the printf statement will be executed even if the test expression is false.

m In case the statement block contains only one statement, putting curly brackets becomes optional. If
there are more than one statement in the statement block, putting curly brackets becomes mandatory.

if-else Statement

We have studied that using if statement plays a vital role in conditional branching. Its usage is
very simple. The test expression is evaluated, if the result is true, the statement(s) followed by the
expression is executed, else if the expression is false, the statement is skipped by the compiler.

What if you want a separate set of statements to be executed if the expression returns a false
value? In such cases, we can use an if-else statement rather than using a simple if statement.
The general form of simple if-else statement is shown in Fig. 1.3.

Syntax of if-else

Statement TRUE FALSE

Test

Expression
if (test expression) y Y
{
statement block 1; Statement Block 1 Statement Block 2
}
else
{

statement block 2;

Y

statement x;

Statement x

Figure 1.3 if-else statement construct

In the if-else construct, first the test expression is evaluated. If the expression is true, statement
block 1 is executed and statement block 2 is skipped. Otherwise, if the expression is false, statement
block 2 is executed and statement block 1 is ignored. In any case after the statement block 1 or
2 gets executed, the control will pass to statement x. Therefore, statement x is executed in every
case.

Introduction to C 19

PRoGRAMMING EXAMPLE

3. Write a program to find whether a number is even or odd.

#include <stdio.h>
int main()
{
int a;
printf("\n Enter the value of a : ");
scanf("%d", &a);
if(a%2==0)
printf("\n %d is even", a);

else
printf("\n %d is odd", a);
return O;
}
Output
Enter the value of a : 6
6 is even

if-else-if Statement

C language supports if-else-if statements to test additional conditions apart from the initial test
expression. The if-else-if construct works in the same way as a normal if statement. Its construct
is given in Fig. 1.4.

Syntax of if-else-if Statement

Test
Expression
1

. . FALSE

if (test expression 1)

{ TRUE
statement block 1;

Statement
else if (test expression 2) Block 1 Test EALSE
{ Expression --q
statement block 2; TRUE 2 i
¥ Y
éi;é Statement Statement
{ Block 2 Block x
statement block x;
}
statement y; »| Statement y [«

Figure 1.4 if-else-if statement construct

Note that it is not necessary that every if statement should have an else block as C supports
simple if statements. After the first test expression or the first if branch, the programmer can
have as many else-if branches as he wants depending on the expressions that have to be tested.
For example, the following code tests whether a number entered by the user is negative, positive,
or equal to zero.

#include <stdio.h>
int main()

{

20 Data Structures Using C

}

Note that if the first test expression evaluates to a true value, i.e., num=0, then the rest of the
statements in the code will be ignored and after executing the printf statement that displays ‘The
value is equal to zero’, the control will jump to return 0 statement.

int num;

printf("\n Enter any number :

scanf("%d", &num);

if(num==0)

printf("\n The value is equal to zero");
else if(num>0)
printf("\n The number is positive");

else

printf("\n The number is negative");

return O;

switch-case Statement

A switch-case statement is a multi-way decision statement that is a simplified version of an if-

else-if block. The general form of a switch statement is shown in Fig. 1.5.

switch

{

(variable)

case value 1:

statement
break;

case value 2:

statement
break;

case value N:

statement
break;
default:
statement
break;

statement X;

Syntax of Switch Statement

]

Statement Block 1

TRUE

Statement Block 2

]

Statement Block N

FALSE

FALSE

FALSE

Statement Block D

Y

YYY

Statement X

Figure 1.5

The power of nested if-else-if statements lies in the fact that it can evaluate more than one

switch-case statement construct

expression in a single logical structure. switch statements are mostly used in two situations:

e When there is only one variable to evaluate in the expression

e When many conditions are being tested for

Introduction to C 21

When there are many conditions to test, using the if and else-if constructs becomes complicated
and confusing. Therefore, switch case statements are often used as an alternative to long if
statements that compare a variable to several ‘integral’ values (integral values are those values
that can be expressed as an integer, such as the value of a char). switch statements are also used
to handle the input given by the user.

We have already seen the syntax of the switch statement. The switch case statement compares
the value of the variable given in the switch statement with the value of each case statement that
follows. When the value of the switch and the case statement matches, the statement block of that
particular case is executed.

Did you notice the keyword default in the syntax of the switch case statement? Default is the
case that is executed when the value of the variable does not match with any of the values of the
case statements. That is, default case is executed when no match is found between the values of
switch and case statements and thus there are no statements to be executed. Although the default
case is optional, it is always recommended to include it as it handles any unexpected case.

In the syntax of the switch-case statement, we have used another keyword break. The break
statement must be used at the end of each case because if it is not used, then the case that matched
and all the following cases will be executed. For example, if the value of switch statement matched
with that of case 2, then all the statements in case 2 as well as the rest of the cases including default
will be executed. The break statement tells the compiler to jump out of the switch case statement
and execute the statement following the switch-case construct. Thus, the keyword break is used
to break out of the case statements.

Advantages of Using a switch-case Statement

switch-case statement is preferred by programmers due to the following reasons:
Easy to debug

Easy to read and understand

Ease of maintenance as compared to its equivalent if-else statements

Like if-else statements, switch statements can also be nested

Executes faster than its equivalent if-else construct

ProGRAMMING EXAMPLE

4. Write a program to determine whether the entered character is a vowel or not.

#include <stdio.h>

int main()
{
char ch;
printf("\n Enter any character : ");
scanf("%c", &ch);
switch(ch)
{
case ‘A’:
case ‘a’:
printf("\n %c is VOWEL", ch);
break;
case ‘E’:
case ‘e’:
printf("\n %c is VOWEL", ch);
break;
case ‘I’:

case ‘i’:

22 Data Structures Using C

printf("\n %c is VOWEL", ch);
break;
case ‘0’:
case ‘o’:
printf("\n %c is VOWEL", ch);
break;
case ‘U’:
case ‘u’:
printf("\n %c is VOWEL", ch);
break;
default: printf("\n %c is not a vowel", ch);

return O;

¥
Output

Enter any character : j
j is not a vowel

Note that there is no break statement after case A, so if the character A is entered then control
will execute the statements given in case a.

1.9.2 Iterative Statements

Iterative statements are used to repeat the execution of a sequence of statements until the specified
expression becomes false. C supports three types of iterative statements also known as looping
statements. They are

® while loop
® do-while loop
e for loop

In this section, we will discuss all these statements.

while Loop

The while loop provides a mechanism to repeat one or more statements while a particular condition
is true. Figure 1.6 shows the syntax and general form of a while loop.

Statement x

Syntax of While Loop ;r
st?tement X5 Update the Condition
while (condition) Expression
{

statement block; 0 Condition
}
statement y; TRUE
Statement Block -« FALSE
4

Statement y

Figure 1.6 while loop construct

Introduction to C 23

Note that in the while loop, the condition is tested before any of the statements in the statement
block is executed. If the condition is true, only then the statements will be executed, otherwise if
the condition is false, the control will jump to statement y, that is the immediate statement outside
the while loop block.

In the flow diagram of Fig. 1.6, it is clear that we need to constantly update the condition
of the while loop. It is this condition which determines when the loop will end. The while loop
will execute as long as the condition is true. Note that if the condition is never updated and the
condition never becomes false, then the computer will run into an infinite loop which is never
desirable. For example, the following code prints the first 10 numbers using a while loop.

#include <stdio.h>
int main()

{
int i = 1;
while(i<=10)
{
printf("\n %d", i);
i=1+1; // condition updated
}
return O;
}

Note that initially i = 1 and is less than 10, i.e., the condition is true, so in the while loop the
value of i is printed and its value is incremented by 1. When i=11, the condition becomes false
and the loop ends.

PRroGRAMMING EXAMPLE

5. Write a program to calculate the sum of numbers from m to n.

#include <stdio.h>
int main()
{
int n, m, i, sum =0;
printf("\n Enter the value of m : ");
scanf("%d", &m);
i=m;
printf("\n Enter the value of n : ");
scanf("%d", &n);
while(i<=n)
{
sum = sum + ij;
i=1+1;

printf("\n The sum of numbers from %d to %d = %d", m, n, sum);
return O;

}
Output

Enter the value of m : 2
Enter the value of n : 10
The sum of numbers from 2 to 10 = 54

do-while Loop

The do-while loop is similar to the while loop. The only difference is that in a do-while loop, the
test condition is tested at the end of the loop. As the test condition is evaluated at the end, this
means that the body of the loop gets executed at least one time (even if the condition is false).
Figure 1.7 shows the syntax and the general form of a do-while loop.

24 Data Structures Using C

Statement x

y

A

Syntax of do-While Loop Statement Block

Y

statement x;

do Update the Condition

{ Expression
statement block;

} while (condition);

statement y; TRUE

FALSE

Statement y

Figure 1.7 Do-while construct

Note that the test condition is enclosed in parentheses and followed by a semi-colon. The
statements in the statement block are enclosed within curly brackets. The curly brackets are
optional if there is only one statement in the body of the do-while loop.

The do-while loop continues to execute while the condition is true and when the condition
becomes false, the control jumps to the statement following the do-while loop.

The major disadvantage of using a do-while loop is that it always executes at least once, so even
if the user enters some invalid data, the loop will execute. However, do-while loops are widely
used to print a list of options for menu-driven programs. For example, consider the following

code.
#include <stdio.h>
int main()
{
int i = 1;
do
{
printf("\n %d", i);
i=1+1;
} while(i<=10);
return O;
H

What do you think will be the output? Yes, the code will print numbers from 1 to 10.

PRoGRAMMING EXAMPLE

6. Write a program to calculate the average of first » numbers.

#include <stdio.h>

int main()

{
int n, i = 0, sum =0;
float avg = 0.0;

Introduction to C 25

printf("\n Enter the value of n : ");
scanf("%d", &n);
do
{
sum = sum + ij;
i=1+1;
} while(i<=n);
avg = (float)sum/n;
printf("\n The sum of first %d numbers = %d",n, sum);
printf("\n The average of first %d numbers = %.2f", n, avg);
return O;

}
Output
Enter the value of n : 20
The sum of first 20 numbers = 210
The average of first 20 numbers = 10.05

for Loop

Like the while and do-while loops, the for loop provides a mechanism to repeat a task till a particular
condition is true. The synax and general form of a for loop is given in Fig. 1.8.

Initialization of
Loop Variable

Syntax of for Loop

Controlling
Condition for Loop
Variable

FALSE

for (initialization; condition;
increment/decrement/update)

{
}

statement y;

statement block;

Statement Block

!

Update the
Loop Variable

<
+‘

Statement y

Figure 1.8 for loop construct

When a for loop is used, the loop variable is initialized only once. With every iteration, the
value of the loop variable is updated and the condition is checked. If the condition is true, the
statement block of the loop is executed, else the statements comprising the statement block of
the for loop are skipped and the control jumps to the statement following the for loop body.

In the syntax of the for loop, initialization of the loop variable allows the programmer to give
it a value. Second, the condition specifies that while the conditional expression is true, the loop

26

Data Structures Using C

should continue to repeat itself. Every iteration of the loop must make the condition to exit the
loop approachable. So, with every iteration, the loop variable must be updated. Updating the loop
variable may include incrementing the loop variable, decrementing the loop variable or setting it
to some other value like, i +=2, where 1 is the loop variable.

Note that every section of the for loop is separated from the other with a semi-colon. It is
possible that one of the sections may be empty, though the semi-colons still have to be there. However,
if the condition is empty, it is evaluated as true and the loop will repeat until something else stops
1t.

The for loop is widely used to execute a single or a group of statements for a limited number
of times. The following code shows how to print the first » numbers using a for loop.

#include <stdio.h>
int main()

{
int i, n;
printf("\n Enter the value of n :");
scanf("%d", &n);
for(i=1;i<=n;i++)
printf("\n %d", i);
return O;

}

In the code, i is the loop variable. Initially, it is initialized with 1. Suppose the user enters 10
as the value of n. Then the condition is checked, since the condition is true as i is less than n, the
statement in the for loop is executed and the value of i is printed. After every iteration, the value
of i is incremented. When i exceeds the value of n, the control jumps to the return 0 statement.

PRroGRAMMING EXAMPLE

7. Write a program to determine whether a given number is a prime or a composite number.

#include <stdio.h>
#include <conio.h>

int main()
{
int flag = 0, i, num;
clrscr();
printf("\n Enter any number : ");

scanf("%d", &num);
for(i=2; i<num/2;i++)

{
if(num%i == 0)
{
flag =1;
break;
}
¥
if(flag == 1)
printf("\n %d is a composite number", num);
else
printf("\n %d is a prime number", num);
return 0;
}
Output

Enter any number : 37
37 is a prime number

Introduction to C 27

1.9.3 Break and Continue Statements

break Statement

In C, the break statement is used to terminate the execution of the nearest enclosing loop in which
itappears. We have already seen its use in the switch statement. The break statement is widely used
with for, while, and do-while loops. When the compiler encounters a break statement, the control
passes to the statement that follows the loop in which the break statement appears. Its syntax is
quite simple, just type keyword break followed by a semi-colon.

break;

The example given below shows the manner in which break statement is used to terminate the
loop in which it is embedded.

#include <stdio.h>

int main()
{
int i = 0;
while(i<=10)
{
if (i==5)
break;
printf("\t %d", i);
i=1+1;
}
return O;
}
Output

01 2 3 4

As soon as i becomes equal to 5, the break statement is executed and the control jumps to the
statement following the while loop.

Hence, the break statement is used to exit a loop from any point within its body, bypassing its
normal termination expression.

continue Statement

Like the break statement, the continue statement can only appear in the body of a loop. When the
compiler encounters a continue statement, then the rest of the statements in the loop are skipped
and the control is unconditionally transferred to the loop-continuation portion of the nearest
enclosing loop. Its syntax is quite simple, just type keyword continue followed by a semi-colon.

continue;

Again like the break statement, the continue statement cannot be used without an enclosing for,
while, Or do-while loop. When the continue statement is encountered in the while loop and in the
do-while loop, the control is transferred to the code that tests the controlling expression. However,
if placed within a for loop, the continue statement causes a branch to the code that updates the
loop variable. For example, consider the following code:

#include <stdio.h>

int main()

{
int i;
for(i=0; i<= 10; i++)
{

if (i==5)

28 Data Structures Using C

continue;
printf("\t %d", i);
}

return O;

}

Output
012346 7 89 10

Note that the code is meant to print numbers from 0 to 10. But as soon as i becomes equal
to 5, the continue statement is encountered, so the printf() statement is skipped and the control
passes to the expression that increments the value of i.

Hence, we conclude that the continue statement is somewhat the opposite of the break statement.
It forces the next iteration of the loop to take place, skipping any code in between itself and the
test condition of the loop. It is generally used to restart a statement sequence when an error occurs.

1.10 FUNCTIONS

C enables its programmers to break up a program into segments commonly known as functions,
each of which can be written more or less independently of the others. Every function in the
program is supposed to perform a well-defined task. Therefore, the program code of one function
is completely insulated from the other functions.

Every function interfaces to the outside world
in terms of how information is transferred to it

funcl()

(and how results generated by the function are

statement block; transmitted back from it. This interface is basically

¥ specified by the function name. For example, look
/ at Fig. 1.9 which explains how the main() function

calls another function to perform a well-defined
task.

In the figure, we can see that main() calls a
function named func1(). Therefore, main() is
Figure 1.9 main() calls funci() known as the calling function and func1() is known

as the called function. The moment the compiler
encounters a function call, the control jumps to the statements that are a part of the called function.
After the called function is executed, the control is returned to the calling program.

The main() function can call as many functions as it wants and as many times as it wants. For
example, a function call placed within a for loop, while loop, or do-while loop may call the same
function multiple times till the condition holds true.

Not only main(), any function can call any other function. For example, look at Fig. 1.10 which
shows one function calling another, and the other function in turn calling some other function.

main () funcl() func2 ()

£ 3
{ / { / { / {unc (0]
P s Gosn AT | nnnn
....... AN TN TN e
return 0, return; return; \ return;
} \\\\\\\\ N , }

Figure 1.10 Function calling another function

Introduction to C 29

1.10.1 Why are Functions Needed?

Let us analyse the reasons why segmenting a program into manageable chunks is an important
aspect of programming.

¢ Dividing the program into separate well-defined functions facilitates each function to be
written and tested separately. This simplifies the process of getting the total program to work.

e Understanding, coding, and testing multiple separate functions is easier than doing the same
for one big function.

e [fabig program has to be developed without using any function other than main(), then there
will be countless lines in the main() function and maintaining that program will be a difficult
task.

o All the libraries in C contain a set of functions that the programmers are free to use in their
programs. These functions have been pre-written and pre-tested, so the programmers can
use them without worrying about their code details. This speeds up program development,
by allowing the programmer to concentrate only on the code that he has to write.

e Like C libraries, programmers can also write their own functions and use them from different
points in the main program or any other program that needs its functionalities.

e When a big program is broken into comparatively smaller functions, then different programmers
working on that project can divide the workload by writing different functions.

1.10.2 Using Functions

A function can be compared to a black box that takes in inputs, processes it, and then outputs the
result. However, we may also have a function that does not take any inputs at all, or a function that
does not return any value at all. While using functions, we will be using the following terminologies:
¢ A function f'that uses another function g is known as the calling function, and g is known as
the called function.
e The inputs that a function takes are known as arguments.
e When a called function returns some result back to the calling function, it is said to return
that result.
e The calling function may or may not pass parameters to the called function. If the called
function accepts arguments, the calling function will pass parameters, else not.
e Function declaration is a declaration statement that identifies a function’s name, a list of
arguments that it accepts, and the type of data it returns.
e Function definition consists of a function header that identifies the function, followed by the
body of the function containing the executable code for that function.

Function Declaration

Before using a function, the compiler must know the number of parameters and the type of
parameters that the function expects to receive and the data type of value that it will return to the
calling program. Placing the function declaration statement prior to its use enables the compiler
to make a check on the arguments used while calling that function.

The general format for declaring a function that accepts arguments and returns a value as result
can be given as:

return_data_type function_name(data_type variablel, data_type variable2,..);
Here, function_name is a valid name for the function. Naming a function follows the same rules

that are followed while naming variables. A function should have a meaningful name that must
specify the task that the function will perform.

30 Data Structures Using C

return_data_type specifies the data type of the value that will be returned to the calling function
as a result of the processing performed by the called function.

(data_type variablel, data_type variable2, ...) isalistof variables of specified data types.
These variables are passed from the calling function to the called function. They are also known
as arguments or parameters that the called function accepts to perform its task.

m A function having void as its return type cannot return any value. Similarly, a function having void as
its parameter list cannot accept any value.

Function Definition

When a function is defined, space is allocated for that function in the memory. A function definition
comprises of two parts:

¢ Function header

¢ Function body

The syntax of a function definition can be given as:

return_data_type function_name(data_type variablel, data_type variable2,..)

return(variable);

}

Note that the number of arguments and the order of arguments in the function header must be
the same as that given in the function declaration statement.

While return_data_type function_name(data_type variablel, data_type variable2,...) is known
as the function header, the rest of the portion comprising of program statements within the curly
brackets { } is the function body which contains the code to perform the specific task.

Note that the function header is same as the function declaration. The only difference between
the two is that a function header is not followed by a semi-colon.

Function Gall

The function call statement invokes the function. When a function is invoked, the compiler jumps
to the called function to execute the statements that are a part of that function. Once the called
function is executed, the program control passes back to the calling function. A function call
statement has the following syntax:

function_name(variablel, variable2, ...);

The following points are to be noted while calling a function:

¢ Function name and the number and the type of arguments in the function call must be same
as that given in the function declaration and the function header of the function definition.

e Names (and not the types) of variables in function declaration, function call, and header of
function definition may vary.

e Arguments may be passed in the form of expressions to the called function. In such a case,
arguments are first evaluated and converted to the type of formal parameter and then the
body of the function gets executed.

o [f the return type of the function is not void, then the value returned by the called function
may be assigned to some variable as given below.

variable_name = function_name(variablel, variable2, ...);

Introduction to C 31

PRoGRAMMING EXAMPLE

8. Write a program to find whether a number is even or odd using functions.

#include <stdio.h>
int evenodd(int); //FUNCTION DECLARATION
int main()
{
int num, flag;
printf("\n Enter the number : ");
scanf("%d", &num);
flag = evenodd(num); //FUNCTION CALL
if (flag == 1)
printf("\n %d is EVEN", num);

else
printf("\n %d is ODD", num);
return O;
}
int evenodd(int a) // FUNCTION HEADER
{
// FUNCTION BODY
if(a%2 == 0)
return 1;
else
retun 0O;
)
Output
Enter the number : 78
78 is EVEN

1.10.3 Passing Parameters to Functions
There are two ways in which arguments or parameters can be passed to the called function.

Callby value The values of the variables are passed by the calling function to the called function.

Call by reference The addresses of the variables are passed by the calling function to the called
function.

Call by Value

In this method, the called function creates new variables to store the value of the arguments passed
to it. Therefore, the called function uses a copy of the actual arguments to perform its intended task.
If the called function is supposed to modify the value of the parameters passed to it, then the

change will be reflected only in the called function. In the calling function, no change will be made
to the value of the variables. This is because all the changes are made to the copy of the variables
and not to the actual variables. To understand this concept, consider the code given below. The
function add() accepts an integer variable num and adds 10 to it. In the calling function, the value
of num = 2. In add(), the value of num is modified to 12 but in the calling function, the change is
not reflected.

#include <stdio.h>

void add(int n);

int main()

{
int num = 2;
printf("\n The value of num before calling the function = %d", num);
add(num);

32

Data Structures Using C

printf("\n The value of num after calling the function = %d", num);

return 0;
¥
void add(int n)
{
n=n+ 10;
printf("\n The value of num in the called function = %d", n);
}
Output

The value of num before calling the function = 2
The value of num in the called function = 12
The value of num after calling the function = 2

Following are the points to remember while passing arguments to a function using the call-by-

value method:

e When arguments are passed by value, the called function creates new variables of the same
data type as the arguments passed to it.

o The values of the arguments passed by the calling function are copied into the newly created
variables.

e Values of the variables in the calling functions remain unaffected when the arguments are
passed using the call-by-value technique.

Pros and cons

The biggest advantage of using the call-by-value technique is that arguments can be passed as
variables, literals, or expressions, while its main drawback is that copying data consumes additional
storage space. In addition, it can take a lot of time to copy, thereby resulting in performance penalty,
especially if the function is called many times.

Call by Reference

When the calling function passes arguments to the called function using the call-by-value method,
the only way to return the modified value of the argument to the caller is explicitly using the
return statement. A better option is to pass arguments using the call-by-reference technique.
In this method, we declare the function parameters as references rather than normal variables.
When this is done, any changes made by the function to the arguments it received are also visible
in the calling function.

To indicate that an argument is passed using call by reference, an asterisk (*) is placed after
the type in the parameter list.

Hence, in the call-by-reference method, a function receives an implicit reference to the argument,
rather than a copy of its value. Therefore, the function can modify the value of the variable and
that change will be reflected in the calling function as well. The following code illustrates this
concept.

#include <stdio.h>

void add(int *);

int main()

{
int num = 2;
printf("\n The value of num before calling the function = %d", num);
add(&num);
printf("\n The value of num after calling the function = %d", num);
return 0;

}
void add(int *n)

Introduction to C 33

{
*n = *n + 10;
printf("\n The value of num in the called function = %d", *n);
}
Output

The value of num before calling the function = 2
The value of num in the called function = 12
The value of num after calling the function = 12

Advantages

The advantages of using the call-by-reference technique of passing arguments include:
e Since arguments are not copied into the new variables, it provides greater time and space-
efficiency.
¢ The function can change the value of the argument and the change is reflected in the calling
function.
¢ A function can return only one value. In case we need to return multiple values, we can pass
those arguments by reference, so that the modified values are visible in the calling function.

Disadvantages

However, the drawback of using this technique is that if inadvertent changes are caused to variables
in called function then these changes would be reflected in calling function as original values
would have been overwritten.

Consider the code given below which swaps the value of two integers. Note the value of integers
in the calling function and called function.

//This function swaps the value of two variables
#include <stdio.h>
void swap_call val(int, int);
void swap_call_ref(int *, int *);
int main()
{
int a=1, b=2, c=3, d=4;
printf("\n In main(), a = %d and b = %d", a, b);
swap_call val(a, b);
printf("\n In main(), a = %d and b = %d", a, b);
printf("\n\n In main(), ¢ = %d and d = %d", c, d);
swap_call_ref(&c, &d);
printf("\n In main(), ¢ = %d and d = %d", c, d);

return O;
}
void swap_call _val(int a, int b)
{

int temp;

temp = a;

a = b;

b = temp;

printf("\n In function (Call By Value Method) - a = %d and b = %d", a, b);
}
void swap_call_ref(int *c, int *d)
{

int temp;

temp = *c;

*C = *d;

*d = temp;

printf("\n In function (Call By Reference Method) - ¢ = %d and d = %d", *c, *d);

34 Data Structures Using C

Output

In main(), a=1and b = 2

In function (Call By Value Method) - a =2 and b = 1

In main(), a=1and b = 2

In main(), c =3 and d = 4

In function (Call By Reference Method) - ¢ = 4 and d = 3
In main(), c =4 and d = 3

1.11 POINTERS

Every variable in C has a name and a value associated with it. When a variable is declared, a specific
block of memory within the computer is allocated to hold the value of that variable. The size of the
allocated block depends on the data type.
Consider the following statement.

int x = 10;

When this statement executes, the compiler sets aside 2 bytes of memory to hold the value 10.
It also sets up a symbol table in which it adds the symbol x and the relative address in the memory
where those 2 bytes were set aside.

(Note the size of integer may vary from one system to another. On 32 bit systems, integer
variable is allocated 4 bytes while on 16 bit systems it is allocated 2 bytes.)

Thus, every variable in C has a value and also a memory location (commonly known as
address) associated with it. We will use terms rvalue and 1value for the value and the address of
the variable, respectively.

The rvalue appears on the right side of the assignment statement (10 in the above statement)
and cannot be used on the left side of the assignment statement. Therefore, writing 10 = k; is
illegal. If we write,

int x, y;
X = 10;
y =X

then, we have two integer variables x and y. The compiler reserves memory for the integer variable
x and stores the rvalue 10 in it. When we say y = x, then x is interpreted as its rvalue since it is
on the right hand side of the assignment operator =. Therefore, here x refers to the value stored at
the memory location set aside for x, in this case 10. After this statement is executed, the rvalue
of y is also 10.

You must be wondering why we are discussing addresses and 1values. Actually pointers are
nothing but memory addresses. A pointer is a variable that contains the memory location of another
variable. Therefore, a pointer is a variable that represents the location of a data item, such as a
variable or an array element. Pointers are frequently used in C, as they have a number of useful
applications. These applications include:

e Pointers are used to pass information back and forth between functions.

¢ Pointers enable the programmers to return multiple data items from a function via function
arguments.

¢ Pointers provide an alternate way to access the individual elements of an array.

o Pointers are used to pass arrays and strings as function arguments. We will discuss this in
subsequent chapters.

¢ Pointers are used to create complex data structures, such as trees, linked lists, linked stacks,
linked queues, and graphs.

Introduction to C 35

o Pointers are used for the dynamic memory allocation of a variable (refer Appendix A on
memory allocation in C programs).

1.11.1 Declaring Pointer Variables
The general syntax of declaring pointer variables can be given as below.
data_type *ptr_name;
Here, data_type is the data type of the value that the pointer will point to. For example,
int *pnum;
char *pch;
float *pfnum;

In each of the above statements, a pointer variable is declared to point to a variable of the
specified data type. Although all these pointers (pnum, pch, and pfnum) point to different data types,
they will occupy the same amount of space in the memory. But how much space they will occupy
will depend on the platform where the code is going to run. Now let us declare an integer pointer
variable and start using it in our program code.

int x= 10;
int *ptr;
ptr = &x;

In the above statement, ptr is the name of the pointer variable. The * informs the compiler that
ptr is a pointer variable and the int specifies that it will store the address of an integer variable.
An integer pointer variable, therefore, ‘points to’ an integer variable. In the last statement, ptr is
assigned the address of x. The & operator retrieves the 1value (address) of x, and copies that to the
contents of the pointer ptr. Consider the memory cells given in Fig. 1.11.

. [[o [[[[[|

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

Figure 1.11 Memory representation

Now, since x is an integer variable, it will be allocated 2 bytes. Assuming that the compiler
assigns it memory locations 1003 and 1004, the address of x (written as &x) is equal to 1003, that
is the starting address of x in the memory. When we write, ptr = &x, then ptr = 1003.

We can ‘dereference’ a pointer, i.e., we can refer to the value of the variable to which it points
by using the unary * operator as in *ptr. That is, *ptr = 10, since 10 is the value of x. Look at the
following code which shows the use of a pointer variable:

#include <stdio.h>
int main()

{
int num, *pnum;
pnum = #
printf("\n Enter the number : ");
scanf("%d", &num);
printf("\n The number that was entered is : %d", *pnum);
return 0;

}

Output
Enter the number : 10
The number that was entered is : 10

What will be the value of *(&num)? It is equivalent to simply writing num.

36

Data Structures Using C

1.11.2 Pointer Expressions and Pointer Arithmetic

Like other variables, pointer variables can also be used in expressions. For example, if ptr1 and
ptr2 are pointers, then the following statements are valid:

int numl = 2, num2 = 3, sum = 0, mul = 0, div = 1;
int *ptrl, *ptr2;

ptrl = &numl;

ptr2 = &num2;

sum = *ptrl + *ptr2;

mul = sum * (*ptrl);

*ptr2 += 1;

div = 9 + (*ptrl)/(*ptr2) - 30;

In C, the programmer may add integers to or subtract integers from pointers as well as subtract
one pointer from the other. We can also use shorthand operators with the pointer variables as we
use them with other variables.

C also allows comparing pointers by using relational operators in the expressions. For example,
p1>p2, pl==p2 and p1!=p2 are all valid in C.

Postfix unary increment (++) and decrement (--) operators have greater precedence than the
dereference operator (*). Therefore, the expression *ptr++ is equivalent to *(ptr++), as ++ has
greater operator precedence than *. Thus, the expression will increase the value of ptr so that it
now points to the next memory location. This means that the statement *ptr++ does not do the
intended task. Therefore, to increment the value of the variable whose address is stored in ptr,
you should write (*ptr)++.

1.11.3 Null Pointers

So far, we have studied that a pointer variable is a pointer to a variable of some data type. However,
in some cases, we may prefer to have a null pointer which is a special pointer value and does not
point to any value. This means that a null pointer does not point to any valid memory address.
To declare a null pointer, you may use the predefined constant NnuLL which is defined in several

standard header files including <stdio.h>, <stdlib.h>, and <string.h>. After including any of these
files in your program, you can write

int *ptr = NULL;
You can always check whether a given pointer variable stores the address of some variable or
contains NULL by writing,

if (ptr == NULL)

{

}
You may also initialize a pointer as a null pointer by using the constant 0

Statement block;

int *ptr,

ptr = 0;
This is a valid statement in C as NULL is a preprocessor macro, which typically has the value
or replacement text 0. However, to avoid ambiguity, it is always better to use nuLL to declare a
null pointer. A function that returns pointer values can return a null pointer when it is unable to
perform its task.

1.11.4 Generic Pointers

A generic pointer is a pointer variable that has void as its data type. The void pointer, or the generic
pointer, is a special type of pointer that can point to variables of any data type. It is declared like
a normal pointer variable but using the void keyword as the pointer’s data type. For example,

Introduction to C 37

void *ptr;

In C, since you cannot have a variable of type void, the void pointer will therefore not point to
any data and, thus, cannot be dereferenced. You need to cast a void pointer to another kind of
pointer before using it.

Generic pointers are often used when you want a pointer to point to data of different types at
different times. For example, take a look at the following code.

#include <stdio.h>
int main()
{
int x=10;
char ch = ‘A’;
void *gp;
gp = &x;
printf("\n Generic pointer points to the integer value = %d", *(int*)gp);
gp = &ch;
printf("\n Generic pointer now points to the character= %c", *(char*)gp);
return O;

}
Output

Generic pointer points to the integer value = 10
Generic pointer now points to the character = A

It is always recommended to avoid using void pointers unless absolutely necessary, as they
effectively allow you to avoid type checking.

PRoGRAMMING EXAMPLE

9. Write a program to add two integers using pointers and functions.

#include <stdio.h>
void sum (int*, int*, int*);
int main()
{
int numl, num2, total;
printf("\n Enter the first number : ");
scanf("%d", &numl);
printf("\n Enter the second number : ");
scanf("%d", &hum2);
sum(&numl, &num2, &total);
printf("\n Total = %d", total);

return O;
}
void sum (int *a, int *b, int *t)
{
*t = *a + *b;
}
Output

Enter the first number : 23
Enter the second number : 34
Total = 57

1.11.5 Pointer to Pointers

In C, you can also use pointers that point to pointers. The pointers in turn point to data or even to
other pointers. To declare pointers to pointers, just add an asterisk * for each level of reference.

38 Data Structures Using C

Figure 1.12 Pointer to pointer

. = opX For example, consider the following code:
int x=10;
| 10 y4___1 1002 L*———{ 2004 ‘ int *px, **ppx;
1002 2004 4008 px = &x;
A ppx = &px;

Let us assume, the memory locations of these variables are as
shown in Fig. 1.12.
Now if we write,

printf("\n %d", **ppx);
Then, it would print 10, the value of x.

1.11.6 Drawbacks of Pointers

Although pointers are very useful in C, they are not free from limitations. If used incorrectly,
pointers can lead to bugs that are difficult to unearth. For example, if you use a pointer to read a
memory location but that pointer is pointing to an incorrect location, then you may end up reading
a wrong value. An erroneous input always leads to an erroneous output. Thus however efficient
your program code may be, the output will always be disastrous. Same is the case when writing
a value to a particular memory location.
Let us try to find some common errors when using pointers.

int x, *px;

x=10;

*px = 20;
Error: Un-initialized pointer. px is pointing to an unknown memory location. Hence it will
overwrite that location’s contents and store 20 in it.

int x, *px;

x=10;

pX = X;
Error: 1t should be px = &x;

int x=10, y=20, *px, *py;

px = &, py = 8y;

if(px<py)

printf("\n x is less than y");

else

printf("\n y is less than x");

Error: 1t should be if(*px< *py)

/"! Points T0 REMEMBER

e C was developed in the early 1970s by Dennis e

A variable is defined as a meaningful name given to

Ritchie at Bell Laboratories.

Every word in a C program is either an identifier
or a keyword. Identifiers are the names given to
program elements such as variables and functions.
Keywords are reserved words which cannot be used
as identifiers.

C provides four basic data types: char, int, float,
and double.

a data storage location in computer memory.

Standard library function scanf() is used to input
data in a specified format.printf()function is used
to output data of different types in a specified format.
C supports different types of operators which can
be classified into following categories: arithmetic,
relational, equality, logical, unary, conditional,
bitwise, assignment, comma, and sizeof operators.

Introduction to C 39

Modulus operator (%) can only be applied on integer
operands, and not on float or double operands.
Equality operators have lower precedence than
relational operators.

Like arithmetic expressions, logical expressions are
evaluated from left to right.

Both x++ and ++x increment the value of x, but in
the former case, the value of x is returned before it
is incremented. Whereas in the latter case, the value
of x is returned after it is incremented.
Conditional operator is also known as ternary
operator as it takes three operands.

Bitwise NOT or complement produces one’s
complement of a given binary number.

Among all the operators, comma operator has the
lowest precedence.

sizeof is a unary operator used to calculate the size
of data types. This operator can be applied to all data
types.

While type conversion is done implicitly, typecasting
has to be done explicitly by the programmer.
Typecasting is done when the value of one data type
has to be converted into the value of another data type.
C supports three types of control statements: decision
control statements, iterative statements, and jump
statements.

In a switch statement, if the value of the variable
does not match with any of the values of case
statements, then default case is executed.

Iterative statements are used to repeat the execution
of a list of statements until the specified expression
becomes false.

The break statement is used to terminate the
execution of the nearest enclosing loop in which it
appears.

When the compiler encounters a continue statement,
then the rest of the statements in the loop are skipped
and the control is unconditionally transferred to the
loop-continuation portion of the nearest enclosing loop.
A C program contains one or more functions, where
each function is defined as a group of statements that
perform a specific task.

Every C program contains a main() function which
is the starting point of the program. It is the function
that is called by the operating system when the user
runs the program.

Function declaration statement identifies a function’s
name and the list of arguments that it accepts and
the type of data it returns.

Function definition, on the other hand, consists of a
function header that identifies the function, followed
by the body of the function containing the executable
code for that function. When a function is defined,
space is allocated for that function in the memory.

The moment the compiler encounters a function call,
the control jumps to the statements that are a part
of the called function. After the called function is
executed, the control is returned back to the calling
function.

Placing the function declaration statement prior to
its use enables the compiler to make a check on the
arguments used while calling that function.

A function having void as its return type cannot
return any value. Similarly, a function having void
as its parameter list cannot accept any value.

Call by value method passes values of the variables
to the called function. Therefore, the called function
uses a copy of the actual arguments to perform its
intended task. This method is used when the function
does not need to modify the values of the original
variables in the calling function.

In call by reference method, addresses of the
variables are passed by the calling function to the
called function. Hence, in this method, a function
receives an implicit reference to the argument,
rather than a copy of its value. This allows the
function to modify the value of the variable and
that change is reflected in the calling function as
well.

A pointer is a variable that contains the memory
address of another variable.

The & operator retrieves the address of the variable.
We can ‘dereference’ a pointer, i.e., refer to the value
of the variable to which it points by using unary *
operator.

Null pointer is a special pointer variable that does
not point to any variable. This means that a null
pointer does not point to any valid memory address.
To declare a null pointer we may use the predefined
constant NULL.

A generic pointer is pointer variable that has void
as its data type. The generic pointer can point to
variables of any data type.

To declare pointer to pointers, we need to add an
asterisk (*) for each level of reference.

40 Data Structures Using C

> = EXERCISES

Review Questions

1.
. Differentiate between declaration and definition.
. How is memory reserved using a declaration

8.
9.
10.
11.

12.
13.

14.
15.
16.

17.
18.

19.

20.
21.

22,
23.

24.

25.

Discuss the structure of a C program.

statement?

. What do you understand by identifiers and

keywords?

. Explain the terms variables and constants. How

many types of variables are supported by C?

. What does the data type of a variable signify?
. Write a short note on basic data types that the C

language supports.

Why do we include <stdio.h> in our programs?
What are header files? Explain their significance.
Write short notes on printf and scanf functions.
Write a short note on operators available in C
language.

Draw the operator precedence chart.
Differentiate between typecasting and type
conversion.

What are decision control statements? Explain in
detail.

Write a short note on the iterative statements that
C language supports.

When will you prefer to work with a switch
statement?

Define function. Why are they needed?
Differentiate between function declaration and
function definition.

Why is function declaration statement placed prior
to function definition?

Explain the concept of making function calls.
Differentiate between call by value and call by
reference using suitable examples.

Write a short note on pointers.

Explain the difference between a null pointer and
a void pointer.

How are generic pointers different from other
pointer variables?

Write a short note on pointers to pointers.

Programming Exercises

1.

Write a program to read 10 integers. Display these
numbers by printing three numbers in a line
separated by commas.

10.

11.

12.

. Write a program to print the count of even numbers

between 1-200. Also print their sum.

. Write a program to count the number of vowels

in a text.

. Write a program to read the address of a user. Dis-

play the result by breaking it in multiple lines.

. Write a program to read two floating point

numbers. Add these numbers and assign the result
to an integer. Finally, display the value of all the
three variables.

. Write a program to read a floating point number.

Display the rightmost digit of the integral part of
the number.

. Write a program to calculate simple interest and

compound interest.

. Write a program to calculate salary of an employee

given his basic pay (to be entered by the user),
HRA =10% of'the basic pay, TA = 5% of basic pay.
Define HRA and TA as constants and use them to
calculate the salary of the employee.

. Write a program to prepare a grocery bill. Enter

the name of the items purchased, quantity in which
it is purchased, and its price per unit. Then display
the bill in the following format:

Item Quantity Price Amount

Total Amount to be paid

Write a C program using printf statement to print
BYE in the following format:

BBB Y Y EEEE
B B Y Y E
BBB Y EEEE
B B Y

Write a program to read an integer. Display
the value of that integer in decimal, octal, and
hexadecimal notation.

Write a program that prints a floating point
value in exponential format with the following
specifications:

(a) correct to two decimal places;

(b) correct to four decimal places; and

Introduction to C 41

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

(c) correct to eight decimal places.

Write a program to find the smallest of three
integers using functions.

Write a program to calculate area of a triangle
using function.

Write a program to find whether a number is
divisible by two or not using functions.

Write a program to print ‘Programming in C is
Fun’ using pointers.

Write a program to read a character and print it.
Also print its ASCII value. If the character is in
lower case, print it in upper case and vice versa.
Repeat the process until a “*’ is entered.

Write a program to add three floating point
numbers. The result should contain only two digits
after the decimal.

Write a program to take input from the user and
then check whether it is a number or a character.
If it is a character, determine whether it is in upper
case or lower case. Also print its ASCII value.
Write a program to display sum and average of
numbers from 1 to n. Use for loop.

Write a program to print all odd numbers from
m to n.

Write a program to print all prime numbers from
m to n.

Write a program to read numbers until —1 is
entered and display whether it is an Armstrong
number or not.

Write a program to add two floating point numbers
using pointers and functions.

Write a program to calculate area of a triangle
using pointers.

Multiple-choice Questions

1.

2.

3.

4.

The operator which compares two values is
(a) Assignment (b) Relational

(c) Unary (d) Equality

Ternary operator operates on how many operands?
(a) 1 (b) 2

(c) 3 (d) 4

Which operator produces the one’s complement
of the given binary value?

(a) Logical AND (b) Bitwise AND

(c) Logical OR (d) Bitwise NOT
Which operator has the lowest precedence?

(a) Sizeof (b) Unary

(c) Assignment (d) Comma

5. Which of the following is the conversion character

associated with short integer?

(a) %c (b) %h
(c) %e (d) %f

6. Which of the following is not a character constant?
(a) ‘A’ (b) “A”
() <’ (d) **

7. Which of the following is a valid variable name?
(a) Initial.Name (b) A+B
(c) $amt (d) Floats

8. Which operator cannot be used with floating point
numbers?
(a) + (b) -
(c) % (d) *

9. Identify the erroneous expression.

10.

11.

12.

13.

14.

15.

(a) X=y=2, 4; (b) res = ++a * 5;
(c) res = /4; (d) res = a++ -b *2
Function declaration statement identifies a
function with its

(a) Name

(b) Arguments

(c) Data type of return value

(d) All of these

Which return type cannot return any value to the
calling function?

(a) int (b) float

(c) void (d) double

Memory is allocated for a function when the
function is

(a) declared (b) defined

(c) called (d) returned
*(&num) is equivalent to writing

(a) &num (b) *num

(c) num (d) None of these

Which operator retrieves the 1value of a variable?

(a) & (b) *

() -> (d) None of these
Which operator is used to dereference a pointer?
(a) & (b) *

() -> (d) None of these

True or False

1.
2. Keywords are case sensitive.

3.

4. Signed variables can increase the maximum

We can have only one function in a C program.
Variable ‘first’ is the same as ‘First’.

positive range.

. Comment statements are not executed by the

compiler.

42 Data Structures Using C

|

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.

20.

21.
22.

23.
24.

25.

. Equality operators have higher precedence than

the relational operators.

. Shifting once to the left multiplies the number by 2.
. Decision control statements are used to repeat

the execution of a list of statements.

. printf("%d", scanf("%d", &num)); is a valid C

statement.

1,234 is a valid integer constant.

A printf statement can generate only one line of
output.

stdio.h is used to store the source code of the
program.

The closing brace of main() is the logical end of
the program.

The declaration section gives instructions to the
computer.

Any valid printable ASCII character can be used
for a variable name.

Underscore can be used anywhere in the variable
name.

void is a data type in C.

All arithmetic operators have same precedence.
The modulus operator can be used only with
integers.

The calling function always passes parameters to
the called function.

The name of a function is global.

No function can be declared within the body of
another function.

The & operator retrieves the 1value of the variable.
Unary increment and decrement operators have
greater precedence than the dereference operator.
On 32-bit systems, an integer variable is allocated
4 bytes.

Fill in the Blanks

1.
2.
3.

C was developed by .
The execution of a C program begins at
In the memory, characters are stored as

gu

5

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.

24.

25.

. sizeofisa

. return O returns 0 to the

finds the remainder of an integer division.
operator used to calculate the

sizes of data types.

is also known as forced conversion.

is executed when the value of the variable
does not match with any of the values of the case
statement.

function prints data on the monitor.
A C program ends with a

causes the cursor to move to the next line.
A variable can be made constant by declaring it
with the qualifier at the time of initializa-
tion.

operator returns the number of bytes

occupied by the operand.

The specification is used to read/write a
short integer.
The specification is used to read/write a

hexadecimal integer.

To print the data left-justified,

ication is used.

After the function is executed, the control passes
back to the

A function that uses another function is known as
the .

The inputs that the function takes are known as

specif-

Function definition consist of and .
In method, address of the variable is passed
by the calling function to the called function.
Size of character pointer is

77777 pointer does not point to any valid
memory address.

The appears on the right side of the
assignment statement.

The operator informs the compiler that
the variable is a pointer variable.

CHAPTER

Introduction to
Data Structures
and Algorithms

LEARNING OBJECTIVE

In this chapter, we are going to discuss common data structures and algorithms
which serve as building blocks for creating efficient programs. We will also discuss
different approaches to designing algorithms and different notations for evaluating
the performance of algorithms.

2.1 BASIC TERMINOLOGY

We have already learnt the basics of programming in C in the previous chapter and know how to
write, debug, and run simple programs in C language. Our aim has been to design good programs,
where a good program is defined as a program that

e runs correctly

e is ecasy to read and understand

e is casy to debug and

e is easy to modify.

A program should undoubtedly give correct results, but along with that it should also run
efficiently. A program is said to be efficient when it executes in minimum time and with minimum
memory space. In order to write efficient programs we need to apply certain data management
concepts.

The concept of data management is a complex task that includes activities like data collection,
organization of data into appropriate structures, and developing and maintaining routines for
quality assurance.

Data structure is a crucial part of data management and in this book it will be our prime concern.
A data structure is basically a group of data elements that are put together under one name, and
which defines a particular way of storing and organizing data in a computer so that it can be used
efficiently.

44

Data Structures Using C

Data structures are used in almost every program or software system. Some common examples of
data structures are arrays, linked lists, queues, stacks, binary trees, and hash tables. Data structures
are widely applied in the following areas:

e Compiler design e Operating system
e Statistical analysis package e DBMS

e Numerical analysis e Simulation

o Artificial intelligence e Graphics

When you will study DBMS as a subject, you will realize that the major data structures used
in the Network data model is graphs, Hierarchical data model is trees, and RDBMS is arrays.

Specific data structures are essential ingredients of many efficient algorithms as they enable the
programmers to manage huge amounts of data easily and efficiently. Some formal design methods
and programming languages emphasize data structures and the algorithms as the key organizing
factor in software design. This is because representing information is fundamental to computer
science. The primary goal of a program or software is not to perform calculations or operations
but to store and retrieve information as fast as possible.

Be it any problem at hand, the application of an appropriate data structure provides the most
efficient solution. A solution is said to be efficient if it solves the problem within the required
resource constraints like the total space available to store the data and the time allowed to perform
each subtask. And the best solution is the one that requires fewer resources than known alternatives.
Moreover, the cost of a solution is the amount of resources it consumes. The cost of a solution is
basically measured in terms of one key resource such as time, with the implied assumption that
the solution meets the other resource constraints.

Today computer programmers do not write programs just to solve a problem but to write an
efficient program. For this, they first analyse the problem to determine the performance goals
that must be achieved and then think of the most appropriate data structure for that job. However,
program designers with a poor understanding of data structure concepts ignore this analysis step
and apply a data structure with which they can work comfortably. The applied data structure may
not be appropriate for the problem at hand and therefore may result in poor performance (like
slow speed of operations).

Conversely, if a program meets its performance goals with a data structure that is simple to use,
then it makes no sense to apply another complex data structure just to exhibit the programmer’s
skill. When selecting a data structure to solve a problem, the following steps must be performed.

1. Analysis of the problem to determine the basic operations that must be supported. For example,
basic operation may include inserting/deleting/searching a data item from the data structure.

2. Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

This three-step approach to select an appropriate data structure for the problem at hand supports
a data-centred view of the design process. In the approach, the first concern is the data and the
operations that are to be performed on them. The second concern is the representation of the data,
and the final concern is the implementation of that representation.

There are different types of data structures that the C language supports. While one type of data
structure may permit adding of new data items only at the beginning, the other may allow it to
be added at any position. While one data structure may allow accessing data items sequentially,
the other may allow random access of data. So, selection of an appropriate data structure for the
problem is a crucial decision and may have a major impact on the performance of the program.

Introduction to Data Structures and Algorithms 45

2.1.1 Elementary Data Structure Organization

Data structures are building blocks of a program. A program built using improper data structures
may not work as expected. So as a programmer it is mandatory to choose most appropriate data
structures for a program.

The term data means a value or set of values. It specifies either the value of a variable or a
constant (e.g., marks of students, name of an employee, address of a customer, value of pi, etc.).

While a data item that does not have subordinate data items is categorized as an elementary
item, the one that is composed of one or more subordinate data items is called a group item. For
example, a student’s name may be divided into three sub-items—first name, middle name, and
last name—but his roll number would normally be treated as a single item.

A record is a collection of data items. For example, the name, address, course, and marks
obtained are individual data items. But all these data items can be grouped together to form a
record.

A file is a collection of related records. For example, if there are 60 students in a class, then
there are 60 records of the students. All these related records are stored in a file. Similarly, we
can have a file of all the employees working in an organization, a file of all the customers of a
company, a file of all the suppliers, so on and so forth.

Moreover, each record in a file may consist of multiple data items but the value of a certain
data item uniquely identifies the record in the file. Such a data item K is called a primary key,
and the values K, K, ... in such field are called keys or key values. For example, in a student’s
record that contains roll number, name, address, course, and marks obtained, the field roll number
is a primary key. Rest of the fields (name, address, course, and marks) cannot serve as primary
keys, since two or more students may have the same name, or may have the same address (as
they might be staying at the same place), or may be enrolled in the same course, or have obtained
same marks.

This organization and hierarchy of data is taken further to form more complex types of data
structures, which is discussed in Section 2.2.

2.2 CLASSIFICATION OF DATA STRUCTURES

Data structures are generally categorized into two classes: primitive and non-primitive data
structures.

Primitive and Non-primitive Data Structures

Primitive data structures are the fundamental data types which are supported by a programming
language. Some basic data types are integer, real, character, and boolean. The terms ‘data type’,
‘basic data type’, and ‘primitive data type’ are often used interchangeably.

Non-primitive data structures are those data structures which are created using primitive data
structures. Examples of such data structures include linked lists, stacks, trees, and graphs.
Non-primitive data structures can further be classified into two categories: /inear and non-linear
data structures.

Linear and Non-linear Structures

If the elements of a data structure are stored in a linear or sequential order, then it is a linear data
structure. Examples include arrays, linked lists, stacks, and queues. Linear data structures can be
represented in memory in two different ways. One way is to have to a linear relationship between
elements by means of sequential memory locations. The other way is to have a linear relationship
between elements by means of links.

46

Data Structures Using C

However, if the elements of a data structure are not stored in a sequential order, then it is a
non-linear data structure. The relationship of adjacency is not maintained between elements of a
non-linear data structure. Examples include trees and graphs.

C supports a variety of data structures. We will now introduce all these data structures and they
would be discussed in detail in subsequent chapters.

Arrays

An array is a collection of similar data elements. These data elements have the same data type.
The elements of the array are stored in consecutive memory locations and are referenced by an
index (also known as the subscript).

In C, arrays are declared using the following syntax:

type name[size];
For example,

int marks[10];
The above statement declares an array marks that contains 10 elements. In C, the array index starts
from zero. This means that the array marks will contain 10 elements in all. The first element will
be stored in marks[0], second element in marks[1], so on and so forth. Therefore, the last element,
that is the 10th element, will be stored in marks[9]. In the memory, the array will be stored as
shown in Fig. 2.1.

1 st 2nd 3rd 4th 51h 6\h 7th 8th glh 1 Oth
element | element [element | element | element | element | element | element | element | element

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]

Figure 2.1 Memory representation of an array of 10 elements

Arrays are generally used when we want to store large amount of similar type of data. But they
have the following limitations:

e Arrays are of fixed size.

e Data elements are stored in contiguous memory locations which may not be always available.

¢ Insertion and deletion of elements can be problematic because of shifting of elements from
their positions.

However, these limitations can be solved by using linked lists. We will discuss more about arrays
in Chapter 3.

Linked Lists

A linked list is a very flexible, dynamic data structure in which elements (called nodes) form a
sequential list. In contrast to static arrays, a programmer need not worry about how many elements
will be stored in the linked list. This feature enables the programmers to write robust programs
which require less maintenance.

In a linked list, each node is allocated space as it is added to the list. Every node in the list
points to the next node in the list. Therefore, in a linked list, every node contains the following
two types of data:

e The value of the node or any other data that corresponds to that node
e A pointer or link to the next node in the list

Introduction to Data Structures and Algorithms 47

The last node in the list contains a NULL pointer to indicate that it is the end or tail of the list.
Since the memory for a node is dynamically allocated when it is added to the list, the total number
of nodes that may be added to a list is limited only by the amount of memory available. Figure
2.2 shows a linked list of seven nodes.

KN I g T I o T I e 3 I e I3 O o CN B o A

Figure 2.2 Simple linked list

m Advantage: Easier to insert or delete data elements
Disadvantage: Slow search operation and requires more memory space

Stacks

A stack is a linear data structure in which insertion and deletion of elements are done at only one end,
which is known as the top of the stack. Stack is called a last-in, first-out (LIFO) structure because
the last element which is added to the stack is the first element which is deleted from the stack.

In the computer’s memory, stacks can be implemented using arrays or linked lists. Figure 2.3
shows the array implementation of a stack. Every stack has a variable top associated with it. top
is used to store the address of the topmost element of the stack. It is this position from where
the element will be added or deleted. There is another variable max, which is used to store the
maximum number of elements that the stack can store.

If top = NuLL, then it indicates that the stack is empty and if top = max-1, then the stack is full.

| A | AB [ABC | ABCD | ABCDE | | | | | |
0 12 3 tp=4 5 6 7 8 9

Figure 2.3 Array representation of a stack

In Fig. 2.3, top = 4, so insertions and deletions will be done at this position. Here, the stack
can store a maximum of 10 elements where the indices range from 0-9. In the above stack, five
more elements can still be stored.

A stack supports three basic operations: push, pop, and peep. The push operation adds an element
to the top of the stack. The pop operation removes the element from the top of the stack. And the
peep operation returns the value of the topmost element of the stack (without deleting it).

However, before inserting an element in the stack, we must check for overflow conditions. An
overflow occurs when we try to insert an element into a stack that is already full.

Similarly, before deleting an element from the stack, we must check for underflow conditions.
An underflow condition occurs when we try to delete an element from a stack that is already
empty.

Queues

A queue is a first-in, first-out (FIFO) data structure in which the element that is inserted first is
the first one to be taken out. The elements in a queue are added at one end called the rear and
removed from the other end called the front. Like stacks, queues can be implemented by using
either arrays or linked lists.

Every queue has front and rear variables that point to the position from where deletions and
insertions can be done, respectively. Consider the queue shown in Fig. 2.4.

