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A data structure is defined as a group of data elements used for organizing and storing data. In order 
to be effective, data has to be organized in a manner that adds to the efficiency of an algorithm, and 
data structures such as stacks, queues, linked lists, heaps, and trees provide different capabilities 
to organize data.
	 While developing a program or an application, many developers find themselves more interested 
in the type of algorithm used rather than the type of data structure implemented. However, the 
choice of data structure used for a particular algorithm is always of the utmost importance. Each 
data structure has its own unique properties and is constructed to suit various kinds of applications. 
Some of them are highly specialized to carry out specific tasks. For example, B-trees with their 
unique ability to organize indexes are well-suited for the implementation of databases. Similarly, 
stack, a linear data structure which provides ‘last-in-first-out’ access, is used to store and track 
the sequence of web pages while we browse the Internet. Specific data structures are essential 
components of many efficient algorithms, and make possible the management of large amounts of 
data, such as large databases and Internet indexing services. C, as we all know, is the most popular 
programming language and is widespread among all the computer architectures. Therefore, it is 
not only logical but also fundamentally essential to start the introduction and implementation of 
various data structures through C. The course data structures is typically taught in the second or 
third semester of most engineering colleges and across most engineering disciplines in India. The 
aim of this course is to help students master the design and applications of various data structures 
and use them in writing effective programs.

About the Book
This book is aimed at serving as a textbook for undergraduate engineering students of computer 
science and postgraduate level courses of computer applications. The objective of this book is to 
introduce the concepts of data structures and apply these concepts in problem solving. The book 
provides a thorough and comprehensive coverage of the fundamentals of data structures and the 
principles of algorithm analysis. The main focus has been to explain the principles required to 
select or design the data structure that will best solve the problem.
	 A structured approach is followed to explain the process of problem solving. A theoretical 
description of the problem is followed by the underlying technique. These are then ably supported 
by an example followed by an algorithm, and finally the corresponding program in C language.
	 The salient features of the book include:

∑	 Explanation of the concepts using diagrams
∑	 Numerous solved examples within the chapters
∑	 Glossary of important terms at the end of each chapter
∑	 Comprehensive exercises at the end of each chapter
∑	 Practical implementation of the algorithms using tested C programs
∑	 Objective type questions to enhance the analytical ability of the students
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∑	 Annexures to provide supplementary information to help generate further interest in the 
subject

	 The book is also useful as a reference and resource to young researchers working on efficient 
data storage and related applications, who will find it to be a helpful guide to the newly established 
techniques of a rapidly growing research field.
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A data structure is the logical or mathematical arrangement of data in memory. It considers not 
only the physical layout of the data items in the memory but also the relationships between these 
data items and the operations that can be performed on these items. The choice of appropriate 
data structures and algorithms forms the fundamental step in the design of an efficient program. 
Thus, a thorough understanding of data structure concepts is essential for students who wish to 
work in the design and implementation of software systems. C, a general-purpose programming 
language, having gained popularity in both academia and industry serves as an excellent choice 
for learning data structures. 
	 This second edition of Data Structures Using C has been developed to provide a comprehensive 
and consistent coverage of both the abstract concepts of data structures as well as the implementation 
of these concepts using C language. The book utilizes a systematic approach wherein the design of 
each of the data structures is followed by algorithms of different operations that can be performed 
on them, and the analysis of these algorithms in terms of their running times. 

New to the Second Edition
Based on the suggestions from students and faculty members, this edition has been updated and 
revised to increase the clarity of presentation where required. Some of the prominent changes 
are as follows: 

•	 New sections on omega and theta notations, multi-linked lists, forests, conversion of 
general trees into binary trees, 2-3 trees, binary heap implementation of priority queues, 
interpolation search, jump search, tree sort, bucket hashing, cylinder surface indexing

•	 Additional C programs on header linked lists, parentheses checking, evaluation of prefix 
expressions, priority queues, multiple queues, tree sort, file handling , address calculation 
sort

•	 New appendices on dynamic memory allocation, garbage collection, backtracking, 
Johnson’s problem

•	 Stacks and queues and multi-way search trees are now covered in separate chapters with 
a more comprehensive explanation of concepts and applications

Extended Material
Chapter 1—This chapter has been completely restructured and reorganized so that it now provides 
a brief recapitulation of C constructs and syntax. Functions and pointers which were included as 
independent chapters in the first edition have now been jointly included in this chapter.
Chapter 2—New sections on primitive and non-primitive data structures, different approaches 
to designing algorithms, omega, theta, and little notations have been included. A number of new 
examples have also been added which show how to find the complexity of different functions.
Chapter 5—This chapter now includes brief sections on unions, a data type similar to structures. 
Chapter 6—This chapter has been expanded to include topics on multi-linked lists, multi-linked 
list implementation of sparse matrices, and a C program on header linked lists. 
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Chapter 7—New C programs on parenthesis checking and evaluation of prefix expressions have 
been added. Recursion, which is one of the most common applications of stacks, has been moved 
to this chapter. 
Chapter 8—New C programs on priority queues and multiple queues have been included. 
Chapter 9—This chapter now includes sections on general trees, forests, conversion of general 
trees into binary trees, and constructing a binary tree from traversal results.
Chapter 10—An algorithm for in-order traversal of a threaded binary tree has been added.
Chapter 11—A table summarizing the differences between B and B+ trees and a section on 2-3 
trees have been included.
Chapter 12—A brief section on how binary heaps can be used to implement priority queues has 
been added.
Chapter 13—This chapter now includes a section which shows the adjacency multi-list 
representation of graphs.
Chapter 14—As a result of organization, the sections on linear and binary search have been 
moved from Chapter 3 to this chapter. New search techniques such as interpolation search, jump 
search, and Fibonacci search have also been included. The chapter also extends the concept of 
sorting by including sections on practical considerations for internal sorting, sorting on multiple 
keys, and tree sort.
Chapter 15—New sections on bucket hashing and rehashing have been included.
Chapter 16—This chapter now includes a section on cylinder surface indexing which is one of 
the widely used indexing structures for files stored in hard disks. 

Content and Coverage
This book is organized into 16 chapters.
Chapter 1, Introduction to C provides a review of basic C constructs which helps readers to 
familiarize themselves with basic C syntax and concepts that will be used to write programs in 
this book.
Chapter 2, Introduction to Data Strctures and Algorithms introduces data structures and algorithms 
which serve as building blocks for creating efficient programs. The chapter explains how to 
calculate the time complexity which is a key concept for evaluating the performance of algorithms.
From Chapter 3 onwards, every chapter discusses individual data structures in detail.
Chapter 3, Arrays provides a detailed explanation of arrays that includes one-dimensional, two-
dimensional, and multi-dimensional arrays. The operations that can be performed on such arrays 
are also explained.
Chapter 4, Strings discusses the concept of strings which are also known as character arrays. The 
chapter not only focuses on reading and writing strings but also explains various operations that 
can be used to manipulate the character arrays.
Chapter 5, Structures and Unions deals with structures and unions. A structure is a collection of 
related data items of different types which is used for implementing other data structures such 
as linked lists, trees, graphs, etc. We will also read about unions which is also a collection of 
variables of different data types, except that in case of unions, we can only store information in 
one field at any one time.
Chapter 6, Linked Lists discusses different types of linked lists such as singly linked lists, doubly 
linked lists, circular linked lists, doubly circular linked lists, header linked lists, and multi-linked 
lists. Linked list is a preferred data structure when it is required to allocate memory dynamically.
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Chapter 7, Stacks focuses on the concept of last-in, first-out (LIFO) data structure called stacks. 
The chapter also shows the practical implementation of these data structures using arrays as well 
as linked lists. It also shows how stacks can be used for the evaluation of arithmetic expressions.
Chapter 8, Queues deals with the concept of first-in, first-out (FIFO) data structure called queues. 
The chapter also provides the real-world applications of queues.
Chapter 9, Trees focuses on binary trees, their traversal schemes and representation in memory. 
The chapter also discusses expression trees, tournament trees, and Huffman trees, all of which 
are variants of simple binary trees.
Chapter 10,Efficient Binary Trees broadens the discussion on trees taken up in Chapter 9 by going 
one step ahead and discussing efficient binary trees. The chapter discusses binary search trees, 
threaded binary trees, AVL trees, red-black trees, and splay trees.
Chapter 11, Multi-way Search Trees explores trees which can have more than one key value in a 
single node, such as M-way search trees, B trees, B+ trees, tries, and 2-3 trees.
Chapter 12, Heaps discusses three types of heaps—binary heaps, binomial heaps, and Fibonacci 
heaps. The chapter not only explains the operations on these data structures but also makes a 
comparison, thereby highlighting the key features of each structure.
Chapter 13, Graphs contains a detailed explanation of non-linear data structure called graphs. 
It discusses the memory representation, traversal schemes, and applications of graphs in the real 
world.
Chapter 14, Searching and Sorting covers two of the most common operations in computer 
science, i.e. searching and sorting a list of values. It gives the technique, complexity, and program 
for different searching and sorting techniques.
Chapter 15, Hashing and Collision deals with different methods of hashing and techniques to 
resolve collisions.
Chapter 16, the last chapter of the book, Files and Their Organization, discusses the concept 
related to file organization. It explains the different ways in which files can be organized on the 
hard disk and the indexing techniques that can be used for fast retrieval of data.
The book also provides a set of seven appendices.
Appendix A introduces the concept of dynamic memory allocation in C programs. 
Appendix B provides a brief discussion of garbage collection technique which is used for automatic 
memory management.
Appendix C explains backtracking which is a recursive algorithm that uses stacks.
Appendix D discusses Johnson’s algorithm which is used in applications where an optimal order 
of execution of different activities has to be determined. 
Appendix E includes two C programs which show how to read and write binary files.
Appendix F includes a C program which shows how to sort a list of numbers using address 
calculation sort.
Appendix G provides chapter-wise answers to all the objective questions.

Reema Thareja
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1.1  INTRODUCTION
The programming language ‘C’ was developed in the early 1970s by Dennis Ritchie at Bell 
Laboratories. Although C was initially developed for writing system software, today it has become 
such a popular language that a variety of software programs are written using this language. The 
greatest advantage of using C for programming is that it can be easily used on different types of 
computers. Many other programming languages such as C++ and Java are also based on C which 
means that you will be able to learn them easily in the future. Today, C is widely used with the 
UNIX operating system.

Structure of a C program
A C program contains one or more functions, where a function is defined as a group of statements 
that perform a well-defined task. Figure 1.1 shows the structure of a C program. The statements in 
a function are written in a logical sequence to perform a specific task. The main() function is the 
most important function and is a part of every C program. Rather, the execution of a C program 
begins with this function. 
	 From the structure given in Fig. 1.1, we can conclude that a C program can have any number of 
functions depending on the tasks that have to be performed, and each function can have any number 

Learning Objective
This book deals with the study of data structures through C. Before going into a 
detailed analysis of data structures, it would be useful to familiarize ourselves with 
the basic knowledge of programming in C. Therefore, in this chapter we will learn 
about the various constructs of C such as identifiers and keywords, data types, 
constants, variables, input and output functions, operators, control statements, 
functions, and pointers.

Introduction to C

chapter 1
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of statements arranged according to specific meaningful sequence. Note 
that programmers can choose any name for functions. It is not mandatory 
to write Function1, Function2, etc., with an exception that every program 
must contain one function that has its name as main().

1.2  IDENTIFIERS AND KEYWORDS
Every word in a C program is either an identifier or a keyword.

Identifiers
Identifiers are basically names given to program elements such as variables, 
arrays, and functions. They are formed by using a sequence of letters (both 
uppercase and lowercase), numerals, and underscores.
Following are the rules for forming identifier names:
	∑	 Identifiers cannot include any special characters or punctuation marks 

(like #, $, ^, ?, ., etc.) except the underscore “_”.
	∑	 There cannot be two successive underscores.
	∑	 Keywords cannot be used as identifiers.
	∑	 The case of alphabetic characters that form the identifier name is 

significant. For example, ‘FIRST’ is different from ‘first’ and ‘First’.
	∑	 Identifiers must begin with a letter or an underscore. However, use 

of underscore as the first character must be avoided because several 
complier-defined identifiers in the standard C library have underscore 
as their first character. So, inadvertently duplicated names may cause 
definition conflicts.

	∑	 Identifiers can be of any reasonable length. They should not contain 
more than 31 characters. (They can actually be longer than 31, but the 
compiler looks at only the first 31 characters of the name.)

Keywords
Like every computer language, C has a set of reserved words often known 
as keywords that cannot be used as an identifier. All keywords are basically 
a sequence of characters that have a fixed meaning. By convention, all 
keywords must be written in lower case letters. Table 1.1 contains the list 
of keywords in C.

Table 1.1  Keywords in C language

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

1.3  BASIC DATA TYPES
Data type determines the set of values that a data item can take and the operations that can be 
performed on the item. C language provides four basic data types. Table 1.2 lists the data types, 
their size, range, and usage for a C programmer.
	 The char data type is of one byte and is used to store single characters. Note that C does not 
provide any data type for storing text. This is because text is made up of individual characters.You 

main()

{

Statement 1;

Statement 2;

............

Statement N;

}

Function1()

{

Statement 1;

Statement 2;

Statement N;

}

Function2()

{

Statement 1;

Statement 2;

Statement N;

}

FunctionN()

{

Statement 1;

Statement 2;

Statement N;

}

............

............

............

............

............

..................

..................

............

............

Figure 1.1  Structure of a C 
program
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might have been surprised to see that the range of char is given as –128 to 127. char is supposed to 
store characters not numbers, so why this range? The answer is that in the memory, characters are 
stored in their ASCII codes. For example, the character ‘A’ has the ASCII code of 65. In memory 
we will not store ‘A’ but 65 (in binary number format). 

Table 1.2  Basic data types in C

Data Type Size in Bytes Range Use

char 1 –128 to 127 To store characters

int 2 –32768 to 32767 To store integer numbers

float 4 3.4E–38 to 3.4E+38 To store floating point numbers

double 8 1.7E–308 to 1.7E+308 To store big floating point numbers

	 In addition, C also supports four modifiers—two sign specifiers (signed and unsigned) and two 
size specifiers (short and long). Table 1.3 shows the variants of basic data types.

Table 1.3  Basic data types and their variants 

Data Type Size in Bytes Range

char 1 –128 to 127

unsigned char 1 0 to 255

signed char 1 –128 to 127

int 2 –32768 to 32767

unsigned int 2 0 to 65535

signed int 2 –32768 to 32767

short int 2 –32768 to 32767

unsigned short int 2 0 to 65535

signed short int 2 –32768 to 32767

long int 4 –2147483648 to 2147483647

unsigned long int 4 0 to 4294967295

signed long int 4 –2147483648 to 2147483647

float 4 3.4E–38 to 3.4E+38

double 8 1.7E–308 to 1.7E+308

long double 10 3.4E–4932 to 1.1E+4932

Note	 When the basic data type is omitted from a declaration, then automatically type int is assumed.  
For example, 

		  long var;    //int is implied

While the smaller data types take less memory, the larger data types incur a performance penalty. 
Although the data type we use for our variables does not have a big impact on the speed or 
memory usage of the application, we should always try to use int unless there is a need to use 
any other data type.

1.4  VARIABLES AND CONSTANTS
A variable is defined as a meaningful name given to a data storage location in the computer 
memory. When using a variable, we actually refer to the address of the memory where the data 
is stored. C language supports two basic kinds of variables.
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Numeric Variables
Numeric variables can be used to store either integer values or floating point values. Modifiers like 
short, long, signed, and unsigned can also be used with numeric variables. The difference between 
signed and unsigned numeric variables is that signed variables can be either negative or positive 
but unsigned variables can only be positive. Therefore, by using an unsigned variable we can 
increase the maximum positive range. When we omit the signed/unsigned modifier, C language 
automatically makes it a signed variable. To declare an unsigned variable, the unsigned modifier 
must be explicitly added during the declaration of the variable.

Character Variables
Character variables are just single characters enclosed within single quotes. These characters 
could be any character from the ASCII character set—letters (‘a’, ‘A’), numerals (‘2’), or special 
characters (‘&’). 

Declaring Variables
To declare a variable, specify the data type of the variable followed by its name. The data type 
indicates the kind of values  that the variable can store. Variable names should always be meaningful 
and must reflect the purpose of their usage in the program. In C, variable declaration always ends 
with a semi-colon. For example,

int emp_num;

float salary;

char grade;

double balance_amount;

unsigned short int acc_no;

In C, variables can be declared at any place in the program but two things must be kept in mind. 
First, variables should be declared before using them. Second, variables should be declared closest 
to their first point of use so that the source code is easier to maintain.

Initializing Variables
While declaring the variables, we can also initialize them with some value. For example,

int emp_num = 7;
float salary = 9800.99
char grade = ‘A’;
double balance_amount = 100000000;

Constants
Constants are identifiers whose values do not change. While values of variables can be changed at 
any time, values of constants can never be changed. Constants are used to define fixed values 
like pi or the charge on an electron so that their value does not get changed in the program even 
by mistake.

Declaring Constants
To declare a constant, precede the normal variable declaration with const keyword and assign it 
a value.

const float pi = 3.14;
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1.5  WRITING THE FIRST C PROGRAM
To write a C program, we first need to write the code. For that, open a text editor. If you are a 
Windows user, you may use Notepad and if you prefer working on UNIX/Linux, you can use emac 
or vi. Once the text editor is opened on your screen, type the following statements:

#include <stdio.h>
int main()

{

	 printf("\n Welcome to the world of C ");// prints the message on the screen

	 return 0;// returns a value 0 to the operating system

}

After writing the code, select the directory of your choice and save the file as first.c.

#include <stdio.h>  This is the first statement in our code that includes a file called stdio.h. 
This file has some in-built functions. By simply including this file in our code, we can use these 
functions directly. stdio basically stands for Standard Input/Output, which means it has functions 
for input and output of data like reading values from the keyboard and printing the results on the 
screen.

int main()  Every C program contains a main() function which is the starting point of the 
program. int is the return value of the main function. After all the statements in the program have 
been executed, the last statement of the program will return an integer value to the operating 
system. The concepts will be clear to us when we read this chapter in toto. So even if you do not 
understand certain things, do not worry.

{ }  The two curly brackets are used to group all the related statements of the main function.

printf("\n Welcome to the world of C ");  The printf 
function is defined in the stdio.h file and is used to print 
text on the screen. The message that has to be displayed 
on the screen is enclosed within double quotes and put 
inside brackets.

\n is an escape sequence and represents a newline character. 
It is used to print the message on a new line on the screen. 
Other escape sequences supported by C language are shown 
in Table 1.4.

return 0;  This is a return command that is used to return 
value 0 to the operating system to give an indication that 
there were no errors during the execution of the program.

Note	 Every statement in the main function ends with a semi-colon (;).

first.c.  If you are a Windows user, then open the command prompt by clicking StartÆRun 
and typing “command” and clicking Ok. Using the command prompt, change to the directory in 
which you saved your file and then type:

C:\>tc first.c

In case you are working on UNIX/Linux operating system, then exit the text editor and type
$cc first.c –ofirst

The –o is for the output file name. If you leave out the –o, then the file name a.out is used.

Table 1.4  Escape sequences

Escape 
Sequence

Purpose

\a Audible signal

\b Backspace

\t Tab

\n New line

\v Vertical tab

\f New page\Clear screen

\r Carriage return



6  Data Structures Using C

	 This command is used to compile your C program. If there are any mistakes in the program, 
then the compiler will tell you what mistake(s) you have made and on which line the error has 
occurred. In case of errors, you need to re-open your .c file and correct the mistakes. However, 
if everything is right, then no error(s) will be reported and the compiler will create an .exe file for 
your program. This .exe file can be directly run by typing

"first.exe" for Windows and "./first" for UNIX/Linux operating system
When you run the .exe file, the output of the program will be displayed on screen. That is,

Welcome to the world of C

Note	 The printf and return statements have been indented or moved away from the left side. This is done 
to make the code more readable.

Using Comments
Comments are a way of explaining what a program does. C supports two types of comments.
	 ∑	 // is used to comment a single statement.
	 ∑	 /* is used to comment multiple statements. A /* is ended with */ and all statements that lie 

between these characters are commented.
Note that comment statements are not executed by the compiler. Rather, they are ignored by the 
compiler as they are simply added in programs to make the code understandable by programmers 
as well as other users. It is a good habit to always put a comment at the top of a program that tells 
you what the program does. This helps in defining the usage of the program the moment you open it.

Standard Header Files
Till now we have used printf() function, which is defined in the stdio.h header file. Even in 
other programs that we will be writing, we will use many functions that are not written by us. For 
example, to use the strcmp() function that compares two strings, we will pass string arguments 
and retrieve the result. We do not know the details of how these functions work. Such functions 
that are provided by all C compilers are included in standard header files. Examples of these 
standard header files include:
	 ∑	 string.h : for string handling functions
	 ∑	 stdlib.h : for some miscellaneous functions
	 ∑	 stdio.h : for standardized input and output functions
	 ∑	 math.h : for mathematical functions
	 ∑	 alloc.h : for dynamic memory allocation
	 ∑	 conio.h : for clearing the screen
All the header files are referenced at the start of the source code file that uses one or more functions 
from these files.

1.6  INPUT AND OUTPUT FUNCTIONS
The most fundamental operation in a C program is to accept input values from a standard input 
device and output the data produced by the program to a standard output device. As shown in 
Section 1.4, we can assign values to variables using the assignment operator ‘=’. For example,

int a = 3;

What if we want to assign value to variable a that is inputted from the user at run-time? This is done 
by using the scanf function that reads data from the keyboard. Similarly, for outputting results of 
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the program, printf function is used that sends results to a terminal. Like printf and scanf, there 
are different functions in C that can carry out the input–output operations. These functions are 
collectively known as Standard Input/Output Library. A program that uses standard input/output 
functions must contain the following statement at the beginning of the program:

#include <stdio.h>

scanf()
The scanf()function is used to read formatted data from the keyboard. The syntax of the scanf() 
function can be given as,

scanf ("control string", arg1, arg2, arg3 ...argn);

The control string specifies the type and format of the data that has to be obtained from the 
keyboard and stored in the memory locations pointed by the arguments, arg1, arg2, ...,argn. 
The prototype of the control string can be given as,

%[*][width][modifier]type

* is an optional argument that suppresses assignment of the input field. That is, it indicates that 
data should be read from the stream but ignored (not stored in the memory location).
	 width is an optional argument that specifies the maximum number of characters to be read. 
However, if the scanf function encounters a white space or an unconvertible character, input is 
terminated.
	 modifier is an optional argument (h, l, or L) , which modifies the type specifier. Modifier h is 
used for short int or unsigned short int, l is used for long int, unsigned long int, or double values. 
Finally, L is used for long double data values.
	 type specifies the type of data that has to be read. It also indicates how this data is expected to 
be read from the user. The type specifiers for scanf function are given in Table 1.5.

Table 1.5  Type specifiers

Type Qualifying Input

%c For single characters

%d, %i For integer values

%e,%E,%f,%g,%G For floating point numbers

%o For octal numbers

%s For a sequence of (string of) characters

%u For unsigned integer values

%x,%X For hexadecimal values

	 The scanf function ignores any blank spaces, tabs, and newlines entered by the user. The 
function simply returns the number of input fields successfully scanned and stored.
	 As we have not studied functions till now, understanding scanf function in depth will be a bit 
difficult here, but for now just understand that the scanf function is used to store values in memory 
locations associated with variables. For this, the function should have the address of the variables. 
The address of the variable is denoted by an & sign followed by the name of the variable. Look 
at the following code that shows how we can input value in a variable of int data type:

int num;
scanf(" %4d ", &num);

The scanf function reads first four digits into the address or the memory location pointed by num.
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Note	 In case of reading strings, we do not use the & sign in the scanf function.

printf()
The printf function is used to display information required by the user and also prints the values 
of the variables. Its syntax can be given as:

printf ("control string", arg1,arg2,arg3,...,argn);

	 After the control string, the function can have as many arguments as specified in the control 
string. The control string contains format specifiers which are arranged in the order so that they 
correspond with the arguments in the variable list. It may also contain text to be printed such as 
instructions to the user, identifier names, or any other text to make the text readable.
	 Note that there must be enough arguments because if there are not enough arguments, then 
the result will be completely unpredictable. However, if by mistake you specify more number of 
arguments, the excess arguments will simply be ignored. The prototype of the control string can 
be given as below:

%[flags][width][.precision][modifier]type

Each control string must begin with a % sign. 
flags is an optional argument, which specifies output justification like decimal point, numerical 
sign, trailing zeros or octadecimal or hexadecimal prefixes. Table 1.6 shows different types of 
flags with their descriptions.

Table 1.6  Flags in printf()

Flags Description

– Left–justify within the given field width

+ Displays the data with its numeric sign (either + or –)

# Used to provide additional specifiers like o, x, X, 0, 0x, or 0X for 
octal and hexadecimal values respectively for values different than zero

0 The number is left–padded with zeroes (0) instead of spaces

width is an optional argument which specifies the minimum number of positions that the output 
characters will occupy. If the number of output characters is smaller than the specified width, 
then the output would be right justified with blank spaces to the left. However, if the number of 
characters is greater than the specified width, then all the characters would be printed.
precision is an optional argument which specifies the number of digits to print after the decimal 
point or the number of characters to print from a string. 
modifier field is same as given for scanf() function. 
type is used to define the type and the interpretation of the value of the corresponding argument. 
The type specifiers for printf function are given in Table 1.5.
	 The most simple printf statement is

printf ("Welcome to the world of C language");

	 The function when executed prompts the message enclosed in the quotation to be displayed 
on the screen.
	 For float x = 8900.768, the following examples show output under different format specifications:

printf ("%f", x) 8 9 0 0 . 7 6 8

printf("%10f", x); 8 9 0 0 . 7 6 8
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printf("%9.2f", x); 8 9 0 0 . 7 7

printf("%6f", x); 8 9 0 0 . 7 6 8

1.7  Operators AND EXPRESSIONS
C language supports different types of operators, which can be used with variables and constants 
to form expressions. These operators can be categorized into the following major groups:
	 ∑	 Arithmetic operators 	 ∑	 Relational operators
	 ∑	 Equality operators 	 ∑	 Logical operators
	 ∑	 Unary operators 	 ∑	 Conditional operator 
	 ∑	 Bitwise operators 	 ∑	 Assignment operators
	 ∑	 Comma operator 	 ∑	 Sizeof operator
We will now discuss all these operators.

Arithmetic Operators
Consider three variables declared as,

int a=9, b=3, result;

We will use these variables to explain arithmetic operators. Table 1.7 shows the arithmetic operators, 
their syntax, and usage in C language.

Table 1.7  Arithmetic operators

Operation Operator Syntax Comment Result

Multiply * a * b result = a * b 27

Divide / a / b result = a / b 3

Addition + a + b result = a + b 12

Subtraction – a – b result = a – b 6

Modulus % a % b result = a % b 0

	 In Table 1.7, a and b (on which the operator is applied) are called operands. Arithmetic operators 
can be applied to any integer or floating point number. The addition, subtraction, multiplication, 
and division (+, –, *, and /) operators are the usual arithmetic operators, so you are already familiar 
with these operators.
	 However, the operator % might be new to you. The modulus operator (%) finds the remainder 
of an integer division. This operator can be applied only on integer operands and cannot be used 
on float or double operands. 
	 While performing modulo division, the sign of the result is always the sign of the first operand 
(the dividend). Therefore,

 16	 %	 3 =	 1
–16	 %	 3 =	 –1
 16	 %	 –3 =	 1
–16	 %	 –3 =	 –1

	 When both operands of the division operator (/) are integers, the division is performed as 
an integer division. Integer division always results in an integer result. So, the result is always 
rounded-off by ignoring the remainder. Therefore,

9/4 = 2  and  –9/4 = –3
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tw

Note	 It is not possible to divide any number by zero. This is an illegal operation that results in a run-time 
division-by-zero exception thereby terminating the program.

	 Except for modulus operator, all other arithmetic operators can accept a mix of integer and 
floating point numbers. If both operands are integers, the result will be an integer; if one or both 
operands are floating point numbers then the result would be a floating point number.
	 All the arithmetic operators bind from left to right. Multiplication, division, and modulus operators 
have higher precedence over addition and subtraction operators. Thus, if an arithmetic expression 
consists of a mix of operators, then multiplication, division, and modulus will be carried out first 
in a left to right order, before any addition and subtraction can be performed. For example,

	 3 + 4 * 7
=	 3 + 28
=	 31

Relational Operators
A relational operator, also known as a comparison operator, is an operator that compares two 
values or expressions. Relational operators return true or false value, depending on whether the 

conditional relationship between the two 
operands holds or not.
	 For example, to test if x is less than y, 
relational operator < is used as x < y. This 
expression will return true value if x is less than 
y; otherwise the value of the expression will 
be false. C provides four relational operators 
which are illustrated in Table 1.8. These 
operators are evaluated from left to right.

Equality Operators
C language also supports two equality operators to compare operands for strict equality or 
inequality. They are equal to (==) and not equal to (!=) operators. The equality operators have 

lower precedence than the relational operators.
	 The equal-to operator (==) returns true (1) if operands 
on both sides of the operator have the same value; 
otherwise, it returns false (0). On the contrary, the not-
equal-to operator (!=) returns true (1) if the operands do 
not have the same value; else it returns false (0). Table 1.9 
summarizes equality operators.

Logical Operators
C language supports three logical operators. They are logical AND (&&), logical OR (||), and logical 
NOT (!). As in case of arithmetic expressions, logical expressions are evaluated from left to right.

Logical AND (&&)
Logical AND is a binary operator, which  simultaneously evaluates 
two values or relational expressions. If both the operands are true, 
then the whole expression is true. If both or one of the operands is 
false, then the whole expression evaluates to false. The truth table 
of logical AND operator is given in Table 1.10.

Table 1.8  Relational operators

Operator Meaning Example

< Less than 3 < 5 gives 1

> Greater than 7 > 9 gives 0

<= Less than or equal to 100 <= 100 gives 1

>= Greater than equal to 50 >=100 gives 0

Table 1.9  Equality operators

Operator Meaning

== Returns 1 if both operands are 
equal, 0 otherwise

!= Returns 1 if operands do not 
have the same value, 0 otherwise

Table 1.10  Truth table of logical AND

A B A && B

0 0 0

0 1 0

1 0 0

1 1 1
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For example,
(a < b) && (b > c)

The whole expression is true only if both expressions are true, i.e., if b is greater than a and c.

Logical OR (||)
Logical OR returns a false value if both the operands are false.
Otherwise it returns a true value. The truth table of logical OR 
operator is given in Table 1.11. For example,

(a < b) || (b > c)

The whole expression is true if either b is greater than a or b is greater 
than c or b is greater than both a and c.

Logical NOT (!)
The logical NOT operator takes a single expression and produces a 
zero if the expression evaluates to a non-zero value and produces a 
1 if the expression produces a zero. The truth table of logical NOT 
operator is given in Table 1.12. For example,

int a = 10, b;
b = !a;

Now the value of b = 0. This is because value of a = 10. !a = 0. The value of !a is assigned to b, 
hence the result.

Unary Operators
Unary operators act on single operands. C language supports three unary operators. They are 
unary minus, increment, and decrement operators.

Unary Minus (–)
Unary minus operator negates the value of its operand. For example, if a number is positive then it 
becomes negative when preceded with a unary minus operator. Similarly, if the number is negative, 
it becomes positive after applying the unary minus operator. For example,

int a, b = 10;
a = –(b);

The result of this expression is a = –10, because variable b has a positive value. After applying unary 
minus operator (–) on the operand b, the value becomes –10, which indicates it has a negative value.

Increment Operator (++) and Decrement Operator (––)
The increment operator is a unary operator that increases the value of its operand by 1. Similarly, 
the decrement operator decreases the value of its operand by 1. For example, ––x is equivalent 
to writing x = x – 1.
	 The increment/decrement operators have two variants: prefix and postfix. In a prefix 
expression (++x or ––x), the operator is applied before the operand while in a postfix expression  
(x++ or x––), the operator is applied after the operand. 
	 An important point to note about unary increment and decrement operators is that ++x is not 
same as x++. Similarly, – –x is not the same as x––. Although, x++ and ++x both increment the value 
of x by 1, in the former case, the value of x is returned before it is incremented. Whereas in the 
latter case, the value of x is returned after it is incremented. For example,

Table 1.11  Truth table of logical OR

A B A || B

0 0 0

0 1 1

1 0 1

1 1 1

Table 1.12  Truth table of logical NOT

A ! A

0 1

1 0
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int x = 10, y;

y = x++; is equivalent to writing
y = x;
x = x + 1;

Whereas y = ++x; is equivalent to writing
x = x + 1;
y = x;

The same principle applies to unary decrement operators. Note that unary operators have a higher 
precedence than the binary operators. And if in an expression we have more than one unary operator 
then they are evaluated from right to left.

Conditional Operator
The syntax of the conditional operator is

exp1 ? exp2 : exp3

exp1 is evaluated first. If it is true, then exp2 is evaluated and becomes the result of the expression, 
otherwise exp3 is evaluated and becomes the result of the expression. For example,

large = (a > b) ? a : b

	 The conditional operator is used to find the larger of two given numbers. First exp1, that is 
a > b, is evaluated. If a is greater than b, then large = a, else large = b. Hence, large is equal to 
either a or b, but not both.
	 Conditional operators make the program code more compact, more readable, and safer to use 
as it is easier to both check and guarantee the arguments that are used for evaluation. Conditional 
operator is also known as ternary operator as it takes three operands.

Bitwise Operators
As the name suggests, bitwise operators perform operations at the bit level. These operators 
include: bitwise AND, bitwise OR, bitwise XOR, and shift operators.

Bitwise AND
Like boolean AND (&&), bitwise AND operator (&) performs operation on bits instead of bytes, 
chars, integers, etc. When we use the bitwise AND operator, the bit in the first operand is ANDed 
with the corresponding bit in the second operand. The truth table is the same as we had seen in 
logical AND operation. The bitwise AND operator compares each bit of its first operand with the 
corresponding bit of its second operand. If both bits are 1, the corresponding bit in the result is 1 
and 0 otherwise. For example,

10101010 & 01010101 = 00000000

Bitwise OR
When we use the bitwise OR operator (|), the bit in the first operand is ORed with the corresponding 
bit in the second operand. The truth table is the same as we had seen in logical OR operation. 
The bitwise OR operator compares each bit of its first operand with the corresponding bit of its 
second operand. If one or both bits are 1, the corresponding bit in the result is 1 and 0 otherwise. 
For example,

10101010 | 01010101 = 11111111

Bitwise XOR
When we use the bitwise XOR operator, the bit in the first operand is XORed with the corresponding 
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bit in the second operand. The truth table of bitwise XOR operator 
is shown in Table 1.13. The bitwise XOR operator compares each 
bit of its first operand with the corresponding bit of its second 
operand. If one of the bits is 1, the corresponding bit in the result 
is 1 and 0 otherwise. For example,

10101010 ^ 01010101 = 11111111

Bitwise NOT (~)
The bitwise NOT or complement is a unary operator that performs 

logical negation on each bit of the operand. By performing negation of each bit, it actually produces 
the one’s complement of the given binary value. Bitwise NOT operator sets the bit to 1 if it was 
initially 0 and sets it to 0 if it was initially 1. For example,

~10101011 = 01010100

Shift Operators
C supports two bitwise shift operators. They are shift left (<<) and shift right (>>). The syntax 
for a shift operation can be given as

operand op num

where the bits in the operand are shifted left or right depending on the operator (left, if the operator 
is << and right, if the operator is >>) by number of places denoted by num. For example, if we have

x = 0001 1101 

then  x << 1 produces 0011 1010
	 When we apply a left shift, every bit in x is shifted to the left by one place. So, the MSB (most 
significant bit) of x is lost, the LSB (least significant bit) of x is set to 0. Therefore, if we have x 
= 0001 1101, then

x << 3 gives result = 1110 1000

On the contrary, when we apply a right shift, every bit in x is shifted to the right by one place. 
So, the LSB of x is lost, the MSB of x is set to 0. For example, if we have x = 0001 1101, then

x >> 1 gives result = 0000 1110
Similarly, if we have x = 0001 1101, then

x >> 4 gives result = 0000 0001

Note	 The expression x << y is equivalent to multiplication of x by 2y. And the expression x >> y is 
equivalent to division of x by 2y if x is unsigned or has a non-negative value.

Assignment Operators
In C language, the assignment operator is responsible for assigning values to the variables. While 
the equal sign (=) is the fundamental assignment operator, C also supports other assignment 
operators that provide shorthand ways to represent common variable assignments.
	 When an equal sign is encountered in an expression, the compiler processes the statement on 
the right side of the sign and assigns the result to the variable on the left side. For example,

int x;
x = 10;

assigns the value 10 to variable x. The assignment operator has right-to-left associativity, so the 
expression

Table 1.13  Truth table of bitwise XOR

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0
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a = b = c = 10;

is evaluated as
(a = (b = (c = 10)));

First 10 is assigned to c, then the value of c is assigned to b. Finally, the 
value of b is assigned to a. Table 1.14 contains a list of other assignment 
operators that are supported by C.

Comma Operator
The comma operator, which is also called the sequential-evaluation 
operator, takes two operands. It works by evaluating the first expression 
and discarding its value, and then evaluates the second expression and 
returns the value as the result of the expression. Comma-separated 
expressions when chained together are evaluated in left-to-right 
sequence with the right-most value yielding the result of the expression. 
Among all the operators, the comma operator has the lowest precedence.
  Therefore, when a comma operator is used, the entire expression 
evaluates to the value of the right expression. For example, the following 
statement first increments a, then increments b, and then assigns the 
value of b to x.

int a=2, b=3, x=0;

x = (++a, b+=a);

Now, the value of x = 6.

sizeof Operator
sizeof is a unary operator used to calculate the size of data types. This 
operator can be applied to all data types. When using this operator, the 

keyword sizeof is followed by a type name, variable, or expression. The operator returns the size 
of the data type, variable, or expression in bytes. That is, the sizeof operator is used to determine 
the amount of memory space that the data type/variable/expression will take.
	 When a type name is used, it is enclosed in parentheses, but in case of variable names and 
expressions, they can be specified with or without parentheses. A sizeof expression returns an 
unsigned value that specifies the size of the space in bytes required by the data type, variable, or 
expression. For example, sizeof(char) returns 1, that is the size of a character data type. If we have,

int a = 10;

unsigned int result;

result = sizeof(a);

then result = 2, that is, space required to store the variable a in memory. Since a is an integer, it 
requires 2 bytes of storage space.

Operator Precedence Chart
Table 1.15 lists the operators that C language supports in the order of their precedence (highest 
to lowest). The associativity indicates the order in which the operators of equal precedence in an 
expression are evaluated.

Table 1.14  Assignment operators

Operator Example

/= float a=9.0; 
float b=3.0; 

a /= b;

\= int a= 9; 
int b = 3; 
a \= b;

*= int a= 9; 
int b = 3; 
a *= b;

+= int a= 9; 
int b = 3; 
a += b;

–= int a= 9; 
int b = 3; 
a –= b;

&= int a = 10; 
int b = 20; 

a &= b;

^= int a = 10; 
int b = 20; 

a ^= b;

<<= int a= 9; 
int b = 3; 
a <<= b;

>>= int a= 9; 
int b = 3; 
a >>= b;
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Examples of Expressions Using the Precedence Chart
If we have the following variable declarations:

int a = 0, b = 1, c = –1;

float x = 2.5, y = 0.0;

then,
(a)	 a && b = 0	

(b)	 a < b && c < b = 1

(c)	 b + c || ! a			 

	 = ( b + c) || (!a)				  

	 = 0 ||1						    

	 = 1			 

(d)	 x * 5 && 5 || ( b / c)

	 = ((x * 5) && 5) || (b / c)

	 = (12.5 && 5) || (1/–1)

	 = 1

(e)	 a <= 10 && x >= 1 && b			 

	 = ((a <= 10) && (x >= 1)) && b			 

	 = (1 && 1) && 1					  

	 = 1						    

(f)	 !x || !c || b + c

	 = ((!x) || (!c)) || (b + c)

	 = (0 || 0) || 0

	 = 0

(g)	 x * y < a + b || c		

	 = ((x * y) < (a + b)) || c			 

	 = (0 < 1) || –1				 

	 = 1					   

(h)	 (x > y) + !a || c++

	 = ((x > y) + (!a)) || (c++)

	 = (1 + 1) || 0

	 = 1

Programming Example

1.	 Write a program to calculate the area of a circle.
#include <stdio.h>
#include <conio.h>
int main()
{
	 float radius;
	 double area;
	 clrscr();
	 printf("\n Enter the radius of the circle : ");
	 scanf("%f", &radius);
	 area = 3.14 * radius * radius;
	 printf(" \n Area = %.2lf", area);
	 return 0;
}

	 Output
Enter the radius of the circle : 7
Area = 153.86

Table 1.15  Operators precedence chart

Operator Associativity

() 
[] 
. 
—>

left–to–right

++(postfix)
––(postfix)

right–to–left

++(prefix)
––(prefix) 

+(unary) – (unary) 
!  ~ 

(type) 
*(indirection) 
&(address) 

sizeof

right–to–left

*  /  % left–to–right

+  – left–to–right

<<  >> left–to–right

<  <= 
>  >=

left–to–right

==  != left–to–right

& left–to–right

^ left–to–right

| left–to–right

&& left–to–right

|| left–to–right

?: right–to–left

= 
+=  –= 
*=  /= 
%=  &= 
^=  |= 

<<=  >>=

right–to–left

,(comma) left–to–right
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1.8  TYPE CONVERSION AND TYPECASTING
Type conversion or typecasting of variables refers to changing a variable of one data type into 
another. While type conversion is done implicitly, casting has to be done explicitly by the programmer. 
We will discuss both these concepts here.

Type Conversion
Type conversion is done when the expression has variables of different data types. So to evaluate 
the expression, the data type is promoted from lower to higher level where the hierarchy of data 
types can be given as: double, float, long, int, short, and char. For example, type conversion 
is automatically done when we assign an integer value to a floating point variable. Consider the 
following code:

float x;
int y = 3;
x = y;

Now, x = 3.0, as integer value is automatically converted into its equivalent floating point 
representation.

Typecasting
Typecasting is also known as forced conversion. It is done when the value of one data type has to 
be converted into the value of another data type. The code to perform typecasting can be given as:

float salary = 10000.00;
int sal;
sal = (int) salary;

When floating point numbers are converted to integers, the digits after the decimal are truncated. 
Therefore, data is lost when floating point representations are converted to integral representations.
	 As we can see in the code, typecasting can be done by placing the destination data type 
in parentheses followed by the variable name that has to be converted. Hence, we conclude 
that typecasting is done to make a variable of one data type to act like a variable of another 
type.

Programming Example

2.	 Write a program to convert an integer into the corresponding floating point number.
#include <stdio.h>
#include <conio.h>
int main()
{
	 float f_num;
	 int i_num;
	 clrscr();
	 printf("\n Enter any integer: ");
	 scanf("%d", &i_num);
	 f_num = (float)i_num;
	 printf("\n The floating point variant of %d is = %f", i_num, f_num);
	 return 0;
}

	 Output
Enter any integer: 56
The floating point variant of 56 is = 56.000000
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1.9  CONTROL STATEMENTS
Till now we know that the code in the C program is executed sequentially from the first line of the 
program to its last line. That is, the second statement is executed after the first, the third statement 
is executed after the second, so on and so forth. Although this is true, in some cases we want only 
selected statements to be executed. Control flow statements enable programmers to conditionally 
execute a particular block of code. There are three types of control statements: decision control 
(branching), iterative (looping), and jump statements. While branching means  deciding what 
actions have to be taken, looping, on the other hand, decides how many times the action has to 
be taken. Jump statements transfer control from one point to another point.

1.9.1  Decision Control Statements
C supports decision control statements that can alter the flow of a sequence of instructions. These 
statements help to jump from one part of the program to another depending on whether a particular 
condition is satisfied or not. These decision control statements include:

(a)	 if statement,			   (b) if–else statement,
(c) if–else–if statement, and		  (d) switch–case statement.

if Statement
if statement is the simplest decision control statement that is frequently used in decision making. 
The general form of a simple if statement is shown in Fig. 1.2.

Test

Expression

Statement Block 1

Statement x

FALSE

TRUE

Syntax of if Statement

if (test expression)

{

statement 1;

............

statement n;

}

statement x;

Figure 1.2	 if statement construct

	 The if block may include 1 statement or n statements enclosed within curly brackets. First 
the test expression is evaluated. If the test expression is true, the statements of the if block are 
executed, otherwise these statements will be skipped and the execution will jump to statement x.
	 The statement in an if block is any valid C language statement, and the test expression is any 
valid C language expression that evaluates to either true or false. In addition to simple relational 
expressions, we can also use compound expressions formed using logical operators. Note that 
there is no semi-colon after the test expression. This is because the condition and statement should 
be put together as a single statement.
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#include <stdio.h>
int main()
{
	 int x=10;
	 if (x>0) x++;
	 printf("\n x = %d", x);
	 return 0;
}

In the above code, we take a variable x and initialize it to 10. In the test expression, we check if 
the value of x is greater than 0. As 10 > 0, the test expression evaluates to true, and the value of 
x is incremented. After that, the value of x is printed on the screen. The output of this program is

x = 11

Observe that the printf statement will be executed even if the test expression is false.

Note	 In case the statement block contains only one statement, putting curly brackets becomes optional. If 
there are more than one statement in the statement block, putting curly brackets becomes mandatory. 	

if–else Statement
We have studied that using if statement plays a vital role in conditional branching. Its usage is 
very simple. The test expression is evaluated, if the result is true, the statement(s) followed by the 
expression is executed, else if the expression is false, the statement is skipped by the compiler.
	 What if you want a separate set of statements to be executed if the expression returns a false 
value? In such cases, we can use an if–else statement rather than using a simple if statement. 
The general form of simple if–else statement is shown in Fig. 1.3.

Test

Expression

Statement Block 2Statement Block 1

Statement x

FALSETRUE

Syntax of if-else

Statement

if (test expression)

{

statement block 1;

}

else

{

statement block 2;

}

statement x;

Figure 1.3  if–else statement construct

	 In the if–else construct, first the test expression is evaluated. If the expression is true, statement 
block 1 is executed and statement block 2 is skipped. Otherwise, if the expression is false, statement 
block 2 is executed and statement block 1 is ignored. In any case after the statement block 1 or 
2 gets executed, the control will pass to statement x. Therefore, statement x is executed in every 
case.
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Programming Example 

3.	 Write a program to find whether a number is even or odd.
#include <stdio.h>
int main()
{
	 int a;
	 printf("\n Enter the value of a : ");
	 scanf("%d", &a);
	 if(a%2==0)
		  printf("\n %d is even", a);
	 else
		  printf("\n %d is odd", a);
	 return 0;
}

	 Output
Enter the value of a : 6
6 is even

if–else–if Statement
C language supports if–else–if statements to test additional conditions apart from the initial test 
expression. The if–else–if construct works in the same way as a normal if statement. Its construct 
is given in Fig. 1.4.

Syntax of if-else-if Statement

if (test expression 1)

{

statement block 1;

}

else if (test expression 2)

{

statement block 2;

}

...........................

else

{

statement block x;

}

statement y;

Test

Expression

1

Statement

Block 1

FALSE

TRUE

Test

Expression

2

Statement

Block 2

Statement

Block x

Statement y

TRUE

FALSE

Figure 1.4  if–else–if statement construct

	 Note that it is not necessary that every if statement should have an else block as C supports 
simple if statements. After the first test expression or the first if branch, the programmer can 
have as many else–if branches as he wants depending on the expressions that have to be tested. 
For example, the following code tests whether a number entered by the user is negative, positive, 
or equal to zero.

#include <stdio.h>
int main()
{
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	 int num;
	 printf("\n Enter any number : ");
	 scanf("%d", &num);
	 if(num==0)
		   printf("\n The value is equal to zero");
	 else if(num>0)
		   printf("\n The number is positive");
	 else
		   printf("\n The number is negative");
	 return 0;
}

	 Note that if the first test expression evaluates to a true value, i.e., num=0, then the rest of the 
statements in the code will be ignored and after executing the printf statement that displays ‘The 
value is equal to zero’, the control will jump to return 0 statement. 

switch–case Statement
A switch-case statement is a multi-way decision statement that is a simplified version of an if–
else–if block. The general form of a switch statement is shown in Fig. 1.5.

Value 1

Value 2

Value N

Statement Block D

Statement X

Statement Block 1

Statement Block 2

Statement Block N

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

Syntax of Switch Statement

switch (variable)

{

case value 1:

statement block 1;

break;

case value 2:

statement block 2;

break;

.....................

case value N:

statement block N;

break;

default:

statement block D;

break;

}

statement X;

Figure 1.5  switch–case statement construct

	 The power of nested if–else–if statements lies in the fact that it can evaluate more than one 
expression in a single logical structure. switch statements are mostly used in two situations:
	 ∑	 When there is only one variable to evaluate in the expression
	 ∑	 When many conditions are being tested for
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	 When there are many conditions to test, using the if and else–if constructs becomes complicated 
and confusing. Therefore, switch case statements are often used as an alternative to long if 
statements that compare a variable to several ‘integral’ values (integral values are those values 
that can be expressed as an integer, such as the value of a char). Switch statements are also used 
to handle the input given by the user.
	 We have already seen the syntax of the switch statement. The switch case statement compares 
the value of the variable given in the switch statement with the value of each case statement that 
follows. When the value of the switch and the case statement matches, the statement block of that 
particular case is executed.
	 Did you notice the keyword default in the syntax of the switch case statement? Default is the 
case that is executed when the value of the variable does not match with any of the values of the 
case statements. That is, default case is executed when no match is found between the values of 
switch and case statements and thus there are no statements to be executed. Although the default 
case is optional, it is always recommended to include it as it handles any unexpected case.
	 In the syntax of the switch–case statement, we have used another keyword break. The break 
statement must be used at the end of each case because if it is not used, then the case that matched 
and all the following cases will be executed. For example, if the value of switch statement matched 
with that of case 2, then all the statements in case 2 as well as the rest of the cases including default 
will be executed. The break statement tells the compiler to jump out of the switch case statement 
and execute the statement following the switch–case construct. Thus, the keyword break is used 
to break out of the case statements.

Advantages of Using a switch–case Statement
Switch–case statement is preferred by programmers due to the following reasons:
	 ∑	 Easy to debug
	 ∑	 Easy to read and understand
	 ∑	 Ease of maintenance as compared to its equivalent if–else statements
	 ∑	 Like if–else statements, switch statements can also be nested
	 ∑	 Executes   faster than its equivalent if–else construct

Programming Example 

4.	 Write a program to determine whether the entered character is a vowel or not.
#include <stdio.h>
int main()
{
	 char ch;
	 printf("\n Enter any character : ");
	 scanf("%c", &ch);
	 switch(ch)
	 {
		  case ‘A’:
		  case ‘a’:
			   printf("\n %c is VOWEL", ch);
			   break;
		  case ‘E’:
		  case ‘e’:
			   printf("\n %c is VOWEL", ch);
			   break;
		  case ‘I’:
		  case ‘i’:
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			   printf("\n %c is VOWEL", ch);
			   break;
		  case ‘O’:
		  case ‘o’:
			   printf("\n %c is VOWEL", ch);
			   break;
		  case ‘U’:
		  case ‘u’:
			   printf("\n %c is VOWEL", ch);
			   break;
		  default: printf("\n %c is not a vowel", ch);
	 }
 	 return 0;
}

	 Output
Enter any character : j
j is not a vowel

	 Note that there is no break statement after case A, so if the character A is entered then control 
will execute the statements given in case a. 

1.9.2  Iterative Statements
Iterative statements are used to repeat the execution of a sequence of statements until the specified 
expression becomes false. C supports three types of iterative statements also known as looping 
statements. They are
	 ∑	 while loop
	 ∑	 do–while loop
	 ∑	 for loop
In this section, we will discuss all these statements.

while loop
The while loop provides a mechanism to repeat one or more statements while a particular condition 
is true. Figure 1.6 shows the syntax and general form of a while loop.

Condition

Statement x

Statement y

Statement Block

Update the Condition

Expression

FALSE

TRUE

Syntax of While Loop

statement x;

while (condition)

{

statement block;

}

statement y;

Figure 1.6  While loop construct
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	 Note that in the while loop, the condition is tested before any of the statements in the statement 
block is executed. If the condition is true, only then the statements will be executed, otherwise if 
the condition is false, the control will jump to statement y, that is the immediate statement outside 
the while loop block.
	 In the flow diagram of Fig. 1.6, it is clear that we need to constantly update the condition 
of the while loop. It is this condition which determines when the loop will end. The while loop 
will execute as long as the condition is true. Note that if the condition is never updated and the 
condition never becomes false, then the computer will run into an infinite loop which is never 
desirable. For example, the following code prints the first 10 numbers using a while loop.

#include <stdio.h>
int main()
{
	 int i = 1;
	 while(i<=10)
	 {
		  printf("\n %d", i);
		  i = i + 1;	 // condition updated
	 }
	 return 0;
}

Note that initially i = 1 and is less than 10, i.e., the condition is true, so in the while loop the 
value of i is printed and its value is incremented by 1. When i=11, the condition becomes false 
and the loop ends.

Programming Example

5.	 Write a program to calculate the sum of numbers from m to n.
#include <stdio.h>
int main()
{
	 int n, m, i, sum =0;
	 printf("\n Enter the value of m : ");
	 scanf("%d", &m);
	 i=m;
	 printf("\n Enter the value of n : ");
	 scanf("%d", &n);
	 while(i<=n)
	 {
		  sum = sum + i;
		  i = i + 1;
	 }
	 printf("\n The sum of numbers from %d to %d = %d", m, n, sum);
	 return 0;
}

	 Output
Enter the value of m : 2
Enter the value of n : 10
The sum of numbers from 2 to 10  = 54

do–while Loop
The do–while loop is similar to the while loop. The only difference is that in a do–while loop, the 
test condition is tested at the end of the loop. As the test condition is evaluated at the end, this 
means that the body of the loop gets executed at least one time (even if the condition is false). 
Figure 1.7 shows the syntax and the general form of a do–while loop.
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Figure 1.7  Do–while construct

	 Note that the test condition is enclosed in parentheses and followed by a semi-colon. The 
statements in the statement block are enclosed within curly brackets. The curly brackets are 
optional if there is only one statement in the body of the do–while loop.
	 The do–while loop continues to execute while the condition is true and when the condition 
becomes false, the control jumps to the statement following the do–while loop.
	 The major disadvantage of using a do–while loop is that it always executes at least once, so even 
if the user enters some invalid data, the loop will execute. However, do–while loops are widely 
used to print a list of options for menu-driven programs. For example, consider the following 
code.

#include <stdio.h>
int main()
{
	 int i = 1;
	 do
	 {
		  printf("\n %d", i);
		  i = i + 1;
	 } while(i<=10);
	 return 0;

}
What do you think will be the output? Yes, the code will print numbers from 1 to 10.

Programming Example 

6.	 Write a program to calculate the average of first n numbers.
#include <stdio.h>
int main()
{
	 int n, i = 0, sum =0;
	 float avg = 0.0;
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	 printf("\n Enter the value of n : ");
	 scanf("%d", &n);
	 do
	 {
		  sum = sum + i;
		  i = i + 1;
	 } while(i<=n);
	 avg = (float)sum/n;
	 printf("\n The sum of first %d numbers = %d",n, sum);
	 printf("\n The average of first %d numbers = %.2f", n, avg);
	 return 0;
}

	 Output
Enter the value of n : 20
The sum of first 20 numbers = 210
The average of first 20 numbers = 10.05

for Loop
Like the while and do–while loops, the for loop provides a mechanism to repeat a task till a particular 
condition is true. The synax and general form of a for loop is given in Fig. 1.8.

Controlling

Condition for Loop

Variable

FALSE

Initialization of

Loop Variable

TRUE

Statement Block

Update the

Loop Variable

Statement y

Syntax of for Loop

for (initialization; condition;

increment/decrement/update)

{

statement block;

}

statement y;

Figure 1.8  for loop construct

	 When a for loop is used, the loop variable is initialized only once. With every iteration, the 
value of the loop variable is updated and the condition is checked. If the condition is true, the 
statement block of the loop is executed, else the statements comprising the statement block of  
the for loop are skipped and the control jumps to the statement following the for loop body.
	 In the syntax of the for loop, initialization of the loop variable allows the programmer to give 
it a value. Second, the condition specifies that while the conditional expression is true, the loop 
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should continue to repeat itself. Every iteration of the loop must make the condition to exit the 
loop approachable. So, with every iteration, the loop variable must be updated. Updating the loop 
variable may include incrementing the loop variable, decrementing the loop variable or setting it 
to some other value like, i +=2, where i is the loop variable.
	 Note that every section of the for loop is separated from the other with a semi-colon. It is 
possible that one of the sections may be empty, though the semi-colons still have to be there. However, 
if the condition is empty, it is evaluated as true and the loop will repeat until something else stops 
it.
	 The for loop is widely used to execute a single or a group of statements for a limited number 
of times. The following code shows how to print the first n numbers using a for loop.

#include <stdio.h>
int main()
{
	 int i, n;
	 printf("\n Enter the value of n :");
	 scanf("%d", &n);
	 for(i=1;i<=n;i++)
		  printf("\n %d", i);
	 return 0;
}

	 In the code, i is the loop variable. Initially, it is initialized with 1. Suppose the user enters 10 
as the value of n. Then the condition is checked, since the condition is true as i is less than n, the 
statement in the for loop is executed and the value of i is printed. After every iteration, the value 
of i is incremented. When i exceeds the value of n, the control jumps to the return 0 statement.

Programming Example 

7.	 Write a program to determine whether a given number is a prime or a composite number.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int flag = 0, i, num;
	 clrscr();
	 printf("\n Enter any number : ");
	 scanf("%d", &num);
	 for(i=2; i<num/2;i++)
	 {
		  if(num%i == 0)
		  {
			   flag =1;
			   break;
		  }
	 }
if(flag == 1)
	 printf("\n %d is a composite number", num);
else
	 printf("\n %d is a prime number", num);
return 0;
}

	 Output
Enter any number : 37
37 is a prime number
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1.9.3 B reak and Continue Statements

break Statement
In C, the break statement is used to terminate the execution of the nearest enclosing loop in which 
it appears. We have already seen its use in the switch statement. The break statement is widely used 
with for, while, and do–while loops. When the compiler encounters a break statement, the control 
passes to the statement that follows the loop in which the break statement appears. Its syntax is 
quite simple, just type keyword break followed by a semi-colon.

break;

	 The example given below shows the manner in which break statement is used to terminate the 
loop in which it is embedded.

#include <stdio.h>
int main()
{
	 int i = 0;
	 while(i<=10)
	 {
		  if (i==5)
			   break;
		  printf("\t %d", i);
		  i = i + 1;
	 }
	 return 0;
}

Output
0  1  2  3  4

	 As soon as i becomes equal to 5, the break statement is executed and the control jumps to the 
statement following the while loop.
	 Hence, the break statement is used to exit a loop from any point within its body, bypassing its 
normal termination expression. 

continue Statement
Like the break statement, the continue statement can only appear in the body of a loop. When the 
compiler encounters a continue statement, then the rest of the statements in the loop are skipped 
and the control is unconditionally transferred to the loop-continuation portion of the nearest 
enclosing loop. Its syntax is quite simple, just type keyword continue followed by a semi-colon.

continue;

Again like the break statement, the continue statement cannot be used without an enclosing for, 
while, or do–while loop. When the continue statement is encountered in the while loop and in the 
do–while loop, the control is transferred to the code that tests the controlling expression. However, 
if placed within a for loop, the continue statement causes a branch to the code that updates the 
loop variable. For example, consider the following code:

#include <stdio.h>
int main()
{
	 int i;
	 for(i=0; i<= 10; i++)
	 {
		  if (i==5)
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			   continue;

		  printf("\t %d", i);

	 }

	 return 0;

}

Output
0  1  2  3  4  6  7  8  9  10

	 Note that the code is meant to print numbers from 0 to 10. But as soon as i becomes equal 
to 5, the continue statement is encountered, so the printf() statement is skipped and the control 
passes to the expression that increments the value of i. 	
	 Hence, we conclude that the continue statement is somewhat the opposite of the break statement. 
It forces the next iteration of the loop to take place, skipping any code in between itself and the 
test condition of the loop. It is generally used to restart a statement sequence when an error occurs.

1.10  FUNCTIONS
C enables its programmers to break up a program into segments commonly known as functions, 
each of which can be written more or less independently of the others. Every function in the 
program is supposed to perform a well-defined task. Therefore, the program code of one function 
is completely insulated from the other functions.

  Every function interfaces to the outside world 
in terms of how information is transferred to it 
and how results generated by the function are 
transmitted back from it. This interface is basically 
specified by the function name. For example, look 
at Fig. 1.9 which explains how the main() function 
calls another function to perform a well-defined 
task.
  In the figure, we can see that main() calls a 
function named func1(). Therefore, main() is 
known as the calling function and func1() is known 
as the called function. The moment the compiler 

encounters a function call, the control jumps to the statements that are a part of the called function. 
After the called function is executed, the control is returned to the calling program.
	 The main() function can call as many functions as it wants and as many times as it wants. For 
example, a function call placed within a for loop, while loop, or do–while loop may call the same 
function multiple times till the condition holds true.
	 Not only main(), any function can call any other function. For example, look at Fig. 1.10 which 
shows one function calling another, and the other function in turn calling some other function.

func1()

{

.........

func2();

.........

.........

return;

}

.........

func2()

{

.........

.........

func3();

.........

.........

return;

}

func3()

{

.........

.........

.........

return;

}

.........

main()

{

.........

.........

func1();

.........

.........

return 0;

}

Figure 1.10  Function calling another function

main()

{

...........

...........

func1();

...........

...........

return ;

}

func1()

{

statement block;

}

Figure 1.9  main() calls func1()
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1.10.1  Why are Functions Needed?
Let us analyse the reasons why segmenting a program into manageable chunks is an important 
aspect of programming.
	 ∑	 Dividing the program into separate well-defined functions facilitates each function to be 

written and tested separately. This simplifies the process of getting the total program to work.
	 ∑	 Understanding, coding, and testing multiple separate functions is easier than doing the same 

for one big function.
	 ∑	 If a big program has to be developed without using any function other than main(), then there 

will be countless lines in the main() function and maintaining that program will be a difficult 
task.

	 ∑	 All the libraries in C contain a set of functions that the programmers are free to use in their 
programs. These functions have been pre-written and pre-tested, so the programmers can 
use them without worrying about their code details. This speeds up program development, 
by allowing the programmer to concentrate only on the code that he has to write.

	 ∑	 Like C libraries, programmers can also write their own functions and use them from different 
points in the main program or any other program that needs its functionalities.

	 ∑	 When a big program is broken into comparatively smaller functions, then different programmers 
working on that project can divide the workload by writing different functions.

1.10.2  Using Functions
A function can be compared to a black box that takes in inputs, processes it, and then outputs the 
result. However, we may also have a function that does not take any inputs at all, or a function that 
does not return any value at all. While using functions, we will be using the following terminologies:
	 ∑	 A function f that uses another function g is known as the calling function, and g is known as 

the called function.
	 ∑	 The inputs that a function takes are known as arguments.
	 ∑	 When a called function returns some result back to the calling function, it is said to return 

that result.
	 ∑	 The calling function may or may not pass parameters to the called function. If the called 

function accepts arguments, the calling function will pass parameters, else not.
	 ∑	 Function declaration is a declaration statement that identifies a function’s name, a list of 

arguments that it accepts, and the type of data it returns.
	 ∑	 Function definition consists of a function header that identifies the function, followed by the 

body of the function containing the executable code for that function.

Function Declaration
Before using a function, the compiler must know the number of parameters and the type of 
parameters that the function expects to receive and the data type of value that it will return to the 
calling program. Placing the function declaration statement prior to its use enables the compiler 
to make a check on the arguments used while calling that function.
	 The general format for declaring a function that accepts arguments and returns a value as result 
can be given as:

return_data_type function_name(data_type variable1, data_type variable2,..);

Here, function_name is a valid name for the function. Naming a function follows the same rules 
that are followed while naming variables. A function should have a meaningful name that must 
specify the task that the function will perform.
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return_data_type specifies the data type of the value that will be returned to the calling function 
as a result of the processing performed by the called function.
(data_type variable1, data_type variable2, ...) is a list of variables of specified data types. 
These variables are passed from the calling function to the called function. They are also known 
as arguments or parameters that the called function accepts to perform its task. 

Note	 A function having void as its return type cannot return any value. Similarly, a function having void as 
its parameter list cannot accept any value.

Function Definition
When a function is defined, space is allocated for that function in the memory. A function definition 
comprises of two parts:
	 ∑	 Function header
	 ∑	 Function body
	 The syntax of a function definition can be given as:

return_data_type function_name(data_type variable1, data_type variable2,..)
{
	 .............
	 statements
	 .............
	 return(variable);
}

	 Note that the number of arguments and the order of arguments in the function header must be 
the same as that given in the function declaration statement.
	 While return_data_type function_name(data_type variable1, data_type variable2,...) is known 
as the function header, the rest of the portion comprising of program statements within the curly 
brackets { } is the function body which contains the code to perform the specific task.
	 Note that the function header is same as the function declaration. The only difference between 
the two is that a function header is not followed by a semi-colon.

Function Call
The function call statement invokes the function. When a function is invoked, the compiler jumps 
to the called function to execute the statements that are a part of that function. Once the called 
function is executed, the program control passes back to the calling function. A function call 
statement has the following syntax:

function_name(variable1, variable2, ...);

The following points are to be noted while calling a function:
	 ∑	 Function name and the number and the type of arguments in the function call must be same 

as that given in the function declaration and the function header of the function definition.
	 ∑	 Names (and not the types) of variables in function declaration, function call, and header of 

function definition may vary.
	 ∑	 Arguments may be passed in the form of expressions to the called function. In such a case, 

arguments are first evaluated and converted to the type of formal parameter and then the 
body of the function gets executed.

	 ∑	 If the return type of the function is not void, then the value returned by the called function 
may be assigned to some variable as given below.
	 variable_name = function_name(variable1, variable2, ...);
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Programming Example

8.	 Write a program to find whether a number is even or odd using functions.
#include <stdio.h>
int evenodd(int);   //FUNCTION DECLARATION
int main()
{
	 int num, flag;
	 printf("\n Enter the number : ");
	 scanf("%d", &num);
	 flag = evenodd(num);  //FUNCTION CALL
	 if (flag == 1)
		  printf("\n %d is EVEN", num);
	 else
		  printf("\n %d is ODD", num);
	 return 0;
}
int evenodd(int a) // FUNCTION HEADER
{ 	       
	          // FUNCTION BODY
	 if(a%2 == 0)
		  return 1;
	 else
		  retun 0;
}

	 Output
Enter the number : 78
78 is EVEN

1.10.3  Passing Parameters to Functions
There are two ways in which arguments or parameters can be passed to the called function.

Call by value  The values of the variables are passed by the calling function to the called function. 

Call by reference  The addresses of the variables are passed by the calling function to the called 
function.

Call by Value
In this method, the called function creates new variables to store the value of the arguments passed 
to it. Therefore, the called function uses a copy of the actual arguments to perform its intended task.
	 If the called function is supposed to modify the value of the parameters passed to it, then the 
change will be reflected only in the called function. In the calling function, no change will be made 
to the value of the variables. This is because all the changes are made to the copy of the variables 
and not to the actual variables. To understand this concept, consider the code given below. The 
function add() accepts an integer variable num and adds 10 to it. In the calling function, the value 
of num = 2. In add(), the value of num is modified to 12 but in the calling function, the change is 
not reflected.

#include <stdio.h>
void add(int n);
int main()
{
	  int num = 2;
	  printf("\n The value of num before calling the function = %d", num);
	  add(num);
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	  printf("\n The value of num after calling the function = %d", num);
	  return 0;
}
void add(int n)
{
	 n = n + 10;
	 printf("\n The value of num in the called function = %d", n);
}

Output
The value of num before calling the function = 2
The value of num in the called function = 12
The value of num after calling the function = 2

	 Following are the points to remember while passing arguments to a function using the call-by-
value method:
	 ∑	 When arguments are passed by value, the called function creates new variables of the same 

data type as the arguments passed to it.
	 ∑	 The values of the arguments passed by the calling function are copied into the newly created 

variables.
	 ∑	 Values of the variables in the calling functions remain unaffected when the arguments are 

passed using the call-by-value technique.

Pros and cons
The biggest advantage of using the call-by-value technique is that arguments can be passed as 
variables, literals, or expressions, while its main drawback is that copying data consumes additional 
storage space. In addition, it can take a lot of time to copy, thereby resulting in performance penalty, 
especially if the function is called many times.

Call by Reference
When the calling function passes arguments to the called function using the call-by-value method, 
the only way to return the modified value of the argument to the caller is explicitly using the 
return statement. A better option is to pass arguments using the call-by-reference technique.  
In this method, we declare the function parameters as references rather than normal variables. 
When this is done, any changes made by the function to the arguments it received are also visible 
in the calling function.
	 To indicate that an argument is passed using call by reference, an asterisk (*) is placed after 
the type in the parameter list. 
	 Hence, in the call-by-reference method, a function receives an implicit reference to the argument, 
rather than a copy of its value. Therefore, the function can modify the value of the variable and 
that change will be reflected in the calling function as well. The following code illustrates this 
concept.

#include <stdio.h>
void add(int *);
int main()
{
	 int num = 2;
	 printf("\n The value of num before calling the function = %d", num);
	 add(&num);
	 printf("\n The value of num after calling the function = %d", num);
	 return 0;
}
void add(int *n)
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{
	 *n = *n + 10;
	 printf("\n The value of num in the called function = %d", *n);
}

Output
The value of num before calling the function = 2
The value of num in the called function = 12
The value of num after calling the function = 12

Advantages
The advantages of using the call-by-reference technique of passing arguments include:
	 ∑	 Since arguments are not copied into the new variables, it provides greater time and space-

efficiency.
	 ∑	 The function can change the value of the argument and the change is reflected in the calling 

function.
	 ∑	 A function can return only one value. In case we need to return multiple values, we can pass 

those arguments by reference, so that the modified values are visible in the calling function.

Disadvantages
However, the drawback of using this technique is that if inadvertent changes are caused to variables 
in called function then these changes would be reflected in calling function as original values 
would have been overwritten.
	 Consider the code given below which swaps the value of two integers. Note the value of integers 
in the calling function and called function.

//This function swaps the value of two variables
#include <stdio.h>
void swap_call_val(int, int);
void swap_call_ref(int *, int *);
int main()
{
	 int a=1, b=2, c=3, d=4;
	 printf("\n In main(), a = %d and b = %d", a, b);
	 swap_call_val(a, b);
	 printf("\n In main(), a = %d and b = %d", a, b);
	 printf("\n\n In main(), c = %d and d = %d", c, d);
	 swap_call_ref(&c, &d);
	 printf("\n In main(), c = %d and d = %d", c, d);
	 return 0;
}
void swap_call_val(int a, int b)
{
	 int temp;
	 temp = a;
	 a = b;
	 b = temp;
	 printf("\n In function (Call By Value Method) – a = %d and b = %d", a, b);
}
void swap_call_ref(int *c, int *d)
{
	 int temp;
	 temp = *c;
	 *c = *d;
	 *d = temp;
	 printf("\n In function (Call By Reference Method) – c = %d and d = %d", *c, *d);
}
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Output
In main(), a = 1 and b = 2
In function (Call By Value Method) – a = 2 and b = 1
In main(), a = 1 and b = 2
In main(), c = 3 and d = 4
In function (Call By Reference Method) – c = 4 and d = 3
In main(), c = 4 and d = 3

1.11  Pointers
Every variable in C has a name and a value associated with it. When a variable is declared, a specific 
block of memory within the computer is allocated to hold the value of that variable. The size of the 
allocated block depends on the data type. 
Consider the following statement.

int x = 10;

	 When this statement executes, the compiler sets aside 2 bytes of memory to hold the value 10. 
It also sets up a symbol table in which it adds the symbol x and the relative address in the memory 
where those 2 bytes were set aside.
	 (Note the size of integer may vary from one system to another. On 32 bit systems, integer 
variable is allocated 4 bytes while on 16 bit systems it is allocated 2 bytes.) 
	 Thus, every variable in C has a value and also a memory location (commonly known as 
address) associated with it. We will use terms rvalue and lvalue for the value and the address of 
the variable, respectively.
	 The rvalue appears on the right side of the assignment statement (10 in the above statement) 
and cannot be used on the left side of the assignment statement. Therefore, writing 10 = k; is 
illegal. If we write,

int x, y;
x = 10;
y = x;

then, we have two integer variables x and y. The compiler reserves memory for the integer variable 
x and stores the rvalue 10 in it. When we say y = x, then x is interpreted as its rvalue since it is 
on the right hand side of the assignment operator =. Therefore, here x refers to the value stored at 
the memory location set aside for x, in this case 10. After this statement is executed, the rvalue 
of y is also 10.
	 You must be wondering why we are discussing addresses and lvalues. Actually pointers are 
nothing but memory addresses. A pointer is a variable that contains the memory location of another 
variable. Therefore, a pointer is a variable that represents the location of a data item, such as a 
variable or an array element. Pointers are frequently used in C, as they have a number of useful 
applications. These applications include:
	 ∑	 Pointers are used to pass information back and forth between functions.
	 ∑	 Pointers enable the programmers to return multiple data items from a function via function 

arguments.
	 ∑	 Pointers provide an alternate way to access the individual elements of an array.
	 ∑	 Pointers are used to pass arrays and strings as function arguments. We will discuss this in 

subsequent chapters.
	 ∑	 Pointers are used to create complex data structures, such as trees, linked lists, linked stacks, 

linked queues, and graphs.
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	 ∑	 Pointers are used for the dynamic memory allocation of a variable (refer Appendix A on 
memory allocation in C programs).

1.11.1  Declaring Pointer Variables
The general syntax of declaring pointer variables can be given as below.

data_type *ptr_name;

Here, data_type is the data type of the value that the pointer will point to. For example,
int *pnum;
char *pch;
float *pfnum;

	 In each of the above statements, a pointer variable is declared to point to a variable of the 
specified data type. Although all these pointers  (pnum, pch, and pfnum) point to different data types, 
they will occupy the same amount of space in the memory. But how much space they will occupy 
will depend on the platform where the code is going to run. Now let us declare an integer pointer 
variable and start using it in our program code.

int x= 10;
int *ptr;
ptr = &x;

	 In the above statement, ptr is the name of the pointer variable. The * informs the compiler that 
ptr is a pointer variable and the int specifies that it will store the address of an integer variable. 
An integer pointer variable, therefore, ‘points to’ an integer variable. In the last statement, ptr is 
assigned the address of x. The & operator retrieves the lvalue (address) of x, and copies that to the 
contents of the pointer ptr. Consider the memory cells given in Fig. 1.11.
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Figure 1.11  Memory representation

	 Now, since x is an integer variable, it will be allocated 2 bytes. Assuming that the compiler 
assigns it memory locations 1003 and 1004, the address of x (written as &x) is equal to 1003, that 
is the starting address of x in the memory. When we write, ptr = &x, then ptr = 1003.
	 We can ‘dereference’ a pointer, i.e., we can refer to the value of the variable to which it points 
by using the unary * operator as in *ptr. That is, *ptr = 10, since 10 is the value of x. Look at the 
following code which shows the use of a pointer variable:

#include <stdio.h>
int main()
{
	 int num, *pnum;
	 pnum = &num;
	 printf("\n Enter the number : ");
	 scanf("%d", &num);
	 printf("\n The number that was entered is : %d", *pnum);
	 return 0;
}

Output
Enter the number : 10
The number that was entered is : 10

	 What will be the value of *(&num)? It is equivalent to simply writing num. 
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1.11.2  Pointer Expressions and Pointer Arithmetic
Like other variables, pointer variables can also be used in expressions. For example, if ptr1 and 
ptr2 are pointers, then the following statements are valid:

int num1 = 2, num2 = 3, sum = 0, mul = 0, div = 1;
int *ptr1, *ptr2;
ptr1 = &num1;
ptr2 = &num2;
sum = *ptr1 + *ptr2;
mul = sum * (*ptr1);
*ptr2 += 1;
div = 9 + (*ptr1)/(*ptr2) – 30;

	 In C, the programmer may add integers to or subtract integers from pointers as well as subtract 
one pointer from the other. We can also use shorthand operators with the pointer variables as we 
use them with other variables.
	 C also allows comparing pointers by using relational operators in the expressions. For example, 
p1 > p2, p1 == p2 and p1! = p2 are all valid in C.
	 Postfix unary increment (++) and decrement (––) operators have greater precedence than the 
dereference operator (*). Therefore, the expression *ptr++ is equivalent to *(ptr++), as ++ has 
greater operator precedence than *. Thus, the expression will increase the value of ptr so that it 
now points to the next memory location. This means that the statement *ptr++ does not do the 
intended task. Therefore, to increment the value of the variable whose address is stored in ptr, 
you should write (*ptr)++. 

1.11.3  Null Pointers
So far, we have studied that a pointer variable is a pointer to a variable of some data type. However, 
in some cases, we may prefer to have a null pointer which is a special pointer value and does not 
point to any value. This means that a null pointer does not point to any valid memory address.
	 To declare a null pointer, you may use the predefined constant NULL which is defined in several 
standard header files including <stdio.h>, <stdlib.h>, and <string.h>. After including any of these 
files in your program, you can write

int *ptr = NULL;

You can always check whether a given pointer variable stores the address of some variable or 
contains NULL by writing,

if (ptr == NULL)
{
	 Statement block;
}

You may also initialize a pointer as a null pointer by using the constant 0
int *ptr,
ptr = 0;

This is a valid statement in C as NULL is a preprocessor macro, which typically has the value 
or replacement text 0. However, to avoid ambiguity, it is always better to use NULL to declare a 
null pointer. A function that returns pointer values can return a null pointer when it is unable to 
perform its task.

1.11.4  Generic Pointers
A generic pointer is a pointer variable that has void as its data type. The void pointer, or the generic 
pointer, is a special type of pointer that can point to variables of any data type. It is declared like 
a normal pointer variable but using the void keyword as the pointer’s data type. For example,
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void *ptr;

In C, since you cannot have a variable of type void, the void pointer will therefore not point to 
any data and, thus, cannot be dereferenced. You need to cast a void pointer to another kind of 
pointer before using it.
	 Generic pointers are often used when you want a pointer to point to data of different types at 
different times. For example, take a look at the following code.

#include <stdio.h>
int main()
{
	 int x=10;
	 char ch = ‘A’;
	 void *gp;
	 gp = &x;
	 printf("\n Generic pointer points to the integer value = %d", *(int*)gp);
	 gp = &ch;
	 printf("\n Generic pointer now points to the character= %c", *(char*)gp);
	 return 0;
}

Output
Generic pointer points to the integer value = 10
Generic pointer now points to the character = A

It is always recommended to avoid using void pointers unless absolutely necessary, as they 
effectively allow you to avoid type checking.

Programming Example

9.	 Write a program to add two integers using pointers and functions.
#include <stdio.h>
void sum (int*, int*, int*);
int main()
{
	 int num1, num2, total;
	 printf("\n Enter the first number : ");
	 scanf("%d", &num1);
	 printf("\n Enter the second number : ");
	 scanf("%d", &num2);
	 sum(&num1, &num2, &total);
	 printf("\n Total = %d", total);
	 return 0;
}
void sum (int *a, int *b, int *t)
{
	 *t = *a + *b;
}

	 Output
Enter the first number : 23
Enter the second number : 34
Total = 57

1.11.5  Pointer to Pointers
In C, you can also use pointers that point to pointers. The pointers in turn point to data or even to 
other pointers. To declare pointers to pointers, just add an asterisk * for each level of reference.
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For example, consider the following code:
int x=10;
int *px, **ppx;
px = &x;

ppx = &px;

Let us assume, the memory locations of these variables are as 
shown in Fig. 1.12.

Now if we write,
printf("\n %d", **ppx);

Then, it would print 10, the value of x.

1.11.6  Drawbacks of Pointers
Although pointers are very useful in C, they are not free from limitations. If used incorrectly, 
pointers can lead to bugs that are difficult to unearth. For example, if you use a pointer to read a 
memory location but that pointer is pointing to an incorrect location, then you may end up reading 
a wrong value. An erroneous input always leads to an erroneous output. Thus however efficient 
your program code may be, the output will always be disastrous. Same is the case when writing 
a value to a particular memory location.
	 Let us try to find some common errors when using pointers.

int x, *px;
x=10;
*px = 20;

Error: Un-initialized pointer. px is pointing to an unknown memory location. Hence it will
overwrite that location’s contents and store 20 in it.

int x, *px;
x=10;
px = x;

Error: It should be px = &x;
int x=10, y=20, *px, *py;
px = &x, py = &y;
if(px<py) 
printf("\n x is less than y");
else
printf("\n y is less than x");

Error: It should be if(*px< *py)

 Points to Remember

Figure 1.12  Pointer to pointer

•	 C was developed in the early 1970s by Dennis 
Ritchie at Bell Laboratories.

•	 Every word in a C program is either an identifier 
or a keyword. Identifiers are the names given to 
program elements such as variables and functions. 
Keywords are reserved words which cannot be used 
as identifiers.

•	 C provides four basic data types: char, int, float, 
and double.

•	 A variable is defined as a meaningful name given to 
a data storage location in computer memory. 

•	 Standard library function scanf() is used to input 
data in a specified format.printf()function is used 
to output data of different types in a specified format.

•	 C supports different types of operators which can 
be classified into following categories: arithmetic, 
relational, equality, logical, unary, conditional, 
bitwise, assignment, comma, and sizeof operators.
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•	 Modulus operator (%) can only be applied on integer 
operands, and not on float or double operands. 

•	 Equality operators have lower precedence than 
relational operators.

•	 Like arithmetic expressions, logical expressions are 
evaluated from left to right.

•	 Both x++ and ++x increment the value of x, but in 
the former case, the value of x is returned before it 
is incremented. Whereas in the latter case, the value 
of x is returned after it is incremented.

•	 Conditional operator is also known as ternary 
operator as it takes three operands. 

•	 Bitwise NOT or complement produces one’s 
complement of a given binary number.

•	 Among all the operators, comma operator has the 
lowest precedence.

•	 sizeof is a unary operator used to calculate the size 
of data types. This operator can be applied to all data 
types.  

•	 While type conversion is done implicitly, typecasting 
has to be done explicitly by the programmer. 
Typecasting is done when the value of one data type 
has to be converted into the value of another data type.

•	 C supports three types of control statements: decision 
control statements, iterative statements, and jump 
statements.

•	 In a switch statement, if the value of the variable 
does not match with any of the values of case 
statements, then default case is executed.

•	 Iterative statements are used to repeat the execution 
of a list of statements until the specified expression 
becomes false.

•	 The break statement is used to terminate the 
execution of the nearest enclosing loop in which it 
appears. 

•	 When the compiler encounters a continue statement, 
then the rest of the statements in the loop are skipped 
and the control is unconditionally transferred to the 
loop-continuation portion of the nearest enclosing loop.

•	 A C program contains one or more functions, where 
each function is defined as a group of statements that 
perform a specific task.

•	 Every C program contains a main() function which 
is the starting point of the program. It is the function 
that is called by the operating system when the user 
runs the program.

•	 Function declaration statement identifies a function’s 
name and the list of arguments that it accepts and 
the type of data it returns. 

•	 Function definition, on the other hand, consists of a 
function header that identifies the function, followed 
by the body of the function containing the executable 
code for that function. When a function is defined, 
space is allocated for that function in the memory. 

•	 The moment the compiler encounters a function call, 
the control jumps to the statements that are a part 
of the called function. After the called function is 
executed, the control is returned back to the calling 
function.

•	 Placing the function declaration statement prior to 
its use enables the compiler to make a check on the 
arguments used while calling that function. 

•	 A function having void as its return type cannot 
return any value. Similarly, a function having void 
as its parameter list cannot accept any value.

•	 Call by value method passes values of the variables 
to the called function. Therefore, the called function 
uses a copy of the actual arguments to perform its 
intended task. This method is used when the function 
does not need to modify the values of the original 
variables in the calling function. 

•	 In call by reference method, addresses of the 
variables are passed by the calling function to the 
called function. Hence, in this method, a function 
receives an implicit reference to the argument, 
rather than a copy of its value. This allows the 
function to modify the value of the variable and 
that change is reflected in the calling function as 
well. 

•	 A pointer is a variable that contains the memory 
address of another variable. 

•	 The & operator retrieves the address of the variable. 
•	 We can ‘dereference’ a pointer, i.e., refer to the value 

of the variable to which it points by using unary * 
operator.

•	 Null pointer is a special pointer variable that does 
not point to any variable. This means that a null 
pointer does not point to any valid memory address. 
To declare a null pointer we may use the predefined 
constant NULL. 

•	 A generic pointer is pointer variable that has void 
as its data type. The generic pointer can point to 
variables of any data type. 

•	 To declare pointer to pointers, we need to add an 
asterisk (*) for each level of reference.
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 Exercises

Review Questions
	 1.	 Discuss the structure of a C program.
	 2.	 Differentiate between declaration and definition.
	 3.	 How is memory reserved using a declaration 

statement?
	 4.	 What do you understand by identifiers and 

keywords?
	 5.	 Explain the terms variables and constants. How 

many types of variables are supported by C?
	 6.	 What does the data type of a variable signify?
	 7.	 Write a short note on basic data types that the C 

language supports.
	 8.	 Why do we include <stdio.h> in our programs?
	 9.	 What are header files? Explain their significance.
	 10.	 Write short notes on printf and scanf functions.
	 11.	 Write a short note on operators available in C 

language.
	 12.	 Draw the operator precedence chart.
	 13.	 Differentiate between typecasting and type 

conversion.
	 14.	 What are decision control statements? Explain in 

detail.
	 15.	 Write a short note on the iterative statements that 

C language supports.
	 16.	 When will you prefer to work with a switch 

statement?
	 17.	 Define function. Why are they needed?
	 18.	 Differentiate between function declaration and 

function definition.
	 19.	 Why is function declaration statement placed prior 

to function definition?
	 20.	 Explain the concept of making function calls.
	 21.	 Differentiate between call by value and call by 

reference using suitable examples.
	 22.	 Write a short note on pointers.	
	 23.	 Explain the difference between a null pointer and 

a void pointer.
	 24.	 How are generic pointers different from other 

pointer variables?
	 25.	 Write a short note on pointers to pointers.

Programming Exercises
	 1.	 Write a program to read 10 integers. Display these 

numbers by printing three numbers in a line 
separated by commas.

	 2.	 Write a program to print the count of even numbers 
between 1–200. Also print their sum.

	 3.	 Write a program to count the number of vowels 
in a text.

	 4.	 Write a program to read the address of a user. Dis-
play the result by breaking it in multiple lines.

	 5.	 Write a program to read two floating point 
numbers. Add these numbers and assign the result 
to an integer. Finally, display the value of all the 
three variables.

	 6.	 Write a program to read a floating point number. 
Display the rightmost digit of the integral part of 
the number.

	 7.	 Write a program to calculate simple interest and 
compound interest.

	 8.	 Write a program to calculate salary of an employee 
given his basic pay (to be entered by the user), 
HRA = 10% of the basic pay, TA = 5% of basic pay. 
Define HRA and TA as constants and use them to 
calculate the salary of the employee.

	 9.	 Write a program to prepare a grocery bill. Enter 
the name of the items purchased, quantity in which 
it is purchased, and its price per unit. Then display 
the bill in the following format:

************ B I L L ************
Item  Quantity  Price  Amount

––––––––––––––––––––––––––––––––––––––––––––––––
–––––––––––––––––––––––––––––––––––––––––––––––––

Total Amount to be paid
––––––––––––––––––––––––––––––––––––––––––––––––

	 10.	 Write a C program using printf statement to print 
BYE in the following format:
	 BBB		 Y			  Y	 EEEE

	 B	 B		  Y		  Y	 E

	 BBB				   Y			  EEEE

	 B	 B			   Y

	11.	 Write a program to read an integer. Display 
the value of that integer in decimal, octal, and 
hexadecimal notation.

	 12.	 Write a program that prints a floating point 
value in exponential format with the following 
specifications:

	 (a)	 correct to two decimal places;
	 (b)	 correct to four decimal places; and
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	 (c)	 correct to eight decimal places.
	 13.	 Write a program to find the smallest of three 

integers using functions.
	 14.	 Write a program to calculate area of a triangle 

using function.
	 15.	 Write a program to find whether a number is 

divisible by two or not using functions.
	 16.	 Write a program to print ‘Programming in C is 

Fun’ using pointers.
	 17.	 Write a program to read a character and print it. 

Also print its ASCII value. If the character is in 
lower case, print it in upper case and vice versa. 
Repeat the process until a ‘*’ is entered.

	 18.	 Write a program to add three floating point 
numbers. The result should contain only two digits 
after the decimal.

	 19.	 Write a program to take input from the user and 
then check whether it is a number or a character. 
If it is a character, determine whether it is in upper 
case or lower case. Also print its ASCII value.

	 20.	 Write a program to display sum and average of 
numbers from 1 to n. Use for loop.

	 21.	 Write a program to print all odd numbers from 
m to n.

	 22.	 Write a program to print all prime numbers from 
m to n.

	 23.	 Write a program to read numbers until –1 is 
entered and display whether it is an Armstrong 
number or not.

	 24.	 Write a program to add two floating point numbers 
using pointers and functions.

	 25.	 Write a program to calculate area of a triangle 
using pointers.

Multiple-choice Questions
	 1.	 The operator which compares two values is
	 (a)	 Assignment	 (b)	 Relational
	 (c)	 Unary	 (d)	 Equality
	 2.	 Ternary operator operates on how many operands?
	 (a)	 1	 (b)	 2
	 (c)	 3	 (d)	 4
	 3.	 Which operator produces the one’s complement 

of the given binary value?
	 (a)	 Logical AND	 (b)	 Bitwise AND
	 (c)	 Logical OR	 (d)	 Bitwise NOT
	 4.	 Which operator has the lowest precedence?
	 (a)	 Sizeof	 (b)	 Unary
	 (c)	 Assignment	 (d)	 Comma

	 5.	 Which of the following is the conversion character 
associated with short integer?

	 (a)	 %c	 (b)	 %h
	 (c)	 %e	 (d)	 %f	
	 6.	 Which of the following is not a character constant?
	 (a)	 ‘A’	 (b)	 “A”
	 (c)	 ‘ ’	 (d)	 ‘*’
	   7. Which of the following is a valid variable name?
	 (a)	 Initial.Name	 (b)	 A+B
	 (c)	 $amt	 (d)	 Floats
   8.	 Which operator cannot be used with floating point 

numbers?
	 (a)	 +	 (b)	 –
	 (c)	 %	 (d)	 *	
   9.	 Identify the erroneous expression.
	 (a)	 X=y=2, 4;	 (b)	 res = ++a * 5;
	 (c)	 res = /4;	 (d)	 res = a++ –b *2
	 10.	 Function declaration statement identifies a 

function with its
	 (a)	 Name
	 (b)	 Arguments
	 (c)	 Data type of return value
	 (d)	 All of these
	 11.	 Which return type cannot return any value to the 

calling function?
	 (a)	 int	 (b)	 float
	 (c)	 void	 (d)	 double
	 12.	 Memory is allocated for a function when the 

function is
	 (a)	 declared	 (b)	 defined
	 (c)	 called	 (d)	 returned
	 13.	 *(&num) is equivalent to writing
	 (a)	 &num	 (b)	 *num
	 (c)	 num	 (d)	 None of these
	 14.	 Which operator retrieves the lvalue of a variable?
	 (a)	 &	 (b)	 *
	 (c)	 –>	 (d)	 None of these
	 15.	 Which operator is used to dereference a pointer?
	 (a)	 &	 (b)	 *
	 (c)	 –>	 (d)	 None of these

True or False
	 1.	 We can have only one function in a C program.
	 2.	 Keywords are case sensitive.
	 3.	 Variable ‘first’ is the same as ‘First’.
	 4.	 Signed variables can increase the maximum 

positive range.
	 5.	 Comment statements are not executed by the 

compiler.
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	 6.	 Equality operators have higher precedence than 
the relational operators.

	 7.	 Shifting once to the left multiplies the number by 2.
	 8.	 Decision control statements are used to repeat 

the execution of a list of statements.
	 9.	 printf("%d", scanf("%d", &num)); is a valid C 

statement.
	 10.	 1,234 is a valid integer constant.
	 11.	 A printf statement can generate only one line of 

output.
	 12.	 stdio.h is used to store the source code of the 

program.
	 13.	 The closing brace of main() is the logical end of 

the program.
	 14.	 The declaration section gives instructions to the 

computer.
	 15.	 Any valid printable ASCII character can be used 

for a variable name.
	 16.	 Underscore can be used anywhere in the variable 

name.
	 17.	 void is a data type in C.
	 18.	 All arithmetic operators have same precedence.
	 19.	 The modulus operator can be used only with 

integers.
	 20.	 The calling function always passes parameters to 

the called function.
	 21.	 The name of a function is global.
	 22.	 No function can be declared within the body of 

another function.
	 23.	 The & operator retrieves the lvalue of the variable.
	 24.	 Unary increment and decrement operators have 

greater precedence than the dereference operator.
	 25.	 On 32-bit systems, an integer variable is allocated 

4 bytes.

Fill in the Blanks
	 1.	 C was developed by ______.
	 2.	 The execution of a C program begins at ______.
	 3.	 In the memory, characters are stored as ______.

	 4.	 return 0 returns 0 to the ______.
	 5.	 ______ finds the remainder of an integer division.
	 6.	 sizeof is a ______ operator used to calculate the 

sizes of data types.
	 7.	 ______ is also known as forced conversion.
	 8.	 ______ is executed when the value of the variable 

does not match with any of the values of the case 
statement.

	 9.	 ______ function prints data on the monitor.
	 10.	 A C program ends with a ______.
	 11.	 ______ causes the cursor to move to the next line.
	 12.	 A variable can be made constant by declaring it 

with the qualifier ______ at the time of initializa-
tion.

	 13.	 ______ operator returns the number of bytes 
occupied by the operand.

	 14.	 The ______ specification is used to read/write a 
short integer.

	 15.	 The ______ specification is used to read/write a 
hexadecimal integer.

	 16.	 To print the data left-justified, ______ specif-
ication is used.

	 17.	 After the function is executed, the control passes 
back to the ______.

	 18.	 A function that uses another function is known as 
the ______.

	 19.	 The inputs that the function takes are known as 
______.

	 20.	 Function definition consist of ______ and ______.
	 21.	 In ______ method, address of the variable is passed 

by the calling function to the called function.
	 22.	 Size of character pointer is ______.
	 23.	 ______ pointer does not point to any valid 

memory address.
	 24.	 The ______ appears on the right side of the 

assignment statement.
	 25.	 The ______ operator informs the compiler that 

the variable is a pointer variable.



2.1  BASIC TERMINOLOGY
We have already learnt the basics of programming in C in the previous chapter and know how to 
write, debug, and run simple programs in C language. Our aim has been to design good programs, 
where a good program is defined as a program that
	 ∑	 runs correctly
	 ∑	 is easy to read and understand
	 ∑	 is easy to debug and
	 ∑	 is easy to modify.
	 A program should undoubtedly give correct results, but along with that it should also run 
efficiently. A program is said to be efficient when it executes in minimum time and with minimum 
memory space. In order to write efficient programs we need to apply certain data management 
concepts.
	 The concept of data management is a complex task that includes activities like data collection, 
organization of data into appropriate structures, and developing and maintaining routines for 
quality assurance.
	 Data structure is a crucial part of data management and in this book it will be our prime concern. 
A data structure is basically a group of data elements that are put together under one name, and 
which defines a particular way of storing and organizing data in a computer so that it can be used 
efficiently.

LEARNING OBJECTIVE
In this chapter, we are going to discuss common data structures and algorithms 
which serve as building blocks for creating efficient programs. We will also discuss 
different approaches to designing algorithms and different notations for evaluating 
the performance of algorithms.

Introduction to 
Data Structures 
and Algorithms

CHAPTER 2
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	 Data structures are used in almost every program or software system. Some common examples of 
data structures are arrays, linked lists, queues, stacks, binary trees, and hash tables. Data structures 
are widely applied in the following areas:
	 ∑	 Compiler design	 ∑	 Operating system
	 ∑	 Statistical analysis package	 ∑	 DBMS
	 ∑	 Numerical analysis	 ∑	 Simulation
	 ∑	 Artificial intelligence	 ∑	 Graphics
	 When you will study DBMS as a subject, you will realize that the major data structures used 
in the Network data model is graphs, Hierarchical data model is trees, and RDBMS is arrays.
	 Specific data structures are essential ingredients of many efficient algorithms as they enable the 
programmers to manage huge amounts of data easily and efficiently. Some formal design methods 
and programming languages emphasize data structures and the algorithms as the key organizing 
factor in software design. This is because representing information is fundamental to computer 
science. The primary goal of a program or software is not to perform calculations or operations 
but to store and retrieve information as fast as possible.
	 Be it any problem at hand, the application of an appropriate data structure provides the most 
efficient solution. A solution is said to be efficient if it solves the problem within the required 
resource constraints like the total space available to store the data and the time allowed to perform 
each subtask. And the best solution is the one that requires fewer resources than known alternatives. 
Moreover, the cost of a solution is the amount of resources it consumes. The cost of a solution is 
basically measured in terms of one key resource such as time, with the implied assumption that 
the solution meets the other resource constraints.
	 Today computer programmers do not write programs just to solve a problem but to write an 
efficient program. For this, they first analyse the problem to determine the performance goals 
that must be achieved and then think of the most appropriate data structure for that job. However, 
program designers with a poor understanding of data structure concepts ignore this analysis step 
and apply a data structure with which they can work comfortably. The applied data structure may 
not be appropriate for the problem at hand and therefore may result in poor performance (like 
slow speed of operations).
	 Conversely, if a program meets its performance goals with a data structure that is simple to use, 
then it makes no sense to apply another complex data structure just to exhibit the programmer’s 
skill. When selecting a data structure to solve a problem, the following steps must be performed.
	 1.	 Analysis of the problem to determine the basic operations that must be supported. For example, 

basic operation may include inserting/deleting/searching a data item from the data structure.
	 2.	 Quantify the resource constraints for each operation.
	 3.	 Select the data structure that best meets these requirements.
This three-step approach to select an appropriate data structure for the problem at hand supports 
a data-centred view of the design process. In the approach, the first concern is the data and the 
operations that are to be performed on them. The second concern is the representation of the data, 
and the final concern is the implementation of that representation.
	 There are different types of data structures that the C language supports. While one type of data 
structure may permit adding of new data items only at the beginning, the other may allow it to 
be added at any position. While one data structure may allow accessing data items sequentially, 
the other may allow random access of data. So, selection of an appropriate data structure for the 
problem is a crucial decision and may have a major impact on the performance of the program.
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2.1.1  Elementary Data Structure Organization
Data structures are building blocks of a program. A program built using improper data structures 
may not work as expected. So as a programmer it is mandatory to choose most appropriate data 
structures for a program.
	 The term data means a value or set of values. It specifies either the value of a variable or a 
constant (e.g., marks of students, name of an employee, address of a customer, value of pi, etc.).
	 While a data item that does not have subordinate data items is categorized as an elementary 
item, the one that is composed of one or more subordinate data items is called a group item. For 
example, a student’s name may be divided into three sub-items—first name, middle name, and 
last name—but his roll number would normally be treated as a single item.
	 A record is a collection of data items. For example, the name, address, course, and marks 
obtained are individual data items. But all these data items can be grouped together to form a 
record.
	 A file is a collection of related records. For example, if there are 60 students in a class, then 
there are 60 records of the students. All these related records are stored in a file. Similarly, we 
can have a file of all the employees working in an organization, a file of all the customers of a 
company, a file of all the suppliers, so on and so forth.
	 Moreover, each record in a file may consist of multiple data items but the value of a certain 
data item uniquely identifies the record in the file. Such a data item K is called a primary key, 
and the values K1, K2 ... in such field are called keys or key values. For example, in a student’s 
record that contains roll number, name, address, course, and marks obtained, the field roll number 
is a primary key. Rest of the fields (name, address, course, and marks) cannot serve as primary 
keys, since two or more students may have the same name, or may have the same address (as 
they might be staying at the same place), or may be enrolled in the same course, or have obtained 
same marks.
	 This organization and hierarchy of data is taken further to form more complex types of data 
structures, which is discussed in Section 2.2.

2.2  CLASSIFICATION OF DATA STRUCTURES
Data structures are generally categorized into two classes: primitive and non-primitive data 
structures. 

Primitive and Non-primitive Data Structures
Primitive data structures are the fundamental data types which are supported by a programming 
language. Some basic data types are integer, real, character, and boolean. The terms ‘data type’, 
‘basic data type’, and ‘primitive data type’ are often used interchangeably. 
	 Non-primitive data structures are those data structures which are created using primitive data 
structures. Examples of such data structures include linked lists, stacks, trees, and graphs. 
Non-primitive data structures can further be classified into two categories: linear and non-linear 
data structures. 

Linear and Non-linear Structures
If the elements of a data structure are stored in a linear or sequential order, then it is a linear data 
structure. Examples include arrays, linked lists, stacks, and queues. Linear data structures can be 
represented in memory in two different ways. One way is to have to a linear relationship between 
elements by means of sequential memory locations. The other way is to have a linear relationship 
between elements by means of links.
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	 However, if the elements of a data structure are not stored in a sequential order, then it is a 
non-linear data structure. The relationship of adjacency is not maintained between elements of a 
non-linear data structure. Examples include trees and graphs. 
	 C supports a variety of data structures. We will now introduce all these data structures and they 
would be discussed in detail in subsequent chapters. 

Arrays
An array is a collection of similar data elements. These data elements have the same data type. 
The elements of the array are stored in consecutive memory locations and are referenced by an 
index (also known as the subscript).
In C, arrays are declared using the following syntax:

type name[size];

For example,
int marks[10];

The above statement declares an array marks that contains 10 elements. In C, the array index starts 
from zero. This means that the array marks will contain 10 elements in all. The first element will 
be stored in marks[0], second element in marks[1], so on and so forth. Therefore, the last element, 
that is the 10th element, will be stored in marks[9]. In the memory, the array will be stored as 
shown in Fig. 2.1.
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Figure 2.1  Memory representation of an array of 10 elements

	 Arrays are generally used when we want to store large amount of similar type of data. But they 
have the following limitations:
	 ∑	 Arrays are of fixed size.
	 ∑	 Data elements are stored in contiguous memory locations which may not be always available.
	 ∑	 Insertion and deletion of elements can be problematic because of shifting of elements from 

their positions.
However, these limitations can be solved by using linked lists. We will discuss more about arrays 
in Chapter 3.

Linked Lists
A linked list is a very flexible, dynamic data structure in which elements (called nodes) form a 
sequential list. In contrast to static arrays, a programmer need not worry about how many elements 
will be stored in the linked list. This feature enables the programmers to write robust programs 
which require less maintenance.
	 In a linked list, each node is allocated space as it is added to the list. Every node in the list 
points to the next node in the list. Therefore, in a linked list, every node contains the following 
two types of data:
	 ∑	 The value of the node or any other data that corresponds to that node
	 ∑	 A pointer or link to the next node in the list
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	 The last node in the list contains a NULL pointer to indicate that it is the end or tail of the list. 
Since the memory for a node is dynamically allocated when it is added to the list, the total number 
of nodes that may be added to a list is limited only by the amount of memory available. Figure 
2.2 shows a linked list of seven nodes.

1 2 3 4 5 6 7 X

Figure 2.2  Simple linked list

Note	 Advantage: Easier to insert or delete data elements	 
	 Disadvantage: Slow search operation and requires more memory space

Stacks
A stack is a linear data structure in which insertion and deletion of elements are done at only one end, 
which is known as the top of the stack. Stack is called a last-in, first-out (LIFO) structure because 
the last element which is added to the stack is the first element which is deleted from the stack.
	 In the computer’s memory, stacks can be implemented using arrays or linked lists. Figure 2.3 
shows the array implementation of a stack. Every stack has a variable top associated with it. top 
is used to store the address of the topmost element of the stack. It is this position from where 
the element will be added or deleted. There is another variable MAX, which is used to store the 
maximum number of elements that the stack can store.
	 If top = NULL, then it indicates that the stack is empty and if top = MAX–1, then the stack is full.

A AB ABC ABCD ABCDE

0 1 2 3 top = 4 5 6 7 8 9

Figure 2.3  Array representation of a stack

	 In Fig. 2.3, top = 4, so insertions and deletions will be done at this position. Here, the stack 
can store a maximum of 10 elements where the indices range from 0–9. In the above stack, five 
more elements can still be stored.
	 A stack supports three basic operations: push, pop, and peep. The push operation adds an element 
to the top of the stack. The pop operation removes the element from the top of the stack. And the 
peep operation returns the value of the topmost element of the stack (without deleting it).
	 However, before inserting an element in the stack, we must check for overflow conditions. An 
overflow occurs when we try to insert an element into a stack that is already full.
	 Similarly, before deleting an element from the stack, we must check for underflow conditions. 
An underflow condition occurs when we try to delete an element from a stack that is already 
empty.

Queues
A queue is a first-in, first-out (FIFO) data structure in which the element that is inserted first is 
the first one to be taken out. The elements in a queue are added at one end called the rear and 
removed from the other end called the front. Like stacks, queues can be implemented by using 
either arrays or linked lists.
	 Every queue has front and rear variables that point to the position from where deletions and 
insertions can be done, respectively. Consider the queue shown in Fig. 2.4.
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12 9 7 18 14 36

0 1 2 3 5 6 7 8 94

Front Rear

Figure 2.4  Array representation of a queue

	 Here, front = 0 and rear = 5. If we want to add one more value to the list, say, if we want to 
add another element with the value 45, then the rear would be incremented by 1 and the value 
would be stored at the position pointed by the rear. The queue, after the addition, would be as 
shown in Fig. 2.5.
	 Here, front = 0 and rear = 6. Every time a new element is to be added, we will repeat the same 
procedure.

12 9 7 18 14 36

0 1 2 3 5 6 7 8 94

45

Front Rear

Figure 2.5  Queue after insertion of a new element

	 Now, if we want to delete an element from the queue, then the value of front will be incremented. 
Deletions are done only from this end of the queue. The queue after the deletion will be as shown 
in Fig. 2.6.

9 7 18 14 36

0

Front

2 3 5 7 8 94

45

Rear

1 6

Figure 2.6  Queue after deletion of an element

	 However, before inserting an element in the queue, we must check for overflow conditions. An 
overflow occurs when we try to insert an element into a queue that is already full. A queue is full 
when rear = MAX – 1, where MAX is the size of the queue, that is MAX specifies the maximum number 
of elements in the queue. Note that we have written MAX – 1 because the index starts from 0.
	 Similarly, before deleting an element from the queue, we must check for underflow conditions. 
An underflow condition occurs when we try to delete an element from a queue that is already 
empty. If front = NULL and rear = NULL, then there is no element in the queue. 

Trees
A tree is a non-linear data structure which consists of a collection of nodes arranged in a hierarchical 
order. One of the nodes is designated as the root node, and the remaining nodes can be partitioned 
into disjoint sets such that each set is a sub-tree of the root.
	 The simplest form of a tree is a binary tree. A binary tree consists of a root node and left and 
right sub-trees, where both sub-trees are also binary trees. Each node contains a data element, a 
left pointer which points to the left sub-tree, and a right pointer which points to the right sub-tree. 
The root element is the topmost node which is pointed by a ‘root’ pointer. If root = NULL then the 
tree is empty.
  Figure 2.7 shows a binary tree, where R is the root node and T1 and T2 are the left and right sub-
trees of R. If T1 is non-empty, then T1 is said to be the left successor of R. Likewise, if T2 is non-empty, 
then it is called the right successor of R.
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  In Fig. 2.7, node 2 is the left child and node 3 is the right child of the root 
node 1. Note that the left sub-tree of the root node consists of the nodes 2, 
4, 5, 8, and 9. Similarly, the right sub-tree of the root node consists of 
the nodes 3, 6, 7, 10, 11, and 12. 

Note	 Advantage: Provides quick search, insert, and delete operations 
	 Disadvantage: Complicated deletion algorithm

Graphs
A graph is a non-linear data structure which is a collection of vertices (also 
called nodes) and edges that connect these vertices. A graph is often viewed 

as a generalization of the tree structure, where instead of a purely parent-to-child relationship 
between tree nodes, any kind of complex relationships between the nodes can exist.
	 In a tree structure, nodes can have any number of children but only one parent, a graph on the 
other hand relaxes all such kinds of restrictions. Figure 2.8 shows a graph with five nodes.
	 A node in the graph may represent a city and the edges connecting the nodes can represent roads. 
A graph can also be used to represent a computer network where the nodes are workstations and 
the edges are the network connections. Graphs have so many applications in computer science and 
mathematics that several algorithms have been written to perform the standard graph operations, 
such as searching the graph and finding the shortest path between the nodes of a graph.

	 Note that unlike trees, graphs do not have any root node. Rather, every node 
in the graph can be connected with every another node in the graph. When two 
nodes are connected via an edge, the two nodes are known as neighbours. For 
example, in Fig. 2.8, node A has two neighbours: B and D. 

Note	 Advantage: Best models real-world situations 
	 Disadvantage: Some algorithms are slow and very complex

2.3  OPERATIONS ON DATA STRUCTURES
This section discusses the different operations that can be performed on the various data structures 
previously mentioned.
Traversing  It means to access each data item exactly once so that it can be processed. For 
example, to print the names of all the students in a class.
Searching  It is used to find the location of one or more data items that satisfy the given constraint. 
Such a data item may or may not be present in the given collection of data items. For example, 
to find the names of all the students who secured 100 marks in mathematics.
Inserting  It is used to add new data items to the given list of data items. For example, to add 
the details of a new student who has recently joined the course.
Deleting  It means to remove (delete) a particular data item from the given collection of data 
items. For example, to delete the name of a student who has left the course.
Sorting  Data items can be arranged in some order like ascending order or descending order 
depending on the type of application. For example, arranging the names of students in a class in 
an alphabetical order, or calculating the top three winners by arranging the participants’ scores in 
descending order and then extracting the top three.
Merging  Lists of two sorted data items can be combined to form a single list of sorted data items.
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Figure 2.7  Binary tree
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	 Many a time, two or more operations are applied simultaneously in a given situation. For 
example, if we want to delete the details of a student whose name is X, then we first have to 
search the list of students to find whether the record of X exists or not and if it exists then at which 
location, so that the details can be deleted from that particular location.

2.4  ABSTRACT DATA TYPE
An abstract data type (ADT) is the way we look at a data structure, focusing on what it does and 
ignoring how it does its job. For example, stacks and queues are perfect examples of an ADT. We 
can implement both these ADTs using an array or a linked list. This demonstrates the ‘abstract’ 
nature of stacks and queues.
	 To further understand the meaning of an abstract data type, we will break the term into ‘data 
type’ and ‘abstract’, and then discuss their meanings.

Data type  Data type of a variable is the set of values that the variable can take. We have already 
read the basic data types in C include int, char, float, and double.
	 When we talk about a primitive type (built-in data type), we actually consider two things: a data 
item with certain characteristics and the permissible operations on that data. For example, an int 
variable can contain any whole-number value from –32768 to 32767 and can be operated with the 
operators +, –, *, and /. In other words, the operations that can be performed on a data type are an 
inseparable part of its identity. Therefore, when we declare a variable of an abstract data type (e.g., 
stack or a queue), we also need to specify the operations that can be performed on it.

Abstract  The word ‘abstract’ in the context of data structures means considered apart from the 
detailed specifications or implementation.
	 In C, an abstract data type can be a structure considered without regard to its implementation. 
It can be thought of as a ‘description’ of the data in the structure with a list of operations that can 
be performed on the data within that structure.
	 The end-user is not concerned about the details of how the methods carry out their tasks. They 
are only aware of the methods that are available to them and are only concerned about calling 
those methods and getting the results. They are not concerned about how they work.
	 For example, when we use a stack or a queue, the user is concerned only with the type of data 
and the operations that can be performed on it. Therefore, the fundamentals of how the data is 
stored should be invisible to the user. They should not be concerned with how the methods work 
or what structures are being used to store the data. They should just know that to work with stacks, 
they have push() and pop() functions available to them. Using these functions, they can manipulate 
the data (insertion or deletion) stored in the stack.

Advantage of using ADTs
In the real world, programs evolve as a result of new requirements or constraints, so a modification 
to a program commonly requires a change in one or more of its data structures. For example, if 
you want to add a new field to a student’s record to keep track of more information about each 
student, then it will be better to replace an array with a linked structure to improve the program’s 
efficiency. In such a scenario, rewriting every procedure that uses the changed structure is not 
desirable. Therefore, a better alternative is to separate the use of a data structure from the details 
of its implementation. This is the principle underlying the use of abstract data types.

2.5  ALGORITHMS
The typical definition of algorithm is ‘a formally defined procedure for performing some 
calculation’. If a procedure is formally defined, then it can be implemented using a formal language, 
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and such a language is known as a programming language. In general terms, an algorithm provides 
a blueprint to write a program to solve a particular problem. It is considered to be an effective 
procedure for solving a problem in finite number of steps. That is, a well-defined algorithm always 
provides an answer and is guaranteed to terminate.
	 Algorithms are mainly used to achieve software reuse. Once we have an idea or a blueprint of 
a solution, we can implement it in any high-level language like C, C++, or Java.
	 An algorithm is basically a set of instructions that solve a problem. It is not uncommon to have 
multiple algorithms to tackle the same problem, but the choice of a particular algorithm must 
depend on the time and space complexity of the algorithm. 

2.6  DIFFERENT APPROACHES TO DESIGNING AN ALGORITHM
Algorithms are used to manipulate the data contained in data structures. When working with data 
structures, algorithms are used to perform operations on the stored data.
	 A complex algorithm is often divided into smaller units called modules. This process of dividing 
an algorithm into modules is called modularization. The key advantages of modularization are as 
follows:
	 ∑	 It makes the complex algorithm simpler to design and implement.
	 ∑	 Each module can be designed independently. While designing one module, the details of 

other modules can be ignored, thereby enhancing clarity in design which in turn simplifies 
implementation, debugging, testing, documenting, and maintenance of the overall algorithm.

There are two main approaches to design an algorithm—top-down approach and bottom-up 
approach, as shown in Fig. 2.9.

Complex algorithm

Module 1 Module 2 Module n

Top-down

approach

Bottom-up

approach

Each module can be divided into one or more sub-modules

Figure 2.9  Different approaches of designing an algorithm

Top-down approach  A top-down design approach starts by dividing the complex algorithm into 
one or more modules. These modules can further be decomposed into one or more sub-modules, 
and this process of decomposition is iterated until the desired level of module complexity is 
achieved. Top-down design method is a form of stepwise refinement where we begin with the 
topmost module and incrementally add modules that it calls.
	 Therefore, in a top-down approach, we start from an abstract design and then at each step, 
this design is refined into more concrete levels until a level is reached that requires no further 
refinement.
Bottom-up approach  A bottom-up approach is just the reverse of top-down approach. In the 
bottom-up design, we start with designing the most basic or concrete modules and then proceed 
towards designing higher level modules. The higher level modules are implemented by using the 
operations performed by lower level modules. Thus, in this approach sub-modules are grouped 
together to form a higher level module. All the higher level modules are clubbed together to form 
even higher level modules. This process is repeated until the design of the complete algorithm 
is obtained.
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Top-down vs bottom-up approach  Whether the top-down strategy should be followed or a 
bottom-up is a question that can be answered depending on the application at hand.
	 While top-down approach follows a stepwise refinement by decomposing the algorithm into 
manageable modules, the bottom-up approach on the other hand defines a module and then groups 
together several modules to form a new higher level module.
	 Top-down approach is highly appreciated for ease in documenting the modules, generation 
of test cases, implementation of code, and debugging. However, it is also criticized because the 
sub-modules are analysed in isolation without concentrating on their communication with other 
modules or on reusability of components and little attention is paid to data, thereby ignoring the 
concept of information hiding.
	 Although the bottom-up approach allows information hiding as it first identifies what has to 
be encapsulated within a module and then provides an abstract interface to define the module’s 
boundaries as seen from the clients. But all this is difficult to be done in a strict bottom-up strategy. 
Some top-down activities need to be performed for this.
	 All in all, design of complex algorithms must not be constrained to proceed according to a 
fixed pattern but should be a blend of top-down and bottom-up approaches.

2.7  CONTROL STRUCTURES USED IN ALGORITHMS
An algorithm has a finite number of steps. Some steps may involve decision-making and repetition. 
Broadly speaking, an algorithm may employ one of the following control structures: (a) sequence, 
(b) decision, and (c) repetition.

Sequence
By sequence, we mean that each step of an algorithm is 
executed in a specified order. Let us write an algorithm to 
add two numbers. This algorithm performs the steps in a 
purely sequential order, as shown in Fig. 2.10.

Decision
Decision statements are used when the execution of a 
process depends on the outcome of some condition. For 

example, if x = y, then print EQUAL. So the general form of IF construct can be given as:
IF condition Then process

A condition in this context is any statement that may evaluate to either a true value or a false value. 
In the above example, a variable x can be either equal to y or not equal to y. However, it cannot 
be both true and false. If the condition is true, then the process is executed.
A decision statement can also be stated in the following manner:

IF condition
	 Then process1
ELSE	 process2

This form is popularly known as the IF–ELSE construct. Here, if the condition is true, then process1 
is executed, else process2 is executed. Figure 2.11 shows an algorithm to check if two numbers 
are equal.

Repetition
Repetition, which involves executing one or more steps for a number of times, can be implemented 
using constructs such as while, do–while, and for loops. These loops execute one or more steps 
until some condition is true. Figure 2.12 shows an algorithm that prints the first 10 natural numbers.

Step 1: Input first number as A

Step 2: Input second number as B

Step 3: SET SUM = A+B

Step 4: PRINT SUM

Step 5: END

Figure 2.10  Algorithm to add two numbers
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Figure 2.11  Algorithm to test for equality of	 Figure 2.12  Algorithm to print the first 10 natural of 

two numbers

Programming Examples

1.	 Write an algorithm for swapping two values.
Step 1: Input first number as A
Step 2: Input second number as B
Step 3: SET TEMP = A
Step 4: SET A = B
Step 5: SET B = TEMP
Step 6: PRINT A, B
Step 7: END

2.	 Write an algorithm to find the larger of two numbers.
Step 1: Input first number as A
Step 2: 	Input second number as B
Step 3: IF A>B
		  PRINT A
	 ELSE
		  IF A<B
		  PRINT B
	 ELSE
		  PRINT "The numbers are equal"
		  [END OF IF]
	 [END OF IF]
Step 4: END

3.	 Write an algorithm to find whether a number is even or odd.
Step 1: Input number as A
Step 2: IF A%2 =0
		  PRINT "EVEN"
	 ELSE
		  PRINT "ODD"
	 [END OF IF]
Step 3: END

4.	 Write an algorithm to print the grade obtained by a student using the following rules.
Step 1: Enter the Marks obtained as M
Step 2: IF M>75
		  PRINT O
Step 3: IF M>=60 AND M<75
		  PRINT A
Step 4: IF M>=50 AND M<60
		  PRINT B
Step 5: IF M>=40 AND M<50
		  PRINT C
	 ELSE
		  PRINT D

Marks Grade

Above 75 O

60–75 A

50–59 B

40–49 C

Less then 40 D
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	 [END OF IF]
Step 6: END

5.	 Write an algorithm to find the sum of first N natural numbers.
Step 1: Input N
Step 2: SET I = 1, SUM = 0
Step 3: Repeat Step 4 while I <= N
Step 4:		 SET SUM = SUM + I
		  SET I = I + 1
	 [END OF LOOP]
Step 5: PRINT SUM
Step 6: END

2.8  TIME AND SPACE COMPLEXITY
Analysing an algorithm means determining the amount of resources (such as time and memory) 
needed to execute it. Algorithms are generally designed to work with an arbitrary number of inputs, 
so the efficiency or complexity of an algorithm is stated in terms of time and space complexity.
	 The time complexity of an algorithm is basically the running time of a program as a function of 
the input size. Similarly, the space complexity of an algorithm is the amount of computer memory 
that is required during the program execution as a function of the input size.
	 In other words, the number of machine instructions which a program executes is called its 
time complexity. This number is primarily dependent on the size of the program’s input and the 
algorithm used.
	 Generally, the space needed by a program depends on the following two parts:
	 ∑	 Fixed part: It varies from problem to problem. It includes the space needed for storing 

instructions, constants, variables, and structured variables (like arrays and structures).
	 ∑	 Variable part: It varies from program to program. It includes the space needed for recursion 

stack, and for structured variables that are allocated space dynamically during the runtime 
of a program.

However, running time requirements are more critical than memory requirements. Therefore, in 
this section, we will concentrate on the running time efficiency of algorithms.

2.8.1  Worst-case, Average-case, Best-case, and Amortized Time Complexity
Worst-case running time  This denotes the behaviour of an algorithm with respect to the worst-
possible case of the input instance. The worst-case running time of an algorithm is an upper bound 
on the running time for any input. Therefore, having the knowledge of worst-case running time 
gives us an assurance that the algorithm will never go beyond this time limit.
Average-case running time  The average-case running time of an algorithm is an estimate of 
the running time for an ‘average’ input. It specifies the expected behaviour of the algorithm when 
the input is randomly drawn from a given distribution. Average-case running time assumes that 
all inputs of a given size are equally likely.
Best-case running time  The term ‘best-case performance’ is used to analyse an algorithm under 
optimal conditions. For example, the best case for a simple linear search on an array occurs when 
the desired element is the first in the list. However, while developing and choosing an algorithm to solve 
a problem, we hardly base our decision on the best-case performance. It is always recommended 
to improve the average performance and the worst-case performance of an algorithm.
Amortized running time  Amortized running time refers to the time required to perform a 
sequence of (related) operations averaged over all the operations performed. Amortized analysis 
guarantees the average performance of each operation in the worst case.
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2.8.2  Time–Space Trade-off
The best algorithm to solve a particular problem at hand is no doubt the one that requires less 
memory space and takes less time to complete its execution. But practically, designing such an 
ideal algorithm is not a trivial task. There can be more than one algorithm to solve a particular 
problem. One may require less memory space, while the other may require less CPU time to 
execute. Thus, it is not uncommon to sacrifice one thing for the other. Hence, there exists a 
time–space trade-off among algorithms.
	 So, if space is a big constraint, then one might choose a program that takes less space at the 
cost of more CPU time. On the contrary, if time is a major constraint, then one might choose a 
program that takes minimum time to execute at the cost of more space.

2.8.3  Expressing Time and Space Complexity
The time and space complexity can be expressed using a function f(n) where n is the input size 
for a given instance of the problem being solved. Expressing the complexity is required when
	 ∑	 We want to predict the rate of growth of complexity as the input size of the problem increases.
	 ∑	 There are multiple algorithms that find a solution to a given problem and we need to find the 

algorithm that is most efficient.
The most widely used notation to express this function f(n) is the Big O notation. It provides the 
upper bound for the complexity.

2.8.4  Algorithm Efficiency
If a function is linear (without any loops or recursions), the efficiency of that algorithm or the 
running time of that algorithm can be given as the number of instructions it contains. However, 
if an algorithm contains loops, then the efficiency of that algorithm may vary depending on the 
number of loops and the running time of each loop in the algorithm.
	 Let us consider different cases in which loops determine the efficiency of an algorithm.

Linear Loops
To calculate the efficiency of an algorithm that has a single loop, we need to first determine 
the number of times the statements in the loop will be executed. This is because the number of 
iterations is directly proportional to the loop factor. Greater the loop factor, more is the number 
of iterations. For example, consider the loop given below:

for(i=0;i<100;i++)

	 statement block;

	 Here, 100 is the loop factor. We have already said that efficiency is directly proportional to the 
number of iterations. Hence, the general formula in the case of linear loops may be given as

f(n) = n

However calculating efficiency is not as simple as is shown in the above example. Consider the 
loop given below:

for(i=0;i<100;i+=2)
	  statement block;

Here, the number of iterations is half the number of the loop factor. So, here the efficiency can be 
given as

f(n) = n/2
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Logarithmic Loops
We have seen that in linear loops, the loop updation statement either adds or subtracts the 
loop-controlling variable. However, in logarithmic loops, the loop-controlling variable is either 
multiplied or divided during each iteration of the loop. For example, look at the loops given below:

for(i=1;i<1000;i*=2)			  for(i=1000;i>=1;i/=2)
	 statement block;			   statement block;

	 Consider the first for loop in which the loop-controlling variable i is multiplied by 2. The 
loop will be executed only 10 times and not 1000 times because in each iteration the value of i 
doubles. Now, consider the second loop in which the loop-controlling variable i is divided by 2. 
In this case also, the loop will be executed 10 times. Thus, the number of iterations is a function 
of the number by which the loop-controlling variable is divided or multiplied. In the examples 
discussed, it is 2. That is, when n = 1000, the number of iterations can be given by log 1000 which 
is approximately equal to 10.
	 Therefore, putting this analysis in general terms, we can conclude that the efficiency of loops 
in which iterations divide or multiply the loop-controlling variables can be given as

f(n) = log n

Nested Loops
Loops that contain loops are known as nested loops. In order to analyse nested loops, we need to 
determine the number of iterations each loop completes. The total is then obtained as the product 
of the number of iterations in the inner loop and the number of iterations in the outer loop.
	 In this case, we analyse the efficiency of the algorithm based on whether it is a linear logarithmic, 
quadratic, or dependent quadratic nested loop.
Linear logarithmic loop  Consider the following code in which the loop-controlling variable of 
the inner loop is multiplied after each iteration. The number of iterations in the inner loop is log 
10. This inner loop is controlled by an outer loop which iterates 10 times. Therefore, according to 
the formula, the number of iterations for this code can be given as 10 log 10.

for(i=0;i<10;i++)
	 for(j=1; j<10;j*=2)
		  statement block;

In more general terms, the efficiency of such loops can be given as f(n) = n log n.
Quadratic loop  In a quadratic loop, the number of iterations in the inner loop is equal to the 
number of iterations in the outer loop. Consider the following code in which the outer loop 
executes 10 times and for each iteration of the outer loop, the inner loop also executes 10 times. 
Therefore, the efficiency here is 100.

for(i=0;i<10;i++)
	 for(j=0; j<10;j++)
		  statement block;

The generalized formula for quadratic loop can be given as f(n) = n2.
Dependent quadratic loop  In a dependent quadratic loop, the number of iterations in the inner 
loop is dependent on the outer loop. Consider the code given below:

for(i=0;i<10;i++)
	 for(j=0; j<=i;j++)
		  statement block;

In this code, the inner loop will execute just once in the first iteration, twice in the second 
iteration, thrice in the third iteration, so on and so forth. In this way, the number of iterations can 
be calculated as
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1 + 2 + 3 + ... + 9 + 10 = 55

If we calculate the average of this loop (55/10 = 5.5), we will observe that it is equal to the number 
of iterations in the outer loop (10) plus 1 divided by 2. In general terms, the inner loop iterates (n 
+ 1)/2 times. Therefore, the efficiency of such a code can be given as

f(n) = n (n + 1)/2

2.9  BIG O NOTATION
In today’s era of massive advancement in computer technology, we are hardly concerned about 
the efficiency of algorithms. Rather, we are more interested in knowing the generic order of 
the magnitude of the algorithm. If we have two different algorithms to solve the same problem  
where one algorithm executes in 10 iterations and the other in 20 iterations, the difference between 
the two algorithms is not much. However, if the first algorithm executes in 10 iterations and the 
other in 1000 iterations, then it is a matter of concern.
	 We have seen that the number of statements executed in the program for n elements of the data 
is a function of the number of elements, expressed as f(n). Even if the expression derived for a 
function is complex, a dominant factor in the expression is sufficient to determine the order of 
the magnitude of the result and, hence, the efficiency of the algorithm. This factor is the Big O, 
and is expressed as O(n).
	 The Big O notation, where O stands for ‘order of’, is concerned with what happens for very 
large values of n. For example, if a sorting algorithm performs n2 operations to sort just n elements, 
then that algorithm would be described as an O(n2) algorithm.
	 When expressing complexity using the Big O notation, constant multipliers are ignored. So, 
an O(4n) algorithm is equivalent to O(n), which is how it should be written.
	 If f(n) and g(n) are the functions defined on a positive integer number n, then

f(n) = O(g(n))

That is, f of n is Big–O of g of n if and only if positive constants c and n exist, such that 
f(n) £ cg(n). It means that for large amounts of data, f(n) will grow no more than a constant factor 
than g(n). Hence, g provides an upper bound. Note that here c is a constant which depends on the 
following factors:
	 ∑	 the programming language used,
	 ∑	 the quality of the compiler or interpreter,
	 ∑	 the CPU speed,
	 ∑	 the size of the main memory and the access time to it,
	 ∑	 the knowledge of the programmer, and
	 ∑	 the algorithm itself, which may require simple but also time-consuming machine instructions.
	 We have seen that the Big O notation provides a strict upper bound for f(n). This means that 
the function f(n) can do better but not worse than the specified value. Big O notation is simply 
written as f(n) ∈ O(g(n)) or as f(n) = O(g(n)).
	 Here, n is the problem size and O(g(n)) = {h(n): ∃ positive constants c, n0 such that 0 ≤ h 
(n) ≤ cg(n), ∀ n ≥ n0}. Hence, we can say that O(g(n)) comprises a set of all the functions h(n) 
that are less than or equal to cg(n) for all values of n ≥ n0.

If f(n) ≤ cg(n), c > 0, ∀ n ≥ n0, then f(n) = O(g(n)) and g(n) is an asymptotically tight upper 
bound for f(n).

Examples of functions in O(n3) include: n2.9, n3, n3 + n, 540n3 + 10.
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Examples of functions not in O(n3) include: n3.2, n2, n2 + n, 540n + 10, 2n
To summarize, 
	 •	 Best case O describes an upper bound for all combinations of input. It is possibly lower than 

the worst case. For example, when sorting an array the best case is when the array is already 
correctly sorted.

	 •	 Worst case O describes a lower bound for worst case input combinations. It is possibly greater 
than the best case. For example, when sorting an array the worst case is when the array is 
sorted in reverse order.

•	 If we simply write O, it means same as worst case O.
  Now let us look at some examples of g(n) and f(n). Table 
2.1 shows the relationship between g(n) and f(n). Note that 
the constant values will be ignored because the main purpose 
of the Big O notation is to analyse the algorithm in a general 
fashion, so the anomalies that appear for small input sizes are 
simply ignored.

Categories of Algorithms
According to the Big O notation, we have five different categories of algorithms:

	 ∑	 Constant time algorithm: running time complexity given as O(1)
	 ∑	 Linear time algorithm: running time complexity given as O(n)
	 ∑	 Logarithmic time algorithm: running time complexity given as O(log n)
	 ∑	 Polynomial time algorithm: running time complexity given as O(nk) where k > 1
	 ∑	 Exponential time algorithm: running time complexity given as O(2n)

Table 2.2 shows the number of operations that would be performd for various values of n.

Table 2.2  Number of operations for different functions of n

n O(1) O(log n) O(n) O(n log n) O(n2) O(n3)
1 1 1 1 1 1 1
2 1 1 2 2 4 8
4 1 2 4 8 16 64
8 1 3 8 24 64 512
16 1 4 16 64 256 4096

Example 2.1  Show that 4n2 = O(n3).
Solution  By definition, we have

0 ≤ h(n) ≤ cg(n)
Substituting 4n2 as h(n) and n3 as g(n), we get

0 ≤ 4n2 ≤ cn3

Dividing by n3

0/n3 ≤ 4n2/n3 ≤ cn3/n3

0 ≤ 4/n ≤ c
Now to determine the value of c, we see that 4/n is maximum when n=1. Therefore, c=4.
To determine the value of n0,

0 ≤ 4/n0 ≤ 4
0 ≤ 4/4 ≤ n0

Table 2.1  Examples of f(n) and g(n)

g(n) f(n) = O(g(n))

10 O(1)

2n3 + 1 O(n3)

3n2 + 5 O(n2)

2n3 + 3n2 + 5n – 10 O(n3)



Introduction to Data Structures and Algorithms  59

0 ≤ 1 ≤ n0 

This means n0=1. Therefore, 0 ≤ 4n2 ≤ 4n3
, ∀ n ≥ n0=1.

Example 2.2  Show that 400n3 + 20n2 = O(n3).

Solution  By definition, we have
0 ≤ h(n) ≤ cg(n)

Substituting 400n3 + 20n2 as h(n) and n3 as g(n), we get
0 ≤ 400n3 + 20n2 ≤ cn3

Dividing by n3

0/n3 ≤ 400n3/n3 + 20n2/n3 ≤ cn3/n3

0 ≤ 400 + 20/n ≤ c
Note that 20/n → 0 as n → ∞, and 20/n is maximum when n = 1. Therefore,

0 ≤ 400 + 20/1 ≤ c
This means, c = 420
To determine the value of n0,

0 ≤ 400 + 20/n0 ≤ 420
–400 ≤ 400 + 20/n0 – 400 ≤ 420 – 400
–400 ≤ 20/n0 ≤ 20
–20 ≤ 1/n0 ≤ 1
–20 n0 ≤ 1 ≤ n0. This implies n0 = 1.

Hence, 0 ≤ 400n3 + 20n2 ≤ 420n3  ∀ n ≥ n0=1.

Example 2.3  Show that n = O(nlogn).
Solution  By definition, we have

0 ≤ h(n) ≤ cg(n)
Substituting n as h(n) and nlogn as g(n), we get

0 ≤ n ≤ c n log n
Dividing by nlogn, we get

0/n log n ≤ n/n log n ≤ c n log n/ n log n
0 ≤ 1/log n ≤ c

We know that 1/log n → 0 as n → ∞
To determine the value of c, it is clearly evident that 1/log n is greatest when n=2. Therefore, 

0 ≤ 1/log 2 ≤ c = 1. Hence c = 1.
To determine the value of n0, we can write

0 ≤ 1/log n0 ≤ 1
0 ≤ 1≤ log n0

Now, log n0 = 1, when n0 = 2.

Hence, 0 ≤ n ≤ cn log n when c= 1 and ∀ n ≥ n0=2.

Example 2.4  Show that 10n3 + 20n ≠ O(n2).

Solution  By definition, we have
0 ≤ h(n) ≤ cg(n)

Substituting 10n3 + 20n as h(n) and n2 as g(n), we get
0 ≤ 10n3 + 20n ≤ cn2

Dividing by n2

0/n2 ≤ 10n3/n2 + 20n/n2 ≤ cn2/n2

0 ≤ 10n + 20/n ≤ c
0 ≤ (10n2 + 20)/n ≤ c

Hence, 10n3 + 20n ≠ O2(n2)
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Limitations of Big O Notation
There are certain limitations with the Big O notation of expressing the complexity of algorithms. 
These limitations are as follows:
	 ∑	 Many algorithms are simply too hard to analyse mathematically.
	 ∑	 There may not be sufficient information to calculate the behaviour of the algorithm in the 

average case.
	 ∑	 Big O analysis only tells us how the algorithm grows with the size of the problem, not how 

efficient it is, as it does not consider the programming effort.
	 ∑	 It ignores important constants. For example, if one algorithm takes O(n2) time to execute and 

the other takes O(100000n2) time to execute, then as per Big O, both algorithm have equal time 
complexity. In real-time systems, this may be a serious consideration.

2.10  OMEGA NOTATION (Ω)
The Omega notation provides a tight lower bound for f(n). This means that the function can never 
do better than the specified value but it may do worse. 
Ω notation is simply written as, f(n) ∈ Ω(g(n)), where n is the problem size and 
Ω(g(n)) = {h(n): ∃ positive constants c > 0, n0 such that 0 ≤ cg(n) ≤ h(n), ∀ n ≥ n0}. 
	 Hence, we can say that Ω(g(n)) comprises a set of all the functions h(n) that are greater than 
or equal to cg(n) for all values of n ≥ n0.

If cg(n) ≤ f(n), c > O, ∀ n ≥ nO, then f(n) ∈ Ω(g(n)) and g(n) is an asymptotically tight 
lower bound for  f(n).

Examples of functions in Ω(n2) include: n2, n2.9, n3 + n2, n3 
Examples of functions not in Ω(n3) include: n, n2.9, n2 
To summarize, 
	 •	 Best case Ω describes a lower bound for all combinations of input. This implies that the 

function can never get any better than the specified value. For example, when sorting an 
array the best case is when the array is already correctly sorted.

	 •	 Worst case Ω describes a lower bound for worst case input combinations. It is possibly greater 
than best case. For example, when sorting an array the worst case is when the array is sorted 
in reverse order.

	 •	 If we simply write Ω, it means same as best case Ω.

Example 2.5  Show that 5n2 + 10n = Ω(n2).
Solution  By the definition, we can write

0 ≤ cg(n) ≤ h(n)
0 ≤ cn2 ≤ 5n2 + 10n

Dividing by n2

0/n2 ≤ cn2/n2 ≤ 5n2/n2 + 10n/n2

0 ≤ c ≤ 5 + 10/n

Now, lim
nÆ•

5 +10/n = 5. 

Therefore, 0 ≤ c ≤ 5. 
Hence, c = 5
Now to determine the value of n0

0 ≤ 5 ≤ 5 + 10/n0
–5 ≤ 5 – 5 ≤ 5 + 10/n0 – 5
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–5 ≤ 0 ≤ 10/n0

So n0 = 1 as lim
nÆ•

1/n = 0
Hence, 5n2 + 10n = Ω(n2) for c=5 and ∀ n ≥ nO=1.

Example 2.6  Show that 7n ≠ Ω(n2).
Solution  By the definition, we can write

0 ≤ cg(n) ≤ h(n)
0 ≤ cn2 ≤ 7n

Dividing by n2, we get
0/n2 ≤ cn2/n2 ≤ 7n/n2

0 ≤ c ≤ 7/n
Thus, from the above statement, we see that the value of c depends on the value of n. There does 
not exist a value of n0 that satisfies the condition as n increases. This could fairly be possible if  
c = 0 but it is not allowed as the definition by itself says that lim

nÆ•
 1 / n = 0.

2.11  THETA NOTATION (Q)
Theta notation provides an asymptotically tight bound for f(n). Θ notation is simply written as, 
f(n) ∈ Θ(g(n)), where n is the problem size and 
Θ(g(n)) = {h(n): ∃ positive constants c1, c2, and n0 such that 0 ≤ c1g(n) ≤ h(n) ≤ c2g(n), ∀ n ≥ n0}. 
	 Hence, we can say that Θ(g(n)) comprises a set of all the functions h(n) that are between c1g(n) 
and c2g(n) for all values of n ≥ n0.

If f(n) is between c1g(n) and c2g(n),  ∀ n ≥ n0, then f(n) ∈ Θ(g(n)) and g(n) is an asymptotically 
tight bound for f(n) and f(n) is amongst h(n) in the set.

To summarize, 
	 •	 The best case in Θ notation is not used.
	 •	 Worst case Θ describes asymptotic bounds for worst case combination of input values. 
	 •	 If we simply write Θ, it means same as worst case Θ.

Example 2.7  Show that n2/2 – 2n = Θ(n2).
Solution  By the definition, we can write

c1g(n) ≤ h(n) ≤ c2g(n)
c1n

2 ≤ n2/2 – 2n ≤ c2n
2

Dividing by n2, we get
c1n

2/n2 ≤ n2/2n2 – 2n/n2 ≤ c2n
2/n2

c1
 ≤ 1/2 – 2/n ≤ c2

This means c2 = 1/2 because lim
nÆ•

 1/2 – 2/n = 1/2 (Big O notation)
To determine c1 using Ω notation, we can write

0 < c1 ≤ 1/2 – 2/n
We see that 0 < c1 is minimum when n = 5. Therefore,

0 < c1 ≤ 1/2 – 2/5
Hence, c1 = 1/10
Now let us determine the value of n0

1/10 ≤ 1/2 – 2/n0 ≤ 1/2
2/n0 ≤ 1/2 – 1/10 ≤ 1/2
2/n0 ≤ 2/5 ≤ 1/2
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n0 ≥ 5
You may verify this by substituting the values as shown below.

c1n
2 ≤ n2/2 – 2n ≤ c2n

2

c1 = 1/10, c2 = 1/2 and n0 = 5
1/10(25) ≤ 25/2 – 20/2 ≤ 25/2
5/2 ≤ 5/2 ≤ 25/2

Thus, in general, we can write, 1/10n2 ≤ n2/2 – 2n ≤ 1/2n2 for n ≥ 5.

2.12  OTHER USEFUL NOTATIONS
There are other notations like little o notation and little ω notation which have been discussed below.

Little o Notation
This notation provides a non-asymptotically tight upper bound for f(n). To express a function 
using this notation, we write 
f(n) ∈ o(g(n)) where
o(g(n)) = {h(n) : ∃ positive constants c, n0 such that for any c > 0, n0 > 0, and 0 ≤ h(n) ≤ cg(n),  
∀ n ≥ n0}.
This is unlike the Big O notation where we say for some c > 0 (not any). For example, 5n3 = O(n3) 
is asymptotically tight upper bound but 5n2 = o(n3) is non-asymptotically tight bound for f(n).
Examples of functions in o(n3) include: n2.9, n3 / log n, 2n2 
Examples of functions not in o(n3) include: 3n3, n3, n3 / 1000

Example 2.8  Show that n3 / 1000 ≠ o(n3).
Solution  By definition, we have
0 ≤ h(n) < cg(n), for any constant c > 0

0 ≤ n3 / 1000 ≤ cn3

This is in contradiction with selecting any c < 1/1000.

An imprecise analogy between the asymptotic comparison of functions f(n) and g(n) and the 
relation between their values can be given as:
f(n) = O(g(n))  ≈  f(n) ≤ g(n)    f(n) = o(g(n))  ≈  f(n) < g(n)    f(n) = Θ(g(n))  ≈  f(n) = g(n)

Little Omega Notation (w)
This notation provides a non-asymptotically tight lower bound for f(n). It can be simply written as,
f(n) ∈ ω(g(n)), where
ω(g(n)) = {h(n) : ∃ positive constants c, n0 such that for any c > 0, n0 > 0, and 0 ≤ cg(n) < h(n),∀ n ≥ n0}.
This is unlike the Ω notation where we say for some c > 0 (not any). For example, 5n3 = Ω(n3) 
is asymptotically tight upper bound but 5n2 = ω(n3) is non-asymptotically tight bound for f(n).
Example of functions in ω(g(n)) include: n3 = ω(n2), n3.001 = ω(n3), n2logn = ω(n2)
Example of a function not in ω(g(n)) is 5n2 ≠ ω(n2) (just as 5≠5)

Example 2.9  Show that 50n3/100 ≠ ω(n3).
Solution  By definition, we have
0 ≤ cg(n) < h(n) , for any constant c > 0

0 ≤ cn3 < 50n3/100
Dividing by n3, we get
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0 ≤ c < 50/100
This is a contradictory value as for any value of c as it cannot be assured to be less than 50/100 
or 1/2.

An imprecise analogy between the asymptotic comparison of functions f(n) and g(n) and the 
relation between their values can be given as:
f(n) = Ω(g(n))  ≈  f(n) ≥ g(n)			   f(n) = ω(g(n))  ≈ f(n) > g(n)

 Points to Remember

•	 A data structure is a particular way of storing and 
organizing data either in computer’s memory or on 
the disk storage so that it can be used efficiently.

•	 There are two types of data structures: primitive 
and non-primitive data structures. Primitive data 
structures are the fundamental data types which 
are supported by a programming language. Non-
primitive data structures are those data structures 
which are created using primitive data structures.

•	 Non-primitive data structures can further be 
classified into two categories: linear and non-linear 
data structures. 

•	 If the elements of a data structure are stored in 
a linear or sequential order, then it is a linear  
data structure. However, if the elements of a data 
structure are not stored in sequential order, then it 
is a non-linear data structure. 

•	 An array is a collection of similar data elements 
which are stored in consecutive memory locations.

•	 A linked list is a linear data structure consisting of 
a group of elements (called nodes) which together 
represent a sequence.

•	 A stack is a last-in, first-out (LIFO) data structure in 
which insertion and deletion of elements are done at 
only one end, which is known as the top of the stack. 

•	 A queue is a first-in, first-out (FIFO) data structure 
in which the element that is inserted first is the first 
to be taken out. The elements in a queue are added at 
one end called the rear and removed from the other 
end called the front.

•	 A tree is a non-linear data structure which consists 
of a collection of nodes arranged in a hierarchical 
tree structure. 

•	 The simplest form of a tree is a binary tree. A binary 
tree consists of a root node and left and right sub-
trees, where both sub-trees are also binary trees. 

•	 A graph is often viewed as a generalization of the tree 
structure, where instead of a purely parent-to-child 
relationship between tree nodes, any kind of complex 
relationships can exist between the nodes.

•	 An abstract data type (ADT) is the way we look at a 
data structure, focusing on what it does and ignoring 
how it does its job. 

•	 An algorithm is basically a set of instructions that 
solve a problem. 

•	 The time complexity of an algorithm is basically 
the running time of the program as a function of the 
input size. 

•	 The space complexity of an algorithm is the amount 
of computer memory required during the program 
execution as a function of the input size. 

•	 The worst-case running time of an algorithm is an 
upper bound on the running time for any input.

•	 The average-case running time specifies the expected 
behaviour of the algorithm when the input is 
randomly drawn from a given distribution.

•	 Amortized analysis guarantees the average perfor-
mance of each operation in the worst case. 

•	 The efficiency of an algorithm is expressed in terms 
of the number of elements that has to be processed 
and the type of the loop that is being used.

 Exercises

Review Questions
	 1.	 Explain the features of a good program. 	 2.	 Define the terms: data, file, record, and primary 

key.
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	 3.	 Define data structures. Give some examples.
	 4.	 In how many ways can you categorize data 

structures? Explain each of them.
	 5.	 Discuss the applications of data structures.
	 6.	 Write a short note on different operations that can 

be performed on data structures.
	 7.	 Compare a linked list with an array.
	 8.	 Write a short note on abstract data type.
	 9.	 Explain the different types of data structures. Also 

discuss their merits and demerits.
	 10.	 Define an algorithm. Explain its features with the 

help of suitable examples.
	 11.	 Explain and compare the approaches for designing 

an algorithm.
	 12.	 What is modularization? Give its advantages.
	 13.	 Write a brief note on trees as a data structure.
	 14.	 What do you understand by a graph?
	 15.	 Explain the criteria that you will keep in mind 

while choosing an appropriate algorithm to solve 
a particular problem.

	 16.	 What do you understand by time–space trade-off?
	 17.	 What do you understand by the efficiency of an 

algorithm?
	 18.	 How will you express the time complexity of a 

given algorithm?
	 19.	 Discuss the significance and limitations of the Big O  

notation.
	 20.	 Discuss the best case, worst case, average case, 

and amortized time complexity of an algorithm.
	 21.	 Categorize algorithms based on their running time 

complexity.
	 22.	 Give examples of functions that are in Big O 

notation as well as functions that are not in Big 
O notation.

	 23.	 Explain the little o notation.
	 24.	 Give examples of functions that are in little o 

notation as well as functions that are not in little 
o notation.

	 25.	 Differentiate between Big O and little o notations.
	 26.	 Explain the Ω notation.
	 27.	 Give examples of functions that are in Ω notation 

as well as functions that are not in Ω notation.
	 28.	 Explain the Θ notation.
	 29.	 Give examples of functions that are in Θ notation 

as well as functions that are not in Θ notation.
	 30.	 Explain the ω notation.
	 31.	 Give examples of functions that are in ω notation 

as well as functions that are in ω notation.

	 32.	 Differentiate between Big omega and little omega 
notations.

	 33.	 Show that n2 + 50n = O(n2). 
	 34.	 Show that n2+n2+n2 = 3n2 = O(n3).
	 35.	 Prove that n3 ≠ O(n2).
	 36. 	Show that √n = Ω(lg n).
	 37.	 Prove that 3n + 5 ≠ Ω(n2).
	 38.	 Show that ½n2 – 3n ∈ Θ(n2).

Multiple-choice Questions
	 1.	 Which data structure is defined as a collection of 

similar data elements?
	 (a)	 Arrays	 (b)	 Linked lists
	 (c)	 Trees	 (d)	 Graphs
	 2.	 The data structure used in hierarchical data model 

is
	 (a)	 Array	 (b)	 Linked list
	 (c)	 Tree	 (d)	 Graph
	 3.	 In a stack, insertion is done at
	 (a)	 Top	 (b)	 Front
	 (c)	 Rear	 (d)	 Mid
	 4.	 The position in a queue from which an element is 

deleted is called as
	 (a)	 Top	 (b)	 Front
	 (c)	 Rear	 (d)	 Mid
	 5.	 Which data structure has fixed size?
	 (a)	 Arrays	 (b)	 Linked lists
	 (c)	 Trees	 (d)	 Graphs
	 6.	 If TOP = MAX–1, then that the stack is
	 (a)	 Empty	 (b)	 Full
	 (c)	 Contains some data	(d)	 None of these
	 7.	 Which among the following is a LIFO data 

structure?
	 (a)	 Stacks	 (b)	 Linked lists
	 (c)	 Queues	 (d)	 Graphs
	 8.	 Which data structure is used to represent complex 

relationships between the nodes?
	 (a)	 Arrays	 (b)	 Linked lists
	 (c)	 Trees	 (d)	 Graphs
	 9.	 Examples of linear data structures include
	 (a)	 Arrays	 (b)	 Stacks
	 (c)	 Queues	 (d)	 All of these
	 10.	 The running time complexity of a linear time 

algorithm is given as
	 (a)	 O(1)	 (b)	 O(n)
	 (c)	 O(n log n)	 (d)	 O(n2)
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	 11.	 Which notation provides a strict upper bound for 
f(n)?

	 (a)	 Omega notation	 (b)	 Big O notation
	 (c)	 Small o notation	 (d)	 Theta Notation
	 12.	 Which notation comprises a set of all functions 

h(n) that are greater than or equal to cg(n) for all 
values of n ≥ n0?

	 (a)	 Omega notation	 (b)	 Big O notation
	 (c)	 Small o notation	 (d)	 Theta Notation
	 13.	 Function in o(n2) notation is
	 (a)	 10n2	 (b)	 n1.9	
	 (c)	 n2/100	 (d)	 n2

True or False
	 1.	 Trees and graphs are the examples of linear data 

structures.
	 2.	 Queue is a FIFO data structure.
	 3.	 Trees can represent any kind of complex 

relationship between the nodes.
	 4.	 The average-case running time of an algorithm is 

an upper bound on the running time for any input.
	 5.	 Array is an abstract data type.
	 6.	 Array elements are stored in continuous memory 

locations.
	 7.	 The pop operation adds an element to the top of 

a stack.
	 8.	 Graphs have a purely parent-to-child relationship 

between their nodes.
	 9.	 The worst-case running time of an algorithm is a 

lower bound on the running time for any input.
	 10.	 In top-down approach, we start with designing 

the most basic or concrete modules and 
then proceed towards designing higher-level 
modules.

	 11.	 o(g(n)) comprises a set of all functions h(n) that 
are less than or equal to cg(n) for all values of  
n ≥ n0.

	 12.	 Simply Ω means same as best case Ω.
	 13.	 Small omega notation provides an asymptotically 

tight bound for f(n).
	 14.	 Theta notation provides a non-asymptotically 

tight lower bound for f(n).
	 15.	 n3.001 ≠ ω(n3).

Fill in the Blanks
	 1.	 ______ is an arrangement of data either in the 

computer’s memory or on the disk storage.

	 2.	 ______ are used to manipulate the data contained 
in various data structures.

	 3.	 In ______, the elements of a data structure are 
stored sequentially.

	 4.	 ______ of a variable specifies the set of values 
that the variable can take.

	 5.	 A tree is empty if ______.
	 6.	 Abstract means ______.
	 7.	 The time complexity of an algorithm is the running 

time given as a function of ______.
	 8.	 ______ analysis guarantees the average perfor-

mance of each operation in the worst case.
	 9.	 The elements of an array are referenced by an 

______.
	 10.	 ______ is used to store the address of the topmost 

element of a stack.
	 11.	 The ______ operation returns the value of the 

topmost element of a stack.
	 12.	 An overflow occurs when ______.
	 13.	 ______ is a FIFO data structure.
	 14.	 The elements in a queue are added at ______ and 

removed from ______.
	 15.	 If the elements of a data structure are stored 

sequentially, then it is a ______.
	 16.	 ______ is basically a set of instructions that solve 

a problem.
	 17.	 The number of machine instructions that a pro-

gram executes during its execution is called its 
______.

	 18.	 ______ specifies the expected behaviour of an 
algorithm when an input is randomly drawn from 
a given distribution.

	 19.	 The running time complexity of a constant time 
algorithm is given as ______.

	 20.	 A complex algorithm is often divided into smaller 
units called ______.

	 21.	 _____ design approach starts by dividing the 
complex algorithm into one or more modules.

	 22.	 _______ case is when the array is sorted in reverse 
order.

	 23.	 ________ notation provides a tight lower bound 
for f(n).

	 24.	 The small o notation provides a _________ tight 
upper bound for f(n).

	 25.	 540n2 + 10 ____ Ω (n2). 



3.1  INTRODUCTION
We will explain the concept of arrays using an analogy. Consider a situation in which we have 
20 students in a class and we have been asked to write a program that reads and prints the marks 
of all the 20 students. In this program, we will need 20 integer variables with different names, as 
shown in Fig. 3.1.
	 Now to read the values of these 20 variables, we must have 20 read statements. Similarly, to print 
the value of these variables, we need 20 write statements. If it is just a matter of 20 variables, then 
it might be acceptable for the user to follow this approach. But would it be possible to follow this 
approach if we have to read and print the marks of students,
	 ∑	 in the entire course (say 100 students)
	 ∑	 in the entire college (say 500 students)
	 ∑	 in the entire university (say 10,000 students)
The answer is no, definitely not! To process a large amount of data, we need a data structure 
known as array.

Learning Objective
In this chapter, we will discuss arrays. An array is a user-defined data type that 
stores related information together. All the information stored in an array belongs 
to the same data type. So, in this chapter, we will learn how arrays are defined, 
declared, initialized, and accessed. We will also discuss the different operations 
that can be performed on array elements and the different types of arrays such as 
two-dimensional arrays, multi-dimensional arrays, and sparse matrices.

Arrays

chapter 3
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	 An array is a collection of similar data elements. These data elements have the same data type. 
The elements of the array are stored in consecutive memory locations and are referenced by an 
index (also known as the subscript). The subscript is an ordinal number which is used to identify 
an element of the array.

Marks1 Mark 5s Mark 9s Mark 13s

Mark 2s Mark 6s Mark 10s Mark 14s

Mark 3s Mark 7s Mark 11s Mark 15s

Mark 17s

Mark 18s

Mark 19s

Mark 4s Mark 8s Mark 12s Mark 16s Mark 20s

Figure 3.1  Twenty variables for 20 students

3.2  DECLARATION OF ARRAYS
We have already seen that every variable must be declared before it is used. The same concept 
holds true for array variables. An array must be declared before being used. Declaring an array 
means specifying the following:
	 ∑	 Data type—the kind of values it can store, for example, int, char, float, double.
	 ∑	 Name—to identify the array.
	 ∑	 Size—the maximum number of values that the array can hold.
Arrays are declared using the following syntax:

type name[size];

The type can be either int, float, double, char, or any other valid data type. The number within 
brackets indicates the size of the array, i.e., the maximum number of elements that can be stored 
in the array. For example, if we write,

int marks[10];

then the statement declares marks to be an array containing 10 elements. In C, the array index 
starts from zero. The first element will be stored in marks[0], second element in marks[1], and 
so on. Therefore, the last element, that is the 10th element, will be stored in marks[9]. Note that  
0, 1, 2, 3 written within square brackets are the subscripts. In the memory, the array will be 
stored as shown in Fig. 3.2.

1

element

st
2

element

nd
3

element

rd
4

element

th
5

element

th
6

element

th
7

element

th
8

element

th
9

element

th

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]

10

element

th

Figure 3.2  Memory representation of an array of 10 elements

Figure 3.3 shows how different types of arrays are declared.
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[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

data type

int marks [1 ];

array name

char name [15];

array size

float salary [5];

Figure 3.3  Declaring arrays of different data types and sizes

3.3 A CCESSING THE ELEMENTS OF AN ARRAY
Storing related data items in a single array enables the programmers to develop concise and 
efficient programs. But there is no single function that can operate on all the elements of an array. 

To access all the elements, we must use a loop. That is, 
we can access all the elements of an array by varying the 
value of the subscript into the array. But note that the 
subscript must be an integral value or an expression that 
evaluates to an integral value. As shown in Fig. 3.2, the 
first element of the array marks[10] can be accessed by 
writing marks[0]. Now to process all the elements of the 
array, we use a loop as shown in Fig. 3.4.

	 Figure 3.5 shows the result of the code shown in Fig. 3.4. The code accesses every individual 
element of the array and sets its value to –1. In the for loop, first the value of marks[0] is set to 
–1, then the value of the index (i) is incremented and the next value, that is, marks[1] is set to –1. 
The procedure continues until all the 10 elements of the array are set to –1.

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

– 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1 – 1

Figure 3.5  Array marks after executing the code given in Fig. 3.4

Note	 There is no single statement that can read, access, or print all the elements of an array. To do this, 
we have to use a loop to execute the same statement with different index values.  

3.3.1  Calculating the Address of Array Elements
You must be wondering how C gets to know where an individual element of an array is located in 
the memory. The answer is that the array name is a symbolic reference to the address of the first 
byte of the array. When we use the array name, we are actually referring to the first byte of the array.
	 The subscript or the index represents the offset from the beginning of the array to the element 
being referenced. That is, with just the array name and the index, C can calculate the address of 
any element in the array.
	 Since an array stores all its data elements in consecutive memory locations, storing just the 
base address, that is the address of the first element in the array, is sufficient. The address of 

// Set each element of the array to –1

int i, marks[1 ];

for(i= ;i<1 ;i++)

marks[i] = –1;

Figure 3.4  Code to initialize each element of the 
array to –1
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other data elements can simply be calculated using the base address. The formula to perform this 
calculation is,

Address of data element, A[k] = BA(A) + w(k – lower_bound)

Here, A is the array, k is the index of the element of which we have to calculate the address, BA is 
the base address of the array A, and w is the size of one element in memory, for example, size of 
int is 2.

Example 3.1  Given an array int marks[] = {99,67,78,56,88,90,34,85}, calculate the address of 
marks[4] if the base address = 1000.
Solution

99 67 78 56 88 90 34 85

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7]

1000 1002 1004 1006 1008 1010 1012 1014

We know that storing an integer value requires 2 bytes, therefore, its size is 2 bytes.
marks[4] = 1000 + 2(4 – 0)
	 = 1000 + 2(4) = 1008

3.3.2  Calculating the Length of an Array
The length of an array is given by the number of elements stored in it. The general formula to 
calculate the length of an array is

Length = upper_bound – lower_bound + 1

where upper_bound is the index of the last element and lower_bound is the index of the first element 
in the array.

Example 3.2  Let Age[5] be an array of integers such that
Age[0] = 2, Age[1] = 5, Age[2] = 3, Age[3] = 1, Age[4] = 7

Show the memory representation of the array and calculate its length.
Solution
The memory representation of the array Age[5] is given as below.

2 5 3 1 7

Age[ ] Age[1] Age[2] Age[3] Age[4]

Length = upper_bound – lower_bound + 1

Here, lower_bound = 0, upper_bound = 4
Therefore, length = 4 – 0 + 1 = 5

3.4  STORING VALuES IN ARRAYS
When we declare an array, we are just allocating space for its elements; no values are stored in 
the array. There are three ways to store values in an array. First, to initialize the array elements 
during declaration; second, to input values for individual elements from the keyboard; third, to 
assign values to individual elements. This is shown in Fig. 3.6.
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Input values for the elements from the keyboard

Assign values to individual elements

Initialize the elements during declaration

Storing values in an array

Figure 3.6  Storing values in an array

Initializing Arrays during Declaration
The elements of an array can be initialized at the time of declaration, just as any other variable. 
When an array is initialized, we need to provide a value for every element in the array. Arrays 
are initialized by writing,

type array_name[size]={list of values};

Note that the values are written within curly brackets and every value is 
separated by a comma. It is a compiler error to specify more values than there 
are elements in the array. When we write,

int marks[5]={90, 82, 78, 95, 88};

  An array with the name marks is declared that has enough space to store five 
elements. The first element, that is, marks[0] is assigned value 90. Similarly, 
the second element of the array, that is marks[1], is assigned 82, and so on. 
This is shown in Fig. 3.7.
  While initializing the array at the time of declaration, the programmer may 
omit the size of the array. For example,

int marks[]= {98, 97, 90};

	 The above statement is absolutely legal. Here, the compiler will allocate enough space for 
all the initialized elements. Note that if the number of values provided is less than the number 
of elements in the array, the un-assigned elements are filled with zeros. Figure 3.8 shows the 
initialization of arrays.

90 45 67 85 78

[0] [1] [2] [3] [4]

int marks [5] = {9 , 45, 67, 85, 78};

90 45

[0] [1] [2] [3] [4]

int marks [5] = {9 , 45}; 000

90 45

[0] [1] [2] [3] [4]

638172int marks [] = {9 , 45, 72, 81, 63, 54}; 54

[5]

[0] [1] [2] [3] [4]

int marks [5] = { }; 00000

Rest of the

elements are

filled with 0’s

Figure 3.8  Initialization of array elements

90

82

78

95

88

marks[0]

marks[1]

marks[2]

marks[3]

marks[4]

Figure 3.7  Initialization of 
array marks[5]
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Inputting Values from the Keyboard
An array can be initialized by inputting values from the keyboard. 
In this method, a while/do–while or a for loop is executed to input 
the value for each element of the array. For example, look at the 
code shown in Fig. 3.9.
  In the code, we start at the index i at 0 and input the value for 

the first element of the array. Since the array has 10 elements, we must input values for elements 
whose index varies from 0 to 9. 

Assigning Values to Individual Elements
The third way is to assign values to individual elements of the array by using the assignment 
operator. Any value that evaluates to the data type as that of the array can be assigned to the 
individual array element. A simple assignment statement can be written as

marks[3] = 100;

Here, 100 is assigned to the fourth element of the array which is specified as marks[3].
  Note that we cannot assign one array to another array, even 
if the two arrays have the same type and size. To copy an array, 
you must copy the value of every element of the first array into 
the elements of the second array. Figure 3.10 illustrates the code 
to copy an array.
  In Fig. 3.10, the loop accesses each element of the first array 
and simultaneously assigns its value to the corresponding 
element of the second array. The index value i is incremented 
to access the next element in succession. Therefore, when this 
code is executed, arr2[0] = arr1[0], arr2[1] = arr1[1], arr2[2] 
= arr1[2], and so on.
  We can also use a loop to assign a pattern of values to the 
array elements. For example, if we want to fill an array with 
even integers (starting from 0), then we will write the code as 
shown in Fig. 3.11.

  In the code, we assign to each element a value equal to twice of its index, where the index 
starts from 0. So after executing this code, we will have arr[0] = 0, arr[1] = 2, arr[2] = 4, and so on.

3.5  OPERATIONS ON ARRAYS
There are a number of operations that can be preformed on arrays. These operations include:
	 ∑	 Traversing an array
	 ∑	 Inserting an element in an array
	 ∑	 Searching an element in an array
	 ∑	 Deleting an element from an array
	 ∑	 Merging two arrays
	 ∑	 Sorting an array in ascending or descending order
We will discuss all these operations in detail in this section, except searching and sorting, which 
will be discussed in Chapter 14.

3.5.1  Traversing an Array
Traversing an array means accessing each and every element of the array for a specific purpose. 

int i, arr1[1 ], arr2[1 ];

arr1[1 ] = { ,1,2,3,4,5,6,7,8,9};

for(i= ;i<1 ;i++)

arr2[i] = arr1[i];

Figure 3.10  Code to copy an array at the 
individual element level

// Fill an array with even numbers

int i,arr[1 ];

for(i=0;i<10;i++)

arr[i] = i*2;
 

Figure 3.11  Code for filling an array with 
even numbers

int i, marks[1 ];

for(i= ;i<1 ;i++)

scanf("%d", &marks[i]);

Figure 3.9  Code for inputting each 
element of the array
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	 Traversing the data elements of an array A can include printing every element, counting the 
total number of elements, or performing any process on these elements. Since, array is a linear 
data structure (because all its elements form a sequence), traversing its elements is very simple 
and straightforward. The algorithm for array traversal is given in Fig. 3.12.

Step 1: [INITIALIZATION] SET I = lower_bound

Step 2: Repeat Steps 3 to 4 while I <= upper_bound

Step 3: Apply Process to A[I]

Step 4: SET I = I + 1

[END OF LOOP]

Step 5: EXIT

Figure 3.12  Algorithm for array traversal

	 In Step 1, we initialize the index to the lower bound of the array. In Step 2, a while loop is 
executed. Step 3 processes the individual array element as specified by the array name and index 
value. Step 4 increments the index value so that the next array element could be processed. The 
while loop in Step 2 is executed until all the elements in the array are processed, i.e., until I is 
less than or equal to the upper bound of the array.

Programming Examples

1.	 Write a program to read and display n numbers using an array.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, n, arr[20];
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
	 printf("\n arr[%d] = ", i);
	 scanf("%d",&arr[i]);
	 }
	 printf("\n The array elements are ");
	 for(i=0;i<n;i++)
		  printf("\t %d", arr[i]);
	 return 0;
}

	 Output
Enter the number of elements in the array : 5 
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
The array elements are	 1	 2	 3	 4	 5

2.	 Write a program to find the mean of n numbers using arrays.
#include <stdio.h>
#include <conio.h>
int main()
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{
	 int i, n, arr[20], sum =0;
	 float mean = 0.0;
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
		  printf("\n arr[%d] = ", i);
		  scanf("%d",&arr[i]);
	 }
	 for(i=0;i<n;i++)
		  sum += arr[i];
	 mean = (float)sum/n;
	 printf("\n The sum of the array elements = %d", sum);
	 printf("\n The mean of the array elements = %.2f", mean);
	 return 0;
}

	 Output
Enter the number of elements in the array : 5 
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
The sum of the array elements = 15
The mean of the array elements = 3.00

3.	 Write a program to print the position of the smallest number of n numbers using arrays.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, n, arr[20], small, pos;
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements : ");
	 for(i=0;i<n;i++)
		  scanf("%d",&arr[i]);
	 small = arr[0]
	 pos =0;
	 for(i=1;i<n;i++)
	 {
		  if(arr[i]<small)
		  {
			   small = arr[i];
			   pos = i;
		  }
	 }
	 printf("\n The smallest element is : %d", small);
	 printf("\n The position of the smallest element in the array is : %d", pos);
	 return 0;
}

	 Output
Enter the number of elements in the array : 5 
Enter the elements : 7 6 5 14 3
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The smallest element is : 3
The position of the smallest element in the array is : 4

4.	 Write a program to find the second largest of n numbers using an array.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, n, arr[20], large, second_large;
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements");
	 for(i=0;i<n;i++)
		  scanf("%d",&arr[i]);
	 large = arr[0];	
	 for(i=1;i<n;i++)
	 {
		  if(arr[i]>large)
			   large = arr[i];
	 }
	 second_large = arr[1];
	 for(i=0;i<n;i++)
	 {
		  if(arr[i] != large)
		  {
			   if(arr[i]>second_large)
				    second_large = arr[i];
		  }
	 }
	 printf("\n The numbers you entered are : ");
	 for(i=0;i<n;i++)
		  printf("\t %d", arr[i]);
	 printf("\n The largest of these numbers is : %d",large);
	 printf("\n The second largest of these numbers is : %d",second_large);
	 return 0;
}

	 Output
Enter the number of elements in the array : 5
Enter the elements 1 2 3 4 5
The numbers you entered are :	 1	 2	 3	 4	 5
The largest of these numbers is : 5
The second largest of these numbers is : 4

5.	 Write a program to enter n number of digits. Form a number using these digits.
#include <stdio.h>
#include <conio.h>
#include <math.h>
int main()
{
	 int number=0, digit[10], numofdigits,i;
	 clrscr();
	 printf("\n Enter the number of digits : ");
	 scanf("%d", &numofdigits);
	 for(i=0;i<numofdigits;i++)
	 {
		  printf("\n Enter the digit at position %d", i+1);
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		  scanf("%d", &digit[i]);
	 }
	 i=0;
	 while(i<numofdigits)
	 {
		  number = number + digit[i] * pow(10,i);
		  i++;
	 }
	 printf("\n The number is : %d", number);
	 return 0;
}

	 Output
Enter the number of digits : 4
Enter the digit at position 1: 2
Enter the digit at position 2 : 3
Enter the digit at position 3 : 0
Enter the digit at position 4 : 9
The number is : 9032

6.	 Write a program to find whether the array of integers contains a duplicate number.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int array[10], i, n, j, flag =0;
	 clrscr();
	 printf("\n Enter the size of the array : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
		  printf("\n array[%d] = ", i);
		  scanf("%d", &array[i]);
	 }
	 for(i=0;i<n;i++)
	 {
		  for(j=i+1;j<n;j++)
		  {
			   if(array[i] == array[j] && i!=j)
			   {
			   flag =1;
			   printf("\n Duplicate numbers found at locations %d and %d", i, j);
			   }
		  }
	 }
	 if(flag==0)
		  printf("\n No Duplicates Found");
	 return 0;
}

	 Output
Enter the size of the array : 5
array[0] = 1

array[1] = 2
array[2] = 3
array[3] = 2
array[4] = 5
Duplicate numbers found at locations 1 and 3
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3.5.2  Inserting an Element in an Array
If an element has to be inserted at the end of 
an existing array, then the task of insertion is 
quite simple. We just have to add 1 to the upper_
bound and assign the value. Here, we assume that 
the memory space allocated for the array is still 
available. For example, if an array is declared to 

contain 10 elements, but currently it has only 8 elements, then obviously there is space  
to accommodate two more elements. But if it already has 10 elements, then we will not be able 
to add another element to it.
  Figure 3.13 shows an algorithm to insert a new element to the end of an array. In Step 1, we 
increment the value of the upper_bound. In Step 2, the new value is stored at the position pointed 
by the upper_bound. For example, let us assume an array has been declared as

int marks[60];

  The array is declared to store the marks of all the students in a class. Now, suppose there are 
54 students and a new student comes and is asked to take the same test. The marks of this new 
student would be stored in marks[55]. Assuming that the student secured 68 marks, we will assign 
the value as

marks[55] = 68;

However, if we have to insert an element in the middle of the array, then this is not a trivial task. 
On an average, we might have to move as much as half of the elements from their positions in 
order to accommodate space for the new element.
	 For example, consider an array whose elements are arranged in ascending order. Now, if a new 
element has to be added, it will have to be added probably somewhere in the middle of the array. 
To do this, we must first find the location where the new element will be inserted and then move 
all the elements (that have a value greater than that of the new element) one position to the right 
so that space can be created to store the new value.

Example 3.3  Data[] is an array that is declared as int Data[20]; and contains the following 
values:

Data[] = {12, 23, 34, 45, 56, 67, 78, 89, 90, 100};

(a)	 Calculate the length of the array.
(b)	 Find the upper_bound and lower_bound.
(c)	 Show the memory representation of the array.
(d)	 If a new data element with the value 75 has to be inserted, find its position.
(e)	 Insert a new data element 75 and show the memory representation after the insertion.

Solution
(a)	 Length of the array = number of elements
	 Therefore, length of the array = 10
(b)	 By default, lower_bound = 0 and upper_bound = 9
(c)

	

12 23 34 45 56 67 78 89 90 100

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] Data[8] Data[9]

(d)	 Since the elements of the array are stored in ascending order, the new data element 
will be stored after 67, i.e., at the 6th location. So, all the array elements from the 6th 
position will be moved one position towards the right to accommodate the new value

Step 1: Set upper_bound = upper_bound + 1

Step 2: Set A[upper_bound] = VAL

Step 3: EXIT

Figure 3.13  Algorithm to append a new element to an 
existing array
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(e)

�

12 23 34 45 56 67 78 89 90 100

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] Data[8] Data[9] Data[10]

75

Algorithm to Insert an Element in the Middle of an Array
The algorithm INSERT will be declared as INSERT (A, N, POS, VAL). The arguments are
	(a)	 A, the array in which the element has to be inserted
	(b)	 N, the number of elements in the array
	(c)	 POS, the position at which the element has to be inserted
	(d)	 VAL, the value that has to be inserted

  In the algorithm given in Fig. 3.14, in Step 1, we 
first initialize I with the total number of elements 
in the array. In Step 2, a while loop is executed 
which will move all the elements having an index 
greater than POS one position towards right to create 
space for the new element. In Step 5, we increment 
the total number of elements in the array by 1 and 
finally in Step 6, the new value is inserted at the 
desired position.
  Now, let us visualize this algorithm by taking 
an example.

Initial Data[] is given as below.

45 23 34 12 56

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

20

Calling INSERT (Data, 6, 3, 100) will lead to the following processing in the array:

45 23 34 12 56

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

20

45 23 34 12 56

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

45 23 34 12 12

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

45 23 34 100 12

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

Data[6]

20

Data[6]

20

Data[6]

20

Data[6]

20

56

56

56

Programming Examples 

7.	 Write a program to insert a number at a given location in an array.
#include <stdio.h>

Step 1: [INITIALIZATION] SET I = N

Step 2: Repeat Steps 3 and 4 while I >= POS

Step 3: SET A[I + 1] = A[I]

Step 4: SET I = I – 1

[END OF LOOP]

Step 5: SET N = N + 1

Step 6: SET A[POS] = VAL

Step 7: EXIT

Figure 3.14  Algorithm to insert an element in the middle 
of an array.
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#include <conio.h>
int main()
{
	 int i, n, num, pos, arr[10];
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
		  printf("\n arr[%d] = ", i);
		  scanf("%d", &arr[i]);
	 }
	 printf("\n Enter the number to be inserted : ");
	 scanf("%d", &num);
	 printf("\n Enter the position at which the number has to be added : ");
	 scanf("%d", &pos);
	 for(i=n–1;i>=pos;i––)
		  arr[i+1] = arr[i];
	 arr[pos] = num;
	 n = n+1;
	 printf("\n The array after insertion of %d is : ", num);
	 for(i=0;i<n;i++)
	 printf("\n arr[%d] = %d", i, arr[i]);
	 getch();
	 return 0;
}

	 Output
	 Enter the number of elements in the array : 5
	 arr[0] = 1
	 arr[1] = 2
	 arr[2] = 3
	 arr[3] = 4
	 arr[4] = 5
	 Enter the number to be inserted : 0
	 Enter the position at which the number has to be added : 3
	 The array after insertion of 0 is :
	 arr[0] = 1
	 arr[1] = 2
	 arr[2] = 3
	 arr[3] = 0
	 arr[4] = 4
	 arr[5] = 5

8.	 Write a program to insert a number in an array that is already sorted in ascending order.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, n, j, num, arr[10];
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
		  printf("\n arr[%d] = ", i);
		  scanf("%d", &arr[i]);
	 }
	 printf("\n Enter the number to be inserted : ");
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	 scanf("%d", &num);
	 for(i=0;i<n;i++)
	 {
		  if(arr[i] > num)
		  {
			   for(j = n–1; j>=i; j––)
				    arr[j+1] = arr[j];
			   arr[i] = num;
			   break;
		  }
	 }
	 n = n+1;
	 printf("\n The array after insertion of %d is : ", num);
	 for(i=0;i<n;i++)
		  printf("\n arr[%d] = %d", i, arr[i]);
	 getch();
	 return 0;
}

	 Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 4
arr[3] = 5
arr[4] = 6
Enter the number to be inserted : 3
The array after insertion of 3 is :
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
arr[5] = 6

3.5.3  Deleting an Element from an Array
Deleting an element from an array means removing a data element from an already existing array. 
If the element has to be deleted from the end of the existing array, then the task of deletion is quite 
simple. We just have to subtract 1 from the upper_bound. Figure 3.15 shows an algorithm to delete 
an element from the end of an array.
  For example, if we have an array that is declared as

int marks[60];

  The array is declared to store the marks of all the students in the class. Now, suppose there are 
54 students and the student with roll number 54 leaves the course. The score of this student was 
stored in marks[54]. We just have to decrement the upper_bound. Subtracting 1 from the upper_bound 
will indicate that there are 53 valid data in the array.
	 However, if we have to delete an element from the middle of an array, then it is not a trivial 

task. On an average, we might have to move as much 
as half of the elements from their positions in order to 
occupy the space of the deleted element.
	 For example, consider an array whose elements are 
arranged in ascending order. Now, suppose an element 
has to be deleted, probably from somewhere in the 

Step 1: SET upper_bound = upper_bound - 1

Step 2: EXIT

Figure 3.15  Algorithm to delete the last element of 
an array
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middle of the array. To do this, we must first find the location from where the element has to 
be deleted and then move all the elements (having a value greater than that of the element) one 
position towards left so that the space vacated by the deleted element can be occupied by rest of 
the elements.

Example 3.4  Data[] is an array that is declared as int Data[10]; and contains the following 
values:

Data[] = {12, 23, 34, 45, 56, 67, 78, 89, 90, 100};

(a)	 If a data element with value 56 has to be deleted, find its position.
(b)	 Delete the data element 56 and show the memory representation after the deletion.

Solution
(a)	 Since the elements of the array are stored in ascending order, we will compare the 

value that has to be deleted with the value of every element in the array. As soon as VAL 
= Data[I], where I is the index or subscript of the array, we will get the position from 
which the element has to be deleted. For example, if we see this array, here VAL = 56. 
Data[0] = 12 which is not equal to 56. We will continue to compare and finally get the 
value of POS = 4.

(b)

	
Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5] Data[6] Data[7] Data[8]

12 23 34 45 67 78 89 90 100

Algorithm to delete an element from the middle of 
an array
The algorithm DELETE will be declared as DELETE(A, N, 
POS). The arguments are:

(a)	 A, the array from which the element has to be 
deleted

(b)	 N, the number of elements in the array
(c)	 POS, the position from which the element has to 

be deleted
  Figure 3.16 shows the algorithm in which we first 
initialize I with the position from which the element 
has to be deleted. In Step 2, a while loop is executed 
which will move all the elements having an index 
greater than POS one space towards left to occupy 
the space vacated by the deleted element. When we 
say that we are deleting an element, actually we 
are overwriting the element with the value of its 
successive element. In Step 5, we decrement the 
total number of elements in the array by 1.
  Now, let us visualize this algorithm by 
taking an example given in Fig. 3.17. Calling 
DELETE (Data, 6, 2) will lead to the following 
processing in the array.

Step 1: [INITIALIZATION] SET I = POS

Step 2: Repeat Steps 3 and 4 while I <= N – 1

Step 3: SET A[I] = A[I + 1]

Step 4: SET I = I + 1

[END OF LOOP]

Step 5: SET N = N – 1

Step 6: EXIT

Figure 3.16  Algorithm to delete an element from the 
middle of an array

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

45 23 34 12 56 20

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

45 23 12 12 56 20

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

45 23 12 56 20

Data[ ] Data[1] Data[2] Data[3] Data[4] Data[5]

45 23 12 56 20

Data[ ] Data[1] Data[2] Data[3] Data[4]

45 23 12 56 20

56

20

Figure 3.17  Deleting elements from an array
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Programming Example 

9.	 Write a program to delete a number from a given location in an array.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, n, pos, arr[10];
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
		  printf("\n arr[%d] = ", i);
		  scanf("%d", &arr[i]);
	 }
	 printf("\nEnter the position from which the number has to be deleted : ");
	 scanf("%d", &pos);
	 for(i=pos; i<n–1;i++)
		  arr[i] = arr[i+1];
	 n––;
	 printf("\n The array after deletion is : ");
	 for(i=0;i<n;i++)
		  printf("\n arr[%d] = %d", i, arr[i]);
	 getch();
	 return 0;
}

	 Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
Enter the position from which the number has to be deleted : 3
The array after deletion is :
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 5

10.	 Write a program to delete a number from an array that is already sorted in ascending order.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, n, j, num, arr[10];
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
		  printf("\n arr[%d] = ", i);
		  scanf("%d", &arr[i]);
	 }
	 printf("\n Enter the number to be deleted : ");
	 scanf("%d", &num);
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	 for(i=0;i<n;i++)
	 {
		  if(arr[i] == num)
		  {
			   for(j=i; j<n–1;j++)
				    arr[j] = arr[j+1];
		  }
	 }
	 n = n–1;
	 printf("\n The array after deletion is : ");
	 for(i=0;i<n;i++)
		  printf("\n arr[%d] = %d", i, arr[i]);
	 getch();
	 return 0;
}

	 Output
Enter the number of elements in the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
Enter the number to be deleted : 3
The array after deletion is :
arr[0] = 1
arr[1] = 2
arr[2] = 4
arr[3] = 5

3.5.4  Merging Two Arrays
Merging two arrays in a third array means first copying the contents of the first array into the third 
array and then copying the contents of the second array into the third array. Hence, the merged 
array contains the contents of the first array followed by the contents of the second array.
	 If the arrays are unsorted, then merging the arrays is very simple, as one just needs to copy 
the contents of one array into another. But merging is not a trivial task when the two arrays are 
sorted and the merged array also needs to be sorted. Let us first discuss the merge operation on 
unsorted arrays. This operation is shown in Fig 3.18.

90 56 89 77 69

45 88 76 99 12 58 81

90 56 89 77 69 45 88 76 99 12 58 81

Array 1-

Array 2-

Array 3-

Figure 3.18  Merging of two unsorted arrays

Programming Example 

11.	 Write a program to merge two unsorted arrays.
#include <stdio.h>
#include <conio.h>
int main()
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{
	 int arr1[10], arr2[10], arr3[20];
	 int i, n1, n2, m, index=0;
	 clrscr();
	 printf("\n Enter the number of elements in array1 : ");
	 scanf("%d", &n1);
	 printf("\n\n Enter the elements of the first array");
	 for(i=0;i<n1;i++)
	 {
		  printf("\n arr1[%d] = ", i);
		  scanf("%d", &arr1[i]);
	 }
	 printf("\n Enter the number of elements in array2 : ");
	 scanf("%d", &n2);
	 printf("\n\n Enter the elements of the second array");
	 for(i=0;i<n2;i++)
	 {
		  printf("\n arr2[%d] = ", i);
		  scanf("%d", &arr2[i]);
	 }
	 m = n1+n2;
	 for(i=0;i<n1;i++)
	 {
	 arr3[index] = arr1[i];
	 index++;
	 }
	 for(i=0;i<n2;i++)
	 {
		  arr3[index] = arr2[i];
		  index++;
	 }
	 printf("\n\n The merged array is");
	 for(i=0;i<m;i++)
		  printf("\n arr[%d] = %d", i, arr3[i]);
	 getch();
	 return 0;
}

	 Output
Enter the number of elements in array1 : 3
Enter the elements of the first array
arr1[0] = 1
arr1[1] = 2
arr1[2] = 3
Enter the number of elements in array2 : 3
Enter the elements of the second array
arr2[0] = 4
arr2[1] = 5
arr2[2] = 6
The merged array is
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
arr[5] = 6
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	 If we have two sorted arrays and the resultant merged array also needs to be a sorted one, then 
the task of merging the arrays becomes a little difficult. The task of merging can be explained 
using Fig. 3.19.

15

20

22

30 31 40 45 50 56 60 62 78

Array 1-

Array 2-

Array 3- 20

30 40 50 60

15

22

31 45 56 62 78

Figure 3.19  Merging of two sorted arrays

	 Figure 3.19 shows how the merged array is formed using two sorted arrays. Here, we first 
compare the 1st element of array1 with the 1st element of array2, and then put the smaller element 
in the merged array. Since 20 > 15, we put 15 as the first element in the merged array. We then 
compare the 2nd element of the second array with the 1st element of the first array. Since 20 < 
22, now 20 is stored as the second element of the merged array. Next, the 2nd element of the first 
array is compared with the 2nd element of the second array. Since 30 > 22, we store 22 as the third 
element of the merged array. Now, we will compare the 2nd element of the first array with the 3rd 
element of the second array. Because 30 < 31, we store 30 as the 4th element of the merged array. 
This procedure will be repeated until elements of both the arrays are placed in the right location 
in the merged array.

Programming Example 

12.	 Write a program to merge two sorted arrays.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int arr1[10], arr2[10], arr3[20];
	 int i, n1, n2, m, index=0;
	 int index_first = 0, index_second = 0;
	 clrscr();
	 printf("\n Enter the number of elements in array1 : ");
	 scanf("%d", &n1);
	 printf("\n\n Enter the elements of the first array");
	 for(i=0;i<n1;i++)
	 {
		  printf("\n arr1[%d] = ", i);
		  scanf("%d", &arr1[i]);
	 }
	 printf("\n Enter the number of elements in array2 : ");
	 scanf("%d", &n2);
	 printf("\n\n Enter the elements of the second array");
	 for(i=0;i<n2;i++)
	 {
		  printf("\n arr2[%d] = ", i);
		  scanf("%d", &arr2[i]);
	 }
	 m = n1+n2;
	 while(index_first < n1 && index_second < n2)
	 {
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		  if(arr1[index_first]<arr2[index_second])
		  {
			   arr3[index] = arr1[index_first];
			   index_first++;
		  }
		  else
		  {
			   arr3[index] = arr2[index_second];
			   index_second++;
		  }
		  index++;
	 }
	 // if elements of the first array are over and the second array has some elements
	 if(index_first == n1)
	 {
		  while(index_second<n2)
		  {
			   arr3[index] = arr2[index_second];
			   index_second++;
			   index++;
		  }
	 }
	 // if elements of the second array are over and the first array has some elements
	 else if(index_second == n2)
	 {
		  while(index_first<n1)
		  {
			   arr3[index] = arr1[index_first];
			   index_first++;
			   index++;
		  }
	 }
	 printf("\n\n The merged array is");
	 for(i=0;i<m;i++)
		  printf("\n arr[%d] = %d", i, arr3[i]);
	 getch();
	 return 0;
}

	 Output	 
Enter the number of elements in array1 : 3
Enter the elements of the first array
arr1[0] = 1
arr1[1] = 3
arr1[2] = 5
Enter the number of elements in array2 : 3
Enter the elements of the second array
arr2[0] = 2
arr2[1] = 4
arr2[2] = 6
The merged array is
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
arr[5] = 6
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3.6  PASSING ARRAYS TO FUNCTIONS
Like variables of other data types, we can also pass an array to a function. In some situations, 
you may want to pass individual elements of the array; while in other situations, you may want 
to pass the entire array. In this section, we will discuss both the cases. Look at Fig. 3.20 which 
will help you understand the concept.

1D arrays for inter-

function communication

Passing individual

elements

Passing the entire

array

Passing data values Passing addresses

Figure 3.20  One dimensional arrays for inter-function communication

3.6.1 Passing Individual Elements
The individual elements of an array can be passed to a function by passing either their data values 
or addresses.

Passing Data Values
Individual elements can be passed in the same manner as we pass variables of any other data 
type. The condition is just that the data type of the array element must match with the type of 
the function parameter. Look at Fig. 3.21(a) which shows the code to pass an individual array 
element by passing the data value.

void func(int num)

{

printf("%d , num);

}

"

main()

{

int arr[5] ={1, 2, 3, 4, 5};

func(arr[3]);

}

Calling function Called function

Figure 3.21(a)  Passing values of individual array elements to a function

	 In the above example, only one element of the array is passed to the called 
function. This is done by using the index expression. Here, arr[3] evaluates 
to a single integer value. The called function hardly bothers whether a normal 
integer variable is passed to it or an array value is passed.
Passing Addresses
Like ordinary variables, we can pass the address of an individual array element by preceding 
the indexed array element with the address operator. Therefore, to pass the address of the fourth 
element of the array to the called function, we will write &arr[3].
	 However, in the called function, the value of the array element must be accessed using the 
indirection (*) operator. Look at the code shown in Fig. 3.21(b).
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void func(int *num)

{

printf("%d , *num);

}

"

main()

{

int arr[5] ={1, 2, 3, 4, 5};

func(&arr[3]);

}

Calling function Called function

Figure 3.21(b)  Passing addresses of individual array elements to a function

3.6.2 Passing the Entire Array
We have discussed that in C the array name refers to the first byte of the array in the memory. 
The address of the remaining elements in the array can be calculated using the array name and 
the index value of the element. Therefore, when we need to pass an entire array to a function, we 
can simply pass the name of the array. Figure 3.22 illustrates the code which passes the entire 
array to the called function.

void func(int arr[5])

{

int i;

}

for(i= ;i<5;i++)

printf("%d", arr[i]);

main()

{

int arr[5] ={1, 2, 3, 4, 5};

func(arr);

}

Calling function Called function

Figure 3.22  Passing entire array to a function

	 A function that accepts an array can declare the formal parameter in either of the two following 
ways.

func(int arr[]); or func(int *arr);
	 When we pass the name of an array to a function, the address of the zeroth element of the 
array is copied to the local pointer variable in the function. When a formal parameter is declared 
in a function header as an array, it is interpreted as a pointer to a variable and not as an array. 
With this pointer variable you can access all the elements of the array by using the expression: 
array_name + index. You can also pass the size of the array as another parameter to the function. 
So for a function that accepts an array as parameter, the declaration should be as follows.

func(int arr[], int n); or func(int *arr, int n);

	 It is not necessary to pass the whole array to a function. We can also pass a part of the array 
known as a sub-array. A pointer to a sub-array is also an array pointer. For example, if we want 
to send the array starting from the third element then we can pass the address of the third element 
and the size of the sub-array, i.e., if there are 10 elements in the array, and we want to pass the 
array starting from the third element, then only eight elements would be part of the sub-array. So 
the function call can be written as

func(&arr[2], 8); 

	 Note that in case we want the called function to make no changes to the array, the array must 
be received as a constant array by the called function. This prevents any type of unintentional 
modifications of the array elements. To declare an array as a constant array, simply add the keyword 
const before the data type of the array.
	 Look at the following programs which illustrate the use of pointers to pass an array to a function.
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Programming Examples 

13.	 Write a program to read an array of n numbers and then find the smallest number.
#include <stdio.h>
#include <conio.h>
void read_array(int arr[], int n);
int find_small(int arr[], int n);
int main()
{
	 int num[10], n, smallest;
	 clrscr();
	 printf("\n Enter the size of the array : ");
	 scanf("%d", &n);
	 read_array(num, n);
	 smallest = find_small(num, n);
	 printf("\n The smallest number in the array is = %d", smallest);
	 getch();
	 return 0;
}
void read_array(int arr[10], int n)
{
	 int i;
	 for(i=0;i<n;i++)
	 {
		  printf("\n arr[%d] = ", i);
		  scanf("%d", &arr[i]);
	 }
}
int find_small(int arr[10], int n)
{
	 int i = 0, small = arr[0];
	 for(i=1;i<n;i++)
	 {
		  if(arr[i] < small)
			   small = arr[i];
	 }
	 return small;
}

	 Output
Enter the size of the array : 5
arr[0] = 1
arr[1] = 2
arr[2] = 3
arr[3] = 4
arr[4] = 5
The smallest number in the array is = 1

14.	 Write a program to interchange the largest and the smallest number in an array.
#include <stdio.h>
#include <conio.h>
void read_array(int my_array[], int);
void display_array(int my_array[], int);
void interchange(int arr[], int);
int find_biggest_pos(int my_array[10], int n);
int find_smallest_pos(int my_array[10], int n);
int main()
{
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	 int arr[10], n;
	 clrscr();
	 printf("\n Enter the size of the array : ");
	 scanf("%d", &n);
	 read_array(arr, n);
	 interchange(arr, n);
	 printf("\n The new array is: ");
	 display_array(arr,n);
	 getch();
	 return 0;
}
void read_array(int my_array[10], int n)
{
	 int i;
	 for(i=0;i<n;i++)
	 {
		  printf("\n arr[%d] = ", i);
		  scanf("%d", &my_array[i]);
	 }
}
void display_array(int my_array[10], int n)
{
	 int i;
	 for(i=0;i<n;i++)
		  printf("\n arr[%d] = %d", i, my_array[i]);
}
void interchange(int my_array[10], int n)
{
	 int temp, big_pos, small_pos;
	 big_pos = find_biggest_pos(my_array, n);
	 small_pos = find_smallest_pos(my_array,n);
	 temp = my_array[big_pos];
	 my_array[big_pos] = my_array[small_pos];
	 my_array[small_pos] = temp;
}
int find_biggest_pos(int my_array[10], int n)
{
	 int i, large = my_array[0], pos=0;
	 for(i=1;i<n;i++)
	 {
		  if (my_array[i] > large)
		  {
			   large = my_array[i];
			   pos=i;
		  }
	 }
	 return pos;
}
int find_smallest_pos (int my_array[10], int n)
{
	 int i, small = my_array[0], pos=0;
	 for(i=1;i<n;i++)
	 {
		  if (my_array[i] < small)
		  {
			   small = my_array[i];
			   pos=i;
		  }
	 }
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	 return pos;
}

	 Output
Enter the size of the array : 5
arr[0] = 5
arr[1] = 1
arr[2] = 6
arr[3] = 3
arr[4] = 2
The new array is :
arr[0] = 5
arr[1] = 6
arr[2] = 1
arr[3] = 3
arr[4] = 2

3.7  Pointers And Arrays
The concept of array is very much bound to the concept of 
pointer. Consider fig. 3.23. For example, if we have an array 
declared as,
int arr[] = {1, 2, 3, 4, 5}; 
then in memory it would be stored as shown in fig. 3.23.

	 Array notation is a form of pointer notation. The name of the array is the starting address of the 
array in memory. It is also known as the base address. In other words, base address is the address of 
the first element in the array or the address of arr[0]. Now let us use a pointer variable as given 
in the statement below. 

int *ptr;
ptr = &arr[0];

  Here, ptr is made to point to the first element of the array. Execute 
the code given below and observe the output which will make the 
concept clear to you.

main()
{

int arr[]={1,2,3,4,5};
printf("\n Address of array = %p %p %p", arr, &arr[0], &arr);

}

Similarly, writing ptr = &arr[2] makes ptr to point to the third 
element of the array that has index 2. figure 3.24 shows ptr 
pointing to the third element of the array. 
	 If pointer variable ptr holds the address of the first element in 
the array, then the address of successive elements can be calculated 
by writing ptr++.

int *ptr = &arr[0];
ptr++;
printf("\n The value of the second element of the array is %d", 

	 *ptr);

  The printf() function will print the value 2 because after being 
incremented ptr points to the next location. One point to note here is 
that if x is an integer variable, then x++; adds 1 to the value of x. But ptr 

1000 1002 1004 1006 1008

arr[0] arr[1] arr[2] arr[3] arr[4]

1 2 3 4 5

Figure 3.23  Memory representation of 
arr[]

Programming Tip

The name of an array is actually 
a pointer that points to the first 
element of the array.

ptr

arr[0] arr[1] arr[2] arr[3] arr[4]

1 2 3 4 5

Figure 3.24  Pointer pointing to the third 
element of the array

Programming Tip

An error is generated if an 
attempt is made to change the 
address of the array.
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is a pointer variable, so when we write ptr+i, then adding i gives a pointer that points i elements 
further along an array than the original pointer. 
	 Since ++ptr and ptr++ are both equivalent to ptr+1, incrementing a pointer using the unary ++ 
operator, increments the address it stores by the amount given by sizeof(type) where type is the 
data type of the variable it points to (i.e., 2 for an integer). For example, consider fig. 3.25.

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

arr[0] arr[1] arr[2] arr[3] arr[4]

ptr

Figure 3.25  Pointer (ptr) pointing to the fourth element of the array

  If ptr originally points to arr[2], then ptr++ will make it to point to 
the next element, i.e., arr[3]. This is shown in fig. 3.25.
  had this been a character array, every byte in the memory would 
have been used to store an individual character. ptr++ would then add 
only 1 byte to the address of ptr.
  When using pointers, an expression like arr[i] is equivalent to 
writing *(arr+i). 
  Many beginners get confused by thinking of array name as a pointer. 
For example, while we can write 

ptr = arr;	 // ptr = &arr[0]

we cannot write 
arr = ptr;

This is because while ptr is a variable, arr is a constant. the location at which the first element 
of arr will be stored cannot be changed once arr[] has been declared. Therefore, an array name 
is often known to be a constant pointer. 
	 To summarize, the name of an array is equivalent to the address of its first element, as a pointer 
is equivalent to the address of the element that it points to. Therefore, arrays and pointers use the 
same concept. 

Note	 arr[i], i[arr], *(arr+i), *(i+arr) gives the same value.

Look at the following code which modifies the contents of an array using a pointer to an array.
int main()
{
	 int arr[]={1,2,3,4,5};
	 int *ptr, i;
	 ptr=&arr[2];
	 *ptr = –1;
	 *(ptr+1) = 0;
	 *(ptr–1) = 1;
	 printf("\n Array is: ");
	 for(i=0;i<5;i++)
		  printf(" %d", *(arr+i));
	 return 0;
}

Output
Array is: 1 1 –1 0 5

Programming Tip

When an array is passed to 
a function, we are actually 
passing a pointer to the function. 
Therefore, in the function 
declaration you must declare a 
pointer to receive the array name.
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	 in C we can add or subtract an integer from a pointer to get a new pointer, pointing somewhere 
other than the original position. C also permits addition and subtraction of two pointer variables. 
For example, look at the code given below. 

int main()
{
	 int arr[]={1,2,3,4,5,6,7,8,9};
	 int *ptr1, *ptr2;
	 ptr1 = arr;
	 ptr2 = arr+2;
	 printf("%d", ptr2–ptr1);
	 return 0;
}

Output 
2

	 In the code, ptr1 and ptr2 are pointers pointing to the elements of the same array. We may 
subtract two pointers as long as they point to the same array. Here, the output is 2 because there 
are two elements between ptr1 and ptr2 in the array arr. both the pointers must point to the same 
array or one past the end of the array, otherwise this behaviour cannot be defined.
	 Moreover, C also allows pointer variables to be compared with each other. Obviously, if two 
pointers are equal, then they point to the same location in the array. However, if one pointer is 
less than the other, it means that the pointer points to some element nearer to the beginning of the 
array. Like with other variables, relational operators (>, <, >=, etc.) can also be applied to pointer 
variables.

Programming Example 

15.	 Write a program to display an array of given numbers. 
#include <stdio.h>
int main()
{
	 int arr[]={1,2,3,4,5,6,7,8,9};
	 int *ptr1, *ptr2;
	 ptr1 = arr;
	 ptr2 = &arr[8];
	 while(ptr1<=ptr2)
	 {
		  printf("%d", *ptr1);
		  ptr1++;
	 }
	 return 0;
}

	 Output 
1 2 3 4 5 6 7 8 9

3.8  Arrays Of Pointers
An array of pointers can be declared as

int *ptr[10];

The above statement declares an array of 10 pointers where each of the pointer points to an integer 
variable. For example, look at the code given below. 
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int *ptr[10];
int p = 1, q = 2, r = 3, s = 4, t = 5;
ptr[0] = &p;
ptr[1] = &q;
ptr[2] = &r;
ptr[3] = &s;
ptr[4] = &t;

Can you tell what will be the output of the following statement?
printf("\n %d", *ptr[3]);

the output will be 4 because ptr[3] stores the address of integer variable s and *ptr[3] will therefore 
print the value of s that is 4. Now look at another code in which we store the address of three 
individual arrays in the array of pointers:

int main()
{
	 int arr1[]={1,2,3,4,5};
	 int arr2[]={0,2,4,6,8};
	 int arr3[]={1,3,5,7,9};
	 int *parr[3] = {arr1, arr2, arr3};
	 int i;
	 for(i = 0;i<3;i++)
		  printf(«%d», *parr[i]);
	 return 0;
}

Output 
1 0 1

Surprised with this output? Try to understand the concept. In the for loop, parr[0] stores the base 
address of arr1 (or, &arr1[0]). So writing *parr[0] will print the value stored at &arr1[0]. Same is 
the case with *parr[1] and *parr[2].

3.9  TWO-DIMENSIONAL ARRAYS
Till now, we have only discussed one-dimensional arrays. One-dimensional arrays are organized 
linearly in only one direction. But at times, we need to store data in the form of grids or tables. 
Here, the concept of single-dimension arrays is extended to incorporate two-dimensional data 
structures. A two-dimensional array is specified using two subscripts where the first subscript 
denotes the row and the second denotes the column. The C compiler treats a two-dimensional 
array as an array of one-dimensional arrays. Figure 3.26 shows a two-dimensional array which 
can be viewed as an array of arrays.

3.9.1  Declaring Two-dimensional Arrays
Any array must be declared before being used. The declaration statement tells the compiler the 
name of the array, the data type of each element in the array, and the size of each dimension. A 
two-dimensional array is declared as:

data_type array_name[row_size][column_size];

	Therefore, a two-dimensional m ¥ n array is an array that 
contains m ¥ n data elements and each element is accessed 
using two subscripts, i and j, where i <= m and j <= n.
	For example, if we want to store the marks obtained by three 
students in five different subjects, we can declare a two-
dimensional array as:

int marks[3][5];

Second dimension
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Figure 3.26  Two-dimensional array
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In the above statement, a two-dimensional array called marks has been declared that has m(3) 
rows and n(5) columns. The first element of the array is denoted by marks[0][0], the second 
element as marks[0][1], and so on. Here, marks[0][0] stores the marks obtained by the first 
student in the first subject, marks[1][0] stores the marks obtained by the second student in the 
first subject.
	 The pictorial form of a two-dimensional array is shown in Fig. 3.27.

Rows

Columns

Row 0

Row 1

Row 2

Col 0 Col 1 Col 2 Col 3 Col 4

marks[ ][ ] marks[ ][1] marks[ ][2] marks[ ][3] marks[ ][4]

marks[1][ ] marks[1][1] marks[1][2] marks[1][3] marks[1][4]

marks[2][ ] marks[2][1] marks[2][2] marks[2][3] marks[2][4]

Figure 3.27  Two-dimensional array

	 Hence, we see that a 2D array is treated as a collection of 1D arrays. Each row of a 2D array 
corresponds to a 1D array consisting of n elements, where n is the number of columns. To understand 
this, we can also see the representation of a two-dimensional array as shown in Fig. 3.28.

marks[ ] – marks[ ] marks[1] marks[2] marks[3] marks[4]

marks[1] –

marks[2] –

marks[ ] marks[1] marks[2] marks[3] marks[4]

marks[ ] marks[1] marks[2] marks[3] marks[4]

Figure 3.28  Representation of two-dimensional array marks[3][5]

	 Although we have shown a rectangular picture of a two-dimensional array, in the memory, these 
elements actually will be stored sequentially. There are two ways of storing a two-dimensional array 
in the memory. The first way is the row major order and the second is the column major order. 
Let us see how the elements of a 2D array are stored in a row major order. Here, the elements of 
the first row are stored before the elements of the second and third rows. That is, the elements of 
the array are stored row by row where n elements of the first row will occupy the first n locations. 
This is illustrated in Fig. 3.29.

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)

Figure 3.29  Elements of a 3 ¥ 4 2D array in row major order

	 However, when we store the elements in a column major order, the elements of the first column 
are stored before the elements of the second and third column. That is, the elements of the array 
are stored column by column where m elements of the first column will occupy the first m locations. 
This is illustrated in Fig. 3.30.

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2)

Figure 3.30  Elements of a 4 ¥ 3 2D array in column major order
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	 In one-dimensional arrays, we have seen that the computer does not keep track of the address 
of every element in the array. It stores only the address of the first element and calculates the 
address of other elements from the base address (address of the first element). Same is the case 
with a two-dimensional array. Here also, the computer stores the base address, and the address of 
the other elements is calculated using the following formula.
	 If the array elements are stored in column major order,

Address(A[I][J]) = Base_Address + w{M ( J – 1) + (I – 1)}

And if the array elements are stored in row major order,
Address(A[I][J]) = Base_Address + w{N ( I – 1) + (J – 1)}

where w is the number of bytes required to store one element, N is the number of columns, M is the 
number of rows, and I and J are the subscripts of the array element.

Example 3.5  Consider a 20 ¥ 5 two-dimensional array marks which has its base address = 1000 
and the size of an element = 2. Now compute the address of the element, marks[18][ 4] assuming 
that the elements are stored in row major order.
Solution

Address(A[I][J]) = Base_Address + w{N (I – 1) + (J – 1)}
Address(marks[18][4]) = 1000 + 2 {5(18 – 1) + (4 – 1)}
		  = 1000 + 2 {5(17) + 3}
		  = 1000 + 2 (88)
		  = 1000 + 176 = 1176

3.9.2  Initializing Two-dimensional Arrays
Like in the case of other variables, declaring a two-dimensional array only reserves space for the 
array in the memory. No values are stored in it. A two-dimensional array is initialized in the same 
way as a one-dimensional array is initialized. For example,

int marks[2][3]={90, 87, 78, 68, 62, 71};

Note that the initialization of a two-dimensional array is done row by row. The above statement 
can also be written as:

int marks[2][3]={{90,87,78},{68, 62, 71}};

	 The above two-dimensional array has two rows and three columns. First, the elements in the 
first row are initialized and then the elements of the second row are initialized.
	 Therefore,	 marks[0][0] =	 90	 marks[0][1] =	 87	 marks[0][2] =	 78

			   marks[1][0] =	 68	 marks[1][1] =	 62	 marks[1][2] =	 71

In the above example, each row is defined as a one-dimensional array of three elements that are 
enclosed in braces. Note that the commas are used to separate the elements in the row as well as 
to separate the elements of two rows.
	 In case of one-dimensional arrays, we have discussed that if the array is completely initialized, 
we may omit the size of the array. The same concept can be applied to a two-dimensional array, 
except that only the size of the first dimension can be omitted. Therefore, the declaration statement 
given below is valid.

int marks[][3]={{90,87,78},{68, 62, 71}};

	 In order to initialize the entire two-dimensional array to zeros, simply specify the first value 
as zero. That is,

int marks[2][3] = {0};
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	 The individual elements of a two-dimensional array can be initialized using the assignment 
operator as shown here.

marks[1][2] = 79;

or
marks[1][2] = marks[1][1] + 10;

3.9.3  Accessing the Elements of Two-dimensional Arrays
The elements of a 2D array are stored in contiguous memory locations. In case of one-dimensional 
arrays, we used a single for loop to vary the index i in every pass, so that all the elements could 
be scanned. Since the two-dimensional array contains two subscripts, we will use two for loops 
to scan the elements. The first for loop will scan each row in the 2D array and the second for loop 
will scan individual columns for every row in the array. Look at the programs which use two for 
loops to access the elements of a 2D array.

Programming Examples 

16.	 Write a program to print the elements of a 2D array.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int arr[2][2] = {12, 34, 56,32};
	 int i, j;
	 for(i=0;i<2;i++)
	 {
		  printf("\n");
		  for(j=0;j<2;j++)
			  printf("%d\t", arr[i][j]);
	 }
	 return 0;
}

	 Output
12	 34
56	 32

17.	 Write a program to generate Pascal’s triangle.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int arr[7][7]={0};
	 int row=2, col, i, j;
	 arr[0][0] = arr[1][0] = arr[1][1] = 1;
	 while(row <= 7)
	 {
		  arr[row][0] = 1;
		  for(col = 1; col <= row; col++)
		  arr[row][col] = arr[row–1][col–1] + arr[row–1][col];
		  row++;
	 }
	 for(i=0; i<7; i++)
	 {
		  printf("\n");
		  for(j=0; j<=i; j++)
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			   printf("\t %d", arr[i][j]);
	 }
	 getch();
	 return 0;
}

	 Output
1
1	 1
1	 2	 1
1	 3	 3	 1
1	 4	 6	 4	 1
1	 5	 10	 10	 5	 1
1	 6	 15	 20	 15	 6	 1

18.	 In a small company there are five salesmen. Each salesman is supposed to sell three 
products. Write a program using a 2D array to print (i) the total sales by each salesman 
and (ii) total sales of each item.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int sales[5][3], i, j, total_sales=0;
	 //INPUT DATA
	 printf("\n ENTER THE DATA");
	 printf("\n *****************");
	 for(i=0; i<5; i++)
	 {
		  printf("\n Enter the sales of 3 items sold by salesman %d: ", i+1);
		  for(j=0; j<3; j++)
			   scanf("%d", &sales[i][j]);
	 }
	 // PRINT TOTAL SALES BY EACH SALESMAN
	 for(i=0; i<5; i++)
	 {
		  total_sales = 0;
		  for(j=0; j<3; j++)
			   total_sales += sales[i][j];
		  printf("\n Total Sales By Salesman %d = %d", i+1, total_sales); 
	 }
	 // TOTAL SALES OF EACH ITEM
	 for(i=0; i<3; i++)	// for each item
	 {
		  total_sales=0;
		  for(j=0; j<5; j++)	// for each salesman
			   total_sales += sales[j][i];
		  printf("\n Total sales of item %d = %d", i+1, total_sales);
	 }
	 getch();
	 return 0;
}

	 Output
ENTER THE DATA
*****************
Enter the sales of 3 items sold by salesman 1: 23 23 45
Enter the sales of 3 items sold by salesman 2: 34 45 63 
Enter the sales of 3 items sold by salesman 3: 36 33 43
Enter the sales of 3 items sold by salesman 4: 33 52 35
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Enter the sales of 3 items sold by salesman 5: 32 45 64
Total Sales By Salesman 1 = 91
Total Sales By Salesman 2 = 142
Total Sales By Salesman 3 = 112
Total Sales By Salesman 4 = 120
Total Sales By Salesman 5 = 141
Total sales of item 1 = 158
Total sales of item 2 = 198
Total sales of item 3 = 250

19.	 Write a program to read a 2D array marks which stores the marks of five students in three 
subjects. Write a program to display the highest marks in each subject.

	 #include <stdio.h>
#include <conio.h>
int main()
{
	 int marks[5][3], i, j, max_marks;
	 for(i=0; i<5; i++)
	 {
		  printf("\n Enter the marks obtained by student %d",i+1);
		  for(j=0; j<3; j++)
		  {
			   printf("\n marks[%d][%d] = ", i, j);
			   scanf("%d", &marks[i][j]);
		  }
	 }
	 for(j=0; j<3; j++)
	 {
		  max_marks = –999;
		  for(i=0; i<5; i++)
		  {
			   if(marks[i][j]>max_marks)
			   max_marks = marks[i][j];
		  }	  
		  printf("\n The highest marks obtained in the subject %d = %d", j+1, max_marks);
	 }
	 getch();
	 return 0;
}

	 Output
Enter the marks obtained by student 1
marks[0][0] = 89
marks[0][1] = 76 
marks[0][2] = 100
Enter the marks obtained by student 2
marks[1][0] = 99
marks[1][1] = 90
marks[1][2] = 89
Enter the marks obtained by student 3
marks[2][0] = 67
marks[2][1] = 76
marks[2][2] = 56
Enter the marks obtained by student 4
marks[3][0] = 88
marks[3][1] = 77
marks[3][2] = 66
Enter the marks obtained by student 5
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marks[4][0] = 67
marks[4][1] = 78
marks[4][2] = 89
The highest marks obtained in the subject 1 = 99
The highest marks obtained in the subject 2 = 90
The highest marks obtained in the subject 3 = 100

3.10  OPERATIONS ON TWO-DIMENSIONAL ARRAYS
Two-dimensional arrays can be used to implement the mathematical concept of matrices. In 
mathematics, a matrix is a grid of numbers, arranged in rows and columns. Thus, using two-
dimensional arrays, we can perform the following operations on an m×n matrix:

 Transpose  Transpose of an m ¥ n matrix A is given as a n ¥ m matrix B, where Bi,j = Aj,i.

 Sum  Two matrices that are compatible with each other can be added together, storing the result 
in the third matrix. Two matrices are said to be compatible when they have the same number of 
rows and columns. The elements of two matrices can be added by writing:

Ci,j = Ai,j + Bi,j

Difference  Two matrices that are compatible with each other can be subtracted, storing the result 
in the third matrix. Two matrices are said to be compatible when they have the same number of 
rows and columns. The elements of two matrices can be subtracted by writing:

Ci,j = Ai,j – Bi,j

 Product  Two matrices can be multiplied with each other if the number of columns in the first 
matrix is equal to the number of rows in the second matrix. Therefore, m ¥ n matrix A can be 
multiplied with a p ¥ q matrix B if n=p. The dimension of the product matrix is m ¥ q. The elements 
of two matrices can be multiplied by writing:

Ci,j = S Ai,kBk,j for k = 1 to  n

Programming Examples 

20.	 Write a program to read and display a 3 ¥ 3 matrix.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, j, mat[3][3];
	 clrscr();
	 printf("\n Enter the elements of the matrix ");
	 for(i=0;i<3;i++)
	 {
		  for(j=0;j<3;j++)
		  {
		  scanf("%d",&mat[i][j]);
		  }
	 }
	 printf("\n The elements of the matrix are ");
	 for(i=0;i<3;i++)
	 {
		  printf("\n");
		  for(j=0;j<3;j++)
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			   printf("\t %d",mat[i][j]);
	 }
	 return 0;
}

	 Output
Enter the elements of the matrix
1 2 3 4 5 6 7 8 9
The elements of the matrix are
1 2 3
4 5 6
7 8 9

21.	 Write a program to transpose a 3 ¥ 3 matrix.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, j, mat[3][3], transposed_mat[3][3];
	 clrscr();
	 printf("\n Enter the elements of the matrix ");
	 for(i=0;i<3;i++)
	 {
		  for(j=0;j<3;j++)
		  {
			   scanf("%d", &mat[i][j]);
		  }
	 }
	 printf("\n The elements of the matrix are ");
	 for(i=0;i<3;i++)
	 {
		  printf("\n");
		  for(j=0;j<3;j++)
			   printf("\t %d", mat[i][j]);
	 }
	 for(i=0;i<3;i++)
	 {
		  for(j=0;j<3;j++)
			   transposed_mat[i][j] = mat[j][i];
	 }
	 printf("\n The elements of the transposed matrix are ");
	 for(i=0;i<3;i++)
	 {
		  printf("\n");
		  for(j=0;j<3;j++)
			   printf("\t %d",transposed_ mat[i][j]);
	 }
	 return 0;
}

	 Output
Enter the elements of the matrix
1 2 3 4 5 6 7 8 9
The elements of the matrix are
1 2 3
4 5 6
7 8 9
The elements of the transposed matrix are
1 4 7
2 5 8
3 6 9
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22.	 Write a program to input two m  ¥  n matrices and then calculate the sum of their 
corresponding elements and store it in a third m  ¥  n matrix.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, j;
	 int rows1, cols1, rows2, cols2, rows_sum, cols_sum;
	 int mat1[5][5], mat2[5][5], sum[5][5];
	 clrscr();
	 printf("\n Enter the number of rows in the first matrix : ");
	 scanf("%d",&rows1);
	 printf("\n Enter the number of columns in the first matrix : ");
	 scanf("%d",&cols1);
	 printf("\n Enter the number of rows in the second matrix : ");
	 scanf("%d",&rows2);
	 printf("\n Enter the number of columns in the second matrix : ");
	 scanf("%d",&cols2);
	 if(rows1 != rows2 || cols1 != cols2)
	 {
		  printf("\n Number of rows and columns of both matrices must be equal");
		  getch();
		  exit();
	 }
	 rows_sum = rows1;
	 cols_sum = cols1;
	 printf("\n Enter the elements of the first matrix ");
	 for(i=0;i<rows1;i++)
	 {
		  for(j=0;j<cols1;j++)
		  {
			   scanf("%d",&mat1[i][j]);
		  }
	 }
	 printf("\n Enter the elements of the second matrix ");
	 for(i=0;i<rows2;i++)
	 {
		  for(j=0;j<cols2;j++)
		  {
			   scanf("%d",&mat2[i][j]);
		  }
	 }
	 for(i=0;i<rows_sum;i++)
	 {
		  for(j=0;j<cols_sum;j++)
			   sum[i][j] = mat1[i][j] + mat2[i][j];
	 }
	 printf("\n The elements of the resultant matrix are ");
	 for(i=0;i<rows_sum;i++)
	 {
		  printf("\n");
		  for(j=0;j<cols_sum;j++)
			   printf("\t %d", sum[i][j]);
	 }
	 return 0;
}
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	 Output
Enter the number of rows in the first matrix: 2
Enter the number of columns in the first matrix: 2
Enter the number of rows in the second matrix: 2
Enter the number of columns in the second matrix: 2
Enter the elements of the first matrix
1 2 3 4
Enter the elements of the second matrix
5 6 7 8
The elements of the resultant matrix are
6 8
10 12

23.	 Write a program to multiply two m  ¥  n matrices.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, j, k;
	 int rows1, cols1, rows2, cols2, res_rows, res_cols;
	 int mat1[5][5], mat2[5][5], res[5][5];
	 clrscr();
	 printf("\n Enter the number of rows in the first matrix : ");
	 scanf("%d",&rows1);
	 printf("\n Enter the number of columns in the first matrix : ");
	 scanf("%d",&cols1);
	 printf("\n Enter the number of rows in the second matrix : ");
	 scanf("%d",&rows2);
	 printf("\n Enter the number of columns in the second matrix : ");
	 scanf("%d",&cols2);
	 if(cols1 != rows2)
	 {

			  printf("\n The number of columns in the first matrix must be equal 
to the number of rows in the second matrix");

		  getch();
		  exit();
	 }
	 res_rows = rows1;
	 res_cols = cols2;
	 printf("\n Enter the elements of the first matrix ");
	 for(i=0;i<rows1;i++)
	 {
		  for(j=0;j<cols1;j++)
		  {
			   scanf("%d",&mat1[i][j]);
		  }
	 }
	 printf("\n Enter the elements of the second matrix ");
	 for(i=0;i<rows2;i++)
	 {
		  for(j=0;j<cols2;j++)
		  {
			   scanf("%d",&mat2[i][j]);
		  }
	 }
	 for(i=0;i<res_rows;i++)
	 {
		  for(j=0;j<res_cols;j++)
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		  {
			   res[i][j]=0;
			   for(k=0; k<res_cols;k++)
			   res[i][j] += mat1[i][k] * mat2[k][j];
		  }
	 }
	 printf("\n The elements of the product matrix are ");
	 for(i=0;i<res_rows;i++)
	 {
		  printf("\n");
		  for(j=0;j<res_cols;j++)
			   printf("\t %d",res[i][j]);
	 }
	 return 0;
}

	 Output
Enter the number of rows in the first matrix: 2
Enter the number of columns in the first matrix: 2
Enter the number of rows in the second matrix: 2
Enter the number of columns in the second matrix: 2
Enter the elements of the first matrix
1 2 3 4
Enter the elements of the second matrix
5 6 7 8
The elements of the product matrix are
19 22
43 50

3.11 p assing two-dimensional arrays to functions
There are three ways of passing a two-dimensional array to a function. First, we can pass individual 
elements of the array. This is exactly the same as passing an element of a one-dimensional array. 
Second, we can pass a single row of the two-dimensional array. This is equivalent to passing the 
entire one-dimensional array to a function that has already been discussed in a previous section. 
Third, we can pass the entire two-dimensional array to the function. Figure 3.31 shows the three 
ways of using two-dimensional arrays for inter-functon communication.

2D array for inter-

function communication

Passing individual

elements

Passing the entire

2D arrary
Passing a row

Figure 3.31  2D arrays for inter-function communication

Passing a Row
A row of a two-dimensional array can be passed by indexing the array name with the row number. 
Look at Fig. 3.32 which illustrates how a single row of a two-dimensional array can be passed 
to the called function.
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main()

{

int arr[2][3] = ({1, 2, 3}, {4, 5, 6});

func(arr[1]);

}

Calling function Called function

void func(int arr[])

{

int i;

for(i= ;i<3;i++)

printf("%d", arr[i] * 1 );

}

Figure 3.32  Passing a row of a 2D array to a function

Passing the Entire 2D Array
To pass a two-dimensional array to a function, we use the array name as the actual parameter (the 
way we did in case of a 1D array). However, the parameter in the called function must indicate 
that the array has two dimensions. Look at the following program which passes entire 2D array 
to a function.

Programming Example 

24.	 Write a program to fill a square matrix with value zero on the diagonals, 1 on the upper 
right triangle, and –1 on the lower left triangle.
#include <stdio.h>
#include <conio.h>
void read_matrix(int mat[5][5], int);
void display_matrix(int mat[5][5], int);
int main()
{
	 int row;
	 int mat1[5][5];
	 clrscr();
	 printf("\n Enter the number of rows and columns of the matrix:");
	 scanf("%d", &row);
	 read_matrix(mat1, row);
	 display_matrix(mat1, row);
	 getch();
	 return 0;
}

void read_matrix(int mat[5][5], int r)
{
	 int i, j;
	 for(i=0; i<r; i++)
	 {
		  for(j=0; j<r; j++)
		  {
		  if(i==j)
			   mat[i][j] = 0;
		  else if(i>j)
			   mat[i][j] = –1;
		  else
			   mat[i][j] = 1;
		  }
	 }
}
void display_matrix(int mat[5][5], int r)
{
	 int i, j;
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	 for(i=0; i<r; i++)
	 {
	 printf("\n");
	 for(j=0; j<r; j++)
		  printf("\t %d", mat[i][j]);
	 }
}

	 Output
Enter the number of rows and columns of the matrix: 2 
 0		  1
–1		  0

3.12  Pointers And two-dimensional Arrays
Consider a two-dimensional array declared as 

int mat[5][5];

 To declare a pointer to a two-dimensional array, you may write
int **ptr

Here int **ptr is an array of pointers (to one-dimensional arrays), while int mat[5][5] is a 2D array. 
They are not the same type and are not interchangeable.
	 Individual elements of the array mat can be accessed using either: 

mat[i][j] or 
*(*(mat + i) + j) or
*(mat[i]+j);

To understand more fully the concept of pointers, let us replace 
*(multi + row) with X so the expression 
*(*(mat + i) + j) becomes *(X + col)
	 Using pointer arithmetic, we know that the address pointed to by (i.e., value of) X + col + 1 must 
be greater than the address X + col by an amount equal to sizeof(int). 
	 Since mat is a two-dimensional array, we know that in the expression multi + row as used above, 
multi + row + 1 must increase in value by an amount equal to that needed to point to the next row, 
which in this case would be an amount equal to COLS * sizeof(int). 
	 Thus, in case of a two-dimensional array, in order to evaluate expression (for a row major 2D 

array), we must know a total of 4 values:
	 1.	 The address of the first element of the array, which is given by the name of the array, i.e., mat 

in our case. 
	 2.	 The size of the type of the elements of the array, i.e., size of integers in our case.
	 3.	 The specific index value for the row. 
	 4.	 The specific index value for the column. 
Note that

int (*ptr)[10];

declares ptr to be a pointer to an array of 10 integers. This is different from 
int *ptr[10];

which would make ptr the name of an array of 10 pointers to type int. You must be thinking how 
pointer arithmetic works if you have an array of pointers. For example: 

int * arr[10] ;
int ** ptr = arr ;



106  Data Structures Using C

In this case, arr has type int **. Since all pointers have the same size, the address of  ptr + i  can 
be calculated as: 

addr(ptr + i) = addr(ptr) + [sizeof(int *) * i]
= addr(ptr) + [2 * i]

Since arr has type int **, 
arr[0] = &arr[0][0], 
arr[1] = &arr[1][0], and in general, 
arr[i] = &arr[i][0]. 

	 According to pointer arithmetic, arr + i = & arr[i], yet this skips an entire row of 5 elements, 
i.e., it skips complete 10 bytes (5 elements each of 2 bytes size). Therefore, if arr is address 1000, 
then arr + 2 is address 1010. To summarize, &arr[0][0], arr[0], arr, and &arr[0] point to the base 
address.

&arr[0][0] + 1 points to arr[0][1]
arr[0] + 1 points to arr[0][1]
arr + 1 points to arr[1][0]
&arr[0] + 1 points to arr[1][0]

To conclude, a two-dimensional array is not the same as an array of pointers to 1D arrays. Actually 
a two-dimensional array is declared as: 

int (*ptr)[10] ;

Here ptr is a pointer to an array of 10 elements. The parentheses are not optional. In the absence 
of these parentheses, ptr becomes an array of 10 pointers, not a pointer to an array of 10 ints. 
	 Look at the code given below which illustrates the use of a pointer to a two-dimensional array.

#include <stdio.h>
int main()
{
	 int arr[2][2]={{1,2}, {3,4}};
	 int i, (*parr)[2];
	 parr = arr;
	 for(i = 0; i < 2; i++)
	 {
		  for(j = 0; j < 2 ;j++)
			   printf(" %d", (*(parr+i))[j]);
	 }
	 return 0;
}

	 Output
1  2  3  4

The golden rule to access an element of a two-dimensional array can be given as
arr[i][j] = (*(arr+i))[j] = *((*arr+i))+j) = *(arr[i]+j)

Therefore,
arr[0][0] = *(arr)[0] = *((*arr)+0) = *(arr[0]+0)
arr[1][2] = (*(arr+1))[2] = *((*(arr+1))+2) = *(arr[1]+2)

If we declare an array of pointers using, 
data_type *array_name[SIZE];

Here SIZE represents the number of rows and 
the space for columns that can be dynamically 
allocated.

If we declare a pointer to an array using, 
data_type (*array_name)[SIZE];

Here S I Z E  represents the number of 
columns and the space for rows that may be 
dynamically allocated (refer Appendix A to 
see how memory is dynamically allocated).
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Programming Example

25.	 Write a program to read and display a 3 ¥ 3 matrix.
#include <stdio.h>
#include <conio.h>
void display(int (*)[3]);
int main()
{
	 int i, j, mat[3][3];
	 clrscr(); 
	 printf("\n Enter the elements of the matrix");
	 for(i=0;i<3;i++)
	 { 
		  for(j = 0; j < 3; j++)	  
		  {	  
			   scanf("%d", &mat[i][j]); 
		  }
	 }
	 display(mat);
	 return 0;
}
void display(int (*mat)[3])
{
	 int i, j;
	 printf("\n The elements of the matrix are");
	 for(i = 0; i < 3; i++)
	 {
	 printf("\n"); 
	 for(j=0;j<3;j++)	 
		  printf("\t %d",*(*(mat + i)+j));
	 }
}

	 Output
Enter the elements of the matrix 
1 2 3 4 5 6 7 8 9
The elements of the matrix are 
1 2 3 
4 5 6 
7 8 9

Note	 A double pointer cannot be used as a 2D array. Therefore, it is wrong to declare: ‘int **mat’ and then 
use ‘mat’ as a 2D array. These are two very different data types used to access different locations in memory. 
So running such a code may abort the program with a ‘memory access violation’ error.
  A 2D array is not equivalent to a double pointer. A ‘pointer to pointer of T’ cannot serve as a ‘2D array of T’. 
The 2D array is equivalent to a pointer to row of T, and this is very different from pointer to pointer of T.
  When a double pointer that points to the first element of an array is used with the subscript notation ptr[0][0],  
it is fully dereferenced two times and the resulting object will have an address equal to the value of the first 
element of the array

3.13  MULTI-dimensional ARRAYS
A multi-dimensional array in simple terms is an array of arrays. As we have one index in a one-
dimensional array, two indices in a two-dimensional array, in the same way, we have n indices in 
an n-dimensional array or multi-dimensional array. Conversely, an n–dimensional array is specified 
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using n indices. An n-dimensional m1 ¥ m2 ¥ m3 ¥ ◊ ◊ ◊ ¥  mn array is a collection of m1 ¥ m2 ¥ m3 ¥  ◊ ◊ ◊ ¥ mn  
elements. In a multi-dimensional array, a particular element is specified by using n subscripts as 
A[I1][I2][I3]...[In], where

I1 <= M1, I2 <= M2, I3 <= M3, ... In <= Mn

A multi-dimensional array can contain as many indices as needed and as the requirement of 
memory increases with the number of indices used. However, in practice, we hardly use more 
than three indices in any program. Figure 3.33 shows a three-dimensional array. The array has 
three pages, four rows, and two columns.

Q U

VR

S W

XT

I M

NJ

OK

L P

Page 3

Page 2

A E

B F

C G

HD

Second

dimension

(Columns)

Page 1 Third dimension

First

dimension

(Rows)

Figure 3.33  Three-dimensional array

t

Note	 A multi-dimensional array is declared and initialized the same way we declare and initialize one- and 
two-dimensional arrays.

Example 3.6  Consider a three-dimensional array defined as int A[2][2][3]. Calculate the 
number of elements in the array. Also, show the memory representation of the array in the row 
major order and the column major order.
Solution
A three-dimensional array consists of pages. Each page, in turn, contains m rows and n columns.

(0,0,0) (0,0,1) (0,0,2) (0,1,0) (0,1,1) (0,1,2) (1,0,0) (1,0,1) (1,0,2) (1,1,0) (1,1,1) (1,1,2)

(a) Row major order

(0,0,0) (0,1,0) (0,0,1) (0,1,1) (0,0,2) (0,1,2) (1,0,0) (1,1,0) (1,0,1) (1,1,1) (1,0,2) (1,1,2)

(b) Column major order

The three-dimensional array will contain 2  ¥  2  ¥  3 = 12 elements.
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Programming Example

26.	 Write a program to read and display a 2 ¥ 2 ¥ 2 array.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int array[2][2][2], i, j, k;
	 clrscr();
	 printf("\n Enter the elements of the matrix");
	 for(i=0;i<2;i++)
	 {
		  for(j=0;j<2;j++)
		  {
			   for(k=0;k<2;k++)
			   {
				    scanf("%d", &array[i][j][k]);
			   }
		  }
	 }
	 printf("\n The matrix is : ");
	 for(i=0;i<2;i++)
	 {
		  printf("\n");
		  for(j=0;j<2;j++)
		  {
			   printf("\n");
			   for(k=0;k<2;k++)
				    printf("\t array[%d][%d][%d] = %d", i, j, k, array[i]
[j][k]);
		  }
	 }
	 getch();
	 return 0;
}

	 Output
Enter the elements of the matrix
1 2 3 4 5 6 7 8
The matrix is
arr[0][0][0] = 1 arr[0][0][1] = 2
arr[0][1][0] = 3 arr[0][1][1] = 4
arr[1][0][0] = 5 arr[1][0][1] = 6
arr[1][1][0] = 7 arr[1][1][1] = 8

3.14  POINTERs AND three-dimensional ARRAYs
In this section, we will see how pointers can be used to access a three-dimensional array. We have 
seen that pointer to a one-dimensional array can be declared as,

int arr[]={1,2,3,4,5};
int *parr;
parr = arr;

Similarly, pointer to a two-dimensional array can be declared as,
int arr[2][2]={{1,2},{3,4}};
int (*parr)[2];
parr = arr;
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A pointer to a three-dimensional array can be declared as,
int arr[2][2][2]={1,2,3,4,5,6,7,8};
int (*parr)[2][2];
parr = arr;

We can access an element of a three-dimensional array by writing,
arr[i][j][k] = *(*(*(arr+i)+j)+k)

Programming Example

27. Write a program which illustrates the use of a pointer to a three-dimensional array.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i,j,k;
	 int arr[2][2][2];
	 int (*parr)[2][2]= arr;
	 clrscr();
 	 printf("\n Enter the elements of a 2 ¥ 2 ¥ 2 array: ");
	 for(i = 0; i < 2; i++)
	 {
		  for(j = 0; j < 2; j++)
		  {
			   for(k = 0; k < 2; k++)
				    scanf("%d", &arr[i][j][k]);
		  }
	 }
	 printf("\n The elements of the 2 ¥ 2 ¥ 2 array are: ");
	 for(i = 0; i < 2; i++)
	 {
		  for(j = 0; j < 2; j++)
		  {
			   for(k = 0; k < 2; k++)
				    printf("%d", *(*(*(parr+i)+j)+k));
		  }
	 }
	 getch();
	 return 0;
}

	 Output
Enter the elements of a 2 ¥ 2 ¥ 2 array: 1 2 3 4 5 6 7 8
The elements of the 2 ¥ 2 ¥ 2 array are: 1 2 3 4 5 6 7 8

Note	 In the printf statement, you could also have used *(*(*(arr+i)+j+)+k)  instead of 
*(*(*(parr+i)+j)+k)).

3.15  SPARSE MATRICES
Sparse matrix is a matrix that has large number of elements with a zero value. In order to efficiently 
utilize the memory, specialized algorithms and data structures that take advantage of the sparse 
structure should be used. If we apply the operations using standard matrix structures and algorithms 
to sparse matrices, then the execution will slow down and the matrix will consume large amount of 
memory. Sparse data can be easily compressed, which in turn can significantly reduce memory usage.
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  There are two types of sparse matrices. In the first type of sparse matrix, 
all elements above the main diagonal have a zero value. This type of 
sparse matrix is also called a (lower) triagonal matrix because if you see it 
pictorially, all the elements with a non-zero value appear below the diagonal. 
In a lower triangular matrix, Ai,j = 0 where i < j. An n ¥ n lower-triangular 
matrix A has one non-zero element in the first row, two non-zero elements 
in the second row and likewise n non-zero elements in the nth row. Look 
at Fig. 3.34 which shows a lower-triangular matrix.
  To store a lower-triangular matrix efficiently in the memory, we can use 
a one-dimensional array which stores only non-zero elements. The mapping 
between a two-dimensional matrix and a one-dimensional array can be done 
in any one of the following ways:

(a)	 Row-wise mapping—Here the contents of array A[] will be {1, 5, 
3, 2, 7, –1, 3, 1, 4, 2, –9, 2, –8, 1, 7}

(b)	 Column-wise mapping—Here the contents of array A[] will be  
{1, 5, 2, 3, –9, 3, 7, 1, 2, –1, 4, –8, 2, 1, 7}

  In an upper-triangular matrix, Ai,j = 0 where i > j. An n ¥ n upper-triangular 
matrix A has n non-zero elements in the first row, n–1 non-zero elements in 
the second row and likewise one non-zero element in the nth row. Look at 
Fig. 3.35 which shows an upper-triangular matrix.
  There is another variant of a sparse matrix, in which elements with a 
non-zero value can appear only on the diagonal or immediately above or 
below the diagonal. This type of matrix is also called a tri-diagonal matrix. 
Hence in a tridiagonal matrix, Ai,j = 0, where |i – j| > 1. In a tridiagonal 
matrix, if elements are present on

(a)	 the main diagonal, it contains non-zero elements for i=j. In all, there will be n elements.
(b)	 below the main diagonal, it contains non-zero elements for i=j+1. In all, there will be n–1 

elements.
(c)	 above the main diagonal, it contains non-zero elements for i=j–1. In all, there will be n–1 

elements.
  Figure 3.36 shows a tri-diagonal matrix. To store a tri-diagonal matrix efficiently in the memory, 
we can use a one-dimensional array that stores only non-zero elements. The mapping between a 
two-dimensional matrix and a one-dimensional array can be done in any one of the following ways:

(a)	 Row-wise mapping—Here the contents of array A[] will be 
	 {4, 1, 5, 1, 2, 9, 3, 1, 4, 2, 2, 5, 1, 9, 8, 7}
(b)	 Column-wise mapping—Here the contents of array A[] will be 
	 {4, 5, 1, 1, 9, 2, 3, 4, 1, 2, 5, 2, 1, 8, 9, 7}
(c)	 Diagonal-wise mapping—Here the contents of array A[] will be 
	 {5, 9, 4, 5, 8, 4, 1, 3, 2, 1, 7, 1, 2, 1, 2, 9}

3.16 Applic ations of Arrays
Arrays are frequently used in C, as they have a number of useful applications. These applications are
	 ∑	 Arrays are widely used to implement mathematical vectors, matrices, and other kinds of 

rectangular tables.
	 ∑	 Many databases include one-dimensional arrays whose elements are records.
	 ∑	 Arrays are also used to implement other data structures such as strings, stacks, queues, heaps, 

and hash tables. We will read about these data structures in the subsequent chapters.
	 ∑	 Arrays can be used for sorting elements in ascending or descending order.
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 Points to Remember
∑	 An array is a collection of elements of the same data 

type.
∑	 The elements of an array are stored in consecutive 

memory locations and are referenced by an index 
(also known as the subscript). 

∑	 The index specifies an offset from the beginning of 
the array to the element being referenced.

∑	 Declaring an array means specifying three 
parameters: data type, name, and its size.

∑	 The length of an array is given by the number of 
elements stored in it.

∑	 There is no single function that can operate on all 
the elements of an array. To access all the elements, 
we must use a loop.

∑	 The name of an array is a symbolic reference to 
the address of the first byte of the array. Therefore, 
whenever we use the array name, we are actually 
referring to the first byte of that array. 

∑	 C considers a two-dimensional array as an array of 
one-dimensional arrays.

∑	 A two-dimensional array is specified using two 
subscripts where the first subscript denotes the row 
and the second subscript denotes the column of the 
array.

∑	 Using two-dimensional arrays, we can perform the 
different operations on matrices: transpose, addition, 
subtraction, multiplication.

∑	 A multi-dimensional array is an array of arrays. Like 
we have one index in a one-dimensional array, two 
indices in a two-dimensional array, in the same way 
we have n indices in an n-dimensional or multi-
dimensional array. Conversely, an n-dimensional 
array is specified using n indices.

∑	 Multi-dimensional arrays can be stored in either row 
major order or column major order.

∑	 Sparse matrix is a matrix that has large number of 
elements with a zero value.

∑	 There are two types of sparse matrices. In the first 
type, all the elements above the main diagonal have 
a zero value. This type of sparse matrix is called 
a lower-triangular matrix. In the second type, all 
the elements below the main diagonal have a zero 
value. This type of sparse matrix is called an upper-
triangular matrix.

∑	 There is another variant of a sparse matrix, in which 
elements with a non-zero value can appear only 
on the diagonal or immediately above or below 
the diagonal. This type of sparse matrix is called a 
tridiagonal matrix.

 Exercises
Review Questions

	 1.	 What are arrays and why are they needed?
	 2.	 How is an array represented in the memory?
	 3.	 How is a two-dimensional array represented in 

the memory?
	 4.	 What is the use of multi-dimensional arrays?
	 5.	 Explain sparse matrix.
	 6.	 How are pointers used to access two-dimensional 

arrays?
	 7.	 Why does storing of sparse matrices need extra 

consideration? How are sparse matrices stored 
efficiently in the computer’s memory?

	 8.	 For an array declared as int arr[50], calculate the 
address of arr[35], if Base(arr) = 1000 and w = 2.

	 9.	 Consider a two-dimensional array Marks[10][5] 
having its base address as 2000 and the number of 
bytes per element of the array is 2. Now, compute 
the address of the element, Marks[8][5], assuming 
that the elements are stored in row major order.

	 10.	 How are arrays related to pointers?

	 11.	 Briefly explain the concept of array of pointers.
	 12.	 How can one-dimensional arrays be used for inter-

function communication?
	 13.	 Consider a two-dimensional array arr[10][10] 

which has base address = 1000 and the number of 
bytes per element of the array = 2. Now, compute 
the address of the element arr[8][5] assuming 
that the elements are stored in column major order.

	 14.	 Consider the array given below:

Name[ ] Adam

Charles

Dicken

Esha

Georgia

Hillary

Mishael

Name[1]

Name[2]

Name[3]

Name[4]

Name[5]

Name[6]
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	 (a)	 How many elements would be moved if the 
name Andrew has to be added in it?

	 (i)	 7	 (ii)	 4
	 (iii)	 5	 (iv)	 6
	 (b)	 How many elements would be moved if the 

name Esha has to be deleted from it?
	 (i)	 3	 (ii)	 4
	 (iii)	 5	 (iv)	 6
	 15.	 What happens when an array is initialized with
	 (a)	 fewer initializers as compared to its size?
	 (b)	 more initializers as compared to its size?

Programming Exercises
	 1.	 Consider an array MARKS[20][5] which stores the 

marks obtained by 20 students in 5 subjects. Now 
write a program to

	 (a)	 find the average marks obtained in each 
subject.

	 (b)	 find the average marks obtained by every 
student.

	 (c)	 find the number of students who have scored 
below 50 in their average.

	 (d)	 display the scores obtained by every student.

	 2.	 Write a program that reads an array of 100 
integers. Display all the pairs of elements whose 
sum is 50.

	 3.	 Write a program to interchange the second element 
with the second last element.

	 4.	 Write a program that calculates the sum of squares 
of the elements.

	 5.	 Write a program to compute the sum and mean of 
the elements of a two-dimensional array.

	 6.	 Write a program to read and display a square 
(using functions).

	 7.	 Write a program that computes the sum of the 
elements that are stored on the main diagonal of 
a matrix using pointers.

	 8.	 Write a program to add two 3 ¥ 3 matrix using 
pointers.

	 9.	 Write a program that computes the product of the 
elements that are stored on the diagonal above the 
main diagonal.

	 10.	 Write a program to count the total number of non-
zero elements in a two-dimensional array.

	 11.	 Write a program to input the elements of a two-
dimensional array. Then from this array, make two 
arrays—one that stores all odd elements of the 

two-dimensional array and the other that stores 
all even elements of the array.

	 12.	 Write a program to read two floating point number 
arrays. Merge the two arrays and display the 
resultant array in reverse order.

	 13.	 Write a program using pointers to interchange the 
second biggest and the second smallest number in 
the array.

	 14.	 Write a menu driven program to read and display 
a p ¥ q ¥ r matrix. Also, find the sum, transpose, 
and product of the two p ¥ q ¥ r matrices.

	 15.	 Write a program that reads a matrix and displays 
the sum of its diagonal elements.

	 16.	 Write a program that reads a matrix and displays 
the sum of the elements above the main diagonal.

		  (Hint: Calculate the sum of elements Aij where i<j)
	 17.	 Write a program that reads a matrix and displays 

the sum of the elements below the main diagonal.
		  (Hint: Calculate the sum of elements Aij where 

i>j)
	 18.	 Write a program that reads a square matrix of size 

n ¥ n. Write a function int isUpperTriangular 
(int a[][], int n) that returns 1 if the matrix 
is upper triangular.

		  (Hint: Array A is upper triangular if Aij = 0 and 
i>j)

	 19.	 Write a program that reads a square matrix of size 
n ¥ n. Write a function int isLowerTriangular 
(int a[][], int n) that returns 1 if the matrix 
is lower triangular.

		  (Hint: Array A is lower triangular if Aij = 0 and 
i<j)

	 20.	 Write a program that reads a square matrix of 
size n ¥ n. Write a function int isSymmetric 

(int a[][], int n) that returns 1 if the matrix 
is symmetric. (Hint: Array A is symmetric if Aij = 

Aji for all values of i and j)
	 21.	 Write a program to calculate XA + YB where A and 

B are matrices and X = 2 and Y = 3.
	 22.	 Write a program to illustrate the use of a pointer 

that points to a 2D array.
	 23.	 Write a program to enter a number and break it 

into n number of digits.
	 24.	 Write a program to delete all the duplicate entries 

from an array of n integers.
	 25.	 Write a program to read a floating point array. 

Update the array to insert a new number at the 
specified location.
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Multiple-choice Questions
	 1.	 If an array is declared as arr[] = {1,3,5,7,9}; 

then what is the value of sizeof(arr[3])?
	 (a)	 1	 (b)	 2
	 (c)	 3	 (d)	 8
	 2.	 If an array is declared as arr[] = {1,3,5,7,9}; 

then what is the value of arr[3]?
	 (a)	 1	 (b)	 7
	 (c)	 9	 (d)	 5
	 3.	 If an array is declared as double arr[50]; how 

many bytes will be allocated to it?
	 (a)	 50	 (b)	 100
	 (c)	 200	 (d)	 400
	 4.	 If an array is declared as int arr[50], how many 

elements can it hold?
	 (a)	 49	 (b)	 50
	 (c)	 51	 (d)	 0
	 5.	 If an array is declared as int arr[5][5], how 

many elements can it store?
	 (a)	 5	 (b)	 25
	 (c)	 10	 (d)	 0
	 6.	 Given an integer array arr[]; the ith element can 

be accessed by writing
	 (a)	 *(arr+i)	 (b)	 *(i + arr)
	 (c)	 arr[i]	 (d)	 All of these

True or False
	 1.	 An array is used to refer multiple memory locations 

having the same name.
	 2.	 An array name can be used as a pointer.
	 3.	 A loop is used to access all the elements of an 

array.
	 4.	 An array stores all its data elements in non-

consecutive memory locations.
	 5.	 Lower bound is the index of the last element in 

an array.

	 6.	 Merged array contains contents of the first array 
followed by the contents of the second array.

	 7.	 It is possible to pass an entire array as a function 
argument.

	 8.	 arr[i] is equivalent to writing *(arr+i).
	 9.	 Array name is equivalent to the address of its last 

element.
	 10.	 mat[i][j] is equivalent to *(*(mat + i) + j).
	 11.	 An array contains elements of the same data type.
	 12.	 When an array is passed to a function, C passes 

the value for each element.
	 13.	 A two-dimensional array contains data of two 

different types.
	 14.	 The maximum number of dimensions that an array 

can have is 4.
	 15.	 By default, the first subscript of the array is zero.

Fill in the Blanks
	 1.	 Each array element is accessed using a ______.
	 2.	 The elements of an array are stored in ______ 

memory locations.
	 3.	 An n-dimensional array contains ______ 

subscripts.
	 4.	 Name of the array acts as a ______.
	 5.	 Declaring an array means specifying the ______, 

______, and ______.
	 6.	 ______ is the address of the first element in the 

array.
	 7.	 Length of an array is given by the number of 

______.
	 8.	 A multi-dimensional array, in simple terms, is an 

______.
	 9.	 An expression that evaluates to an __________ 

value may be used as an index.
	 10.	 arr[3] = 10; initializes the __________ element 

of the array with value 10.



4.1  INTRODUCTION
Nowadays, computers are widely used for word processing applications such as creating, inserting, 
updating, and modifying textual data. Besides this, we need to search for a particular pattern within 
a text, delete it, or replace it with another pattern. So, there is a lot that we as users do to manipulate 
the textual data.
	 In C, a string is a null-terminated character array. This means that after the last character, a 
null character ('\0') is stored to signify the end of the character array. For example, if we write

char str[] = "HELLO";

then we are declaring an array that has five characters, namely, H, E, L, L, and O. Apart from these 
characters, a null character ('\0') is stored at the end of the string. So, the internal representation 
of the string becomes HELLO'\0'. To store a string of length 5, we need 5 + 1 locations (1 extra for 
the null character). The name of the character array (or the string) is a pointer to the beginning of 
the string. Figure 4.1 shows the difference between character storage and string storage.
	 If we had declared str as

char str[5] = "HELLO";

then the null character will not be appended automatically to the character array. This is because 
str can hold only 5 characters and the characters in HELLO have already filled the space allocated to it.

Learning Objective
In the last chapter, we discussed array of integers. Taking a step further, in this 
chapter, we will discuss array of characters commonly known as strings. We will 
see how strings are stored, declared, initialized, and accessed. We will learn about 
different operations that can be performed on strings as well as about array of strings.

Strings

chapter 4
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char str[] = "HELLO";

H E L L O \0

char str[] = "H";

H \0

char ch = 'H';

char str[] = "";

H

\0
Empty

string

Beginning

of string

End of

string
Here is a character not a string.

The character H requires

only one memory location.

H

Here H is a string not a character. The

string H requires two memory locations. One

to store the character H and another to store

the null character.

Although C permits empty string,

it does not allow an empty character.

Figure 4.1  Difference between character storage and string storage

  Like we use subscripts (also known as index) to access the elements 
of an array, we can also use subscripts to access the elements of a string. 
The subscript starts with a zero (0). All the characters of a string are 
stored in successive memory locations. Figure 4.2 shows how str[] is 
stored in the memory.
  Thus, in simple terms, a string is a sequence of characters. In 
Fig. 4.2, 1000, 1001, 1002, etc., are the memory addresses of individual 
characters. For simplicity, the figure shows that H is stored at memory 
location 1000 but in reality, the ASCII code of a character is stored in 
the memory and not the character itself. So, at address 1000, 72 will be 
stored as the ASCII code for H is 72.
	 The statement

char str[] = "HELLO";

declares a constant string, as we have assigned a value to it while 
declaring the string. However, the general form of declaring a string is

char str[size];

	 When we declare the string like this, we can store size–1 characters in the array because the 
last character would be the null character. For example, char mesg[100]; can store a maximum of 
99 characters.
	 Till now, we have only seen one way of initializing strings. The other way to initialize a string 
is to initialize it as an array of characters. For example,

char str[] = {'H', 'E', 'L', 'L', 'O', '\0'};

	 In this example, we have explicitly added the null character. Also observe that we have not 
mentioned the size of the string. Here, the compiler will automatically calculate the size based 
on the number of characters. So, in this example six memory locations will be reserved to store 
the string variable, str.
	 We can also declare a string with size much larger than the number of elements that are initialized. 
For example, consider the statement below.

char str [10] = "HELLO";

str[ ]

str[1] 1 1

str[2] 1 2

str[3] 1 3

str[4] 1 4

str[5] 1 5

H

E

L

L

O

\0

1

Figure 4.2  Memory representation 
of a character array

Programming Tip

When allocating memory space 
for a string, reserve space to 
hold the null character also.
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	 In such cases, the compiler creates an array of size 10; stores "HELLO" in it and finally terminates 
the string with a null character. Rest of the elements in the array are automatically initialized to 
NULL. 
	 Now consider the following statements:

char str[3];
str = "HELLO";

The above initialization statement is illegal in C and would generate a compile-time error because of 
two reasons. First, the array is initialized with more elements than it can store. Second, initialization 
cannot be separated from declaration.

4.1.1  Reading Strings
If we declare a string by writing

char str[100];

Then str can be read by the user in three ways:
	 1.	 using scanf function,
	 2.	 using gets() function, and
	 3.	 using getchar(),getch()or getche() function repeatedly.
Strings can be read using scanf() by writing

scanf("%s", str);

Although the syntax of using scanf() function is well known and easy to use, the main pitfall of 
using this function is that the function terminates as soon as it finds a blank space. For example, 
if the user enters Hello World, then the str will contain only Hello. This is because the moment a 
blank space is encountered, the string is terminated by the scanf() function. You may also specify 
a field width to indicate the maximum number of characters that can be read. Remember that extra 

characters are left unconsumed in the input buffer.
	 Unlike int, float, and char values, %s format does not require the 
ampersand before the variable str.
	 The next method of reading a string is by using the gets() function. 
The string can be read by writing

gets(str);

gets() is a simple function that overcomes the drawbacks of the scanf() function. The gets() 
function takes the starting address of the string which will hold the input. The string inputted 
using gets() is automatically terminated with a null character.
	 Strings can also be read by calling the getchar() function repeatedly to read a sequence of 
single characters (unless a terminating character is entered) and simultaneously storing it in a 
character array as shown below.

i=0;()
ch = getchar;// Get a character
while(ch != '*')
{
	 str[i] = ch;// Store the read character in str
	 i++;
	 ch = getchar();// Get another character
}

str[i] = '\0';// Terminate str with null character

Note that in this method, you have to deliberately append the string with a null character. The 
other two functions automatically do this.

Programming Tip

Using & operand with a string 
variable in the scanf statement 
generates an error.
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4.1.2  Writing Strings
Strings can be displayed on the screen using the following three ways:
	 1.	 using printf() function,
	 2.	 using puts() function, and
	 3.	 using putchar() function repeatedly.
Strings can be displayed using printf() by writing

printf("%s", str);

	 We use the format specifier %s to output a string. Observe carefully that there is no ‘&’ character 
used with the string variable. We may also use width and precision specifications along with %s. 
The width specifies the minimum output field width. If the string is short, the extra space is either 
left padded or right padded. A negative width left pads short string rather than the default right 
justification. The precision specifies the maximum number of characters to be displayed, after 
which the string is truncated. For example,

printf ("%5.3s", str);

	 The above statement would print only the first three characters in a total field of five characters. 
Also these characters would be right justified in the allocated width. To make the string left justified, 
we must use a minus sign. For example,

printf ("%–5.3s", str);

t

Note	 When the field width is less than the length of the string, the entire string will be printed. If the number 
of characters to be printed is specified as zero, then nothing is printed on the screen.

	 The next method of writing a string is by using puts() function. A string can be displayed by 
writing

puts(str);

puts() is a simple function that overcomes the drawbacks of the printf() function.
	 Strings can also be written by calling the putchar() function repeatedly to print a sequence of 
single characters.

i=0;
while(str[i] != '\0')
{
	 putchar(str[i]);// Print the character on the screen
	 i++;
}

4.2   OPERATIONS ON STRINGS
In this section, we will learn about different operations that can be performed on strings.

Finding Length of a String
The number of characters in a string constitutes 
the length of the string. For example, LENGTH("C 
PROGRAMMING IS FUN") will return 20. Note that even 
blank spaces are counted as characters in the string.
	 Figure 4.3 shows an algorithm that calculates the 
length of a string. In this algorithm, I is used as an 
index for traversing string STR. To traverse each and 
every character of STR, we increment the value of I. 

Step 1: [INITIALIZE] SET I =

Step 2: Repeat Step 3 while STR[I] != NULL

Step 3: SET I = I + 1

[END OF LOOP]

Step 4: SET LENGTH = I

Step 5: END

Figure 4.3  Algorithm to calculate the length of a string



Strings  119

Once we encounter the null character, the control jumps out of the while loop and the length is 
initialized with the value of I. 

Note	 The library function strlen(s1) which is defined in string.h returns the length of string s1.

Programming Example 

1.	 Write a program to find the length of a string.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char str[100], i = 0, length;
	 clrscr();
	 printf("\n Enter the string : ");
	 gets(str)
	 while(str[i] != '\0')
		  i++;
	 length = i;
	 printf("\n The length of the string is : %d", length);
	 getch()
	 return 0;
}

	 Output
Enter the string : HELLO
The length of the string is : 5

Converting Characters of a String into Upper/ Lower 
Case
We have already discussed that in the memory ASCII 
codes are stored instead of the real values. The ASCII 
code for A–Z varies from 65 to 91 and the ASCII 
code for a–z ranges from 97 to 123. So, if we have 
to convert a lower case character into uppercase, we 
just need to subtract 32 from the ASCII value of the 
character. And if we have to convert an upper case 
character into lower case, we need to add 32 to the 
ASCII value of the character. Figure 4.4 shows an 
algorithm that converts the lower case characters of a 
string into upper case.

Note	 The library functions toupper() and tolower() which are defined in ctype.h convert a character 
into upper and lower case, respectively.