48 Data Structures Using C

Front Rear
12] 9 | 7 [18] 14] 36 | | | | |
0 1 2 3 4 5 6 7 8 9

Figure 2.4 Array representation of a queue

Here, front = 0 and rear = 5. If we want to add one more value to the list, say, if we want to
add another element with the value 45, then the rear would be incremented by 1 and the value
would be stored at the position pointed by the rear. The queue, after the addition, would be as
shown in Fig. 2.5.

Here, front = 0 and rear = 6. Every time a new element is to be added, we will repeat the same

procedure.
Front Rear
| 12| 9 | 7 | 18| 14 | 36 | 45 | | | |
0 1 2 3 4 5 6 7 8 9

Figure 2.5 Queue after insertion of a new element

Now, if we want to delete an element from the queue, then the value of front will be incremented.
Deletions are done only from this end of the queue. The queue after the deletion will be as shown

in Fig. 2.6.
Front Rear
| | o [7 | 18] 14 |3 |4 [| | |
0 1 2 3 4 5 6 7 8 9

Figure 2.6 Queue after deletion of an element

However, before inserting an element in the queue, we must check for overflow conditions. An
overflow occurs when we try to insert an element into a queue that is already full. A queue is full
when rear = MAX-1, where MAX is the size of the queue, that is max specifies the maximum number
of elements in the queue. Note that we have written MAX - 1 because the index starts from 0.

Similarly, before deleting an element from the queue, we must check for underflow conditions.
An underflow condition occurs when we try to delete an element from a queue that is already
empty. If front = NULL and rear = NULL, then there is no element in the queue.

Trees

Actree is a non-linear data structure which consists of a collection of nodes arranged in a hierarchical
order. One of the nodes is designated as the root node, and the remaining nodes can be partitioned
into disjoint sets such that each set is a sub-tree of the root.

The simplest form of a tree is a binary tree. A binary tree consists of a root node and left and
right sub-trees, where both sub-trees are also binary trees. Each node contains a data element, a
left pointer which points to the left sub-tree, and a right pointer which points to the right sub-tree.
The root element is the topmost node which is pointed by a ‘root’ pointer. If root = nuLL then the
tree is empty.

Figure 2.7 shows a binary tree, where R is the root node and 1, and 7, are the left and right sub-
trees of R. If T, is non-empty, then 1, is said to be the left successor of r. Likewise, if T, is non-empty,
then it is called the right successor of r.

Introduction to Data Structures and Algorithms 49

In Fig. 2.7, node 2 is the left child and node 3 is the right child of the root
node 1. Note that the left sub-tree of the root node consists of the nodes 2,
4,5, 8, and 9. Similarly, the right sub-tree of the root node consists of
the nodes 3, 6, 7, 10, 11, and 12.

m Advantage: Provides quick search, insert, and delete operations
Disadvantage: Complicated deletion algorithm

Graphs

A graph is a non-linear data structure which is a collection of vertices (also
called nodes) and edges that connect these vertices. A graph is often viewed
as a generalization of the tree structure, where instead of a purely parent-to-child relationship
between tree nodes, any kind of complex relationships between the nodes can exist.
In a tree structure, nodes can have any number of children but only one parent, a graph on the
other hand relaxes all such kinds of restrictions. Figure 2.8 shows a graph with five nodes.
Anode in the graph may represent a city and the edges connecting the nodes can represent roads.
A graph can also be used to represent a computer network where the nodes are workstations and
the edges are the network connections. Graphs have so many applications in computer science and
mathematics that several algorithms have been written to perform the standard graph operations,
such as searching the graph and finding the shortest path between the nodes of a graph.
Note that unlike trees, graphs do not have any root node. Rather, every node
(») (&) in the graph can be connected with every another node in the graph. When two
' nodes are connected via an edge, the two nodes are known as neighbours. For

Figure 2.7 Binary tree

example, in Fig. 2.8, node A has two neighbours: B and b.

° G m Advantage: Best models real-world situations

Figure 2.8 Graph Disadvantage: Some algorithms are slow and very complex

2.3 OPERATIONS ON DATA STRUCTURES

This section discusses the different operations that can be performed on the various data structures
previously mentioned.

Traversing 1t means to access each data item exactly once so that it can be processed. For
example, to print the names of all the students in a class.

Searching It is used to find the location of one or more data items that satisfy the given constraint.
Such a data item may or may not be present in the given collection of data items. For example,
to find the names of all the students who secured 100 marks in mathematics.

Inserting 1t is used to add new data items to the given list of data items. For example, to add
the details of a new student who has recently joined the course.

Deleting 1t means to remove (delete) a particular data item from the given collection of data
items. For example, to delete the name of a student who has left the course.

Sorting Data items can be arranged in some order like ascending order or descending order
depending on the type of application. For example, arranging the names of students in a class in
an alphabetical order, or calculating the top three winners by arranging the participants’ scores in
descending order and then extracting the top three.

Merging Lists of two sorted data items can be combined to form a single list of sorted data items.

50 Data Structures Using C

Many a time, two or more operations are applied simultaneously in a given situation. For
example, if we want to delete the details of a student whose name is X, then we first have to
search the list of students to find whether the record of X exists or not and if it exists then at which
location, so that the details can be deleted from that particular location.

2.4 ABSTRACT DATATYPE

An abstract data type (ADT) is the way we look at a data structure, focusing on what it does and
ignoring how it does its job. For example, stacks and queues are perfect examples of an ADT. We
can implement both these ADTs using an array or a linked list. This demonstrates the ‘abstract’
nature of stacks and queues.

To further understand the meaning of an abstract data type, we will break the term into ‘data
type’ and ‘abstract’, and then discuss their meanings.

Data type Data type of a variable is the set of values that the variable can take. We have already
read the basic data types in C include int, char, float, and double.

When we talk about a primitive type (built-in data type), we actually consider two things: a data
item with certain characteristics and the permissible operations on that data. For example, an int
variable can contain any whole-number value from —32768 to 32767 and can be operated with the
operators +, -, *, and /. In other words, the operations that can be performed on a data type are an
inseparable part of its identity. Therefore, when we declare a variable of an abstract data type (e.g.,
stack or a queue), we also need to specify the operations that can be performed on it.

Abstract The word ‘abstract’ in the context of data structures means considered apart from the
detailed specifications or implementation.

In C, an abstract data type can be a structure considered without regard to its implementation.
It can be thought of as a “description’ of the data in the structure with a list of operations that can
be performed on the data within that structure.

The end-user is not concerned about the details of how the methods carry out their tasks. They
are only aware of the methods that are available to them and are only concerned about calling
those methods and getting the results. They are not concerned about how they work.

For example, when we use a stack or a queue, the user is concerned only with the type of data
and the operations that can be performed on it. Therefore, the fundamentals of how the data is
stored should be invisible to the user. They should not be concerned with how the methods work
or what structures are being used to store the data. They should just know that to work with stacks,
they have push() and pop() functions available to them. Using these functions, they can manipulate
the data (insertion or deletion) stored in the stack.

Advantage of using ADTs

In the real world, programs evolve as a result of new requirements or constraints, so a modification
to a program commonly requires a change in one or more of its data structures. For example, if
you want to add a new field to a student’s record to keep track of more information about each
student, then it will be better to replace an array with a linked structure to improve the program’s
efficiency. In such a scenario, rewriting every procedure that uses the changed structure is not
desirable. Therefore, a better alternative is to separate the use of a data structure from the details
of its implementation. This is the principle underlying the use of abstract data types.

2.5 ALGORITHMS

The typical definition of algorithm is ‘a formally defined procedure for performing some
calculation’. If a procedure is formally defined, then it can be implemented using a formal language,

Introduction to Data Structures and Algorithms 51

and such a language is known as a programming language. In general terms, an algorithm provides
a blueprint to write a program to solve a particular problem. It is considered to be an effective
procedure for solving a problem in finite number of steps. That is, a well-defined algorithm always
provides an answer and is guaranteed to terminate.

Algorithms are mainly used to achieve sofiware reuse. Once we have an idea or a blueprint of
a solution, we can implement it in any high-level language like C, C++, or Java.

An algorithm is basically a set of instructions that solve a problem. It is not uncommon to have
multiple algorithms to tackle the same problem, but the choice of a particular algorithm must
depend on the time and space complexity of the algorithm.

2.6 DIFFERENT APPROACHES TO DESIGNING AN ALGORITHM

Algorithms are used to manipulate the data contained in data structures. When working with data
structures, algorithms are used to perform operations on the stored data.

A complex algorithm is often divided into smaller units called modules. This process of dividing
an algorithm into modules is called modularization. The key advantages of modularization are as
follows:

¢ [t makes the complex algorithm simpler to design and implement.

e Each module can be designed independently. While designing one module, the details of
other modules can be ignored, thereby enhancing clarity in design which in turn simplifies
implementation, debugging, testing, documenting, and maintenance of the overall algorithm.

There are two main approaches to design an algorithm—top-down approach and bottom-up
approach, as shown in Fig. 2.9.

A
Top-down Complex algorithm Bottom-up
approach approach
I |
Module 1 Module 2 Module n
000 OO0 000

Each module can be divided into one or more sub-modules
Figure 2.9 Different approaches of designing an algorithm

Top-down approach A top-down design approach starts by dividing the complex algorithm into
one or more modules. These modules can further be decomposed into one or more sub-modules,
and this process of decomposition is iterated until the desired level of module complexity is
achieved. Top-down design method is a form of stepwise refinement where we begin with the
topmost module and incrementally add modules that it calls.

Therefore, in a top-down approach, we start from an abstract design and then at each step,
this design is refined into more concrete levels until a level is reached that requires no further
refinement.

Bottom-up approach A bottom-up approach is just the reverse of top-down approach. In the
bottom-up design, we start with designing the most basic or concrete modules and then proceed
towards designing higher level modules. The higher level modules are implemented by using the
operations performed by lower level modules. Thus, in this approach sub-modules are grouped
together to form a higher level module. All the higher level modules are clubbed together to form
even higher level modules. This process is repeated until the design of the complete algorithm
is obtained.

52 Data Structures Using C

Top-down vs bottom-up approach Whether the top-down strategy should be followed or a
bottom-up is a question that can be answered depending on the application at hand.

While top-down approach follows a stepwise refinement by decomposing the algorithm into
manageable modules, the bottom-up approach on the other hand defines a module and then groups
together several modules to form a new higher level module.

Top-down approach is highly appreciated for ease in documenting the modules, generation
of test cases, implementation of code, and debugging. However, it is also criticized because the
sub-modules are analysed in isolation without concentrating on their communication with other
modules or on reusability of components and little attention is paid to data, thereby ignoring the
concept of information hiding.

Although the bottom-up approach allows information hiding as it first identifies what has to
be encapsulated within a module and then provides an abstract interface to define the module’s
boundaries as seen from the clients. But all this is difficult to be done in a strict bottom-up strategy.
Some top-down activities need to be performed for this.

All in all, design of complex algorithms must not be constrained to proceed according to a
fixed pattern but should be a blend of top-down and bottom-up approaches.

2.7 CONTROL STRUCTURES USED IN ALGORITHMS
An algorithm has a finite number of steps. Some steps may involve decision-making and repetition.
Broadly speaking, an algorithm may employ one of the following control structures: (a) sequence,
(b) decision, and (c) repetition.

Sequence
Step 1: Input first number as A By sequence, we mean that each step Qf an algor}thm is
Step 2: Input second number as B executed in a specified order. Let us write an algorithm to
Step 3: SET SUM = A+B add two numbers. This algorithm performs the steps in a
Step 4: PRINT SUM : . o5
otep 51 END purely sequential order, as shown in Fig. 2.10.

Decision

Figure 2.10 Algorithm to add two numbers Decision statements are used when the execution of a

process depends on the outcome of some condition. For

example, if x = y, then print EQuAL. So the general form of 1F construct can be given as:

IF condition Then process
A condition in this context is any statement that may evaluate to either a true value or a false value.
In the above example, a variable x can be either equal to y or not equal to y. However, it cannot
be both true and false. If the condition is true, then the process is executed.
A decision statement can also be stated in the following manner:

IF condition

Then processi

ELSE process2
This form is popularly known as the 1F-ELSE construct. Here, if the condition is true, then process1
is executed, else process2 is executed. Figure 2.11 shows an algorithm to check if two numbers
are equal.

Repetition

Repetition, which involves executing one or more steps for a number of times, can be implemented
using constructs such as while, do-while, and for loops. These loops execute one or more steps
until some condition is true. Figure 2.12 shows an algorithm that prints the first 10 natural numbers.

Introduction to Data Structures and Algorithms 53

Step 1: Input first number as A
Step 2: Input second number as B
stepidi AR A= B § Step 1: [INITIALIZE] SET I =1, N = 10
PRINT “EQUAL Step 2: Repeat Steps 3 and 4 while I<=N
ELSE Step 3: PRINT I
PRINT "NOT EQUAL" Step 4: SET I = I+1
[END OF IF] [END OF LOOP]
Step 4: END Step 5: END
Figure 2.11 Algorithm to test for equality of Figure 2.12 Algorithm to print the first 10 natural of

two numbers

ProGRAMMING EXAMPLES

1.

Write an algorithm for swapping two values.

Step 1: Input first number as A
Step 2: Input second number as B
Step 3: SET TEMP = A

Step 4: SET A =B

Step 5: SET B = TEMP

Step 6: PRINT A, B

Step 7: END

Write an algorithm to find the larger of two numbers.

Step 1: Input first number as A
Step 2: Input second number as B
Step 3: IF A>B
PRINT A
ELSE
IF A<B
PRINT B
ELSE
PRINT "The numbers are equal”
[END OF IF]
[END OF IF]
Step 4: END

Write an algorithm to find whether a number is even or odd.

Step 1: Input number as A
Step 2: IF A%2 =0

PRINT "EVEN"
ELSE
PRINT "ODD"
[END OF IF]
Step 3: END

Write an algorithm to print the grade obtained by a student using the following rules.

Step 1: Enter the Marks obtained as M

Step 2: IF M>75 Marks Grade
PRINT O Above 75 0

Step 3: IF M>=60 AND M<75
PRINT A 6075 -

Step 4: IF M>=50 AND M<60 50-59 B
PRINT B

Step 5: IF M>=40 AND M<50 U <
PRINT C Less then 40 D

ELSE

PRINT D

54 Data Structures Using C

[END OF IF]
Step 6: END
5. Write an algorithm to find the sum of first N natural numbers.
Step 1: Input N
Step 2: SET I =1, SUM =0
Step 3: Repeat Step 4 while I <= N
Step 4: SET SUM = SUM + I
SETTI =1+1
[END OF LOOP]
Step 5: PRINT SUM
Step 6: END

2.8 TIME AND SPACE COMPLEXITY

2.8.1

Analysing an algorithm means determining the amount of resources (such as time and memory)
needed to execute it. Algorithms are generally designed to work with an arbitrary number of inputs,
so the efficiency or complexity of an algorithm is stated in terms of time and space complexity.

The time complexity of an algorithm is basically the running time of a program as a function of
the input size. Similarly, the space complexity of an algorithm is the amount of computer memory
that is required during the program execution as a function of the input size.

In other words, the number of machine instructions which a program executes is called its
time complexity. This number is primarily dependent on the size of the program’s input and the
algorithm used.

Generally, the space needed by a program depends on the following two parts:

o Fixed part: It varies from problem to problem. It includes the space needed for storing

instructions, constants, variables, and structured variables (like arrays and structures).

o Variable part: It varies from program to program. It includes the space needed for recursion
stack, and for structured variables that are allocated space dynamically during the runtime
of a program.

However, running time requirements are more critical than memory requirements. Therefore, in
this section, we will concentrate on the running time efficiency of algorithms.

Worst-case, Average-case, Best-case, and Amortized Time Complexity

Worst-case running time This denotes the behaviour of an algorithm with respect to the worst-
possible case of the input instance. The worst-case running time of an algorithm is an upper bound
on the running time for any input. Therefore, having the knowledge of worst-case running time
gives us an assurance that the algorithm will never go beyond this time limit.

Average-case running time The average-case running time of an algorithm is an estimate of
the running time for an ‘average’ input. It specifies the expected behaviour of the algorithm when
the input is randomly drawn from a given distribution. Average-case running time assumes that
all inputs of a given size are equally likely.

Best-case running time The term ‘best-case performance’ is used to analyse an algorithm under
optimal conditions. For example, the best case for a simple linear search on an array occurs when
the desired element is the first in the list. However, while developing and choosing an algorithm to solve
a problem, we hardly base our decision on the best-case performance. It is always recommended
to improve the average performance and the worst-case performance of an algorithm.

Amortized running time Amortized running time refers to the time required to perform a
sequence of (related) operations averaged over all the operations performed. Amortized analysis
guarantees the average performance of each operation in the worst case.

Introduction to Data Structures and Algorithms 55

2.8.2 Time-Space Trade-off

The best algorithm to solve a particular problem at hand is no doubt the one that requires less
memory space and takes less time to complete its execution. But practically, designing such an
ideal algorithm is not a trivial task. There can be more than one algorithm to solve a particular
problem. One may require less memory space, while the other may require less CPU time to
execute. Thus, it is not uncommon to sacrifice one thing for the other. Hence, there exists a
time—space trade-off among algorithms.

So, if space is a big constraint, then one might choose a program that takes less space at the
cost of more CPU time. On the contrary, if time is a major constraint, then one might choose a
program that takes minimum time to execute at the cost of more space.

2.8.3 Expressing Time and Space Complexity

The time and space complexity can be expressed using a function f(n) where n is the input size
for a given instance of the problem being solved. Expressing the complexity is required when

e We want to predict the rate of growth of complexity as the input size of the problem increases.

o There are multiple algorithms that find a solution to a given problem and we need to find the
algorithm that is most efficient.

The most widely used notation to express this function f(n) is the Big O notation. It provides the
upper bound for the complexity.

2.8.4 Algorithm Efficiency

If a function is linear (without any loops or recursions), the efficiency of that algorithm or the
running time of that algorithm can be given as the number of instructions it contains. However,
if an algorithm contains loops, then the efficiency of that algorithm may vary depending on the
number of loops and the running time of each loop in the algorithm.

Let us consider different cases in which loops determine the efficiency of an algorithm.

Linear Loops
To calculate the efficiency of an algorithm that has a single loop, we need to first determine
the number of times the statements in the loop will be executed. This is because the number of
iterations is directly proportional to the loop factor. Greater the loop factor, more is the number
of iterations. For example, consider the loop given below:

for(i=0;1<100;i++)

statement block;
Here, 100 is the loop factor. We have already said that efficiency is directly proportional to the

number of iterations. Hence, the general formula in the case of linear loops may be given as

f(n) =n
However calculating efficiency is not as simple as is shown in the above example. Consider the
loop given below:

for(i=0;1<100;i+=2)

statement block;

Here, the number of iterations is half the number of the loop factor. So, here the efficiency can be
given as

f(n) = n/2

56 Data Structures Using C

Logarithmic Loops

We have seen that in linear loops, the loop updation statement either adds or subtracts the
loop-controlling variable. However, in logarithmic loops, the loop-controlling variable is either
multiplied or divided during each iteration of the loop. For example, look at the loops given below:
for(i=1;1<1000;i*=2) for(i=1000;i>=1;i/=2)
statement block; statement block;

Consider the first for loop in which the loop-controlling variable i is multiplied by 2. The
loop will be executed only 10 times and not 1000 times because in each iteration the value of i
doubles. Now, consider the second loop in which the loop-controlling variable i is divided by 2.
In this case also, the loop will be executed 10 times. Thus, the number of iterations is a function
of the number by which the loop-controlling variable is divided or multiplied. In the examples
discussed, it is 2. That is, when n = 1000, the number of iterations can be given by log 1000 which
is approximately equal to 10.

Therefore, putting this analysis in general terms, we can conclude that the efficiency of loops
in which iterations divide or multiply the loop-controlling variables can be given as

f(n) = log n

Nested Loops

Loops that contain loops are known as nested loops. In order to analyse nested loops, we need to
determine the number of iterations each loop completes. The total is then obtained as the product
of the number of iterations in the inner loop and the number of iterations in the outer loop.

In this case, we analyse the efficiency of the algorithm based on whether it is a linear logarithmic,
quadratic, or dependent quadratic nested loop.

Linear logarithmic loop Consider the following code in which the loop-controlling variable of
the inner loop is multiplied after each iteration. The number of iterations in the inner loop is log
10. This inner loop is controlled by an outer loop which iterates 10 times. Therefore, according to
the formula, the number of iterations for this code can be given as 10 log 10.
for(i=0;1i<10;i++)
for(j=1; j<10;j*=2)
statement block;
In more general terms, the efficiency of such loops can be given as f(n) = n log n.

Quadratic loop In a quadratic loop, the number of iterations in the inner loop is equal to the
number of iterations in the outer loop. Consider the following code in which the outer loop
executes 10 times and for each iteration of the outer loop, the inner loop also executes 10 times.
Therefore, the efficiency here is 100.
for(i=0;i<10;i++)
for(j=0; j<10;j++)
statement block;
The generalized formula for quadratic loop can be given as f(n) = n.

Dependent quadratic loop In a dependent quadratic loop, the number of iterations in the inner
loop is dependent on the outer loop. Consider the code given below:
for(i=0;i<10;i++)
for(j=0; j<=1i;j++)
statement block;

In this code, the inner loop will execute just once in the first iteration, twice in the second
iteration, thrice in the third iteration, so on and so forth. In this way, the number of iterations can
be calculated as

Introduction to Data Structures and Algorithms 57

1+2+3+...+9+ 10 =55

If we calculate the average of this loop (55/10=15.5), we will observe that it is equal to the number
of iterations in the outer loop (10) plus 1 divided by 2. In general terms, the inner loop iterates (n
+ 1)/2 times. Therefore, the efficiency of such a code can be given as

f(n) =n (n +1)/2

2.9 BIG O NOTATION

In today’s era of massive advancement in computer technology, we are hardly concerned about
the efficiency of algorithms. Rather, we are more interested in knowing the generic order of
the magnitude of the algorithm. If we have two different algorithms to solve the same problem
where one algorithm executes in 10 iterations and the other in 20 iterations, the difference between
the two algorithms is not much. However, if the first algorithm executes in 10 iterations and the
other in 1000 iterations, then it is a matter of concern.

We have seen that the number of statements executed in the program for n elements of the data
is a function of the number of elements, expressed as f(n). Even if the expression derived for a
function is complex, a dominant factor in the expression is sufficient to determine the order of
the magnitude of the result and, hence, the efficiency of the algorithm. This factor is the Big o,
and is expressed as o(n).

The Big O notation, where O stands for ‘order of”, is concerned with what happens for very
large values of n. For example, if a sorting algorithm performs n2 operations to sort just n elements,
then that algorithm would be described as an o(n2) algorithm.

When expressing complexity using the Big O notation, constant multipliers are ignored. So,
an 0(4n) algorithm is equivalent to o(n), which is how it should be written.

If £(n) and g(n) are the functions defined on a positive integer number n, then

f(n) = 0(g(n))
That is, f of n is Big-0 of g of n if and only if positive constants c¢ and n exist, such that
f(n)<cg(n). It means that for large amounts of data, £(n) will grow no more than a constant factor

than g(n). Hence, g provides an upper bound. Note that here c is a constant which depends on the
following factors:

the programming language used,

the quality of the compiler or interpreter,

the CPU speed,

the size of the main memory and the access time to it,

the knowledge of the programmer, and

the algorithm itself, which may require simple but also time-consuming machine instructions.

We have seen that the Big O notation provides a strict upper bound for £(n). This means that
the function f(n) can do better but not worse than the specified value. Big O notation is simply
written as f(n) € 0(g(n)) or as f(n) = 0(g(n)).

Here, n is the problem size and o(g(n)) = {h(n): 3 positive constants c, n such that 0 < h
(n) < cg(n), V¥ n 2 n}. Hence, we can say that o(g(n)) comprises a set of all the functions h(n)

that are less than or equal to cg(n) for all values of n>n,.

If f(n) < cg(n), c >0,V n>n,, then f(n) = 0(g(n)) and g(n) is an asymptotically tight upper
bound for f(n).

Examples of functions in o(n?) include: n*?, n?, n* + n, 540n° + 10.

58 Data Structures Using C

Examples of functions not in o(n®) include: n®2, n?, n?> + n, 540n + 10, 2n

To summarize,

o Best case O describes an upper bound for all combinations of input. It is possibly lower than
the worst case. For example, when sorting an array the best case is when the array is already

correctly sorted.

e Worst case O describes a lower bound for worst case input combinations. It is possibly greater
than the best case. For example, when sorting an array the worst case is when the array is

sorted in reverse order.

Table 2.1 Examples of £(n) and g(n) o If we simply write O, it means same as worst case O.
g(n) £(n) = 0(g(n)) Now let us look gt some examples of g(n) and f(n). Table
10 o) 2.1 shows the relatlopshlp _between g(n) and f(n)’. Note that
the constant values will be ignored because the main purpose
i+l o) of the Big O notation is to analyse the algorithm in a general
3+ 5 o(n) fashion, so the anomalies that appear for small input sizes are
2n®> + 3n? + 5n - 10 0o(n?) simply ignored.

Categories of Algorithms

According to the Big O notation, we have five different categories of algorithms:

e Constant time algorithm: running time complexity given as 0(1)

¢ Exponential time algorithm: running time complexity given as o(2")

Linear time algorithm: running time complexity given as o(n)

Logarithmic time algorithm: running time complexity given as o(log n)
Polynomial time algorithm: running time complexity given as o(n*) where k > 1

Table 2.2 shows the number of operations that would be performd for various values of n.

Table 2.2 Number of operations for different functions of n

n 0(1) 0(log n) o(n) 0o(n log n) 0(n?) o(n*)
1 1 1 1 1 1

2 1 1 2 2 4

4 1 2 4 8 16 64
8 1 3 8 24 64 512
16 1 4 16 64 256 4096

Example 2.1 Show that 4n? = o(n%).
Solution By definition, we have
0 < h(n) £ cg(n)
Substituting 4n* as h(n) and n’ as g(n), we get
0 £ 4n? < cn?
Dividing by n’

0/n® £ 4n?*/n® < cn®/n?®
0<4/n < c

Now to determine the value of ¢, we see that 4/n is maximum when n=1.

To determine the value of n,

0 4
0 n

IA 1A

4/n,
4/4

IA A

Therefore, c=4.

Introduction to Data Structures and Algorithms 59

0<1z2<n

This means n=1. Therefore, 0 < 4n? < 4n* Vn 2 n=1.

Example 2.2 Show that 400n® + 20n2 = 0(n?).
Solution By definition, we have
0 £ h(n) < cg(n)
Substituting 400n3 + 20n”as h(n) and n’ as g(n), we get
0 < 400n®*+ 20n? < cn?
Dividing by n®
0/n®* £ 400n°/n®+ 20n%/n® < cn®/n?
0 £ 400+ 20/n £ C
Note that 20/n — 0 as n — o0, and 20/n is maximum when n = 1. Therefore,
0 < 400+ 20/1 < ¢
This means, c = 420
To determine the value of n,

0 < 400 + 20/n, £ 420
-400 < 400 + 20/n, - 400 < 420 - 400
-400 <

20/n, < 20
-20 < 1/n, £ 1
-20 n; < 1 < n,. This implies n, = 1.

Hence, 0 < 400n* + 20n? < 420n°* V' n 2 n=1.

Example 2.3 Show that n = 0(nlogn).

Solution By definition, we have
0 £ h(n) < cg(n)

Substituting nas h(n) and nlogn as g(n), we get
0<n<cnlogn

Dividing by nlogn, we get
0/n log n < n/n lognz<cnlogn/ nlogn
0 < 1/logn < c

We know that 1/log n > 0asn —w

To determine the value of c, it is clearly evident that 1/10g n is greatest when n=2. Therefore,
0 <1/log 2< c = 1. Hence c = 1.

To determine the value of n, We can write

1/log n < 1

Now, log n. = 1, whenn_ = 2.
Hence,0< n < cn log nwhenc= 1and V n 2 n=2.

Example 2.4 Show that 10n® + 20n = 0o(n?).

Solution By definition, we have
0 2 h(n) < cg(n)
Substituting 10n® + 20nas h(n) and n*as g(n), we get
0 £ 10n®> + 20n £ cn?
Dividing by n?
0/n? < 10n3*/n? + 20n/n? £ cn?/n?
0 £ 10n + 20/n< ¢
0 £ (10n% + 20)/n< c
Hence, 10n* + 20n # 0%(n?)

60 Data Structures Using C

Limitations of Big O Notation

There are certain limitations with the Big O notation of expressing the complexity of algorithms.
These limitations are as follows:

e Many algorithms are simply too hard to analyse mathematically.

e There may not be sufficient information to calculate the behaviour of the algorithm in the
average case.

e Big O analysis only tells us how the algorithm grows with the size of the problem, not how
efficient it is, as it does not consider the programming effort.

e [tignores important constants. For example, if one algorithm takes o(n?) time to execute and
the other takes 0(100000n2) time to execute, then as per Big O, both algorithm have equal time
complexity. In real-time systems, this may be a serious consideration.

2.10 OMEGA NOTATION ()

The Omega notation provides a tight lower bound for £(n). This means that the function can never
do better than the specified value but it may do worse.
Q notation is simply written as, f(n) € Q(g(n)), where n is the problem size and
Q(g(n)) = {h(n): I positive constants ¢ > 0, n, such that 0 < cg(n) <h(n), V n=n}.

Hence, we can say that Q(g(n)) comprises a set of all the functions h(n) that are greater than
or equal to cg(n) for all values of n > n.

If cg(n) < f(n), ¢ >0, ¥ n 2 n,, then f(n) Ea(g(n)) and g(n) is an asymptotically tight
lower bound for f(n).

Examples of functions in Q(n?) include: n?, n*°, n® + n% n’
Examples of functions not in Q(n®) include: n, n*?, n?
To summarize,

e Best case Q describes a lower bound for all combinations of input. This implies that the
function can never get any better than the specified value. For example, when sorting an
array the best case is when the array is already correctly sorted.

o Worst case Q describes a lower bound for worst case input combinations. It is possibly greater
than best case. For example, when sorting an array the worst case is when the array is sorted
in reverse order.

o If we simply write Q, it means same as best case Q.

Example 2.5 Show that 5n% + 10n = Q(n?).

Solution By the definition, we can write

0 < cg(n) £ h(n)
0 £ cn? £ 5n% + 10n

Dividing by n?
0/n? < cn?/n? < 5n?/n? + 10n/n?
0 <c<5+ 10/n

Now, lim 5 +10/n=5.

pont
Therefore, 0 <c <5.

Hence, c=5

Now to determine the value of n

0 <5 <5+ 10/n,
-5<5-5<5+10/n -5

Introduction to Data Structures and Algorithms 61

-5 <0 £ 10/n,

Son,=1as Iim 1/n=0
n—»co

Hence, 5n2 + 10n =Q(n?) for c=5and V n > n=1.

Example 2.6 Show that 7n # Q(n?).

Solution By the definition, we can write

0 < cg(n) < h(n)
0 £ cn? £ 7n

Dividing by n?, we get

0/n? £ cn?/n? £ 7n/n?

0<c<7/n
Thus, from the above statement, we see that the value of c depends on the value of n. There does
not exist a value of n that satisfies the condition as n increases. This could fairly be possible if

¢ =0 but it is not allowed as the definition by itself says that lim 1/n=0.

n—o0

2.11 THETA NOTATION (©)

Theta notation provides an asymptotically tight bound for £(n). ® notation is simply written as,

f(n) € O(g(n)), where n is the problem size and

O(g(n)) = {h(n): I positive constants c,, c,, and n,such that o < c,g(n) <h(n) <c,g(n), Vn>n .
Hence, we can say that ©(g(n)) comprises a set of all the functions h(n) that are between c g(n)

and c,g(n) for all values of n>n.

If £(n) is between c,g(n) and c,g(n), V n>n,,then f(n) € ®(g(n)) and g(n) is an asymptotically
tight bound for £(n) and f(n) is amongst h(n) in the set.

To summarize,
e The best case in ® notation is not used.
e Worst case ® describes asymptotic bounds for worst case combination of input values.
o If we simply write ®, it means same as worst case 0.

Example 2.7 Show that n?/2 — 2n = O(n?).
Solution By the definition, we can write
c,g(n) £ h(n) £ c,g(n)
c,n*< n?/2 - 2n < c,n?
Dividing by n?, we get
c,n?/n*< n?/2n* - 2n/n* < c¢,n*/n?
c.£1/2 - 2/n < c

1 2

This means c, = 1/2 because lim 1/2 —2/n = 1/2 (Big O notation)

n—oo
To determine ¢ using Q notation, we can write

0<c<1/2-2/n

We see that 0 < ¢, isminimum when n = 5. Therefore,
0<c, £1/2 -2/5

Hence, ¢, = 1/10

Now let us determine the value of n;

1/10 < 1/2 - 2/n, < 1/2
2/n, < 1/2 - 1/10 < 1/2
2/n, < 2/5 < 1/2

62 Data Structures Using C

>
n,2 5

You may verify this by substituting the values as shown below.
c,n*< n*/2 - 2n < c,n?
¢, =1/10, ¢, = 1/2 and n, = 5

1/10(25) < 25/2 - 20/2 < 25/2

5/2 < 5/2 £ 25/2

Thus, in general, we can write, 1/10n2 < n2/2 - 2n < 1/2n?for n 2 5.

2.12 OTHER USEFUL NOTATIONS

There are other notations like little o notation and little o notation which have been discussed below.

Little o Notation

This notation provides a non-asymptotically tight upper bound for f(n). To express a function
using this notation, we write

f(n) € o(g(n)) where

o(g(n)) = {h(n) : 3 positive constants c, n, such that for any c¢ > 0, n;> 0, and 0 < h(n) < cg(n),
Vinzn}.

This is unlike the Big O notation where we say for some c > 0 (not any). For example, 5n*= 0(n?)
is asymptotically tight upper bound but 5n? = o(n®) is non-asymptotically tight bound for £(n).
Examples of functions in o(n®) include: n**, n*/log n, 2n2

Examples of functions not in o(n®) include: 3n3, n?, nz/ 1000

Example 2.8 Show that n® / 1000 # o(n%).
Solution By definition, we have
0 < h(n) <cg(n), for any constant ¢ > 0
0 < n®/ 1000 £ cn®
This is in contradiction with selecting any ¢ < 1/1000.

An imprecise analogy between the asymptotic comparison of functions f(n) and g(n) and the
relation between their values can be given as:
f(n)=0(g(n)) = f(n)< g(n) f(n)=o(g(n)) = f(n) < g(n) f(n)=0(g(n)) = f(n) =g(n)

Little Omega Notation ()

This notation provides a non-asymptotically tight lower bound for f(n). It can be simply written as,
f(n) € m(g(n)), where

®(g(n)) = {h(n) : 3 positive constants c, n, such that for any ¢ >0, n; >0, and 0 <cg(n) <h(n),¥ n>n}.
This is unlike the Q notation where we say for some ¢ > 0 (not any). For example, 5n*= Q(n%)
is asymptotically tight upper bound but 5n> = @(n®) is non-asymptotically tight bound for £(n).
Example of functions in w(g(n)) include: n* = @w(n?), n>%'= @(n?®), n?logn = m(n?)

Example of a function not in ®(g(n)) is 5n’# w(n?) (just as 5#5)

Example 2.9 Show that 50n*/100 # w(n®).
Solution By definition, we have
0 < cg(n) <h(n), for any constant ¢ >0

0 £ cn®< 50n%/100
Dividing by n?, we get

Introduction to Data Structures and Algorithms 63

0 < c< 50/100

This is a contradictory value as for any value of ¢ as it cannot be assured to be less than 50/100

or 1/2.

An imprecise analogy between the asymptotic comparison of functions f(n) and g(n) and the

relation between their values can be given as:

f(n) =Q(g(n)) = f(n)=g(n)

f(n) = 0(g(n)) =f(n) >g(n)

~PoINTS T0 REMEMBER

A data structure is a particular way of storing and
organizing data either in computer’s memory or on
the disk storage so that it can be used efficiently.
There are two types of data structures: primitive
and non-primitive data structures. Primitive data
structures are the fundamental data types which
are supported by a programming language. Non-
primitive data structures are those data structures
which are created using primitive data structures.
Non-primitive data structures can further be
classified into two categories: linear and non-linear
data structures.

If the elements of a data structure are stored in
a linear or sequential order, then it is a linear
data structure. However, if the elements of a data
structure are not stored in sequential order, then it
is a non-linear data structure.

An array is a collection of similar data elements
which are stored in consecutive memory locations.
A linked list is a linear data structure consisting of
a group of elements (called nodes) which together
represent a sequence.

A stack is a last-in, first-out (LIFO) data structure in
which insertion and deletion of elements are done at
only one end, which is known as the top of the stack.
A queue is a first-in, first-out (FIFO) data structure
in which the element that is inserted first is the first
to be taken out. The elements in a queue are added at
one end called the rear and removed from the other
end called the front.

A tree is a non-linear data structure which consists
of a collection of nodes arranged in a hierarchical
tree structure.

The simplest form of a tree is a binary tree. A binary
tree consists of a root node and left and right sub-
trees, where both sub-trees are also binary trees.

A graph is often viewed as a generalization of the tree
structure, where instead of a purely parent-to-child
relationship between tree nodes, any kind of complex
relationships can exist between the nodes.

An abstract data type (ADT) is the way we look at a
data structure, focusing on what it does and ignoring
how it does its job.

An algorithm is basically a set of instructions that
solve a problem.

The time complexity of an algorithm is basically
the running time of the program as a function of the
input size.

The space complexity of an algorithm is the amount
of computer memory required during the program
execution as a function of the input size.

The worst-case running time of an algorithm is an
upper bound on the running time for any input.
The average-case running time specifies the expected
behaviour of the algorithm when the input is
randomly drawn from a given distribution.
Amortized analysis guarantees the average perfor-
mance of each operation in the worst case.

The efficiency of an algorithm is expressed in terms
of the number of elements that has to be processed
and the type of the loop that is being used.

> = FXERCISES

Review Questions

1. Explain the features of a good program.

2. Define the terms: data, file, record, and primary
key.

64 Data Structures Using C

o

10.
11.
12.
13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.
24.

25.
26.
27.

28.
29.

30.
31.

. Define data structures. Give some examples.
. In how many ways can you categorize data

structures? Explain each of them.

. Discuss the applications of data structures.
. Write a short note on different operations that can

be performed on data structures.

. Compare a linked list with an array.
. Write a short note on abstract data type.
. Explain the different types of data structures. Also

discuss their merits and demerits.

Define an algorithm. Explain its features with the
help of suitable examples.

Explain and compare the approaches for designing
an algorithm.

What is modularization? Give its advantages.
Write a brief note on trees as a data structure.
What do you understand by a graph?

Explain the criteria that you will keep in mind
while choosing an appropriate algorithm to solve
a particular problem.

What do you understand by time—space trade-off?
What do you understand by the efficiency of an
algorithm?

How will you express the time complexity of a
given algorithm?

Discuss the significance and limitations of the Big O
notation.

Discuss the best case, worst case, average case,
and amortized time complexity of an algorithm.
Categorize algorithms based on their running time
complexity.

Give examples of functions that are in Big O
notation as well as functions that are not in Big
O notation.

Explain the little o notation.

Give examples of functions that are in little o
notation as well as functions that are not in little
0 notation.

Differentiate between Big O and little o notations.
Explain the Q notation.

Give examples of functions that are in Q notation
as well as functions that are not in Q notation.
Explain the ® notation.

Give examples of functions that are in ® notation
as well as functions that are not in ® notation.
Explain the ® notation.

Give examples of functions that are in ® notation
as well as functions that are in ® notation.

32.

33.
34.
35.
36.
37.
38.

Differentiate between Big omega and little omega
notations.

Show that n? + 50n = O(n?).

Show that n*tn’*+n’= 3n? = O(n’).

Prove that n® # O(n?).

Show that n = Q(lg n).

Prove that 3n + 5 # Q(n?).

Show that %n”> — 3n € O(n?).

Multiple-choice Questions

1.

10.

Which data structure is defined as a collection of
similar data elements?
(a) Arrays

(c) Trees

(b) Linked lists
(d) Graphs

. The data structure used in hierarchical data model

is

(a) Array (b) Linked list
(c) Tree (d) Graph
. In a stack, insertion is done at
(a) Top (b) Front
(c) Rear (d) Mid

. The position in a queue from which an element is

deleted is called as

() Top
(c) Rear

(b) Front
(d) Mid

. Which data structure has fixed size?

(b) Linked lists
(d) Graphs

(a) Arrays
(c) Trees

. If ToP = MAX-1, then that the stack is

(a) Empty (b) Full
(c) Contains some data (d) None of these

. Which among the following is a LIFO data

structure?
(a) Stacks (b) Linked lists
(c) Queues (d) Graphs

. Which data structure is used to represent complex

relationships between the nodes?

(a) Arrays (b) Linked lists
(c) Trees (d) Graphs

. Examples of linear data structures include
(a) Arrays (b) Stacks
(c) Queues (d) All of these

The running time complexity of a linear time
algorithm is given as
(a) 0(1)

(c) o(n log n)

(b) o(n)
(d) o(n?)

Introduction to Data Structures and Algorithms

65

11.

12.

13.

Which notation provides a strict upper bound for

f(n)?

(a) Omega notation (b) Big O notation

(c) Small o notation (d) Theta Notation
Which notation comprises a set of all functions
h(n) that are greater than or equal to cg(n) for all
values of n >n ?

(a) Omega notation (b) Big O notation
(d) Theta Notation
Function in o(n?) notation is

(a) 10n? (b) n'?

(c) n¥/100 (d) n?

(c) Small o notation

True or False

1.

10.

11.

12.

13.

14.

15.

Trees and graphs are the examples of linear data
structures.

. Queue is a FIFO data structure.
. Trees can represent any kind of complex

relationship between the nodes.

. The average-case running time of an algorithm is

an upper bound on the running time for any input.

. Array is an abstract data type.
. Array elements are stored in continuous memory

locations.

. The pop operation adds an element to the top of

a stack.

. Graphs have a purely parent-to-child relationship

between their nodes.

. The worst-case running time of an algorithm is a

lower bound on the running time for any input.
In top-down approach, we start with designing
the most basic or concrete modules and
then proceed towards designing higher-level
modules.

o(g(n)) comprises a set of all functions h(n) that
are less than or equal to cg(n) for all values of
n=n,

Simply Q means same as best case Q.

Small omega notation provides an asymptotically
tight bound for f(n).

Theta notation provides a non-asymptotically
tight lower bound for f(n).

30! £ iy(nd).

Fill in the Blanks

1.

is an arrangement of data either in the
computer’s memory or on the disk storage.

10.

11.

12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

are used to manipulate the data contained
in various data structures.

. In , the elements of a data structure are

stored sequentially.

of a variable specifies the set of values
that the variable can take.

. A tree is empty if
. Abstract means
. The time complexity of an algorithm is the running

time given as a function of
analysis guarantees the average perfor-
mance of each operation in the worst case.

. The elements of an array are referenced by an

is used to store the address of the topmost
element of a stack.

The operation returns the value of the
topmost element of a stack.
An overflow occurs when

is a FIFO data structure.

The elements in a queue are added at
removed from

and

If the elements of a data structure are stored
sequentially, then it is a
is basically a set of instructions that solve
a problem.
The number of machine instructions that a pro-
gram executes during its execution is called its
specifies the expected behaviour of an
algorithm when an input is randomly drawn from
a given distribution.
The running time complexity of a constant time
algorithm is given as
A complex algorithm is often divided into smaller
units called
design approach starts by dividing the
complex algorithm into one or more modules.
case is when the array is sorted in reverse
order.
notation provides a tight lower bound
for f(n).
The small o notation provides a
upper bound for f(n).
540n*+ 10 Q(n?).

tight

CHAPTER

Arrays

LEARNING OBJECTIVE

In this chapter, we will discuss arrays. An array is a user-defined data type that
stores related information together. All the information stored in an array belongs
to the same data type. So, in this chapter, we will learn how arrays are defined,
declared, initialized, and accessed. We will also discuss the different operations
that can be performed on array elements and the different types of arrays such as
two-dimensional arrays, multi-dimensional arrays, and sparse matrices. 4

3.1 INTRODUCTION
We will explain the concept of arrays using an analogy. Consider a situation in which we have
20 students in a class and we have been asked to write a program that reads and prints the marks
of all the 20 students. In this program, we will need 20 integer variables with different names, as

shown in Fig. 3.1.
Now to read the values of these 20 variables, we must have 20 read statements. Similarly, to print

the value of these variables, we need 20 write statements. If it is just a matter of 20 variables, then
it might be acceptable for the user to follow this approach. But would it be possible to follow this
approach if we have to read and print the marks of students,

¢ in the entire course (say 100 students)

e in the entire college (say 500 students)

e in the entire university (say 10,000 students)
The answer is no, definitely not! To process a large amount of data, we need a data structure

known as array.

Arrays 67

An array is a collection of similar data elements. These data elements have the same data type.
The elements of the array are stored in consecutive memory locations and are referenced by an
index (also known as the subscript). The subscript is an ordinal number which is used to identify
an element of the array.

Marks1 Marks5 Marks9 Marks13 Marks17

Marks2 Marks6 Marks10 Marks14 Marks18

Marks3 Marks7 Marks11 Marks15 Marks19

Marks4 Marks8 Marks12 Marks16 Marks20
I e e N e N e

Figure 3.1 Twenty variables for 20 students

3.2 DECLARATION OF ARRAYS

We have already seen that every variable must be declared before it is used. The same concept
holds true for array variables. An array must be declared before being used. Declaring an array
means specifying the following:

e Data type—the kind of values it can store, for example, int, char, float, double.
e Name—to identify the array.
o Size—the maximum number of values that the array can hold.

Arrays are declared using the following syntax:
type name[size];
The type can be either int, float, double, char, or any other valid data type. The number within

brackets indicates the size of the array, i.e., the maximum number of elements that can be stored
in the array. For example, if we write,

int marks[10];

then the statement declares marks to be an array containing 10 elements. In C, the array index
starts from zero. The first element will be stored in marks[0], second element in marks[1], and
so on. Therefore, the last element, that is the 10th element, will be stored in marks[9]. Note that
0, 1, 2, 3 written within square brackets are the subscripts. In the memory, the array will be
stored as shown in Fig. 3.2.

1 st 2nd 3rd 4th 5th 6th 7th 8th 9th 1 Oth
element | element | element | element | element | element | element | element | element | element

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]
Figure 3.2 Memory representation of an array of 10 elements

Figure 3.3 shows how different types of arrays are declared.

68 Data Structures Using C

data type

int marks [10]; o M & [[4 [[6 [[8 [9]

array name

{

char name [15]; (0] (11 [21 [3] [4] [5] [6] [7] (8] [9] [10] [11][12][13][14]

array size

f

float salary [5]; [0] 11 [2] [3] [4]

Figure 3.3 Declaring arrays of different data types and sizes

3.3 ACCESSING THE ELEMENTS OF AN ARRAY

Storing related data items in a single array enables the programmers to develop concise and
efficient programs. But there is no single function that can operate on all the elements of an array.
To access all the elements, we must use a loop. That is,
// Set each element of the array to -1 we can access all the elements of an array by varying the
int i, marks[10]; value of the subscript into the array. But note that the
’c""(i:Oni]ai:;SE) subscript must be an integral value or an expression that

1l = -1 evaluates to an integral value. As shown in Fig. 3.2, the
first element of the array marks[10] can be accessed by
writing marks[0]. Now to process all the elements of the
array, we use a loop as shown in Fig. 3.4.

Figure 3.5 shows the result of the code shown in Fig. 3.4. The code accesses every individual
element of the array and sets its value to —1. In the for loop, first the value of marks[0] is set to
—1, then the value of the index (i) is incremented and the next value, that is, marks[1] is set to —1.
The procedure continues until all the 10 elements of the array are set to —1.

Figure 3.4 Code to initialize each element of the
array to —1

A=t =1 =1 =1 =1 =1 =1]=1] -1
o1 M1 @2 @B M [©B1 61 71 (8 [9]

Figure 3.5 Array marks after executing the code given in Fig. 3.4

m There is no single statement that can read, access, or print all the elements of an array. To do this,
we have to use a loop to execute the same statement with different index values.

3.3.1 Calculating the Address of Array Elements

You must be wondering how C gets to know where an individual element of an array is located in
the memory. The answer is that the array name is a symbolic reference to the address of the first
byte of the array. When we use the array name, we are actually referring to the first byte of the array.

The subscript or the index represents the offset from the beginning of the array to the element
being referenced. That is, with just the array name and the index, C can calculate the address of
any element in the array.

Since an array stores all its data elements in consecutive memory locations, storing just the
base address, that is the address of the first element in the array, is sufficient. The address of

Arrays 69

other data elements can simply be calculated using the base address. The formula to perform this
calculation is,
Address of data element, A[k] = BA(A) + w(k - lower_bound)

Here, A is the array, k is the index of the element of which we have to calculate the address, Ba is
the base address of the array A, and w is the size of one element in memory, for example, size of
int is 2.

Example 3.1 Given an array int marks[]={99,67,78,56,88,90, 34,85}, calculate the address of
marks[4] if the base address = 1000.

Solution

| 99 | 67 | 78 | 56 | 8 | 9 | 34 | 8 |

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7]
1000 1002 1004 1006 1008 1010 1012 1014

We know that storing an integer value requires 2 bytes, therefore, its size is 2 bytes.

marks[4] = 1000 + 2(4 - 0)
1000 + 2(4) = 1008

3.3.2 Calculating the Length of an Array

The length of an array is given by the number of elements stored in it. The general formula to
calculate the length of an array is

Length = upper_bound - lower_bound + 1

where upper_bound is the index of the last element and lower_bound is the index of the first element
in the array.

Example 3.2 Let age[5] be an array of integers such that

Age[0] = 2, Age[1] = 5, Age[2] = 3, Age[3] = 1, Age[4] =7
Show the memory representation of the array and calculate its length.
Solution

The memory representation of the array Age[5] is given as below.

2|53]1]7]

Age[0] Age[1] Age[2] Age[3] Age[4]

Length = upper_bound - lower_bound + 1
Here, lower_bound = 0, upper_bound = 4

Therefore, length=4 - 0 + 1 = 5

3.4 STORING VALUES IN ARRAYS

When we declare an array, we are just allocating space for its elements; no values are stored in
the array. There are three ways to store values in an array. First, to initialize the array elements
during declaration; second, to input values for individual elements from the keyboard; third, to
assign values to individual elements. This is shown in Fig. 3.6.

70 Data Structures Using C

Initialize the elements during declaration

Storing values in an array Input values for the elements from the keyboard

Assign values to individual elements

Figure 3.6 Storing values in an array

Initializing Arrays during Declaration

The elements of an array can be initialized at the time of declaration, just as any other variable.
When an array is initialized, we need to provide a value for every element in the array. Arrays
are initialized by writing,

type array_name[size]={list of values};

marks[0] 90 Note that the values are written within curly brackets and every value is
separated by a comma. It is a compiler error to specify more values than there
are elements in the array. When we write,

int marks[5]={90, 82, 78, 95, 88};

marks[1] 82

marks[2] 78

marks[3] £ An array with the name marks is declared that has enough space to store five

marks([4] 88 elements. The first element, that is, marks[0] is assigned value 90. Similarly,
the second element of the array, that is marks[1], is assigned 82, and so on.
This is shown in Fig. 3.7.

While initializing the array at the time of declaration, the programmer may
omit the size of the array. For example,
int marks[]= {98, 97, 90};

Figure 3.7 Initialization of
array marks[5]

The above statement is absolutely legal. Here, the compiler will allocate enough space for
all the initialized elements. Note that if the number of values provided is less than the number
of elements in the array, the un-assigned elements are filled with zeros. Figure 3.8 shows the
initialization of arrays.

int marks [5] = {90, 45, 67, 85, 78}; | o0 | 45 | 67 | 85 | 78 |
o M@= Bl M
Rest of the
int marks [5] = {90, 45}; | 90 | 45 | 0 | 0 | 0 | glemen_ts are
filled with 0’'s
o M @2 B @
int marks [] = {90, 45, 72, 81, 63, 54}; | 90 | 45 | 72 | 81 | 63 | 54 |
o M @& B M© o nE
int marks [5] = {0}; | 0 | 0 | 0 | 0 | 0 |
o M @& B M@

Figure 3.8 Initialization of array elements

Arrays 71

int i, marks[10];
for(i=0;i<10;i++)
scanf("%d", &marks[i]);

Figure 3.9 Code for inputting each
element of the array

Inputting Values from the Keyboard

An array can be initialized by inputting values from the keyboard.
In this method, a while/do-while or a for loop is executed to input
the value for each element of the array. For example, look at the
code shown in Fig. 3.9.

In the code, we start at the index i at 0 and input the value for

the first element of the array. Since the array has 10 elements, we must input values for elements

whose index varies from 0 to 9.

Assigning Values to Individual Elements

The third way is to assign values to individual elements of the array by using the assignment
operator. Any value that evaluates to the data type as that of the array can be assigned to the
individual array element. A simple assignment statement can be written as

marks[3] = 100;

Here, 100 is assigned to the fourth element of the array which is specified as marks[3].

int i, arrl[10], arr2[10];
arri[10] = {0,1,2,3,4,5,6,7,8,9};
for(i=0;i<10;i++)

arr2[i] = arril[i];

Figure 3.10 Code to copy an array at the
individual element level

// Fill an array with even numbers
int i,arr[10];
for(i=0;i<10;i++)

arr[i] = i*2;

Figure 3.11 Code for filling an array with
even numbers

Note that we cannot assign one array to another array, even
if the two arrays have the same type and size. To copy an array,
you must copy the value of every element of the first array into
the elements of the second array. Figure 3.10 illustrates the code
to copy an array.

In Fig. 3.10, the loop accesses each element of the first array
and simultaneously assigns its value to the corresponding

element of the second array. The index value i is incremented
to access the next element in succession. Therefore, when this
codeisexeculed,arrz[o] = arrl[0], arr2[1] = arrl[1], arr2[2]
= arri[2], and so on.

We can also use a loop to assign a pattern of values to the
array elements. For example, if we want to fill an array with
even integers (starting from 0), then we will write the code as
shown in Fig. 3.11.

In the code, we assign to each element a value equal to twice of its index, where the index
starts from 0. So after executing this code, we will have arr[0]=0, arr[1]=2, arr[2] =4, and so on.

3.5 OPERATIONS ON ARRAYS

There are a number of operations that can be preformed on arrays. These operations include:

Traversing an array

[]
e Inserting an element in an array

e Scarching an element in an array
e Deleting an element from an array
[]
[]

Merging two arrays

Sorting an array in ascending or descending order

We will discuss all these operations in detail in this section, except searching and sorting, which

will be discussed in Chapter 14.

3.5.1 Traversing an Array

Traversing an array means accessing each and every element of the array for a specific purpose.

72 Data Structures Using C

Traversing the data elements of an array A can include printing every element, counting the
total number of elements, or performing any process on these elements. Since, array is a linear
data structure (because all its elements form a sequence), traversing its elements is very simple
and straightforward. The algorithm for array traversal is given in Fig. 3.12.

Step 1: [INITIALIZATION] SET I = lower_bound
Step 2: Repeat Steps 3 to 4 while I <= upper_bound

Step 3: Apply Process to A[I]
Step 4: SET I =1+ 1

[END OF LOOP]
Step 5: EXIT

Figure 3.12 Algorithm for array traversal

In Step 1, we initialize the index to the lower bound of the array. In Step 2, a while loop is
executed. Step 3 processes the individual array element as specified by the array name and index
value. Step 4 increments the index value so that the next array element could be processed. The
while loop in Step 2 is executed until all the elements in the array are processed, i.e., until I is
less than or equal to the upper bound of the array.