	 In the algorithm, we initialize I to zero. Using I as the index of STR, we traverse each character 
of STR from Step 2 to 3. If the character is in lower case, then it is converted into upper case by 
subtracting 32 from its ASCII value. But if the character is already in upper case, then it is copied 
into the UPPERSTR string. Finally, when all the characters have been traversed, a null character is 
appended to UPPERSTR (as done in Step 4).

Step 1: [ ] SET I=

Step 2: Repeat Step 3 while STR[I] != NULL

Step 3: IF STR[I] 'a' AND STR[I] <= ‘2’

SET UPPERSTR[I] = STR[I] –32

ELSE

SET [I] = STR[I]

[END OF IF]

SET I = I + 1

[END OF LOOP]

Step 4: SET [I] = NULL

Step 5: EXIT

INITIALIZE

>=

UPPERSTR

UPPERSTR

Figure 4.4  Algorithm to convert characters of a string 
into upper case
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Programming Example 

2.	 Write a program to convert the lower case characters of a string into upper case.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char str[100], upper_str[100];
	 int i=0;
	 clrscr();
	 printf("\n Enter the string :");
	 gets(str);
	 while(str[i] != '\0')
	 {
		  if(str[i]>='a' && str[i]<='z')
			   upper_str[i] = str[i] – 32;
		  else
			   upper_str[i] = str[i];
		  i++;
	 }
	 upper_str[i] = '\0';
	 printf("\n The string converted into upper case is : ");
	 puts(upper_str);
	 return 0;
}

	 Output
Enter the string : Hello
The string converted into upper case is : HELLO

Appending a String to Another String
Appending one string to another string involves copying the contents of the source string at the 
end of the destination string. For example, if S1 and S2 are two strings, then appending S1 to S2 
means we have to add the contents of S1 to S2. So, S1 is the source string and S2 is the destination 
string. The appending operation would leave the source string S1 unchanged and the destination 
string S2 = S2 + S1. Figure 4.5 shows an algorithm that appends two strings.

Note	 The library function strcat(s1, s2) which is defined in string.h concatenates string s2 to s1. 

Step 1: [ ] SET I= and J=

Step 2: Repeat Step 3 while _STR[I] != NULL

Step 3: SET I = I + 1

[END OF LOOP]

Step 4: Repeat Steps 5 to 7 while SOURCE_ [J] !=

Step 5: DEST_ [I] = _ [J]

Step 6: SET I = I + 1

Step 7: SET J = J + 1

[END OF LOOP]

Step 8: SET _ [I] =

Step 9: EXIT

INITIALIZE

DEST

STR NULL

STR SOURCE STR

DEST STR NULL

Figure 4.5  Algorithm to append a string to another string

	 In this algorithm, we first traverse through the destination string to reach its end, that is, reach 
the position where a null character is encountered. The characters of the source string are then 
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copied into the destination string starting from that position. Finally, a null character is added to 
terminate the destination string.

Programming Example 

3.	 Write a program to append a string to another string.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char Dest_Str[100], Source_Str[50];
	 int i=0, j=0;
	 clrscr();
	 printf("\n Enter the source string : ");
	 gets(Source_Str);
	 printf("\n Enter the destination string : ");
	 gets(Dest_Str);
	 while(Dest_Str[i] != '\0')
		  i++;
	 while(Source_Str[j] != '\0')
	 {
		  Dest_Str[i] = Source_Str[j];
		  i++;
		  j++;
	 }
	 Dest_Str[i] = '\0';
	 printf("\n After appending, the destination string is : ");
	 puts(Dest_Str);
	 getch();
	 return 0;
}

	 Output
Enter the source string : How are you?
Enter the destination string : Hello,
After appending, the destination string is : Hello, How are you?

Comparing Two Strings
If S1 and S2 are two strings, then comparing the two strings will give either of the following results:
	(a)	 S1 and S2 are equal
	(b)	 S1>S2, when in dictionary order, S1 will come after S2
	(c)	 S1<S2, when in dictionary order, S1 precedes S2
	 To compare the two strings, each and every character is compared from both the strings. If all 
the characters are the same, then the two strings are said to be equal. Figure 4.6 shows an algorithm 
that compares two strings.

Note	 The library function strcmp(s1, s2) which is defined in string.h compares string s1 with s2.

	 In this algorithm, we first check whether the two strings are of the same length. If not, then 
there is no point in moving ahead, as it straight away means that the two strings are not the same. 
However, if the two strings are of the same length, then we compare character by character to check 
if all the characters are same. If yes, then the variable SAME is set to 1. Else, if SAME = 0, then we 
check which string precedes the other in the dictionary order and print the corresponding message.



122  Data Structures Using C

Figure 4.6  Algorithm to compare two strings

Programming Example 

4.	 Write a program to compare two strings.
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
	 char str1[50], str2[50];
	 int i=0, len1=0, len2=0, same=0;
	 clrscr();
	 printf("\n Enter the first string : ");
	 gets(str1);
	 printf("\n Enter the second string : ");
	 gets(str2);
	 len1 = strlen(str1);
	 len2 = strlen(str2);
	 if(len1 == len2)
	 {
		  while(i<len1)
		  {
			   if(str1[i] == str2[i])
				    i++;
			   else break;
		  }
		  if(i==len1)
		  {
			   same=1;
			   printf("\n The two strings are equal");
		  }
	 }
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	 if(len1!=len2)
		  printf("\n The two strings are not equal");
	 if(same == 0)
	 {
		  if(str1[i]>str2[i])
			   printf("\n String 1 is greater than string 2");
		  else if(str1[i]<str2[i])
			   printf("\n String 2 is greater than string 1");
	 }
	 getch();
	 return 0;
}

	 Output
Enter the first string : Hello
Enter the second string : Hello
The two strings are equal

Reversing a String
If S1 = "HELLO", then reverse of S1 = "OLLEH". To reverse a string, we just need to swap the first 
character with the last, second character with the second last character, and so on. Figure 4.7 
shows an algorithm that reverses a string.

t

Note	 The library function strrev(s1) which is defined in string.h reverses all the characters in the string 
except the null character. 

	 In Step 1, I is initialized to zero and J is initialized to the length of the string –1. In Step 2, a 
while loop is executed until all the characters of the string are accessed. In Step 4, we swap the 

ith character of STR with its jth character. As a 
result, the first character of STR will be replaced 
with its last character, the second character 
will be replaced with the second last character 
of STR, and so on. In Step 4, the value of I is 
incremented and J is decremented to traverse 
STR in the forward and backward directions, 
respectively.

Programming Example 

5.	 Write a program to reverse a given string.
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
	 char str[100], reverse_str[100], temp;
	 int i=0, j=0;
	 clrscr();
	 printf("\n Enter the string : ");
	 gets(str);
	 j = strlen(str)–1;
	 while(i < j)
	 {
		  temp = str[j];

Step 1: [ ] SET I= , J= Length(STR)-1

Step 2: Repeat Steps 3 and 4 while I < J

Step 3: SWAP(STR(I), STR(J))

Step 4: SET I = I + 1, J = J – 1

[END OF LOOP]

Step 5: EXIT

INITIALIZE

Figure 4.7  Algorithm to reverse a string
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		  str[j] = str[i];
		  str[i] = temp;
		  i++;
		  j––;
	 }
	 printf("\n The reversed string is : ");
	 puts(str);
	 getch();
	 return 0;
}

	 Output
Enter the string: Hi there
The reversed string is: ereht iH

Extracting a Substring from a String
To extract a substring from a given string, we need the following three parameters:
	 1.	 the main string,
	 2.	 the position of the first character of the substring in the given string, and
	 3.	 the maximum number of characters/length of the substring.
For example, if we have a string

str[] = "Welcome to the world of programming";

Then,
SUBSTRING(str, 15, 5) = world

  Figure 4.8 shows an algorithm that extracts a substring 
from the middle of a string.
  In this algorithm, we initialize a loop counter I to M, 
that is, the position from which the characters have to be 
copied. Steps 3 to 6 are repeated until N characters have 
been copied. With every character copied, we decrement 
the value of N. The characters of the string are copied into 
another string called the SUBSTR. At the end, a null character 
is appended to SUBSTR to terminate the string.

Programming Example 

6.	 Write a program to extract a substring from the middle of a given string.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char str[100], substr[100];
	 int i=0, j=0, n, m;
	 clrscr();
	 printf("\n Enter the main string : ");
	 gets(str);
	 printf("\n Enter the position from which to start the substring: ");
	 scanf("%d", &m);
	 printf("\n Enter the length of the substring: ");
	 scanf("%d", &n);
	 i=m;
	 while(str[i] != '\0' && n>0)

Step 1: [INITIALIZE] Set I=M, J=

Step 2: Repeat Steps 3 to 6

while STR[I] != NULL and N>

Step 3: SET SUBSTR[J] = STR[I]

Step 4: SET I = I + 1

Step 5: SET J = J + 1

Step 6: SET N = N – 1

[END OF LOOP]

Step 7: SET SUBSTR[J] = NULL

Step 8: EXIT

Figure 4.8  Algorithm to extract a substring from 
the middle of a string
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	 {
		  substr[j] = str[i];
		  i++;
		  j++;
		  n––;
	 }
	 substr[j] = '\0';
	 printf("\n The substring is : ");
	 puts(substr);
	 getch();
	 return 0;
}

	 Output
Enter the main string : Hi there
Enter the position from which to start the substring: 1
Enter the length of the substring: 4
The substring is : i th

Inserting a String in the Main String
The insertion operation inserts a string 
S in the main text T at the kth position. 
The general syntax of this operation is 
INSERT(text, position, string). For example, 
INSERT("XYZXYZ", 3, "AAA") = "XYZAAAXYZ"

  Figure 4.9 shows an algorithm to insert a 
string in a given text at the specified position.
  This algorithm first initializes the indices 
into the string to zero. From Steps 3 to 5, the 
contents of NEW_STR are built. If I is exactly 
equal to the position at which the substring 
has to be inserted, then the inner loop copies 
the contents of the substring into NEW_STR. 
Otherwise, the contents of the text are copied 
into it.

Programming Example 

7.	 Write a program to insert a string in the main text.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char text[100], str[20], ins_text[100];
	 int i=0, j=0, k=0,pos;
	 clrscr();
	 printf("\n Enter the main text : ");
	 gets(text);
	 printf("\n Enter the string to be inserted : ");
	 gets(str);
	 printf("\n Enter the position at which the string has to be inserted: ");
	 scanf("%d", &pos);
	 while(text[i]! = '\0')

Step 1: [INITIALIZE] SET I= , J= and K=

Step 2: Repeat Steps 3 to 4 while TEXT[I] != NULL

Step 3: IF I = pos

Repeat while Str[K] !=

new_ [J] = [K]

SET J=J+1

SET K = K+1

[END OF INNER LOOP]

ELSE

new_ [J] = TEXT[I]

set J = J+1

Step 4: set I = I+1

[END OF OUTER LOOP]

Step 5: SET new_ [J] =

Step 6: EXIT

NULL

str Str

str

[END OF IF]

str NULL

Figure 4.9  Algorithm to insert a string in a given text at the 
specified position
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	 {
		  if(i==pos)
		  {
			   while(str[k] != '\0')
			   {
				    ins_text[j] = str[k];
				    j++;
				    k++;
			   }
		  }
		  else
		  {
			   ins_text[j] = text[i];
			   j++;
		  }
		  i++;
	 }
	 ins_text[j] = '\0';
	 printf("\n The new string is : ");
	 puts(ins_text);
	 getch();
	 return0;
}

	 Output
Enter the main text : newsman
Enter the string to be inserted : paper
Enter the position at which the string has to be inserted: 4
The new string is: newspaperman

Pattern Matching
This operation returns the position in the string where the string pattern first occurs. For example,

INDEX("Welcome to the world of programming", "world") = 15

However, if the pattern does not exist in the string, the INDEX function returns 0. Figure 4.10 shows 
an algorithm to find the index of the first occurrence of a string within a given text.

Step 1: [INITIALIZE] SET I= and MAX = Length(TEXT)-Length(STR)+1

Step 2: Repeat Steps 3 to 6 while I < MAX

Step 3: Repeat Step 4 for K = To Length(STR)

Step 4: IF STR[K] != TEXT[I + K], then Goto step 6

[END OF INNER LOOP]

Step 5: SET INDEX = I. Goto Step 8

Step 6: SET I = I+1

[END OF OUTER LOOP]

Step 7: SET INDEX = -1

Step 8: EXIT

Figure 4.10  Algorithm to find the index of the first occurrence of a string within a given text

	 In this algorithm, MAX is initialized to length(TEXT) – Length(STR) + 1. For example, if a text 
contains 'Welcome To Programming' and the string contains 'World', in the main text, we will look 
for at the most 22 – 5 + 1 = 18 characters because after that there is no scope left for the string to 
be present in the text.
	 Steps 3 to 6 are repeated until each and every character of the text has been checked for the 
occurrence of the string within it. In the inner loop in Step 3, we check the n characters of string 
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with the n characters of text to find if the characters are same. If it is not the case, then we move 
to Step 6, where I is incremented. If the string is found, then the index is initialized with I, else 
it is set to –1. For example, if

TEXT = WELCOME TO THE WORLD
STRING = COME

	 In the first pass of the inner loop, we will compare COME with WELC character by character. As W 
and C do not match, the control will move to Step 6 and then ELCO will be compared with COME. In 
the fourth pass, COME will be compared with COME.
	 We will be using the programming code of pattern matching operation in the operations that 
follow.

Deleting a Substring from the Main String
The deletion operation deletes a substring from a given text. We can write it as DELETE(text, 
position, length). For example,

DELETE("ABCDXXXABCD", 4, 3) = "ABCDABCD"

  Figure 4.11 shows an algorithm to delete a 
substring from a given text.
  In this algorithm, we first initialize the 
indices to zero. Steps 3 to 6 are repeated until 
all the characters of the text are scanned. If I 
is exactly equal to M (the position from which 
deletion has to be done), then the index of 
the text is incremented and N is decremented. 
N is the number of characters that have to be 
deleted starting from position M. However, if I 
is not equal to M, then the characters of the text 
are simply copied into the NEW_STR.

Programming Example 

8.	 Write a program to delete a substring from a text.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char text[200], str[20], new_text[200];
	 int i=0, j=0, found=0, k, n=0, copy_loop=0;
	 clrscr();
	 printf("\n Enter the main text : ");
	 gets(text);
	 printf("\n Enter the string to be deleted : ");
	 gets(str);
	 while(text[i]!='\0')
	 {
		  j=0, found=0, k=i;
		  while(text[k]==str[j] && str[j]!='\0')
		  {
			   k++;
			   j++;
		  }

Step 1: [INITIALIZE] SET I= and J=

Step 2: Repeat Steps 3 to 6 while TEXT[I] != NULL

Step 3: IF I=M

Repeat while N>

SET I = I+1

SET N = N – 1

[END OF INNER LOOP]

[END OF IF]

Step 4: SET NEW_STR[J] = TEXT[I]

Step 5: SET J = J + 1

Step 6: SET I = I + 1

[END OF OUTER LOOP]

Step 7: SET NEW_STR[J] = NULL

Step 8: EXIT

Figure 4.11  Algorithm to delete a substring from a text
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		  if(str[j]=='\0')
			   copy_loop=k;
		  new_text[n] = text[copy_loop];
		  i++;
		  copy_loop++;
		  n++;
	 }
	 new_str[n]='\0';
	 printf("\n The new string is : ");
	 puts(new_str);
	 getch();
	 return 0;
}

	 Output
Enter the main text : Hello, how are you?
Enter the string to be deleted : , how are you?
The new string is : Hello

Replacing a Pattern with Another Pattern in a String
The replacement operation is used to replace the pattern P1 by another pattern P2. This is done by 
writing REPLACE(text, pattern1, pattern2). For example,

("AAABBBCCC", "BBB", "X") = AAAXCCC
("AAABBBCCC", "X", "YYY")= AAABBBCC

  In the second example, there is no change as X 
does not appear in the text. Figure 4.12 shows 
an algorithm to replace a pattern P1 with another 
pattern P2 in the text.
  The algorithm is very simple, where we first 
find the position POS, at which the pattern occurs 
in the text, then delete the existing pattern from 
that position and insert a new pattern there.

Programming Example 

9.	 Write a program to replace a pattern with another pattern in the text.
#include <stdio.h>
#include <conio.h>
main()
{
	 char str[200], pat[20], new_str[200], rep_pat[100];
	 int i=0, j=0, k, n=0, copy_loop=0, rep_index=0;
	 clrscr();
	 printf("\n Enter the string : ");
	 gets(str);
	 printf("\n Enter the pattern to be replaced: ");
	 gets(pat);
	 printf("\n Enter the replacing pattern: ");
	 gets(rep_pat);
	 while(str[i]!='\0')
	 {
		  j=0,k=i;
		  while(str[k]==pat[j] && pat[j]!='\0')

Step 1: [INITIALIZE] SET POS = INDEX(TEXT, P )

Step 2: SET TEXT = DELETE(TEXT, POS, LENGTH(P ))

Step 3: INSERT(TEXT, POS, P )

Step 4: EXIT

1

1

2

Figure 4.12  Algorithm to replace a pattern P1 with another 
pattern P2 in the text
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		  {
			   k++;
			   j++;
		  }
		  if(pat[j]=='\0')
		  {
			   copy_loop=k;
			   while(rep_pat[rep_index] !='\0')
			   {
			   new_str[n] = rep_pat[rep_index];
			   rep_index++;
			   n++;
			   }
		  }
		  new_str[n] = str[copy_loop];
		  i++;
		  copy_loop++;
		  n++;
	 }
	 new_str[n]='\0';
	 printf("\n The new string is : ");
	 puts(new_str);
	 getch();
	 return 0;
}

	 Output
Enter the string : How ARE you?
Enter the pattern to be replaced : ARE
Enter the replacing pattern : are
The new string is : How are you?

4.3  ARRAYS OF STRINGS
Till now we have seen that a string is an array of characters. For example, if we say char name[] = 
"Mohan", then the name is a string (character array) that has five characters.
	 Now, suppose that there are 20 students in a class and we need a string that stores the names 
of all the 20 students. How can this be done? Here, we need a string of strings or an array of strings. 
Such an array of strings would store 20 individual strings. An array of strings is declared as

char names[20][30];

Here, the first index will specify how many strings are needed and the second index will specify 
the length of every individual string. So here, we will allocate space for 20 names where each 
name can be a maximum 30 characters long.
	 Let us see the memory representation of an array of strings. If we have an array declared as

char name[5][10] = {"Ram", "Mohan", "Shyam", "Hari", "Gopal"};

Then in the memory, the array will be stored as shown in Fig. 4.13.

name[ ] R

M

S

H

G

A

O

H

A

O

M

H

Y

R

P

' ‘\

A

A

I

A

N

M

' ‘\

L

' ‘\

' ‘\

' ‘\

name[1]

name[2]

name[3]

name[4]

Figure 4.13  Memory representation of a 2D character array
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  By declaring the array names, we allocate 50 bytes. But 
the actual memory occupied is 27 bytes. Thus, we see that 
about half of the memory allocated is wasted. Figure 4.14 
shows an algorithm to process individual string from an 
array of strings.
  In Step 1, we initialize the index variable I to zero. In Step 
2, a while loop is executed until all the strings in the array 
are accessed. In Step 3, each individual string is processed.

Programming Examples 	

10.	 Write a program to sort the names of students.
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
	 char names[5][10], temp[10];
	 int i, n, j;
	 clrscr();
	 printf("\n Enter the number of students : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
		  printf("\n Enter the name of student %d : ", i+1);
		  gets(names[i]);
	 }
	 for(i=0;i<n;i++)
	 {
		  for(j=0;j<n–i–1;j++)
		  {
			   if(strcmp(names[j], names[j+1])>0)
			   {
				    strcpy(temp, names[j]);
				    strcpy(names[j], names[j+1]);
				    strcpy(names[j+1], temp);
			   }
		  }
	 }
	 printf("\n Names of the students in alphabetical order are : ");
	 for(i=0;i<n;i++)
		  puts(names[i]);
	 getch();
	 return 0;
}

	 Output
Enter the number of students : 3
Enter the name of student 1 : Goransh
Enter the name of student 2 : Aditya
Enter the name of student 3 : Sarthak
Names of the students in alphabetical order are : Aditya Goransh Sarthak

11.	 Write a program to read multiple lines of text and then count the number of characters, 
words, and lines in the text.
#include <stdio.h>

Step 1: [ ] SET I=

Step 2: Repeat Step 3 while I< N

Step 3: Apply Process to NAMES[I]

[END OF LOOP]

Step 4: EXIT

INITIALIZE

Figure 4.14  Algorithm to process individual 
string from an array of strings
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#include <conio.h>
int main()
{
	 char str[1000];
	 int i=0, word_count = 1, line_count =1, char_count = 1;
	 clrscr();
	 printf("\n Enter a ‘*’ to end");
	 printf("\n **************");
	 printf("\n Enter the text : ");
	 scanf("%c", &str[i]);
	 while(str[i] != '*')
	 {
		  i++;
		  scanf("%c", &str[i]);
	 }
	 str[i] = '\0';
	 i=0;
	 while(str[i] != '\0')
	 {
		  if(str[i] == '\n' || i==79)
			   line_count++;
		  if(str[i] == ' ' &&str[i+1] != ' ')
			   word_count++;
		  char_count++;
		  i++;
	 }
	 printf("\n The total count of words is : %d", word_count);
	 printf("\n The total count of lines is : %d", line_count);
	 printf("\n The total count of characters is : %d", char_count);
	 return 0;
}

	 Output
Enter a ‘*’ to end
**************
Enter the text : Hi there*
The total count of words is : 2
The total count of lines is : 1
The total count of characters is : 9

12.	 Write a program to find whether a string is a palindrome or not.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char str[100];
	 int i = 0, j, length = 0;
	 clrscr();
	 printf("\n Enter the string : ");
	 gets(str);
	 while(str[i] != '\0')
	 {
		  length++ ;
		  i++ ;
	 }
	 i=0;
	 j = length – 1;
	 while(i <= length/2)
	 {
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		  if(str[i] == str[j])
		  {
			   i++;
			   j––;
		  }
		  else
			   break;
	 }
	 if(i>=j)
		  printf("\n PALINDROME");
	 else
		  printf("\n NOT A PALINDROME");
	 return 0;
}

	 Output
Enter the string: madam
PALINDROME

4.4  POINTERS AND STRINGS
In C, strings are treated as arrays of characters that are terminated with a binary zero character 
(written as '\0'). Consider, for example,

char str[10];
str[0] = 'H';
str[1] = 'i';
str[2] = '!':
str[3] = '\0';

C provides two alternate ways of declaring and initializing a string. First, you may write
char str[10] = {'H', 'i', '!', '\0'};

But this also takes more typing than is convenient. So, C permits
char str[10] = "Hi!";

When the double quotes are used, a null character ('\0') is automatically appended to the end 
of the string.
	 When a string is declared like this, the compiler sets aside a contiguous block of the memory, 
i.e., 10 bytes long, to hold characters and initializes its first four characters as Hi!\0.
	 Now, consider the following program that prints a text.

#include <stdio.h>
int main()
{
	 char str[] = "Hello";
	 char *pstr;
	 pstr = str;
	 printf("\n The string is : ");
	 while(*pstr != '\0')
	 {
		  printf("%c", *pstr);
		  pstr++;
	 }
	  return 0;
}

	 Output
The string is: Hello



Strings  133

	 In this program, we declare a character pointer *pstr to show the string on the screen. We then 
point the pointer pstr to str. Then, we print each character of the string using the while loop. 
Instead of using the while loop, we could straightaway use the function puts(), as shown below

puts(pstr);

The function prototype for puts() is as follows:
int puts(const char *s);

Here the const modifier is used to assure that the function dose not modify the contents pointed to 
by the source pointer. The address of the string is passed to the function as an argument.
	 The parameter passed to puts() is a pointer which is nothing but the address to which it points 
to or simply an address. Thus, writing puts(str) means passing the address of str[0]. Similarly 
when we write puts(pstr); we are passing the same address, because we have written pstr = str;.
	 Consider another program that reads a string and then scans each character to count the number 
of upper and lower case characters entered.

#include <stdio.h>
int main()
{
	 char str[100], *pstr;
	 int upper = 0, lower = 0;
	 printf("\n Enter the string : ");
	 gets(str);
	 pstr = str;
	 while(*pstr != '\0')
	 {
		  if(*pstr >= 'A' && *pstr <= 'Z')
			   upper++;
		  else if(*pstr >= 'a' && *pstr <= 'z')
			   lower++;
		  pstr++;
	 }
	 printf("\n Total number of upper case characters = %d", upper);
	 printf("\n Total number of lower case characters = %d", lower);
	 return 0;
}

	 Output
Enter the string : How are you
Total number of upper case characters = 1
Total number of lower case characters = 8

Programming Examples 

13.	 Write a program to copy a string into another string.
#include <stdio.h>
int main()
{
	 char str[100], copy_str[100];
	 char *pstr, *pcopy_str;
	 pstr = str;
	 pcopy_str = copy_str;
	 printf("\n Enter the string : ");
	 gets(str);
	 while(*pstr != '\0')
	 {
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		  *pcopy_str = *pstr;
		  pstr++, pcopy_str++;
	 }
	 *pcopy_str = '\0';
	 printf("\n The copied text is : ");
	 while(*pcopy_str != '\0')
	 {
		  printf("%c", *pcopy_str);
		  pcopy_str++;
	 }
	 return 0;
}

	 Output
Enter the string : C Programming
The copied text is : C Programming

14.	 Write a program to concatenate two strings.
#include <stdio.h>
#include <conio.h>
int main()
{
	 char str1[100], str2[100], copy_str[200];
	 char *pstr1, *pstr2, *pcopy_str;
	 clrscr();
	 pstr1 = str1;
	 pstr2 = str2;
	 pcopy_str = copy_str;
	 printf("\n Enter the first string : ");
	 gets(str1);
	 printf("\n Enter the second string : ");
	 gets(str2);
	 while(*pstr1 != '\0')
	 {
		  *pcopy_str = *pstr1;
		  pcopy_str++, pstr1++;
	 }
	 while(*pstr2 != '\0')
	 {
		  *pcopy_str = *pstr2;
		  pcopy_str++, pstr2++;
	 }
	 *pcopy_str = '\0';
	 printf("\n The concatenated text is : ");
	 while(*pcopy_str != '\0')
	 {
		  printf("%c", *pcopy_str);
		  pcopy_str++;
	 }
	 return 0;
}

	 Output
Enter the first string : Data Structures Using C by
Enter the second string : Reema Thareja
The concatenated text is : Data Structures Using C by Reema Thareja



Strings  135

 Points to Remember
∑	 A string is a null-terminated character array.
∑	 Individual characters of strings can be accessed using 

a subscript that starts from zero.
∑	 All the characters of a string are stored in successive 

memory locations.
∑	 Strings can be read by a user using three ways: using 

scanf() function, using gets() function, or using 
getchar() function repeatedly.

∑	 The scanf() function terminates as soon as it finds 
a blank space.

∑	 The gets() function takes the starting address of the 
string which will hold the input. The string inputted 
using gets() is automatically terminated with a null 
character.

∑	 Strings can also be read by calling getchar() 
repeatedly to read a sequence of single characters.

∑	 Strings can be displayed on the screen using three 
ways: using printf function, using puts() function, 

or using putchar()function repeatedly.
∑	 C standard library supports a number of pre-defined 

functions for manipulating strings or changing the 
contents of strings. Many of these functions are 
defined in the header file string.h. 

∑	 Alternatively we can also develop functions which 
perform the same task as the pre-defined string 
handling functions. The most basic function is 
the length function which returns the number of 
characters in a string.

∑	 Name of a string acts as a pointer to the string. In 
the declaration char str[5] = "hello"; str is a 
pointer which holds the address of the first character, 
i.e., ‘h’.

∑	 An array of strings can be declared as char strings 
[20][30]; where the first subscript denotes the 
number of strings and the second subscript denotes 
the length of every individual string.

 Exercises

Review Questions
	 1.	 What are strings? Discuss some of the operations 

that can be performed on strings.
	 2.	 Explain how strings are represented in the main 

memory.
	 3.	 How are strings read from the standard input 

device? Explain the different functions used to 
perform the string input operation.

	 4.	 Explain how strings can be displayed on the screen.
	 5.	 Explain the syntax of printf() and scanf().
	 6.	 List all the substrings that can be formed from the 

string ‘ABCD’.
	 7.	 What do you understand by pattern matching? 

Give an algorithm for it.
	 8.	 Write a short note on array of strings.
	 9.	 Explain with an example how an array of strings 

is stored in the main memory.
	 10.	 Explain how pointers and strings are related to 

each other with the help of a suitable program.
	 11.	 If the substring function is given as SUBSTRING 

(string, position, length), then find S(5, 9) if 
S = "Welcome to World of C Programming"

	 12.	 If the index function is given as INDEX(text, 
pattern), then find index(T, P) where T = 

"Welcome to World of C Programming" and P = 
"of"

	13.	 Differentiate between gets() and scanf().
	 14.	 Give the drawbacks of getchar() and scanf().
	 15.	 Which function can be used to overcome the 

shortcomings of getchar() and scanf()?
	 16.	 How can putchar() be used to print a string?
	 17.	 Differentiate between a character and a string.
	 18.	 Differentiate between a character array and a 

string.

Programming Exercises
	 1.	 Write a program in which a string is passed as an 

argument to a function.
	 2.	 Write a program in C to concatenate first n 

characters of a string with another string.
	 3.	 Write a program in C that compares first n 

characters of one string with first n characters of 
another string.

	 4.	 Write a program in C that removes leading and 
trailing spaces from a string.

	 5.	 Write a program in C that replaces a given 
character with another character in a string.
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	 6.	 Write a program to count the number of digits, 
upper case characters, lower case characters, and 
special characters in a given string.

	 7.	 Write a program to count the total number of 
occurrences of a given character in the string.

	 8.	 Write a program to accept a text. Count and 
display the number of times the word ‘the’ appears 
in the text.

	 9.	 Write a program to count the total number of 
occurrences of a word in the text.

	 10.	 Write a program to find the last instance of 
occurrence of a sub-string within a string.

	 11.	 Write a program to input an array of strings. Then, 
reverse the string in the format shown below.

		  "HAPPY BIRTHDAY TO YOU" should be displayed 
as "YOU TO BIRTHDAY HAPPY"

	 12.	 Write a program to append a given string in the 
following format.

		  "GOOD MORNING MORNING GOOD"
	 13.	 Write a program to input a text of at least two 

paragraphs. Interchange the first and second 
paragraphs and then re-display the text on the 
screen.

	 14.	 Write a program to input a text of at least two 
paragraphs. Construct an array PAR such that 
PAR[I] contains the location of the ith paragraph 
in text.

	 15.	 Write a program to convert the given string "GOOD 
MORNING" to "good morning".

	 16.	 Write a program to concatenate two given 
strings "Good Morning" and "World". Display the 
resultant string.

	 17.	 Write a program to check whether the two given 
strings "Good Morning" and "Good Morning" are 
same.

	 18.	 Write a program to convert the given string "hello 
world" to "dlrow olleh".

	 19.	 Write a program to extract the string "od Mo" from 
the given string "Good Morning".

	 20.	 Write a program to insert "University" in the 
given string "Oxford Press" so that the string 
should read as "Oxford University Press".

	 21.	 Write a program to read a text, delete all the semi-
colons it has, and finally replace all '.' with a ','.

	 22.	 Write a program to copy the last n characters of a 
character array in another character array. Also, 
convert the lower case letters into upper case 
letters while copying.

	 23.	 Write a program to rewrite the string "Good 
Morning" to "Good Evening".

	 24.	 Write a program to read and display names of 
employees in a department.

	 25.	 Write a program to read a line until a newline is 
entered.

	 26.	 Write a program to read a short story. Rewrite 
the story by printing the line number before the 
starting of each line.

	 27.	 Write a program to enter a text that contains 
multiple lines. Display the n lines of text starting 
from the mth line.

	 28.	 Write a program to check whether a pattern exists 
in a text. If it does, delete the pattern and display 
it.

	 29.	 Write a program to insert a new name in the string 
array STUD[][], assuming that names are sorted 
alphabetically.

	 30.	 Write a program to delete a name in the string 
array STUD[][], assuming that names are sorted 
alphabetically.

Multiple-choice Questions
	 1.	 Insert("XXXYYYZZZ", 1, "PPP") =
	 (a)	 PPPXXXYYYZZZ
	 (b)	 XPPPXXYYYZZZ
	 (c)	 XXXYYYZZZPPP
	 2.	 Delete("XXXYYYZZZ", 4,3) =
	 (a)	 XXYZ	 (b)	 XXXYYZZ
	 (c)	 XXXYZZ
	 3.	 If str[] = "Welcome to the world of 

programming", then SUBSTRING(str, 15, 5) =
	 (a)	 world	 (b)	 programming
	 (c)	 welcome	 (d)	 none of these
	 4.	 strcat() is defined in which header file?
	 (a)	 ctype.h	 (b)	 stdio.h
	 (c)	 string.h	 (d)	 math.h
	 5.	 A string can be read using which function(s)?
	 (a)	 gets()	 (b)	 scanf()
	 (c)	 getchar()	 (d)	 all of these
	 6.	 Replace("XXXYYYZZZ", "XY", "AB") =
	 (a)	 XXABYYZZZ	 (b)	 XABYYYZZZ
	 (c)	 ABXXXYYYZZ
	 7.	 The index of U in Oxford University Press is?
	 (a)	 5 	 (b)	 6
	 (c)	 7	 (d)	 8



Strings  137

	 8.	 s1 = “HI”, s2 = “HELLO”, s3 = “BYE”. How can 
we concatenate the three strings?

	 (a)	 strcat(s1,s2,s3)
	 (b)	 strcat(s1(strcat(s2,s3)))
	 (c)	 strcpy(s1, strcat(s2,s3))
	 9.	 strlen(“Oxford University Press”) is ?
	 (a)	 22 	 (b)	 23
	 (c)	 24	 (d)	 25
	 10.	 Which function adds a string to the end of another 

string?
	 (a)	 stradd()	 (b)	 strcat()
	 (c)	 strtok()	 (d)	 strcpy()

True or False
	 1.	 String Hello World can be read using scanf().
	 2.	 A string when read using scanf() needs an 

ampersand character.
	 3.	 The gets() function takes the starting address of 

a string which will hold the input.
	 4.	 tolower() is defined in ctype.h header file.
	 5.	 If S1 and S2 are two strings, then the concatenation 

operation produces a string which contains the 
characters of S2 followed by the characters of S1.

	 6.	 Appending one string to another string involves 
copying the contents of the source string at the 
end of the destination string.

	 7.	 S1<S2, when in dictionary order, S1 precedes S2.
	 8.	 If S1 = "GOOD MORNING", then Substr_Right (S1, 

5) = MORNING.
	 9.	 Replace ("AAABBBCCC", "X", "YYY")= AAABBBCC.
	 10.	 Initializing a string as char str[] = "HELLO"; is 

incorrect as a null character has not been explicitly 
added.

	 11.	 The scanf() function automatically appends a 
null character at the end of the string read from 
the keyboard.

	 12.	 String variables can be present either on the left 
or on the right side of the assignment operator.

	 13.	 When a string is initialized during its declaration, 
the string must be explicitly terminated with a null 
character.

	 14.	 strcmp("and", "ant"); will return a positive 
value.

	 15.	 Assignment operator can be used to copy the 
contents of one string into another.

Fill in the blanks
	 1.	 Strings are ______.
	 2.	 Every string is terminated with a ______.
	 3.	 If a string is given as "AB CD", the length of this 

string is ______.
	 4.	 The subscript of a string starts with ______.
	 5.	 Characters of a string are stored in ______ 

memory locations.
	 6.	 char mesg[100]; can store a maximum of ______ 

characters.
	 7.	 ______ function terminates as soon as it finds a 

blank space.
	 8.	 The ASCII code for A–Z varies from ______.
	 9.	 toupper() is used to ______.
	 10.	 S1>S2 means ______.
	 11.	 The function to reverse a string is ______.
	 12.	 If S1 = "GOOD MORNING", then Substr_Left (S1, 

7) = ______.
	 13.	 INDEX("Welcome to the world of programming", 

"world") = ______.
	 14.	 ______ returns the position in the string where 

the string pattern first occurs.
	 15. 	strcmp(str1, str2) returns 1 if ___________.
	 16. 	___________ function computes the length of a 

string.
	 17. 	Besides printf(), ___________ function can be 

used to print a line of text on the screen.



5.1  INTRODUCTION
A structure is in many ways similar to a record. It stores related information about an entity. 
Structure is basically a user-defined data type that can store related information (even of different 
data types) together. The major difference between a structure and an array is that an array can 
store only information of same data type.
	 A structure is therefore a collection of variables under a single name. The variables within a 
structure are of different data types and each has a name that is used to select it from the structure.

5.1.1  Structure Declaration
A structure is declared using the keyword struct followed by the structure name. All the variables 
of the structure are declared within the structure. A structure type is generally declared by using 
the following syntax:

struct struct–name
{
	 data_type var–name;

LEARNING OBJECTIVE
Today’s modern applications need complex data structures to support them. A 
structure is a collection of related data items of different data types. It extends the 
concept of arrays by storing related information of heterogeneous data types together 
under a single name. It is useful for applications that need a lot more features than 
those provided by the primitive data types. A union is also a collection of variables 
of different data types, except that in case of unions, you can only store information 
in one field at any one time. In this chapter, we will learn how structures and unions 
are declared, defined, and accessed using the C language.

Structures and 
Unions

CHAPTER 5
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		 data_type var–name;
	 ...............
};

For example, if we have to define a structure for a student, then the 
related information for a student probably would be: roll_number, name, 

course, and fees. This structure can be declared as:
struct student
{
	 int r_no;
	 char name[20];
	 char course[20];
	 float fees;
};

	 Now the structure has become a user-defined data type. Each variable name declared within a 
structure is called a member of the structure. The structure declaration, however, does not allocate 
any memory or consume storage space. It just gives a template that conveys to the C compiler 
how the structure would be laid out in the memory and also gives the details of member names. 
Like any other data type, memory is allocated for the structure when we declare a variable of the 

structure. For example, we can define a variable of 
student by writing:

struct student stud1;

Here, struct student is a data type and stud1 is a 
variable. Look at another way of declaring variables. 
In the following syntax, the variables are declared at 
the time of structure declaration.

struct student
{
	 int r_no;
	 char name[20];
	 char course[20];
	 float fees;
} stud1, stud2;

  In this declaration we declare two variables stud1 and 
stud2 of the structure student. So if you want to declare 
more than one variable of the structure, then separate the 
variables using a comma. When we declare variables 
of the structure, separate memory is allocated for each 
variable. This is shown in Fig. 5.1.

Note	 Structure type and variable declaration of a structure can be either local or global depending on their 
placement in the code.

	 Last but not the least, structure member names and names of the structure follow the same 
rules as laid down for the names of ordinary variables. However, care should be taken to ensure 
that the name of structure and the name of a structure member should not be the same. Moreover, 
structure name and its variable name should also be different.

5.1.2  Typedef Declarations
The typedef (derived from type definition) keyword enables the programmer to create a new data 
type name by using an existing data type. By using typedef, no new data is created, rather an 

struct student stud1;

struct student stud2;

name

name

r_no

r_no

course

course

fees

fees

Figure 5.1  Memory allocation for a structure 
variable

Programming Tip

Do not forget to place a 
semicolon after the declaration 
of structures and unions.
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alternate name is given to a known data type. The general syntax of using the typedef keyword is 
given as: 

typedef existing_data_type new_data_type;

	Note that typedef statement does not occupy any memory; it simply 
defines a new type. For example, if we write 

typedef int INTEGER;

then INTEGER is the new name of data type int. To declare variables 
using the new data type name, precede the variable name with the data 

type name (new). Therefore, to define an integer variable, we may now write 
INTEGER num=5;

	 When we precede a struct name with the typedef keyword, then the struct becomes a new type. 
It is used to make the construct shorter with more meaningful names for types already defined by 
C or for types that you have declared. For example, consider the following declaration:

typedef struct student
{
	 int r_no;
	 char name[20];
	 char course[20];
	 float fees;
};

	 Now that you have preceded the structure’s name with the typedef keyword, student becomes 
a new data type. Therefore, now you can straightaway declare the variables of this new data type 
as you declare the variables of type int, float, char, double, etc. To declare a variable of structure 
student, you may write

student stud1;

Note that we have not written struct student stud1.

5.1.3  Initialization of Structures
A structure can be initialized in the same way as other data types are initialized. Initializing a 
structure means assigning some constants to the members of the structure. When the user does 
not explicitly initialize the structure, then C automatically does it. For int and float members, 
the values are initialized to zero, and char and string members are initialized to '\0' by default.
	 The initializers are enclosed in braces and are separated by commas. However, care must be 
taken to ensure that the initializers match their corresponding types in the structure definition.
	 The general syntax to initialize a structure variable is as follows:

struct struct_name
{
	 data_type member_name1;
	 data_type member_name2;
	 data_type member_name3;
	 .......................
}struct_var = {constant1, constant2, constant3,...};

or
struct struct_name
{
	 data_type member_name1;
	 data_type member_name2;
	 data_type member_name3;
	 .......................
};

Programming Tip

C does not allow declaration 
of variables at the time of 
creating a typedef definition. So 
variables must be declared in an 
independent statement.



Structures and Unions  141

struct struct_name struct_var = {constant1, constant2, constant 3,...};
For example, we can initialize a student structure by writing,

struct student
{
	 int r_no;
	 char name[20];
	 char course[20];

	 	 	 	 float fees;
	 	 	 }stud1 = {01, "Rahul", "BCA", 45000};

Or, by writing,
struct student stud1 = {01, "Rahul", "BCA", 45000};

Figure 5.2 illustrates how the values will be assigned to individual fields of the structure.

struct student stud1

= { 1, "Rahul , BCA , 45 };" " "

01 BCA 45000

r_no name course fees

Rahul \0 0.007

r_no name course fees

Rajiv

struct student stud2 = { 7, Rajiv };" ”

Figure 5.2  Assigning values to structure elements

	 When all the members of a structure are not initialized, it is called partial initialization. In 
case of partial initialization, first few members of the structure are initialized and those that are 
uninitialized are assigned default values.

5.1.4  Accessing the Members of a Structure
Each member of a structure can be used just like a normal variable, but its name will be a bit 
longer. A structure member variable is generally accessed using a '.' (dot) operator. The syntax 
of accessing a structure or a member of a structure can be given as:

struct_var.member_name

The dot operator is used to select a particular member of the structure. For example, to assign 
values to the individual data members of the structure variable studl, we may write

stud1.r_no = 01;
stud1.name = "Rahul";
stud1.course = "BCA";
stud1.fees = 45000;

	 To input values for data members of the structure variable stud1, we may write
scanf("%d", &stud1.r_no);
scanf("%s", stud1.name);

Similarly, to print the values of structure variable stud1, we may write
printf("%s", stud1.course);
printf("%f", stud1.fees);

	 Memory is allocated only when we declare the variables of the structure. In other words, the 
memory is allocated only when we instantiate the structure. In the absence of any variable, structure 
definition is just a template that will be used to reserve memory when a variable of type struct is 
declared.
	 Once the variables of a structure are defined, we can perform a few operations on them. For 
example, we can use the assignment operator (=) to assign the values of one variable to another.

Programming Tip

It is an error to assign a structure 
of one type to a structure of an-
other type.
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Note	 Of all the operators –>, . , ( ), and [] have the highest priority. This is evident from the following 
statement  
stud1.fees++ will be interpreted as (stud1.fees)++.

5.1.5  Copying and Comparing Structures
We can assign a structure to another structure of the same type. For example, if we have two 
structure variables stud1 and stud2 of type struct student given as 

struct student stud1 = {01, "Rahul", "BCA", 45000};
struct student stud2;
Then to assign one structure variable to another, we 
will write

stud2 = stud1;

This statement initializes the members of stud2 with the 
values of members of stud1. Therefore, now the values 
of stud1 and stud2 can be given as shown in Fig. 5.3.
  C does not permit comparison of one structure variable 
with another. However, individual members of one 
structure can be compared with individual members of 
another structure. When we compare one structure 
member with another structure’s member, the comparison 
will behave like any other ordinary variable comparison. 

For example, to compare the fees of two students, we will write
if(stud1.fees > stud2.fees) //to check if fees of stud1 is 

greater than stud2

Programming Examples 

1.	 Write a program using structures to read and display the information about a student.
#include <stdio.h>
#include <conio.h>
int main()
{
	 struct student
	 {
		  int roll_no;
	 	 char name[80];
	 	 float fees;
	 	 char DOB[80];
	 };
	 struct student stud1;
	 clrscr();
	 printf("\n Enter the roll number : ");
	 scanf("%d", &stud1.roll_no);
	 printf("\n Enter the name : ");
	 scanf("%s", stud1.name);
	 printf("\n Enter the fees : ");
	 scanf("%f", &stud1.fees);
	 printf("\n Enter the DOB : ");
	 scanf("%s", stud1.DOB);
	 printf("\n ********STUDENT'S DETAILS *******");
	 printf("\n ROLL No. = %d", stud1.roll_no);
	 printf("\n NAME = %s", stud1.name);
	 printf("\n FEES = %f", stud1.fees);

name

name

Rahul

Rahul

r_no

r_no

01

01

fees

fees

45000

45000

course

course

BCA

BCA

struct student stud1

= { 1, "Rahul", "BCA", 45 };

struct student stud2 = stud1;

Figure 5.3  Values of structure variables

Programming Tip

An error will be generated if you 
try to compare two structure 
variables.
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	 printf("\n DOB = %s", stud1.DOB);
	 getch();
	 return 0;
}

	 Output
Enter the roll number : 01
Enter the name : Rahul
Enter the fees : 45000
Enter the DOB : 25–09–1991
********STUDENT’S DETAILS *******
ROLL No. = 01
NAME = Rahul
FEES = 45000.00
DOB = 25–09–1991

2.	 Write a program to read, display, add, and subtract two complex numbers.
#include <stdio.h>
#include <conio.h>
int main()
{
	 typedef struct complex
	 {
		  int real;
		  int imag;
	 }COMPLEX;
	 COMPLEX c1, c2, sum_c, sub_c;
	 int option;
	 clrscr();
	 do
	 {
	 	 printf("\n ******** MAIN MENU *********");
	 	 printf("\n 1. Read the complex numbers");
	 	 printf("\n 2. Display the complex numbers");
	 	 printf("\n 3. Add the complex numbers");
	 	 printf("\n 4. Subtract the complex numbers");
	 	 printf("\n 5. EXIT");
	 	 printf("\n Enter your option : ");
	 	 scanf("%d", &option);
	 	 switch(option)
		  {
	 	   case 1:
	 	 	 	 printf("\n Enter the real and imaginary parts of the 	 	
	 	 	 	 first complex number : ");
	 	 	 	 scanf("%d %d", &c1.real, &c1.imag);
	 	 	 	 printf("\n Enter the real and imaginary parts of the 	 	
	 	 	 	 second complex number : ");
	 	 	 	 scanf("%d %d", &c2.real, &c2.imag);
	 	 	 	 break;
	 	   case 2:
	 	 	 	 printf("\n The first complex number is : %d+%di", 	 	
	 	 	 	 c1.real,c1.imag);
	 	 	 	 printf("\n The second complex number is : %d+%di", 	 	
	 	 	 	 c2.real,c2.imag);
	 	 	  	 break;
	 	   case 3:
				    sum_c.real = c1.real + c2.real;
				    sum_c.imag = c1.imag + c2.imag;
	 	 	 	 printf("\n The sum of two complex numbers is : 	 	
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	 	 	 	 %d+%di",sum_c.real, sum_c.imag);
	 	 	 	 break;
	 	   case 4:
				    sub_c.real = c1.real – c2.real;
				    sub_c.imag = c1.imag – c2.imag;
	 	 	 	 printf("\n The difference between two complex numbers 		
	 	 	 	 is :%d+%di", sub_c.real, sub_c.imag);
	 	 	 	 break;
		  }
	 }while(option != 5);
	 getch();
	 return 0;
}

	 Output
******** MAIN MENU *********
1. Read the complex numbers
2. Display the complex numbers
3. Add the complex numbers
4. Subtract the complex numbers
5. EXIT
Enter your option : 1
Enter the real and imaginary parts of the first complex number : 2 3
Enter the real and imaginary parts of the second complex number : 4 5
Enter your option : 2
The first complex numbers is : 2+3i
The second complex numbers is : 4+5i
Enter your option : 3
The sum of two complex numbers is : 6+8i
Enter your option : 5

5.2  NESTED STRUCTURES
A structure can be placed within another structure, i.e., a structure may contain another structure as 
its member. A structure that contains another structure as its member is called a nested structure.
	 Let us now see how we declare nested structures. Although it is possible to declare a nested 
structure with one declaration, it is not recommended. The easier and clearer way is to declare the  
structures separately and then group them in the higher level structure. When you do this,  
take care to check that nesting must be done from inside out (from lowest level to the most 
inclusive level), i.e., declare the innermost structure, then the next level structure, working towards  
the outer (most inclusive) structure.

typedef struct
{
	 char first_name[20];
	 char mid_name[20];
	 char last_name[20];
}NAME;
typedef struct
{
	 int dd;
	 int mm;
	 int yy;
}DATE;
typedef struct
{
	 int r_no;

Because of constraint of 
space, we will show the MENU 
only once in all the menu-
driven programs.
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	 NAME name;
	 char course[20];
	 DATE DOB;
	 float fees;
} student;

In this example, we see that the structure student contains two other structures, NAME and DATE. Both 
these structures have their own fields. The structure NAME has three fields: first_name, mid_name, and 
last_name. The structure DATE also has three fields: dd, mm, and yy, which specify the day, month, 
and year of the date. Now, to assign values to the structure fields, we will write

student stud1;
stud1.r_no = 01;
stud1.name.first_name = "Janak";
stud1.name.mid_name = "Raj";
stud1.name.last_name = "Thareja";
stud1.course = "BCA";
stud1.DOB.dd = 15;
stud1.DOB.mm = 09;
stud1.DOB.yy = 1990;
stud1.fees = 45000;

In case of nested structures, we use the dot operator in conjunction with the structure variables 
to access the members of the innermost as well as the outermost structures. The use of nested 
structures is illustrated in the next program.

Programming Example 

3.	 Write a program to read and display the information of a student using a nested structure.
#include <stdio.h>
#include <conio.h>
int main()
{
	 struct DOB
	 {
		  int day;
		  int month;
		  int year;
	 };
	 struct student
	 {
		  int roll_no;
	 	 char name[100];
	 	 float fees;
	 	 struct DOB date;
	 };
	 struct student stud1;
	 clrscr();
	 printf("\n Enter the roll number : ");
	 scanf("%d", &stud1.roll_no);
	 printf("\n Enter the name : ");
	 scanf("%s", stud1.name);
	 printf("\n Enter the fees : ");
	 scanf("%f", &stud1.fees);
	 printf("\n Enter the DOB : ");
	 scanf("%d %d %d", &stud1.date.day, &stud1.date.month, &stud1.date.year);
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	 printf("\n ********STUDENT'S DETAILS *******");
	 printf("\n ROLL No. = %d", stud1.roll_no);
	 printf("\n NAME = %s", stud1.name);
	 printf("\n FEES = %f", stud1.fees);
	 printf("\n DOB = %d – %d – %d", stud1.date.day, stud1.date.month, stud1.date.year);
	 getch();
	 return 0;
}

	 Output
Enter the roll number : 01
Enter the name : Rahul
Enter the fees : 45000
Enter the DOB : 25 09 1991
********STUDENT’S DETAILS *******
ROLL No. = 01
NAME = Rahul
FEES = 45000.00
DOB = 25 – 09 – 1991

5.3  ARRAYS OF STRUCTURES
In the above examples, we have seen how to declare a structure and assign values to its data 
members. Now, we will discuss how an array of structures is declared. For this purpose, let us 
first analyse where we would need an array of structures.
	 In a class, we do not have just one student. But there may be at least 30 students. So, the same 
definition of the structure can be used for all the 30 students. This would be possible when we 
make an array of structures. An array of structures is declared in the same way as we declare an 
array of a built-in data type.
	 Another example where an array of structures is desirable is in case of an organization. An 
organization has a number of employees. So, defining a separate structure for every employee is 
not a viable solution. So, here we can have a common structure definition for all the employees. 
This can again be done by declaring an array of structure employee.
	 The general syntax for declaring an array of structures can be given as,

struct struct_name
{
	 data_type member_name1;
	 data_type member_name2;
	 data_type member_name3;
	 .......................
};
struct struct_name struct_var[index];

Consider the given structure definition.
struct student
{
	 int r_no;
	 char name[20];
	 char course[20];
	 float fees;
};

A student array can be declared by writing,
struct student stud[30];

Now, to assign values to the ith student of the class, we will write
stud[i].r_no = 09;
stud[i].name = "RASHI";
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stud[i].course = "MCA";
stud[i].fees = 60000;

In order to initialize the array of structure variables at the time of declaration, we can write as 
follows:

struct student stud[3] = {{01, "Aman", "BCA", 45000},{02, "Aryan", "BCA", 60000}, {03, 
    "John", "BCA", 45000}};

Programming Example 

4.	 Write a program to read and display the information of all the students in a class. Then 
edit the details of the ith student and redisplay the entire information.
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
	 struct student
	 {
		  int roll_no;
	 	 char name[80];
		  int fees;
	 	 char DOB[80];
	 };
	 struct student stud[50];
	 int n, i, num, new_rolno;
	 int new_fees;
	 char new_DOB[80], new_name[80];
	 clrscr();
	 printf("\n Enter the number of students : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
	 {
	 	 printf("\n Enter the roll number : ");
	 	 scanf("%d", &stud[i].roll_no);
	 	 printf("\n Enter the name : ");
	 	 gets(stud[i].name);
	 	 printf("\n Enter the fees : ");
	 	 scanf("%d",&stud[i].fees);
	 	 printf("\n Enter the DOB : ");
	 	 gets(stud[i].DOB);
	 }
	 for(i=0;i<n;i++)
	 {
	 	 printf("\n ********DETAILS OF STUDENT %d*******", i+1);
	 	 printf("\n ROLL No. = %d", stud[i].roll_no);
	 	 printf("\n NAME = %s", stud[i].name);
	 	 printf("\n FEES = %d", stud[i].fees);
	 	 printf("\n DOB = %s", stud[i].DOB);
	 }
	 printf("\n Enter the student number whose record has to be edited : ");
	 scanf("%d", &num);
	 num= num–1; 
	 printf("\n Enter the new roll number : ");
	 scanf("%d", &new_rolno);
	 printf("\n Enter the new name : "):
	 gets(new_name);
	 printf("\n Enter the new fees : ");
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	 scanf("%d", &new_fees);
	 printf("\n Enter the new DOB : ");
	 gets(new_DOB);
	 stud[num].roll_no = new_rolno;
	 strcpy(stud[num].name, new_name);
	 stud[num].fees = new_fees;
	 strcpy (stud[num].DOB, new_DOB);
	 for(i=0;i<n;i++)
	 {
	 	 printf("\n ********DETAILS OF STUDENT %d*******", i+1);
	 	 printf("\n ROLL No. = %d", stud[i].roll_no);
	 	 printf("\n NAME = %s", stud[i].name);
	 	 printf("\n FEES = %d", stud[i].fees);
	 	 printf("\n DOB = %s", stud[i].DOB);
	 }
	 getch();
	 return 0;
}

	 Output
Enter the number of students : 2
Enter the roll number : 1
Enter the name : kirti
Enter the fees : 5678
Enter the DOB : 9 9 91
Enter the roll number : 2
Enter the name : kangana
Enter the fees : 5678
Enter the DOB : 27 8 91
********DETAILS OF STUDENT 1*******
ROLL No. = 1
NAME = kirti
FEES = 5678
DOB = 9 9 91
********DETAILS OF STUDENT 2*******
ROLL No. = 2
NAME = kangana
FEES = 5678
DOB = 27 8 91
Enter the student number whose record has to be edited : 2
Enter the new roll number : 2
Enter the new name : kangana khullar
Enter the new fees : 7000
Enter the new DOB : 27 8 92
********DETAILS OF STUDENT 1*******
ROLL No. = 1
NAME = kirti
FEES = 5678
DOB = 9 9 91
********DETAILS OF STUDENT 2*******
ROLL No. = 2
NAME = kangana khullar
FEES = 7000
DOB = 27 8 92

5.4  STRUCTURES AND FUNCTIONS
For structures to be fully useful, we must have a mechanism to pass them to functions and return 
them. A function may access the members of a structure in three ways as shown in Fig. 5.4.
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Passing individual members

Passing the entire structure

Passing the address of structure

Passing structures to functions

Figure 5.4  Different ways of passing structures to functions

5.4.1  Passing Individual Members
To pass any individual member of a structure to a function, we must use the direct selection operator 
to refer to the individual members. The called program does not know if a variable is an ordinary 
variable or a structured member. Look at the code given below which illustrates this concept.

#include <stdio.h>
typedef struct
{
	 int x;
	 int y;
}POINT;
void display(int, int);
int main()
{
	 POINT p1 = {2, 3};
	 display(p1.x, p1.y);
	 return 0;
}
void display(int a, int b)
{
	 printf(" The coordinates of the point are: %d %d", a, b);
}

Output
The coordinates of the point are: 2 3

5.4.2  Passing the Entire Structure
Just like any other variable, we can pass an entire structure as a function argument. When a structure 
is passed as an argument, it is passed using the call by value method, i.e., a copy of each member 
of the structure is made.
	 The general syntax for passing a structure to a function and returning a structure can be given 
as,

struct struct_name func_name(struct struct_name struct_var);

	 The above syntax can vary as per the requirement. For example, in some situations, we may 
want a function to receive a structure but return a void or the value of some other data type. The 
code given below passes a structure to a function using the call by value method.

#include <stdio.h>
typedef struct
{
	 int x;
	 int y;
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}POINT;
void display(POINT);
int main()
{
	 POINT p1 = {2, 3};
	 display(p1);
	 return 0;
}
void display(POINT p)
{
	 printf("The coordinates of the point are: %d %d", p.x, p.y);
}

Programming Example 

5.	 Write a program to read, display, add, and subtract two distances. Distance must be defined 
using kms and meters.
#include <stdio.h>
#include <conio.h>
typedef struct distance
{
	 int kms;
	 int meters;
}DISTANCE;
DISTANCE add_distance (DISTANCE, DISTANCE);
DISTANCE subtract_distance (DISTANCE, DISTANCE);
DISTANCE d1, d2, d3, d4;
int main()
{
	 int option;
	 clrscr();
	 do
	 {
	 	 printf("\n ******** MAIN MENU *********");
	 	 printf("\n 1. Read the distances ");
	 	 printf("\n 2. Display the distances");
	 	 printf("\n 3. Add the distances");
	 	 printf("\n 4. Subtract the distances");
	 	 printf("\n 5. EXIT");
	 	 printf("\n Enter your option : ");
	 	 scanf("%d", &option);
	 	 switch(option)
		  {
	 	 	 case 1:
	 	 	 	 printf("\n Enter the first distance  in kms and meters: ");
	 	 	 	 scanf("%d %d", &d1.kms, &d1.meters);
	 	 	 	 printf("\n Enter the second distance  in kms and meters: ");
	 	 	 	 scanf("%d %d", &d2.kms, &d2.meters);
	 	 	 	 break;
	 	 	 case 2:
	 	 	 	 printf("\n The first distance is : %d kms %d meters", 
d1.kms, d1.meters);
	 	 	 	 printf("\n The second distance is : %d kms %d meters", 
d2.kms, d2.meters);
	 	 	 	 break;
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	 	 	 case 3:
	 	 	 	 d3 = add_distance(d1, d2);
	 	 	 	 printf("\n The sum of two distances is : %d kms %d 
meters", d3.kms, d3.meters);
	 	 	 	 break;
	 	 	 case 4:
	 	 	 	 d4 = subtract_distance(d1, d2);
	 	 	 	 printf("\n The difference between two distances is : %d 
kms %d meters", d4.kms, d4.meters);
	 	 	 	 break;
		  }
	 }while(option != 5);
	 getch();
	 return 0;
}
DISTANCE add_distance(DISTANCE d1, DISTANCE d2)
{
	 DISTANCE sum;
	 sum.meters = d1.meters + d2.meters;
	 sum.kms = d1.kms + d2.kms;
	 while (sum.meters >= 1000)
	 {
	 	 sum.meters = sum.meters % 1000;
	 	 sum.kms += 1;
	 }
	 return sum;
}
DISTANCE subtract_distance(DISTANCE d1, DISTANCE d2)
{
	 DISTANCE sub;
	 if(d1.kms > d2.kms)
	 {
		  sub.meters = d1.meters – d2.meters;
	 	 sub.kms = d1.kms – d2.kms;
	 }
	 else
	 {
		  sub.meters = d2.meters – d1.meters;
	 	 sub.kms = d2.kms – d1.kms;
	 }
	 if(sub.meters < 0)
	 {
	 	 sub.kms = sum.kms – 1;
	 	 sub.meters = sum.meters + 1000;
	 }
	 return sub;
}

	 Output
******** MAIN MENU *********
1. Read the distances
2. Display the distances
3. Add the distances
4. Subtract the distances
5. EXIT
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Enter your option : 1
Enter the first distance in kms and meters: 5 300
Enter the second distance in kms and meters: 3 400
Enter your option : 3
The sum of two distances is: 8 kms 700 meters 
Enter your option : 5

	 Let us summarize some points that must be considered while passing a structure to the called 
function. 
	 ∑	 If the called function is returning a copy of the entire structure then it must be declared as 

struct followed by the structure name.
	 ∑	 The structure variable used as parameter in the function declaration must be the same as that 

of the actual argument in the called function (and that should be the name of the struct type).
	 ∑	 When a function returns a structure, then in the calling function the returned structure must 

be assigned to a structure variable of the same type.

5.4.3  Passing Structures through Pointers
Passing large structures to functions using the call by value method is very inefficient. Therefore, 
it is preferred to pass structures through pointers. It is possible to create a pointer to almost any 
type in C, including the user-defined types. It is extremely common to create pointers to structures. 
Like in other cases, a pointer to a structure is never itself a structure, but merely a variable that 
holds the address of a structure. The syntax to declare a pointer to a structure can be given as,

struct struct_name
{
	 data_type member_name1;
	 data_type member_name2;
	 data_type member_name3;
	 .......................
}*ptr;

or,
struct struct_name *ptr;

For our student structure, we can declare a pointer variable by writing
struct student *ptr_stud, stud;

	 The next thing to do is to assign the address of stud to the pointer using the address operator 
(&), as we would do in case of any other pointer. So to assign the address, we will write

ptr_stud = &stud;

To access the members of a structure, we can write
/* get the structure, then select a member */
(*ptr_stud).roll_no;

Since parentheses have a higher precedence than *, writing this statement would work well. But 
this statement is not easy to work with, especially for a beginner. So, C introduces a new operator 

to do the same task. This operator is known as ‘pointing-to’ operator 
(->). It can be used as:

/* the roll_no in the structure ptr_stud points to */
ptr_stud -> roll_no = 01;

This statement is far easier than its alternative.

Programming Tip

The selection operator ( -> ) is 
a single token, so do not place 
any white space between them.
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Programming Examples 

6.	 Write a program to initialize the members of a structure by using a pointer to the structure.
#include <stdio.h>
#include <conio.h>
struct student
{
	 int r_no;
	 char name[20];
	 char course[20];
	 int fees;
};
int main()
{
	 struct student stud1, *ptr_stud1;
	 clrscr();
	 ptr_stud1 = &stud1;
	 printf("\n Enter the details of the student :");
	 printf("\n Enter the Roll Number =");
	 scanf("%d", &ptr_stud1 -> r_no);
	 printf("\n Enter the Name = );
	 gets(ptr_stud1 -> name);
	 printf("\n Enter the Course = ");
	 gets(ptr_stud1 -> course);
	 printf("\n Enter the Fees = ");
	 scanf("%d", &ptr_stud1 -> fees);
	 printf("\n DETAILS OF THE STUDENT");
	 printf("\n ROLL NUMBER = %d", ptr_stud1 –> r_no);
	 printf("\n NAME = %s", ptr_stud1 –> name);
	 printf("\n COURSE = %s", ptr_stud1 –> course);
	 printf("\n FEES = %d", ptr_stud1 –> fees);
	 return 0;
}

	 Output
Enter the details of the student:
Enter the Roll Number = 02
Enter the Name = Aditya
Enter the Course = MCA
Enter the Fees = 60000
DETAILS OF THE STUDENT
ROLL NUMBER = 02
NAME = Aditya
COURSE = MCA
FEES = 60000

7.	 Write a program, using an array of pointers to a structure, to read and display the data of 
students.
#include <stdio.h>
#include <conio.h>
#include <alloc.h>
struct student
{
	 int r_no;
	 char name[20];
	 char course[20];
 	 int fees;
};
struct student *ptr_stud[10];
int main()
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{
 	 int i, n;
	 printf("\n Enter the number of students : ");
	 scanf("%d", &n);
	 for(i=0;i<n;i++)
 	 {
 	 ptr_stud[i] = (struct student *)malloc(sizeof(struct student));
 	 printf("\n Enter the data for student %d ", i+1);
 	 printf("\n ROLL NO.: ");
 	 scanf("%d", &ptr_stud[i]–>r_no);
	 printf("\n NAME: ");
 	 gets(ptr_stud[i]–>name);
 	 printf("\n COURSE: ");
 	 gets(ptr_stud[i]–>course);
 	 printf("\n FEES: ");
 	 scanf("%d", &ptr_stud[i]–>fees);
	 }
printf("\n DETAILS OF STUDENTS");
for(i=0;i<n;i++)
	 {
 	 printf("\n ROLL NO. = %d", ptr_stud[i]–>r_no);
 	 printf("\n NAME = %s", ptr_stud[i]–>name);
 	 printf("\n COURSE = %s", ptr_stud[i]–>course);
 	 printf("\n FEES = %d", ptr_stud[i]–>fees);
	 }
return 0;
}

	 Output
Enter the number of students : 1
Enter the data for student 1
ROLL NO.: 01
NAME: Rahul
COURSE: BCA
FEES: 45000
DETAILS OF STUDENTS
ROLL NO. = 01
NAME = Rahul
COURSE = BCA
FEES = 45000

8.	 Write a program that passes a pointer to a structure to a function.
#include <stdio.h>
#include <conio.h>
#include <alloc.h>
struct student
{
	 int r_no;
 	 char name[20];
 	 char course[20];
 	 int fees;
};
void display (struct student *);
int main()
{
	 struct student *ptr;
 	 ptr = (struct student *)malloc(sizeof(struct student));
 	 printf("\n Enter the data for the student ");
 	 printf("\n ROLL NO.: ");
	 scanf("%d", &ptr–>r_no);
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	 printf("\n NAME: ");
	 gets(ptr–>name);
	 printf("\n COURSE: ");
	 gets(ptr–>course);
	 printf("\n FEES: ");
	 scanf("%d", &ptr–>fees);
	 display(ptr);
	 getch();
	 return 0;
}
void display(struct student *ptr)
{
	 printf("\n DETAILS OF STUDENT");
	 printf("\n ROLL NO. = %d", ptr–>r_no);
	 printf("\n NAME = %s", ptr–>name);
	 printf("\n COURSE = %s ", ptr–>course);
	 printf("\n FEES = %d", ptr–>fees);
}

	 Output
Enter the data for the student
ROLL NO.: 01
NAME: Rahul
COURSE: BCA
FEES: 45000
DETAILS OF STUDENT
ROLL NO. = 01
NAME = Rahul
COURSE = BCA
FEES = 45000

5.5  SELF-REFERENTIAL STRUCTURES
Self-referential structures are those structures that contain a reference to the data of its same type. 
That is, a self-referential structure, in addition to other data, contains a pointer to a data that is 
of the same type as that of the structure. For example, consider the structure node given below.
struct node

{
	 int val;
	 struct node *next;
};

Here, the structure node will contain two types of data: an integer val and a pointer next. You must 
be wondering why we need such a structure. Actually, self-referential structure is the foundation 
of other data structures. We will be using them throughout this book and their purpose will be 
clearer to you when we discuss linked lists, trees, and graphs.

5.6  UNIONS
Similar to structures, a union is a collection of variables of different data types. The only difference 
between a structure and a union is that in case of unions, you can only store information in one 
field at any one time. To better understand a union, think of it as a chunk of memory that is used 
to store variables of different types. When a new value is assigned to a field, the existing data is 
replaced with the new data.
	 Thus, unions are used to save memory. They are useful for applications that involve multiple 
members, where values need not be assigned to all the members at any one time.
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5.6.1  Declaring a Union
The syntax for declaring a union is the same as that of 
declaring a structure. The only difference is that instead of 
using the keyword struct, the keyword union would be used. 
The syntax for union declaration can be given as  

union union–name

{

 data_type var–name;

 data_type var–name;

 ..................

};

	Again the typedef keyword can be used to simplify the declaration of 
union variables. The most important thing to remember about a union 
is that the size of a union is the size of its largest field. This is because 
sufficient number of bytes must be reserved to store the largest sized 
field.

5.6.2  Accessing a Member of a Union
A member of a union can be accessed using the same syntax as that of 
a structure. To access the fields of a union, use the dot operator (.), i.e., 

the union variable name followed by the dot operator followed by the member name.

5.6.3  Initializing Unions
The difference between a structure and a union is that in case of a union, the fields share the same 
memory space, so new data replaces any existing data. Look at the following code and observe 
the difference between a structure and union when their fields are to be initialized.

#include <stdio.h>
typedef struct POINT1
{
 	 int x, y;
};
typedef union POINT2
{
	 int x;
 	 int y;
};
int main()
{
	 POINT1 P1 = {2,3};
	 // POINT2 P2 ={4,5}; Illegal in case of unions
	 POINT2 P2;
	 P2.x = 4;
	 P2.y = 5;
	 printf("\n The coordinates of P1 are %d and %d", P1.x, P1.y);
	 printf("\n The coordinates of P2 are %d and %d", P2.x, P2.y);
	 return 0;
}

	 Output
The coordinates of P1 are 2 and 3

Programming Tip

Variable of a structure or a union 
can be declared at the time of 
structure/union definition by 
placing the variable name after 
the closing brace and before the 
semicolon.

Programming Tip

It is an error to use a structure/ union 
variable as a member of its own struct type 
structure or union type union, respectively.
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The coordinates of P2 are 5 and 5

In this code, POINT1 is a structure name and POINT2 is a union name. However, both the declarations 
are almost same (except the keywords—struct and union). In main(), we can see the difference 
between structures and unions while initializing values. The fields of a union cannot be initialized 
all at once.

	Look at the output carefully. For the structure variable the output is 
as expected but for the union variable the answer does not seem to be 
correct. To understand the concept of union, execute the following code. 
The code given below just re-arranges the printf statements. You will 
be surprised to see the result.

#include <stdio.h>
typedef struct POINT1
{
	 int x, y;
};
typedef union POINT2
{
	 int x;
	 int y;
};
int main()
{
	 POINT1 P1 = {2,3};
	 POINT2 P2;
	 printf("\n The coordinates of P1 are %d and %d", P1.x, P1.y);
	 P2. x = 4;
	 printf("\n The x coordinate of P2 is %d", P2.x);
	 P2.y = 5;
	 printf("\n The y coordinate of P2 is %d", P2.y);
	 return 0;
}

Output
The coordinates of P1 are 2 and 3
The x coordinate of P2 is 4
The y coordinate of P2 is 5

Here although the output is correct, the data is still overwritten in memory.

5.7  ARRAYS OF UNION VARIABLES
Like structures we can also have an array of union variables. However, because of the problem of 
new data overwriting existing data in the other fields, the program may not display the accurate 
results.

#include <stdio.h>
union POINT
{
	 int x, y;
};
int main()
{
	 int i;
	 union POINT points[3];
	 points[0].x = 2;
	 points[0].y = 3;
	 points[1].x = 4;
	 points[1].y = 5;

Programming Tip

The size of a union is equal to the 
size of its largest member.
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	 points[2].x = 6;
	 points[2].y = 7;
	 for(i=0;i<3;i++)
	 	 printf("\n Coordinates of Point[%d] are %d and %d", i, points[i].x, 	 	

	 	 points[i].y);
	 return 0;
}

Output
Coordinates of Point[0] are 3 and 3
Coordinates of Point[1] are 5 and 5
Coordinates of Point[2] are 7 and 7

5.8  UNIONS INSIDE STRUCTURES
Generally, unions can be very useful when declared inside a structure. Consider an example in 
which you want a field of a structure to contain a string or an integer, depending on what the user 
specifies. The following code illustrates such a scenario:

#include <stdio.h>
struct student
{
	 union
	 {
	 	 char name[20];
		  int roll_no;
	 };
	 int marks;
};
int main()
{
	 struct student stud;
	 char choice;
	 printf("\n You can enter the name or roll number of the student");
	 printf("\n Do you want to enter the name? (Y or N): ");
	 gets(choice);
	 if(choice==‘y’ || choice==‘Y’)
	 {
	 	 printf("\n Enter the name: ");
	 	 gets(stud.name);
	 }
	 else
	 {
	 	 printf("\n Enter the roll number: ");
	 	 scanf("%d", &stud.roll_no);
	 }
	 printf("\n Enter the marks: ");
	 scanf("%d", &stud.marks);
	 if(choice==‘y’ || choice==‘Y’)
	 	 printf("\n Name: %s ", stud.name);
	 else
	 	 printf("\n Roll Number: %d ", stud.roll_no);
	 printf("\n Marks: %d", stud.marks);
	 return 0;
}

Now in this code, we have a union embedded within a structure. We know the fields of a union 
will share memory, so in the main program we ask the user which data he/she would like to store 
and depending on his/her choice the appropriate field is used.
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 Exercises

Review Questions
	 1.	 What is the advantage of using structures?
	 2.	 Structure declaration reserves memory for the 

structure. Comment on this statement with valid 
justifications.

	 3.	 Differentiate between a structure and an array.
	 4.	 Write a short note on structures and inter-process 

communication.
	 5.	 Explain the utility of the keyword typedef in 

structures.
	 6.	 Explain with an example how structures are 

initialized.
	 7.	 Is it possible to create an array of structures? 

Explain with the help of an example.
	 8.	 What do you understand by a union?
	 9.	 Differentiate between a structure and a union.
	 10.	 How is a structure name different from a structure 

variable?
	 11.	 Explain how members of a union are accessed.
	 12.	 Write a short note on nested structures.
	 13.	 In which applications unions can be useful?

Programming Exercises
	 1.	 Declare a structure that represents the following 

 Points to Remember
∑	 Structure is a user-defined data type that can store 

related information (even of different data types) 
together.

∑	 A structure is declared using the keyword struct, 
followed by the structure name.

∑	 The structure definition does not allocate any 
memory or consume storage space. It just gives a 
template that conveys to the C compiler how the 
structure is laid out in the memory and gives details 
of the member names. Like any data type, memory is 
allocated for the structure when we declare a variable 
of the structure.

∑	 When a struct name is preceded with the keyword 
typedef, then the struct becomes a new type.

∑	 When the user does not explicitly initialize the 
structure, then C automatically does it. For int and 
float members, the values are initialized to zero and 
char and string members are initialized to '\0' by 
default.

∑	 A structure member variable is generally accessed 
using a '.' (dot) operator.

∑	 A structure can be placed within another structure. 
That is, a structure may contain another structure 
as its member. Such a structure is called a nested 
structure.

∑	 Self-referential structures are those structures that 
contain a reference to data of its same type. That is, 
a self-referential structure, in addition to other data, 
contains a pointer to a data that is of the same type 
as that of the structure.

∑	 A union is a collection of variables of different 
data types in which memory is shared among these 
variables. The size of a union is equal to the size of 
its largest member.

∑	 The only difference between a structure and a union 
is that in case of unions information can only be 
stored in one member at a time.

hierarchical information.
	 (a)	 Student
	 (b)	 Roll Number
	 (c)	 Name
	 (i)	 First name
	 (ii)	 Middle Name
	 (iii)	 Last Name
	 (d)	 Sex
	 (e)	 Date of Birth
	 (i)	 Day
	 (ii)	 Month
	 (iii)	 Year
	 (f)	 Marks
		  (i)		 English
	 (ii)	 Mathematics
	 (iii)	 Computer Science
	 2.	 Define a structure to store the name, an array 

marks[] which stores the marks of three different 
subjects, and a character grade. Write a program 
to display the details of the student whose name 
is entered by the user. Use the structure definition 
of the first question to make an array of students. 
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Display the name of the students who have secured 
less than 40% of the aggregate.

	 3.	 Modify Question 2 to print each student’s average 
marks and the class average (that includes average 
of all the student’s marks).

	 4.	 Make an array of students as illustrated in Question 1  
and write a program to display the details of the 
student with the given Date of Birth.

	 5.	 Write a program to find smallest of three numbers 
using structures.

	 6.	 Write a program to calculate the distance between 
the given points (6,3) and (2,2).

	 7.	 Write a program to read and display the information 
about all the employees in a department. Edit the 
details of the ith employee and redisplay the 
information.

	 8.	 Write a program to add and subtract height 6'2" 
and 5'4".

	 9.	 Write a program to add and subtract 10hrs 20mins 
50sec and 5hrs 30min 40sec.

	 10.	 Write a program using structure to check if the 
current year is leap year or not.

	 11.	 Write a program using pointer to structure to 
initialize the members of an employee structure. 
Use functions to print the employee’s information.

	 12.	 Write a program to create a structure with the 
information given below. Then, read and print the 
data.

		  Employee[10]
	 (a)	 Emp_Id
	 (b)	 Name
	 (i)	 First Name
	 (ii)	 Middle Name
	 (iii)	 Last Name
	 (c)	 Address
	 (i)	 Area
	 (ii)	 City
	 (iii)	 State
	 (d)	 Age
	 (e)	 Salary
	 (f)	 Designation
	 13.	 Define a structure date containing three integers—

day, month, and year. Write a program using 
functions to read data, to validate the date entered 
by the user and then print the date on the screen. 
For example, if you enter 29,2,2010 then that is an 

invalid date as 2010 is not a leap year. Similarly 
31,6,2007 is invalid as June does not have 31 days.

	 14.	 Using the structure definition of the above 
program, write a function to increment the date. 
Make sure that the incremented date is a valid 
date. 

	 15.	 Modify the above program to add a specific 
number of days to the given date.

	 16.	 Write a program to define a structure vector. Then 
write functions to read data, print data, add two 
vectors and scale the members of a vector by a 
factor of 10.

	 17.	 Write a program to define a structure for a hotel 
that has members— name, address, grade, number 
of rooms, and room charges. Write a function to 
print the names of hotels in a particular grade. Also 
write a function to print names of hotels that have 
room charges less than the specified value.

	 18.	 Write a program to define a union and a structure 
both having exactly the same members. Using 
the sizeof operator, print the size of structure 
variable as well as union variable and comment 
on the result.

	 19.	 Declare a structure time that has three fields—hr, 
min, sec. Create two variables start_time and 
end_time. Input their values from the user. Then 
while start_time does not reach the end_time, 
display GOOD DAY on the screen.

	 20.	 Declare a structure fraction that has two fields—
numerator and denominator. Create two variables 
and compare them using function. Return 0 if the 
two fractions are equal, –1 if the first fraction is 
less than the second and 1 otherwise. You may 
convert a fraction into a floating point number 
for your convenience.

	 21.	 Declare a structure POINT. Input the coordinates 
of a point variable and determine the quadrant in 
which it lies. The following table can be used to 
determine the quadrant

Quadrant X Y

1 Positive Positive

2 Negative Positive

3 Negative Negative

4 Positive Negative

	 22.	 Write a program to calculate the area of one 
of the geometric figures—circle, rectangle or a 
triangle. Write a function to calculate the area. 
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The function must receive one parameter which 
is a structure that contains the type of figure and 
the size of the components needed to calculate the 
area must be a part of a union. Note that a circle 
requires just one component, rectangle requires 
two components and a triangle requires the size 
of three components to calculate the area.

Multiple-choice Questions
	 1.	 A data structure that can store related information 

together is called
	 (a)	 Array	 (b)	 String
	 (c)	 Structure	 (d)	 All of these
	 2.	 A data structure that can store related information 

of different data types together is called
	 (a)	 Array	 (b)	 String
	 (c)	 Structure	 (d)	 All of these
	 3.	 Memory for a structure is allocated at the time of
	 (a)	 Structure definition
	 (b)	 Structure variable declaration
	 (c)	 Structure declaration
	 (d)	 Function declaration		
	 4.	 A structure member variable is generally accessed 

using
	 (a)	 Address operator	 (b)	 Dot operator
	 (c)	 Comma operator	 (d)	 Ternary operator
	 5.	 A structure that can be placed within another 

structure is known as
	 (a)	 Self-referential structure
	 (b)	 Nested structure
	 (c)	 Parallel structure
	 (d)	 Pointer to structure
	 6.	 A union member variable is generally accessed 

using the
	 (a)	 Address operator	 (b)	 Dot operator
	 (c)	 Comma operator	 (d)	 Ternary operator
	 7.	 typedef can be used with which of these data 

types?
	 (a)	 struct	 (b)	 union
	 (c)	 enum	 (d)	 all of these

True or False
	 1.	 Structures contain related information of the same 

data type.
	 2.	 Structure declaration reserves memory for the 

structure.

	 3.	 When the user does not explicitly initialize the 
structure, then C automatically does it.

	 4.	 The dereference operator is used to select a 
particular member of the structure.

	 5.	 A nested structure contains another structure as 
its member.

	 6.	 A struct type is a primitive data type.
	 7.	 C permits copying of one structure variable to 

another.
	 8.	 Unions and structures are initialized in the same 

way.
	 9.	 A structure cannot have a union as its member.
	 10.	 C permits nested unions. 
	 11.	 A field in a structure can itself be a structure.
	 12.	 No two members of a union should have the same 

name.
	 13.	 A union can have another union as its member.
	 14.	 New variables can be created using the typedef 

keyword.

Fill in the Blanks
	 1.	 Structure is a ______ data type.
	 2.	 ______ is just a template that will be used to 

reserve memory when a variable of type struct 
is declared.

	 3.	 A structure is declared using the keyword struct 
followed by a ______.

	 4.	 When we precede a struct name with ______, 
then the struct becomes a new type.

	 5.	 For int and float structure members, the values 
are initialized to ______.

	 6.	 char and string structure members are initialized 
to ______ by default.

	 7.	 A structure member variable is generally accessed 
using a ______.

	 8.	 A structure placed within another structure is 
called a ______.

	 9.	 ______ structures contain a reference to data of 
its same type.

	 10.	 Memory is allocated for a structure when _______ 
is done.

	 11.	 _______ is a collection of data under one name 
in which memory is shared among the members.

	 12.	 The selection operator is used to _______.
	 13.	 _______  permits sharing of memory among 

different types of data.



6.1  Introduction
We have studied that an array is a linear collection of data elements in which the elements are 
stored in consecutive memory locations. While declaring arrays, we have to specify the size of 
the array, which will restrict the number of elements that the array can store. For example, if we 
declare an array as int marks[10], then the array can store a maximum of 10 data elements but not 
more than that. But what if we are not sure of the number of elements in advance? Moreover, to 
make efficient use of memory, the elements must be stored randomly at any location rather than 
in consecutive locations. So, there must be a data structure that removes the restrictions on the 
maximum number of elements and the storage condition to write efficient programs.
	 Linked list is a data structure that is free from the aforementioned restrictions. A linked list 
does not store its elements in consecutive memory locations and the user can add any number 
of elements to it. However, unlike an array, a linked list does not allow random access of data. 
Elements in a linked list can be accessed only in a sequential manner. But like an array, insertions 
and deletions can be done at any point in the list in a constant time.

6.1.1  Basic Terminologies
A linked list, in simple terms, is a linear collection of data elements. These data elements are 
called nodes. Linked list is a data structure which in turn can be used to implement other data 

Learning Objective
A linked list is a collection of data elements called nodes in which the linear 
representation is given by links from one node to the next node. In this chapter, we 
are going to discuss different types of linked lists and the operations that can be 
performed on these lists.

Linked Lists

chapter 6
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structures. Thus, it acts as a building block to implement data structures such as stacks, queues, 
and their variations. A linked list can be perceived as a train or a sequence of nodes in which each 
node contains one or more data fields and a pointer to the next node.

1 2 3 4 5 6 7

START

X

Figure 6.1  Simple linked list

	 In Fig. 6.1, we can see a linked list in which every node contains two parts, an integer and a 
pointer to the next node. The left part of the node which contains data may include a simple data 
type, an array, or a structure. The right part of the node contains a pointer to the next node (or 
address of the next node in sequence). The last node will have no next node connected to it, so 
it will store a special value called NULL. In Fig. 6.1, the NULL pointer is represented by X. While 
programming, we usually define NULL as –1. Hence, a NULL pointer denotes the end of the list. Since 
in a linked list, every node contains a pointer to another node which is of the same type, it is also 
called a self-referential data type.
	 Linked lists contain a pointer variable START that stores the address of the first node in the list. 
We can traverse the entire list using START which contains the address of the first node; the next 
part of the first node in turn stores the address of its succeeding node. Using this technique, the 
individual nodes of the list will form a chain of nodes. If START = NULL, then the linked list is empty 
and contains no nodes.
	 In C, we can implement a linked list using the following code:

struct node
{
	 int data;
	 struct node *next;
};

Note	 Linked lists provide an efficient way of storing related data and perform basic operations such as 
insertion, deletion, and updation of information at the cost of extra space required for storing address of the 
next node.

  Let us see how a linked list is maintained in the memory. 
In order to form a linked list, we need a structure called 
node which has two fields, DATA and NEXT. DATA will store the 
information part and NEXT will store the address of the next 
node in sequence. Consider Fig. 6.2.
  In the figure, we can see that the variable START is used to 
store the address of the first node. Here, in this example, START 
= 1, so the first data is stored at address 1, which is H. The 
corresponding NEXT stores the address of the next node, which 
is 4. So, we will look at address 4 to fetch the next data item. 
The second data element obtained from address 4 is E. Again, 
we see the corresponding NEXT to go to the next node. From 
the entry in the NEXT, we get the next address, that is 7, and 
fetch L as the data. We repeat this procedure until we reach 
a position where the NEXT entry contains –1 or NULL, as this 

START

Data Next

1

2

3

4

5

6

7

8

9

1

H 4

E 7

L 8

L 1

O –1

1

Figure 6.2  START pointing to the first element 
of the linked list in the memory
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would denote the end of the linked list. When we traverse DATA and NEXT in this manner, we finally 
see that the linked list in the above example stores characters that when put together form the 
word HELLO.
	 Note that Fig. 6.2 shows a chunk of memory locations which range from 1 to 10. The shaded 
portion contains data for other applications. Remember that the nodes of a linked list need not 
be in consecutive memory locations. In our example, the nodes for the linked list are stored at 
addresses 1, 4, 7, 8, and 10.
	 Let us take another example to see how two linked lists are maintained together in the computer’s 
memory. For example, the students of Class XI of Science group are asked to choose between Biology 
and Computer Science. Now, we will maintain two linked lists, one for each subject. That is, the 
first linked list will contain the roll numbers of all the students who have opted for Biology and the 
second list will contain the roll numbers of students who have chosen Computer Science.
  Now, look at Fig. 6.3, two different linked lists are simultaneously maintained in the memory. 
There is no ambiguity in traversing through the list because each list maintains a separate Start 

pointer, which gives the address of the first node 
of their respective linked lists. The rest of the 
nodes are reached by looking at the value stored 
in the NEXT.
  By looking at the figure, we can conclude that 
roll numbers of the students who have opted for 
Biology are S01, S03, S06, S08, S10, and S11. 
Similarly, roll numbers of the students who chose 
Computer Science are S02, S04, S05, S07, and 
S09.
  We have already said that the DATA part of a node 
may contain just a single data item, an array, or 
a structure. Let us take an example to see how a 
structure is maintained in a linked list that is stored 
in the memory.
  Consider a scenario in which the roll number, 
name, aggregate, and grade of students are stored 
using linked lists. Now, we will see how the NEXT 
pointer is used to store the data alphabetically. 
This is shown in Fig. 6.4.

6.1.2  Linked Lists versus Arrays
Both arrays and linked lists are a linear collection of data elements. But unlike an array, a linked 
list does not store its nodes in consecutive memory locations. Another point of difference between 
an array and a linked list is that a linked list does not allow random access of data. Nodes in a 
linked list can be accessed only in a sequential manner. But like an array, insertions and deletions 
can be done at any point in the list in a constant time.
	 Another advantage of a linked list over an array is that we can add any number of elements in the 
list. This is not possible in case of an array. For example, if we declare an array as int marks[20], 
then the array can store a maximum of 20 data elements only. There is no such restriction in case 
of a linked list.

(Biology) Roll No Next

1

2

3

4

5

6

7

8

9

10

S 1

7

S 7 12

11

12

13

14

15

3

S 2 5

S 3

S 4

1S 5

S 6 11

S 8

S 9

S1

S11 –1

15

–1

13

START 2

(Computer Science)

8

1

2

START 1

Figure 6.3  Two linked lists which are simultaneously 
maintained in the memory
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1

2

3

4

5

6

7

8

9

1

11

12

13

14

15

16

17

18

19

START

18

Roll No Name Aggregate Next

S 1 Ram 78 6

S 2 Shyam 64 14

S 3 Mohit 89 17

S 4 Rohit 77 2

S 5 Varun 86 1

S 6 Karan 65 12

S 7 Veena 54 –1

S 8 Meera 67 4

S 9 Krish 45 13

S1 Kusum 91 11

S11 Silky 72 7

S12 Monica 75 1

S13 Ashish 63 19

S14 Gaurav 61

Grade

Distinction

First division

Outstanding

Distinction

Outstanding

First division

Second division

First division

Third division

Outstanding

First division

Distinction

First division

First division 8

Figure 6.4  Students’ linked list

	 Thus, linked lists provide an efficient way of storing related data and performing basic operations 
such as insertion, deletion, and updation of information at the cost of extra space required for 
storing the address of next nodes.

6.1.3  Memory Allocation and De-allocation for a Linked List
We have seen how a linked list is represented in the memory. If we want to add a node to an already 
existing linked list in the memory, we first find free space in the memory and then use it to store 
the information. For example, consider the linked list shown in Fig. 6.5. The linked list contains 
the roll number of students, marks obtained by them in Biology, and finally a NEXT field which 
stores the address of the next node in sequence. Now, if a new student joins the class and is asked 
to appear for the same test that the other students had taken, then the new student’s marks should 
also be recorded in the linked list. For this purpose, we find a free space and store the information 
there. In Fig. 6.5 the grey shaded portion shows free space, and thus we have 4 memory locations 
available. We can use any one of them to store our data. This is illustrated in Figs 6.5(a) and (b).
	 Now, the question is which part of the memory is available and which part is occupied? When 
we delete a node from a linked list, then who changes the status of the memory occupied by it 
from occupied to available? The answer is the operating system. Discussing the mechanism of 
how the operating system does all this is out of the scope of this book. So, in simple language, 
we can say that the computer does it on its own without any intervention from the user or the 
programmer. As a programmer, you just have to take care of the code to perform insertions and 
deletions in the list.
	 However, let us briefly discuss the basic concept behind it. The computer maintains a list of 
all free memory cells. This list of available space is called the free pool.
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(a) (b)

Roll No Marks
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9
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2

3

5

7

8

1

11

12

13

15

4

–1

Next1

(Biology)

START

Figure 6.5  (a) Students’ linked list and (b) linked list after the insertion of new student’s record

	 We have seen that every linked list has a pointer variable START which stores the address of the 
first node of the list. Likewise, for the free pool (which is a linked list of all free memory cells), 
we have a pointer variable AVAIL which stores the address of the first free space. Let us revisit the 
memory representation of the linked list storing all the students’ marks in Biology.
  Now, when a new student’s record has to be added, the memory address pointed by AVAIL will be 
taken and used to store the desired information. After the insertion, the next available free space’s 
address will be stored in AVAIL. For example, in Fig. 6.6, when the first free memory space is 
utilized for inserting the new node, AVAIL will be set to contain address 6.

  This was all about inserting a new node in 
an already existing linked list. Now, we will 
discuss deleting a node or the entire linked 
list. When we delete a particular node from an 
existing linked list or delete the entire linked 
list, the space occupied by it must be given 
back to the free pool so that the memory can 
be reused by some other program that needs 
memory space.
  The operating system does this task of 
adding the freed memory to the free pool. The 
operating system will perform this operation 
whenever it finds the CPU idle or whenever the 
programs are falling short of memory space. 
The operating system scans through all the 
memory cells and marks those cells that are 
being used by some program. Then it collects 
all the cells which are not being used and adds 
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1
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9

14

–1

1

4

START

Figure 6.6  Linked list with avail and start pointers
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their address to the free pool, so that these cells can be reused by other programs. This process 
is called garbage collection. 
	 There are different types of linked lists which we will discuss in the next section.

6.2  SINGLY LINKED Lists
A singly linked list is the simplest type of linked list in which every node contains some data and 
a pointer to the next node of the same data type. By saying that the node contains a pointer to the 
next node, we mean that the node stores the address of the next node in sequence. A singly linked 
list allows traversal of data only in one way. Figure 6.7 shows a singly linked list.

1 2 3 4 5 6 7

START

X

Figure 6.7  Singly linked list

6.2.1  Traversing a Linked List
Traversing a linked list means accessing the nodes of the list in order to perform some processing 
on them. Remember a linked list always contains a pointer variable START which stores the address 
of the first node of the list. End of the list is marked by storing NULL or –1 in the NEXT field of the 
last node. For traversing the linked list, we also make use of another pointer variable PTR which 
points to the node that is currently being accessed. The algorithm to traverse a linked list is shown 
in Fig. 6.8.
	 In this algorithm, we first initialize PTR with the address of START. So now, PTR points to the first 
node of the linked list. Then in Step 2, a while loop is executed which is repeated till PTR processes 
the last node, that is until it encounters NULL. In Step 3, we apply the process (e.g., print) to the 
current node, that is, the node pointed by PTR. In Step 4, we move to the next node by making the 
PTR variable point to the node whose address is stored in the NEXT field. 	

  Let us now write an algorithm to count the 
number of nodes in a linked list. To do this, we 
will traverse each and every node of the list and 
while traversing every individual node, we will 
increment the counter by 1. Once we reach NULL, 
that is, when all the nodes of the linked list have 
been traversed, the final value of the counter will 
be displayed. Figure 6.9 shows the algorithm to 
print the number of nodes in a linked list.

6.2.2  Searching for a Value in a Linked List
Searching a linked list means to find a particular 
element in the linked list. As already discussed, 
a linked list consists of nodes which are divided 
into two parts, the information part and the next 
part. So searching means finding whether a given 
value is present in the information part of the 
node or not. If it is present, the algorithm returns 
the address of the node that contains the value.

Step 1: [INITIALIZE] SET PTR = START

Step 2: Repeat Steps 3 and 4 while PTR != NULL

Step 3: Apply Process to PTR DATA

Step 4: SET PTR = PTR NEXT

[END OF LOOP]

Step 5: EXIT

->
->

Figure 6.8  Algorithm for traversing a linked list

Step 1: [INITIALIZE] SET =

Step 2: [INITIALIZE] SET PTR = START

Step 3: Repeat Steps 4 and 5 while PTR != NULL

Step 4: SET = + 1

Step 5: SET PTR = PTR NEXT

[END OF LOOP]

Step 7: EXIT

COUNT

COUNT COUNT

Step 6: Write COUNT

->

Figure 6.9  Algorithm to print the number of nodes in a 
linked list
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  Figure 6.10 shows the algorithm to search a linked 
list.
  In Step 1, we initialize the pointer variable PTR with 
START that contains the address of the first node. In 
Step 2, a while loop is executed which will compare 
every node’s DATA with VAL for which the search is 
being made. If the search is successful, that is, VAL has 
been found, then the address of that node is stored in 
POS and the control jumps to the last statement of the 
algorithm. However, if the search is unsuccessful, POS is 
set to NULL which indicates that VAL is not present in the 
linked list.

	 Consider the linked list shown in Fig. 6.11. If we have VAL = 4, then the flow of the algorithm 
can be explained as shown in the figure.

1 7 3 4 2 6 5 X

PTR

1 7 3 4 2 6 5

PTR

X

1 7 3 4 2 6 5

PTR

X

1 7 3 4 2 6 5

PTR

X

Here PTR > DATA = 7. Since PTR > DATA != 4, we move to the next node.- -

Here PTR > DATA = 1. Since PTR > DATA != 4, we move to the next node.- -

Here PTR > DATA = 4. Since PTR > DATA = 4, POS = PTR. POS now stores

the address of the node that contains VAL

- -

Here PTR > DATA = 3. Since PTR > DATA != 4, we move to the next node.- -

Figure 6.11  Searching a linked list

6.2.3  Inserting a New Node in a Linked List
In this section, we will see how a new node is added into an already existing linked list. We will 
take four cases and then see how insertion is done in each case.
	 Case 1: The new node is inserted at the beginning.
	 Case 2: The new node is inserted at the end.
	 Case 3: The new node is inserted after a given node.
	 Case 4: The new node is inserted before a given node.
Before we describe the algorithms to perform insertions in all these four cases, let us first discuss 
an important term called OVERFLOW. Overflow is a condition that occurs when AVAIL = NULL or no 
free memory cell is present in the system. When this condition occurs, the program must give an 
appropriate message.

Inserting a Node at the Beginning of a Linked List
Consider the linked list shown in Fig. 6.12. Suppose we want to add a new node with data 9 and 
add it as the first node of the list. Then the following changes will be done in the linked list.

Step 1: [INITIALIZE] SET PTR = START

Step 2: Repeat Step 3 while PTR != NULL

Step 3: IF VAL = PTR DATA

SET POS = PTR

Go To Step 5

ELSE

SET PTR = PTR NEXT

[END OF IF]

[END OF LOOP]

Step 4: SET POS = NULL

Step 5: EXIT

->

->

Figure 6.10  Algorithm to search a linked list
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1 7 4 2 6

START

9 7 3 5 X

1 7 4 2 6

START

9 7 3 5 X

1 7 3 4 2 6 5 X

START

9

Allocate memory for the new node and initialize its DATA part to 9.

Now make START to point to the first node of the list.

Add the new node as the first node of the list by making the NEXT part of the new

node contain the address of START.

Figure 6.12  Inserting an element at the beginning of a linked list

  Figure 6.13 shows the algorithm to insert a new node 
at the beginning of a linked list. In Step 1, we first check 
whether memory is available for the new node. If the 
free memory has exhausted, then an OVERFLOW message is 
printed. Otherwise, if a free memory cell is available, then 
we allocate space for the new node. Set its DATA part with the 
given VAL and the next part is initialized with the address of 
the first node of the list, which is stored in START. Now, since 
the new node is added as the first node of the list, it will 
now be known as the START node, that is, the START pointer 
variable will now hold the address of the NEW_NODE. Note the 
following two steps:

	Step 2: SET NEW_NODE = AVAIL

	 Step 3: SET AVAIL = AVAIL -> NEXT

These steps allocate memory for the new node. In C, there are functions like malloc(), alloc, and 
calloc() which automatically do the memory allocation on behalf of the user. 

Inserting a Node at the End of a Linked List
Consider the linked list shown in Fig. 6.14. Suppose we want to add a new node with data 9 as 
the last node of the list. Then the following changes will be done in the linked list.
	 Figure 6.15 shows the algorithm to insert a new node at the end of a linked list. 
In Step 6, we take a pointer variable PTR and initialize it with START. That is, PTR now points to 
the first node of the linked list. In the while loop, we traverse through the linked list to reach the 
last node. Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to 
store the address of the new node. Remember that the NEXT field of the new node contains NULL, 
which signifies the end of the linked list.

Inserting a Node After a Given Node in a Linked List
Consider the linked list shown in Fig. 6.17. Suppose we want to add a new node with value 9 after 
the node containing data 3. Before discussing the changes that will be done in the linked list, let 
us first look at the algorithm shown in Fig. 6.16.

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 7

[END OF IF]

Step 2: SET NEW_NODE = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET NEW_NODE NEXT = START

Step 6: SET START = NEW_NODE

Step 7: EXIT

->
->
->

NEW_NODE

Figure 6.13  Algorithm to insert a new node at 
the beginning
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1 7 3 4 2 6 5 X

START

1 7 3 4 2 6 5

START, PTR

X

1 7 3 4 2 6 5

START PTR

X

1 7 3 4 2 6 5

START PTR

9 X

Take a pointer variable PTR which points to START.

Move PTR so that it points to the last node of the list.

Add the new node after the node pointed by PTR. This is done by storing the address

of the new node in the NEXT part of PTR.

9 X

Allocate memory for the new node and initialize its DATA part to 9 and

NEXT part to NULL.

Figure 6.14  Inserting an element at the end of a linked list

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 1

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET NEW_NODE = NULL

Step 6: SET PTR = START

Step 7: Repeat Step 8 while PTR NEXT != NULL

Step 8: SET PTR = PTR NEXT

[END OF LOOP]

Step 9: SET PTR NEXT =

Step 10: EXIT

NEW_NODE

NEW_NODE

NEXT

NEW_NODE

- >
- >
- >

- >
- >

- >

    

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 12

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET PTR = START

Step 6: SET PREPTR = PTR

Step 7: Repeat Steps 8 and 9 while

!= NUM

Step 8: SET PREPTR = PTR

Step 9: SET PTR = PTR NEXT

[END OF LOOP]

Step 1 : PREPTR NEXT =

Step 11: SET NEW_NODE NEXT = PTR

Step 12: EXIT

NEW_NODE

NEW_NODE

NEW_NODE

- >
- >

- >

- >
- >

PREPTR DATA- >

Figure 6.15  Algorithm to insert a new node at the end 	 Figure 6.16  Algorithm to insert a new node after a node 
	 that has value NUM

  In Step 5, we take a pointer variable PTR and initialize it with START. That is, PTR now points to 
the first node of the linked list. Then we take another pointer variable PREPTR which will be used 
to store the address of the node preceding PTR. Initially, PREPTR is initialized to PTR. So now, PTR, 
PREPTR, and START are all pointing to the first node of the linked list.
  In the while loop, we traverse through the linked list to reach the node that has its value equal 
to NUM. We need to reach this node because the new node will be inserted after this node. Once 
we reach this node, in Steps 10 and 11, we change the NEXT pointers in such a way that new node 
is inserted after the desired node.
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1 7 3 4 6

START

29 5 X

1 7 3 4 6 5

START

2 X

NEW_NODE

9

1 7 3 4 2 6 5 X

START

9

1 7 3 4 2 6 5

START

PTR

PREPTR

X

1 7 3 4 6 5

START PTRPREPTR

2 X

1 7 3 4 6 5

START PTRPREPTR

2 X

Take two pointer variables PTR and PREPTR and initialize them with START

so that START, PTR, and PREPTR point to the first node of the list.

Move PTR and PREPTR until the DATA part of PREPTR = value of the node

after which insertion has to be done. PREPTR will always point to the

node just before PTR.

Add the new node in between the nodes pointed by PREPTR and PTR.

Allocate memory for the new node and initialize its DATA part to 9.

PREPTR PTR

Figure 6.17  Inserting an element after a given node in a linked list

Inserting a Node Before a Given Node in a Linked List
Consider the linked list shown in Fig. 6.19. Suppose we want to add a new node with value 9 before 

the node containing 3. Before discussing 
the changes that will be done in the linked 
list, let us first look at the algorithm shown 
in Fig. 6.18.
  In Step 5, we take a pointer variable 
PTR and initialize it with START. That is, PTR 
now points to the first node of the linked 
list. Then, we take another pointer variable 
PREPTR and initialize it with PTR. So now, 
PTR, PREPTR, and START are all pointing to 
the first node of the linked list.
  In the while loop, we traverse through 
the linked list to reach the node that has 
its value equal to NUM. We need to reach 
this node because the new node will be 
inserted before this node. Once we reach 

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 12

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET PTR = START

Step 6: SET PREPTR = PTR

Step 7: Repeat Steps 8 and 9 while PTR DATA != NUM

Step 8: SET PREPTR = PTR

Step 9: SET PTR = PTR NEXT

[END OF LOOP]

Step 1 : PREPTR NEXT =

Step 11: SET NEXT = PTR

Step 12: EXIT

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

- >
- >

- >

- >

- >
- >

Figure 6.18  Algorithm to insert a new node before a node that has 
value NUM
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this node, in Steps 10 and 11, we change the NEXT pointers in such a way that the new node is 
inserted before the desired node.

START

1 7 9 4 623 5 X

NEW_NODE

9

1 7 3 4 6 5

START

2 X

1 7 3 4 2 6 5

START

PTR

PREPTR

X

1 7 3 4 6 5

START PTRPREPTR

2 X

9

1 7 3 4 2 6 5 X

START

Allocate memory for the new node and initialize its DATA part to 9.

Initialize PREPTR and PTR to the START node.

Move PTR and PREPTR until the DATA part of PTR = value of the node

before which insertion has to be done. PREPTR will always point to

the node just before PTR.

Insert the new node in between the nodes pointed by PREPTR and PTR.

PREPTR PTR

Figure 6.19  Inserting an element before a given node in a linked list

6.2.4  Deleting a Node from a Linked List
In this section, we will discuss how a node is deleted from an already existing linked list. We will 
consider three cases and then see how deletion is done in each case.
	 Case 1: The first node is deleted.
	 Case 2: The last node is deleted.
	 Case 3: The node after a given node is deleted.
Before we describe the algorithms in all these three cases, let us first discuss an important term 
called UNDERFLOW. Underflow is a condition that occurs when we try to delete a node from a linked 
list that is empty. This happens when START = NULL or when there are no more nodes to delete. 
Note that when we delete a node from a linked list, we actually have to free the memory occupied 
by that node. The memory is returned to the free pool so that it can be used to store other programs 
and data. Whatever be the case of deletion, we always change the AVAIL pointer so that it points 
to the address that has been recently vacated.

Deleting the First Node from a Linked List
Consider the linked list in Fig. 6.20. When we want to delete a node from the beginning of the 
list, then the following changes will be done in the linked list.
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1 7 3 4 2 6 5 X

START

Make START to point to the next node in sequence.

7 3 4 6 5

START

2 X

Figure 6.20  Deleting the first node of a linked list

	 Figure 6.21 shows the algorithm to delete the first node from a linked list. In Step 1, we check 
if the linked list exists or not. If START = NULL, then it signifies 
that there are no nodes in the list and the control is transferred 
to the last statement of the algorithm.
  However, if there are nodes in the linked list, then we use a 
pointer variable PTR that is set to point to the first node of the list. 
For this, we initialize PTR with START that stores the address of 
the first node of the list. In Step 3, START is made to point to the 
next node in sequence and finally the memory occupied by the 
node pointed by PTR (initially the first node of the list) is freed 
and returned to the free pool.

Deleting the Last Node from a Linked List
Consider the linked list shown in Fig. 6.22. Suppose we want to delete the last node from the 
linked list, then the following changes will be done in the linked list.

1 7 3 4 6 5 X

START PTR

2

PREPTR

1 7 3 4 6 5

START

PREPTR

PTR

2 X

1 7 3 4 2 6 5

START

X

Take pointer variables PTR and PREPTR which initially point to START.

Move PTR and PREPTR such that NEXT part of PTR = NULL. PREPTR always points

to the node just before the node pointed by PTR.

Set the NEXT part of PREPTR node to NULL.

1 7 3 4 6 X

START

2

Figure 6.22  Deleting the last node of a linked list

	 Figure 6.23 shows the algorithm to delete the last node from a linked list. In Step 2, we take 
a pointer variable PTR and initialize it with START. That is, PTR now points to the first node of the 
linked list. In the while loop, we take another pointer variable PREPTR such that it always points 
to one node before the PTR. Once we reach the last node and the second last node, we set the NEXT 
pointer of the second last node to NULL, so that it now becomes the (new) last node of the linked 
list. The memory of the previous last node is freed and returned back to the free pool.

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 5

[END OF IF]

Step 2: SET PTR = START

Step 3: SET START = START NEXT

Step 4: FREE PTR

Step 5: EXIT

->

Figure 6.21  Algorithm to delete the first 
node
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Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = START

Step 3: Repeat Steps 4 and 5 while PTR NEXT != NULL

Step 4: SET PREPTR = PTR

Step 5: SET PTR = PTR NEXT

[END OF LOOP]

Step 6: SET PREPTR NEXT = NULL

Step 7: FREE PTR

Step 8: EXIT

->

->

->

Figure 6.23  Algorithm to delete the last node 

Deleting the Node After a Given Node in a Linked List
Consider the linked list shown in Fig. 6.24. Suppose we want to delete the node that succeeds 
the node which contains data value 4. Then the following changes will be done in the linked list.

1 7 3 4 6 5 X

START

1 7 3 4 2 6 5

START

X

1 7 3 4 2 6 5

START PREPTR PTR

X

1 7 3 4 6 5

START PTRPREPTR

2 X

1 7 3 4 6 5

START PTRPREPTR

2 X

1 7 3 4 2 6 5

START

PREPTR

PTR

X

Take pointer variables PTR and PREPTR which initially point to START.

Move PREPTR and PTR such that PREPTR points to the node containing VAL

and PTR points to the succeeding node.

Set the NEXT part of PREPTR to the NEXT part of PTR.

1 7 3 4 6 5

START

2 X

PTRPREPTR

Figure 6.24  Deleting the node after a given node in a linked list

	 Figure 6.25 shows the algorithm to delete the node after a given node from a linked list. In 
Step 2, we take a pointer variable PTR and initialize it with START. That is, PTR now points to the 
first node of the linked list. In the while loop, we take another pointer variable PREPTR such that 
it always points to one node before the PTR. Once we reach the node containing VAL and the node 
succeeding it, we set the next pointer of the node containing VAL to the address contained in next 
field of the node succeeding it. The memory of the node succeeding the given node is freed and 
returned back to the free pool.
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Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 1

[END OF IF]

Step 2: SET PTR = START

Step 3: SET PREPTR = PTR

Step 4: Repeat Steps 5 and 6 while PREPTR DATA != NUM

Step 5: SET PREPTR = PTR

Step 6: SET PTR = PTR NEXT

[END OF LOOP]

Step 7: SET TEMP = PTR

Step 8: SET PREPTR NEXT = PTR NEXT

Step 9: FREE TEMP

Step 1 : EXIT

->

->

-> ->

Figure 6.25  Algorithm to delete the node after a given node

Programming Example 

1.	 Write a program to create a linked list and perform insertions and deletions of all cases. 
Write functions to sort and finally delete the entire list at once.
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <malloc.h>
struct node
{
	 int data;
	 struct node *next;
};
struct node *start = NULL;
struct node *create_ll(struct node *);
struct node *display(struct node *);
struct node *insert_beg(struct node *);
struct node *insert_end(struct node *);
struct node *insert_before(struct node *);
struct node *insert_after(struct node *);
struct node *delete_beg(struct node *);
struct node *delete_end(struct node *);
struct node *delete_node(struct node *);
struct node *delete_after(struct node *);
struct node *delete_list(struct node *);
struct node *sort_list(struct node *);

int main(int argc, char *argv[]) {
	 int option;
	 do
	 {
		  printf(“\n\n *****MAIN MENU *****”);
		  printf(“\n 1:  Create a list”);
		  printf(“\n 2:  Display the list”);
		  printf(“\n 3:  Add a node at the beginning”);
		  printf(“\n 4:  Add a node at the end”);
		  printf(“\n 5:  Add a node before a given node”);
		  printf(“\n 6:  Add a node after a given node”);
		  printf(“\n 7:  Delete a node from the beginning”);
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		  printf(“\n 8:  Delete a node from the end”);
		  printf(“\n 9:  Delete a given node”);
		  printf(“\n 10: Delete a node after a given node”);
		  printf(“\n 11: Delete the entire list”);
		  printf(“\n 12: Sort the list”);
		  printf(“\n 13: EXIT”);
		  printf(“\n\n Enter your option : “);
		  scanf(“%d”, &option);
		  switch(option)
		  {
		  case 1: start = create_ll(start);
			   printf(“\n LINKED LIST CREATED”);
			   break;
		  case 2: start = display(start);
			   break;
		  case 3: start = insert_beg(start);
			   break;
		  case 4: start = insert_end(start);
			   break;
		  case 5: start = insert_before(start);
			   break;
		  case 6: start = insert_after(start);
			   break;
		  case 7: start = delete_beg(start);
			   break;
		  case 8: start = delete_end(start);
			   break;
		  case 9: start = delete_node(start);
			   break;
		  case 10: start = delete_after(start);
			   break;
		  case 11: start = delete_list(start);
			   printf(“\n LINKED LIST DELETED”);
			   break;
		  case 12: start = sort_list(start);
			   break;
		  }
	 }while(option !=13);
	 getch();
	 return 0;
}
struct node *create_ll(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num;
	 printf(“\n Enter -1 to end”);
	 printf(“\n Enter the data : “);
	 scanf(“%d”, &num);
	 while(num!=-1)
	 {
		  new_node = (struct node*)malloc(sizeof(struct node));
		  new_node -> data=num;
		  if(start==NULL)
		  {
			   new_node -> next = NULL;
			   start = new_node;
		  }
		  else
		  {
			   ptr=start;
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			   while(ptr->next!=NULL)
			   ptr=ptr->next;
			   ptr->next = new_node;
			   new_node->next=NULL;
		  }
		  printf(“\n Enter the data : “);
		  scanf(“%d”, &num);
	 }
	 return start;
}
struct node *display(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 while(ptr != NULL)
	 {
		  printf(“\t %d”, ptr -> data);
		  ptr = ptr -> next;
	 }
	 return start;
}
struct node *insert_beg(struct node *start)
{
	 struct node *new_node;
	 int num;
	 printf(“\n Enter the data : “);
	 scanf(“%d”, &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 new_node -> next = start;
	 start = new_node;
	 return start;
}
struct node *insert_end(struct node *start)
{
	 struct node *ptr, *new_node;
	 int num;
	 printf(“\n Enter the data : “);
	 scanf(“%d”, &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 new_node -> next = NULL;
	 ptr = start;
	 while(ptr -> next != NULL)
	 ptr = ptr -> next;
	 ptr -> next = new_node;
	 return start;
}
struct node *insert_before(struct node *start)
{
	 struct node *new_node, *ptr, *preptr;
	 int num, val;
	 printf(“\n Enter the data : “);
	 scanf(“%d”, &num);
	 printf(“\n Enter the value before which the data has to be inserted : “);
	 scanf(“%d”, &val);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr = start;
	 while(ptr -> data != val)
	 {
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		  preptr = ptr;
		  ptr = ptr -> next;
	 }
	 preptr -> next = new_node;
	 new_node -> next = ptr;
	 return start;
}
struct node *insert_after(struct node *start)
{
	 struct node *new_node, *ptr, *preptr;
	 int num, val;
	 printf(“\n Enter the data : “);
	 scanf(“%d”, &num);
	 printf(“\n Enter the value after which the data has to be inserted : “);
	 scanf(“%d”, &val);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr = start;
	 preptr = ptr;
	 while(preptr -> data != val)
	 {
		  preptr = ptr;
		  ptr = ptr -> next;
	 }
	 preptr -> next=new_node;
	 new_node -> next = ptr;
	 return start;
}
struct node *delete_beg(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 start = start -> next;
	 free(ptr);
	 return start;
}
struct node *delete_end(struct node *start)
{
	 struct node *ptr, *preptr;
	 ptr = start;
	 while(ptr -> next != NULL)
	 {
		  preptr = ptr;
		  ptr = ptr -> next;
	 }
	 preptr -> next = NULL;
	 free(ptr);
	 return start;
}
struct node *delete_node(struct node *start)
{
	 struct node *ptr, *preptr;
	 int val;
	 printf(“\n Enter the value of the node which has to be deleted : “);
	 scanf(“%d”, &val);
	 ptr = start;
	 if(ptr -> data == val)
	 {
		  start = delete_beg(start);
		  return start;
	 }
	 else
	 {
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		  while(ptr -> data != val)
		  {
			   preptr = ptr;
			   ptr = ptr -> next;
		  }
		  preptr -> next = ptr -> next;
		  free(ptr);
		  return start;
	 }
}
struct node *delete_after(struct node *start) 
{
	 struct node *ptr, *preptr;
	 int val;
	 printf(“\n Enter the value after which the node has to deleted : “);
	 scanf(“%d”, &val);
	 ptr = start;
	 preptr = ptr;
	 while(preptr -> data != val)
	 {
		  preptr = ptr;
		  ptr = ptr -> next;
	 }
	 preptr -> next=ptr -> next;
	 free(ptr);
	 return start;
}
struct node *delete_list(struct node *start)
{
	 struct node *ptr; // Lines 252-254 were modified from original code to fix 
unresposiveness in output window
	 if(start!=NULL){
		  ptr=start;
		  while(ptr != NULL)
		  {
			   printf(“\n %d is to be deleted next”, ptr -> data);
			   start = delete_beg(ptr);
			   ptr = start;
		  }
	 }
	
	 return start;
}
struct node *sort_list(struct node *start)
{
	 struct node *ptr1, *ptr2;
	 int temp;
	 ptr1 = start;
	 while(ptr1 -> next != NULL)
	 {
		  ptr2 = ptr1 -> next;
		  while(ptr2 != NULL)
		  {
			   if(ptr1 -> data > ptr2 -> data)
			   {
				    temp = ptr1 -> data;
				    ptr1 -> data = ptr2 -> data;
				    ptr2 -> data = temp;
			   }
			   ptr2 = ptr2 -> next;
		  }
		  ptr1 = ptr1 -> next;
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		  }
	 return start;  // Had to be added 
}

	 Output
*****MAIN MENU *****
1: Create a list
2: Display the list
3: Add a node at the beginning
4: Add the node at the end
5: Add the node before a given node
6: Add the node after a given node
7: Delete a node from the beginning
8: Delete a node from the end
9: Delete a given node
10: Delete a node after a given node
11: Delete the entire list 
12: Sort the list
13: Exit
Enter your option : 3
Enter your option : 73

6.3  CIRCULAR LINKED LISTs
In a circular linked list, the last node contains a pointer to the first node of the list. We can have 
a circular singly linked list as well as a circular doubly linked list. While traversing a circular 
linked list, we can begin at any node and traverse the list in any direction, forward or backward, 
until we reach the same node where we started. Thus, a circular linked list has no beginning and 
no ending. Figure 6.26 shows a circular linked list.

1 2 3 4 5 6

START

7

Figure 6.26  Circular linked list

	 The only downside of a circular linked list is the complexity of iteration. Note that there are 
no NULL values in the NEXT part of any of the nodes of list.

  Circular linked lists are widely used in operating systems for task 
maintenance. We will now discuss an example where a circular linked 
list is used. When we are surfing the Internet, we can use the Back 
button and the Forward button to move to the previous pages that 
we have already visited. How is this done? The answer is simple. 
A circular linked list is used to maintain the sequence of the Web 
pages visited. Traversing this circular linked list either in forward or 
backward direction helps to revisit the pages again using Back and 
Forward buttons. Actually, this is done using either the circular stack 
or the circular queue. We will read about circular queues in Chapter 8. 
Consider Fig. 6.27.
  We can traverse the list until we find the NEXT entry that contains the 
address of the first node of the list. This denotes the end of the linked 
list, that is, the node that contains the address of the first node is actually 

DATA

1

2

3

4

5

6

7

8

9

1

H

E

L

L

O

NEXT

4

7

8

1

1

START

1

Figure 6.27  Memory representation 
of a circular linked list
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		  the last node of the list. When we traverse the DATA and 
NEXT in this manner, we will finally see that the linked list 
in Fig. 6.27 stores characters that when put together form 
the word HELLO.
  Now, look at Fig. 6.28. Two different linked lists are 
simultaneously maintained in the memory. There is no 
ambiguity in traversing through the list because each 
list maintains a separate START pointer which gives the 
address of the first node of the respective linked list. The 
remaining nodes are reached by looking at the value 
stored in NEXT.
  By looking at the figure, we can conclude that the roll 
numbers of the students who have opted for Biology are 
S01, S03, S06, S08, S10, and S11. Similarly, the roll numbers 
of the students who chose Computer Science are S02, S04, 
S05, S07, and S09. 

6.3.1  Inserting a New Node in a Circular Linked List
In this section, we will see how a new node is added into an already existing linked list. We will 
take two cases and then see how insertion is done in each case.
  Case 1: The new node is inserted at the beginning of the circular linked list.
  Case 2: The new node is inserted at the end of the circular linked list.

Inserting a Node at the Beginning of a Circular Linked List
Consider the linked list shown in Fig. 6.29. Suppose we want to add a new node with data 9 as 
the first node of the list. Then the following changes will be done in the linked list.

9 1 7 3 4 2 6

START

5

START

1 7 3 4 2 6 5

9

1 7 3 4 2 6 5

START, PTR

1 7 3 4 2 6 5

START PTR

9 1 7 3 4 2 6

START

5

Take a pointer variable PTR that points to the START node of the list.

Move PTR so that it now points to the last node of the list.

Add the new node in between PTR and START.

Make START point to the new node.

Allocate memory for the new node and initialize its DATA part to 9.

PTR

Figure 6.29  Inserting a new node at the beginning of a circular linked list
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S 1
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S 7 12
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13

14

15

3

S 2 5

S 3

S 4

1S 5

S 6 11

S 8

S 9

S1

S11 2

15

1

13

1

8

(Biology)1

2

START

(Computer

Science)

START

Figure 6.28  Memory representation of two circular 
linked lists stored in the memory
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  Figure 6.30 shows the algorithm to insert a 
new node at the beginning of a linked list. In 
Step 1, we first check whether memory is 
available for the new node. If the free memory 
has exhausted, then an OVERFLOW message is 
printed. Otherwise, if free memory cell is 
available,  then we allocate space for the new 
node. Set its DATA part with the given VAL and the 
NEXT part is initialized with the address of the first 
node of the list, which is stored in START. Now, 
since the new node is added as the first node of 
the list, it will now be known as the START node, 
that is, the START pointer variable will now hold 
the address of the NEW_NODE.

  While inserting a node in a circular linked list, we have to use a while loop to traverse to the 
last node of the list. Because the last node contains a pointer to START, its NEXT field is updated so 
that after insertion it points to the new node which will be now known as START.

Inserting a Node at the End of a Circular Linked List
Consider the linked list shown in Fig. 6.31. Suppose we want to add a new node with data 9 as 
the last node of the list. Then the following changes will be done in the linked list.

1 7 3 4 6 5

START PTR

2 9

1 7 3 4 2 6 5

START

1 7 3 4 6 5

START, PTR

2

Take a pointer variable PTR which will initially point to START.

Move PTR so that it now points to the last node of the list.

Add the new node after the node pointed by PTR.

Allocate memory for the new node and initialize its DATA part to 9.

9

1 7 3 4 6 5

START PTR

2

Figure 6.31  Inserting a new node at the end of a circular linked list

Figure 6.32 shows the algorithm to insert a new node at the end of a circular linked list. In Step 6, 
we take a pointer variable PTR and initialize it with START. That is, PTR now points to the first node 
of the linked list. In the while loop, we traverse through the linked list to reach the last node. Once 
we reach the last node, in Step 9, we change the NEXT pointer of the last node to store the address 
of the new node. Remember that the NEXT field of the new node contains the address of the first 
node which is denoted by START.

6.3.2  Deleting a Node from a Circular Linked List
In this section, we will discuss how a node is deleted from an already existing circular linked list. 
We will take two cases and then see how deletion is done in each case. Rest of the cases of 

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 11

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET PTR = START

Step 6: Repeat Step 7 while PTR NEXT != START

Step 7: PTR = PTR NEXT

[END OF LOOP]

Step 8: SET NEXT = START

Step 9: SET PTR NEXT =

Step 1 : SET START =

Step 11: EXIT

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

->
->

->
->

->
->

NEW_NODE

Figure 6.30  Algorithm to insert a new node at the beginning
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		  deletion are same as that given for singly linked 
lists.

	 Case 1: The first node is deleted.
	 Case 2: The last node is deleted.

Deleting the First Node from a Circular Linked 
List
Consider the circular linked list shown in Fig. 
6.33. When we want to delete a node from the 
beginning of the list, then the following changes 
will be done in the linked list.

1 7 3 4 2 6

START

5

PTR

1 7 3 4 2 6

START, PTR

5

7 3 4 2 6

START

5

PTR

Take a variable PTR and make it point to the START node of the list.

Move PTR further so that it now points to the last node of the list.

The NEXT part of PTR is made to point to the second node of the list

and the memory of the first node is freed. The second node becomes

the first node of the list.

1 7 3 4 2 6

START

5

Figure 6.33  Deleting the first node from a circular linked list

	 Figure 6.34 shows the algorithm to delete the first node from a circular linked list. In Step 1 of 
the algorithm, we check if the linked list exists or not. If START = NULL, then it signifies that there 
are no nodes in the list and the control is transferred to the last statement of the algorithm.
	 However, if there are nodes in the linked list, then we use a pointer variable PTR which will be 
used to traverse the list to ultimately reach the last node. In Step 5, we change the next pointer 

of the last node to point to the second node of 
the circular linked list. In Step 6, the memory 
occupied by the first node is freed. Finally, in 
Step 7, the second node now becomes the first 
node of the list and its address is stored in the 
pointer variable START.

Deleting the Last Node from a Circular Linked List
Consider the circular linked list shown in Fig. 
6.35. Suppose we want to delete the last node 
from the linked list, then the following changes 
will be done in the linked list.

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 1

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET NEXT = START

Step 6: SET PTR = START

Step 7: Repeat Step 8 while PTR NEXT != START

Step 8: SET PTR = PTR NEXT

[END OF LOOP]

Step 9: SET PTR NEXT =

Step 1 : EXIT

NEW_NODE

NEW_NODE

NEW_NODE

->
->
->

->
->

-> NEW_NODE

Figure 6.32  Algorithm to insert a new node at the end

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = START

Step 3: Repeat Step 4 while PTR NEXT != START

Step 4: SET PTR = PTR NEXT

[END OF LOOP]

Step 5: SET PTR NEXT = START NEXT

Step 6: FREE START

Step 7: SET START = PTR NEXT

Step 8: EXIT

->
->

-> ->

->

Figure 6.34  Algorithm to delete the first node 
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1 7 3 4 2 6

START

5

1 7 3 4 2 6

START

PREPTR

PTR

5

PTR

1 7 3 4 2 6

START

5

PREPTR

1 7 3 4 2 6

START PREPTR

Take two pointers PREPTR and PTR which will initially point to START.

Move PTR so that it points to the last node of the list. PREPTR will

always point to the node preceding PTR.

Make the PREPTR's next part store START node's address and free the

space allocated for PTR. Now PREPTR is the last node of the list.

Figure 6.35  Deleting the last node from a circular linked list

  Figure 6.36 shows the algorithm to 
delete the last node from a circular linked 
list. In Step 2, we take a pointer variable 
PTR and initialize it with START. That is, 
PTR now points to the first node of the 
linked list. In the while loop, we take 
another pointer variable PREPTR such that 
PREPTR always points to one node before 
PTR. Once we reach the last node and the 
second last node, we set the next pointer of 
the second last node to START, so that it now 
becomes the (new) last node of the linked 
list. The memory of the previous last node 
is freed and returned to the free pool.

Programming Example 

2.	 Write a program to create a circular linked list. Perform insertion and deletion at the beginning 
and end of the list.
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
    int data;
    struct node *next;
};
struct node *start = NULL;
struct node *create_cll(struct node *);
struct node *display(struct node *);
struct node *insert_beg(struct node *);
struct node *insert_end(struct node *);

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = START

Step 3: Repeat Steps 4 and 5 while PTR NEXT != START

Step 4: SET PREPTR = PTR

Step 5: SET PTR = PTR NEXT

[END OF LOOP]

Step 6: SET PREPTR NEXT = START

Step 7: FREE PTR

Step 8: EXIT

->

->

->

Figure 6.36  Algorithm to delete the last node
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struct node *delete_beg(struct node *);
struct node *delete_end(struct node *);
struct node *delete_after(struct node *);
struct node *delete_list(struct node *);
int main()
{
    int option;
    clrscr();
    do
    {
	 printf("\n\n *****MAIN MENU *****");
	 printf("\n 1: Create a list");
	 printf("\n 2: Display the list");
	 printf("\n 3: Add a node at the beginning");
	 printf("\n 4: Add a node at the end");
	 printf("\n 5: Delete a node from the beginning");
	 printf("\n 6: Delete a node from the end");
	 printf("\n 7: Delete a node after a given node");
	 printf("\n 8: Delete the entire list");
	 printf("\n 9: EXIT");
	 printf("\n\n Enter your option : ");
	 scanf("%d", &option);
	 switch(option)
	 {
		  case 1:	start = create_cll(start);
			   printf("\n CIRCULAR LINKED LIST CREATED");
			   break;
		  case 2:	start = display(start);
		   	 break;
		  case 3:	start = insert_beg(start);
		   	 break;
		  case 4:	start = insert_end(start);
			   break;
		  case 5:	start = delete_beg(start);
			   break;
		  case 6:	start = delete_end(start);
			   break;
		  case 7:	start = delete_after(start);
			   break;
		  case 8:	start = delete_list(start);
			   printf("\n CIRCULAR LINKED LIST DELETED");
			   break;
	 }
    }while(option !=9);
    getch();
    return 0;
}
struct node *create_cll(struct node *start)
{
 	  struct node *new_node, *ptr;
	 int num;
	 printf("\n Enter –1 to end");
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 while(num!=–1)
	 {
		  new_node = (struct node*)malloc(sizeof(struct node));
		  new_node -> data = num;
		  if(start == NULL)
		  {
			   new_node -> next = new_node;
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			   start = new_node;
		  }
		  else
		  {	 ptr = start;
			   while(ptr -> next != start)
				    ptr = ptr -> next;
			   ptr -> next = new_node;
			   new_node -> next = start;
		  }
		  printf("\n Enter the data : ");
		  scanf("%d", &num);
	 }
	 return start;
}
struct node *display(struct node *start)
{
	 struct node *ptr;
	 ptr=start;
	 while(ptr -> next != start)
	 {
		  printf("\t %d", ptr -> data);
		  ptr = ptr -> next;
	 }
	 printf("\t %d", ptr -> data);
	 return start;
}
struct node *insert_beg(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr = start;
	 while(ptr -> next != start)
		  ptr = ptr -> next;
	 ptr -> next = new_node;
	 new_node -> next = start;
	 start = new_node;
	 return start;
}
struct node *insert_end(struct node *start)
{
	 struct node *ptr, *new_node;
	 int num;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr = start;
	 while(ptr -> next != start)
		  ptr = ptr -> next;
	 ptr -> next = new_node;
	 new_node -> next = start;
	 return start;
}
struct node *delete_beg(struct node *start)
{
	 struct node *ptr;
	 ptr = start;



Linked Lists  187

	 while(ptr -> next != start)
		  ptr = ptr -> next;
	 ptr -> next = start -> next;
	 free(start);
	 start = ptr -> next;
	 return start;
}
struct node *delete_end(struct node *start)
{
	 struct node *ptr, *preptr;
	 ptr = start;
	 while(ptr -> next != start)
	 {
		  preptr = ptr;
		  ptr = ptr -> next;
	 }
	 preptr -> next = ptr -> next;
	 free(ptr);
	 return start;
}
struct node *delete_after(struct node *start)
{
	 struct node *ptr, *preptr;
	 int val;
	 printf("\n Enter the value after which the node has to deleted : ");
	 scanf("%d", &val);
	 ptr = start;
	 preptr = ptr;
	 while(preptr -> data != val)
	 {
		  preptr = ptr;
		  ptr = ptr -> next;
	 }
	 preptr -> next = ptr -> next;
	 if(ptr == start)
		  start = preptr -> next;
	 free(ptr);
	 return start;
}
struct node *delete_list(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 while(ptr -> next != start)
		  start = delete_end(start);
	 free(start);
	 return start;
}

	 Output
*****MAIN MENU *****
1: Create a list
2: Display the list
3: Add a node at the beginning
––––––––––––––––––––––––
8: Delete the entire list
9: EXIT
Enter your option : 1
Enter –1 to end
Enter the data: 1
Enter the data: 2
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Enter the data: 4
Enter the data: –1
CIRCULAR LINKED LIST CREATED
Enter your option : 3
Enter your option : 5
Enter your option : 2
5    1    2    4
Enter your option : 9

6.4  DOUBLY LINKED LISTS
A doubly linked list or a two-way linked list is a more complex type of linked list which contains 
a pointer to the next as well as the previous node in the sequence. Therefore, it consists of three 
parts—data, a pointer to the next node, and a pointer to the previous node as shown in Fig. 6.37.

X

START

1 2 3 4 5 X

Figure 6.37  Doubly linked list

In C, the structure of a doubly linked list can be given as,
struct node
{
	  struct node *prev;
	  int data;
	  struct node *next;
};

	 The PREV field of the first node and the NEXT field of the last node will contain NULL. The PREV 
field is used to store the address of the preceding node, which enables us to traverse the list in the 
backward direction.
	 Thus, we see that a doubly linked list calls for more space per node and more expensive basic 
operations. However, a doubly linked list provides the ease to manipulate the elements of the 
list as it maintains pointers to nodes in both the directions (forward and backward). The main 
advantage of using a doubly linked list is that it makes searching twice as efficient. Let us view 
how a doubly linked list is maintained in the memory. Consider Fig. 6.38.
  In the figure, we see that a variable START is used to store the address of the first node. In this 

example, START = 1, so the first data is stored at address 1, which 
is H. Since this is the first node, it has no previous node and hence 
stores NULL or –1 in the PREV field. We will traverse the list until 
we reach a position where the NEXT entry contains –1 or NULL. 
This denotes the end of the linked list. When we traverse the DATA 
and NEXT in this manner, we will finally see that the linked list 
in the above example stores characters that when put together 
form the word HELLO.

6.4.1  Inserting a New Node in a Doubly Linked List
In this section, we will discuss how a new node is added into an 
already existing doubly linked list. We will take four cases and 
then see how insertion is done in each case.
	 Case 1: The new node is inserted at the beginning.

DATA PREV NEXT

H

E

L

L

O

1

2

3

4

5

6

7

8

9

–1

1

3

6

7

3

6

7

9

–1

START

1

Figure 6.38  Memory representation of a 
doubly linked list
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	 Case 2: The new node is inserted at the end.
	 Case 3: The new node is inserted after a given node.
	 Case 4: The new node is inserted before a given node.

Inserting a Node at the Beginning of a Doubly Linked List
Consider the doubly linked list shown in Fig. 6.39. Suppose we want to add a new node with data 
9 as the first node of the list. Then the following changes will be done in the linked list.

X 9 1 7 3 4 2 X

START

9X

Add the new node before the START node. Now the new node becomes the first node of

the list.

1 7 3 4 X

START

2X

Allocate memory for the new node and initialize its DATA part to 9 and PREV field to NULL.

Figure 6.39  Inserting a new node at the beginning of a doubly linked list

  Figure 6.40 shows the algorithm to insert a new node at 
the beginning of a doubly linked list. In Step 1, we first check 
whether memory is available for the new node. If the free 
memory has exhausted, then an OVERFLOW message is printed. 
Otherwise, if free memory cell is available, then we allocate 
space for the new node. Set its DATA part with the given VAL 
and the NEXT part is initialized with the address of the first 
node of the list, which is stored in START. Now, since the new 
node is added as the first node of the list, it will now be known 
as the START node, that is, the START pointer variable will now 
hold the address of NEW_NODE.

Inserting a Node at the End end of a Doubly Linked List
Consider the doubly linked list shown in Fig. 6.41. Suppose 

we want to add a new node with data 9 as the last node of the list. Then the following changes 
will be done in the linked list.

1 7 3 4 X

START,PTR

2X

1 7 3 4 2X X9

PTRSTART

1 7 3 4 X2X

START

Take a pointer variable PTR and make it point to the first node of the list.

Move PTR so that it points to the last node of the list. Add the new node after the

node pointed by PTR.

9 X

Allocate memory for the new node and initialize its DATA part to 9 and its

NEXT field to NULL.

Figure 6.41  Inserting a new node at the end of a doubly linked list

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 9

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET PREV = NULL

Step 6: SET = START

Step 8: SET START =

Step 9: EXIT

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

PREV = NEW_NODE

->
->
->
-> NEXT

NEW_NODE

Step 7: SET START ->

Figure 6.40  Algorithm to insert a new node at 
the beginning
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  Figure 6.42 shows the algorithm to insert a new node at the end of a doubly linked list. In Step 
6, we take a pointer variable PTR and initialize it with START. In the while loop, we traverse through 
the linked list to reach the last node. Once we reach the last node, in Step 9, we change the NEXT 
pointer of the last node to store the address of the new node. Remember that the NEXT field of the 
new node contains NULL which signifies the end of the linked list. The PREV field of the NEW_NODE 
will be set so that it points to the node pointed by PTR (now the second last node of the list).

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 11

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET = NULL

Step 6: SET PTR = START

Step 7: Repeat Step 8 while PTR NEXT != NULL

Step 8: SET PTR = PTR NEXT

[END OF LOOP]

Step 9: SET PTR NEXT =

Step 1 : SET PREV = PTR

Step 11: EXIT

NEW_NODE

NEXT

->
->
->

->
->

->
->

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

   

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 12

[END OF IF]

Step 2: SET = AVAIL

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET PTR = START

Step 6: Repeat Step 7 while PTR DATA != NUM

Step 7: SET PTR = PTR NEXT

[END OF LOOP]

Step 8: SET NEXT = PTR NEXT

Step 9: SET PREV = PTR

Step 1 : SET PTR NEXT =

Step 12: EXIT

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

->
->

->
->

-> ->
->

->
Step 11: SET PTR NEXT PREV =-> ->

Figure 6.42  Algorithm to insert a new node at the end 	 Figure 6.43  Algorithm to insert a new node after a given node

 Inserting a Node After a Given Node in a Doubly Linked List
Consider the doubly linked list shown in Fig. 6.44. Suppose we want to add a new node with 
value 9 after the node containing 3. Before discussing the changes that will be done in the linked 
list, let us first look at the algorithm shown in Fig. 6.43.

1 7 3 4 X

START

2X

1 7 3 4 X

START,PTR

2X

1 7 3 4 X

START

2X

PTR

START

1 7 3 4 X

START

2X

9

1 7 3 49X X2

Take a pointer variable PTR and make it point to the first node of the list.

Move PTR further until the data part of PTR = value after which the

node has to be inserted.

Insert the new node between PTR and the node succeeding it.

PTR

Allocate memory for the new node and initialize its DATA part to 9.

9

Figure 6.44  Inserting a new node after a given node in a doubly linked list
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  Figure 6.43 shows the algorithm to insert a new 
node after a given node in a doubly linked list. In 
Step 5, we take a pointer PTR and initialize it with 
START. That is, PTR now points to the first node of 
the linked list. In the while loop, we traverse 
through the linked list to reach the node that has 
its value equal to NUM. We need to reach this node 
because the new node will be inserted after this 
node. Once we reach this node, we change the NEXT 
and PREV fields in such a way that the new node is 
inserted after the desired node.

Inserting a Node Before a Given Node in a Doubly 
Linked List
Consider the doubly linked list shown in Fig. 6.46. 
Suppose we want to add a new node with value 9 
before the node containing 3. Before discussing the 

changes that will be done in the linked list, let us first look at the algorithm shown in Fig. 6.45.
  In Step 1, we first check whether memory is available for the new node. In Step 5, we take 
a pointer variable PTR and initialize it with START. That is, PTR now points to the first node of the 
linked list. In the while loop, we traverse through the linked list to reach the node that has its value 
equal to NUM. We need to reach this node because the new node will be inserted before this node. 
Once we reach this node, we change the NEXT and PREV fields in such a way that the new node is 
inserted before the desired node.

1 7 3 4 X

START, PTR

2X

1 7 3 4 X

START

2X

PTR

9

START

1 7 49X 3 X2

9

1 7 3 4 X

START

2X

PTR

Take a pointer variable PTR and make it point to the first node of the list.

Move PTR further so that it now points to the node whose data is equal

to the value before which the node has to be inserted.

Add the new node in between the node pointed by PTR and the node preceding it.

1 7 3 4 X

START

2X

Allocate memory for the new node and initialize its DATA part to 9.

Figure 6.46  Inserting a new node before a given node in a doubly linked list

6.4.2  Deleting a Node from a Doubly Linked List
In this section, we will see how a node is deleted from an already existing doubly linked list. We 
will take four cases and then see how deletion is done in each case.

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 12

[END OF IF]

Step 2: SET = AVAIL

Step 5: SET PTR = START

[END OF LOOP]

SET PTR =

Step 12: EXIT

NEW_NODE

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 6: Repeat Step 7 while PTR DATA != NUM

Step 7: SET PTR = PTR NEXT

Step 8: SET NEXT = PTR

Step 9: SET PREV = PTR PREV

Step 1 : SET PTR PREV =

Step 11: PREV NEXT

->
->

->
->

->
-> ->

->
-> ->

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

Figure 6.45  Algorithm to insert a new node before a 
given node
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	 Case 1: The first node is deleted.
	 Case 2: The last node is deleted.
	 Case 3: The node after a given node is deleted.
	 Case 4: The node before a given node is deleted.

Deleting the First Node from a Doubly Linked List
Consider the doubly linked list shown in Fig. 6.47. When we want to delete a node from the 
beginning of the list, then the following changes will be done in the linked list.

3 5 7 8 X91X

START

5 7 8 X93X

START

Free the memory occupied by the first node of the list and make the second node of the

list as the START node.

Figure 6.47  Deleting the first node from a doubly linked list

  Figure 6.48 shows the algorithm to delete the first node of a doubly linked list. In Step 1 of the 
algorithm, we check if the linked list exists or not. If START = 
NULL, then it signifies that there are no nodes in the list and the 
control is transferred to the last statement of the algorithm.
  However, if there are nodes in the linked list, then we use 
a temporary pointer variable PTR that is set to point to the first 
node of the list. For this, we initialize PTR with START that stores 
the address of the first node of the list. In Step 3, START is made 
to point to the next node in sequence and finally the memory 
occupied by PTR (initially the first node of the list) is freed and 
returned to the free pool.

Deleting the Last Node from a Doubly Linked List
Consider the doubly linked list shown in Fig. 6.49. Suppose we want to delete the last node from 
the linked list, then the following changes will be done in the linked list.

1 73 8

START,PTR

X X95

1 73 8

START

X X95

1 73 8

START

X X95

PTR

1 73 8 X

START

X 5

Take a pointer variable PTR that points to the first node of the list.

Move PTR so that it now points to the last node of the list.

Free the space occupied by the node pointed by PTR and store NULL in NEXT field of

its preceding node.

Figure 6.49  Deleting the last node from a doubly linked list

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 6

[END OF IF]

Step 2: SET PTR = START

Step 5: FREE PTR

Step 6: EXIT

Step 3: SET START = START NEXT

Step 4: SET START PREV = NULL

->
->

Figure 6.48  Algorithm to delete the first node
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  Figure 6.50 shows the algorithm to delete the 
last node of a doubly linked list. In Step 2, we take 
a pointer variable PTR and initialize it with START. 
That is, PTR now points to the first node of the 
linked list. The while loop traverses through the 
list to reach the last node. Once we reach the last 
node, we can also access the second last node by 
taking its address from the PREV field of the last 
node. To delete the last node, we simply have to 
set the next field of second last node to NULL, so 
that it now becomes the (new) last node of the 
linked list. The memory of the previous last node 
is freed and returned to the free pool.

Deleting the Node After a Given Node in a Doubly Linked List
Consider the doubly linked list shown in Fig. 6.51. Suppose we want to delete the node that succeeds 
the node which contains data value 4. Then the following changes will be done in the linked list.

1 73 8

START,PTR

4X X9

1 73 8

START

4X X9

1 73 84X X9

PTRSTART

1 73 84

PTRSTART

X X9

1 83 9 X4

START

X

Take a pointer variable PTR and make it point to the first node of the list.

Move PTR further so that its data part is equal to the value after which the node has

to be inserted.

Delete the node succeeding PTR.

Figure 6.51  Deleting the node after a given node in a doubly linked list

  Figure 6.52 shows the algorithm to delete a node 
after a given node of a doubly linked list. In Step 2, 
we take a pointer variable PTR and initialize it with 
START. That is, PTR now points to the first node of 
the doubly linked list. The while loop traverses 
through the linked list to reach the given node. 
Once we reach the node containing VAL, the node 
succeeding it can be easily accessed by using the 
address stored in its NEXT field. The NEXT field of the 
given node is set to contain the contents in the NEXT 
field of the succeeding node. Finally, the memory 
of the node succeeding the given node is freed and 
returned to the free pool.

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 7

[END OF IF]

Step 2: SET PTR = START

[END OF LOOP]

Step 6: FREE PTR

Step 7: EXIT

Step 3: Repeat Step 4 while PTR NEXT != NULL

Step 4: SET PTR = PTR NEXT

Step 5: SET PTR PREV NEXT = NULL

->
->

-> ->

Figure 6.50  Algorithm to delete the last node

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 9

[END OF IF]

Step 2: SET PTR = START

[END OF LOOP]

Step 8: FREE TEMP

Step 9: EXIT

Step 3: Repeat Step 4 while PTR DATA != NUM

Step 4: SET PTR = PTR NEXT

Step 5: SET TEMP = PTR NEXT

Step 6: SET PTR NEXT = TEMP NEXT

Step 7: SET TEMP NEXT PREV = PTR

->
->

->
-> ->

-> ->

Figure 6.52  Algorithm to delete a node after a given node
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Deleting the Node Before a Given Node in a Doubly Linked List
Consider the doubly linked list shown in Fig. 6.53. Suppose we want to delete the node preceding 
the node with value 4. Before discussing the changes that will be done in the linked list, let us 
first look at the algorithm.

1 73 8

START,PTR

4X X9

1 73 8

START

4X X9

1 73 84

START PTR

X X9

1 73 84

PTRSTART

X X9

1 84 9 X7

START

X

Take a pointer variable PTR that points to the first node of the list.

Move PTR further till its data part is equal to the value before which the node has

to be deleted.

Delete the node preceding PTR.

Figure 6.53  Deleting a node before a given node in a doubly linked list

  Figure 6.54 shows the algorithm to delete a node 
before a given node of a doubly linked list. In Step 
2, we take a pointer variable PTR and initialize it with 
START. That is, PTR now points to the first node of 
the linked list. The while loop traverses through 
the linked list to reach the desired node. Once we 
reach the node containing VAL, the PREV field of PTR 
is set to contain the address of the node preceding 
the node which comes before PTR. The memory 
of the node preceding PTR is freed and returned to 
the free pool.
  Hence, we see that we can insert or delete a node 
in a constant number of operations given only that 
node’s address. Note that this is not possible in the 

case of a singly linked list which requires the previous node’s address also to perform the same 
operation.

Programming Example 

3.	 Write a program to create a doubly linked list and perform insertions and deletions in all 
cases.
#include <stdio.h>
#include <conio.h>
#include <malloc.h>

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 9

[END OF IF]

Step 2: SET PTR = START

[END OF LOOP]

Step 8: FREE TEMP

Step 9: EXIT

Step 3: Repeat Step 4 while PTR DATA != NUM

Step 4: SET PTR = PTR NEXT

Step 5: SET TEMP = PTR PREV

Step 6: SET TEMP PREV NEXT = PTR

Step 7: SET PTR PREV = TEMP PREV

->
->

->
-> ->

-> ->

Figure 6.54  Algorithm to delete a node before a given 
node 
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struct node
{
	 struct node *next;
	 int data;
	 struct node *prev;
};
struct node *start = NULL;
struct node *create_ll(struct node *);
struct node *display(struct node *);
struct node *insert_beg(struct node *);
struct node *insert_end(struct node *);
struct node *insert_before(struct node *);
struct node *insert_after(struct node *);
struct node *delete_beg(struct node *);
struct node *delete_end(struct node *);
struct node *delete_before(struct node *);
struct node *delete_after(struct node *);
struct node *delete_list(struct node *);
int main()
{
	 int option;
	 clrscr();
	 do
	 {
		  printf("\n\n *****MAIN MENU *****");
		  printf("\n 1: Create a list");
		  printf("\n 2: Display the list");
		  printf("\n 3: Add a node at the beginning");
		  printf("\n 4: Add a node at the end");
		  printf("\n 5: Add a node before a given node");
		  printf("\n 6: Add a node after a given node");
		  printf("\n 7: Delete a node from the beginning");
		  printf("\n 8: Delete a node from the end");
		  printf("\n 9: Delete a node before a given node");
		  printf("\n 10: Delete a node after a given node");
		  printf("\n 11: Delete the entire list");
		  printf("\n 12: EXIT");
		  printf("\n\n Enter your option : ");
		  scanf("%d", &option);
		  switch(option)
		  {
			   case 1:	 start = create_ll(start);
				    printf("\n DOUBLY LINKED LIST CREATED");
				    break;
			   case 2:	 start = display(start);
				    break;
			   case 3:	 start = insert_beg(start);
				    break;
			   case 4:	 start = insert_end(start);
				    break;
			   case 5:	 start = insert_before(start);
				    break;
			   case 6:	 start = insert_after(start);
				    break;
			   case 7:	 start = delete_beg(start);
				    break;
			   case 8:	 start = delete_end(start);
				    break;
			   case 9:	 start = delete_before(start);
				    break;
			   case 10:	start = delete_after(start);
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				    break;
			   case 11:	start = delete_list(start);
				    printf("\n DOUBLY LINKED LIST DELETED");
				    break;
		  }
	 }while(option != 12);
	 getch();
	 return 0;
}
struct node *create_ll(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num;
	 printf("\n Enter –1 to end");
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 while(num != –1)
	 {
		  if(start == NULL)
		  {
			   new_node = (struct node*)malloc(sizeof(struct node));
			   new_node -> prev = NULL;
			   new_node -> data = num;
			   new_node -> next = NULL;
			   start = new_node;				 
		  }
		  else
		  {
			   ptr=start;
			   new_node = (struct node*)malloc(sizeof(struct node));
			   new_node–>data=num;
			   while(ptr–>next!=NULL)
				    ptr = ptr–>next;
			   ptr–>next = new_node;
			   new_node–>prev=ptr;
			   new_node–>next=NULL;
		  }
		  printf("\n Enter the data : ");
		  scanf("%d", &num);
	 }
	 return start;
}
struct node *display(struct node *start)
{
	 struct node *ptr;
	 ptr=start;
	 while(ptr!=NULL)
	 {
		  printf("\t %d", ptr -> data);
		  ptr = ptr -> next;
	 }
	 return start;
}
struct node *insert_beg(struct node *start)
{
	 struct node *new_node;
	 int num;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
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	 start -> prev = new_node;
	 new_node -> next = start;
	 new_node -> prev = NULL;
	 start = new_node;
	 return start;
}
struct node *insert_end(struct node *start)
{
	 struct node *ptr, *new_node;
	 int num;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr=start;
	 while(ptr -> next != NULL)
		  ptr = ptr -> next;
	 ptr -> next = new_node;
	 new_node -> prev = ptr;
	 new_node -> next = NULL;
	 return start;
}
struct node *insert_before(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num, val;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 printf("\n Enter the value before which the data has to be inserted : ");
	 scanf("%d", &val);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr = start;
	 while(ptr -> data != val)
		  ptr = ptr -> next;
	 new_node -> next = ptr;
	 new_node -> prev = ptr-> prev;
	 ptr -> prev -> next = new_node;
	 ptr -> prev = new_node;
	 return start;
}
struct node *insert_after(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num, val;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 printf("\n Enter the value after which the data has to be inserted : ");
	 scanf("%d", &val);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr = start;
	 while(ptr -> data != val)
		  ptr = ptr -> next;
	 new_node -> prev = ptr;
	 new_node -> next = ptr -> next;
	 ptr -> next -> prev = new_node;
	 ptr -> next = new_node;
	 return start;
}
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struct node *delete_beg(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 start = start -> next;
	 start -> prev = NULL;
	 free(ptr);
	 return start;
}
struct node *delete_end(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 while(ptr -> next != NULL)
		  ptr = ptr -> next;
	 ptr -> prev -> next = NULL;
	 free(ptr);
	 return start;
}
struct node *delete_after(struct node *start)
{
	 struct node *ptr, *temp;
	 int val;
	 printf("\n Enter the value after which the node has to deleted : ");
	 scanf("%d", &val);
	 ptr = start;
	 while(ptr -> data != val)
		  ptr = ptr -> next;
	 temp = ptr -> next;
	 ptr -> next = temp -> next;
	 temp -> next -> prev = ptr;
	 free(temp);
	 return start;
}
struct node *delete_before(struct node *start)
{
	 struct node *ptr, *temp;
	 int val;
	 printf("\n Enter the value before which the node has to deleted : ");
	 scanf("%d", &val);
	 ptr = start;
	 while(ptr -> data != val)
		  ptr = ptr -> next;
	 temp = ptr -> prev;
	 if(temp == start)
		  start = delete_beg(start);
	 else
	 {
		  ptr -> prev = temp -> prev;
		  temp -> prev -> next = ptr;
	 }
	 free(temp);
	 return start;
}
struct node *delete_list(struct node *start)
{
	 while(start != NULL)
		  start = delete_beg(start);
	 return start;
}
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	 Output
*****MAIN MENU *****
1: Create a list
2: Display the list
––––––––––––––––––––––––––
11: Delete the entire list
12: EXIT
Enter your option : 1
Enter –1 to end
Enter the data: 1
Enter the data: 3
Enter the data: 4
Enter the data: –1
DOUBLY LINKED LIST CREATED 
Enter your option : 12

6.5  CIRCULAR DOUBLY LINKED LISTs
A circular doubly linked list or a circular two-way linked list is a more complex type of linked 
list which contains a pointer to the next as well as the previous node in the sequence. The difference 
between a doubly linked and a circular doubly linked list is same as that exists between a singly 
linked list and a circular linked list. The circular doubly linked list does not contain NULL in the 
previous field of the first node and the next field of the last node. Rather, the next field of the last 
node stores the address of the first node of the list, i.e., START. Similarly, the previous field of the 
first field stores the address of the last node. A circular doubly linked list is shown in Fig. 6.55.

1 42 53

START

Figure 6.55  Circular doubly linked list

	 Since a circular doubly linked list contains three parts in its structure, it calls for more space 
per node and more expensive basic operations. However, a circular doubly linked list provides 
the ease to manipulate the elements of the list as it maintains pointers to nodes in both the directions 
(forward and backward). The main advantage of using a circular doubly linked list is that it makes 
search operation twice as efficient.

	 Let us view how a circular doubly linked list is maintained in the 
memory. Consider Fig. 6.56. In the figure, we see that a variable 
START is used to store the address of the first node. Here in this 
example, START = 1, so the first data is stored at address 1, which is 
H. Since this is the first node, it stores the address of the last node 
of the list in its previous field. The corresponding NEXT stores the 
address of the next node, which is 3. So, we will look at address 
3 to fetch the next data item. The previous field will contain the 
address of the first node. The second data element obtained from 
address 3 is E. We repeat this procedure until we reach a position 
where the NEXT entry stores the address of the first element of the 
list. This denotes the end of the linked list, that is, the node that 
contains the address of the first node is actually the last node of 
the list.

DATA

H

E

L

L

O

1

2

3

4

5

6

7

8

9

PREV

9

1

3

6

7

Next

3

6

7

9

1

START

1

Figure 6.56  Memory representation of a 
circular doubly linked list
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6.5.1  Inserting a New Node in a Circular Doubly Linked List
In this section, we will see how a new node is added into an already existing circular doubly linked 
list. We will take two cases and then see how insertion is done in each case. Rest of the cases are 
similar to that given for doubly linked lists.
	 Case 1: The new node is inserted at the beginning.
	 Case 2: The new node is inserted at the end.

Inserting a Node at the Beginning of a Circular Doubly Linked List
Consider the circular doubly linked list shown in Fig. 6.57. Suppose we want to add a new node 
with data 9 as the first node of the list. Then, the following changes will be done in the linked list.

1 47 3

START

9 2

PTR

1 47 23

START,PTR

1 47 3

START

9 2

Take a pointer variable PTR that points to the first node of the list.

Move PTR so that it now points to the last node of the list. Insert the new node in

between PTR and the START node.

START will now point to the new node.

1 47 23

START

Allocate memory for the new node and initialize its DATA part to 9.

9

Figure 6.57  Inserting a new node at the beginning of a circular doubly linked list

	 	   Figure 6.58 shows the algorithm to insert a 
new node at the beginning of a circular doubly 
linked list. In Step 1, we first check whether 
memory is available for the new node. If the free 
memory has exhausted, then an OVERFLOW message 
is printed. Otherwise, we allocate space for the 
new node. Set its data part with the given VAL and 
its next part is initialized with the address of the 
first node of the list, which is stored in START. 
Now since the new node is added as the first node 
of the list, it will now be known as the START node, 
that is, the START pointer variable will now hold 
the address of NEW_NODE. Since it is a circular 
doubly linked list, the PREV field of the NEW_NODE 
is set to contain the address of the last node.

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 13

[END OF IF]

Step 2: SET = AVAIL

Step 5: SET PTR = START

[END OF LOOP]

Step 12: SET START =

Step 13: EXIT

NEW_NODE

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 6: Repeat Step 7 while PTR NEXT != START

Step 7: SET PTR = PTR NEXT

Step 8: SET PTR NEXT =

Step 9: SET PREV = PTR

Step 1 : SET NEXT = START

Step 11: SET START PREV =

->
->

->
->

->
->
->

->

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

Figure 6.58  Algorithm to insert a new node at the beginning
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Inserting a Node at the End of a Circular Doubly Linked List
Consider the circular doubly linked list shown in Fig. 6.59. Suppose we want to add a new 
node with data 9 as the last node of the list. Then the following changes will be done in the 
linked list.

1 47 23

START

1 47 23

START, PTR

1 47 3

START

92

PTR

Take a pointer variable PTR that points to the first node of the list.

Move PTR to point to the last node of the list so that the new node can be inserted

after it.

9

Allocate memory for the new node and initialize its DATA part to 9.

Figure 6.59  Inserting a new node at the end of a circular doubly linked list

  Figure 6.60 shows the algorithm to insert a new node at the end of a circular doubly linked list. 
In Step 6, we take a pointer variable PTR and initialize it with START. That is, PTR now points to the 
first node of the linked list. In the while loop, we traverse through the linked list to reach the last 
node. Once we reach the last node, in Step 9, we change the NEXT pointer of the last node to store 
the address of the new node. The PREV field of the NEW_NODE will be set so that it points to the node 
pointed by PTR (now the second last node of the list).

6.5.2  Deleting a Node from a Circular Doubly Linked List
In this section, we will see how a node is deleted from an already existing circular doubly linked 
list. We will take two cases and then see how deletion is done in each case. Rest of the cases are 
same as that given for doubly linked lists.

	 Case 1: The first node is deleted.
	 Case 2: The last node is deleted.

Deleting the First Node from a Circular Doubly 
Linked List
Consider the circular doubly linked list shown 
in Fig. 6.61. When we want to delete a node 
from the beginning of the list, then the following 
changes will be done in the linked list.
  Figure 6.62 shows the algorithm to delete the 
first node from a circular doubly linked list. In 
Step 1 of the algorithm, we check if the linked list 
exists or not. If START = NULL, then it signifies that 
there are no nodes in the list and the control is 
transferred to the last statement of the algorithm.

 

Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 12

[END OF IF]

Step 2: SET = AVAIL

Step 6: SET PTR = START

[END OF LOOP]

Step 12: EXIT

NEW_NODE

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET DATA = VAL

Step 5: SET NEXT = START

Step 7: Repeat Step 8 while PTR NEXT != START

Step 8: SET PTR = PTR NEXT

Step 9: SET PTR NEXT =

Step 1 : SET PREV = PTR

Step 11: SET PREV =

->
->
->

->
->

->
->

->

NEW_NODE

NEW_NODE

NEW_NODE

NEW_NODE

START NEW_NODE

Figure 6.60  Algorithm to insert a new node at the end
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START

3 87 95

PTR

1 73 985

START

START, PTR

1 73 985

Take a pointer variable PTR that points to the first node of the list.

Move PTR further so that it now points to the last node of the list.

Make START point to the second node of the list. Free the space occupied by the

first node.

START

1 73 985

Figure 6.61  Deleting the first node from a circular doubly linked list

  However, if there are nodes in the linked list, 
then we use a pointer variable PTR that is set to 
point to the first node of the list. For this, we 
initialize PTR with START that stores the address of 
the first node of the list. The while loop traverses 
through the list to reach the last node. Once we 
reach the last node, the NEXT pointer of PTR is set 
to contain the address of the node that succeeds 
START. Finally, START is made to point to the next 
node in the sequence and the memory occupied 
by the first node of the list is freed and returned 
to the free pool.

Deleting the Last Node from a Circular Doubly Linked List
Consider the circular doubly linked list shown in Fig. 6.63. Suppose we want to delete the last 
node from the linked list, then the following changes will be done in the linked list.

START

1 873 5

PTR

1 73 985

START

START, PTR

1 73 985

START

1 73 985

Take a pointer variable PTR that points to the first node of the list.

Move PTR further so that it now points to the last node of the list.

Free the space occupied by PTR.

Figure 6.63  Deleting the last node from a circular doubly linked list

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = START

[END OF LOOP]

Step 7: FREE START

Step 3: Repeat Step 4 while PTR NEXT != START

Step 4: SET PTR = PTR NEXT

Step 5: SET PTR NEXT = START NEXT

Step 6: SET START NEXT PREV = PTR

Step 8: SET START = PTR NEXT

->
->

-> ->
-> ->

->

Figure 6.62  Algorithm to delete the first node
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		    Figure 6.64 shows the algorithm to delete the 
last node from a circular doubly linked list. In 
Step 2, we take a pointer variable PTR and 
initialize it with START. That is, PTR now points 
to the first node of the linked list. The while loop 
traverses through the list to reach the last node. 
Once we reach the last node, we can also access 
the second last node by taking its address from 
the PREV field of the last node. To delete the last 
node, we simply have to set the next field of the 
second last node to contain the address of START, 
so that it now becomes the (new) last node of 
the linked list. The memory of the previous last 
node is freed and returned to the free pool.

Programming Example 

4.	 Write a program to create a circular doubly linked list and perform insertions and deletions 
at the beginning and end of the list.
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
	 struct node *next;
	 int data;
	 struct node *prev;
};
struct node *start = NULL;
struct node *create_ll(struct node *);
struct node *display(struct node *);
struct node *insert_beg(struct node *);
struct node *insert_end(struct node *);
struct node *delete_beg(struct node *);
struct node *delete_end(struct node *);
struct node *delete_node(struct node *);
struct node *delete_list(struct node *);
int main()
{
	 int option;
	 clrscr();
	 do
	 {
		  printf("\n\n *****MAIN MENU *****");
		  printf("\n 1: Create a list");
		  printf("\n 2: Display the list");
		  printf("\n 3: Add a node at the beginning");
		  printf("\n 4: Add a node at the end");
		  printf("\n 5: Delete a node from the beginning");
		  printf("\n 6: Delete a node from the end");
		  printf("\n 7: Delete a given node");
		  printf("\n 8: Delete the entire list");
		  printf("\n 9: EXIT");
		  printf("\n\n Enter your option : ");

Step 1: IF START = NULL

Write UNDERFLOW

Go to Step 8

[END OF IF]

Step 2: SET PTR = START

[END OF LOOP]

Step 7: FREE PTR

Step 8: EXIT

Step 3: Repeat Step 4 while PTR NEXT != START

Step 4: SET PTR = PTR NEXT

Step 5: SET PTR PREV NEXT = START

Step 6: SET START PREV = PTR PREV

->
->

-> ->
-> ->

Figure 6.64  Algorithm to delete the last node
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		  scanf("%d", &option);
		  switch(option)
		  {
			   case 1:	start = create_ll(start);
				    printf("\n CIRCULAR DOUBLY LINKED LIST CREATED");
				    break;
			   case 2:	start = display(start);
				    break;
			   case 3:	start = insert_beg(start);
				    break;
			   case 4:	start = insert_end(start);
				    break;
			   case 5:	start = delete_beg(start);
				    break;
			   case 6:	start = delete_end(start);
				    break;
			   case 7:	start = delete_node(start);
				    break;
			   case 8:	start = delete_list(start);
				    printf("\n CIRCULAR DOUBLY LINKED LIST DELETED");
				    break;
		  }
	 }while(option != 9);
	 getch();
	 return 0;
}
struct node *create_ll(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num;
	 printf("\n Enter –1 to end");
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 while(num != –1)
	 {
		  if(start == NULL)
		  {
			   new_node = (struct node*)malloc(sizeof(struct node));
			   new_node -> prev = NULL;
			   new_node -> data = num;
			   new_node -> next = start;
			   start = new_node;
		  }
		  else
		  {
			   new_node = (struct node*)malloc(sizeof(struct node));
			   new_node -> data = num;
			   ptr = start;
			   while(ptr -> next != start)
				    ptr = ptr -> next;
			   new_node -> prev = ptr;
			   ptr -> next = new_node;
			   new_node -> next = start;
			   start -> prev = new_node;
		  }
		  printf("\n Enter the data : ");
		  scanf("%d", &num);
	 }
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	 return start;
}
struct node *display(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 while(ptr -> next != start)
	 {
		  printf("\t %d", ptr -> data);
		  ptr = ptr -> next;
	 }
	 printf("\t %d", ptr -> data);
	 return start;
}
struct node *insert_beg(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node-> data = num;
	 ptr = start;
	 while(ptr -> next != start)
		  ptr = ptr -> next;
	 new_node -> prev = ptr;
	 ptr -> next = new_node;
	 new_node -> next = start;
	 start -> prev = new_node;
	 start = new_node;
	 return start;
}
struct node *insert_end(struct node *start)
{
	 struct node *ptr, *new_node;
	 int num;
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 new_node = (struct node *)malloc(sizeof(struct node));
	 new_node -> data = num;
	 ptr = start;
	 while(ptr -> next != start)
		  ptr = ptr -> next;
	 ptr -> next = new_node;
	 new_node -> prev = ptr;
	 new_node -> next = start;
	 start-> prev = new_node;
	 return start;
}
struct node *delete_beg(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 while(ptr -> next != start)
		  ptr = ptr -> next;
	 ptr -> next = start -> next;
	 temp = start;
	 start=start–>next;
	 start–>prev=ptr;
	 free(temp);
	 return start;



206  Data Structures Using C

}
struct node *delete_end(struct node *start)
{
	 struct node *ptr;
	 ptr=start;
	 while(ptr -> next != start)
		  ptr = ptr -> next;
	 ptr -> prev -> next = start;
	 start -> prev = ptr -> prev;
	 free(ptr);
	 return start;
}
struct node *delete_node(struct node *start)
{
	 struct node *ptr;
	 int val;
	 printf("\n Enter the value of the node which has to be deleted : ");
	 scanf("%d", &val);
	 ptr = start;
	 if(ptr -> data == val)
	 {
		  start = delete_beg(start);
		  return start;
	 }
	 else
	 {
		  while(ptr -> data != val)
			   ptr = ptr -> next;
		  ptr -> prev -> next = ptr -> next;
		  ptr -> next -> prev = ptr -> prev;
		  free(ptr);
		  return start;
	 }
}
struct node *delete_list(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 while(ptr -> next != start)
		  start = delete_end(start);
	 free(start);
	 return start;
}

	 Output
*****MAIN MENU *****
1: Create a list
2: Display the list
––––––––––––––––––––––––
8: Delete the entire list
9: EXIT
Enter your option : 1
Enter –1 to end
Enter the data: 2
Enter the data: 3
Enter the data: 4
Enter the data: –1
CIRCULAR DOUBLY LINKED LIST CREATED 
Enter your option : 8
CIRCULAR DOUBLY LINKED LIST DELETED
Enter your option : 9
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6.6  Header Linked Lists
A header linked list is a special type of linked list which contains a header node at the beginning 
of the list. So, in a header linked list, START will not point to the first node of the list but START will 
contain the address of the header node. The following are the two variants of a header linked list:
	 ∑	 Grounded header linked list which stores NULL in the next field of the last node.
	 ∑	 Circular header linked list which stores the address of the header node in the next field of 

the last node. Here, the header node will denote the end of the list.
	 Look at Fig. 6.65 which shows both the types of header linked lists.

START

1 2 3 4 5 6

Header node

X

1 3 4 5 6

START

Header node

2

Figure 6.65  Header linked list

  As in other linked lists, if START = NULL, then this denotes an 
empty header linked list. Let us see how a grounded header 
linked list is stored in the memory. In a grounded header 
linked list, a node has two fields, DATA and NEXT. The DATA field 
will store the information part and the NEXT field will store the 
address of the node in sequence. Consider Fig. 6.66.
  Note that START stores the address of the header node. The 
shaded row denotes a header node. The NEXT field of the header 
node stores the address of the first node of the list. This node 
stores H. The corresponding NEXT field stores the address of the 
next node, which is 3. So, we will look at address 3 to fetch 
the next data item.
  Hence, we see that the first node can be accessed by writing 
FIRST_NODE = START -> NEXT and not by writing START = FIRST_
NODE. This is because START points to the header node and the 
header node points to the first node of the header linked list.
  Let us now see how a circular header linked list is stored 
in the memory. Look at Fig. 6.67.
  Note that the last node in this case stores the address of the 
header node (instead of –1).

  Hence, we see that the first node can be 
accessed by writing FIRST_NODE = START -> 
NEXT and not writing START = FIRST_NODE. This 
is because START points to the header node and 
the header node points to the first node of the 
header linked list.
  Let us quickly look at Figs 6.68, 6.69, and 6.70 
that show the algorithms to traverse a circular 
header linked list, insert a new node in it, and 
delete an existing node from it.

DATA NEXT

H

E

L

L

O

1

2

3

4

5

6

7

8

9

3

6

7

9

–1

START

5

1234 1

Figure 6.66  Memory representation of a 
header linked list

DATA NEXT

H

E

L

L

O

1

2

3

4

5

6

7

8

9

3

6

7

9

5

START

5

1234 1

Figure 6.67  Memory representation of a 
circular header linked list 

Step 1: SET PTR = START NEXT

Step 3: Apply PROCESS to PTR DATA

Step 4: SET PTR = PTR NEXT

->

->
->

Step 2: Repeat Steps 3 and 4 while PTR != START

[END OF LOOP]

Step 5: EXIT
 

Figure 6.68  Algorithm to traverse a circular header linked list
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Step 1: IF AVAIL = NULL

Write OVERFLOW

Go to Step 10

[END OF IF]

Step 2: SET = AVAIL

[END OF LOOP]

Step 1 : EXIT

NEW_NODE

Step 3: SET AVAIL = AVAIL NEXT

Step 4: SET PTR = START NEXT

Step 5: SET DATA = VAL

Step 6: Repeat Step 7 while PTR DATA != NUM

Step 7: SET PTR = PTR NEXT

Step 8: NEXT = PTR NEXT

Step 9: SET PTR NEXT =

->
->

->
->

->

-> ->
->

NEW_NODE

NEW_NODE

NEW_NODE

  

Step 1: SET PTR = START->NEXT

Step 3: SET PREPTR = PTR

[END OF LOOP]

Step 6: FREE PTR

Step 7: EXIT

Step 2: Repeat Steps 3 and 4 while

PTR DATA != VAL

Step 4: SET PTR = PTR NEXT

Step 5: SET PREPTR NEXT = PTR NEXT

->

->

-> ->

Figure 6.69  Algorithm to insert a new node in a 	 Figure 6.70  Algorithm to delete a node from a circular  
	 circular header linked list 		  header linked list

	 After discussing linked lists in such detail, these algorithms are self-explanatory. There is 
actually just one small difference between these algorithms and the algorithms that we have 
discussed earlier. Like we have a header list and a circular header list, we also have a two-way 
(doubly) header list and a circular two-way (doubly) header list. The algorithms to perform all 
the basic operations will be exactly the same except that the first node will be accessed by writing 
START -> NEXT instead of START.

Programming Example

5.	 Write a program to implement a header linked list.
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
	 int data;
	 struct node *next;
};
struct node *start = NULL;
struct node *create_hll(struct node *);
struct node *display(struct node *);
int main()
{
	 int option;
	 clrscr();
	 do
	 {
		  printf("\n\n *****MAIN MENU *****");
		  printf("\n 1: Create a list");
		  printf("\n 2: Display the list");
		  printf("\n 3: EXIT");
		  printf("\n Enter your option : ");
		  scanf("%d", &option);
		  switch(option)
		  {
			   case 1:	start = create_hll(start);
				    printf("\n HEADER LINKED LIST CREATED");
				    break;



Linked Lists  209

			   case 2:	start = display(start);
				    break;
		  }
	 }while(option !=3);
	 getch();
	 return 0;
}
struct node *create_hll(struct node *start)
{
	 struct node *new_node, *ptr;
	 int num;
	 printf("\n Enter –1 to end");
	 printf("\n Enter the data : ");
	 scanf("%d", &num);
	 while(num!=–1)
	 {
		  new_node = (struct node*)malloc(sizeof(struct node));
		  new_node–>data=num;
		  new_node–>next=NULL;
		  if(start==NULL)
		  {
			   start = (struct node*)malloc(sizeof(struct node));
			   start–>next=new_node;
		  }
		  else
		  {
			   ptr=start;
			   while(ptr–>next!=NULL)
				    ptr=ptr–>next;
			   ptr–>next=new_node;			 
		  }
		  printf("\n Enter the data : ");
		  scanf("%d", &num);
	 }
	 return start;
}
struct node *display(struct node *start)
{
	 struct node *ptr;
	 ptr=start;
	 while(ptr!=NULL)
	 {
		  printf("\t %d", ptr–>data);
		  ptr = ptr–>next;
	 }
	 return start;
}

	 Output
*****MAIN MENU *****
1: Create a list
2: Display the list
3: EXIT
Enter your option : 1
Enter –1 to end
Enter the data: 1
Enter the data: 2
Enter the data: 4
Enter the data: –1
HEADER LINKED LIST CREATED
Enter your option : 3
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6.7  Multi-Linked Lists
In a multi-linked list, each node can have n number of pointers to other nodes. A doubly linked 
list is a special case of multi-linked lists. However, unlike doubly linked lists, nodes in a multi-
linked list may or may not have inverses for each pointer. We can differentiate a doubly linked 
list from a multi-linked list in two ways:
	(a)	 A doubly linked list has exactly two pointers. One pointer points to the previous node and 

the other points to the next node. But a node in the multi-linked list can have any number of 
pointers.

	(b)	 In a doubly linked list, pointers are exact inverses of each other, i.e., for every pointer which 
points to a previous node there is a pointer which points to the next node. This is not true for 
a multi-linked list.

Multi-linked lists are generally used to organize multiple orders of one set of elements. For 
example, if we have a linked list that stores name and marks obtained by students in a class, then 
we can organize the nodes of the list in two ways:
	 (i)	 Organize the nodes alphabetically (according to the name)
	(ii)	 Organize the nodes according to decreasing order of marks so that the information of student 

who got highest marks comes before other students.
Figure 6.71 shows a multi-linked list in which students’ nodes are organized by both the 
aforementioned ways.

ADVIK 9 GORANSH 1

DEV 94 SAISHA 98 ZARA 85NULL NULL

Figure 6.71  Multi-linked list that stores names alphabetically as well as according to decreasing 
order of marks

	 A new node can be inserted in a multi-linked list in the same way as it is done for a doubly 
linked list. 

Note	 In multi-linked lists, we can have inverses of each pointer as in a doubly linked list. But for that we 
must have four pointers in a single node.

	Multi-linked lists are also used to store sparse matrices. In Chapter 3 we have 
read about sparse matrices. Such matrices have very few non-zero values stored 
and most of the entries are zero. Sparse matrices are very common in engineering 
applications. If we use a normal array to store such matrices, we will end up 
wasting a lot of space. Therefore, a better solution is to represent these matrices 
using multi-linked lists.
  The sparse matrix shown in Fig. 6.72 can be represented using a linked list 
for every row and column. Since a value is in exactly one row and one column, 
it will appear in both lists exactly once. A node in the multi-linked will have 
four parts. First stores the data, second stores a pointer to the next node in the 
row, third stores a pointer to the next node in the column, and the fourth stores 
the coordinates or the row and column number in which the data appears in 
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the matrix. However, as in case of doubly linked lists, we can also have a corresponding inverse 
pointer for every pointer in the multi-linked list representation of a sparse matrix.

Note	 When a non-zero value in the sparse matrix is set to zero, the corresponding node in the multi-linked 
list must be deleted.

NULL

(3, 0)

NULL

19

(2, 0) 17

NULL

NULL

(2, 2)

NULL

5

NULL

(0, 1)

NULL

25

Co-ordinate Data value

Next in column Next in row

Figure 6.73  Multi-linked representation of sparse matrix shown in Fig. 6.72

6.8  APPLICATIONS OF LINKED LISTS
Linked lists can be used to represent polynomials and the different operations that can be performed 
on them. In this section, we will see how polynomials are represented in the memory using linked 
lists.

6.8.1  Polynomial Representation
Let us see how a polynomial is represented in the memory using a linked list. Consider a polynomial 
6x3 + 9x2 + 7x + 1. Every individual term in a polynomial consists of two parts, a coefficient 
and a power. Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, and 0 as their 
powers respectively.
	 Every term of a polynomial can be represented as a node of the linked list. Figure 6.74 shows 
the linked representation of the terms of the above polynomial.

6 3 9 2 7 1 1 X

Figure 6.74  Linked representation of a polynomial

Now that we know how polynomials are represented using nodes of a linked list, let us write a 
program to perform operations on polynomials.
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Programming Example 

6.	 Write a program to store a polynomial using linked list. Also, perform addition and 
subtraction on two polynomials.
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
	 int num;
	 int coeff;
	 struct node *next;
};
struct node *start1 = NULL;
struct node *start2 = NULL;
struct node *start3 = NULL;
struct node *start4 = NULL;
struct node *last3 = NULL;
struct node *create_poly(struct node *);
struct node *display_poly(struct node *);
struct node *add_poly(struct node *, struct node *, struct node *);
struct node *sub_poly(struct node *, struct node *, struct node *);
struct node *add_node(struct node *, int, int);
int main()
{
	 int option;
	 clrscr();
	 do
	 {
		  printf("\n******* MAIN MENU *******");
		  printf("\n 1. Enter the first polynomial");
		  printf("\n 2. Display the first polynomial");
		  printf("\n 3. Enter the second polynomial");
		  printf("\n 4. Display the second polynomial");
		  printf("\n 5. Add the polynomials");
		  printf("\n 6. Display the result");
		  printf("\n 7. Subtract the polynomials");
		  printf("\n 8. Display the result");
		  printf("\n 9. EXIT");
		  printf("\n\n Enter your option : ");
		  scanf("%d", &option);
		  switch(option)
		  {
			   case 1:	start1 = create_poly(start1);
				    break;
			   case 2:	start1 = display_poly(start1);
				    break;
			   case 3:	start2 = create_poly(start2);
				    break;
			   case 4:	start2 = display_poly(start2);
				    break;
			   case 5:	start3 = add_poly(start1, start2, start3);
				    break;
			   case 6:	start3 = display_poly(start3);
				    break;
			   case 7:	start4 = sub_poly(start1, start2, start4);
				    break;
			   case 8:	start4 = display_poly(start4);
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				    break;
		  }
	 }while(option!=9);
	 getch();
	 return 0;
}
struct node *create_poly(struct node *start)
{
	 struct node *new_node, *ptr;
	 int n, c;
	 printf("\n Enter the number : ");
	 scanf("%d", &n);
	 printf("\t Enter its coefficient : ");
	 scanf("%d", &c);
	 while(n != –1)
	 {
		  if(start==NULL)
		  {
			   new_node = (struct node *)malloc(sizeof(struct node));
			   new_node -> num = n;
			   new_node -> coeff = c;
			   new_node -> next = NULL;
			   start = new_node;	
		  }
		  else
		  {
			   ptr = start;
			   while(ptr -> next != NULL)
				    ptr = ptr -> next;
			   new_node = (struct node *)malloc(sizeof(struct node));
			   new_node -> num = n;
			   new_node -> coeff = c;
			   new_node -> next = NULL;
			   ptr -> next = new_node;
		  }
		  printf("\n Enter the number : ");
		  scanf("%d", &n);
		  if(n == –1)
			   break;
		  printf("\t Enter its coefficient : ");
		  scanf("%d", &c);
	 }
	 return start;
}
struct node *display_poly(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 while(ptr != NULL)
	 {
		  printf("\n%d x %d\t", ptr -> num, ptr -> coeff);
		  ptr = ptr -> next;
	 }
	 return start;
}
struct node *add_poly(struct node *start1, struct node *start2, struct node *start3)
{
	 struct node *ptr1, *ptr2;
	 int sum_num, c;
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	 ptr1 = start1, ptr2 = start2;
	 while(ptr1 != NULL && ptr2 != NULL)
	 {
		  if(ptr1 -> coeff == ptr2 -> coeff)
		  {
			   sum_num = ptr1 -> num + ptr2 -> num;
			   start3 = add_node(start3, sum_num, ptr1 -> coeff);
			   ptr1 = ptr1 -> next;
			   ptr2 = ptr2 -> next;
		  }
		  else if(ptr1 -> coeff > ptr2 -> coeff)
		  {
			   start3 = add_node(start3, ptr1 -> num, ptr1 -> coeff);
			   ptr1 = ptr1 -> next;
		  }
		  else if(ptr1 -> coeff < ptr2 -> coeff)
		  {
			   start3 = add_node(start3, ptr2 -> num, ptr2 -> coeff);
			   ptr2 = ptr2 -> next;
		  }
	 }
	 if(ptr1 == NULL)
	 {
		  while(ptr2 != NULL)
		  {
			   start3 = add_node(start3, ptr2 -> num, ptr2 -> coeff);
			   ptr2 = ptr2 -> next;
		  }
	 }
	 if(ptr2 == NULL)
	 {
		  while(ptr1 != NULL)
		  {
			   start3 = add_node(start3, ptr1 -> num, ptr1 -> coeff);
			   ptr1 = ptr1 -> next;
		  }
	 }
	 return start3;
}
struct node *sub_poly(struct node *start1, struct node *start2, struct node *start4)
{
	 struct node *ptr1, *ptr2;
	 int sub_num, c;
	 ptr1 = start1, ptr2 = start2;
	 do
	 {
		  if(ptr1 -> coeff == ptr2 -> coeff)
		  {
			   sub_num = ptr1 -> num – ptr2 -> num;
			   start4 = add_node(start4, sub_num, ptr1 -> coeff);
			   ptr1 = ptr1 -> next;
			   ptr2 = ptr2 -> next;
		  }
		  else if(ptr1 -> coeff > ptr2 -> coeff)
		  {
			   start4 = add_node(start4, ptr1 -> num, ptr1 -> coeff);
			   ptr1 = ptr1 -> next;
		  }
		  else if(ptr1 -> coeff < ptr2 -> coeff)
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		  {
			   start4 = add_node(start4, ptr2 -> num, ptr2 -> coeff);
			   ptr2 = ptr2 -> next;
		  }
	 }while(ptr1 != NULL || ptr2 != NULL);
	 if(ptr1 == NULL)
	 {
		  while(ptr2 != NULL)
		  {
			   start4 = add_node(start4, ptr2 -> num, ptr2 -> coeff);
			   ptr2 = ptr2 -> next;
		  }
	 }
	 if(ptr2 == NULL)
	 {
		  while(ptr1 != NULL)
		  {
			   start4 = add_node(start4, ptr1 -> num, ptr1 -> coeff);
			   ptr1 = ptr1 -> next;
		  }
	 }
	 return start4;
}
struct node *add_node(struct node *start, int n, int c)
{
	 struct node *ptr, *new_node;
	 if(start == NULL)
	 {
		  new_node = (struct node *)malloc(sizeof(struct node));
		  new_node -> num = n;
		  new_node -> coeff = c;
		  new_node -> next = NULL;
		  start = new_node;
	 }
	 else
	 {
		  ptr = start;
		  while(ptr -> next != NULL)
			   ptr = ptr -> next;
		  new_node = (struct node *)malloc(sizeof(struct node));
		  new_node -> num = n;
		  new_node -> coeff = c;
		  new_node -> next = NULL;
		  ptr -> next = new_node;
	 }
	 return start;
}

	 Output
******* MAIN MENU *******
1. Enter the first polynomial
2. Display the first polynomial
–––––––––––––––––––––––––––––––
9. EXIT
Enter your option : 1
Enter the number : 6	 Enter its coefficient : 2
Enter the number : 5 	 Enter its coefficient : 1
Enter the number : –1 
Enter your option : 2
6 x 2	 5 x 1
Enter your option : 9
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∑	 A linked list is a linear collection of data elements 
called as nodes in which linear representation is 
given by links from one node to another.

∑	 Linked list is a data structure which can be used 
to implement other data structures such as stacks, 
queues, and their variations. 

∑	 Before we insert a new node in linked lists, we need 
to check for OVERFLOW condition, which occurs when 
no free memory cell is present in the system.

∑	 Before we delete a node from a linked list, we must 
first check for UNDERFLOW condition which occurs 
when we try to delete a node from a linked list that 
is empty. 

∑	 When we delete a node from a linked list, we have to 
actually free the memory occupied by that node. The 
memory is returned back to the free pool so that it 
can be used to store other programs and data. 

∑	 In a circular linked list, the last node contains a 
pointer to the first node of the list. While traversing 
a circular linked list, we can begin at any node and 
traverse the list in any direction forward or backward 
until we reach the same node where we had started.

∑	 A doubly linked list or a two-way linked list is a 
linked list which contains a pointer to the next as 
well as the previous node in the sequence. Therefore, 
it consists of three parts—data, a pointer to the next 
node, and a pointer to the previous node.

∑	 The PREV field of the first node and the NEXT field of 
the last node contain NULL. This enables to traverse 
the list in the backward direction as well.

∑	 Thus, a doubly linked list calls for more space per 
node and more expensive basic operations. However, 
a doubly linked list provides the ease to manipulate 
the elements of the list as it maintains pointers to nodes 
in both the directions (forward and backward). The 
main advantage of using a doubly linked list is that 
it makes search operation twice as efficient.

∑	 A circular doubly linked list or a circular two-way 
linked list is a more complex type of linked list which 
contains a pointer to the next as well as previous node 
in the sequence. The difference between a doubly 
linked and a circular doubly linked list is that the 
circular doubly linked list does not contain NULL in 
the previous field of the first node and the next field 
of the last node. Rather, the next field of the last 
node stores the address of the first node of the list. 
Similarly, the previous field of the first field stores 
the address of the last node.

∑	 A header linked list is a special type of linked list 
which contains a header node at the beginning of the 
list. So, in a header linked list START will not point 
to the first node of the list but START will contain the 
address of the header node.

∑	 Multi-linked lists are generally used to organize 
multiple orders of one set of elements. In a multi-
linked list, each node can have n number of pointers 
to other nodes.

 Exercises

Review Questions
	 1.	 Make a comparison between a linked list and a 

linear array. Which one will you prefer to use and 
when?

	 2.	 Why is a doubly linked list more useful than a 
singly linked list?

	 3.	 Give the advantages and uses of a circular linked 
list.

	 4.	 Specify the use of a header node in a header linked 
list.

	 5.	 Give the linked representation of the following 
polynomial:

		  7x3y2 – 8x2y + 3xy + 11x – 4

	 6.	 Explain the difference between a circular linked 
list and a singly linked list.

	 7.	 Form a linked list to store students’ details.
	 8.	 Use the linked list of the above question to insert 

the record of a new student in the list.
	 9.	 Delete the record of a student with a specified roll 

number from the list maintained in Question 7.
	 10.	 Given a linked list that contains English alphabet. 

The characters may be in upper case or in lower 
case. Create two linked lists—one which stores 
upper case characters and the other that stores 
lower case characters.

 Points to Remember
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	 11.	 Create a linked list which stores names of the 
employees. Then sort these names and re-display 
the contents of the linked list.

Programming Exercises
	 1.	 Write a program that removes all nodes that have 

duplicate information.
	 2.	 Write a program to print the total number of 

occurrences of a given item in the linked list.
	 3.	 Write a program to multiply every element of the 

linked list with 10.
	 4.	 Write a program to print the number of non-zero 

elements in the list.
	 5.	 Write a program that prints whether the given 

linked list is sorted (in ascending order) or not.
	 6.	 Write a program that copies a circular linked list.
	 7.	 Write a program to merge two linked lists.
	 8.	 Write a program to sort the values stored in a 

doubly circular linked list.
	 9.	 Write a program to merge two sorted linked lists. 

The resultant list must also be sorted.
	 10.	 Write a program to delete the first, last, and middle 

node of a header linked list.
	 11.	 Write a program to create a linked list from an 

already given list. The new linked list must contain 
every alternate element of the existing linked list.

	 12.	 Write a program to concatenate two doubly linked 
lists.

	 13.	 Write a program to delete the first element of a 
doubly linked list. Add this node as the last node 
of the list.

	 14.	 Write a program to
	 (a)	 Delete the first occurrence of a given 

character in a linked list
	 (b)	 Delete the last occurrence of a given character
	 (c)	 Delete all the occurrences of a given character
	 15.	 Write a program to reverse a linked list using 

recursion.
	 16.	 Write a program to input an n digit number. Now, 

break this number into its individual digits and 
then store every single digit in a separate node 
thereby forming a linked list. For example, if 
you enter 12345, then there will 5 nodes in the 
list containing nodes with values 1, 2, 3, 4, 5.

	 17.	 Write a program to add the values of the nodes of 
a linked list and then calculate the mean.

	 18.	 Write a program that prints minimum and maxi-
mum values in a linked list that stores integer 
values.

	 19.	 Write a program to interchange the value of the 
first element with the last element, second element 
with second last element, so on and so forth of a 
doubly linked list.

	 20.	 Write a program to make the first element of singly 
linked list as the last element of the list.

	 21.	 Write a program to count the number of occurrences 
of a given value in a linked list.

	 22.	 Write a program that adds 10 to the values stored 
in the nodes of a doubly linked list.

	 23.	 Write a program to form a linked list of floating 
point numbers. Display the sum and mean of these 
numbers.

	 24.	 Write a program to delete the kth node from a 
linked list.

	 25.	 Write a program to perform deletions in all the 
cases of a circular header linked list.

	 26.	 Write a program to multiply a polynomial with a 
given number.

	 27.	 Write a program to count the number of non-zero 
values in a circular linked list.

	 28.	 Write a program to create a linked list which stores 
the details of employees in a department. Read 
and print the information stored in the list.

	 29.	 Use the linked list of Question 28 so that it displays 
the record of a given employee only.

	 30.	 Use the linked list of Question 28 and insert 
information about a new employee.

	 31.	 Use the linked list of Question 28 and delete 
information about an existing employee.

	 32.	 Write a program to move a middle node of a doubly 
link list to the top of the list.

	 33.	 Write a program to create a singly linked list and 
reverse the list by interchanging the links and not 
the data.

	 34.	 Write a program that prints the nth element from 
the end of a linked list in a single pass.

	 35.	 Write a program that creates a singly linked list. 
Use a function isSorted that returns 1 if the list is 
sorted and 0 otherwise.

	 36.	 Write a program to interchange the kth and the 
(k+1)th node of a circular doubly linked list.

	 37.	 Write a program to create a header linked list.
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	 3.	 A node in a linked list can point to only one node 
at a time.

	 4.	 A node in a singly linked list can reference the 
previous node.

	 5.	 A linked list can store only integer values.
	 6.	 Linked list is a random access structure.
	 7.	 Deleting a node from a doubly linked list is easier 

than deleting it from a singly linked list.
	 8.	 Every node in a linked list contains an integer 

part and a pointer.
	 9.	 START stores the address of the first node in the 

list.
	 10.	 Underflow is a condition that occurs when we try 

to delete a node from a linked list that is empty.

Fill in the Blanks
	 1.	 ______ is used to store the address of the first 

free memory location.
	 2.	 The complexity to insert a node at the beginning 

of the linked list is ______.
	 3.	 The complexity to delete a node from the end of 

the linked list is ______.
	 4.	 Inserting a node at the beginning of the doubly 

linked list needs to modify ______ pointers.
	 5.	 Inserting a node in the middle of the singly linked 

list needs to modify ______ pointers.
	 6.	 Inserting a node at the end of the circular linked 

list needs to modify ______ pointers.
	 7.	 Inserting a node at the beginning of the circular 

doubly linked list needs to modify ______ 
pointers.

	 8.	 Deleting a node from the beginning of the singly 
linked list needs to modify ______ pointers

	 9.	 Deleting a node from the middle of the doubly 
linked list needs to modify ______ pointers.

	 10.	 Deleting a node from the end of a circular linked 
list needs to modify ______ pointers.

	 11.	 Each element in a linked list is known as 
a ______.

	 12.	 First node in the linked list is called the ______.
	 13.	 Data elements in a linked list are known 

as ______.
	 14.	 Overflow occurs when ______.
	 15.	 In a circular linked list, the last node contains a 

pointer to the ______ node of the list.

	 38.	 Write a program to delete a node from a circular 
header linked list.

	 39.	 Write a program to delete all nodes from a header 
linked list that has negative values in its data part.

Multiple-choice Questions
	 1.	 A linked list is a
	 (a)	 Random access structure
	 (b)	 Sequential access structure
	 (c)	 Both
	 (d)	 None of these
	 2.	 An array is a
	 (a)	 Random access structure
	 (b)	 Sequential access structure
	 (c)	 Both
	 (d)	 None of these
	 3.	 Linked list is used to implement data structures 

like
	 (a)	 Stacks	 (b)	 Queues
	 (c)	 Trees	 (d)	 All of these
	 4. 	Which type of linked list contains a pointer to the 

next as well as the previous node in the sequence?
	 (a)	 Singly linked list	 (b)	 Circular linked list
	 (c)	 Doubly linked list	 (d)	 All of these
	 5.	 Which type of linked list does not store NULL in 

next field?
	 (a)	 Singly linked list	 (b)	 Circular linked list
	 (c)	 Doubly linked list	 (d)	 All of these
	 6.	 Which type of linked list stores the address of the 

header node in the next field of the last node?
	 (a)	 Singly linked list
	 (b)	 Circular linked list
	 (c)	 Doubly linked list
	 (d)	 Circular header linked list
	 7.	 Which type of linked list can have four pointers 

per node?
	 (a)	 Circular doubly linked list
	 (b)	 Multi-linked list
	 (c)	 Header linked list
	 (d)	 Doubly linked list

True or False
	 1.	 A linked list is a linear collection of data elements.
	 2.	 A linked list can grow and shrink during run time.



7.1  INTRODUCTION
Stack is an important data structure which stores its elements in an ordered manner. We will 
explain the concept of stacks using an analogy. You must have seen a pile of plates where one 
plate is placed on top of another as shown in Fig. 7.1. Now, when you want to remove a plate, 
you remove the topmost plate first. Hence, you can add and remove an element (i.e., a plate) only 
at/from one position which is the topmost position.
	 A stack is a linear data structure which uses the same principle, i.e., the elements in a stack are 

added and removed only from one end, which is called the 
TOP. Hence, a stack is called a LIFO (Last-In-First-Out) data 
structure, as the element that was inserted last is the first one to 
be taken out.
  Now the question is where do we need stacks in computer 
science? The answer is in function calls. Consider an example, 
where we are executing function A. In the course of its 
execution, function A calls another function B. Function B in 
turn calls another function C, which calls function D.

The topmost

plate will

be removed

first

Another plate

will be

added on top

of this

plate

Figure 7.1  Stack of plates

Learning Objective
A stack is an important data structure which is extensively used in computer 
applications. In this chapter we will study about the important features of stacks to 
understand how and why they organize the data so uniquely. The chapter will also 
illustrate the implementation of stacks by using both arrays as well as linked lists. 
Finally, the chapter will discuss in detail some of the very useful areas where stacks 
are primarily used.

Stacks

chapter 7
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When A calls B, A is pushed on top

of the system stack. When the

execution of B is complete, the

system control will remove A from

the stack and continue with its

execution.

When C calls D, C is pushed on top

of the system stack. When the

execution of D is complete, the

system control will remove C from

the stack and continue with its

execution.

Function A

Function A

Function B

Function C

When D calls E, D is pushed on top

of the system stack. When the

execution of E is complete, the

system control will remove D from

the stack and continue with its

execution.

When B calls C, B is pushed on top

of the system stack. When the

execution of C is complete, the

system control will remove B from

the stack and continue with its

execution.

Function A

Function B

Function C

Function D

Function A

Function B

Figure 7.2  System stack in the case of function calls

  In order to keep track of the returning point of each active function, 
a special stack called system stack or call stack is used. Whenever a 
function calls another function, the calling function is pushed onto the 
top of the stack. This is because after the called function gets executed, 
the control is passed back to the calling function. Look at Fig. 7.2 which 
shows this concept.
  Now when function E is executed, function D will be removed from 
the top of the stack and executed. Once function D gets completely 
executed, function C will be removed from the stack for execution. The 
whole procedure will be repeated until all the functions get executed. 
Let us look at the stack after each function is executed. This is shown in 
Fig. 7.3.
  The system stack ensures a proper execution order of functions. 
Therefore, stacks are frequently used in situations where the order of 
processing is very important, especially when the processing needs to 
be postponed until other conditions are fulfilled.
  Stacks can be implemented using either arrays or linked lists. In 
the following sections, we will discuss both array and linked list 
implementation of stacks.

7.2  ARRAY REPRESENTATION OF STACKS
In the computer’s memory, stacks can be represented as a linear array. 
Every stack has a variable called TOP associated with it, which is used to 
store the address of the topmost element of the stack. It is this position 
where the element will be added to or deleted from. There is another 

variable called MAX, which is used to store the maximum number of elements that the stack can hold.
	 If TOP = NULL, then it indicates that the stack is empty and if TOP = MAX–1, then the stack is full. 
(You must be wondering why we have written MAX–1. It is because array indices start from 0.) 
Look at Fig. 7.4.

A AB ABC ABCD ABCDE

0 1 2 3 5 6 7 8 9TOP = 4

Figure 7.4  Stack

The stack in Fig. 7.4 shows that TOP = 4, so insertions and deletions will be done at this position. 
In the above stack, five more elements can still be stored.

When C has

executed, B will

be removed for

execution.Function A

Function B

When B has

executed, A will

be removed for

execution.Function A

When D has

executed, C will

be removed for

execution.Function A

Function B

Function C

Function A

Function B

Function C

Function D
When E has

executed, D will

be removed for

execution.

Figure 7.3  System stack when a 
called function returns 
to the calling function
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7.3  OPERATIONS ON A STACK
A stack supports three basic operations: push, pop, and peek. The push operation adds an element 
to the top of the stack and the pop operation removes the element from the top of the stack. The 
peek operation returns the value of the topmost element of the stack.

7.3.1  Push Operation
The push operation is used to insert an element into the stack. The new element is added at the 
topmost position of the stack. However, before inserting the value, we must first check if TOP=MAX–1, 
because if that is the case, then the stack is full and no more insertions can be done. If an attempt 
is made to insert a value in a stack that is already full, an OVERFLOW message is printed. Consider 
the stack given in Fig. 7.5.

0 1 2 3 TOP = 4 5 6 7 8 9

1 2 3 4 5

Figure 7.5  Stack

	 To insert an element with value 6, we first check if TOP=MAX–1. If the condition is false, then we 
increment the value of TOP and store the new element at the position given by stack[TOP]. Thus, 
the updated stack becomes as shown in Fig. 7.6.

0 1 2 3 TOP = 5 6 7 8 9

1 2 3 4 5 6

4

Figure 7.6  Stack after insertion

  Figure 7.7 shows the algorithm to insert an element in a stack. 
In Step 1, we first check for the OVERFLOW condition. In Step 2, TOP 
is incremented so that it points to the next location in the array. In 
Step 3, the value is stored in the stack at the location pointed by TOP.

7.3.2  Pop Operation
The pop operation is used to delete the topmost element from the 
stack. However, before deleting the value, we must first check if 
TOP=NULL because if that is the case, then it means the stack is empty 

and no more deletions can be done. If an attempt is made to delete a value from a stack that is 
already empty, an UNDERFLOW message is printed. Consider the stack given in Fig. 7.8.

0 1 2 3 TOP = 4 5 6 7 8 9

1 2 3 4 5

Figure 7.8  Stack

  To delete the topmost element, we first check if TOP=NULL. If the condition is false, then we 
decrement the value pointed by TOP. Thus, the updated stack becomes as shown in Fig. 7.9.

0 1 2 TOP = 3 6 7 8 9

1 2 3 4

4 5

Figure 7.9  Stack after deletion

  Figure 7.10 shows the algorithm to delete an element from a 
stack. In Step 1, we first check for the UNDERFLOW condition. In Step 
2, the value of the location in the stack pointed by TOP is stored in 
VAL. In Step 3, TOP is decremented.

Step 1: IF TOP = NULL

PRINT UNDERFLOW

[END OF IF]

Step 2: SET VAL = STACK[TOP]

Step 3: SET TOP = TOP - 1

Step 4: END

" "

Goto Step 4

       
Figure 7.10  Algorithm to delete an 

element from a stack 

Step 1: IF TOP = MAX-1

PRINT OVERFLOW

[END OF IF]

Step 2: SET TOP = TOP + 1

Step 3: SET STACK[TOP] = VALUE

Step 4: END

" "

Goto Step 4

Figure 7.7  Algorithm to insert an 
element in a stack
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7.3.3  Peek Operation
Peek is an operation that returns the value of the topmost 
element of the stack without deleting it from the stack. The 
algorithm for Peek operation is given in Fig. 7.11.
  However, the Peek operation first checks if the stack is empty, 
i.e., if TOP = NULL, then an appropriate message is printed, else 
the value is returned. Consider the stack given in Fig. 7.12.

0 1 2 TOP = 4 6 7 8 9

1 2 3 4 5

3 5

Figure 7.12  Stack

	 Here, the Peek operation will return 5, as it is the value of the topmost element of the stack.

Programming Example 
1.	 Write a program to perform Push, Pop, and Peek operations on a stack.

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#define MAX 3 // Altering this value changes size of stack created

int st[MAX], top=-1;
void push(int st[], int val);
int pop(int st[]);
int peek(int st[]);
void display(int st[]);

int main(int argc, char *argv[]) {
	 int val, option;
	 do
	 {
		  printf("\n *****MAIN MENU*****");
		  printf("\n 1. PUSH");
		  printf("\n 2. POP");
		  printf("\n 3. PEEK");
		  printf("\n 4. DISPLAY");
		  printf("\n 5. EXIT");
		  printf("\n Enter your option: ");
		  scanf("%d", &option);
		  switch(option)
		  {
		  case 1:
			   printf("\n Enter the number to be pushed on stack: ");
			   scanf("%d", &val);
			   push(st, val);
			   break;
		  case 2:
			   val = pop(st);
			   if(val != -1)
			   printf("\n The value deleted from stack is: %d", val);
			   break;
		  case 3:
			   val = peek(st);
			   if(val != -1)

Step 1: IF TOP = NULL

PRINT STACK IS EMPTY

Goto Step 3

Step 2: RETURN STACK[TOP]

Step 3: END

" "

Figure 7.11  Algorithm for Peek operation
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		  	 printf("\n The value stored at top of stack is: %d", val);
			   break;
		  case 4:
			   display(st);
			   break;
		  }
	 }while(option != 5);
	 return 0;
}
void push(int st[], int val)
{
	 if(top == MAX-1)
	 {
		  printf("\n STACK OVERFLOW");
	 }
	 else
	 {
		  top++;
		  st[top] = val;
	 }
}
int pop(int st[])
{
	 int val;
	 if(top == -1)
	 {
		  printf("\n STACK UNDERFLOW");
		  return -1;
	 }
	 else
	 {
		  val = st[top];
		  top--;
		  return val;
	 }
}
void display(int st[])
{
	 int i;
	 if(top == -1)
	 printf("\n STACK IS EMPTY");
	 else
	 {
		  for(i=top;i>=0;i--)
		  printf("\n %d",st[i]);  
		  printf("\n"); // Added for formatting purposes
	 }
}
int peek(int st[])
{
	 if(top == -1)
	 {
		  printf("\n STACK IS EMPTY");
		  return -1;
	 }
	 else
	 return (st[top]);
}
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	 Output
*****MAIN MENU*****
1. PUSH
2. POP
3. PEEK
4. DISPLAY
5. EXIT
Enter your option : 1
Enter the number to be pushed on stack : 500

7.4  LINKED REPRESENTATION OF STACKs
We have seen how a stack is created using an array. This technique of creating a stack is easy, 
but the drawback is that the array must be declared to have some fixed size. In case the stack is 
a very small one or its maximum size is known in advance, then the array implementation of the 
stack gives an efficient implementation. But if the array size cannot be determined in advance, 
then the other alternative, i.e., linked representation, is used.
	 The storage requirement of linked representation of the stack with n elements is O(n), and the 
typical time requirement for the operations is O(1).
	 In a linked stack, every node has two parts—one that stores data and another that stores the 
address of the next node. The START pointer of the linked list is used as TOP. All insertions and 
deletions are done at the node pointed by TOP. If TOP = NULL, then it indicates that the stack is empty.
	 The linked representation of a stack is shown in Fig. 7.13.

1 7 3 4 2 6 59

TOP

X

Figure 7.13  Linked stack

7.5  OPERATIONS ON A LINKED STACK
A linked stack supports all the three stack operations, that is, push, pop, and peek. 

7.5.1  Push Operation
The push operation is used to insert an element into the stack. The new element is added at the 
topmost position of the stack. Consider the linked stack shown in Fig. 7.14.

1 7 3 4 2 6 5 X

TOP

Figure 7.14  Linked stack

	 To insert an element with value 9, we first check if TOP=NULL. If  this is the case, then we allocate 
memory for a new node, store the value in its DATA part and NULL in its NEXT part. The new node 
will then be called  TOP. However, if TOP!=NULL, then we insert the new node at the beginning of 
the linked stack and name this new node as TOP. Thus, the updated stack becomes as shown in 
Fig. 7.15.

1 7 3 4 2 6 59

TOP

X

Figure 7.15  Linked stack after inserting a new node

	 Figure 7.16 shows the algorithm to push an element into a linked stack. In Step 1, memory is 
allocated for the new node. In Step 2, the DATA part of the new node is initialized with the value to 
be stored in the node. In Step 3, we check if the new node is the first node of the linked list. This 
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is done by checking if TOP = NULL. In case the IF statement 
evaluates to true, then NULL is stored in the NEXT part of the 
node and the new node is called TOP. However, if the new 
node is not the first node in the list, then it is added before 
the first node of the list (that is, the TOP node) and termed 
as TOP.

7.5.2  Pop Operation
The pop operation is used to delete the topmost element from a 
stack. However, before deleting the value, we must first check 
if TOP=NULL, because if this is the case, then it means that the 
stack is empty and no more deletions can be done. If an 
attempt is made to delete a value from a stack that is already 

empty, an UNDERFLOW message is printed. Consider the stack shown in Fig. 7.17.

1 7 3 4 2 6 5 X9

TOP

Figure 7.17  Linked stack

	 In case TOP!=NULL, then we will delete the node pointed by TOP, and make TOP point to the second 
element of the linked stack. Thus, the updated stack becomes as shown in Fig. 7.18.

1 7 3 4 2 6 5

TOP

X

Figure 7.18  Linked stack after deletion of the topmost element

  Figure 7.19 shows the algorithm to delete an element from 
a stack. In Step 1, we first check for the UNDERFLOW condition. 
In Step 2, we use a pointer PTR that points to TOP. In Step 3, TOP 
is made to point to the next node in sequence. In Step 4, the 
memory occupied by PTR is given back to the free pool.

Programming Example 
2.	 Write a program to implement a linked stack.

##include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <malloc.h>
struct stack
{
	 int data;
	 struct stack *next;
};
struct stack *top = NULL;
struct stack *push(struct stack *, int);
struct stack *display(struct stack *);
struct stack *pop(struct stack *);
int peek(struct stack *);

int main(int argc, char *argv[]) {
	 int val, option;

Step 1: IF TOP = NULL

PRINT UNDERFLOW

[END OF IF]

Step 2: SET PTR = TOP

Step 4: FREE PTR

Step 5: END

Step 3: SET TOP = TOP NEXT->

" "

Goto Step 5

Figure 7.19  Algorithm to delete an 
element from a linked stack

Step 1: Allocate memory for the new

node and name it as NEW_NODE

Step 3: IF TOP = NULL

SET TOP =

ELSE

SET TOP =

[END OF IF]

Step 4: END

Step 2: SET NEW_NODE DATA = VAL

SET NEW_NODE NEXT = NULL

NEW_NODE

SET NEW_NODE NEXT = TOP

NEW_NODE

->

->

->

Figure 7.16  Algorithm to insert an element in a 
linked stack
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	 do
	 {
		  printf("\n *****MAIN MENU*****");
		  printf("\n 1. PUSH");
		  printf("\n 2. POP");
		  printf("\n 3. PEEK");
		  printf("\n 4. DISPLAY");
		  printf("\n 5. EXIT");
		  printf("\n Enter your option: ");
		  scanf("%d", &option);
		  switch(option)
		  {
		  case 1:
			   printf("\n Enter the number to be pushed on stack: ");
			   scanf("%d", &val);
			   top = push(top, val);
			   break;
		  case 2:
			   top = pop(top);
			   break;
		  case 3:
			   val = peek(top);
			   if (val != -1)
			   printf("\n The value at the top of stack is: %d", val);
			   else
			   printf("\n STACK IS EMPTY");
			   break;
		  case 4:
			   top = display(top);
			   break;
		  }
	 }while(option != 5);
	 return 0;
}
struct stack *push(struct stack *top, int val)
{
	 struct stack *ptr;
	 ptr = (struct stack*)malloc(sizeof(struct stack));
	 ptr -> data = val;
	 if(top == NULL)
	 {
		  ptr -> next = NULL;
		  top = ptr;
	 }
	 else
	 {
		  ptr -> next = top;
		  top = ptr;
	 }
	 return top;
}
struct stack *display(struct stack *top)
{
	 struct stack *ptr;
	 ptr = top;
	 if(top == NULL)
	 printf("\n STACK IS EMPTY");
	 else
	 {
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		  while(ptr != NULL)
		  {
			   printf("\n %d", ptr -> data);
			   ptr = ptr -> next;
		  }
	 }
	 return top;
}
struct stack *pop(struct stack *top)
{
	 struct stack *ptr;
	 ptr = top;
	 if(top == NULL)
	 printf("\n STACK UNDERFLOW");
	 else
	 {
		  top = top -> next;
		  printf("\n The value being deleted is: %d", ptr -> data);
		  free(ptr);
	 }
	 return top;
}
int peek(struct stack *top)
{
	 if(top==NULL)
	 return -1;
	 else
	 return top ->data;
}

	 Output
*****MAIN MENU*****
1. PUSH
2. POP
3. Peek
4. DISPLAY
5. EXIT
Enter your option : 1
Enter the number to be pushed on stack : 100

7.6  MULTIPLE STACKS
While implementing a stack using an array, we had seen that the size of the array must be known in 
advance. If the stack is allocated less space, then frequent OVERFLOW conditions will be encountered. 
To deal with this problem, the code will have to be modified to reallocate more space for the array.
	 In case we allocate a large amount of space for the stack, it may result in sheer wastage of 
memory. Thus, there lies a trade-off between the frequency of overflows and the space allocated.
	 So, a better solution to deal with this problem is to have multiple stacks or to have more than 
one stack in the same array of sufficient size. Figure 7.20 illustrates this concept.

1 2 3 4 n-2 n-1n-3n-4

Stack A Stack B

Figure 7.20  Multiple stacks

	 In Fig. 7.20, an array STACK[n] is used to represent two stacks, Stack A and Stack B. The value 
of n is such that the combined size of both the stacks will never exceed n. While operating on 
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these stacks, it is important to note one thing—Stack A will grow from left to right, whereas Stack 
B will grow from right to left at the same time.
	 Extending this concept to multiple stacks, a stack can also be used to represent n number of 
stacks in the same array. That is, if we have a STACK[n], then each stack I will be allocated an 
equal amount of space bounded by indices b[i] and e[i]. This is shown in Fig. 7.21.

b[0] e[0] b[1] e[1] b[2] e[2] b[3] e[3] b[4] e[4]

Figure 7.21  Multiple stacks

Programing Example 
3.	 Write a program to implement multiple stacks.

#include <stdio.h>
#include <conio.h>
#define MAX 10
int stack[MAX],topA=–1,topB=MAX;
void pushA(int val)
{
	 if(topA==topB–1)
		  printf("\n OVERFLOW");
	 else
	 {
		  topA+= 1;
		  stack[topA] = val;
	 }
}
int popA()
{
	 int val;
	 if(topA==–1)
	 {
		  printf("\n UNDERFLOW");
		  val = –999;
	 }
	 else
	 {
		  val = stack[topA];
		  topA––;
	 }
	 return val;
}
void display_stackA()
{
	 int i;
	 if(topA==–1)
		  printf("\n Stack A is Empty");
	 else
	 {
		  for(i=topA;i>=0;i––)
			   printf("\t %d",stack[i]);
	 }
}
void pushB(int val)
{
	 if(topB–1==topA)
		  printf("\n OVERFLOW");
	 else
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	 {
		  topB –= 1;
		  stack[topB] = val;
	 }
}
int popB()
{
	 int val;
	 if(topB==MAX)
	 {
		  printf("\n UNDERFLOW");
		  val = –999;
	 }
	 else
	 {
		  val = stack[topB];
		  topB++;
	 }
}
void display_stackB()
{
	 int i;
	 if(topB==MAX)
		  printf("\n Stack B is Empty");
	 else
	 {
		  for(i=topB;i<MAX;i++)
			   printf("\t %d",stack[i]);
	 }
}
void main()
{
	 int option, val;
	 clrscr();
	 do
	 {
		  printf("\n *****MENU*****");	
		  printf("\n 1. PUSH IN STACK A");
		  printf("\n 2. PUSH IN STACK B");
		  printf("\n 3. POP FROM STACK A");
		  printf("\n 4. POP FROM STACK B");
		  printf("\n 5. DISPLAY STACK A");
		  printf("\n 6. DISPLAY STACK B");
		  printf("\n 7. EXIT");
		  printf("\n Enter your choice");
		  scanf("%d",&option);
		  switch(option)
		  {
			   case 1: printf("\n Enter the value to push on Stack A : ");
				    scanf("%d",&val);
				    pushA(val);
				    break;
			   case 2: printf("\n Enter the value to push on Stack B : ");
				    scanf("%d",&val);
				    pushB(val);
				    break;
			   case 3: val=popA();
				    if(val!=–999)
				       printf("\n The value popped from Stack A = %d",val);
				    break;
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			   case 4: val=popB();
				    if(val!=–999)
				       printf("\n The value popped from Stack B = %d",val);
				    break;
			   case 5: printf("\n The contents of Stack A are : \n");
				    display_stackA();
				    break;
			   case 6: printf("\n The contents of Stack B are : \n");
				    display_stackB();
				    break;
		  }
	 }while(option!=7);
	 getch();
}

	 Output
*****MAIN MENU*****
1. PUSH IN STACK A
2. PUSH IN STACK B
3. POP FROM STACK A
4. POP FROM STACK B 
5. DISPLAY STACK A
6. DISPLAY STACK B
7. EXIT
Enter your choice : 1
Enter the value to push on Stack A : 10
Enter the value to push on Stack A : 15
Enter your choice : 5
The content of Stack A are:
15	 10
Enter your choice : 4
UNDERFLOW
Enter your choice : 7

7.7  APPLICATIONS OF STACKS
In this section we will discuss typical problems where stacks can be easily applied for a simple 
and efficient solution. The topics that will be discussed in this section include the following:
	 ∑	 Reversing a list
	 ∑	 Parentheses checker
	 ∑	 Conversion of an infix expression into a postfix expression
	 ∑	 Evaluation of a postfix expression
	 ∑	 Conversion of an infix expression into a prefix expression
	 ∑	 Evaluation of a prefix expression
	 ∑	 Recursion
	 ∑	 Tower of Hanoi

7.7.1  Reversing a List
A list of numbers can be reversed by reading each number from an array starting from the first 
index and pushing it on a stack. Once all the numbers have been read, the numbers can be popped 
one at a time and then stored in the array starting from the first index.

Programming Example

4.	 Write a program to reverse a list of given numbers.
#include <stdio.h>
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#include <conio.h>
int stk[10];
int top=–1;
int pop();
void push(int);
int main()
{
	 int val, n, i,
	 arr[10];
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements of the array : ");
	 for(i=0;i<n;i++)
		  scanf("%d", &arr[i]);
	 for(i=0;i<n;i++)
		  push(arr[i]);
	 for(i=0;i<n;i++)
	 {
		  val = pop();
		  arr[i] = val;
	 }
	 printf("\n The reversed array is : ");
	 for(i=0;i<n;i++)
		  printf("\n %d", arr[i]);
	 getche"();
	 return 0;
}
void push(int val)
{
	 stk[++top] = val;
}
int pop()
{
	 return(stk[top––]);
}

	 Output
Enter the number of elements in the array : 5
Enter the elements of the array : 1 2 3 4 5
The reversed array is : 5 4 3 2 1

7.7.2  Implementing Parentheses Checker
Stacks can be used to check the validity of parentheses in any algebraic expression. For example, 
an algebraic expression is valid if for every open bracket there is a corresponding closing bracket. 
For example, the expression (A+B} is invalid but an expression {A + (B – C)} is valid. Look at 
the program below which traverses an algebraic expression to check for its validity.

Programming Example

5.	 Write a program to check nesting of parentheses using a stack.
#include <stdio.h>
#include <conio.h>
#include <string.h>
#define MAX 10
int top = –1;
int stk[MAX];
void push(char);
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char pop();
void main()
{
	 char exp[MAX],temp;
	 int i, flag=1;
	 clrscr();
	 printf("Enter an expression : ");
	 gets(exp);
	 for(i=0;i<strlen(exp);i++)
	 {
		  if(exp[i]=='(' || exp[i]=='{' || exp[i]=='[')
			   push(exp[i]);
		  if(exp[i]==’)’ || exp[i]==’}’ || exp[i]==’]’)
			   if(top == –1)
				    flag=0;
			   else
			   {
				    temp=pop();
				    if(exp[i]==')' && (temp=='{' || temp=='['))
					     flag=0;
				    if(exp[i]=='}' && (temp=='(' || temp=='['))
					     flag=0;
				    if(exp[i]==']' && (temp=='(' || temp=='{'))
					     flag=0;
			   }
	 }
	 if(top>=0)
		  flag=0;
	 if(flag==1)
		  printf("\n Valid expression");
	 else
		  printf("\n Invalid expression");
}
void push(char c)
{
	 if(top == (MAX–1))
		  printf("Stack Overflow\n");
	 else
	 {
		  top=top+1;
		  stk[top] = c;
	 }
}
char pop()
{
	 if(top == –1)
		  printf("\n Stack Underflow");
	 else
		  return(stk[top––]);
}

	 Output
Enter an expression : (A + (B – C))
Valid Expression

7.7.3 E valuation of Arithmetic Expressions

Polish Notations
Infix, postfix, and prefix notations are three different but equivalent notations of writing algebraic 
expressions. But before learning about prefix and postfix notations, let us first see what an 
infix notation is. We all are familiar with the infix notation of writing algebraic expressions. 
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While writing an arithmetic expression using infix notation, the operator is placed in between 
the operands. For example, A+B; here, plus operator is placed between the two operands 
A and B. Although it is easy for us to write expressions using infix notation, computers find it difficult 
to parse as the computer needs a lot of information to evaluate the expression. Information is 
needed about operator precedence and associativity rules, and brackets which override these rules. 
So, computers work more efficiently with expressions written using prefix and postfix notations.
	 Postfix notation was developed by Jan Łukasiewicz who was a Polish logician, mathematician, 
and philosopher. His aim was to develop a parenthesis-free prefix notation (also known as Polish 
notation) and a postfix notation, which is better known as Reverse Polish Notation or RPN.
	 In postfix notation, as the name suggests, the operator is placed after the operands. For example, 
if an expression is written as A+B in infix notation, the same expression can be written as AB+ in 
postfix notation. The order of evaluation of a postfix expression is always from left to right. Even 
brackets cannot alter the order of evaluation.
	 The expression (A + B) * C can be written as:

[AB+]*C

AB+C* in the postfix notation
A postfix operation does not even follow the rules of 
operator precedence. The operator which occurs first in the 
expression is operated first on the operands. For example, 
given a postfix notation AB+C*. While evaluation, addition 
will be performed prior to multiplication.
  Thus we see that in a postfix notation, operators are 
applied to the operands that are immediately left to them. 
In the example, AB+C*, + is applied on A and B, then * is 
applied on the result of addition and C.
  Although a prefix notation is also evaluated from left to 
right, the only difference between a postfix notation and a 
prefix notation is that in a prefix notation, the operator is 

placed before the operands. For example, if A+B is an expression in infix notation, then the 
corresponding expression in prefix notation is given by +AB.
	 While evaluating a prefix expression, the operators are applied to the operands that are 
present immediately on the right of the operator. Like postfix, prefix expressions also do not 
follow the rules of operator precedence and associativity, and even brackets cannot alter the order 
of evaluation.

Conversion of an Infix Expression into a Postfix Expression
Let I be an algebraic expression written in infix notation. 
I may contain parentheses, operands, and operators. For 
simplicity of the algorithm we will use only +, –, *, /, % 
operators. The precedence of these operators can be given 
as follows:
	 Higher priority *, /, %
	 Lower priority +, –
  No doubt, the order of evaluation of these operators can 
be changed by making use of parentheses. For example, if 
we have an expression A + B * C, then first B * C will be done 
and the result will be added to A. But the same expression 
if written as, (A + B) * C, will evaluate A + B first and then 
the result will be multiplied with C.

Example 7.1  Convert the following 
infix expressions into postfix expressions.
Solution
(a) (A–B) * (C+D)
	 [AB–] * [CD+]
	 AB–CD+*

(b) (A + B) / (C + D) – (D * E)
	 [AB+] / [CD+] – [DE*]
	 [AB+CD+/] – [DE*]
	 AB+CD+/DE*–

Example 7.2  Convert the following 
infix expressions into prefix expressions.
Solution
(a) (A + B) * C
	 (+AB)*C
	 *+ABC
(b) (A–B) * (C+D)
	 [–AB] * [+CD]
	 *–AB+CD
(c) (A + B) / ( C + D) – ( D * E)
	 [+AB] / [+CD] – [*DE]
	 [/+AB+CD] – [*DE]
	 –/+AB+CD*DE
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	 The algorithm given below transforms an infix expression into postfix expression, as shown 
in Fig. 7.22. The algorithm accepts an infix expression that may contain operators, operands, 
and parentheses. For simplicity, we assume that the infix operation contains only modulus (%), 
multiplication (*), division (/), addition (+), and subtraction (―) operators and that operators with 
same precedence are performed from left-to-right.
	 The algorithm uses a stack to temporarily hold operators. The postfix expression is obtained 
from left-to-right using the operands from the infix expression and the operators which are removed 
from the stack. The first step in this algorithm is to push a left parenthesis on the stack and to add 
a corresponding right parenthesis at the end of the infix expression. The algorithm is repeated 
until the stack is empty.

Step 1: Add ) to the end of the infix expression

Step 2: Push ( on to the stack

Step 3: Repeat until each character in the infix notation is scanned

IF a ( is encountered, push it on the stack

IF an operand (whether a digit or a character) is encountered, add it

postfix expression.

IF a ) is encountered, then

a. Repeatedly pop from stack and add it to the postfix expression until a

( is encountered.

b. Discard the ( . That is, remove the ( from stack and do not

add it to the postfix expression

IF an operator is encountered, then

a. Repeatedly pop from stack and add each operator (popped from the stack) to the

postfix expression which has the same precedence or a higher precedence than

b. Push the operator to the stack

[END OF IF]

Step 4: Repeatedly pop from the stack and add it to the postfix expression until the stack is empty

Step 5: EXIT

" "

" "

" "

" "

" "

" " " "

to the

Figure 7.22  Algorithm to convert an infix notation to postfix notation

Solution

Infix Character  
Scanned

Stack Postfix Expression

(
A ( A
– ( – A
( ( – ( A
B ( – ( A B
/ ( – ( / A B
C ( – ( / A B C
+ ( – ( + A B C /
( ( – ( + ( A B C /
D ( – ( + ( A B C / D
% ( – ( + ( % A B C / D
E ( – ( + ( % A B C / D E
* ( – ( + ( % * A B C / D E
F ( – ( + ( % * A B C / D E F
) ( – ( + A B C / D E F * %
/ ( – ( + / A B C / D E F * %
G ( – ( + / A B C / D E F * % G
) ( – A B C / D E F * % G / +
* ( – * A B C / D E F * % G / + 
H ( – * A B C / D E F * % G / + H
) A B C / D E F * % G / + H * –

Example 7.3  Convert the following infix 
expression into postfix expression using the 
algorithm given in Fig. 7.22.
(a) A – (B / C + (D % E * F) / G)* H
(b) A – (B / C + (D % E * F) / G)* H)

Programming Example

6.	 Write a program to convert an infix 
expression into its equivalent postfix 
notation.
#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#include <string.h>
#define MAX 100
char st[MAX];
int top=–1;
void push(char st[], char);
char pop(char st[]);
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void InfixtoPostfix(char source[], char target[]);
int getPriority(char);
int main()
{
	 char infix[100], postfix[100];
	 clrscr();
	 printf("\n Enter any infix expression : ");
	 gets(infix);
	 strcpy(postfix, "");
	 InfixtoPostfix(infix, postfix);
	 printf("\n The corresponding postfix expression is : ");
	 puts(postfix);
	 getch();
	 return 0;
}
void InfixtoPostfix(char source[], char target[])
{
	 int i=0, j=0;
	 char temp;
	 strcpy(target, "");
	 while(source[i]!='\0')
	 {
		  if(source[i]=='(')
		  {
			   push(st, source[i]);
			   i++;
		  }
		  else if(source[i] == ')')
		  {
			   while((top!=–1) && (st[top]!='('))
			   {
				    target[j] = pop(st);
				    j++;
			   }
			   if(top==–1)
			   {
				    printf("\n INCORRECT EXPRESSION");
				    exit(1);
			   }
			   temp = pop(st);//remove left parenthesis
			   i++;
		  }
		  else if(isdigit(source[i]) || isalpha(source[i]))
		  {
			   target[j] = source[i];
			   j++;
			   i++;
		  }
		  else if (source[i] == '+' || source[i] == '–' || source[i] == '*' || 
source[i] == '/' || source[i] == '%')
		  {
			   while( (top!=–1) && (st[top]!= '(') && (getPriority(st[top]) 
> getPriority(source[i])))
			   {
				    target[j] = pop(st);
				    j++;
			   }
			   push(st, source[i]);
			   i++;
		  }
		  else
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		  {
			   printf("\n INCORRECT ELEMENT IN EXPRESSION");
			   exit(1);
		  }
	 }
	 while((top!=–1) && (st[top]!='('))
	 {
		  target[j] = pop(st);
		  j++;
	 }
	 target[j]='\0';
}
int getPriority(char op)
{
	 if(op=='/' || op == '*' || op=='%')
		  return 1;
	 else if(op=='+' || op=='–')
		  return 0;
}
void push(char st[], char val)
{
	 if(top==MAX–1)
		  printf("\n STACK OVERFLOW");
	 else
	 {
		  top++;
		  st[top]=val;
	 }
}
char pop(char st[])
{
	 char val=' ';
	 if(top==–1)
		  printf("\n STACK UNDERFLOW");
	 else
	 {
		  val=st[top];
		  top––;
	 }
	 return val;
}

	 Output
Enter any infix expression : A+B–C*D
The corresponding postfix expression is : AB+CD*–

Evaluation of a Postfix Expression
The ease of evaluation acts as the driving force for computers to translate an infix notation into 
a postfix notation. That is, given an algebraic expression written in infix notation, the computer 
first converts the expression into the equivalent postfix notation and then evaluates the postfix 
expression.
	 Both these tasks—converting the infix notation into postfix notation and evaluating the postfix 
expression—make extensive use of stacks as the primary tool.
	 Using stacks, any postfix expression can be evaluated very easily. Every character of the postfix 
expression is scanned from left to right. If the character encountered is an operand, it is pushed 
on to the stack. However, if an operator is encountered, then the top two values are popped from 
the stack and the operator is applied on these values. The result is then pushed on to the stack. 
Let us look at Fig. 7.23 which shows the algorithm to evaluate a postfix expression.
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Figure 7.23  Algorithm to evaluate a postfix expression

  Let us now take an example that makes use of this algorithm. Consider the infix expression 
given as 9 – ((3 * 4) + 8) / 4.  Evaluate the expression.
  The infix expression 9 – ((3 * 4) + 8) / 4 can be written as 9 3 4 * 8 + 4 / – using postfix 
notation. Look at Table 7.1, which shows the procedure.

Programming Example

7.	 Write a program to evaluate a postfix expression.
#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#define MAX 100
float st[MAX];
int top=–1;
void push(float st[], float val);
float pop(float st[]);
float evaluatePostfixExp(char exp[]);
int main()
{
	 float val;
	 char exp[100];
	 clrscr();
	 printf("\n Enter any postfix expression : ");
	 gets(exp);
	 val = evaluatePostfixExp(exp);
	 printf("\n Value of the postfix expression = %.2f", val);
	 getch();
	 return 0;
}
float evaluatePostfixExp(char exp[])
{
	 int i=0;
	 float op1, op2, value;
	 while(exp[i] != '\0')
	 {
		  if(isdigit(exp[i]))

Table 7.1  Evaluation of a postfix expression

Character Scanned Stack

9 9

3 9, 3

4 9, 3, 4

* 9, 12

8 9, 12, 8

+ 9, 20

4 9, 20, 4

/ 9, 5

– 4
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			   push(st, (float)(exp[i]–'0'));
		  else
		  {
			   op2 = pop(st);
			   op1 = pop(st);
			   switch(exp[i])
			   {
				    case '+':
					     value = op1 + op2;
					     break;
				    case '–':
					     value = op1 – op2;
					     break;
				    case '/':
					     value = op1 / op2;
					     break;
				    case '*':
					     value = op1 * op2;
					     break;
				    case '%':
     value = (int)op1 % (int)op2;
     break;
			   }
			   push(st, value);
		  }
		  i++;
	 }
	 return(pop(st));
}
void push(float st[], float val)
{
	 if(top==MAX–1)
		  printf("\n STACK OVERFLOW");
	 else
	 {
		  top++;
		  st[top]=val;
	 }
}
float pop(float st[])
{
	 float val=–1;
	 if(top==–1)
		  printf("\n STACK UNDERFLOW");
	 else
	 {
		  val=st[top];
		  top––;
	 }
	 return val;
}

	 Output
Enter any postfix expression : 9 3 4 * 8 + 4 / –
Value of the postfix expression = 4.00

Conversion of an Infix Expression into a Prefix Expression
There are two algorithms to convert an infix expression into its equivalent prefix expression. The 
first algorithm is given in Fig. 7.24, while the second algorithm is shown in Fig. 7.25.

Figure 7.24  Algorithm to convert an 
expression
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			   push(st, (float)(exp[i]–'0'));
		  else
		  {
			   op2 = pop(st);
			   op1 = pop(st);
			   switch(exp[i])
			   {
				    case '+':
					     value = op1 + op2;
					     break;
				    case '–':
					     value = op1 – op2;
					     break;
				    case '/':
					     value = op1 / op2;
					     break;
				    case '*':
					     value = op1 * op2;
					     break;
				    case '%':
					     value = (int)op1 % (int)op2;
					     break;
			   }
			   push(st, value);
		  }
		  i++;
	 }
	 return(pop(st));
}
void push(float st[], float val)
{
	 if(top==MAX–1)
		  printf("\n STACK OVERFLOW");
	 else
	 {
		  top++;
		  st[top]=val;
	 }
}
float pop(float st[])
{
	 float val=–1;
	 if(top==–1)
		  printf("\n STACK UNDERFLOW");
	 else
	 {
		  val=st[top];
		  top––;
	 }
	 return val;
}

	 Output
Enter any postfix expression : 9 3 4 * 8 + 4 / –
Value of the postfix expression = 4.00

Conversion of an Infix Expression into a Prefix Expression
There are two algorithms to convert an infix expression into its equivalent prefix expression. The 
first algorithm is given in Fig. 7.24, while the second algorithm is shown in Fig. 7.25.

Step 1: Scan each character in the infix

expression. For this, repeat Steps

2-8 until the end of infix expression

Step 2: Push the operator into the operator

operand into the operand stack,

all the left parentheses

right parenthesis is encountered

Step 3: Pop operand 2 from operand stack

Step 4: Pop operand 1 from operand stack

Step 5: Pop operator from operator stack

Step 6: Concatenate operator and operand 1

Step 7: Concatenate result with operand 2

Step 8: Push result into the operand stack

Step 9: END

stack,

and

ignore until

a

Figure 7.24  Algorithm to convert an infix expression into prefix 
expression

  The corresponding prefix expression is 
obtained in the operand stack.
  For example, given an infix expression (A – B 
/ C) * (A / K – L)
Step 1: Reverse the infix string. Note that while 
reversing the string you must interchange left 
and right parentheses.

(L – K / A) * (C / B – A)

Step 2: Obtain the corresponding postfix 
expression of the infix expression obtained as 
a result of Step 1.
The expression is: (L – K / A) * (C / B – A)
Therefore, [L – (K A /)] * [(C B /) – A]

	 = [LKA/–] * [CB/A–]

	 = L K A / – C B / A – *

Step 3: Reverse the postfix expression to get the 
prefix expression
Therefore, the prefix expression is * – A / B 
C – /A K L

Programming Example

8.	 Write a program to convert an infix expression to a prefix expression.
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <ctype.h>
#define MAX 100
char st[MAX];
int top=–1;
void reverse(char str[]);
void push(char st[], char);
char pop(char st[]);
void InfixtoPostfix(char source[], char target[]);
int getPriority(char);
char infix[100], postfix[100], temp[100];
int main()
{
	 clrscr();
	 printf("\\n Enter any infix expression : ");
	 gets(infix);
	 reverse(infix);
	 strcpy(postfix, "");
	 InfixtoPostfix(temp, postfix);
	 printf("\n The corresponding postfix expression is : ");
	 puts(postfix);
	 strcpy(temp,"");
	 reverse(postfix);

Step 1: Reverse the infix string. Note that

reversing the string you must

left and right parentheses.

Step 2: Obtain the postfix

infix expression Step 1.

Step 3: Reverse the postfix expression to get

prefix expression

while

interchange

the

expression of the

obtained in

Figure 7.25  Algorithm to convert an infix expression into 
prefix expression
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	 printf("\n The prefix expression is : \n");
	 puts(temp);
	 getch();
	 return 0;
}
void reverse(char str[])
{
	 int len, i=0, j=0;
	 len=strlen(str);
	 j=len–1;
	 while(j>= 0)
	 {
		  if (str[j] == '(')
		          temp[i] = ')';
		  else    if ( str[j] == ')')
		          temp[i] = '(';
		  else
		          temp[i] = str[j];
		  i++,    j––;
	 }
	 temp[i] = '\0';
}
void InfixtoPostfix(char source[], char target[])
{
	 int i=0, j=0;
	 char temp;
	 strcpy(target, "");
	 while(source[i]!= '\0')
	 {
		  if(source[i]=='(')
		  {
			   push(st, source[i]);
			   i++;
		  }
		  else if(source[i] == ')')
		  {
			   while((top!=–1) && (st[top]!='('))
			   {
				    target[j] = pop(st);
				    j++;
			   }
			   if(top==–1)
			   {
				    printf("\n INCORRECT EXPRESSION");
				    exit(1);
			   }
			   temp = pop(st); //remove left parentheses
			   i++;
		  }
		  else if(isdigit(source[i]) || isalpha(source[i]))
		  {
			   target[j] = source[i];
			   j++;
			   i++;
		  }
		  else if( source[i] == '+' || source[i] == '–' || source[i] == '*' || 
source[i] == '/' || source[i] == '%')
		  {
			   while( (top!=–1) && (st[top]!= '(') && (getPriority(st[top]) 
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> getPriority(source[i])))
			   {
				    target[j] = pop(st);
				    j++;
			   }
			   push(st, source[i]);
			   i++;
		  }
		  else
		  {
			   printf("\n INCORRECT ELEMENT IN EXPRESSION");
			   exit(1);
		  }
	 }
	 while((top!=–1) && (st[top]!='('))
	 {
		  target[j] = pop(st);
		  j++;
	 }
	 target[j]='\0';
}
int getPriority( char op)
{
	 if(op=='/' || op == '*' || op=='%')
		  return 1;
	 else if(op=='+' || op=='–')
		  return 0;
}
void push(char st[], char val)
{
	 if(top==MAX–1)
		  printf("\n STACK OVERFLOW");
	 else
	 {
		  top++;
		  st[top] = val;
	 }
 }
char pop(char st[])
{
	 char val=' ';
	 if(top==–1)
		  printf("\n STACK UNDERFLOW");
	 else
	 {
		  val=st[top];
		  top––;
	 }
	 return val;
}

	 Output
Enter any infix expression : A+B–C*D
The corresponding postfix expression is : AB+CD*–
The prefix expression is : –+AB*CD

Evaluation of a Prefix Expression
There are a number of techniques for evaluating a prefix expression. The simplest way of evaluation 
of a prefix expression is given in Fig. 7.26.
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  For example, consider the prefix expression + – 9 
2 7 * 8 / 4 12. Let us now apply the algorithm to 
evaluate this expression.

Programming Example

9.  Write a program to evaluate a prefix expression.
#include <stdio.h>
#include <conio.h>
#include <string.h>
int stk[10];
int top=–1;
int pop();
void push(int);
int main()
{

	 char prefix[10];
	 int len, val, i, opr1, opr2, res;
	 clrscr();
	 printf("\n Enter the prefix expression : ");
	 gets(prefix);
	 len = strlen(prefix);

              for(i=len–1;i>=0;i––)
              {
		  switch(get_type(prefix[i]))
		  {
			   case 0:
				    val = prefix[i] – '0';
				    push(val);
				    break;
			   case 1:
			    	 opr1 = pop();
			    	 opr2 = pop();
			    	 switch(prefix[i])
			    	 {
			    		  case '+': 
			    			   res = opr1 + opr2;

			    							       break;
			    						      case '–': 
			    							       res = opr1 – opr2;
							        			   break;
							        		  case '*': 
							        			   res = opr1 * opr2;
							        		   	 break;
							        		  case '/': 
							        			   res = opr1 / opr2;
							        			   break;
								        }
							        	 push(res);
						      }
					     }
					     printf("\n RESULT = %d", stk[0]);
					     getche();
					     return 0;
					     }
					     void push(int val)
					     {
						      stk[++top] = val;

Figure 7.26  Algorithm for evaluation of a prefix 
expression

Character scanned Operand stack

12 12

4 12, 4

/ 3 

8 3, 8

* 24

7 24, 7

2 24, 7, 2

– 24, 5

+ 29
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}
int pop()
{
	 return(stk[top––]);
}
int get_type(char c)
{
	 if(c == '+' || c == '–' || c == '*' || c == '/')
		  return 1;
	 else return 0;
}

	 Output
Enter the prefix expression : +–927
RESULT = 14

7.7.4  Recursion
In this section we are going to discuss recursion which is an implicit application of the STACK ADT.
	 A recursive function is defined as a function that calls itself to solve a smaller version of its 
task until a final call is made which does not require a call to itself. Since a recursive function 
repeatedly calls itself, it makes use of the system stack to temporarily store the return address and 
local variables of the calling function. Every recursive solution has two major cases. They are
	 ∑	 Base case, in which the problem is simple enough to be solved directly without making any 

further calls to the same function.
	 ∑	 Recursive case, in which first the problem at hand is divided into simpler sub-parts. Second 

the function calls itself but with sub-parts of the problem obtained in the first step. Third, the 
result is obtained by combining the solutions of simpler sub-parts. 

	 Therefore, recursion is defining large and complex problems in terms of smaller and more 
easily solvable problems. In recursive functions, a complex problem is defined in terms of simpler 
problems and the simplest problem is given explicitly. 
	 To understand recursive functions, let us take an example of calculating factorial of a number. 
To calculate n!, we multiply the number with factorial of the number that is 1 less than that number. 
In other words, n! = n ¥ (n–1)!
	 Let us say we need to find the value of 5!

5! = 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1
   = 120

This can be written as
5! = 5 ¥ 4!, where 4!= 4 ¥ 3!

Therefore,
5! = 5 ¥ 4 ¥ 3!

Similarly, we can also write,
5! = 5 ¥ 4 ¥ 3 ¥ 2!

Expanding further
5! = 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1!

We know, 1! = 1
  The series of problems and solutions can be given as 
shown in Fig. 7.27.
  Now if you look at the problem carefully, you can see 
that we can write a recursive function to calculate the 

5!

= 5 4!

= 5 4 3!

= 5 4 3 2!

= 5 4 3 2 1!

PROBLEM

¥
¥ ¥
¥ ¥ ¥
¥ ¥ ¥ ¥

5 4 3 2 1!

= 5 4 3 2 1

= 5 4 3 2

= 5 4 6

= 5 24

= 12

SOLUTION

¥ ¥ ¥ ¥
¥ ¥ ¥ ¥
¥ ¥ ¥
¥ ¥
¥

Figure 7.27  Recursive factorial function 
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factorial of a number. every recursive function must have a base case and a recursive case. For 
the factorial function, 

∑	 Base case is when n = 1, because if n = 1, the result will be 1 as  
1! = 1.

∑	 Recursive case of the factorial function will call itself but with a 
smaller value of n, this case can be given as
factorial(n) = n × factorial (n–1)

  Look at the following program which calculates the factorial of a 
number recursively.

Programming Example

10.	 Write a program to calculate the factorial of a given number.
#include <stdio.h>
int Fact(int);	 // FUNCTION DECLARATION
int main()
{
	 int num, val;
	 printf("\n Enter the number: ");
	 scanf("%d", &num);
	 val = Fact(num);
	 printf("\n Factorial of %d = %d", num, val);
	 return 0;
}
int Fact(int n)	
{
	 if(n==1)
		  return 1;
	 else
	 return (n * Fact(n–1));	
}

	 Output
Enter the number : 5
Factorial of 5 = 120

From the above example, let us analyse the steps of a recursive program.
Step 1:	 Specify the base case which will stop the function from making a call to itself.
Step 2:	 Check to see whether the current value being processed matches with the value of the 

base case. If yes, process and return the value. 
Step 3:	 Divide the problem into smaller or simpler sub-problems. 
Step 4:	 Call the function from each sub-problem. 
Step 5:	 Combine the results of the sub-problems. 
Step 6:	 Return the result of the entire problem.

Greatest Common Divisor
The greatest common divisor of two numbers (integers) is the largest integer that divides both 
the numbers. We can find the GCD of two numbers recursively by using the Euclid’s algorithm 
that states

GCD (a, b) = 
b, if b divides a
GCD (b, a mod b), otherwise

GCD can be implemented as a recursive function because if b does not divide a, then we call 
the same function (GCD) with another set of parameters that are smaller than the original ones. 

Programming Tip

Every recursive function must 
have at least one base case. 
Otherwise, the recursive function 
will generate an infinite sequence 
of calls, thereby resulting in an 
error condition known as an 
infinite stack.
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Here we assume that a > b. However if a < b, then interchange a and b in the formula given above.

Working
Assume a = 62 and b = 8
GCD(62, 8)
	 rem = 62 % 8 = 6
	 GCD(8, 6)
		  rem = 8 % 6 = 2
		  GCD(6, 2)
			   rem = 6 % 2 = 0
		  Return 2
	 Return 2

Return 2

Programming Example	
11.	 Write a program to calculate the GCD of two numbers using recursive functions.

#include <stdio.h>
int GCD(int, int);	
int main()
{
	 int num1, num2, res;
	 printf("\n Enter the two numbers: ");
	 scanf("%d %d", &num1, &num2);
	 res = GCD(num1, num2);	  
	 printf("\n GCD of %d and %d = %d", num1, num2, res);
	 return 0;
}

int GCD(int x, int y)	
{
	 int rem;
	 rem = x%y;
	 if(rem==0)
		  return y;
	 else
		  return (GCD(y, rem));	
}

	 Output
Enter the two numbers : 8 12
GCD of 8 and 12 = 4

Finding Exponents
We can also find exponent of a number using recursion. To find xy, the base case would be when 
y=0, as we know that any number raised to the power 0 is 1. Therefore, the general formula to 
find xy can be given as

EXP (x, y) = 
1, if y == 0
x × EXP (x y–1), otherwise

Working
exp_rec(2, 4) = 2 × exp_rec(2, 3)
	  exp_rec(2, 3) = 2 × exp_rec(2, 2)
		  exp_rec(2, 2) 2 × exp_rec(2, 1)
			   exp_rec(2, 1) = 2 × exp_rec(2, 0)
				    exp_rec(2, 0) = 1
			   exp_rec(2, 1) = 2 × 1 = 2
		  exp_rec(2, 2) = 2 × 2 = 4
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	 exp_rec(2, 3) = 2 × 4 = 8
exp_rec(2, 4) = 2 × 8 = 16

Programming Example	
12.	 Write a program to calculate exp(x,y) using recursive functions.

#include <stdio.h>
int exp_rec(int, int);
int main()
{
	 int num1, num2, res;
	 printf("\n Enter the two numbers: ");
	 scanf("%d %d", &num1, &num2);
	 res = exp_rec(num1, num2);
	 printf ("\n RESULT = %d", res); 
	 return 0;
}
int exp_rec(int x, int y)
{
	 if(y==0)
		  return 1;
	 else
		  return (x * exp_rec(x, y–1));
}

	 Output
Enter the two numbers : 3 4
RESULT = 81

The Fibonacci Series
The Fibonacci series can be given as

0 1 1 2 3 5 8 13 21 34 55 ……

That is, the third term of the series is the sum of the first and second terms. Similarly, fourth term 
is the sum of second and third terms, and so on. Now we will design a recursive solution to find 
the nth term of the Fibonacci series. The general formula to do so can be given as
	 As per the formula, FIB(0) =0 and FIB(1) = 1. So we have two base cases. This is necessary 
because every problem is divided into two smaller problems.

FIB (n) = 
0, if n = 0
1, if n = 1 
FIB (n – 1) + FIB(n – 2), otherwise

Programming Example

13.	 Write a program to print the Fibonacci series using recursion.
#include <stdio.h>
int Fibonacci(int);
int main()
{
	 int n, i = 0, res;
	 printf("Enter the number of terms\n");
	 scanf("%d",&n);
	 printf("Fibonacci series\n");
	 for(i = 0; i < n; i++ )
	 {
		  res = Fibonacci(i);



Stacks  247

		  printf("%d\t",res);
	 }
	 return 0;
}
int Fibonacci(int n)
{
	 if ( n == 0 )
		  return 0;
	 else if ( n == 1 )
		  return 1;
	 else
		  return ( Fibonacci(n–1) + Fibonacci(n–2) );
} 

	 Output
Enter the number of terms
Fibonacci series
   0	 1	 1	 2	 3

Types of Recursion
Recursion is a technique that breaks a problem into one or more sub-problems that are similar to 
the original problem. Any recursive function can be characterized based on: 

∑	 whether the function calls itself directly or indirectly (direct 
or indirect recursion), 

∑	 whether any operation is pending at each recursive call (tail-
recursive or not), and 

∑	 the structure of the calling pattern (linear or tree-recursive). 

In this section, we will read about all these types of recursions.

Direct Recursion
A function is said to be directly recursiveif it explicitly calls itself. 
For example, consider the code shown in Fig. 7.28. Here, the function 
Func() calls itself for all positive values of n, so it is said to be a 
directly recursive function. 

Indirect Recursion
A function is said to be indirectly recursive if it contains a call to 
another function which ultimately calls it. Look at the functions given 
below. These two functions are indirectly recursive as they both call 
each other (Fig. 7.29). 

Tail Recursion
A recursive function is said to be tail recursive if no operations 
are pending to be performed when the recursive function returns 
to its caller. when the called function returns, the returned value 
is immediately returned from the calling function. Tail recursive 
functions are highly desirable because they are much more efficient 
to use as the amount of information that has to be stored on the system 
stack is independent of the number of recursive calls.
  In Fig. 7.30, the factorial function that we have written is a non-
tail-recursive function, because there is a pending operation of 
multiplication to be performed on return from each recursive call. 

int Func (int n)
{
    if (n == 0)
        return n;
    else
        return (Func (n–1));

}

Figure 7.28  Direct recursion

int Funcl (int n)
{
    if (n == 0)
        return n;
    else
        return Func2(n);
}
int Func2(int x)
{
      return Func1(x–1);
} 

Figure 7.29  Indirect recursion

int Fact(int n)
{
    if (n == 1)
        return 1;
    else
        return (n * Fact(n–1));
} 

Figure 7.30  Non-tail recursion
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  Whenever there is a pending operation to be performed, the function 
becomes non-tail recursive. In such a non-tail recursive function, 
information about each pending operation must be stored, so the 
amount of information directly depends on the number of calls. 
  However, the same factorial function can be written in a tail-
recursive manner as shown Fig. 7.31.
  In the code, Fact1 function preserves the syntax of Fact(n). Here 
the recursion occurs in the Fact1 function and not in Fact function. 
Carefully observe that Fact1 has no pending operation to be 
performed on return from recursive calls. The value computed by 
the recursive call is simply returned without any modification. So 

in this case, the amount of information to be stored on the system stack is constant (only the values 
of n and res need to be stored) and is independent of the number of recursive calls. 

Converting Recursive Functions to Tail Recursive
A non-tail recursive function can be converted into a tail-recursive function by using an auxiliary 
parameter as we did in case of the Factorial function. The auxiliary parameter is used to form the 
result. When we use such a parameter, the pending operation is incorporated into the auxiliary 
parameter so that the recursive call no longer has a pending operation. We generally use an 
auxiliary function while using the auxiliary parameter. This is done to keep the syntax clean and 
to hide the fact that auxiliary parameters are needed. 

Linear and Tree Recursion
Recursive functions can also be characterized 
depending on the way in which the recursion 
grows in a linear fashion or forming a tree 
structure (Fig. 7.32).
	In simple words, a recursive function is said 
to be linearly recursive when the pending 
operation (if any) does not make another 
recursive call to the function. For example, 
observe the last line of recursive factorial 
function. The factorial function is linearly 
recursive as the pending operation involves 
only multiplication to be performed and does 
not involve another recursive call to Fact. 
	On the contrary, a recursive function is 
said to be tree recursive (or non-linearly 
recursive) if the pending operation makes 
another recursive call to the function. For 
example, the Fibonacci function in which 
the pending operations recursively call the 
Fib onacci function. 

Tower of Hanoi 
The tower of Hanoi is one of the main 
applications of recursion. It says, ‘if you can 
solve n–1 cases, then you can easily solve 
the nth case’. 

int Fibonacci(int num)

{

if(num == )

return ;

else

return (Fibonacci(num - 1) + Fibonacci(num – 2));

}

else if (num == 1)

return 1;

Observe the series of function calls. When the function

pending operations in turn calls the function

Fibonacci(7) = Fibonacci(6) + Fibonacci(5)

Fibonacci(5) = Fibonacci(4) + Fibonacci(3)

Fibonacci(4) = Fibonacci(3) + Fibonacci(2)

Fibonacci(3) = Fibonacci(2) + Fibonacci(1)

Now we have, Fibonacci(2) = 1 + 0 = 1

Fibonacci(4) = 2 + 1 = 3

Fibonacci(5) = 3 + 2 = 5

Fibonacci(6) = 3 + 5 = 8

Fibonacci(7) = 5 + 8 = 13

returns, the

Fibonacci(6) = Fibonacci(5) + Fibonacci(4)

Fibonacci(2) = Fibonacci(1) + Fibonacci(0)

Fibonacci(3) = 1 + 1 = 2

Figure 7.32  Tree recursion

int Fact(n)
{
    return Fact1(n, 1);
}
int Fact1(int n, int res)
{
    if (n == 1)
        return res;
    else
      return Fact1(n–1, n*res);
}

Figure 7.31  Tail recursion
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  Look at Fig. 7.33 which shows three rings mounted on pole A. 
The problem is to move all these rings from pole A to pole C while 
maintaining the same order. The main issue is that the smaller disk 
must always come above the larger disk.
  We will be doing this using a spare pole. In our case, A is the 
source pole, C is the destination pole, and B is the spare pole. To 
transfer all the three rings from A to C, we will first shift the upper 
two rings (n–1 rings) from the source pole to the spare pole. We 
move the first two rings from pole A to B as shown in Fig. 7.34.
  Now that n–1 rings have been removed from pole A, the nth ring 
can be easily moved from the source pole (A) to the destination 
pole (C). Figure 7.35 shows this step.
  The final step is to move the n–1 rings from the spare pole (B) to 
the destination pole (C). This is shown in Fig. 7.36.
  To summarize, the solution to our problem of moving n rings 
from A to C using B as spare can be given as: 
Base case: if n=1 

  ∑  Move the ring from A to C using B as spare
Recursive case: 

  ∑  Move n – 1 rings from A to B using C as spare 
  ∑  Move the one ring left on A to C using B as spare
  ∑  Move n – 1 rings from B to C using A as spare 

	 The following code implements the solution of the tower of 
Hanoi problem.

#include <stdio.h>
int main()
{	

	 int n;
	 printf("\n Enter the number of rings: ");
	 scanf("%d", &n);
	 move(n,'A', 'C', 'B');
	 return 0;
}
void move(int n, char source, char dest, char spare)
{
	 if (n==1)
		  printf("\n Move from %c to %c",source,dest);
	 else
	 {
		  move(n–1,source,spare,dest);
		  move(1,source,dest,spare);
		  move(n–1,spare,dest,source);
	 }
}

Let us look at the tower of Hanoi problem in detail using the program given above. Figure 7.37 
on the next page explains the working of the program using one, then two, and finally three rings.

Recursion versus Iteration
Recursion is more of a top-down approach to problem solving in which the original problem is 
divided into smaller sub-problems. On the contrary, iteration follows a bottom-up approach that 
begins with what is known and then constructing the solution step by step. 
	 Recursion is an excellent way of solving complex problems especially when the problem can 
be defined in recursive terms. For such problems, a recursive code can be written and modified 
in a much simpler and clearer manner. 