ProGRAMMING EXAMPLES

1. Write a program to read and display #» numbers using an array.

#include <stdio.h>
#include <conio.h>

int main()
{
int i, n, arr[20];
clrscr();
printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", i);
scanf("%d",&arr[i]);
}
printf("\n The array elements are ");
for(i=0;i<n;i++)
printf("\t %d", arr[i]);
return O;

}
Output

Enter the number of elements in the array : 5
arr[0] =
arr[1]
arr[2]
arr[3]
arr[4] =
The array elements are 1 2 3 4 5

[}
Ui h W N

2. Write a program to find the mean of » numbers using arrays.

#include <stdio.h>
#include <conio.h>
int main()

Arrays 73

")

{
int i, n, arr[20], sum =0;
float mean = 0.0;
clrscr();
printf("\n Enter the number of elements in the array :
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", 1i);
scanf("%d",&arr[i]);
¥
for(i=0;i<n;i++)
sum += arr[i];
mean = (float)sum/n;
printf("\n The sum of the array elements = %d", sum);
printf("“\n The mean of the array elements = %.2f", mean);
return O;
}
Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5

The sum of the array elements = 15
The mean of the array elements = 3.00

3. Write a program to print the position of the smallest number of » numbers using arrays.

#include <stdio.h>
#include <conio.h>
int main()

{

}
Output

int i, n, arr[20], small, pos;
clrscr();

printf("\n Enter the number of elements in the array :

scanf("%d", &n);

printf("\n Enter the elements : ");

for(i=0;i<n;i++)
scanf("%d",&arr[i]);

small = arr[0]

pos =0;
for(i=1;i<n;i++)
{
if(arr[i]<small)
small = arr[i];
pos = i;
}
b

printf(“\n The smallest element is : %d", small);

")s

printf("“\n The position of the smallest element in the array is : %d"

return 0;

Enter the number of elements in the array : 5
Enter the elements : 7 6 5 14 3

» POs);

74 Data Structures Using C

The smallest element is : 3
The position of the smallest element in the array is : 4

4. Write a program to find the second largest of » numbers using an array.

#include <stdio.h>
#include <conio.h>

int main()
{
int i, n, arr[20], large, second_large;
clrscr();
printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);
printf("\n Enter the elements");
for(i=0;i<n;i++)

scanf("%d",&arr[i]);
large = arr[0];
for(i=1;i<n;i++)
{

if(arr[i]>large)

large = arr[i];

}
second_large = arr[1];
for(i=0;i<n;i++)

{
if(arr[i] != large)
{
if(arr[i]>second_large)
second_large = arr[i];
¥
}
printf("\n The numbers you entered are : ");

for(i=0;i<n;i++)
printf("\t %d", arr[i]);
printf("\n The largest of these numbers is : %d",large);
printf("\n The second largest of these numbers is : %d",second_large);
return O;

}
Output
Enter the number of elements in the array : 5
Enter the elements 1 2 3 4 5
The numbers you entered are : 1 2 3 4 5
The largest of these numbers is : 5
The second largest of these numbers is : 4

5. Write a program to enter #» number of digits. Form a number using these digits.

#include <stdio.h>

#include <conio.h>

#include <math.h>

int main()

{
int number=0, digit[10], numofdigits,i;
clrscr();
printf("\n Enter the number of digits : ");
scanf("%d", &numofdigits);
for(i=0;i<numofdigits;i++)
{

printf("\n Enter the digit at position %d", i+1);

Arrays

75

scanf("%d", &digit[i]);

number = number + digit[i] * pow(10,i);

24

A wN R

o

¥
i=0;
while(i<numofdigits)
{
i++;
¥
printf("\n The number is
return O;
}
Output
Enter the number of digits
Enter the digit at position
Enter the digit at position
Enter the digit at position
Enter the digit at position

The number is :

9032

: %d", number);

6. Write a program to find whether the array of integers contains a duplicate number.

#include <stdio.h>
#include <conio.h>
int main()

{

¥
Output

int array[10], i, n, j, flag =0;
clrscr();
printf("\n Enter the size of the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)

array[j] && il=j)

printf("\n Duplicate numbers found at locations %d and %d", i, j);

printf("\n No Duplicates Found");

{
printf("\n array[%d] = ", i);
scanf("%d", &array[i]);
}
for(i=0;i<n;i++)
{
for(j=i+1;j<n;j++)
{
if(array[i]
{
flag =1;
}
¥
}
if(flag==0)
return O;

Enter the size of the array :

array[0]
array[1]
array[2]
array[3]
array[4]

5

Duplicate numbers found at locations 1 and 3

76 Data Structures Using C

Step 1: Set upper_bound = upper_bound + 1
Step 2: Set A[upper_bound] = VAL

3.5.2 Inserting an Element in an Array
If an element has to be inserted at the end of

Step 3: EXIT an existing array, then the task of insertion is

quite simple. We just have to add 1 to the upper_

Figure 3.13 Algorithm to append a new elementto an bound and assign the value. Here, we assume that

existing array the memory space allocated for the array is still

available. For example, if an array is declared to

contain 10 elements, but currently it has only 8 elements, then obviously there is space

to accommodate two more elements. But if it already has 10 elements, then we will not be able
to add another element to it.

Figure 3.13 shows an algorithm to insert a new element to the end of an array. In Step 1, we
increment the value of the upper_bound. In Step 2, the new value is stored at the position pointed
by the upper_bound. For example, let us assume an array has been declared as

int marks[60];

The array is declared to store the marks of all the students in a class. Now, suppose there are
54 students and a new student comes and is asked to take the same test. The marks of this new
student would be stored in marks[55]. Assuming that the student secured 68 marks, we will assign
the value as

marks[55] = 68;
However, if we have to insert an element in the middle of the array, then this is not a trivial task.
On an average, we might have to move as much as half of the elements from their positions in
order to accommodate space for the new element.

For example, consider an array whose elements are arranged in ascending order. Now, if a new
element has to be added, it will have to be added probably somewhere in the middle of the array.
To do this, we must first find the location where the new element will be inserted and then move
all the elements (that have a value greater than that of the new element) one position to the right
so that space can be created to store the new value.

Example 3.3 Dpata[] is an array that is declared as int Data[20]; and contains the following
values:
Data[] = {12, 23, 34, 45, 56, 67, 78, 89, 90, 100};

(a) Calculate the length of the array.

(b) Find the upper_bound and lower_bound.

(c¢) Show the memory representation of the array.

(d) Ifanew data element with the value 75 has to be inserted, find its position.

(e) Insert a new data element 75 and show the memory representation after the insertion.
Solution

(a) Length of the array = number of elements
Therefore, length of the array = 10
(b) By default, 1ower_bound = 0 and upper_bound = 9

©] 12 | 23 | 34 | 45 | 56 | 67 | 78 | 8 | 90 | 100

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] Data[8] Data[9]

(d) Since the elements of the array are stored in ascending order, the new data element
will be stored after 67, i.e., at the 6th location. So, all the array elements from the 6th
position will be moved one position towards the right to accommodate the new value

Arrays 77

(e)

| 12 | 23 | 34 | 45 | 56 | e7 | 75 | 78 | 89 | 90 | 100 |

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] Data[8] Data[9] Data[1@]

Algorithm to Insert an Element in the Middle of an Array
The algorithm 1nNsERT will be declared as INSERT (A, N, POs, VAL). The arguments are

(a) A, the array in which the element has to be inserted

(b) N, the number of elements in the array

(c) pos, the position at which the element has to be inserted

(d) vaL, the value that has to be inserted

Step
Step
Step
Step

[INITIALIZATION] SET I = N

Repeat Steps 3 and 4 while I >= POS
SET A[I + 1] = A[I]
SETI=1I-1

[END OF LOOP]

:SETN=N+1

: SET A[POS] = VAL

EXIT

A WNE

Step
Step
Step 7:

o Ul

Figure 3.14 Algorithm to insert an element in the middle
of an array.

Initial pata[] is given as below.

In the algorithm given in Fig. 3.14, in Step 1, we
first initialize I with the total number of elements
in the array. In Step 2, a while loop is executed
which will move all the elements having an index
greater than Pos one position towards right to create
space for the new element. In Step 5, we increment
the total number of elements in the array by 1 and
finally in Step 6, the new value is inserted at the
desired position.

Now, let us visualize this algorithm by taking
an example.

| 45 | 23 |

34|

12 | s | 20 |

Data[0] Data[1]

Data[2]

Data[3] Data[4] Data[5]

Calling INSERT (Data, 6, 3, 100) will lead to the following processing in the array:

| 45 | 23 | a4 12 | s6 | 20 | 20 |
Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6]

| 45 | 23 | 34 | 12 | s | s | 20 |
Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6]

| 45 | 23 | a4 | 12 | 12 | s | 20 |
Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6]

| 45 | 23 | 3¢ | 100 | 12 | s | 20 |
Data[0] Data[l1] Data[2] Data[3] Data[4] Data[5] Data[6]

ProcRAMMING EXAMPLES

7. Write a program to insert a number at a given location in an array.

#include <stdio.h>

78 Data Structures Using C

#include <conio.h>

int main()
{
int i, n, num, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);
for(i=0;i<n;i++)

{
printf("\n arr[%d] = ", 1i);
scanf("%d", &arr[i]);
}
printf(“\n Enter the number to be inserted : ");

scanf("%d", &num);
printf("\n Enter the position at which the number has to be added :");
scanf("%d", &pos);
for(i=n-1;i>=pos;i--)
arr[i+1] = arr[i];

arr[pos] = num;
n = n+l;
printf("\n The array after insertion of %d is :
for(i=0;i<n;i++)

printf("\n arr[%d] = %d", i, arr[i]);

', num);

getch();
return O;
}
Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5

Enter the number to be inserted : O

Enter the position at which the number has to be added : 3
The array after insertion of 0 is :

arr[0] =
arr[1]
arr[2]
arr[3]
arr[4]
arr[5]

8. Write a program to insert a number in an array that is already sorted in ascending order.

n
v h O WNPE

#include <stdio.h>
#include <conio.h>

int main()
{
int i, n, j, num, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);

for(i=0;i<n;i++)

{
printf("\n arr[%d] = ", i);
scanf("%d", &arr[i]);

¥

printf(“\n Enter the number to be inserted : ");

Arrays 79

scanf("%d", &num);
for(i=0;i<n;i++)

n-1; j>=i; j--)
arr[j+1] = arr[j];

arr[i] = num;

{
if(arr[i] > num)
{
for(j =
break;
¥
¥
n = n+l;

printf("\n The array after insertion of %d is :

for(i=0;i<n;i++)

» num);

printf("\n arr[%d] = %d", i, arr[i]);

getch();
return 0;
}
Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1l] = 2
arr[2] = 4
arr[3] = 5
arr[4] = 6

Enter the number to be inserted :

3

The array after insertion of 3 is :

arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
arr[5] = 6

3.5.3 Deleting an Element from an Array

Deleting an element from an array means removing a data element from an already existing array.
If the element has to be deleted from the end of the existing array, then the task of deletion is quite
simple. We just have to subtract 1 from the upper_bound. Figure 3.15 shows an algorithm to delete

an element from the end of an array.

For example, if we have an array that is declared as

int marks[60];

The array is declared to store the marks of all the students in the class. Now, suppose there are
54 students and the student with roll number 54 leaves the course. The score of this student was
stored in marks[54]. We just have to decrement the upper_bound. Subtracting 1 from the upper_bound
will indicate that there are 53 valid data in the array.

However, if we have to delete an element from the middle of an array, then it is not a trivial

Step 1: SET upper_bound = upper_bound - 1
Step 2: EXIT

Figure 3.15 Algorithm to delete the last element of
an array

task. On an average, we might have to move as much
as half of the elements from their positions in order to
occupy the space of the deleted element.

For example, consider an array whose elements are
arranged in ascending order. Now, suppose an element
has to be deleted, probably from somewhere in the

80 Data Structures Using C

middle of the array. To do this, we must first find the location from where the element has to
be deleted and then move all the elements (having a value greater than that of the element) one
position towards left so that the space vacated by the deleted element can be occupied by rest of

the elements.

Example 3.4

values:

Data[] is an array that is declared as int Data[10]; and contains the following

Data[] = {12, 23, 34, 45, 56, 67, 78, 89, 90, 100};
(a) Ifa data element with value 56 has to be deleted, find its position.
(b) Delete the data element 56 and show the memory representation after the deletion.

Solution

(a) Since the elements of the array are stored in ascending order, we will compare the
value that has to be deleted with the value of every element in the array. As soon as VAL
= Data[I], where I is the index or subscript of the array, we will get the position from
which the element has to be deleted. For example, if we see this array, here vaL = s6.
Data[0] = 12 which is not equal to 56. We will continue to compare and finally get the

value of Pos = 4.

) [12 | 23 [34 | 45 | 67 | 78 | 89 | 90 | 100 |

Data[0] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] Data[8]

Step 1: [INITIALIZATION] SET I = POS
Step 2: Repeat Steps 3 and 4 while I <= N -1
Step 3: SET A[I] = A[I + 1]
Step 4: SETI=I+1
[END OF LOOP]
Step 5: SETN=N-1
Step 6: EXIT

Figure 3.16 Algorithm to delete an element from the
middle of an array

| 45 | 23 | 34 | 12 | 56 | 20
Data[0] Data[1l] Data[2] Data[3] Data[4] Data[5]

| 45 | 23 | 12 | 12 | 56 | 20 |
Data[0] Data[l1l] Data[2] Data[3] Data[4] Data[5]

| 45 | 23 | 12 | 56 | 56 | 20 |
Data[0] Data[1l] Data[2] Data[3] Data[4] Data[5]

| 45 | 23 | 12 | 56 | 20 | 20 |
Data[0] Data[1l] Data[2] Data[3] Data[4] Data[5]

| 45 | 23 | 12 | 56 | 20 |
Data[0] Data[1l] Data[2] Data[3] Data[4]

Figure 3.17 Deleting elements from an array

Algorithm to Delete an Element from the Middle of
an Array

The algorithm peLeTe will be declared as DELETE(A, N,
pPos). The arguments are:

(a) A, the array from which the element has to be

deleted

(b) N, the number of elements in the array
(c) pos, the position from which the element has to

be deleted

Figure 3.16 shows the algorithm in which we first
initialize 1 with the position from which the element
has to be deleted. In Step 2, awhile loop is executed
which will move all the elements having an index
greater than pos one space towards left to occupy
the space vacated by the deleted element. When we
say that we are deleting an element, actually we
are overwriting the element with the value of its
successive element. In Step 5, we decrement the
total number of elements in the array by 1.

Now, let us visualize this algorithm by
taking an example given in Fig. 3.17. Calling
DELETE (Data, 6, 2) will lead to the following
processing in the array.

Arrays 81

PRoGRAMMING EXAMPLE

9. Write a program to delete a number from a given location in an array.
#include <stdio.h>
#include <conio.h>
int main()
{
int i, n, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", i);
scanf("%d", &arr[i]);
}
printf("\nEnter the position from which the number has to be deleted : ");
scanf("%d", &pos);
for(i=pos; i<n-1;i++)
arr[i] = arr[i+l];
n--;
printf("\n The array after deletion is : ");
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, arr[i]);
getch();
return O;
)
Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1l] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
Enter the position from which the number has to be deleted : 3
The array after deletion is :
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 5
10. Write a program to delete a number from an array that is already sorted in ascending order.

#include <stdio.h>
#include <conio.h>

int main()
{
int i, n, j, num, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");

scanf("%d", &n);

for(i=0;i<n;i++)

{
printf("\n arr[%d] = ", i);
scanf("%d", &arr[i]);

}

printf("\n Enter the number to be deleted : ");

scanf("%d", &num);

82 Data Structures Using C

for(i=0;i<n;i++)

{

if(arr[i] == num)

{

for(j=i; j<n-1;j++)
arr[j] = arr[j+1];

}
}
n = n-1;

printf("\n The array after deletion is : ");
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, arr[i]);

getch();
return O;
}
Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1l] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5

Enter the number to be deleted : 3
The array after deletion is :

arr[0] =
arr[1] =
arr[2]
arr[3]

v AN R

3.5.4 Merging Two Arrays

Merging two arrays in a third array means first copying the contents of the first array into the third
array and then copying the contents of the second array into the third array. Hence, the merged
array contains the contents of the first array followed by the contents of the second array.

If the arrays are unsorted, then merging the arrays is very simple, as one just needs to copy
the contents of one array into another. But merging is not a trivial task when the two arrays are
sorted and the merged array also needs to be sorted. Let us first discuss the merge operation on
unsorted arrays. This operation is shown in Fig 3.18.

Array1-| 90 | 56 | 89 | 77 | 69 |

Array2-| 45 | 88 | 76 | 99 | 12 | 58 | 81 |

Array3-| 90 | 56 | 89 | 77 | 69 | 45 | 88 | 76 | 99 | 12 | 58 | 81 |

Figure 3.18 Merging of two unsorted arrays

ProGRAMMING EXAMPLE

11. Write a program to merge two unsorted arrays.

#include <stdio.h>
#include <conio.h>
int main()

Arrays

83

¥
Output

Enter th
Enter th
arrl[0]
arri[1]
arrl[2]
Enter th
Enter th
arr2[0]
arr2[1]
arr2[2]
The merg
arr[0] =
arr[1] =
arr[2]
arr[3]
arr[4]
arr[5]

int arril[10], arr2[10], arr3[20];

int i, nl1, n2, m, index=0;

clrscr();

printf("\n Enter the number of elements in arrayl : ");
scanf("%d", &nl);

printf("\n\n Enter the elements of the first array");
for(i=0;i<nl;i++)

{
printf("\n arri[%d] = ", i);
scanf("%d", &arri[i]);
3
printf("\n Enter the number of elements in array2 : ");

scanf("%d", &n2);
printf("\n\n Enter the elements of the second array");
for(i=0;i<n2;i++)

{
printf("\n arr2[%d] = ", i);
scanf("%d", &arr2[i]);
}
m = nl+n2;
for(i=0;i<nl;i++)
{
arr3[index] = arrl[i];
index++;
}
for(i=0;i<n2;i++)
{
arr3[index] = arr2[i];
index++;
}

printf("\n\n The merged array is");
for(i=0;i<m;i++)

printf("\n arr[%d] = %d", i, arr3[i]);
getch();
return O;

e number of elements in arrayl : 3
e elements of the first array
1
2
3
e number of elements in array2 : 3
e elements of the second array
4
5
6
ed array is
1

o v A WN

84 Data Structures Using C

If we have two sorted arrays and the resultant merged array also needs to be a sorted one, then
the task of merging the arrays becomes a little difficult. The task of merging can be explained
using Fig. 3.19.

Array1-| 20 | 30 | 40 | 50 | 60 |

Array 2-| 15 |

Array3-| 15 | 20 | 22 | 30 | 31 | 40 | 45 | 50 | 56 | 60 | 62 | 78 |

22 | 31 | 45 | 56 | 62 | 78 |

Figure 3.19 Merging of two sorted arrays

Figure 3.19 shows how the merged array is formed using two sorted arrays. Here, we first
compare the 1st element of array1 with the 1st element of array2, and then put the smaller element
in the merged array. Since 20 > 15, we put 15 as the first element in the merged array. We then
compare the 2nd element of the second array with the 1st element of the first array. Since 20 <
22, now 20 is stored as the second element of the merged array. Next, the 2nd element of the first
array is compared with the 2nd element of the second array. Since 30 > 22, we store 22 as the third
element of the merged array. Now, we will compare the 2nd element of the first array with the 3rd
element of the second array. Because 30 <31, we store 30 as the 4th element of the merged array.
This procedure will be repeated until elements of both the arrays are placed in the right location

in the merged array.

ProGRAMMING EXAMPLE

12.

Write a program to merge two sorted arrays.

#include <stdio.h>
#include <conio.h>
int main()

{

int arrl[10], arr2[10], arr3[20];

int i, n1, n2, m, index=0;

int index_first = 0, index_second = 0;

clrscr();

printf("\n Enter the number of elements in arrayl : ");
scanf("%d", &nl);

printf("\n\n Enter the elements of the first array");
for(i=0;i<nl;i++)

{
printf("\n arri[%d] = ", i);
scanf("%d", &arrl[i]);
¥
printf("\n Enter the number of elements in array2 : ");

scanf("%d", &n2);
printf("\n\n Enter the elements of the second array");
for(i=0;i<n2;i++)

{
printf("\n arr2[%d] = ", i);
scanf("%d", &arr2[i]);

}

m = nl+n2;

while(index_first < nl && index_second < n2)

{

85

if(arril[index_first]<arr2[index_second])

{
arr3[index] = arrl[index_first];
index_first++;

}

else

{
arr3[index] = arr2[index_second];
index_second++;

¥

index++;

}

// if elements of the first array are over and the second array has some elements

if(index_first == n1)

{
while(index_second<n2)
{
arr3[index] = arr2[index_second];
index_second++;
index++;
¥
}
// if elements of the second array are over and the first array has some elements
else if(index_second == n2)
{
while(index_first<nl)
{
arr3[index] = arrl[index_first];
index_first++;
index++;
}

}
printf("\n\n The merged array is");
for(i=0;i<m;i++)
printf("\n arr[%d] = %d", i, arr3[i]);
getch();
return O;
X
Output

Enter the number of elements in arrayl : 3
Enter the elements of the first array

arrl[0] = 1
arrl[1] = 3
arrl[2] = 5

Enter the number of elements in array2 : 3
Enter the elements of the second array
arr2[0] 2

arr2[1] 4

arr2[2] = 6

The merged array is

arr[0] = 1

arr[1]
arr[2]
arr[3]
arr[4] =
arr[5]

nonou
a v~ wN

86 Data Structures Using C

3.6 PASSING ARRAYS TO FUNCTIONS

Like variables of other data types, we can also pass an array to a function. In some situations,
you may want to pass individual elements of the array; while in other situations, you may want
to pass the entire array. In this section, we will discuss both the cases. Look at Fig. 3.20 which
will help you understand the concept.

1D arrays for inter-
function communication

Passing individual Passing the entire
elements array

Passing data values Passing addresses

Figure 3.20 One dimensional arrays for inter-function communication

3.6.1 Passing Individual Elements

The individual elements of an array can be passed to a function by passing either their data values
or addresses.

Passing Data Values

Individual elements can be passed in the same manner as we pass variables of any other data
type. The condition is just that the data type of the array element must match with the type of
the function parameter. Look at Fig. 3.21(a) which shows the code to pass an individual array
element by passing the data value.

Calling function Called function
main() void func(int num)
{
int arr[5] ={1, 2, 3, 4, 5}; printf("%d", num);
func(arr[3]);
)i

Figure 3.21(a) Passing values of individual array elements to a function

In the above example, only one element of the array is passed to the called
function. This is done by using the index expression. Here, arr[3] evaluates
to a single integer value. The called function hardly bothers whether a normal
integer variable is passed to it or an array value is passed.

Passing Addresses
Like ordinary variables, we can pass the address of an individual array element by preceding
the indexed array element with the address operator. Therefore, to pass the address of the fourth
element of the array to the called function, we will write &arr[3].

However, in the called function, the value of the array element must be accessed using the
indirection (*) operator. Look at the code shown in Fig. 3.21(b).

Arrays

87

Calling function

main()

{
int arr[5] ={1, 2, 3, 4, 5};
func(&arr[3]);

}

Called function

void func(int *num)

{
}

printf("%d", *num);

Figure 3.21(b) Passing addresses of individual array elements to a function

3.6.2 Passing the Entire Array

We have discussed that in C the array name refers to the first byte of the array in the memory.
The address of the remaining elements in the array can be calculated using the array name and
the index value of the element. Therefore, when we need to pass an entire array to a function, we
can simply pass the name of the array. Figure 3.22 illustrates the code which passes the entire
array to the called function.

Calling function

Called function

main() void func(int arr[5])
{
int arr[5] ={1, 2, 3, 4, 5}; int i;
func(arr); for(i=0;i<5;i++)
} printf("%d", arr[i]);
¥

Figure 3.22 Passing entire array to a function

A function that accepts an array can declare the formal parameter in either of the two following
ways.

func(int arr[]); Or func(int *arr);

When we pass the name of an array to a function, the address of the zeroth element of the
array is copied to the local pointer variable in the function. When a formal parameter is declared
in a function header as an array, it is interpreted as a pointer to a variable and not as an array.
With this pointer variable you can access all the elements of the array by using the expression:
array_name + index. You can also pass the size of the array as another parameter to the function.
So for a function that accepts an array as parameter, the declaration should be as follows.

func(int arr[], int n); or func(int *arr, int n);

It is not necessary to pass the whole array to a function. We can also pass a part of the array
known as a sub-array. A pointer to a sub-array is also an array pointer. For example, if we want
to send the array starting from the third element then we can pass the address of the third element
and the size of the sub-array, i.e., if there are 10 elements in the array, and we want to pass the
array starting from the third element, then only eight elements would be part of the sub-array. So
the function call can be written as

func(&arr[2], 8);

Note that in case we want the called function to make no changes to the array, the array must
be received as a constant array by the called function. This prevents any type of unintentional
modifications of the array elements. To declare an array as a constant array, simply add the keyword
const before the data type of the array.

Look at the following programs which illustrate the use of pointers to pass an array to a function.

88 Data Structures Using C

ProGRAMMING EXAMPLES

13. Write a program to read an array of » numbers and then find the smallest number.
#include <stdio.h>
#include <conio.h>
void read_array(int arr[], int n);
int find_small(int arr[], int n);
int main()
{
int num[10], n, smallest;
clrscr();
printf("\n Enter the size of the array : ");
scanf("%d", &n);
read_array(num, n);
smallest = find_small(num, n);
printf("\n The smallest number in the array is = %d", smallest);
getch();
return O;
}
void read_array(int arr[10], int n)
{
int i;
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", 1);
scanf("%d", &arr[i]);
}
}
int find_small(int arr[10], int n)
{
int i = 0, small = arr[0];
for(i=1;i<n;i++)
{
if(arr[i] < small)
small = arr[i];
}
return small;
¥
Output
Enter the size of the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
The smallest number in the array is =1
14. Write a program to interchange the largest and the smallest number in an array.

#include <stdio.h>

#include <conio.h>

void read_array(int my_array[], int);

void display_array(int my_array[], int);

void interchange(int arr[], int);

int find_biggest pos(int my_array[10], int n);
int find_smallest_pos(int my_array[10], int n);
int main()

{

Arrays

89

int arr[10], n;

clrscr();

printf("\n Enter the size of the array : ");
scanf("%d", &n);

read_array(arr, n);

interchange(arr, n);

printf("\n The new array is: ");
display_array(arr,n);

getch();
return O;
}
void read_array(int my_array[10], int n)
{
int i;
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", 1i);
scanf("%d", &my_array[i]);
¥
}
void display_array(int my_array[10], int n)
{
int i;
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, my_array[i]);
}
void interchange(int my_array[10], int n)
{
int temp, big pos, small_pos;
big_pos = find_biggest_pos(my_array, n);
small_pos = find_smallest_pos(my_array,n);
temp = my_array[big_pos];
my_array[big pos] = my_array[small_pos];
my_array[small_pos] = temp;
}
int find_biggest_pos(int my_array[10], int n)
{
int i, large = my_array[0], pos=0;
for(i=1;icn;i++)
{
if (my_array[i] > large)
{
large = my_array[i];
pos=i;
¥
}
return pos;
}

int find_smallest_pos (int my_array[10], int n)
{
int i, small = my_array[0], pos=0;
for(i=1;i<n;i++)
{
if (my_array[i] < small)

small = my_array[i];
pos=i;

90 Data Structures Using C

return pos;

X
Output

Enter the size of the array : 5

arr[0]
arr[1]
arr[2]
arr[3]
arr[4] 2

The new array is :
arr[0] 5

arr[1]
arr[2]
arr[3]
arr[4]

nmouuonon
w oL un

nmouuonon
N WER O

L+ [2]3[a]s]
arr[0] arr[1] arr[2] arr[3] arr[4]
1000 1002 1004 1006 1008

Figure 3.23 Memory representation of
arr[]

3.7 POINTERS AND ARRAYS

The concept of array is very much bound to the concept of
pointer. Consider Fig. 3.23. For example, if we have an array
declared as,

int arr[] = {1, 2, 3, 4, 5};

then in memory it would be stored as shown in Fig. 3.23.

Array notation is a form of pointer notation. The name of the array is the starting address of the
array in memory. It is also known as the base address. In other words, base address is the address of
the first element in the array or the address of arr[0]. Now let us use a pointer variable as given

in the statement below.

int *ptr;
ptr = &arr[0];

Programming Tip

The name of an array is actually
a pointer that points to the first
element of the array.

L1 2]3]4]5s|
arr[0] arr[1] arr[2] arr[3] arr[4]

ptr

Figure 3.24 Pointer pointing to the third
element of the array

Programming Tip

An error is generated if an
attempt is made to change the
address of the array.

Here, ptr is made to point to the first element of the array. Execute
the code given below and observe the output which will make the
concept clear to you.

main()

{

int arr[]={1,2,3,4,5};

printf("\n Address of array = %p %p %p", arr, &rr[0], &arr);
}
Similarly, writing ptr = &arr[2] makes ptr to point to the third
element of the array that has index 2. Figure 3.24 shows ptr
pointing to the third element of the array.

If pointer variable ptr holds the address of the first element in
the array, then the address of successive elements can be calculated
by writing ptr++.

int *ptr = &arr[0];

ptr++;

printf("\n The value of the second element of the array is %d",
*ptr);

The printf() function will print the value 2 because after being
incremented ptr points to the next location. One point to note here is

that if x is an integer variable, then x++; adds 1 to the value of x. But ptr

Arrays 91

is a pointer variable, so when we write ptr+i, then adding i gives a pointer that points i elements
further along an array than the original pointer.

Since ++ptr and ptr++ are both equivalent to ptr+1, incrementing a pointer using the unary ++
operator, increments the address it stores by the amount given by sizeof(type) where type is the
data type of the variable it points to (i.e., 2 for an integer). For example, consider Fig. 3.25.

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
arr[0] arr[1] arr[2] arr[3] arr[4]

ptr

Figure 3.25 Pointer (ptr) pointing to the fourth element of the array

— If ptr originally points to arr[2], then ptr++ will make it to point to

the next element, i.e., arr[3]. This is shown in Fig. 3.25.
When an array is passed to Had this been a character array, every byte in the memory would
a function, we are actually have been used to store an individual character. ptr++ would then add

passing a pointer to the function. only 1 byte to the address of ptr.

Therefore, in the function
declaration you must declare a When using pointers, an expression like arr[i] is equivalent to

pointer to receive the array name. Writing *(arr+i).
Many beginners get confused by thinking of array name as a pointer.

For example, while we can write
ptr = arr; // ptr = &arr[0]
we cannot write
arr = ptr;

This is because while ptr is a variable, arr is a constant. The location at which the first element
of arr will be stored cannot be changed once arr[] has been declared. Therefore, an array name
is often known to be a constant pointer.

To summarize, the name of an array is equivalent to the address of its first element, as a pointer
is equivalent to the address of the element that it points to. Therefore, arrays and pointers use the
same concept.

m arrlil, ilarr], *(arr+i), *(i+arr) gives the same value.

Look at the following code which modifies the contents of an array using a pointer to an array.

int main()

{
int arr[]={1,2,3,4,5};
int *ptr, 1i;
ptr=Rarr[2];

*ptr = -1;
*(ptr+l) = 0;
*(ptr-1) = 1;

printf("\n Array is: ");
for(i=0;1i<5;i++)

printf(" %d", *(arr+i));
return O;

}

Output
Array is: 11 -105

92 Data Structures Using C

In c we can add or subtract an integer from a pointer to get a new pointer, pointing somewhere
other than the original position. c also permits addition and subtraction of two pointer variables.
For example, look at the code given below.

int main()

{
int arr[]={1,2,3,4,5,6,7,8,9};
int *ptrl, *ptr2;
ptrl = arr;
ptr2 = arr+2;
printf("%d", ptr2-ptrl);
return O;

¥

Output
2

In the code, ptr1 and ptr2 are pointers pointing to the elements of the same array. We may
subtract two pointers as long as they point to the same array. Here, the output is 2 because there
are two elements between ptr1 and ptr2 in the array arr. Both the pointers must point to the same
array or one past the end of the array, otherwise this behaviour cannot be defined.

Moreover, c also allows pointer variables to be compared with each other. Obviously, if two
pointers are equal, then they point to the same location in the array. However, if one pointer is
less than the other, it means that the pointer points to some element nearer to the beginning of the
array. Like with other variables, relational operators (>, <, >=, etc.) can also be applied to pointer
variables.

ProGcRAMMING EXAMPLE

15. Write a program to display an array of given numbers.

#include <stdio.h>

int main()

{
int arr[]={1,2,3,4,5,6,7,8,9};
int *ptril, *ptr2;
ptrl = arr;
ptr2 = &arr[8];
while(ptril<=ptr2)

{
printf("%d", *ptrl);
ptrl++;
}
return O;
}
Output

123456789

3.8 ARRAYS OF POINTERS
An array of pointers can be declared as
int *ptr[10];
The above statement declares an array of 10 pointers where each of the pointer points to an integer
variable. For example, look at the code given below.

Arrays 93

int *ptr[10];
intp=1,9q=2, r=3,s =4, t=25;

ptr[0] = &p;
ptr[l] = &q;
ptr[2] = &r;
ptr[3] = &s;
ptr[4] = &t;

Can you tell what will be the output of the following statement?
printf("\n %d", *ptr[3]);
The output will be 4 because ptr[3] stores the address of integer variable s and *ptr[3] will therefore

print the value of s that is 4. Now look at another code in which we store the address of three
individual arrays in the array of pointers:

int main()
{
int arri[]={1,2,3,4,5};
int arr2[]={0,2,4,6,8};
int arr3[]={1,3,5,7,9};
int *parr[3] = {arrl, arr2, arr3};

int i;

for(i = 0;i<3;i++)
printf(«%d», *parr[i]);

return O;

}
Output

101
Surprised with this output? Try to understand the concept. In the for loop, parr[0] stores the base
address of arr1 (or, &arr1[0]). So writing *parr[0] Will print the value stored at &arr1[0]. Same is
the case with *parr[1] and *parr[2].

3.9 TWO-DIMENSIONAL ARRAYS

First
dimension

Till now, we have only discussed one-dimensional arrays. One-dimensional arrays are organized
linearly in only one direction. But at times, we need to store data in the form of grids or tables.
Here, the concept of single-dimension arrays is extended to incorporate two-dimensional data
structures. A two-dimensional array is specified using two subscripts where the first subscript
denotes the row and the second denotes the column. The C compiler treats a two-dimensional
array as an array of one-dimensional arrays. Figure 3.26 shows a two-dimensional array which
can be viewed as an array of arrays.

3.9.1 Declaring Two-dimensional Arrays

Any array must be declared before being used. The declaration statement tells the compiler the
name of the array, the data type of each element in the array, and the size of each dimension. A

two-dimensional array is declared as:
data_type array_name[row_size][column_size];

Therefore, a two-dimensional mxn array is an array that

contains m x n data elements and each element is accessed

using two subscripts, i and j, where i<=m and j<=n.

For example, if we want to store the marks obtained by three

)) students in five different subjects, we can declare a two-
Second dimension dimensional array as:

Figure 3.26 Two-dimensional array int marks[3][5];

94 Data Structures Using C

In the above statement, a two-dimensional array called marks has been declared that has m(3)
rows and n(5) columns. The first element of the array is denoted by marks[0][0], the second
element as marks[0][1], and so on. Here, marks[0][0] stores the marks obtained by the first
student in the first subject, marks[1][0] stores the marks obtained by the second student in the
first subject.

The pictorial form of a two-dimensional array is shown in Fig. 3.27.

Rows Col 0 Col 1 Col 2 Col 3 Col 4
Columns
Row 0 marks[0][0] marks[0][1] marks[0][2] marks[0][3] marks[0][4]
Row 1 marks[1][0] marks[1][1] marks[1][2] marks[1][3] marks[1][4]
Row 2 marks[2][0] marks[2][1] marks[2][2] marks[2][3] marks[2][4]

Figure 3.27 Two-dimensional array

Hence, we see that a 2D array is treated as a collection of 1D arrays. Each row of a 2D array
corresponds to a 1D array consisting of n elements, where n is the number of columns. To understand
this, we can also see the representation of a two-dimensional array as shown in Fig. 3.28.

marks[0] - | marks[0] | marks[1] | marks[2] | marks[3] | marks[4] |
marks[1] - | marks[0] | marks[1] | marks[2] | marks[3] | marks[4] |
marks[2] - | marks[0] | marks[1] | marks[2] | marks[3] | marks[4] |

Figure 3.28 Representation of two-dimensional array marks[3][5]

Although we have shown a rectangular picture of a two-dimensional array, in the memory, these
elements actually will be stored sequentially. There are two ways of storing a two-dimensional array
in the memory. The first way is the row major order and the second is the column major order.
Let us see how the elements of a 2D array are stored in a row major order. Here, the elements of
the first row are stored before the elements of the second and third rows. That is, the elements of
the array are stored row by row where n elements of the first row will occupy the first n locations.
This is illustrated in Fig. 3.29.

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1.2) (1,3) (2,00 (2,1) (2,2) (2,3)

Figure 3.29 Elements of a 3 x 4 2D array in row major order

However, when we store the elements in a column major order, the elements of the first column
are stored before the elements of the second and third column. That is, the elements of the array
are stored column by column where m elements of the first column will occupy the first m locations.
This is illustrated in Fig. 3.30.

(0,00 (1,00 (2,00 (3,00 (0,1) (1,1 (21) 31 (0,2) (1,2) (2,2) (3,2)

Figure 3.30 Elements of a 4 x 3 2D array in column major order

Arrays 95

In one-dimensional arrays, we have seen that the computer does not keep track of the address
of every element in the array. It stores only the address of the first element and calculates the
address of other elements from the base address (address of the first element). Same is the case
with a two-dimensional array. Here also, the computer stores the base address, and the address of
the other elements is calculated using the following formula.

If the array elements are stored in column major order,

Address(A[I][J]) = Base_Address + w{M (J - 1) + (I - 1)}
And if the array elements are stored in row major order,

Address(A[I][J]) = Base_Address + w{N (I - 1) + (3 - 1)}
where w is the number of bytes required to store one element, N is the number of columns, M is the
number of rows, and I and J are the subscripts of the array element.

Example 3.5 Consider a 20 x 5 two-dimensional array marks which has its base address = 1000
and the size of an element = 2. Now compute the address of the element, marks[18][4] assuming
that the elements are stored in row major order.

Solution

Address(A[I][J]) = Base_Address + w{N (I - 1) + (J - 1)}
Address(marks[18][4]) = 1000 + 2 {5(18 - 1) + (4 - 1)}
1000 + 2 {5(17) + 3}

1000 + 2 (88)

1000 + 176 = 1176

3.9.2 Initializing Two-dimensional Arrays
Like in the case of other variables, declaring a two-dimensional array only reserves space for the
array in the memory. No values are stored in it. A two-dimensional array is initialized in the same
way as a one-dimensional array is initialized. For example,
int marks[2][3]={90, 87, 78, 68, 62, 71};
Note that the initialization of a two-dimensional array is done row by row. The above statement
can also be written as:
int marks[2][3]={{90,87,78},{68, 62, 71}};
The above two-dimensional array has two rows and three columns. First, the elements in the
first row are initialized and then the elements of the second row are initialized.
Therefore, marks[0][0] = 90 marks[0][1] = 87 marks[0][2]
marks[1][0] = 68 marks[1][1] = 62 marks[1][2]

78
71

In the above example, each row is defined as a one-dimensional array of three elements that are
enclosed in braces. Note that the commas are used to separate the elements in the row as well as
to separate the elements of two rows.

In case of one-dimensional arrays, we have discussed that if the array is completely initialized,
we may omit the size of the array. The same concept can be applied to a two-dimensional array,
except that only the size of the first dimension can be omitted. Therefore, the declaration statement
given below is valid.

int marks[]1[3]={{90,87,78},{68, 62, 71}};

In order to initialize the entire two-dimensional array to zeros, simply specify the first value
as zero. That is,

int marks[2][3] = {0};

96 Data Structures Using C

The individual elements of a two-dimensional array can be initialized using the assignment
operator as shown here.
marks[1][2]

or
marks[1][2] = marks[1][1] + 10;

79;

3.9.3 Accessing the Elements of Two-dimensional Arrays

The elements of a 2D array are stored in contiguous memory locations. In case of one-dimensional
arrays, we used a single for loop to vary the index i in every pass, so that all the elements could
be scanned. Since the two-dimensional array contains two subscripts, we will use two for loops
to scan the elements. The first for loop will scan each row in the 2D array and the second for loop
will scan individual columns for every row in the array. Look at the programs which use two for
loops to access the elements of a 2D array.

ProGgrAMMING EXAMPLES

16. Write a program to print the elements of a 2D array.

#include <stdio.h>
#include <conio.h>

int main()
{
int arr[2][2] = {12, 34, 56,32};
int i, j;
for(i=0;i<2;i++)
{

printf("\n");
for(j=0;3<2;j++)
printf("%d\t", arr[i][j]);

¥
return O;
¥
Output
12 34
56 32

17. Write a program to generate Pascal’s triangle.

#include <stdio.h>
#include <conio.h>
int main()
{
int arr[7][7]={0};
int row=2, col, i, j;
arr[0][0] = arr[1][0] = arr[1][1] = 1;
while(row <= 7)

{
arr[row][0] = 1;
for(col = 1; col <= row; col++)
arr[row][col] = arr[row-1][col-1] + arr[row-1][col];
row++;
}
for(i=0; i<7; i++)
{

printf("\n")
for(j=0; j<=1i; j++)

Arrays 97

Output

PR R RRR

printf("\t %d", arr[i][j]}

}

getch()

return O;

1

2 1

3 3 1

4 6 4 1

5 10 10 5 1

6 15 20 15 6 1

18. In a small company there are five salesmen. Each salesman is supposed to sell three
products. Write a program using a 2D array to print (i) the total sales by each salesman
and (ii) total sales of each item.

#include <stdio.h>
#include <conio.h>
int main()

{

¥
Output

int sales[5][3], i, j, total_sales=0;
//INPUT DATA

printf("\n ENTER THE DATA")
pr«intf("\n *****************"x
for(i=0; i<5; i++)

{
printf("\n Enter the sales of 3 items sold by salesman %d: ", i+l)
for(j=0; j<3; j++)
scanf("%d", &sales[i][j])}
)3

// PRINT TOTAL SALES BY EACH SALESMAN
for(i=0; i<5; i++)

{
total_sales = 0;
for(j=0; j<3; j++)
total_sales += sales[i][j];
printf("\n Total Sales By Salesman %d = %d", i+l, total_sales})
¥

// TOTAL SALES OF EACH ITEM
for(i=0; i<3; i++)// for each item
{

total_sales=0;

for(j=0; j<5; j++)// for each salesman

total_sales += sales[j][i];

printf("\n Total sales of item %d = %d", i+l1, total_sales)
¥
getch()
return 0;

ENTER THE DATA
ok ok sk sk ok o ok ok sk sk ok ok ok ok ok ok

Enter
Enter
Enter
Enter

the
the
the
the

23 23 45
34 45 63
36 33 43
33 52 35

sales of 3 items sold by salesman
sales of 3 items sold by salesman
sales of 3 items sold by salesman
sales of 3 items sold by salesman

A wWN PR

98 Data Structures Using C

Enter the sales of 3 items sold by salesman 5: 32 45 64
Total Sales By Salesman 1 = 91

Total Sales By Salesman 2 = 142

Total Sales By Salesman 3 = 112

Total Sales By Salesman 4 = 120

Total Sales By Salesman 5 = 141

Total sales of item 1 = 158

Total sales of item 2 = 198

Total sales of item 3 = 250

19. Write a program to read a 2D array marks which stores the marks of five students in three
subjects. Write a program to display the highest marks in each subject.

#include <stdio.h>
#include <conio.h>

int main()

{

int marks[5][3], i, j, max_marks;
for(i=0; i<5; i++)

printf("\n Enter the marks obtained by student %d",i+1);
for(j=0; j<3; j++)
{
printf("\n marks[%d][%d] = ", i, j)
scanf("%d", &marks[i][j])
}

for(j=0; j<3; j++)

max_marks = -999;
for(i=0; i<5; i++)
{
if(marks[i][j]>max_marks)
max_marks = marks[i][j];
}
printf("\n The highest marks obtained in the subject %d = %d", j+1, max_marks)

Enter the marks obtained by student 1

Enter the marks obtained by student 2

Enter the marks obtained by student 3

Enter the marks obtained by student 4

{

}

{

}

getch()

return O;
¥

Output

marks[0][0] = 89
marks[0][1] = 76
marks[0][2] = 100
marks[1][0] = 99
marks[1][1] = 90
marks[1][2] = 89
marks[2][0] = 67
marks[2][1] = 76
marks[2][2] = 56
marks[3][0] = 88
marks[3][1] = 77
marks[3][2] = 66

Enter the marks obtained by student 5

Arrays 99

marks[4][0] 67
marks[4][1] = 78
marks[4][2] = 89

The highest marks obtained in the subject 1 = 99
The highest marks obtained in the subject 2 = 90
The highest marks obtained in the subject 3 = 100

3.10 OPERATIONS ON TWO-DIMENSIONAL ARRAYS

Two-dimensional arrays can be used to implement the mathematical concept of matrices. In
mathematics, a matrix is a grid of numbers, arranged in rows and columns. Thus, using two-
dimensional arrays, we can perform the following operations on an mxn matrix:

Transpose Transpose of an mxn matrix A is given as a nxm matrix B, where B, ; = A

3,1°
Sum Two matrices that are compatible with each other can be added together, storing the result
in the third matrix. Two matrices are said to be compatible when they have the same number of
rows and columns. The elements of two matrices can be added by writing:
C,,=A +B,
1,] 1,]

i,3

Difference Two matrices that are compatible with each other can be subtracted, storing the result
in the third matrix. Two matrices are said to be compatible when they have the same number of
rows and columns. The elements of two matrices can be subtracted by writing:

C,.=A . -B,.
1,3 1,3

i,j
Product Two matrices can be multiplied with each other if the number of columns in the first
matrix is equal to the number of rows in the second matrix. Therefore, m x n matrix A can be
multiplied with a p x q matrix B if n=p. The dimension of the product matrix ism x q. The elements
of two matrices can be multiplied by writing:
C,; = A, B ,for k=1 to n

i,k k,J

ProGrAMMING EXAMPLES

20. Write a program to read and display a 3 X3 matrix.

#include <stdio.h>
#include <conio.h>
int main()
{
int i, j, mat[3][3];
clrscr();
printf("\n Enter the elements of the matrix ");
for(i=0;i<3;i++)
{
for(j=0;7j<3;j++)

scanf("%d",&mat[i][j]);

}
b
printf("\n The elements of the matrix are ");
for(i=0;i<3;i++)
{

printf("\n");

for(j=0;7j<3;j++)

100 Data Structures Using C

printf("\t %d",mat[i][3]);
}

return 0;

}
Output
Enter the elements of the matrix
123456789
The elements of the matrix are
123
456
7 89

21. Write a program to transpose a 3 X 3 matrix.

#include <stdio.h>

#include <conio.h>

int main()

{
int i, j, mat[3][3], transposed_mat[3][3];
clrscr();
printf("\n Enter the elements of the matrix ");
for(i=0;1i<3;i++)

{
for(j=0;3j<3;j++)
{
scanf("%d", &mat[i][j]);
}
¥

printf("“\n The elements of the matrix are ");
for(i=0;i<3;i++)

{
printf("\n");
for(j=0;3<3;j++)
printf("\t %d", mat[i][]j]);
¥
for(i=0;i<3;i++)
{
for(j=0;3<3;j++)
transposed_mat[i][j] = mat[j][i];
¥

printf(“\n The elements of the transposed matrix are ");
for(i=0;i<3;i++)

{
printf("\n");
for(j=0;3j<3;j++)
printf("\t %d",transposed_ mat[i][j]);
}
return 0;
}
Output

Enter the elements of the matrix
123456789

The elements of the matrix are

123

456

7 89

The elements of the transposed matrix are

147
258
369

Arrays

101

22. Write a program to input two m x n matrices and then calculate the sum of their
corresponding elements and store it in a third m x n matrix.

#include <stdio.h>
#include <conio.h>
int main()

{

int i, j;

int rowsl, colsl, rows2, cols2, rows_sum, cols_sum;
int mat1[5][5], mat2[5][5], sum[5][5];

clrscr();

printf("\n Enter the
scanf("%d",&rowsl);
printf("\n Enter the
scanf("%d",&colsl);
printf("\n Enter the
scanf("%d",&rows2);
printf("\n Enter the
scanf("%d",&cols2);

number of rows in
number of columns
number of rows in
number of columns

colsl != cols2)

the first matrix : ");

in the first matrix :

the second matrix :

in the second matrix

")

")

2)3

printf("\n Number of rows and columns of both matrices must be equal");

if(rowsl != rows2 ||
{
getch();
exit();

}

rows_sum = rowsl;
cols_sum = colsl;

printf("\n Enter the elements of the first matrix ");

for(i=0;i<rowsl;i++)

{

for(j=0;j<colsl;j++)

{

scanf("%d",&mat1[i][]]);

}
}

printf("\n Enter the elements of the second matrix ");

for(i=0;i<rows2;i++)

{

for(j=0;j<cols2;j++)

scanf("%d",&mat2[i][j]);

for(j=0;j<cols_sum;j++)
sum[i][j] = mati[i][j] + mat2[i][]];

{

b
}
for(i=0;i<rows_sum;i++)
{
}

printf("\n The elements of the resultant matrix are ");
for(i=0;i<rows_sum;i++)

{

printf("\n");
for(j=0;j<cols_sum;j++)
printf("\t %d", sum[i][3]);

}

return O;

102 Data Structures Using C

Output

Enter the number of rows in the first matrix: 2
Enter the number of columns in the first matrix: 2
Enter the number of rows in the second matrix: 2
Enter the number of columns in the second matrix: 2
Enter the elements of the first matrix

12314

Enter the elements of the second matrix

5678

The elements of the resultant matrix are

6 8

10 12

23. Write a program to multiply two m x n matrices.

#include <stdio.h>

#include <conio.h>

int main()

{
int i, j, k;
int rowsl, colsl, rows2, cols2, res_rows, res_cols;
int mat1[5][5], mat2[5][5], res[5][5];

clrscr();
printf("\n Enter the number of rows in the first matrix : ");
scanf("%d",&rows1);
printf("\n Enter the number of columns in the first matrix : ");
scanf("%d",&colsl);
printf("\n Enter the number of rows in the second matrix : ");
scanf("%d",&rows2);
printf("\n Enter the number of columns in the second matrix : ");
scanf("%d",&cols2);
if(colsl != rows2)
{
printf("\n The number of columns in the first matrix must be equal
to the number of rows in the second matrix");
getch();
exit();
}

res_rows = rowsl;

res_cols = cols2;

printf("\n Enter the elements of the first matrix ");
for(i=0;i<rowsl;i++)

{
for(j=0;j<colsl;j++)
{
scanf("%d",&mat1[i][]j]);
}
}

printf("\n Enter the elements of the second matrix ");
for(i=0;i<rows2;i++)

{
for(j=0;j<cols2;j++)
scanf("%d",&mat2[i][]]);
¥
¥
for(i=0;i<res_rows;i++)
{

for(j=0;j<res_cols;j++)

103

}

Arrays
{
res[i][j]=0;
for(k=0; k<res_cols;k++)
res[i][j] += matl[i][k] * mat2[k][]];
}

printf("\n The elements of the product matrix are ");
for(i=0;i<res_rows;i++)

{

}

printf("\n");
for(j=0;j<res_cols;j++)
printf("\t %d",res[i][]]);

return O;

}

Output
Enter the
Enter the
Enter the
Enter the
Enter the
1234
Enter the
5678

number of rows in the first matrix: 2
number of columns in the first matrix: 2
number of rows in the second matrix: 2
number of columns in the second matrix: 2
elements of the first matrix

elements of the second matrix

The elements of the product matrix are

19 22
43 50

3.11 PASSING TWO-DIMENSIONAL ARRAYS TO FUNCTIONS

There are three ways of passing a two-dimensional array to a function. First, we can pass individual
elements of the array. This is exactly the same as passing an element of a one-dimensional array.
Second, we can pass a single row of the two-dimensional array. This is equivalent to passing the
entire one-dimensional array to a function that has already been discussed in a previous section.
Third, we can pass the entire two-dimensional array to the function. Figure 3.31 shows the three
ways of using two-dimensional arrays for inter-functon communication.

2D array for inter-
function communication

Passing individual Passing the entire

Passing a row
elements 9 2D arrary

Figure 3.31 2D arrays for inter-function communication

Passing a Row

A row of a two-dimensional array can be passed by indexing the array name with the row number.
Look at Fig. 3.32 which illustrates how a single row of a two-dimensional array can be passed
to the called function.

104 Data Structures Using C

Calling function Called function
main() void func(int arr[])
{ {
int arr[2][3] = ({1, 2, 3}, {4, 5, 6}); int 1i;
func(arr[1]); for(i=0;i<3;i++)
} printf("%d", arr[i] * 10);
}

Figure 3.32 Passing a row of a 2D array to a function

Passing the Entire 2D Array

To pass a two-dimensional array to a function, we use the array name as the actual parameter (the
way we did in case of a 1D array). However, the parameter in the called function must indicate
that the array has two dimensions. Look at the following program which passes entire 2D array
to a function.

ProGRAMMING EXAMPLE

24. Write a program to fill a square matrix with value zero on the diagonals, 1 on the upper
right triangle, and —1 on the lower left triangle.
#include <stdio.h>
#include <conio.h>
void read_matrix(int mat[5][5], int})
void display_matrix(int mat[5][5], int)

int main()

{
int row;
int matl[5][5];
clrscr()

printf("\n Enter the number of rows and columns of the matrix:"}
scanf("%d", &row)

read_matrix(matl, row)

display matrix(matl, row)

getch()
return 0;
¥
void read_matrix(int mat[5][5], int r)
{
int i, j;
for(i=0; i<r; i++)
{
for(j=0; j<r; j++)
{
if(i==3)
mat[i][j] = O;
else if(i>j)
mat[i][j] = -1;
else
mat[i][j] = 1;
¥
¥
)
void display_matrix(int mat[5][5], int r)
{

int i, j;

Arrays

105

for(i=0; i<r; i++)

printf("\n");
for(j=0; j<r; j++)
printf("\t %d", mat[i][j]);

}
}
Output
Enter the number of rows and columns of the matrix: 2
0 1
-1 0

3.12 POINTERS AND TWO-DIMENSIONAL ARRAYS
Consider a two-dimensional array declared as
int mat[5][5];
To declare a pointer to a two-dimensional array, you may write

int **ptr

Here int **ptr is an array of pointers (to one-dimensional arrays), while int mat[5][5] is a 2D array.

They are not the same type and are not interchangeable.
Individual elements of the array mat can be accessed using either:
mat[i][j] or
((mat + i) + j) or
*(mat[i]+3);
To understand more fully the concept of pointers, let us replace
*(multi + row) with x so the expression
((mat + i) + j) becomes *(X + col)

Using pointer arithmetic, we know that the address pointed to by (i.e., value of) X + col + 1 must

be greater than the address x + col by an amount equal to sizeof(int).

Since mat is a two-dimensional array, we know that in the expression multi + row as used above,
multi+row+ 1 must increase in value by an amount equal to that needed to point fo the next row,

which in this case would be an amount equal to coLs * sizeof(int).