A B C

Figure 7.33  Tower of Hanoi

A B C

Figure 7.34  Move rings from A to B 

A B C

Figure 7.35  Move ring from A to C

A B C

Figure 7.36  Move ring from B to C
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	 However, recursive solutions are not always the best solutions. In some cases, recursive programs 
may require substantial amount of run-time overhead. Therefore, when implementing a recursive 
solution, there is a trade-off involved between the time spent in constructing and maintaining the 
program and the cost incurred in running-time and memory space required for the execution of 
the program. 

(Step 2)

A B C

(Step 1)

A B C

(Step 3) (Step 4)

A AB BC C

(Step 1) (Step 2)

A AB BC C

(If there is only one ring,

then simply move the ring

from source to the destination.)

(If there are two rings, then first move ring 1 to the spare

pole and then move ring 2 from source to the destination.

Finally move ring 1 from spare to the destination.)

(Consider the working with three rings.)

(Step 5) (Step 6) (Step 7) (Step 8)

A B C CBA A AB BC C

(Step 1) (Step 2) (Step 3) (Step 4)

A B C CBA A AB BC C

Figure 7.37  Working of Tower of Hanoi with one, two, and three rings

	 Whenever a recursive function is called, some amount of overhead in the form of a run time 
stack is always involved. Before jumping to the function with a smaller parameter, the original 
parameters, the local variables, and the return address of the calling function are all stored on 
the system stack. Therefore, while using recursion a lot of time is needed to first push all the 
information on the stack when the function is called and then again in retrieving the information 
stored on the stack once the control passes back to the calling function. 
	 To conclude, one must use recursion only to find solution to a problem for which no obvious 
iterative solution is known. To summarize the concept of recursion, let us briefly discuss the pros 
and cons of recursion.
	 The advantages of using a recursive program include the following:
	 ∑	 Recursive solutions often tend to be shorter and simpler than non-recursive ones.
	 ∑	 Code is clearer and easier to use. 
	 ∑	 Recursion works similar to the original formula to solve a problem. 
	 ∑	 Recursion follows a divide and conquer technique to solve problems.
	 ∑	 In some (limited) instances, recursion may be more efficient.
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	The drawbacks/disadvantages of using a recursive program include the following:
	 ∑	 For some programmers and readers, recursion is a difficult concept. 
	 ∑	 Recursion is implemented using system stack. If the stack space on the system is limited, 

recursion to a deeper level will be difficult to implement. 
	 ∑	 Aborting a recursive program in midstream can be a very slow process. 
	 ∑	 Using a recursive function takes more memory and time to execute as compared to its non-

recursive counterpart. 
	 ∑	 It is difficult to find bugs, particularly while using global variables. 
The advantages of recursion pay off for the extra overhead involved in terms of time and space 
required. 

 Points to Remember
∑	 A stack is a linear data structure in which elements 

are added and removed only from one end, which 
is called the top. Hence, a stack is called a LIFO 
(Last-In, First-Out) data structure as the element 
that is inserted last is the first one to be taken out.

∑	 In the computer’s memory, stacks can be implemented 
using either linked lists or single arrays.

∑	 The storage requirement of linked representation of 
stack with n elements is O(n) and the typical time 
requirement for operations is O(1).

∑	 Infix, prefix, and postfix notations are three different 
but equivalent notations of writing algebraic expres-
sions.

∑	 In postfix notation, operators are placed after the 
operands, whereas in prefix notation, operators are 

placed before the operands.
∑	 Postfix notations are evaluated using stacks. Every 

character of the postfix expression is scanned from 
left to right. If the character is an operand, it is 
pushed onto the stack. Else, if it is an operator, then 
the top two values are popped from the stack and 
the operator is applied on these values. The result 
is then pushed onto the stack.

∑	 Multiple stacks means to have more than one stack 
in the same array of sufficient size.

∑	 A recursive function is defined as a function that calls 
itself to solve a smaller version of its task until a final 
call is made which does not require a call to itself. 
They are implmented using system stack.

 Exercises
Review Questions

	 1.	 What do you understand by stack overflow and 
underflow?

	 2.	 Differentiate between an array and a stack.
	 3.	 How does a stack implemented using a linked list 

differ from a stack implemented using an array?
	 4.	 Differentiate between peek() and pop() functions.
	 5.	 Why are parentheses not required in postfix/prefix 

expressions?
	 6.	 Explain how stacks are used in a non-recursive 

program?
	 7.	 What do you understand by a multiple stack? How 

is it useful?
	 8.	 Explain the terms infix expression, prefix 

expression, and postfix expression. Convert 
the following infix expressions to their postfix 
equivalents:

	 (a)	 A – B + C	 (b)	 A * B + C / D
	 (c)	 (A – B ) + C * D / E – C
	 (d)	 (A * B) + (C / D) – ( D + E)
	 (e)	 ((A – B) + D / ((E + F) * G))
	 (f)	 ( A – 2 * (B + C) / D * E) + F
	 (g)	 14 / 7 * 3 – 4 + 9 / 2
	 9.	 Convert the following infix expressions to their 

postfix equivalents:
	 (a)	 A – B + C	 (b)	 A * B + C / D
	 (c)	 (A – B ) + C * D / E – C
	 (d)	 (A * B) + (C / D) – ( D + E)
	 (e)	 ((A – B) + D / ((E + F) * G))
	 (f)	 ( A – 2 * (B + C) / D * E) + F
	 (g)	 14 / 7 * 3 – 4 + 9 / 2
	 10.	 Find the infix equivalents of the following postfix 

equivalents:
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	 (a)	 A B + C * D –	 (b)	 ABC * + D –
	 11.	 Give the infix expression of the following prefix 

expressions.
	 (a)	 * – + A B C D	 (b)	 + – a * B C D
	 12.	 Convert the expression given below into its 

corresponding postfix expression and then evaluate 
it. Also write a program to evaluate a postfix 
expression.

		  10 + ((7 – 5) + 10)/2
	 13.	 Write a function that accepts two stacks. Copy the 

contents of first stack in the second stack. Note that 
the order of elements must be preserved.

		  (Hint: use a temporary stack)
	 14.	 Draw the stack structure in each case when the following 

operations are performed on an empty stack.
	 (a)	 Add A, B, C, D, E, F	 (b)	Delete two letters
	 (c)	 Add G	 (d)	Add H
	 (e)	 Delete four letters	 (f)	Add I
	 15.	 Differentiate between an iterative function and a 

recursive function. Which one will you prefer to 
use and in what circumstances?

	 16.	 Explain the Tower of Hanoi problem.

Programming Exercises
	 1.	 Write a program to implement a stack using a 

linked list.
	 2.	 Write a program to convert the expression “a+b” 

into “ab+”.
	 3.	 Write a program to convert the expression “a+b” 

into “+ab”.
	 4.	 Write a program to implement a stack that stores 

names of students in the class.
	 5.	 Write a program to input two stacks and compare 

their contents.
		 6.	 Write a program to compute F(x, y), where

		  F(x, y) = F(x-y, y) + 1 if y£x
And	F(x, y) = 0 if x<y

	 7.	 Write a program to compute F(n, r) where F(n, 
r) can be recursively defined as:
		  F(n, r) = F(n–1, r) + F(n–1, r–1)

	 8.	 Write a program to compute Lambda(n) for all 
positive values of n where Lambda(n) can be 
recursively defined as:
		  Lambda(n) = Lambda(n/2) + 1 if n>1
and	 Lambda(n) = 0 if n =1

	 9.	 Write a program to compute F(M, N) where F(M, 
N) can be recursively defined as:
		  F(M,N) = 1 if M=0 or M≥N≥1
and	 F(M,N) = F(M–1,N) + F(M–1, N–1), otherwise

	 10.	 Write a program to reverse a string using recursion.
Multiple-choice Questions

	 1.	 Stack is a
	 (a)	 LIFO	 (b)	 FIFO	 (c)	 FILO	 (d)	 LILO

	 2.	 Which function places an element on the stack?
	 (a)	 Pop()	 (b)	 Push()
	 (c)	 Peek()	 (d)	 isEmpty()
	 3.	 Disks piled up one above the other represent a
	 (a)	 Stack	 (b)	 Queue
	 (c)	 Linked List	 (d)	 Array
	 4.	 Reverse Polish notation is the other name of
	 (a)	 Infix expression	 (b)	 Prefix expression
	 (c)	 Postfix expression	 (d)	 Algebraic expression

True or False
	 1.	 Pop() is used to add an element on the top of the 

stack.
	 2.	 Postfix operation does not follow the rules of 

operator precedence.
	 3.	 Recursion follows a divide-and-conquer technique 

to solve problems.
	 4.	 Using a recursive function takes more memory 

and time to execute. 
	 5.	 Recursion is more of a bottom-up approach to 

problem solving. 
	 6.	 An indirect recursive function if it contains a call 

to another function which ultimately calls it. 
	 7.	 The peek operation displays the topmost value and 

deletes it from the stack. 
	 8.	 In a stack, the element that was inserted last is the 

first one to be taken out.
	 9.	 Underflow occurs when TOP = MAX-1. 
	 10.	 The storage requirement of linked representation 

of the stack with n elements is O(n).
	 11.	 A push operation on linked stack can be performed 

in O(n) time. 
	 12.	 Overflow can never occur in case of multiple 

stacks. 

Fill in the Blanks
	 1.	 ______ is used to convert an infix expression into 

a postfix expression.
	 2.	 ______ is used in a non-recursive implementation 

of a recursive algorithm.
	 3.	 The storage requirement of a linked stack with n 

elements is ______.
	 4.	 Underflow takes when ______.
	 5.	 The order of evaluation of a postfix expression is 

from ______.
	 6.	 Whenever there is a pending operation to be 

performed, the function becomes ________ 
recursive. 

	 7.	 A function is said to be _______ recursive if it 
explicitly calls itself. 



8.1  INTRODUCTION
Let us explain the concept of queues using the analogies given below.
	 ∑	 People moving on an escalator. The people who got on the escalator first will be the first one 

to step out of it.
	 ∑	 People waiting for a bus. The first person standing in the line will be the first one to get into 

the bus.
	 ∑	 People standing outside the ticketing window of a cinema hall. The first person in the line 

will get the ticket first and thus will be the first one to move out of it.
	 ∑	 Luggage kept on conveyor belts. The bag which was placed first will be the first to come out 

at the other end.
	 ∑	 Cars lined at a toll bridge. The first car to reach the bridge will be the first to leave.
In all these examples, we see that the element at the first position is served first. Same is the case 
with queue data structure. A queue is a FIFO (First-In, First-Out) data structure in which the element 
that is inserted first is the first one to be taken out. The elements in a queue are added at one end 
called the REAR and removed from the other end called the FRONT.
	 Queues can be implemented by using either arrays or linked lists. In this section, we will see 
how queues are implemented using each of these data structures.

Learning Objective
A queue is an important data structure which is extensively used in computer 
applications. In this chapter we will study the operations that can be performed on 
a queue. The chapter will also discuss the implementation of a queue by using both 
arrays as well as linked lists. The chapter will illustrate different types of queues like 
multiple queues, double ended queues, circular queues, and priority queues. The 
chapter also lists some real-world applications of queues. 

Queues

chapter 8
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8.2  ARRAY REPRESENTATION OF QUEUEs
Queues can be easily represented using linear arrays. As stated earlier, every queue has front and 
rear variables that point to the position from where deletions and insertions can be done, respectively. 
The array representation of a queue is shown in Fig. 8.1.

Operations on Queues
In Fig. 8.1, FRONT = 0 and REAR = 5. Suppose we 
want to add another element with value 45, then 
REAR would be incremented by 1 and the value 
would be stored at the position pointed by REAR. 
The queue after addition would be as shown in 
Fig. 8.2. Here, FRONT = 0 and REAR = 6. Every time 
a new element has to be added, we repeat the 
same procedure.
	 If we want to delete an element from the 
queue, then the value of FRONT will be incre-
mented. Deletions are done from only this end 

of the queue. The queue after deletion will be as shown in Fig. 8.3.
	 Here, FRONT = 1 and REAR = 6.

  However, before inserting an element in a queue, we must 
check for overflow conditions. An overflow will occur when 
we try to insert an element into a queue that is already full. 
When REAR = MAX – 1, where MAX is the size of the queue, we 
have an overflow condition. Note that we have written MAX – 1 
because the index starts from 0.
  Similarly, before deleting an element from a queue, we 
must check for underflow conditions. An underflow condition 
occurs when we try to delete an element from a queue that 
is already empty. If FRONT = –1 and REAR = –1, it means there 
is no element in the queue. Let us now look at Figs 8.4 and 
8.5 which show the algorithms to insert and delete an element 
from a queue.

  Figure 8.4 shows the algorithm to insert an element in a 
queue. In Step 1, we first check for the overflow condition. In 
Step 2, we check if the queue is empty. In case the queue is 
empty, then both FRONT and REAR are set to zero, so that the 
new value can be stored at the 0th location. Otherwise, if the 
queue already has some values, then REAR is incremented so 
that it points to the next location in the array. In Step 3, the 
value is stored in the queue at the location pointed by REAR.
  Figure 8.5 shows the algorithm to delete an element from 
a queue. In Step 1, we check for underflow condition. An 
underflow occurs if FRONT = –1 or FRONT > REAR. However, if 

queue has some values, then FRONT is incremented so that it now points to the next value in the queue.

Programming Example 
1.	 Write a program to implement a linear queue.

##include <stdio.h>
#include <conio.h>

0 1 2 3 4 5 6 7 8 9

12 9 7 18 14 36

Figure 8.1  Queue

0 1 2 3 6 7 8 94 5

12 9 7 18 14 36 45

Figure 8.2  Queue after insertion of a new element

0 1 2 3 6 7 8 94 5

9 7 18 14 36 45

Figure 8.3  Queue after deletion of an element

Step 1: IF REAR = MAX-1

Write OVERFLOW

Goto step 4

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR =

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: SET QUEUE[REAR] = NUM

Step 4: EXIT

Figure 8.4  Algorithm to insert an element in 
a queue

Step 1: IF FRONT = -1 OR FRONT > REAR

Write UNDERFLOW

ELSE

SET FRONT = FRONT + 1

[END OF IF]

Step 2: EXIT

SET VAL = QUEUE[FRONT]

Figure 8.5  Algorithm to delete an element from 
a queue
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#define MAX 10 // Changing this value will change length of array 
int queue[MAX];
int front = -1, rear = -1;
void insert(void);
int delete_element(void);
int peek(void);
void display(void);
int main()
{
	 int option, val;
	 do
	 {
		  printf(“\n\n ***** MAIN MENU *****”);
		  printf(“\n 1. Insert an element”);
		  printf(“\n 2. Delete an element”);
		  printf(“\n 3. Peek”);
		  printf(“\n 4. Display the queue”);
		  printf(“\n 5. EXIT”);
		  printf(“\n Enter your option : “);
		  scanf(“%d”, &option);
		  switch(option)
		  {
		  case 1:
			   insert();
			   break;
		  case 2:
			   val = delete_element();
			   if (val != -1)
			   printf(“\n The number deleted is : %d”, val);
			   break;
		  case 3:
			   val = peek();
			   if (val != -1)
			   printf(“\n The first value in queue is : %d”, val);
			   break;
		  case 4:
			   display();
			   break;
		  }
	 }while(option != 5);
	 getch();
	 return 0;
}
void insert()
{
	 int num;
	 printf(“\n Enter the number to be inserted in the queue : “);
	 scanf(“%d”, &num);
	 if(rear == MAX-1)
	 printf(“\n OVERFLOW”);
	 else if(front == -1 && rear == -1)
	 front = rear = 0;
	 else
	 rear++;
	 queue[rear] = num;
}
int delete_element()
{
	 int val;
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	 if(front == -1 || front>rear)
	 {
		  printf(“\n UNDERFLOW”);
		  return -1;
	 }
	 else
	 {
		  val = queue[front];
		  front++;
		  if(front > rear)
		  front = rear = -1;
		  return val;
	 }
}
int peek()
{
	 if(front==-1 || front>rear)
	 {
		  printf(“\n QUEUE IS EMPTY”);
		  return -1;
	 }
	 else
	 {
		  return queue[front];
	 }
}
void display()
{
	 int i;
	 printf(“\n”);
	 if(front == -1 || front > rear)
	 printf(“\n QUEUE IS EMPTY”);
	 else
	 {
		  for(i = front;i <= rear;i++)
		  printf(“\t %d”, queue[i]);
	 }
}

	 Output
***** MAIN MENU *****"
1. Insert an element
2. Delete an element
3. Peek
4. Display the queue
5. EXIT
Enter your option : 1
Enter the number to be inserted in the queue : 50

Note	 The process of inserting an element in the queue is called enqueue, and the process of deleting an 
element from the queue is called dequeue.

8.3  LINKED REPRESENTATION OF QUEUEs
We have seen how a queue is created using an array. Although this technique of creating a queue 
is easy, its drawback is that the array must be declared to have some fixed size. If we allocate 
space for 50 elements in the queue and it hardly uses 20–25 locations, then half of the space will 

1 7 3 4 2 6 5 X9

Front Rear

Figure 8.6  Linked queue

1 7 3 4 2 6

Front Rear

5 X

Figure 8.7  Linked queue

1 7 3 4 2 6 5

Front Rear

9 X

Figure 8.8  Linked queue after inserting a new node
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		  printf("\n UNDERFLOW");
		  return –1;
	 }
	 else
	 {
		  val = queue[front];
		  front++;
		  if(front > rear)
			   front = rear = –1
		  return val;
	 }
}
int peek()
{
	 if(front==–1 || front>rear)
	 {
		  printf("\n QUEUE IS EMPTY");
		  return –1;
	 }
	 else
	 {
		  return queue[front];
	 }
}
void display()
{
	 int i;
	 printf("\n");
	 if(front == –1 || front > rear)
		  printf("\n QUEUE IS EMPTY);
	 else
	 {	
	 for(i = front;i <= rear;i++)
		  printf("\t %d", queue[i]);
	 }
}

	 Output
***** MAIN MENU *****"
1. Insert an element
2. Delete an element
3. Peek
4. Display the queue
5. EXIT
Enter your option : 1
Enter the number to be inserted in the queue : 5
Enter the number to be inserted in the queue : 15
Enter the number to be inserted in the queue : 20
Enter your option : 3
The first value in queue is : 5
Enter your option : 5

Note	 The process of inserting an element in the queue is called enqueue, and the process of deleting an 
element from the queue is called dequeue.

8.3  LINKED REPRESENTATION OF QUEUEs
We have seen how a queue is created using an array. Although this technique of creating a queue 
is easy, its drawback is that the array must be declared to have some fixed size. If we allocate 
space for 50 elements in the queue and it hardly uses 20–25 locations, then half of the space will 

1 7 3 4 2 6 5 X9

Front Rear
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Figure 8.7  Linked queue
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Front Rear
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Figure 8.8  Linked queue after inserting a new node

be wasted. And in case we allocate less memory locations for a queue that might end up growing 
large and large, then a lot of re-allocations will have to be done, thereby creating a lot of overhead 
and consuming a lot of time.
	 In case the queue is a very small one or its maximum size is known in advance, then the array 
implementation of the queue gives an efficient implementation. But if the array size cannot be 
determined in advance, the other alternative, i.e., the linked representation is used.
	 The storage requirement of linked representation of a queue with n elements is O(n) and the 
typical time requirement for operations is O(1).
	 In a linked queue, every element has two parts, one that stores the data and another that stores 
the address of the next element. The START pointer of the linked list is used as FRONT. Here, we will 
also use another pointer called REAR, which will store the address of the last element in the queue. 
All insertions will be done at the rear end and all the deletions will be done at the front end. If 
FRONT = REAR = NULL, then it indicates that the queue is empty.
	 The linked representation of a queue is shown in Fig. 8.6.

Operations on Linked Queues
A queue has two basic operations: insert and delete. The insert operation adds an element to 
the end of the queue, and the delete operation removes an element from the front or the start of 
the queue. Apart from this, there is another operation peek which returns the value of the first 
element of the queue.

Insert Operation
The insert operation is used to insert an element into a queue. The new element is added as the 
last element of the queue. Consider the linked queue shown in Fig. 8.7.

	 To insert an element with value 9, we first 
check if FRONT=NULL. If the condition holds, then 
the queue is empty. So, we allocate memory for 
a new node, store the value in its data part and 
NULL in its next part. The new node will then be 
called both FRONT and rear. However, if FRONT 
!= NULL, then we will insert the new node at the 
rear end of the linked queue and name this new 
node as rear. Thus, the updated queue becomes 
as shown in Fig. 8.8.
  Figure 8.9 shows the algorithm to insert 
an element in a linked queue. In Step 1, the 
memory is allocated for the new node. In Step 
2, the DATA part of the new node is initialized 
with the value to be stored in the node. In Step 
3, we check if the new node is the first node 
of the linked queue. This is done by checking 
if FRONT = NULL. If this is the case, then the new 
node is tagged as FRONT as well as REAR. Also NULL 
is stored in the NEXT part of the node (which is 
also the FRONT and the REAR node). However, if 
the new node is not the first node in the list, then 
it is added at the REAR end of the linked queue 
(or the last node of the queue).

Step 1: Allocate memory for the new node and name

it as PTR

Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

ELSE

SET REAR = PTR

[END OF IF]

Step 4: END

Step 2: SET PTR DATA = VAL

SET FRONT NEXT = REAR NEXT = NULL

SET REAR NEXT = PTR

SET REAR NEXT = NULL

->

-> ->

->

->

Figure 8.9  Algorithm to insert an element in a linked queue
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Delete Operation
The delete operation is used to delete the element that is first inserted in a queue, i.e., the element 
whose address is stored in FRONT. However, before deleting the value, we must first check if 
FRONT=NULL because if this is the case, then the queue is empty and no more deletions can be 

done. If an attempt is made to delete a value 
from a queue that is already empty, an underflow 
message is printed. Consider the queue shown 
in Fig. 8.10.
	 To delete an element, we first check if 
FRONT=NULL. If the condition is false, then we 
delete the first node pointed by FRONT. The FRONT 
will now point to the second element of the 

linked queue. Thus, the updated queue becomes as shown in 
Fig. 8.11.
  Figure 8.12 shows the algorithm to delete an element from 
a linked queue. In Step 1, we first check for the underflow 
condition. If the condition is true, then an appropriate message 
is displayed, otherwise in Step 2, we use a pointer PTR that 
points to FRONT. In Step 3, FRONT is made to point to the next 
node in sequence. In Step 4, the memory occupied by PTR is 
given back to the free pool.

Programming Example 
2.	 Write a program to implement a linked queue.

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
	 int data;
	 struct node *next;
};
struct queue
{
	 struct node *front;
	 struct node *rear;
};
struct queue *q;
void create_queue(struct queue *);
struct queue *insert(struct queue *,int);
struct queue *delete_element(struct queue *);
struct queue *display(struct queue *);
int peek(struct queue *);
int main()
{
	 int val, option;
	 create_queue(q);
	 clrscr();
	 do
	 {
		  printf("\n *****MAIN MENU*****");
		  printf("\n 1. INSERT");
		  printf("\n 2. DELETE");

1 7 3 4 2 6 59

Front Rear

X

Figure 8.10  Linked queue

1 7 3 4 2 6

Front

5

Rear

X

Figure 8.11  Linked queue after deletion of an element

Step 1: IF FRONT = NULL

Write Underflow

Go to Step 5

[END OF IF]

Step 2: SET PTR = FRONT

Step 4: FREE PTR

Step 5: END

Step 3: SET FRONT = FRONT NEXT->

" "

Figure 8.12  Algorithm to delete an element 
from a linked queue
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		  printf("\n 3. PEEK");
		  printf("\n 4. DISPLAY");
		  printf("\n 5. EXIT");
		  printf("\n Enter your option : ");
		  scanf("%d", &option);
		  switch(option)
		  {
			   case 1:
				    printf("\n Enter the number to insert in the queue:");
				    scanf("%d", &val);
				    q = insert(q,val);
				    break;
			   case 2:
				    q = delete_element(q);
				    break;
			   case 3:
				    val = peek(q);
				    if(val! = –1)
					     printf("\n The value at front of queue is : %d", val);
				    break;
			   case 4:
				    q = display(q);
				    break;
		  }
	 }while(option != 5);
	 getch();
	 return 0;
}
void create_queue(struct queue *q)
{
	 q -> rear = NULL;
	 q -> front = NULL;
}
struct queue *insert(struct queue *q,int val)
{
	 struct node *ptr;
	 ptr = (struct node*)malloc(sizeof(struct node));
	 ptr -> data = val;
	 if(q -> front == NULL)
	 {
		  q -> front = ptr;
		  q -> rear = ptr;
		  q -> front -> next = q -> rear -> next = NULL;
	 }
	 else
	 {
		  q -> rear -> next = ptr;
		  q -> rear = ptr;
		  q -> rear -> next = NULL;
	 }
	 return q;
}
struct queue *display(struct queue *q)
{
	 struct node *ptr;
	 ptr = q -> front;
	 if(ptr == NULL)
		  printf("\n QUEUE IS EMPTY");
	 else
	 {
		  printf("\n");



260  Data Structures Using C

		  while(ptr!=q -> rear)
		  {
			   printf("%d\t", ptr -> data);
			   ptr = ptr -> next;
		  }
		  printf("%d\t", ptr -> data);
	 }
	 return q;
}
struct queue *delete_element(struct queue *q)
{
	 struct node *ptr;
	 ptr = q -> front;
	 if(q -> front == NULL)
		  printf("\n UNDERFLOW");
	 else
	 {
		  q -> front = q -> front -> next;
		  printf("\n The value being deleted is : %d", ptr -> data);
		  free(ptr);
	 }
	 return q;
}
int peek(struct queue *q)
{
	 if(q->front==NULL)
	 {	
		  printf("\n QUEUE IS EMPTY");
		  return –1;	
	 }
	 else
		  return q->front->data;
}

	 Output
*****MAIN MENU*****
1. INSERT
2. DELETE
3. PEEK
4. DISPLAY
5. EXIT
Enter your option : 3
QUEUE IS EMPTY 
Enter your option : 5

8.4  TYPES OF QUEUES
A queue data structure can be classified into the following types:
	 1.	 Circular Queue	 2. Deque	 3. Priority Queue	 4. Multiple Queue
We will discuss each of these queues in detail in the following sections.

8.4.1  Circular Queues
In linear queues, we have discussed so far that insertions can be done only at one end called the 
REAR and deletions are always done from the other end called the FRONT. Look at the queue shown in 
Fig. 8.13.

0 1 2 3 4 5 6 7 8 9

54 9 7 18 14 36 21 99 7245

Figure 8.13  Linear queue
	 Here, FRONT = 0 and REAR = 9.
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	 Now, if you want to insert another value, it will not be possible because the queue is completely 
full. There is no empty space where the value can be inserted. Consider a scenario in which two 
successive deletions are made. The queue will then be given as shown in Fig. 8.14.

0 1 2 3 4 5 6 7 8 9

7 18 14 36 21 99 7245

Figure 8.14  Queue after two successive deletions

	 Here, front = 2 and REAR = 9.
	 Suppose we want to insert a new element in the queue shown in Fig. 8.14. Even though there 
is space available, the overflow condition still exists because the condition rear = MAX – 1 still holds 

true. This is a major drawback of a linear queue.
  To resolve this problem, we have two solutions. First, shift the elements to 
the left so that the vacant space can be occupied and utilized efficiently. But 
this can be very time-consuming, especially when the queue is quite large.
  The second option is to use a circular queue. In the circular queue, the 
first index comes right after the last index. Conceptually, you can think of 
a circular queue as shown in Fig. 8.15.
  The circular queue will be full only when front = 0 and rear = Max – 1. A 
circular queue is implemented in the same manner as a linear queue is 

implemented. The only difference will be in the 
code that performs insertion and deletion 
operations. For insertion, we now have to check 
for the following three conditions:

∑	 If front = 0 and rear = MAX – 1, then the 
circular queue is full. Look at the queue 
given in Fig. 8.16 which illustrates this 
point.

∑	 If rear != MAX – 1, then rear will be 
incremented and the value will be inserted 
as illustrated in Fig. 8.17.

∑	 If front != 0 and rear = MAX – 1, then it means 
that the queue is not full. So, set rear = 0 
and insert the new element there, as shown 
in Fig. 8.18.

  Let us look at Fig. 8.19 which shows the algorithm 
to insert an element in a circular queue. In Step 1, we 
check for the overflow condition. In Step 2, we make two 
checks. First to see if the queue is empty, and second to 
see if the REAR end has already reached the maximum 
capacity while there are certain free locations before 
the FRONT end. In Step 3, the value is stored in the queue 
at the location pointed by REAR.
  After seeing how a new element is added in a circular 
queue, let us now discuss how deletions are performed 
in this case. To delete an element, again we check for 
three conditions.

Q[0]

Q[1]

Q[2]

Q[3]Q[4]

Q[5]

Q[6]

Figure 8.15  Circular queue

FRONT = 1 2 3 4 5 6 7 8 REAR = 9

7 18 14 36 21 99 724590 49

Figure 8.16  Full queue

FRONT = 1 2 3 4 5 6 7 9

7 18 14 36 214590 49

REAR = 8

Increment rear so that it points to location 9 and insert the value here

99

Figure 8.17  Queue with vacant locations

FRONT = 21 3 4 5 6 7 8 REAR = 9

7 18 14 36 21 80 8145

Set REAR = 0 and insert the value here

Figure 8.18  Inserting an element in a circular queue

Step 1: IF FRONT = and Rear = MAX - 1

Write OVERFLOW

IF FRONT = -1 and REAR = -1

SET FRONT = REAR =

ELSE IF REAR = MAX - 1 and FRONT !=

SET REAR =

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: SET QUEUE[REAR] = VAL

Step 4: EXIT

Step 2:

" ”

Goto step 4

[End OF IF]

Figure 8.19  Algorithm to insert an element in a 
circular queue
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	 ∑	 Look at Fig. 8.20. If front = –1, then there 
are no elements in the queue. So, an underflow 
condition will be reported.

∑	 If the queue is not empty and front = rear, 
then after deleting the element at the front 
the queue becomes empty and so front 
and rear are set to –1. This is illustrated in  
Fig. 8.21.

∑	 If the queue is not empty and front = MAX–1, 
then after deleting the element at the front, 
front is set to 0. This is shown in Fig. 8.22.

	 Let us look at Fig. 8.23 which shows the 
algorithm to delete an element from a circular 
queue. In Step 1, we check for the underflow 
condition. In Step 2, the value of the queue at 

the location pointed by FRONT is stored in VAL. In Step 3, 
we make two checks. First to see if the queue has become 
empty after deletion and second to see if FRONT has reached 
the maximum capacity of the queue. The value of FRONT 
is then updated based on the outcome of these checks.

Programming Example 

3.	 Write a program to implement a circular queue.
#include <stdio.h>
#include <conio.h>
#define MAX 10
int queue[MAX];
int front=–1, rear=–1;
void insert(void);
int delete_element(void);
int peek(void);
void display(void);

int main()
{
	 int option, val;
	 clrscr();
	 do
	 {
		  printf("\n ***** MAIN MENU *****");
		  printf("\n 1. Insert an element");
		  printf("\n 2. Delete an element");
		  printf("\n 3. Peek");
		  printf("\n 4. Display the queue");
		  printf("\n 5. EXIT");
		  printf("\n Enter your option : ");
		  scanf("%d", &option);
		  switch(option)
		  {
			   case 1:
				    insert();
				    break;
			   case 2:
				    val = delete_element();
				    if(val!=–1)

FRONT = REAR = –1
1 2 3 4 5 6 7 98

Figure 8.20  Empty queue

1 2 3 4 5 6 7 FRONT =
REAR = 9

8

Delete this element and set REAR = FRONT = -1

81

Figure 8.21  Queue with a single element

1 2 3 4 6 7 FRONT = 98

Delete this element and set FRONT = 0

8172 63 9 18 27 39

rear = 5

Figure 8.22  Queue where front = MAX–1 before deletion

Step 1: IF FRONT = -1

Write UNDERFLOW

Goto Step 4

[END of IF]

Step 2: SET VAL = QUEUE[FRONT]

Step 3: IF FRONT = REAR

SET FRONT = REAR = -1

ELSE

IF FRONT = MAX -1

SET FRONT =

ELSE

SET FRONT = FRONT + 1

[END of IF]

[END OF IF]

Step 4: EXIT

" "

Figure 8.23  Algorithm to delete an element from a 
circular queue
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				    printf("\n The number deleted is : %d", val);
				    break;
			   case 3:
				    val = peek();
				    if(val!=–1)
				    printf("\n The first value in queue is : %d", val);
				    break;
			   case 4:
				    display();
				    break;
		  }
	 }while(option!=5);
	 getch();
	 return 0;
}
void insert()
{
	 int num;
	 printf("\n Enter the number to be inserted in the queue : ");
	 scanf("%d", &num);
	 if(front==0 && rear==MAX–1)
		  printf("\n OVERFLOW");
	 else if(front==–1 && rear==–1)
	 {
		  front=rear=0;
		  queue[rear]=num;
	 }
	 else if(rear==MAX–1 && front!=0)
	 {
		  rear=0;
		  queue[rear]=num;
	 }
	 else
	 {
		  rear++;
		  queue[rear]=num;
	 }
}
int delete_element()
{
	 int val;
	 if(front==–1 && rear==–1)
	  {
		  printf("\n UNDERFLOW");
		  return –1;
	  }
	 val = queue[front];
	 if(front==rear)
		  front=rear=–1;
	 else
	 {
		  if(front==MAX–1)
			   front=0;
		  else
			   front++;
	 }
	 return val;
}
int peek()
{
	 if(front==–1 && rear==–1)
	 {
		  printf("\n QUEUE IS EMPTY");
		  return –1;
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	 }
	 else
	 {
		  return queue[front];
	 }
}
void display()
{
	 int i;
	 printf("\n");
	 if (front ==–1 && rear= =–1)
		  printf ("\n QUEUE IS EMPTY");
	 else
	 {
		  if(front<rear)
		  {
			   for(i=front;i<=rear;i++)
				    printf("\t %d", queue[i]);
		  }
		  else
		  {
			   for(i=front;i<MAX;i++)
				    printf("\t %d", queue[i]);
			   for(i=0;i<=rear;i++)
				    printf("\t %d", queue[i]);
		  }
	 }
}

	 Output
***** MAIN MENU *****
1. Insert an element
2. Delete an element
3. Peek
4. Display the queue
5. EXIT
Enter your option : 1
Enter the number to be inserted in the queue : 25
Enter your option : 2
The number deleted is : 25
Enter your option : 3
QUEUE IS EMPTY
Enter your option : 5

8.4.2  Deques
A deque (pronounced as ‘deck’ or ‘dequeue’) is a list in which the elements can be inserted or 
deleted at either end. It is also known as a head-tail linked list because elements can be added to 
or removed from either the front (head) or the back (tail) end.
	 However, no element can be added and deleted from the middle. In the computer’s memory, a 
deque is implemented using either a circular array or a circular doubly linked list. In a deque, two 
pointers are maintained, LEFT and RIGHT, which point to either end of the deque. The elements in a 
deque extend from the LEFT end to the RIGHT end and since it is circular, Dequeue[N–1] is followed 
by Dequeue[0]. Consider the deques shown in Fig. 8.24.
There are two variants of a double-ended queue. They include

∑	Input restricted deque In this dequeue, 
insertions can be done only at one of the ends, 
while deletions can be done from both ends.

∑	Output restricted deque In this dequeue, 
deletions can be done only at one of the ends, 
while insertions can be done on both ends.

2 3 4 5 6 LEFT = 7 8

63

9RIGHT = 1

42 56 27 18

1 2 LEFT = 3 4 5 6 RIGHT = 78

29 37 45 54 63

9

Figure 8.24  Double-ended queues
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Programming Example 

4.	 Write a program to implement input and output restricted deques.
#include <stdio.h>
#include <conio.h>
#define MAX 10
int deque[MAX];
int left = –1, right = –1;
void input_deque(void);
void output_deque(void);
void insert_left(void);
void insert_right(void);
void delete_left(void);
void delete_right(void);
void display(void);
int main()
{
	 int option;
	 clrscr();
	 printf("\n *****MAIN MENU*****");
	 printf("\n 1.Input restricted deque");
	 printf("\n 2.Output restricted deque");
	 printf("Enter your option : ");
	 scanf("%d",&option);
	 switch(option)
	 {
		  case 1:
			   input_deque();
			   break;
		  case 2:
			   output_deque();
			   break;
	 }
	 return 0;
}
void input_deque()
{
	 int option;
	 do
	 {
		  printf("\n INPUT RESTRICTED DEQUE");
		  printf("\n 1.Insert at right");
		  printf("\n 2.Delete from left");
		  printf("\n 3.Delete from right");
		  printf("\n 4.Display");
		  printf("\n 5.Quit");
		  printf("\n Enter your option : ");
		  scanf("%d",&option);
		  switch(option)
		  {
			   case 1:
				    insert_right();
				    break;
			   case 2:
				    delete_left();
				    break;
			   case 3:
				    delete_right();
				    break;
			   case 4:
				    display();
				    break;
		  }
	 }while(option!=5);
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}
void output_deque()
{
	 int option;
	 do
	 {
		  printf("OUTPUT RESTRICTED DEQUE");
		  printf("\n 1.Insert at right");
		  printf("\n 2.Insert at left");
		  printf("\n 3.Delete from left");
		  printf("\n 4.Display");
		  printf("\n 5.Quit");
		  printf("\n Enter your option : ");
		  scanf("%d",&option);
		  switch(option)
		  {
			   case 1:
				    insert_right();
				    break;
			   case 2:
				    insert_left();
				    break;
			   case 3:
				    delete_left();
				    break;
			   case 4:
				    display();
				    break;
		  }
	 }while(option!=5);
}
void insert_right()
{
	 int val;
	 printf("\n Enter the value to be added:");
	 scanf("%d", &val);
	 if((left == 0 && right == MAX–1) || (left == right+1))
	 {
		  printf("\n OVERFLOW");
		  return;
	 }
	 if (left == –1) /* if queue is initially empty */
	 {
		  left = 0;
		  right = 0;
	 }
	 else
	 {
		  if(right == MAX–1) /*right is at last position of queue */
			   right = 0;
		  else
			   right = right+1;
	 }
	 deque[right] = val ;
}
void insert_left()
{
	 int val;
	 printf("\n Enter the value to be added:");
	 scanf("%d", &val);
	 if((left == 0 && right == MAX–1) || (left == right+1))
	 {
		  printf("\n Overflow");
		  return;
	 }
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	 if (left == –1)/*If queue is initially empty*/
	 {
		  left = 0;
		  right = 0;
	 }
	 else
	 {
		  if(left == 0)
			   left=MAX–1;
		  else
			   left=left–1;
	 }
	 deque[left] = val;
}
void delete_left()
{
	 if (left == –1)
	 {
		  printf("\n UNDERFLOW");
		  return ;
	 }
	 printf("\n The deleted element is : %d", deque[left]);
	 if(left == right) /*Queue has only one element */
	 {
		  left = –1;
		  right = –1;
	 }
	 else
	 {
		  if(left == MAX–1)
			   left = 0;
		  else
			   left = left+1;
	 }
}
void delete_right()
{
	 if (left == –1)
	 {
		  printf("\n UNDERFLOW");
		  return ;
	 }
	 printf("\n The element deleted is : %d", deque[right]);
	 if(left == right) /*queue has only one element*/
	 {
		  left = –1;
		  right = –1;
	 }
	 else
	 {
		  if(right == 0)
			   right=MAX–1;
		  else
			   right=right–1;
	 }
}
void display()
{
	 int front = left, rear = right;
	 if(front == –1)
	 {
		  printf("\n QUEUE IS EMPTY");
		  return;
	 }
	 printf("\n The elements of the queue are : ");
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	 if(front <= rear )
	 {
		  while(front <= rear)
		  {
			   printf("%d",deque[front]);
			   front++;
		  }
	 }
	 else
	 {
		  while(front <= MAX–1)
		  {
			   printf("%d", deque[front]);
			   front++;
		  }
		  front = 0;
		  while(front <= rear)
		  {
			   printf("%d",deque[front]);
			   front++;
		  }
	 }
	 printf("\n");
}

	 Output 
***** MAIN MENU *****
1.Input restricted deque
2.Output restricted deque
Enter your option : 1
INPUT RESTRICTED DEQUEUE
1.Insert at right
2.Delete from left
3.Delete from right
4.Display
5.Quit
Enter your option : 1
Enter the value to be added : 5
Enter the value to be added : 10
Enter your option : 2
The deleted element is : 5
Enter your option : 5

8.4.3  Priority Queues
A priority queue is a data structure in which each element is assigned a priority. The priority of the 
element will be used to determine the order in which the elements will be processed. The general 
rules of processing the elements of a priority queue are
	 ∑	 An element with higher priority is processed before an element with a lower priority.
	 ∑	 Two elements with the same priority are processed on a first-come-first-served (FCFS) basis.
A priority queue can be thought of as a modified queue in which when an element has to be removed 
from the queue, the one with the highest-priority is retrieved first. The priority of the element can 
be set based on various factors. Priority queues are widely used in operating systems to execute 
the highest priority process first. The priority of the process may be set based on the CPU time 
it requires to get executed completely. For example, if there are three processes, where the first 
process needs 5 ns to complete, the second process needs 4 ns, and the third process needs 7 ns, 
then the second process will have the highest priority and will thus be the first to be executed. 
However, CPU time is not the only factor that determines the priority, rather it is just one among 
several factors. Another factor is the importance of one process over another. In case we have to 
run two processes at the same time, where one process is concerned with online order booking 
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and the second with printing of stock details, then obviously the online booking is more important 
and must be executed first.

Implementation of a Priority Queue
There are two ways to implement a priority queue. We can either use a sorted list to store the 
elements so that when an element has to be taken out, the queue will not have to be searched for 
the element with the highest priority or we can use an unsorted list so that insertions are always 
done at the end of the list. Every time when an element has to be removed from the list, the element 
with the highest priority will be searched and removed. While a sorted list takes O(n) time to insert 
an element in the list, it takes only O(1) time to delete an element. On the contrary, an unsorted list 
will take O(1) time to insert an element and O(n) time to delete an element from the list.
	 Practically, both these techniques are inefficient and usually a blend of these two approaches 
is adopted that takes roughly O(log n) time or less.

Linked Representation of a Priority Queue
In the computer memory, a priority queue can be represented using arrays or linked lists. When 
a priority queue is implemented using a linked list, then every node of the list will have three parts: 
(a) the information or data part, (b) the priority number of the element, and (c) the address of the 
next element. If we are using a sorted linked list, then the element with the higher priority will 
precede the element with the lower priority.
	 Consider the priority queue shown in Fig. 8.25.

1 B 2 C 3 D 3 E 4 F 5A X

Figure 8.25  Priority queue

	 Lower priority number means higher priority. For example, if there are two elements A and B, 
where A has a priority number 1 and B has a priority number 5, then A will be processed before B 
as it has higher priority than B.
	 The priority queue in Fig. 8.25 is a sorted priority queue having six elements. From the queue, 
we cannot make out whether A was inserted before E or whether E joined the queue before A 
because the list is not sorted based on FCFS. Here, the element with a higher priority comes 
before the element with a lower priority. However, we can definitely say that C was inserted in 
the queue before D because when two elements have the same priority the elements are arranged 
and processed on FCFS principle.

Insertion  When a new element has to be inserted in a priority queue, we have to traverse the 
entire list until we find a node that has a priority lower than that of the new element. The new node 
is inserted before the node with the lower priority. However, if there exists an element that has 
the same priority as the new element, the new element is inserted after that element. For example, 
consider the priority queue shown in Fig. 8.26.

A 1 B 2 C 3 D 5 E 6 X

Figure 8.26  Priority queue

	 If we have to insert a new element with data = F and priority number = 4, then the element will be 
inserted before D that has priority number 5, which is lower priority than that of the new element. 
So, the priority queue now becomes as shown in Fig. 8.27.

A 1 B 2 C 3 F 4 D 5 E 6 X

Figure 8.27  Priority queue after insertion of a new node
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	 However, if we have a new element with data = F and priority number = 2, then the element will 
be inserted after B, as both these elements have the same priority but the insertions are done on 
FCFS basis as shown in Fig. 8.28.

A 1 B 2 F 2 C 3 5 6D E X

Figure 8.28  Priority queue after insertion of a new node

Deletion  Deletion is a very simple process in this case. The first node of the list will be deleted 
and the data of that node will be processed first.

Array Representation of a Priority Queue
When arrays are used to implement a priority queue, then a separate queue for each priority number 
is maintained. Each of these queues will be implemented using circular arrays or circular queues. 
Every individual queue will have its own FRONT and REAR pointers.
	 We use a two-dimensional array for this purpose where each queue will be allocated the same 
amount of space. Look at the two-dimensional representation of a priority queue given below. 
Given the front and rear values of each queue, the two-dimensional matrix can be formed as 
shown in Fig. 8.29.
	 FRONT[K] and REAR[K] contain the front and rear values of row K, where K is the priority number. 
Note that here we are assuming that the row and column indices start from 1, not 0. Obviously, 
while programming, we will not take such assumptions.

Insertion  To insert a new element with priority K 
in the priority queue, add the element at the rear end 
of row K, where K is the row number as well as the 
priority number of that element. For example, if we 
have to insert an element R with priority number 3, 
then the priority queue will be given as shown in Fig. 
8.30.

Deletion  To delete an element, we find the first non-
empty queue and then process the front element of 
the first non-empty queue. In our priority queue, the 
first non-empty queue is the one with priority number 
1 and the front element is A, so A will be deleted and 
processed first. In technical terms, find the element 
with the smallest K, such that FRONT[K] != NULL.

Programming Example

5.	 Write a program to implement a priority queue.
#include <stdio.h>
#include <malloc.h>
#include <conio.h>
struct node
{
	 int data;
	 int priority;
	 struct node *next;
}
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Figure 8.29  Priority queue matrix 
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Figure 8.30  Priority queue matrix after insertion of a 
new element
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struct node *start=NULL;
struct node *insert(struct node *);
struct node *delete(struct node *);
void display(struct node *);
int main()
{
	 int option;
	 clrscr();
	 do
	 {
		  printf("\n *****MAIN MENU*****);
		  printf("\n 1. INSERT");
		  printf("\n 2. DELETE");
		  printf("\n 3. DISPLAY");
		  printf("\n 4. EXIT");
		  printf("\n Enter your option : ");
		  scanf( "%d", &option);
		  switch(option)
		  {
			   case 1:
				    start=insert(start);
				    break;
			   case 2:
				    start = delete(start);
				    break;
			   case 3:
				    display(start);
				    break;
		  }
	 }while(option!=4);
}
struct node *insert(struct node *start)
{
	 int val, pri;
	 struct node *ptr, *p;
	 ptr = (struct node *)malloc(sizeof(struct node));
	 printf("\n Enter the value and its priority : " );
	 scanf( "%d %d", &val, &pri);
	 ptr–>data = val;
	 ptr–>priority = pri;
	 if(start==NULL || pri < start–>priority )
	 {
		  ptr–>next = start;
		  start = ptr;
	 }
	 else
	 {
		  p = start;
		  while(p–>next != NULL && p–>next–>priority <= pri)
			   p = p–>next;
		  ptr–>next = p–>next;
		  p–>next = ptr;
	 }
	 return start;
}
struct node *delete(struct node *start)
{
	 struct node *ptr;
	 if(start == NULL)
	 {
		  printf("\n UNDERFLOW" );
		  return;
	 }
	 else



272  Data Structures Using C

	 {
		  ptr = start;
		  printf("\n Deleted item is: %d", ptr–>data);
		  start = start–>next;
		  free(ptr);
	 }
	 return start;
}
void display(struct node *start)
{
	 struct node *ptr;
	 ptr = start;
	 if(start == NULL)
		  printf("\nQUEUE IS EMPTY" );
	 else
	 {
		  printf("\n PRIORITY QUEUE IS : " );
		  while(ptr != NULL)
		  {
			   printf( "\t%d[priority=%d]", ptr–>data, ptr–>priority );
			   ptr=ptr–>next;
		  }
	 }
}

	 Output
*****MAIN MENU*****
1. INSERT
2. DELETE
3. DISPLAY
4. EXIT
Enter your option : 1
Enter the value and its priority : 5 2
Enter the value and its priority : 10 1
Enter your option : 3
PRIORITY QUEUE IS :
10[priority = 1] 5[priority = 2]
Enter your option : 4

8.4.4  Multiple Queues
When we implement a queue using an array, the size of the array must be known in advance. If the 
queue is allocated less space, then frequent overflow conditions will be encountered. To deal with 
this problem, the code will have to be modified to reallocate more space for the array.
	 In case we allocate a large amount of space for the queue, it will result in sheer wastage of the 
memory. Thus, there lies a tradeoff between the frequency of overflows and the space allocated.
	 So a better solution to deal with this problem is to have multiple queues or to have more than 
one queue in the same array of sufficient size. Figure 8.31 illustrates this concept.
	 In the figure, an array Queue[n] is used to represent two queues, Queue A and Queue B. The value 
of n is such that the combined size of both the queues will never exceed n. While operating on 

these queues, it is important to note one thing—queue 

A will grow from left to right, whereas queue B will 
grow from right to left at the same time.
	 Extending the concept to multiple queues, a queue 
can also be used to represent n number of queues 
in the same array. That is, if we have a QUEUE[n], 
then each queue I will be allocated an equal amount 
of space bounded by indices b[i] and e[i]. This is 
shown in Fig. 8.32.

1 2 3 4 n-2 n-1n-3n-4

QUEUE A QUEUE B

…………………………………………

Figure 8.31  Multiple queues

b[0] e[0] b[1] e[1] b[2] e[2] b[3] e[3] b[4] e[4]

Figure 8.32  Multiple queues
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Programming Example

6.	 Write a program to implement multiple queues.
#include <stdio.h>
#include <conio.h>
#define MAX 10
int QUEUE[MAX], rearA=–1,frontA=–1, rearB=MAX, frontB = MAX;
void insertA(int val)
{
	 if(rearA==rearB –1)
		  printf("\n OVERFLOW");
	 else
	 {
		  if(rearA ==–1 && frontA == –1)
		  {	 rearA = frontA = 0;
			   QUEUE[rearA] = val;
		  }
		  else
			   QUEUE[++rearA] = val;
	 }
}
int deleteA()
{
	 int val;
	 if(frontA==–1)
	 {
		  printf("\n UNDERFLOW");
		  return –1;
	 }
	 else
	 {
		  val = QUEUE[frontA];
		  frontA++;
		  if (frontA>rearA) 
			   frontA=rearA=–1
		  return val;
	 }
}

void display_queueA()
{
	 int i;
	 if(frontA==–1)
		  printf("\n QUEUE A IS EMPTY");
	 else
	 {
		  for(i=frontA;i<=rearA;i++)
			   printf("\t %d",QUEUE[i]);
	 }
}

void insertB(int val)
{
	 if(rearA==rearB–1)
		  printf("\n OVERFLOW");
	 else
	 {
		  if(rearB == MAX && frontB == MAX)
		  {	 rearB = frontB = MAX–1;
			   QUEUE[rearB] = val;
		  }
		  else
			   QUEUE[––rearB] = val;
	 }
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}

int deleteB()
{
	 int val;
	 if(frontB==MAX)
	 {
		  printf("\n UNDERFLOW");
		  return –1;
	 }

	 else
	 {
		  val = QUEUE[frontB];
		  frontB––;
		  if (frontB<rearB) 
			   frontB=rearB=MAX;
		  return val;
	 }
}

void display_queueB()
{
	 int i;
	 if(frontB==MAX)
		  printf("\n QUEUE B IS EMPTY");
	 else
	 {
		  for(i=frontB;i>=rearB;i––)
			   printf("\t %d",QUEUE[i]);
	 }
}

int main()
{
	 int option, val;
	 clrscr();
	 do
	 {
		  printf("\n *******MENU******");
		  printf("\n 1. INSERT IN QUEUE A");
		  printf("\n 2. INSERT IN QUEUE B");
		  printf("\n 3. DELETE FROM QUEUE A");
		  printf("\n 4. DELETE FROM QUEUE B");
		  printf("\n 5. DISPLAY QUEUE A");
		  printf("\n 6. DISPLAY QUEUE B");
		  printf("\n 7. EXIT");
		  printf("\n Enter your option : ");
		  scanf("%d",&option);
		  switch(option)
		  {
			   case 1:	 printf("\n Enter the value to be inserted in Queue A : ");
				    scanf("%d",&val);
				    insertA(val);
				    break;
			   case 2:	 printf("\n Enter the value to be inserted in Queue B : ");
				    scanf("%d",&val);
				    insertB(val);
				    break;
			   case 3:	 val=deleteA();
				    if(val!=–1)
				    printf("\n The value deleted from Queue A = %d",val);
				    break;
			   case 4 :	val=deleteB();
				    if(val!=–1)
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				    printf("\n The value deleted from Queue B = %d",val);
				    break;
			   case 5:	 printf("\n The contents of Queue A are : \n");
				    display_queueA();
				    break;
			   case 6:	 printf("\n The contents of Queue B are : \n");
				    display_queueB();
				    break;
		  }
	 }while(option!=7);
	 getch();
}

	 Output
*******MENU******"
1. INSERT IN QUEUE A
2. INSERT IN QUEUE B
3. DELETE FROM QUEUE A
4. DELETE FROM QUEUE B
5. DISPLAY QUEUE A
6. DISPLAY QUEUE B
7. EXIT
Enter your option : 2
Enter the value to be inserted in Queue B : 10
Enter the value to be inserted in Queue B : 5
Enter your option: 6
The contents of Queue B are : 10 5
Enter your option : 7

8.5  APPLICATIONs OF QUEUES
	 ∑	 Queues are widely used as waiting lists for a single shared resource like printer, disk, CPU.
	 ∑	 Queues are used to transfer data asynchronously (data not necessarily received at same rate 

as sent) between two processes (IO buffers), e.g., pipes, file IO, sockets.
	 ∑	 Queues are used as buffers on MP3 players and portable CD players, iPod playlist.
	 ∑	 Queues are used in Playlist for jukebox to add songs to the end, play from the front of the 

list.
	 ∑	 Queues are used in operating system for handling interrupts. When programming a real-time 

system that can be interrupted, for example, by a mouse click, it is necessary to process the 
interrupts immediately, before proceeding with the current job. If the interrupts have to be 
handled in the order of arrival, then a FIFO queue is the appropriate data structure.

Josephus Problem
Let us see how queues can be used for finding a solution to the Josephus problem.
In Josephus problem, n people stand in a circle waiting to be executed. The counting starts at some 
point in the circle and proceeds in a specific direction around the circle. In each step, a certain 
number of people are skipped and the next person is executed (or eliminated). The elimination 
of people makes the circle smaller and smaller. At the last step, only one person remains who is 
declared the ‘winner’. 
	 Therefore, if there are n number of people and a number k which indicates that k–1 people are 
skipped and k–th person in the circle is eliminated, then the problem is to choose a position in 
the initial circle so that the given person becomes the winner. 
	 For example, if there are 5 (n) people and every second (k) person is eliminated, then first 
the person at position 2 is eliminated followed by the person at position 4 followed by person at 
position 1 and finally the person at position 5 is eliminated. Therefore, the person at position 3 
becomes the winner. 
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	 Try the same process with n = 7 and k =3. You will find that person at position 4 is the winner. 
The elimination goes in the sequence of 3, 6, 2, 7, 5 and 1.

Programming Example

7.	 Write a program which finds the solution of Josephus problem using a circular linked list. 
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
	 int player_id;
	 struct node *next;
};
struct node *start, *ptr, *new_node;

int main()
{
	 int n, k, i, count;
	 clrscr();
	 printf("\n Enter the number of players : ");
	 scanf("%d", &n);
	 printf("\n Enter the value of k (every kth player gets eliminated): ");
	 scanf("%d", &k);
	 // Create circular linked list containing all the players
	 start = malloc(sizeof(struct node));
	 start–>player_id = 1;
	 ptr = start;
	 for (i = 2; i <= n; i++)
	 {
		  new_node = malloc(sizeof(struct node));
		  ptr–>next = new_node;
		  new_node–>player_id = i;
		  new_node–>next=start;
		  ptr=new_node;
	 }
	 for (count = n; count > 1; count––)
	 {
		  for (i = 0; i < k – 1; ++i)
			   ptr = ptr–>next;
		  ptr–>next = ptr–>next–>next; // Remove the eliminated player from the 
circular linked list
	 }
	 printf("\n The Winner is Player %d", ptr–>player_id);
	 getche();
	 return 0;
}

	 Output
Enter the number of players : 5
Enter the value of k (every kth player gets eliminated): 2
The Winner is Player 3
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∑	 A queue is a FIFO data structure in which the element 
that is inserted first is the first one to be taken out.

∑	 The elements in a queue are added at one end called the 
rear and removed from the other end called the front. 

∑	 In the computer ’s memory, queues can be 
implemented using both arrays and linked lists.

∑	 The storage requirement of linked representation of 
queue with n elements is O(n) and the typical time 
requirement for operations is O(1).

∑	 In a circular queue, the first index comes after the 
last index.

∑	 Multiple queues means to have more than one queue 
in the same array of sufficient size.

∑	 A deque is a list in which elements can be inserted 
or deleted at either end. It is also known as a head-
tail linked list because elements can be added to 
or removed from the front (head) or back (tail). 

However, no element can be added or deleted from 
the middle. In the computer’s memory, a deque 
is implemented using either a circular array or a 
circular doubly linked list.

∑	 In an input restricted deque, insertions can be 
done only at one end, while deletions can be done 
from both the ends. In an output restricted deque, 
deletions can be done only at one end, while 
insertions can be done at both the ends.

∑	 A priority queue is a data structure in which each 
element is assigned a priority. The priority of the 
element will be used to determine the order in which 
the elements will be processed.

∑	 When a priority queue is implemented using a linked 
list, then every node of the list will have three parts: (a) 
the information or data part, (b) the priority number of 
the element, and (c) the address of the next element.

 Points to Remember

 Exercises

Review Questions
	 1.	What is a priority queue? Give its applications.
	 2.	 Explain the concept of a circular queue? How is 

it better than a linear queue?
	 3.	Why do we use multiple queues?
	 4.	 Draw the queue structure in each case when the 

following operations are performed on an empty 
queue.

	 (a)	 Add A, B, C, D, E, F
	 (b)	 Delete two letters
	 (c)	 Add G	 (d)	 Add H
	 (e)	 Delete four letters	 (f)	 Add I
	 5.	 Consider the queue given below which has FRONT 

= 1 and REAR = 5.

A B C D E

	 	 Now perform the following operations on the 
queue:

	 (a)	 Add F	 (b)	 Delete two letters
	 (c)	 Add G	 (d)	 Add H
	 (e)	 Delete four letters	 (f)	 Add I
	 6.	 Consider the dequeue given below which has LEFT 

= 1 and RIGHT = 5.

A B C D E

	 	 Now perform the following operations on the 
queue:

	 (a)	 Add F on the left
	 (b)	 Add G on the right
	 (c)	 Add H on the right
	 (d)	 Delete two letters from left
	 (e)	 Add I on the right
	 (f)	 Add J on the left
	 (g)	 Delete two letters from right

Programming Exercises
	 1.	 Write a program to calculate the number of items 

in a queue.
	 2.	Write a program to create a linear queue of 10 

values.
	 3.	Write a program to create a queue using arrays 

which permits insertion at both the ends.
	 4.	Write a program to implement a dequeue with the 

help of a linked list.
	 5.	 Write a program to create a queue which permits 

insertion at any vacant location at the rear end.
	 6.	Write a program to create a queue using arrays 

which permits deletion from both the ends.
	 7.	Write a program to create a queue using arrays 

which permits insertion and deletion at both the 
ends.
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	 8.	Write a program to implement a priority queue.
	 9.	Write a program to create a queue from a stack.
	 10.	Write a program to create a stack from a queue.
	 11.	 Write a program to reverse the elements of a 

queue.
	 12.	Write a program to input two queues and 

compare their contents.

Multiple-choice Questions
	 1.	 A line in a grocery store represents a
	 (a)	 Stack	 (b)	 Queue
	 (c)	 Linked List	 (d)	 Array
	 2.	 In a queue, insertion is done at
	 (a)	 Rear	 (b)	 Front
	 (c)	 Back	 (d)	 Top
	 3.	 The function that deletes values from a queue is 

called
	 (a)	 enqueue	 (b)	 dequeue
	 (c)	 pop	 (d)	 peek
	 4.	 Typical time requirement for operations on 

queues  is 
	 (a)	 O(1)	 (b)	 O(n)
	 (c)	 O(log n)	 (d)	 O(n2)
	 5.	 The circular queue will be full only when 
	 (a)	 FRONT = MAX –1  and REAR = Max –1
	 (b)	 FRONT = 0 and REAR = Max –1    
	 (c)	 FRONT = MAX –1  and REAR = 0
	 (d)	 FRONT = 0 and REAR = 0

True or False
	 1.	 A queue stores elements in a manner such that 

the first element is at the beginning of the list 
and the last element is at the end of the list.

	 2.	 Elements in a priority queue are processed 
sequentially.

	 3.	 In a linked queue, a maximum of 100 elements 
can be added.

	 4.	 Conceptually a linked queue is same as that of 
a linear queue.

	 5.	 The size of a linked queue cannot change during 
run time.

	 6.	 In a priority queue, two elements with the same 
priority are processed on a FCFS basis.

	 7.	 Output-restricted deque allows deletions to be 
done only at one end of the dequeue, while 
insertions can be done at both the ends.

	 8.	 If front=MAX – 1 and rear= 0, then the circular 
queue is full.

Fill in the Blanks
	 1.	 New nodes are added at ______ of the queue.
	 2.	 ______ allows insertion of elements at either 

ends but not in the middle.
	 3.	 The typical time requirement for operations in a 

linked queue is ______.
	 4.	 In ______, insertions can be done only at one end, 

while deletions can be done from both the ends.
	 5.	 Dequeue is implemented using ______.
	 6.	 ______ are appropriate data structures to process 

batch computer programs submitted to the 
computer centre.

	 7.	 ______ are appropriate data structures to 
process a list of employees having a contract for 
a seniority system for hiring and firing.



9.1  INTRODUCTION
A tree is recursively defined as a set of one or more nodes where one node is designated as the 
root of the tree and all the remaining nodes can be partitioned into non-empty sets each of which 
is a sub-tree of the root. Figure 9.1 shows a tree where node A is the root node; nodes B, C, and D 
are children of the root node and form sub-trees of the tree rooted at node A.

9.1.1  Basic Terminology
Root node  The root node R is the topmost node in the tree. If R = NULL, then it means the tree is 
empty.
Sub-trees  If the root node R is not NULL, then the trees T1, T2, and T3 are called the sub-trees of R.
Leaf node  A node that has no children is called the leaf node or the terminal node.
Path  A sequence of consecutive edges is called a path. For example, in Fig. 9.1, the path from 
the root node A to node I is given as: A, D, and I.
Ancestor node  An ancestor of a node is any predecessor node on the path from root to that 
node. The root node does not have any ancestors. In the tree given in Fig. 9.1, nodes A, C, and G 
are the ancestors of node K.

Learning Objective
So far, we have discussed linear data structures such as arrays, strings, stacks, 
and queues. In this chapter, we will learn about a non-linear data structure called 
tree. A tree is a structure which is mainly used to store data that is hierarchical in 
nature. In this chapter, we will first discuss general trees and then binary trees. These 
binary trees are used to form binary search trees and heaps. They are widely used to 
manipulate arithmetic expressions, construct symbol tables, and for syntax analysis. 

Trees

chapter 9
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Descendant node A descendant node is any successor node on any path from 
the node to a leaf node. Leaf nodes do not have any descendants. In the tree 
given in Fig. 9.1, nodes C, G, J, and K are the descendants of node A.

Level number  Every node in the tree is assigned a level number in such a way 
that the root node is at level 0, children of the root node are at level number 
1. Thus, every node is at one level higher than its parent. So, all child nodes 
have a level number given by parent’s level number + 1.

Degree  Degree of a node is equal to the number of children that a node has. 
The degree of a leaf node is zero.

In-degree  In-degree of a node is the number of edges arriving at that node.

Out-degree  Out-degree of a node is the number of edges leaving that node.

9.2  TYPES OF TREES
Trees are of following 6 types:
	 1.	 General trees
	 2.	 Forests
	 3.	 Binary trees
	 4.	 Binary search trees
	 5.	 Expression trees
	 6.	 Tournament trees

9.2.1  General Trees
General trees are data structures that store elements hierarchically. The top node of a tree is the 
root node and each node, except the root, has a parent. A node in a general tree (except the leaf 
nodes) may have zero or more sub-trees. General trees which have 3 sub-trees per node are called 
ternary trees. However, the number of sub-trees for any node may be variable. For example, a 
node can have 1 sub-tree, whereas some other node can have 3 sub-trees.
	 Although general trees can be represented as ADTs, there is always a problem when another 
sub-tree is added to a node that already has the maximum number of sub-trees attached to it. Even 
the algorithms for searching, traversing, adding, and deleting nodes become much more complex 
as there are not just two possibilities for any node but multiple possibilities.
	 To overcome the complexities of a general tree, it may be represented as a graph data structure 
(to be discussed later), thereby losing many of the advantages of the tree processes. Therefore, a 
better option is to convert general trees into binary trees.
	 A general tree when converted to a binary tree may not end up being well formed or full, but 
the advantages of such a conversion enable the programmer to use the algorithms for processes 
that are used for binary trees with minor modifications.

9.2.2  Forests
A forest is a disjoint union of trees. A set of disjoint trees (or forests) is obtained by deleting the 
root and the edges connecting the root node to nodes at level 1. 
	 We have already seen that every node of a tree is the root of some sub-tree. Therefore, all the 
sub-trees immediately below a node form a forest. 
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  A forest can also be defined as an ordered set of zero or more 
general trees. While a general tree must have a root, a forest 
on the other hand may be empty because by definition it is a 
set, and sets can be empty.
  We can convert a forest into a tree by adding a single node 
as the root node of the tree. For example, Fig. 9.2(a) shows a 
forest and Fig. 9.2(b) shows the corresponding tree.
	Similarly, we can convert a general tree into a forest by 
deleting the root node of the tree. 

9.2.3  Binary Trees
A binary tree is a data structure that is defined as a collection of elements called nodes. In a binary 
tree, the topmost element is called the root node, and each node has 0, 1, or at the most 2 children. 
A node that has zero children is called a leaf node or a terminal node. Every node contains a data 
element, a left pointer which points to the left child, and a right pointer which points to the right 
child. The root element is pointed by a 'root' pointer. If root = NULL, then it means the tree is empty.
  Figure 9.3 shows a binary tree. In the figure, R is the root node and the two trees T1 and T2 are 
called the left and right sub-trees of R. T1 is said to be the left successor of R. Likewise, T2 is called 
the right successor of R.
  Note that the left sub-tree of the root node consists of the nodes: 2, 4, 5, 8, and 9. Similarly, the 
right sub-tree of the root node consists of nodes: 3, 6, 7, 10, 11, and 12.
  In the tree, root node 1 has two successors: 2 and 3. Node 2 has two successor nodes: 4 and 5. 
Node 4 has two successors: 8 and 9. Node 5 has no successor. Node 3 has two successor nodes: 
6 and 7. Node 6 has two successors: 10 and 11. Finally, node 7 has only one successor: 12.
  A binary tree is recursive by definition as every node in the tree contains a left sub-tree and a right 
sub-tree. Even the terminal nodes contain an empty left sub-tree and an empty right sub-tree. Look 
at Fig. 9.3, nodes 5, 8, 9, 10, 11, and 12 have no successors and thus said to have empty sub-trees.

Terminology
Parent  If N is any node in T that has left successor S1 and 
right successor S2, then N is called the parent of S1 and S2. 
Correspondingly, S1 and S2 are called the left child and the right 
child of N. Every node other than the root node has a parent.
Level number  Every node in the binary tree is assigned a level 
number (refer Fig. 9.4). The root node is defined to be at level 0. 
The left and the right child of the root node have a level number 1. 
Similarly, every node is at one level higher than its parents. So all child 
nodes are defined to have level number as parent's level number + 1.
Degree of a node  It is equal to the number of children that a 
node has. The degree of a leaf node is zero. For example, in the 
tree, degree of node 4 is 2, degree of node 5 is zero and degree 
of node 7 is 1.
Sibling  All nodes that are at the same level and share the same 
parent are called siblings (brothers). For example, nodes 2 and 
3; nodes 4 and 5; nodes 6 and 7; nodes 8 and 9; and nodes 10 
and 11 are siblings.
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Leaf node  A node that has no children is called a leaf node or a terminal 
node. The leaf nodes in the tree are: 8, 9, 5, 10, 11, and 12.
Similar binary trees  Two binary trees T and T¢ are said to be similar if both 
these trees have the same structure. Figure 9.5 shows two similar binary trees.
Copies  Two binary trees T and T¢ are said to be copies if they have similar 
structure and if they have same content at the corresponding nodes. Figure 
9.6 shows that T¢ is a copy of T.
Edge  It is the line connecting a node N to any of its successors. A binary tree 
of n nodes has exactly n – 1 edges because every node except the root node is 
connected to its parent via an edge.
Path  A sequence of consecutive edges. For example, in Fig. 9.4, the path 
from the root node to the node 8 is given as: 1, 2, 4, and 8.
Depth  The depth of a node N is given as the length of the path from the root 
R to the node N. The depth of the root node is zero.
Height of a tree  It is the total number of nodes on the path from the root node 
to the deepest node in the tree. A tree with only a root node has a height of 1.

	 A binary tree of height h has at least h nodes and at most 2h – 1 nodes. This is because every 
level will have at least one node and can have at most 2 nodes. So, if every level has two nodes 
then a tree with height h will have at the most 2h – 1 nodes as at level 0, there is only one element 
called the root. The height of a binary tree with n nodes is at least log2(n+1) and at most n. 

In-degree/out-degree of a node  It is the number of edges arriving at a node. The root node is 
the only node that has an in-degree equal to zero. Similarly, out-degree of a node is the number 
of edges leaving that node.
	 Binary trees are commonly used to implement binary search trees, expression trees, tournament 
trees, and binary heaps.

Complete Binary Trees
A complete binary tree is a binary tree that satisfies two properties. First, in a complete binary 
tree, every level, except possibly the last, is completely filled. Second, all nodes appear as far 
left as possible.
	 In a complete binary tree Tn, there are exactly n nodes and level r of T can have at most 2r nodes. 
Figure 9.7 shows a complete binary tree.
	 Note that in Fig. 9.7, level 0 has 20 = 1 node, level 1 has 21 = 2 nodes, level 2 has 22 = 4 nodes, 
level 3 has 6 nodes which is less than the maximum of 23 = 8 nodes.
	 In Fig. 9.7, tree T13 has exactly 13 nodes. They have been purposely labelled from 1 to 13, so 
that it is easy for the reader to find the parent node, the right child node, and the left child node of 

the given node. The formula can be given as—if K is a parent 
node, then its left child can be calculated as 2 × K and its right 
child can be calculated as 2 × K + 1. For example, the children 
of the node 4 are 8 (2 × 4) and 9 (2 × 4 + 1). Similarly, the 
parent of the node K can be calculated as | K/2 |. Given the 
node 4, its parent can be calculated as | 4/2 | = 2. The height 
of a tree Tn having exactly n nodes is given as:

Hn = | log2 (n + 1) |

E
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Tree T Tree T¢

J
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HG

I

Figure 9.5  Similar binary 
trees
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Figure 9.6  T¢ is a copy 
of T
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4 5 6 7

8 9 10 11 12 13

Figure 9.7  Complete binary tree
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	 This means, if a tree T has 10,00,000 nodes, then its height is 21.

Extended Binary Trees
A binary tree T is said to be an extended binary tree (or a 
2-tree) if each node in the tree has either no child or exactly 
two children. Figure 9.8 shows how an ordinary binary tree is 
converted into an extended binary tree.
	 In an extended binary tree, nodes having two children are called 
internal nodes and nodes having no children are called external 
nodes. In Fig. 9.8, the internal nodes are represented using circles 
and the external nodes are represented using squares.

	 To convert a binary tree into an extended tree, every empty sub-tree is replaced by a new 
node. The original nodes in the tree are the internal nodes, and the new nodes added are called 
the external nodes.

Representation of Binary Trees in the Memory
In the computer’s memory, a binary tree can be maintained either by using a linked representation 
or by using a sequential representation.

Linked representation of binary trees  In the linked representation of a binary tree, every node 
will have three parts: the data element, a pointer to the left node, and a pointer to the right node. 
So in C, the binary tree is built with a node type given below.

struct node {
	 struct node *left;
	 int data;
	 struct node *right;
};

Every binary tree has a pointer ROOT, which points to the root element (topmost element) of the 
tree. If ROOT = NULL, then the tree is empty. Consider the binary tree given in Fig. 9.3. The schematic 
diagram of the linked representation of the binary tree is shown in Fig. 9.9.
	 In Fig. 9.9, the left position is used to point to the left child of the node or to store the address of 
the left child of the node. The middle position is used to store the data. Finally, the right position 
is used to point to the right child of the node or to store the address of the right child of the node. 
Empty sub-trees are represented using X (meaning NULL).

	

1

2 3

4 5 6 7

X 8 9 10 12X X X X X X XX X11

X X X

Figure 9.9  Linked representation of a binary tree

	 Look at the tree given in Fig. 9.10. Note how this tree is represented in the main memory using 
a linked list (Fig. 9.11).

(a) (b)

Figure 9.8  (a) Binary tree and (b) extended 
binary tree
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Example 9.1  Given the memory representation of a tree that stores the names of family members, 
construct the corresponding tree from the given data.
Solution
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Sequential representation of binary trees  Sequential represen-
tation of trees is done using single or one-dimensional arrays. 
Though it is the simplest technique for memory representation, 
it is inefficient as it requires a lot of memory space. A sequential 
binary tree follows the following rules:

∑	 A one-dimensional array, called TREE, is used to store the 
elements of tree.

∑	 The root of the tree will be stored in the first location. That 
is, TREE[1] will store the data of the root element.

∑	 The children of a node stored in location K will be stored in 
locations (2 × K) and (2 × K+1).

∑	 The maximum size of the array TREE is given as (2h–1), where 
h is the height of the tree.

∑	 An empty tree or sub-tree is specified using NULL. If TREE[1] 
= NULL, then the tree is empty.

Figure 9.12 shows a binary tree and its corresponding sequential 
representation. The tree has 11 nodes and its height is 4.

9.2.4  Binary Search Trees
A binary search tree, also known as an ordered binary tree, is a variant of binary tree in which the 
nodes are arranged in an order. We will discuss the concept of binary search trees and different 
operations performed on them in the next chapter.

9.2.5  Expression Trees
Binary trees are widely used to store algebraic expressions. For example, 
consider the algebraic expression given as:

Exp = (a – b) + (c * d)

This expression can be represented using a binary tree as shown in Fig. 9.13.

Example 9.2  Given an expression, Exp = ((a + b) – (c * d)) % ((e ^f) / (g – h)), construct 
the corresponding binary tree.
Solution

%

+ ^ –

a b c d f g h i

–

Expression tree

/

example 9.3  Given the binary tree, write down the expression that it represents.
Solution
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a b c d f g h i
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Figure 9.12  Binary tree and its sequential 
representation
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Figure 9.13  Expression tree
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Expression for the above binary tree is
[{(a/b) + (c*d)} ^ {(f % g)/(h – i)}]

Example 9.4  Given the expression, Exp = a + b / c * d – e, construct the 
corresponding binary tree.

Solution  Use the operator precedence chart to find the sequence in which operations 
will be performed. The given expression can be written as 
Exp = ((a + ((b/c) * d)) – e)

9.2.6  Tournament Trees
We all know that in a tournament, say of chess, n number of players participate. To 
declare the winner among all these players, a couple of matches are played and usually 

three rounds are played in the game.
	 In every match of round 1, a number of matches are played in which two players 
play the game against each other. The number of matches that will be played in  
round 1 will depend on the number of players. For example, if there are 8 players participating 
in a chess tournament, then 4 matches will be played in round 1. Every match of round 1 will be 
played between two players.
  Then in round 2, the winners of round 1 will play against each other. Similarly, in round 3, the 
winners of round 2 will play against each other and the person who wins round 3 is declared the 
winner. Tournament trees are used to represent this concept.
  In a tournament tree (also called a selection tree), each external node represents a player and 
each internal node represents the winner of  the match played between the players represented 
by its children nodes. These tournament trees are also called winner trees because they are being 

used to record the winner at each level. We can also have 
a loser tree that records the loser at each level.
  Consider the tournament tree given in Fig. 9.14. There 
are 8 players in total whose names are represented using 
a, b, c, d, e, f, g, and h. In round 1, a and b; c and d; e and 
f; and finally g and h play against each other. In round 2, 
the winners of round 1, that is, a, d, e, and g play against 
each other. In round 3, the winners of round 2, a and e 
play against each other. Whosoever wins is declared the 
winner. In the tree, the root node a specifies the winner.

9.3  Creating a Binary Tree from a General Tree
The rules for converting a general tree to a binary tree are given below. Note that a general tree 
is converted into a binary tree and not a binary search tree.

Rule 1: Root of the binary tree = Root of the general tree
Rule 2: Left child of a node = Leftmost child of the node
	 in the binary tree	 in the general tree
Rule 3: Right child of a node 

in the binary tree = Right sibling of the node in the general tree

Example 9.5  Convert the given general tree into a binary tree.
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Figure 9.14  Tournament tree
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Now let us build the binary tree.
Step 1: Node A is the root of the general tree, so it will also be the root of the binary tree.
Step 2: Left child of node A is the leftmost child of node A in the general tree and right 
child of node A is the right sibling of the node A in the general tree. Since node A has no 
right sibling in the general tree, it has no right child in the binary tree.
Step 3: Now process node B. Left child of B is E and its right child is C (right sibling in 
general tree).
Step 4: Now process node C. Left child of C is F (leftmost child) and its right child is D 
(right sibling in general tree).
Step 5: Now process node D. Left child of D is I (leftmost child). There will be no right 
child of D because it has no right sibling in the general tree.
Step 6: Now process node I. There will be no left child of I in the binary tree because I 
has no left child in the general tree. However, I has a right sibling J, so it will be added 
as the right child of I.
Step 7: Now process node J. Left child of J is K (leftmost child). There will be no right 

child of J because it has no right sibling in the general tree.
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Step 6
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Step 7

K
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CE

A

DF

IG

H
J

Step 8

Step 8: Now process all the unprocessed nodes (E, F, G, H, K) in the same fashion, so the resultant 
binary tree can be given as follows.

9.4  TRAVERSING A BINARY TREE
Traversing a binary tree is the process of visiting each node in the tree exactly once in a systematic 
way. Unlike linear data structures in which the elements are traversed sequentially, tree is a non-
linear data structure in which the elements can be traversed in many different ways. There are 
different algorithms for tree traversals. These algorithms differ in the order in which the nodes 
are visited. In this section, we will discuss these algorithms.

9.4.1  Pre-order Traversal
To traverse a non-empty binary tree in pre-order, the following operations are 
performed recursively at each node. The algorithm works by:
	 1.	 Visiting the root node,
	 2.	 Traversing the left sub-tree, and finally
	 3.	 Traversing the right sub-tree.

A

Step 1
A

B

Step 2

B

CE

A

Step 3

B C

A

Figure 9.15  Binary tree
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  Consider the tree given in Fig. 9.15. The pre-order traversal of the tree is given as A, B, C. Root 
node first, the left sub-tree next, and then the right sub-tree. Pre-order traversal is also called as 
depth-first traversal. In this algorithm, the left sub-tree is always traversed before the right sub-tree. 

The word ‘pre’ in the pre-order specifies that the 
root node is accessed prior to any other nodes in 
the left and right sub-trees. Pre-order algorithm 
is also known as the NLR traversal algorithm 
(Node-Left-Right). The algorithm for pre-order 
traversal is shown in Fig. 9.16.
  Pre-order traversal algorithms are used to 
extract a prefix notation from an expression 
tree. For example, consider the expressions 

given below. When we traverse the elements of a tree using the pre-order traversal algorithm, the 
expression that we get is a prefix expression.

+ – a b * c d (from Fig. 9.13)
% – + a b * c d / ^ e f – g h (from Fig of Example 9.2)
^ + / a b * c d / % f g – h i (from Fig of Example 9.3)

Example 9.6  In Figs (a) and (b), find the sequence 
of nodes that will be visited using pre-order traversal 
algorithm.
Solution
TRAVERSAL ORDER: A, B, D, G, H, L, E, C, F, I, J, 
		  and K		  			 
TRAVERSAL ORDER: A, B, D, C, D, E, F, G, H, and I

9.4.2  In-order Traversal
To traverse a non-empty binary tree in in-order, the 
following operations are performed recursively at 
each node. The algorithm works by:
	 1.	 Traversing the left sub-tree,

			   2.	 Visiting the root node, and finally
			   3.	 Traversing the right sub-tree.
  Consider the tree given in Fig. 9.15. The in-order traversal of the tree is given as B, A, and C. 
Left sub-tree first, the root node next, and then the right sub-tree. In-order traversal is also called 
as symmetric traversal. In this algorithm, the left sub-tree is always traversed before the root 
node and the right sub-tree. The word ‘in’ in the in-order specifies that the root node is accessed 
in between the left and the right sub-trees. In-order algorithm is also known as the LNR traversal 

algorithm (Left-Node-Right). The algorithm for 
in-order traversal is shown in Fig. 9.17.
  In-order traversal algorithm is usually used to 
display the elements of a binary search tree. Here, 
all the elements with a value lower than a given 
value are accessed before the elements with a 
higher value. We will discuss binary search trees 
in detail in the next chapter.

Step 1: Repeat Steps 2 to 4 while TREE != NULL

Step 2: Write TREE DATA

Step 3: PREORDER(TREE LEFT)

Step 4: PREORDER(TREE RIGHT)

[END OF LOOP]

Step 5: END

->
->
->

Figure 9.16  Algorithm for pre-order traversal

Step 1: Repeat Steps 2 to 4 while TREE != NULL

Step 2: INORDER(TREE LEFT)

Step 3: Write TREE DATA

Step 4: INORDER(TREE RIGHT)

[END OF LOOP]

Step 5: END

->
->

->

Figure 9.17  Algorithm for in-order traversal

A

B C

D E F

G H I J

KL

G

H I

B C

D E

F

A

(a) (b)



Trees  289

Example 9.7  For the trees given in Example 9.6, find the sequence of nodes that will be visited 
using in-order traversal algorithm.

TRAVERSAL ORDER: G, D, H, L, B, E, A, C, I, F, K, and J
TRAVERSAL ORDER: B, D, A, E, H, G, I, F, and C

9.4.3  Post-order Traversal
To traverse a non-empty binary tree in post-order, the following operations are performed 
recursively at each node. The algorithm works by:
	 1.	 Traversing the left sub-tree,
	 2.	 Traversing the right sub-tree, and finally
	 3.	 Visiting the root node.

  Consider the tree given in Fig. 9.18. The 
post-order traversal of the tree is given as B, C, 
and A. Left sub-tree first, the right sub-tree next, 
and finally the root node. In this algorithm, the 
left sub-tree is always traversed before the right 
sub-tree and the root node. The word ‘post’ in 
the post-order specifies that the root node is 
accessed after the left and the right sub-trees. 
Post-order algorithm is also known as the LRN 
traversal algorithm (Left-Right-Node). The 

algorithm for post-order traversal is shown in Fig. 9.18. Post-order traversals are used to 
extract postfix notation from an expression tree.

Example 9.8  For the trees given in Example 9.6, give the sequence of nodes that will be visited 
using post-order traversal algorithm.

TRAVERSAL ORDER: G, L, H, D, E, B, I, K, J, F, C, and A
TRAVERSAL ORDER: D, B, H, I, G, F, E, C, and A

9.4.4  Level-order Traversal
In level-order traversal, all the nodes at a level are accessed before going to the next level. This 
algorithm is also called as the breadth-first traversal algorithm. Consider the trees given in 
Fig. 9.19 and note the level order of these trees.

TRAVERSAL ORDER:

A, B, C, D, E, F, G, H, I, J, L, and K

(b)(a)

TRAVERSAL ORDER:

A, B, and C

TRAVERSAL ORDER:

A, B, C, D, E, F, G, H, and I

(c)
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G

C

F

A

E
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Figure 9.19  Binary trees

Step 1: Repeat Steps 2 to 4 while TREE != NULL

Step 2: POSTORDER(TREE LEFT)

Step 3: POSTORDER(TREE RIGHT)

Step 4: Write TREE DATA

[END OF LOOP]

Step 5: END

->
->

->

Figure 9.18  Algorithm for post-order traversal
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9.4.5  Constructing a Binary Tree from Traversal Results
We can construct a binary tree if we are given at least two traversal results. The first traversal 
must be the in-order traversal and the second can be either pre-order or post-order traversal. 
The in-order traversal result will be used to determine the left and the right child nodes, and the 
pre-order/post-order can be used to determine the root node. For example, consider the traversal 
results given below:

In–order Traversal: D B E A F C G 			  Pre–order Traversal: A B D E C F G

Here, we have the in-order traversal sequence and pre-order traversal sequence. Follow the steps 
given below to construct the tree:
Step 1  Use the pre-order sequence to determine the root node of the tree. The first element would 
be the root node. 
Step 2  Elements on the left side of the root node in the in-order traversal sequence form the left 
sub-tree of the root node. Similarly, elements on the right side of the root node in the in-order 
traversal sequence form the right sub-tree of the root node.
Step 3  Recursively select each element from pre-order traversal sequence and create its left and 

right sub-trees from the in-order traversal sequence.
Look at Fig. 9.20 which constructs the tree from its 
traversal results. Now consider the in-order traversal 
and post-order traversal sequences of a given binary 
tree. Before constructing the binary tree, remember 
that in post-order traversal the root node is the last 
node. Rest of the steps will be the same as mentioned 
above Fig. 9.21.

In–order Traversal: D B H E I A F J C G 	 Post order Traversal: D H I E B J F G C A
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Figure 9.21  Steps to show binary tree 

9.5  HUFFMAN’S TREE
Huffman coding is an entropy encoding algorithm developed by David A. Huffman that is widely 
used as a lossless data compression technique. The Huffman coding algorithm uses a variable-
length code table to encode a source character where the variable-length code table is derived on 
the basis of the estimated probability of occurrence of the source character.
	 The key idea behind Huffman algorithm is that it encodes the most common characters using 
shorter strings of bits than those used for less common source characters.
	 The algorithm works by creating a binary tree of nodes that are stored in an array. A node can 
be either a leaf node or an internal node. Initially, all the nodes in the tree are at the leaf level and 
store the source character and its frequency of occurrence (also known as weight).
	 While the internal node is used to store the weight and contains links to its child nodes, the 
external node contains the actual character. Conventionally, a '0' represents following the left 
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D E

A

B FCG

A

B C

D E F G

Figure 9.20
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child and a '1' represents following the right child. A finished tree 
that has n leaf nodes will have n – 1 internal nodes.
  The running time of the algorithm depends on the length of the 
paths in the tree. So, before going into further details of Huffman 
coding, let us first learn how to calculate the length of the paths 
in the tree. The external path length of a binary tree is defined as 
the sum of all path lengths summed over each path from the root 
to an external node. The internal path length is also defined in the 
same manner. The internal path length of a binary tree is defined 
as the sum of all path lengths summed over each path from the 
root to an internal node. Look at the binary tree given in Fig. 9.22.

	 The internal path length, LI = 0 + 1 + 2 + 1 + 2 + 3 + 3 = 12

	 The external path length, LE = 2 + 3 + 3 + 2 + 4 + 4 + 4 + 4 = 26

	 Note that, LI + 2 * n = 12 + 2 * 7 = 12 + 14 = 26 = LE

Thus, LI + 2n = LE, where n is the number of internal nodes. Now if the tree has n external nodes 
and each external node is assigned a weight, then the weighted path length P is defined as the sum 
of the weighted path lengths.
  Therefore, P = W1L1 + W2L2 + …. + WnLn

where Wi and Li are the weight and path length of an external node Ni.

Example 9.9  Consider the trees T1, T2, and T3 given below, calculate their weighted external 
path lengths.

5 2

2 3 11 5

2

3 4

5 7 5

2 3

11

T
1

T
2

T
3

Binary tree

Solution
Weighted external path length of T1 can be given as,

P1 = 2◊3 + 3◊3 + 5◊2 + 11◊3 + 5◊3 + 2◊2 = 6 + 9 + 10 + 33 + 15 + 4 = 77

Weighted external path length of T2 can be given as,
P2 = 5◊2 + 7◊2 + 3◊3 + 4◊3 + 2◊2 = 10 + 14 + 9 + 12 + 4 = 49

Weighted external path length of T3 can be given as,
P3 = 2◊3 + 3◊3 + 5◊2 + 11◊1 = 6 + 9 + 10 + 11 = 36

Technique
Given n nodes and their weights, the Huffman algorithm is used to find a tree with a minimum-
weighted path length. The process essentially begins by creating a new node whose children are 
the two nodes with the smallest weight, such that the new node’s weight is equal to the sum of 
the children’s weight. That is, the two nodes are merged into one node. This process is repeated 

Figure 9.22  Binary tree
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until the tree has only one node. Such a tree with only one node is known as the Huffman tree.
	 The Huffman algorithm can be implemented using a priority queue in which all the nodes 
are placed in such a way that the node with the lowest weight is given the highest priority. The 
algorithm is shown in Fig. 9.23.

�

Step 1: Create a leaf node for each character. Add the character and its weight or frequency

of occurrence to the priority queue.

Step 2: Repeat Steps 3 to 5 while the total number of nodes in the queue is greater than 1.

Step 3: Remove two nodes that have the lowest weight (or highest priority).

Step 4: Create a new internal node by merging these two nodes as children and with weight

equal to the sum of the two nodes' weights.

Step 5: Add the newly created node to the queue.

Figure 9.23  Huffman algorithm

Example 9.10  Create a Huffman tree with the following nodes arranged in a priority queue.
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Data Coding
When we want to code our data (character) using bits, then we use 
r bits to code 2r characters. For example, if r=1, then two characters 
can be coded. If these two characters are A and B, then A can be coded 
as 0 and B can be coded as 1 and vice versa. Look at Tables 9.1 and 
9.2 which show the range of characters that can be coded by using 
r=2 and r=3.
  Now, if we have to code the data string ABBBBBBAAAACDEFGGGGH, then 
the corresponding code would be:

000001001001001001001000000000000010011100101110110110110111

  This coding scheme has a fixed-length code because every character 
is being coded using the same number of bits. Although this technique 
of coding is simple, coding the data can be made more efficient by 
using a variable-length code.
  You might have observed that when we write a text in English, all 
the characters are not used frequently. For example, characters like a, e, 
i, and r are used more frequently than w, x, y, z and so on. So, the basic 
idea is to assign a shorter code to the frequently occurring characters 
and a longer to less frequently occurring characters. Variable-length 
coding is preferred over fixed-length coding because it requires lesser 
number of bits to encode the same data.

  For variable-length encoding, we first build a Huffman tree. First, arrange all the characters in 
a priority queue in which the character with the lowest frequency of occurrence has the highest 
priority. Then, create a Huffman tree as explained in the previous section. Figure 9.24 shows a 
Huffman tree that is used for encoding the data set.
  In the Huffman tree, circles contain the cumulative weights of their child nodes. Every left 
branch is coded with 0 and every right branch is coded with 1. So, the characters A, E, R, W, X, Y, 
and Z are coded as shown in Table 9.3.

						    

A E R

X Y W Z

0 1

0 1

0 0

0

0

1 1

1

1

     Figure 9.24  Huffman tree

Thus, we see that frequent characters have a shorter code and infrequent characters have a longer 
code.

9.6  APPLICATIONs OF TREES
	 ∑	 Trees are used to store simple as well as complex data. Here simple means an integer value, 

character value and complex data means a structure or a record.

Table 9.3  Characters with their codes

Character Code

A 00

E 01

R 11

W 1010

X 1000

Y 1001

Z 1011

Table 9.1  Range of characters that 
can be coded using r = 2

Code Character

00 A

01 B

10 C

11 D

Table 9.2  Range of characters that 
can be coded using r = 3

Code Character

000 A

001 B

010 C

011 D

100 E

101 F

110 G

111 H
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	 ∑	 Trees are often used for implementing other types of data structures like hash tables, sets, 
and maps.

	 ∑	 A self-balancing tree, Red-black tree is used in kernel scheduling, to preempt massively multi-
processor computer operating system use. (We will study red-black trees in next chapter.)

	 ∑	 Another variation of tree, B-trees are prominently used to store tree structures on disc. They 
are used to index a large number of records. (We will study B-Trees in Chapter 11.)

	 ∑	 B-trees are also used for secondary indexes in databases, where the index facilitates a select 
operation to answer some range criteria.

	 ∑	 Trees are an important data structure used for compiler construction.
	 ∑	 Trees are also used in database design.
	 ∑	 Trees are used in file system directories. 
	 ∑	 Trees are also widely used for information storage and retrieval in symbol tables.

 Points to Remember

∑	 A tree is a data structure which is mainly used to 
store hierarchical data. A tree is recursively defined 
as collection of one or more nodes where one node is 
designated as the root of the tree and the remaining 
nodes can be partitioned into non-empty sets each 
of which is a sub-tree of the root. 

∑	 In a binary tree, every node has zero, one, or at the 
most two successors. A node that has no successors 
is called a leaf node or a terminal node. Every node 
other than the root node has a parent.

∑	 The degree of a node is equal to the number of 
children that a node has. The degree of a leaf node 
is zero. All nodes that are at the same level and share 
the same parent are called siblings.

∑	 Two binary trees having a similar structure are said 
to be copies if they have the same content at the 
corresponding nodes.

∑	 A binary tree of n nodes has exactly n – 1 edges. The 
depth of a node N is given as the length of the path 
from the root R to the node N. The depth of the root 
node is zero. 

∑	 A binary tree of height h has at least h nodes and at 
most 2h – 1 nodes.

∑	 The height of a binary tree with n nodes is at 
least log2(n+1) and at most n . In-degree of 
a node is the number of edges arriving at that node. 
The root node is the only node that has an in-degree 
equal to zero. Similarly, out-degree of a node is the 
number of edges leaving that node. 

∑	 In a complete binary tree, every level (except 
possibly the last) is completely filled and nodes 
appear as far left as possibly.

∑	 A binary tree T is said to be an extended binary tree 
(or a 2-tree) if each node in the tree has either no 
children or exactly two children.

∑	 Pre-order traversal is also called as depth-first traversal. 
It is also known as the NLR traversal algorithm (Node-
Left-Right) and is used to extract a prefix notation from 
an expression tree. In-order algorithm is known as the 
LNR traversal algorithm (Left-Node-Right). Similarly, 
post-order algorithm is known as the LRN traversal 
algorithm (Left-Right-Node).

∑	 The Huffman coding algorithm uses a variable-
length code table to encode a source character where 
the variable-length code table is derived on the basis 
of the estimated probability of occurrence of the 
source character.

 exercises

Review Questions
	 1.	 Explain the concept of a tree. Discuss its applica-

tions.
	 2.	 What are the two ways of representing binary 

trees in the memory? Which one do you prefer 
and why?

	 3.	 List all possible non-similar binary trees having 
four nodes.

	 4.	 Draw the binary expression tree that represents 
the following postfix expression:

		  A B + C * D –
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	 5.	 Write short notes on:
		 (a) Complete binary trees
	 (b) 	Extended binary trees
	 (c)	 Tournament trees
	 (d)	 Expression trees
	 (e)	 Huffman trees
	 (f)	 General trees
	 (g)	 Forests
	 6.	 Consider the tree given below. Now, do the 

following:
	 (a)	 Name the leaf nodes
	 (b)	 Name the non-leaf nodes
	 (c)	 Name the ancestors of E
	 (d) 	Name the descendants of A
	 (e) Name the siblings of C

	(f) Find the height of the tree
	(g) Find the height of sub-tree rooted at E
	(h) Find the level of node E
	(i) Find the in-order, pre-order, post-order, and level-

order traversal

B C

D E

H I

F G

A

 7.	 For the expression tree given below, do the 
following:

	 (a) 	Extract the infix expression it represents
	 (b) 	Find the corresponding prefix and postfix 

expressions
	 (c)	 Evaluate the infix expression, given a = 30, b = 

10, c = 2, d = 30, e = 10

		

+

e –

D *

/ c

a b

 8.	 Convert the prefix expression –/ab*+bcd into 
infix expression and then draw the corresponding 
expression tree.

	 9.	 Consider the trees given below and state whether 
they are complete binary tree or full binary tree.

		

63

29 54

18 23 45

9 11

63

29 54

18 23 45

9 11

49

 10.	 What is the maximum number of levels that a 
binary search tree with 100 nodes can have?

	 11.	 What is the maximum height of a tree with 32 
nodes?

	 12.	 What is the maximum number of nodes that can 
be found in a binary tree at levels 3, 4, and 12?

	 13.	 Draw all possible non-similar binary trees having 
three nodes.

	 14.	 Draw the binary tree having the following memory 
representation:

		

LEFT RIGHTDATA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

–1

–1

5

9

20

1

–1

–1

–1

–1

–1

2

ROOT

3

16

17

18

19

20

8

10

1

2

3

4

7

9

5

11

12

6

–1

–1

8

14

12

18

–1

–1

–1

–1

16

15

AVAIL

11

 15.	 Draw the memory representation of the binary 
tree given below.

		

2

4 5 6 7

12111098

3

1
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	 16.	 Consider the trees T1, T2, and T3 given below and 
calculate their weighted path lengths.

5 2

51132

5 2

43

7

5

3 2

T
3

11

T
1

T
2

 17.	 Consider the trees T1, T2, and T3 given below and 
find the Huffman coding for the characters.

C F

DCBA

A E

DC

B

C

A B

T
3

D

T
1

T
2

multiple-choice Questions
	 1.	 Degree of a leaf node is ______.
	 (a)	 0	 (b)	 1
	 (c)	 2	 (d)	 3
	 2.	 The depth of root node is ______.
	 (a)	 0	 (b)	 1
	 (c)	 2	 (d)	 3
	 3.	 A binary tree of height h has at least h nodes and 

at most ______ nodes.
	 (a)	 2h	 (b)	 2h

	 (c)	 2h+1	 (d)	 2h – 1

	 4.	 Pre-order traversal is also called ______.
	 (a)	 Depth first	 (b)	 Breadth first
	 (c)	 Level order	 (d)	 In-order
	 5.	 The Huffman algorithm can be implemented using 

a ______.
	 (a)	 Dequeue	 (b)	 Queue
	 (c)	 Priority queue	 (d)	 None of these
	 6.	 Total number of nodes at the nth level of a binary 

tree can be given as
	 (a)	 2n	 (b)	 2n

	 (c)	 2n+1	 (d)	 2n–1

True or False
	 1.	 Nodes that branch into child nodes are called 

parent nodes.
	 2.	 The size of a tree is equal to the total number of 

nodes.
	 3.	 A leaf node does not branch out further.
	 4.	 A node that has no successors is called the root 

node.
	 5.	 A binary tree of n nodes has exactly n – 1 edges.
	 6.	 Every node has a parent.
	 7.	 The Huffman coding algorithm uses a variable-

length code table.
	 8.	 The internal path length of a binary tree is defined 

as the sum of all path lengths summed over each 
path from the root to an external node.

Fill in the Blanks
	 1.	 Parent node is also known as the ______ node.
	 2.	 Size of a tree is basically the number of ______ 

in the tree.
	 3.	 The maximum number of nodes at the kth level of 

a binary tree is ______.
	 4.	 In a binary tree, every node can have a maximum 

of ______ successors.
	 5.	 Nodes at the same level that share the same parent 

are called ______.
	 6.	 Two binary trees are said to be copies if they have 

similar ______ and ______.
	 7.	 The height of a binary tree with n nodes is at least 

______ and at most ______.
	 8.	 A binary tree T is said to be an extended binary 

tree if ______.
	 9.	 ______ traversal algorithm is used to extract a 

prefix notation from an expression tree.
	 10.	 In a Huffman tree, the code of a character depends 

on ______.



10.1  BINARY SEARCH TREES
We have already discussed binary trees in the previous chapter. A binary search tree, also known 
as an ordered binary tree, is a variant of binary trees in which the nodes are arranged in an order. 
In a binary search tree, all the nodes in the left sub-tree have a value less than that of the root 
node. Correspondingly, all the nodes in the right sub-tree have a value either equal to or greater 
than the root node. The same rule is applicable to every sub-tree in the tree. (Note that a binary 
search tree may or may not contain duplicate values, depending on its implementation.)

  Look at Fig. 10.1. The root node is 39. The left sub-tree 
of the root node consists of nodes 9, 10, 18, 19, 21, 27, 28, 
29, and 36. All these nodes have smaller values than the root 
node. The right sub-tree of the root node consists of nodes 
40, 45, 54, 59, 60, and 65. Recursively, each of the sub-trees 
also obeys the binary search tree constraint. For example, 
in the left sub-tree of the root node, 27 is the root and all 
elements in its left sub-tree (9, 10, 18, 19, 21) are smaller 
than 27, while all nodes in its right sub-tree (28, 29, and 36) 
are greater than the root node’s value.
  Since the nodes in a binary search tree are ordered, the 
time needed to search an element in the tree is greatly 
reduced. Whenever we search for an element, we do not 

39

27

18 29

9 21 28 36

10 19

45

40 54

59

65

60

Figure 10.1  Binary search tree

Learning Objective
In this chapter, we will discuss efficient binary trees such as binary search trees, AVL 
trees, threaded binary trees, red-black trees, and splay trees. This chapter is an 
extension of binary trees.

Efficient Binary 
Trees

chapter 10
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need to traverse the entire tree. At every node, we get a hint regarding which sub-tree to search 
in. For example, in the given tree, if we have to search for 29, then we know that we have to scan 
only the left sub-tree. If the value is present in the tree, it will only be in the left sub-tree, as 29 is 
smaller than 39 (the root node’s value). The left sub-tree has a root node with the value 27. Since 
29 is greater than 27, we will move to the right sub-tree, where we will find the element. Thus, the 
average running time of a search operation is O(log2n), as at every step, we eliminate half of the 
sub-tree from the search process. Due to its efficiency in searching elements, binary search trees 
are widely used in dictionary problems where the code always inserts and searches the elements 
that are indexed by some key value.
  Binary search trees also speed up the insertion and deletion operations. The tree has a speed 
advantage when the data in the structure changes rapidly.
  Binary search trees are considered to be efficient data structures especially when compared with 
sorted linear arrays and linked lists. In a sorted array, searching can be done in O(log2n) time, but 
insertions and deletions are quite expensive. In contrast, inserting and deleting elements in a linked 

list is easier, but searching for an element is done in O(n) time.
  However, in the worst case, a binary search tree will take O(n) 
time to search for an element. The worst case would occur when the 
tree is a linear chain of nodes as given in Fig. 10.2.
  To summarize, a binary search tree is a binary tree with the 
following properties:

∑	 The left sub-tree of a node N contains values that are less than 
N’s value.

∑	 The right sub-tree of a node N contains values that are greater 
than N’s value.

∑	 Both the left and the right binary trees also satisfy these 
properties and, thus, are binary search trees.

Example 10.1  State whether the binary trees in Fig. 10.3 are binary search trees or not.
Solution

(No)

15 1817 42

21

19 28(No)

27 39

21

22 28 (Yes)

27 39

21

20 28

Figure 10.3  Binary trees

Example 10.2  Create a binary search tree using the following data elements:
	 45, 39, 56, 12, 34, 78, 32, 10, 89, 54, 67, 81
Solution

(Step 8)

45

39 56

12 78

10 34

32(Step 7)

45

39 56

12 78

34

32(Step 6)

45

39 56

12 78

34

(Step 5)

45

39 56

12

34

(Step 4)

45

39 56

12

(Step 1)

45

(Step 2)

45

39

45

39 56

(Step 3)

39

27

18

9
(a)

45

54

59

65
(b)

Figure 10.2  (a) Left skewed, and (b) 
right skewed binary 
search trees
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(Step 9)

45

39 56

12 78

10 34 89

32

45

39 56

12 54 78

10 34 67 89

32 81
(Step 11)

45

39 56

12 54 78

10 34 67 89

32
(Step 10)

45

39 56

12 54 78

10 34 89

32
(Step 12)

Figure 10.4  Binary search tree

10.2  OPERATIONS ON BINARY 
SEARCH TREES

In this section, we will discuss the 
different operations that are per-
formed on a binary search tree. All 
these operations require comparisons 
to be made between the nodes.

10.2.1  Searching for a Node in a 		
	 Binary Search Tree
The search function is used to find 
whether a given value is present in 

the tree or not. The searching process begins at the 
root node. The function first checks if the binary 
search tree is empty. If it is empty, then the value 
we are searching for is not present in the tree. So, 
the search algorithm terminates by displaying an 
appropriate message. However, if there are nodes 
in the tree, then the search function checks to see 
if the key value of the current node is equal to the 
value to be searched. If not, it checks if the value to 
be searched for is less than the value of the current 
node, in which case it should be recursively called on 
the left child node. In case the value is greater than 
the value of the current node, it should be recursively 
called on the right child node.
	 Look at Fig. 10.5. The figure shows how a binary 
tree is searched to find a specific element. First, see 
how the tree will be traversed to find the node with 
value 12. The procedure to find the node with value 
67 is illustrated in Fig. 10.6.
	 The procedure to find the node with value 40 is shown 
in Fig. 10.7. The search would terminate after reaching 
node 39 as it does not have any right child.

45

39 56

12 54 78

10 34 67 89

32

(Step 3)

45

39 56

12 54 78

10 34 67 89

32

(Step 2)

45

39 56

12 54 78

10 34 67 89

32

(Step 1)

Figure 10.5  Searching a node with value 12 in the given binary search tree

45

39 56

12 54 78

10 34 67 89

32

(Step 2)

45

39 56

12 54 78

10 34 67 89

32

(Step 1)

45

39 56

12 54 78

10 34 67 89

32

(Step 3)

45

39 56

12 54 78

10 34 67 89

32

(Step 4)

Figure 10.6  Searching a node with value 67 in the 
given binary search tree
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  Now let us look at the algorithm to search for an element 
in the binary search tree as shown in Fig. 10.8. In Step 1, 
we check if the value stored at the current node of TREE is 
equal to VAL or if the current node is NULL, then we return 
the current node of TREE. Otherwise, if the value stored at 
the current node is less than VAL, then the algorithm is 
recursively called on its right sub-tree, else the algorithm 
is called on its left sub-tree.

10.2.2  Inserting a New Node in a Binary Search Tree
The insert function is used to add a new node with a given 
value at the correct position in the binary search tree. 
Adding the node at the correct position means that the new 

node should not violate the properties of the binary search tree. Figure 10.9 shows the algorithm 
to insert a given value in a binary search tree.
  The initial code for the insert function is similar to the search function. This is because we first 
find the correct position where the insertion has to be done and then add the node at that position. 
The insertion function changes the structure of the tree. Therefore, when the insert function is 
called recursively, the function should return the new tree pointer.

  In Step 1 of the algorithm, the insert function 
checks if the current node of TREE is NULL. If it is 
NULL, the algorithm simply adds the node, else 
it looks at the current node’s value and then 
recurs down the left or right sub-tree.
  If the current node’s value is less than that 
of the new node, then the right sub-tree is 
traversed, else the left sub-tree is traversed. 
The insert function continues moving down 
the levels of a binary tree until it reaches a 
leaf node. The new node is added by following 
the rules of the binary search trees. That is, 
if the new node’s value is greater than that 
of the parent node, the new node is inserted 
in the right sub-tree, else it is inserted in the 
left sub-tree. The insert function requires time 
proportional to the height of the tree in the 
worst case. It takes O(log n) time to execute 
in the average case and O(n) time in the worst 
case.
  Look at Fig. 10.10 which shows insertion of 
values in a given tree. We will take up the case 
of inserting 12 and 55.

10.2.3  Deleting a Node from a Binary 
Search Tree 

The delete function deletes a node from the 
binary search tree. However, utmost care 
should be taken that the properties of the binary 
search tree are not violated and nodes are not  

45

39 56

12 54 78

10 34 67 89

32

(Step 2)

45

39 56

12 54 78

10 34 67 89

32

(Step 1)

Figure 10.7  Searching a node with the value 40 
in the given binary search tree

Insert (TREE, VAL)

Step 1: IF TREE = NULL

Allocate memory for TREE

SET TREE DATA = VAL

SET TREE LEFT = TREE RIGHT = NULL

ELSE

IF VAL < TREE DATA

Insert(TREE LEFT, VAL)

ELSE

Insert(TREE RIGHT, VAL)

[END OF IF]

[END OF IF]

Step 2: END

->
-> ->

->
->

->

Figure 10.9  Algorithm to insert a given value in a binary 
search tree

SearchElement (TREE, VAL)

Step 1: IF TREE DATA = VAL OR TREE = NULL

Return TREE

ELSE

IF VAL < TREE DATA

Return searchElement(TREE LEFT, VAL)

ELSE

Return searchElement(TREE RIGHT, VAL)

[END OF IF]

[END OF IF]

Step 2: END

->

->
->

->

Figure 10.8  Algorithm to search for a given value in a binary 
search tree
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		  lost in the process. We will take up three cases 
in this section and discuss how a node is 
deleted from a binary search tree. 

Case 1: Deleting a Node that has No 
Children
Look at the binary search tree given in Fig. 
10.11. If we have to delete node 78, we can 
simply remove this node without any issue. 
This is the simplest case of deletion.

Case 2: Deleting a Node with One Child
To handle this case, the node’s child is set 
as the child of the node’s parent. In other 
words, replace the node with its child. Now, 
if the node is the left child of its parent, the 
node’s child becomes the left child of the 
node’s parent. Correspondingly, if the node 
is the right child of its parent, the node’s 
child becomes the right child of the node’s 
parent. Look at the binary search tree shown 
in Fig. 10.12 and see how deletion of node 
54 is handled.

Case 3: Deleting a Node with Two Children
To handle this case, replace the node’s value 
with its in-order predecessor (largest value 
in the left sub-tree) or in-order successor 
(smallest value in the right sub-tree). The 
in-order predecessor or the successor can 
then be deleted using any of the above 
cases. Look at the binary search tree given in 
Fig. 10.13 and see how deletion of node with 
value 56 is handled.
	This deletion could also be handled by 
replacing node 56 with its in-order successor, 
as shown in Fig. 10.14.
  Now, let us look at Fig. 10.15 which 
shows the algorithm to delete a node from 
a binary search tree.
  In Step 1 of the algorithm, we first check 
if TREE=NULL, because if it is true, then the 
node to be deleted is not present in the tree. 
However, if that is not the case, then we 
check if the value to be deleted is less than 
the current node’s data. In case the value is 
less, we call the algorithm recursively on the 
node’s left sub-tree, otherwise the algorithm 

45

39 56

54 78

(Step 1)

45

39 56

54 78

(Step 2)

45

39 56

54 78

(Step 3)

12

45

39 56

54 78

(Step 4)

45

39 56

54 78

(Step 5)

45

39 56

54 78

(Step 6)

45

39 56

54 78

(Step 7)

55

Figure 10.10  Inserting nodes with values 12 and 55 in the given 
binary search tree

(Step 1)

45

39 56

54 78

55

(Step 2)

45

39 56

54 78

55

(Step 3)

45

39 56

54 78

55

(Step 4)

45

39 56

54

55

Delete node 78

Figure 10.11  Deleting node 78 from the given binary search tree

(Step 1)

45

39 56

54 78

55

(Step 2)

45

39 56

54 78

55

(Step 3)

45

39 56

54 78

55

(Step 4)

45

39 56

55 78

Replace 54 with 55

Figure 10.12  Deleting node 54 from the given binary search tree

45

39 56

54 78

55 80

(Step 1)

45

39 56

54 78

55 80

(Step 2)

45

39 55

54 78

55 80

(Step 3)

45

39 55

54 78

80

(Step 4)

Delete leaf node 55Replace node 56 with 55

Figure 10.13  Deleting node 56 from the given binary search tree
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  is called recursively on the node’s right 
sub-tree.
  Note that if we have found the node 
whose value is equal to VAL, then we check 
which case of deletion it is. If the node to 
be deleted has both left and right children, 
then we find the in-order predecessor of 
the node by calling findLargestNode(TREE -> 
LEFT) and replace the current node’s value 
with that of its in-order predecessor. Then, 
we call Delete(TREE -> LEFT, TEMP -> DATA) 
to delete the initial node of the in-order 
predecessor. Thus, we reduce the case 3 of 
deletion into either case 1 or case 2 of 
deletion.
  If the node to be deleted does not have 
any child, then we simply set the node to 
NULL. Last but not the least, if the node to be 
deleted has either a left or a right child but 
not both, then the current node is replaced 
by its child node and the initial child node 
is deleted from the tree.
  The delete function requires time 
proportional to the height of the tree in 
the worst case. It takes O(log n) time to 
execute in the average case and W(n) time 
in the worst case.

10.2.4  Determining the Height of a 
Binary Search Tree

In order to determine the height of a binary 
search tree, we calculate the height of 
the left sub-tree and the right sub-tree. 

Whichever height is greater, 1 is added to it. For example, if the height of the left sub-tree is 
greater than that of the right sub-tree, then 1 is added to the left sub-tree, else 1 is added to the 
right sub-tree. 
  Look at Fig. 10.16. Since the height of the right sub-tree is greater than the height of the left 
sub-tree, the height of the tree = height (right sub-tree) + 1= 2 + 1 = 3.
  Figure 10.17 shows a recursive algorithm that determines the height of a binary search tree.
  In Step 1 of the algorithm, we first check if the current node of the TREE = NULL. If the condition 

is true, then 0 is returned to the calling code. Otherwise, for every node,  
we recursively call the algorithm to calculate the height of its left sub-tree 
as well as its right sub-tree. The height of the tree at that node is given by 
adding 1 to the height of the left sub-tree or the height of right sub-tree, 
whichever is greater.

10.2.5  Determining the Number of Nodes
Determining the number of nodes in a binary search tree is similar to 
determining its height. To calculate the total number of elements/nodes 		
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78 with 80

Delete leaf
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Figure 10.14  Deleting node 56 from the given binary search tree

Delete (TREE, VAL)

Step 1: IF TREE = NULL

Write "VAL not found in the tree"

ELSE IF VAL < TREE DATA

Delete(TREE->LEFT, VAL)

ELSE IF VAL > TREE DATA

Delete(TREE RIGHT, VAL)

ELSE IF TREE LEFT AND TREE RIGHT

SET TEMP = findLargestNode(TREE LEFT)

SET TREE DATA = TEMP DATA

Delete(TREE LEFT, TEMP DATA)

ELSE

SET TEMP = TREE

IF TREE LEFT = NULL AND TREE RIGHT = NULL

SET TREE = NULL

ELSE IF TREE LEFT != NULL

SET TREE = TREE LEFT

ELSE

SET TREE = TREE RIGHT

[END OF IF]

FREE TEMP

[END OF IF]

Step 2: END

->

->
->

-> ->
->

-> ->
-> ->

-> ->

->
->

->

Figure 10.15  Algorithm to delete a node from a binary search tree
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Figure 10.16  Binary search tree 
with height = 3
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		  in the tree, we count the number of nodes in the 
left sub-tree and the right sub-tree.

Number of nodes = totalNodes(left sub–tree) 
+ totalNodes(right sub–tree) + 1

  Consider the tree given in Fig. 10.18. The total 
number of nodes in the tree can be calculated as:

Total nodes of left sub–tree = 1
Total nodes of left sub–tree = 5
Total nodes of tree = (1 + 5) + 1

Total nodes of tree = 7

  Figure 10.19 shows a recursive algorithm to 
calculate the number of nodes in a binary search 
tree. For every node, we recursively call the 
algorithm on its left sub-tree as well as the right 
sub-tree. The total number of nodes at a given 
node is then returned by adding 1 to the number 

of nodes in its left as well as right sub-tree. However if the tree is empty, 
that is TREE = NULL, then the number of nodes will be zero.

Determining the Number of Internal Nodes
To calculate the total number of internal nodes or non-leaf nodes, we count 
the number of internal nodes in the left sub-tree and the right sub-tree 
and add 1 to it (1 is added for the root node).

N u m b e r  o f  i n t e r n a l  n o d e s  = 
� totalInternalNodes(left sub–tree) +
� totalInternalNodes(right sub–tree) + 1

	Consider the tree given in Fig. 10.18. The 
total number of internal nodes in the tree can 
be calculated as:

Total internal nodes of left sub–tree = 0
Total internal nodes of right sub–tree = 3
Total internal nodes of tree = (0 + 3) + 1
Total internal nodes of tr	= 4

    Figure 10.20 shows a recursive algorithm 
to calculate the total number of internal nodes 
in a binary search tree. For every node, we 
recursively call the algorithm on its left sub-
tree as well as the right sub-tree. The total 
number of internal nodes at a given node is 
then returned by adding internal nodes in its 
left as well as right sub-tree. However, if the 
tree is empty, that is TREE = NULL, then the 
number of internal nodes will be zero. Also 
if there is only one node in the tree, then the 
number of internal nodes will be zero.

Determining the Number of External Nodes
To calculate the total number of external 
nodes or leaf nodes, we add the number of 

Height (TREE)

Step 1: IF TREE = NULL

Return

ELSE

SET LeftHeight = Height(TREE LEFT)

SET RightHeight = Height(TREE RIGHT)

IF LeftHeight > RightHeight

Return LeftHeight + 1

ELSE

Return RightHeight + 1

[END OF IF]

[END OF IF]

Step 2: END

->
->

Figure 10.17  Algorithm to determine the height of a binary 
search tree
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Figure 10.18  Binary search tree

totalNodes(TREE)

Step 1: IF TREE = NULL

Return

ELSE

Return totalNodes(TREE LEFT)

+ totalNodes(TREE RIGHT) + 1

[END OF IF]

Step 2: END

->
->

Figure 10.19  Algorithm to calculate the number of nodes in 
a binary search tree

totalInternalNodes(TREE)

Step 1: IF TREE = NULL

Return

[END OF IF]

IF TREE LEFT = NULL AND TREE RIGHT = NULL

Return

ELSE

Return totalInternalNodes(TREE LEFT) +

totalInternalNodes(TREE RIGHT) + 1

[END OF IF]

Step 2: END

-> ->

->
->

Figure 10.20  Algorithm to calculate the total number of internal 
nodes in a binary search tree
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external nodes in the left sub-tree and the right sub-tree. However if the tree is empty, that is TREE 
= NULL, then the number of external nodes will be zero. But if there is only one node in the tree, 
then the number of external nodes will be one.

Number of external nodes = totalExternalNodes(left sub–tree) +

	 totalExternalNodes (right sub–tree)

  Consider the tree given in Fig. 10.18. The total number of external nodes in the given tree can 
be calculated as:

Total external nodes of left sub–tree = 1
Total external nodes of left sub–tree = 2
Total external nodes of tree = 1 + 2
    = 3

  Figure 10.21 shows a recursive algo-
rithm to calculate the total number of 
external nodes in a binary search tree. 
For every node, we recursively call the 
algorithm on its left sub-tree as well as 
the right sub-tree. The total number of 
external nodes at a given node is then 
returned by adding the external nodes in 
its left as well as right sub-tree. How-
ever if the tree is empty, that is TREE = 
NULL, then the number of external nodes 
will be zero. Also if there is only one 
node in the tree, then there will be only 
one external node (that is the root node).

10.2.6  Finding the Mirror Image of a Binary Search Tree
Mirror image of a binary search tree is obtained by interchanging the left 
sub-tree with the right sub-tree at every node of the tree. For example, 
given a tree T, the mirror image of T can be obtained as T¢. Consider the 
tree T given in Fig. 10.22.
  Figure 10.23 shows a recursive algorithm to obtain the mirror image of a 
binary search tree. In the algorithm, if TREE != NULL, that is if the current node 
in the tree has one or more nodes, then the algorithm is recursively called at 
every node in the tree to swap the nodes in its left and right sub-trees.

10.2.7  Deleting a Binary Search Tree
To delete/remove an entire binary search tree from the 
memory, we first delete the elements/nodes in the left 
sub-tree and then delete the nodes in the right sub-tree. 
The algorithm shown in Fig. 10.24 gives a recursive 
procedure to remove the binary search tree.