Thus, in case of a two-dimensional array, in order to evaluate expression (for a row major 2D

array), we must know a total of 4 values:

1. The address of the first element of the array, which is given by the name of the array, i.e., mat

in our case.
2. The size of the type of the elements of the array, i.e., size of integers in our case.
3. The specific index value for the row.
4. The specific index value for the column.
Note that
int (*ptr)[10];
declares ptr to be a pointer to an array of 10 integers. This is different from
int *ptr[10];

which would make ptr the name of an array of 10 pointers to type int. You must be thinking how

pointer arithmetic works if you have an array of pointers. For example:

int * arr[10] ;
int ** ptr = arr ;

106 Data Structures Using C

In this case, arr has type int **. Since all pointers have the same size, the address of ptr +i can
be calculated as:

addr(ptr + i) = addr(ptr) + [sizeof(int *) * i]
= addr(ptr) + [2 * i]

Since arr has type int **,
arr[0] = &arr[0][O0],
arr[1] = &rr[1][0], and in general,
arr[i] = &arr[i][0].

According to pointer arithmetic, arr + i = & arr[i], yet this skips an entire row of 5 elements,
i.e., it skips complete 10 bytes (5 elements each of 2 bytes size). Therefore, if arr is address 1000,
then arr + 2 is address 1010. To summarize, &rr[0][0], arr[0], arr, and &arr[0] point to the base
address.

&arr[0][0] + 1 points to arr[0][1]

arr[0] + 1 points to arr[0][1]

arr + 1 points to arr[1][0]

&arr[0] + 1 points to arr[1][0]
To conclude, a two-dimensional array is not the same as an array of pointers to 1D arrays. Actually
a two-dimensional array is declared as:

int (*ptr)[10] ;
Here ptr is a pointer to an array of 10 elements. The parentheses are not optional. In the absence
of these parentheses, ptr becomes an array of 10 pointers, not a pointer to an array of 10 ints.
Look at the code given below which illustrates the use of a pointer to a two-dimensional array.

#include <stdio.h>
int main()
{
int arr[2][2]={{1,2}, {3,4}};
int i, (*parr)[2];
parr = arr;
for(i = 0; i < 2; i++)

{
for(j = 0; j < 2 ;j++)
printf(" %d", (*(parr+i))[jl);
}
return O;
}
Output
1 2 3 4

The golden rule to access an element of a two-dimensional array can be given as
arr[i]1[3] = (*(arr+1))[J] = *((*arr+i))+3) = *(arr[i]+J)

Therefore,
arr[0][0] = *(arr)[0] = *((*arr)+0) = *(arr[0]+0)
arr[1][2] = (*(arr+1))[2] = *((*(arr+l))+2) = *(arr[1]+2)

If we declare an array of pointers using, If we declare a pointer to an array using,

data_type *array_name[SIZE];
Here s1ze represents the number of rows and

the space for columns that can be dynamically
allocated.

data_type (*array_name)[SIZE];

Here s1ze represents the number of
columns and the space for rows that may be
dynamically allocated (refer Appendix A to
see how memory is dynamically allocated).

Arrays 107

PRroGRAMMING EXAMPLE

25. Write a program to read and display a 3 X 3 matrix.

#include <stdio.h>
#include <conio.h>

void display(int (*)[3]);
int main()

{

int i, j, mat[3][3];
clrscr();
printf("\n Enter the elements of the matrix");
for(i=0;i<3;i++)
{
for(j = 0; j < 3; j++)
{

}

scanf("%d", &mat[i][j]);

b
display(mat);
return O;
}
void display(int (*mat)[3])
{
int i, j;
printf("\n The elements of the matrix are");
for(i = 0; i < 3; i++)
{
printf("\n");
for(j=0;73<3;j++)
printf("\t %d",*(*(mat + i)+j));
¥
¥
Output
Enter the elements of the matrix
123456789
The elements of the matrix are
123
456
7 8 9

m A double pointer cannot be used as a 2D array. Therefore, it is wrong to declare: ‘int **mat’ and then
use ‘mat’ as a 2D array. These are two very different data types used to access different locations in memory.
So running such a code may abort the program with a ‘memory access violation’ error.

A 2D array is not equivalent to a double pointer. A ‘pointer to pointer of T' cannot serve as a 2D array of T".
The 2D array is equivalent to a pointer to row of T, and this is very different from pointer to pointer of T.

When a double pointer that points to the first element of an array is used with the subscript notation ptr[0][0],
it is fully dereferenced two times and the resulting object will have an address equal to the value of the first
element of the array

3.13 MULTI-DIMENSIONAL ARRAYS
A multi-dimensional array in simple terms is an array of arrays. As we have one index in a one-
dimensional array, two indices in a two-dimensional array, in the same way, we have n indices in
an n-dimensional array or multi-dimensional array. Conversely, an n-dimensional array is specified

108 Data Structures Using C

using n indices. An n-dimensional m, x m, x m, x --- x m_array is a collection of m xm,xm x --- xm_
elements. In a multi-dimensional array, a particular element is specified by using n subscripts as
A[L][L,I[1,]...[I,1, where

I,<=M, I,<=M,, I,<=M,, ...I <=M

n

A multi-dimensional array can contain as many indices as needed and as the requirement of
memory increases with the number of indices used. However, in practice, we hardly use more
than three indices in any program. Figure 3.33 shows a three-dimensional array. The array has
three pages, four rows, and two columns.

P T
RO v
Second - | M
dimension-~ ——1-
(Colurfins) 1.3 N T X
First = -
dimension A E K Page 3
(Rows) B E P
C G Page 2
D H

Page 1 Third dimension

Figure 3.33 Three-dimensional array

m A multi-dimensional array is declared and initialized the same way we declare and initialize one- and
_two-dimensional arrays.

Example 3.6 Consider a three-dimensional array defined as int A[2][2][3]. Calculate the
number of elements in the array. Also, show the memory representation of the array in the row
major order and the column major order.

Solution

A three-dimensional array consists of pages. Each page, in turn, contains m rows and n columns.

.+ r r r ¢ +r [7 |
(0,0,0) (0,0,1) (0,0,2) (0,1,0) (0,1,1) (0,1,2) (1,0,0) (1,0,1) (1,0,2) (1,1,0) (1,1,1) (1,1,2)
(a) Row major order

. r r r rr rrrr]
(0,0,0) (0,1,0) (0,0,1) (0,1,1) (0,0,2) (0,1,2) (1,0,0) (1,1,0) (1,0,1) (1,1,1) (1,0,2) (1,1,2)
(b) Column major order

The three-dimensional array will contain 2 X 2 x 3 = 12 elements.

Arrays 109

ProGrRAMMING EXaMPLE

26. Write a program to read and display a 2X2 X2 array.

#include <stdio.h>
#include <conio.h>
int main()
{
int array[2][2][2], i, 3, k;
clrscr();
printf("\n Enter the elements of the matrix");
for(i=0;i<2;i++)

{
for(j=0;3j<2;j++)
{
for(k=0;k<2;k++)
{
scanf("%d", &array[i][j][k]);
¥
}
}
printf("\n The matrix is : ");
for(i=0;1i<2;i++)
{
printf("\n");
for(j=0;3j<2;j++)
{
printf("\n");
for(k=0;k<2;k++)
printf("\t array[%d][%d][%d] = %d", i, j, k, array[i]
[310kD);
}
}
getch();
return O;
¥
Output

Enter the elements of the matrix
12345678
The matrix is

arr[0][0][0] = 1 arr[O0][0][1] = 2
arr[0][1][0] = 3 arr[O][1][1] = 4
arr[1][0][0] = 5 arr[1][0][1] = 6
arr[1][1][0] = 7 arr[1][1][1] = 8

3.14 POINTERS AND THREE-DIMENSIONAL ARRAYS

In this section, we will see how pointers can be used to access a three-dimensional array. We have
seen that pointer to a one-dimensional array can be declared as,

int arr[]={1,2,3,4,5};

int *parr;

parr = arr;

Similarly, pointer to a two-dimensional array can be declared as,

int arr[2][2]={{1,2},{3,4}};
int (*parr)[2];
parr = arr;

110 Data Structures Using C

A pointer to a three-dimensional array can be declared as,

int arr[2][2][2]={1,2,3,4,5,6,7,8};
int (*parr)[2][2];
parr = arr;

We can access an element of a three-dimensional array by writing,
arr[i][J1[k] = *(*(*(arr+i)+j)+k)

ProGRAMMING EXAMPLE

27. Write a program which illustrates the use of a pointer to a three-dimensional array.

#include <stdio.h>
#include <conio.h>
int main()
{
int i,j,k;
int arr[2][2][2];
int (*parr)[2][2]= arr;
clrscr();
printf("\n Enter the elements of a 2 x 2 x 2 array: ");
for(i = 0; i < 2; i++)

{
for(j = 0; j < 2; j++)
{
for(k = 0; k < 2; k++)
scanf("%d", &arr[i][j]1[k]);
b
}

printf("\n The elements of the 2 x 2 x 2 array are: ");
for(i = 0; i < 2; i++)

{ for(j = 0; j < 2; j++)

{ for(k = 0; k < 2; k++)
printf("%d", *(*(*(parr+i)+j)+k));

¥

}

getch();

return O;

}
Output

Enter the elements of a 2 X 2 X 2 array: 123456738
The elements of the 2 X 2 X 2 array are: 1234567 8

m In the printf statement, you could also have used *(*(*(arr+i)+j+)+k) instead of
(x((parr+i)+j)+k)).

3.15 SPARSE MATRICES

Sparse matrix is a matrix that has large number of elements with a zero value. In order to efficiently
utilize the memory, specialized algorithms and data structures that take advantage of the sparse
structure should be used. If we apply the operations using standard matrix structures and algorithms
to sparse matrices, then the execution will slow down and the matrix will consume large amount of
memory. Sparse data can be easily compressed, which in turn can significantly reduce memory usage.

Arrays 111

1
5 3
2 7 -1
3 1 4
-9 2 -8
Figure 3.34
1 2 3
3 6
-1
Figure 3.35
4 1
51 2
9 3
4
Figure 3.36

2
1 7

Lower-triangular
matrix

© o N b
N o 0 O

7

Upper-triangular
matrix

anN -

2
19
8 7

Tri-diagonal
matrix

(@)
(b)

(©

elements.

elements.

There are two types of sparse matrices. In the first type of sparse matrix,
all elements above the main diagonal have a zero value. This type of
sparse matrix is also called a (Jower) triagonal matrix because if you see it
pictorially, all the elements with a non-zero value appear below the diagonal.
In a lower triangular matrix, A, ;=0 where i<j. An nXn lower-triangular
matrix A has one non-zero element in the first row, two non-zero elements
in the second row and likewise n non-zero elements in the nth row. Look
at Fig. 3.34 which shows a lower-triangular matrix.

To store a lower-triangular matrix efficiently in the memory, we can use
a one-dimensional array which stores only non-zero elements. The mapping
between a two-dimensional matrix and a one-dimensional array can be done
in any one of the following ways:

(a) Row-wise mapping—Here the contents of array A[] will be {1, 5,
3,2,7,-1,3,1,4,2,-9,2,-8, 1, 7}

(b) Column-wise mapping—Here the contents of array A[] will be
{1,5,2,3,-9,3,7,1,2,-1,4,-8,2,1, 7}

In an upper-triangular matrix, A, ;=0 where i> j. An nXn upper-triangular
matrix A has n non-zero elements in the first row, n-1 non-zero elements in
the second row and likewise one non-zero element in the nth row. Look at
Fig. 3.35 which shows an upper-triangular matrix.

There is another variant of a sparse matrix, in which elements with a
non-zero value can appear only on the diagonal or immediately above or
below the diagonal. This type of matrix is also called a tri-diagonal matrix.
Hence in a tridiagonal matrix, A, ;=0, where |i - j| > 1. In a tridiagonal
matrix, if elements are present on

the main diagonal, it contains non-zero elements for i=j. In all, there will be n elements.
below the main diagonal, it contains non-zero elements for i=j+1. In all, there will be n-1

above the main diagonal, it contains non-zero elements for i=j-1. In all, there will be n-1

Figure 3.36 shows a tri-diagonal matrix. To store a tri-diagonal matrix efficiently in the memory,
we can use a one-dimensional array that stores only non-zero elements. The mapping between a
two-dimensional matrix and a one-dimensional array can be done in any one of the following ways:

(a) Row-wise mapping—Here the contents of array A[] will be
{4,1,5,1,2,9,3,1,4,2,2,5,1,9,8,7}

(b) Column-wise mapping—Here the contents of array A[] will be
{4,5,1,1,9,2,3,4,1,2,5,2,1,8,9,7}

(c) Diagonal-wise mapping—Here the contents of array A[] will be
{5,9,4,5,8,4,1,3,2,1,7,1,2,1,2,9}

3.16 APPLICATIONS OF ARRAYS

Arrays are frequently used in C, as they have a number of useful applications. These applications are
e Arrays are widely used to implement mathematical vectors, matrices, and other kinds of

rectangular tables.

e Many databases include one-dimensional arrays whose elements are records.

e Arrays are also used to implement other data structures such as strings, stacks, queues, heaps,

and hash tables. We will read about these data structures in the subsequent chapters.

e Arrays can be used for sorting elements in ascending or descending order.

112

Data Structures Using C

»—=PoinTS T0 REMEMBER

An array is a collection of elements of the same data
type.

The elements of an array are stored in consecutive
memory locations and are referenced by an index
(also known as the subscript).

The index specifies an offset from the beginning of
the array to the element being referenced.
Declaring an array means specifying three
parameters: data type, name, and its size.

The length of an array is given by the number of
elements stored in it.

There is no single function that can operate on all
the elements of an array. To access all the elements,
we must use a loop.

The name of an array is a symbolic reference to
the address of the first byte of the array. Therefore,
whenever we use the array name, we are actually
referring to the first byte of that array.

C considers a two-dimensional array as an array of
one-dimensional arrays.

A two-dimensional array is specified using two
subscripts where the first subscript denotes the row
and the second subscript denotes the column of the
array.

Using two-dimensional arrays, we can perform the
different operations on matrices: transpose, addition,
subtraction, multiplication.

A multi-dimensional array is an array of arrays. Like
we have one index in a one-dimensional array, two
indices in a two-dimensional array, in the same way
we have n indices in an n-dimensional or multi-
dimensional array. Conversely, an n-dimensional
array is specified using # indices.
Multi-dimensional arrays can be stored in either row
major order or column major order.

Sparse matrix is a matrix that has large number of
elements with a zero value.

There are two types of sparse matrices. In the first
type, all the elements above the main diagonal have
a zero value. This type of sparse matrix is called
a lower-triangular matrix. In the second type, all
the elements below the main diagonal have a zero
value. This type of sparse matrix is called an upper-
triangular matrix.

There is another variant of a sparse matrix, in which
elements with a non-zero value can appear only
on the diagonal or immediately above or below
the diagonal. This type of sparse matrix is called a
tridiagonal matrix.

T‘ _EXERCISES

Review Questions

1.
2.
3.

W

10.

What are arrays and why are they needed?

How is an array represented in the memory?
How is a two-dimensional array represented in
the memory?

. What is the use of multi-dimensional arrays?
. Explain sparse matrix.
. How are pointers used to access two-dimensional

arrays?

. Why does storing of sparse matrices need extra

consideration? How are sparse matrices stored
efficiently in the computer’s memory?

. Foran array declared as int arr[50], calculate the

address of arr[35], if Base(arr)=1000 and w=2.

. Consider a two-dimensional array Marks[10][5]

having its base address as 2000 and the number of
bytes per element of the array is 2. Now, compute
the address of the element, Marks[8][5], assuming
that the elements are stored in row major order.
How are arrays related to pointers?

11.
12.

Briefly explain the concept of array of pointers.
How can one-dimensional arrays be used for inter-
function communication?

Consider a two-dimensional array arr[10][10]
which has base address = 1000 and the number of
bytes per element of the array = 2. Now, compute
the address of the element arr[8][5] assuming
that the elements are stored in column major order.

13.

14. Consider the array given below:
Name[0] Adam
Name[1] | Charles
Name[2] Dicken
Name[3] Esha
Name[4] | Georgia
Name[5] Hillary
Name[6] | Mishael

Arrays 113

15

(a) How many elements would be moved if the
name Andrew has to be added in it?
a 7 (i) 4
>iii) 5 (iv) 6
(b) How many elements would be moved if the
name Esha has to be deleted from it?
@1 3 (i) 4
>iii) 5 (iv) 6
. What happens when an array is initialized with
(a) fewer initializers as compared to its size?
(b) more initializers as compared to its size?

Programming Exercises

1

N

W

S

wn

[=))

7

8

9

10

11

. Consider an array MARKS[20][5] which stores the
marks obtained by 20 students in 5 subjects. Now
write a program to

(a) find the average marks obtained in each
subject.

(b) find the average marks obtained by every
student.

(c) find the number of students who have scored
below 50 in their average.

(d) display the scores obtained by every student.

. Write a program that reads an array of 100
integers. Display all the pairs of elements whose
sum is 50.

. Write a program to interchange the second element
with the second last element.

. Write a program that calculates the sum of squares
of the elements.

. Write a program to compute the sum and mean of
the elements of a two-dimensional array.

. Write a program to read and display a square
(using functions).

. Write a program that computes the sum of the
elements that are stored on the main diagonal of
a matrix using pointers.

. Write a program to add two 3 X 3 matrix using
pointers.

. Write a program that computes the product of the
elements that are stored on the diagonal above the
main diagonal.

. Write a program to count the total number of non-
zero elements in a two-dimensional array.

. Write a program to input the elements of a two-
dimensional array. Then from this array, make two
arrays—one that stores all odd elements of the

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

two-dimensional array and the other that stores
all even elements of the array.

Write a program to read two floating point number
arrays. Merge the two arrays and display the
resultant array in reverse order.

Write a program using pointers to interchange the
second biggest and the second smallest number in
the array.

. Write a menu driven program to read and display

a pXgXxr matrix. Also, find the sum, transpose,
and product of the two pXqXr matrices.

Write a program that reads a matrix and displays
the sum of its diagonal elements.

Write a program that reads a matrix and displays
the sum of the elements above the main diagonal.
(Hint: Calculate the sum of elements A , where i<3)
Write a program that reads a matrix and displays
the sum of the elements below the main diagonal.
(Hint: Calculate the sum of elements A, where
1>7)

Write a program that reads a square matrix of size
nXn. Write a function int isUpperTriangular
(int a[][], int n) that returns 1 if the matrix
is upper triangular.

(Hint: Array A is upper triangular if A, = o and
1>7)

Write a program that reads a square matrix of size
nXn. Write a function int isLowerTriangular
(int a[][], int n) that returns 1 if the matrix
is lower triangular.

(Hint: Array A is lower triangular if A,; = @ and
1<j)

Write a program that reads a square matrix of
size nxn. Write a function int isSymmetric
(int a[][], int n) that returns 1 if the matrix
is symmetric. (Hint: Array A is symmetric if A,; =
A, for all values of 1 and 3)

Write a program to calculate XA + YB where A and
B are matrices and X=2 and Y=3.

Write a program to illustrate the use of a pointer
that points to a 2D array.

Write a program to enter a number and break it
into n number of digits.

Write a program to delete all the duplicate entries
from an array of n integers.

Write a program to read a floating point array.
Update the array to insert a new number at the
specified location.

114

Data Structures Using C

Multiple-choice Questions

1.

If an array is declared as arr[] = {1,3,5,7,9};
then what is the value of sizeof(arr[3])?

(a) 1 (b) 2

(© 3 (d) 8

. If an array is declared as arr[] = {1,3,5,7,9};

then what is the value of arr[3]?
(a) 1 (b) 7
(© 9 d 5

. If an array is declared as double arr[50]; how

many bytes will be allocated to it?
(a) 50 (b) 100
(c) 200 (d) 400

. Ifan array is declared as int arr[50], how many

elements can it hold?
(a) 49
(c) 51

(b) 50
(@) o

. If an array is declared as int arr[5][5], how

many elements can it store?
(@ 5 (b) 25
(c) 10 (d o

. Given an integer array arr[]; the ith element can

be accessed by writing
(a) *(arr+i)
(c) arr[i]

(b) *(i+arr)
(d) All of these

True or False

1.

An array is used to refer multiple memory locations
having the same name.

. An array name can be used as a pointer.
. A loop is used to access all the elements of an

array.

. An array stores all its data elements in non-

consecutive memory locations.

. Lower bound is the index of the last element in

an array.

o

10.
11.
12.
13.
14.

15.

. Merged array contains contents of the first array

followed by the contents of the second array.

. It is possible to pass an entire array as a function

argument.

. arr[i] is equivalent to writing *(arr+i).
. Array name is equivalent to the address of its last

element.

mat[i][j] is equivalent to *(*(mat + i) + j).
An array contains elements of the same data type.
When an array is passed to a function, C passes
the value for each element.

A two-dimensional array contains data of two
different types.

The maximum number of dimensions that an array
can have is 4.

By default, the first subscript of the array is zero.

Fill in the Blanks

1.
2.

10.

. An n-dimensional array contains

Each array element is accessed using a
The elements of an array are stored in
memory locations.

subscripts.

. Name of the array acts as a
. Declaring an array means specifying the ,

, and .
is the address of the first element in the
array.
. Length of an array is given by the number of

. A multi-dimensional array, in simple terms, is an

. An expression that evaluates to an

value may be used as an index.
arr[3] = 10; initializes the element

of the array with value 10.

CHAPTER

Strings

LEARNING OBJECTIVE

In the last chapter, we discussed array of integers. Taking a step further, in this
chapter, we will discuss array of characters commonly known as strings. We will
see how strings are stored, declared, initialized, and accessed. We will learn about
different operations that can be performed on strings as well as about array of strings.

4.1 INTRODUCTION
Nowadays, computers are widely used for word processing applications such as creating, inserting,
updating, and modifying textual data. Besides this, we need to search for a particular pattern within
a text, delete it, or replace it with another pattern. So, there is a lot that we as users do to manipulate
the textual data.
In C, a string is a null-terminated character array. This means that after the last character, a
null character ('\0") is stored to signify the end of the character array. For example, if we write

char str[] = "HELLO";
then we are declaring an array that has five characters, namely, H, E, L, L, and 0. Apart from these
characters, a null character (*\0") is stored at the end of the string. So, the internal representation
of the string becomes HELLO'\0*. To store a string of length 5, we need 5 + 1 locations (1 extra for
the null character). The name of the character array (or the string) is a pointer to the beginning of
the string. Figure 4.1 shows the difference between character storage and string storage.

If we had declared str as

char str[5] = "HELLO";
then the null character will not be appended automatically to the character array. This is because
str can hold only 5 characters and the characters in HELLO have already filled the space allocated to it.

116 Data Structures Using C

str[0]
str[1]
str[2]
str[3]
str[4]
str[5]

Figure 4.2 Memory representation

char str[] = "HELLO"; char ch = "H';
[HE[L|L|O]\ E?d of Here H is a character not a string.
string The character H requires
Beginning only one memory location.
of string
H
char str[] = "H"; char str[] ="";

H|[\0
Here H is a string not a character. The

string H requires two memory locations. One
to store the character H and another to store | Although C permits empty string,
the null character. it does not allow an empty character.

Figure 4.1 Difference between character storage and string storage

1000 H Like we use subscripts (also known as index) to access the elements

1001 E of an array, we can also use subscripts to access the elements of a string.

1002) The su?bscript sta.rts with a zero (Q). All t.he characters of a string are

1003 3 stored in successive memory locations. Figure 4.2 shows how str[] is
stored in the memory.

1004 9 Thus, in simple terms, a string is a sequence of characters. In

1005 \0 Fig. 4.2, 1000, 1001, 1002, etc., are the memory addresses of individual

characters. For simplicity, the figure shows that H is stored at memory
of a character array location 1000 but in reality, the ASCII code of a character is stored in
the memory and not the character itself. So, at address 1000, 72 will be
stored as the ASCII code for H is 72.

Programming Tip The statement

When allocating memory space char str[] = "HELLO";

for a string, reserve space to
hold the null character also.

declares a constant string, as we have assigned a value to it while
declaring the string. However, the general form of declaring a string is

char str[size];

When we declare the string like this, we can store size-1 characters in the array because the
last character would be the null character. For example, char mesg[100]; can store a maximum of
99 characters.

Till now, we have only seen one way of initializing strings. The other way to initialize a string
is to initialize it as an array of characters. For example,

char str[] = {'H', 'E', 'L', 'L', '0', '\O0'};

In this example, we have explicitly added the null character. Also observe that we have not
mentioned the size of the string. Here, the compiler will automatically calculate the size based
on the number of characters. So, in this example six memory locations will be reserved to store
the string variable, str.

We can also declare a string with size much larger than the number of elements that are initialized.
For example, consider the statement below.

char str [10] = "HELLO";

Strings 117

In such cases, the compiler creates an array of size 10; stores "HELLO" in it and finally terminates
the string with a null character. Rest of the elements in the array are automatically initialized to
NULL.

Now consider the following statements:

char str[3];

str = "HELLO";
The above initialization statement is illegal in C and would generate a compile-time error because of
two reasons. First, the array is initialized with more elements than it can store. Second, initialization
cannot be separated from declaration.

4.1.1 Reading Strings

If we declare a string by writing
char str[100];

Then str can be read by the user in three ways:
1. using scanf function,
2. using gets() function, and
3. using getchar(),getch()or getche() function repeatedly.

Strings can be read using scanf() by writing

scanf("%s", str);

Although the syntax of using scanf() function is well known and easy to use, the main pitfall of

using this function is that the function terminates as soon as it finds a blank space. For example,

if the user enters Hello World, then the str will contain only Hello. This is because the moment a

blank space is encountered, the string is terminated by the scanf() function. You may also specify

a field width to indicate the maximum number of characters that can be read. Remember that extra
characters are left unconsumed in the input buffer.

Programming Tip Unlike int, float, and char values, %s format does not require the

Using & operand with a string ampersand before the variable str.

variable in the scanf statement The next method of reading a string is by using the gets() function.
generates an error. The string can be read by writing
gets(str);

gets() is a simple function that overcomes the drawbacks of the scanf() function. The gets()
function takes the starting address of the string which will hold the input. The string inputted
using gets() is automatically terminated with a null character.

Strings can also be read by calling the getchar() function repeatedly to read a sequence of
single characters (unless a terminating character is entered) and simultaneously storing it in a
character array as shown below.

i=0; ()

ch = getchar;// Get a character
while(ch != "*")

{

str[i] = ch;// Store the read character in str
i++;
ch = getchar();// Get another character

}

str[i] = '\0';// Terminate str with null character

Note that in this method, you have to deliberately append the string with a null character. The
other two functions automatically do this.

118 Data Structures Using C

4.1.2 Writing Strings

Strings can be displayed on the screen using the following three ways:
1. using printf() function,
2. using puts() function, and
3. using putchar() function repeatedly.
Strings can be displayed using printf() by writing
printf("%s", str);

We use the format specifier %s to output a string. Observe carefully that there is no ‘&’ character
used with the string variable. We may also use width and precision specifications along with %s.
The width specifies the minimum output field width. If the string is short, the extra space is either
left padded or right padded. A negative width left pads short string rather than the default right
justification. The precision specifies the maximum number of characters to be displayed, after
which the string is truncated. For example,

printf ("%5.3s", str);

The above statement would print only the first three characters in a total field of five characters.
Also these characters would be right justified in the allocated width. To make the string left justified,
we must use a minus sign. For example,

printf ("%-5.3s", str);

m When the field width is less than the length of the string, the entire string will be printed. If the number
~of characters to be printed is specified as zero, then nothing is printed on the screen.

The next method of writing a string is by using puts() function. A string can be displayed by
writing
puts(str);
puts() is a simple function that overcomes the drawbacks of the printf() function.
Strings can also be written by calling the putchar() function repeatedly to print a sequence of
single characters.

i=0;

while(str[i] != "\0")

{
putchar(str[i]);// Print the character on the screen
i++;

}

4.2 OPERATIONS ON STRINGS

In this section, we will learn about different operations that can be performed on strings.

Finding Length of a String

Step 1: [INITIALIZE] SET I =0 The number of characters in a string constitutes
Step 2: Repeat Step 3 while STR[I] != NULL the length of the string. For example, LENGTH("C
Step 3: [EN;EEFILSOFI,]J' 1 PROGRAMMING IS FUN") will return 20. Note that even
Step 4: SET LENGTH = I blank spaces are counted as characters in the string.
Step 5: END Figure 4.3 shows an algorithm that calculates the

length of a string. In this algorithm, 1 is used as an
Figure 4.3 Algorithm to calculate the length of a string index for traversing string sTr. To traverse each and
every character of sTR, we increment the value of 1.

Strings 119

Once we encounter the null character, the control jumps out of the while loop and the length is

initialized with the value of 1.

m The library function strlen(s1) which is defined in string.h returns the length of string s1.

ProGRAMMING EXAMPLE

1. Write a program to find the length of a string.

#include <stdio.h>
#include <conio.h>
int main()

{

char str[100], i = 0, length;

clrscr();

printf("\n Enter the string : ");

gets(str)

while(str[i] != "\0")
i++;

length = i;

printf("\n The length of the string is

getch()
return O;
}
Output
Enter the string : HELLO
The length of the string is : 5

: %d", length);

Step 1: [INITIALIZE] SET I=0
Step 2: Repeat Step 3 while STR[I] != NULL

Step 3: IF STR[I] >= 'a' AND STR[I] <= 2’
SET UPPERSTR[I] = STR[I] -32
ELSE
SET UPPERSTR[I] = STR[I]
[END OF IF]

SETI =I+1
[END OF LOOP]
Step 4: SET UPPERSTR[I] = NULL
Step 5: EXIT

Figure 4.4 Algorithm to convert characters of a string
into upper case

Converting Characters of a String into Upper/ Lower
Case

We have already discussed that in the memory ASCII
codes are stored instead of the real values. The ASCII
code for A-z varies from 65 to 91 and the ASCII
code for a-z ranges from 97 to 123. So, if we have
to convert a lower case character into uppercase, we
just need to subtract 32 from the ASCII value of the
character. And if we have to convert an upper case
character into lower case, we need to add 32 to the
ASCII value of the character. Figure 4.4 shows an
algorithm that converts the lower case characters of a
string into upper case.

m The library functions toupper() and tolower() which are defined in ctype.h convert a character

into upper and lower case, respectively.

In the algorithm, we initialize 1 to zero. Using I as the index of sTR, we traverse each character
of sTR from Step 2 to 3. If the character is in lower case, then it is converted into upper case by
subtracting 32 from its ASCII value. But if the character is already in upper case, then it is copied
into the UPPERSTR string. Finally, when all the characters have been traversed, a null character is

appended to UPPERSTR (as done in Step 4).

120 Data Structures Using C

PRoGRAMMING EXAMPLE

2. Write a program to convert the lower case characters of a string into upper case.

#include <stdio.h>
#include <conio.h>
int main()
{
char str[100], upper_str[100];
int i=0;
clrscr();
printf("\n Enter the string :");
gets(str);
while(str[i] != "\0")
{
if(str[i]>="a' && str[i]<='z")
upper_str[i] = str[i] - 32;

else
upper_str[i] = str[i];
i++;
¥
upper_str[i] = '\0"';
printf("\n The string converted into upper case is : ");
puts(upper_str);
return O;
)
Output

Enter the string : Hello
The string converted into upper case is : HELLO

Appending a String to Another String

Appending one string to another string involves copying the contents of the source string at the
end of the destination string. For example, if s1 and s2 are two strings, then appending s1 to s2
means we have to add the contents of s1 to s2. So, s1 is the source string and s2 is the destination
string. The appending operation would leave the source string s1 unchanged and the destination
string s2 = s2 + s1. Figure 4.5 shows an algorithm that appends two strings.

m The library function strcat(s1, s2) which is defined in string.h concatenates string s2 to s1.

Step 1: [INITIALIZE] SET I=0 and J=0
Step 2: Repeat Step 3 while DEST_STR[I] != NULL
Step 3: SETI=1I+1

[END OF LOOP]
Step 4: Repeat Steps 5 to 7 while SOURCE_STR[J] != NULL
Step 5: DEST_STR[I] = SOURCE_STR[J]
Step 6: SETI=1I+1
Step 7: SET J =3+ 1

[END OF LOOP]
Step 8: SET DEST_STR[I] = NULL
Step 9: EXIT

Figure 4.5 Algorithm to append a string to another string

In this algorithm, we first traverse through the destination string to reach its end, that is, reach
the position where a null character is encountered. The characters of the source string are then

Strings 121

copied into the destination string starting from that position. Finally, a null character is added to
terminate the destination string.

ProcRAMMING EXAMPLE

3. Write a program to append a string to another string.

#include <stdio.h>
#include <conio.h>
int main()
{
char Dest_Str[100], Source_Str[50];
int i=0, j=0;
clrscr();
printf("\n Enter the source string : ");
gets(Source_Str);
printf("\n Enter the destination string : ");
gets(Dest_Str);

while(Dest_Str[i] != '\0")
i++5;
while(Source_Str[j] != "\0")
{
Dest_Str[i] = Source_Str[j];
i++;
J++;

¥

Dest_Str[i] = "\0';

printf("\n After appending, the destination string is : ");
puts(Dest_Str);

getch();

return O;

}
Output

Enter the source string : How are you?
Enter the destination string : Hello,
After appending, the destination string is : Hello, How are you?

Comparing Two Strings
If's1 and s2 are two strings, then comparing the two strings will give either of the following results:

(a) s1and s2 are equal
(b) s1>s2, when in dictionary order, s1 will come after s2
(¢) si<s2, when in dictionary order, s1 precedes s2

To compare the two strings, each and every character is compared from both the strings. If all
the characters are the same, then the two strings are said to be equal. Figure 4.6 shows an algorithm
that compares two strings.

m The library function strcmp(s1, s2) which is defined in string.h compares string s1 with s2.

In this algorithm, we first check whether the two strings are of the same length. If not, then
there is no point in moving ahead, as it straight away means that the two strings are not the same.
However, if the two strings are of the same length, then we compare character by character to check
if all the characters are same. If yes, then the variable save is set to 1. Else, if saME = o, then we
check which string precedes the other in the dictionary order and print the corresponding message.

122 Data Structures Using C

Step 1: [INITIALIZE] SET I=0, SAME =0
Step 2: SET LEN1 = Length(STR1), LEN2 = Length(STR2)
Step 3: IF LEN1 != LEN2
Write "Strings Are Not Equal”
ELSE
Repeat while I<LEN1
IF STR1[I] == STR2[I]
SETI=I+1
ELSE
Go to Step 4
[END OF IF]
[END OF LOOP]
IF T = LEN1
SET SAME =1
Write "Strings are Equal”
[END OF IF)
Step 4: IF SAME = 0,
IF STR1[I] > STR2[I]
Write "Stringl is greater than String2”
ELSE IF STR1[I] < STR2[I]
Write "String2 is greater than Stringl”
[END OF IF]
[END OF IF]
Step 5: EXIT

Figure 4.6 Algorithm to compare two strings

PRroGRAMMING EXAMPLE

4. Write a program to compare two strings.

#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
char stri[50], str2[50];
int i=0, lenl1=0, len2=0, same=0;
clrscr();
printf("\n Enter the first string : ");
gets(strl);
printf("\n Enter the second string : ");
gets(str2);
lenl = strlen(strl);
len2 = strlen(str2);
if(lenl == len2)
{
while(i<lenl)
{
if(stri[i] == str2[i])
i++;
else break;

¥
if(i==1lenl)
{
same=1;
printf(“\n The two strings are equal");
¥

Strings 123

if(lenl!=1en2)

printf("\n The two strings are not equal");

if(same == 0)

printf("\n String 1 is greater than string 2");

printf("\n String 2 is greater than string 1");

{
if(stri[i]>str2[i])
else if(stri[i]<str2[i])
¥
getch();
return O;
}
Output
Enter the first string : Hello
Enter the second string : Hello

The two strings are equal

Reversing a String

If s1="HELLO", then reverse of s1="oLLEH". To reverse a string, we just need to swap the first
character with the last, second character with the second last character, and so on. Figure 4.7

shows an algorithm that reverses a string.

m The library function strrev(s1) which is defined in string.h reverses all the characters in the string

except the null character.

In Step 1, 1 is initialized to zero and 3 is initialized to the length of the string -1. In Step 2, a
while loop is executed until all the characters of the string are accessed. In Step 4, we swap the

Step 1: [INITIALIZE] SET I=0, J= Length(STR)-1
Step 2: Repeat Steps 3 and 4 while I < J

Step 3: SWAP(STR(I), STR(3J))

Step 4: SETI=I+1,3=13-1
[END OF LOOP]

Step 5: EXIT

Figure 4.7 Algorithm to reverse a string

ith character of sTR with its jth character. As a
result, the first character of sTR will be replaced
with its last character, the second character
will be replaced with the second last character
of sTR, and so on. In Step 4, the value of 1 is
incremented and J is decremented to traverse
sTR in the forward and backward directions,
respectively.

PRoGRAMMING EXAMPLE

5. Write a program to reverse a given string.

#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()

{

char str[100], reverse_str[100], temp;

int i=0, j=0;
clrscr();

printf("\n Enter the string :

gets(str);
j=strlen(str)-1;
while(i<3j)

temp = str[j];

")s

124 Data Structures Using C

str[j] = str[i];
str[i] = temp;
i++;
i

}

printf("\n The reversed string is : ");

puts(str);

getch();

return O;

¥
Output

Enter the string: Hi there

The reversed string is: ereht iH

Extracting a Substring from a String

To extract a substring from a given string, we need the following three parameters:

1. the main string,

2. the position of the first character of the substring in the given string, and
3. the maximum number of characters/length of the substring.

For example, if we have a string

str[] = "Welcome to the world of programming";

Step
Step

Step
Step
Step
Step

Step
Step

1: [INITIALIZE] Set I=M, J=0
Repeat Steps 3 to 6
while STR[I] != NULL and N>O

N

3: SET SUBSTR[J] = STR[I]
4: SET I =T1+1
5: SETJ =13+ 1
6: SETN=N-1
[END OF LOOP]
7: SET SUBSTR[J] = NULL
8: EXIT

Figure 4.8 Algorithm to extract a substring from

the middle of a string

Then,
SUBSTRING(str, 15, 5) = world

Figure 4.8 shows an algorithm that extracts a substring
from the middle of a string.

In this algorithm, we initialize a loop counter I to M,
that is, the position from which the characters have to be
copied. Steps 3 to 6 are repeated until N characters have
been copied. With every character copied, we decrement
the value of N. The characters of the string are copied into
another string called the suBsTr. At the end, a null character
is appended to SuBsTR to terminate the string.

ProGRAMMING EXAMPLE

6. Write a program to extract a substring from the middle of a given string.

#include <stdio.h>
#include <conio.h>
int main()

{

char str[100], substr[100];
int i=0, j=0, n, m;
clrscr();

printf("\n Enter the main string :

gets(str);

");

printf("\n Enter the position from which to start the substring: ");

scanf("%d", &m);

printf("\n Enter the length of the substring: ");

scanf("%d", &n);
i=m;
while(str[i] != "\O0' && n>0)

Strings 125

{
substr[j] = str[i];
it++;
J++;
n--;
¥

substr[j] = '\0';
printf("\n The substring is : ");

puts(substr);
getch();
return O;
)
Output

Enter the main string : Hi there

Enter the position from which to start the substring: 1
Enter the length of the substring: 4

The substring is : i th

Inserting a String in the Main String

st 12 [TIAE] 56T k0, 20 9 Ky | The imsetion operaton inserts string
Step 3: IF I = pos s in the main text T at the kth position.
Repeat while Str[K] != NULL The general syntax of this operation is
2:";—3:;31 = str(K] INSERT(text, position, string). For example,

SET K = K+1 INSERT("XYZXYZ", 3, "AAA") = “XYZAAAXYZ"
[END OF INNER LOOP] Figure 4.9 shows an algorithm to insert a
ELiEw_S £r[3] = TEXT[I] string ina giv.en text at t.h.e §p§ciﬁed p(.)sit.ion.
set 7 = J+1 This algorithm first initializes the indices
[END OF IF] into the string to zero. From Steps 3 to 5, the
Step 4: FE;\C‘DI oF (I)EER LooP] contents of NEW_STR are built. If 1 is exactly
Step 5: SET new_str[J] = NULL equal to the position at which the substring
Step 6: EXIT has to be inserted, then the inner loop copies
the contents of the substring into NEW_STR.
Figure 4.9 Algorithm to insert a string in a given text at the Otherwise, the contents of the text are copied

specified position into it.

ProGRAMMING EXAMPLE

7. Write a program to insert a string in the main text.

#include <stdio.h>

#include <conio.h>

int main()

{
char text[100], str[20], ins_text[100];
int i=0, j=0, k=0,pos;

clrscr();

printf("\n Enter the main text : ");

gets(text);

printf("\n Enter the string to be inserted : ");
gets(str);

printf("\n Enter the position at which the string has to be inserted:");
scanf("%d", &pos);
while(text[i]!="\0")

126 Data Structures Using C

{
if(i==pos)
{
while(str[k]!="\0")
{
ins_text[j]=str[k];
J++;
k++;
)
¥
else
{
ins_text[j]=text[i];
J++;
}
i++;
¥

ins_text[j]="'\0";

printf("\n The new string is : ");
puts(ins_text);

getch();

returnO;

}
Output

Enter the main text : newsman

Enter the string to be inserted : paper

Enter the position at which the string has to be inserted: 4
The new string is: newspaperman

Pattern Matching
This operation returns the position in the string where the string pattern first occurs. For example,
INDEX("Welcome to the world of programming", "world") = 15

However, if the pattern does not exist in the string, the INDEX function returns 0. Figure 4.10 shows
an algorithm to find the index of the first occurrence of a string within a given text.

Step 1: [INITIALIZE] SET I=0 and MAX = Length(TEXT)-Length(STR)+1
Step 2: Repeat Steps 3 to 6 while I < MAX
Step 3: Repeat Step 4 for K = 0 To Length(STR)
Step 4: IF STR[K] != TEXT[I + K], then Goto step 6
[END OF INNER LOOP]
Step 5: SET INDEX = I. Goto Step 8

Step 6: SET I = I+l

[END OF OUTER LOOP]
Step 7: SET INDEX = -1
Step 8: EXIT

Figure 4.10 Algorithm to find the index of the first occurrence of a string within a given text

In this algorithm, max is initialized to length(TEXT) - Length(STR) + 1. For example, if a text
contains 'Welcome To Programming' and the string contains 'world’, in the main text, we will look
for at the most 22 — 5 + 1 = 18 characters because after that there is no scope left for the string to
be present in the text.

Steps 3 to 6 are repeated until each and every character of the text has been checked for the
occurrence of the string within it. In the inner loop in Step 3, we check the n characters of string

Strings 127

with the n characters of text to find if the characters are same. If it is not the case, then we move
to Step 6, where I is incremented. If the string is found, then the index is initialized with 1, else
it is set to —1. For example, if
TEXT = WELCOME TO THE WORLD
STRING = COME
In the first pass of the inner loop, we will compare come with WeLc character by character. As w
and ¢ do not match, the control will move to Step 6 and then eLco will be compared with come. In
the fourth pass, come will be compared with come.
We will be using the programming code of pattern matching operation in the operations that
follow.

Deleting a Substring from the Main String

The deletion operation deletes a substring from a given text. We can write it as DELETE(text,
position, length). For example,

Step
Step
Step

Step
Step
Step

Step
Step

DELETE("ABCDXXXABCD", 4, 3) = "ABCDABCD"
1: [INITIALIZE] SET I=0 and J=0 . .
2: Repeat Steps 3 to 6 while TEXT[I] != NULL Figure 4.11 shows an algorithm to delete a
3: IF I=M substring from a given text.
Repeats‘g?ie_”; 21 In this algorithm, we first initialize the
SETN=N-1 indices to zero. Steps 3 to 6 are repeated until
[END OF INNER LOOP] all the characters of the text are scanned. If 1
[END OF IF] . s .
4: SET NEW STR[I] = TEXT[I] is exqctly equal to m (the position frqm which
5: SET J =3 + 1 deletion has to be done), then the index of
6: SETI =TI +1 the text is incremented and N is decremented.
[END OF OUTER LOOP] :
7: SET NEW_STR[J] = NULL N is the number of chara.ct.ers that have to.be
8: EXIT deleted starting from position M. However, if 1

Figure 4.11 Algorithm to delete a substring from a text

is not equal to M, then the characters of the text
are simply copied into the NEW_STR.

ProGrRAMMING EXAMPLE

8. Write a program to delete a substring from a text.

#include <stdio.h>

#include <conio.h>

int main()

{
char text[200], str[20], new_text[200];
int i=0, j=0, found=0, k, n=0, copy_loop=0;
clrscr();
printf("“\n Enter the main text :
gets(text);
printf("\n Enter the string to be deleted :
gets(str);
while(text[i]!="'\0")
{

")
")s

j=0, found=0, k=i;
while(text[k]==str[j] && str[j]!="\0")
{

K++;

JH+s

128 Data Structures Using C

if(str[j]=="\0")
copy_loop=k;
new_text[n] = text[copy_loop];
i++;
copy_loop++;
n++;
}
new_str[n]="\0";
printf("\n The new string is : ");
puts(new_str);
getch();
return O;

}
Output

Enter the main text : Hello, how are you?
Enter the string to be deleted : , how are you?
The new string is : Hello

Replacing a Pattern with Another Pattern in a String
The replacement operation is used to replace the pattern p, by another pattern p,. This is done by
writing REPLACE(text, pattern,, pattern,). For example,

("AAABBBCCC", "BBB", "X") = AAAXCCC
("AAABBBCCC", "X", "YYY")= AAABBBCC

In the second example, there is no change as x

does not appear in the text. Figure 4.12 shows
Step 1: [INITIALIZE] SET POS = INDEX(TEXT, P,) . .
Step 2: SET TEXT = DELETE(TEXT, POS, LENGTH(P,)) an algorlthm to replace a pattern p, with another
Step 3: INSERT(TEXT, POS, P,) pattern p, in the text.
Step 4: EXIT The algorithm is very simple, where we first
find the position pos, at which the pattern occurs
Figure 4.12 Algorithm Fo replace a pattern p, with another in the text, then delete the existing pattern from
pattern p, in the text that position and insert a new pattern there.

ProGRAMMING EXAMPLE

9. Write a program to replace a pattern with another pattern in the text.

#include <stdio.h>

#include <conio.h>

main()

{
char str[200], pat[20], new_str[200], rep_pat[100];
int i=0, j=0, k, n=0, copy_loop=0, rep_index=0;

clrscr();

printf("\n Enter the string : ");

gets(str);

printf("\n Enter the pattern to be replaced: ");
gets(pat);

printf("\n Enter the replacing pattern: ");
gets(rep_pat);
while(str[i]!="\0")
{
j=0,k=1i;
while(str[k]==pat[j] && pat[j]!="\0")

Strings 129

{
k++;
J++s
)
if(pat[j]l=="\0")
{
copy_loop=k;
while(rep_pat[rep_index] !='\0")
{
new_str[n] = rep_pat[rep_index];
rep_index++;
n++;
}
}
new_str[n] = str[copy_loop];
i1++5
copy_loop++;
n++;
¥
new_str[n]="\0";
printf("\n The new string is : ");
puts(new_str);
getch();
return O;
}
Output

Enter the string : How ARE you?

Enter the pattern to be replaced : ARE
Enter the replacing pattern : are

The new string is : How are you?

4.3 ARRAYS OF STRINGS

Till now we have seen that a string is an array of characters. For example, if we say char name[] =
"Mohan", then the name is a string (character array) that has five characters.

Now, suppose that there are 20 students in a class and we need a string that stores the names
of all the 20 students. How can this be done? Here, we need a string of strings or an array of strings.
Such an array of strings would store 20 individual strings. An array of strings is declared as

char names[20][30];

Here, the first index will specify how many strings are needed and the second index will specify
the length of every individual string. So here, we will allocate space for 20 names where each
name can be a maximum 30 characters long.
Let us see the memory representation of an array of strings. If we have an array declared as
char name[5][10] = {"Ram", "Mohan", "Shyam", "Hari", "Gopal"};

Then in the memory, the array will be stored as shown in Fig. 4.13.

name[0] R A M "\O¢

name[1] M 0 H A N "\O¢
name[2] S H Y A M "\0*
name[3] H A R I |['\0°
name[4] G 0 P A L | "\O°

Figure 4.13 Memory representation of a 2D character array

130 Data Structures Using C

By declaring the array names, we allocate 50 bytes. But

Step 1: [INITIALIZE] SET I=0 S
Step 2: Repeat Step 3 while I< N the actual memory occupied is 27 bytes. Thus, we see that
Step 3: Apply Process to NAMES[I] about half of the memory allocated is wasted. Figure 4.14

[END OF LOOP] shows an algorithm to process individual string from an
Step 4: EXIT

array of strings.

Figure 4.14 Algorithm to process individual

In Step 1, we initialize the index variable 1 to zero. In Step
2, awhile loop is executed until all the strings in the array

string from an array of strings e . ..
are accessed. In Step 3, each individual string is processed.

ProGRAMMING EXAMPLES

10. Write a program to sort the names of students.
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
char names[5][10], temp[10];
int i, n, j;
clrscr();
printf("\n Enter the number of students : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n Enter the name of student %d : ", i+1);
gets(names[i]);
}
for(i=0;i<n;i++)
{
for(j=0;j<n-1i-1;j++)
{
if(strcmp(names[j], names[j+1])>0)
strcpy(temp, names[j]);
strcpy(names[j], names[j+1]);
strcpy(names[j+1], temp);
¥
¥
}
printf("\n Names of the students in alphabetical order are : ");
for(i=0;i<n;i++)
puts(names[i]);
getch();
return O;
)
Output
Enter the number of students : 3
Enter the name of student 1 : Goransh
Enter the name of student 2 : Aditya
Enter the name of student 3 : Sarthak
Names of the students in alphabetical order are : Aditya Goransh Sarthak
11. Write a program to read multiple lines of text and then count the number of characters,

words, and lines in the text.

#include <stdio.h>

Strings

131

#include <conio.h>
int main()
{
char str[1000];
int i=0, word_count = 1, line_count =1, char_count = 1;
clrscr();
printf("\n Enter a ‘*’ to end");
ppintf("\n **************");
printf("\n Enter the text : ");
scanf("%c", &str[i]);

while(str[i] != "*")
{
it++;
scanf("%c", &str[i]);
}
str[i] = '"\0';
i=0;
while(str[i] != "\0")
{
if(str[i] == '\n' || i==79)
line_count++;
if(str[i] == ' ' &&str[i+l] != ' ")
word_count++;
char_count++;
i++;
¥

printf("\n The total count of words is : %d", word_count);
printf("\n The total count of lines is : %d", line_count);
printf("\n The total count of characters is : %d", char_count);
return O;

}

Output

12.

Enter a “*’ to end

3k 3k 3k >k 3k sk sk sk >k ok >k ok k ok

Enter the text : Hi there*

The total count of words is : 2

The total count of lines is : 1

The total count of characters is : 9

Write a program to find whether a string is a palindrome or not.

#include <stdio.h>
#include <conio.h>
int main()
{
char str[100];
int i = 0, j, length = 0;
clrscr();
printf("\n Enter the string : ");
gets(str);
while(str[i] !'= "\0")
{
length++ ;
i++ ;
}
i=0;
j = length - 1;
while(i <= length/2)
{

132 Data Structures Using C

if(str[i] == str[j])

break;

¥
if(i>=j)
printf("\n PALINDROME");
else
printf("\n NOT A PALINDROME");
return O;

}
Output

Enter the string: madam
PALINDROME

4.4 POINTERS AND STRINGS

In C, strings are treated as arrays of characters that are terminated with a binary zero character
(written as '\0'). Consider, for example,
char str[10];

str[0] = 'H';
str[1] = 'i';
str[2] = "I'":
str[3] = "\0"';

C provides two alternate ways of declaring and initializing a string. First, you may write
char str[10] = {'H", "i', "!', "\0'};

But this also takes more typing than is convenient. So, C permits
char str[10] = "Hil!";

When the double quotes are used, a null character (*\0') is automatically appended to the end
of the string.
When a string is declared like this, the compiler sets aside a contiguous block of the memory,
i.e., 10 bytes long, to hold characters and initializes its first four characters as Hi!\o.
Now, consider the following program that prints a text.
#include <stdio.h>
int main()

{
char str[] = "Hello";
char *pstr;

pstr = str;

printf("\n The string is : ");

while(*pstr != '\0")

{
printf("%c", *pstr);
pstr++;

}

return O;
¥
Output

The string is: Hello

Strings 133

In this program, we declare a character pointer *pstr to show the string on the screen. We then
point the pointer pstr to str. Then, we print each character of the string using the while loop.
Instead of using the while loop, we could straightaway use the function puts(), as shown below

puts(pstr);

The function prototype for puts() is as follows:

int puts(const char *s);

Here the const modifier is used to assure that the function dose not modify the contents pointed to
by the source pointer. The address of the string is passed to the function as an argument.

The parameter passed to puts() is a pointer which is nothing but the address to which it points
to or simply an address. Thus, writing puts(str) means passing the address of str[0]. Similarly
when we write puts(pstr); we are passing the same address, because we have written pstr = str;.

Consider another program that reads a string and then scans each character to count the number
of upper and lower case characters entered.

#include <stdio.h>

int main()

{
char str[100], *pstr;
int upper = 0, lower = 0;
printf("\n Enter the string : ");

gets(str);
pstr = str;
while(*pstr != "\0")
{
if(*pstr >= 'A' && *pstr <= 'Z")
upper++;
else if(*pstr >= 'a' && *pstr <= 'z'")
lower++;

pstr++;
¥
printf("\n Total number of upper case characters = %d", upper);
printf("\n Total number of lower case characters = %d", lower);
return O;

}
Output

Enter the string : How are you
Total number of upper case characters
Total number of lower case characters

1
8

ProGRAMMING EXAMPLES

13. Write a program to copy a string into another string.

#include <stdio.h>

int main()

{
char str[100], copy_str[100];
char *pstr, *pcopy_str;
pstr = str;
pcopy_str = copy_str;
printf("\n Enter the string : ");
gets(str);
while(*pstr != '\0")
{

134 Data Structures Using C

*pcopy_str = *pstr;
pstr++, pcopy_str++;

}

*pcopy_str = '\0';

printf("\n The copied text is : ");

while(*pcopy_str != "\0")

{
printf("%c", *pcopy_str);
pcopy_str++;

¥

return 0;

}
Output

Enter the string : C Programming
The copied text is : C Programming
14. Write a program to concatenate two strings.

#include <stdio.h>
#include <conio.h>
int main()
{
char stri[100], str2[100], copy_str[200];
char *pstrl, *pstr2, *pcopy_str;
clrscr();
pstrl = stri;
pstr2 = str2;
pcopy_str = copy_str;
printf("\n Enter the first string : ");

gets(strl);

printf(“\n Enter the second string : ");
gets(str2);

while(*pstrl != "\0")

{

*pcopy_str = *pstri;
pcopy_str++, pstril++;

)

while(*pstr2 != '\0')

{
*pcopy_str = *pstr2;
pcopy_str++, pstr2++;

}

*pcopy_str = '\0';

printf("\n The concatenated text is : ");

while(*pcopy _str != "\0")

{
printf("%c", *pcopy_str);
pcopy_str++;

}

return O;

}
Output

Enter the first string : Data Structures Using C by
Enter the second string : Reema Thareja
The concatenated text is : Data Structures Using C by Reema

Thareja

Strings 135

> ="PoINTS T0 REMEMBER

A string is a null-terminated character array.
Individual characters of strings can be accessed using
a subscript that starts from zero.

All the characters of a string are stored in successive
memory locations.

Strings can be read by a user using three ways: using
scanf() function, using gets() function, or using
getchar() function repeatedly.

The scanf() function terminates as soon as it finds
a blank space.

The gets() function takes the starting address of the
string which will hold the input. The string inputted
using gets () is automatically terminated with a null
character.

Strings can also be read by calling getchar()
repeatedly to read a sequence of single characters.
Strings can be displayed on the screen using three
ways: using printf function, using puts () function,

or using putchar () function repeatedly.

C standard library supports a number of pre-defined
functions for manipulating strings or changing the
contents of strings. Many of these functions are
defined in the header file string.h.

Alternatively we can also develop functions which
perform the same task as the pre-defined string
handling functions. The most basic function is
the length function which returns the number of
characters in a string.

Name of a string acts as a pointer to the string. In
the declaration char str[5] = "hello"; stris a
pointer which holds the address of the first character,
ie., h’.

An array of strings can be declared as char strings
[20][30]; where the first subscript denotes the
number of strings and the second subscript denotes
the length of every individual string.

> =" EXERCISES

Review Questions

1.

10.

11.

12.

What are strings? Discuss some of the operations
that can be performed on strings.

. Explain how strings are represented in the main

memory.

. How are strings read from the standard input

device? Explain the different functions used to
perform the string input operation.

. Explain how strings can be displayed on the screen.
. Explain the syntax of printf() and scanf().
. List all the substrings that can be formed from the

string ‘ABCD’.

. What do you understand by pattern matching?

Give an algorithm for it.

. Write a short note on array of strings.
. Explain with an example how an array of strings

is stored in the main memory.

Explain how pointers and strings are related to
each other with the help of a suitable program.
If the substring function is given as SUBSTRING
(string, position, length), then find S(5, 9) if
S = "Welcome to World of C Programming"

If the index function is given as INDEX(text,
pattern), then find index(T, P) where T =

"Welcome to World of C Programming" and P =
e

13. Differentiate between gets() and scanf().

14. Give the drawbacks of getchar() and scanf().

15. Which function can be used to overcome the
shortcomings of getchar() and scanf()?

16. How can putchar() be used to print a string?

17. Differentiate between a character and a string.

18. Differentiate between a character array and a
string.

Programming Exercises

1. Write a program in which a string is passed as an
argument to a function.

2. Write a program in C to concatenate first n
characters of a string with another string.

3. Write a program in C that compares first n
characters of one string with first n characters of
another string.

4. Write a program in C that removes leading and
trailing spaces from a string.

5. Write a program in C that replaces a given
character with another character in a string.

136

Data Structures Using C

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Write a program to count the number of digits,

upper case characters, lower case characters, and
special characters in a given string.

. Write a program to count the total number of

occurrences of a given character in the string.

. Write a program to accept a text. Count and

display the number of times the word ‘the’ appears
in the text.

. Write a program to count the total number of

occurrences of a word in the text.

Write a program to find the last instance of
occurrence of a sub-string within a string.

Write a program to input an array of strings. Then,
reverse the string in the format shown below.
"HAPPY BIRTHDAY TO You" should be displayed
as "YOU TO BIRTHDAY HAPPY"

Write a program to append a given string in the
following format.

"GOOD MORNING MORNING GOOD"

Write a program to input a text of at least two
paragraphs. Interchange the first and second
paragraphs and then re-display the text on the
screen.

Write a program to input a text of at least two
paragraphs. Construct an array PAR such that
PAR[I] contains the location of the ith paragraph
in text.

Write a program to convert the given string "G0OD
MORNING" to "good morning".

Write a program to concatenate two given
strings "Good Morning" and "World". Display the
resultant string.

Write a program to check whether the two given
strings "Good Morning" and "GOOD MORNING" are
same.

Write a program to convert the given string "hello
world" to "dlrow olleh".

Write a program to extract the string "od Mo" from
the given string "Good Morning".

Write a program to insert "University" in the
given string "Oxford Press" so that the string
should read as "Oxford University Press".
Write a program to read a text, delete all the semi-
colons it has, and finally replace all ' . * witha ', .
Write a program to copy the last n characters of a
character array in another character array. Also,
convert the lower case letters into upper case
letters while copying.

23.

24.

25.

26.

27.

28.

29.

30.

Write a program to rewrite the string "Good
Morning" to "Good Evening".

Write a program to read and display names of
employees in a department.

Write a program to read a line until a newline is
entered.

Write a program to read a short story. Rewrite
the story by printing the line number before the
starting of each line.

Write a program to enter a text that contains
multiple lines. Display the n lines of text starting
from the mth line.

Write a program to check whether a pattern exists
in a text. If it does, delete the pattern and display
it.

Write a program to insert a new name in the string
array STUD[][], assuming that names are sorted
alphabetically.

Write a program to delete a name in the string
array STUD[][], assuming that names are sorted
alphabetically.

Multiple-choice Questions

1.

CIf str[] =

. Replace("XXXYYYZZZ", "XY",

Insert("XXXYYYzzz", 1, "PPP") =
(a) PPPXXXYYYZZZ
(b) XPPPXXYYYZZZ
(¢) XXXYYYZZZPPP

. Delete("XXXYYYZZZ", 4,3) =

(a) XXYZ
() XXXYZZ
"Welcome to the world of
programming", then SUBSTRING(str, 15, 5) =
(a) world (b) programming

(c) welcome (d) none of these

(b) XXXYYZZ

. strcat() is defined in which header file?

(b) stdio.h
(d) math.h

(a) ctype.h
(c) string.h

. A string can be read using which function(s)?

(b) scanf()

(d) all of these
"AB") =

(b) XABYYYZZZ

(a) gets()
(c) getchar()

(a) XXABYYZZZ
(c) ABXXXYYYZZ

. The index of U in Oxford University Press is?

(@) 5
(c) 7

(b) 6
@) 8

Strings 137

10.

. sl =“HI”, s2=“HELLO”, s3=“BYE”. How can

we concatenate the three strings?
(a) strcat(sl,s2,s3)

(b) strcat(s1(strcat(s2,s3)))

(c) strepy(sl, streat(s2,s3))

. strlen(“Oxford University Press”) is ?

(a) 22 (b) 23

(c) 24 (d) 25

Which function adds a string to the end of another
string?

(a) stradd()
(c) strtok()

(b) strcat()
(d) strepy()

True or False

11.

12.

. Replace ("AAABBBCCC",
10.

. String Hello World can be read using scanf().
. A string when read using scanf() needs an

ampersand character.

. The gets() function takes the starting address of

a string which will hold the input.

. tolower() is defined in ctype.h header file.
. Ifs, and s, are two strings, then the concatenation

operation produces a string which contains the
characters of s, followed by the characters of' s,.

. Appending one string to another string involves

copying the contents of the source string at the
end of the destination string.

. S1<S2, when in dictionary order, S1 precedes S2.
. IfS1 = "GOOD MORNING", then Substr_Right (S1,

5) = MORNING.

"X", "YYY")= AAABBBCC.
Initializing a string as char str[] = "HELLO";is
incorrect as a null character has not been explicitly
added.

The scanf() function automatically appends a
null character at the end of the string read from
the keyboard.

String variables can be present either on the left
or on the right side of the assignment operator.

13.

14.

15.

When a string is initialized during its declaration,
the string must be explicitly terminated with a null
character.
strcmp("and"”,
value.
Assignment operator can be used to copy the
contents of one string into another.

"ant"); will return a positive

Fill in the blanks

1.
2.
3.

Strings are
Every string is terminated with a

If a string is given as "AB cD", the length of this
string is

4. The subscript of a string starts with

5. Characters of a string are stored in -

13.

14.

15.
16.

17.

memory locations.

. char mesg[100]; can store a maximum of

characters.

function terminates as soon as it finds a
blank space.

. The ASCII code for A-z varies from
. toupper() is used to

10.
11.
12.

S1>S2 means

The function to reverse a string is

If s1 = "GOOD MORNING", then Substr_Left (S1,
7) =

INDEX("Welcome to the world of programming",
"world") =

returns the position in the string where
the string pattern first occurs.

stremp(strl, str2) returns 1 if .
function computes the length of a

string.

Besides printf(), function can be

used to print a line of text on the screen.

CHAPTER

Structures and
Unions

LEARNING OBJECTIVE

Today’s modern applications need complex data structures to support them. A
structure is a collection of related data items of different data types. It extends the
concept of arrays by storing related information of heterogeneous data types together
under a single name. It is useful for applications that need a lot more features than
those provided by the primitive data types. A union is also a collection of variables
of different data types, except that in case of unions, you can only store information
in one field at any one time. In this chapter, we will learn how structures and unions
are declared, defined, and accessed using the C language. J

5.1 INTRODUCTION

A structure is in many ways similar to a record. It stores related information about an entity.
Structure is basically a user-defined data type that can store related information (even of different
data types) together. The major difference between a structure and an array is that an array can
store only information of same data type.

A structure is therefore a collection of variables under a single name. The variables within a
structure are of different data types and each has a name that is used to select it from the structure.

5.1.1 Structure Declaration

A structure is declared using the keyword struct followed by the structure name. All the variables
of the structure are declared within the structure. A structure type is generally declared by using
the following syntax:

struct struct-name

{

data_type var-name;

Structures and Unions 139

Programming Tip data_type var-name;

Do not forget to place a ¥
semicolon after the declaration

of structures and unions. For example, if we have to define a structure for a student, then the

related information for a student probably would be: rol1_number, name,
course, and fees. This structure can be declared as:
struct student

{
int r_no;
char name[20];
char course[20];
float fees;

s

Now the structure has become a user-defined data type. Each variable name declared within a
structure is called a member of the structure. The structure declaration, however, does not allocate
any memory or consume storage space. It just gives a template that conveys to the C compiler
how the structure would be laid out in the memory and also gives the details of member names.
Like any other data type, memory is allocated for the structure when we declare a variable of the

structure. For example, we can define a variable of
student by writing:

struct student studi; struct student studi;
B

r_no . .
!—m name Here, struct student is a data type and studi is a
[—

variable. Look at another way of declaring variables.
I | course In the following syntax, the variables are declared at
' the time of structure declaration.

[1
“ struct student

{
struct student stud2; int r_no;
’_m char name[20];
= name char course[20];
| s T float fees;
m } studl, stud2;
course . . .

[T In this declaration we declare two variables stud1 and

stud2 of the structure student. So if you want to declare
more than one variable of the structure, then separate the
variables using a comma. When we declare variables

Figure 5.1 Memory allocation for a structure of the structure, separate memory is allocated for each
variable variable. This is shown in Fig. 5.1.

m Structure type and variable declaration of a structure can be either local or global depending on their
placement in the code.

Last but not the least, structure member names and names of the structure follow the same
rules as laid down for the names of ordinary variables. However, care should be taken to ensure
that the name of structure and the name of a structure member should not be the same. Moreover,
structure name and its variable name should also be different.

5.1.2 Typedef Declarations

The typedef (derived from type definition) keyword enables the programmer to create a new data
type name by using an existing data type. By using typedef, no new data is created, rather an

140 Data Structures Using C

alternate name is given to a known data type. The general syntax of using the typedef keyword is
given as:
. . typedef existing data_type new_data_type;
Programming Tip N b d it simpl
. t typedef ; 1t
C does not allow declaration R gte tha ypet e stliltement cl)esllflot occgtpy any memory; 1t simply
of variables at the time of efines a new type. For example, if we write
creating a typedef definition. So typedef int INTEGER;
yadrlablez mi’si bte decltared Nan then INTEGER is the new name of data type int. To declare variables
independent statement. using the new data type name, precede the variable name with the data
type name (new). Therefore, to define an integer variable, we may now write
INTEGER num=5;
When we precede a struct name with the typedef keyword, then the struct becomes a new type.
It is used to make the construct shorter with more meaningful names for types already defined by
C or for types that you have declared. For example, consider the following declaration:

typedef struct student

{
int r_no;
char name[20];
char course[20];
float fees;

s

Now that you have preceded the structure’s name with the typedef keyword, student becomes
anew data type. Therefore, now you can straightaway declare the variables of this new data type
as you declare the variables of type int, float, char, double, etc. To declare a variable of structure
student, you may write

student studi;
Note that we have not written struct student studi.

5.1.3 Initialization of Structures

A structure can be initialized in the same way as other data types are initialized. Initializing a

structure means assigning some constants to the members of the structure. When the user does

not explicitly initialize the structure, then C automatically does it. For int and float members,

the values are initialized to zero, and char and string members are initialized to '\o* by default.
The initializers are enclosed in braces and are separated by commas. However, care must be

taken to ensure that the initializers match their corresponding types in the structure definition.
The general syntax to initialize a structure variable is as follows:

struct struct_name

{
data_type member_namel;
data_type member_name2;
data_type member_name3;

}struct_var = {constantl, constant2, constant3,...};

or
struct struct_name
{
data_type member_namel;
data_type member_name2;
data_type member_name3;

1

Structures and Unions 141

struct struct_name struct_var = {constantl, constant2, constant 3,...};
For example, we can initialize a student structure by writing,

Programming Tip struct student

Itis an error to assign a structure {

of one type to a structure of an- int r_no;

other type. char name[20];
char course[20];
float fees;

}studl = {01, “Rahul", "BCA", 45000};
Or, by writing,
struct student studl = {01, "Rahul", "BCA", 45000};
Figure 5.2 illustrates how the values will be assigned to individual fields of the structure.

struct student studl struct student stud2 = {07, "Rajiv”};
= {01, "Rahul", "BCA", 45000};

| o1 | [Rahul | | BcA | 45000 ||| 07 | [Rajiv | | W0 | | 00 |

r_no name course fees r_no name course fees

Figure 5.2 Assigning values to structure elements

When all the members of a structure are not initialized, it is called partial initialization. In
case of partial initialization, first few members of the structure are initialized and those that are
uninitialized are assigned default values.

5.1.4 Accessing the Members of a Structure

Each member of a structure can be used just like a normal variable, but its name will be a bit
longer. A structure member variable is generally accessed using a '.' (dot) operator. The syntax
of accessing a structure or a member of a structure can be given as:

struct_var.member_name

The dot operator is used to select a particular member of the structure. For example, to assign
values to the individual data members of the structure variable studl, we may write

studl.r_no = 01;

studl.name = "Rahul";

studl.course = "BCA";
studl.fees = 45000;

To input values for data members of the structure variable stud1, we may write
scanf("%d", &studl.r_no);
scanf("%s", studl.name);
Similarly, to print the values of structure variable stud1, we may write
printf("%s", studl.course);
printf("%f", studl.fees);

Memory is allocated only when we declare the variables of the structure. In other words, the
memory is allocated only when we instantiate the structure. In the absence of any variable, structure
definition is just a template that will be used to reserve memory when a variable of type struct is
declared.

Once the variables of a structure are defined, we can perform a few operations on them. For
example, we can use the assignment operator (=) to assign the values of one variable to another.

142 Data Structures Using C

m Of all the operators —, ., ('), and [] have the highest priority. This is evident from the following

statement

studl.fees++ Will be interpreted as (studil.fees)++.

5.1.5 Copying and Comparing Structures

We can assign a structure to another structure of the same type. For example, if we have two
structure variables stud1 and stud2 of type struct student given as

struct student studl
= {01, "Rahul", "BCA", 45000};

[01 | [Rahul | | BCA | | 45000 |

r_no name course fees

struct student stud2 = studi;

| | Rahul | | BCA | | 45000 |

course fees

| o1

r_no name

Figure 5.3 Values of structure variables

Programming Tip

An error will be generated if you
try to compare two structure
variables.

struct student studl = {01, "Rahul", "BCA",
struct student stud2;

Then to assign one structure variable to another, we

will write
stud2 = studl;

This statement initializes the members of stud2 with the
values of members of stud1. Therefore, now the values
of stud1 and stud2 can be given as shown in Fig. 5.3.

C does not permit comparison of one structure variable
with another. However, individual members of one
structure can be compared with individual members of
another structure. When we compare one structure
member with another structure’s member, the comparison
will behave like any other ordinary variable comparison.

45000} ;

For example, to compare the fees of two students, we will write

if(studl.fees > stud2.fees) //to check if fees of studl is
greater than stud2

ProGRAMMING EXAMPLES

1. Write a program using structures to read and display the information about a student.

#include <stdio.h>
#include <conio.h>
int main()

{

struct student

{

int roll_no;

char name[80];

float fees;

char DOB[80];
¥
struct student studi;
clrscr();
printf("\n Enter the roll number : ");
scanf("%d", &studl.roll no);
printf("\n Enter the name : ");
scanf("%s", studl.name);
printf("\n Enter the fees : ");
scanf("%f", &studl.fees);
printf("\n Enter the DOB : ");
scanf("%s", studl.DOB);
printf("\n ***EreekSTUDENT'S DETAILS *kkkkkn).
printf("\n ROLL No. = %d", studl.roll_no);
printf("\n NAME = %s", studl.name);
printf("\n FEES = %f", studl.fees);

Structures and Unions

143

printf("\n DOB = %s", studl.DOB);
getch();
return O;

}

Output

Enter the roll number : 01
Enter the name : Rahul
Enter the fees : 45000
Enter the DOB : 25-09-1991
ROLL No. = 01

NAME = Rahul

FEES = 45000.00

DOB = 25-09-1991

Write a program to read, display, add, and subtract two complex numbers.

#include <stdio.h>
#include <conio.h>
int main()
{
typedef struct complex
{
int real;
int imag;
}COMPLEX;
COMPLEX c1, c2, sum_c, sub_c;
int option;
clrscr();
do

{
printf("\n #FFkkkrxxk MATN MENU ***kxkkkkt)

printf("\n 1. Read the complex numbers");
printf("\n 2. Display the complex numbers");
printf("\n 3. Add the complex numbers");
printf("\n 4. Subtract the complex numbers");
printf("\n 5. EXIT");
printf("\n Enter your option : ");
scanf("%d", &option);
switch(option)
{
case 1:
printf("\n Enter the real and imaginary parts of the
first complex number : ");
scanf("%d %d", &cl.real, &cl.imag);
printf("\n Enter the real and imaginary parts of the
second complex number : ");
scanf("%d %d", &c2.real, &c2.imag);
break;
case 2:
printf("\n The first complex number is : %d+%di",
cl.real,cl.imag);
printf("\n The second complex number is : %d+%di",
c2.real,c2.imag);
break;
case 3:

sum_c.real = cl.real + c2.real;
sum_c.imag = cl.imag + c2.imag;
printf("\n The sum of two complex numbers is :

144 Data Structures Using C

%d+%di",sum_c.real, sum_c.imag);
break;
case 4:
sub_c.real = cl.real - c2.real;
sub_c.imag = cl.imag - c2.imag;
printf("\n The difference between two complex numbers
is :%d+%di", sub_c.real, sub_c.imag);

break;
)

}while(option != 5);

getch();

return 0;
¥

Output

AR MAIN MENU ottt * Because of constraint of
1. Read the complex numbers space, we will show the MENU
2. Display the complex numbers only once in all the menu-
3. Add the complex numbers driven programs.
4. Subtract the complex numbers
5. EXIT

Enter your option : 1

Enter the real and imaginary parts of the first complex number : 2 3
Enter the real and imaginary parts of the second complex number : 4 5
Enter your option : 2

The first complex numbers is : 2+3i

The second complex numbers is : 4+45i

Enter your option : 3

The sum of two complex numbers is : 6+8i

Enter your option : 5

5.2 NESTED STRUCTURES

A structure can be placed within another structure, i.e., a structure may contain another structure as
its member. A structure that contains another structure as its member is called a nested structure.

Let us now see how we declare nested structures. Although it is possible to declare a nested
structure with one declaration, it is not recommended. The easier and clearer way is to declare the
structures separately and then group them in the higher level structure. When you do this,
take care to check that nesting must be done from inside out (from lowest level to the most
inclusive level), i.e., declare the innermost structure, then the next level structure, working towards
the outer (most inclusive) structure.

typedef struct
{
char first_name[20];
char mid_name[20];
char last_name[20];
INAME ;
typedef struct
{
int dd;
int mm;
int yy;
}DATE;
typedef struct
{

int r_no;

Structures and Unions 145

NAME name;
char course[20];
DATE DOB;
float fees;

} student;

In this example, we see that the structure student contains two other structures, NaMe and DATE. Both
these structures have their own fields. The structure NaME has three fields: first_name, mid_name, and

last_name

. The structure pATE also has three fields: dd, mm, and yy, which specify the day, month,

and year of the date. Now, to assign values to the structure fields, we will write

student studl;

studl

studl.
studl.
studl.
studl.
studl.
studl.
studl.
studl.

.r_no = 01;

name.first_name = "Janak";
name.mid_name = "Raj";
name.last_name = "Thareja";
course = "BCA";

DOB.dd = 15;

DOB.mm = 09;

DOB.yy = 1990;

fees = 45000;

In case of nested structures, we use the dot operator in conjunction with the structure variables

to access

the members of the innermost as well as the outermost structures. The use of nested

structures is illustrated in the next program.

ProGRAMMING EXAMPLE

3. Write a program to read and display the information of a student using a nested structure.

#include <stdio.h>
#include <conio.h>

int main()
{
struct DOB
{
int day;
int month;
int year;
s
struct student
{
int roll _no;
char name[100];
float fees;
struct DOB date;
s
struct student studi;
clrscr();

printf("\n Enter the roll number : ");

scanf("%d", &studl.roll no);

printf("\n Enter the name : ");

scanf("%s", studl.name);

printf("\n Enter the fees : ");

scanf("%f", &studl.fees);

printf("\n Enter the DOB : ");

scanf("%d %d %d", &studl.date.day, &studl.date.month, &studl.date.year);

146 Data Structures Using C

printf("\n **kFFFXKSTUDENT'S DETAILS *kkkkxm);

printf("\n ROLL No. = %d", studl.roll _no);

printf("\n NAME = %s", studl.name);

printf("\n FEES = %f", studl.fees);

printf("\n DOB = %d - %d - %d", studl.date.day, studl.date.month, studl.date.year);
getch();

return O;

}

Output

Enter the roll number : 01
Enter the name : Rahul
Enter the fees : 45000
Enter the DOB : 25 09 1991
ROLL No. = 01

NAME = Rahul

FEES 45000.00

DOB = 25 - 09 - 1991

5.3 ARRAYS OF STRUCTURES

In the above examples, we have seen how to declare a structure and assign values to its data
members. Now, we will discuss how an array of structures is declared. For this purpose, let us
first analyse where we would need an array of structures.

In a class, we do not have just one student. But there may be at least 30 students. So, the same
definition of the structure can be used for all the 30 students. This would be possible when we
make an array of structures. An array of structures is declared in the same way as we declare an
array of a built-in data type.

Another example where an array of structures is desirable is in case of an organization. An
organization has a number of employees. So, defining a separate structure for every employee is
not a viable solution. So, here we can have a common structure definition for all the employees.
This can again be done by declaring an array of structure employee.

The general syntax for declaring an array of structures can be given as,

struct struct_name

{
data_type member_namel;
data_type member_name2;
data_type member_name3;
¥

struct struct_name struct_var[index];

Consider the given structure definition.
struct student

{
int r_no;
char name[20];
char course[20];
float fees;

s

A student array can be declared by writing,
struct student stud[30];
Now, to assign values to the ith student of the class, we will write

09;
"RASHI";

stud[i].r_no
stud[i].name

Structures and Unions

147

follows:

4.

stud[i].course = "MCA";
stud[i].fees = 60000;

In order to initialize the array of structure variables at the time of declaration, we can write as

struct student stud[3] = {{01, "Aman", "BCA", 45000},{02, "Aryan", "BCA", 60000}, {03,
"John", "BCA", 45000}};

PRoGRAMMING EXAMPLE

Write a program to read and display the information of all the students in a class. Then
edit the details of the ith student and redisplay the entire information.

#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()

{

struct student

{
int roll_no;
char name[80];
int fees;
char DOB[80];
s

struct student stud[50];

int n, i, num, new_rolno;

int new_fees;

char new_DOB[80], new_name[80];
clrscr();

printf("\n Enter the number of students : ");

scanf("%d", &n);

for(i=0;i<n;i++)

{
printf("\n Enter the roll number : ");
scanf("%d", &stud[i].roll_no);
printf("\n Enter the name : ");
gets(stud[i].name);
printf("\n Enter the fees : ");
scanf("%d",&stud[i].fees);
printf("\n Enter the DOB : ");
gets(stud[i].DOB);

}

for(i=0;i<n;i++)

{
printf("\n **k***xx*DETAILS OF STUDENT Sd***xikk" = j41);
printf("\n ROLL No. = %d", stud[i].roll_no);
printf("\n NAME = %s", stud[i].name);
printf("\n FEES = %d", stud[i].fees);
printf("\n DOB = %s", stud[i].DOB);

¥

printf("\n Enter the student number whose
scanf("%d", &num);
num= num-1;

printf("\n Enter the new roll number : ");
scanf("%d", &new_rolno);
printf("\n Enter the new name : "):

gets(new_name);
printf("\n Enter the new fees : ");

record has to be edited :

");

148 Data Structures Using C

scanf("%d", &new_fees);

printf("\n Enter the new DOB : ");
gets(new_DOB);

stud[num].roll_no = new_rolno;
strcpy(stud[num].name, new_name);
stud[num].fees = new_fees;

strcpy (stud[num].DOB, new_DOB);
for(i=0;i<n;i++)

{
printf("\n *¥*¥*¥¥***DETAILS OF STUDENT %d**¥¥*xx" = j41);
printf("\n ROLL No. = %d", stud[i].roll_no);
printf("\n NAME = %s", stud[i].name);
printf("\n FEES = %d", stud[i].fees);
printf("\n DOB = %s", stud[i].DOB);

}

getch();

return O;

}
Output

Enter the number of students : 2
Enter the roll number : 1

Enter the name : kirti

Enter the fees : 5678

Enter the DOB : 9 9 91

Enter the roll number : 2

Enter the name : kangana

Enter the fees : 5678

Enter the DOB : 27 8 91
kkkkkxx¥DETAILS OF STUDENT 1X***x*x
ROLL No. =1

NAME = kirti

FEES = 5678

DOB = 9 9 91

FrkkokkkXDETAILS OF STUDENT 2%**kk**
ROLL No. = 2

NAME = kangana

FEES = 5678

DOB = 27 8 91

Enter the student number whose record has to be edited : 2
Enter the new roll number : 2

Enter the new name : kangana khullar
Enter the new fees : 7000

Enter the new DOB : 27 8 92
kAd*kk XX XDETAILS OF STUDENT 1***kkkk
ROLL No. =1

NAME = kirti

FEES = 5678

DOB = 9 9 91

kAdkkXXXDETAILS OF STUDENT 2***kkk
ROLL No. = 2

NAME = kangana khullar

FEES = 7000

DOB = 27 8 92

5.4 STRUCTURES AND FUNCTIONS

For structures to be fully useful, we must have a mechanism to pass them to functions and return
them. A function may access the members of a structure in three ways as shown in Fig. 5.4.

Structures and Unions 149

Passing individual members

Passing structures to functions Passing the entire structure

Passing the address of structure

Figure 5.4 Different ways of passing structures to functions

5.4.1 Passing Individual Members

To pass any individual member of a structure to a function, we must use the direct selection operator
to refer to the individual members. The called program does not know if a variable is an ordinary
variable or a structured member. Look at the code given below which illustrates this concept.

#include <stdio.h>
typedef struct
{

int x;

int y;
}POINT;
void display(int, int);
int main()

{
POINT pl = {2, 3};

display(pl.x, pl.y);
return O;

void display(int a, int b)
{
¥

Output

The coordinates of the point are: 2 3

printf(" The coordinates of the point are: %d %d", a, b);

5.4.2 Passing the Entire Structure

Just like any other variable, we can pass an entire structure as a function argument. When a structure
is passed as an argument, it is passed using the call by value method, i.e., a copy of each member
of the structure is made.

The general syntax for passing a structure to a function and returning a structure can be given
as,

struct struct_name func_name(struct struct_name struct_var);

The above syntax can vary as per the requirement. For example, in some situations, we may
want a function to receive a structure but return a void or the value of some other data type. The
code given below passes a structure to a function using the call by value method.

#include <stdio.h>
typedef struct
{

int x;

int y;

150 Data Structures Using C

}POINT;
void display(POINT);
int main()

POINT p1 = {2, 3};
display(pl);
return O;

void display(POINT p)

printf("The coordinates of the point are: %d %d", p.x, p.y);

ProGRAMMING EXAMPLE

5.

Write a program to read, display, add, and subtract two distances. Distance must be defined
using kms and meters.
#include <stdio.h>

#include <conio.h>
typedef struct distance

{
int kms;
int meters;
}DISTANCE;

DISTANCE add_distance (DISTANCE, DISTANCE);
DISTANCE subtract_distance (DISTANCE, DISTANCE);
DISTANCE di, d2, d3, d4;

int main()

{
int option;
clrscr();
do
{

pPintf("\n *kkkkkkkk MAIN MENU *********");

printf("\n 1. Read the distances ");
printf("\n 2. Display the distances");
printf("\n 3. Add the distances");
printf("\n 4. Subtract the distances");
printf("\n 5. EXIT");

printf("\n Enter your option : ");
scanf("%d", &option);
switch(option)
{
case 1:
printf("\n Enter the first distance in kms and meters: ");
scanf("%d %d", &d1.kms, &dl.meters);
printf("\n Enter the second distance in kms and meters: ");
scanf("%d %d", &d2.kms, &d2.meters);
break;
case 2:
printf("\n The first distance is : %d kms %d meters",
dl.kms, dl.meters);
printf("\n The second distance is : %d kms %d meters",
d2.kms, d2.meters);
break;

Structures and Unions 151

case 3:

d3 = add_distance(d1, d2);

printf("\n The sum of two distances is %d kms %d

meters"”, d3.kms, d3.meters);

break;
case 4:

d4 = subtract_distance(d1, d2);

printf("\n The difference between two distances is : %d

kms %d meters", d4.kms, d4.meters);

break;
)
}while(option != 5);
getch();
return O;

}
DISTANCE add_distance(DISTANCE d1, DISTANCE d2)
{
DISTANCE sum;
sum.meters = dl.meters + d2.meters;
sum.kms = dil.kms + d2.kms;
while (sum.meters >= 1000)
{
sum.meters = sum.meters % 1000;
sum.kms += 1;
}
return sum;
}
DISTANCE subtract_distance(DISTANCE d1, DISTANCE d2)
{
DISTANCE sub;
if(di.kms > d2.kms)

{
sub.meters = dl.meters - d2.meters;
sub.kms = dl.kms - d2.kms;

)

else

{
sub.meters = d2.meters - dl.meters;
sub.kms = d2.kms - dil.kms;

)

if(sub.meters < 0)

{
sub.kms = sum.kms - 1;
sub.meters = sum.meters + 1000;

¥

return sub;

)
Output

1. Read the distances
Display the distances
Add the distances
Subtract the distances
EXIT

v b W N

152

Data Structures Using C

Enter your option : 1

Enter the first distance in kms and meters: 5 300
Enter the second distance in kms and meters: 3 400
Enter your option : 3

The sum of two distances is: 8 kms 700 meters

Enter your option : 5

Let us summarize some points that must be considered while passing a structure to the called
function.

o If the called function is returning a copy of the entire structure then it must be declared as
struct followed by the structure name.

o The structure variable used as parameter in the function declaration must be the same as that
of the actual argument in the called function (and that should be the name of the struct type).

e When a function returns a structure, then in the calling function the returned structure must
be assigned to a structure variable of the same type.

5.4.3 Passing Structures through Pointers

Passing large structures to functions using the call by value method is very inefficient. Therefore,
it is preferred to pass structures through pointers. It is possible to create a pointer to almost any
type in C, including the user-defined types. It is extremely common to create pointers to structures.
Like in other cases, a pointer to a structure is never itself a structure, but merely a variable that
holds the address of a structure. The syntax to declare a pointer to a structure can be given as,

struct struct_name

{
data_type member_namel;
data_type member_name2;
data_type member_name3;
}*ptr;

or,
struct struct_name *ptr;
For our student structure, we can declare a pointer variable by writing
struct student *ptr_stud, stud;
The next thing to do is to assign the address of stud to the pointer using the address operator
(&), as we would do in case of any other pointer. So to assign the address, we will write
ptr_stud = &stud;
To access the members of a structure, we can write
/* get the structure, then select a member */
(*ptr_stud).roll_no;
Since parentheses have a higher precedence than *, writing this statement would work well. But
this statement is not easy to work with, especially for a beginner. So, C introduces a new operator
to do the same task. This operator is known as ‘pointing-to’ operator

Programming Tip (=>). It can be used as:

The selection operator (—) is
a single token, so do not place
any white space between them.

/* the roll_no in the structure ptr_stud points to */
ptr_stud —>roll_no = 01;

This statement is far easier than its alternative.

Structures and Unions 153

ProGrRAMMING EXAMPLES

6. Write a program to initialize the members of a structure by using a pointer to the structure.

#include <stdio.h>
#include <conio.h>
struct student

{
int r_no;
char name[20];
char course[20];
int fees;

}s

int main()

{
struct student studl, *ptr_studl;
clrscr();
ptr_studl = &studl;
printf("\n Enter the details of the student :");
printf("\n Enter the Roll Number =");
scanf("%d", &ptr_studl—>r_no);
printf("\n Enter the Name =);
gets(ptr_studl —> name);
printf("\n Enter the Course = ");
gets(ptr_studl —> course);
printf("\n Enter the Fees = ");
scanf("%d", &ptr_studl—> fees);
printf("\n DETAILS OF THE STUDENT");
printf("\n ROLL NUMBER = %d", ptr_studl -> r_no);
printf("\n NAME = %s", ptr_studl -> name);
printf("\n COURSE = %s", ptr_studl -> course);
printf("\n FEES = %d", ptr_studl -> fees);
return O;

}

Output

Enter the details of the student:
Enter the Roll Number = 02

Enter the Name = Aditya

Enter the Course = MCA

Enter the Fees = 60000

DETAILS OF THE STUDENT

ROLL NUMBER = 02

NAME = Aditya

COURSE = MCA

FEES = 60000

7. Write a program, using an array of pointers to a structure, to read and display the data of
students.
#include <stdio.h>
#include <conio.h>

#include <alloc.h>
struct student

{
int r_no;
char name[20];
char course[20];
int fees;

s

struct student *ptr_stud[10];
int main()

154 Data Structures Using C

int i, n;

printf("\n Enter the number of students : ");
scanf("%d", &n);

for(i=0;i<n;i++)

{

ptr_stud[i] = (struct student *)malloc(sizeof(struct student));

printf("\n Enter the data for student %d ", i+1);
printf("\n ROLL NO.: ");

scanf("%d", &ptr_stud[i]->r_no);

printf("\n NAME: ");

gets(ptr_stud[i]->name);

printf("\n COURSE: ");

gets(ptr_stud[i]->course);

printf("\n FEES: ");

scanf("%d", &ptr_stud[i]->fees);

printf("“\n DETAILS OF STUDENTS");

for(i=0;i<n;i++)
{
printf("\n ROLL NO. = %d", ptr_stud[i]->r_no);
printf("\n NAME = %s", ptr_stud[i]->name);
printf("\n COURSE = %s", ptr_stud[i]->course);
printf("\n FEES = %d", ptr_stud[i]->fees);
}

return 0;

}

Output

Enter the number of students : 1
Enter the data for student 1
ROLL NO.: 01

NAME: Rahul

COURSE: BCA

FEES: 45000

DETAILS OF STUDENTS

ROLL NO. = 01

NAME = Rahul
COURSE = BCA
FEES = 45000

Write a program that passes a pointer to a structure to a function.

#include <stdio.h>
#include <conio.h>
#include <alloc.h>
struct student

{
int r_no;
char name[20];
char course[20];
int fees;
s
void display (struct student *);
int main()
{

struct student *ptr;

ptr = (struct student *)malloc(sizeof(struct student));
printf("\n Enter the data for the student ");
printf("\n ROLL NO.: ");

scanf("%d", &ptr->r_no);

Structures and Unions 155

printf("\n NAME: ");
gets(ptr->name);
printf("\n COURSE: ");
gets(ptr->course);
printf("\n FEES: ");
scanf("%d", &ptr->fees);

display(ptr);
getch();
return O;

}

void display(struct student *ptr)

{
printf("\n DETAILS OF STUDENT");
printf("\n ROLL NO. = %d", ptr->r_no);
printf("\n NAME = %s", ptr->name);
printf("\n COURSE = %s ", ptr->course);
printf("\n FEES = %d", ptr->fees);

}

Output

Enter the data for the student

ROLL NO.: 01

NAME: Rahul

COURSE: BCA

FEES: 45000

DETAILS OF STUDENT
ROLL NO. = 01

NAME = Rahul
COURSE = BCA
FEES = 45000

9.5 SELF-REFERENTIAL STRUCTURES

Self-referential structures are those structures that contain a reference to the data of its same type.
That is, a self-referential structure, in addition to other data, contains a pointer to a data that is
of the same type as that of the structure. For example, consider the structure node given below.
struct node

{
int val;
struct node *next;
1
Here, the structure node will contain two types of data: an integer val and a pointer next. You must
be wondering why we need such a structure. Actually, self-referential structure is the foundation
of other data structures. We will be using them throughout this book and their purpose will be
clearer to you when we discuss linked lists, trees, and graphs.

5.6 UNIONS

Similar to structures, a union is a collection of variables of different data types. The only difference
between a structure and a union is that in case of unions, you can only store information in one
field at any one time. To better understand a union, think of it as a chunk of memory that is used
to store variables of different types. When a new value is assigned to a field, the existing data is
replaced with the new data.

Thus, unions are used to save memory. They are useful for applications that involve multiple
members, where values need not be assigned to all the members at any one time.

156 Data Structures Using C

Programming Tip 5.6.1 Declaring a Union

It is an error to use a structure/ union The syntax for declaring a union is the same as that of
variable as a member of its own struct type declaring a structure. The only difference is that instead of
structure or union type union, respectively. using the keyword struct, the keyword union would be used.

union union-name

{
data_type var-name;

data_type var-name;

Programming Tip

Variable of a structure or a union
can be declared at the time of
structure/union definition by
placing the variable name after
the closing brace and before the
semicolon.

The syntax for union declaration can be given as

Again the typedef keyword can be used to simplify the declaration of

union variables. The most important thing to remember about a union
is that the size of a union is the size of its largest field. This is because
sufficient number of bytes must be reserved to store the largest sized
field.

5.6.2 Accessing a Member of a Union

A member of a union can be accessed using the same syntax as that of
a structure. To access the fields of a union, use the dot operator (.), i.e.,

the union variable name followed by the dot operator followed by the member name.

5.6.3 Initializing Unions

The difference between a structure and a union is that in case of a union, the fields share the same
memory space, so new data replaces any existing data. Look at the following code and observe
the difference between a structure and union when their fields are to be initialized.

#include <stdio.h>

typedef struct POINT1

// POINT2 P2 ={4,5}; Illegal in case of unions

printf("\n The coordinates of P1 are %d and %d", Pl.x, Pl.y);
printf("\n The coordinates of P2 are %d and %d", P2.x, P2.y);

{
int x, y;

¥

typedef union POINT2

{
int x;
int y;

};

int main()

{
POINT1 P1 = {2,3};
POINT2 P2;
P2.x = 4;
P2.y = 5;
return O;

¥

Output

The coordinates of P1 are 2 and 3

Structures and Unions 157

The coordinates of P2 are 5 and 5
In this code, POINT1 is a structure name and POINT2 is a union name. However, both the declarations

are almost same (except the keywords—struct and union). In main(), we can see the difference
between structures and unions while initializing values. The fields of a union cannot be initialized

all at once.
Look at the output carefully. For the structure variable the output is
as expected but for the union variable the answer does not seem to be
The size of a union is equal to the correct. To understand the concept of union, execute the following code.
size of its largest member. The code given below just re-arranges the printf statements. You will

be surprised to see the result.

#include <stdio.h>
typedef struct POINT1

{
int x, y;

s

typedef union POINT2

{
int x;
int y;

s

int main()

{
POINT1 P1 = {2,3};
POINT2 P2;
printf("\n The coordinates of Pl are %d and %d", Pl1.x, Pl.y);
P2. x = 4;
printf("\n The x coordinate of P2 is %d", P2.x);
P2.y = 5;
printf(“\n The y coordinate of P2 is %d", P2.y);
return O;

}

Output

The coordinates of P1 are 2 and 3
The x coordinate of P2 is 4
The y coordinate of P2 is 5

Here although the output is correct, the data is still overwritten in memory.

5.7 ARRAYS OF UNION VARIABLES

Like structures we can also have an array of union variables. However, because of the problem of
new data overwriting existing data in the other fields, the program may not display the accurate

results.
#include <stdio.h>
union POINT

{
int x, y;
s
int main()
{
int i;

union POINT points[3];
points[0].x = 2;

points[0].y = 3;
points[1].x = 4;
points[1].y = 5;

158 Data Structures Using C

points[2].x = 6;

points[2].y = 7;

for(i=0;i<3;i++)
printf("\n Coordinates of Point[%d] are %d and %d", i, points[i].x,
points[i].y);

return O;

}
Output

Coordinates of Point[0] are 3 and 3
Coordinates of Point[1] are 5 and 5
Coordinates of Point[2] are 7 and 7

5.8 UNIONS INSIDE STRUCTURES

Generally, unions can be very useful when declared inside a structure. Consider an example in
which you want a field of a structure to contain a string or an integer, depending on what the user
specifies. The following code illustrates such a scenario:

#include <stdio.h>
struct student

{

union
{
char name[20];
int roll_no;
s
int marks;
s
int main()
{
struct student stud;
char choice;
printf("\n You can enter the name or roll number of the student");
printf("\n Do you want to enter the name? (Y or N): ");
gets(choice);
if(choice==‘y’ || choice==°Y’)
{
printf("\n Enter the name: ");
gets(stud.name);

printf("\n Enter the roll number: ");
scanf("%d", &stud.roll_no);
¥
printf("\n Enter the marks: ");
scanf("%d", &stud.marks);
if(choice==‘y’ || choice==°Y’)
printf("\n Name: %s ", stud.name);
else
printf("\n Roll Number: %d ", stud.roll no);
printf("\n Marks: %d", stud.marks);
return 0;

}
Now in this code, we have a union embedded within a structure. We know the fields of a union
will share memory, so in the main program we ask the user which data he/she would like to store
and depending on his/her choice the appropriate field is used.

Structures and Unions 159

~PoinTs T0 REMEMBER

Structure is a user-defined data type that can store
related information (even of different data types)
together.

A structure is declared using the keyword struct,
followed by the structure name.

The structure definition does not allocate any
memory or consume storage space. It just gives a
template that conveys to the C compiler how the
structure is laid out in the memory and gives details
of the member names. Like any data type, memory is
allocated for the structure when we declare a variable
of the structure.

When a struct name is preceded with the keyword
typedef, then the struct becomes a new type.
When the user does not explicitly initialize the
structure, then C automatically does it. For int and
float members, the values are initialized to zero and
char and string members are initialized to '\0' by
default.

A structure member variable is generally accessed
using a '. ' (dot) operator.

A structure can be placed within another structure.
That is, a structure may contain another structure
as its member. Such a structure is called a nested
structure.

Self-referential structures are those structures that
contain a reference to data of its same type. That is,
a self-referential structure, in addition to other data,
contains a pointer to a data that is of the same type
as that of the structure.

A union is a collection of variables of different
data types in which memory is shared among these
variables. The size of a union is equal to the size of
its largest member.

The only difference between a structure and a union
is that in case of unions information can only be
stored in one member at a time.

1" EXERCISES

Review Questions

1. What is the advantage of using structures?

2. Structure declaration reserves memory for the
structure. Comment on this statement with valid
justifications.

3. Differentiate between a structure and an array.

4. Write a short note on structures and inter-process
communication.

5. Explain the utility of the keyword typedef in
structures.

6. Explain with an example how structures are
initialized.

7. Is it possible to create an array of structures?
Explain with the help of an example.

8. What do you understand by a union?

9. Differentiate between a structure and a union.

10. How is a structure name different from a structure
variable?

hierarchical information.
(a) Student
(b) Roll Number
(c) Name
(i) First name
(ii)) Middle Name
(iii) Last Name
(d) Sex
(e) Date of Birth
(i) Day
(ii)) Month
(ii1) Year
(f) Marks
(i) English
(ii)) Mathematics
(iii) Computer Science

11. Explain how members of a union are accessed. 2. Define a structure to store the name, an array
12. Write a short note on nested structures. marks[] which stores the marks of three different
13. In which applications unions can be useful? subjects, and a character grade. Write a program
to display the details of the student whose name
is entered by the user. Use the structure definition
of the first question to make an array of students.

Programming Exercises

1. Declare a structure that represents the following

160

Data Structures Using C

10.

11.

12.

13.

Display the name of the students who have secured
less than 40% of the aggregate.

. Modity Question 2 to print each student’s average

marks and the class average (that includes average
of all the student’s marks).

. Make an array of students as illustrated in Question 1

and write a program to display the details of the
student with the given Date of Birth.

. Write a program to find smallest of three numbers

using structures.

. Write a program to calculate the distance between

the given points (6,3) and (2,2).

. Write a program to read and display the information

about all the employees in a department. Edit the
details of the i" employee and redisplay the
information.

. Write a program to add and subtract height 62"

and 5'4".

. Write a program to add and subtract 10hrs 20mins

50sec and Shrs 30min 40sec.
Write a program using structure to check if the
current year is leap year or not.
Write a program using pointer to structure to
initialize the members of an employee structure.
Use functions to print the employee’s information.
Write a program to create a structure with the
information given below. Then, read and print the
data.
Employee[10]
(a) Emp Id
(b) Name
(i) First Name
(ii)) Middle Name
(iii) Last Name
(c) Address
(i) Area
(i) City
(iii) State
(d) Age
(e) Salary
(f) Designation
Define a structure date containing three integers—
day, month, and year. Write a program using
functions to read data, to validate the date entered
by the user and then print the date on the screen.
For example, if you enter 29,2,2010 then that is an

14.

15.

16.

17.

18.

19.

20.

21.

22.

invalid date as 2010 is not a leap year. Similarly
31,6,2007 is invalid as June does not have 31 days.
Using the structure definition of the above
program, write a function to increment the date.
Make sure that the incremented date is a valid
date.

Modify the above program to add a specific
number of days to the given date.

Write a program to define a structure vector. Then
write functions to read data, print data, add two
vectors and scale the members of a vector by a
factor of 10.

Write a program to define a structure for a hotel
that has members— name, address, grade, number
of rooms, and room charges. Write a function to
print the names of hotels in a particular grade. Also
write a function to print names of hotels that have
room charges less than the specified value.
Write a program to define a union and a structure
both having exactly the same members. Using
the sizeof operator, print the size of structure
variable as well as union variable and comment
on the result.

Declare a structure time that has three fields—hr,
min, sec. Create two variables start time and
end time. Input their values from the user. Then
while start time does not reach the end time,
display GOOD DAY on the screen.

Declare a structure fraction that has two fields—
numerator and denominator. Create two variables
and compare them using function. Return 0 if the
two fractions are equal, —1 if the first fraction is
less than the second and 1 otherwise. You may
convert a fraction into a floating point number
for your convenience.

Declare a structure POINT. Input the coordinates
of a point variable and determine the quadrant in
which it lies. The following table can be used to
determine the quadrant

Quadrant X Y
1 Positive Positive
2 Negative Positive
Negative Negative
4 Positive Negative

Write a program to calculate the area of one
of the geometric figures—circle, rectangle or a
triangle. Write a function to calculate the area.

Structures and Unions 161

The function must receive one parameter which
is a structure that contains the type of figure and
the size of the components needed to calculate the
area must be a part of a union. Note that a circle
requires just one component, rectangle requires
two components and a triangle requires the size
of three components to calculate the area.

Multiple-choice Questions

1. A data structure that can store related information

together is called

(a) Array (b) String

(c) Structure (d) All of these

. A data structure that can store related information
of different data types together is called

(a) Array (b) String

(c) Structure (d) All of these

. Memory for a structure is allocated at the time of
(a) Structure definition

(b) Structure variable declaration

(c) Structure declaration

(d) Function declaration

. A structure member variable is generally accessed
using

(a) Address operator (b) Dot operator

(c) Comma operator (d) Ternary operator

. A structure that can be placed within another
structure is known as

(a) Self-referential structure

(b) Nested structure

(c) Parallel structure

(d) Pointer to structure

. A union member variable is generally accessed
using the

(a) Address operator (b) Dot operator

(c) Comma operator (d) Ternary operator

. typedef can be used with which of these data

types?
(a) struct (b) union
(c) enum (d) all of these

True or False

1. Structures contain related information of the same

data type.

2. Structure declaration reserves memory for the

structure.

13.
14.

. When the user does not explicitly initialize the

structure, then C automatically does it.

. The dereference operator is used to select a

particular member of the structure.

. A nested structure contains another structure as

its member.

. A struct type is a primitive data type.
. C permits copying of one structure variable to

another.

. Unions and structures are initialized in the same

way.

. A structure cannot have a union as its member.
10.
11.
12.

C permits nested unions.

A field in a structure can itself be a structure.

No two members of a union should have the same
name.

A union can have another union as its member.
New variables can be created using the typedef
keyword.

Fill in the Blanks

1.
2.

10.
11.

12.
13.

Structure is a data type.
is just a template that will be used to
reserve memory when a variable of type struct

is declared.

. A structure is declared using the keyword struct

followed by a

. When we precede a struct name with ,

then the struct becomes a new type.

. For int and float structure members, the values

are initialized to

. char and string structure members are initialized

to by default.

. Astructure member variable is generally accessed

using a

. A structure placed within another structure is

called a
structures contain a reference to data of
its same type.
Memory is allocated for a structure when
is done.
is a collection of data under one name
in which memory is shared among the members.
The selection operator is used to
permits sharing of memory among
different types of data.

CHAPTER

Linked Lists

LEARNING OBJECTIVE

A linked list is a collection of data elements called nodes in which the linear
representation is given by links from one node to the next node. In this chapter, we
are going to discuss different types of linked lists and the operations that can be
performed on these lists.

6.1 INTRODUCTION

We have studied that an array is a linear collection of data elements in which the elements are
stored in consecutive memory locations. While declaring arrays, we have to specify the size of
the array, which will restrict the number of elements that the array can store. For example, if we
declare an array as int marks[10], then the array can store a maximum of 10 data elements but not
more than that. But what if we are not sure of the number of elements in advance? Moreover, to
make efficient use of memory, the elements must be stored randomly at any location rather than
in consecutive locations. So, there must be a data structure that removes the restrictions on the
maximum number of elements and the storage condition to write efficient programs.

Linked list is a data structure that is free from the aforementioned restrictions. A linked list
does not store its elements in consecutive memory locations and the user can add any number
of elements to it. However, unlike an array, a linked list does not allow random access of data.
Elements in a linked list can be accessed only in a sequential manner. But like an array, insertions
and deletions can be done at any point in the list in a constant time.

6.1.1 Basic Terminologies

A linked list, in simple terms, is a linear collection of data elements. These data elements are
called nodes. Linked list is a data structure which in turn can be used to implement other data

Linked Lists 163

structures. Thus, it acts as a building block to implement data structures such as stacks, queues,
and their variations. A linked list can be perceived as a train or a sequence of nodes in which each
node contains one or more data fields and a pointer to the next node.

IECAEHESNES D=

Simple linked list

Figure 6.1

In Fig. 6.1, we can see a linked list in which every node contains two parts, an integer and a
pointer to the next node. The left part of the node which contains data may include a simple data
type, an array, or a structure. The right part of the node contains a pointer to the next node (or
address of the next node in sequence). The last node will have no next node connected to it, so
it will store a special value called nuLL. In Fig. 6.1, the nuLL pointer is represented by x. While
programming, we usually define nuLL as —1. Hence, a NuLL pointer denotes the end of the list. Since
in a linked list, every node contains a pointer to another node which is of the same type, it is also
called a self-referential data type.

Linked lists contain a pointer variable sTART that stores the address of the first node in the list.
We can traverse the entire list using START which contains the address of the first node; the next
part of the first node in turn stores the address of its succeeding node. Using this technique, the
individual nodes of the list will form a chain of nodes. If START = NuLL, then the linked list is empty
and contains no nodes.

In C, we can implement a linked list using the following code:

struct node

{
int data;
struct node *next;

1

m Linked lists provide an efficient way of storing related data and perform basic operations such as
insertion, deletion, and updation of information at the cost of extra space required for storing address of the
next node.

Let us see how a linked list is maintained in the memory.
In order to form a linked list, we need a structure called

Figure 6.2 START pointing to the first element
of the linked list in the memory

ST Data Next node which has two fields, bata and NExT. baTA will store the

! -1 " 2 information part and NexT will store the address of the next
2 node in sequence. Consider Fig. 6.2.

3 In the figure, we can see that the variable START is used to

4 E 7 store the address of the first node. Here, in this example, START

5 = 1, so the first data is stored at address 1, which is H. The

6 corresponding NExT stores the address of the next node, which

7 L 8 1s 4. So, we will look at address 4 to fetch the next data item.

8 L 10 The second data element obtained from address 4 is E. Again,

9 we see the corresponding NEXT to go to the next node. From

10 0 -1 the entry in the NexT, we get the next address, that is 7, and

fetch L as the data. We repeat this procedure until we reach
a position where the NEXT entry contains —1 or NULL, as this

164 Data Structures Using C

would denote the end of the linked list. When we traverse baTa and NEXT in this manner, we finally
see that the linked list in the above example stores characters that when put together form the
word HELLO.

Note that Fig. 6.2 shows a chunk of memory locations which range from 1 to 10. The shaded
portion contains data for other applications. Remember that the nodes of a linked list need not
be in consecutive memory locations. In our example, the nodes for the linked list are stored at
addresses 1,4, 7, 8, and 10.

Let us take another example to see how two linked lists are maintained together in the computer’s
memory. For example, the students of Class XI of Science group are asked to choose between Biology
and Computer Science. Now, we will maintain two linked lists, one for each subject. That is, the
first linked list will contain the roll numbers of all the students who have opted for Biology and the
second list will contain the roll numbers of students who have chosen Computer Science.

Now, look at Fig. 6.3, two different linked lists are simultaneously maintained in the memory.
There is no ambiguity in traversing through the list because each list maintains a separate START

pointer, which gives the address of the first node

START 1 of their respective linked lists. The rest of the
! (Biology) | Roll No Next nodes are reached by looking at the value stored
1 so1 3 in the NEXT.
2 S02 5 By looking at the figure, we can conclude that
i 3 S03 8 roll numbers of the students who have opted for
(CompuStT:rRTSczience) 4 B.iolpgy are SO1, S03, S06, S08, S10, and S11.
5 so4 7 Similarly, roll numbers of the students who chose
6 Computer Science are S02, S04, S05, S07, and
7 S05 10 S09.
8 506 1 We have already said that the bATA part of a node
o may contain just a single data item, an array, or
10 507 12 a structure. Let us take an example to see how a
1 >08 B structure is maintained in a linked list that is stored
12 509 -1 .
13 S10 15 in the fmetmory: . .
1 Consider a scenario in which the roll number,
name, aggregate, and grade of students are stored
15 s11 -1 . . .
using linked lists. Now, we will see how the NEXT
Figure 6.3 Two linked lists which are simultaneously pointer is used to store the data alphabetically.
maintained in the memory This is shown in Fig. 6.4.

6.1.2 Linked Lists versus Arrays

Both arrays and linked lists are a linear collection of data elements. But unlike an array, a linked
list does not store its nodes in consecutive memory locations. Another point of difference between
an array and a linked list is that a linked list does not allow random access of data. Nodes in a
linked list can be accessed only in a sequential manner. But like an array, insertions and deletions
can be done at any point in the list in a constant time.

Another advantage of a linked list over an array is that we can add any number of elements in the
list. This is not possible in case of an array. For example, if we declare an array as int marks[20],
then the array can store a maximum of 20 data elements only. There is no such restriction in case
of a linked list.