10.2.8  Finding the Smallest Node in a Binary 
Search Tree

The very basic property of the binary search tree states 
that the smaller value will occur in the left sub-tree. If 

totalExternalNodes(TREE)

Step 1: IF TREE = NULL

Return

ELSE IF TREE LEFT = NULL AND TREE RIGHT = NULL

Return 1

ELSE

Return totalExternalNodes(TREE LEFT) +

totalExternalNodes(TREE RIGHT)

[END OF IF]

Step 2: END

-> ->

->
->

Figure 10.21  Algorithm to calculate the total number of external 
nodes in a binary search tree
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Figure 10.22  Binary search 
tree T and its

MirrorImage(TREE)

Step 1: IF TREE != NULL

MirrorImage(TREE LEFT)

MirrorImage(TREE RIGHT)

SET TEMP = TREE LEFT

SET TREE LEFT = TREE RIGHT

SET TREE RIGHT = TEMP

[END OF IF]

Step 2: END

->
->

->
-> ->
->

Figure 10.23  Algorithm to obtain the mirror image 
mirror image T¢ of a binary search tree
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the left sub-tree is NULL, then the value of the root node will be smallest as compared to the nodes 
in the right sub-tree. So, to find the node with the smallest value, we find the value of the leftmost 
node of the left sub-tree. The recursive algorithm to find the smallest node in a binary search tree 
is shown in Fig. 10.25.

deleteTree(TREE)

Step 1: IF TREE != NULL

deleteTree (TREE LEFT)

deleteTree (TREE RIGHT)

Free (TREE)

[END OF IF]

Step 2: END

->
->

   

findSmallestElement(TREE)

Step 1: IF TREE = NULL OR TREE LEFT = NULL

Returen TREE

ELSE

Return findSmallestElement(TREE LEFT)

[END OF IF]

Step 2: END

->

->

Figure 10.24  Alogrithm to delete a binary 	 Figure 10.25  Algorithm to find the smallest node in a binary 		
	 search tree		  search tree

10.2.9  Finding the Largest Node in a Binary Search Tree
To find the node with the largest value, we find the value of the rightmost node of the right sub-
tree. However, if the right sub-tree is empty, then the root node will be the largest value in the tree. 
The recursive algorithm to find the largest node in a binary search tree is shown in Fig. 10.26.

findLargestElement(TREE)

Step 1: IF TREE = NULL OR TREE RIGHT = NULL

Return TREE

ELSE

Return findLargestElement(TREE RIGHT)

[END OF IF]

Step 2: END

->

->

     

45

39 78

54 79

55 80

Smallest node

(left-most

child of the

left sub-tree)

Largest node

(right-most

child of the

right sub-tree)

Figure 10.26  Algorithm to find the largest node in a binary 	  Figure 10.27  Binary search tree
	 search tree 

Consider the tree given in Fig. 10.27. The smallest and the largest node can be given as:

Programming Example 

1.	 Write a program to create a binary search tree and perform all the operations discussed 
in the preceding sections.
#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
	 int data;
	 struct node *left;
	 struct node *right;
};
struct node *tree;
void create_tree(struct node *);
struct node *insertElement(struct node *, int);
void preorderTraversal(struct node *);
void inorderTraversal(struct node *);
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void postorderTraversal(struct node *);
struct node *findSmallestElement(struct node *);
struct node *findLargestElement(struct node *);
struct node *deleteElement(struct node *, int);
struct node *mirrorImage(struct node *);
int totalNodes(struct node *);
int totalExternalNodes(struct node *);
int totalInternalNodes(struct node *);
int Height(struct node *);
struct node *deleteTree(struct node *);
int main()
{
	 int option, val;
	 struct node *ptr;
	 create_tree(tree);
	 clrscr();
	 do
	 {
		  printf("\n ******MAIN MENU******* \n");
		  printf("\n 1. Insert Element");
		  printf("\n 2. Preorder Traversal");
		  printf("\n 3. Inorder Traversal");
		  printf("\n 4. Postorder Traversal");
		  printf("\n 5. Find the smallest element");
		  printf("\n 6. Find the largest element");
		  printf("\n 7. Delete an element");
		  printf("\n 8. Count the total number of nodes");
		  printf("\n 9. Count the total number of external nodes");
		  printf("\n 10. Count the total number of internal nodes");
		  printf("\n 11. Determine the height of the tree");
		  printf("\n 12. Find the mirror image of the tree");
		  printf("\n 13. Delete the tree");
		  printf("\n 14. Exit");
		  printf("\n\n Enter your option : ");
		  scanf("%d", &option);
		  switch(option)
		  {
			   case 1:
				    printf("\n Enter the value of the new node : ");
				    scanf("%d", &val);
				    tree = insertElement(tree, val);
				    break;
			   case 2:
				    printf("\n The elements of the tree are : \n");
				    preorderTraversal(tree);
				    break;
			   case 3:
				    printf("\n The elements of the tree are : \n");
				    inorderTraversal(tree);
				    break;
			   case 4:
				    printf("\n The elements of the tree are : \n");
				    postorderTraversal(tree);
				    break;
			   case 5:
				    ptr = findSmallestElement(tree);
				    printf("\n Smallest element is :%d",ptr–>data);
				    break;
			   case 6:
				    ptr = findLargestElement(tree);
				    printf("\n Largest element is : %d", ptr–>data);
				    break;
			   case 7:
				    printf("\n Enter the element to be deleted : ");
				    scanf("%d", &val);
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				    tree = deleteElement(tree, val);
				    break;
			   case 8:
				    printf("\n Total no. of nodes = %d", totalNodes(tree));
				    break;
			   case 9:
				    printf("\n Total no. of external nodes = %d", 	  			
					     totalExternalNodes(tree));
				    break;
			   case 10:
				    printf("\n Total no. of internal nodes = %d", 				 
					     totalInternalNodes(tree));
				    break;
			   case 11:
				    printf("\n The height of the tree = %d",Height(tree));
				    break;
			   case 12:
				    tree = mirrorImage(tree);
				    break;
			   case 13:
				    tree = deleteTree(tree);
				    break;
		  }
	 }while(option!=14);
	 getch();
	 return 0;
}
void create_tree(struct node *tree)
{
	 tree = NULL;
}
struct node *insertElement(struct node *tree, int val)
{
	 struct node *ptr, *nodeptr, *parentptr;
	 ptr = (struct node*)malloc(sizeof(struct node));
	 ptr–>data = val;
	 ptr–>left = NULL;
	 ptr–>right = NULL;
	 if(tree==NULL)
	 {
		  tree=ptr;
		  tree–>left=NULL;
		  tree–>right=NULL;
	 }
	 else
	 {
		  parentptr=NULL;
		  nodeptr=tree;
		  while(nodeptr!=NULL)
		  {
			   parentptr=nodeptr;
			   if(val<nodeptr–>data)
				    nodeptr=nodeptr–>left;
			   else
				    nodeptr = nodeptr–>right;
		  }
		  if(val<parentptr–>data)
			   parentptr–>left = ptr;
		  else
			   parentptr–>right = ptr;
	 }
	 return tree;
}
void preorderTraversal(struct node *tree)
{
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	 if(tree != NULL)
	 {
		  printf("%d\t", tree–>data);
		  preorderTraversal(tree–>left);
		  preorderTraversal(tree–>right);
	 }
}
void inorderTraversal(struct node *tree)
{
	 if(tree != NULL)
	 {
		  inorderTraversal(tree->left);
		  printf("%d\t", tree->data);
		  inorderTraversal(tree->right);
	 }
}
void postorderTraversal(struct node *tree)
{
	 if(tree != NULL)
	 {
		  postorderTraversal(tree->left);
		  postorderTraversal(tree->right);
		  printf("%d\t", tree->data);
	 }
}
struct node *findSmallestElement(struct node *tree)
{
	 if( (tree == NULL) || (tree->left == NULL))
		  return tree;
	 else
		  return findSmallestElement(tree ->left);
}
struct node *findLargestElement(struct node *tree)
{
	 if( (tree == NULL) || (tree->right == NULL))
		  return tree;
	 else
		  return findLargestElement(tree->right);
}
struct node *deleteElement(struct node *tree, int val)
{
	 struct node *cur, *parent, *suc, *psuc, *ptr;
	 if(tree–>left==NULL)
	 {
		  printf("\n The tree is empty ");
		  return(tree);
	 }
	 parent = tree;
	 cur = tree–>left;
	 while(cur!=NULL && val!= cur–>data)
	 {
		  parent = cur;
		  cur = (val<cur–>data)? cur–>left:cur–>right;
	 }
	 if(cur == NULL)
	 {
		  printf("\n The value to be deleted is not present in the tree");
		  return(tree);	
	 }
	 if(cur–>left == NULL)
		  ptr = cur–>right;
	 else if(cur–>right == NULL)
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		  ptr = cur–>left;
	 else
	 {
		  // Find the in–order successor and its parent
		  psuc = cur;
		  cur = cur–>left;
		  while(suc–>left!=NULL)
		  {
			   psuc = suc;
			   suc = suc–>left;
		  }
		  if(cur==psuc)
		  {
			   // Situation 1
			   suc–>left = cur–>right;
		  }
		  else
		  {
			   // Situation 2
			   suc–>left = cur–>left;
			   psuc–>left = suc–>right;
			   suc–>right = cur–>right;
		  }
		  ptr = suc;
	 }
	 // Attach ptr to the parent node
	 if(parent–>left == cur)
		  parent–>left=ptr;
	 else
		  parent–>right=ptr;
	 free(cur);
	 return tree;
}
int totalNodes(struct node *tree)
{
	 if(tree==NULL)
		  return 0;
	 else
		  return(totalNodes(tree–>left) + totalNodes(tree–>right) + 1);
}
int totalExternalNodes(struct node *tree)
{
	 if(tree==NULL)
		  return 0;
	 else if((tree–>left==NULL) && (tree–>right==NULL))
		  return 1;
	 else
		  return (totalExternalNodes(tree–>left) + 
		  totalExternalNodes(tree–>right));
}
int totalInternalNodes(struct node *tree)
{
	 if( (tree==NULL) || ((tree–>left==NULL) && (tree–>right==NULL)))
		  return 0;
	 else
		  return (totalInternalNodes(tree–>left) 
		  + totalInternalNodes(tree–>right) + 1);
}
int Height(struct node *tree)
{
	 int leftheight, rightheight;
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	 if(tree==NULL)
		  return 0;
	 else
	 {
		  leftheight = Height(tree–>left);
		  rightheight = Height(tree–>right);
		  if(leftheight > rightheight)
			   return (leftheight + 1);
		  else
			   return (rightheight + 1);
	 }
}
struct node *mirrorImage(struct node *tree)
{
	 struct node *ptr;
	 if(tree!=NULL)
	 {
		  mirrorImage(tree–>left);
		  mirrorImage(tree–>right);
		  ptr=tree–>left;
		  ptr–>left = ptr–>right;
		  tree–>right = ptr;
	 }
}
struct node *deleteTree(struct node *tree)
{
	 if(tree!=NULL)
	 {
		  deleteTree(tree–>left);
		  deleteTree(tree–>right);
		  free(tree);
	 }
}

	 Output
*******MAIN   MENU******* 
1.	Insert Element
2. Preorder Traversal
3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
9. Count the total number of external nodes
10. Count the total number of internal nodes
11. Determine the height of the tree
12. Find the mirror image of the tree
13. Delete the tree
14. Exit
Enter your option : 1
Enter the value of the new node : 1
Enter the value of the new node : 2
Enter the value of the new node : 4
Enter your option : 3
2    1    4
Enter your option : 14

10.3  THREADED BINARY TREEs
A threaded binary tree is the same as that of a binary tree but with a difference in storing the NULL 
pointers. Consider the linked representation of a binary tree as given in Fig. 10.28.
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 		    In the linked representation, a number of 
nodes contain a NULL pointer, either in their 
left or right fields or in both. This space that 
is wasted in storing a NULL pointer can be 
efficiently used to store some other useful 
piece of information. For example, the NULL 
entries can be replaced to store a pointer to 
the in-order predecessor or the in-order 
successor of the node. These special pointers 
are called threads and binary trees containing 
threads are called threaded trees. In the 
linked representation of a threaded binary 
tree, threads will be denoted using arrows.
	There are many ways of threading a binary 
tree and each type may vary according to 
the way the tree is traversed. In this book, 
we will discuss in-order traversal of the tree. 
Apart from this, a threaded binary tree may 
correspond to one-way threading or a two-
way threading.
  In one-way threading, a thread will appear 
either in the right field or the left field of the 
node. A one-way threaded tree is also called 
a single-threaded tree. If the thread appears 
in the left field, then the left field will be made 
to point to the in-order predecessor of the 
node. Such a one-way threaded tree is called 
a left-threaded binary tree. On the contrary, 
if the thread appears in the right field, then it 

will point to the in-order successor of the node. Such a one-way threaded tree is called a right-
threaded binary tree.
  In a two-way threaded tree, also called a double-threaded tree, threads will appear in both the 
left and the right field of the node. While the left field will point to the in-order predecessor of the 
node, the right field will point to its successor. A two-way threaded binary tree is also called a fully 
threaded binary tree. One-way threading and two-way threading of binary trees are explained below. 
Figure 10.29 shows a binary tree without threading and its corresponding linked representation.
The in-order traversal of the tree is given as 8, 4, 9, 2, 5, 1, 10, 6, 11, 3, 7, 12

One-way Threading
Figure 10.30 shows a binary tree with one-
way threading and its corresponding linked 
representation.
  Node 5 contains a NULL pointer in its RIGHT 
field, so it will be replaced to point to node 
1, which is its in-order successor. Similarly, 
the RIGHT field of node 8 will point to node 4, 
the RIGHT field of node 9 will point to node 2, 
the RIGHT field of node 10 will point to node 
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4 5 6 7

8 9 1 11 12X X X X X X X X X X

XX X

Figure 10.28  Linked representation of a binary tree
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XX X

Figure 10.29  (b) Linked representation of the binary tree 
(without threading)
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Figure 10.29  (a) Binary tree without threading
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8 9 1 11 12X X X X X X

XX

Figure 10.30  (a) Linked representation of the binary tree with 
one-way threading
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6, the RIGHT field of node 11 will point to node 3, and the RIGHT field 
of node 12 will contain NULL because it has no in-order successor. 

Two-way Threading
Figure 10.31 shows a binary tree with two-way threading and its 
corresponding linked representation.
  Node 5 contains a NULL pointer in its LEFT field, so it will be replaced 
to point to node 2, which is its in-order predecessor. Similarly, the LEFT 
field of node 8 will contain NULL because it has no in-order predecessor, 
the LEFT field of node 7 will point to node 3, the LEFT field of node 9 
will point to node 4, the LEFT field of node 10 will point to node 1, the 

LEFT field of node 11 will contain 6, and the LEFT field of node 12 will point to node 7. 

1

2 3

4 5 6 7

8 9 1 11 12X X   

2

4 5 6 7

12111098

3

1

Figure 10.31  (a) Linked representation of the binary tree with threading, (b) binary tree with two-way threading

	 Now, let us look at the memory representation of a binary tree without threading, with one-way 
threading, and with two-way threading. This is illustrated in Fig. 10.32.
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Figure 10.32  Memory representation of binary trees: (a) without threading, (b) with one-way, and 
(c) two-way threading
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Figure 10.30  (b) Binary tree with 
one-way threading
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10.3.1  Traversing a Threaded Binary Tree
For every node, visit the left sub-tree first, provided if one exists and has not been visited earlier. 
Then the node (root) itself is followed by visiting its right sub-tree (if one exists).  In case there 
is no right sub-tree, check for the threaded link and make the threaded node the current node in 
consideration. The algorithm for in-order traversal of a threaded binary tree is given in Fig. 10.33. 

Step 1:	C heck if the current node has a left child that has not been visited. If a left child exists 
that has not been visited, go to Step 2, else go to Step 3.

Step 2:	A dd the left child in the list of visited nodes. Make it as the current node and then go 
to Step 6. 

Step 3:	 If the current node has a right child, go to Step 4 else go to Step 5.
Step 4:	 Make that right child as current node and go to Step 6. 
Step 5:	P rint the node and if there is a threaded node make it the current node.
Step 6:	 If all the nodes have visited then END else go to Step 1.

Figure 10.33  Algorithm for in-order traversal of a threaded binary tree 

  Let’s consider the threaded binary tree given in Fig. 10.34 and traverse 
it using the algorithm. 
	1.	 Node 1 has a left child i.e., 2 which has not been visited. So, add 2 in 

the list of visited nodes, make it as the current node.
	2.	 Node 2 has a left child i.e., 4 which has not been visited. So, add 4 in 

the list of visited nodes, make it as the current node.
	3.	 Node 4 does not have any left or right child, so print 4 and check for 

its threaded link. It has a threaded link to node 2, so make node 2 the 
current node.

	 4.	 Node 2 has a left child which has already been visited. However, it does not have a right 
child. Now, print 2 and follow its threaded link to node 1. Make node 1 the current node.

	 5.	 Node 1 has a left child that has been already visited. So print 1. Node 1 has a right child 3 
which has not yet been visited, so make it the current node.

	 6.	 Node 3 has a left child (node 5) which has not been visited, so make it the current node.
	 7.	 Node 5 does not have any left or right child. So print 5. However, it does have a threaded 

link which points to node 3. Make node 3 the current node.
	 8.	 Node 3 has a left child which has already been visited. So print 3. 
	 9.	 Now there are no nodes left, so we end here. The sequence of nodes printed is—4 2 1 5 3.

Advantages of Threaded Binary Tree
	 ∑	 It enables linear traversal of elements in the tree.
	 ∑	 Linear traversal eliminates the use of stacks which in turn consume a lot of memory space 

and computer time.
	 ∑	 It enables to find the parent of a given element without explicit use of parent pointers.
	 ∑	 Since nodes contain pointers to in-order predecessor and successor, the threaded tree enables 

forward and backward traversal of the nodes as given by in-order fashion.
Thus, we see the basic difference between a binary tree and a threaded binary tree is that in binary 
trees a node stores a NULL pointer if it has no child and so there is no way to traverse back.

1

2 3

4 5

Figure 10.34  Threaded 
binary tree
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Programming Example 

2.	 Write a program to implement simple right in-threaded binary trees.
#include <stdio.h>
#include <conio.h>
struct tree
{
	 int val;
	 struct tree *right;
	 struct tree *left;
	 int thread;
};
struct tree *root = NULL;
struct tree* insert_node(struct tree *root, struct tree *ptr, struct tree *rt)
{
	 if(root == NULL)
	 {
		  root = ptr;
		  if(rt != NULL)
		  {
			   root–>right = rt;
			   root–>thread = 1;
		  }
	 }
	 else if(ptr–>val < root–>val)
		  root–>left = insert_node(root–>left, ptr, root);
	 else
		  if(root–>thread == 1)
		  {
			   root–>right = insert_node(NULL, ptr, rt);
			   root–>thread=0;
		  }
		  else
			   root–>right = insert_node(root–>right, ptr, rt);
	 return root;
}
struct tree* create_threaded_tree()
{
	 struct tree *ptr;
	 int num;
	 printf("\n Enter the elements, press –1 to terminate ");
	 scanf("%d", &num);
	 while(num != –1)
	 {
	 ptr = (struct tree*)malloc(sizeof(struct tree));
		  ptr–>val = num;
		  ptr–>left = ptr–>right = NULL;
		  ptr–>thread = 0;
		  root = insert_node(root, ptr, NULL);
		  printf(" \n Enter the next element ");
		  fflush(stdin);
		  scanf("%d", &num);
	 }
	 return root;
}
void inorder(struct tree *root)
{
	 struct tree *ptr = root, *prev;
	 do
	 {
		  while(ptr != NULL)
		  {
			   prev = ptr;
			   ptr = ptr–>left;
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		  }
		  if(prev != NULL)
		  {
			   printf("	%d", prev–>val);
			   ptr = prev–>right;
			   while(prev != NULL && prev–>thread)
			   {
				    printf("	%d", ptr–>val);
				    prev = ptr;
				    ptr = ptr–>right;
			   }
		  }
	 }while(ptr != NULL);
}
void main()
{
    //	 struct tree *root=NULL;
	 clrscr();
	 create_threaded_tree();
	 printf(" \n The in–order traversal of the tree can be given as : ");
	 inorder(root);
	 getch();
}

	 Output
Enter the elements, press –1 to terminate 5
Enter the next element 8
Enter the next element 2
Enter the next element 3
Enter the next element 7
Enter the next element –1
The in–order traversal of the tree can be given as:
2	 3	 5	 7	 8

10.4  AVL TREES
AVL tree is a self-balancing binary search tree invented by G.M. Adelson-Velsky and E.M. Landis 
in 1962. The tree is named AVL in honour of its inventors. In an AVL tree, the heights of the two 
sub-trees of a node may differ by at most one. Due to this property, the AVL tree is also known 
as a height-balanced tree. The key advantage of using an AVL tree is that it takes O(log n) time to 
perform search, insert, and delete operations in an average case as well as the worst case because 
the height of the tree is limited to O(log n).
	 The structure of an AVL tree is the same as that of a binary search tree but with a little difference. 
In its structure, it stores an additional variable called the BalanceFactor. Thus, every node has a 
balance factor associated with it. The balance factor of a node is calculated by subtracting the 
height of its right sub-tree from the height of its left sub-tree. A binary search tree in which every 
node has a balance factor of  –1, 0, or 1 is said to be height balanced. A node with any other 
balance factor is considered to be unbalanced and requires rebalancing of the tree.
	 Balance factor = Height (left sub-tree) – Height (right sub-tree)
	 ∑	 If the balance factor of a node is 1, then it means that the left sub-tree of the tree is one level 

higher than that of the right sub-tree. Such a tree is therefore called as a left-heavy tree.
	 ∑	 If the balance factor of a node is 0, then it means that the height of the left sub-tree (longest 

path in the left sub-tree) is equal to the height of the right sub-tree.
	 ∑	 If the balance factor of a node is –1, then it means that the left sub-tree of the tree is one level 

lower than that of the right sub-tree. Such a tree is therefore called as a right-heavy tree.
  Look at Fig. 10.35. Note that the nodes 18, 39, 54, and 72 have no children, so their balance 
factor = 0. Node 27 has one left child and zero right child. So, the height of left sub-tree = 1, 
whereas the height of right sub-tree = 0. Thus, its balance factor = 1. Look at node 36, it has a left 
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sub-tree with height = 2, whereas the height of right sub-tree = 1. Thus, its balance factor = 2 – 1 = 
1. Similarly, the balance factor of node 45 = 3 – 2 =1; and node 63 has a balance factor of 0 (1 – 1).
	 Now, look at Figs 10.35 (a) and (b) which show a right-heavy AVL tree and a balanced AVL 
tree.

45

36 63

27 39 54 72

18

1

1

1

0

000

0

(a)

45

36 63

27 39 54 72

–1

0

0

–1

100

0

70(b)

45

36 63

27 39 54 72

0

0

0

0

000

(c)

Figure 10.35  (a) Left-heavy AVL tree, (b) right-heavy tree, (c) balanced tree

	 The trees given in Fig. 10.35 are typical candidates of AVL trees because the balancing factor 
of every node is either 1, 0, or –1. However, insertions and deletions from an AVL tree may 
disturb the balance factor of the nodes and, thus, rebalancing of the tree may have to be done. The 
tree is rebalanced by performing rotation at the critical node. There are four types of rotations: 
LL rotation, RR rotation, LR rotation, and RL rotation. The type of rotation that has to be done 
will vary depending on the particular situation. In the following section, we will discuss insertion, 
deletion, searching, and rotations in AVL trees.

10.4.1  Operations on AVL Trees

Searching for a Node in an AVL Tree
Searching in an AVL tree is performed exactly the same way as it is performed in a binary 
search tree. Due to the height-balancing of the tree, the search operation takes O(log n) time to 
complete. Since the operation does not modify the structure of the tree, no special provisions are 
required.

Inserting a New Node in an AVL Tree
Insertion in an AVL tree is also done in the same way as it is done in a binary search tree. In the 
AVL tree, the new node is always inserted as the leaf node. But the step of insertion is usually 
followed by an additional step of rotation. Rotation is done to restore the balance of the tree. 
However, if insertion of the new node does not disturb the balance factor, that is, if the balance 
factor of every node is still –1, 0, or 1, then rotations are not required.
	 During insertion, the new node is inserted as the leaf node, so it will always have a balance 
factor equal to zero. The only nodes whose balance factors will change are those which lie in the 
path between the root of the tree and the newly inserted node. The possible changes which may 
take place in any node on the path are as follows:
	 ∑	 Initially, the node was either left- or right-heavy and after insertion, it becomes balanced.
	 ∑	 Initially, the node was balanced and after insertion, it becomes either left- or right-heavy.
	 ∑	 Initially, the node was heavy (either left or right) and the new node has been inserted in the 

heavy sub-tree, thereby creating an unbalanced sub-tree. Such a node is said to be a critical 
node.

	 Consider the AVL tree given in Fig. 10.36.
  If we insert a new node with the value 30, then the new tree will still be balanced and no 
rotations will be required in this case. Look at the tree given in Fig. 10.37 which shows the tree 
after inserting node 30.
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   Figure 10.36  AVL tree	           Figure 10.37  AVL tree after inserting 	    Figure 10.38  AVL tree 
			   a node with the value 30

  Let us take another example to see how insertion can disturb the balance factors of the nodes 
and how rotations are done to restore the AVL property of a tree. Look at the tree given in Fig. 10.38.

  After inserting a new node with the value 71, the new tree 
will be as shown in Fig. 10.39.  Note that there are three nodes 
in the tree that have their balance factors 2, –2, and –2, thereby 
disturbing the AVLness of the tree. So, here comes the need to 
perform rotation. To perform rotation, our first task is to find the 
critical node. Critical node is the nearest ancestor node on the path 
from the inserted node to the root whose balance factor is neither 
–1, 0, nor 1. In the tree given above, the critical node is 72. The 
second task in rebalancing the tree is to determine which type 
of rotation has to be done. There are four types of rebalancing 
rotations and application of these rotations depends on the position 
of the inserted node with reference to the critical node. The four 
categories of rotations are:

	 ∑	 LL rotation  The new node is inserted in the left sub-tree of the left sub-tree of the critical 
node.

	 ∑	 RR rotation  The new node is inserted in the right sub-tree of the right sub-tree of the 
critical node.

	 ∑	 LR rotation  The new node is inserted in the right sub-tree of the left sub-tree of the 
critical node.

	 ∑	 RL rotation  The new node is inserted in the left sub-tree of the right sub-tree of the 
critical node.
	LL Rotation
Let us study each of these rotations in detail. 
First, we will see where and how LL rotation 
is applied. Consider the tree given in Fig. 
10.40 which shows an AVL tree.
	 Tree (a) is an AVL tree. In tree (b), a new 
node is inserted in the left sub-tree of the left 
sub-tree of the critical node A (node A is the 
critical node because it is the closest ancestor 
whose balance factor is not –1, 0, or 1), so 
we apply LL rotation as shown in tree (c). 

Note	 The new node has now become a part of tree T1.
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36 63

27 39 54 72

–2

0

0
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–1

70
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Figure 10.39  AVL tree after inserting a 
node with the value 71
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Figure 10.40  LL rotation in an AVL tree
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	 While rotation, node B becomes the root, with T1 and A as its left and right child. T2 and T3 become 
the left and right sub-trees of A.

Example 10.3  Consider the AVL tree given in Fig. 10.41 and insert 18 into it.
Solution

39 6318

4527

36

0

0

000

1

45

36 63

27 39
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0

0

0

1

1

2

45

27 39
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0
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0

–1

(Step 1) (Step 2)

0

Figure 10.41  AVL tree

RR Rotation
Let us now discuss where and how RR rotation is applied. Consider the tree given in Fig. 10.42 
which shows an AVL tree.

(b)

A

BT

(h)
1

T

(h)
2 T

(h)
3

–1

New node

A

B

T

(h)
3

T
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Height= h+1

Figure 10.42  RR rotation in an AVL tree

  Tree (a) is an AVL tree. In tree (b), a new node 
is inserted in the right sub-tree of the right sub-tree 
of the critical node A (node A is the critical node 
because it is the closest ancestor whose balance 
factor is not –1, 0, or 1), so we apply RR rotation 
as shown in tree (c). Note that the new node has 
now become a part of tree T3.
  While rotation, node B becomes the root, with A 
and T3 as its left and right child. T1 and T2 become 
the left and right sub-trees of A.

LR and RL Rotations
Consider the AVL tree given in Fig. 10.44 and 
see how LR rotation is done to rebalance the tree.

Example 10.4  Consider the AVL tree given in Fig. 
10.43 and insert 89 into it.
Solution

36
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0

45

36 63

72

0

0

–1

–1

–2
45

7254
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0

0

0
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54
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54 89

–1

0 0

Figure 10.43  AVL tree
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Figure 10.44  LR rotation in an AVL tree

	 Tree (a) is an AVL tree. In tree (b), a new 
node is inserted in the right sub-tree of the left 
sub-tree of the critical node A (node A is the 
critical node because it is the closest ancestor 
whose balance factor is not –1, 0 or 1), so we 
apply LR rotation as shown in tree (c). Note 
that the new node has now become a part of 
tree T2.
	 While rotation, node C becomes the root, with 
B and A as its left and right children. Node B has 
T1 and T2 as its left and right sub-trees and T3 
and T4 become the left and right sub-trees of 
node A.
Now, consider the AVL tree given in Fig. 

10.46 and see how RL rotation is done to rebalance the tree.
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Figure 10.46  RL rotation in an AVL tree

Example 10.5  Consider the AVL tree given in Fig. 10.45 
and insert 37 into it.
Solution
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Figure 10.45  AVL tree
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	 Tree (a) is an AVL tree. In tree (b), a new node is inserted in the left sub-tree of the right sub-tree 
of the critical node A (node A is the critical node because it is the closest ancestor whose balance 
factor is not –1, 0, or 1), so we apply RL rotation as shown in tree (c). Note that the new node has 
now become a part of tree T2.
	 While rotation, node C becomes the root, with A and B as its left and right children. Node 
A has T1 and T2 as its left and right sub-trees and T3 and T4 become the left and right sub-trees 
of node B.

Example 10.6  Construct an AVL tree by inserting the following elements in the given order. 
63, 9, 19, 27, 18, 108, 99, 81.
Solution
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Figure 10.47  AVL tree

Deleting a Node from an AVL Tree
Deletion of a node in an AVL tree is similar to that of binary search trees. But it goes one step 
ahead. Deletion may disturb the AVLness of the tree, so to rebalance the AVL tree, we need to 
perform rotations. There are two classes of rotations that can be performed on an AVL tree after 
deleting a given node. These rotations are R rotation and L rotation.
	 On deletion of node X from the AVL tree, if node A becomes the critical node (closest ancestor 
node on the path from X to the root node that does not have its balance factor as 1, 0, or –1), then 
the type of rotation depends on whether X is in the left sub-tree of A or in its right sub-tree. If the 
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node to be deleted is present in the left sub-tree of A, then L rotation is applied, else if X is in the 
right sub-tree, R rotation is performed.
	 Further, there are three categories of L and R rotations. The variations of L rotation are L–1, L0, 
and L1 rotation. Correspondingly for R rotation, there are R0, R–1, and R1 rotations. In this section, 
we will discuss only R rotation. L rotations are the mirror images of R rotations.

R0 Rotation
Let B be the root of the left or right sub-tree of A (critical node). R0 rotation is applied if the balance 
factor of B is 0. This is illustrated in Fig. 10.48.
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Figure 10.48  R0 rotation in an AVL tree

	 Tree (a) is an AVL tree. In tree (b), the node X is to be deleted from the right sub-tree of the 
critical node A (node A is the critical node because it is the closest ancestor whose balance factor 
is not –1, 0, or 1). Since the balance factor of node B is 0, we apply R0 rotation as shown in tree (c).
	 During the process of rotation, node B becomes the root, with T1 and A as its left and right child. 
T2 and T3 become the left and right sub-trees of A.

R1 Rotation
Let B be the root of the left or right sub-tree of A (critical node). R1 rotation is applied if the 
balance factor of B is 1. Observe that R0 and R1 rotations are similar to LL rotations; the only 

difference is that R0 and R1 rotations yield 
different balance factors. This is illustrated in 
Fig. 10.50.
	Tree (a) is an AVL tree. In tree (b), the 
node X  is to be deleted from the right 
sub-tree of the critical node A (node A is 
the critical node because it is the closest 
ancestor whose balance factor is not –1, 
0, or 1). Since the balance factor of node 
B is 1, we apply R1 rotation as shown in 
tree (c).
	During the process of rotation, node B 
becomes the root, with T1 and A as its left and 
right children. T2 and T3 become the left and 
right sub-trees of A.

Example 10.7  Consider the AVL tree given in Fig. 10.49 
and delete 72 from it.
Solution
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Figure 10.49  AVL tree
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Figure 10.50  R1 rotation in an AVL tree

Example 10.8  Consider the AVL tree given in Fig. 10.51 and delete 72 from it.
Solution
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Figure 10.51  AVL tree

R–1 Rotation
Let B be the root of the left or right sub-tree of A (critical node). R–1 rotation is applied if the 
balance factor of B is –1. Observe that R–1 rotation is similar to LR rotation. This is illustrated in 
Fig. 10.52.
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Figure 10.52  R1 rotation in an AVL tree

	 Tree (a) is an AVL tree. In tree (b), the node X is to be deleted from the right sub-tree of 
the critical node A (node A is the critical node because it is the closest ancestor whose balance 
factor is not –1, 0 or 1). Since the balance factor of node B is –1, we apply R–1 rotation as shown 
in tree (c).
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	 While rotation, node C becomes the root, with T1 and A as its left and right child. T2 and T3 become 
the left and right sub-trees of A.

Example 10.9  Consider the AVL tree given in Fig. 10.53 and delete 72 from it.
Solution
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Figure 10.53  AVL tree

Example 10.10  Delete nodes 52, 36, and 61 from the AVL tree given in Fig. 10.54.
Solution
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Figure 10.54  AVL tree

Programming Example 

3.	 Write a program that shows insertion operation in an AVL tree.
#include <stdio.h>
typedef enum { FALSE ,TRUE } bool;
struct node
{
	 int val;
	 int balance;
	 struct node *left_child;
	 struct node *right_child;
};
struct node* search(struct node *ptr, int data)
{
	 if(ptr!=NULL)
		   if(data < ptr -> val)
			   ptr = search(ptr -> left_child,data);
		   else if( data > ptr -> val)
			   ptr = search(ptr -> right_child, data);
	 return(ptr);
}
struct node *insert (int data, struct node *ptr, int *ht_inc)
{
	 struct node *aptr;
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	 struct node *bptr;
	 if(ptr==NULL)
	 {
		  ptr = (struct node *) malloc(sizeof(struct node));
		  ptr -> val = data;
		  ptr -> left_child = NULL;
		  ptr -> right_child = NULL;
		  ptr -> balance = 0;
		  *ht_inc = TRUE;
		  return (ptr);
	 }
	 if(data < ptr -> val)
	 {
		  ptr -> left_child = insert(data, ptr -> left_child, ht_inc);
		  if(*ht_inc==TRUE)
		  {
			    switch(ptr -> balance)
			    {
				    case -1: /* Right heavy */
				    ptr -> balance = 0;
				    *ht_inc = FALSE;
				    break;
				    case 0: /* Balanced */
					     ptr -> balance = 1;
					     break;
				    case 1: /* Left heavy */
					     aptr = ptr -> left_child;
					     if(aptr -> balance == 1)
					     {
						      printf(“Left to Left Rotation\n”);
						      ptr -> left_child= aptr -> right_child;
						      aptr -> right_child = ptr;
						      ptr -> balance = 0;
						      aptr -> balance=0;
						      ptr = aptr;
					     }
					     else
					     {
						      printf(“Left to right rotation\n”);
						      bptr = aptr -> right_child;
						      aptr -> right_child = bptr -> left_child;
						      bptr -> left_child = aptr;
						      ptr -> left_child = bptr -> right_child;
						      bptr -> right_child = ptr;
						      if(bptr -> balance == 1 )
							       ptr -> balance = -1;
						      else
							       ptr -> balance = 0;
						      if(bptr -> balance == -1)
							       aptr -> balance = 1;
						      else
							       aptr -> balance = 0;
						      bptr -> balance=0;
						      ptr = bptr;
					     }
					     *ht_inc = FALSE;
			    }
		  }
	 }
	 if(data > ptr -> val)
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	 {
		  ptr -> right_child = insert(info, ptr -> right_child, ht_inc);
		  if(*ht_inc==TRUE)
		  {
			   switch(ptr -> balance)
			   {
				    case 1: /* Left heavy */
					     ptr -> balance = 0;
					     *ht_inc = FALSE;
					     break;
				    case 0: /* Balanced */
					     ptr -> balance = -1;
					     break;
				    case -1: /* Right heavy */
					     aptr = ptr -> right_child;
					     if(aptr -> balance == -1)
					     {
						      printf(“Right to Right Rotation\n”);
						      ptr -> right_child= aptr -> left_child;
						      aptr -> left_child = ptr;
						      ptr -> balance = 0;
						      aptr -> balance=0;
						      ptr = aptr;
					     }
					     else
					     {
						      printf(“Right to Left Rotation\n”);
						      bptr = aptr -> left_child;
						      aptr -> left_child = bptr -> right_child;
						      bptr -> right_child = aptr;
						      ptr -> right_child = bptr -> left_child;
						      bptr -> left_child = pptr;
						      if(bptr -> balance == -1)
							       ptr -> balance = 1;
						      else
							       ptr -> balance = 0;
						      if(bptr -> balance == 1)
							       aptr -> balance = -1;
						      else
							       aptr -> balance = 0;
						      bptr -> balance=0;
						      ptr = bptr;
					     }/*End of else*/
					     *ht_inc = FALSE;
			   }
		  }
	 }
	 return(ptr);
}
void display(struct node *ptr, int level)
{
	 int i;
	 if ( ptr!=NULL )
	 {
		  display(ptr -> right_child, level+1);
		  printf(“\n”);
		  for (i = 0; i < level; i++)
			   printf(“ “);
		  printf(“%d”, ptr -> val);
		  display(ptr -> left_child, level+1);
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	 }
}
void inorder(struct node *ptr)
{
	 if(ptr!=NULL)
	 {
		  inorder(ptr -> left_child);
		  printf(“%d “,ptr -> val);
		  inorder(ptr -> right_child);
	 }
}
main()
{
	 bool ht_inc;
	 int data ;
	 int option;
	 struct node *root = (struct node *)malloc(sizeof(struct node));
	 root = NULL;
	 while(1)
	 {
		  printf(“1.Insert\n”);
		  printf(“2.Display\n”);
		  printf(“3.Quit\n”);
		  printf(“Enter your option : “);
		  scanf(“%d”,&option);
		  switch(choice)
		   {
			    case 1:
				    printf(“Enter the value to be inserted : “);
				    scanf(“%d”, &data);
					     if( search(root,data) == NULL )
						      root = insert(data, root, &ht_inc);
						      else
						      printf(“Duplicate value ignored\n”);
					      break;
			    case 2:
				    if(root==NULL)
				    {
					     printf(“Tree is empty\n”);
					     continue;
				    }
				    printf(“Tree is :\n”);
				    display(root, 1);
				    printf(“\n\n”);
				    printf(“Inorder Traversal is: “);
				    inorder(root);
				    printf(“\n”);
				    break;
			   case 3:
				    exit(1);
				    default:
					     printf(“Wrong option\n”);
				    }
		  }
	 }

10.5  RED-BLACK TREEs
A red-black tree is a self-balancing binary search tree that was invented in 1972 by Rudolf Bayer 
who called it the ‘symmetric binary B-tree’. Although a red-black tree is complex, it has good worst-
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case running time for its operations and is efficient to use as searching, insertion, and deletion can 
all be done in O(log n) time, where n is the number of nodes in the tree. Practically, a red-black 
tree is a binary search tree which inserts and removes intelligently, to keep the tree reasonably 
balanced. A special point to note about the red-black tree is that in this tree, no data is stored in 
the leaf nodes.

10.5.1  Properties of Red-Black Trees
A red-black tree is a binary search tree in which every node has a colour which is either red or 
black. Apart from the other restrictions of a binary search tree, the red-black tree has the following 
additional requirements:
	 1.	 The colour of a node is either red or black.
	 2.	 The colour of the root node is always black.
	 3.	 All leaf nodes are black.
	 4.	 Every red node has both the children coloured in black.
	 5.	 Every simple path from a given node to any of its leaf nodes has an equal number of black 

nodes.
	 Look at Fig. 10.55 which shows a red-black tree.
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Figure 10.55  Red-black tree

	 These constraints enforce a critical property of red-black trees. The longest path from the root 
node to any leaf node is no more than twice as long as the shortest path from the root to any other 
leaf in that tree.
	 This results in a roughly balanced tree. Since operations such as insertion, deletion, and searching 
require worst-case times proportional to the height of the tree, this theoretical upper bound on the 
height allows red-black trees to be efficient in the worst case, unlike ordinary binary search trees.
	 To understand the importance of these properties, it suffices to note that according to property 
4, no path can have two red nodes in a row. The shortest possible path will have all black nodes, 
and the longest possible path would alternately have a red and a black node. Since all maximal 
paths have the same number of black nodes (property 5), no path is more than twice as long as 
any other path.
	 Figure 10.56 shows some binary search trees that are not red-black trees.
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Figure 10.56  Trees
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10.5.2  Operations on Red-Black Trees
Preforming a read-only operation (like traversing the nodes in a tree) on a red-black tree requires 
no modification from those used for binary search trees. Remember that every red-black tree is a 
special case of a binary search tree. However, insertion and deletion operations may violate the 
properties of a red-black tree. Therefore, these operations may create a need to restore the red-
black properties that may require a small number of (O(log n) or amortized O(1)) colour changes.

Inserting a Node in a Red-Black Tree
The insertion operation starts in the same way as we add a new node in the binary search tree. 
However, in a binary search tree, we always add the new node as a leaf, while in a red-black 
tree, leaf nodes contain no data. So instead of adding the new node as a leaf node, we add a red 
interior node that has two black leaf nodes. Note that the colour of the new node is red and its 
leaf nodes are coloured in black.
	 Once a new node is added, it may violate some properties of the red-black tree. So in order to 
restore their property, we check for certain cases and restore the property depending on the case 
that turns up after insertion. But before learning these cases in detail, first let us discuss certain 
important terms that will be used.
	 Grandparent node (G) of a node (N) refers to the parent of N’s parent (P), as in human family 
trees. The C code to find a node’s grandparent can be given as follows:

struct node * grand_parent(struct node *n)

{

	 // No parent means no grandparent

	 if ((n != NULL) && (n -> parent != NULL))
		  return n -> parent -> parent;
	 else

		  return NULL;

}

	 Uncle node (U) of a node (N) refers to the sibling of N’s parent (P), as in human family trees. 
The C code to find a node’s uncle can be given as follows:

struct node *uncle(struct node *n)

{

	 struct node *g;

	 g = grand_parent(n);

	 //With no grandparent, there cannot be any uncle

	 if (g == NULL)

		  return NULL;

	 if (n -> parent == g -> left)
		  return g -> right;
	 else

		  return g -> left;
}

When we insert a new node in a red-black tree, note the following:
	 ∑	 All leaf nodes are always black. So property 3 always holds true.
	 ∑	 Property 4 (both children of every red node are black) is threatened only by adding a red 

node, repainting a black node red, or a rotation.
	 ∑	 Property 5 (all paths from any given node to its leaf nodes has equal number of black nodes) 

is threatened only by adding a black node, repainting a red node black, or a rotation.
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Case 1: The New Node N is Added as the Root of the Tree
In this case, N is repainted black, as the root of the tree is always black. Since N adds one black 
node to every path at once, Property 5 is not violated. The C code for case 1 can be given as follows:

void case1(struct node *n)

{

	 if (n -> parent == NULL) // Root node
		  n -> colour = BLACK;
	 else

		  case2(n);

}

Case 2: The New Node’s Parent P is Black
In this case, both children of every red node are black, so Property 4 is not invalidated. Property 5 
is also not threatened. This is because the new node N has two black leaf children, but because N 
is red, the paths through each of its children have the same number of black nodes. The C code 
to check for case 2 can be given as follows:

void case2(struct node *n)

{

	 if (n -> parent -> colour == BLACK)
		  return; /* Red black tree property is not violated*/

	 else

		  case3(n);

}

	 In the following cases, it is assumed that N has a grandparent node G, because its parent P is 
red, and if it were the root, it would be black. Thus, N also has an uncle node U (irrespective of 
whether U is a leaf node or an internal node).

Case 3: If Both the Parent (P) and the Uncle (U) are Red
In this case, Property 5 which says all paths from any given node to its leaf nodes have an equal 
number of black nodes is violated. Insertion in the third case is illustrated in Fig. 10.57.
	 In order to restore Property 5, both nodes (P and U) are repainted black and the grandparent G is 
repainted red. Now, the new red node N has a black parent. Since any path through the parent or 

uncle must pass through the grandparent, 
the number of black nodes on these paths 
has not changed.
  However, the grandparent G may now 
violate Property 2 which says that the 
root node is always black or Property 4 
which states that both children of every 
red node are black. Property 4 will be 
violated when G has a red parent. In 
order to fix this problem, this entire 
procedure is recursively performed on 
G from Case 1. The C code to deal with 
Case 3 insertion is as follows:
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Figure 10.57  Insertion in Case 3
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void case3(struct node *n)
{
	 struct node *u, *g;
	 u = uncle (n);
	 g = grand_parent(n);
	 if ((u != NULL) && (u -> colour == RED)) {
		  n -> parent -> colour = BLACK;
		  u -> colour = BLACK;
		  g -> colour = RED;
		  case1(g);
	 }
	 else {
		  insert_case4(n);
	 }
}

Note	 In the remaining cases, we assume that the parent node P is the left child of its parent. If it is the right 
child, then interchange left and right in cases 4 and 5.

Case 4: The Parent P is Red but the Uncle U is Black and N is the Right Child of P and P is the Left 
Child of G
In order to fix this problem, a left rotation is done to switch the roles of the new node N and its 
parent P. After the rotation, note that in the C code, we have re-labelled N and P and then, case 5 
is called to deal with the new node’s parent. This is done because Property 4 which says both 
children of every red node should be black is still violated. Figure 10.58 illustrates Case 4 insertion.

  Note that in case N is the left child of P 
and P is the right child of G, we have to 
perform a right rotation. In the C code that 
handles Case 4, we check for P and N and 
then, perform either a left or a right 
rotation.

void case4(struct node *n)
{
	 struct node *g = grand_

parent(n);
	 if ((n == n -> parent -> right) 

&& (n -> parent == g -> left))
	 {
	�  rotate_left(n -> parent);
	      n = n -> left;

	 }
	 else if ((n == n -> parent -> left) && (n -> parent == g -> right))
	 {
		  rotate_right(n -> parent);
		  n = n -> right;
	 }
	 case5(n);
}

Case 5: The Parent P is Red but the Uncle U is Black and the New Node N is the Left Child of P, and 
P is the Left Child of its Parent G.
In order to fix this problem, a right rotation on G (the grandparent of N) is performed. After this 
rotation, the former parent P is now the parent of both the new node N and the former grandparent G.
  We know that the colour of G is black (because otherwise its former child P could not have been 
red), so now switch the colours of P and G so that the resulting tree satisfies Property 4 which states 
that both children of a red node are black. Case 5 insertion is illustrated in Fig. 10.59.
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Figure 10.58  Insertion in Case 4
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Figure 10.59  Insertion in case 5

	 Note that in case N is the right child of P and P is the right child of G, we perform a left rotation. 
In the C code that handles Case 5, we check for P and N and then, perform either a left or a right 
rotation.

void case5(struct node *n)
{
	 struct node *g;
	 g = grandparent(n);
	 if ((n == n -> parent -> left) && (n -> parent == g -> left))
		  rotate_right(g);
	 else if ((n == n -> parent -> right) && (n -> parent == g -> right))
		  rotate_left(g);
	 n -> parent -> colour = BLACK;
	 g -> colour = RED;
}

Deleting a Node from a Red-Black Tree
We start deleting a node from a red-black tree in the same way as we do in case of a binary search 
tree. In a binary search tree, when we delete a node with two non-leaf children, we find either the 
maximum element in its left sub-tree of the node or the minimum element in its right sub-tree, 
and move its value into the node being deleted. After that, we delete the node from which we 
had copied the value. Note that this node must have less than two non-leaf children. Therefore, 
merely copying a value does not violate any red-black properties, but it just reduces the problem 
of deleting to the problem of deleting a node with at most one non-leaf child.
	 In this section, we will assume that we are deleting a node with at most one non-leaf child, 
which we will call its child. In case this node has both leaf children, then let one of them be its child.
	 While deleting a node, if its colour is red, then we can simply replace it with its child, which 
must be black. All paths through the deleted node will simply pass through one less red node, and 
both the deleted node’s parent and child must be black, so none of the properties will be violated.
	 Another simple case is when we delete a black node that has a red child. In this case, property 4 
and property 5 could be violated, so to restore them, just repaint the deleted node’s child with black.
	 However, a complex situation arises when both the node to be deleted as well as its child is 
black. In this case, we begin by replacing the node to be deleted with its child. In the C code, we 
label the child node as (in its new position) N, and its sibling (its new parent’s other child) as S. 
The C code to find the sibling of a node can be given as follows:

struct node *sibling(struct node *n)
{
	 if (n == n -> parent -> left)
		  return n -> parent -> right;
	 else



334  Data Structures Using C

		  return n -> parent -> left;
}

	 We can start the deletion process by using the following code, where the function replace_node 
substitutes the child into N’s place in the tree. For convenience, we assume that null leaves are 
represented by actual node objects, rather than NULL.

void delete_child(struct node *n)
{
	 /* If N has at most one non–null child */
	 struct node *child;
	 if (is_leaf(n -> right))
		  child = n -> left;
	 else
		  child = n -> right;
	 replace_node(n, child);
	 if (n -> colour == BLACK) {
		  if (child -> colour == RED)
			   child -> colour = BLACK;
		  else
			   del_case1(child);
	 }
	 free(n);
}

	 When both N and its parent P are black, then deleting P will cause paths which precede through 
N to have one fewer black nodes than the other paths. This will violate Property 5. Therefore, the 
tree needs to be rebalanced. There are several cases to consider, which are discussed below.

Case 1: N is the New Root
In this case, we have removed one black node from every path, and the new root is black, so none 
of the properties are violated.

void del_case1(struct node *n)
{
	 if (n -> parent != NULL)
		  del_case2(n);
}

Note	 In cases 2, 5, and 6, we assume N is the left child of its parent P. If it is the right child, left and right 
should be interchanged throughout these three cases.

Case 2: Sibling S is Red
In this case, interchange the colours of P and S, and then rotate left at P. In the resultant tree, S will 
become N’s grandparent. Figure 10.60 illustrates Case 2 deletion.
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Figure 10.60  Deletion in case 2
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The C code that handles case 2 deletion can be given as follows:
void del_case2(struct node *n)
{
	 struct node *s;
	 s = sibling(n);
	 if (s -> colour == RED)
	 {
		  if (n == n -> parent -> left)
			   rotate_left(n -> parent);
		  else
			   rotate_right(n -> parent);
		  n -> parent -> colour = RED;
		  s -> colour = BLACK;
	 }
	 del_case3(n);
}

Case 3: P, S, and S’s Children are Black
In this case, simply repaint S with red. In the resultant tree, all the paths passing through S 
will have one less black node. Therefore, all the paths that pass through P now have one fewer 
black nodes than the paths that do not pass through P, so Property 5 is still violated. To fix this 
problem, we perform the rebalancing procedure on P, starting at Case 1. Case 3 is illustrated 
in Fig. 10.61.
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Figure 10.61  Insertion in case 3

The C code for Case 3 can be given as follows:
void del_case3(struct node *n)
{
	 struct node *s;
	 s = sibling(n);
	 if ((n -> parent -> colour == BLACK) && (s -> colour == BLACK) && (s -> left -> colour == BLACK) && 

(s -> right -> colour == BLACK))
	 {
		  s -> colour = RED;
		  del_case1(n -> parent);
	 } else
		  del_case4(n);
}

Case 4: S and S’s Children are Black, but P is Red
In this case, we interchange the colours of S and P. Although this will not affect the number of 
black nodes on the paths going through S, it will add one black node to the paths going through N, 
making up for the deleted black node on those paths. Figure 10.62 illustrates this case.
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Figure 10.62  Insertion in case 4

The C code to handle Case 4 is as follows:
void del_case4(struct node *n)
{
	 struct node *s;
	 s = sibling(n);
	 if ((n  -> parent  -> color == RED) && (s  -> colour == BLACK) && 

(s -> left -> colour == BLACK) && (s -> right -> colour == BLACK))
	 {
		  s -> colour = RED;
		  n -> parent -> colour = BLACK;
	 } else
		  del_case5(n);
}

Case 5: N is the Left Child of P and S is Black, S’s Left 
Child is Red, S’s Right Child is Black.
In this case, perform a right rotation at S. After the 
rotation, S’s left child becomes S’s parent and N’s 
new sibling. Also, interchange the colours of S and 
its new parent.
	 Note that now all paths still have equal 
number of black nodes, but N has a black sibling whose 
right child is red, so we fall into Case 6. Refer Fig. 
10.63.
The C code to handle case 5 is given as follows:

void del_case5(struct node *n)
{
	 struct node *s;
	 s = sibling(n);
	 if (s -> colour == BLACK)
	 {
	 /* the following code forces the red to be on the left of the left of the parent, 

or right of the right, to be correctly operated in case 6. */
		  if ((n == n -> parent -> left) && (s -> right -> colour == BLACK) && (s -> left 

-> colour == RED))											         
				    rotate_right(s);

		  else if ((n == n -> parent -> right) && (s -> left -> colour == BLACK) && (s -> 
right -> colour == RED))

			   rotate_left(s);
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		  s -> colour = RED;
		  s -> right -> colour = BLACK;
	 }
	 del_case6(n);
}

Case 6: S is Black, S’s Right Child 
is Red, and N is the Left Child of its 
Parent P
In this case, a left rotation is done at P 
to make S the parent of P and S’s right 
child. After the rotation, the colours of 
P and S are interchanged and S’s right 
child is coloured black. Once these 
steps are followed, you will observe that 
property 4 and property 5 remain valid. 
Case 6 is explained in Fig. 10.64.
The C code to fix Case 6 can be given 
as follows:

Void del_case6(struct node *n)
{
	 struct node *s;
	 s = sibling(n);
	 s -> colour = n -> parent -> colour;
	 n -> parent -> colour = BLACK;
	 if (n == n -> parent -> left) {
		  s -> right -> colour = BLACK;
		  rotate_left(n -> parent);
	 } else {
		  s -> left -> colour = BLACK;
		  rotate_right(n -> parent);
	 }
}

10.5.3  Applications of Red-Black Trees
Red-black trees are efficient binary search trees, as they offer worst case time guarantee for insertion, 
deletion, and search operations. Red-black trees are not only valuable in time-sensitive applications 
such as real-time applications, but are also preferred to be used as a building block in other data 
structures which provide worst-case guarantee.
	 AVL trees also support O(log n) search, insertion, and deletion operations, but they are more 
rigidly balanced than red-black trees, thereby resulting in slower insertion and removal but faster 
retrieval of data.

10.6  SPLAY TREEs
Splay trees were invented by Daniel Sleator and Robert Tarjan. A splay tree is a self-balancing 
binary search tree with an additional property that recently accessed elements can be re-accessed 
fast. It is said to be an efficient binary tree because it performs basic operations such as insertion, 
search, and deletion in O(log(n)) amortized time. For many non-uniform sequences of operations, 
splay trees perform better than other search trees, even when the specific pattern of the sequence 
is unknown.
	 A splay tree consists of a binary tree, with no additional fields. When a node in a splay tree is 
accessed, it is rotated or ‘splayed’ to the root, thereby changing the structure of the tree. Since the 
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most frequently accessed node is always moved closer to the starting point of the search (or the 
root node), these nodes are therefore located faster. A simple idea behind it is that if an element 
is accessed, it is likely that it will be accessed again.
	 In a splay tree, operations such as insertion, search, and deletion are combined with one basic 
operation called splaying. Splaying the tree for a particular node rearranges the tree to place that 
node at the root. A technique to do this is to first perform a standard binary tree search for that 
node and then use rotations in a specific order to bring the node on top.

10.6.1  Operations on Splay Trees
In this section, we will discuss the four main operations that are performed on a splay tree. These 
include splaying, insertion, search, and deletion.

Splaying
When we access a node N, splaying is performed on N to move it to the root. To perform a splay 
operation, certain splay steps are performed where each step moves N closer to the root. Splaying 
a particular node of interest after every access ensures that the recently accessed nodes are kept 
closer to the root and the tree remains roughly balanced, so that the desired amortized time bounds 
can be achieved.
	 Each splay step depends on three factors:
	 ∑	 Whether N is the left or right child of its parent P,
	 ∑	 Whether P is the root or not, and if not,
	 ∑	 Whether P is the left or right child of its parent, G (N’s grandparent).
	 Depending on these three factors, we have one splay step based on each factor.

Zig step  The zig operation is done when P (the parent of N) 
is the root of the splay tree. In the zig step, the tree is rotated 
on the edge between N and P. Zig step is usually performed 
as the last step in a splay operation and only when N has an 
odd depth at the beginning of the operation. Refer Fig. 10.65.
Zig-zig step  The zig–zig operation is performed when P is 
not the root. In addition to this, N and P are either both right 
or left children of their parents. Figure 10.66 shows the case 
where N and P are the left children. During the zig–zig step, 
first the tree is rotated on the edge joining P and its parent G, 
and then again rotated on the edge joining N and P.
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Zig-zag step  The zig–zag operation is performed when P is not the root. In addition to this, N is the 
right child of P and P is the left child of G or vice versa. In zig–zag step, the tree is first rotated on 
the edge between N and P, and then rotated on the edge between N and G. Refer Fig.10.67.
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Figure 10.67  Zig-zag step

Inserting a Node in a Splay Tree
Although the process of inserting a new node N into a splay tree begins in the same way as we 
insert a node in a binary search tree, but after the insertion, N is made the new root of the splay 
tree. The steps performed to insert a new node N in a splay tree can be given as follows:

Step 1  Search N in the splay tree. If the search is successful, splay at the node N.
Step 2  If the search is unsuccessful, add the new node N in such a way that it replaces the NULL 
pointer reached during the search by a pointer to a new node N. Splay the tree at N.

Example 10.11  Consider the splay tree given on the left. Observe the change in its structure 
when 81 is added to it.
Solution

81

63 90

54 72 99

39

9 45

27

18

(d)

54

39 63

9 45 90

27 72 99

18 81

54

39 63

9 45 90

27 72 99

18
(a)

(b)

54

39 63

9 45 81

27 72 90

18 99

Zig-zag

step

(c)

Note	 To get the final splay tree, first apply zig-zag step on 81. Then apply zig-zag step to make 81 the root 
node.
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	 Searching for a Node in a Splay Tree
If a particular node N is present in the 
splay tree, then a pointer to N is returned; 
otherwise a pointer to the null node is 
returned. The steps performed to search 
a node N in a splay tree include:
∑	 Search down the root of the splay tree 

looking for N.
∑	 If the search is successful, and we 

reach N, then splay the tree at N and 
return a pointer to N.

∑	 If the search is unsuccessful, i.e., the 
splay tree does not contain N, then we 
reach a null node. Splay the tree at the 
last non-null node reached during the 
search and return a pointer to null.

Deleting a Node from a Splay Tree
To delete a node N from a splay tree, we perform the following steps:
	 ∑	 Search for N that has to be deleted. If the search is unsuccessful, splay the tree at the last 

non-null node encountered during the search.
	 ∑	 If the search is successful and N is not the root node, then let P be the parent of N. Replace 

N by an appropriate descendent of P (as we do in binary search tree). Finally splay the 
tree at P.

10.6.2  Advantages and Disadvantages 
	 of Splay Trees 
The advantages of using a splay tree are:
∑	 A splay tree gives good performance 

for search, insertion, and deletion 
operations. This advantage centres 
on the fact that the splay tree is a 
self-balancing and a self-optimizing 
data structure in which the frequently 
accessed nodes are moved closer to 
the root so that they can be accessed 
quickly. This advantage is particularly 
useful for implementing caches and 
garbage collection algorithms.

∑	 Splay trees are considerably simpler to 
implement than the other self-balancing 
binary search trees, such as red-black 
trees or AVL trees, while their average-
case performance is just as efficient.

	 ∑	 Splay trees minimize memory requirements as they do not store any book-keeping data.
	 ∑	 Unlike other types of self-balancing trees, splay trees provide good performance (amortized 

O(log n)) with nodes containing identical keys.

Example 10.12  Consider the splay tree given in Fig. 10.68. 
Observe the change in its structure when a node containing 
81 is searched in the tree.

63

9054

72

9939

9 45

27

18

54

39 63

9 45 90

27 72 99

18

54

39 72

9 45 63 90

18

27 99

(a) (b) (c)

Figure 10.69  Splay tree

Example 10.13  Consider the splay tree at the left. When 
we delete node 39 from it, the new structure of the tree can 
be given as shown in the right side of Fig. 10.70(a).
	 After splaying the tree at P, the resultant tree will be as 
shown in Fig. 10.70(b):

99

18

18

81

63 90

54 72 99

39

9 45

27

18

81

63 90

54 72 99

9 45

27

63

54

72

9 45

27

81

90

(a) (b)

Figure 10.70  (a) Splay tree (b) Splay tree
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  However, the demerits of splay trees include:
	 ∑	 While sequentially accessing all the nodes of a tree in a sorted order, the resultant tree 

becomes completely unbalanced. This takes n accesses of the tree in which each access takes 
O(log n) time. For example, re-accessing the first node triggers an operation that in turn takes 
O(n) operations to rebalance the tree before returning the first node. Although this creates a 
significant delay for the final operation, the amortized performance over the entire sequence 
is still O(log n).

	 ∑	 For uniform access, the performance of a splay tree will be considerably worse than a somewhat 
balanced simple binary search tree. For uniform access, unlike splay trees, these other data 
structures provide worst-case time guarantees and can be more efficient to use.

 Points to Remember

∑	 A binary search tree, also known as an ordered binary 
tree, is a variant of binary tree in which all the nodes 
in the left sub-tree have a value less than that of the 
root node and all the nodes in the right sub-tree have 
a value either equal to or greater than the root node.

∑	 The average running time of a search operation is 
O(log2n). However, in the worst case, a binary search 
tree will take O(n) time to search an element from 
the tree.

∑	 Mirror image of a binary search tree is obtained by 
interchanging the left sub-tree with the right sub-tree 
at every node of the tree.

∑	 In a threaded binary tree, null entries can be replaced 
to store a pointer to either the in-order predecessor 
or in-order successor of a node.

∑	 A one-way threaded tree is also called a single 
threaded tree. In a two-way threaded tree, also called 

a double threaded tree, threads will appear in both 
the left and the right field of the node.

∑	 An AVL tree is a self-balancing tree which is also 
known as a height-balanced tree. Each node has a 
balance factor associated with it, which is calculated 
by subtracting the height of the right sub-tree from 
the height of the left sub-tree. In a height balanced 
tree, every node has a balance factor of either 0, 1, 
or –1.		

∑	 A red-black tree is a self-balancing binary search tree 
which is also called as a ‘symmetric binary B-tree’. 
Although a red-black tree is complex, it has good 
worst case running time for its operations and is 
efficient to use, as searching, insertion, and deletion 
can all be done in O(log n) time.

∑	 A splay tree is a self-balancing binary search tree 
with an additional property that recently accessed 
elements can be re-accessed fast.

 Exercises

Review Questions
	 1.	 Explain the concept of binary search trees.
	 2.	 Explain the operations on binary search trees.
	 3.	 How does the height of a binary search tree affect 

its performance?
	 4.	 How many nodes will a complete binary tree with 

27 nodes have in the last level? What will be the 
height of the tree?

	 5.	 Write a short note on threaded binary trees.
	 6.	 Why are threaded binary trees called efficient 

binary trees? Give the merits of using a threaded 
binary tree.

	 7.	 Discuss the advantages of an AVL tree.
	 8.	 How is an AVL tree better than a binary search 

tree?
	 9.	 How does a red-black tree perform better than a 

binary search tree?
	 10.	 List the merits and demerits of a splay tree.
	 11.	 Create a binary search tree with the input given 

below:
		  98, 2, 48, 12, 56, 32, 4, 67, 23, 87, 23, 55, 46
	 (a)	 Insert 21, 39, 45, 54, and 63 into the tree
	 (b)	 Delete values 23, 56, 2, and 45 from the tree
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	 12.	 Consider the binary search tree given below.
		  Now do the following operations:
	 ∑	 Find the result of in-order, pre-order, and 

post-order traversals.
	 ∑	 Show the deletion of the root node
	 ∑	 Insert 11, 22, 33, 44, 55, 66, and 77 in the tree

45

39 56

12 54 78

10 34 67 89

32 81

 13.	 Consider the AVL tree given below and insert 18, 
81, 29, 15, 19, 25, 26, and 1 in it.

		  Delete nodes 39, 63, 15, and 1 from the AVL tree 
formed after solving the above question.

		

0

36 63

27 39 54 72

70

45

0 0

0

0

1

–1

–1

 14.	 Discuss the properties of a red-black tree. Explain 
the insertion cases.

	 15.	 Explain splay trees in detail with relevant 
examples.

	 16.	 Provide the memory representation of the binary 
tree given below:

	 ∑	 Find the result of one-way in-order, one-way 
pre-order, and two-way in-order threading of 
the tree.

	 ∑	 In each case, draw the tree and also give its 
memory representation.

		

1

2 3

4 5 6 7

8 9 10 11 12

 17.	 Balance the AVL trees given below.

72

54 81

45 63

67

72

54 81

45 63

36

 18.	 Create an AVL tree using the following sequence 
of data: 16, 27, 9, 11, 36, 54, 81, 63, 72.

	 19.	 Draw all possible binary search trees of 7, 9, and 
11.

Programming Exercises
	 1.	 Write a program to insert and delete values from 

a binary search tree.
	 2.	 Write a program to count the number of nodes in 

a binary search tree.

Multiple-choice Questions
	 1.	 In the worst case, a binary search tree will take 

how much time to search an element?
	 (a)	 O(n)	 (b)	 O(log n)
	 (c)	 O(n2)	 (d)	 O(n log n)
	 2.	 How much time does an AVL tree take to perform 

search, insert, and delete operations in the average 
case as well as the worst case?

	 (a)	 O(n)	 (b)	 O(log n)
	 (c)	 O(n2)	 (d)	 O(n log n)
	 3.	 When the left sub-tree of the tree is one level 

higher than that of the right sub-tree, then the 
balance factor is

	 (a)	 0	 (b)	 1
	 (c)	 –1	 (d)	 2
	 4.	 Which rotation is done when the new node is 

inserted in the right sub-tree of the right sub-tree 
of the critical node?

	 (a)	 LL	 (b)	 LR
	 (c)	 RL	 (d)	 RR
	 5.	 When a node N is accessed it is splayed to make 

it the
	 (a)	 Root node	 (b)	 Parent node
	 (c)	 Child node	 (d)	 Sibling node  

True or False
	 1.	 In a binary search tree, all the nodes in the left 

sub-tree have a value less than that of the root 
node.
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	 2.	 If we take two empty binary search trees and insert 
the same elements but in a different order, then 
the resultant trees will be the same.

	 3.	 When we insert a new node in a binary search 
tree, it will be added as an internal node.

	 4.	 Mirror image of a binary search tree is obtained 
by interchanging the left sub-tree with the right 
sub-tree at every node of the tree.

	 5.	 If the thread appears in the right field, then it will 
point to the in-order successor of the node.

	 6.	 If the node to be deleted is present in the left sub-
tree of A, then R rotation is applied.

	 7.	 Height of an AVL tree is limited to O(log n).
	 8.	 Critical node is the nearest ancestor node on the 

path from the root to the inserted node whose 
balance factor is –1, 0, or 1.

	 9.	 RL rotation is done when the new node is inserted 
in the right sub-tree of the right sub-tree of the 
critical node.

	 10.	 In a red-black tree, some leaf nodes can be red. 

Fill in the Blanks
	 1.	 ______ is also called a fully threaded binary tree.
	 2.	 To find the node with the largest value, we will 

find the value of the rightmost node of the ______.
	 3.	 If the thread appears in the right field, then it will 

point to the ______ of the node.
	 4.	 The balance factor of a node is calculated by 

______.
	 5.	 Balance factor –1 means ______.
	 6.	 Searching an AVL tree takes ______ time.
	 7.	 ______ rotation is done when the new node is 

inserted in the left sub-tree of the left sub-tree of 
the critical node.

	 8.	 In a red-black tree, the colour of the root node is 
______ and the colour of leaf node is ______.

	 9.	 The zig operation is done when ______.
	 10.	 In splay trees, rotation is analogous to _____ 

operation. 



11.1  INTRODUCTION
We have discussed that every node in a binary search tree contains one value and two pointers, 
left and right, which point to the node’s left and right sub-trees, respectively. The structure of a 
binary search tree node is shown in Fig. 11.1.
  The same concept is used in an M-way search tree which has M – 1 values per node and M sub-

trees. In such a tree, M is called the degree of the tree. 
Note that in a binary search tree M = 2, so it has one value 
and two sub-trees. In other words, every internal node of 
an M-way search tree consists of pointers to M sub-trees 
and contains M – 1 keys, where M > 2.

	 The structure of an M-way search tree node is shown in Fig. 11.2.

P P1 K1 P2 K2 ...... Pn-1 Kn-1 PnK

Figure 11.2  Structure of an M-way search tree node

	 In the structure shown, P0, P1, P2, ..., Pn are pointers to the node’s sub-trees and K0, K1, K2, ..., Kn–1 
are the key values of the node. All the key values are stored in ascending order. That is, Ki < Ki+1 for  
0 £ i £ n–2.

Pointer to

left sub-tree

Value or Key

of the node

Pointer to

right sub-tree

Figure 11.1  Structure of a binary search tree node

Learning Objective
In this chapter we will study about multi-way search trees which are quite different 
from other binary search trees. Though the concept is similar to normal binary 
search trees, but M-way search trees can store more than one key values in a single 
node. The chapter starts with a general description of M-way search trees, and then 
discusses in detail M-way search trees such as B trees, B+ trees, and 2-3 trees. 

Multi-way Search 
Trees

chapter 11
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 		    In an M-way search tree, it is not compulsory 
that every node has exactly M–1 values and M sub-
trees. Rather, the node can have anywhere from 1 
to M–1 values, and the number of sub-trees can vary 
from 0 (for a leaf node) to i + 1, where i is the 
number of key values in the node. M is thus a fixed 
upper limit that defines how many key values can 
be stored in the node.

	 Consider the M-way search tree shown in Fig. 11.3. Here M = 3. So a node can store a maximum 
of two key values and can contain pointers to three sub-trees.
	 In our example, we have taken a very small value of M so that the concept becomes easier for 
the reader, but in practice, M is usually very large. Using a 3-way search tree, let us lay down some 
of the basic properties of an M-way search tree.
	 ∑	 Note that the key values in the sub-tree pointed by P0 are less than the key value K0. Similarly, 

all the key values in the sub-tree pointed by P1 are less than K1, so on and so forth. Thus, the 
generalized rule is that all the key values in the sub-tree pointed by Pi are less than Ki, where 
0 £ i £ n–1.

	 ∑	 Note that the key values in the sub-tree pointed by P1 are greater than the key value K0. Similarly, 
all the key values in the sub-tree pointed by P2 are greater than K1, so on and so forth. Thus, 
the generalized rule is that all the key values in the sub-tree pointed by Pi are greater than 
Ki–1, where 0 £ i £ n–1.

	 In an M-way search tree, every sub-tree is also an M-way search tree and follows the same rules.

11.2  B TREES
A B tree is a specialized M-way tree developed by Rudolf Bayer and Ed McCreight in 1970 that is 
widely used for disk access. A B tree of order m can have a maximum of m–1 keys and m pointers to 
its sub-trees. A B tree may contain a large number of key values and pointers to sub-trees. Storing 
a large number of keys in a single node keeps the height of the tree relatively small.
	 A B tree is designed to store sorted data and allows search, insertion, and deletion operations to 
be performed in logarithmic amortized time. A B tree of order m (the maximum number of children 
that each node can have) is a tree with all the properties of an M-way search tree. In addition it 
has the following properties:
	 1.	 Every node in the B tree has at most (maximum) m children.
	 2.	 Every node in the B tree except the root node and leaf nodes has at least (minimum) m/2 

children. This condition helps to keep the tree bushy so that the path from the root node to 
the leaf is very short, even in a tree that stores a lot of data.

	 3.	 The root node has at least two children if it is not a terminal (leaf) node.
	 4.	 All leaf nodes are at the same level.
	 An internal node in the B tree can have n number of children, where 0 £ n £ m. It is not necessary 
that every node has the same number of children, but the only restriction is that the node should 
have at least m/2 children. As B tree of order 4 is given in Fig. 11.4.

29 32 49 63

18 27 36 3930 31 46 47 67 7254 59 61

45

Figure 11.4  B tree of order 4

18 45

9 11 27 36 54 63

29 30 72 81

Figure 11.3  M-way search tree of order 3
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	 While performing insertion and deletion operations in a B tree, the number of child nodes may 
change. So, in order to maintain a minimum number of children, the internal nodes may be joined 
or split. We will discuss search, insertion, and deletion operations in this section.

11.2.1  Searching for an Element in a B Tree
Searching for an element in a B tree is similar to that in binary search trees. Consider the B tree 
given in Fig. 11.4. To search for 59, we begin at the root node. The root node has a value 45 which is 
less than 59. So, we traverse in the right sub-tree. The right sub-tree of the root node has two key 
values, 49 and 63. Since 49 £ 59 £ 63, we traverse the right sub-tree of 49, that is, the left sub-tree 
of 63. This sub-tree has three values, 54, 59, and 61. On finding the value 59, the search is successful.
	 Take another example. If you want to search for 9, then we traverse the left sub-tree of the 
root node. The left sub-tree has two key values, 29 and 32. Again, we traverse the left sub-tree 
of 29. We find that it has two key values, 18 and 27. There is no left sub-tree of 18, hence the 
value 9 is not stored in the tree.
	 Since the running time of the search operation depends upon the height of the tree, the algorithm 
to search for an element in a B tree takes O(logt n) time to execute.

11.2.2  Inserting a New Element in a B Tree
In a B tree, all insertions are done at the leaf node level. A new value is inserted in the B tree 
using the algorithm given below.
	 1.	 Search the B tree to find the leaf node where the new key value should be inserted.
	 2.	 If the leaf node is not full, that is, it contains less than m–1 key values, then insert the new 

element in the node keeping the node’s elements ordered.
	 3.	 If the leaf node is full, that is, the leaf node already contains m–1 key values, then

	 (a)	 insert the new value in order into the existing set of keys,
	 (b)	 split the node at its median into two nodes (note that the split nodes are half full), and
	 (c)	 push the median element up to its parent’s node. If the parent’s node is already full, then 

split the parent node by following the same steps.

Example 11.1  Look at the B tree of order 5 given below and insert 8, 9, 39, and 4 into it.

21 27 36 427 11 54 63 81 89 90

18 45 72

54 6321 27 36 427 8 11 81 89 90

18 45 72

Step 1: Insert 8

21 27 36 42 54 637 8 9 11 81 89 90

18 45 72

Step 2: Insert 9

Figure 11.5(a)
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	 Till now, we have easily inserted 8 and 9 in the tree because the leaf nodes were not full. But 
now, the node in which 39 should be inserted is already full as it contains four values. Here we 
split the nodes to form two separate nodes. But before splitting, arrange the key values in order 
(including the new value). The ordered set of values is given as 21, 27, 36, 39, and 42. The median 
value is 36, so push 36 into its parent’s node and split the leaf nodes.

21 27 54 637 8 9 11 81 89 9039 42

18 45 7236

Step 3: Insert 39

Figure 11.5(b)

	 Now the node in which 4 should be inserted is already full as it contains four key values. Here 
we split the nodes to form two separate nodes. But before splitting, we arrange the key values 
in order (including the new value). The ordered set of values is given as 4, 7, 8, 9, and 11. The 
median value is 8, so we push 8 into its parent’s node and split the leaf nodes. But again, we see 
that the parent’s node is already full, so we split the parent node using the same procedure.

8 18 45 72

4 7 21 27 39 42 89 909 11 54 63 81

36

Step 4: Insert 4

Figure 11.5(c)  B tree

11.2.3  Deleting an Element from a B Tree
Like insertion, deletion is also done from the leaf nodes. There are two cases of deletion. In the 
first case, a leaf node has to be deleted. In the second case, an internal node has to be deleted. Let 
us first see the steps involved in deleting a leaf node.
	 1.	 Locate the leaf node which has to be deleted.
	 2.	 If the leaf node contains more than the minimum number of key values (more than m/2 

elements), then delete the value.
	 3.	 Else if the leaf node does not contain m/2 elements, then fill the node by taking an element 

either from the left or from the right sibling.
	 (a)	 If the left sibling has more than the minimum number of key values, push its largest 

key into its parent’s node and pull down the intervening element from the parent node 
to the leaf node where the key is deleted.

	 (b)	 Else, if the right sibling has more than the minimum number of key values, push its 
smallest key into its parent node and pull down the intervening element from the parent 
node to the leaf node where the key is deleted.

	 4.	 Else, if both left and right siblings contain only the minimum number of elements, then 
create a new leaf node by combining the two leaf nodes and the intervening element of the 
parent node (ensuring that the number of elements does not exceed the maximum number 
of elements a node can have, that is, m). If pulling the intervening element from the parent 
node leaves it with less than the minimum number of keys in the node, then propagate the 
process upwards, thereby reducing the height of the B tree.
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	 To delete an internal node, promote the successor or predecessor of the key to be deleted to 
occupy the position of the deleted key. This predecessor or successor will always be in the leaf 
node. So the processing will be done as if a value from the leaf node has been deleted.

Example 11.2  Consider the following B tree of order 5 and delete values 93, 201, 180, and 
72 from it (Fig. 11.6(a)).

111 114 151 180 243 256 333 45036 72 79 90 93 10145

63 81 117 201

108

Step 1: Delete 93

108

63 81 117 201

36 45 72 79 90 101 111 114 151 180 243 256 333 450

Step 3: Delete 180

108

63 81 117 256

36 45 90 101 111 114 333 45072 79 151 243

Step 4: Delete 72

81 108 117 256

111 11436 45 63 79 333 45090 101 151 243

Step 2: Delete 201

108

63 81 117 243

36 45 72 79 90 101 111 114 151 180 256 333 450

Figure 11.6  B tree

Example 11.3  Consider the B tree of order 3 given below and perform the following operations: 
(a) insert 121, 87 and then (b) delete 36, 109.
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72

45 108

27 36 54 81 90 109 117

72

45 108 117

27 36 54 81 90 109 121

Step 1: Insert 121

Step 4: Delete 109

72

45 87 108

27 54 81 117 12190

Step 3: Delete 36

72 108

45 87 117

109 12181 9027 54

72 108

45 87 117

27 36 54 81 90 109 121

Step 2: Insert 87

Figure 11.7  B tree

Example 11.4  Create a B tree of order 5 by inserting the following elements: 
    3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12, 20, 26, 4, 16, 18, 24, 25, and 19.

Step 7: Insert 4

7 13 204

1 3 8 11 12 23 265 6 14 17

1 3 7 14

Step 1: Insert 3, 14, 7, 1

7

Step 2: Insert 8

1 3 8 14

7

Step 3: Insert 5, 11, 17

1 3 8 145 11 17

Step 4: Insert 13

7 13

1 3 5 14 178 11

Step 5: Insert 6, 23, 12, 20

7 13

1 3 5 6 14 17 20 238 11 12

7 13 20

1 3 5 6 14 178 11 12 23 26

Step 6: Insert 26

(Contd)
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Step 8: Insert 16, 18, 24, 25

7 13 204

1 3 8 11 12 23 2624 255 6 14 17 1816

Step 9: Insert 19

13

17 2074

1 3 5 6 8 11 12 14 16 18 19 23 2624 25

Figure 11.8  B tree

11.2.4  Applications of B Trees
A database is a collection of related data. The prime reason for using a database is that it stores 
organized data to facilitate its users to update, retrieve, and manage the data. The data stored in 
the database may include names, addresses, pictures, and numbers. For example, a teacher may 
wish to maintain a database of all the students that includes the names, roll numbers, date of birth, 
and marks obtained by every student.
	 Nowadays, databases are used in every industry to store hundreds of millions of records. In 
the real world, it is not uncommon for a database to store gigabytes and terabytes of data. For 
example, a telecommunication company maintains a customer billing database with more than 
50 billion rows that contains terabytes of data.
	 We know that primary memory is very expensive and is capable of storing very little data as 
compared to secondary memory devices like magnetic disks. Also, RAM is volatile in nature 
and we cannot store all the data in primary memory. We have no other option but to store data on 
secondary storage devices. But accessing data from magnetic disks is 10,000 to 1,000,000 times 
slower than accessing it from the main memory. So, B trees are often used to index the data and 
provide fast access.
	 Consider a situation in which we have to search an un-indexed and unsorted database that 
contains n key values. The worst case running time to perform this operation would be O(n). In 
contrast, if the data in the database is indexed with a B tree, the same search operation will run in 
O(log n). For example, searching for a single key on a set of one million keys will at most require 
1,000,000 comparisons. But if the same data is indexed with a B tree of order 10, then only 114 
comparisons will be required in the worst case.
	 Hence, we see that indexing large amounts of data can provide significant boost to the 
performance of search operations.
	 When we use B trees or generalized M-way search trees, the value of m or the order of B trees is 
often very large. Typically, it varies from 128–512. This means that a single node in the tree can 
contain 127–511 keys and 128–512 pointers to child nodes.
	 We take a large value of m mainly because of three reasons:
	 1.	 Disk access is very slow. We should be able to fetch a large amount of data in one disk access.
	 2.	 Disk is a block-oriented device. That is, data is organized and retrieved in terms of blocks. 

So while using a B tree (generalized M-way search tree), a large value of m is used so that 
one single node of the tree can occupy the entire block. In other words, m represents the 
maximum number of data items that can be stored in a single block. m is maximized to speed 
up processing. More the data stored in a block, lesser the time needed to move it into the 
main memory.

	 3.	 A large value minimizes the height of the tree. So, search operation becomes really fast.
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11.3  B+ TREES
A B+ tree is a variant of a B tree which stores sorted data in a way that allows for efficient insertion, 
retrieval, and removal of records, each of which is identified by a key. While a B tree can store 
both keys and records in its interior nodes, a B+ tree, in contrast, stores all the records at the leaf 
level of the tree; only keys are stored in the interior nodes.
	 The leaf nodes of a B+ tree are often linked to one another in a linked list. This has an added 
advantage of making the queries simpler and more efficient.
	 Typically, B+ trees are used to store large amounts of data that cannot be stored in the main 
memory. With B+ trees, the secondary storage (magnetic disk) is used to store the leaf nodes of 
trees and the internal nodes of trees are stored in the main memory.
	 B+ trees store data only in the leaf nodes. All other nodes (internal nodes) are called index 
nodes or i-nodes and store index values. This allows us to traverse the tree from the root down to 
the leaf node that stores the desired data item. Figure 11.9 shows a B+ tree of order 3.

1 3 5 6

13

8 11

4 7 17 20

14 16 18 19 23 24

Figure 11.9  B+ tree of order 3

	 Many database systems are implemented using B+ tree structure because of its simplicity. 
Since all the data appear in the leaf nodes and are ordered, the tree is always balanced and makes 
searching for data efficient. 
	 A B+ tree can be thought of as a multi-level index in which the leaves make up a dense index 
and the non-leaf nodes make up a sparse index. The advantages of B+ trees can be given as follows:
	 1.	 Records can be fetched in equal number of disk accesses
	 2.	 It can be used to perform a wide range of queries easily as leaves are linked to nodes at the 

upper level
	 3.	 Height of the tree is less and balanced
	 4.	 Supports both random and sequential access to records
	 5.	 Keys are used for indexing

Comparison Between B Trees and B+ Trees
Table 11.1 shows the comparison between B trees and B+ trees. 

Table 11.1  Comparison between B trees and to B+ trees

B Tree B+ Tree
1.	 Search keys are not repeated 1.	 Stores redundant search key

2.	 Data is stored in internal or leaf nodes 2.	 Data is stored only in leaf nodes

3.	 Searching takes more time as data may be found in a 
leaf or non-leaf node 

3.	 Searching data is very easy as the data can be found in leaf 
nodes only

4.	 Deletion of non-leaf nodes is very complicated 4.	 Deletion is very simple because data will be in the leaf node

5.	 Leaf nodes cannot be stored using linked lists 5.	 Leaf node data are ordered using sequential linked lists

6.	 The structure and operations are complicated 6.	 The structure and operations are simple
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11.3.1  Inserting a New Element in a B+ Tree
A new element is simply added in the leaf node if there is space for it. But if the data node in the 
tree where insertion has to be done is full, then that node is split into two nodes. This calls for 
adding a new index value in the parent index node so that future queries can arbitrate between 
the two new nodes.
	 However, adding the new index value in the parent node may cause it, in turn, to split. In fact, 
all the nodes on the path from a leaf to the root may split when a new value is added to a leaf 
node. If the root node splits, a new leaf node is created and the tree grows by one level.
The steps to insert a new node in a B+ Tree are summarized in Fig. 11.10.

Step 1:	 Insert the new node as the leaf node. 
Step 2:	 If the leaf node overflows, split the node and copy the middle element to next index node.
Step 3:	 If the index node overflows, split that node and move the middle element to next index page.

Figure 11.10  Algorithm for inserting a new node in a B+ tree

Example 11.5  Consider the B+ tree of order 4 given and insert 33 in it.

20 3010

34 48326 93 2715

20 3010

34 48326 93 2715 33

Step 1: Insert 33

Step 2: Split the leaf node

20 3010

34 48326 93 2715 33

34

20

34 48326 93 2715 33

10 30 34

Step 3: Split the index node

Figure 11.11  Inserting node 33 in the given B+ Tree

11.3.2  Deleting an Element from a B+ Tree
As in B trees, deletion is always done from a leaf node. If deleting a data element leaves that node 
empty, then the neighbouring nodes are examined and merged with the underfull node.
	 This process calls for the deletion of an index value from the parent index node which, in turn, may 
cause it to become empty. Similar to the insertion process, deletion may cause a merge-delete wave 
to run from a leaf node all the way up to the root. This leads to shrinking of the tree by one level.
The steps to delete a node from a B+ tree are summarized in Fig. 11.12.

Step 1:	 Delete the key and data from the leaves.
Step 2:	 If the leaf node underflows, merge that node with the sibling and delete the key in between them.
Step 3:	 If the index node underflows, merge that node with the sibling and move down the key in between them.

Figure 11.12  Algorithm for deleting a node from a B+ Tree
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Example 11.6  Consider the B+ tree of order 4 given below and delete node 15 from it.

34 48326 93 2715

20

15 3430

33

Step 1: Delete 15

326 93 27 33

20

15 3430

34 48

34 38326 93 27 33

Step 3: Now index node underflows, so merge with sibling and delete the node

343020

34 38326 93 27 33

20

3430

Step 2: Leaf node underflows so merge with left sibling and remove key 15

Figure 11.13  Deleting node 15 from the given B+ Tree

t

Note	 Insertion and deletion operations are recursive in nature and can cascade up or down the B+tree, 
thereby affecting its shape dramatically.

11.4  2-3 Trees
In the last chapter, we have seen that for binary search trees the average-case time for operations 
like search/insert/delete is O(log N) and the worst-case time is O(N) where N is the number of 
nodes in the tree. However, a balanced tree that has height O(log N) always guarantees O(log N)  
time for all three methods. Typical examples of height balanced trees include AVL trees, red-black 
trees, B trees, and 2-3 trees. We have already discussed these data structures in the earlier chapter 
and section; now we will discuss 2-3 trees.
	 In a 2-3 tree, each interior node has either two or three children.
	 ∑	 Nodes with two children are called 2-nodes. The 2-nodes have one data value and two children
	 ∑	 Nodes with three children are called 3-nodes. The 3-nodes have two data values and three 

children (left child, middle child, and a right child)
This means that a 2-3 tree is not a binary tree. In this tree, all the leaf nodes are at the same level 
(bottom level). Look at Fig. 11.14 which shows a 2-3 tree.

18 36 45

27 72 117 153

63 81 108 111 135 144 162

9054

Figure 11.14   2-3 Tree



354  Data Structures Using C

11.4.1  Searching for an Element in a 2-3 Tree
The search operation is used to determine whether a data value x is present in a 2-3 tree T. The 
process of searching a value in a 2-3 tree is very similar to searching a value in a binary search tree.
	 The search for a data value x starts at the root. If k1 and k2 are the two values stored in the root 
node, then
	 ∑	 if x < k1, move to the left child.
	 ∑	 if x ≥ k1 and the node has only two children, move to the right child.
	 ∑	 if x ≥ k1 and the node has three children, then move to the middle child if x < k2 else to the 

right child if x ≥ k2.
	 At the end of the process, the node with data value x is reached if and only if x is at this leaf.

Example 11.7  Consider the 2-3 tree in Fig. 11.14 and search 63 in the tree.

18 36 45 63

27

9054

72 117 153

81 108 111 135 144 162

18 36 45 63

27

9054

72 117 153

81 108 111 135 144 162

Step 1: As 54 < 63 < 90, move to the middle child

18 36 45

27

63

9054

72 117 153

81 108 111 135 144 162

Step 2: As 63 < 72, move to the left child

Figure 11.15  Searching for element 63 in the 2-3 tree of Fig. 11.14

11.4.2  Inserting a New Element in a 2-3 Tree
To insert a new value in the 2-3 tree, an appropriate position of 
the value is located in one of the leaf nodes. If after insertion of 
the new value, the properties of the 2-3 tree do not get violated 
then insertion is over. Otherwise, if any property is violated 
then the violating node must be split (Fig. 11.16).

Splitting a node  A node is split when it has three data values 
and four children. Here, P is the parent and L, M, R denote the 
left, middle, and right children.

M P

L R

P M

L R

P

LMR

P

LMR

Figure 11.16(a)
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Example 11.8  Consider the 2-3 tree given below and insert the following data values into it: 
39, 37, 42, 47.

18 27 45 63 81 99

54

36 72 90

Figure 11.16(b)

Step 1: Insert 39 in the leaf node  The tree after insertion can be given as

63 81 9918 27 39 45

54

36 72 90

Figure 11.16(c)

Step 2: Insert 37 in the leaf node  The tree after insertion can be given as below. Note that inserting 
37 violates the property of 2-3 trees. Therefore, the node with values 37 and 39 must be split.

63 81 9918 27 39 4537

36

54

72 90

Figure 11.16(d)

	 After splitting the leaf node, the tree can be given as below.

63 81 9918 27 4537

54

72 9036 39

Figure 11.16(e)

Step 3: Insert 42 in the leaf node  The tree after insertion can be given as follows.

63 81 9918 27 37 42 45

72 9036 39

54

Figure 11.16(f)
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Step 4: Insert 47 in the leaf node  The tree after insertion can be given as follows.

81 9918 27 37 42 45 47 63

54

72 9036 39

Figure 11.16(g)

	 The leaf node has three data values. Therefore, the node is violating the properties of the tree 
and must be split.

54

72 90

81 9918 27 37 42 47 63

36 39 45

Figure 11.16(h)

The parent node has three data values. Therefore, the node is violating the properties of the tree 
and must be split.

81 9918 27 37 42 47 63

72 9036 45

39 54

Figure 11.16(i)  Inserting values in the given 2-3 Tree

11.4.3  Deleting an Element from a 2-3 Tree
In the deletion process, a specified data value is deleted from the 2-3 tree. If deleting a value from 
a node violates the property of a tree, that is, if a node is left with less than one data value then 
two nodes must be merged together to preserve the general properties of a 2-3 tree.
	 In insertion, the new value had to be added in any of the leaf nodes but in deletion it is not necessary 
that the value has to be deleted from a leaf node. The value can be deleted from any of the nodes. To 
delete a value x, it is replaced by its in-order successor and then removed. If a node becomes empty 
after deleting a value, it is then merged with another node to restore the property of the tree.

Example 11.9  Consider the 2-3 tree given below and delete the following values from it: 69, 
72, 99, 81.

63 9918 27 45 72 81

69 9036

54

Figure 11.17(a)

	 To delete 69, swap it with its in-order successor, that is, 72. 69 now comes in the leaf node. 
Remove the value 69 from the leaf node.
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18 27 45 63 81 99

54

36 72 90

Figure 11.17(b)

72 is an internal node. To delete this value swap 
72 with its in-order successor 81 so that 72 now 
becomes a leaf node. Remove the value 72 from 
the leaf node.

18 27 45 63 – 99

54

36 81 90

Figure 11.17(c)

Now there is a leaf node that has less than 1 data 
value thereby violating the property of a 2-3 tree. 
So the node must be merged. To merge the node, 
pull down the lowest data value in the parent’s node 
and merge it with its left sibling.

54

18 27 45 63 81 99

36 90

Figure 11.17(d)

99 is present in a leaf node, so the data value can 
be easily removed.

54

18 27 45 63 81 –

36 90

Figure 11.17(e)

Now there is a leaf node that has less than 1 data 
value, thereby violating the property of a 2-3 tree. 
So the node must be merged. To merge the node, 
pull down the lowest data value in the parent’s node 
and merge it with its left sibling.

54

36 81

18 27 45 63 90

Figure 11.17(f)

81 is an internal node. To delete this value swap 
81 with its in-order successor 90 so that 81 now 
becomes a leaf node. Remove the value 81 from 
the leaf node.

18 27 45 63 –

54

36 90

Figure 11.17(g)

Now there is a leaf node that has less than 1 data 
value, thereby violating the property of a 2-3 tree. 
So the node must be merged. To merge the node, 
pull down the lowest data value in the parent’s node 
and merge it with its left sibling.

  

54

18 27 45

36

63 90

–

 		    18 27 45 63 90

36 54

  Figure 11.17(h)					       Figure 11.17(i)  Deleting values from the given 2-3 tree

An internal node cannot be empty, so now pull 
down the lowest data value from the parent’s node 
and merge the empty node with its left sibling.
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		  11.5  TRIE
The term trie has been taken from the word ‘retrieval’. A trie is 
an ordered tree data structure, which was introduced in the 1960s 
by Edward Fredkin. Trie stores keys that are usually strings. It is 
basically a k-ary position tree.
  In contrast to binary search trees, nodes in a trie do not store the keys 
associated with them. Rather, a node’s position in the tree represents 
the key associated with that node. All the descendants of a node have 
a common prefix of the string associated with that node, and the root 
is associated with the empty string. Figure 11.18 shows a trie.
  In the given tree, keys are listed in the nodes and the values below 

them. Note that each complete English word is assigned an arbitrary integer value. We can find 
each of these words by traversing the various branches in the tree until a leaf node is encountered. 
Any path from the root to a leaf represents a word.

Advantages Relative to Binary Search Tree
When compared with a binary search tree, the trie data structure has the following advantages.

 Faster search  Searching for keys is faster, as searching a key of length m takes O(m) time in 
the worst case. On the other hand, a binary search tree performs O(logn) comparisons of keys, 
where n is the number of nodes in the tree. Since search time depends on the height of the tree 
which is logarithmic in the number of keys (if the tree is balanced), the worst case may take 
O(m log n) time. In addition to this, m approaches log(n) in the worst case. Hence, a trie data 
structure provides a faster search mechanism.

 Less space  Trie occupies less space, especially when it contains a large number of short strings. 
Since keys are not stored explicitly and nodes are shared between the keys with common initial 
subsequences, a trie calls for less space as compared to a binary search tree.

 Longest prefix-matching  Trie facilitates the longest-prefix matching which enables us to find 
the key sharing the longest possible prefix of all unique characters. Since trie provides more 
advantages, it can be thought of as a good replacement for binary search trees.

Advantages Relative to Hash Table
Trie can also be used to replace a hash table as it provides the following advantages:
	 ∑	 Searching for data in a trie is faster in the worst case, O(m) time, compared to an imperfect 

hash table, discussed in Chapter 15, which may have numerous key collisions. Trie is free 
from collision of keys problem.

	 ∑	 Unlike a hash table, there is no need to choose a hash function or to change it when more 
keys are added to a trie.

	 ∑	 A trie can sort the keys using a predetermined alphabetical ordering.

Disadvantages
The disadvantages of having a trie are listed below:
	 ∑	 In some cases, tries can be slower than hash tables while searching data. This is true in cases 

when the data is directly accessed on a hard disk drive or some other secondary storage device 
that has high random access time as compared to the main memory.
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Figure 11.18  Trie data structure
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	 ∑	 All the key values cannot be easily represented as strings. For example, the same floating 
point number can be represented as a string in multiple ways (1 is equivalent to 1.0, 1.00, +1.0, 
etc.).

Applications
Tries are commonly used to store a dictionary (for example, on a mobile telephone). These 
applications take advantage of a trie’s ability to quickly search, insert, and delete the entries. 
Tries are also used to implement approximate matching algorithms, including those used in 
spell-checking software.

 Points to Remember

∑	 An M-way search tree has M – 1 values per node and 
M sub-trees. In such a tree, M is called the degree of 
the tree. M-way search tree consists of pointers to M 
sub-trees and contains M – 1 keys, where M > 2.

∑	 A B tree of order m can have a maximum of m–1 
keys and m pointers to its sub-trees. A B tree may 
contain a large number of key values and pointers 
to its sub-trees.

∑	 A B+ tree is a variant of B tree which stores sorted 
data in a way that allows for efficient insertion, 
retrieval, and removal of records, each of which 
is identified by a key. B+ tree record data at the 

leaf level of the tree; only keys are stored in interior 
nodes.

∑	 A trie is an ordered tree data structure which stores 
keys that are usually strings. It is basically a k-ary 
position tree.

∑	 In contrast to binary search trees, nodes in a trie 
do not store the keys associated with them. Rather, 
a node’s position in the tree represents the key 
associated with that node.

∑	 In a 2-3 tree, each interior node has either two or 
three children. This means that a 2-3 tree is not a 
binary tree.

 exercises

Review Questions
	 1.	 Why is a large value of m needed in a B tree?
	 2.	 Compare B trees with B+ trees.
	 3.	 In what conditions will you prefer a B+ tree over 

a B tree?
	 4.	 Write a short note on trie data structure.
	 5.	 Compare binary search trees with trie. Also, list the 

merits and demerits of using the trie data structure.
	 6.	 Compare hash tables with trie.

	 7.	 Give a brief summary of M-way search trees.
	 8.	 Consider the B tree given below
	 (a)	 Insert 1, 5, 7, 11, 13, 15, 17, and 19 in the tree.
	 (b)	 Delete 30, 59, and 67 from the tree.
	 9.	 Write an essay on B+ trees.
	 10.	 Create a B+ tree of order 5 for the following data 

arriving in sequence:
		  90, 27, 7, 9, 18, 21, 3, 4, 16, 11, 21, 72

45

29 32 49 63

18 27 36 39 46 4730 31 54 59 61 67 72

(B tree for Q.8)

 11.	 List down the applications of B trees.
	 12.	 B trees of order 2 are full binary trees. Justify this 

statement.

	 13.	 Consider the 3-way search tree given below. Insert 
23, 45, 67, 87, 54, 32, and 11 in the tree. Then, 
delete 9, 36, and 54 from it.
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18 45

9 11 27 36

29 30

54 63

72 81

(3-way search tree for Q.13)

Multiple-choice Questions
	 1.	 Every internal node of an M-way search tree 

consists of pointers to M sub-trees and contains 
how many keys?

	 (a)	 M	 (b)	 M–1
	 (c)	 2	 (d)	 M+1
	 2.	 Every node in a B tree has at most ______ 

children.
	 (a)	 M	 (b)	 M–1
	 (c)	 2	 (d)	 M+1
	 3.	 Which data structure is commonly used to store 

a dictionary?
	 (a)	 Binary Tree	 (b)	 Splay tree
	 (c)	 Trie	 (d)	 Red black tree   
	 4.	 In M-way search tree, M stands for
	 (a)	 Internal nodes	 (b)	 External nodes
	 (c)	 Degree of node	 (d)	 Leaf nodes   
	 5.	 In best case, searching a value in a binary search 

tree may take
	 (a)	 O(n)	 (b)	 O(n log n)
	 (c)	 O(log n)	 (d)	 O(n2)   

True or False
	 1.	 All leaf nodes in the B tree are at the same level.
	 2.	 A B+ tree stores data only in the i-nodes.
	 3.	 B tree stores unsorted data.
	 4.	 Every node in the B-tree has at most (maximum) 

m–1 children.
	 5.	 The leaf nodes of a B tree are often linked to one 

another.
	 6.	 B+ tree stores redundant search key.
	 7.	 A trie is an ordered tree data structure.
	 8.	 A trie uses more space as compared to a binary 

search tree. 
	 9.	 External nodes are called index nodes.	

Fill in the Blanks
	 1.	 An M-way search tree consists of pointers to 

______ sub-trees and contains ______ keys.
	 2.	 A B-tree of order _______ can have a maximum 

of _______ keys and m pointers to its sub-trees.
	 3.	 Every node in the B-tree except the root node and 

leaf nodes have at least _______ children.
	 4.	 In  _______ data is stored in internal or leaf nodes.
	 5.	 A balanced tree that has height O(log N) always 

guarantees _______ time for all three methods.

	



12.1  BINARY HEAPS
A binary heap is a complete binary tree in which every node satisfies the heap property which 
states that:

If B is a child of A, then key(A) ≥ key(B) 

This implies that elements at every node will be either greater than or equal to the element at 
its left and right child. Thus, the root node has the highest key value in the heap. Such a heap is 
commonly known as a max-heap. 

  Alternatively, elements at every node will 
be either less than or equal to the element 
at its left and right child. Thus, the root has 
the lowest key value. Such a heap is called 
a min-heap.
  Figure 12.1 shows a binary min heap and 
a binary max heap. The properties of binary 
heaps are given as follows:
∑  Since a heap is defined as a complete 
    binary tree, all its elements can be stored  

4

6 12

7 9 21 39

13 19 10

Min heap Max heap

99

69 72

45 63 21 39

27 36 54

Figure 12.1  Binary heaps

Learning Objective
A heap is a specialized tree-based data structure. There are several variants of heaps 
which are the prototypical implementations of priority queues. We have already 
discussed priority queues in Chapter 8. Heaps are also crucial in several efficient 
graph algorithms. In this chapter, we will discuss three types of heaps—binary 
heaps, binomial heaps, and Fibonacci heaps.

Heaps

chapter 12
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sequentially in an array. It follows the same rules as that of a complete binary tree. That is, if an 
element is at position i in the array, then its left child is stored at position 2i and its right child at 
position 2i+1. Conversely, an element at position i has its parent stored at position i/2.
	 ∑	 Being a complete binary tree, all the levels of the tree except the last level are completely filled.
	 ∑	 The height of a binary tree is given as log2n, where n is the number of elements.
	 ∑	 Heaps (also known as partially ordered trees) are a very popular data structure for implementing 

priority queues.
A binary heap is a useful data structure in which elements can be added randomly but only the 
element with the highest value is removed in case of max heap and lowest value in case of min heap. 
A binary tree is an efficient data structure, but a binary heap is more space efficient and simpler.

12.1.1  Inserting a New Element in a Binary Heap
Consider a max heap H with n elements. Inserting a new value into the heap is done in the following 
two steps:
	 1.	 Add the new value at the bottom of H in such a way that H is still a complete binary tree but 

not necessarily a heap.
	 2.	 Let the new value rise to its appropriate place in H so that H now becomes a heap as well.
To do this, compare the new value with its parent to check if they are in the correct order. If 
they are, then the procedure halts, else the new value and its parent’s value are swapped and 
Step 2 is repeated.

Example 12.1  Consider the max heap given in Fig. 12.2 and insert 99 in it.
Solution

		

54

45 36

27 21 18 21

11      	    

54

45 36

27 21 18 21

11 99

Figure 12.2  Binary heap	 Figure 12.3  Binary heap after insertion of 99

	 The first step says that insert the element in the heap so that the heap is a complete binary tree. 
So, insert the new value as the right child of node 27 in the heap. This is illustrated in Fig. 12.3.
	 Now, as per the second step, let the new value rise to its appropriate place in H so that H becomes 
a heap as well. Compare 99 with its parent node value. If it is less than its parent’s value, then 
the new node is in its appropriate place and H is a heap. If the new value is greater than that of its 
parent’s node, then swap the two values. Repeat the whole process until H becomes a heap. This is 
illustrated in Fig. 12.4.

54

45 36

27 21 18 21

11 99

54

45 36

27

21 18 21

11

99

54

45

36

27

21 18 21

11

99 54

45

36

27

21 18 21

11

99

Figure 12.4  Heapify the binary heap
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Example 12.2  Build a max heap H from the given set of numbers: 45, 36, 54, 27, 63, 72, 61, 
and 18. Also draw the memory representation of the heap.
Solution

(Step 1)

45

(Step 2)

45

36

(Step 3)

45

36 54

(Step 4)

4536

54

(Step 5)

4536

54

27

(Step 6)

4536

54

27 63

(Step 7)

45

36

54

27

63

(Step 8)

45

36

54

27

63

(Step 9)

45

36

54

27

63

72

(Step 10)

4536

54

27

63

72

4536

54

27

63

72

(Step 11)

4536

54

27

63

72

61

(Step 12)

4536

54

27

63

72

61

18

(Step 13)

Figure 12.5

	 The memory representation of H can be given as shown in Fig. 12.6.

72 54 63 27 36 45 61 18

HEAP[1] HEAP[2] HEAP[3] HEAP[4] HEAP[5] HEAP[6] HEAP[7] HEAP[8] HEAP[9] HEAP[10]

Figure 12.6  Memory representation of binary heap H

	 After discussing the concept behind inserting a new value in the heap, let us now look at the 
algorithm to do so as shown in Fig. 12.7. We assume that H with n elements is stored in array HEAP. 

VAL has to be inserted in HEAP. The location of VAL as 
it rises in the heap is given by POS, and PAR denotes 
the location of the parent of VAL.
  Note that this algorithm inserts a single value in 
the heap. In order to build a heap, use this algorithm 
in a loop. For example, to build a heap with 9 
elements, use a for loop that executes 9 times and 
in each pass, a single value is inserted.
  The complexity of this algorithm in the average 
case is O(1). This is because a binary heap has  
O(log n) height. Since approximately 50% of the 
elements are leaves and 75% are in the bottom two 
levels, the new element to be inserted will only move 
a few levels upwards to maintain the heap.

Step 1: [Add the new value and set its POS]

SET N = N + 1, POS = N

Step 2: SET HEAP[N] = VAL

Step 3: [Find appropriate location of VAL]

Repeat Steps 4 and 5 while POS > 1

Step 4: SET PAR = POS/2

Step 5: IF HEAP[POS] <= HEAP[PAR],

then Goto Step 6.

ELSE

SWAP HEAP[POS], HEAP[PAR]

POS = PAR

[END OF IF]

[END OF LOOP]

Step 6: RETURN

Figure 12.7  Algorithm to insert an element in a max heap
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	 In the worst case, insertion of a single value may take O(log n) time and, similarly, to build a 
heap of n elements, the algorithm will execute in O(n log n) time.

12.1.2  Deleting an Element from a Binary Heap
Consider a max heap H having n elements. An element is always 
deleted from the root of the heap. So, deleting an element from 
the heap is done in the following three steps:

1.	 Replace the root node’s value with the last node’s value 
so that H is still a complete binary tree but not necessarily 
a heap.

2. Delete the last node.
3.	 Sink down the new root node’s value so that H satisfies the 

heap property. In this step, interchange the root node’s value 
with its child node’s value (whichever is largest among 
its children).

	 Here, the value of root node = 54 and the value of the last 
node = 11. So, replace 54 with 11 and delete the last node.

(Step 1) (Step 2)

(Since 11 is less than 45,

interchange the values)

11

45 36

27 29 18 21

11

45 36

27 29 18 21

(Step 4)

45

11

36

27

29

18 21

(Step 3)

45

11 36

27 29 18 21

(Since 11 is less than 29,

interchange the values)

Figure 12.9  Binary heap

	 After discussing the concept behind deleting the root element from the heap, let us look at the 
algorithm given in Fig. 12.10. We assume that heap H with n elements is stored using a sequential 

array called HEAP. LAST is the last element in the 
heap and PTR, LEFT, and RIGHT denote the 
position of LAST and its left and right children 
respectively as it moves down the heap.

12.1.3  Applications of Binary Heaps
Binary heaps are mainly applied for
1.	 Sorting an array using heapsort algorithm. 

We will discuss heapsort algorithm in 
Chapter 14.

2.	 Implementing priority queues. 

12.1.4  Binary Heap Implementation of 
Priority Queues

In Chapter 8, we learned about priority queues. 
We have also seen how priority queues can 
be implemented using linked lists. A priority 
queue is similar to a queue in which an item is 

Example 12.3  Consider the max 
heap H shown in Fig. 12.8 and delete 
the root node’s value.
Solution

54

45 36

27 29 18 21

11

Figure 12.8  Binary heap

Step 1: [Remove the last node from the heap]

SET LAST = HEAP[N], SET N = N - 1

Step 2: [Initialization]

SET PTR = 1, LEFT = 2, RIGHT = 3

Step 3: SET HEAP[PTR] = LAST

Step 4: Repeat Steps 5 to 7 while LEFT <= N

Step 5: IF HEAP[PTR] >= HEAP[LEFT] AND

HEAP[PTR] >= HEAP[RIGHT]

Go to Step 8

[END OF IF]

Step 6: IF HEAP[RIGHT] <= HEAP[LEFT]

SWAP HEAP[PTR], HEAP[LEFT]

SET PTR = LEFT

ELSE

SWAP HEAP[PTR], HEAP[RIGHT]

SET PTR = RIGHT

[END OF IF]

Step 7: SET LEFT = 2 * PTR and RIGHT = LEFT + 1

[END OF LOOP]

Step 8: RETURN

Figure 12.10  Algorithm to delete the root element from a max heap

Priorities

IN

MAX

Priority OUT

Figure 12.11  Priority queue visualization
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	 In the worst case, insertion of a single value may take O(log n) time and, similarly, to build a 
heap of n elements, the algorithm will execute in O(n log n) time.

12.1.2  Deleting an Element from a Binary Heap
Consider a max heap H having n elements. An element is always 
deleted from the root of the heap. So, deleting an element from 
the heap is done in the following three steps:

1.	 Replace the root node’s value with the last node’s value 
so that H is still a complete binary tree but not necessarily 
a heap.

2. Delete the last node.
3.	 Sink down the new root node’s value so that H satisfies the 

heap property. In this step, interchange the root node’s value 
with its child node’s value (whichever is largest among 
its children).

	 Here, the value of root node = 54 and the value of the last 
node = 11. So, replace 54 with 11 and delete the last node.
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	 After discussing the concept behind deleting the root element from the heap, let us look at the 
algorithm given in Fig. 12.10. We assume that heap H with n elements is stored using a sequential 

array called HEAP. LAST is the last element in the 
heap and PTR, LEFT, and RIGHT denote the 
position of LAST and its left and right children 
respectively as it moves down the heap.

12.1.3  Applications of Binary Heaps
Binary heaps are mainly applied for
1.	 Sorting an array using heapsort algorithm. 

We will discuss heapsort algorithm in 
Chapter 14.

2.	 Implementing priority queues. 

12.1.4  Binary Heap Implementation of 
Priority Queues

In Chapter 8, we learned about priority queues. 
We have also seen how priority queues can 
be implemented using linked lists. A priority 
queue is similar to a queue in which an item is 

Example 12.3  Consider the max 
heap H shown in Fig. 12.8 and delete 
the root node’s value.
Solution

54

45 36

27 29 18 21
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Figure 12.8  Binary heap

Step 1: [Remove the last node from the heap]

SET LAST = HEAP[N], SET N = N - 1

Step 2: [Initialization]

SET PTR = 1, LEFT = 2, RIGHT = 3

Step 3: SET HEAP[PTR] = LAST

Step 4: Repeat Steps 5 to 7 while LEFT <= N

Step 5: IF HEAP[PTR] >= HEAP[LEFT] AND

HEAP[PTR] >= HEAP[RIGHT]

Go to Step 8

[END OF IF]

Step 6: IF HEAP[RIGHT] <= HEAP[LEFT]

SWAP HEAP[PTR], HEAP[LEFT]

SET PTR = LEFT

ELSE

SWAP HEAP[PTR], HEAP[RIGHT]

SET PTR = RIGHT

[END OF IF]

Step 7: SET LEFT = 2 * PTR and RIGHT = LEFT + 1

[END OF LOOP]

Step 8: RETURN

Figure 12.10  Algorithm to delete the root element from a max heap

Priorities

IN

MAX

Priority OUT

Figure 12.11  Priority queue visualization

dequeued (or removed) from the front. However, unlike 
a regular queue, in a priority queue the logical order of 
elements is determined by their priority. While the higher 
priority elements are added at the front of the queue, 
elements with lower priority are added at the rear. 
  Conceptually, we can think of a priority queue as a 
bag of priorities shown in Fig. 12.11. In this bag you 
can insert any priority but you can take out one with the 
highest value. 

	 Though we can easily implement priority queues using a linear array, but we should first consider 
the time required to insert an element in the array and then sort it. We need O(n) time to insert 
an element and at least O(n log n) time to sort the array. Therefore, a better way to implement 
a priority queue is by using a binary heap which allows both enqueue and dequeue of elements 
in O(log n) time.

12.2  BINOMIAL HEAPS
A binomial heap H is a set of binomial trees that satisfy the binomial heap properties. First, let us 
discuss what a binomial tree is.
	 A binomial tree is an ordered tree that can be recursively defined as follows:
	 ∑	 A binomial tree of order 0 has a single node.
	 ∑	 A binomial tree of order i has a root node whose children are the root nodes of binomial trees 

of order i–1, i–2, ..., 2, 1, and 0.
	 ∑	 A binomial tree Bi has 2i nodes.
	 ∑	 The height of a binomial tree Bi is i.
	 Look at Fig. 12.12 which shows a few binomial trees of different orders. We can construct a 
binomial tree Bi from two binomial trees of order Bi–1 by linking them together in such a way that 
the root of one is the leftmost child of the root of another.

B Bi-1

Bi-2B1
(A binomial tree is a collection of binomial

trees of order .)

B

i-1 i-2 ... 2 1
i

, , , , ,

(Binomial tree, B )

(Binomial tree, B1)

B

(Binomial tree, B3)

B2

B1

B

(Binomial tree, B2)

B1

B

Figure 12.12  Binomial trees

	 A binomial heap H is a collection of binomial trees that satisfy the following properties:
	 ∑	 Every binomial tree in H satisfies the minimum heap property (i.e., the key of a node is either 

greater than or equal to the key of its parent).
	 ∑	 There can be one or zero binomial trees for each order including zero order.



366  Data Structures Using C

	 According to the first property, the root of a heap-ordered tree contains the smallest key in 
the tree. The second property, on the other hand, implies that a binomial heap H having N nodes 
contains at most log (N + 1) binomial trees.

12.2.1  Linked Representation of Binomial Heaps
Each node in a binomial heap H has a val field that stores its value. In addition, each node N has 
following pointers:
	 ∑	 P[N] that points to the parent of N
	 ∑	 Child[N] that points to the leftmost child
	 ∑	 Sibling[N] that points to the sibling of N which is immediately to its right

	 If N is the root node, then P[N] = NULL. If N has no children, then 
Child[N] = NULL, and if N is the rightmost child of its parent, then 
Sibling[N] = NIL.
	 In addition to this, every node N has a degree field which 
stores the number of children of N. Look at the binomial heap 
shown in Fig. 12.13. Figure 12.14 shows its corresponding 
linked representation.

Child

NULL

7

2

11

1

NULL

27

0

NULL

NULL

16

0

NULL

10

2

14

1

NULL

36

0

NULL

9

3

NULL

NULL

21

0

NULL

12

1

NULL

18

0

NULL

NULL

19

0

NULL

Value

Degree

Sibling

Parent

Head [H]

NULL

Figure 12.14  Linked representation of the binomial tree shown in Fig. 12.13

12.2.2  Operations on Binomial Heaps
In this section, we will discuss the different operations that can be performed on binomial heaps.

Creating a New Binomial Heap
The procedure Create_Binomial–Heap() allocates and returns an object H, where Head[H] is set to 
NULL. The running time of this procedure can be given as O(1).

Finding the Node with Minimum Key
The procedure Min_Binomial–Heap() returns a pointer to the node which has the minimum value in 
the binomial heap H. The algorithm for Min_Binomial–Heap() is shown in Fig. 12.15.

7

11 27

16

9

10 14 36

12 18 21

19

Head [H]

Figure 12.13  Binomial heap
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Min_Binomial-Heap(H)

Step 1: [INITIALIZATION] SET Y = NULL, X = Head[H] and Min =

Step 2: REPEAT Steps 3 and 4 While X NULL

Step 3: IF Val[X] < Min

SET Min = Val[X]

SET Y = X

[END OF IF]

Step 4: SET X = Sibling[X]

[END OF LOOP]

Step 5: RETURN Y

•
π

Figure 12.15  Algorithm to find the node with minimum value

  We have already discussed that a binomial heap is heap-ordered; therefore, the node with the 
minimum value in a particular binomial tree will appear as a root node in the binomial heap. Thus, 
the Min_ Binomial–Heap() procedure checks all roots. Since there are at most log (n + 1) roots to 
check, the running time of this procedure is O(log n).

Example 12.4  Consider the binomial heap given below and see how the procedure works in 
this case.

7

11 27

16

9

10 14 36

12 18 21

19

Head [H] 12

Step 3

(Min = 7)

Y X

7

11 27

16

9

10 14 36

12 18 21

19

Head [H] 12

Step 2

(Min = 7)

Y X

7

11 27

16

9

10 14 36

12 18 21

19

Head [H] 12

(Initially, we have Min = )•

7

11 27

16

9

10 14 36

12 18 21

19

Head [H] 12

Step 1

(Min = 12)

X

Figure 12.16  Binomial heap

Uniting Two Binomial Heaps
The procedure of uniting two binomial heaps is used as a subroutine by other operations. The 

Union_Binomial–Heap() procedure links together binomial 
trees whose roots have the same degree. The algorithm to 
link Bi–1 tree rooted at node Y to the Bi–1 tree rooted at node 
Z, making Z the parent of Y, is shown in Fig. 12.17.
  The Link_Binomial–Tree() procedure makes Y the new 
head of the linked list of node Z’s children in O(1) time.
  The algorithm to unite two binomial heaps H1 and H2 is 
given in Fig. 12.18.

Link_Binomial-Tree(Y, Z)

Step 1: SET Parent[Y] = Z

Step 2: SET Sibling[Y] = Child[Z]

Step 3: SET Child[Z] = Y

Step 4: Set Degree[Z] = Degree[Z]+ 1

Step 5: END

Figure 12.17  Algorithm to link two binomial trees
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		    The algorithm destroys the original 
representations of heaps H1 and H2. Apart 
from Link_Binomial–Tree(), it uses another 
procedure Merge_Binomial–Heap() which 
is used to merge the root lists of H1 and H2 
into a single linked list that is sorted by 
degree into a monotonically increasing 
order.
  In the algorithm, Steps 1 to 3 merge 
the root lists of binomial heaps H1 and H2 
into a single root list H in such a way that 
H1 and H2 are sorted strictly by increasing 
degree. Merge_Binomial–Heap() returns a 
root list H that is sorted by monotonically 
increasing degree. If there are m roots 
in the root lists of H1 and H2, then Merge_
Binomial–Heap() runs in O(m) time. This 
procedure repeatedly examines the roots 
at the heads of the two root lists and 
appends the root with the lower degree 
to the output root list, while removing it 
from its input root list.
  Step 4 of the algorithm checks if there 
is at least one root in the heap H. The 

algorithm proceeds only if H has at least one root. In Step 5, we initialize three pointers: PTR which 
points to the root that is currently being examined, PREV which points to the root preceding PTR on 
the root list, and NEXT which points to the root following PTR on the root list.
	 In Step 6, we have a while loop in which at each iteration, we decide whether to link PTR to 
NEXT or NEXT to PTR depending on their degrees and possibly the degree of sibling[NEXT].
	 In Step 7, we check for two conditions. First, if degree[PTR] π degree[NEXT], that is, when PTR is 
the root of a Bi tree and NEXT is the root of a Bj tree for some j > i, then PTR and NEXT are not linked 
to each other, but we move the pointers one position further down the list. Second, we check if 
PTR is the first of three roots of equal degree, that is,

degree[PTR] = degree[NEXT] = degree[Sibling[NEXT]]

	 In this case also, we just move the pointers one position further down the list by writing PREV 
= PTR, PTR = NEXT.
	 However, if the above IF conditions do not satisfy, then the case that pops up is that PTR is the 
first of two roots of equal degree, that is,

degree[PTR] = degree[NEXT] π degree[Sibling[NEXT]]

In this case, we link either PTR with NEXT or NEXT with PTR depending on whichever has the smaller 
key. Of course, the node with the smaller key will be the root after the two nodes are linked.
	 The running time of Union_Binomial–Heap() can be given as O(1og n), where n is the total number 
of nodes in binomial heaps H1 and H2. If H1 contains n1 nodes and H2 contains n2 nodes, then H1 contains 
at most 1og(n1 + 1) roots and H2 contains at most 1og(n2 + 1) roots, so H contains at most (1og n2 

+ 1og n1 + 2) £ (2 1og n + 2) = O(1og n) roots when we call Merge_Binomial–Heap(). Since, n = n1 

+ n2, the Merge_Binomial–Heap() takes O(log n) to execute. Each iteration of the while loop takes 
O(1) time, and because there are at most (1og n1 + 1og n2 + 2) iterations, the total time is thus 
O(log n).

Union_Binomial-Heap(H1, H2)

Step 1: SET H = Create_Binomial-Heap()

Step 2: SET Head[H] = Merge_Binomial-Heap(H1, H2)

Step 3: Free the memory occupied by H1 and H2

Step 4: IF Head[H] = NULL, then RETURN H

Step 5: SET PREV = NULL, PTR = Head[H] and NEXT =

Sibling[PTR]

Step 6: Repeat Step 7 while NEXT NULL

Step 7: IF Degree[PTR] Degree[NEXT] OR

(Sibling[NEXT] NULL AND

Degree[Sibling[NEXT]] = Degree[PTR]), then

SET PREV = PTR, PTR = NEXT

ELSE IF Val[PTR] Val[NEXT], then

SET Sibling[PTR] = Sibling[NEXT]

Link_Binomial-Tree(NEXT, PTR)

ELSE

IF PREV = NULL, then

Head[H] = NEXT

ELSE

Sibling[PREV] = NEXT

Link_Binomial-Tree(PTR, NEXT)

SET PTR = NEXT

SET NEXT = Sibling[PTR]

Step 8: RETURN H

π
π
π

£

Figure 12.18  Algorithm to unite two binomial heaps
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Example 12.5  Unite the binomial heaps given below.
Solution

4

19 7

29 18 21

31 36 24

39

8

10 14 36

12 18 21

19

Head [H ]
2 187

27

Head [H ]
1 12 9

10 14

12

Figure 12.19(a)

After Merge_Binomial–Heap(), the resultant heap can be given as follows:
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10 14 36
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19

7

27
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10 14
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4

19

Head [H] 12

PTR NEXT

(Step 1)

Figure 12.19(b)

Link NEXT to PTR, making PTR the parent of the node pointed by NEXT.

7

29 18 21

31 36 24

39
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10 14 36

12 18 21

19

7

27

9

10 14

12

4

19

Head [H]

PTR NEXT

(Step 2)

12

18

Figure 12.19(c)

Now PTR is the first of the three roots of equal degree, that is, degree[PTR] = degree[NEXT] = 
degree[sibling[NEXT]]. Therefore, move the pointers one position further down the list by writing 
PREV = PTR, PTR = NEXT, and NEXT = sibling[PTR].
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29 18 21

31 36 24

39
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10 14 36

12 18 21

19

7

27

9

10 14
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4

19

Head [H]

PTR NEXT

(Step 3)

12

18

PREV

Figure 12.19(d)
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	 Link PTR to NEXT, making NEXT the parent of the node pointed by PTR.
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18
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Figure 12.19(e)

	 Link NEXT to PTR, making PTR the parent of the node pointed by NEXT.
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PTR NEXT
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18

PREV

10

12
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Figure 12.19(f)  Binomial heap

Inserting a New Node
The Insert_Binomial–Heap() procedure is used 
to insert a node x into the binomial heap H. The 
pre-condition of this procedure is that x has 
already been allocated space and val[x] has 
already been filled in.
	 The algorithm shown in Fig. 12.20 simply 
makes a binomial heap H¢ in O(1) time. H¢ 
contains just one node which is x. Finally, the 
algorithm unites H¢ with the n-node binomial 
heap H in O(log n) time. Note that the memory 
occupied by H¢ is freed in the Union_Binomial–
Heap(H, H¢) procedure.

Extracting the Node with Minimum Key
The algorithm to extract the node with minimum 
key from a binomial heap H is shown in 
Fig. 12.21. The Min–Extract_Binomial–Heap 
procedure accepts a heap H as a parameter 
and returns a pointer to the extracted node. 
In the first step, it finds a root node R with 
the minimum value and removes it from the 

Insert_Binomial-Heap(H, x)

Step 1: SET H' = Create_Binomial-Heap()

Step 2: SET Parent[x] = NULL, Child[x] = NULL and

Sibling[x] = NULL, Degree[x] = NULL

Step 3: SET Head[H'] = x

Step 4: SET Head[H] = Union_Binomial-Heap(H, H')

Step 5: END

Figure 12.20  Algorithm to insert a new element in a binomial heap

Min-Extract_Binomial Heap (H)

Step 1: Find the root R having minimum value in

the root list of H

Step 2: Remove R from the root list of H

Step 3: SET H = Create_Binomial-Heap()

Step 4: Reverse the order of R's children thereby

forming a linked list

Step 5: Set head[H ] to point to the head of the

resulting list

Step 6: SET H = Union_Binomial-Heap(H, H )

¢

¢

¢

Figure 12.21  Algorithm to extract the node with minimum key 
from a binomial heap
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root list of H. Then, the order of R’s children is reversed and they are all added to the root list of 
H¢. Finally, Union_Binomial–Heap (H, H¢) is called to unite the two heaps and R is returned. The 
algorithm Min–Extract_Binomial–Heap() runs in O(log n) time, where n is the number of nodes in H.

Example 12.6  Extract the node with the minimum value from the given binomial heap.
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Figure 12.22  Binomial heap

		  Decreasing the Value of a Node
The algorithm to decrease the value of 
a node x in a binomial heap H is given in 
Fig. 12.23. In the algorithm, the value 
of the node is overwritten with a new 
value k, which is less than the current 
value of the node.
	 In the algorithm, we first ensure 
that the new value is not greater than the 
current value and then assign the new 
value to the node.

Binomial-Heap_Decrease_Val(H, x, k)

Step 1: IF Val[x] < k, then Print " ERROR"

Step 2: SET Val[x] = k

Step 3: SET PTR = x and PAR = Parent[PTR]

Step 4: Repeat while PAR NULL and Val[PTR] < Val[PAR]

Step 5: SWAP ( Val[PTR], Val[PAR] )

Step 6: SET PTR = PAR and PAR = Parent [PTR]

[END OF LOOP]

Step 7: END

π

Figure 12.23  Algorithm to decrease the value of a node x in a binomial 
heap H
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	 We then go up the tree with PTR initially pointing to node x. In each iteration of the while loop, 
val[PTR] is compared with the value of its parent PAR. However, if either PTR is the root or key[PTR] 
≥ key[PAR], then the binomial tree is heap-ordered. Otherwise, node PTR violates heap-ordering, 
so its key is exchanged with that of its parent. We set PTR = PAR and PAR = Parent[PTR] to move up 
one level in the tree and continue the process.
	 The Binomial–Heap_Decrease_Val procedure takes O(log n) time as the maximum depth of node 
x is log n, so the while loop will iterate at most log n times.

Deleting a Node
Once we have understood the Binomial–Heap_
Decrease_Val procedure, it becomes easy to delete 
a node x’s value from the binomial heap H in 
O(log n) time. To start with the algorithm, we set 
the value of x to – •. Assuming that there is no 
node in the heap that has a value less than – •, the 
algorithm to delete a node from a binomial heap 
can be given as shown in Fig. 12.24.

	 The Binomial–Heap_Delete–Node procedure sets the value of x to – •, which is a unique minimum 
value in the entire binomial heap. The Binomial–Heap_Decrease_Val algorithm bubbles this key upto 
a root and then this root is removed from the heap by making a call to the Min–Extract_Binomial–
Heap procedure. The Binomial–Heap_Delete–Node procedure takes O(log n) time.

Example 12.7  Delete the node with the value 11 from the binomial heap H.
Solution
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14

2112

21

36

5 2118

24

29

3631

39

8 1612

10

–•

18 21

19

(Step 5)

R

Head [H]

(Contd)

Binomial-Heap_Delete-Node(H, x)

Step 1: Binomial-Heap_Decrease_Val(H, x, - )

Step 2: Min-Extract_Binomial-Heap(H)

Step 3: END

•

Figure 12.24  Algorithm to delete a node from a 
bionomial heap
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Figure 12.25  (Contd) Binomial heap

12.3  FIBONACCI HEAPS
In the last section, we have seen that binomial heaps support operations such as insert, extract-
minimum, decrease-value, delete, and union in O(log n) worst-case time. In this section, we will 
discuss Fibonacci heaps which support the same operations but have the advantage that operations 
that do not involve deleting an element run in O(1) amortized time. So, theoretically, Fibonacci 
heaps are especially desirable when the number of extract-minimum and delete operations is small 
relative to the number of other operations performed. This situation arises in many applications, 
where algorithms for graph problems may call the decrease-value once per edge. However, the 
programming complexity of Fibonacci heaps makes them less desirable to use.
	 A Fibonacci heap is a collection of trees. It is loosely based on binomial heaps. If neither the 
decrease-value nor the delete operation is performed, each tree in the heap is like a binomial 
tree. Fibonacci heaps differ from binomial heaps as they have a more relaxed structure, allowing 
improved asymptotic time bounds.

12.3.1  Structure of Fibonacci Heaps
Although a Fibonacci heap is a collection of heap-ordered trees, the trees in a Fibonacci heap are 
not constrained to be binomial trees. That is, while the trees in a binomial heap are ordered, those 
within Fibonacci heaps are rooted but unordered.
	 Look at the Fibonacci heap given in Fig. 12.26. The figure shows that each node in the Fibonacci 
heap contains the following pointers:
	 ∑	 a pointer to its parent, and
	 ∑	 a pointer to any one of its children.

  Note that the children of each node are linked together in 
a circular doubly linked list which is known as the child list 
of that node. Each child x in a child list contains pointers to 
its left and right siblings. If node x is the only child of its 
parent, then left[x] = right[x] = x (refer Fig. 12.25).
  Circular doubly linked lists provide an added advantage, 
as they allow a node to be removed in O(1) time. Also, given 
two circular doubly linked lists, the lists can be concatenated 
to form one list in O(1) time.

36 4

54

39

min[H]

32

18 18 24

27 4419

33

36

45

Figure 12.26  Fibonacci heap
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	 Apart from this information, every node will store two other fields. First, the number of children 
in the child list of node x is stored in degree[x]. Second, a boolean value mark[x] indicates whether 
node x has lost a child since the last time x was made the child of another node. Of course, the 
newly created nodes are unmarked. Also, when the node x is made the child of another node, it 
becomes unmarked.
	 Fibonacci heap H is generally accessed by a pointer called min[H] which points to the root that 
has a minimum value. If the Fibonacci heap H is empty, then min[H] = NULL.
	 As seen in Fig. 12.27, roots of all the trees in a Fibonacci heap are linked together using their 
left and right pointers into a circular doubly linked list called the root list of the Fibonacci heap. 
Also note that the order of the trees within a root list is arbitrary.

36 18 4 18 24

19 54 36 27 44

33 45 39

min[H]

Figure 12.27  Linked representation of the Fibonacci heap shown in Fig. 12.24

	 In a Fibonacci heap H, the number of nodes in H is stored in n[H] and the degree of nodes is 
stored in D(n).

12.3.2  Operations on Fibonacci Heaps
In this section, we will discuss the operations that can be implemented on Fibonacci heaps. If 
we perform operations such as create-heap, insert, find extract-minimum, and union, then each 
Fibonacci heap is simply a collection of unordered binomial trees. An unordered binomial tree U0 
consists of a single node, and an unordered binomial tree Ui consists of two unordered binomial 
trees Ui–1 for which the root of one is made into a child of the root of another. All the properties 
of a binomial tree also hold for unordered binomial trees but for an unordered binomial tree Ui, 
the root has degree i, which is greater than that of any other node. The children of the root are 
roots of sub-trees U0, U1, ..., Ui–1 in some order. Thus, if an n-node Fibonacci heap is a collection of 
unordered binomial trees, then D(n) = log n. The underlying principle of operations on Fibonacci 
heaps is to delay the work as long as possible.

Creating a New Fibonacci Heap
To create an empty Fibonacci heap, the Create_Fib–Heap procedure allocates and returns the 
Fibonacci heap object H, where n[H] = 0 and min[H] = NULL. The amortized cost of Create_Fib–Heap 
is equal to O(1).

Inserting a New Node
The algorithm to insert a new node in an already existing Fibonacci heap is shown in Fig. 12.28.
	 In Steps 1 and 2, we first initialize the structural fields of node x, making it its own circular 
doubly linked list. Step 3 adds x to the root list of H in O(1) actual time. Now, x becomes an 
unordered binomial tree in the Fibonacci heap. In Step 4, the pointer to the minimum node of 
Fibonacci heap H is updated. Finally, we increment the number of nodes in H to reflect the addition 
of the new node.
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	 Note that unlike the insert operation in the case of a binomial heap, when we insert a node 
in a Fibonacci heap, no attempt is made to consolidate the trees within the Fibonacci heap. 
So, even if k consecutive insert operations are performed, then k single-node trees are added to 
the root list.