Linked Lists 165

Roll No Name Aggregate Grade Next
1 So1 Ram 78 Distinction 6
2 S02 Shyam 64 First division 14
3
4 S03 Mohit 89 Outstanding 17
5
6 So4 Rohit 77 Distinction 2
7 S05 Varun 86 Outstanding 10
8 S06 Karan 65 First division 12
9
10 S07 Veena 54 Second division -1
11 S08 Meera 67 First division 4
12 S09 Krish 45 Third division 13
13 S10 Kusum 91 Outstanding 11
14 S11 Silky 72 First division 7
15
START 16
17 S12 Monica 75 Distinction 1
18 S13 Ashish 63 First division 19
19 Si14 Gaurav 61 First division 8

Figure 6.4 Students’ linked list

Thus, linked lists provide an efficient way of storing related data and performing basic operations
such as insertion, deletion, and updation of information at the cost of extra space required for
storing the address of next nodes.

6.1.3 Memory Allocation and De-allocation for a Linked List

We have seen how a linked list is represented in the memory. If we want to add a node to an already
existing linked list in the memory, we first find free space in the memory and then use it to store
the information. For example, consider the linked list shown in Fig. 6.5. The linked list contains
the roll number of students, marks obtained by them in Biology, and finally a nexT field which
stores the address of the next node in sequence. Now, if a new student joins the class and is asked
to appear for the same test that the other students had taken, then the new student’s marks should
also be recorded in the linked list. For this purpose, we find a free space and store the information
there. In Fig. 6.5 the grey shaded portion shows free space, and thus we have 4 memory locations
available. We can use any one of them to store our data. This is illustrated in Figs 6.5(a) and (b).

Now, the question is which part of the memory is available and which part is occupied? When
we delete a node from a linked list, then who changes the status of the memory occupied by it
from occupied to available? The answer is the operating system. Discussing the mechanism of
how the operating system does all this is out of the scope of this book. So, in simple language,
we can say that the computer does it on its own without any intervention from the user or the
programmer. As a programmer, you just have to take care of the code to perform insertions and
deletions in the list.

However, let us briefly discuss the basic concept behind it. The computer maintains a list of
all free memory cells. This list of available space is called the free pool.

166 Data Structures Using C

START
Roll No Marks Next
) 1 so1 78 2
(Biology) , 02 84 3
3 S03 45 5
4
5 S04 98 7
6
7 S05 55 8
8 S06 34 10
9
10 s07 90 11
11 S08 87 12
12 S09 86 13
13 S10 67 15
14
15 si11 56 -1
(a)
Figure 6.5

START
! Roll No Marks Next
- 1 So1 78 2
(Biology) 02 84 3
3 S03 45 5
4 S12 75 -1
5 S04 98 7
6
7 S05 55 8
8 S06 34 10
9
10 So07 90 11
11 S08 87 12
12 S09 86 13
13 S10 67 15
14
15 S11 56 4

(b)

(a) Students’ linked list and (b) linked list after the insertion of new student’s record

We have seen that every linked list has a pointer variable sTART which stores the address of the
first node of the list. Likewise, for the free pool (which is a linked list of all free memory cells),
we have a pointer variable avaiL which stores the address of the first free space. Let us revisit the
memory representation of the linked list storing all the students’ marks in Biology.

Now, when a new student’s record has to be added, the memory address pointed by avaIL will be
taken and used to store the desired information. After the insertion, the next available free space’s
address will be stored in AvaIL. For example, in Fig. 6.6, when the first free memory space is
utilized for inserting the new node, avaIiL will be set to contain address 6.

START
Roll No Marks Next
L>. 1 so1 78 2
(Biology) s02 84 3
3 03 45 5
4 6
i 5 S04 98 7
AVAIL 6 9
7 05 55 8
8 S06 34 10
9 14
10 s07 90 11
11 08 87 12
12 S09 86 13
13 s10 67 15
14 =il
15 s11 56 -1

Figure 6.6 Linked list with AVAIL and START pointers

This was all about inserting a new node in
an already existing linked list. Now, we will
discuss deleting a node or the entire linked
list. When we delete a particular node from an
existing linked list or delete the entire linked
list, the space occupied by it must be given
back to the free pool so that the memory can
be reused by some other program that needs
memory space.

The operating system does this task of
adding the freed memory to the free pool. The
operating system will perform this operation
whenever it finds the CPU idle or whenever the
programs are falling short of memory space.
The operating system scans through all the
memory cells and marks those cells that are
being used by some program. Then it collects
all the cells which are not being used and adds

Linked Lists 167

their address to the free pool, so that these cells can be reused by other programs. This process
is called garbage collection.
There are different types of linked lists which we will discuss in the next section.

6.2 SINGLY LINKED LISTS

A singly linked list is the simplest type of linked list in which every node contains some data and
a pointer to the next node of the same data type. By saying that the node contains a pointer to the
next node, we mean that the node stores the address of the next node in sequence. A singly linked
list allows traversal of data only in one way. Figure 6.7 shows a singly linked list.

A RS E A

Figure 6.7 Singly linked list

6.2.1 Traversing a Linked List

Traversing a linked list means accessing the nodes of the list in order to perform some processing
on them. Remember a linked list always contains a pointer variable sTART which stores the address
of the first node of the list. End of the list is marked by storing nuLL or —1 in the NexT field of the
last node. For traversing the linked list, we also make use of another pointer variable pTR which
points to the node that is currently being accessed. The algorithm to traverse a linked list is shown
in Fig. 6.8.

In this algorithm, we first initialize PTR with the address of START. So now, PTR points to the first
node of the linked list. Then in Step 2, awhile loop is executed which is repeated till PTR processes
the last node, that is until it encounters nuLL. In Step 3, we apply the process (e.g., print) to the
current node, that is, the node pointed by pTRr. In Step 4, we move to the next node by making the
PTR variable point to the node whose address is stored in the NexT field.

Let us now write an algorithm to count the

Step 1: [INITIALIZE] SET PTR = START number of nodes in a linked list. To do this, we
Step 2: Repeat Steps 3 and 4 while PTR != NULL will traverse each and every node of the list and
Step 3: Apply Process to PTR—>DATA while traversing every individual node, we will
Step 4: [END OF L00|§§T PTR = PTR = NEXT increment the counter by 1. Once we reach NULL,
Step 5: EXIT that is, when all the nodes of the linked list have
been traversed, the final value of the counter will
Figure 6.8 Algorithm for traversing a linked list be displayed. Figure 6.9 shows the algorithm to
print the number of nodes in a linked list.
Step 1: [INITIALIZE] SET COUNT = 0 6.2.2 Searching for a Value in a Linked List
Step 2: [INITIALIZE] SET PTR = START
Step 3: Repeat Steps 4 and 5 while PTR != NULL Searching a linked list means to find a particular
Step 4: SET COUNT = COUNT + 1 element in the linked list. As already discussed,
Step 5 [END OF LOOI§I]ET PTR = PTR—>NEXT a linked list consists of nodes which are divided
Step 6: Write COUNT into two parts, the information part and the next
Step 7: EXIT part. So searching means finding whether a given

Figure 6.9 Algorithm to print the number of nodes in a

value is present in the information part of the
node or not. If it is present, the algorithm returns

linked list .
I I the address of the node that contains the value.

168 Data Structures Using C

Step 1: [INITIALIZE] SET PTR = START
Step 2: Repeat Step 3 while PTR != NULL
Step 3: IF VAL = PTR —>DATA
SET POS = PTR
Go To Step 5
ELSE
SET PTR = PTR —> NEXT
[END OF IF]
[END OF LOOP]
Step 4: SET POS = NULL
Step 5: EXIT

Figure 6.10 Algorithm to search a linked list

Figure 6.10 shows the algorithm to search a linked
list.

In Step 1, we initialize the pointer variable pTR with
START that contains the address of the first node. In
Step 2, a while loop is executed which will compare
every node’s paTa with vaL for which the search is
being made. If the search is successful, that is, vAL has
been found, then the address of that node is stored in
pos and the control jumps to the last statement of the
algorithm. However, if the search is unsuccessful, pos is
set to NuLL which indicates that vaL is not present in the
linked list.

Consider the linked list shown in Fig. 6.11. If we have vaL = 4, then the flow of the algorithm

can be explained as shown in the figure.

E IS e IR I e [ED I e D I e N B e K B s EA KN

PTR

Here PTR —> DATA = 1. Since PTR —> DATA != 4, we move to the next node.

E IS e I I g [ED S s N B g EX B e K I s K KN

Here PTR —> DATA = 7. Since PTR —> DATA != 4, we move to the next node.

E IS IR I e 51 S e N S e EX B e N B e E KN

Here PTR —> DATA = 3. Since PTR —> DATA != 4, we move to the next node.

IS e IR I e [ED e 1 I e BN B e K I s EA KN

PTR

Here PTR —> DATA = 4. Since PTR —> DATA = 4, POS = PTR. POS now stores
the address of the node that contains VAL

Figure 6.11 Searching a linked list

6.2.3 Inserting a New Node in a Linked List

In this section, we will see how a new node is added into an already existing linked list. We will
take four cases and then see how insertion is done in each case.

Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Case 3: The new node is inserted after a given node.

Case 4: The new node is inserted before a given node.
Before we describe the algorithms to perform insertions in all these four cases, let us first discuss
an important term called overrLow. Overflow is a condition that occurs when AVAIL = NULL Or no
free memory cell is present in the system. When this condition occurs, the program must give an
appropriate message.

Inserting a Node at the Beginning of a Linked List

Consider the linked list shown in Fig. 6.12. Suppose we want to add a new node with data 9 and
add it as the first node of the list. Then the following changes will be done in the linked list.

Linked Lists 169

Ll = [T e s s (¢
START
Allocate memory for the new node and initialize its DATA part to 9.

(o]]

Add the new node as the first node of the list by making the NEXT part of the new
node contain the address of START.

Lol = [S~ l7 L G [el G2] g=e [A s [
Now make STSA-PI;/?RIO point to the first node of the list.

D e N I e A S e N I e KA I o N I e KN I e BN EY

START

Figure 6.12 Inserting an element at the beginning of a linked list

Figure 6.13 shows the algorithm to insert a new node

at the beginning of a linked list. In Step 1, we first check
Step 1: IF AVAIL = NULL . -

Write OVERFLOW whether memory is available for the new node. If thﬁ:
Go to Step 7 free memory has exhausted, then an oveErRFLOW message is
[END OF IF] printed. Otherwise, if a free memory cell is available, then

Step 2: SET NEW_NODE = AVAIL llocat for th de. Set it et with th
Step 3: SET AVAIL = AVATL —> NEXT we allocate space for the new node. Set its DATA part with the
Step 4: SET NEW_NODE —>DATA = VAL given VAL and the NEXT part is initialized with the address of
Step 5: SET NEW_NODE —>NEXT = START the first node of the list, which is stored in START. Now, since
gigi 3 E)E(ITSTART = NEW_NODE the new node is added as the first node of the list, it will
now be known as the START node, that is, the START pointer

Figure 6.13 Algorithm to insert a new node at variable will now hold the address of the NEw_NoDE. Note the
the beginning following two steps:

Step 2: SET NEW_NODE = AVAIL
Step 3: SET AVAIL = AVAIL —> NEXT

These steps allocate memory for the new node. In C, there are functions like malloc(), alloc, and
calloc() which automatically do the memory allocation on behalf of the user.

Inserting a Node at the End of a Linked List

Consider the linked list shown in Fig. 6.14. Suppose we want to add a new node with data 9 as
the last node of the list. Then the following changes will be done in the linked list.

Figure 6.15 shows the algorithm to insert a new node at the end of a linked list.
In Step 6, we take a pointer variable PTR and initialize it with sTART. That is, PTR now points to
the first node of the linked list. In the while loop, we traverse through the linked list to reach the
last node. Once we reach the last node, in Step 9, we change the NexT pointer of the last node to
store the address of the new node. Remember that the NexT field of the new node contains NULL,
which signifies the end of the linked list.

Inserting a Node After a Given Node in a Linked List

Consider the linked list shown in Fig. 6.17. Suppose we want to add a new node with value 9 after
the node containing data 3. Before discussing the changes that will be done in the linked list, let
us first look at the algorithm shown in Fig. 6.16.

170 Data Structures Using C

N g K I e N B e BN I g N I s N B s ER BN

START

Allocate memory for the new node and initialize its DATA part to 9 and
NEXT part to NULL.

o[]

Take a pointer variable PTR which points to START.

L g g g=ia [g2 [g=e | 915 [x]

START, PTR

Move PTR so that it points to the last node of the list.

L g7 [gz g=ia [g2 [g=ie | 915 []

START

Add the new node after the node pointed by PTR. This is done by storing the address
of the new node in the NEXT part of PTR.

L g [g gle [g2 [g=e [g5 | g0]

START PT

Figure 6.14 Inserting an element at the end of a linked list

Step 1: IF AVAIL = NULL Step 1: IF AVAIL = NULL
Write OVERELOW Write OVERFLOW
G S Go to Step 12
0 to Step 10 [END OF IF]
[END OF IF] Step 2: SET NEW_NODE = AVAIL
Step 2: SET NEW_NODE = AVAIL Step 3: SET AVAIL = AVAIL —>NEXT
Step 3: SET AVAIL = AVAIL —> NEXT Step 4: SET NEW_NODE —>DATA = VAL
. B ~ Step 5: SET PTR = START
Step 4: SET NEW_NODE —>DATA = VAL Step 6: SET PREPTR = PTR
Step 5: SET NEW_NODE —>NEXT = NULL Step 7: Repeat Steps 8 and 9 while PREPTR — > DATA
Step 6: SET PTR = START 1= NUM
Step 7: Repeat Step 8 while PTR—>NEXT != NULL Step 8: SET PREPTR = PTR
) _ Step 9: SET PTR = PTR —>NEXT
Step 8: SET PTR = PTR—>NEXT [END OF LOOP]
[END OF LOOP] Step 10: PREPTR-—>NEXT = NEW_NODE
Step 9: SET PTR—>NEXT = NEW_NODE Step 11: SET NEW_NODE —>NEXT = PTR
Step 1@: EXIT Step 12: EXIT
Figure 6.15 Algorithm to insert a new node at the end Figure 6.16 Algorithm to insert a new node after a node

that has value NUM

In Step 5, we take a pointer variable PTR and initialize it with sTART. That is, PTR now points to
the first node of the linked list. Then we take another pointer variable PREPTR which will be used
to store the address of the node preceding pTr. Initially, PREPTR is initialized to PTR. So now, PTR,
PREPTR, and START are all pointing to the first node of the linked list.

In the while loop, we traverse through the linked list to reach the node that has its value equal
to NnuMm. We need to reach this node because the new node will be inserted after this node. Once
we reach this node, in Steps 10 and 11, we change the NExT pointers in such a way that new node
is inserted after the desired node.

Linked Lists 171

Ll g gz gl gz g e g5 ¢

START

Allocate memory for the new node and initialize its DATA part to 9.

(o]]

Take two pointer variables PTR and PREPTR and initialize them with START
so that START, PTR, and PREPTR point to the first node of the list.

N S g A I e N B e BN B s N I e N B g ER BN

START
PTR
PREPTR

Move PTR and PREPTR until the DATA part of PREPTR = value of the node

after which insertion has to be done.

node just before PTR.

PREPTR will always point to the

N g I I e T B e N B g N B e [B g ER Y

START PREPTR PTR

N S g I I e EE B e BN B g N IS e N B g ER BN

START PREPTR PTR

Add the new node in between the nodes pointed by PREPTR and PTR.

B KIE e EI

START PREPTR
Y

NEW_NODE

OESOESOE SO
T]

N S e K B e R S e EN I e A I e R I e EI I g ENES

START

Figure 6.17 Inserting an element after a given node in a linked list

Inserting a Node Before a Given Node in a Linked List
Consider the linked list shown in Fig. 6.19. Suppose we want to add a new node with value 9 before

Step

Step
Step
Step
Step
Step
Step
Step
Step

Step
Step
Step

1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 12
[END OF IF]

2: SET NEW_NODE = AVAIL

3: SET AVAIL = AVAIL —>NEXT

4: SET NEW_NODE —>DATA = VAL

5: SET PTR = START

6: SET PREPTR = PTR

7: Repeat Steps 8 and 9 while PTR—>DATA != NUM

8: SET PREPTR = PTR

9: SET PTR = PTR —>NEXT
[END OF LOOP]

10: PREPTR —>NEXT = NEW_NODE

11: SET NEW_NODE —>NEXT = PTR

12: EXIT

Figure 6.18 Algorithm to insert a new node before a node that has

value NUM

the node containing 3. Before discussing
the changes that will be done in the linked
list, let us first look at the algorithm shown
in Fig. 6.18.

In Step 5, we take a pointer variable
PTR and initialize it with sTART. That is, PTR
now points to the first node of the linked
list. Then, we take another pointer variable
PREPTR and initialize it with PTR. So now,
PTR, PREPTR, and START are all pointing to
the first node of the linked list.

In the while loop, we traverse through
the linked list to reach the node that has
its value equal to num. We need to reach
this node because the new node will be
inserted before this node. Once we reach

172 Data Structures Using C

this node, in Steps 10 and 11, we change the NExT pointers in such a way that the new node is
inserted before the desired node.

L g7 g [g=le] g2 g6 | g5 [x]

START
Allocate memory for the new node and initialize its DATA part to 9.

[o]]

Initialize PREPTR and PTR to the START node.

IS e A IS e EN I e A I N I e K e BN ED

START
PTR
PREPTR

Move PTR and PREPTR until the DATA part of PTR = value of the node
before which insertion has to be done. PREPTR will always point to
the node just before PTR.

R e B B e e K I e BN B s KA B s BN RS
START PREPTR PTR
Insert the new node in between the nodes pointed by PREPTR and PTR.

NS M BRI I B B e K1 I o BN ES

START PREPTR

Y
B

NEW_NODE

BEE O E = r i s Pl s O =B Y

START

Figure 6.19 Inserting an element before a given node in a linked list

6.2.4 Deleting a Node from a Linked List

In this section, we will discuss how a node is deleted from an already existing linked list. We will
consider three cases and then see how deletion is done in each case.

Case 1: The first node is deleted.
Case 2: The last node is deleted.
Case 3: The node after a given node is deleted.

Before we describe the algorithms in all these three cases, let us first discuss an important term
called unberrLow. Underflow is a condition that occurs when we try to delete a node from a linked
list that is empty. This happens when START = NuLL or when there are no more nodes to delete.
Note that when we delete a node from a linked list, we actually have to free the memory occupied
by that node. The memory is returned to the free pool so that it can be used to store other programs
and data. Whatever be the case of deletion, we always change the AvaIL pointer so that it points
to the address that has been recently vacated.

Deleting the First Node from a Linked List

Consider the linked list in Fig. 6.20. When we want to delete a node from the beginning of the
list, then the following changes will be done in the linked list.

Linked Lists 173

L g g gie [gz [g=e | 915 [

START

Make START to point to the next node in sequence.

L= g=tel g1z [g6 915 [x]

START

Figure 6.20 Deleting the first node of a linked list

Figure 6.21 shows the algorithm to delete the first node from a linked list. In Step 1, we check

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 5

[END OF IF]

Step 2: SET PTR = START
Step 3: SET START = START —> NEXT
Step 4: FREE PTR
Step 5: EXIT

Figure 6.21 Algorithm to delete the first
node

if the linked list exists or not. If START = NuLL, then it signifies
that there are no nodes in the list and the control is transferred
to the last statement of the algorithm.

However, if there are nodes in the linked list, then we use a
pointer variable PTRr that is set to point to the first node of the list.
For this, we initialize TR with START that stores the address of
the first node of the list. In Step 3, START is made to point to the
next node in sequence and finally the memory occupied by the
node pointed by pPTRr (initially the first node of the list) is freed
and returned to the free pool.

Deleting the Last Node from a Linked List

Consider the linked list shown in Fig. 6.22. Suppose we want to delete the last node from the
linked list, then the following changes will be done in the linked list.

Ll g [gz [g=le] g2 g—le | g5 %]

START

Take pointer variables PTR and PREPTR which initially point to START.

Ll g g g=is] g2 g=te | g5 X]

START
PREPTR
PTR

Move PTR and PREPTR such that NEXT part of PTR = NULL. PREPTR always points
to the node just before the node pointed by PTR.

Ll g gz g=is] g2 ge | g5 %]

START

PREPTR PTR

Set the NEXT part of PREPTR node to NULL.

EN S e A B e N S e A I e N S e KA EY

START

Figure 6.22 Deleting the last node of a linked list

Figure 6.23 shows the algorithm to delete the last node from a linked list. In Step 2, we take
a pointer variable TR and initialize it with sTarT. That is, PTR now points to the first node of the
linked list. In the while loop, we take another pointer variable PREPTR such that it always points
to one node before the PTR. Once we reach the last node and the second last node, we set the NEXT
pointer of the second last node to nuLL, so that it now becomes the (new) last node of the linked
list. The memory of the previous last node is freed and returned back to the free pool.

174 Data Structures Using C

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Steps 4 and 5 while PTR—>NEXT != NULL
Step 4: SET PREPTR = PTR
Step 5 SET PTR = PTR—>NEXT
[END OF LOOP]
Step 6: SET PREPTR —> NEXT = NULL
Step 7: FREE PTR
Step 8: EXIT

Figure 6.23 Algorithm to delete the last node

Deleting the Node After a Given Node in a Linked List

Consider the linked list shown in Fig. 6.24. Suppose we want to delete the node that succeeds
the node which contains data value 4. Then the following changes will be done in the linked list.

L g g g=ia [g2 [g=ie | 915 [X]

START
Take pointer variables PTR and PREPTR which initially point to START.

I g KA I g E e e BN I g N I e e g BN EY

START
PREPTR
PTR
Move PREPTR and PTR such that PREPTR points to the node containing VAL
and PTR points to the succeeding node.

L g g g=ia [g2 [g=ie | 915 [x]

START PREPTR PTR
B e R I e B e e R e e BN I e D I e EH ES
START PREPTR PTR

B e R I e B e e R e e BN I e D I e EE ES
START PREPTR PTR

Set the NEXT part of PREPTR to the NEXT part of PTR.

Ll gzl g=a]y] (2]] |:|—|—>|5|X|

START PREPTR PTR
TEN S g 2 I g N B e R B e K B g A K
START

Figure 6.24 Deleting the node after a given node in a linked list

Figure 6.25 shows the algorithm to delete the node after a given node from a linked list. In
Step 2, we take a pointer variable pTR and initialize it with sTArRT. That is, PTR now points to the
first node of the linked list. In the while loop, we take another pointer variable PREPTR such that
it always points to one node before the PTR. Once we reach the node containing vaL and the node
succeeding it, we set the next pointer of the node containing vaL to the address contained in next
field of the node succeeding it. The memory of the node succeeding the given node is freed and
returned back to the free pool.

Linked Lists

175

1.

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 10
[END OF IF]
Step 2: SET PTR = START
Step 3: SET PREPTR = PTR
Step 4: Repeat Steps 5 and 6 while PREPTR —>DATA != NUM
Step 5 SET PREPTR = PTR
Step 6 SET PTR = PTR —> NEXT
[END OF LOOP]
Step 7: SET TEMP = PTR
Step 8: SET PREPTR —>NEXT = PTR —> NEXT
Step 9: FREE TEMP
Step 10: EXIT

Figure 6.25 Algorithm to delete the node after a given node

ProGgrAMMING ExamPLE

Write a program to create a linked list and perform insertions and deletions of all cases.
Write functions to sort and finally delete the entire list at once.

#include
#include
#include
#include

struct

{

s

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

node

<stdio.h>
<stdlib.h>
<conio.h>
<malloc.h>

int data;
struct node *next;

node
node
node
node
node
node
node
node
node
node
node
node
node

*start = NULL;
*create_ll(struct node *);
*display(struct node *);
*insert_beg(struct node *);
*insert_end(struct node *);
*insert_before(struct node *);
*insert_after(struct node *);
*delete_beg(struct node *);
*delete_end(struct node *);
*delete_node(struct node *);
*delete_after(struct node *);
*delete_list(struct node *);
*sort_list(struct node *);

int main(int argc, char *argv[]) {
int option;

do
{

printf(“\n\n *****MAIN MENU ***¥+2);

printf(“\n 1: Create a list”);

printf(“\n 2: Display the list”);

printf(“\n 3: Add a node at the beginning”);
printf(“\n 4: Add a node at the end”);

printf(“\n 5: Add a node before a given node”);
printf(“\n 6: Add a node after a given node”);
printf(“\n 7: Delete a node from the beginning”);

176 Data Structures Using C

printf(“\n 8: Delete a node from the end”);
printf(“\n 9: Delete a given node”);
printf(“\n 10: Delete a node after a given node”);
printf(“\n 11: Delete the entire list”);
printf(“\n 12: Sort the list”);
printf(“\n 13: EXIT”);
printf(“\n\n Enter your option : “);
scanf(“%d”, &option);
switch(option)
{
case 1: start = create_ll(start);

printf(“\n LINKED LIST CREATED”);

break;

case 2: start = display(start);
break;

case 3: start = insert_beg(start);
break;

case 4: start = insert_end(start);
break;

case 5: start = insert_before(start);
break;

case 6: start = insert_after(start);
break;

case 7: start = delete_beg(start);
break;

case 8: start = delete_end(start);
break;

case 9: start = delete_node(start);
break;

case 10: start = delete_after(start);
break;

case 11: start = delete_list(start);
printf(“\n LINKED LIST DELETED”);

break;
case 12: start = sort_list(start);
break;
}
}while(option !=13);
getch();
return 0;
X
struct node *create_ll(struct node *start)
{

struct node *new_node, *ptr;

int num;

printf(“\n Enter -1 to end”);

printf(“\n Enter the data : “);

scanf(“%d”, &num);

while(num!=-1)

{
new_node = (struct node*)malloc(sizeof(struct node));
new_node -> data=num;
if(start==NULL)

¢ new_node -> next = NULL;
start = new_node;

}

else

{

ptr=start;

}

Linked Lists

while(ptr->next!=NULL)
ptr=ptr->next;
ptr->next = new_node;
new_node->next=NULL;

}

printf(“\n Enter the data : “);

scanf(“%d”, &num);

}

return start;

struct node *display(struct node *start)

{

struct node *ptr;

ptr = start;
while(ptr != NULL)
{

printf(“\t %d”, ptr -> data);
ptr = ptr -> next;

}

return start;

struct node *insert_beg(struct node *start)

{

struct node *new_node;

int num;

printf(“\n Enter the data : “);

scanf(“%d”, &num);

new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;

new_node -> next = start;

start = new_node;

return start;

struct node *insert_end(struct node *start)

{

struct node *ptr, *new_node;
int num;

printf(“\n Enter the data : “);
scanf(“%d”, &num);

new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
new_node -> next = NULL;

ptr = start;

while(ptr -> next != NULL)

ptr = ptr -> next;

ptr -> next = new_node;

return start;

struct node *insert_before(struct node *start)

{

struct node *new_node, *ptr, *preptr;
int num, val;

printf(“\n Enter the data : “);
scanf(“%d”, &num);

printf(“\n Enter the value before which the data has to be inserted : “);

scanf(“%d”, &val);

new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;

ptr = start;

while(ptr -> data != val)

{

177

178 Data Structures Using C

preptr = ptr;
ptr = ptr -> next;
}
preptr -> next = new_node;
new_node -> next = ptr;
return start;
}
struct node *insert_after(struct node *start)
{
struct node *new_node, *ptr, *preptr;
int num, val;
printf(“\n Enter the data : “);
scanf(“%d”, &num);
printf(“\n Enter the value after which the data has to be inserted : «);
scanf(“%d”, &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node -> data = num;
ptr = start;
preptr = ptr;
while(preptr -> data != val)

preptr = ptr;

ptr = ptr -> next;
3
preptr -> next=new_node;
new_node -> next = ptr;
return start;

struct node *delete beg(struct node *start)

{
struct node *ptr;
ptr = start;
start = start -> next;
free(ptr);
return start;
}
struct node *delete_end(struct node *start)
{
struct node *ptr, *preptr;
ptr = start;
while(ptr -> next != NULL)
{
preptr = ptr;
ptr = ptr -> next;
¥
preptr -> next = NULL;
free(ptr);
return start;
¥
struct node *delete_node(struct node *start)
{

struct node *ptr, *preptr;

int val;

printf(“\n Enter the value of the node which has to be deleted : “);
scanf(“%d”, &val);

ptr = start;

if(ptr -> data == val)

start = delete_beg(start);
return start;

else

while(ptr -> data != val)

{
preptr = ptr;
ptr = ptr -> next;
¥
preptr -> next = ptr -> next;
free(ptr);
return start;
¥
¥
struct node *delete_ after(struct node *start)
{

struct node *ptr, *preptr;
int val;

Linked Lists

printf(“\n Enter the value after which the node has to deleted : “);

scanf(“%d”, &val);

ptr = start;

preptr = ptr;

while(preptr -> data != val)

preptr = ptr;
ptr = ptr -> next;

}
preptr -> next=ptr -> next;
free(ptr);

return start;

struct node *delete list(struct node *start)

{

179

struct node *ptr; // Lines 252-254 were modified from original code to fix

unresposiveness in output window
if(start!=NULL){
ptr=start;
while(ptr != NULL)
{

printf(“\n %d is to be deleted next”, ptr -> data);

start = delete_beg(ptr);

ptr = start;
¥
}
return start;
}
struct node *sort_list(struct node *start)
{

struct node *ptrl, *ptr2;
int temp;
ptrl = start;
while(ptrl -> next != NULL)
{
ptr2 = ptrl -> next;
while(ptr2 != NULL)

{
if(ptrl -> data > ptr2 -> data)
{
temp = ptrl -> data;
ptrl -> data = ptr2 -> data;
ptr2 -> data = temp;
¥
ptr2 = ptr2 -> next;
}

ptrl = ptrl -> next;

180 Data Structures Using C

}
Output

}

return start; // Had to be added

1: Create a list

Display the list

Add a node at the beginning

Add the node at the end

Add the node before a given node
Add the node after a given node

Delete a node from the beginning
Delete a node from the end

cONO VA WN

9: Delete a given node
10: Delete a node after a given node
11: Delete the entire list

12: Sort the list

13: Exit

Enter your option :
Enter your option :

3
73

6.3 CIRCULAR LINKED LISTS

In a circular linked list, the last node contains a pointer to the first node of the list. We can have
a circular singly linked list as well as a circular doubly linked list. While traversing a circular
linked list, we can begin at any node and traverse the list in any direction, forward or backward,
until we reach the same node where we started. Thus, a circular linked list has no beginning and
no ending. Figure 6.26 shows a circular linked list.

|;|—|—>|2|+>|3|—|->|4|+>|5|—H6|—H7|i|

Figure 6.26 Circular linked list

The only downside of a circular linked list is the complexity of iteration. Note that there are
no NuLL values in the NExT part of any of the nodes of list.

START
DATA NEXT
1 H 4
2
3
4 E 7
5
6
7 L 8
8 L 10
9
10 0 1

Figure 6.27 Memory representation
of a circular linked list

Circular linked lists are widely used in operating systems for task
maintenance. We will now discuss an example where a circular linked
list is used. When we are surfing the Internet, we can use the Back
button and the Forward button to move to the previous pages that
we have already visited. How is this done? The answer is simple.
A circular linked list is used to maintain the sequence of the Web
pages visited. Traversing this circular linked list either in forward or
backward direction helps to revisit the pages again using Back and
Forward buttons. Actually, this is done using either the circular stack
or the circular queue. We will read about circular queues in Chapter 8.
Consider Fig. 6.27.

We can traverse the list until we find the NEXT entry that contains the
address of the first node of the list. This denotes the end of the linked
list, that is, the node that contains the address of the first node is actually

Linked Lists 181

START the last node of the list. When we traverse the paTa and
! (Biology) | Roll No NEXT NEXT in this manner, we will finally see that the linked list
; Zg; z in Fig. 6.27 stores characters that when put together form
r’ 3 <03 3 the word HELLO.
4 Now, look at Fig. 6.28. Two different linked lists are
START . S . .
(Computer 5 S04 7 simultaneously maintained in the memory. There is no
Science) 6 ambiguity in traversing through the list because each
; :gg ig list maintains a separate START pointer which gives the
9 address of the first node of the respective linked list. The
10 S07 12 remaining nodes are reached by looking at the value
11 S08 13 stored in NEXT.
12 509 1 By looking at the figure, we can conclude that the roll
13 510 e numbers of the students who have opted for Biology are
i: o1l 2 S01, S03, S06, 508, 510, and s11. Similarly, the roll numbers

of'the students who chose Computer Science are 502, 04,

Figure 6.28 Memory representation of two circular sos, so7, and sos.

linked lists stored in the memory

6.3.1 Inserting a New Node in a Circular Linked List

In this section, we will see how a new node is added into an already existing linked list. We will
take two cases and then see how insertion is done in each case.

Case 1: The new node is inserted at the beginning of the circular linked list.

Case 2: The new node is inserted at the end of the circular linked list.

Inserting a Node at the Beginning of a Circular Linked List

Consider the linked list shown in Fig. 6.29. Suppose we want to add a new node with data 9 as
the first node of the list. Then the following changes will be done in the linked list.

e nE e E R T EEEn
Allocate memory for the new node and initialize its DATA part to 9.

Take a pointer variable PTR that points to the START node of the list.

L Pz P el Pz s s]
START, A PTR |

Move PTR so that it now points to the last node of the list.

Ll Pz el el Pzl s s
sTART A | p1
Add the new node in between PTR and START.

Lol el 7] e el Sz s] g5y
A START | PTR
Make START point to the new node.

O OE UE HE OE OE Okt

START

R

Figure 6.29 Inserting a new node at the beginning of a circular linked list

182 Data Structures Using C

Step

Step
Step
Step
Step
Step
Step

Step
Step
Step
Step

1: IF AVAIL = NULL Figure 6.30 shows_ th_e algorlthm to 1n.sert a

Write OVERELOW new node at the beginning of a linked list. In

Go to Step 11 Step 1, we first check whether memory is

[END OF 1IF] available for the new node. If the free memory
2: SET NEW_NODE = AVAIL : ;

3: SET AVAIL = AVAIL —>NEXT has exhausted, then an ovERFLOW message is

4: SET NEW_NODE —>DATA = VAL printed. Otherwise, if free memory cell is

Z: zET PIRS: ST’;RTh.l oTR s NEXT 1= START available, then we allocate space for the new

: Repea ep 7 while - 1= . . .

7. PTR = PTR —> NEXT node. Set. 1t§ I?A'TA'pal‘t W'lth the given vaL and the

[END OF LOOP] NEXT part is initialized with the address of the first

8: SET NEW_NODE —>NEXT = START node of the list, which is stored in START. Now,

i(‘) S:ET P;?A‘R?NEX;E; "\‘I‘SSENODE since the new node is added as the first node of

11: EXIT h - the list, it will now be known as the START node,

that is, the sTART pointer variable will now hold

Figure 6.30 Algorithm to insert a new node at the beginning he address of the NEw NODE.

While inserting a node in a circular linked list, we have to use a while loop to traverse to the
last node of the list. Because the last node contains a pointer to sTART, its NEXT field is updated so
that after insertion it points to the new node which will be now known as START.

Inserting a Node at the End of a Circular Linked List

Consider the linked list shown in Fig. 6.31. Suppose we want to add a new node with data 9 as
the last node of the list. Then the following changes will be done in the linked list.

|1H+|7|+|3|+|4|—H2|+|6|—H5|||
ST:rocate memory for the new node and initialize its DATA part to 9.

[o] |

Take a pointer variable PTR which will initially point to START.
7L el el e sy
START, A PTR |

Move PTR so that it now points to the last node of the list.

|1H+|7H+|3H+|4|+|2|+|6H+|5|||
START PTR
Add the new node after the node pointed by PTR.

|1|—H7|—H3|—H4|—H2|—H6|—H5|+>|9|||

START A PTR

Figure 6.31 Inserting a new node at the end of a circular linked list

Figure 6.32 shows the algorithm to insert a new node at the end of a circular linked list. In Step 6,
we take a pointer variable PTR and initialize it with sTART. That is, PTR now points to the first node
of'the linked list. In the while loop, we traverse through the linked list to reach the last node. Once
we reach the last node, in Step 9, we change the NEXT pointer of the last node to store the address
of the new node. Remember that the NexT field of the new node contains the address of the first
node which is denoted by START.

6.3.2 Deleting a Node from a Circular Linked List

In this section, we will discuss how a node is deleted from an already existing circular linked list.
We will take two cases and then see how deletion is done in each case. Rest of the cases of

Linked Lists 183

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 10
[END OF IF]

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL —> NEXT

Step 4: SET NEW_NODE —>DATA = VAL

Step 5: SET NEW_NODE —> NEXT = START

Step 6: SET PTR = START

Step 7: Repeat Step 8 while PTR —>NEXT != START
Step 8: SET PTR = PTR—> NEXT

[END OF LOOP]
Step 9: SET PTR—>NEXT = NEW_NODE
Step 10: EXIT

Figure 6.32 Algorithm to insert a new node at the end

deletion are same as that given for singly linked
lists.

Case 1: The first node is deleted.

Case 2: The last node is deleted.
Deleting the First Node from a Circular Linked
List
Consider the circular linked list shown in Fig.
6.33. When we want to delete a node from the

beginning of the list, then the following changes
will be done in the linked list.

|1|—H7|—H3|—H4|—H2|—H6|—H5|||

START

Take a variable PTR and make it point to the START node of the list.

|1|—H7|—H3|—H4|—H2|—H6|—H5|||

START,A PTR

Move PTR further so that it now points to the last node of the list.

|1|—H7|—H3|—H4|—H2|—H6|—H5|||

START A

The NEXT part of PTR is made to point to the second node of the list
and the memory of the first node is freed. The second node becomes

the first node of the list.

|7|—H3|—H4|—H2|—H6|—H5|||

START

Figure 6.33 Deleting the first node from a circular linked list

Figure 6.34 shows the algorithm to delete the first node from a circular linked list. In Step 1 of
the algorithm, we check if the linked list exists or not. If sTART = NuLL, then it signifies that there
are no nodes in the list and the control is transferred to the last statement of the algorithm.

However, if there are nodes in the linked list, then we use a pointer variable pTR which will be
used to traverse the list to ultimately reach the last node. In Step 5, we change the next pointer

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
Step 2: SET PTR = START
Step
Step

W

SET PTR = PTR —> NEXT
[END OF LOOP]

SET PTR—>NEXT = START —> NEXT
FREE START

SET START = PTR —>NEXT

EXIT

Step
Step
Step
Step

00N O WU

: Repeat Step 4 while PTR —>NEXT != START

Figure 6.34 Algorithm to delete the first node

of the last node to point to the second node of
the circular linked list. In Step 6, the memory
occupied by the first node is freed. Finally, in
Step 7, the second node now becomes the first
node of the list and its address is stored in the
pointer variable START.

Deleting the Last Node from a Circular Linked List

Consider the circular linked list shown in Fig.
6.35. Suppose we want to delete the last node
from the linked list, then the following changes
will be done in the linked list.

184

Data Structures Using C

|1|—H7|—H3|—H4|—H2|—H6|—H5|||

START A

Take two pointers PREPTR and PTR which will initially point to START.

|1|—H7|—H3|—H4|—H2|—H6|—|—>|5|||

START

PREPTR
PTR

Move PTR so that it points to the last node of the list. PREPTR will

always point to the node preceding PTR.

|1|—H7|—H3|—H4|—H2|—H6|—|->|5|||

START A

PREPTR

Make the PREPTR's next part store START node's address and free the
space allocated for PTR. Now PREPTR is the last node of the list.

L]zl e e el el

START A

PREPTR

Figure 6.35 Deleting the last node from a circular linked list

Step

Step
Step
Step
Step

Step
Step
Step

i h wWwN

o)}

: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
SET PTR = START
Repeat Steps 4 and 5 while PTR —>NEXT != START
SET PREPTR = PTR
SET PTR = PTR —> NEXT
[END OF LOOP]
SET PREPTR —>NEXT = START
FREE PTR
¢ EXIT

Figure 6.36 Algorithm to delete the last node

Figure 6.36 shows the algorithm to
delete the last node from a circular linked
list. In Step 2, we take a pointer variable
PTR and initialize it with sTArRT. That is,
PTR now points to the first node of the
linked list. In the while loop, we take
another pointer variable PREPTR such that
PREPTR always points to one node before
PTR. Once we reach the last node and the
second last node, we set the next pointer of
the second last node to START, so that it now
becomes the (new) last node of the linked
list. The memory of the previous last node
is freed and returned to the free pool.

PRoGRAMMING EXAMPLE

2. Write aprogram to create a circular linked list. Perform insertion and deletion at the beginning

and end of the list.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{

int data;

struct node *next;
}s
struct
struct
struct
struct
struct

node
node
node
node
node

*start = NULL;
*create_cll(struct node *);
*display(struct node *);
*insert_beg(struct node *);
*insert_end(struct node *);

Linked Lists

185

struct
struct
struct
struct

node *delete_beg(struct node *);
node *delete_end(struct node *);
node *delete_after(struct node *);
node *delete_list(struct node *);

int main()

{

}

int option;
clrscr();

do

{

printf("\n\n *****MAIN MENU ***¥*");

n
printf("\n 1: Create a list");
printf("\n 2: Display the list");
printf("\n 3: Add a node at the beginning");
printf("\n 4: Add a node at the end");
printf("\n 5: Delete a node from the beginning");
printf("\n 6: Delete a node from the end");
printf("\n 7: Delete a node after a given node");
printf("\n 8: Delete the entire list");

9

printf("\n 9: EXIT");

printf("\n\n Enter your option : ");
scanf("%d", &option);

switch(option)

case 1: start = create_cll(start);
printf("\n CIRCULAR LINKED LIST CREATED");

break;

case 2: start = display(start);
break;

case 3: start = insert_beg(start);
break;

case 4: start = insert_end(start);
break;

case 5: start = delete_beg(start);
break;

case 6: start = delete_end(start);
break;

case 7: start = delete_after(start);
break;

case 8: start = delete_list(start);
printf("\n CIRCULAR LINKED LIST DELETED");
break;

}

}while(option !=9);

getch();

return O;

struct node *create_cll(struct node *start)

{

struct node *new_node, *ptr;
int num;
printf("\n Enter -1 to end");
printf("\n Enter the data : ");
scanf("%d", &num);
while(num!=-1)
{
new_node = (struct node*)malloc(sizeof(struct node));
new_node —>data = num;
if(start == NULL)
{

new_node —>next = new_node;

186 Data Structures Using C

start = new_node;

}

else

{ ptr = start;
while(ptr —>next != start)

ptr = ptr —>next;

ptr — next = new_node;
new_node —> next = start;

}

printf("\n Enter the data : ");
scanf("%d", &num);

X
return start;
X
struct node *display(struct node *start)
{
struct node *ptr;
ptr=start;
while(ptr —>next != start)
{
printf("\t %d", ptr—>data);
ptr = ptr —>next;
X
printf("\t %d", ptr—>data);
return start;
}
struct node *insert_beg(struct node *start)
{

struct node *new_node, *ptr;
int num;
printf("\n Enter the data : ");
scanf("%d", &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>data = num;
ptr = start;
while(ptr —>next != start)

ptr = ptr —>next;
ptr —>next = new_node;
new_node —> next = start;
start = new_node;
return start;

struct node *insert_end(struct node *start)
{

struct node *ptr, *new_node;

int num;

printf("\n Enter the data : ");

scanf("%d", &num);

new_node = (struct node *)malloc(sizeof(struct node));

new_node —>data = num;

ptr = start;

while(ptr —>next != start)

ptr = ptr —>next;

ptr —next = new_node;

new_node —> next = start;

return start;

struct node *delete_beg(struct node *start)

{

struct node *ptr;
ptr = start;

Linked Lists 187

while(ptr —>next != start)
ptr = ptr— next;

ptr —>next = start —>next;

free(start);

start = ptr —>next;

return start;

}
struct node *delete_end(struct node *start)
{
struct node *ptr, *preptr;
ptr = start;
while(ptr —>next != start)
{
preptr = ptr;
ptr = ptr—>next;
}
preptr —>next = ptr —>next;
free(ptr);
return start;
)
struct node *delete_after(struct node *start)
{
struct node *ptr, *preptr;
int val;
printf("\n Enter the value after which the node has to deleted : ");
scanf("%d", &val);
ptr = start;
preptr = ptr;
while(preptr —>data != val)
preptr = ptr;
ptr = ptr —>next;
}
preptr —>next = ptr —>next;
if(ptr == start)
start = preptr — next;
free(ptr);
return start;
)
struct node *delete_list(struct node *start)
{
struct node *ptr;
ptr = start;
while(ptr —>next != start)
start = delete_end(start);
free(start);
return start;
}
Output

1: Create a list

2: Display the list

3: Add a node at the beginning
8: Delete the entire list

9: EXIT

Enter your option : 1

Enter -1 to end

Enter the data: 1

Enter the data: 2

188 Data Structures Using C

Enter the data:
Enter the data:
CIRCULAR LINKED LIST CREATED
Enter your option : 3
Enter your option : 5
Enter your option : 2

5

1 2 4

4
-1

Enter your option : 9

6.4 DOUBLY LINKED LISTS

A doubly linked list or a two-way linked list is a more complex type of linked list which contains
a pointer to the next as well as the previous node in the sequence. Therefore, it consists of three
parts—data, a pointer to the next node, and a pointer to the previous node as shown in Fig. 6.37.

START

X [1]

<

BN E =N N=NEE

Figure 6.37 Doubly linked list

In C, the structure of a doubly linked list can be given as,
struct node

{

3

struct node *prev;

int data;

struct node *next;

The prev field of the first node and the NexT field of the last node will contain NuLL. The PREV
field is used to store the address of the preceding node, which enables us to traverse the list in the
backward direction.

Thus, we see that a doubly linked list calls for more space per node and more expensive basic
operations. However, a doubly linked list provides the ease to manipulate the elements of the
list as it maintains pointers to nodes in both the directions (forward and backward). The main
advantage of using a doubly linked list is that it makes searching twice as efficient. Let us view
how a doubly linked list is maintained in the memory. Consider Fig. 6.38.

In the figure, we see that a variable sTART is used to store the address of the first node. In this

START
DATA | PREV NEXT
1 H -1 3
2
3 E 1 6
4
5
6 L
7 L
8
9 0 7 -1

Figure 6.38 Memory representation of a
doubly linked list

example, START = 1, so the first data is stored at address 1, which
is H. Since this is the first node, it has no previous node and hence
stores NULL or —1 in the PRev field. We will traverse the list until
we reach a position where the NEXT entry contains —1 or NULL.
This denotes the end of the linked list. When we traverse the baTA
and NexT in this manner, we will finally see that the linked list
in the above example stores characters that when put together
form the word HELLO.

6.4.1 Inserting a New Node in a Doubly Linked List

In this section, we will discuss how a new node is added into an
already existing doubly linked list. We will take four cases and
then see how insertion is done in each case.

Case 1: The new node is inserted at the beginning.

Linked Lists 189

Case 2: The new node is inserted at the end.
Case 3: The new node is inserted after a given node.
Case 4: The new node is inserted before a given node.

Inserting a Node at the Beginning of a Doubly Linked List

Consider the doubly linked list shown in Fig. 6.39. Suppose we want to add a new node with data
9 as the first node of the list. Then the following changes will be done in the linked list.

3N = 2 I =< E) =< I K I =< I 3 K3
il?gzate memory for the new node and initialize its DATA part to 9 and PREV field to NULL.

[x]o] |

Add the new node before the START node. Now the new node becomes the first node of
the list.

I3 1N I >=a N Y B e [2 0 >=< B N B =< HN 2 B >=< IR E2 K3

Figure 6.39 Inserting a new node at the beginning of a doubly linked list

Step

Step
Step
Step
Step
Step
Step
Step
Step

1: IF AVAIL = NULL Figure 6.40 shows the algorithm to insert a new node at

Write OVERFLOW the beginning of a doubly linked list. In Step 1, we first check

Go to Step 9 whether memory is available for the new node. If the free
5 _E/E#DN(E);_,{IE%E — AVAIL memory has exhausted, then an oveERFLOW message is printed.
3: SET AVAIL = AVAIL —> NEXT Otherwise, if free memory cell is available, then we allocate
4: SET NEW_NODE —>DATA = VAL space for the new node. Set its DATA part with the given vaL
5: SET NEW_NODE —>PREV = NULL and the NexT part is initialized with the address of the first
3 2 E; Zﬂﬂ()f _;RE\E/XI :IE;TQEBE node of the list, which is stored in sTART. Now, since the new
8: SET START = NEW NODE node is added as the first node of the list, it will now be known
9: EXIT - as the sTART node, that is, the START pointer variable will now

hold the address of NEW_NODE.

Figure 6.40 Algorithm to insert a new node at

the beginning Inserting a Node at the End end of a Doubly Linked List

Consider the doubly linked list shown in Fig. 6.41. Suppose
we want to add a new node with data 9 as the last node of the list. Then the following changes
will be done in the linked list.

I3 IES I >=e B 2 =< [X B =< B K3 B =< E3 K3

Allocate memory for the new node and initialize its DATA part to 9 and its
NEXT field to NULL.

HEIEY

Take a pointer variable PTR and make it point to the first node of the list.

EYES = k2 I =< Kl = Rl = I EY kY
START,PTR
Move PTR so that it points to the last node of the list. Add the new node after the

node pointed by PTR.
= Lo [x]

I8 5 I e B e D D I > B Y A >

2]
START PTR

Figure 6.41 Inserting a new node at the end of a doubly linked list

190 Data Structures Using C

Figure 6.42 shows the algorithm to insert a new node at the end of a doubly linked list. In Step
6, we take a pointer variable PTR and initialize it with START. In the while loop, we traverse through
the linked list to reach the last node. Once we reach the last node, in Step 9, we change the NEXT
pointer of the last node to store the address of the new node. Remember that the NexT field of the
new node contains NuLL which signifies the end of the linked list. The prev field of the NEW_NODE

will be set so that it points to the node pointed by PTR (now the second last node of the list).

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 11
[END OF IF] Step
Step 2: SET NEW_NODE = AVAIL Step
Step 3: SET AVAIL = AVAIL —> NEXT Step
Step 4: SET NEW_NODE —> DATA = VAL Step
Step 5: SET NEW_NODE —>NEXT = NULL Step
Step 6: SET PTR = START Step
Step 7: Repeat Step 8 while PTR—>NEXT != NULL
Step 8: SET PTR = PTR —> NEXT Step
[END OF LOOP] Step
Step 9: SET PTR —>NEXT = NEW_NODE Step
Step 10: SET NEW_NODE —>PREV = PTR Step
Step 11: EXIT Step

[

2
3
4:
5
6
7

Step 1: IF AVAIL

END

. SET
© SET

SET

: SET
: Repeat Step 7 while PTR—>DATA != NUM

NULL

Write OVERFLOW

Go to Step 12

OF IF]

NEW_NODE = AVAIL
AVAIL = AVAIL —> NEXT
NEW_NODE —> DATA = VAL
PTR = START

SET PTR

PTR —> NEXT

[END OF LOOP]

8:
9:

SET
SET

NEW_NODE —> NEXT
NEW_NODE —> PREV

PTR —> NEXT
PTR

10: SET PTR —>NEXT = NEW_NODE
11: SET PTR—>NEXT —> PREV = NEW_NODE
EXIT

12:

Figure 6.42 Algorithm to insert a new node at the end

Figure 6.43 Algorithm to insert a new node after a given node

Inserting a Node After a Given Node in a Doubly Linked List

Consider the doubly linked list shown in Fig. 6.44. Suppose we want to add a new node with
value 9 after the node containing 3. Before discussing the changes that will be done in the linked

list, let us first look at the algorithm shown in Fig. 6.43.

] =]

palNE)

el

4]

el

[2] x]

START

Allocate memory for the new node and initialize its DATA part to 9.

Take a pointer variable PTR and make it point to the first node of the list.

EIEI =<l

pealEl

<

4]

<

[2] %]

START,PTR

Move PTR further until the data part of PTR = value after which the

node has to be inserted.

[x] 2]

=L 7]

pallE)

<=

[4]

el

[2] x]

START

PTR

Insert the new node between PTR and the node succeeding it.

I3 IS I === A I >=< Y I e O Y B =< B Y B3
START PTR | W
HEN
I3 S I =< A I >=<1 Y I >== I) I >=< I] == E3 K
START
Figure 6.44 Inserting a new node after a given node in a doubly linked list

Linked Lists 191

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 12

[END OF IF]

Step 2: SET NEW_NODE = AVAIL
Step 3: SET AVAIL = AVAIL —> NEXT
Step 4: SET NEW_NODE —>DATA = VAL
Step 5: SET PTR = START
Step 6: Repeat Step 7 while PTR—>DATA != NUM
Step 7 SET PTR = PTR —> NEXT

[END OF LOOP]
Step 8: SET NEW_NODE —> NEXT = PTR
Step 9: SET NEW_NODE —>PREV = PTR —>PREV
Step 10: SET PTR —>PREV = NEW_NODE
Step 11: SET PTR —>PREV —>NEXT = NEW_NODE
Step 12: EXIT

Figure 6.45 Algorithm to insert a new node before a
given node

Figure 6.43 shows the algorithm to insert a new
node after a given node in a doubly linked list. In
Step 5, we take a pointer PTR and initialize it with
sTART. That is, PTR now points to the first node of
the linked list. In the while loop, we traverse
through the linked list to reach the node that has
its value equal to Nnum. We need to reach this node
because the new node will be inserted after this
node. Once we reach this node, we change the NExT
and prev fields in such a way that the new node is
inserted after the desired node.

Inserting a Node Before a Given Node in a Doubly
Linked List

Consider the doubly linked list shown in Fig. 6.46.
Suppose we want to add a new node with value 9
before the node containing 3. Before discussing the

changes that will be done in the linked list, let us first look at the algorithm shown in Fig. 6.45.
In Step 1, we first check whether memory is available for the new node. In Step 5, we take
a pointer variable PTR and initialize it with sTArT. That is, PTR now points to the first node of the
linked list. In the while loop, we traverse through the linked list to reach the node that has its value
equal to num. We need to reach this node because the new node will be inserted before this node.
Once we reach this node, we change the NexT and Prev fields in such a way that the new node is

inserted before the desired node.

e K2 <IN E}

<

4]

<

[2]]

Allocate memory for the new node and initialize its DATA part to 9.

[Io] |

Take a pointer variable PTR and make it point to the first node of the list.

[x] 2] El>=NE

<

<

4]

PRa

[2] %]

START, PTR

Move PTR further so that it now points to the node whose data is equal
to the value before which the node has to be inserted.

EIES =<l Kl >=<l E]

<

4]

<

[2] %]

START

Add the new node in between the node pointed by PTR and the node preceding it.

HE =N NN =N =N

START PTR

HE =N =N =N ==l
START

Figure 6.46 Inserting a new node before a given node in a doubly linked list

6.4.2 Deleting a Node from a Doubly Linked List

In this section, we will see how a node is deleted from an already existing doubly linked list. We
will take four cases and then see how deletion is done in each case.

192 Data Structures Using C

Case 1: The first node is deleted.

Case 2: The last node is deleted.

Case 3: The node after a given node is deleted.
Case 4: The node before a given node is deleted.

Deleting the First Node from a Doubly Linked List

Consider the doubly linked list shown in Fig. 6.47. When we want to delete a node from the
beginning of the list, then the following changes will be done in the linked list.

I3 IES I >=< I N N >=< [1 B >=< B KA I =<] I =<l K1 3

Free the memory occupied by the first node of the list and make the second node of the
list as the START node.

I3 15N I == N B >=< I 2 I =< I 1 B =< I N 3

Figure 6.47 Deleting the first node from a doubly linked list

Figure 6.48 shows the algorithm to delete the first node of a doubly linked list. In Step 1 of the
algorithm, we check if the linked list exists or not. If START =

Step 1: IF START = NULL NULL, thgn it signifies that there are no nodes in the list .and the
Write UNDERFLOW control is transferred to the last statement of the algorithm.