Insert_Fib-Heap(H, x)

Step 1: [INITIALIZATION] SET Degree[x] = , Parent[x] = NULL,

Child[x] = NULL, mark[x] = False

Step 2: SET Left[x] = x and Right[x] = x

Step 3: Concatenate the root list containing x with the

root list of H

Step 4: IF min[H] = NULL OR Val[x] < Val[min[H]], then

SET min[H] = x

[END OF IF]

Step 5: SET n[H] = n[H]+ 1

Step 6: END

Figure 12.28  Algorithm to insert a new node in a Fibonacci heap

Example 12.8  Insert node 16 in the Fibonacci heap given below.

Solution

36 18 4 18 24

19 54 36 27 44

min[H]

32

36 16 4 18 24

19 54 36 27 44

min[H]

32

18

33 41 39

33 41 39

Figure 12.29  Fibonacci heap

Finding the Node with Minimum Key
Fibonacci heaps maintain a pointer min[H] that points to the root having the minimum value. 

Therefore, finding the minimum node is a 
straightforward task that can be performed 
in just O(1) time.

Uniting Two Fibonacci Heaps
The algorithm given in Fig. 12.30 unites two 
Fibonacci heaps H1 and H2.
  In the algorithm, we first concatenate 
the root lists of H1 and H2 into a new root list 
H. Then, the minimum node of H is set and 
the total number of nodes in H is updated. 
Finally, the memory occupied by H1 and H2 
is freed and the resultant heap H is returned.

Union_Fib-Heap(H1, H2)

Step 1: H = Create_Fib-Heap()

Step 2: SET min[H] = min[H1]

Step 3: Concatenate root list of H2 with that of H

Step 4: IF (min[H1] = NULL) OR (min[H2] != NULL

and min[H2] < min[H1]), then

SET min[H] = min[H2]

[END OF IF]

Step 5: SET n[H] = n[H1] + n[H2]

Step 6: Free H1 and H2

Step 7: RETURN H

Figure 12.30  Algorithm to unite two Fibonacci heaps
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Extracting the Node with Minimum Key
The process of extracting the node with minimum value from a Fibonacci heap is the most 
complicated operation of all the operations that we have discussed so far. Till now, we had been 
delaying the work of consolidating the trees, but in this operation, we will finally implement the 
consolidation process. The algorithm to extract the node with minimum value is given in Fig. 12.31.
	 In the Extract–Min_Fib–Heap algorithm, we first make a root out of each of the minimum node’s 
children and then remove the minimum node from the root list of H. Finally, the root list of the 
resultant Fibonacci heap H is consolidated by linking the roots of equal degree until at most one 
root remains of each degree.
  Note that in Step 1, we save a pointer x to the minimum node; this pointer is returned at the 
end. However, if x = NULL, then the heap is already empty. Otherwise, the node x is deleted from 

H by making all its children the roots of H 
and then removing x from the root list (as 
done in Step 2). If x = right[x], then x is the 
only node on the root list, so now H is empty. 
However, if x != Right[x], then we set the 
pointer min[H] to the node whose address is 
stored in the right field of x.

Consolidating a Heap
A Fibonacci heap is consolidated to reduce 
the number of trees in the heap. While 
consolidating the root list of H, the following 
steps are repeatedly executed until every 
root in the root list has a distinct degree 
value.
∑	 Find two roots x and y in the root list that 

has the same degree and where Val[x] 
£ Val[y].

∑	 Link y to x. That is, remove y from 
the root list of H and make it a child of 
x. This operation is actually done in 
the Link_Fib–Heap procedure. Finally, 
degree[x] is incremented and the mark 
on y, if any, is cleared.

  In the consolidate algorithm shown in 
Fig. 12.32, we have used an auxiliary array 
A[0... D(n[H])], such that if A[i] = x, then x 
is currently a node in the root list of H and 
degree[x]= i.
  In Step 1, we set every entry in the array 
A to NULL. When Step 1 is over, we get a 
tree that is rooted at some node x. Initially, 
the array entry A[degree[x]] is set to point 
to x. In the for loop, each root node in H is 
examined. In each iteration of the while 
loop, A[d] points to some root TEMP because 
d = degree[PTR] = degree[TEMP], so these two 

Extract-Min_Fib-Heap(H)

Step 1: SET x = min[H]

Step 2: IF x != NULL, then

For each child PTR of x

Add PTR to the root list of H and

Parent[PTR] = NULL

Remove x from the root list of H

Step 3: IF x = Right[x], then

SET min[H] = NULL

ELSE

SET min[H] = Right[x]

Consolidate(H)

[END OF IF]

Step 4: SET n[H] = n[H] - 1

Step 5: RETURN x

[END OF IF]

Figure 12.31  Algorithm to extract the node with minimum key

Consolidate(H)

Step 1: Repeat for i=0 to D(n[H]), SET A[i] = NULL

Step 2: Repeat Steps 3 to 12 for each node x in the

root list of H

Step 3: SET PTR = x

Step 4: SET deg = Degree[PTR]

Step 5: Repeat Steps 6 to 1 while A[deg] != NULL

Step 6: SET TEMP = A[deg]

Step 7: IF Val[PTR] > Val[TEMP], then

Step 8: EXCHANGE PTR and TEMP

Step 9: Link_Fib-Heap(H, TEMP, PTR)

Step 1 : SET A[deg] = NULL

Step 11: SET deg = deg + 1

Step 12: SET A[deg] = PTR

Step 13: SET min[H] = NULL

Step 14: Repeat for i = 0 to D(n(H])

Step 15: IF A[i] != NULL, then

Step 16: Add A[i] to the root list of H

Step 17: IF min[H] = NULL OR Val[A[i]] <

Val[min[H]], then

Step 18: SET min[H] = A[i]

Step 19: END

Figure 12.32  Algorithm to consolidate a Fibonacci heap

Link_Fib-Heap (H, x, y)

Step 1: Remove node y from the root list of H

Step 2: Make x the parent of y

Step 3: Increment the degree of x

Step 4: SET mark[y] = FALSE

Step 5: END

Figure 12.33  Algorithm to link two Fibonacci heaps
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Extracting the Node with Minimum Key
The process of extracting the node with minimum value from a Fibonacci heap is the most 
complicated operation of all the operations that we have discussed so far. Till now, we had been 
delaying the work of consolidating the trees, but in this operation, we will finally implement the 
consolidation process. The algorithm to extract the node with minimum value is given in Fig. 12.31.
	 In the Extract–Min_Fib–Heap algorithm, we first make a root out of each of the minimum node’s 
children and then remove the minimum node from the root list of H. Finally, the root list of the 
resultant Fibonacci heap H is consolidated by linking the roots of equal degree until at most one 
root remains of each degree.
  Note that in Step 1, we save a pointer x to the minimum node; this pointer is returned at the 
end. However, if x = NULL, then the heap is already empty. Otherwise, the node x is deleted from 

H by making all its children the roots of H 
and then removing x from the root list (as 
done in Step 2). If x = right[x], then x is the 
only node on the root list, so now H is empty. 
However, if x != Right[x], then we set the 
pointer min[H] to the node whose address is 
stored in the right field of x.

Consolidating a Heap
A Fibonacci heap is consolidated to reduce 
the number of trees in the heap. While 
consolidating the root list of H, the following 
steps are repeatedly executed until every 
root in the root list has a distinct degree 
value.
∑	 Find two roots x and y in the root list that 

has the same degree and where Val[x] 
£ Val[y].

∑	 Link y to x. That is, remove y from 
the root list of H and make it a child of 
x. This operation is actually done in 
the Link_Fib–Heap procedure. Finally, 
degree[x] is incremented and the mark 
on y, if any, is cleared.

  In the consolidate algorithm shown in 
Fig. 12.32, we have used an auxiliary array 
A[0... D(n[H])], such that if A[i] = x, then x 
is currently a node in the root list of H and 
degree[x]= i.
  In Step 1, we set every entry in the array 
A to NULL. When Step 1 is over, we get a 
tree that is rooted at some node x. Initially, 
the array entry A[degree[x]] is set to point 
to x. In the for loop, each root node in H is 
examined. In each iteration of the while 
loop, A[d] points to some root TEMP because 
d = degree[PTR] = degree[TEMP], so these two 

Extract-Min_Fib-Heap(H)

Step 1: SET x = min[H]

Step 2: IF x != NULL, then

For each child PTR of x

Add PTR to the root list of H and

Parent[PTR] = NULL

Remove x from the root list of H

Step 3: IF x = Right[x], then

SET min[H] = NULL

ELSE

SET min[H] = Right[x]

Consolidate(H)

[END OF IF]

Step 4: SET n[H] = n[H] - 1

Step 5: RETURN x

[END OF IF]

Figure 12.31  Algorithm to extract the node with minimum key

Consolidate(H)

Step 1: Repeat for i=0 to D(n[H]), SET A[i] = NULL

Step 2: Repeat Steps 3 to 12 for each node x in the

root list of H

Step 3: SET PTR = x

Step 4: SET deg = Degree[PTR]

Step 5: Repeat Steps 6 to 1 while A[deg] != NULL

Step 6: SET TEMP = A[deg]

Step 7: IF Val[PTR] > Val[TEMP], then

Step 8: EXCHANGE PTR and TEMP

Step 9: Link_Fib-Heap(H, TEMP, PTR)

Step 1 : SET A[deg] = NULL

Step 11: SET deg = deg + 1

Step 12: SET A[deg] = PTR

Step 13: SET min[H] = NULL

Step 14: Repeat for i = 0 to D(n(H])

Step 15: IF A[i] != NULL, then

Step 16: Add A[i] to the root list of H

Step 17: IF min[H] = NULL OR Val[A[i]] <

Val[min[H]], then

Step 18: SET min[H] = A[i]

Step 19: END

Figure 12.32  Algorithm to consolidate a Fibonacci heap

Link_Fib-Heap (H, x, y)

Step 1: Remove node y from the root list of H

Step 2: Make x the parent of y

Step 3: Increment the degree of x

Step 4: SET mark[y] = FALSE

Step 5: END

Figure 12.33  Algorithm to link two Fibonacci heaps

nodes must be linked with each other. Of course, 
the node with the smaller key becomes the parent 
of the other as a result of the link operation and 
so if need arises, we exchange the pointers to PTR 
and TEMP.
  Next, we link TEMP to PTR using the Link_Fib–
Heap procedure. The Link_Fib–Heap procedure 
(Fig. 12.33) increments the degree of x but leaves 
the degree of y unchanged. Since node y is no 

longer a root, the pointer to it in array A is removed in Step 10. Note that the value of degree of 
x is incremented in the Link_Fib–Heap procedure, so Step 13 restores the value of d = degree[x]. 
The while loop is repeated until A[d] = NULL, that is until no other root with the same degree as x 
exists in the root list of H.

Example 12.9  Remove the minimum node from the Fibonacci heap given below.
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Figure 12.34  Fibonacci heap
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		  Decreasing the Value of a Node
The algorithm to decrease the value of a node in 
O(1) amortized time is given in Fig. 12.35.
  In the Decrease–Val_Fib–Heap (Fig. 12.35), we 
first ensure that the new value is not greater than 
the current value of the node and then assign 
the new value to PTR. If either the PTR points to a 
root node or if Val[PTR] >= Val[PAR], where PAR 
is PTR’s parent, then no structural changes need 
to be done. This condition is checked in Step 4.
  However, if the IF condition in Step 4 evaluates 
to a false value, then the heap order has been 
violated and a series of changes may occur. First, 
we call the Cut procedure to disconnect (or cut) 
any link between PTR and its PAR, thereby making 
PTR a root.

  If PTR is a node that has undergone the following history, then the importance of the mark field 
can be understood as follows:
	 ∑	 Case 1: PTR was a root node.
	 ∑	 Case 2: Then PTR was linked to another node.
	 ∑	 Case 3: The two children of PTR were removed by the Cut procedure.
  Note that when PTR will lose its second child, it will be cut from its parent to form a new root. 
mark[PTR] is set to TRUE when cases 1 and 2 occur and PTR has lost one of its child by the Cut 
operation. The Cut procedure, therefore, clears mark[PTR] in Step 4 of the Cut procedure.
  However, if PTR is the second child cut from its parent PAR (since the time that PAR was linked 

to another node), then a Cascading–Cut operation 
is performed on PAR. If PAR is a root, then the IF 
condition in Step 2 of Cascading–Cut causes the 
procedure to just return. If PAR is unmarked, then 
it is marked as it indicates that its first child has 
just been cut, and the procedure returns. Otherwise, 
if PAR is marked, then it means that PAR has now 
lost its second child. Therefore, PTR is cut and 
Cascading–Cut is recursively called on PAR’s parent. 
The Cascading–Cut procedure is called recursively 
up the tree until either a root or an unmarked node 
is found.
  Once we are done with the Cut (Fig. 12.36) and 
the Cascading–Cut (Fig. 12.37) operations, Step 5 of 
the Decrease–Val_Fib–Heap finishes up by updating 
min[H].
  Note that the amortized cost of Decrease–Val_Fib–
Heap is O(1). The actual cost of Decrease–Val_Fib–
Heap is O(1) time plus the time required to perform 
the cascading cuts. If Cascading–Cut procedure 
is recursively called c times, then each call of 

Decrease-Val_Fib-Heap (H, PTR, v)

Step 1: IF v > Val[PTR]

PRINT "ERROR"

Step 2: SET Val[PTR] = v

Step 3: SET PAR = Parent[PTR]

Step 4: IF PAR != NULL and Val[PTR] < Val[PAR]

Cut (H, PTR, PAR)

Cascading-Cut(H, PAR)

[END OF IF]

Step 5: IF Val[PTR] < Val[min[H]]

SET min[H] = PTR

[END OF IF]

Step 6: END

[END OF IF]

Figure 12.35  Algorithm to decrease the value of a node

Cut(H, PTR, PAR)

Step 1: Remove PTR from the child list of PAR

Step 2: SET Degree[PAR] = Degree[PAR] - 1

Step 3: Add PTR to the root list of H

Step 4: SET Parent[PTR] = NULL

Step 5: SET Mark[PTR] = FALSE

Step 6: END

Figure 12.36  Algorithm to perform cut procedure

Cascading-Cut (H, PTR)

Step 1: SET PAR = Parent[PTR]

Step 2: IF PAR != NULL

IF mark[PTR] = FALSE

SET mark[PTR] = TRUE

ELSE

Cut (H, PTR, PAR)

Cascading-Cut(H, PAR)

[END OF IF]

Step 3: END

Figure 12.37  Algorithm to perform cascade
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Cascading–Cut takes O(1) time exclusive of recursive calls. Therefore, the actual cost of Decrease–
Val_Fib–Heap including all recursive calls is O(c).

Example 12.10  Decrease the value of node 39 to 9 in the Fibonacci heap given below.
Solution
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Figure 12.38  Fibonacci heap

Deleting a Node
A node from a Fibonacci heap can be very easily deleted in O(D(n)) amortized time. The procedure 

to delete a node is given in Fig. 12.39.
	 Del_Fib–Heap assigns a minimum value to x. The 
node x is then removed from the Fibonacci heap by 
making a call to the Extract–Min_Fib–Heap procedure. 
The amortized time of the delete procedure is the sum 
of the O(1) amortized time of Decrease–Val_Fib–Heap and 
the O(D(n)) amortized time of Extract–Min_Fib–Heap.

12.4 C OMPARISON OF BINARY, BINOMIAL, AND FIBONACCI HEAPS
Table 12.1 makes a comparison of the operations that are commonly performed on heaps.
Table 12.1  Comparison of binary, binomial, and Fibonacci heaps

Operation Description Time complexity in Big O Notation

Binary Binomial Fibonacci
Create Heap Creates an empty heap O(n) O(n) O(n)
Find Min Finds the node with minimum value O(1) O(log n) O(n)
Delete Min Deletes the node with minimum value O(log n) O(log n) O(log n)
Insert Inserts a new node in the heap O(log n) O(log n) O(1)
Decrease Value Decreases the value of a node O(log n) O(log n) O(1)
Union Unites two heaps into one O(n) O(log n) O(1)

12.5  APPLICATIONS OF HEAPS
Heaps are preferred for applications that include:
	 ∑	 Heap sort  It is one of the best sorting methods that has no quadratic worst-case scenarios. 

Heap sort algorithm is discussed in Chapter 14.

Del_Fib-Heap (H, x)

Step 1: DECREASE-VAL_FIB-HEAP(H, x, - )

Step 2: EXTRACT-MIN_FIB-HEAP(H)

Step 3: END

•

Figure 12.39  Algorithm to delete a node from a 
Fibonacci heap
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	 ∑	 Selection algorithms  These algorithms are used to find the minimum and maximum values 
in linear or sub-linear time.

	 ∑	 Graph algorithms  Heaps can be used as internal traversal data structures. This guarantees 
that runtime is reduced by an order of polynomial. Heaps are therefore used for implementing 
Prim’s minimal spanning tree algorithm and Dijkstra’s shortest path problem.

 Points to Remember

∑	 A binary heap is defined as a complete binary tree in 
which every node satisfies the heap property. There 
are two types of binary heaps: max heap and min 
heap.

∑	 In a min heap, elements at every node will either be 
less than or equal to the element at its left and right 
child. Similarly, in a max heap, elements at every 
node will either be greater than or equal to element 
at its left and right child.

∑	 A binomial tree of order i has a root node whose 
children are the root nodes of binomial trees of order 
i–1, i–2, ..., 2, 1, 0.

∑	 A binomial tree Bi of height i has 2i nodes.
∑	 A binomial heap H is a collection of binomial trees 

that satisfy the following properties:
o	 Every binomial tree in H satisfies the minimum 

heap property.
o	 There can be one or zero binomial trees for each 

order including zero order.
∑	 A Fibonacci heap is a collection of trees. Fibonacci 

heaps differ from binomial heaps, as they have 
a more relaxed structure, allowing improved 
asymptotic time bounds.

 exercises

Review Questions
	 1.	 Define a binary heap.
	 2.	 Differentiate between a min-heap and a max-heap.
	 3.	 Compare binary trees with binary heaps.
	 4.	 Explain the steps involved in inserting a new 

value in a binary heap with the help of a suitable 
example.

	 5.	 Explain the steps involved in deleting a value from 
a binary heap with the help of a suitable example.

	 6.	 Discuss the applications of binary heaps.
	 7.	 Form a binary max-heap and a min-heap from the 

following sequence of data:
		  50, 40, 35, 25, 20, 27, 33.
	 8.	 Heaps are excellent data structures to implement 

priority queues. Justify this statement.
	 9.	 Define a binomial heap. Draw its structure.
	 10.	 Differentiate among binary, binomial, and 

Fibonacci heaps.
	 11.	 Explain the operations performed on a Fibonacci 

heap.
	 12.	 Why are Fibonacci heaps preferred over binary 

and binomial heaps?

	 13.	 Analyse the complexity of the algorithm to unite 
two binomial heaps.

	 14.	 The running time of the algorithm to find the 
minimum key in a binomial heap is O(log n). 
Comment.

	 15.	 Discuss the process of inserting a new node in a 
binomial heap. Explain with the help of an example.

	 16.	 The algorithm Min–Extract_Binomial–Heap() 
runs in O(log n) time where n is the number of 
nodes in H. Justify this statement.

	 17.	 Explain how an existing node is deleted from a 
binomial heap with the help of a relevant example.

	 18.	 Explain the process of inserting a new node in a 
Fibonacci heap.

	 19.	 Write down the algorithm to unite two Fibonacci 
heaps.

	 20.	 What is the procedure to extract the node with the 
minimum value from a Fibonacci heap? Give the 
algorithm and analyse its complexity.

	 21.	 Consider the figure given below and state whether 
it is a heap or not.
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4

6 12

7 9 21 39

13 19 10

 22.	 Reheap the following structure to make it a heap.

45

27 36

16 18 29 21

54  

	 23.	 Show the array implementation of the following 
heap.

4

6 12

7 9 21 39

13 19 10  

	 24.	 Given the following array structure, draw the heap.

45 27 36 18 16 21 23 10

		  Also, find out
	 (a)	 the parent of nodes 10, 21, and 23, and
	 (b)	 index of left and right child of node 23.
	 25.	 Which of the following sequences represents a 

binary heap?
	 (a)	 40, 33, 35, 22, 12, 16, 5, 7
	 (b)	 44, 37, 20, 22, 16, 32, 12
	 (c)	 15, 15, 15, 15, 15, 15
	 26.	 A heap sequence is given as: 52, 32, 42, 22, 12, 

27, 37, 12, 7. Which element will be deleted when 
the deletion algorithm is called thrice?

	 27.	 Show the resulting heap when values 35, 24, and 
10 are added to the heap of the above question.

	 28.	 Draw a heap that is also a binary search tree.
	 29.	 Analyse the complexity of heapify algorithm.
	 30.	 Consider the Fibonacci heap given below and 

then decrease the value of node 33 to 9. Insert a 
new node with value 5 and finally delete node 19 
from it.

16

18 19 18

36

33

41

17

3624

27 44

39

min[H]

Multiple-choice Questions
	 1.	 The height of a binary heap with n nodes is equal 

to
	 (a)	 O(n)	 (b)	 O(log n)
	 (c)	 O(n log n)	 (d)	 O(n2)

	 2.	 An element at position i in an array has its left 
child stored at position

	 (a)	 2i	 (b)	 2i + 1
	 (c)	 i/2	 (d)	 i/2 + 1
	 3.	 In the worst case, how much time does it take to 

build a binary heap of n elements?
	 (a)	 O(n)	 (b)	 O(log n)
	 (c)	 O(n log n)	 (d)	 O(n2)

	 4.	 The height of a binomial tree Bi is
	 (a)	 2i	 (b)	 2i + 1
	 (c)	 i/2	 (d)	 i
	 5.	 How many nodes does a binomial tree of order 0 

have?
	 (a)	 0	 (b)	 1
	 (c)	 2	 (d)	 3
	 6.	 The running time of Link_Binomial–Tree() 

procedure is
	 (a)	 O(n)	 (b)	 O(log n)
	 (c)	 O(n log n)	 (d)	 O(1)
	 7.	 In a Fibonacci heap, how much time does it take 

to find the minimum node?
	 (a)	 O(n)	 (b)	 O(log n)
	 (c)	 O(n log n)	 (d)	 O(1)



382  Data Structures Using C

True or False
	 1.	 A binary heap is a complete binary tree.
	 2.	 In a min heap, the root node has the highest key 

value in the heap.
	 3.	 An element at position i has its parent stored at 

position i/2.
	 4.	 All levels of a binary heap except the last level 

are completely filled.
	 5.	 In a min-heap, elements at every node will be 

greater than its left and right child.
	 6.	 A binomial tree Bi has 2i nodes.
	 7.	 Binomial heaps are ordered.
	 8.	 Fibonacci heaps are rooted and ordered.
	 9.	 The running time of Min_Binomial–Heap() 

procedure is O(log n).
	 10.	 If there are m roots in the root lists of H1 and H2, then 

Merge_Binomial–Heap() runs in O(m log m) time.
	 11.	 Fibonacci heaps are preferred over binomial heaps.

Fill in the Blanks
	 1.	 An element at position i in the array has its right 

child stored at position ______.
	 2.	 Heaps are used to implement ______.
	 3.	 Heaps are also known as ______.
	 4.	 In ______, elements at every node will either be 

less than or equal to the element at its left and 
right child.

	 5.	 An element is always deleted from the ______.
	 6.	 The height of a binomial tree Bi is ______.
	 7.	 A binomial heap is defined as ______.
	 8.	 A binomial tree Bi has ______ nodes.
	 9.	 A binomial heap is created in ______ time.
	 10.	 A Fibonacci heap is a ______.
	 11.	 In a Fibonacci heap, mark[x] indicates ______.



13.1  INTRODUCTION
A graph is an abstract data structure that is used to implement the mathematical concept of graphs. 
It is basically a collection of vertices (also called nodes) and edges that connect these vertices. A 
graph is often viewed as a generalization of the tree structure, where instead of having a purely 
parent-to-child relationship between tree nodes, any kind of complex relationship can exist.

Why are Graphs Useful?
Graphs are widely used to model any situation where entities or things are related to each other 
in pairs. For example, the following information can be represented by graphs:
	 ∑	 Family trees in which the member nodes have an edge from parent to each of their children.
	 ∑	 Transportation networks in which nodes are airports, intersections, ports, etc. The edges can 

be airline flights, one-way roads, shipping routes, etc.

Definition
A graph G is defined as an ordered set (V, E), where V(G) represents the set of 
vertices and E(G) represents the edges that connect these vertices.
	 Figure 13.1 shows a graph with V(G) = {A, B, C, D and E} and E(G) = {(A, B), (B, C),  
(A, D), (B, D), (D, E), (C, E)}. Note that there are five vertices or nodes and six 
edges in the graph.

A B C

D E

Figure 13.1  Undirected 
graph

Learning Objective
In this chapter, we will discuss another non-linear data structure called graphs. 
We will discuss the representation of graphs in the memory as well as the different 
operations that can be performed on them. Last but not the least, we will discuss 
some of the real-world applications of graphs.

Graphs

chapter 13
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  A graph can be directed or undirected. In an undirected graph, edges do 
not have any direction associated with them. That is, if an edge is drawn 
between nodes A and B, then the nodes can be traversed from A to B as well as 
from B to A. Figure 13.1 shows an undirected graph because it does not give 
any information about the direction of the edges.
  Look at Fig. 13.2 which shows a directed graph. In a directed graph, edges 

form an ordered pair. If there is an edge from A to B, then there is a path from A to B but not from 
B to A. The edge (A, B) is said to initiate from node A (also known as initial node) and terminate 
at node B (terminal node).

13.2  Graph Terminology
Adjacent nodes or neighbours  For every edge, e = (u, v) that connects nodes u and v, the nodes 
u and v are the end-points and are said to be the adjacent nodes or neighbours.

Degree of a node  Degree of a node u, deg(u), is the total number of edges containing the node u. 
If deg(u) = 0, it means that u does not belong to any edge and such a node is known as an isolated 
node.

Regular graph  It is a graph where each vertex has the 
same number of neighbours. That is, every node has the 
same degree. A regular graph with vertices of degree k 
is called a k–regular graph or a regular graph of degree k. 
Figure 13.3 shows regular graphs.

Path  A path P written as P = {v0, v1, v2, ..., vn), of length 
n from a node u to v is defined as a sequence of (n+1) nodes. 
Here, u = v0, v = vn and vi–1 is adjacent to vi for i = 1, 2, 3, 
..., n.

Closed path  A path P is known as a closed path if the edge has the same end-points. That is, if 
v0 = vn.

Simple path  A path P is known as a simple path if all the nodes in the path are distinct with an 
exception that v0 may be equal to vn. If v0 = vn, then the path is called a closed simple path.

Cycle  A path in which the first and the last vertices are same. A simple cycle has no repeated 
edges or vertices (except the first and last vertices).

Connected graph  A graph is said to be connected if for any two vertices (u, v) in V there is a 
path from u to v. That is to say that there are no isolated nodes in a connected graph. A connected 
graph that does not have any cycle is called a tree. Therefore, a tree is treated as a special graph 
(Refer Fig. 13.4(b)).

Complete graph  A graph G is said to be complete if all its nodes are fully connected. That is, 
there is a path from one node to every other node 
in the graph. A complete graph has n(n–1)/2 edges, 
where n is the number of nodes in G.

Clique  In an undirected graph G = (V, E), clique 
is a subset of the vertex set C Õ V, such that for every 
two vertices in C, there is an edge that connects 
two vertices.

A B C

D E

Figure 13.2  Directed graph

(a) Multi-graph (b) Tree

A B C

D E

(c) Weighted graph

3 4

2 7 1

3

A B C

D E F

A B

C D

e1

e2 e3

e5

e6

e4

Figure 13.4  Multi-graph, tree, and weighted graph

(0-regular graph) (1-regular graph) (2-regular graph)

Figure 13.3  Regular graphs



Graphs  385

Labelled graph or weighted graph  A graph is said to be labelled if every edge in the graph 
is assigned some data. In a weighted graph, the edges of the graph are assigned some weight or 
length. The weight of an edge denoted by w(e) is a positive value which indicates the cost of 
traversing the edge. Figure 13.4(c) shows a weighted graph.

Multiple edges  Distinct edges which connect the same end-points are called multiple edges. 
That is, e = (u, v) and e' = (u, v) are known as multiple edges of G.

Loop  An edge that has identical end-points is called a loop. That is, e = (u, u).

Multi-graph  A graph with multiple edges and/or loops is called a multi-graph. Figure 13.4(a) 
shows a multi-graph.

Size of a graph  The size of a graph is the total number of edges in it.

13.3  Directed Graphs
A directed graph G, also known as a digraph, is a graph in which every edge has a direction assigned 
to it. An edge of a directed graph is given as an ordered pair (u, v) of nodes in G. For an edge (u, v),
	 ∑	 The edge begins at u and terminates at v.
	 ∑	 u is known as the origin or initial point of e. Correspondingly, v is known as the destination 

or terminal point of e.
	 ∑	 u is the predecessor of v. Correspondingly, v is the successor of u.
	 ∑	 Nodes u and v are adjacent to each other.

13.3.1  Terminology of a Directed Graph
Out-degree of a node  The out-degree of a node u, written as outdeg(u), is the number of edges 
that originate at u.

In-degree of a node  The in-degree of a node u, written as indeg(u), is the number of edges that 
terminate at u.

Degree of a node  The degree of a node, written as deg(u), is equal to the sum of in-degree and 
out-degree of that node. Therefore, deg(u) = indeg(u) + outdeg(u).

Isolated vertex  A vertex with degree zero. Such a vertex is not an end-point of any edge. 

Pendant vertex  (also known as leaf vertex) A vertex with degree one. 

Cut vertex  A vertex which when deleted would disconnect the remaining graph.

Source  A node u is known as a source if it has a positive out-degree but a zero in-degree.

Sink  A node u is known as a sink if it has a positive in-degree but a zero out-degree.

Reachability  A node v is said to be reachable from node u, if and only if there exists a (directed) 
path from node u to node v. For example, if you consider the directed graph given in Fig. 13.5(a), 
you will observe that node D is reachable from node A.

Strongly connected directed graph  A digraph is said to be strongly connected if and only if there 
exists a path between every pair of nodes in G. That is, if there is a path from node u to v, then there 
must be a path from node v to u.

Unilaterally connected graph  A digraph is said to be unilaterally connected if there exists a path 
between any pair of nodes u, v in G such that there is a path from u to v or a path from v to u, but 
not both.
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Weakly connected digraph  A directed graph is said to be weakly connected if it is connected 
by ignoring the direction of edges.   That is, in such a graph, it is possible to reach any node from 
any other node by traversing edges in any direction (may not be in the direction they point). The 
nodes in a weakly connected directed graph must have either out-degree or in-degree of at least 1.

Parallel/Multiple edges  Distinct edges which connect the same end-points are called multiple 
edges. That is, e = (u, v) and e' = (u, v) are known as multiple edges of G. In Fig. 13.5(a), e3 and 
e5 are multiple edges connecting nodes C and D.

Simple directed graph  A directed graph G is said to be a simple directed graph if and only if it 
has no parallel edges. However, a simple directed graph may contain 
cycles with an exception that it cannot have more than one loop at a 
given node.
  The graph G given in Fig. 13.5(a) is a directed graph in which there 
are four nodes and eight edges. Note that edges e3 and e5 are parallel 
since they begin at C and end at D. The edge e8 is a loop since it 
originates and terminates at the same node. The sequence of nodes, 
A, B, D, and C, does not form a path because (D, C) is not an edge. 
Although there is a path from node C to D, there is no way from D to 
C.
  In the graph, we see that there is no path from node D to any other 
node in G, so the graph is not strongly connected. However, G is said 
to be unilaterally connected. We also observe that node D is a sink 
since it has a positive in-degree but a zero out-degree.

13.3.2  Transitive Closure of a Directed Graph
A transitive closure of a graph is constructed to answer reachability 
questions. That is, is there a path from a node A to node E in one or 
more hops? A binary relation indicates only whether the node A is 
connected to node B, whether node B is connected to node C, etc. But 
once the transitive closure is constructed as shown in Fig. 13.6, we can 

easily determine in O(1) time whether node E is reachable from node A or not. Like the adjacency 
list, discussed in Section 13.5.2, transitive closure is also stored as a matrix T, so if T[1][5] = 1, 
then node 5 can be reached from node 1 in one or more hops.

Definition
For a directed graph G = (V,E), where V is the set of vertices and E is the set of edges, the transitive 
closure of G is a graph G* = (V,E*). In G*, for every vertex pair v, w in V there is an edge (v, w) in 
E* if and only if there is a valid path from v to w in G.

Where and Why is it Needed?
Finding the transitive closure of a directed graph is an important problem in the following 
computational tasks:
	 ∑	 Transitive closure is used to find the reachability analysis of transition networks representing 

distributed and parallel systems.
	 ∑	 It is used in the construction of parsing automata in compiler construction.
	 ∑	 Recently, transitive closure computation is being used to evaluate recursive database queries 

(because almost all practical recursive queries are transitive in nature).

(a)

A B

C D

e7
e2

e6
e3

e5

e8

e4

(b)

A B

C D

Figure 13.5  (a) Directed acyclic 
graph and (b) strongly 
connected directed 
acyclic graph

A B C D E

(a)

(b)

A B C D E

Figure 13.6  (a) A graph G and its 
(b) transitive closure 
G*
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Algorithm
The algorithm to find the transitive closure of a graph G is given in Fig. 13.8. In order to determine 

the transitive closure of a graph, we define a matrix 
t where tk

ij = 1, for i, j, k = 1, 2, 3, ... n if there 
exists a path in G from the vertex i to vertex j with 
intermediate vertices in the set (1, 2, 3, ..., k) and 
0 otherwise. That is, G* is constructed by adding an 
edge (i, j) into E* if and only if tk

ij = 1. Look at Fig. 
13.7 which shows the relation between k and Tk

ij.

Transitive_Closure(A, t, n)

Step 1: SET i=1, j=1, k=1

Step 2: Repeat Steps 3 and 4 while i<=n

Step 3: Repeat Step 4 while j<=n

Step 4: IF (A[i][j] = 1)

SET t[i][j] = 1

ELSE

SET t[i][j] =

INCREMENT j

[END OF LOOP]

INCREMENT i

[END OF LOOP]

Step 5: Repeat Steps 6 to 11 while k<=n

Step 6: Repeat Steps 7 to 1 while i<=n

Step 7: Repeat Steps 8 and 9 while j<=n

Step 8: SET t[i,j] = t[i][j] V (t[i][k] t[k][j])

Step 9: INCREMENT j

[END OF LOOP]

Step 1 : INCREMENT i

[END OF LOOP]

Step 11: INCREMENT k

[END OF LOOP]

Step 12: END

L

Figure 13.8  Algorithm to find the transitive enclosure of a graph G

13.4  BI-CONNECTED components
A vertex v of G is called an articulation point, if removing v along with the edges incident on v, 
results in a graph that has at least two connected components.
  A bi-connected graph (shown in Fig. 13.10) is defined as a connected graph that has no 
articulation vertices. That is, a bi-connected graph is connected and non-separable in the sense that 
even if we remove any vertex from the graph, the resultant graph is still connected. By definition,

∑	 A bi-connected undirected graph is a connected graph that 
cannot be broken into disconnected pieces by deleting any 
single vertex.

∑	 In a bi-connected directed graph, for any two vertices v and 
w, there are two directed paths from v to w which have no 
vertices in common other than v and w.

  Note that the graph shown in Fig. 13.9(a) is not a bi-connected 
graph, as deleting vertex C from the graph results in two disconnected 
components of the original graph (Fig. 13.9(b)).

When k = 0
Ï
Ì
ÔÓ

0
ij

0 if (i, j) is not in E
T =

1 if (i, j) is in E

When k ≥ 1 Lk k-1 k-1 k-1
ij ij ik kjT = T V (T T )

Figure 13.7  Relation between k and Tij
k

A

B C

D

E F

H

I

J

A

B

D

E F

H

I

J

(a) (b)

Figure 13.9  Non bi-connected graph
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		    As for vertices, there is a related concept for edges. 
An edge in a graph is called a bridge if removing 
that edge results in a disconnected graph. Also, an 
edge in a graph that does not lie on a cycle is a 
bridge. This means that a bridge has at least one 
articulation point at its end, although it is not 
necessary that the articulation point is linked to a 
bridge. Look at the graph shown in Fig. 13.11.
  In the graph, CD and DE are bridges. Consider some 
more examples shown in Fig. 13.12.

13.5  REPRESENTATION OF GRAPHS
There are three common ways of storing graphs in 
the computer’s memory. They are:
∑	 Sequential representation by using an adjacency 

matrix.
	 ∑	 Linked representation by using an adjacency list that stores the neighbours of a node using 

a linked list.
	 ∑	 Adjacency multi-list which is an extension of linked representation.
	 In this section, we will discuss both these schemes in detail.

13.5.1 A djacency Matrix Representation
An adjacency matrix is used to represent which nodes are adjacent to one another. By definition, 
two nodes are said to be adjacent if there is an edge connecting them.
	 In a directed graph G, if node v is adjacent to node u, then there is definitely an edge from u 
to v. That is, if v is adjacent to u, we can get from u to v by traversing one edge. For any graph G 
having n nodes, the adjacency matrix will have the dimension of n ¥ n.
  In an adjacency matrix, the rows and columns are labelled by graph vertices. An entry aij in the 
adjacency matrix will contain 1, if vertices vi and vj are adjacent to each other. However, if the nodes are 

not adjacent, aij will be set to zero. It is summarized in Fig. 13.13.
  Since an adjacency matrix contains only 0s and 1s, it is 
called a bit matrix or a Boolean matrix. The entries in the 
matrix depend on the ordering of the nodes in G. Therefore, 
a change in the order of nodes will result in a different 
adjacency matrix. Figure 13.14 shows some graphs and their 
corresponding adjacency matrices.

A B C

D E

(a) Directed graph (b) Directed graph with loop
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D E
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Figure 13.14  Graphs and their corresponding adjacency matrices

A B

C D E

Figure 13.11  Graph with 
bridges

A B

CD

Figure 13.10  Bi-connected 
graph

(There are no bridges)

A
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E

F

(All edges are bridges)

A B C D

E

(CD is a bridge)

G
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(CD is a bridge)
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Figure 13.12  Graph with bridges

aij

[if is adjacent to , that is

there is an edge ( , )]A

v v

v v

i j

i j

0 [otherwise]

1

Figure 13.13  Adjacency matrix entry
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From the above examples, we can draw the following conclusions:
	 ∑	 For a simple graph (that has no loops), the adjacency matrix has 0s on the diagonal.
	 ∑	 The adjacency matrix of an undirected graph is symmetric.
	 ∑	 The memory use of an adjacency matrix is O(n2), where n is the number of nodes in the graph.
	 ∑	 Number of 1s (or non-zero entries) in an adjacency matrix is equal to the number of edges 

in the graph.
	 ∑	 The adjacency matrix for a weighted graph contains the weights of the edges connecting the 

nodes.
Now let us discuss the powers of an adjacency matrix. From adjacency matrix A1, we can conclude 
that an entry 1 in the ith row and jth column means that there exists a path of length 1 from vi 
to vj. Now consider, A2, A3, and A4.

(aij)
2 = Âaik akj

Any entry aij = 1 if aik = akj = 1. That is, if there is an edge (vi, vk) and (vk, vj), then there is a path 
from vi to vj of length 2.

  Similarly, every entry in the ith row and jth column of A3 gives the 
number of paths of length 3 from node vi to vj.
  In general terms, we can conclude that every entry in the ith row and 
jth column of An (where n is the number of nodes in the graph) gives 
the number of paths of length n from node vi to vj. Consider a directed 
graph given in Fig. 13.15. Given its adjacency matrix A, let us calculate 
A2, A3, and A4.

	 A2 = A1 ¥ A1	  		

	 A2 =  
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 Now, based on the above calculations, we define matrix B as:
Br = A1 + A2 + A3 + ... + Ar

An entry in the ith row and jth column of matrix Br gives the number of paths of length r or less 
than r from vertex vi to vj. The main goal to define matrix B is to obtain the path matrix P. The 
path matrix P can be calculated from B by setting an entry Pij = 1, if Bij is non-zero and Pij = 0,  

A B C D
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0

0

1

1

0

0

1

1

1

0

0

0

1

1

0

A

B

C

D

A B

C D

Figure 13.15  Directed graph 
with its adjacency 
matrix
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		  if otherwise. The path matrix is used to show whether 
there exists a simple path from node vi to vj or not. This 
is shown in Fig. 13.16.
  Let us now calculate matrix B and matrix P using the 
above discussion.

	   B  = 
0 1 1 0
0 0 1 1
0 0 0 1
1 1 0 0

0 0 1 2
1 1 0 1
1 1 0 0
1 1 2 1
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Now the path matrix P can be given as:

 	   P = 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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13.5.2  Adjacency List Representation
An adjacency list is another way in which graphs can be represented in the computer’s memory. 
This structure consists of a list of all nodes in G. Furthermore, every node is in turn linked to its 
own list that contains the names of all other nodes that are adjacent to it.
	 The key advantages of using an adjacency list are:
	 ∑	 It is easy to follow and clearly shows the adjacent nodes of a particular node.
	 ∑	 It is often used for storing graphs that have a small-to-moderate number of edges. That is, 

an adjacency list is preferred for representing sparse graphs in the computer’s memory; 
otherwise, an adjacency matrix is a good choice.
∑	 Adding new nodes in G is easy and straightforward 

when G is represented using an adjacency list. 
Adding new nodes in an adjacency matrix is a 
difficult task, as the size of the matrix needs to 
be changed and existing nodes may have to be 
reordered.

	Consider the graph given in Fig. 13.17 and see 
how its adjacency list is stored in the memory.
	For a directed graph, the sum of the lengths of all 
adjacency lists is equal to the number of edges in 
G. However, for an undirected graph, the sum of the 
lengths of all adjacency lists is equal to twice the 
number of edges in G because an edge (u, v) means 
an edge from node u to v as well as an edge from v 
to u. Adjacency lists can also be modified to store 
weighted graphs. Let us now see an adjacency list 
for an undirected graph as well as a weighted graph. 
This is shown in Fig. 13.18.

Pij

[if there is a path from to ]v vi j

0 [otherwise]

1

Figure 13.16  Path matrix entry
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Figure 13.17  Graph G and its adjacency list
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Figure 13.18  Adjacency list for an undirected graph 
and a weighted graph
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13.5.3  Adjacency Multi-list Representation
Graphs can also be represented using multi-lists which can be said to be modified version of 
adjacency lists. Adjacency multi-list is an edge-based rather than a vertex-based representation of 
graphs. A multi-list representation basically consists of two parts—a directory of nodes’ information 
and a set of linked lists storing information about edges. While there is a single entry for each node 
in the node directory, every node, on the other hand, appears in two adjacency lists (one for the 
node at each end of the edge). For example, the directory entry for node i points to the adjacency 
list for node i. This means that the nodes are shared among several lists.
	 In a multi-list representation, the information about an edge (vi, vj) of an undirected graph can 
be stored using the following attributes: 
M: A single bit field to indicate whether the edge has been examined or not.

vi: A vertex in the graph that is connected to vertex vj by an edge.
vj: A vertex in the graph that is connected to vertex vi by an edge.
Link i for vi: A link that points to another node that has an edge incident on vi.
Link j for vi: A link that points to another node that has an edge incident on vj.
	Consider the undirected graph given in Fig. 13.19.
	The adjacency multi-list for the graph can be given as:

Edge 1 0 1 Edge 2 Edge 3

Edge 2 0 2 NULL Edge 4

Edge 3 1 3 NULL Edge 4

Edge 4 2 3 NULL Edge 5

Edge 5 3 4 NULL Edge 6

Edge 6 4 5 Edge 7 NULL

Edge 7 4 6 NULL NULL

Using the adjacency multi-list given above, the adjacency list for vertices can be constructed as 
shown below:

VERTEX LIST OF EDGES

0 Edge 1, Edge 2

1 Edge 1, Edge 3

2 Edge 2, Edge 4

3 Edge 3, Edge 4, Edge 5

4 Edge 5, Edge 6, Edge 7

5 Edge 6

6 Edge 7

1

2

0 3

6

5

4

E1

E2

E3

E4

E5
E7

E6

Figure 13.19  Undirected 
graph
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Programming Example 

1.	 Write a program to create a graph of n vertices using an adjacency list. Also write the 
code to read and print its information and finally to delete the graph.
#include <stdio.h>
#include <conio.h>
#include <alloc.h>
struct node
{
	 char vertex;
	 struct node *next;
};
struct node *gnode;
void displayGraph(struct node *adj[], int no_of_nodes);
void deleteGraph(struct node *adj[], int no_of_nodes);
void createGraph(struct node *adj[], int no_of_nodes);
int main()
{
	 struct node *Adj[10];
	 int i, no_of_nodes;
	 clrscr();
	 printf("\n Enter the number of nodes in G: ");
	 scanf("%d", &no_of_nodes);
	 for(i = 0; i < no_of_nodes; i++)
		  Adj[i] = NULL;
	 createGraph(Adj, no_of_nodes);
	 printf("\n The graph is: ");
	 displayGraph(Adj, no_of_nodes);
	 deleteGraph(Adj, no_of_nodes);
	 getch();
	 return 0;
}
void createGraph(struct node *Adj[], int no_of_nodes)
{
	 struct node *new_node, *last;
	 int i, j, n, val;
	 for(i = 0; i < no_of_nodes; i++)	
	 {
		  last = NULL;
		  printf("\n Enter the number of neighbours of %d: ", i);
		  scanf("%d", &n);
		  for(j = 1; j <= n; j++)
		  {
			   printf("\n Enter the neighbour %d of %d: ", j, i);
			   scanf("%d", &val);
			   new_node = (struct node *) malloc(sizeof(struct node));
			   new_node –> vertex = val;
			   new_node –> next = NULL;
			   if (Adj[i] == NULL)
				    Adj[i] = new_node;
			   else
				    last –> next = new_node;
			   last = new_node
		  }
	 }
}
void displayGraph (struct node *Adj[], int no_of_nodes)
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{
	 struct node *ptr;
	 int i;
	 for(i = 0; i < no_of_nodes; i++)
	 {
		  ptr = Adj[i];
		  printf("\n The neighbours of node %d are:", i);
		  while(ptr != NULL)
		  {
			   printf("\t%d", ptr –> vertex);
			   ptr = ptr –> next;
		  }
	 }
}
void deleteGraph (struct node *Adj[], int no_of_nodes)
{
	 int i;
	 struct node *temp, *ptr;
	 for(i = 0; i <= no_of_nodes; i++)
	 {
		  ptr = Adj[i];
		  while(ptr ! = NULL)
		  {
			   temp = ptr;
			   ptr = ptr –> next;
			   free(temp);
		  }
		  Adj[i] = NULL;
	 }
}

	 Output
Enter the number of nodes in G: 3
Enter the number of neighbours of 0: 1
Enter the neighbour 1 of 0: 2
Enter the number of neighbours of 1: 2
Enter the neighbour 1 of 1: 0
Enter the neighbour 2 of 1: 2
Enter the number of neighbours of 2: 1
Enter the neighbour 1 of 2: 1
The neighbours of node 0 are: 1
The neighbours of node 1 are: 0 2
The neighbours of node 2 are: 0

Note	 If the graph in the above program had been a weighted graph, then the structure of the node would 
have been:

typedef struct node
{
	 int vertex;
	 int weight;
	 struct node *next;
};

13.6  GRAPH TRAVERSAL ALGORITHMS
In this section, we will discuss how to traverse graphs. By traversing a graph, we mean the method 
of examining the nodes and edges of the graph. There are two standard methods of graph traversal 
which we will discuss in this section. These two methods are:
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	 1.	 Breadth-first search
	 2.	 Depth-first search
While breadth-first search uses a queue as an auxiliary data structure to store nodes for further 
processing, the depth-first search scheme uses a stack. But both these algorithms make use of 
a variable STATUS. During the execution of the algorithm, every node in the graph will have the 
variable STATUS set to 1 or 2, depending on its current state. Table 13.1 shows the value of STATUS 
and its significance.

Table 13.1  Value of status and its significance

Status State of the 
node

Description

1 Ready The initial state of the node N

2 Waiting Node N is placed on the queue or stack and waiting to be processed

3 Processed Node N has been completely processed

13.6.1  Breadth-First Search Algorithm
Breadth-first search (BFS) is a graph search algorithm that begins at the root node and explores all 
the neighbouring nodes. Then for each of those nearest nodes, the algorithm (Fig. 13.20) explores 
their unexplored neighbour nodes, and so on, until it finds the goal.

  That is, we start examining the node A and then all the 
neighbours of A are examined. In the next step, we examine 
the neighbours of neighbours of A, so on and so forth. This 
means that we need to track the neighbours of the node and 
guarantee that every node in the graph is processed and no 
node is processed more than once. This is accomplished 
by using a queue that will hold the nodes that are waiting 
for further processing and a variable STATUS to represent 
the current state of the node.

Example 13.1  Consider the graph G given in Fig. 13.21. 
The adjacency list of G is also given. Assume that G 
represents the daily flights between different cities and we 
want to fly from city A to I with minimum stops. That is, 
find the minimum path P from A to I given that every edge 
has a length of 1.
Solution 
  The minimum path P can be found by applying the 
breadth-first search algorithm that begins at city A and 
ends when I is encountered. During the execution of the 
algorithm, we use two arrays:
QUEUE and ORIG. While QUEUE is used to hold the nodes 
that have to be processed, ORIG is used to keep track of 
the origin of each edge. Initially, FRONT = REAR = –1. The 
algorithm for this is as follows:
(a) Add A to QUEUE and add NULL to ORIG.

FRONT = 0 QUEUE =	A
REAR = 0 ORIG =	 \0

Step 1: SET STATUS = 1 (ready state)

for each node in G

Step 2: Enqueue the starting node A

and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until

QUEUE is empty

Step 4: Dequeue a node N. Process it

and set its STATUS = 3

(processed state).

Step 5: Enqueue all the neighbours of

N that are in the ready state

(whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

Figure 13.20  Algorithm for breadth-first search

A

B C D

E F G

H I

Adjacency lists

A: B, C, D

B: E

C: B, G

D: C, G

E: C, F

F: C, H

G: F, H, I

H: E, I

I: F

Figure 13.21  Graph G and its adjacency list
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	(b)	 Dequeue a node by setting FRONT = FRONT + 1 (remove the FRONT element of QUEUE) and enqueue 
the neighbours of A. Also, add A as the ORIG of its neighbours.

FRONT = 1 QUEUE =	A	 B	 C	 D

REAR = 3 ORIG =	 \0	 A	 A	 A

	(c)	 Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of B. Also, add B as 
the ORIG of its neighbours.

FRONT = 2 QUEUE =	A	 B	 C	 D	 E

REAR = 4 ORIG =	 \0	 A	 A	 A	 B

	(d)	 Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of C. Also, add C as 
the ORIG of its neighbours. Note that C has two neighbours B and G. Since B has already been 
added to the queue and it is not in the Ready state, we will not add B and only add G.

FRONT = 3 QUEUE =	A	 B	 C	 D	 E	 G

REAR = 5 ORIG =	 \0	 A	 A	 A	 B	 C

	(e)	 Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of D. Also, add D as 
the ORIG of its neighbours. Note that D has two neighbours C and G. Since both of them have 
already been added to the queue and they are not in the Ready state, we will not add them 
again.

FRONT = 4 QUEUE =	A	 B	 C	 D	 E	 G

REAR = 5 ORIG =	 \0	 A	 A	 A	 B	 C

	 (f)	 Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of E. Also, add E as 
the ORIG of its neighbours. Note that E has two neighbours C and F. Since C has already been 
added to the queue and it is not in the Ready state, we will not add C and add only F.

FRONT = 5 QUEUE =	A	 B	 C	 D	 E	 G	 F

REAR = 6 ORIG =	 \0	 A	 A	 A	 B	 C	 E

	(g)	 Dequeue a node by setting FRONT = FRONT + 1 and enqueue the neighbours of G. Also, add G as 
the ORIG of its neighbours. Note that G has three neighbours F, H, and I.

FRONT = 6 QUEUE =	A	 B	 C	 D	 E	 G	 F	 H	 I

REAR = 9 ORIG =	 \0	 A	 A	 A	 B	 C	 E	 G	 G

Since F has already been added to the queue, we will only add H and I. As I is our final 
destination, we stop the execution of this algorithm as soon as it is encountered and added 
to the QUEUE. Now, backtrack from I using ORIG to find the minimum path P. Thus, we have 
P as A -> C -> G -> I.

Features of Breadth-First Search Algorithm
Space complexity  In the breadth-first search algorithm, all the nodes at a particular level must 
be saved until their child nodes in the next level have been generated. The space complexity is 
therefore proportional to the number of nodes at the deepest level of the graph. Given a graph with 
branching factor b (number of children at each node) and depth d, the asymptotic space complexity 
is the number of nodes at the deepest level O(bd).
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	 If the number of vertices and edges in the graph are known ahead of time, the space complexity 
can also be expressed as O ( | E | + | V | ), where | E | is the total number of edges in G and 
| V | is the number of nodes or vertices.

Time complexity  In the worst case, breadth-first search has to traverse through all paths to 
all possible nodes, thus the time complexity of this algorithm asymptotically approaches O(bd). 
However, the time complexity can also be expressed as O( | E | + | V | ), since every vertex and 
every edge will be explored in the worst case.
Completeness  Breadth-first search is said to be a complete algorithm because if there is a 
solution, breadth-first search will find it regardless of the kind of graph. But in case of an infinite 
graph where there is no possible solution, it will diverge.
Optimality  Breadth-first search is optimal for a graph that has edges of equal length, since it 
always returns the result with the fewest edges between the start node and the goal node. But 
generally, in real-world applications, we have weighted graphs that have costs associated with 
each edge, so the goal next to the start does not have to be the cheapest goal available.

Applications of Breadth-First Search Algorithm
Breadth-first search can be used to solve many problems such as:
	 ∑	 Finding all connected components in a graph G.
	 ∑	 Finding all nodes within an individual connected component.
	 ∑	 Finding the shortest path between two nodes, u and v, of an unweighted graph.
	 ∑	 Finding the shortest path between two nodes, u and v, of a weighted graph.

Programming Example 

2.	 Write a program to implement the breadth-first search algorithm.
#include <stdio.h>
#define MAX 10
void breadth_first_search(int adj[][MAX],int visited[],int start)
{
	 int queue[MAX],rear = –1,front =– 1, i;
	 queue[++rear] = start;
	 visited[start] = 1;
	 while(rear != front)
	 {
		  start = queue[++front];
		  if(start == 4)
			   printf("5\t");
		  else
			   printf("%c \t",start + 65);
	 	 for(i = 0; i < MAX; i++)
		  {
	 	 	 if(adj[start][i] == 1 && visited[i] == 0)
			   {
				    queue[++rear] = i;
				    visited[i] = 1;
			   }
		  }
	 }
}
int main()
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{
	 int visited[MAX] = {0};
	 int adj[MAX][MAX], i, j;
	 printf("\n Enter the adjacency matrix: ");
	 for(i = 0; i < MAX; i++)
	 	 for(j = 0; j < MAX; j++)
			   scanf("%d", &adj[i][j]);
	 breadth_first_search(adj,visited,0);
	 return 0;
}

	 Output
Enter the adjacency matrix:
0 1 0 1 0
1 0 1 1 0
0 1 0 0 1
1 1 0 0 1
0 0 1 1 0
A B D C E

13.6.2  Depth-first Search Algorithm
The depth-first search algorithm (Fig. 13.22) progresses by expanding the starting node of G and 
then going deeper and deeper until the goal node is found, or until a node that has no children is 
encountered. When a dead-end is reached, the algorithm backtracks, returning to the most recent 
node that has not been completely explored.
	 In other words, depth-first search begins at a starting node A which becomes the current node. 
Then, it examines each node N along a path P which begins at A. That is, we process a neighbour 
of A, then a neighbour of neighbour of A, and so on. During the execution of the algorithm, if we 
reach a path that has a node N that has already been processed, then we backtrack to the current 
node. Otherwise, the unvisited (unprocessed) node becomes the current node.

  The algorithm proceeds like this 
until we reach a dead-end (end 
of path P). On reaching the dead-
end, we backtrack to find another 
path P¢. The algorithm terminates 
when backtracking leads back to the 
starting node A. In this algorithm, 
edges that lead to a new vertex are 
called discovery edges and edges that 
lead to an already visited vertex are 
called back edges.
	 Observe that this algorithm is 
similar to the in-order traversal of a 

binary tree. Its implementation is similar to that of the breadth-first search algorithm but here we 
use a stack instead of a queue. Again, we use a variable STATUS to represent the current state of 
the node.

Example 13.2  Consider the graph G given in Fig. 13.23. The adjacency list of G is also given. 
Suppose we want to print all the nodes that can be reached from the node H (including H itself). 
One alternative is to use a depth-first search of G starting at node H. The procedure can be 
explained here.

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set

its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its

STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that

are in the ready state (whose STATUS = 1) and

set their STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Figure 13.22  Algorithm for depth-first search
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A

B C D

E F G

H I

Adjacency lists

A: B, C, D

B: E

C: B, G

D: C, G

E: C, F

F: C, H

G: F, H, I

H: E, I

I: F

Figure 13.23  Graph G and its adjacency list

Solution
	(a)	 Push H onto the stack.

STACK: H

	(b)	 Pop and print the top element of the STACK, that is, H. Push all the neighbours of H onto the 
stack that are in the ready state. The STACK now becomes

PRINT: H STACK: E, I

	(c)	 Pop and print the top element of the STACK, that is, I. Push all the neighbours of I onto the 
stack that are in the ready state. The STACK now becomes

PRINT: I STACK: E, F

	(d)	 Pop and print the top element of the STACK, that is, F. Push all the neighbours of F onto the 
stack that are in the ready state. (Note F has two neighbours, C and H. But only C will be added, 
as H is not in the ready state.) The STACK now becomes

PRINT: F STACK: E, C

	(e)	 Pop and print the top element of the STACK, that is, C. Push all the neighbours of C onto the 
stack that are in the ready state. The STACK now becomes

PRINT: C STACK: E, B, G

	 (f)	 Pop and print the top element of the STACK, that is, G. Push all the neighbours of G onto the 
stack that are in the ready state. Since there are no neighbours of G that are in the ready state, 
no push operation is performed. The STACK now becomes

PRINT: G STACK: E, B

	(g)	 Pop and print the top element of the STACK, that is, B. Push all the neighbours of B onto the 
stack that are in the ready state. Since there are no neighbours of B that are in the ready state, 
no push operation is performed. The STACK now becomes

PRINT: B STACK: E

	(h)	 Pop and print the top element of the STACK, that is, E. Push all the neighbours of E onto the 
stack that are in the ready state. Since there are no neighbours of E that are in the ready state, 
no push operation is performed. The STACK now becomes empty.

PRINT: E STACK: 

Since the STACK is now empty, the depth-first search of G starting at node H is complete and the 
nodes which were printed are:
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H, I, F, C, G, B, E

These are the nodes which are reachable from the node H.

Features of Depth-First Search Algorithm
Space complexity  The space complexity of a depth-first search is lower than that of a breadth-
first search.

Time complexity  The time complexity of a depth-first search is proportional to the number of 
vertices plus the number of edges in the graphs that are traversed. The time complexity can be 
given as (O(|V| + |E|)).
Completeness Depth-first search is said to be a complete algorithm. If there is a solution, depth-
first search will find it regardless of the kind of graph. But in case of an infinite graph, where there 
is no possible solution, it will diverge.

Applications of Depth-First Search Algorithm
Depth-first search is useful for:
	 ∑	 Finding a path between two specified nodes, u and v, of an unweighted graph.
	 ∑	 Finding a path between two specified nodes, u and v, of a weighted graph.
	 ∑	 Finding whether a graph is connected or not.
	 ∑	 Computing the spanning tree of a connected graph.

Programming Example 

3.	 Write a program to implement the depth-first search algorithm.
#include <stdio.h>
#define MAX 5
void depth_first_search(int adj[][MAX],int visited[],int start)
{
	 int stack[MAX];
	 int top = –1, i;
	 printf("%c–",start + 65);
	 visited[start] = 1;
	 stack[++top] = start;
	 while(top ! = –1)
	 {
		  start = stack[top];
	 	 for(i = 0; i < MAX; i++)
		  {
		  	 if(adj[start][i] && visited[i] == 0)
			   {
				    stack[++top] = i;
				    printf("%c–", i + 65);
				    visited[i] = 1;
				    break;
			   }
		  }
	 	 if(i == MAX)
		  top––;
	 }
}
int main()
{
	 int adj[MAX][MAX];
	 int visited[MAX] = {0}, i, j;
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	 printf("\n Enter the adjacency matrix: ");
	 for(i = 0; i < MAX; i++)
	 	 for(j = 0; j < MAX; j++)
			   scanf("%d", &adj[i][j]);
	 printf("DFS Traversal: ");
	 depth_first_search(adj,visited,0);
	 printf("\n");
	 return 0;
}

	 Output
Enter the adjacency matrix:
0 1 0 1 0
1 0 1 1 0
0 1 0 0 1
1 1 0 0 1
0 0 1 1 0
DFS Traversal: A –> C –> E –>

13.7  TOPOLOGICAL SORTING
Topological sort of a directed acyclic graph (DAG) G is defined as a linear ordering of its nodes 
in which each node comes before all nodes to which it has outbound edges. Every DAG has one 
or more number of topological sorts.
	 A topological sort of a DAG G is an ordering of the vertices of G such that if G contains an 
edge (u, v), then u appears before v in the ordering. Note that topological sort is possible only on 

directed acyclic graphs that do not have any 
cycles. For a DAG that contains cycles, no 
linear ordering of its vertices is possible.
	In simple words, a topological ordering of a 
DAG G is an ordering of its vertices such that 
any directed path in G traverses the vertices 
in increasing order.
	Topological sorting is widely used in 
scheduling applications, jobs, or tasks. 
The jobs that have to be completed are 
represented by nodes, and there is an edge 
from node u to v if job u must be completed 
before job v can be started. A topological sort 
of such a graph gives an order in which the 
given jobs must be performed.

Algorithm
The algorithm for the topological sort of a 
graph (Fig. 13.25) that has no cycles focuses 
on selecting a node N with zero in-degree, 
that is, a node that has no predecessor. The 
two main steps involved in the topological 
sort algorithm include:
∑	 Selecting a node with zero in-degree
∑	 Deleting N from the graph along with its 

edges

Example 13.3  Consider three DAGs shown in Fig. 
13.24 and their possible topological sorts. 

B C

ED

Topological sort

can be given as:

∑
∑
∑
∑

A, B, C, D, E

A, B, C, E, D

A, C, B, D, E

A, C, B, E, D

∑
∑
∑
∑

∑

A, B, D, C, E, F

A, B, D, C, F, E

A, B, C, D, E, F

A, B, C, D, F, E

............................

A, B, F, E, D

Topological sort

can be given as:

∑
∑
∑
∑

∑

A, B, C, F, D, E, C

A, B, C, D, E, F, G

A, B, C, D, F, E, G

A, B, D, C, E, F, G

................................

A, B, D, C, F, E, G

Topological sort

can be given as:

B

C

E

D

F G

AA

E

D

B

C

F

A

Figure 13.24  Topological sort

  One main property of a DAG is that more the 
number of edges in a DAG, fewer the number of 
topological orders it has. This is because each edge 
(u, v) forces node u to occur before v, which restricts 
the number of valid permutations of the nodes.
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Step 1: Find the in-degree INDEG(N) of every node

graph

Step 2: Enqueue all the nodes with a zero in-degree

Step 3: Repeat Steps 4 and 5 until the QUEUE is empty

Step 4: Remove the front node N of the QUEUE by setting

FRONT = FRONT + 1

Step 5: Repeat for each neighbour M of node N:

a) Delete the edge from N to M by setting

INDEG(M) = INDEG(M) - 1

b) IF INDEG(M) = , then Enqueue M, that is,

add M to the rear of the queue

[END OF INNER LOOP]

[END OF LOOP]

Step 6: Exit

in the

Figure 13.25  Algorithm for topological sort

We will use a QUEUE to hold the nodes with zero in-degree. The order in which the nodes will be 
deleted from the graph will depend on the sequence in which the nodes are inserted in the QUEUE. 
Then, we will use a variable INDEG, where INDEG(N) will represent the in-degree of node N. 

Notes	 1.	The in-degree can be calculated in two ways—either by counting the incoming edges from the graph 
or traversing through the adjacency list.

		  2.	The running time of the algorithm for topological sorting can be given linearly as the number of 
nodes plus the number of edges O(|V|+|E|).

Example 13.4  Consider a directed acyclic graph G given in Fig. 13.26. We use the algorithm 
given above to find a topological sort T of G. The steps are given as below:

Adjacency lists

A: B

B: C, D, E

C: E

D: E

E: F

G: D

A B

C

D

E

FG

Figure 13.26  Graph G

	 Step 1:	 Find the in-degree INDEG(N) of every node in the graph
		  INDEG(A) = 0	 INDEG(B) = 1	 INDEG(C) = 1	 INDEG(D) = 2
		  INDEG(E) = 3	 INDEG(F) = 1	 INDEG(G) = 0
	 Step 2:	 Enqueue all the nodes with a zero in-degree
		  FRONT = 1	 REAR = 2	 QUEUE = A, G
	 Step 3:	 Remove the front element A from the queue by setting FRONT = FRONT + 1, so
		  FRONT = 2	 REAR = 2	 QUEUE = A, G
	 Step 4:	 Set INDEG(B) = INDEG(B) – 1, since B is the neighbour of A. Note that INDEG(B) is 0, so 

add it on the queue. The queue now becomes
		  FRONT = 2	 REAR = 3	 QUEUE = A, G, B

Delete the edge from A to B. The graph now becomes as shown in the figure below
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A B

C

D

E

FG

	 Step 5:	 Remove the front element B from the queue by setting FRONT = FRONT + 1, so
		  FRONT = 2	 REAR = 3	 QUEUE = A, G, B
	 Step 6:	 Set INDEG(D) = INDEG(D) – 1, since D is the neighbour of G. Now,
		  INDEG(C) = 1	 INDEG(D) = 1	 INDEG(E) = 3	 INDEG(F) = 1

Delete the edge from G to D. The graph now becomes as shown in the figure below

A B

C

D

E

FG

	 Step 7:	 Remove the front element B from the queue by setting FRONT = FRONT + 1, so
		  FRONT = 4	 REAR = 3	 QUEUE = A, G, B
	 Step 8:	 Set INDEG(C) = INDEG(C) – 1, INDEG(D) = INDEG(D) – 1, INDEG(E) = INDEG(E) 

– 1, since C, D, and E are the neighbours of B. Now,
		  INDEG(C) = 0, INDEG(D) = 1 and INDEG(E) = 2
	 Step 9:	 Since the in-degree of node c and D is zero, add C and D at the rear of the queue. The queue 

can be given as below:
		  FRONT = 4	 REAR = 5	 QUEUE = A, G, B, C, D

The graph now becomes as shown in the figure below

A B

C

D

E

FG

Step 10: Remove the front element C from the queue by setting FRONT = FRONT + 1, so
	 FRONT = 5	 REAR = 5	 QUEUE = A, G, B, C, D
Step 11:	Set INDEG(E) = INDEG(E) – 1, since E is the neighbour of C. Now, INDEG(E) = 1
The graph now becomes as shown in the figure below

A B

C

D

E

FG

	Step 12:	Remove the front element D from the queue by setting FRONT = FRONT + 1, so
			   FRONT = 6	 REAR = 5	 QUEUE = A, B, G, C, D
	Step 13:	Set INDEG(E) = INDEG(E) – 1, since E is the neighbour of D. Now, INDEG(E) = 0, so 

add E to the queue. The queue now becomes.
			   FRONT = 6	 REAR = 6	 QUEUE = A, G, B, C, D, E
	Step 14:	Delete the edge between D an E. The graph now becomes as shown in the figure below
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A B

C

D

E

FG

	Step 15:	Remove the front element D from the queue by setting FRONT = FRONT + 1, so
			   FRONT = 7	 REAR = 6	 QUEUE = A, G, B, C, D, E
	Step 16:	Set INDEG(F) = INDEG(F) – 1, since F is the neighbour of E. Now INDEG(F) = 0, so 

add F to the queue. The queue now becomes,
			   FRONT = 7	 REAR = 7	 QUEUE = A, G, B, C, D, E, F
	Step 17:	Delete the edge between E and F. The graph now becomes as shown in the figure below

A B

C

D

E

FG

There are no more edges in the graph and all the nodes have been added to the queue, so the 
topological sort T of G can be given as: A, G, B, C, D, E, F. When we arrange these nodes in a 
sequence, we find that if there is an edge from u to v, then u appears before v.

A G C D E FB

Figure 13.27  Topological sort of G

Programming Example

4.	 Write a program to implement topological sorting.
#include <stdio.h>
#include <conio.h>
#define MAX 10
int n,adj[MAX][MAX];
int front = –1,rear = –1,queue[MAX];
void create_graph(void);
void display();
void insert_queue(int);
int delete_queue(void);
int find_indegree(int);
void main()
{
	 int node,j = 0,del_node, I;
	 int topsort[MAX],indeg[MAX];
	 create_graph();
	 printf("\n The adjacency matrix is:");
	 display();
/*Find the in–degree of each node*/
for(node = 1; node <= n; node++)
{
	 indeg[node] = find_indegree(node);
	 if( indeg[node] == 0 )
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		  insert_queue(node);
}
while(front <= rear) /*Continue loop until queue is empty */
{
	 del_node = delete_queue();
	 topsort[j] = del_node; /*Add the deleted node to topsort*/
	 j++;
/*Delete the del_node edges */
for(node = 1; node <= n; node++)
{
	 if(adj[del_node][node] == 1 )
	 {
	 	 adj[del_node][node] = 0;
		  indeg[node] = indeg[node] – 1;
	 	 if(indeg[node] == 0)
		  insert_queue(node);
	 }
   }
}
printf("The topological sorting can be given as :\n");
for(node=0;i<j;node++)
	 printf("%d ",topsort[node]);
}
void create_graph()
{
	 int i,max_edges,org,dest;
	 printf("\n Enter the number of vertices: ");
	 scanf("%d",&n);
	 max_edges = n*(n – 1);
	 for(i = 1; i <= max_edges; i++)
	 {
	 	 printf("\n Enter edge %d(0 to quit): ",i);
		  scanf("%d %d",&org,&dest);
	 	 if((org == 0) && (dest == 0))
		  break;
	 	 if( org > n || dest > n || org <= 0 || dest <= 0)
		  {
			   printf("\n Invalid edge");
			   i––;
		  }
		  else
			   adj[org][dest] = 1;
	 }
}
void display()
{
	 int i,j;
	 for(i=1;i<=n;i++)
	 {
		  printf("\n");
		  for(j=1;j<=n;j++)
			   printf("%3d",adj[i][j]);
	 }
}
void insert_queue(int node)
{
	 if (rear==MAX–1)
		  printf("\n OVERFLOW ");
	 else
	 {
		  if (front == –1) /*If queue is initially empty */
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	 	 	 front=0;
		  queue[++rear] = node ;
	 }
}
int delete_queue()
{
	 int del_node;
	 if (front == –1 || front > rear)
	 {
		  printf("\n UNDERFLOW ");
		  return ;
	 }
	 else
	 {
		  del_node = queue[front++];
		  return del_node;
	 }
}
int find_indegree(int node)
{
	 	 int i,in_deg = 0;
		  for(i = 1; i <= n; i++)
		  {
			   if( adj[i][node] == 1 )
				    in_deg++;
		  }
		  return in_deg;
}

	 Output
Enter number of vertices: 7
Enter edge 1(0 to quit): 1 2
Enter edge 2(0 to quit): 2 3
Enter edge 3(0 to quit): 2 5
Enter edge 4(0 to quit): 2 4
Enter edge 5(0 to quit): 3 5
Enter edge 6(0 to quit): 4 5
Enter edge 7(0 to quit): 5 6
Enter edge 8(0 to quit): 7 4
The topological sorting can be given as:
1 7 2 3 4 5 6

13.8  SHORTEST PATH ALGORITHMS
In this section, we will discuss three different algorithms to calculate the shortest path between 
the vertices of a graph G. These algorithms include:
	 ∑	 Minimum spanning tree
	 ∑	 Dijkstra’s algorithm
	 ∑	 Warshall’s algorithm
While the first two use an adjacency list to find the shortest path, Warshall’s algorithm uses an 
adjacency matrix to do the same.

13.8.1  Minimum Spanning Trees
A spanning tree of a connected, undirected graph G is a sub-graph of G which is a tree that connects 
all the vertices together. A graph G can have many different spanning trees. We can assign weights 
to each edge (which is a number that represents how unfavourable the edge is), and use it to assign 
a weight to a spanning tree by calculating the sum of the weights of the edges in that spanning 
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tree. A minimum spanning tree (MST) is defined as a spanning tree with weight less than or equal 
to the weight of every other spanning tree. In other words, a minimum spanning tree is a spanning 
tree that has weights associated with its edges, and the total weight of the tree (the sum of the 
weights of its edges) is at a minimum.

An Analogy
Take an analogy of a cable TV company laying cable in a new neighbourhood. If it is restricted 
to bury the cable only along particular paths, then we can make a graph that represents the points 
that are connected by those paths. Some paths may be more expensive (due to their length or the 
depth at which the cable should be buried) than the others. We can represent these paths by edges 
with larger weights.
	 Therefore, a spanning tree for such a graph would be a subset of those paths that has no cycles 
but still connects to every house. Many distinct spanning trees can be obtained from this graph, 
but a minimum spanning tree would be the one with the lowest total cost.

Properties
Possible multiplicity  There can be multiple minimum spanning trees of the same weight. 
Particularly, if all the weights are the same, then every spanning tree will be minimum.
Uniqueness  When each edge in the graph is assigned a different weight, then there will be only 
one unique minimum spanning tree.
Minimum-cost subgraph  If the edges of a graph are assigned non-negative weights, then a 
minimum spanning tree is in fact the minimum-cost subgraph or a tree that connects all vertices.
Cycle property  If there exists a cycle C in the graph G that has a weight larger than that of other 
edges of C, then this edge cannot belong to an MST.
Usefulness  Minimum spanning trees can be computed quickly and easily to provide optimal 
solutions. These trees create a sparse subgraph that reflects a lot about the original graph.
Simplicity  The minimum spanning tree of a weighted graph is nothing but a spanning tree of 
the graph which comprises of n–1 edges of minimum total weight. Note that for an unweighted 
graph, any spanning tree is a minimum spanning tree.

Example 13.5   Consider an unweighted graph G given below (Fig. 13.28). From G, we can draw 
many distinct spanning trees. Eight of them are given here. For an unweighted graph, every 
spanning tree is a minimum spanning tree.

A B

C D

(Unweighted graph)

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

Figure 13.28  Unweighted graph and its spanning trees

Example 13.6  Consider a weighted graph G shown in Fig. 13.29. From G, we can draw three 
distinct spanning trees. But only a single minimum spanning tree can be obtained, that is, the 
one that has the minimum weight (cost) associated with it.



Graphs  407

	 Of all the spanning trees given in Fig. 13.29, the one that is highlighted is called the minimum 
spanning tree, as it has the lowest cost associated with it.

A B

C D

A B

C D

A B

C D

A B

C D

A B

C D

(Total cost = 14)(Total cost = 15)(Total cost = 14)(Total cost = 11)(Total cost = 11)

4 5 6 7

A B

C D

(Weighted graph)

A B

C D

A B

C D

A B

C D

A B

C D

(Total cost = 12) (Total cost = 9) (Total cost = 15) (Total cost = 10)

22 2 2 2

2 2

3 3 3 3

3 3 3 3

4

4 4

5

5 5 56 6

6

7 7

77

Figure 13.29  Weighted graph and its spanning trees

Applications of Minimum Spanning Trees
	 1.	 MSTs are widely used for designing networks. For instance, people separated by varying 

distances wish to be connected together through a telephone network. A minimum spanning 
tree is used to determine the least costly paths with no cycles in this network, thereby providing 
a connection that has the minimum cost involved.

	 2.	 MSTs are used to find airline routes. While the vertices in the graph denote cities, edges 
represent the routes between these cities. No doubt, more the distance between the cities, 
higher will be the amount charged. Therefore, MSTs are used to optimize airline routes by 
finding the least costly path with no cycles.

	 3.	 MSTs are also used to find the cheapest way to connect terminals, such as cities, electronic 
components or computers via roads, airlines, railways, wires or telephone lines.

	 4.	 MSTs are applied in routing algorithms for finding the most efficient path.

13.8.2  Prim’s Algorithm
Prim’s algorithm is a  greedy algorithm  that is used to form a minimum spanning tree  for 
a connected weighted undirected graph. In other words, the algorithm builds a tree that includes 
every vertex and a subset of the edges in such a way that the total weight of all the edges in the tree 
is minimized. For this, the algorithm maintains three sets of vertices which can be given as below:
	 ∑	 Tree vertices  Vertices that are a part of the minimum spanning tree T.
	 ∑	 Fringe vertices Vertices that are currently not a part of T, but are adjacent to some tree vertex.
	 ∑	 Unseen vertices Vertices that are neither tree vertices nor fringe vertices fall under this 

category.
	The steps involved in the Prim’s algorithm are shown in Fig. 13.30.

	 ∑	  Choose a starting vertex.
∑  Branch out from the starting 

vertex and during each iteration, 
select a new vertex and an edge. 
Basically, during each iteration 
of the algorithm, we have to 
select a vertex from the fringe 
vertices in such a way that the 
edge connecting the tree vertex 
and the new vertex has the 
minimum weight assigned to it.

Step 1: Select a starting vertex

Step 2: Repeat Steps 3 and 4 until there are fringe vertices

Step 3: Select an edge e connecting the tree vertex and

fringe vertex that has minimum weight

Step 4: Add the selected edge and the vertex to the

minimum spanning tree T

[END OF LOOP]

Step 5: EXIT

Figure 13.30  Prim’s algorithm
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	   The running time of Prim’s algorithm can be given as O(E log V) where E is the 
number of edges and V is the number of vertices in the graph.

Example 13.7  Construct a minimum spanning tree of the graph given in Fig. 
13.31.

Step 1: Choose a starting vertex A.
Step 2: Add the fringe vertices (that are adjacent to A). The edges connecting the vertex and fringe 
vertices are shown with dotted lines.
Step 3: Select an edge connecting the tree vertex and the fringe vertex that has the minimum 
weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge 
connecting A and C has less weight, add C to the tree. Now C is not a fringe vertex but a tree vertex.
Step 4: Add the fringe vertices (that are adjacent to C).
Step 5: Select an edge connecting the tree vertex and the fringe vertex that has the minimum 
weight and add the selected edge and the vertex to the minimum spanning tree T. Since the edge 
connecting C and B has less weight, add B to the tree. Now B is not a fringe vertex but a tree vertex.
Step 6: Add the fringe vertices (that are adjacent to B).
Step 7: Select an edge connecting the tree vertex and the fringe vertex that has the minimum 
weight and add the selected edge and the vertex to the minimum spanning tree T. Since the 
edge connecting B and D has less weight, add D to the tree. Now D is not a fringe vertex but a 
tree vertex.
Step 8: Note, now node E is not connected, so we will add it in the tree because a minimum 
spanning tree is one in which all the n nodes are connected with n–1 edges that have minimum 
weight. So, the minimum spanning tree can now be given as,

A B

C

3

7
A B

C

3

7
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C D

E
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3 4 9
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C D

E
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E
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A B

C D

3 4

7
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A B

C D

3 4

10
A

Step 1 Step 2 Step 3 Step 4 Step 5

Step 7Step 6 Step 8

Example 13.8  Construct a minimum spanning tree of the graph given in Fig. 13.32. Start the 
Prim’s algorithm from vertex D.
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Figure 13.32  Graph G
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Figure 13.31  Graph G
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13.8.3  Kruskal’s Algorithm
Kruskal’s algorithm is used to find the minimum spanning tree for a connected weighted graph. 
The algorithm aims to find a subset of the edges that forms a tree that includes every vertex. The 
total weight of all the edges in the tree is minimized. However, if the graph is not connected, then 
it finds a minimum spanning forest. Note that a forest is a collection of trees. Similarly, a minimum 
spanning forest is a collection of minimum spanning trees.
	 Kruskal’s algorithm is an example of a greedy algorithm, as it makes the locally optimal 
choice at each stage with the hope of finding the global optimum. The algorithm is shown in 
Fig. 13.33.

Step 1: Create a forest in such a way that each graph is a separate

tree.

Step 2: Create a priority queue Q that contains all the edges of the

graph.

Step 3: Repeat Steps 4 and 5 while Q is NOT EMPTY

Step 4: Remove an edge from Q

Step 5: IF the edge obtained in Step 4 connects two different trees,

then Add it to the forest (for combining two trees into one

tree).

ELSE

Discard the edge

Step 6: END

Figure 13.33  Kruskal’s algorithm
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	 In the algorithm, we use a priority queue Q in which edges that have minimum weight takes a 
priority over any other edge in the graph. When the Kruskal’s algorithm terminates, the forest has 
only one component and forms a minimum spanning tree of the graph. The running time of 
Kruskal’s algorithm can be given as O(E log V), where E is the number of edges and V is the number 
of vertices in the graph.

Example 13.9  Apply Kruskal’s algorithm on the graph given in Fig. 13.34.
Initially, we have F = {{A}, {B}, {C}, {D}, {E}, {F}}
	 MST	= {}
	 Q	= {(A, D), (E, F), (C, E), (E, D), (C, D), (D, F), 
� (A, C), (A, B), (B, C)}
Step 1: Remove the edge (A, D) from Q and make the following changes:

F = {{A, D}, {B}, {C}, {E}, {F}}

MST = {A, D}

Q = {(E, F), (C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

A

B C D

E F

1

2

3 4

5

67

8

5

Step 2: Remove the edge (E, F) from Q and make the following changes:

A

B C D

E F

1

2

3 4

5

67

8

5

F = {{A, D}, {B}, {C}, {E, F}}

MST = {(A, D), (E, F)}

Q = {(C, E), (E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

Step 3: Remove the edge (C, E) from Q and make the following changes:

A

B C D

E F

1

2

3 4

5

67

8

5

F = {{A, D}, {B}, {C, E, F}}

MST = {(A, D), (C, E), (E, F)}

Q = {(E, D), (C, D), (D, F), (A, C), (A, B), (B, C)}

Step 4: Remove the edge (E, D) from Q and make the following changes:

A

B C D

E F

1

2

3 4

5

67

8

5

F = {{A, C, D, E, F}, {B}}

MST = {(A, D), (C, E), (E, F), (E, D)}

Q = {(C, D), (D, F), (A, C), (A, B), (B, C)}

Step 5: Remove the edge (C, D) from Q. Note that this edge does not connect different trees, so 
simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST. 
Therefore,

A

B C D

E F

1

2

3 4

5

67

8

5

Figure 13.34
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		  F	 = {{A, C, D, E, F}, {B}}
		  MST	 = {(A, D), (C, E), (E, F), (E, D)}
		  Q	 = {(D, F), (A, C), (A, B), (B, C)}
Step 6: Remove the edge (D, F) from Q. Note that this edge does not connect different trees, so 
simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.
		  F	 = {{A, C, D, E, F}, {B}}
		  MST	 = {(A, D), (C, E), (E, F), (E, D)}
		  Q	 = {(A, C), (A, B), (B, C)}
Step 7: Remove the edge (A, C) from Q. Note that this edge does not connect different trees, so 
simply discard this edge. Only an edge connecting (A, D, C, E, F) to B will be added to the MST.
		  F	 = {{A, C, D, E, F}, {B}}
		  MST	 = {(A, D), (C, E), (E, F), (E, D)}
		  Q	 = {(A, B), (B, C)}
Step 8: Remove the edge (A, B) from Q and make the following changes:

A

B C D

E F

1

2

3 4

7

8
F = {A, B, C, D, E, F}

MST = {(A, D), (C, E), (E, F), (E, D), (A, B)}

Q = {(B, C)}

Step 9: The algorithm continues until Q is empty. Since the entire forest has become one tree, 
all the remaining edges will simply be discarded. The resultant MS can be given as shown below.

A

B C D

E F

1

2

3 4

7

F = {A, B, C, D, E, F}

MST = {(A, D), (C, E), (E, F), (E, D), (A, B)}

Q = {}

Programming Example 

5.	 Write a program which finds the cost of a minimum spanning tree.
#include<stdio.h>
#include<conio.h>
#define MAX 10
int adj[MAX][MAX], tree[MAX][MAX], n;
void readmatrix()
{
	 int i, j;
	 printf(“\n Enter the number of nodes in the Graph : “);
	 scanf(“%d”, &n);
	 printf(“\n Enter the adjacency matrix of the Graph”);
	 for (i = 1; i <= n; i++)
		  for (j = 1; j <= n; j++)
			   scanf(“%d”, &adj[i][j]);
}
int spanningtree(int src)
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{
	 int visited[MAX], d[MAX], parent[MAX];
	 int i, j, k, min, u, v, cost;
	 for (i = 1; i <= n; i++)
	 {
		  d[i] = adj[src][i];
	 	 visited[i] = 0;
		  parent[i] = src;
	 }
	 visited[src] = 1;
	 cost = 0;
	 k = 1;
	 for (i = 1; i < n; i++)
	 {
		  min = 9999;
		  for (j = 1; j <= n; j++)
		  {
	 	 	 if (visited[j]==0 && d[j] < min)
			   {
				    min = d[j];
				    u = j;
				    cost += d[u];
			   }
		  }
		  visited[u] = 1;
		  //cost = cost + d[u];
		  tree[k][1] = parent[u];
		  tree[k++][2] = u;
		  for (v = 1; v <= n; v++)
	 	 	 if (visited[v]==0 && (adj[u][v] < d[v]))
			   {
				    d[v] = adj[u][v];
				    parent[v] = u;
			   }
	 }
	 return cost;
}
void display(int cost)
{
	 int i;
	 printf(“\n The Edges of the Mininum Spanning Tree are”);
	 for (i = 1; i < n; i++)
		  printf(“ %d %d \n”, tree[i][1], tree[i][2]);
	 printf(“\n The Total cost of the Minimum Spanning Tree is : %d”, cost);
}
main()
{
	 int source, treecost;
	 readmatrix();
	 printf(“\n Enter the Source : “);
	 scanf(“%d”, &source);
	 treecost = spanningtree(source);
	 display(treecost);
	 return 0;
}

	 Output
Enter the number of nodes in the Graph : 4
Enter the adjacency matrix : 0	 1	 1	 0
0	 0	 0	 1
0	 1	 0	 0



Graphs  413

1	 0	 1	 0
Enter the source : 1
The edges of the Minimum Spanning Tree are    1    4
4	 2
2	 3
The total cost of the Minimum Spanning Tree is : 1

13.8.4  Dijkstra’s Algorithm
Dijkstra’s algorithm, given by a Dutch scientist Edsger Dijkstra in 1959, is used to find the shortest 
path tree. This algorithm is widely used in network routing protocols, most notably IS-IS and 
OSPF (Open Shortest Path First).
	 Given a graph G and a source node A, the algorithm is used to find the shortest path (one having 
the lowest cost) between A (source node) and every other node. Moreover, Dijkstra’s algorithm 
is also used for finding the costs of the shortest paths from a source node to a destination node.
	 For example, if we draw a graph in which nodes represent the cities and weighted edges 
represent the driving distances between pairs of cities connected by a direct road, then Dijkstra’s 
algorithm when applied gives the shortest route between one city and all other cities.

Algorithm
Dijkstra’s algorithm is used to find the length of an optimal path between two nodes in a graph. 
The term optimal can mean anything, shortest, cheapest, or fastest. If we start the algorithm with 
an initial node, then the distance of a node Y can be given as the distance from the initial node to 
that node. Figure 13.35 explains the Dijkstra’s algorithm.

1. Select the source node also called the initial node

2. Define an empty set N that will be used to hold nodes to which a shortest

path has been found.

3. Label the initial node with , and insert it into N.

4. Repeat Steps 5 to 7 until the destination node is in N or there are no more

labelled nodes in N.

5. Consider each node that is not in N and is connected by an edge from

the newly inserted node.

6. (a) If the node that is not in N has no label then SET the label of the

node = the label of the newly inserted node + the length of the edge.

(b) Else if the node that is not in N was already labelled, then SET its new

label = minimum (label of newly inserted vertex + length of edge, old

label)

7. Pick a node not in N that has the smallest label assigned to it and add it

to N.

Figure 13.35  Dijkstra’s algorithm

	 Dijkstra’s algorithm labels every node in the graph where the labels represent the distance 
(cost) from the source node to that node. There are two kinds of labels: temporary and permanent. 
Temporary labels are assigned to nodes that have not been reached, while permanent labels are 
given to nodes that have been reached and their distance (cost) to the source node is known. A 
node must be a permanent label or a temporary label, but not both.
	 The execution of this algorithm will produce either of the following two results:
	 1.	 If the destination node is labelled, then the label will in turn represent the distance from the 

source node to the destination node.
	 2.	 If the destination node is not labelled, then there is no path from the source to the destination 

node.
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Example 13.10  Consider the graph G given in Fig. 13.36. Taking D as the initial node, execute 
the Dijkstra’s algorithm on it.

Step 1: Set the label of D = 0 and N = {D}.
Step 2: Label of D = 0, B = 15, G = 23, and F = 5. Therefore, N = {D, F}.
Step 3: Label of D = 0, B = 15, G has been re-labelled 18 because minimum 
(5 + 13, 23) = 18, C has been re-labelled 14 (5 + 9). Therefore, N = {D, 
F, C}.
Step 4: Label of D = 0, B = 15, G = 18. Therefore, N = {D, F, C, B}.
Step 5: Label of D = 0, B = 15, G = 18 and A = 19 (15 + 4). Therefore, N = 
{D, F, C, B, G}.
Step 6: Label of D = 0 and A = 19. Therefore, N = {D, F, C, B, G, A}

  Note that we have no labels for node E; this means that E is not reachable from D. Only the 
nodes that are in N are reachable from B.
  The running time of Dijkstra’s algorithm can be given as O(|V|2+|E|)=O(|V|2) where V is the 
set of vertices and E in the graph.

Difference between Dijkstra’s Algorithm and Minimum Spanning Tree
Minimum spanning tree algorithm is used to traverse a graph in the most efficient manner, but 
Dijkstra’s algorithm calculates the distance from a given vertex to every other vertex in the graph.
	 Dijkstra’s algorithm is very similar to Prim’s algorithm. Both the algorithms begin at a specific 
node and extend outward within the graph, until all other nodes in the graph have been reached. 
The point where these algorithms differ is that while Prim’s algorithm stores a minimum cost 
edge, Dijkstra’s algorithm stores the total cost from a source node to the current node. Moreover, 
Dijkstra’s algorithm is used to store the summation of minimum cost edges, while Prim’s algorithm 
stores at most one minimum cost edge.

13.8.5  Warshall’s Algorithm
If a graph G is given as G=(V, E), where V is the set of vertices and E is the set of edges, the path 
matrix of G can be found as, P = A + A2 + A3 + ... + An. This is a lengthy process, so Warshall has given 

a very efficient algorithm to calculate the path 
matrix. Warshall’s algorithm defines matrices 
P0, P1, P2, º, Pn as given in Fig. 13.37.
	 This means that if P0[i][j] = 1, then there 
exists an edge from node vi to vj.
	 If P1[i][j] = 1, then there exists an edge 
from vi to vj that does not use any other vertex 
except v1.

	 If P2[i][j] = 1, then there exists an edge from vi to vj that does not use any other vertex except 
v1 and v2.
	 Note that P0 is equal to the adjacency matrix of G. If G contains n nodes, then Pn = P which is the 
path matrix of the graph G.
	 From the above discussion, we can conclude that Pk[i][j] is equal to 1 only when either of the 
two following cases occur:
	 ∑	 There is a path from vi to vj that does not use any other node except v1, v2, ..., vk–1. Therefore, 

Pk–1[i][j] = 1.

2

4

5

15 17

23
9

13

11

A B

C D E

F G

Figure 13.36  Graph G

Pk[i][j]

[if there is a path from to .

The path should not use any

other nodes except , , , ]

v v

v v ... v

i j

1 2 k

0 [otherwise]

1

Figure 13.37  Path matrix entry
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	 ∑	 There is a path from vi to vk and a path from vk to vj where all the nodes use v1, v2, ..., vk–1. 
Therefore,
	 Pk–1[i][k] = 1 AND Pk–1[k][j] = 1

Hence, the path matrix Pn can be calculated with the formula given as:
Pk[i][j] = Pk–1[i][j] V (Pk–1[i][k] L Pk–1[k][j])

where V indicates logical OR operation and L indicates logical AND operation.
  Figure 13.38 shows the Warshall’s algorithm to find the path matrix P using the adjacency 
matrix A.

Step 1: [ the Path Matrix] Repeat Step 2 for I = to n-1,

where n is the number of nodes in the graph

Step 2: Repeat Step 3 for J = to n-1

Step 3: IF A[I][J] = , then SET P[I][J] =

ELSE P[I][J] = 1

[END OF LOOP]

[END OF LOOP]

Step 4: [Calculate the path matrix P] Repeat Step 5 for K = to n-1

Step 5: Repeat Step 6 for I = to n-1

Step 6: Repeat Step 7 for J= to n-1

Step 7: SET P [I][J] = P [I][J] V (P [I][K]

P [K][J])

Step 8: EXIT

INITIALIZE

K K-1 K-1

K-1L

Figure 13.38  Warshall’s algorithm

Example 13.11  Consider the graph in Fig. 13.39 and its adjacency matrix A. We can straightaway 
calculate the path matrix P using the Warshall’s algorithm.

  The path matrix P can be given in a single step as:

	   P =	

A B C D
A
B
C
D

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

Thus, we see that calculating A, A2, A3, A4, ..., A5 to calculate P is a very slow and inefficient 
technique as compared to the Warshall’s technique.

Programming Example 

6.	 Write a program to implement Warshall’s algorithm to find the path matrix.
#include <stdio.h>
#include <conio.h>
void read (int mat[5][5], int n);
void display (int mat[5][5], int n);
void mul(int mat[5][5], int n);
int main()
{
	 int adj[5][5], P[5][5], n, i, j, k;
	 clrscr();

A B C D

0

0

0

1

1

0

0

1

1

1

0

0

0

1

1

0

A

B

C

D

A B

C D

Figure 13.39  Graph G and its 
path matrix P
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	 printf("\n Enter the number of nodes in the graph : ");
	 scanf("%d", &n);
	 printf("\n Enter the adjacency matrix : ");
	 read(adj, n);
	 clrscr();
	 printf("\n The adjacency matrix is : ");
	 display(adj, n);
	 for(i=0;i<n;i++)
	 {
	 	 for(j=0;j<n;j++)
		  {
	 	 	 if(adj[i][j] == 0)
	 	 	 	 P[i][j] = 0;
			   else
				    P[i][j] = 1;
		  }
	  }
	 for(k=0; k<n;k++)
	 {
	 	 for(i=0;i<n;i++)
		  {
	 	 	 for(j=0;j<n;j++)
			   P[i][j] = P[i][j] | ( P[i][k] & P[k][j]);
		  }
	 }
	 printf("\n The Path Matrix is :");
	 display (P, n);
	 getch();
	 return 0;
}
void read(int mat[5][5], int n)
{
	 int i, j;
	 for(i=0;i<n;i++)
	 {
	 	 for(j=0;j<n;j++)
		  {
			   printf("\n mat[%d][%d] = ", i, j);
			   scanf("%d", &mat[i][j]);
		  }
	 }
}
void display(int mat[5][5], int n)
{
	 int i, j;
	 for(i=0;i<n;i++)
	 printf("\n");
	 	 for(j=0;j<n;j++)
	 		  printf("%d\t", mat[i][j]);
	 }
}

	 Output
The adjacency matrix is
0	 1	 1	 0
0	 0	 1	 1	
0	 0	 0	 1
1	 1	 0	 0
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The Path Matrix is
1	 1	 1	 1
1	 1	 1	 1
1	 1	 1	 1
1	 1	 1	 1

13.8.6  Modified Warshall's Algorithm
Warshall’s algorithm can be modified to obtain a matrix that gives the shortest paths between the 
nodes in a graph G. As an input to the algorithm, we take the adjacency matrix A of G and replace 
all the values of A which are zero by infinity (•). Infinity (•) denotes a very large number and 
indicates that there is no path between the vertices. In Warshall’s modified algorithm, we obtain 
a set of matrices Q0, Q1, Q2, ..., Qm using the formula given below.

Qk[i][j] = Minimum( Mk–1[i][j], Mk–1[i][k] + Mk–1[k][j])

Q0 is exactly the same as A with a little difference that every element having a zero value in A is replaced 
by (•) in Q0. Using the given formula, the matrix Qn will give the path matrix that has the shortest path 
between the vertices of the graph. Warshall’s modified algorithm is shown in Fig. 13.40.

Step 1: [Initialize the Shortest Path Matrix, Q] Repeat Step 2 for I =

to n-1, where n is the number of nodes in the graph

Step 2: Repeat Step 3 for J = to n-1

Step 3: IF A[I][J] = , then SET Q[I][J] = Infinity (or 9999)

ELSE Q[I][J] = A[I][j]

[END OF LOOP]

[END OF LOOP]

Step 4: [Calculate the shortest path matrix Q] Repeat Step 5 for K =

to n-1

Step 5: Repeat Step 6 for I = to n-1

Step 6: Repeat Step 7 for J= to n-1

Step 7: IF Q[I][J] <= Q[I][K] + Q[K][J]

SET Q[I][J] = Q[I][J]

ELSE SET Q[I][J] = Q[I][K] + Q[K][J]

[END OF IF]

[END OF LOOP]

[END OF LOOP]

[END OF LOOP]

Step 8: EXIT

Figure 13.40  Modified Warshall’s algorithm

Example 13.12  Consider the unweighted graph G given in Fig. 13.41 and apply Warshall’s algorithm 
to it.

Q0 = 

9999 1 1 9999
9999 9999 9999 1
9999 1 9999 9999
1 9999 1 9999

È
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   Q1 = 

9999 1 1 9999
9999 9999 9999 1
9999 1 9999 9999
1 2 1 9999
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˙
˙
˙

Q2 = 

9999 1 1 2
9999 9999 9999 1
9999 1 9999 2
1 2 9999 3
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Í
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˙
˙
˙

  Q3 = 

9999 1 1 2
9999 9999 9999 1
9999 1 9999 2
1 2 9999 3
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Í
Í
Í
Í

˘

˚

˙
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˙
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  Q4 = Q 

3 1 1 2
2 3 2 1
3 1 3 2
1 2 1 3
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Î

Í
Í
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˙
˙
˙
˙

0

0

0
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0

1
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0

A B

C D

Figure 13.41  Graph G
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Example 13.13  Consider a weighted graph G given in Fig. 13.42 and apply Warshall’s shortest 
path algorithm to it.

		  Q0	 = 

9999 3 3 9999
9999 9999 9999 1
9999 3 9999 9999
2 9999 5 9999
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6 3 3 4
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Programming Example 

7.	 Write a program to implement Warshall’s modified algorithm to find the shortest path.
#include <stdio.h>
#include <conio.h>
#define INFINITY 9999
void read (int mat[5][5], int n);
void display(int mat[5][5], int n);
int main()
{
	 int adj[5][5], Q[5][5], n, i, j, k;
	 clrscr();
	 printf("\n Enter the number of nodes in the graph : ");
	 scanf("%d", &n);
	 printf("\n Enter the adjacency matrix : ");
	 read(adj, n);
	 clrscr();
	 printf("\n The adjacency matrix is : ");
	 display(adj, n);
	 for(i=0;i<n;i++)
	 {
	 	 for(j=0;j<n;j++)
		  {
	 	 	 if(adj[i][j] == 0)
				    Q[i][j] = INFINITY;
			   else
				    Q[i][j] = adj[i][j];
		  }
	 }
	 for(k=0; k<n;k++)
	 {
	 	 for(i=0;i<n;i++)
		  {

0

0

0

2

3

0

3

0

3

0

0

5

0

1

0

0
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C D

3

3 32

5

1

Figure 13.42  Graph G
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	 	 	 for(j=0;j<n;j++)
			   {
				    if(Q[i][j] <= Q[i][k] + Q[k][j])
					     Q[i][j] = Q[i][j];
				    else
     Q[i][j] = Q[i][k] + Q[k][j];
   }
		  }
		  printf("\n\n");
		  display(Q, n);
	 }
	 getch();
	 return 0;
}
void read(int mat[5][5], int n)
{
	 int i, j;
	 for(i=0;i<n;i++)
	 {
	 	 for(j=0;j<n;j++)
		  {
			   printf("\n mat[%d][%d] = ", i, j);
			   scanf("%d", &mat[i][j]);
		  }
	 }
}
void display(int mat[5][5], int n)
{
	 int i, j;
	 for(i=0;i<n;i++)
	 {printf("\n");
	 	 for(j=0;j<n;j++)
			   printf("%d\t", mat[i][j]);
	 }
}

	 Output
6	 3	 3	 4
3	 6	 6	 1
6	 3	 9	 4
1	 5	 5	 6

13.9 APP LICATIONS OF GRAPHS
Graphs are constructed for various types of applications such as:
	 ∑	 In circuit networks where points of connection are drawn as vertices and component wires 

become the edges of the graph.
	 ∑	 In transport networks where stations are drawn as vertices and routes become the edges of 

the graph.
	 ∑	 In maps that draw cities/states/regions as vertices and adjacency relations as edges.
	 ∑	 In program flow analysis where procedures or modules are treated as vertices and calls to 

these procedures are drawn as edges of the graph.
	 ∑	 Once we have a graph of a particular concept, they can be easily used for finding shortest 

paths, project planning, etc.
	 ∑	 In flowcharts or control-flow graphs, the statements and conditions in a program are 

represented as nodes and the flow of control is represented by the edges.
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	 ∑	 In state transition diagrams, the nodes are used to represent states and the edges represent 
legal moves from one state to the other.

	 ∑	 Graphs are also used to draw activity network diagrams. These diagrams are extensively used 
as a project management tool to represent the interdependent relationships between groups, 
steps, and tasks that have a significant impact on the project.

	 An Activity Network Diagram (AND) also known as an Arrow Diagram or a PERT (Program 
Evaluation Review Technique) is used to identify time sequences of events which are pivotal 
to objectives. It is also helpful when a project has multiple activities which need simultaneous 
management. ANDs help the project development team to create a realistic project schedule by 
drawing graphs that exhibit:
	 ∑	 the total amount of time needed to complete the project
	 ∑	 the sequence in which activities must be performed
	 ∑	 the activities that can be performed simultaneously
	 ∑	 the critical activities that must be monitored on a regular basis.
	 A sample AND is shown in Fig. 13.43.

START A1

A2

A3

A5

A4

END

End-point of

the project.

A4 must be completed

before A5 but after A3

Starting point of

the project.

A1 must be

completed

before A2

A2 and A3 may be performed

simultaneously

Boxes denote activity

Arrows denote dependency among activities

Figure 13.43  Activity network diagram

 Points to Remember

∑	 A graph is basically a collection of vertices (also 
called nodes) and edges that connect these vertices.

∑	 Degree of a node u is the total number of edges 
containing the node u. When the degree of a node 
is zero, it is also called an isolated node. A path P 
is known as a closed path if the edge has the same 
end-points. A closed simple path with length 3 or 
more is known as a cycle.

∑	 A graph in which there exists a path between any two 
of its nodes is called a connected graph. An edge that 
has identical end-points is called a loop. The size of 
a graph is the total number of edges in it.

∑	 The out-degree of a node is the number of edges that 
originate at u.

∑	 The in-degree of a node is the number of edges that 
terminate at u. A node u is known as a sink if it has 
a positive in-degree but a zero out-degree.

∑	 A transitive closure of a graph is constructed to 
answer reachability questions.

∑	 Since an adjacency matrix contains only 0s and 1s, 
it is called a bit matrix or a Boolean matrix. The 
memory use of an adjacency matrix is O(n2), where 
n is the number of nodes in the graph.

∑	 Topological sort of a directed acyclic graph G is 
defined as a linear ordering of its nodes in which 
each node comes before all the nodes to which it 
has outbound edges. Every DAG has one or more 
number of topological sorts.

∑	 A vertex v of G is called an articulation point if 
removing v along with the edges incident to v 
results in a graph that has at least two connected 
components.

∑	 A biconnected graph is defined as a connected graph 
that has no articulation vertices.
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∑	 Breadth-first search is a graph search algorithm 
that begins at the root node and explores all the 
neighbouring nodes. Then for each of those nearest 
nodes, the algorithm explores their unexplored 
neighbour nodes, and so on, until it finds the goal.

∑	 The depth-first search algorithm progresses by 
expanding the starting node of G and thus going 
deeper and deeper until a goal node is found, or until 
a node that has no children is encountered.

∑	 A spanning tree of a connected, undirected graph G 
is a sub-graph of G which is a tree that connects all 
the vertices together.

∑	 Kruskal’s algorithm is an example of a greedy 
algorithm, as it makes the locally optimal choice 
at each stage with the hope of finding the global 
optimum.

∑	 Dijkstra’s algorithm is used to find the length of an 
optimal path between two nodes in a graph.

 Exercises

Review Questions
	 1.	 Explain the relationship between a linked list 

structure and a digraph.
	 2.	 What is a graph? Explain its key terms.
	 3.	 How are graphs represented inside a computer’s 

memory? Which method do you prefer and why?
	 4.	 Consider the graph given below.
	 (a)	 Write the adjacency matrix of G.
	 (b)	 Write the path matrix of G.
	 (c)	 Is the graph biconnected?
	 (d)	 Is the graph complete?
	 (e)	 Find the shortest path matrix using Warshall’s 

algorithm.

	

A B

C D

E F

G

H

	 5.	 Explain the graph traversal algorithms in detail 
with example.

	 6.	 Draw a complete undirected graph having five 
nodes.

	 7.	 Consider the graph given below and find out the 
degree of each node.

A

B
C

DE

 8.	 Consider the graph given below. State all the 
simple paths from A to D, B to D, and C to D. 
Also, find out the in-degree and out-degree of each 
node. Is there any source or sink in the graph?

A B

CD

	 9.	 Consider the graph given below. Find out its 
depth-first and breadth-first traversal scheme.

A

B C D

E G

H I

	 10.	 Differentiate between depth-first search and 
breadth-first search traversal of a graph.

	 11.	 Explain the topological sorting of a graph G.
	 12.	 Define spanning tree.
	 13.	 When is a spanning tree called a minimum 

spanning tree? Take a weighted graph of your 
choice and find out its minimum spanning tree.

	 14.	 Explain Prim’s algorithm.
	 15.	 Write a brief note on Kruskal’s algorithm.
	 16.	 Write a short note on Dijkstra’s algorithm.
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	 17.	 Differentiate between Dijkstra’s algorithm and 
minimum spanning tree algorithm.

	 18.	 Consider the graph given below. Find the 
minimum spanning tree of this graph using (a) 
Prim’s algorithm, (b) Kruskal’s algorithm, and 
(c) Dijkstra’s algorithm.

A B

C D

E

F

2

2
2

3 6

4

5

3 1

 19.	 Briefly discuss Warshall’s algorithm. Also, discuss 
its modified version.

	 20.	 Show the working of Floyd-Warshall’s algorithm 
to find the shortest paths between all pairs of nodes 
in the following graph.

A B

C D

	 21.	 Write a short note on transitive closure of a graph.
	 22.	 Given the adjacency matrix of a graph, write a 

program to calculate the degree of a node N in the 
graph.

	 23.	 Given the adjacency matrix of a graph, write a 
program to calculate the in-degree and the out-
degree of a node N in the graph.

	 24.	 Given the adjacency matrix of a graph, write a 
function isFullConnectedGraph which returns 1 
if the graph is fully connected and 0 otherwise.

	 25.	 In which kind of graph do we use topological 
sorting?

	 26.	 Consider the graph given below and show its 
adjacency list in the memory.

A B

C D

	 27.	 Consider the graph given in Question 26 and show 
the changes in the graph as well as its adjacency list 
when node E and edges (A, E) and (C, E) are added 
to it. Also, delete edge (B, D) from the graph.

	 28.	 Given the following adjacency matrix, draw the 
weighted graph.

		

0 4 0 2 0
0 0 0 7 0
0 5 0 0 0
0 0 0 0 3
0 0 1 0 0

Ê

Ë

Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜̃

 29.	 Consider five cities: (1) New Delhi, (2) Mumbai, 
(3) Chennai, (4) Bangalore, and (5) Kolkata, and 
a list of flights that connect these cities as shown 
in the following table. Use the given information 
to construct a graph.

Flight No. Origin Destination

101 2 3

102 3 2

103 5 3

104 3 4

105 2 5

106 5 2

107 5 1

108 1 4

109 5 4

110 4 5

Programming Exercises
	 1.	 Write a program to create and print a graph.
	 2.	 Write a program to determine whether there is at 

least one path from the source to the destination.

Multiple-choice Questions
	 1.	 An edge that has identical end-points is called a
	 (a)	 Multi-path	 (b)	 Loop
	 (c)	 Cycle	 (d)	 Multi-edge
	 2.	 The total number of edges containing the node u 

is called
	 (a)	 In-degree	 (b)	 Out-degree
	 (c)	 Degree	 (d)	 None of these
	 3.	 A graph in which there exists a path between any 

two of its nodes is called
	 (a)	 Complete graph	 (b)	 Connected graph
	 (c)	 Digraph	 (d)	 In-directed graph
	 4.	 The number of edges that originate at u are called
	 (a)	 In-degree	 (b)	 Out-degree
	 (c)	 Degree	 (d)	 source
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	 5.	 The memory use of an adjacency matrix is
	 (a)	 O(n)	 (b)	 O(n2)

	 (c)	 O(n3)	 (d)	 O(log n)
	 6.	 The term optimal can mean
	 (a)	 Shortest	 (b)	 Cheapest
	 (c)	 Fastest	 (d)	 All of these
	 7.	 How many articulation vertices does a biconnected 

graph contain?
	 (a)	 0	 (b)	 1
	 (c)	 2	 (d)	 3

True or False
	 1.	 Graph is a linear data structure.
	 2.	 In-degree of a node is the number of edges leaving 

that node.
	 3.	 The size of a graph is the total number of vertices 

in it.
	 4.	 A sink has a zero in-degree but a positive out-

degree.
	 5.	 The space complexity of depth-first search is lower 

than that of breadth-first search.
	 6.	 A node is known as a sink if it has a positive out-

degree but the in-degree = 0.
	 7.	 A directed graph that has no cycles is called a 

directed acyclic graph.
	 8.	 A graph G can have many different spanning trees.
	 9.	 Fringe vertices are not a part of T, but are adjacent 

to some tree vertex.

	 10.	 Kruskal’s algorithm is an example of a greedy 
algorithm.

Fill in the Blanks
	 1.	 ______ has a zero degree.
	 2.	 In-degree of a node is the number of edges that 

______ at u.
	 3.	 Adjacency matrix is also known  as a ______.
	 4.	 A path P is known as a ______ path if the edge 

has the same end-points.
	 5.	 A graph with multiple edges and/or a loop is called 

a ______.
	 6.	 Vertices that are a part of the minimum spanning 

tree T are called ______.
	 7.	 A ______ of a graph is constructed to answer 

reachability questions.
	 8.	 An ______ is a vertex v of G if removing v along 

with the edges incident to v results in a  graph that 
has at least two connected components.

	 9.	 A ______ graph is a connected graph that is not 
broken into disconnected pieces by deleting 	
any single vertex.

	 10.	 An edge is called a ______ if removing that edge 
results in a disconnected graph.



14.1  Introduction to  SEARCHING
Searching means to find whether a particular value is present in an array or not. If the value is 
present in the array, then searching is said to be successful and the searching process gives the 
location of that value in the array. However, if the value is not present in the array, the searching 
process displays an appropriate message and in this case searching is said to be unsuccessful.
There are two popular methods for searching the array elements: linear search and binary search. 
The algorithm that should be used depends entirely on how the values are organized in the array. 
For example, if the elements of the array are arranged in ascending order, then binary search 
should be used, as it is more efficient for sorted lists in terms of complexity. We will discuss all 
these methods in detail in this section.

14.2  Linear Search
Linear search, also called as sequential search, is a very simple method used for searching an array 
for a particular value. It works by comparing the value to be searched with every element of the 
array one by one in a sequence until a match is found. Linear search is mostly used to search an 
unordered list of elements (array in which data elements are not sorted). For example, if an array 
A[] is declared and initialized as,

int A[] = {10, 8, 2, 7, 3, 4, 9, 1, 6, 5};

Learning Objective
Searching and sorting are two of the most common operations in computer science. 
Searching refers to finding the position of a value in a collection of values. Sorting 
refers to arranging data in a certain order. The two commonly used orders are 
numerical order and alphabetical order. In this chapter, we will discuss the different 
techniques of searching and sorting arrays of numbers or characters. 

Searching and 
Sorting

chapter 14
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and the value to be searched is VAL = 7, then searching means 
to find whether the value ‘7’ is present in the array or not. 
If yes, then it returns the position of its occurrence. Here, 
POS = 3 (index starting from 0).
  Figure 14.1 shows the algorithm for linear search.
  In Steps 1 and 2 of the algorithm, we initialize the value 
of POS and I. In Step 3, a while loop is executed that would 
be executed till I is less than N (total number of elements 
in the array). In Step 4, a check is made to see if a match is 
found between the current array element and VAL. If a match 
is found, then the position of the array element is printed, else 
the value of I is incremented to match the next element with 
VAL. However, if all the array elements have been compared 
with VAL and no match is found, then it means that VAL is not 
present in the array.

Complexity of Linear Search Algorithm
Linear search executes in O(n) time where n is the number of elements in the array. Obviously, 
the best case of linear search is when VAL is equal to the first element of the array. In this case, 
only one comparison will be made. Likewise, the worst case will happen when either VAL is not 
present in the array or it is equal to the last element of the array. In both the cases, n comparisons 
will have to be made. However, the performance of the linear search algorithm can be improved 
by using a sorted array.

Programming Example 

1.	 Write a program to search an element in an array using the linear search technique.
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#define size 20 // Added so the size of the array can be altered more easily
int main(int argc, char *argv[]) {
	 int arr[size], num, i, n, found = 0, pos = -1;
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr[i]);
	 }
	 printf("\n Enter the number that has to be searched : ");
	 scanf("%d", &num);
	 for(i=0;i<n;i++)
	 {
		  if(arr[i] == num)
		  {
			   found =1;
			   pos=i;
			   printf("\n %d is found in the array at position= %d", num,i+1); 
			   /* +1 added in line 23 so that it would display the number in
               the first place in the array as in position 1 instead of 0 */
			   break;
		  }
	 }
	 if (found == 0)

LINEAR_SEARCH(A, N, VAL)

Step 1: [INITIALIZE] SET POS = -1

Step 2: [INITIALIZE] SET I = 1

Step 3: Repeat Step 4 while I<=N

Step 4: IF A[I] = VAL

SET POS = I

PRINT POS

Go to Step 6

[END OF IF]

[END OF LOOP]

Step 6: EXIT

SET I = I + 1

Step 5: IF POS = –1

PRINT VALUE IS NOT PRESENT

IN THE ARRAY

[END OF IF]

"

"

Figure 14.1  Algorithm for linear search
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	 printf("\n %d does not exist in the array", num);
	 return 0;
}

14.3  Binary Search
Binary search is a searching algorithm that works efficiently with a sorted list. The mechanism 
of binary search can be better understood by an analogy of a telephone directory. When we are 
searching for a particular name in a directory, we first open the directory from the middle and 
then decide whether to look for the name in the first part of the directory or in the second part of 
the directory. Again, we open some page in the middle and the whole process is repeated until 
we finally find the right name.
	 Take another analogy. How do we find words in a dictionary? We first open the dictionary 
somewhere in the middle. Then, we compare the first word on that page with the desired word 
whose meaning we are looking for. If the desired word comes before the word on the page, we 
look in the first half of the dictionary, else we look in the second half. Again, we open a page in 
the first half of the dictionary and compare the first word on that page with the desired word and 
repeat the same procedure until we finally get the word. The same mechanism is applied in the 
binary search.
	 Now, let us consider how this mechanism is applied to search for a value in a sorted array. 
Consider an array A[] that is declared and initialized as

int A[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

and the value to be searched is VAL = 9. The algorithm will proceed in the following manner.
BEG = 0, END = 10, MID = (0 + 10)/2 = 5

	 Now, VAL = 9 and A[MID] = A[5] = 5
	 A[5] is less than VAL, therefore, we now search for the value in the second half of the array. So, 
we change the values of BEG and MID.
	 Now, BEG = MID + 1 = 6, END = 10, MID = (6 + 10)/2 =16/2 = 8

 VAL = 9 and A[MID] = A[8] = 8

	 A[8] is less than VAL, therefore, we now search for the value in the second half of the segment. 
So, again we change the values of BEG and MID.
	 Now, BEG = MID + 1 = 9, END = 10, MID = (9 + 10)/2 = 9
	 Now, VAL = 9 and A[MID] = 9.
	 In this algorithm, we see that BEG and END are the beginning and ending positions of the segment 
that we are looking to search for the element. MID is calculated as (BEG + END)/2. Initially, BEG = 
lower_bound and END = upper_bound. The algorithm will terminate when A[MID] = VAL. When the 
algorithm ends, we will set POS = MID. POS is the position at which the value is present in the array.
	 However, if VAL is not equal to A[MID], then the values of BEG, END, and MID will be changed 
depending on whether VAL is smaller or greater than A[MID].
	(a)	 If VAL < A[MID], then VAL will be present in the left segment of the array. So, the value of END 

will be changed as END = MID – 1.
	(b)	 If VAL > A[MID], then VAL will be present in the right segment of the array. So, the value of BEG 

will be changed as BEG = MID + 1.
  Finally, if VAL is not present in the array, then eventually, END will be less than BEG. When this 
happens, the algorithm will terminate and the search will be unsuccessful. 
  Figure 14.2 shows the algorithm for binary search.
  In Step 1, we initialize the value of variables, BEG, END, and POS. In Step 2, a while loop is 
executed until BEG is less than or equal to END. In Step 3, the value of MID is calculated. In Step 4, 
we check if the array value at MID is equal to VAL (item to be searched in the array). If a match is 
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found, then the value of POS is printed and 
the algorithm exits. However, if a match 
is not found, and if the value of A[MID] 
is greater than VAL, the value of END is 
modified, otherwise if A[MID] is greater 
than VAL, then the value of BEG is altered. In 
Step 5, if the value of POS = –1, then VAL is 
not present in the array and an appropriate 
message is printed on the screen before 
the algorithm exits.

Complexity of Binary Search Algorithm
The complexity of the binary search 
algorithm can be expressed as f(n), 
where n is the number of elements in the 
array. The complexity of the algorithm is 
calculated depending on the number of 
comparisons that are made. In the binary 
search algorithm, we see that with each 

comparison, the size of the segment where search has to be made is reduced to half. Thus, we 
can say that, in order to locate a particular value in the array, the total number of comparisons 
that will be made is given as

2f(n) > n or f(n) = log2n

Programming Example 

2.	 Write a program to search an element in an array using binary search.
##include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#define size 10 // Added to make changing size of array easier
int smallest(int arr[], int k, int n); // Added to sort array
void selection_sort(int arr[], int n); // Added to sort array
int main(int argc, char *argv[]) {
	 int arr[size], num, i, n, beg, end, mid, found=0;
	 printf("\n Enter the number of elements in the array: ");
	 scanf("%d", &n);
	 printf("\n Enter the elements: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr[i]);
	 }
	 selection_sort(arr, n);  // Added to sort the array
	 printf("\n The sorted array is: \n");
	 for(i=0;i<n;i++)
	 printf(" %d\t", arr[i]);
	 printf("\n\n Enter the number that has to be searched: ");
	 scanf("%d", &num);
	 beg = 0, end = n-1;
	 while(beg<=end)
	 {
		  mid = (beg + end)/2;
		  if (arr[mid] == num)
		  {
			   printf("\n %d is present in the array at position %d", num, mid+1);
			   found =1;
			   break;
		  }

BINARY_SEARCH(A, lower_bound, upper_bound, VAL)

Step 1: [INITIALIZE] SET BEG = lower_bound

END = upper_bound, POS = - 1

Step 2: Repeat Steps 3 and 4 while BEG <= END

Step 3: SET MID = (BEG + END)/2

Step 4: IF A[MID] = VAL

SET POS = MID

PRINT POS

Go to Step 6

ELSE IF A[MID] > VAL

SET END = MID - 1

ELSE

SET BEG = MID + 1

[END OF IF]

[END OF LOOP]

Step 5: IF POS = -1

PRINT “VALUE IS NOT PRESENT IN THE ARRAY”

[END OF IF]

Step 6: EXIT

Figure 14.2  Algorithm for binary search
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		  else if (arr[mid]>num)
		  end = mid-1;
		  else
		  beg = mid+1;
	 }
	 if (beg > end && found == 0)
	 printf("\n %d does not exist in the array", num);
	 return 0;
}

int smallest(int arr[], int k, int n)
{
	 int pos = k, small=arr[k], i;
	 for(i=k+1;i<n;i++)
	 {
		  if(arr[i]< small)
		  {
			   small = arr[i];
			   pos = i;
		  }
	 }
	 return pos;
}
void selection_sort(int arr[],int n)
{
	 int k, pos, temp;
	 for(k=0;k<n;k++)
	 {
		  pos = smallest(arr, k, n);
		  temp = arr[k];
		  arr[k] = arr[pos];
		  arr[pos] = temp;
	 }
}

14.4  INTERPOLATION SEARCH
Interpolation search, also known as extrapolation search, is a searching technique that finds a 

specified value in a sorted array. The 
concept of interpolation search is 
similar to how we search for names in a 
telephone book or for keys by which a 
book’s entries are ordered. For example, 
when looking for a name “Bharat” in a 
telephone directory, we know that it will 
be near the extreme left, so applying a 
binary search technique by dividing the 
list in two halves each time is not a good 
idea. We must start scanning the extreme 
left in the first pass itself.
  In each step of interpolation search, 
the remaining search space for the 
value to be found is calculated. The 
calculation is done based on the values 
at the bounds of the search space and the 
value to be searched. The value found at 
this estimated position is then compared 
with the value being searched for. If the 
two values are equal, then the search is 
complete. 

INTERPOLATION_SEARCH (A, lower_bound, upper_bound, VAL)

Step 1: [INITIALIZE] SET LOW = lower_bound, 
	 HIGH = upper_bound, POS = –1
Step 2:    Repeat Steps 3 to 4 while LOW <= HIGH
Step 3:         SET MID = LOW + (HIGH – LOW) × 
	 ((VAL – A[LOW]) / (A[HIGH] – A[LOW]))
Step 4: 	        IF VAL = A[MID]

  POS = MID 
  PRINT POS
  Go to Step 6

         ELSE IF VAL < A[MID] 
		     SET HIGH = MID – 1
    	           ELSE 
                   SET LOW = MID + 1
	         [END OF IF]
	 [END OF LOOP]
Step 5: IF POS = –1
	       PRINT "VALUE IS NOT PRESENT IN THE ARRAY"	
        [END OF IF]
Step 6: EXIT

Figure 14.3  Algorithm for interpolation search
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  However, in case the values are not equal then depending on the comparison, the remaining 
search space is reduced to the part before or after the estimated position. Thus, we see that  
interpolation search is similar to the binary search technique. However, the important difference 
between the two techniques is that binary search always selects the middle value of the remaining 
search space. It discards half of the values based on the comparison between the value found at the 
estimated position and the value to be searched. But in interpolation search, interpolation is used to 
find an item near the one being searched for, and then linear search is used to find the exact item.
	 The algorithm for interpolation search is given in Fig. 14.3.
	 Figure 14.4 helps us to visualize how the search space is divided in case of binary search and 
interpolation search. 

VAL

Low Item to be searched High

Middle = (low+ high)/2

(a) Binary search divides the list into two equal halves

VAL

Low Item to be searched High

Middle = low + (high - low) ( (key – a[low]) /(a[high] – a[low]))¥

(b) Interpolation search divides the list into two equal halves

Figure 14.4  Difference between binary search and interpolation search

Complexity of Interpolation Search Algorithm
When n elements of a list to be sorted are uniformly distributed (average case), interpolation 
search makes about log(log n) comparisons. However, in the worst case, that is when the elements 
increase exponentially, the algorithm can make up to O(n) comparisons.

Example 14.1  Given a list of numbers a[] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21}. Search 
for value 19 using interpolation search technique. 
Solution

Low = 0, High = 10, VAL = 19, a[Low] = 1, a[High] = 21
Middle = Low + (High – Low)×((VAL – a[Low]) /(a[High] – a[Low] ))
       = 0 +(10 – 0) × ((19 – 1) / (21 – 1) )
       = 0 + 10 × 0.9 = 9
a[middle] = a[9] = 19 which is equal to value to be searched. 

Programming Example

3.	 Write a program to search an element in an array using interpolation search.
#include <stdio.h>
#include <conio.h>
#define MAX 20
int interpolation_search(int a[], int low, int high, int val)
{
	 int mid;
	 while(low <= high)
	 {
		  mid = low + (high – low)*((val – a[low]) / (a[high] – a[low]));
		  if(val == a[mid])
			   return mid;
		  if(val < a[mid])
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			   high = mid – 1;
		  else
			   low = mid + 1;
	 }
	 return –1;
}
int main()
{
	 int arr[MAX], i, n, val, pos;
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements : ");
	 for(i = 0; i <n; i++)
		  scanf("%d", &arr[i]);
	 printf("\n Enter the value to be searched : ");
	 scanf("%d", &val);
	 pos = interpolation_search(arr, 0, n–1, val);
	 if(pos == –1)
		  printf("\n %d is not found in the array", val);
	 else
		  printf("\n %d is found at position %d", val, pos);
	 getche();
	 return 0;
}

14.5  JUMP SEARCH
When we have an already sorted list, then the other efficient algorithm to search for a value is jump 
search or block search. In jump search, it is not necessary to scan all the elements in the list to 
find the desired value. We just check an element and if it is less than the desired value, then some 
of the elements following it are skipped by jumping ahead. After moving a little forward again, 
the element is checked. If the checked element is greater than the desired value, then we have 
a boundary and we are sure that the desired value lies between the previously checked element 
and the currently checked element. However, if the checked element is less than the value being 
searched for, then we again make a small jump and repeat the process. 
	 Once the boundary of the value is determined, a linear search is done to find the value and its 
position in the array. For example, consider an array a[] = {1,2,3,4,5,6,7,8,9}. The length of the 
array is 9. If we have to find value 8 then following steps are performed using the jump search 
technique.
Step 1: First three elements are checked. Since 3 is smaller than 8, we will have to make a 
jump ahead

1 2 3 4 5 6 7 8 9

Step 2: Next three elements are checked. Since 6 is smaller than 8, we will have to make a 
jump ahead

1 2 3 4 5 6 7 8 9

Step 3: Next three elements are checked. Since 9 is greater than 8, the desired value lies 
within the current boundary

1 2 3 4 5 6 7 8 9

Step 4: A linear search is now done to find the value in the array.