END g‘; ’;‘; Step 6 However, if there are nodes in the linked list, then we use

Step 2: [SET PTR =]START a temporary pointer variable pTR that is set to point to the first

Step 3: SET START = START —> NEXT node of the list. For this, we initialize PTR with START that stores

Step 4: SET START—>PREV = NULL the address of the first node of the list. In Step 3, START is made

Step 5: FREE PTR . .

Step 6: EXIT to point to the next node in sequence and finally the memory

occupied by PTR (initially the first node of the list) is freed and
Figure 6.48 Algorithm to delete the first node ~ returned to the free pool.
Deleting the Last Node from a Doubly Linked List

Consider the doubly linked list shown in Fig. 6.49. Suppose we want to delete the last node from
the linked list, then the following changes will be done in the linked list.

I8 IE I == N B > I 0 I = B 2 B =< H] B =< I EX E3

Take a pointer variable PTR that points to the first node of the list.

BN =N~ = R
START,PTR

Move PTR so that it now points to the last node of the list.

HEI =R =N 0= =R =R
START PTR

Free the space occupied by the node pointed by PTR and store NULL in NEXT field of
its preceding node.

I3 K8 I >=< B N B >=< [1 B =< B KA B =< E3 E3

Figure 6.49 Deleting the last node from a doubly linked list

Linked Lists 193

Figure 6.50 shows the algorithm to delete the
Step 1: IF START = NULL . .
Write UNDERFLOW last node of a doubly linked list. In Step 2, we take
Go to Step 7 a pointer variable PTR and initialize it with START.
[END OF IF] That is, PTR now points to the first node of the
Step 2: SET PTR = START linked list. The while 1 hrouch th
Step 3: Repeat Step 4 while PTR—>NEXT != NULL inked list. The while loop traverses through the
Step 4: SET PTR = PTR —> NEXT list to reach the last node. Once we reach the last
[END OF LOOP] node, we can also access the second last node by
Step 5: SET PTR = PREV —>NEXT = NULL taking its address from the prev field of the last
Step 6: FREE PTR .
Step 7: EXIT node. To delete the last node, we simply have to
set the next field of second last node to NULL, so
Figure 6.50 Algorithm to delete the last node that it now becomes the (new) last node of the

linked list. The memory of the previous last node
is freed and returned to the free pool.

Deleting the Node After a Given Node in a Doubly Linked List

Consider the doubly linked list shown in Fig. 6.51. Suppose we want to delete the node that succeeds
the node which contains data value 4. Then the following changes will be done in the linked list.

Do 2 [e] B Je] B (7] 2 [e] B2 [e]x]
Take a pointer variable PTR and make it point to the first node of the list.

Delaf 2 fe] (2 Ja] B (7] 2 [e] B2 [o]x]
START,PTR

Move PTR further so that its data part is equal to the value after which the node has
to be inserted.

I3 N I =< I D I ~=<1 Y =< KA I ~=< I K] i =T E3 EY
START PTR
Delete the node succeeding PTR.

Xl el B dey] LIl) yls] B Jefx]

START PTR
BB ===l =
START

Figure 6.51 Deleting the node after a given node in a doubly linked list

Figure 6.52 shows the algorithm to delete a node

Step 1: IF START = NULL after a given node of a doubly linked list. In Step 2,

"G"glzg gi‘EER;LO"" we take a pointer variable PTR and initialize it with

[END OF IF] START. That is, PTR now points to the first node of

Step 2: SET PTR = START the doubly linked list. The while loop traverses

Step 3: Repeat Step 4 while PTR—>DATA != NUM | throygh the linked list to reach the given node.
Step 4: SET PTR = PTR —> NEXT -

[END OF LOOP] Once we reach the node containing vaL, the node

Step 5: SET TEMP = PTR —> NEXT succeeding it can be easily accessed by using the

Step 6: SET PTR—>NEXT = TEMP —> NEXT address stored in its NEXT field. The nexT field of the

;c:ep ;‘ iEEETEE‘;PQ NEXT —>PREV = PTR given node is set to contain the contents in the NEXT

ep 8: . .
Step 9: EXIT field of the succeeding node. Finally, the memory

of the node succeeding the given node is freed and

Figure 6.52 Algorithm to delete a node after a given node returned to the free pool.

194

Data Structures Using C

Deleting the Node Before a Given Node in a Doubly Linked List

Consider the doubly linked list shown in Fig. 6.53. Suppose we want to delete the node preceding
the node with value 4. Before discussing the changes that will be done in the linked list, let us

first look at the algorithm.

EIEl i >=<H El =<1

pua KA >=<INE] =<l K1 E3

START

Take a pointer variable PTR that points to the first node of the list.

EIEl I >=<H El =<1

pua KN >=<INE1 =< B 3

START,PTR

Move PTR further till its data part is equal to the value before which the node has

to be deleted.

EJEN =< BN E) I =<l k1

pua 2 I >=<I 1 =<l E1 E3

START PTR
Delete the node preceding PTR.

pua KA I >=<IN K1 I =<l B 3

EJESVI SN Y Ny YIRS

stTaRT || PTR

Deal B Ja] 2 [7]

pua 1 B >=<IN ENE3

Figure 6.53 Deleting a node before a given node in a doubly linked list

Step

Step
Step
Step

1: IF START = NULL
Write UNDERFLOW
Go to Step 9
[END OF IF]
2: SET PTR = START
3: Repeat Step 4 while PTR—>DATA != NUM
4: SET PTR = PTR—> NEXT
[END OF LOOP]

Step 5: SET TEMP = PTR—>PREV
Step 6: SET TEMP —>PREV —>NEXT = PTR
Step 7: SET PTR—>PREV = TEMP —> PREV
Step 8: FREE TEMP
Step 9: EXIT
Figure 6.54 Algorithm to delete a node before a given

node

Figure 6.54 shows the algorithm to delete a node
before a given node of a doubly linked list. In Step
2, we take a pointer variable PTR and initialize it with
sTART. That is, PTR now points to the first node of
the linked list. The while loop traverses through
the linked list to reach the desired node. Once we
reach the node containing vaL, the prev field of PTR
is set to contain the address of the node preceding
the node which comes before pTR. The memory
of the node preceding PTR is freed and returned to
the free pool.

Hence, we see that we can insert or delete a node
in a constant number of operations given only that
node’s address. Note that this is not possible in the

case of a singly linked list which requires the previous node’s address also to perform the same

operation.

ProGRAMMING EXAMPLE

3. Write a program to create a doubly linked list and perform insertions and deletions in all

cases.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>

Linked Lists

195

struct

{

};

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

node

struct node *next;
int data;
struct node *prev;

node
node
node
node
node
node
node
node
node
node
node
node

int main()

{

*start = NULL;
*create_l1l(struct node *);
*display(struct node *);
*insert_beg(struct node *);
*insert_end(struct node *);
*insert_before(struct node *);
*insert_after(struct node *);
*delete_beg(struct node *);
*delete_end(struct node *);
*delete_before(struct node *);
*delete_after(struct node *);
*delete_list(struct node *);

int option;
clrscr();

do
{

printf("\n\n **FXAMAIN MENU **xkx") .

printf("\n 1: Create a list");

printf("\n 2: Display the list");

printf("\n 3: Add a node at the beginning");
printf("\n 4: Add a node at the end");

printf("\n 5: Add a node before a given node");
printf("\n 6: Add a node after a given node");
printf("\n 7: Delete a node from the beginning");
printf("“\n 8: Delete a node from the end");
printf("\n 9: Delete a node before a given node");

printf("\n 10: Delete a node after a given node");
printf("\n 11: Delete the entire list");
printf("\n 12: EXIT");

printf("\n\n Enter your option : ");

scanf("%d", &option);

switch(option)

case 1: start = create_ll(start);
printf("“\n DOUBLY LINKED LIST CREATED");

break;

case 2: start = display(start);
break;

case 3: start = insert_beg(start);
break;

case 4: start = insert_end(start);
break;

case 5: start = insert_before(start);
break;

case 6: start = insert_after(start);
break;

case 7: start = delete_beg(start);
break;

case 8: start = delete_end(start);
break;

case 9: start = delete_before(start);
break;

case 10: start = delete_after(start);

196 Data Structures Using C

break;

case 11: start = delete_list(start);
printf("“\n DOUBLY LINKED LIST DELETED");
break;

}while(option != 12);
getch();
return 0O;
¥
struct node *create_ll(struct node *start)
{
struct node *new_node, *ptr;
int num;
printf(“\n Enter -1 to end");
printf(“\n Enter the data : ");
scanf("%d", &num);
while(num != -1)
{
if(start == NULL)
{
new_node = (struct node*)malloc(sizeof(struct node));
new_node —> prev = NULL;
new_node —>data = num;
new_node —>next = NULL;
start = new_node;

else

ptr=start;
new_node = (struct node*)malloc(sizeof(struct node));
new_node->data=num;
while(ptr->next!=NULL)
ptr = ptr->next;
ptr->next = new_node;
new_node->prev=ptr;
new_node->next=NULL;
}
printf("“\n Enter the data : ");
scanf("%d", &num);
)
return start;
}
struct node *display(struct node *start)
{
struct node *ptr;
ptr=start;
while(ptr!=NULL)
{
printf("\t %d", ptr-—>data);
ptr = ptr —> next;
)
return start;
}
struct node *insert_beg(struct node *start)
{
struct node *new_node;
int num;
printf(“\n Enter the data : ");
scanf("%d", &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>data = num;

Linked Lists

197

}

start —> prev = new_node;
new_node —> next = start;
new_node —> prev = NULL;
start = new_node;

return start;

struct node *insert_end(struct node *start)

{

}

struct node *ptr, *new_node;
int num;
printf("\n Enter the data : ");
scanf("%d", &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>data = num;
ptr=start;
while(ptr —>next != NULL)

ptr = ptr —>next;
ptr —>next = new_node;
new_node —> prev = ptr;
new_node —> next = NULL;
return start;

struct node *insert_before(struct node *start)

{

}

struct node *new_node, *ptr;
int num, val;

printf("\n Enter the data : ");
scanf("%d", &num);

printf("\n Enter the value before which the data has to be inserted:

scanf("%d", &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>data = num;
ptr = start;
while(ptr —>data != val)

ptr = ptr —>next;
new_node —> next = ptr;
new_node —> prev = ptr—> prev;
ptr — prev —>next = new_node;
ptr — prev = new_node;
return start;

struct node *insert_after(struct node *start)

{

struct node *new_node, *ptr;
int num, val;

printf("\n Enter the data : ");
scanf("%d", &num);

printf("\n Enter the value after which the data has to be inserted:

scanf("%d", &val);
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>data = num;
ptr = start;
while(ptr —>data != val)

ptr = ptr —>next;
new_node —> prev = ptr;
new_node —> next = ptr — next;
ptr —>next —> prev = new_node;
ptr —>next = new_node;
return start;

")

)5

198 Data Structures Using C

struct node *delete_beg(struct node *start)
{

struct node *ptr;

ptr = start;

start = start —> next;

start —> prev = NULL;

free(ptr);

return start;

struct node *delete_end(struct node *start)

{

struct node *ptr;

ptr = start;

while(ptr —>next != NULL)

ptr = ptr —>next;

ptr —> prev —>next = NULL;

free(ptr);

return start;
}
struct node *delete_after(struct node *start)
{

struct node *ptr, *temp;

int val;

printf("\n Enter the value after which the node has to deleted :

scanf("%d", &val);

ptr = start;

while(ptr —>data != val)

ptr = ptr —>next;

temp = ptr —> next;

ptr —>next = temp —> next;

temp —> next —> prev = ptr;

free(temp);

return start;
}
struct node *delete_before(struct node *start)
{

struct node *ptr, *temp;
int val;
printf("\n Enter the value before which the node has to deleted:
scanf("%d", &val);
ptr = start;
while(ptr —>data != val)
ptr = ptr —>next;
temp = ptr —> prev;
if(temp == start)
start = delete_beg(start);

else
{
ptr—>prev = temp —>prev;
temp —> prev —>next = ptr;
¥
free(temp);

return start;

struct node *delete_list(struct node *start)
{
while(start != NULL)
start = delete_beg(start);
return start;

Linked Lists 199

Output

1: Create a list

2: Display the list

11: Delete the entire list
12: EXIT

Enter
Enter
Enter
Enter
Enter
Enter

Enter your option :

your option :

-1 to end

the data: 1
the data: 3
the data: 4
the data: -1
DOUBLY LINKED LIST CREATED

1

12

6.5 CIRCULAR DOUBLY LINKED LISTS

A circular doubly linked list or a circular two-way linked list is a more complex type of linked
list which contains a pointer to the next as well as the previous node in the sequence. The difference
between a doubly linked and a circular doubly linked list is same as that exists between a singly
linked list and a circular linked list. The circular doubly linked list does not contain NULL in the
previous field of the first node and the next field of the last node. Rather, the next field of the last
node stores the address of the first node of the list, i.e., sTART. Similarly, the previous field of the
first field stores the address of the last node. A circular doubly linked list is shown in Fig. 6.55.

T (e T

Figure 6.55 Circular doubly linked list

Since a circular doubly linked list contains three parts in its structure, it calls for more space
per node and more expensive basic operations. However, a circular doubly linked list provides
the ease to manipulate the elements of the list as it maintains pointers to nodes in both the directions
(forward and backward). The main advantage of using a circular doubly linked list is that it makes
search operation twice as efficient.

START
DATA | PREV | Next

1 H 9 3

2

3 E 1 6

4

5

6 L 3

7 L 6

8

9 0 7 1
Figure 6.56 Memory representation of a

circular doubly linked list

Let us view how a circular doubly linked list is maintained in the
memory. Consider Fig. 6.56. In the figure, we see that a variable
START is used to store the address of the first node. Here in this
example, START = 1, so the first data is stored at address 1, which is
H. Since this is the first node, it stores the address of the last node
of the list in its previous field. The corresponding NEXT stores the
address of the next node, which is 3. So, we will look at address
3 to fetch the next data item. The previous field will contain the
address of the first node. The second data element obtained from
address 3 is E. We repeat this procedure until we reach a position
where the NEXT entry stores the address of the first element of the
list. This denotes the end of the linked list, that is, the node that
contains the address of the first node is actually the last node of
the list.

200 Data Structures Using C

6.5.1 Inserting a New Node in a Circular Doubly Linked List

In this section, we will see how a new node is added into an already existing circular doubly linked
list. We will take two cases and then see how insertion is done in each case. Rest of the cases are
similar to that given for doubly linked lists.
Case 1: The new node is inserted at the beginning.

Case 2: The new node is inserted at the end.

Inserting a Node at the Beginning of a Circular Doubly Linked List

Consider the circular doubly linked list shown in Fig. 6.57. Suppose we want to add a new node
with data 9 as the first node of the list. Then, the following changes will be done in the linked list.

N
>

IS I =< I K >=< [K] i =< H K I =<l E3 Y

START

Allocate memory for the new node and initialize its DATA part to 9.

[I=]]

Take a pointer variable PTR that points to the first node of the list.

NEES B =< B K >=< I 1 B >=< B K B >=< IR E3 N

START, PTR

Move PTR so that it now points to the last node of the list. Insert the new node in

between PTR and the START node.

>
>

START

NN B >=< K =< B2 B >=< B E B >=< I E2 i >=< I K1

START will now point to the new node.

NN B == KN N >=< [2 B >=< B EN B >=< IR 2 I >=< I K1

>
>

START

Figure 6.57 Inserting a new node at the beginning of a circular doubly linked list

Step

Step
Step
Step
Step
Step
Step

Step
Step
Step
Step
Step
Step

2
3
4:
5
6
7

8:
9:

10:
11:
12:
13:

. IF AVAIL = NULL

: SET NEW_NODE = AVAIL
. SET AVAIL = AVAIL —> NEXT

: SET PTR = START
: Repeat Step 7 while PTR—>NEXT != START

Write OVERFLOW
Go to Step 13
[END OF IF]

SET NEW_NODE —>DATA = VAL

SET PTR = PTR —>NEXT
[END OF LOOP]
SET PTR—>NEXT = NEW_NODE
SET NEW_NODE —>PREV = PTR
SET NEW_NODE —> NEXT = START
SET START —>PREV = NEW_NODE
SET START = NEW_NODE
EXIT

Figure 6.58 Algorithm to insert a new node at the beginning

Figure 6.58 shows the algorithm to insert a
new node at the beginning of a circular doubly
linked list. In Step 1, we first check whether
memory is available for the new node. If the free
memory has exhausted, then an oveErRFLOW message
is printed. Otherwise, we allocate space for the
new node. Set its data part with the given vaL and
its next part is initialized with the address of the
first node of the list, which is stored in START.
Now since the new node is added as the first node
of the list, it will now be known as the START node,
that is, the START pointer variable will now hold
the address of NEw_NoDE. Since it is a circular
doubly linked list, the Prev field of the NEW_NODE
is set to contain the address of the last node.

Linked Lists 201

Inserting a Node at the End of a Circular Doubly Linked List

Consider the circular doubly linked list shown in Fig. 6.59. Suppose we want to add a new
node with data 9 as the last node of the list. Then the following changes will be done in the
linked list.

TN IER I e B B > I Y I > B) B =< B R

START

>

Allocate memory for the new node and initialize its DATA part to 9.

[Io]]

Take a pointer variable PTR that points to the first node of the list.

TV ER B =< KA W >=< [EX I =< B K2 B >=< Y

>
>

START, PTR
Move PTR to point to the last node of the list so that the new node can be inserted
after it.
NER=BRE=BER=BEN= BN = BEN
START PTR

Figure 6.59 Inserting a new node at the end of a circular doubly linked list

Figure 6.60 shows the algorithm to insert a new node at the end of a circular doubly linked list.
In Step 6, we take a pointer variable PTR and initialize it with sTART. That is, PTR now points to the
first node of the linked list. In the while loop, we traverse through the linked list to reach the last
node. Once we reach the last node, in Step 9, we change the NexT pointer of the last node to store
the address of the new node. The pPrev field of the NEw_NoDE will be set so that it points to the node
pointed by PTR (now the second last node of the list).

6.5.2 Deleting a Node from a Circular Doubly Linked List

In this section, we will see how a node is deleted from an already existing circular doubly linked
list. We will take two cases and then see how deletion is done in each case. Rest of the cases are
same as that given for doubly linked lists.

Case 1: The first node is deleted.

Step 1: IF AVAIL = NULL .
P Write OVERFLOW Case 2: The last node is deleted.
Go to Step 12 s . .

[END OF IF] Deleting the First Node from a Circular Doubly
Step 2: SET NEW_NODE = AVAIL Linked List
Step 3: SET AVAIL = AVAIL —>NEXT))))
Step 4: SET NEW_NODE —>DATA = VAL Consider the circular doubly linked list shown
Step 5: SET NEW_NODE —>NEXT = START in Fig. 6.61. When we want to delete a node
Step 6: SET PTR = START from the beginning of the list, then the following
Step 7: Repeat Step 8 while PTR —>NEXT != START
Step 8: SET PTR = PTR — NEXT changes will be done in the linked list.

[END OF LOOP] Figure 6.62 shows the algorithm to delete the
Step 9: SET PTR—>NEXT = NEW_NODE first node from a circular doubly linked list. In
Step 10: SET NEW_NODE —>PREV = PTR
Step 11: SET START —> PREV = NEW_NODE Ste?p 1 of the algorithm, we check 1f thﬁ: hlnked list
Step 12: EXIT exists or not. I[f START = NULL, then it signifies that

there are no nodes in the list and the control is
Figure 6.60 Algorithm to insert a new node at the end transferred to the last statement of the algorithm.

202 Data Structures Using C

VN =< N N I >=<1 N I >=< I K2 I >=< I] I =< 1IN
START

Take a pointer variable PTR that points to the first node of the list.

IV = I N I >=< 1 Y I >=< I K2 I ~== I] I =< 1IN
START, PTR

Move PTR further so that it now points to the last node of the list.

pra BN E) I >=<INE]

Ll 2]

>
>

START

pua B2 I >=<I 1 B >=< I K]

first node.

Make START point to the second node of the list. Free the space occupied by the

NI >=<H El =<2

<L 1=l

BN

START

Figure 6.61 Deleting the first node from a circular doubly linked list

Step 1: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
Step 2: SET PTR = START
Step 3: Repeat Step 4 while PTR—>NEXT != START
Step 4: SET PTR = PTR —> NEXT
[END OF LOOP]
Step 5: SET PTR—>NEXT = START —> NEXT
Step 6: SET START —> NEXT —> PREV = PTR
Step 7: FREE START
Step 8: SET START = PTR —> NEXT

However, if there are nodes in the linked list,
then we use a pointer variable pTR that is set to
point to the first node of the list. For this, we
initialize PTR with sTART that stores the address of
the first node of the list. The while loop traverses
through the list to reach the last node. Once we
reach the last node, the NEXT pointer of PTR is set
to contain the address of the node that succeeds
START. Finally, sTART is made to point to the next
node in the sequence and the memory occupied

L___|
Figure 6.62 Algorithm to delete the first node

by the first node of the list is freed and returned
to the free pool.

Deleting the Last Node from a Circular Doubly Linked List

Consider the circular doubly linked list shown in Fig. 6.63. Suppose we want to delete the last
node from the linked list, then the following changes will be done in the linked list.

VN =< N N I ~=<) == K2 =< I] I =< 1IN
START

Take a pointer variable PTR that points to the first node of the list.

VN =< N 2 B ~=<1 X I >== I K2 I ~=< I] i =< 1IN
START, PTR

Move PTR further so that it now points to the last node of the list.

TVEES B >=< B N B >=<l 1 I >=< B Kl i >=< IR K1 I >=< I K]

START
Free the space occupied by PTR.

INER > <

START

>
>

| 2] [s] =17

<

>

2]y

Figure 6.63 Deleting the last node from a circular doubly linked list

Linked Lists 203

Step

Step
Step
Step

Step
Step
Step
Step

1: IF START = NULL
Write UNDERFLOW
Go to Step 8
[END OF IF]
2: SET PTR = START
3: Repeat Step 4 while PTR—>NEXT != START
4: SET PTR = PTR —> NEXT
[END OF LOOP]

5: SET PTR—>PREV—>NEXT = START
6: SET START —>PREV = PTR —> PREV
7: FREE PTR

8: EXIT

Figure 6.64 Algorithm to delete the last node

Figure 6.64 shows the algorithm to delete the
last node from a circular doubly linked list. In
Step 2, we take a pointer variable PTR and
initialize it with sTART. That is, PTR now points
to the first node of the linked list. The while loop
traverses through the list to reach the last node.
Once we reach the last node, we can also access
the second last node by taking its address from
the prev field of the last node. To delete the last
node, we simply have to set the next field of the
second last node to contain the address of START,
so that it now becomes the (new) last node of
the linked list. The memory of the previous last
node is freed and returned to the free pool.

PRroGRAMMING EXAMPLE

4.
at the beginning and end of the list.
#include <stdio.h>
#include <conio.h>

#include <malloc.h>
struct node

{

struct node *next;

int data;

struct node *prev;
s
struct node *start = NULL;
struct node *create_ll(struct node *);
struct node *display(struct node *);
struct node *insert_beg(struct node *);
struct node *insert_end(struct node *);
struct node *delete_beg(struct node *);
struct node *delete_end(struct node *);
struct node *delete_node(struct node *);
struct node *delete_list(struct node *);
int main()
{

int option;

clrscr();

do

{

Write a program to create a circular doubly linked list and perform insertions and deletions

printf("\n\n *****MAIN MENU ****¥");

printf("\n 1:
printf("\n
printf("\n
printf("\n
printf("\n
printf("\n
printf("\n
printf("\n
printf("\n 9:

00 NOUT A WN

Create a 1list");
Display the list");
Add a node at the beginning");

Add a node at the end");

Delete a node from the beginning");
Delete a node from the end");
Delete a given node");

Delete the entire 1list");

EXIT");
printf("\n\n Enter your option :

")s

204 Data Structures Using C

scanf("%d", &option);
switch(option)

case 1: start = create_ll(start);
printf("\n CIRCULAR DOUBLY LINKED LIST CREATED");

break;

case 2: start = display(start);
break;

case 3: start = insert_beg(start);
break;

case 4: start = insert_end(start);
break;

case 5: start = delete_beg(start);
break;

case 6: start = delete_end(start);
break;

case 7: start = delete_node(start);
break;

case 8: start = delete_list(start);
printf("\n CIRCULAR DOUBLY LINKED LIST DELETED");

break;
b

}while(option != 9);

getch();

return O;
}
struct node *create_ll(struct node *start)
{

struct node *new_node, *ptr;
int num;

printf("\n Enter -1 to end");
printf("\n Enter the data : ");
scanf("%d", &num);

while(num != -1)
{

if(start == NULL)

{
new_node = (struct node*)malloc(sizeof(struct node));
new_node —>prev = NULL;
new_node —>data = num;
new_node —>next = start;
start = new_node;

b

else

{
new_node = (struct node*)malloc(sizeof(struct node));
new_node —>data = num;
ptr = start;
while(ptr —next != start)

ptr = ptr —>next;

new_node —> prev = ptr;
ptr —> next = new_node;
new_node —> next = start;
start —>prev = new_node;

b

printf("\n Enter the data : ");
scanf("%d", &num);

Linked Lists

205

}

return start;

struct node *display(struct node *start)

{

}

struct node *ptr;

ptr = start;
while(ptr —>next != start)
{

printf("\t %d", ptr—>data);
ptr = ptr—>next;

¥

printf("\t %d", ptr—>data);

return start;

struct node *insert_beg(struct node *start)

{

}

struct node *new_node, *ptr;
int num;
printf("\n Enter the data : ");
scanf("%d", &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node—>data = num;
ptr = start;
while(ptr —>next != start)

ptr = ptr —>next;
new_node —> prev = ptr;
ptr —>next = new_node;
new_node —> next = start;
start —>prev = new_node;
start = new_node;
return start;

struct node *insert_end(struct node *start)

{

}

struct node *ptr, *new_node;
int num;
printf("\n Enter the data : ");
scanf("%d", &num);
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>data = num;
ptr = start;
while(ptr —>next != start)

ptr = ptr —>next;
ptr —next = new_node;
new_node —> prev = ptr;
new_node —> next = start;
start—> prev = new_node;
return start;

struct node *delete_beg(struct node *start)

{

struct node *ptr;

ptr = start;

while(ptr —>next != start)
ptr = ptr —>next;

ptr —> next = start —> next;

temp = start;

start=start->next;

start->prev=ptr;

free(temp);

return start;

206 Data Structures Using C

}

struct node *delete_end(struct node *start)

{

struct node *ptr;

ptr=start;

while(ptr —>next != start)
ptr = ptr—> next;

ptr —> prev —>next = start;

start —>prev = ptr—>prev;

free(ptr);

return start;

struct node *delete_node(struct node *start)

{

}

struct node *ptr;
int val;

printf("\n Enter the value of the node which has to be deleted :

scanf("%d", &val);

ptr = start;
if(ptr —data == val)
{

start = delete_beg(start);
return start;

}
else
{
while(ptr —>data != val)
ptr = ptr —>next;
ptr —> prev —> next = ptr —> next;
ptr —> next —> prev = ptr —>prev;
free(ptr);
return start;
}

struct node *delete_list(struct node *start)

{

X
Output

struct node *ptr;
ptr = start;
while(ptr —>next != start)
start = delete_end(start);
free(start);
return start;

1: Create a list
2: Display the list

8: Delete the entire list

9: EXIT

Enter your option : 1
Enter -1 to end

Enter the data: 2
Enter the data: 3
Enter the data: 4
Enter the data: -1

CIRCULAR DOUBLY LINKED LIST CREATED
Enter your option : 8
CIRCULAR DOUBLY LINKED LIST DELETED
Enter your option : 9

“)s

Linked Lists 207

6.6 HEADER LINKED LISTS
A header linked list is a special type of linked list which contains a header node at the beginning
of'the list. So, in a header linked list, START will not point to the first node of the list but sTART will
contain the address of the header node. The following are the two variants of a header linked list:

o Grounded header linked list which stores NULL in the next field of the last node.
o Circular header linked list which stores the address of the header node in the next field of

the last node. Here, the header node will denote the end of the list.

Look at Fig. 6.65 which shows both the types of header linked lists.

wn
]|
>
=
3

l‘ﬂ
W o NGOV WNER

Figure 6.66

(V2]
—
>
)
o

l‘!
W o NGOV WNBR

Header node

|l e e e s eis e

Header node

|—H1|—H2|—H3|—|—>|4|—H5|—H6|i|

A START

Figure 6.65 Header linked list

DATA

NEXT

3

6

-1

Memory representation of a

header linked list

DATA NEXT
H 3
E 6

1234 1
L 7
L 9
0 5

Figure 6.67 Memory representation of a
circular header linked list

As in other linked lists, if START = NULL, then this denotes an
empty header linked list. Let us see how a grounded header
linked list is stored in the memory. In a grounded header
linked list, a node has two fields, pata and NexT. The paTa field
will store the information part and the NexT field will store the
address of the node in sequence. Consider Fig. 6.66.

Note that START stores the address of the header node. The
shaded row denotes a header node. The NexT field of the header
node stores the address of the first node of the list. This node
stores H. The corresponding NexT field stores the address of the
next node, which is 3. So, we will look at address 3 to fetch
the next data item.

Hence, we see that the first node can be accessed by writing
FIRST_NODE = START —> NEXT and not by writing START = FIRST_
NobEe. This is because START points to the header node and the
header node points to the first node of the header linked list.

Let us now see how a circular header linked list is stored
in the memory. Look at Fig. 6.67.

Note that the last node in this case stores the address of the
header node (instead of —1).

Hence, we see that the first node can be
accessed by writing FIRST_NODE = START —>

Step 3:
Step 4:

SET PTR =
[END OF LOOP]
Step 5: EXIT

Step 1: SET PTR = START —> NEXT
Step 2: Repeat Steps 3 and 4 while PTR != START
Apply PROCESS to PTR—>DATA
PTR —> NEXT

NEXT and not writing START = FIRST_NODE. This
is because START points to the header node and
the header node points to the first node of the
header linked list.

Let us quickly look at Figs 6.68, 6.69, and 6.70
that show the algorithms to traverse a circular

Figure 6.68 Algorithm to traverse a circular header linked list

header linked list, insert a new node in it, and
delete an existing node from it.

208 Data Structures Using C

Step 1: IF AVAIL = NULL
Write OVERFLOW
Go to Step 10

[END OF IF]
Step 2: SET NEW_NODE = AVAIL
Step 3: SET AVAIL = AVAIL —> NEXT Step 1: SET PTR = START->NEXT
Step 4: SET PTR = START —> NEXT Step 2: Repeat Steps 3 and 4 while
Step 5: SET NEW_NODE —>DATA = VAL PTR —>DATA != VAL
Step 6: Repeat Step 7 while PTR—>DATA != NUM Step 3: SET PREPTR = PTR
Step 7 SET PTR = PTR —> NEXT Step 4: SET PTR = PTR —> NEXT
[END OF LOOP] [END OF LOOP]
Step 8: NEW_NODE —>NEXT = PTR —> NEXT Step 5: SET PREPTR—>NEXT = PTR —> NEXT
Step 9: SET PTR—>NEXT = NEW_NODE Step 6: FREE PTR
Step 10: EXIT Step 7: EXIT
Figure 6.69 Algorithm to insert a new node in a Figure 6.70 Algorithm to delete a node from a circular
circular header linked list header linked list

After discussing linked lists in such detail, these algorithms are self-explanatory. There is
actually just one small difference between these algorithms and the algorithms that we have
discussed earlier. Like we have a header list and a circular header list, we also have a two-way
(doubly) header list and a circular two-way (doubly) header list. The algorithms to perform all
the basic operations will be exactly the same except that the first node will be accessed by writing
START —> NEXT instead of START.

PRroGRAMMING EXAMPLE

5. Write a program to implement a header linked list.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
int data;
struct node *next;
}s
struct node *start = NULL;
struct node *create_hll(struct node *);
struct node *display(struct node *);

int main()

{
int option;
clrscr();
do
{

printf("\n\n ***¥**xMAIN MENU **ksks%™)
printf("\n 1: Create a list");
printf("\n 2: Display the list");
printf("\n 3: EXIT");
printf("\n Enter your option : ");
scanf("%d", &option);
switch(option)
{
case 1: start = create_hll(start);
printf("\n HEADER LINKED LIST CREATED");
break;

Linked Lists

209

}

case 2: start = display(start);
break;

}while(option !=3);
getch();
return 0O;

struct node *create_hll(struct node *start)

{

struct node *new_node, *ptr;
int num;
printf("\n Enter -1 to end");
printf("\n Enter the data : ");
scanf("%d", &num);
while(num!=-1)
{
new_node = (struct node*)malloc(sizeof(struct node));
new_node->data=num;
new_node->next=NULL;
if(start==NULL)
{
start = (struct node*)malloc(sizeof(struct node));
start->next=new_node;

else

ptr=start;
while(ptr->next!=NULL)
ptr=ptr->next;
ptr->next=new_node;
X
printf("\n Enter the data : ");
scanf("%d", &num);

}

return start;

struct node *display(struct node *start)

{

¥
Output

struct node *ptr;

ptr=start;

while(ptr!=NULL)

{
printf("\t %d", ptr->data);
ptr = ptr->next;

}

return start;

1: Create a list
2: Display the list

3: EXIT

Enter your option : 1
Enter -1 to end

Enter the data: 1

Enter the data: 2

Enter the data: 4

Enter the data: -1

HEADER LINKED LIST CREATED
Enter your option : 3

210 Data Structures Using C

6.7 MULTI-LINKED LISTS

In a multi-linked list, each node can have n number of pointers to other nodes. A doubly linked
list is a special case of multi-linked lists. However, unlike doubly linked lists, nodes in a multi-
linked list may or may not have inverses for each pointer. We can differentiate a doubly linked
list from a multi-linked list in two ways:

(a) A doubly linked list has exactly two pointers. One pointer points to the previous node and
the other points to the next node. But a node in the multi-linked list can have any number of
pointers.

(b) Inadoubly linked list, pointers are exact inverses of each other, i.e., for every pointer which
points to a previous node there is a pointer which points to the next node. This is not true for
a multi-linked list.

Multi-linked lists are generally used to organize multiple orders of one set of elements. For
example, if we have a linked list that stores name and marks obtained by students in a class, then
we can organize the nodes of the list in two ways:

(i) Organize the nodes alphabetically (according to the name)

(i) Organize the nodes according to decreasing order of marks so that the information of student
who got highest marks comes before other students.

Figure 6.71 shows a multi-linked list in which students’ nodes are organized by both the

aforementioned ways.

5—4 .

Y

ADVIK | 90

GORANSH |1oo

L

Figure 6.71 Multi-linked list that stores names alphabetically as well as according to decreasing
order of marks

A new node can be inserted in a multi-linked list in the same way as it is done for a doubly
linked list.

m In multi-linked lists, we can have inverses of each pointer as in a doubly linked list. But for that we
must have four pointers in a single node.

Multi-linked lists are also used to store sparse matrices. In Chapter 3 we have

X0 1 2 read about sparse matrices. Such matrices have very few non-zero values stored
y and most of the entries are zero. Sparse matrices are very common in engineering
00250 applications. If we use a normal array to store such matrices, we will end up

wasting a lot of space. Therefore, a better solution is to represent these matrices
using multi-linked lists.
2|17 0| 5 The sparse matrix shown in Fig. 6.72 can be represented using a linked list
for every row and column. Since a value is in exactly one row and one column,
it will appear in both lists exactly once. A node in the multi-linked will have
four parts. First stores the data, second stores a pointer to the next node in the
Figure 6.72 Sparse row, third stores a pointer to the next node in the column, and the fourth stores
matrix the coordinates or the row and column number in which the data appears in

31191 0| 0

Linked Lists 211

the matrix. However, as in case of doubly linked lists, we can also have a corresponding inverse
pointer for every pointer in the multi-linked list representation of a sparse matrix.

m When a non-zero value in the sparse matrix is set to zero, the corresponding node in the multi-linked
list must be deleted.

» »
Y
0,1 | 25
> NULL | NULL
NULL Co-ordinate Data value
Y Y
(2,0) 17 (2,2) 5
> > NULL | NULL
v Next in column Next in row
(3,0) 19
> NULL | NULL

Figure 6.73 Multi-linked representation of sparse matrix shown in Fig. 6.72

6.8 APPLICATIONS OF LINKED LISTS

Linked lists can be used to represent polynomials and the different operations that can be performed
on them. In this section, we will see how polynomials are represented in the memory using linked
lists.

6.8.1 Polynomial Representation
Letus see how a polynomial is represented in the memory using a linked list. Consider a polynomial
6x + 9x* + 7x + 1. Every individual term in a polynomial consists of two parts, a coefficient
and a power. Here, 6,9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, and 0 as their
powers respectively.

Every term of a polynomial can be represented as a node of the linked list. Figure 6.74 shows
the linked representation of the terms of the above polynomial.

Ll g—llza—17 [g—{z]e]x]

Figure 6.74 Linked representation of a polynomial

Now that we know how polynomials are represented using nodes of a linked list, let us write a
program to perform operations on polynomials.

212 Data Structures Using C

PRoGRAMMING EXAMPLE

6. Write a program to store a polynomial using linked list. Also, perform addition and
subtraction on two polynomials.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node

{

int num;

int coeff;

struct node *next;
s

struct node *startl = NULL;

struct node *start2 NULL;

struct node *start3 NULL;

struct node *start4 = NULL;

struct node *last3 = NULL;

struct node *create_poly(struct node *);

struct node *display_poly(struct node *);

struct node *add_poly(struct node *, struct node *, struct node *);
struct node *sub_poly(struct node *, struct node *, struct node *);
struct node *add_node(struct node *, int, int);

int main()

{

int option;

clrscr();

do

{
Printf("\nkxkrskx MATN MENU **kxkkxr)
printf("\n 1. Enter the first polynomial");

printf("\n 2. Display the first polynomial");
printf("\n 3. Enter the second polynomial");
printf("\n 4. Display the second polynomial");
printf("\n 5. Add the polynomials");
printf("\n 6. Display the result");

printf("\n 7. Subtract the polynomials");
printf("\n 8. Display the result");

printf("\n 9. EXIT");

printf("\n\n Enter your option : ");
scanf("%d", &option);

switch(option)
{
case 1: startl = create_poly(startl);
break;
case 2: startl = display poly(startl);
break;
case 3: start2 = create_poly(start2);
break;
case 4: start2 = display_poly(start2);
break;
case 5: start3 = add_poly(startl, start2, start3);
break;
case 6: start3 = display_poly(start3);
break;
case 7: start4 = sub_poly(startl, start2, start4);
break;

case 8: start4 = display poly(start4d);

Linked Lists 213

break;
}
}while(option!=9);
getch();
return O;
}
struct node *create_poly(struct node *start)
{
struct node *new_node, *ptr;
int n, c;
printf("\n Enter the number : ");
scanf("%d", &n);
printf("\t Enter its coefficient : ");
scanf("%d", &c);
while(n != -1)
{
if(start==NULL)
{

new_node = (struct node *)malloc(sizeof(struct node));

new_node —>num = n;
new_node —> coeff = c;
new_node —>next = NULL;
start = new_node;

else
ptr = start;

while(ptr —next != NULL)
ptr = ptr—>next;

new_node = (struct node *)malloc(sizeof(struct node));

new_node —>num = n;
new_node —> coeff = c;
new_node —> next = NULL;
ptr —>next = new_node;
¥
printf("\n Enter the number : ");
scanf("%d", &n);
if(n == -1)
break;
printf("\t Enter its coefficient : ");
scanf("%d", &c);
¥
return start;
)
struct node *display poly(struct node *start)
{
struct node *ptr;
ptr = start;
while(ptr != NULL)
{
printf("\n%d x %d\t", ptr—num, ptr—>coeff);
ptr = ptr—>next;
}
return start;
¥
struct node *add_poly(struct node *startl, struct node *start2,
{
struct node *ptrl, *ptr2;
int sum_num, c;

struct node *start3)

214 Data Structures Using C

ptrl = startl, ptr2 = start2;
while(ptrl != NULL && ptr2 != NULL)

{
if(ptrl —> coeff == ptr2 — coeff)
{
sum_num = ptrl—>num + ptr2-—>num;
start3 = add_node(start3, sum_num, ptrl-—>coeff);
ptrl = ptrl—next;
ptr2 = ptr2 —>next;
}
else if(ptrl—> coeff > ptr2 —> coeff)
{
start3 = add_node(start3, ptrl->num, ptrl->coeff);
ptrl = ptrl—>next;
}
else if(ptrl—> coeff < ptr2 — coeff)
{
start3 = add_node(start3, ptr2->num, ptr2->coeff);
ptr2 = ptr2 —> next;
¥
¥
if(ptrl == NULL)
{
while(ptr2 != NULL)
{
start3 = add_node(start3, ptr2—>num, ptr2—> coeff);
ptr2 = ptr2 —>next;
}
}
if(ptr2 == NULL)
{
while(ptrl != NULL)
{
start3 = add_node(start3, ptrl->num, ptrl->coeff);
ptrl = ptrl—>next;
}
}
return start3;
}
struct node *sub_poly(struct node *startl, struct node *start2, struct node *start4)
{

struct node *ptrl, *ptr2;
int sub_num, c;
ptrl = startl, ptr2 = start2;
do
{
if(ptrl—> coeff == ptr2 —> coeff)
{
sub_num = ptrl—>num - ptr2—>num;
start4 = add_node(start4, sub_num, ptrl—>coeff);
ptrl = ptrl—>next;
ptr2 = ptr2 —> next;

else if(ptrl—> coeff > ptr2 — coeff)

{
start4 = add_node(start4, ptrl—num, ptrl—> coeff);
ptrl = ptrl—next;

else if(ptrl—> coeff < ptr2 —> coeff)

Linked Lists

215

}

start4 = add_node(start4, ptr2->num, ptr2->coeff);
ptr2 = ptr2 —>next;
¥

Jwhile(ptrl != NULL || ptr2 != NULL);

if(ptrl
{

}

== NULL)

while(ptr2 != NULL)

{
start4 = add_node(start4, ptr2-—>num, ptr2-—>coeff);

ptr2 = ptr2 —> next;
¥

if(ptr2 == NULL)

{

}

while(ptrl != NULL)

{
start4 = add_node(start4, ptrl—num, ptrl—> coeff);

ptrl = ptrl—>next;
¥

return start4;

struct node *add_node(struct node *start, int n, int c)

{

¥
Output

struct node *ptr, *new_node;
if(start == NULL)

{

else

}

new_node = (struct node *)malloc(sizeof(struct node));
new_node —>num = n;

new_node —> coeff = c;

new_node —>next = NULL;

start = new_node;

ptr = start;
while(ptr —>next != NULL)
ptr = ptr—>next;
new_node = (struct node *)malloc(sizeof(struct node));
new_node —>num = n;
new_node —> coeff = c;
new_node —> next = NULL;
ptr —>next = new_node;

return start;

1. Enter the first polynomial
2. Display the first polynomial

9. EXIT

your option :
the number :
the number
the number :
your option :

Enter
Enter
Enter
Enter
Enter
6 x 2
Enter

5x1

your option

1

6 Enter its coefficient : 2

: 5 Enter its coefficient : 1
-1
2
9

216 Data Structures Using C

> —="PoINTS T0 REMEMBER

e Thus, a doubly linked list calls for more space per

e A linked list is a linear collection of data elements

called as nodes in which linear representation is
given by links from one node to another.

Linked list is a data structure which can be used
to implement other data structures such as stacks,
queues, and their variations.

Before we insert a new node in linked lists, we need
to check for OVERFLOW condition, which occurs when
no free memory cell is present in the system.
Before we delete a node from a linked list, we must
first check for UNDERFLOW condition which occurs
when we try to delete a node from a linked list that
is empty.

When we delete a node from a linked list, we have to
actually free the memory occupied by that node. The
memory is returned back to the free pool so that it
can be used to store other programs and data.

In a circular linked list, the last node contains a
pointer to the first node of the list. While traversing
a circular linked list, we can begin at any node and
traverse the list in any direction forward or backward
until we reach the same node where we had started.
A doubly linked list or a two-way linked list is a
linked list which contains a pointer to the next as
well as the previous node in the sequence. Therefore,
it consists of three parts—data, a pointer to the next
node, and a pointer to the previous node.

The PREV field of the first node and the NEXT field of
the last node contain NULL. This enables to traverse
the list in the backward direction as well.

node and more expensive basic operations. However,
a doubly linked list provides the ease to manipulate
the elements of the list as it maintains pointers to nodes
in both the directions (forward and backward). The
main advantage of using a doubly linked list is that
it makes search operation twice as efficient.

A circular doubly linked list or a circular two-way
linked list is a more complex type of linked list which
contains a pointer to the next as well as previous node
in the sequence. The difference between a doubly
linked and a circular doubly linked list is that the
circular doubly linked list does not contain NULL in
the previous field of the first node and the next field
of the last node. Rather, the next field of the last
node stores the address of the first node of the list.
Similarly, the previous field of the first field stores
the address of the last node.

A header linked list is a special type of linked list
which contains a header node at the beginning of the
list. So, in a header linked list START will not point
to the first node of the list but START will contain the
address of the header node.

Multi-linked lists are generally used to organize
multiple orders of one set of elements. In a multi-
linked list, each node can have n number of pointers
to other nodes.

> = FXERCISES

Review Questions

1.

Make a comparison between a linked list and a
linear array. Which one will you prefer to use and
when?

. Why is a doubly linked list more useful than a

singly linked list?

. Give the advantages and uses of a circular linked

list.

. Specify the use of a header node in a header linked

list.

. Give the linked representation of the following

polynomial:
Tx3y? — 8x%y + 3xy + 11lx — 4

6. Explain the difference between a circular linked
list and a singly linked list.

7. Form a linked list to store students’ details.

8. Use the linked list of the above question to insert
the record of a new student in the list.

9. Delete the record of a student with a specified roll
number from the list maintained in Question 7.

10. Given a linked list that contains English alphabet.

The characters may be in upper case or in lower
case. Create two linked lists—one which stores
upper case characters and the other that stores
lower case characters.

Linked Lists 217

11.

Create a linked list which stores names of the
employees. Then sort these names and re-display
the contents of the linked list.

Programming Exercises

1.

10.

11.

12.

13.

14.

15.

16.

17.

Write a program that removes all nodes that have
duplicate information.

. Write a program to print the total number of

occurrences of a given item in the linked list.

. Write a program to multiply every element of the

linked list with 10.

. Write a program to print the number of non-zero

elements in the list.

. Write a program that prints whether the given

linked list is sorted (in ascending order) or not.

. Write a program that copies a circular linked list.
. Write a program to merge two linked lists.
. Write a program to sort the values stored in a

doubly circular linked list.

. Write a program to merge two sorted linked lists.

The resultant list must also be sorted.

Write a program to delete the first, last, and middle
node of a header linked list.

Write a program to create a linked list from an
already given list. The new linked list must contain
every alternate element of the existing linked list.
Write a program to concatenate two doubly linked
lists.

Write a program to delete the first element of a
doubly linked list. Add this node as the last node
of the list.

Write a program to

(a) Delete the first occurrence of a given

character in a linked list

(b) Delete the last occurrence of a given character
(c) Delete all the occurrences of a given character
Write a program to reverse a linked list using
recursion.

Write a program to input an n digit number. Now,
break this number into its individual digits and
then store every single digit in a separate node
thereby forming a linked list. For example, if
you enter 12345, then there will 5 nodes in the
list containing nodes with values 1, 2, 3, 4, 5.
Write a program to add the values of the nodes of
a linked list and then calculate the mean.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Write a program that prints minimum and maxi-
mum values in a linked list that stores integer
values.

Write a program to interchange the value of the
first element with the last element, second element
with second last element, so on and so forth of a
doubly linked list.

Write a program to make the first element of singly
linked list as the last element of the list.

Write a program to count the number of occurrences
of a given value in a linked list.

Write a program that adds 10 to the values stored
in the nodes of a doubly linked list.

Write a program to form a linked list of floating
point numbers. Display the sum and mean of these
numbers.

Write a program to delete the k™ node from a
linked list.

Write a program to perform deletions in all the
cases of a circular header linked list.

Write a program to multiply a polynomial with a
given number.

Write a program to count the number of non-zero
values in a circular linked list.

Write a program to create a linked list which stores
the details of employees in a department. Read
and print the information stored in the list.

Use the linked list of Question 28 so that it displays
the record of a given employee only.

Use the linked list of Question 28 and insert
information about a new employee.

Use the linked list of Question 28 and delete
information about an existing employee.

Write a program to move a middle node of a doubly
link list to the top of the list.

Write a program to create a singly linked list and
reverse the list by interchanging the links and not
the data.

Write a program that prints the nth element from
the end of a linked list in a single pass.

Write a program that creates a singly linked list.
Use a function isSorted that returns 1 if the list is
sorted and 0 otherwise.

Write a program to interchange the kth and the
(k+1)th node of a circular doubly linked list.
Write a program to create a header linked list.

218 Data Structures Using C

38. Write a program to delete a node from a circular

header linked list.

39. Write a program to delete all nodes from a header

linked list that has negative values in its data part.

Multiple-choice Questions
1. A linked listis a

(a) Random access structure

(b) Sequential access structure

(c) Both

(d) None of these

. Anarray is a

(a) Random access structure

(b) Sequential access structure

(c) Both

(d) None of these

. Linked list is used to implement data structures
like

(a) Stacks (b) Queues

(c) Trees (d) All of these

. Which type of linked list contains a pointer to the
next as well as the previous node in the sequence?
(a) Singly linked list (b) Circular linked list
(c) Doubly linked list (d) All of these

. Which type of linked list does not store NULL in
next field?

(a) Singly linked list (b) Circular linked list
(c) Doubly linked list (d) All of these

. Which type of linked list stores the address of the
header node in the next field of the last node?
(a) Singly linked list

(b) Circular linked list

(c) Doubly linked list

(d) Circular header linked list

. Which type of linked list can have four pointers
per node?

(a) Circular doubly linked list

(b) Multi-linked list

(c) Header linked list

(d) Doubly linked list

True or False

1. A linked list is a linear collection of data elements.

2. Alinked list can grow and shrink during run time.

10.

. Anode in a linked list can point to only one node

at a time.

. A node in a singly linked list can reference the

previous node.

. A linked list can store only integer values.
. Linked list is a random access structure.
. Deleting a node from a doubly linked list is easier

than deleting it from a singly linked list.

. Every node in a linked list contains an integer

part and a pointer.

. START stores the address of the first node in the

list.
Underflow is a condition that occurs when we try
to delete a node from a linked list that is empty.

Fill in the Blanks

1.

10.

11.

12.
13.

14.
15.

is used to store the address of the first
free memory location.

. The complexity to insert a node at the beginning

of the linked list is

. The complexity to delete a node from the end of

the linked list is

. Inserting a node at the beginning of the doubly

linked list needs to modify pointers.

. Inserting a node in the middle of the singly linked

list needs to modify pointers.

. Inserting a node at the end of the circular linked

list needs to modify pointers.

. Inserting a node at the beginning of the circular

doubly linked list needs to modify
pointers.

. Deleting a node from the beginning of the singly

linked list needs to modify pointers

. Deleting a node from the middle of the doubly

linked list needs to modify pointers.
Deleting a node from the end of a circular linked
list needs to modify pointers.

Each element in a linked list is known as
a .
First node in the linked list is called the

Data elements in a linked list are known
as .

Overflow occurs when

In a circular linked list, the last node contains a
pointer to the node of the list.

CHAPTER

Stacks

LEARNING OBJECTIVE

A stack is an important data structure which is extensively used in computer
applications. In this chapter we will study about the important features of stacks to
understand how and why they organize the data so uniquely. The chapter will also
illustrate the implementation of stacks by using both arrays as well as linked lists.
Finally, the chapter will discuss in detail some of the very useful areas where stacks
are primarily used. 4

7.1 INTRODUCTION

Stack is an important data structure which stores its elements in an ordered manner. We will
explain the concept of stacks using an analogy. You must have seen a pile of plates where one
plate is placed on top of another as shown in Fig. 7.1. Now, when you want to remove a plate,
you remove the topmost plate first. Hence, you can add and remove an element (i.e., a plate) only
at/from one position which is the topmost position.

A stack is a linear data structure which uses the same principle, i.e., the elements in a stack are
added and removed only from one end, which is called the
Top. Hence, a stack is called a LIFO (Last-In-First-Out) data

Another plate The topmost) :
will bZ plate will structure, as the element that was inserted last is the first one to
added on top be r?m?ved be taken out.
%‘I;T;s s Now the question is where do we need stacks in computer

science? The answer is in function calls. Consider an example,
where we are executing function A. In the course of its
execution, function A calls another function B. Function B in
turn calls another function ¢, which calls function b.

Figure 7.1 Stack of plates

220 Data Structures Using C

When A calls B, A is pushed on top

of the system stack. When the

execution of B is complete, the
system control will remove A from

the stack and continue with its

Function A

l€«— execution.

When C calls D, C is pushed on top

of the system stack. When the

execution of D is complete, the

When B calls C, B is pushed on top

of the system stack. When the

execution of C is complete, the
system control will remove B from

Function B

<—the stack and continue with its

Function A

execution.

When D calls E, D is pushed on top

Function D

le_of the system stack. When the

execution of E is complete, the

Funthon C <= system control will remove C from F“nthon C| system control will remove D from
Function B the stack and continue with its Function B the stack and continue with its
Function A execution. Function A execution.

Figure 7.2 System stack in the case of function calls

le—When E has
executed, D will

Function D

Function C be removed for
Function B execution.
Function A

When C has

executed, B will
be removed for
execution.

Function B [<—
Function A

<_When D has

Function C .

- executed, C will
FunctionB | pe removed for
Function A execution.

When B has

executed, A will

: be removed for
Function A [<— gxecution.

Figure 7.3 System stack when a
called function returns
to the calling function

In order to keep track of the returning point of each active function,
a special stack called system stack or call stack is used. Whenever a
function calls another function, the calling function is pushed onto the
top of the stack. This is because after the called function gets executed,
the control is passed back to the calling function. Look at Fig. 7.2 which
shows this concept.

Now when function E is executed, function b will be removed from
the top of the stack and executed. Once function b gets completely
executed, function ¢ will be removed from the stack for execution. The
whole procedure will be repeated until all the functions get executed.
Let us look at the stack after each function is executed. This is shown in
Fig. 7.3.

The system stack ensures a proper execution order of functions.
Therefore, stacks are frequently used in situations where the order of
processing is very important, especially when the processing needs to
be postponed until other conditions are fulfilled.

Stacks can be implemented using either arrays or linked lists. In
the following sections, we will discuss both array and linked list
implementation of stacks.

7.2 ARRAY REPRESENTATION OF STACKS

In the computer’s memory, stacks can be represented as a linear array.
Every stack has a variable called Top associated with it, which is used to
store the address of the topmost element of the stack. It is this position
where the element will be added to or deleted from. There is another

variable called max, which is used to store the maximum number of elements that the stack can hold.
If Top = nuLL, then it indicates that the stack is empty and if Top = max-1, then the stack is full.
(You must be wondering why we have written max-1. It is because array indices start from 0.)

Look at Fig. 7.4.

[A

| AB | ABC [ABCD |ABCDE] | | | | |

0

1 2 3 TOP=4 5 6 7 8 9

Figure 7.4 Stack

The stack in Fig. 7.4 shows that Top = 4, so insertions and deletions will be done at this position.
In the above stack, five more elements can still be stored.

Stacks 221

7.3 OPERATIONS ON A STACK

A stack supports three basic operations: push, pop, and peek. The push operation adds an element
to the top of the stack and the pop operation removes the element from the top of the stack. The
peek operation returns the value of the topmost element of the stack.

7.3.1 Push Operation

The push operation is used to insert an element into the stack. The new element is added at the
topmost position of the stack. However, before inserting the value, we must first check if Top=max-1,
because if that is the case, then the stack is full and no more insertions can be done. If an attempt
is made to insert a value in a stack that is already full, an overFLow message is printed. Consider
the stack given in Fig. 7.5.

L+l 2855 [[[[[|
3

Figure 7.5 Stack

To insert an element with value 6, we first check if Top=max-1. If the condition is false, then we
increment the value of Top and store the new element at the position given by stack[Tor]. Thus,
the updated stack becomes as shown in Fig. 7.6.

L+l 2]s]af5s [e] [[[|
0 1 2 3 4 TOP=5 6 7 8 9

Figure 7.6 Stack after insertion

Step 1: IF TOP = MAX-1 Figure 7.7 shows the algorithm to insert an element in a stack.

PRINT "OVERFLOW" In Step 1, we first check for the overrLow condition. In Step 2, Top
Goto Step 4 is incremented so that it points to the next location in the array. In
LEND OF IF] Step 3, the value is stored in the stack at the location pointed by Top.

Step 2: SET TOP = TOP + 1
Step 3: SET STACK[TOP] = VALUE

Step 4: END 7.3.2 Pop Operation
The pop operation is used to delete the topmost element from the
Figure 7.7 Algorithm to insert an stack. However, before deleting the value, we must first check if
element in a stack ToP=NULL because if that is the case, then it means the stack is empty

and no more deletions can be done. If an attempt is made to delete a value from a stack that is
already empty, an UNDERFLOW message is printed. Consider the stack given in Fig. 7.8.

L+ [2[s]as4]s [[[[[|
0 1 2 3 TOP=4 5 6 7 8 9
Figure 7.8 Stack

To delete the topmost element, we first check if Top=nuLL. If the condition is false, then we
decrement the value pointed by Top. Thus, the updated stack becomes as shown in Fig. 7.9.

Step 1: IF TOP = NULL [1] 2 [3 [4] | | | | | |
PRINT "UNDERFLOW" 0 1 2 TOP=3 4 5 6 7 8 9
Goto Step 4
[END OF IF] Figure 7.9 Stack after deletion
Step 2: SET VAL = STACK[TOP]
Step 3: SET TOP = TOP - 1 Figure 7.10 shows the algorithm to delete an element from a
Step 4: END stack. In Step 1, we first check for the unberFLoW condition. In Step

2, the value of the location in the stack pointed by Top is stored in

Figure 7.10 Algorithm to delete an vAL. In Step 3, Top is decremented.

element from a stack

222 Data Structures Using C

Step 3: END

Step 1: IF TOP = NULL

Step 2: RETURN STACK[TOP]

7.3.3 Peek Operation
PRINT "STACK IS EMPTY" Peek is an operation that returns the value of the topmost
Goto Step 3 element of the stack without deleting it from the stack. The
algorithm for peek operation is given in Fig. 7.11.

However, the peek operation first checks if the stack is empty,

Figure 7.11 Algorithm for Peek operation

i.e., if Top = NuLL, then an appropriate message is printed, else
the value is returned. Consider the stack given in Fig. 7.12.

[+l 23]+ [[[[[|

Figure 7.12 Stack

Here, the peek operation will return 5, as it is the value of the topmost element of the stack.

ProGRAMMING EXAMPLE

1.

Write a program to perform Push, Pop, and Peek operations on a stack.

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#tdefine MAX 3 // Altering this value changes size of stack created

int st[MAX], top=-1;

void push(int st[], int val);
int pop(int st[]);

int peek(int st[]);

void display(int st[]);

int main(int argc, char *argv[]) {
int val, option;
do
{
printf("\n **FRAMAIN MENU****%")
printf("“\n 1. PUSH");
printf("\n 2. POP");
printf("\n 3. PEEK");
printf("\n 4. DISPLAY");
printf("\n 5. EXIT");
printf("\n Enter your option: ");
scanf("%d", &option);
switch(option)
{
case 1:
printf("\n Enter the number to be pushed on stack: ");
scanf("%d", &val);
push(st, val);

break;
case 2:
val = pop(st);
if(val != -1)
printf("\n The value deleted from stack is: %d", val);
break;
case 3:

val = peek(st);
if(val != -1)

Stacks 223

printf("\n The value stored at top of stack is: %d", val);
break;
case 4:
display(st);
break;

}while(option != 5);
return 0;

void push(int st[], int val)

{
if(top == MAX-1)
{
printf("\n STACK OVERFLOW");
3
else
{
top++;
st[top] = val;
3
¥
int pop(int st[])
int val;
if(top == -1)
{
printf("\n STACK UNDERFLOW");
return -1;
3
else
{
val = st[top];
top--;
return val;
3
¥
void display(int st[])
{
int i;
if(top == -1)
printf("\n STACK IS EMPTY");
else
{
for(i=top;i>=0;i--)
printf("\n %d",st[i]);
printf("\n"); // Added for formatting purposes
3
¥
int peek(int st[])
{
if(top == -1)
{
printf("\n STACK IS EMPTY");
return -1;
3
else

return (st[top]);

224 Data Structures Using C

Output
1. PUSH
2. POP
3. PEEK
4. DISPLAY
5. EXIT
Enter your option : 1
Enter the number to be pushed on stack : 500

7.4 LINKED REPRESENTATION OF STACKS

We have seen how a stack is created using an array. This technique of creating a stack is easy,
but the drawback is that the array must be declared to have some fixed size. In case the stack is
a very small one or its maximum size is known in advance, then the array implementation of the
stack gives an efficient implementation. But if the array size cannot be determined in advance,
then the other alternative, i.e., linked representation, is used.

The storage requirement of linked representation of the stack with n elements is o(n), and the
typical time requirement for the operations is 0(1).

In a linked stack, every node has two parts—one that stores data and another that stores the
address of the next node. The sTART pointer of the linked list is used as Top. All insertions and
deletions are done at the node pointed by Top. If Top = NuLL, then it indicates that the stack is empty.

The linked representation of a stack is shown in Fig. 7.13.

Lol Pl 7] s el 2] e[5]x]

TOP
Figure 7.13 Linked stack

7.5 OPERATIONS ON A LINKED STACK

A linked stack supports all the three stack operations, that is, push, pop, and peek.

7.5.1 Push Operation

The push operation is used to insert an element into the stack. The new element is added at the
topmost position of the stack. Consider the linked stack shown in Fig. 7.14.

L izl e el iz e s [x]

TOP
Figure 7.14 Linked stack

To insert an element with value 9, we first check if Top=nULL. If this is the case, then we allocate
memory for a new node, store the value in its DATA part and NULL in its NEXT part. The new node
will then be called Top. However, if Top!=NULL, then we insert the new node at the beginning of
the linked stack and name this new node as Top. Thus, the updated stack becomes as shown in

Fig. 7.15.
L[Pl Pz 3] el P2 6] PH51X]

TOP
Figure 7.15 Linked stack after inserting a new node

Figure 7.16 shows the algorithm to push an element into a linked stack. In Step 1, memory is
allocated for the new node. In Step 2, the paTa part of the new node is initialized with the value to
be stored in the node. In Step 3, we check if the new node is the first node of the linked list. This

Stacks 225

Step 1: Allocate memory for the new
node and name it as NEW_NODE
Step 2: SET NEW_NODE —> DATA = VAL
Step 3: IF TOP = NULL
SET NEW_NODE —> NEXT
SET TOP = NEW_NODE
ELSE
SET NEW_NODE —> NEXT = TOP
SET TOP = NEW_NODE
[END OF IF]
Step 4: END

NULL

Figure 7.16 Algorithm to insert an element in a
linked stack

is done by checking if Top = NuLL. In case the IF statement
evaluates to true, then nuLL is stored in the NEXT part of the
node and the new node is called Top. However, if the new
node is not the first node in the list, then it is added before
the first node of the list (that is, the Tor node) and termed
as ToP.

7.5.2 Pop Operation

The pop operation is used to delete the topmost element from a
stack. However, before deleting the value, we must first check
if Tor=NULL, because if this is the case, then it means that the
stack is empty and no more deletions can be done. If an
attempt is made to delete a value from a stack that is already

empty, an UNDERFLOW message is printed. Consider the stack shown in Fig. 7.17.

Lol Pl 7] sl e 2] e[15]x]

TOP

Figure 7.17 Linked stack

In case Top!=NuLL, then we will delete the node pointed by Top, and make Top point to the second
element of the linked stack. Thus, the updated stack becomes as shown in Fig. 7.18.

Step 1: IF TOP = NULL

Ll =z sl e 2] Sle] Ss[x]

PRINT "UNDERFLOW" ToP

Goto Step 5
[END OF IF]
Step 2: SET PTR = TOP
Step 3: SET TOP = TOP —> NEXT
Step 4: FREE PTR
Step 5: END

Figure 7.19 Algorithm to delete an
element from a linked stack

Figure 7.18 Linked stack after deletion of the topmost element

Figure 7.19 shows the algorithm to delete an element from
a stack. In Step 1, we first check for the unDERFLOW condition.
In Step 2, we use a pointer PTR that points to Top. In Step 3, Top
is made to point to the next node in sequence. In Step 4, the
memory occupied by PTR is given back to the free pool.

ProGrRAMMING EXAMPLE

2. Write a program to implement a linked stack.

##include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <malloc.h>
struct stack

{

int data;

struct stack *next;

s
struct stack *top = NULL;

struct stack *push(struct stack *, int);
struct stack *display(struct stack *);
struct stack *pop(struct stack *);

int peek(struct stack *);

int main(int argc, char *argv[]) {

int val, option;

226 Data Structures Using C

}

do

{
printf("\n *FFFEEMAIN MENU****%")
printf("\n 1. PUSH");
printf("\n 2. POP");
printf("\n 3. PEEK");
printf("\n 4. DISPLAY");
printf("\n 5. EXIT");

printf("\n Enter your option: ");
scanf("%d", &option);
switch(option)

{

case 1:

printf("\n Enter the number to be pushed on stack:

scanf("%d", &val);
top = push(top, val);

break;
case 2:
top = pop(top);
break;
case 3:
val = peek(top);
if (val != -1)
printf("“\n The value at the top of stack is:
else
printf("\n STACK IS EMPTY");
break;
case 4:

top = display(top);
break;

}while(option != 5);
return 0;

struct stack *push(struct stack *top, int val)

{

}

struct stack *ptr;

ptr = (struct stack*)malloc(sizeof(struct stack));
ptr -> data = val;

if(top == NULL)

{
ptr -> next = NULL;
top = ptr;

¥

else

{
ptr -> next = top;
top = ptr;

3

return top;

struct stack *display(struct stack *top)

{

struct stack *ptr;

ptr = top;

if(top == NULL)

printf("\n STACK IS EMPTY");
else

{

%d",

")

val);

Stacks 227

while(ptr != NULL)

{
printf("\n %d", ptr -> data);
ptr = ptr -> next;
}
}
return top;
}
struct stack *pop(struct stack *top)
{
struct stack *ptr;
ptr = top;
if(top == NULL)
printf("\n STACK UNDERFLOW");
else
{
top = top -> next;
printf("\n The value being deleted is: %d", ptr -> data);
free(ptr);
}
return top;
b
int peek(struct stack *top)
{
if(top==NULL)
return -1;
else
return top ->data;
}
Output
1. PUSH
2. POP
3. Peek
4. DISPLAY
5. EXIT

Enter your option : 1
Enter the number to be pushed on stack : 100

7.6 MULTIPLE STACKS

While implementing a stack using an array, we had seen that the size of the array must be known in
advance. If the stack is allocated less space, then frequent overrLow conditions will be encountered.
To deal with this problem, the code will have to be modified to reallocate more space for the array.
In case we allocate a large amount of space for the stack, it may result in sheer wastage of
memory. Thus, there lies a trade-off between the frequency of overflows and the space allocated.
So, a better solution to deal with this problem is to have multiple stacks or to have more than
one stack in the same array of sufficient size. Figure 7.20 illustrates this concept.

0 1 2 3 4 e n-4 n-3 n-2 n-1

LI [[[T = <=4 [[[|

Stack A Stack B

Figure 7.20 Multiple stacks

In Fig. 7.20, an array sTACK[n] is used to represent two stacks, stack A and stack B. The value
of n is such that the combined size of both the stacks will never exceed n. While operating on

228 Data Structures Using C

these stacks, it is important to note one thing—stack A will grow from left to right, whereas stack
B will grow from right to left at the same time.

Extending this concept to multiple stacks, a stack can also be used to represent n number of
stacks in the same array. That is, if we have a sTack[n], then each stack I will be allocated an
equal amount of space bounded by indices b[i] and e[i]. This is shown in Fig. 7.21.

b[0] e[0] b[1] e[1] b[2] e[2] b[3] e[3] b[4] e[4]

F F— F— F—> F—>]
Figure 7.21 Multiple stacks

ProGRAMING ExamPLE

3. Write a program to implement multiple stacks.

#include <stdio.h>

#include <conio.h>

#define MAX 10

int stack[MAX],topA=-1,topB=MAX;
void pushA(int val)

{
if(topA==topB-1)
printf("\n OVERFLOW");
else
{
topA+= 1;
stack[topA] = val;
)
)
int popA()
{
int val;
if(topA==-1)
{
printf("\n UNDERFLOW");
val = -999;
)
else
{
val = stack[topA];
topA--;
)

return val;

void display stackA()

{
int i;
if(topA==-1)
printf("\n Stack A is Empty");
else
{
for(i=topA;i>=0;i--)
printf("\t %d",stack[i]);
)
)
void pushB(int val)
{

if(topB-1==topA)
printf("\n OVERFLOW");
else

Stacks 229

}

}

int popB()

}

void display_stackB()

{

int val;

topB -= 1;

stack[topB] = val;

if(topB==MAX)

else

}

int i;

printf("“\n UNDERFLOW");

val = -999;

val = stack[topB];

topB++;

if(topB==MAX)
printf("\n Stack B is Empty");

else

{

}

void main()

{

for(i=topB;i<MAX;i++)
printf("\t %d",stack[i]);

int option, val;

clrscr();
do

{

printf("\n FFEEEMENUFF*RE") o
printf(“\n 1. PUSH IN STACK A");
printf(“\n 2. PUSH IN STACK B");
printf("\n 3. POP FROM STACK A");
printf("“\n 4. POP FROM STACK B");
printf("“\n 5. DISPLAY STACK A");
printf(“\n 6. DISPLAY STACK B");
printf(“\n 7. EXIT");

printf(“\n Enter your choice");
scanf("%d",&option);
switch(option)

{

case 1: printf("\n Enter the value to push on Stack A : ");

case 2

case 3

scanf("%d",&val);
pushA(val);
break;
printf("\n Enter the value to push on Stack B : ");
scanf("%d",&val);
pushB(val);
break;
val=popA();
if(val!=-999)
printf("\n The value popped from Stack A = %d",val);
break;

230 Data Structures Using C

case 4: val=popB();

if(val!=-999)
printf("\n The value popped from Stack B = %d",val);

break;

case 5: printf("\n The contents of Stack A are : \n");
display_stackA();
break;

case 6: printf("\n The contents of Stack B are : \n");
display_stackB();
break;

}while(option!=7);
getch();

}
Output

1. PUSH IN STACK A
PUSH IN STACK B
POP FROM STACK A
POP FROM STACK B
DISPLAY STACK A
DISPLAY STACK B
EXIT
Enter your choice : 1
Enter the value to push on Stack A : 10
Enter the value to push on Stack A : 15
Enter your choice : 5
The content of Stack A are:
15 10
Enter your choice : 4
UNDERFLOW
Enter your choice : 7

auvih, wN

~N

7.7 APPLICATIONS OF STACKS

In this section we will discuss typical problems where stacks can be easily applied for a simple
and efficient solution. The topics that will be discussed in this section include the following:
e Reversing a list
Parentheses checker
Conversion of an infix expression into a postfix expression
Evaluation of a postfix expression
Conversion of an infix expression into a prefix expression
Evaluation of a prefix expression
Recursion
Tower of Hanoi

7.7.1 Reversing a List

A list of numbers can be reversed by reading each number from an array starting from the first
index and pushing it on a stack. Once all the numbers have been read, the numbers can be popped
one at a time and then stored in the array starting from the first index.

PRoGRAMMING EXAMPLE

4. Write a program to reverse a list of given numbers.

#include <stdio.h>

Stacks 231

#include <conio.h>
int stk[10];
int top=-1;
int pop();
void push(int);
int main()
{
int val, n, i,
arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
printf("\n Enter the elements of the array : ");
for(i=0;i<n;i++)
scanf("%d", &arr[i]);
for(i=0;i<n;i++)
push(arr[i]);
for(i=0;i<n;i++)
{
val = pop();
arr[i] = val;
}
printf("\n The reversed array is : ");
for(i=0;i<n;i++)
printf(“\n %d", arr[i]);

getche"();
return O;
}
void push(int val)
{
stk[++top] = val;
}
int pop()
{
return(stk[top--1);
}
Output

Enter the number of elements in the array : 5
Enter the elements of the array : 1 2 3 45
The reversed array is : 54 3 2 1

7.7.2 Implementing Parentheses Checker

Stacks can be used to check the validity of parentheses in any algebraic expression. For example,
an algebraic expression is valid if for every open bracket there is a corresponding closing bracket.
For example, the expression (A+B} is invalid but an expression {A + (B — C)} is valid. Look at
the program below which traverses an algebraic expression to check for its validity.

ProGrRAMMING EXxamPLE

5. Write a program to check nesting of parentheses using a stack.

#include <stdio.h>
#include <conio.h>
#include <string.h>
#define MAX 10

int top = -1;

int stk[MAX];

void push(char);

232 Data Structures Using C

char pop();
void main()

{
char exp[MAX]
int i, flag=1;

,temp;

clrscr();
printf("Enter an expression : ");
gets(exp);
for(i=0;i<strlen(exp);i++)
{
if(exp[il=="(" || exp[i]=="{" || exp[i]=="[")
push(exp[i]);
if(exp[i]==")" || exp[i]=="}" || exp[i]=="]")
if(top == -1)
flag=0;
else
{
temp=pop();
if(exp[i]==")" && (temp=="{"' || temp=="["))
flag=0;
if(exp[i]=="}" && (temp=='("' || temp=="["))
flag=0;
if(exp[i]=="]" && (temp=="("' || temp=="{"))
flag=0;
}
}
if(top>=0)
flag=0;
if(flag==1)

printf("\n Valid expression");

else

printf("\n Invalid expression");

void push(char c)

{

if(top == (MAX-1))
printf(“Stack Overflow\n");

top=top+1;
stk[top] = c;

printf("\n Stack Underflow");

return(stk[top--1);

else
{
}

char pop()

¢ if(top == -1)
else

¥

Output

Enter an expression :
Valid Expression

(A + (B -20C))

7.7.3 Evaluation of Arithmetic Expressions

Polish Notations

Infix, postfix, and prefix notations are three different but equivalent notations of writing algebraic
expressions. But before learning about prefix and postfix notations, let us first see what an
infix notation is. We all are familiar with the infix notation of writing algebraic expressions.

Stacks 233

While writing an arithmetic expression using infix notation, the operator is placed in between
the operands. For example, A+B; here, plus operator is placed between the two operands
Aand B. Although it is easy for us to write expressions using infix notation, computers find it difficult
to parse as the computer needs a lot of information to evaluate the expression. Information is
needed about operator precedence and associativity rules, and brackets which override these rules.
So, computers work more efficiently with expressions written using prefix and postfix notations.

Postfix notation was developed by Jan Lukasiewicz who was a Polish logician, mathematician,
and philosopher. His aim was to develop a parenthesis-free prefix notation (also known as Polish
notation) and a postfix notation, which is better known as Reverse Polish Notation or RPN.

In postfix notation, as the name suggests, the operator is placed after the operands. For example,
if an expression is written as A+B in infix notation, the same expression can be written as AB+ in
postfix notation. The order of evaluation of a postfix expression is always from left to right. Even
brackets cannot alter the order of evaluation.

The expression (A + B) * C can be written as:

[AB+]*C
AB+C* in the postfix notation
A postfix operation does not even follow the rules of

Example 7.1 Convert the following operator precedence. The operator which occurs first in the
infix expressions into postfix expressions. expression is operated first on the operands. For example,
Solution giyen a postfix notati.on AB+C*. While §Valuati0n, addition
(a) (A-B) * (C+D) will be performed prior to multlpllcatlop.
[AB-] * [CD+] Thus we see that in a postfix notation, operators are
AB—CD+* applied to the operands that are immediately left to them.
(b) (A +B)/ (C+D)-(D*E) In the example, AB+C*, + is applied on A and B, then * is
[AB+] / [CD+] - [DE*] applied on the result of addition and c.
[AB+CD+/] - [DE*] Although a prefix notation is also evaluated from left to
AB+CD+/DE*- right, the only difference between a postfix notation and a

prefix notation is that in a prefix notation, the operator is
placed before the operands. For example, if A+B is an expression in infix notation, then the
corresponding expression in prefix notation is given by +As.

While evaluating a prefix expression, the operators are applied to the operands that are
present immediately on the right of the operator. Like postfix, prefix expressions also do not
follow the rules of operator precedence and associativity, and even brackets cannot alter the order
of evaluation.

Conversion of an Infix Expression into a Postfix Expression

Example 7.2 Convert the following Let 1 be an algebraic expression written in infix notation.
infix expressions into prefix expressions. I may contain parentheses, operands, and operators. For
Solution simplicity of the algorithm we will use only +, -, *, /, %
(a) (A +B) *C operators. The precedence of these operators can be given
(+AB)*C as follows:
*+ABC Higher priority *, /, %
(b) (A-B) * (C+D) Lower priority +, -
[-AB] * [+CD]

(c)

No doubt, the order of evaluation of these operators can
(A+B) / (C+D)-(D*E) be changed by making use of parentheses. For e?iample, if
[+AB] / [+CD] - [*DE] we have an eXpression A + B * C, then first B * ¢ will be dgne
[/+AB+CD] - [*DE] and the result will be added to A. But the same expression
—/+AB+CD*DE if written as, (A + B) * ¢, will evaluate A + B first and then

*-AB+CD

the result will be multiplied with c.

234 Data Structures Using C

The algorithm given below transforms an infix expression into postfix expression, as shown
in Fig. 7.22. The algorithm accepts an infix expression that may contain operators, operands,
and parentheses. For simplicity, we assume that the infix operation contains only modulus (%),
multiplication (*), division (/), addition (+), and subtraction (-) operators and that operators with
same precedence are performed from left-to-right.

The algorithm uses a stack to temporarily hold operators. The postfix expression is obtained
from left-to-right using the operands from the infix expression and the operators which are removed
from the stack. The first step in this algorithm is to push a left parenthesis on the stack and to add
a corresponding right parenthesis at the end of the infix expression. The algorithm is repeated
until the stack is empty.

Step 1: Add ")" to the end of the infix expression
Step 2: Push "(" on to the stack
Step 3: Repeat until each character in the infix notation is scanned
IF a "(" is encountered, push it on the stack
IF an operand (whether a digit or a character) is encountered, add it to the
postfix expression.
IF a ")" is encountered, then
a. Repeatedly pop from stack and add it to the postfix expression until a
"(" is encountered.
b. Discard the "(". That is, remove the "(" from stack and do not
add it to the postfix expression
IF an operator 0 is encountered, then
a. Repeatedly pop from stack and add each operator (popped from the stack) to the
postfix expression which has the same precedence or a higher precedence than 0
b. Push the operator 0 to the stack
[END OF IF]
Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty
Step 5: EXIT

Figure 7.22 Algorithm to convert an infix notation to postfix notation

Solution
InﬁxS Char‘adcter‘ Sstack Postfix Expression Example 7.3 Convert the following infix
canne
(expression into postfix expression using the
A (A algorithm given in Fig. 7.22.
- (- A (a) A- (B/C+ (D%E*F)/G)*H
((- A (b A- (B/ C+ (D%E*F)/ G)*H)
B (- (A B
/ (-(C/ AB
¢ (- (/ ABC ProGRAMMING ExamPLE
+ (- (+ ABC/
((= (C+(ABC/ 6. Write a program to convert an infix
D (- (C+(ABC/D L . .
% (- (+(% ABC/D expression into its equivalent postfix
E (-(+(% |ABC/DE notation.
* (-(+(%*ABC/DE #include <stdio.h>
F (-(+(%*ABC/DEF #include <conio.h>
) (- (+ ABC/DEF*% #include <ctype.h>
/ (-(+/ ABC/DEF*% #include <string.h>
G (-(+/ ABC/DEF*%G #define MAX 100
) (- ABC/DEF*%G/ + char st[MAX];
* (- * ABC/DEF*%G/ + int top=-1;
H (-* ABC/DEF*%G/ +H void push(char st[], char);
) ABC/DEF*%G/+H*- char pop(char st[]);

Stacks

235

void InfixtoPostfix(char source[], char target[]);
int getPriority(char);
int main()

{
char infix[100], postfix[100];
clrscr();
printf("\n Enter any infix expression : ");
gets(infix);
strcpy(postfix, "");
InfixtoPostfix(infix, postfix);
printf("\n The corresponding postfix expression is : ");
puts(postfix);
getch();
return O;
¥
void InfixtoPostfix(char source[], char target[])
{
int i=0, j=0;
char temp;
strcpy(target, "");
while(source[i]!="\0")
{
if(source[i]=="(")
push(st, source[i]);
i++;
¥
else if(source[i] == ")")
{
while((top!=-1) && (st[top]!='("))
{
target[j] = pop(st);
J++;
¥
if(top==-1)
{
printf("\n INCORRECT EXPRESSION");
exit(1);
¥
temp = pop(st);//remove left parenthesis
i++;
¥
else if(isdigit(source[i]) || isalpha(source[i]))
{
target[j] = source[i];
J++;
i++;
¥
else if (source[i] == '+' || source[i] == '-' || source[i] == "*' ||
source[i] == '/' || source[i] == '%")

while((top!=-1) && (st[top]!= '(') && (getPriority(st[top])

> getPriority(source[i])))

target[j] = pop(st);

J++;
¥
push(st, source[i]);
i++;

else

236

Data Structures Using C

printf("\n INCORRECT ELEMENT IN EXPRESSION");

exit(1);

}

while((top!=-1) && (st[top]!'='("))
{

target[j] = pop(st);

Jt++5
}
target[j]="\0";
¥
int getPriority(char op)
{
if(op=="/" || op == "*' || op=="%")
return 1;
else if(op=="+"' || op=="-")
return O;
}
void push(char st[], char val)
{

if(top==MAX-1)
printf("“\n STACK OVERFLOW");

else
{
top++;
st[top]=val;
}

char pop(char st[])

char val=" "';
if(top==-1)
printf("“\n STACK UNDERFLOW");
else
{
val=st[top];
top--;
}
return val;
}

Output

Enter any infix expression : A+B-C*D
The corresponding postfix expression is : AB+CD*-

Evaluation of a Postfix Expression

The ease of evaluation acts as the driving force for computers to translate an infix notation into
a postfix notation. That is, given an algebraic expression written in infix notation, the computer
first converts the expression into the equivalent postfix notation and then evaluates the postfix

expression.

Both these tasks—converting the infix notation into postfix notation and evaluating the postfix

expression—make extensive use of stacks as the primary tool.

Using stacks, any postfix expression can be evaluated very easily. Every character of the postfix
expression is scanned from left to right. If the character encountered is an operand, it is pushed
on to the stack. However, if an operator is encountered, then the top two values are popped from
the stack and the operator is applied on these values. The result is then pushed on to the stack.

Let us look at Fig. 7.23 which shows the algorithm to evaluate a postfix expression.

Stacks

237

Step 1: Add a ")" at the end of the
postfix expression
Step 2: Scan every character of the
postfix expression and repeat
Steps 3 and 4 until ")"is encountered
Step 3: IF an operand is encountered,
push it on the stack
IF an operator 0 is encountered, then
a. Pop the top two elements from the
stack as A and B as A and B
b. Evaluate B 0 A, where A is the
topmost element and B
is the element below A.
¢. Push the result of evaluation
on the stack
[END OF IF]
Step 4: SET RESULT equal to the topmost element
of the stack
Step 5: EXIT

Figure 7.23 Algorithm to evaluate a postfix expression

Table 7.1 Evaluation of a postfix expression

Character Scanned Stack

9 9

3 9, 3

4 9, 3, 4

* 9, 12

8 9, 12, 8

+ 9, 20

4 9, 20, 4

/ 9, 5

- 4

Let us now take an example that makes use of this algorithm. Consider the infix expression
givenas 9 - ((3 * 4) + 8) / 4. Evaluate the expression.
The infix expression 9 - ((3 * 4) + 8) / 4 can be writtenas 9 3 4 * 8 + 4 / - using postfix
notation. Look at Table 7.1, which shows the procedure.

PRroGRAMMING EXAMPLE

7. Write a program to evaluate a postfix expression.

#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#define MAX 100
float st[MAX];
int top=-1;
void push(float st[], float val);
float pop(float st[]);
float evaluatePostfixExp(char exp[]);
int main()
{
float val;
char exp[100];
clrscr();

printf("\n Enter any postfix expression : ");

gets(exp);
val = evaluatePostfixExp(exp);

printf("\n Value of the postfix expression = %.2f", val);

getch();
return O;
}
float evaluatePostfixExp(char exp[])
{
int i=0;
float opl, op2, value;
while(exp[i] != "\0")
{

if(isdigit(exp[i]))

238 Data Structures Using C

push(st, (float)(exp[i]-'0"));

else
{
op2 = pop(st);
opl = pop(st);
switch(exp[i])
{
case '+':
value = opl + op2;
break;
case '-':
value = opl - op2;
break;
case '/':
value = opl / op2;
break;
case '*':
value = opl * op2;
break;
case '%':
value = (int)opl % (int)op2;
break;
¥
push(st, value);
}
i++;
return(pop(st));

void push(float st[], float val)

{
if(top==MAX-1)
printf("\n STACK OVERFLOW");
else
{
top++;
st[top]=val;
}
}

float pop(float st[])

float val=-1;
if(top==-1)
printf("\n STACK UNDERFLOW");

else

{
val=st[top];
top--;

}

return val;

¥
Output

Enter any postfix expression : 9 3 4 * 8 + 4 / -
Value of the postfix expression = 4.00

Conversion of an Infix Expression into a Prefix Expression

There are two algorithms to convert an infix expression into its equivalent prefix expression. The
first algorithm is given in Fig. 7.24, while the second algorithm is shown in Fig. 7.25.

Stacks 239

Step

Step
Step
Step
Step
Step
Step
Step

Step 2: Push the operator into the operator stack,

1: Scan each character in the infix
expression. For this, repeat Steps
2-8 until the end of infix expression

operand into the operand stack, and
ignore all the left parentheses until
a right parenthesis is encountered
Pop operand 2 from operand stack

Pop operand 1 from operand stack

Pop operator from operator stack

: Concatenate operator and operand 1

: Concatenate result with operand 2
Push result into the operand stack
END

W ooNOUV AW

Figure 7.24 Algorithm to convert an infix expression into prefix

expression

Step

Step

1: Reverse the infix string. Note that
while reversing the string you must
interchange left and right parentheses.

2: Obtain the postfix expression of the
infix expression obtained in Step 1.

Step 3: Reverse the postfix expression to get

the prefix expression

Figure 7.25 Algorithm to convert an infix expression into

prefix expression

The corresponding prefix expression is
obtained in the operand stack.

For example, given an infix expression (A - B
/C)*(A/K-L)
Step 1: Reverse the infix string. Note that while

reversing the string you must interchange left
and right parentheses.

(L-K/A)*(C/B-A)
Step 2: Obtain the corresponding postfix

expression of the infix expression obtained as
a result of Step 1.

The expression is: (L - K / A) * (C /B - A)

Therefore, [L - (KA /)] * [(CB/) - A]

[LKA/-]1 * [CB/A-]

LKA/ -CB/A-*

Step 3: Reverse the postfix expression to get the
prefix expression

Therefore, the prefix expression is * - A / B
C-/AKL

ProGRAMMING EXAMPLE

8. Write a program to convert an infix expression to a prefix expression.

#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <ctype.h>

#define MAX 100

char st[MAX];

int top=-1;

void reverse(char str[]);
void push(char st[], char);
char pop(char st[]);

void InfixtoPostfix(char source[], char target[]);

int getPriority(char);

char infix[100], postfix[100], temp[100];

int main()

{
clrscr();
printf("\\n Enter any infix expression : ");
gets(infix);

reverse(infix);
strcpy(postfix, "");

InfixtoPostfix(temp, postfix);

printf("\n The corresponding postfix expression is : ");

puts(postfix);
strcpy (temp,"");
reverse(postfix);

240 Data Structures Using C

printf("\n The prefix expression is : \n");

puts(temp);
getch();
return O;
}
void reverse(char str[])
{
int len, i=0, j=0;
len=strlen(str);
j=len-1;
while(j>= 0)
if (str[j] == '(")
temp[i] = ")";
else if (str[j] == ")")
temp[i] = '(*;
else
temp[i] = str[j];
ith, §--
¥
temp[i] = '\O';
}
void InfixtoPostfix(char source[], char target[])
{
int i=0, j=0;
char temp;
strcpy(target, "");
while(source[i]!= "\0")
{
if(source[i]=="(")
push(st, source[i]);
it++;
else if(source[i] == ')")
{
while((top!=-1) && (st[top]!='("))
target[j] = pop(st);
J++;
}
if(top==-1)
{
printf("\n INCORRECT EXPRESSION");
exit(1);
}
temp = pop(st); //remove left parentheses
it++;
else if(isdigit(source[i]) || isalpha(source[i]))
{
target[j] = source[i];
J++;
i++;
¥
else if(source[i] == '+' || source[i] == '-' || source[i] == '*' ||
source[i] == '/' || source[i] == '%")
{

while((top!=-1) && (st[top]!= '(') && (getPriority(st[top])

Stacks 241

> getPriority(source[i])))

{
target[j] = pop(st);
J++;
¥
push(st, source[i]);
i+4;
¥
else
{
printf("\n INCORRECT ELEMENT IN EXPRESSION");
exit(1);
¥

while((top!=-1) && (st[top]!="("))

target[j] = pop(st);

J++5
¥
target[j]="\0";
}
int getPriority(char op)
{
if(op=="/"' || op == "*' || op=="%")
return 1;
else if(op=="+"' || op=="-")
return O;

void push(char st[], char val)

{
if(top==MAX-1)
printf("\n STACK OVERFLOW");
else
{
top++;
st[top] = val;
}
}
char pop(char st[])
char val=" ';
if(top==-1)
printf("\n STACK UNDERFLOW");
else
{
val=st[top];
top--;
¥

return val;

¥
Output
Enter any infix expression : A+B-C*D
The corresponding postfix expression is : AB+CD*-
The prefix expression is : -+AB*CD

Evaluation of a Prefix Expression

There are a number of techniques for evaluating a prefix expression. The simplest way of evaluation
of a prefix expression is given in Fig. 7.26.

242 Data Structures Using C

(a)

(b)

(<)

Step 3: END

Step 1: Accept the prefix expression

Step 2: Repeat until all the characters
in the prefix expression have
been scanned

Scan the prefix expression
from right, one character at a
time.
If the scanned character is an
operand, push it on the
operand stack.
If the scanned character is an
operator, then
(i) Pop two values from the
operand stack
(ii) Apply the operator on
the popped operands
(iii) Push the result on the
operand stack

Figure 7.26 Algorithm for evaluation of a prefix

expression
Character scanned Operand stack
12 12
4 12, 4
/ 3
8 3, 8
* 24
7 24, 7
2 24, 7, 2
- 24, 5
+ 29

For example, consider the prefix expression + - 9

2 7 * 8 / 4 12. Let us now apply the algorithm to
evaluate this expression.

ProGRAMMING EXAMPLE

9.

Write a program to evaluate a prefix expression.

#include <stdio.h>
#include <conio.h>
#include <string.h>
int stk[10];

int top=-1;

int pop();

void push(int);

int main()

{

char prefix[10];
int len, val, i, oprl, opr2, res;
clrscr();

printf("\n Enter the prefix expression :

gets(prefix);
len = strlen(prefix);

for(i=len-1;i>=0;i--)
switch(get_type(prefix[i]))
{

case 0:
val = prefix[i] - '0';
push(val);
break;
case 1:
oprl = pop();
opr2 = pop();
switch(prefix[i])
{

case '+':

")

res = oprl + opr2;

break;

case - @

res = oprl - opr2;

break;
case '*':

res = oprl * opr2;

break;
case '/':

res = oprl / opr2;

break;

push(res);

}

printf("\n RESULT = %d", stk[O0]);
getche();
return 0;

void push(int val)

stk[++top] = val;

Stacks 243

int pop()

{
return(stk[top--1);

int get_type(char c)
if(c == '+' || €= "=' || c="*" || c="/")

return 1;

else return 0O;

}

Output
Enter the prefix expression : +-927
RESULT = 14

7.7.4 Recursion

In this section we are going to discuss recursion which is an implicit application of the STACK ADT.
A recursive function is defined as a function that calls itself to solve a smaller version of its
task until a final call is made which does not require a call to itself. Since a recursive function
repeatedly calls itself, it makes use of the system stack to temporarily store the return address and
local variables of the calling function. Every recursive solution has two major cases. They are

® Base case, in which the problem is simple enough to be solved directly without making any
further calls to the same function.

e Recursive case, in which first the problem at hand is divided into simpler sub-parts. Second
the function calls itself but with sub-parts of the problem obtained in the first step. Third, the
result is obtained by combining the solutions of simpler sub-parts.

Therefore, recursion is defining large and complex problems in terms of smaller and more
easily solvable problems. In recursive functions, a complex problem is defined in terms of simpler
problems and the simplest problem is given explicitly.

To understand recursive functions, let us take an example of calculating factorial of a number.
To calculate n!, we multiply the number with factorial of the number that is 1 less than that number.
In other words, n! = n X (n-1)!

Let us say we need to find the value of 5!

5l =5 x4x3x2x1
= 120
This can be written as
5! = 5 x 4!, where 4!= 4 x 3!
Therefore,
5! =5 x4 x 3!

Similarly, we can also write,

5l =5 x4 x3x 2!
PROBLEM SOLUTION Expandine further
5! 5Xx4x3x2x1! P g
=5x4! =5x4X3x2x%x1 51 =5 x4 x3x2x1!
AR =5Xx4x3x2 We know, 1! = 1
=5x4x3x2! = . . .
sl E x ‘2‘: 6 The series of problems and solutions can be given as
= ! =5Xx . .
- 120 shown in Fig. 7.27.
Now if you look at the problem carefully, you can see

. . . . that we can write a recursive function to calculate the
Figure 7.27 Recursive factorial function

244 Data Structures Using C

factorial of a number. Every recursive function must have a base case and a recursive case. For

the factorial function,

Programming Tip

Every recursive function must
have at least one base case.
Otherwise, the recursive function
will generate an infinite sequence
of calls, thereby resulting in an
error condition known as an
infinite stack.

o Base case is when n = 1, because if n = 1, the result will be 1 as
11 =1,

o Recursive case of the factorial function will call itself but with a
smaller value of n, this case can be given as

factorial(n) = n x factorial (n-1)

Look at the following program which calculates the factorial of a
number recursively.

ProGRAMMING EXAMPLE

10. Write a program to calculate the factorial of a given number.

#include <stdio.h>
// FUNCTION DECLARATION

int Fact(int);
int main()

{

int num, val;

printf("\n Enter the number: ");

scanf("%d", &num);

val = Fact(num);

printf("\n Factorial of %d = %d", num, val);

return 1;

return (n * Fact(n-1));

return 0;
int Fact(int n)
{ if(n==1)
else
}
Output

Enter the number :

5

Factorial of 5 = 120

From the above example, let us analyse the steps of a recursive program.

Step 1: Specify the base case which will stop the function from making a call to itself.

Step 2: Check to see whether the current value being processed matches with the value of the
base case. If yes, process and return the value.

Step 3: Divide the problem into smaller or simpler sub-problems.

Step 4: Call the function from each sub-problem.

Step 5: Combine the results of the sub-problems.

Step 6: Return the result of the entire problem.

Greatest Common Divisor

The greatest common divisor of two numbers (integers) is the largest integer that divides both
the numbers. We can find the GCD of two numbers recursively by using the Euclid s algorithm

that states

b, if b divides a

D b) =
GCD (a, b) =1 (p (b, a mod b), otherwise

GCD can be implemented as a recursive function because if b does not divide a, then we call
the same function (GCD) with another set of parameters that are smaller than the original ones.

Stacks 245

Here we assume that a > b. Howeverifa < b, then interchange a and b in the formula given above.

Working
Assume a = 62 and b = 8
GCD(62, 8)
rem = 62 % 8 = 6
GCD(8, 6)
rem =8 %6 =2
GCD(6, 2)
rem=6%2=0
Return 2
Return 2
Return 2

ProgRAMMING EXAMPLE

11. Write a program to calculate the GCD of two numbers using recursive functions.

#include <stdio.h>
int GCD(int, int);
int main()
{
int numl, num2, res;
printf("\n Enter the two numbers: ");
scanf("%d %d", &numl, &num2);
res = GCD(numl, num2);
printf("\n GCD of %d and %d = %d", numl, num2, res);

return 0;
}
int GCD(int x, int y)
{
int rem;
rem = X%y;
if(rem==0)
return y;
else
return (GCD(y, rem));
}
Output

Enter the two numbers : 8 12
GCD of 8 and 12 = 4

Finding Exponents

We can also find exponent of a number using recursion. To find x, the base case would be when
y=0, as we know that any number raised to the power o is 1. Therefore, the general formula to

find x can be given as
_J1, ify==0
EXP (X, y) = X x EXP (x ¥1), otherwise

Working

exp_rec(2, 4) = 2 x exp_rec(2, 3)
exp_rec(2, 3) = 2 x exp_rec(2, 2)
exp_rec(2, 2) 2 x exp_rec(2, 1)
exp_rec(2, 1) = 2 x exp_rec(2, 0)
exp_rec(2, 0) =1
exp_rec(2, 1) =2 x1 =2
exp_rec(2, 2) =2 x2 =4

246 Data Structures Using C

exp_rec(2, 4) =2 x 8

exp_rec(2, 3) =2 x 4 =38

16

ProGRAMMING EXAMPLE

12.

Write a program to calculate exp(x,y) using recursive functions.

#include <stdio.h>
int exp_rec(int, int);
int main()
{
int numl, num2, res;
printf("\n Enter the two numbers: ");
scanf("%d %d", &numl, &num2);
res = exp_rec(numl, num2);
printf ("\n RESULT = %d", res);
return O;
)
int exp_rec(int x, int y)
{
if(y==0)
return 1;
else
return (x * exp_rec(x, y-1));

}

Output

Enter the two numbers : 3 4
RESULT = 81

The Fibonacci Series
The Fibonacci series can be given as

01123581321 3455..

That is, the third term of the series is the sum of the first and second terms. Similarly, fourth term
is the sum of second and third terms, and so on. Now we will design a recursive solution to find
the nth term of the Fibonacci series. The general formula to do so can be given as

As per the formula, F1B(0) =0 and F1B(1) = 1. So we have two base cases. This is necessary
because every problem is divided into two smaller problems.

0, ifn=0
1, if n=1
FIB (n - 1) + FIB(n - 2), otherwise

FIB (n) =

PRoGRAMMING EXAMPLE

13.

Write a program to print the Fibonacci series using recursion.

#include <stdio.h>
int Fibonacci(int);
int main()
{
int n, i = 0, res;
printf("Enter the number of terms\n");
scanf("%d",&n);
printf("Fibonacci series\n");
for(i = 0; i < n; i++)
{

res = Fibonacci(i);

Stacks 247

printf("%d\t",res);

)
return O;
}
int Fibonacci(int n)
{
if (n==0)
return O;
else if (n==1)
return 1;
else
return (Fibonacci(n-1) + Fibonacci(n-2));
}
Output

Enter the number of terms

Fibonacci series
0 1 1

Types of Recursion

Recursion is a technique that breaks a problem into one or more sub-problems that are similar to
the original problem. Any recursive function can be characterized based on:

{

}

int Func (int n)

if (n == 0)
return n;
else
return (Func (n-1));

Figure 7.28 Direct recursion

{

}

int Funcl (int n)

int Func2(int x)

if (n == 0)
return n;
else
return Func2(n);

{
return Funcl(x-1);
}
Figure 7.29 Indirect recursion

int Fact(int n)

{

}

if (n == 1)
return 1;
else
return (n * Fact(n-1));

Figure 7.30 Non-tail recursion

e whether the function calls itself directly or indirectly (direct
or indirect recursion),

¢ whether any operation is pending at each recursive call (tail-
recursive or not), and

o the structure of the calling pattern (linear or tree-recursive).

In this section, we will read about all these types of recursions.

Direct Recursion

A function is said to be directly recursiveif it explicitly calls itself.
For example, consider the code shown in Fig. 7.28. Here, the function
Func() calls itself for all positive values of n, so it is said to be a
directly recursive function.

Indirect Recursion

A function is said to be indirectly recursive if it contains a call to
another function which ultimately calls it. Look at the functions given
below. These two functions are indirectly recursive as they both call
each other (Fig. 7.29).

Tail Recursion

A recursive function is said to be fail recursive if no operations
are pending to be performed when the recursive function returns
to its caller. When the called function returns, the returned value
is immediately returned from the calling function. Tail recursive
functions are highly desirable because they are much more efficient
to use as the amount of information that has to be stored on the system
stack is independent of the number of recursive calls.
In Fig. 7.30, the factorial function that we have written is a non-
tail-recursive function, because there is a pending operation of
multiplication to be performed on return from each recursive call.

248 Data Structures Using C

int Fact(n)

return Factl(n-1, n*res);

Figure 7.31 Tail recursion

Whenever there is a pending operation to be performed, the function

{ becomes non-tail recursive. In such a non-tail recursive function,
return Factl(n, 1); information about each pending operation must be stored, so the
} . . amount of information directly depends on the number of calls.
int Factl(int n, int res) 4
{ However, the same factorial function can be written in a tail-
if (n ==1) recursive manner as shown Fig. 7.31.
elser‘Etum res; In the code, Fact1 function preserves the syntax of Fact(n). Here

the recursion occurs in the Fact1 function and not in Fact function.
} Carefully observe that Fact1 has no pending operation to be
performed on return from recursive calls. The value computed by
the recursive call is simply returned without any modification. So

in this case, the amount of information to be stored on the system stack is constant (only the values
of'n and res need to be stored) and is independent of the number of recursive calls.

Converting Recursive Functions to Tail Recursive

A non-tail recursive function can be converted into a tail-recursive function by using an auxiliary
parameter as we did in case of the Factorial function. The auxiliary parameter is used to form the
result. When we use such a parameter, the pending operation is incorporated into the auxiliary
parameter so that the recursive call no longer has a pending operation. We generally use an
auxiliary function while using the auxiliary parameter. This is done to keep the syntax clean and
to hide the fact that auxiliary parameters are needed.

Linear and Tree Recursion

int Fibonacci(int num)
{
if(num == 0)
return O;
else if (num == 1)
return 1;
else
return (Fibonacci(num - 1) + Fibonacci(num - 2));
¥
Observe the series of function calls. When the function
returns, the pending operations in turn calls the function
Fibonacci(7) = Fibonacci(6) + Fibonacci(5)
Fibonacci(6) = Fibonacci(5) + Fibonacci(4)
Fibonacci(5) = Fibonacci(4) + Fibonacci(3)
Fibonacci(4) = Fibonacci(3) + Fibonacci(2)
Fibonacci(3) = Fibonacci(2) + Fibonacci(1)
Fibonacci(2) = Fibonacci(1) + Fibonacci(0)
Now we have, Fibonacci(2)=1+0=1
Fibonacci(3)=1+1=2
Fibonacci(4)=2+1=3
Fibonacci(5)=3+2=5
Fibonacci(6)=3+5=8
Fibonacci(7)=5+8=13

Figure 7.32 Tree recursion

Recursive functions can also be characterized
depending on the way in which the recursion
grows in a linear fashion or forming a tree
structure (Fig. 7.32).

In simple words, a recursive function is said
to be linearly recursive when the pending
operation (if any) does not make another
recursive call to the function. For example,
observe the last line of recursive factorial
function. The factorial function is linearly
recursive as the pending operation involves
only multiplication to be performed and does
not involve another recursive call to Fact.
On the contrary, a recursive function is
said to be tree recursive (or non-linearly
recursive) if the pending operation makes
another recursive call to the function. For
example, the Fibonacci function in which
the pending operations recursively call the
Fibonacci function.

Tower of Hanoi

The tower of Hanoi is one of the main
applications of recursion. It says, ‘if you can
solve n-1 cases, then you can easily solve
the nth case’.

Stacks 249

[A]

Figure 7.

| —
ol

33 Tower of Hanoi

B [—

_ || |
Figure 7.34 Move rings from Ato B
I || |

Figure 7.35 Move ring from Ato C

Figure 7.36 Move ring fromBto C

}

int n;

Look at Fig. 7.33 which shows three rings mounted on pole A.
The problem is to move all these rings from pole A to pole C while
maintaining the same order. The main issue is that the smaller disk
must always come above the larger disk.

We will be doing this using a spare pole. In our case, A is the
source pole, C is the destination pole, and B is the spare pole. To
transfer all the three rings from A to C, we will first shift the upper
two rings (n-1 rings) from the source pole to the spare pole. We
move the first two rings from pole A to B as shown in Fig. 7.34.

Now that n-1 rings have been removed from pole A, the nth ring
can be easily moved from the source pole (A) to the destination
pole (C). Figure 7.35 shows this step.

The final step is to move the n-1 rings from the spare pole (B) to
the destination pole (C). This is shown in Fig. 7.36.

To summarize, the solution to our problem of moving n rings
from A to C using B as spare can be given as:

Base case: if n=1
e Move the ring from A to C using B as spare
Recursive case:
e Move n—1rings from A to B using C as spare
e Move the one ring left on A to C using B as spare
e Move n—1rings from B to C using A as spare

The following code implements the solution of the Tower of
Hanoi problem.

#include <stdio.h>
int main()

{

printf("\n Enter the number of rings: ");

scanf("%d", &n);
move(n, 'A', 'C',
return O;

'B');

void move(int n, char source, char dest, char spare)

{

}

if (n==1)

printf("\n Move from %c to %c",source,dest);

else

{

move(n-1,source,spare,dest);
move(1,source,dest,spare);
move(n-1,spare,dest,source);

}

Let us look at the Tower of Hanoi problem in detail using the program given above. Figure 7.37
on the next page explains the working of the program using one, then two, and finally three rings.

Recursion versus Iteration

Recursion is more of a top-down approach to problem solving in which the original problem is
divided into smaller sub-problems. On the contrary, iteration follows a bottom-up approach that
begins with what is known and then constructing the solution step by step.

Recursion is an excellent way of solving complex problems especially when the problem can
be defined in recursive terms. For such problems, a recursive code can be written and modified
in a much simpler and clearer manner.

250 Data Structures Using C

However, recursive solutions are not always the best solutions. In some cases, recursive programs
may require substantial amount of run-time overhead. Therefore, when implementing a recursive
solution, there is a trade-off involved between the time spent in constructing and maintaining the
program and the cost incurred in running-time and memory space required for the execution of
the program.

A B C A B C A B C
(Step 1) (Step 1) (Step 2)
A B C A B C A B C
(Step 2) (Step 3) (Step 4)
(If there is only one ring, (If there are two rings, then first move ring 1 to the spare
then simply move the ring pole and then move ring 2 from source to the destination.
from source to the destination.) Finally move ring 1 from spare to the destination.)
A B C A B
(Step 1) (Step 2) Step 3) Step 4)
C A B C
(Step 5) (Step 6) Step 7) (Step 8)
(Consider the working with three rings.)

Figure 7.37 Working of Tower of Hanoi with one, two, and three rings

Whenever a recursive function is called, some amount of overhead in the form of a run time
stack is always involved. Before jumping to the function with a smaller parameter, the original
parameters, the local variables, and the return address of the calling function are all stored on
the system stack. Therefore, while using recursion a lot of time is needed to first push all the
information on the stack when the function is called and then again in retrieving the information
stored on the stack once the control passes back to the calling function.

To conclude, one must use recursion only to find solution to a problem for which no obvious
iterative solution is known. To summarize the concept of recursion, let us briefly discuss the pros
and cons of recursion.

The advantages of using a recursive program include the following:

Recursive solutions often tend to be shorter and simpler than non-recursive ones.
Code is clearer and easier to use.

Recursion works similar to the original formula to solve a problem.

Recursion follows a divide and conquer technique to solve problems.

In some (limited) instances, recursion may be more efficient.

Stacks 251

|

The drawbacks/disadvantages of using a recursive program include the following:
¢ For some programmers and readers, recursion is a difficult concept.
e Recursion is implemented using system stack. If the stack space on the system is limited,
recursion to a deeper level will be difficult to implement.
e Aborting a recursive program in midstream can be a very slow process.
e Using a recursive function takes more memory and time to execute as compared to its non-

recursive counterpart.

e [t is difficult to find bugs, particularly while using global variables.
The advantages of recursion pay off for the extra overhead involved in terms of time and space

required.

Points T0 REMEMBER

A stack is a linear data structure in which elements
are added and removed only from one end, which
is called the top. Hence, a stack is called a LIFO
(Last-In, First-Out) data structure as the element
that is inserted last is the first one to be taken out.
In the computer’s memory, stacks can be implemented
using either linked lists or single arrays.

The storage requirement of linked representation of
stack with n elements is 0(n) and the typical time
requirement for operations is 0(1).

Infix, prefix, and postfix notations are three different
but equivalent notations of writing algebraic expres-
sions.

In postfix notation, operators are placed after the
operands, whereas in prefix notation, operators are

= EXERCISES

Review Questions
1.

What do you understand by stack overflow and
underflow?

. Differentiate between an array and a stack.
. How does a stack implemented using a linked list

differ from a stack implemented using an array?

. Differentiate between peek () and pop() functions.
. Why are parentheses not required in postfix/prefix

expressions?

. Explain how stacks are used in a non-recursive

program?

. What do you understand by a multiple stack? How

is it useful?

. Explain the terms infix expression, prefix

expression, and postfix expression. Convert
the following infix expressions to their postfix
equivalents:

placed before the operands.

Postfix notations are evaluated using stacks. Every
character of the postfix expression is scanned from
left to right. If the character is an operand, it is
pushed onto the stack. Else, if it is an operator, then
the top two values are popped from the stack and
the operator is applied on these values. The result
is then pushed onto the stack.

Multiple stacks means to have more than one stack
in the same array of sufficient size.

A recursive function is defined as a function that calls
itself'to solve a smaller version of its task until a final
call is made which does not require a call to itself.
They are implmented using system stack.

(a) A-B+C (b) A*B+C/D
(c) A-B)+C*D/E-C
(d) (A*B)+(C/D)-(D+E)
() (A-B)+D/((E+F)*G))
) (A-2*B+C)/D*E)+F
(g) 14/7*3-4+9/2
9. Convert the following infix expressions to their
postfix equivalents:
(a) A-B+C (b) A¥*B+C/D
(¢) (A-B)+C*D/E-C
(d (A*B)+(C/D)—(D+E)
(e) (A-B)+D/((E+F)*G))
) (A-2*B+C)/D*E)+F
(g) 14/7*3-4+9/2
10. Find the infix equivalents of the following postfix
equivalents:

252

Data Structures Using C

11.

12.

13.

14.

15.

16.

(a) AB+C*D- (b) ABC*+D —
Give the infix expression of the following prefix
expressions.

(a *~+ABCD (b) +—a*BCD
Convert the expression given below into its
corresponding postfix expression and then evaluate
it. Also write a program to evaluate a postfix
expression.

10+ ((7-5) + 10)/2

Write a function that accepts two stacks. Copy the
contents of first stack in the second stack. Note that
the order of elements must be preserved.

(Hint: use a temporary stack)

Draw