	 The algorithm for jump search is given in Fig. 14.5.
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�

JUMP_SEARCH (A, lower_bound, upper_bound, VAL, N)

Step 1: [INITIALIZE] SET STEP = sqrt(N), I = 0, LOW = lower_bound, HIGH = upper_bound, POS = –1
Step 2: Repeat Step 3 while I < STEP
Step 3:        IF VAL < A[STEP] 
		  SET HIGH = STEP – 1
               ELSE 
		  SET LOW = STEP + 1
	      [END OF IF]
	      SET I = I + 1
	 [END OF LOOP]
Step 4: SET I = LOW
Step 5: Repeat Step 6 while I <= HIGH
Step 6: 	        IF A[I] = Val 
                      	 POS =  I
	               PRINT POS
	               Go to Step 8
	        [END OF IF]
	        SET I = I + 1
	 [END OF LOOP]
Step 7:  	IF POS = –1
	       PRINT "VALUE IS NOT PRESENT IN THE ARRAY"
	 [END OF IF]	
Step 8: EXIT

	 Figure 14.5  Algorithm for jump search

Advantage of Jump Search over Linear Search
Suppose we have a sorted list of 1000 elements where the elements have values 0, 1, 2, 3, 4, 
…, 999, then sequential search will find the value 674 in exactly 674 iterations. But with jump 
search, the same value can be found in 44 iterations. Hence, jump search performs far better than 
a linear search on a sorted list of elements. 

Advantage of Jump Search over Binary Search
No doubt, binary search is very easy to implement and has a complexity of O(log n), but in case of 
a list having very large number of elements, jumping to the middle of the list to make comparisons 
is not a good idea because if the value being searched is at the beginning of the list then one (or 
even more) large step(s) in the backward direction would have to be taken. In such cases, jump 
search performs better as we have to move little backward that too only once.  Hence, when 
jumping back is slower than jumping forward, the jump search algorithm always performs better.

How to Choose the Step Length?
For the jump search algorithm to work efficiently, we must define a fixed size for the step. If the 
step size is 1, then algorithm is same as linear search. Now, in order to find an appropriate step 
size, we must first try to figure out the relation between the size of the list (n) and the size of the 
step (k). Usually, k is calculated as √n. 

Further Optimization of Jump Search
Till now, we were dealing with lists having small number of elements. But in real-world 
applications, lists can be very large. In such large lists searching the value from the beginning 
of the list may not be a good idea. A better option is to start the search from the k–th element as 
shown in the figure below.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ….
Searching can start from somewhere middle in the list rather than from the beginning to optimize 
performance.

	 We can also improve the performance of jump search algorithm by repeatedly applying jump 
search. For example, if the size of the list is 10,00,000 (n). The jump interval would then be √n = 
√1000000 =1000. Now, even the identified interval has 1000 elements and is again a large list. So, 
jump search can be applied again with a new step size of √1000 ≈ 31.  Thus, every time we have 
a desired interval with a large number of values, the jump search algorithm can be applied again 
but with a smaller step. However, in this case, the complexity of the algorithm will no longer be 
O(√n) but will approach a logarithmic value. 

Complexity of Jump Search Algorithm
Jump search works by jumping through the array with a step size (optimally chosen to be √n) to 
find the interval of the value. Once this interval is identified, the value is searched using the linear 
search technique. Therefore, the complexity of the jump search algorithm can be given as O(√n).

Programming Example

4.	 Write a program to search an element in an array using jump search.
#include <stdio.h>
#include <math.h>
#include <conio.h>
#define MAX 20
int jump_search(int a[], int low, int high, int val, int n)
{
	 int step, i;
	 step = sqrt(n);
	 for(i=0;i<step;i++)
	 {
		  if(val < a[step])
			   high = step – 1;
		  else
			   low = step + 1;
	 }
	 for(i=low;i<=high;i++)
	 {
	       if(a[i]==val)
		    return i;
	 }
	 return –1;
}

int main()
{
	 int arr[MAX], i, n, val, pos;
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements : ");
	 for(i = 0; i <n; i++)
		  scanf("%d", &arr[i]);
	 printf("\n Enter the value to be searched : ");
	 scanf("%d", &val);
	 pos = jump_search(arr, 0, n–1, val, n);
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	 if(pos == –1)
		  printf("\n %d is not found in the array", val);
	 else
		  printf("\n %d is found at position %d", val, pos);
	 getche();
	 return 0;
}

Fibonacci Search
We are all well aware of the Fibonacci series in which the first two terms are 0 and 1 and then 
each successive term is the sum of previous two terms.  In the Fibonacci series given below, 
each number is called a Fibonacci number.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... 
The same series and concept can be used to search for a given value in a list of numbers. Such 
a search algorithm which is based on Fibonacci numbers is called Fibonacci search and was 
developed by Kiefer in 1953. The search follows a divide-and-conquer technique and narrows 
down possible locations with the help of Fibonacci numbers.
Fibonacci search is similar to binary search. It also works on a sorted list and has a run time 
complexity of O(log n). However, unlike the binary search algorithm, Fibonacci search does 
not divide the list into two equal halves rather it subtracts a Fibonacci number from the index to 
reduce the size of the list to be searched. So, the key advantage of Fibonacci search over binary 
search is that comparison dispersion is low. 

14.6  INTRODUCTION TO SORTING
Sorting means arranging the elements of an array so that they are placed in some relevant order 
which may be either ascending or descending. That is, if A is an array, then the elements of A are 
arranged in a sorted order (ascending order) in such a way that A[0] < A[1] < A[2] < ...... < A[N].
	 For example, if we have an array that is declared and initialized as

int A[] = {21, 34, 11, 9, 1, 0, 22};

Then the sorted array (ascending order) can be given as:
A[] = {0, 1, 9, 11, 21, 22, 34;

	 A sorting algorithm is defined as an algorithm that puts the elements of a list in a certain order, 
which can be either numerical order, lexicographical order, or any user-defined order. Efficient 
sorting algorithms are widely used to optimize the use of other algorithms like search and merge 
algorithms which require sorted lists to work correctly. There are two types of sorting:
	 ∑	 Internal sorting which deals with sorting the data stored in the computer’s memory
		 ∑ External sorting which deals with sorting the data stored in files. External sorting is applied 
when there is voluminous data that cannot be stored in the memory.

14.6.1  Sorting on Multiple Keys
Many a times, when performing real-world applications, it is desired to sort arrays of records 
using multiple keys. This situation usually occurs when a single key is not sufficient to uniquely 
identify a record. For example, in a big organization we may want to sort a list of employees on 
the basis of their departments first and then according to their names in alphabetical order. 
	 Other examples of sorting on multiple keys can be 
	 ∑	 Telephone directories in which names are sorted by location, category (business or residential), 

and then in an alphabetical order. 
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	 ∑	 In a library, the information about books can be sorted alphabetically based on titles and then 
by authors’ names. 

	 ∑	 Customers’ addresses can be sorted based on the name of the city and then the street. 

Note	 Data records can be sorted based on a property. Such a component or property is called a sort key. A 
sort key can be defined using two or more sort keys. In such a case, the first key is called the primary sort key, 
the second is known as the secondary sort key, etc.

Consider the data records given below:

Name Department Salary Phone Number
Janak Telecommunications 1000000 9812345678

Raj Computer Science 890000 9910023456

Aditya Electronics 900000 7838987654

Huma Telecommunications 1100000 9654123456

Divya Computer Science 750000 9350123455

	 Now if we take department as the primary key and name as the secondary key, then the sorted 
order of records can be given as:

Name Department Salary Phone Number
Divya Computer Science 750000 9350123455

Raj Computer Science 890000 9910023456

Aditya Electronics 900000 7838987654

Huma Telecommunications 1100000 9654123456

Janak Telecommunications 1000000 9812345678

Observe that the records are sorted based on department. However, within each department the 
records are sorted alphabetically based on the names of the employees.

14.6.2  Practical Considerations for Internal Sorting
As mentioned above, records can be sorted either in ascending or descending order based on a field 
often called as the sort key. The list of records can be either stored in a contiguous and randomly 
accessible data structure (array) or may be stored in a dispersed and only sequentially accessible 
data structure like a linked list. But irrespective of the underlying data structure used to store the 
records, the logic to sort the records will be same and only the implementation details will differ. 
	 When analysing the performance of different sorting algorithms, the practical considerations 
would be the following: 
	 ∑	 Number of sort key comparisons that will be performed
	 ∑	 Number of times the records in the list will be moved
	 ∑	 Best case performance
	 ∑	 Worst case performance
	 ∑	 Average case performance 
	 ∑	 Stability of the sorting algorithm where stability means that equivalent elements or records 

retain their relative positions even after sorting is done

14.7  BUBBLE SORT
Bubble sort is a very simple method that sorts the array elements by repeatedly moving the 
largest element to the highest index position of the array segment (in case of arranging elements 
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in ascending order). In bubble sorting, consecutive adjacent pairs of elements in the array are 
compared with each other. If the element at the lower index is greater than the element at the 
higher index, the two elements are interchanged so that the element is placed before the bigger 
one. This process will continue till the list of unsorted elements exhausts.
	 This procedure of sorting is called bubble sorting because elements ‘bubble’ to the top of the 
list. Note that at the end of the first pass, the largest element in the list will be placed at its proper 
position (i.e., at the end of the list).	

Note	 If the elements are to be sorted in descending order, then in first pass the smallest element is moved 
to the highest index of the array.

Technique
The basic methodology of the working of bubble sort is given as follows:
	(a)	 In Pass 1, A[0] and A[1] are compared, then A[1] is compared with A[2], A[2] is compared with 

A[3], and so on. Finally, A[N–2] is compared with A[N–1]. Pass 1 involves n–1 comparisons 
and places the biggest element at the highest index of the array.

	(b)	 In Pass 2, A[0] and A[1] are compared, then A[1] is compared with A[2], A[2] is compared with 
A[3], and so on. Finally, A[N–3] is compared with A[N–2]. Pass 2 involves n–2 comparisons 
and places the second biggest element at the second highest index of the array.

	(c)	 In Pass 3, A[0] and A[1] are compared, then A[1] is compared with A[2], A[2] is compared with 
A[3], and so on. Finally, A[N–4] is compared with A[N–3]. Pass 3 involves n–3 comparisons 
and places the third biggest element at the third highest index of the array.

	(d)	 In Pass n–1, A[0] and A[1] are compared so that A[0]<A[1]. After this step, all the elements of 
the array are arranged in ascending order.

Example 14.2  To discuss bubble sort in detail, let us consider an array A[] that has the following 
elements:

A[] = {30, 52, 29, 87, 63, 27, 19, 54}

	 Pass 1:
	 (a)	Compare 30 and 52. Since 30 < 52, no swapping is done.
	 (b)	Compare 52 and 29. Since 52 > 29, swapping is done.
		 30, 29, 52, 87, 63, 27, 19, 54
	 (c)	Compare 52 and 87. Since 52 < 87, no swapping is done.
	 (d)	Compare 87 and 63. Since 87 > 63, swapping is done.
		 30, 29, 52, 63, 87, 27, 19, 54
	 (e)	Compare 87 and 27. Since 87 > 27, swapping is done.
		 30, 29, 52, 63, 27, 87, 19, 54
	 (f)	Compare 87 and 19. Since 87 > 19, swapping is done.
		 30, 29, 52, 63, 27, 19, 87, 54
	 (g)	Compare 87 and 54. Since 87 > 54, swapping is done.
		 30, 29, 52, 63, 27, 19, 54, 87

	 Observe that after the end of the first pass, the largest element is placed at the highest index of 
the array. All the other elements are still unsorted.
	 Pass 2:

	 (a)	Compare 30 and 29. Since 30 > 29, swapping is done.
		 29, 30, 52, 63, 27, 19, 54, 87
	 (b)	Compare 30 and 52. Since 30 < 52, no swapping is done.
	 (c)	Compare 52 and 63. Since 52 < 63, no swapping is done.
	 (d)	Compare 63 and 27. Since 63 > 27, swapping is done.
		 29, 30, 52, 27, 63, 19, 54, 87
	 (e)	Compare 63 and 19. Since 63 > 19, swapping is done.
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		 29, 30, 52, 27, 19, 63, 54, 87
	 (f)	Compare 63 and 54. Since 63 > 54, swapping is done.
		 29, 30, 52, 27, 19, 54, 63, 87

	 Observe that after the end of the second pass, the second largest element is placed at the second 
highest index of the array. All the other elements are still unsorted.
	 Pass 3:

	 (a)	Compare 29 and 30. Since 29 < 30, no swapping is done.
	 (b)	Compare 30 and 52. Since 30 < 52, no swapping is done.
	 (c)	Compare 52 and 27. Since 52 > 27, swapping is done.
		 29, 30, 27, 52, 19, 54, 63, 87
	 (d)	Compare 52 and 19. Since 52 > 19, swapping is done.
		 29, 30, 27, 19, 52, 54, 63, 87
	 (e)	Compare 52 and 54. Since 52 < 54, no swapping is done.

	 Observe that after the end of the third pass, the third largest element is placed at the third highest 
index of the array. All the other elements are still unsorted.
	 Pass 4:

	 (a)	Compare 29 and 30. Since 29 < 30, no swapping is done.
	 (b)	Compare 30 and 27. Since 30 > 27, swapping is done.
		 29, 27, 30, 19, 52, 54, 63, 87
	 (c)	Compare 30 and 19. Since 30 > 19, swapping is done.
		 29, 27, 19, 30, 52, 54, 63, 87
	 (d)	Compare 30 and 52. Since 30 < 52, no swapping is done.

Observe that after the end of the fourth pass, the fourth largest element is placed at the fourth 
highest index of the array. All the other elements are still unsorted.
	 Pass 5:

	 (a)	Compare 29 and 27. Since 29 > 27, swapping is done.
		 27, 29, 19, 30, 52, 54, 63, 87
	 (b)	Compare 29 and 19. Since 29 > 19, swapping is done.
		 27, 19, 29, 30, 52, 54, 63, 87
	 (c)	Compare 29 and 30. Since 29 < 30, no swapping is done.

	 Observe that after the end of the fifth pass, the fifth largest element is placed at the fifth highest 
index of the array. All the other elements are still unsorted.
	 Pass 6:

	 (a)	Compare 27 and 19. Since 27 > 19, swapping is done.
		 19, 27, 29, 30, 52, 54, 63, 87
	 (b)	Compare 27 and 29. Since 27 < 29, no swapping is done.

	 Observe that after the end of the sixth pass, the sixth largest element is placed at the sixth largest 
index of the array. All the other elements are still unsorted.
	 Pass 7:

	 (a)	Compare 19 and 27. Since 19 < 27, no swapping is done.

Observe that the entire list is sorted now.
  Figure 14.6 shows the algorithm for bubble sort. 
In this algorithm, the outer loop is for the total 
number of passes which is N–1. The inner loop will 
be executed for every pass. However, the frequency 
of the inner loop will decrease with every pass 
because after every pass, one element will be in 
its correct position. Therefore, for every pass, the 
inner loop will be executed N–I times, where N is 
the number of elements in the array and I is the 
count of the pass.

BUBBLE_SORT(A, N)

Step 1: Repeat Step 2 For 1 = to N-1

Step 2: Repeat For J = to N - I

Step 3: IF A[J] > A[J + 1]

SWAP A[J] and A[J+1]

[END OF INNER LOOP]

[END OF OUTER LOOP]

Step 4: EXIT

Figure 14.6  Algorithm for bubble sort
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Complexity of Bubble Sort
The complexity of any sorting algorithm depends upon the number of comparisons. In bubble 
sort, we have seen that there are N–1 passes in total. In the first pass, N–1 comparisons are made to 
place the highest element in its correct position. Then, in Pass 2, there are N–2 comparisons and the 
second highest element is placed in its position. Therefore, to compute the complexity of bubble 
sort, we need to calculate the total number of comparisons. It can be given as:

f(n) = (n – 1) + (n – 2) + (n – 3) + ..... + 3 + 2 + 1
f(n) = n (n – 1)/2
f(n) = n2/2 + O(n) = O(n2)

Therefore, the complexity of bubble sort algorithm is O(n2). It means the time required to execute 
bubble sort is proportional to n2, where n is the total number of elements in the array.

Programming Example

5.	 Write a program to enter n numbers in an array. Redisplay the array with elements being 
sorted in ascending order.
#include <stdio.h>
#include <conio.h>
int main()
{
	 int i, n, temp, j, arr[10];
	 clrscr();
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr [i]);
	 }
	 for(i=0;i<n;i++)
	 {
		  for(j=0;j<n–i–1;j++)
		  {
			   if(arr[j] > arr[j+1])
			   {
				    temp = arr[j];
				    arr[j] = arr[j+1];
				    arr[j+1] = temp;
			   }
		  }
	 }
	 printf("\n The array sorted in ascending order is :\n");
	 for(i=0;i<n;i++)
		  printf("%d\t", arr[i]);
	 getch();
	 return 0;
}
Output
Enter the number of elements in the array : 10
Enter the elements : 8    9    6    7    5    4    2    3    1    10
The array sorted in ascending order is :
1    2    3    4    5    6    7    8    9    10

Bubble Sort Optimization
Consider a case when the array is already sorted. In this situation no swapping is done but we 
still have to continue with all n–1 passes. We may even have an array that will be sorted in 2 or 3 
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passes but we still have to continue with rest of the passes. So once we have detected that the array 
is sorted, the algorithm must not be executed further. This is the optimization over the original 
bubble sort algorithm. In order to stop the execution of further passes after the array is sorted, 
we can have a variable flag which is set to TRUE before each pass and is made FALSE when a 
swapping is performed. The code for the optimized bubble sort can be given as:

void bubble_sort(int *arr, int n)
{	
	 int i, j, temp, flag = 0;
     for(i=0; i<n; i++)
    {  
       for(j=0; j<n–i–1; j++)
       {
          if(arr[j]>arr[j+1])
          {
             flag = 1;
             temp = arr[j+1];
             arr[j+1] = arr[j];
             arr[j] = temp;
          }
       }
      if(flag == 0)	 // array is sorted
         return; 
   }
}

Complexity of Optimized Bubble Sort Algorithm
In the best case, when the array is already sorted, the optimized bubble sort will take O(n) time. 
In the worst case, when all the passes are performed, the algorithm will perform slower than the 
original algorithm. In average case also, the performance will see an improvement. Compare it 
with the complexity of original bubble sort algorithm which takes O(n2) in all the cases.

14.8  INSERTION SORT
Insertion sort is a very simple sorting algorithm in which the sorted array (or list) is built one 
element at a time. We all are familiar with this technique of sorting, as we usually use it for ordering 
a deck of cards while playing bridge.
	 The main idea behind insertion sort is that it inserts each item into its proper place in the final 
list. To save memory, most implementations of the insertion sort algorithm work by moving 
the current data element past the already sorted values and repeatedly interchanging it with the 
preceding value until it is in its correct place.
	 Insertion sort is less efficient as compared to other more advanced algorithms such as quick 
sort, heap sort, and merge sort.

Technique
Insertion sort works as follows:
	 ∑	 The array of values to be sorted is divided into two sets. One that stores sorted values and 

another that contains unsorted values.
	 ∑	 The sorting algorithm will proceed until there are elements in the unsorted set.
	 ∑	 Suppose there are n elements in the array. Initially, the element with index 0 (assuming LB = 

0) is in the sorted set. Rest of the elements are in the unsorted set.
	 ∑	 The first element of the unsorted partition has array index 1 (if LB = 0).
	 ∑	 During each iteration of the algorithm, the first element in the unsorted set is picked up and 

inserted into the correct position in the sorted set.
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Example 14.3  Consider an array of integers given below. We will sort the values in the array 
using insertion sort.
Solution

9 39 45 63 18 81 1 8 54 72 3639 9 45 63 18 81 1 8 54 72 36

A[ ] is the only element in sorted list (Pass 1)

9 39 45 63 18 81 1 8 54 72 369 39 45 63 18 81 1 8 54 72 36

(Pass 2) (Pass 3)

9 18 39 45 63 81 1 8 54 72 369 18 39 45 63 81 1 8 54 72 36

(Pass 4) (Pass 5)

9 18 39 45 54 63 81 1 8 72 369 18 39 45 63 81 1 8 54 72 36

(Pass 6) (Pass 7)

9 18 36 39 45 54 63 72 81 1 89 18 39 45 54 63 72 81 1 8 36

(Pass 8) (Pass 9)

39 9 45 63 18 81 1 8 54 72 36

Sorted Unsorted

 Initially, A[0] is the only element in the sorted set. In Pass 1, A[1] will be placed either before 
or after A[0], so that the array A is sorted. In Pass 2, A[2] will be placed either before A[0], in 
between A[0] and A[1], or after A[1]. In Pass 3, A[3] will be placed in its proper place. In Pass N–1, 
A[N–1] will be placed in its proper place to keep the array sorted.

  To insert an element A[K] in a sorted list A[0], A[1], ..., A[K–1], we need to compare 
A[K] with A[K–1], then with A[K–2], A[K–3], and so on until we meet an element A[J] such that 

A[J] <= A[K]. In order to insert A[K] in its correct 
position, we need to move elements A[K–1], 
A[K–2], ..., A[J] by one position and then A[K] is 
inserted at the (J+1)th location. The algorithm for 
insertion sort is given in Fig. 14.7.
	 In the algorithm, Step 1 executes a for 
loop which will be repeated for each element in 
the array. In Step 2, we store the value of the Kth 
element in TEMP. In Step 3, we set the Jth index 
in the array. In Step 4, a for loop is executed 
that will create space for the new element from 
the unsorted list to be stored in the list of sorted 
elements. Finally, in Step 5, the element is stored 
at the (J+1)th location.

Complexity of Insertion Sort
For insertion sort, the best case occurs when the array is already sorted. In this case, the running time 
of the algorithm has a linear running time (i.e., O(n)). This is because, during each iteration, the first 
element from the unsorted set is compared only with the last element of the sorted set of the array.
	 Similarly, the worst case of the insertion sort algorithm occurs when the array is sorted in the 
reverse order. In the worst case, the first element of the unsorted set has to be compared with 
almost every element in the sorted set. Furthermore, every iteration of the inner loop will have 
to shift the elements of the sorted set of the array before inserting the next element. Therefore, in 
the worst case, insertion sort has a quadratic running time (i.e., O(n2)).
	 Even in the average case, the insertion sort algorithm will have to make at least (K–1)/2 
comparisons. Thus, the average case also has a quadratic running time.

INSERTION-SORT (ARR, N)

Step 1: Repeat Steps 2 to 5 for K = 1 to N – 1

Step 2: SET TEMP = ARR[K]

Step 3: SET J = K - 1

Step 4: Repeat while TEMP <= ARR[J]

SET ARR[J + 1] = ARR[J]

SET J = J - 1

[END OF INNER LOOP]

Step 5: SET ARR[J + 1] = TEMP

[END OF LOOP]

Step 6: EXIT

Figure 14.7  Algorithm for insertion sort
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Advantages of Insertion Sort
The advantages of this sorting algorithm are as follows:
	 ∑	 It is easy to implement and efficient to use on small sets of data.
	 ∑	 It can be efficiently implemented on data sets that are already substantially sorted.
	 ∑	 It performs better than algorithms like selection sort and bubble sort. Insertion sort algorithm 

is simpler than shell sort, with only a small trade-off in efficiency. It is over twice as fast as 
the bubble sort and almost 40 per cent faster than the selection sort.

	 ∑	 it requires less memory space (only O(1) of additional memory space).
	 ∑	I t is said to be online, as it can sort a list as and when it receives new elements.

Programming Example

6.	 Write a program to sort an array using insertion sort algorithm.
#include <stdio.h>
#include <conio.h>
#define size 5
void insertion_sort(int arr[], int n);
void main()
{
	 int arr[size], i, n;
	 printf("\n Enter the number of elements in the array: ");
	 scanf("%d", &n);
	 printf("\n Enter the elements of the array: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr[i]);
	 }
	 insertion_sort(arr, n);
	 printf("\n The sorted array is:  \n");
	 for(i=0;i<n;i++)
	 printf(" %d\t", arr[i]);
	 getch();
}
void insertion_sort(int arr[], int n)
{
	 int i, j, temp;
	 for(i=1;i<n;i++)
	 {
		  temp = arr[i];
		  j = i-1;
		  while((temp < arr[j]) && (j>=0))
		  {
			   arr[j+1] = arr[j];
			   j--;
		  }
		  arr[j+1] = temp;
	 }
}

	 Output
Enter the number of elements in the array : 5
Enter the elements of the array : 500 1 50 23 76
The sorted array is :
1    23    20    76    500    6    7    8    9    10

14.9  SELECTION SORT
Selection sort is a sorting algorithm that has a quadratic running time complexity of O(n2), thereby 
making it inefficient to be used on large lists. Although selection sort performs worse than 
insertion sort algorithm, it is noted for its simplicity and also has performance advantages over 
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more complicated algorithms in certain situations. Selection sort is generally used for sorting files 
with very large objects (records) and small keys.

Technique
Consider an array ARR with N elements. Selection sort works as follows:
	 First find the smallest value in the array and place it in the first position. Then, find the second 
smallest value in the array and place it in the second position. Repeat this procedure until the 
entire array is sorted. Therefore,
	 ∑	 In Pass 1, find the position POS of the smallest value in the array and then swap ARR[POS] and 

ARR[0]. Thus, ARR[0] is sorted.
	 ∑	 In Pass 2, find the position POS of the smallest value in sub-array of N–1 elements. Swap 

ARR[POS] with ARR[1]. Now, ARR[0] and ARR[1] is sorted.
	 ∑	 In Pass N–1, find the position POS of the smaller of the elements ARR[N–2] and ARR[N–1]. Swap 

ARR[POS] and ARR[N–2] so that ARR[0], ARR[1], ..., ARR[N–1] is sorted.

Example 14.4  Sort the array given below using selection sort.

39 9 81 45 90 27 72 18

PASS POS ARR[0] ARR[1] ARR[2] ARR[3] ARR[4] ARR[5] ARR[6] ARR[7]
1 1 9 39 81 45 90 27 72 18
2 7 9 18 81 45 90 27 72 39
3 5 9 18 27 45 90 81 72 39
4 7 9 18 27 39 90 81 72 45
5 7 9 18 27 39 45 81 72 90
6 6 9 18 27 39 45 72 81 90
7 6 9 18 27 39 45 72 81 90

	 The algorithm for selection sort is shown in Fig. 14.8. In the algorithm, during the Kth pass, we 
need to find the position POS of the smallest elements from ARR[K], ARR[K+1], ..., ARR[N]. To find 
the smallest element, we use a variable SMALL to hold the smallest value in the sub-array ranging 
from ARR[K] to ARR[N]. Then, swap ARR[K] with ARR[POS]. This procedure is repeated until all the 
elements in the array are sorted.

SELECTION SORT(ARR, N)

Step 1: Repeat Steps 2 and 3 for K = 1

to N-1

Step 2: CALL SMALLEST(ARR, K, N, POS)

Step 3: SWAP A[K] with ARR[POS]

[END OF LOOP]

Step 4: EXIT

SMALLEST (ARR, K, N, POS)

Step 1: [INITIALIZE] SET SMALL = ARR[K]

Step 2: [INITIALIZE] SET POS = K

Step 3: Repeat for J = K+1 to N

IF SMALL > ARR[J]

SET SMALL = ARR[J]

SET POS = J

[END OF IF]

[END OF LOOP]

Step 4: RETURN POS

-1

Figure 14.8  Algorithm for selection sort

Complexity of Selection Sort
Selection sort is a sorting algorithm that is independent of the original order of elements in the 
array. In Pass 1, selecting the element with the smallest value calls for scanning all n elements; 
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thus, n–1 comparisons are required in the first pass. Then, the smallest value is swapped with the 
element in the first position. In Pass 2, selecting the second smallest value requires scanning the 
remaining n – 1 elements and so on. Therefore,

(n – 1) + (n – 2) + ... + 2 + 1
= n(n – 1) / 2 = O(n2) comparisons

Advantages of Selection Sort
	 ∑	 It is simple and easy to implement.
	 ∑	 It can be used for small data sets.
	 ∑	 It is 60 per cent more efficient than bubble sort.
However, in case of large data sets, the efficiency of selection sort drops as compared to insertion 
sort.

Programming Example

7.	 Write a program to sort an array using selection sort algorithm.
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
int smallest(int arr[], int k, int n);
void selection_sort(int arr[], int n);
void main(int argc, char *argv[]) {
	 int arr[10], i, n;
	 printf("\n Enter the number of elements in the array: ");
	 scanf("%d", &n);
	 printf("\n Enter the elements of the array: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr[i]);
	 }
	 selection_sort(arr, n);
	 printf("\n The sorted array is: \n");
	 for(i=0;i<n;i++)
	 printf(" %d\t", arr[i]);
}
int smallest(int arr[], int k, int n)
{
	 int pos = k, small=arr[k], i;
	 for(i=k+1;i<n;i++)
	 {
		  if(arr[i]< small)
		  {
			   small = arr[i];
			   pos = i;
		  }
	 }
	 return pos;
}
void selection_sort(int arr[],int n)
{
	 int k, pos, temp;
	 for(k=0;k<n;k++)
	 {
		  pos = smallest(arr, k, n);
		  temp = arr[k];
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		  arr[k] = arr[pos];
		  arr[pos] = temp;
	 }
}

14.10  MERGE SORT
Merge sort is a sorting algorithm that uses the divide, conquer, and combine algorithmic paradigm. 
	Divide means partitioning the n-element array to be sorted into two sub-arrays of n/2 elements. If 
A is an array containing zero or one element, then it is already sorted. However, if there are more 
elements in the array, divide A into two sub-arrays, A1 and A2, each containing about half of the 
elements of A.
Conquer means sorting the two sub-arrays recursively using merge sort.
Combine means merging the two sorted sub-arrays of size n/2 to produce the sorted array of n 
elements.
Merge sort algorithm focuses on two main concepts to improve its performance (running time):
	 ∑	 A smaller list takes fewer steps and thus less time to sort than a large list.
	 ∑	 As number of steps is relatively less, thus less time is needed to create a sorted list from two 

sorted lists rather than creating it using two unsorted lists.
The basic steps of a merge sort algorithm are as follows:
	 ∑	 If the array is of length 0 or 1, then it is already sorted.
	 ∑	 Otherwise, divide the unsorted array into two sub-arrays of about half the size.
	 ∑	 Use merge sort algorithm recursively to sort each sub-array.
	 ∑	 Merge the two sub-arrays to form a single sorted list.

Example 14.5  Sort the array given below using merge sort.
Solution

39 9 45 1881 279 72

(Divide and Conquer the array)

39 9 45 1881 279 72

182790 72

18279 72

18279 72

39 9 4581

39 9 4581

39 9 4581

(Combine the elements to form a sorted array)

9 18 39 927 7245 81

92718 729 39 8145

72927 189 39 8145

18279 7239 9 4581

 The merge sort algorithm (Fig. 14.9) uses a function merge which combines the sub-arrays to 
form a sorted array. While the merge sort algorithm recursively divides the list into smaller lists, 
the merge algorithm conquers the list to sort the elements in individual lists. Finally, the smaller 
lists are merged to form one list.
	 To understand the merge algorithm, consider the figure below which shows how we merge 
two lists to form one list. For ease of understanding, we have taken two sub-lists each containing 
four elements. The same concept can be utilized to merge four sub-lists containing two elements, 
or eight sub-lists having one element each.

9 39 45 81 18 27 72

BEG, I MID J END

9

INDEX

TEMP

9
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	 Compare ARR[I] and ARR[J], the smaller of the two is placed in TEMP at the location specified 
by INDEX and subsequently the value I or J is incremented.

9 39 45 81 18 27 72

BEG MID J END INDEX

TEMP

I

9 189

9 39 45 81 18 27 72

BEG MID J INDEX

9

I

18 279

END

9 39 45 81 18 27 72

INDEX

9

BEG MID JI

18 27 399

END

9 39 45 81 18 27 72

INDEX

9

BEG MID JI

18 27 39 459

END

9 39 45 81 18 27 72

INDEX

9

BEG JI, MID

18 27 39 45 729

END

9 39 45 81 18 27 72

INDEX

9

BEG I, MID

18 27 39 45 72 819

J END

When I is greater than MID, copy the remaining elements of the right sub-array in TEMP.

9 39 45 81 18 27 72

INDEX

9

BEG MID I

18 27 39 45 72 81 99

J END

MERGE (ARR, BEG, MID, END)

Step 1: [INITIALIZE] SET I = BEG, J = MID + 1, INDEX =

Step 2: Repeat while (I <= MID) AND (J<=END)

IF ARR[I] < ARR[J]

SET TEMP[INDEX] = ARR[I]

SET I = I + 1

ELSE

SET TEMP[INDEX] = ARR[J]

SET J = J + 1

[END OF IF]

SET INDEX = INDEX + 1

[END OF LOOP]

Step 3: [Copy the remaining elements of right sub-array, if any]

IF I > MID

Repeat while J <= END

SET TEMP[INDEX] = ARR[J]

SET INDEX = INDEX + 1, SET J = J + 1

[END OF LOOP]

[Copy the remaining elements of left sub-array, if any]

ELSE

Repeat while I <= MID

SET TEMP[INDEX] = ARR[I]

SET INDEX = INDEX + 1, SET I = I + 1

[END OF LOOP]

[END OF IF]

Step 4: [Copy the contents of TEMP back to ARR] SET K=

Step 5: Repeat while K < INDEX

SET ARR[K] = TEMP[K]

SET K = K + 1

[END OF LOOP]

Step 6: END
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Complexity of Merge Sort
The running time of merge sort in the average 
case and the worst case can be given as O(n log 
n). Although merge sort has an optimal time 
complexity, it needs an additional space of O(n) 
for the temporary array TEMP.

Programming Example 

8.	 Write a program to implement merge sort.
#include <stdio.h>
#include <conio.h>
#define size 100

void merge(int a[], int, int, int);
void merge_sort(int a[],int, int);
void main()
{
	 int arr[size], i, n;
	 printf("\n Enter the number of elements in the array : ");
	 scanf("%d", &n);
	 printf("\n Enter the elements of the array: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr[i]);
	 }
	 merge_sort(arr, 0, n-1);
	 printf("\n The sorted array is: \n");
	 for(i=0;i<n;i++)
	 printf(" %d\t", arr[i]);
	 getch();
}
void merge(int arr[], int beg, int mid, int end)
{
	 int i=beg, j=mid+1, index=beg, temp[size], k;
	 while((i<=mid) && (j<=end))
	 {
		  if(arr[i] < arr[j])
		  {
			   temp[index] = arr[i];
			   i++;
		  }
		  else
		  {
			   temp[index] = arr[j];
			   j++;
		  }
		  index++;
	 }
	 if(i>mid)
	 {
		  while(j<=end)
		  {

MERGE_SORT(ARR, BEG, END)

Step 1: IF BEG < END

SET MID = (BEG + END)/2

CALL MERGE_SORT (ARR, BEG, MID)

CALL MERGE_SORT (ARR, MID + 1, END)

MERGE (ARR, BEG, MID, END)

[END OF IF]

Step 2: END

Figure 14.9  Algorithm for merge sort
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			   temp[index] = arr[j];
			   j++;
			   index++;
		  }
	 }
	 else
	 {
		  while(i<=mid)
		  {
			   temp[index] = arr[i];
			   i++;
			   index++;
		  }
	 }
	 for(k=beg;k<index;k++)
	 arr[k] = temp[k];
}
void merge_sort(int arr[], int beg, int end)
{
	 int mid;
	 if(beg<end)
	 {
		  mid = (beg+end)/2;
		  merge_sort(arr, beg, mid);
		  merge_sort(arr, mid+1, end);
		  merge(arr, beg, mid, end);
	 }
}

14.11  QUICK SORT
Quick sort is a widely used sorting algorithm developed by C. A. R. Hoare that makes O(n log n) 
comparisons in the average case to sort an array of n elements. However, in the worst case, it has 
a quadratic running time given as O(n2). Basically, the quick sort algorithm is faster than other O(n 
log n) algorithms, because its efficient implementation can minimize the probability of requiring 
quadratic time. Quick sort is also known as partition exchange sort.
	 Like merge sort, this algorithm works by using a divide-and-conquer strategy to divide a single 
unsorted array into two smaller sub-arrays.
	 The quick sort algorithm works as follows:
	 1.	 Select an element pivot from the array elements.
	 2.	 Rearrange the elements in the array in such a way that all elements that are less than the pivot 

appear before the pivot and all elements greater than the pivot element come after it (equal 
values can go either way). After such a partitioning, the pivot is placed in its final position. 
This is called the partition operation.

	 3.	 Recursively sort the two sub-arrays thus obtained. (One with sub-list of values smaller than 
that of the pivot element and the other having higher value elements.)

	 Like merge sort, the base case of the recursion occurs when the array has zero or one element 
because in that case the array is already sorted. After each iteration, one element (pivot) is always 
in its final position. Hence, with every iteration, there is one less element to be sorted in the array.
	 Thus, the main task is to find the pivot element, which will partition the array into two halves. 
To understand how we find the pivot element, follow the steps given below. (We take the first 
element in the array as pivot.)
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Technique
Quick sort works as follows:
	 1.	 Set the index of the first element in the array to loc and left variables. Also, set the index of 

the last element of the array to the right variable.
		  That is, loc = 0, left = 0, and right = n–1 (where n in the number of elements in the array)
	 2.	 Start from the element pointed by right and scan the array from right to left, comparing each 

element on the way with the element pointed by the variable loc.
		  That is, a[loc] should be less than a[right].

(a)	 If that is the case, then simply continue comparing until right becomes equal to loc. Once 
right = loc, it means the pivot has been placed in its correct position.

(b)	 However, if at any point, we have a[loc] > a[right], then interchange the two values and 
jump to Step 3.

(c)	 Set loc = right
	 3.	 Start from the element pointed by left and scan the array from left to right, comparing each 

element on the way with the element pointed by loc.
		  That is, a[loc] should be greater than a[left].

(a)	 If that is the case, then simply continue comparing until left becomes equal to loc. Once 
left = loc, it means the pivot has been placed in its correct position.

(b)	 However, if at any point, we have a[loc] < a[left], then interchange the two values and 
jump to Step 2.

(c)	 Set loc = left.

Example 14.6  Sort the elements given in the following array using quick sort algorithm

27 1 36 18 25 45

27 1 36 18 25 45

loc

left
right

We choose the first element as the pivot.

Set , , and .loc = left = right = 5

27 1 36 18 25 45

loc

left
right

Scan from right to left. Since

, decrease the value of .

a[loc]

< a[right] right

25 1 36 18 27 45

left right

loc

Since , interchange

the two values and set .

a[loc] > a[right]

loc = right

25 1 36 18 27 45

left right

loc

Start scanning from left to right. Since a[loc]

> a[left], increment the value of .left

25 1 27 18 36 45

left

loc

right

Since , interchangea[loc] < a[left]

the values and set .loc = left

25 1 27 18 36 45

left

loc

right

Scan from right to left. Since

, decrement the value of .

a[loc]

< a[right] right
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25 1 18 27 36 45

left right

loc

Since , interchangea[loc] > a[right]

the two values and set .loc = right

25 1 18 27 36 45

right

loc

left

Start scanning from left to right. Since

, increment the value of .

a[loc]

> a[left] left

	 Now left = loc, so the procedure terminates, as the pivot element (the first element of the array, that 
is, 27) is placed in its correct position. All the elements smaller than 27 are placed before it and those  
greater than 27 are placed after it.
	 The left sub-array containing 25, 10, 18 and the right sub-array containing 36 and 45 are sorted 
in the same manner.

	 The quick sort algorithm (Fig. 14.10) makes use of a function Partition to divide the array into 
two sub-arrays.

PARTITION (ARR, BEG, END, LOC)

Step 1: [INITIALIZE] SET LEFT = BEG, RIGHT = END, LOC = BEG, FLAG =

Step 2: Repeat Steps 3 to 6 while FLAG =

Step 3: Repeat while ARR[LOC] <= ARR[RIGHT] AND LOC != RIGHT

SET RIGHT = RIGHT - 1

[END OF LOOP]

Step 4: IF LOC = RIGHT

SET FLAG = 1

ELSE IF ARR[LOC] > ARR[RIGHT]

SWAP ARR[LOC] with ARR[RIGHT]

SET LOC = RIGHT

[END OF IF]

Step 5: IF FLAG =

Repeat while ARR[LOC] >= ARR[LEFT] AND LOC != LEFT

SET LEFT = LEFT + 1

[END OF LOOP]

Step 6: IF LOC = LEFT

SET FLAG = 1

ELSE IF ARR[LOC] < ARR[LEFT]

SWAP ARR[LOC] with ARR[LEFT]

SET LOC = LEFT

[END OF IF]

[END OF IF]

Step 7: [END OF LOOP]

Step 8: END

QUICK_SORT (ARR, BEG, END)

Step 1: IF (BEG < END)

CALL PARTITION (ARR, BEG, END, LOC)

CALL QUICKSORT(ARR, BEG, LOC - 1)

CALL QUICKSORT(ARR, LOC + 1, END)

[END OF IF]

Step 2: END

Figure 14.10  Algorithm for quick sort
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Complexity of Quick Sort
In the average case, the running time of quick sort can be given as O(n log n). The partitioning of 
the array which simply loops over the elements of the array once uses O(n) time.
	 In the best case, every time we partition the array, we divide the list into two nearly equal 
pieces. That is, the recursive call processes the sub-array of half the size. At the most, only log n 
nested calls can be made before we reach a sub-array of size 1. It means the depth of the call tree 
is O(log n). And because at each level, there can only be O(n), the resultant time is given as O(n 
log n) time.
	 Practically, the efficiency of quick sort depends on the element which is chosen as the pivot. 
Its worst-case efficiency is given as O(n2). The worst case occurs when the array is already sorted 
(either in ascending or descending order) and the left-most element is chosen as the pivot.
	 However, many implementations randomly choose the pivot element. The randomized version 
of the quick sort algorithm always has an algorithmic complexity of O(n log n).

Pros and Cons of Quick Sort
It is faster than other algorithms such as bubble sort, selection sort, and insertion sort. Quick sort 
can be used to sort arrays of small size, medium size, or large size. On the flip side, quick sort is 
complex and massively recursive.

Programming Example 

9.	 Write a program to implement quick sort algorithm.
#include <stdio.h>
#include <conio.h>
#define size 100
int partition(int a[], int beg, int end);
void quick_sort(int a[], int beg, int end);
void main()
{
	 int arr[size], i, n;
	 printf("\n Enter the number of elements in the array: ");
	 scanf("%d", &n);
	 printf("\n Enter the elements of the array: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr[i]);
	 }
	 quick_sort(arr, 0, n-1);
	 printf("\n The sorted array is: \n");
	 for(i=0;i<n;i++)
	 printf(" %d\t", arr[i]);
	 getch();
}
int partition(int a[], int beg, int end)
{
	 int left, right, temp, loc, flag;
	 loc = left = beg;
	 right = end;
	 flag = 0;
	 while(flag != 1)
	 {
		  while((a[loc] <= a[right]) && (loc!=right))
		  right--;
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		  if(loc==right)
		  flag =1;
		  else if(a[loc]>a[right])
		  {
			   temp = a[loc];
			   a[loc] = a[right];
			   a[right] = temp;
			   loc = right;
		  }
		  if(flag!=1)
		  {
			   while((a[loc] >= a[left]) && (loc!=left))
			   left++;
			   if(loc==left)
			   flag =1;
			   else if(a[loc] <a[left])
			   {
				    temp = a[loc];
				    a[loc] = a[left];
				    a[left] = temp;
				    loc = left;
			   }
		  }
	 }
	 return loc;
}
void quick_sort(int a[], int beg, int end)
{
	 int loc;
	 if(beg<end)
	 {
		  loc = partition(a, beg, end);
		  quick_sort(a, beg, loc-1);
		  quick_sort(a, loc+1, end);
	 }
}

14.12  RADIX SORT
Radix sort is a linear sorting algorithm for integers and uses the concept of sorting names in 
alphabetical order. When we have a list of sorted names, the radix is 26 (or 26 buckets) because 
there are 26 letters in the English alphabet. So radix sort is also known as bucket sort. Observe 
that words are first sorted according to the first letter of the name. That is, 26 classes are used 
to arrange the names, where the first class stores the names that begin with A, the second class 
contains the names with B, and so on.
	 During the second pass, names are grouped according to the second letter. After the second 
pass, names are sorted on the first two letters. This process is continued till the nth pass, where n 
is the length of the name with maximum number of letters.
	 After every pass, all the names are collected in order of buckets. That is, first pick up the names 
in the first bucket that contains the names beginning with A. In the second pass, collect the names 
from the second bucket, and so on.
	 When radix sort is used on integers, sorting is done on each of the digits in the number. The 
sorting procedure proceeds by sorting the least significant to the most significant digit. While 
sorting the numbers, we have ten buckets, each for one digit (0, 1, 2, …, 9) and the number of 
passes will depend on the length of the number having maximum number of digts.
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Algorithm for RadixSort (ARR, N)

Step 1: Find the largest number in ARR as LARGE

Step 2: [INITIALIZE] SET NOP = Number of digits in LARGE

Step 3: SET PASS =

Step 4: Repeat Step 5 while PASS <= NOP-1

Step 5: SET I = and INITIALIZE buckets

Step 6: Repeat Steps 7 to 9 while I<N-1

Step 7: SET DIGIT = digit at PASSth place in A[I]

Step 8: Add A[I] to the bucket numbered DIGIT

Step 9: INCEREMENT bucket count for bucket numbered DIGIT

[END OF LOOP]

Step 1 : Collect the numbers in the bucket

[END OF LOOP]

Step 11: END

Figure 14.11  Algorithm for radix sort

Example 14.7  Sort the numbers given below using radix sort.

	 345, 654, 924, 123, 567, 472, 555, 808, 911
In the first pass, the numbers are sorted according to the digit at ones place. The buckets are 
pictured upside down as shown below.

Number 0 1 2 3 4 5 6 7 8 9

345 345

654 654

924 924

123 123

567 567

472 472

555 555

808 808

911 911

  After this pass, the numbers are collected bucket by bucket. The new list thus formed is used 
as an input for the next pass. In the second pass, the numbers are sorted according to the digit at 
the tens place. The buckets are pictured upside down.

Number 0 1 2 3 4 5 6 7 8 9

911 911

472 472

123 123

654 654

924 924

345 345

555 555

567 567

808 808
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	 In the third pass, the numbers are sorted according to the digit at the hundreds place. The 
buckets are pictured upside down.

Number 0 1 2 3 4 5 6 7 8 9

808 808

911 911

123 123

924 924

345 345

654 654

555 555

567 567

472 472

	 The numbers are collected bucket by bucket. The new list thus formed is the final sorted result. 
After the third pass, the list can be given as
	 123, 345, 472, 555, 567, 654, 808, 911, 924.

Complexity of Radix Sort
To calculate the complexity of radix sort algorithm, assume that there are n numbers that have to be 
sorted and k is the number of digits in the largest number. In this case, the radix sort algorithm is 
called a total of k times. The inner loop is executed n times. Hence, the entire radix sort algorithm 
takes O(kn) time to execute. When radix sort is applied on a data set of finite size (very small set 
of numbers), then the algorithm runs in O(n) asymptotic time.

Pros and Cons of Radix Sort
Radix sort is a very simple algorithm. When programmed properly, radix sort is one of the fastest 
sorting algorithms for numbers or strings of letters.
	 But there are certain trade-offs for radix sort that can make it less preferable as compared to 
other sorting algorithms. Radix sort takes more space than other sorting algorithms. Besides the 
array of numbers, we need 10 buckets to sort numbers, 26 buckets to sort strings containing only 
characters, and at least 40 buckets to sort a string containing alphanumeric characters.
	 Another drawback of radix sort is that the algorithm is dependent on digits or letters. This 
feature compromises with the flexibility to sort input of any data type. For every different data 
type, the algorithm has to be rewritten. Even if the sorting order changes, the algorithm has to 
be rewritten. Thus, radix sort takes more time to write and writing a general purpose radix sort 
algorithm that can handle all kinds of data is not a trivial task.
	 Radix sort is a good choice for many programs that need a fast sort, but there are faster sorting 
algorithms available. This is the main reason why radix sort is not as widely used as other sorting 
algorithms.

Programming Example

10.	 Write a program to implement radix sort algorithm.
##include <stdio.h>
#include <conio.h>
#define size 10
int largest(int arr[], int n);
void radix_sort(int arr[], int n);
void main()
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{
	 int arr[size], i, n;
	 printf("\n Enter the number of elements in the array: ");
	 scanf("%d", &n);
	 printf("\n Enter the elements of the array: ");
	 for(i=0;i<n;i++)
	 {
		  scanf("%d", &arr[i]);
	 }
	 radix_sort(arr, n);
	 printf("\n The sorted array is: \n");
	 for(i=0;i<n;i++)
	 printf(" %d\t", arr[i]);
	 getch();
}
int largest(int arr[], int n)
{
	 int large=arr[0], i;
	 for(i=1;i<n;i++)
	 {
		  if(arr[i]>large)
		  large = arr[i];
	 }
	 return large;
}
void radix_sort(int arr[], int n)
{
	 int bucket[size][size], bucket_count[size];
	 int i, j, k, remainder, NOP=0, divisor=1, large, pass;
	 large = largest(arr, n);
	 while(large>0)
	 {
		  NOP++;
		  large/=size;
	 }
	 for(pass=0;pass<NOP;pass++) // Initialize the buckets
	 {
		  for(i=0;i<size;i++)
		  bucket_count[i]=0;
		  for(i=0;i<n;i++)
		  {
			   // sort the numbers according to the digit at passth place
			   remainder = (arr[i]/divisor)%size;
			   bucket[remainder][bucket_count[remainder]] = arr[i];
			   bucket_count[remainder] += 1;
		  }
		  // collect the numbers after PASS pass
		  i=0;
		  for(k=0;k<size;k++)
		  {
			   for(j=0;j<bucket_count[k];j++)
			   {
				    arr[i] = bucket[k][j];
				    i++;
			   }
		  }
		  divisor *= size;
	 }
}

}
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14.13  HEAP SORT
We have discussed binary heaps in Chapter 12. 
Therefore, we already know how to build a heap 
H from an array, how to insert a new element in 
an already existing heap, and how to delete an 
element from H. Now, using these basic concepts, 
we will discuss the application of heaps to write 
an efficient algorithm of heap sort (also known as 
tournament sort) that has a running time complexity 
of O(n log n).
  Given an array ARR with n elements, the heap sort 
algorithm can be used to sort ARR in two phases:

	 ∑	 In phase 1, build a heap H using the elements of ARR.
	 ∑	 In phase 2, repeatedly delete the root element of the heap formed in phase 1.
	 In a max heap, we know that the largest value in H is always present at the root node. So in phase 
2, when the root element is deleted, we are actually collecting the elements of ARR in decreasing 
order. The algorithm of heap sort is shown in Fig. 14.12.

Complexity of Heap Sort
Heap sort uses two heap operations: insertion and root deletion. Each element extracted from the 
root is placed in the last empty location of the array.
	 In phase 1, when we build a heap, the number of comparisons to find the right location of the 
new element in H cannot exceed the depth of H. Since H is a complete tree, its depth cannot exceed 
m, where m is the number of elements in heap H.
	 Thus, the total number of comparisons g(n) to insert n elements of ARR in H is bounded as:

g(n) <= n log n

Hence, the running time of the first phase of the heap sort algorithm is O(n log n).
	 In phase 2, we have H which is a complete tree with m elements having left and right sub-trees 
as heaps. Assuming L to be the root of the tree, reheaping the tree would need 4 comparisons to 
move L one step down the tree H. Since the depth of H cannot exceed O(log m), reheaping the tree 
will require a maximum of 4 log m comparisons to find the right location of L in H.
	 Since n elements will be deleted from heap H, reheaping will be done n times. Therefore, the 
number of comparisons to delete n elements is bounded as:

h(n) <= 4n log n

Hence, the running time of the second phase of the heap sort algorithm is O(n log n).
	 Each phase requires time proportional to O(n log n). Therefore, the running time to sort an array 
of n elements in the worst case is proportional to O(n log n).
	 Therefore, we can conclude that heap sort is a simple, fast, and stable sorting algorithm that 
can be used to sort large sets of data efficiently.

Programming Example 

11.	 Write a program to implement heap sort algorithm.
#include <stdio.h>
#include <conio.h>
#define MAX 10

HEAPSORT(ARR, N)

Step 1: [Build Heap H]

Repeat for I = to N-1

CALL Insert_Heap(ARR, N, ARR[I])

[END OF LOOP]

Step 2: (Repeatedly delete the root element)

Repeat while N>

CALL Delete_Heap(ARR, N, VAL)

SET N = N + 1

[END OF LOOP]

Step 3: END

Figure 14.12  Algorithm for heap sort
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void RestoreHeapUp(int *,int);
void RestoreHeapDown(int*,int,int);
int main()
{
	 int Heap[MAX],n,i,j;
	 clrscr();
	 printf("\n Enter the number of elements : ");
	 scanf("%d",&n);
 	 printf("\n Enter the elements : ");
	 for(i=1;i<=n;i++)
	 {
		  scanf("%d",&Heap[i]);
		  RestoreHeapUp(Heap, i);	 // Heapify
	 }
	 // Delete the root element and heapify the heap
	 j=n;
	 for(i=1;i<=j;i++)
	 {
		  int temp;
		  temp=Heap[1];
		  Heap[1]= Heap[n];
		  Heap[n]=temp;
		  n = n–1; 	 // The element Heap[n] is supposed to be deleted
		  RestoreHeapDown(Heap,1,n); // Heapify
	 }
	 n=j;
	 printf("\n The sorted elements are: ");
	 for(i=1;i<=n;i++)
		  printf("%4d",Heap[i]);
	 return 0;
}
void RestoreHeapUp(int *Heap,int index)
{
	 int val = Heap[index];
	 while( (index>1) && (Heap[index/2] < val) )	// Check parent's value
	 {
		  Heap[index]=Heap[index/2];
		  index /= 2;
	 }
	 Heap[index]=val;
}
void RestoreHeapDown(int *Heap,int index,int n)
{
	 int val = Heap[index];
	 int j=index*2;
	 while(j<=n)
	 {
		  if( (j<n) && (Heap[j] < Heap[j+1]))// Check sibling's value
			   j++;
		  if(Heap[j] < Heap[j/2])	 // Check parent's value
		  break;
		  Heap[j/2]=Heap[j];
		  j=j*2;
	 }
	 Heap[j/2]val;
}
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14.14  SHELL SORT
Shell sort, invented by Donald Shell in 1959, is a sorting algorithm that is a generalization of 
insertion sort. While discussing insertion sort, we have observed two things:
	 ∑	 First, insertion sort works well when the input data is ‘almost sorted’.
	 ∑	 Second, insertion sort is quite inefficient to use as it moves the values just one position at a 

time.
Shell sort is considered an improvement over insertion sort as it compares elements separated 
by a gap of several positions. This enables the element to take bigger steps towards its expected 
position. In Shell sort, elements are sorted in multiple passes and in each pass, data are taken with 
smaller and smaller gap sizes. However, the last step of shell sort is a plain insertion sort. But by 
the time we reach the last step, the elements are already ‘almost sorted’, and hence it provides 
good performance.
	 If we take a scenario in which the smallest element is stored in the other end of the array, then 
sorting such an array with either bubble sort or insertion sort will execute in O(n2) time and take 
roughly n comparisons and exchanges to move this value all the way to its correct position. On 
the other hand, Shell sort first moves small values using giant step sizes, so a small value will 
move a long way towards its final position, with just a few comparisons and exchanges.

Technique
To visualize the way in which shell sort works, perform the following steps:
	 ∑	 Step 1: Arrange the elements of the array in the form of a table and sort the columns (using 

insertion sort).
	 ∑	 Step 2: Repeat Step 1, each time with smaller number of longer columns in such a way that 

at the end, there is only one column of data to be sorted.
Note that we are only visualizing the elements being arranged in a table, the algorithm does its 
sorting in-place.

Example 14.8  Sort the elements given below using shell sort.
63,  19,  7,  90,  81,  36,  54,  45,  72,  27,  22,  9,  41,  59,  33

Solution
Arrange the elements of the array in the form of a table and sort the columns.

									         Result:
	 63	 19	 7	 90	 81	 36	 54	 45	 63	 19	 7	 9	 41	 36	 33	 45

	 72	 27	 22	 9	 41	 59	 33				    72	 27	 22	 90	 81	 59	 54

The elements of the array can be given as:
	 63,  19,  7,  9,  41,  36,  33,  45,  72,  27,  22,  90,  81,  59,  54

Repeat Step 1 with smaller number of long columns.
									         Result:
	 63	 19	 7	 9	 41				    22	 19	 7	 9	 27
	 36	 33	 45	 72	 27				    36	 33	 45	 59	 41
	 22	 90	 81	 59	 54				    63	 90	 81	 72	 54

The elements of the array can be given as:
	 22,  19,  7,  9,  27,  36,  33,  45,  59,  41,  63,  90,  81,  72,  54

Repeat Step 1 with smaller number of long columns.
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									         Result:
	 22	 19	 7						      9	 19	 7
	 9	 27	 36						      22	 27	 36
	 33	 45	 59						      33	 45	 54

	 41	 63	 90						      41	 63	 59

	 81	 72	 54						      81	 72	 90

The elements of the array can be given as:
	  9,  19,  7,  22,  27,  36,  33,  45,  54,  41,  63,  59,  81,  72,  90

Finally, arrange the elements of the array in a single column and sort the column.
				    Result:
	 9			   7

	 19			   9

	 7			   19

	 22			   22

	 27			   27

	 36			   33

	 33			   36

	 45			   41

	 54			   45

	 41			   54

	 63			   59

	 59			   63

	 81			   72

	 72			   81

	 90			   90

Finally, the elements of the array can be given as:
	 7,  9,  19,  22,  27,  33,  36,  41,  45,  54,  59,  63,  72,  81,  90

	 The algorithm to sort an array of elements using shell sort is shown in Fig. 14.13. In the 
algorithm, we sort the elements of the array Arr in multiple passes. In each pass, we reduce the 
gap_size (visualize it as the number of columns) by a factor of half as done in Step 4. In each 
iteration of the for loop in Step 5, we compare the values of the array and interchange them if we 
have a larger value preceding the smaller one.

Shell_Sort(Arr, n)

Step 1: SET FLAG = 1, GAP_SIZE = N

Step 2: Repeat Steps 3 to 6 while FLAG = 1 OR GAP_SIZE > 1

Step 3: SET FLAG =

Step 4: SET GAP_SIZE = (GAP_SIZE + 1) / 2

Step 5: Repeat Step 6 for I = to I < (N - GAP_SIZE)

Step 6: IF Arr[I + GAP_SIZE] > Arr[I]

SWAP Arr[I + GAP_SIZE], Arr[I]

SET FLAG =

Step 7: END

Figure 14.13  Algorithm for shell sort
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Programming Example 

12.	 Write a program to implement shell sort algorithm.
#include<stdio.h>
void main()
{
	 int arr[10]={-1};
	 int i, j, n, flag = 1, gap_size, temp;
	 printf("\n Enter the number of elements in the array: ");
	 scanf("%d", &n);
	 printf("\n Enter %d numbers: ",n); // n was added
	 for(i=0;i<n;i++)
	 scanf("%d", &arr[i]);
	 gap_size = n;
	 while(flag == 1 || gap_size > 1)
	 {
	 	 flag = 0;
	 	 gap_size = (gap_size + 1) / 2;
	 	 for(i=0; i< (n - gap_size); i++)
		  {
	 	 	 if( arr[i+gap_size] < arr[i])
			   {
	 	 	 	 temp = arr[i+gap_size];
	 	 	 	 arr[i+gap_size] = arr[i];
	 	 	 	 arr[i] = temp;
	 	 	 	 flag = 0;
			   }
		  }
	 }
	 printf("\n The sorted array is: \n");
	 for(i=0;i<n;i++){
	 	 printf(" %d\t", arr[i]);
	 }
}

14.15  TREE SORT
A tree sort is a sorting algorithm that sorts numbers by making use of the properties of binary search 
tree (discussed in Chapter 10). The algorithm first builds a binary search tree using the numbers 
to be sorted and then does an in-order traversal so that the numbers are retrieved in a sorted order. 
We will not discuss this topic in detail here because we assume that reader has already studied it 
in sufficient details in the Chapter 10.

Complexity of Tree Sort Algorithm
Let us study the complexity of tree sort algorithm in all three cases.

Best Case Worst Case

•	 Inserting a number in a binary search tree takes O 
(log n) time.

•	 So, the complete binary search tree with n numbers is 
built in O (n log n) time.

•	 A binary tree is traversed in O (n) time.
•	 Total time required = O (n log n) + O (n) = O 
(n log n)

•	 Occurs with an unbalanced binary search tree, i.e., when 
the numbers are already sorted.

•	 Binary search tree with n numbers is built in O (n2) time.
•	 A binary tree is traversed in O (n) time.
•	 Total time required = O(n2) + O(n) = O(n2).
•	 The worst case can be improved by using a self-balancing 
binary search tree.
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Programming Example

13.	 Write a program to implement tree sort algorithm.
#include <stdio.h>
#include <conio.h>
#include <alloc.h>
struct tree
{
	 struct tree *left;
	 int num;
	 struct tree *right;
} ;
void insert (struct tree **, int);
void inorder (struct tree *);
void main( )
{
	 struct tree *t ;
	 int arr[10];
	 int i ;
	 clrscr( ) ;
	 printf("\n Enter 10 elements : ");
	 for(i=0;i<10;i++)
		  scanf("%d", &arr[i]);	
	 t = NULL ;
	 printf ("\n The elements of the array are : \n" ) ;
	 for (i = 0 ; i <10 ; i++)
		  printf ("%d\t", arr[i]) ;
	 for (i = 0 ; i <10 ; i++)
		  insert (&t, arr[i]) ;
	 printf ("\n The sorted array is : \n") ;
	 inorder (t ) ;
	 getche( ) ;
}
void insert (struct tree **tree_node, int num)
{
	 if ( *tree_node == NULL )
	 {
		  *tree_node = malloc (sizeof ( struct tree )) ;
		  ( *tree_node ) –> left = NULL ;
		  ( *tree_node ) –> num = num ;
		  ( *tree_node ) –> right = NULL ;
	 }
	 else
	 {
		  if ( num < ( *tree_node ) –> num )
			   insert ( &( ( *tree_node ) –> left ), num ) ;
		  else
			   insert ( &( ( *tree_node ) –> right ), num ) ;
	 }
}
void inorder (struct tree *tree_node )
{
	 if ( tree_node != NULL )
	 {
		  inorder ( tree_node –> left ) ;
		  printf ( "%d\t", tree_node –> num ) ;
		  inorder ( tree_node –> right ) ;
	 }
}
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14.16  COMPARISON OF Sorting ALGORITHMS
Table 14.1 compares the average-case and worst-case time 
complexities of different sorting algorithms discussed so 
far.

14.17  EXTERNAL SORTING
External sorting is a sorting technique that can handle 
massive amounts of data. It is usually applied when the 
data being sorted does not fit into the main memory (RAM) 
and, therefore, a slower memory (usually a magnetic 
disk or even a magnetic tape) needs to be used. We will 
explain the concept of external sorting using an example 
discussed below.

Example 14.9  Let us consider we need to sort 700 MB of data using only 100 MB of RAM. 
The steps for sorting are given below.

Step 1: Read 100 MB of the data in RAM and sort this data using any conventional sorting 
algorithm like quick sort.
Step 2: Write the sorted data back to the magnetic disk.
Step 3: Repeat Steps 1 and 2 until all the data (in 100 MB chunks) is sorted. All these seven 
chunks that are sorted need to be merged into one single output file.
Step 4: Read the first 10 MB of each of the sorted chunks and call them input buffers. So, now 
we have 70 MB of data in the RAM. Allocate the remaining RAM for output buffer.
Step 5: Perform seven-way merging and store the result in the output buffer. If at any point of 
time, the output buffer becomes full, then write its contents to the final sorted file. However, if 
any of the 7 input buffers gets empty, fill it with the next 10 MB of its associated 100 MB sorted 
chunk or else mark the input buffer (sorted chunk) as exhausted if it does not has any more left 
with it. Make sure that this chunk is not used for further merging of data.
	 The external merge sorting can be visualized as given in Fig. 14.14.

Disk
Input 1

Input 2

Input N

Output

Disk
I/O buffers in RAM

Figure 14.14  External merge sorting

Generalized External Merge Sort Algorithm
From the example above, we can now present a generalized merge sort algorithm for external 
sorting. If the amount of data to be sorted exceeds the available memory by a factor of K, then K 
chunks (also known as K run lists) of data are created. These K chunks are sorted and then a K-way 
merge is performed. If the amount of RAM available is given as X, then there will be K input 
buffers and 1 output buffer.

Table 14.1  Comparison of algorithms

Algorithm Average Case Worst Case

Bubble sort O(n2) O(n2)

Bucket sort O(n.k) O(n2.k)

Selection sort O(n2) O(n2)

Insertion sort O(n2) O(n2)

Shell sort – O(n log2 n)

Merge sort O(n log n) O(n log n)

Heap sort O(n log n) O(n log n)

Quick sort O(n log n) O(n2)
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	 In the above example, a single-pass merge was used. But if the ratio of data to be sorted and 
available RAM is particularly large, a multi-pass sorting is used. We can first merge only the first 
half of the sorted chunks, then the other half, and finally merge the two sorted chunks. The exact 
number of passes depends on the following factors:
	 ∑	 Size of the data to be sorted when compared with the available RAM
	 ∑	 Physical characteristics of the magnetic disk such as transfer rate, seek time, etc.

Applications of External Sorting
External sorting is used to update a master file from a transaction file. For example, updating the 
EMPLOYEES file based on new hires, promotions, appraisals, and dismissals.
	 It is also used in database applications for performing operations like Projection and Join. 
Projection means selecting a subset of fields and join means joining two files on a common field 
to create a new file whose fields are the union of the fields of the two files. External sorting is also 
used to remove duplicate records.

 Points to Remember
∑	 Searching refers to finding the position of a value 

in a collection of values. Some of the popular 
searching techniques are linear search, binary search, 
interpolation search, and jump search.

∑	 Linear search works by comparing the value to be 
searched with every element of the array one by one 
is a sequence until a match is found.

∑	 Binary search works efficiently with a sorted list. In 
this algorithm, the value to be searched is compared 
with the middle element of the array segment.

∑	 In each step of interpolation search, the search 
space for the value to be found is calculated. The 
calculation is done based on the values at the bounds 
of the search space and the value to be searched.

∑	 Jump search is used with sorted lists. We first check 
an element and if it is less than the desired value, then 
a block of elements is skipped by jumping ahead, and 
the element following this block is checked. If the 
checked element is greater than the desired value, 
then we have a boundary and we are sure that the 
desired value lies between the previously checked 
element and the currently checked element.

∑	 Internal sorting deals with sorting the data stored 
in the memory, whereas external sorting deals with 
sorting the data stored in files.

∑	 In bubble sorting, consecutive adjacent pairs of 
elements in the array are compared with each other.

∑	 Insertion sort works by moving the current data 
element past the already sorted values and repeatedly 
interchanging it with the preceding value until it is 
in the correct place.

∑	 Selection sort works by finding the smallest value 
and placing it in the first position. It then finds the 

second smallest value and places it in the second 
position. This procedure is repeated until the whole 
array is sorted.

∑	 Merge sort is a sorting algorithm that uses the divide, 
conquer, and combine algorithmic paradigm. Divide 
means partitioning the n-element array to be sorted 
into two sub-arrays of n/2 elements in each sub-
array. Conquer means sorting the two sub-arrays 
recursively using merge sort. Combine means 
merging the two sorted sub-arrays of size n/2 each 
to produce a sorted array of n elements. The running 
time of merge sort in average case and worst case 
can be given as O(n log n).

∑	 Quick sort works by using a divide-and-conquer 
strategy. It selects a pivot element and rearranges 
the elements in such a way that all elements less 
than pivot appear before it and all elements greater 
than pivot appear after it.

∑	 Radix sort is a linear sorting algorithm that uses the 
concept of sorting names in alphabetical order.

∑	 Heap sort sorts an array in two phases. In the first 
phase, it builds a heap of the given array. In the 
second phase, the root element is deleted repeatedly 
and inserted into an array.

∑	 Shell sort is considered as an improvement over 
insertion sort, as it compares elements separated by 
a gap of several positions.

∑	 A tree sort is a sorting algorithm that sorts numbers 
by making use of the properties of binary search tree. 
The algorithm first builds a binary search tree using 
the numbers to be sorted and then does an in-order 
traversal so that the numbers are retrieved in a sorted 
order.



462  Data Structures Using C

 Exercises

Review Questions
	 1.	 Which technique of searching an element in 

an array would you prefer to use and in which 
situation?

	 2.	 Define sorting. What is the importance of sorting?
	 3.	 What are the different types of sorting techniques? 

Which sorting technique has the least worst case?
	 4.	 Explain the difference between bubble sort and 

quick sort. Which one is more efficient?
	 5.	 Sort the elements 77, 49, 25, 12, 9, 33, 56, 81 

using
	 (a)	 insertion sort	 (b)	 selection sort
	 (c)	 bubble sort	 (d)	 merge sort
	 (e)	 quick sort	 (f)	 radix sort
	 (g)	 shell sort
	 6.	 Compare heap sort and quick sort.
	 7.	 Quick sort shows quadratic behaviour in certain 

situations. Justify.
	 8.	 If the following sequence of numbers is to be 

sorted using quick sort, then show the iterations 
of the sorting process.

		  42, 34, 75, 23, 21, 18, 90, 67, 78
	 9.	 Sort the following sequence of numbers in 

descending order using heap sort.
		  42, 34, 75, 23, 21, 18, 90, 67, 78
	 10.	 A certain sorting technique was applied to the 

following data set,
		  45, 1, 27, 36, 54, 90
		  After two passes, the rearrangement of the data 

set is given as below:
		  1, 27, 45, 36, 54, 90
		  Identify the sorting algorithm that was applied.
	 11.	 A certain sorting technique was applied to the 

following data set,
		  81, 72, 63, 45, 27, 36
		  After two passes, the rearrangement of the data 

set is given as below:
		  27, 36, 80, 72, 63, 45
		  Identify the sorting algorithm that was applied.
	 12.	 a certain sorting technique was applied to the 

following data set,
		  45, 1, 63, 36, 54, 90
		  After two passes, the rearrangement of the data 

set is given as below:
		  1, 45, 63, 36, 54, 90
		  Identify the sorting algorithm that was applied.

	 13.	 Write a recursive function to perform selection 
sort.

	 14.	 Compare the running time complexity of different 
sorting algorithms.

	 15.	 Discuss the advantages of insertion sort.

Programming Exercises
	 1.	 Write a program to implement bubble sort. Given 

the numbers 7, 1, 4, 12, 67, 33, and 45. How many 
swaps will be performed to sort these numbers 
using the bubble sort.

	 2.	 Write a program to implement a sort technique 
that works by repeatedly stepping through the list 
to be sorted.

	 3.	 Write a program to implement a sort technique in 
which the sorted array is built one entry at a time.

	 4.	 Write a program to implement an in-place 
comparison sort.

	 5.	 Write a program to implement a sort technique 
that works on the principle of divide and conquer 
strategy.

	 6.	 Write a program to implement partition-exchange 
sort.

	 7.	 Write a program to implement a sort technique 
which sorts the numbers based on individual 
digits.

	 8.	 Write a program to sort an array of integers in 
descending order using the following sorting 
techniques:

	 (a)	 insertion sort	 (b)	 selection sort
	 (c)	 bubble sort	 (d)	 merge sort
	 (e)	 quick sort	 (f)	 radix sort
	 (g)	 shell sort
	 9.	 Write a program to sort an array of floating point 

numbers in descending order using the following 
sorting techniques:

	 (a)	 insertion sort	 (b)	 selection sort
	 (c)	 bubble sort	 (d)	 merge sort
	 (e)	 quick sort	 (f)	 radix sort
	 (g)	 shell sort
	 10.	 Write a program to sort an array of names using 

the bucket sort.
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Multiple-choice Questions
	 1.	 The worst case complexity is ______ when 

compared with the average case complexity of a 
binary search algorithm. 

	 (a)	 Equal	 (b)	 Greater
	 (c)	 Less	 (d)	 None of these
	 2.	 The complexity of binary search algorithm is 
	 (a)	 O(n)	 (b)	 O(n2)
	 (c)	 O(n log n)	 (d)	 O(log n)
	 3.	 Which of the following cases occurs when 

searching an array using linear search the value 
to be searched is equal to the first element of the 
array?

	 (a)	 Worst case	 (b)	 Average case
	 (c)	 Best case	 (d)	 Amortized case
	 4.	 A card game player arranges his cards and picks 

them one by one. With which sorting technique 
can you compare this example?

	 (a)	 Bubble sort	 (b)	 Selection sort
	 (c)	 Merge sort	 (d)	 Insertion sort
	 5.	 Which of the following techniques deals with 

sorting the data stored in the computer’s memory?
	 (a)	 Insertion sort	 (b)	 Internal sort
	 (c)	 External sort	 (d)	 Radix sort
	 6.	 In which sorting, consecutive adjacent pairs 

of elements in the array are compared with each 
other?

	 (a)	 Bubble sort	 (b)	 Selection sort
	 (c)	 Merge sort	 (d)	 Radix sort
	 7.	 Which term means sorting the two sub-arrays 

recursively using merge sort?
	 (a)	 Divide	 (b)	 Conquer
	 (c)	 Combine	 (d)	 All of these
	 8.	 Which sorting algorithm sorts by moving the 

current data element past the already sorted values 
and repeatedly interchanging it with the preceding 
value until it is in its correct place?

	 (a)	 Insertion sort	 (b)	 Internal sort
	 (c)	 External sort	 (d)	 Radix sort
	 9.	 Which algorithm uses the divide, conquer, and 

combine algorithmic paradigm?
	 (a)	 Selection sort	 (b)	 Insertion sort
	 (c)	 Merge sort	 (d)	 Radix sort
	 10.	 Quick sort is faster than
	 (a)	 Selection sort	 (b)	 Insertion sort
	 (c)	 Bubble sort	 (d)	 All of these
	 11.	 Which sorting algorithm is also known as 

tournament sort?

	 (a)	 Selection sort	 (b)	 Insertion sort
	 (c)	 Bubble sort	 (d)	 Heap sort

True or False
	 1.	 Binary search is also called sequential search.
	 2.	 Linear search is performed on a sorted array.
	 3.	 For insertion sort, the best case occurs when the 

array is already sorted.
	 4.	 Selection sort has a linear running time complexity.
	 5.	 The running time of merge sort in the average case 

and the worst case is O(n log n).
	 6.	 The worst case running time complexity of quick 

sort is O(n log n).
	 7.	 Heap sort is an efficient and a stable sorting 

algorithm.
	 8.	 External sorting deals with sorting the data stored 

in the computer’s memory.
	 9.	 Insertion sort is less efficient than quick sort, heap 

sort, and merge sort.
	 10.	 The average case of insertion sort has a quadratic 

running time.
	 11.	 The partitioning of the array in quick sort is done 

in O(n) time.

Fill in the Blanks
	 1.	 Performance of the linear search algorithm can be 

improved by using a ______.
	 2.	 The complexity of linear search algorithm is 

______.
	 3.	 Sorting means ______.
	 4.	 ______ sort shows the best average-case 

behaviour.
	 5.	 ______ deals with sorting the data stored in files.
	 6.	 O(n2) is the running time complexity of ______ 

algorithm.
	 7.	 In the worst case, insertion sort has a ______ 

running time.
	 8.	 ______ sort uses the divide, conquer, and combine 

algorithmic paradigm.
	 9.	 In the average case, quick sort has a running time 

complexity of ______.
	 10.	 The execution time of bucket sort in average case 

is ______.
	 11.	 The running time of merge sort in the average and 

the worst case is ______.
	 12.	 The efficiency of quick sort depends on ______.



15.1  INTRODUCTION
In Chapter 14, we discussed two search algorithms: linear search and binary search. Linear search 
has a running time proportional to O(n), while binary search takes time proportional to O(log n), 
where n is the number of elements in the array. Binary search and binary search trees are efficient 
algorithms to search for an element. But what if we want to perform the search operation in time 
proportional to O(1)? In other words, is there a way to search an array in constant time, irrespective 
of its size?

  There are two solutions to this problem. 
Let us take an example to explain the first 
solution. In a small company of 100 employees, 
each employee is assigned an Emp_ID in the 
range 0–99. To store the records in an array, 
each employee’s Emp_ID acts as an index into 
the array where the employee’s record will be 
stored as shown in Fig. 15.1.
  In this case, we can directly access the 
record of any employee, once we know his 
Emp_ID, because the array index is the same 
as the Emp_ID number. But practically, this 
implementation is hardly feasible.

Array of Employees’ Records

Employee record with Emp_ID 0

Employee record with Emp_ID 1

Employee record with Emp_ID 2

.....................................................

Employee record with Emp_ID 98

Employee record with Emp_ID 99

.................................................................................

............................

Key

Key 99

Key 98

Key 2

Key 1

Key 0

[99]

[98]

[2]

[1]

[0]

Figure 15.1  Records of employees

Learning Objective
In this chapter, we will discuss another data structure known as hash table. We will 
see what a hash table is and why do we prefer hash tables over simple arrays. We 
will also discuss hash functions, collisions, and the techniques to resolve collisions.

Hashing and 
Collision

chapter 15
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	 Let us assume that the same company uses a five-digit Emp_ID as the primary key. In this case, 
key values will range from 00000 to 99999. If we want to use the same technique as above, we need 
an array of size 100,000, of which only 100 elements will be used. This is illustrated in Fig. 15.2.

Array of Employees’ Records

Employee record with Emp_ID 00000

Employee record with Emp_ID n

...........................................................

Employee record with Emp_ID 99998

Employee record with Emp_ID 99999

.......................................

Key

Key 99999

Key 99998

Key n

Key 00000

[99999]

[99998]

[n]

[0]

....................................... ...........................................................

Figure 15.2  Records of employees with a five-digit Emp_ID

	 It is impractical to waste so much storage space just to ensure that each employee’s record is 
in a unique and predictable location.
	 Whether we use a two-digit primary key (Emp_ID) or a five-digit key, there are just 100 employees 
in the company. Thus, we will be using only 100 locations in the array. Therefore, in order to keep 
the array size down to the size that we will actually be using (100 elements), another good option 
is to use just the last two digits of the key to identify each employee. For example, the employee 
with Emp_ID 79439 will be stored in the element of the array with index 39. Similarly, the employee 
with Emp_ID 12345 will have his record stored in the array at the 45th location.
	 In the second solution, the elements are not stored according to the value of the key. So in this 
case, we need a way to convert a five-digit key number to a two-digit array index. We need a 
function which will do the transformation. In this case, we will use the term hash table for an array 
and the function that will carry out the transformation will be called a hash function.

15.2  HASH TABLEs
Hash table is a data structure in which keys are mapped to array positions by a hash function. In 
the example discussed here we will use a hash function that extracts the last two digits of the key. 
Therefore, we map the keys to array locations or array indices. A value stored in a hash table can 
be searched in O(1) time by using a hash function which generates an address from the key (by 
producing the index of the array where the value is stored).
	 Figure 15.3 shows a direct correspondence between the keys and the indices of the array. This 
concept is useful when the total universe of keys is small and when most of the keys are actually 
used from the whole set of keys. This is equivalent to our first example, where there are 100 keys 
for 100 employees.
	 However, when the set K of keys that are actually used is smaller than the universe of keys (U), 
a hash table consumes less storage space. The storage requirement for a hash table is O(k), where 
k is the number of keys actually used.
	 In a hash table, an element with key k is stored at index h(k) and not k. It means a hash function 
h is used to calculate the index at which the element with key k will be stored. This process of 
mapping the keys to appropriate locations (or indices) in a hash table is called hashing.
	 Figure 15.4 shows a hash table in which each key from the set K is mapped to locations generated 
by using a hash function. Note that keys k2 and k6 point to the same memory location. This is 
known as collision. That is, when two or more keys map to the same memory location, a collision 
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is said to occur. Similarly, keys k5 and k7 also collide. The main goal of using a hash function is 
to reduce the range of array indices that have to be handled. Thus, instead of having U values, we 
just need K values, thereby reducing the amount of storage space required.
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Figure 15.3  Direct relationship between key and index in the array
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Figure 15.4  Relationship between keys and hash table index

15.3  HASH FUNCTIONs
A hash function is a mathematical formula which, when applied to a key, produces an integer 
which can be used as an index for the key in the hash table. The main aim of a hash function is 
that elements should be relatively, randomly, and uniformly distributed. It produces a unique set 
of integers within some suitable range in order to reduce the number of collisions. In practice, 
there is no hash function that eliminates collisions completely. A good hash function can only 
minimize the number of collisions by spreading the elements uniformly throughout the array.
	 In this section, we will discuss the popular hash functions which help to minimize collisions. 
But before that, let us first look at the properties of a good hash function.

Properties of a Good Hash Function
Low cost  The cost of executing a hash function must be small, so that using the hashing technique 
becomes preferable over other approaches. For example, if binary search algorithm can search an 
element from a sorted table of n items with log2 n key comparisons, then the hash function must 
cost less than performing log2 n key comparisons.

Determinism  A hash procedure must be deterministic. This means that the same hash value must 
be generated for a given input value. However, this criteria excludes hash functions that depend 
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on external variable parameters (such as the time of day) and on the memory address of the object 
being hashed (because address of the object may change during processing).

Uniformity  A good hash function must map the keys as evenly as possible over its output range. 
This means that the probability of generating every hash value in the output range should roughly 
be the same. The property of uniformity also minimizes the number of collisions.

15.4  DIFFERENT HASH FUNCTIONS
In this section, we will discuss the hash functions which use numeric keys. However, there can 
be cases in real-world applications where we can have alphanumeric keys rather than simple 
numeric keys. In such cases, the ASCII value of the character can be used to transform it into its 
equivalent numeric key. Once this transformation is done, any of the hash functions given below 
can be applied to generate the hash value.

15.4.1  Division Method
It is the most simple method of hashing an integer x. This method divides x by M and then uses 
the remainder obtained. In this case, the hash function can be given as

h(x) = x mod M

The division method is quite good for just about any value of M and since it requires only a single 
division operation, the method works very fast. However, extra care should be taken to select a 
suitable value for M.
	 For example, suppose M is an even number then h(x) is even if x is even and h(x) is odd if x is 
odd. If all possible keys are equi-probable, then this is not a problem. But if even keys are more 
likely than odd keys, then the division method will not spread the hashed values uniformly.
	 Generally, it is best to choose M to be a prime number because making M a prime number increases 
the likelihood that the keys are mapped with a uniformity in the output range of values. M should 
also be not too close to the exact powers of 2. If we have

h(x) = x mod 2k

then the function will simply extract the lowest k bits of the binary representation of x.
	 The division method is extremely simple to implement. The following code segment illustrates 
how to do this:

int const M = 97; // a prime number
int h (int x)
{ return (x % M); }

A potential drawback of the division method is that while using this method, consecutive keys 
map to consecutive hash values. On one hand, this is good as it ensures that consecutive keys do 
not collide, but on the other, it also means that consecutive array locations will be occupied. This 
may lead to degradation in performance.

Example 15.1  Calculate the hash values of keys 1234 and 5462.
Solution  Setting M = 97, hash values can be calculated as:

h(1234) = 1234 % 97 = 70
h(5642) = 5642 % 97 = 16

15.4.2  Multiplication Method
The steps involved in the multiplication method are as follows:
	 Step 1: Choose a constant A such that 0 < A < 1.
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	 Step 2: Multiply the key k by A.
	 Step 3: Extract the fractional part of kA.
	 Step 4: Multiply the result of Step 3 by the size of hash table (m).
Hence, the hash function can be given as:

h(k) = Î m (kA mod 1) ˚

where (kA mod 1) gives the fractional part of kA and m is the total number of indices in the hash table.
	 The greatest advantage of this method is that it works practically with any value of A. Although 
the algorithm works better with some values, the optimal choice depends on the characteristics 
of the data being hashed. Knuth has suggested that the best choice of A is

" (sqrt5 – 1) /2 = 0.6180339887

Example 15.2  Given a hash table of size 1000, map the key 12345 to an appropriate location 
in the hash table.
Solution We will use A = 0.618033, m = 1000, and k = 12345

h(12345) = Î 1000 (12345 ¥ 0.618033 mod 1) ˚
h(12345) = Î 1000 (7629.617385 mod 1) ˚
h(12345) = Î 1000 (0.617385) ˚
h(12345) = Î 617.385 ˚
h(12345) = 617

15.4.3  Mid-Square Method
The mid-square method is a good hash function which works in two steps:
	 Step 1: Square the value of the key. That is, find k2.
	 Step 2: Extract the middle r digits of the result obtained in Step 1.
The algorithm works well because most or all digits of the key value contribute to the result. This 
is because all the digits in the original key value contribute to produce the middle digits of the 
squared value. Therefore, the result is not dominated by the distribution of the bottom digit or the 
top digit of the original key value.
	 In the mid-square method, the same r digits must be chosen from all the keys. Therefore, the 
hash function can be given as:

h(k) = s

where s is obtained by selecting r digits from k2.

Example 15.3  Calculate the hash value for keys 1234 and 5642 using the mid-square method. 
The hash table has 100 memory locations.
Solution Note that the hash table has 100 memory locations whose indices vary from 0 to 99. 
This means that only two digits are needed to map the key to a location in the hash table, so r = 2.
When k = 1234, k2 = 1522756, h (1234) = 27
When k = 5642, k2 = 31832164, h (5642) = 21
Observe that the 3rd and 4th digits starting from the right are chosen.

15.4.4  Folding Method
The folding method works in the following two steps:
Step 1: Divide the key value into a number of parts. That is, divide k into parts k1, k2, ..., kn, where 

each part has the same number of digits except the last part which may have lesser digits 
than the other parts.
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Step 2:	Add the individual parts. That is, obtain the sum of k1 + k2 + ... + kn. The hash value is 
produced by ignoring the last carry, if any.

	 Note that the number of digits in each part of the key will vary depending upon the size of the 
hash table. For example, if the hash table has a size of 1000, then there are 1000 locations in the 
hash table. To address these 1000 locations, we need at least three digits; therefore, each part of 
the key must have three digits except the last part which may have lesser digits.

Example 15.4  Given a hash table of 100 locations, calculate the hash value using folding 
method for keys 5678, 321, and 34567.
Solution
Since there are 100 memory locations to address, we will break the key into parts where each 
part (except the last) will contain two digits. The hash values can be obtained as shown below: 

key 5678 321 34567

Parts 56 and 78 32 and 1 34, 56 and 7

Sum 134 33 97

Hash value 34 (ignore the last carry) 33 97

15.5  COLLISIONS
As discussed earlier in this chapter, collisions occur when the hash function maps two different 
keys to the same location. Obviously, two records cannot be stored in the same location. Therefore, 
a method used to solve the problem of collision, also called collision resolution technique, is 
applied. The two most popular methods of resolving collisions are:
	 1.	 Open addressing
	 2.	 Chaining
In this section, we will discuss both these techniques in detail.

15.5.1  Collision Resolution by Open Addressing
Once a collision takes place, open addressing or closed hashing computes new positions using a 
probe sequence and the next record is stored in that position. In this technique, all the values are 
stored in the hash table. The hash table contains two types of values: sentinel values (e.g., –1) and 
data values. The presence of a sentinel value indicates that the location contains no data value at 
present but can be used to hold a value.
	 When a key is mapped to a particular memory location, then the value it holds is checked. If it 
contains a sentinel value, then the location is free and the data value can be stored in it. However, 
if the location already has some data value stored in it, then other slots are examined systematically 
in the forward direction to find a free slot. If even a single free location is not found, then we have 
an OVERFLOW condition.
	 The process of examining memory locations in the hash table is called probing. Open addressing 
technique can be implemented using linear probing, quadratic probing, double hashing, and 
rehashing.

Linear Probing
The simplest approach to resolve a collision is linear probing. In this technique, if a value is already 
stored at a location generated by h(k), then the following hash function is used to resolve the 
collision:

h(k, i) = [h¢(k) + i] mod m
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Where m is the size of the hash table, h¢(k) = (k mod m), and i is the probe number that varies from 
0 to m–1.
	 Therefore, for a given key k, first the location generated by [h¢(k) mod m] is probed because for 
the first time i=0. If the location is free, the value is stored in it, else the second probe generates 
the address of the location given by [h¢(k) + 1]mod m. Similarly, if the location is occupied, then 
subsequent probes generate the address as [h¢(k) + 2]mod m, [h¢(k) + 3]mod m, [h¢(k) + 4]mod m, [h¢(k) 
+ 5]mod m, and so on, until a free location is found.

Note	 Linear probing is known for its simplicity. When we have to store a value, we try the slots: [h¢(k)]
mod m, [h¢(k) + 1]mod m, [h¢(k) + 2]mod m, [h¢(k) + 3]mod m, [h¢(k) + 4]mod m, [h¢(k) + 5]mod m, and so 
no, until a vacant location is found.

Example 15.5   Consider a hash table of size 10. Using linear probing, insert the keys 72, 27, 
36, 24, 63, 81, 92, and 101 into the table.
Let h¢(k) = k mod m, m = 10
Initially, the hash table can be given as:

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 –1 –1 –1 –1 –1–1

Step 1	 Key	= 72
		  h(72, 0)	= (72 mod 10 + 0) mod 10
			  = (2) mod 10
			  = 2

Since T[2] is vacant, insert key 72 at this location.

0 1 2 3 4 5 6 7 8 9

–1 72 –1 –1 –1 –1 –1 –1 –1–1

Step 2	 Key	= 27
		  h(27, 0)	= (27 mod 10 + 0) mod 10
			  = (7) mod 10
			  = 7

Since T[7] is vacant, insert key 27 at this location.

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 –1 27 –1 –172–1

Step 3	 Key	= 36
		  h(36, 0)	= (36 mod 10 + 0) mod 10
			  = (6) mod 10
			  = 6

Since T[6] is vacant, insert key 36 at this location.

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 36 –1 –172 27–1

Step 4	 Key	= 24
		  h(24, 0)	= (24 mod 10 + 0) mod 10
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			  = (4) mod 10
			  = 4

Since T[4] is vacant, insert key 24 at this location.

0 1 2 3 4 5 6 7 8 9

–1 –1 24 –1 –1 –172 2736–1

Step 5	 Key	= 63
		  h(63, 0)	= (63 mod 10 + 0) mod 10
			  = (3) mod 10
			  = 3

Since T[3] is vacant, insert key 63 at this location.

0 1 2 3 4 5 6 7 8 9

–1 63 –1 –1 –172 273624–1

Step 6	 Key	= 81
		  h(81, 0)	= (81 mod 10 + 0) mod 10
			  = (1) mod 10
			  = 1

Since T[1] is vacant, insert key 81 at this location.

0 1 2 3 4 5 6 7 8 9

81 –1 –1 –172 273624630

Step 7	 Key	= 92
		  h(92, 0)	= (92 mod 10 + 0) mod 10
			  = (2) mod 10
			  = 2

Now T[2] is occupied, so we cannot store the key 92 in T[2]. Therefore, try again for the next 
location. Thus probe, i = 1, this time.

		  Key	= 92
		  h(92, 1)	= (92 mod 10 + 1) mod 10
			  = (2 + 1) mod 10
			  = 3

Now T[3] is occupied, so we cannot store the key 92 in T[3]. Therefore, try again for the next 
location. Thus probe, i = 2, this time.

		  Key	= 92
		  h(92, 2)	= (92 mod 10 + 2) mod 10
			  = (2 + 2) mod 10
			  = 4

Now T[4] is occupied, so we cannot store the key 92 in T[4]. Therefore, try again for the next 
location. Thus probe, i = 3, this time.

		  Key	= 92
		  h(92, 3)	= (92 mod 10 + 3) mod 10
			  = (2 + 3) mod 10
			  = 5

Since T[5] is vacant, insert key 92 at this location.
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0 1 2 3 4 5 6 7 8 9

92 –1 –172 2736246381–1

Step 8	 Key	= 101
		  h(101, 0)	= (101 mod 10 + 0) mod 10
			  = (1) mod 10
			  = 1

Now T[1] is occupied, so we cannot store the key 101 in T[1]. Therefore, try again for the next 
location. Thus probe, i = 1, this time.

		  Key	= 101
		  h(101, 1)	= (101 mod 10 + 1) mod 10
			  = (1 + 1) mod 10
			  = 2
T[2] is also occupied, so we cannot store the key in this location. The procedure will be repeated 
until the hash function generates the address of location 8 which is vacant and can be used to 
store the value in it.

Searching a Value using Linear Probing
The procedure for searching a value in a hash table is same as for storing a value in a hash table.
	 While searching for a value in a hash table, the array index is re-computed and the key of the element 
stored at that location is compared with the value that has to be searched. If a match is found, then 
the search operation is successful. The search time in this case is given as O(1). If the key does 
not match, then the search function begins a sequential search of the array that continues until:
	 ∑	 the value is found, or
	 ∑	 the search function encounters a vacant location in the array, indicating that the value is not 

present, or
	 ∑	 the search function terminates because it reaches the end of the table and the value is not 

present.
In the worst case, the search operation may have to make n–1 comparisons, and the running time of 
the search algorithm may take O(n) time. The worst case will be encountered when after scanning 
all the n–1 elements, the value is either present at the last location or not present in the table.
	 Thus, we see that with the increase in the number of collisions, the distance between the array 
index computed by the hash function and the actual location of the element increases, thereby 
increasing the search time.

Pros and Cons
Linear probing finds an empty location by doing a linear search in the array beginning from 
position h(k). Although the algorithm provides good memory caching through good locality of 
reference, the drawback of this algorithm is that it results in clustering, and thus there is a higher 
risk of more collisions where one collision has already taken place. The performance of linear 
probing is sensitive to the distribution of input values.
	 As the hash table fills, clusters of consecutive cells are formed and the time required for a search 
increases with the size of the cluster. In addition to this, when a new value has to be inserted into the 
table at a position which is already occupied, that value is inserted at the end of the cluster, which 
again increases the length of the cluster. Generally, an insertion is made between two clusters 
that are separated by one vacant location. But with linear probing, there are more chances that 
subsequent insertions will also end up in one of the clusters, thereby potentially increasing the 
cluster length by an amount much greater than one. More the number of collisions, higher the 
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probes that are required to find a free location and lesser is the performance. This phenomenon is 
called primary clustering. To avoid primary clustering, other techniques such as quadratic probing 
and double hashing are used.

Quadratic Probing
In this technique, if a value is already stored at a location generated by h(k), then the following 
hash function is used to resolve the collision:

h(k, i) = [h¢(k) + c1i + c2i
2] mod m

where m is the size of the hash table, h¢(k) = (k mod m), i is the probe number that varies from 0 to 
m–1, and c1 and c2 are constants such that c1 and c2 π 0.
	 Quadratic probing eliminates the primary clustering phenomenon of linear probing because 
instead of doing a linear search, it does a quadratic search. For a given key k, first the location 
generated by h¢(k) mod m is probed. If the location is free, the value is stored in it, else subsequent 
locations probed are offset by factors that depend in a quadratic manner on the probe number i. 
Although quadratic probing performs better than linear probing, in order to maximize the utilization 
of the hash table, the values of c1, c2, and m need to be constrained.

Example 15.6  Consider a hash table of size 10. Using quadratic probing, insert the keys 72, 
27, 36, 24, 63, 81, and 101 into the table. Take c1 = 1 and c2 = 3.
Solution
Let h¢(k) = k mod m, m = 10
Initially, the hash table can be given as:

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 –1 –1 –1 –1 –1–1

We have,
		  h(k, i)	= [h¢(k) + c1i + c2i

2] mod m
Step 1	 Key	= 72

		  h(72, 0)	= [72 mod 10 + 1 ¥ 0 + 3 ¥ 0] mod 10
			  = [72 mod 10] mod 10
			  = 2 mod 10
			  = 2

Since T[2] is vacant, insert the key 72 in T[2]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 72 –1 –1 –1 –1 –1 –1 –1–1

Step 2	 Key	= 27
		  h(27, 0)	= [27 mod 10 + 1 ¥ 0 + 3 ¥ 0] mod 10
			  = [27 mod 10] mod 10
			  = 7 mod 10
			  = 7

Since T[7] is vacant, insert the key 27 in T[7]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 –1 27 –1 –172–1



474  Data Structures Using C

Step 3	 Key	= 36
		  h(36, 0)	= [36 mod 10 + 1 ¥ 0 + 3 ¥ 0] mod 10
			  = [36 mod 10] mod 10
			  = 6 mod 10
			  = 6

Since T[6] is vacant, insert the key 36 in T[6]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 36 –1 –172 27–1

Step 4	 Key	= 24
		  h(24, 0)	= [24 mod 10 + 1 ¥ 0 + 3 ¥ 0] mod 10
			  = [24 mod 10] mod 10
			  = 4 mod 10
			  = 4

Since T[4] is vacant, insert the key 24 in T[4]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 –1 24 –1 –1 –172 2736–1

Step 5	 Key	= 63
		  h(63, 0)	= [63 mod 10 + 1 ¥ 0 + 3 ¥ 0] mod 10
			  = [63 mod 10] mod 10
			  = 3 mod 10
			  = 3

Since T[3] is vacant, insert the key 63 in T[3]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 63 –1 –1 –172 273624–1

Step 6	 Key	= 81
		  h(81,0)	= [81 mod 10 + 1 ¥ 0 + 3 ¥ 0] mod 10
			  = [81 mod 10] mod 10
			  = 81 mod 10
			  = 1

Since T[1] is vacant, insert the key 81 in T[1]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

81 –1 –1 –172 27362463–1

Step 7	 Key	= 101
		  h(101,0)	= [101 mod 10 + 1 ¥ 0 + 3 ¥ 0] mod 10
			  = [101 mod 10 + 0] mod 10
			  = 1 mod 10
			  = 1

Since T[1] is already occupied, the key 101 cannot be stored in T[1]. Therefore, try again for 
next location. Thus probe, i = 1, this time.

		  Key	= 101
		  h(101,0)	= [101 mod 10 + 1 ¥ 1 + 3 ¥ 1] mod 10



Hashing and Collision  475

			  = [101 mod 10 + 1 + 3] mod 10
			  = [101 mod 10 + 4] mod 10
			  = [1 + 4] mod 10
			  = 5 mod 10
			  = 5

Since T[5] is vacant, insert the key 101 in T[5]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

101 –1 –172 2736246381–1

Searching a Value using Quadratic Probing
While searching a value using the quadratic probing technique, the array index is re-computed 
and the key of the element stored at that location is compared with the value that has to be searched. 
If the desired key value matches with the key value at that location, then the element is present 
in the hash table and the search is said to be successful. In this case, the search time is given as 
O(1). However, if the value does not match, then the search function begins a sequential search 
of the array that continues until:
	 ∑	 the value is found, or
	 ∑	 the search function encounters a vacant location in the array, indicating that the value is 		

not present, or 
	 ∑	 the search function terminates because it reaches the end of the table and the value is not 

present.
	 In the worst case, the search operation may take n–1 comparisons, and the running time of the 
search algorithm may be O(n). The worst case will be encountered when after scanning all the n–1 
elements, the value is either present at the last location or not present in the table.
	 Thus, we see that with the increase in the number of collisions, the distance between the array 
index computed by the hash function and the actual location of the element increases, thereby 
increasing the search time.

Pros and Cons
Quadratic probing resolves the primary clustering problem that exists in the linear probing 
technique. Quadratic probing provides good memory caching because it preserves some locality 
of reference. But linear probing does this task better and gives a better cache performance.
	 One of the major drawbacks of quadratic probing is that a sequence of successive probes may 
only explore a fraction of the table, and this fraction may be quite small. If this happens, then we 
will not be able to find an empty location in the table despite the fact that the table is by no means 
full. In Example 15.6 try to insert the key 92 and you will encounter this problem.
	 Although quadratic probing is free from primary clustering, it is still liable to what is known as 
secondary clustering. It means that if there is a collision between two keys, then the same probe 
sequence will be followed for both. With quadratic probing, the probability for multiple collisions 
increases as the table becomes full. This situation is usually encountered when the hash table is 
more than full.
	 Quadratic probing is widely applied in the Berkeley Fast File System to allocate free blocks.

Double Hashing
To start with, double hashing uses one hash value and then repeatedly steps forward an interval 
until an empty location is reached. The interval is decided using a second, independent hash function, 
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hence the name double hashing. In double hashing, we use two hash functions rather than a single 
function. The hash function in the case of double hashing can be given as:

h(k, i) = [h1(k) + ih2(k)] mod m

where m is the size of the hash table, h1(k) and h2(k) are two hash functions given as h1(k) = k mod 
m, h2(k) = k mod m', i is the probe number that varies from 0 to m–1, and m' is chosen to be less than 
m. We can choose m' = m–1 or m–2.
	 When we have to insert a key k in the hash table, we first probe the location given by applying 
[h1(k) mod m] because during the first probe, i = 0. If the location is vacant, the key is inserted into 
it, else subsequent probes generate locations that are at an offset of [h2(k) mod m] from the previous 
location. Since the offset may vary with every probe depending on the value generated by the 
second hash function, the performance of double hashing is very close to the performance of the 
ideal scheme of uniform hashing.

Pros and Cons
Double hashing minimizes repeated collisions and the effects of clustering. That is, double hashing 
is free from problems associated with primary clustering as well as secondary clustering.

Example 15.7  Consider a hash table of size = 10. Using double hashing, insert the keys 72, 
27, 36, 24, 63, 81, 92, and 101 into the table. Take h1 = (k mod 10) and h2 = (k mod 8).
Solution
Let m = 10
Initially, the hash table can be given as:

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 –1 –1 –1 –1 –1–1

We have,
		  h(k, i)	= [h1(k) + ih2(k)] mod m

Step 1	 Key	= 72
		  h(72, 0)	= [72 mod 10 + (0 ¥ 72 mod 8)] mod 10
			  = [2 + (0 ¥ 0)] mod 10
			  = 2 mod 10
			  = 2

Since T[2] is vacant, insert the key 72 in T[2]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 72 –1 –1 –1 –1 –1 –1 –1–1

Step 2	 Key	= 27
		  h(27, 0)	= [27 mod 10 + (0 ¥ 27 mod 8)] mod 10
			  = [7 + (0 ¥ 3)] mod 10
			  = 7 mod 10
			  = 7

Since T[7] is vacant, insert the key 27 in T[7]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 –1 27 –1 –172–1
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Step 3	 Key	= 36
		  h(36, 0)	= [36 mod 10 + (0 ¥ 36 mod 8)] mod 10
			  = [6 + (0 ¥ 4)] mod 10
			  = 6 mod 10
			  = 6

Since T[6] is vacant, insert the key 36 in T[6]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 –1 –1 –1 36 –1 –172 27–1

Step 4	 Key	= 24
		  h(24, 0)	= [24 mod 10 + (0 ¥ 24 mod 8)] mod 10
			  = [4 + (0 ¥ 0)] mod 10
			  = 4 mod 10
			  = 4

Since T[4] is vacant, insert the key 24 in T[4]. The hash table now becomes:

0 1 2 3 6 8 94 5 7

–1 –1 24 –1 –1 –172 2736–1

Step 5	 Key	= 63
		  h(63, 0)	= [63 mod 10 + (0 ¥ 63 mod 8)] mod 10
			  = [3 + (0 ¥ 7)] mod 10
			  = 3 mod 10
			  = 3

Since T[3] is vacant, insert the key 63 in T[3]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

–1 63 –1 –1 –172 273624–1

Step 6	 Key	= 81
		  h(81, 0)	= [81 mod 10 + (0 ¥ 81 mod 8)] mod 10
			  = [1 + (0 ¥ 1)] mod 10
			  = 1 mod 10
			  = 1

Since T[1] is vacant, insert the key 81 in T[1]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

81 –1 –1 –172 27362463–1

Step 7	 Key	= 92
		  h(92, 0)	= [92 mod 10 + (0 ¥ 92 mod 8)] mod 10
			  = [2 + (0 ¥ 4)] mod 10
			  = 2 mod 10
			  = 2

Now T[2] is occupied, so we cannot store the key 92 in T[2]. Therefore, try again for the next 
location. Thus probe, i = 1, this time.

		  Key	= 92
		  h(92, 1)	= [92 mod 10 + (1 ¥ 92 mod 8)] mod 10
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			  = [2 + (1 ¥ 4)] mod 10
			  = (2 + 4) mod 10
			  = 6 mod 10
			  = 6
	 Now T[6] is occupied, so we cannot store the key 92 in T[6]. Therefore, try again for the next 
location. Thus probe, i = 2, this time.
		  Key	= 92
		  h(92, 2)	= [92 mod 10 + (2 ¥ 92 mod 8)] mod 10
			  = [2 + (2 ¥ 4)] mod 10
			  = [2 + 8] mod 10
			  = 10 mod 10
			  = 0

Since T[0] is vacant, insert the key 92 in T[0]. The hash table now becomes:

0 1 2 3 4 5 6 7 8 9

92 –1 –172 2736246381 –1

Step 8	 Key	= 101
		  h(101, 0)	= [101 mod 10 + (0 ¥ 101 mod 8)] mod 10
			  = [1 + (0 ¥ 5)] mod 10
			  = 1 mod 10
			  = 1

  Now T[1] is occupied, so we cannot store the key 101 in T[1]. Therefore, try again for the 
next location. Thus probe, i = 1, this time.

		  Key	= 101
		  h(101, 1)	= [101 mod 10 + (1 ¥ 101 mod 8)] mod 10
			  = [1 + (1 ¥ 5)] mod 10
			  = [1 + 5] mod 10
			  = 6

	 Now T[6] is occupied, so we cannot store the key 101 in T[6]. Therefore, try again for the next 
location with probe i = 2. Repeat the entire process until a vacant location is found. You will see 
that we have to probe many times to insert the key 101 in the hash table. Although double hashing 
is a very efficient algorithm, it always requires m to be a prime number. In our case m=10, which is 
not a prime number, hence, the degradation in performance. Had m been equal to 11, the algorithm 
would have worked very efficiently. Thus, we can say that the performance of the technique is 
sensitive to the value of m.

Rehashing
When the hash table becomes nearly full, the number of collisions increases, thereby degrading 
the performance of insertion and search operations. In such cases, a better option is to create a 
new hash table with size double of the original hash table. 
	 All the entries in the original hash table will then have to be moved to the new hash table. This 
is done by taking each entry, computing its new hash value, and then inserting it in the new hash 
table. 
	 Though rehashing seems to be a simple process, it is quite expensive and must therefore not 
be done frequently. Consider the hash table of size 5 given below. The hash function used is h(x) 
= x % 5. Rehash the entries into to a new hash table.
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0 1 2 3 4
26 31 43 17

Note that the new hash table is of 10 locations, double the size of the original table.

0 1 2 3 4 5 6 7 8 9

	 Now, rehash the key values from the old hash table into the new one using hash function—h(x) 

= x % 10.

0 1 2 3 4 5 6 7 8 9
31 43 26 17

Programming Example

1.	 Write a program to show searching using closed hashing.
#include <stdio.h>
#include <conio.h>
int ht[10], i, found = 0, key;
void insert_val();
void search_val();
void delete_val();
void display();
int main()
{
	 int option;
	 clrscr();
	 for ( i = 0;i < 10;i++ ) //to initialize every element as ‘–1’
		  ht[i] = –1;
	 do
	 {
	 printf( "\n MENU \n1.Insert \n2.Search \n3.Delete \n4.Display \n5.Exit");
			   printf( "\n Enter your option.");
			   scanf( "%d", &option);
			   switch (option)
			   {
			       case 1:
				    insert_val();
				    break;
			       case 2:
				    search_val();
				    break;
			       case 3:
				    delete_val();
				    break;
			       case 4:
				    display();
				    break;
			       default:
				    printf( "\nInvalid choice entry!!!\n" );
				    break;
			   }
		  }while (option!=5);
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		  getch();
		  return 0;
	 }
	 void insert_val()
	 {
		  int val, f = 0;
		  printf( "\nEnter the element to be inserted : " );
		  scanf( "%d", &val );
		  key = ( val % 10 ) – 1;
		  if ( ht[key] == –1 )
		  {
			   ht[key] = val;
		  }
		  else
		  {
			   if ( key < 9 )
			   {
			       for ( i = key + 1;i < 10;i++ )
			       {
				    if ( ht[i] == –1 )
				    {
					     ht[i] = val;
					     break;
				    }
			       }
			   }
			   for ( i = 0;i < key;i++ )
			   {
			       if ( ht[i] == –1 )
			       {
				    ht[i] = val;
				    break;
			   }
		  }
	 }
}
void display()
{
	 for (i = 0;i < 10;i++)
	 printf( "\t%d", ht[ i ] );
}
void search_val()
{
	 int val, flag = 0;
	 printf( "\nEnter the element to be searched :: " );
	 scanf( "%d", &val );
	 key = ( val % 10 ) – 1;
	 if ( ht[ key ] == val )
		  flag = 1;
	 else
	 {
		  for (i = key + 1;i < 10;i++)
		  {
			   if(ht[i] == val)
			   {
			       flag = 1;
			       key = i;
			       break;
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			   }
		  }
	 }
	 if (flag == 0)
	 {
		  for (i = 0;i < key;i++)
		  {
			   if (ht[ i ] == val)
			   {
			       flag = 1;
			       key = i;
			       break;
			   }
		  }
	 }

	 if (flag == 1)	
	 {
		  found=1;
		  printf("\n The item searched was found at position %d !", key + 1 );
	 }
	 else
	 {
		  key = –1;
		  printf( "\nThe item searched was not found in the hash table" );
	 }
}
void delete_val()
{
	 search_val();
	 if (found==1)
	 {
		  if ( key != –1 )
		  {
			   printf( "\nThe element deleted is %d ", ht[ key ] );
			   ht[ key ] = –1;
		  }
	 }
}
Output
MENU
1. Insert 
2. Search
3. Delete
4. Display
5. Exit
Enter your option:  1
Enter the element to be inserted :1
Enter your option:  4
1 –1 –1 –1 –1 –1 –1 –1 –1 –1 
Enter your option:  5

15.5.2  Collision Resolution by Chaining
In chaining, each location in a hash table stores a pointer to a linked list that contains all the key 
values that were hashed to that location. That is, location l in the hash table points to the head of 
the linked list of all the key values that hashed to l. However, if no key value hashes to l, then 
location l in the hash table contains NULL. Figure 15.5 shows how the key values are mapped to a 
location in the hash table and stored in a linked list that corresponds to that location.
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Figure 15.5  Keys being hashed to a chained hash table

Operations on a Chained Hash Table
Searching for a value in a chained hash table is as simple as scanning a linked list for an entry 
with the given key. Insertion operation appends the key to the end of the linked list pointed by the 
hashed location. Deleting a key requires searching the list and removing the element.
	 Chained hash tables with linked lists are widely used due to the simplicity of the algorithms 
to insert, delete, and search a key. The code for these algorithms is exactly the same as that for 
inserting, deleting, and searching a value in a single linked list that we have already studied in 
Chapter 6.
	 While the cost of inserting a key in a chained hash table is O(1), the cost of deleting and searching 
a value is given as O(m) where m is the number of elements in the list of that location. Searching 
and deleting takes more time because these operations scan the entries of the selected location 
for the desired key.
	 In the worst case, searching a value may take a running time of O(n), where n is the number of 
key values stored in the chained hash table. This case arises when all the key values are inserted into 
the linked list of the same location (of the hash table). In this case, the hash table is ineffective.
	 Table 15.1 gives the code to initialize a hash table as well as the codes to insert, delete and 
search a value in a chained hash table. 

Table 15.1  Codes to initialize, insert, delete, and search a value in a chained hash table

Struture of the node
typedef struct node_HT
{
    int value;
    struct node *next;
}node;

Code to initialize a chained hash table
/* Initializes m location in the chained 
hash table.
The operation takes a running time of 
O(m) */
void initializeHashTable (node *hash_ta-
ble[], int m)
{
    int i;
    for(i=0i<=m;i++)
        hash_table[i]=NULL;

Code to insert a value
/* The element is inserted at the beginning of 
the linked list whose pointer to its head is 
stored in the location given by h(k). The run-
ning time of the insert operation is O(1), as 
the new key value is always added as the first 
element of the list irrespective of the size of 
the linked list as well as that of the chained 
hash table. */
node *insert_value( node *hash_table[], int 
val)
{ 
    node *new_node;
    new_node = (node *)malloc(sizeof(node));
    new_node value = val; new_node next = hash_
table[h(x)];
    hash_table[h(x)] = new_node;
} 

Cont....
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Cont....

Code to search a value
/* The element is searched in the linked 
list whose pointer to its head is stored 
in the location given by h(k). If search is 
successful, the function returns a pointer 
to the node in the linked list; otherwise 
it returns NULL. The worst case running 
time of the search operation is given as 
order of size of the linked list. */ 

node *search_value(node *hash_table[], 
int val)

{

    node *ptr;

    ptr = hash_table[h(x)];

    while ( (ptr!=NULL) && (ptr –> value 
!= val))

        ptr = ptr –> next;

    if (ptr–>value == val)

        return ptr;

else

        return NULL;

}

Code to delete a value
/* To delete a node from the linked list whose 
head is stored at the location given by h(k) 
in the hash table, we need to know the address 
of the node’s predecessor. We do this using a 
pointer save. The running time complexity of 
the delete operation is same as that of the 
search operation because we need to search the 
predecessor of the node so that the node can 
be removed without affecting other nodes in the 
list. */
void delete_value (node *hash_table[], int val)
{
    node *save, *ptr;
    save = NULL;
    ptr = hash_table[h(x)];
    while ((ptr != NULL) && (ptr value != val))
    {
        save = ptr;
        ptr = ptr next;
    }
    if (ptr != NULL)
    {
        save next = ptr next;
        free (ptr);
    }
    else
        printf("\n VALUE NOT FOUND");
}

Example 15.8  Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash 
table of 9 memory locations. Use h(k) = k mod m.
In this case, m=9. Initially, the hash table can be given as:

Step 1	   Key	= 7	 Step 2	 Key	= 24

		  h(k)	= 7 mod 9		  h(k)	= 24 mod 9
			  = 7			  = 6	

Create a linked list for location 7 and 
store the key value 7 in it as its only 
node.

	Create a linked list for location 6 
and store the key value 24 in it as 
its only node.
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	 Step 3		 Key	= 18	 Step 4	 Key	= 52

			  h(k)	= 18 mod 9 = 0	 	 h(k)	= 52 mod 9 = 7			

Create a linked list for location 0 and store 
the key value 18 in it as its only node.

	Insert 52 at the end of the linked list of location 
7.
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 Step 5:		 Key	= 36	 Step 6:	 Key	= 54

			  h(k)	= 36 mod 9 = 0	 	 h(k)	= 54 mod 9 = 0
Insert 36 at the end of the linked list of 
location 0.

	Insert 54 at the end of the linked list of location 
0.
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 Step 7:		 Key	= 11	 Step 8:	 Key	= 23

			  h(k)	= 11 mod 9 = 2		  h(k)	= 23 mod 9 = 5
Create a linked list for location 2 and store 
the key value 11 in it as its only node.

Create a linked list for location 5 and store the 
key value 23 in it as its only node.
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Pros and Cons
The main advantage of using a chained hash table is that it remains effective even when the number 
of key values to be stored is much higher than the number of locations in the hash table. However, 
with the increase in the number of keys to be stored, the performance of a chained hash table does 
degrade gradually (linearly). For example, a chained hash table with 1000 memory locations and 
10,000 stored keys will give 5 to 10 times less performance as compared to a chained hash table 
with 10,000 locations. But a chained hash table is still 1000 times faster than a simple hash table.
	 The other advantage of using chaining for collision resolution is that its performance, unlike 
quadratic probing, does not degrade when the table is more than half full. This technique is absolutely 
free from clustering problems and thus provides an efficient mechanism to handle collisions.
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	 However, chained hash tables inherit the disadvantages of linked lists. First, to store a key 
value, the space overhead of the next pointer in each entry can be significant. Second, traversing 
a linked list has poor cache performance, making the processor cache ineffective.

Bucket Hashing 
In closed hashing, all the records are directly stored in the hash table. Each record with a key 
value k is stored in a location called its home position. The home position is calculated by 
applying some hash function. 
In case the home position of the record with key k is already occupied by another record then 
the record will be stored in some other location in the hash table. This other location will be 
determined by the technique that is used for resolving collisions. Once the records are inserted, 
the same algorithm is again applied to search for a specific record. 
  One implementation of closed hashing groups the hash table into buckets where M slots of the 
hash table are divided into B buckets. Therefore, each bucket contains M/B slots. Now when a 
new record has to be inserted, the hash function computes the home position. If the slot is free, 
the record is inserted. Otherwise, the bucket’s slots are sequentially searched until an open slot 
is found. In case, the entire bucket is full, the record is inserted into an overflow bucket. The 
overflow bucket has infinite capacity at the end of the table and is shared by all the buckets. 
  An efficient implementation of bucket hashing will be to use a hash function that evenly 
distributes the records amongst the buckets so that very few records have to be inserted in the 
overflow bucket. 
  When searching a record, first the hash function is used to determine the bucket in which the 
record can be present. Then the bucket is sequentially searched to find the desired record. If the 
record is not found and the bucket still has some empty slots, then it means that the search is 
complete and the desired record is not present in the hash table.
  However, if the bucket is full and the record has not been found, then the overflow bucket is 
searched until the record is found or all the records in the overflow bucket have been checked. 
Obviously, searching the overflow bucket can be expensive if it has too many records.

15.6  PROS AND CONS OF HASHING
One advantage of hashing is that no extra space is required to store the index as in the case of 
other data structures. In addition, a hash table provides fast data access and an added advantage 
of rapid updates.
	 On the other hand, the primary drawback of using the hashing technique for inserting and 
retrieving data values is that it usually lacks locality and sequential retrieval by key. This makes 
insertion and retrieval of data values even more random.
	 All the more, choosing an effective hash function is more of an art than a science. It is not 
uncommon (in open-addressed hash tables) to create a poor hash function.

15.7  APPLICATIONS OF HASHING
Hash tables are widely used in situations where enormous amounts of data have to be accessed 
to quickly search and retrieve information. A few typical examples where hashing is used are 
given here.
	 Hashing is used for database indexing. Some database management systems store a separate  
file known as the index file. When data has to be retrieved from a file, the key information is first 
searched in the appropriate index file which references the exact record location of the data in the 
database file. This key information in the index file is often stored as a hashed value.
	 In many database systems, file and directory hashing is used in high-performance file systems. 
Such systems use two complementary techniques to improve the performance of file access. While 
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one of these techniques is caching which saves information in the memory, the other is hashing 
which makes looking up the file location in the memory much quicker than most other methods.
	 Hashing technique is used to implement compiler symbol tables in C++. The compiler uses a 
symbol table to keep a record of all the user-defined symbols in a C++ program. Hashing facilitates 
the compiler to quickly look up variable names and other attributes associated with symbols. 
Hashing is also widely used for Internet search engines.

Real World Applications of Hashing
CD Databases  For CDs, it is desirable to have a world-wide CD database so that when users 
put their disk in the CD player, they get a full table of contents on their own computer’s screen. 
These tables are not stored on the disks themselves, i.e., the CD does not store any information 
about the songs, rather this information is downloaded from the database. The critical issue to 
solve here is that CDs have no ID numbers stored on them, so how will the computer know which 
CD has been put in the player? The only information that can be used is the track length, and the 
fact that every CD is different.
	 Basically, a big number is created from the track lengths, also known as a ‘signature’. This 
signature is used to identify a particular CD. The signature is a value obtained by hashing. For 
example, a number of length of 8 or 10 hexadecimal. digits is made up; the number is then sent 
to the database, and that database looks for the closest match. The reason being that track length 
may not be measured exactly.
Drivers Licenses/Insurance Cards  Like our CD example, even the driver’s license numbers 
or insurance card numbers are created using hashing from data items that never change: date of 
birth, name, etc.
Sparse Matrix  A sparse matrix is a two-dimensional array in which most of the entries contain 
a 0. That is, in a sparse array there are very few non-zero entries. Of course, we can store 2D 
array as it is, but this would lead to sheer wastage of valuable memory. So another possibility 
is to store the non-zero elements of the spare matrix as elements in a 1D array. That is by using 
hashing, we can store a two-dimensional array in a one-dimensional array. There is a one-to-one 
correspondence between the elements in the sparse matrix and the elements in the array. This 
concept is clearly visible in Fig. 15.6.
  If the size of the sparse matrix is n ¥ n, and there are N non-zero entries in it, then from the 
coordinates (i,j) of a matrix, we determine an index k in an array by a simple calculation. Thus, 
we have k=h(i,j) for some function h, called a hash function.
  The size of the 1D array is proportional to N. This is far better from the size of the sparse matrix 
that required storage proportional to n ¥ n. For example, if we have a triangular sparse matrix A, 
then an entry A[i, j] can be mapped to an entry in the 1D array by calculating the index using the 

hash function h(i, j) = i(i–1)/2 + j.
File Signatures  File signatures provide a compact means of 
identifying files. We use a function, h[x], the file signature, which 
is a property of the file. Although we can store files by name, 
signatures provide a compact identity to files.
	 Since a signature depends on the contents of a file, if any change 
is made to the file, then the signature will change. In this way, 
the signature of a file can be used as a quick verification to see if 
anyone has altered the file, or if it has lost a bit during transmission. 
Signatures are widely used for files that store marks of students.

Game Boards  In the game board for tic-tac-toe or chess, a 
position in a game may be stored using a hash function.
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Figure 15.6  Sparse matrix
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Graphics  In graphics, a central problem is the storage of objects in a scene or view. For this, we 
organize our data by hashing. Hashing can be used to make a grid of appropriate size, an ordinary 
vertical–horizontal grid. (Note that a grid is nothing but a 2D array, and there is a one-to-one 
correspondence when we move from a 2D array to a 1D array.)
	 So, we store the grid as a 1D array as we did in the case of sparse matrices. All points that fall 
in one cell will be stored in the same place. If a cell contains three points, then these three points 
will be stored in the same entry. The mapping from the grid cell to the memory location is done by 
using a hash function. The key advantage of this method of storage is fast execution of operations 
like the nearest neighbour search.

 Points to Remember
∑	 Hash table is a data structure in which keys are 

mapped to array positions by a hash function. A value 
stored in a hash table can be searched in O(1) time 
using a hash function which generates an address 
from the key.

∑	 The storage requirement for a hash table is O(k), 
where k is the number of keys actually used. In a 
hash table, an element with key k is stored at index 
h(k), not k. This means that a hash function h is used 
to calculate the index at which the element with key 
k will be stored. Thus, the process of mapping keys 
to appropriate locations (or indices) in a hash table 
is called hashing.

∑	 Popular hash functions which use numeric keys are 
division method, multiplication method, mid square 
method, and folding method.

∑	 Division method divides x by M and then uses the 
remainder obtained. A potential drawback of this 
method is that consecutive keys map to consecutive 
hash values.

∑	 Multiplication method applies the hash function 
given as h (x) = Î m (kA mod 1) ˚

∑	 Mid square method works in two steps. First, it finds 
k2 and then extracts the middle r digits of the result.

∑	 Folding method works by first dividing the key value 
k into parts k1, k2, ..., kn, where each part has 
the same number of digits except the last part which 
may have lesser digits than the other parts, and then 
obtaining the sum of k1 + k2 + ... + kn. The hash 
value is produced by ignoring the last carry, if any.

∑	 Collisions occur when a hash function maps two 
different keys to the same location. Therefore, a 
method used to solve the problem of collisions, also 
called collision resolution technique, is applied. The 
two most popular methods of resolving collisions 
are: (a) open addressing and (b) chaining.

∑	 Once a collision takes place, open addressing 
computes new positions using a probe sequence 

and the next record is stored in that position. In this 
technique of collision resolution, all the values are 
stored in the hash table. The hash table will contain 
two types of values—either sentinel value (for 
example, –1) or a data value.

∑	 Open addressing technique can be implemented 
using linear probing, quadratic probing, double 
hashing, and rehashing.

∑	 In linear probing, if a value is already stored at a 
location generated by h(k), then the following hash 
function is used to resolve the collision:

h(k, i) = [h’(k) + i] mod m

	 Though linear probing enables good memory 
caching, the drawback of this algorithm is that it 
results in primary clustering. 

∑	 In quadratic probing, if a value is already stored at a 
location generated by h(k), then the following hash 
function is used to resolve the collision: 

h(k, i) = [h’(k) + c1i + c2i
2] mod m

	 Quadratic probing eliminates primary clustering and 
provides good memory caching. But it is still liable 
to secondary clustering.

∑	 In double hashing, we use two hash functions rather 
than a single function. The hash function in the case 
of double hashing can be given as: 

h(k, i) = [h1(k) + ih2(k)] mod m

	 The performance of double hashing is very close 
to the performance of the ideal scheme of uniform 
hashing. It minimizes repeated collisions and the 
effects of clustering.

∑	 When the hash table becomes nearly full, the number 
of collisions increases, thereby degrading the 
performance of insertion and search operations. So 
in rehashing, all the entries in the original hash table 
are moved to the new hash table which is double the 
size of the original hash table.
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∑	 In chaining, each location in a hash table stores a 
pointer to a linked list that contains all the key values 
that were hashed to that location. While the cost of 
inserting a key in a chained hash table is O(1), the cost 

for deleting and searching a value is given as O(m), 
where m is the number of elements in the list of that 
location. However, in the worst case, searching for 
a value may take a running time of O(n).

 Exercises

Review Questions
	 1.	 Define a hash table.
	 2.	 What do you understand by a hash function? Give 

the properties of a good hash function.
	 3.	 How is a hash table better than a direct access 

table (array)?
	 4.	 Write a short note on the different hash functions. 

Give suitable examples.
	 5.	 Calculate hash values of keys: 1892, 1921, 2007, 

3456 using different methods of hashing.
	 6.	 What is collision? Explain the various techniques 

to resolve a collision. Which technique do you 
think is better and why?

	 7.	 Consider a hash table with size = 10. Using linear 
probing, insert the keys 27, 72, 63, 42, 36, 18, 29, 
and 101 into the table.

	 8.	 Consider a hash table with size = 10. Using 
quadratic probing, insert the keys 27, 72, 63, 42, 
36, 18, 29, and 101 into the table. Take c1 = 1 and 
c2 = 3.

	 9.	 Consider a hash table with size = 11. Using double 
hashing, insert the keys 27, 72, 63, 42, 36, 18, 29, 
and 101 into the table. Take h1 = k mod 10 and h2 = 
k mod 8.

	 10.	 What is hashing? Give its applications. Also, 
discuss the pros and cons of hashing.

	 11.	 Explain chaining with examples.
	 12.	 Write short notes on:
		  Linear probing
		  Quadratic probing
		  Double hashing

Multiple-choice Questions
	 1.	 In a hash table, an element with key k is stored at 

index
	 (a)	 k	 (b)	 log k	 (c)	 h(k)	 (d)	 k2

	 2.	 In any hash function, M should be a
	 (a)	 Prime number	 (b)	 Composite number
	 (c)	 Even number	 (d)	 Odd number
	 3.	 In which of the following hash functions, do 

consecutive keys map to consecutive hash values?
	 (a)	 Division method
	 (b)	 Multiplication method
	 (c)	 Folding method	 (d)	 Mid-square method

	 4.	 The process of examining memory locations in a 
hash table is called

	 (a)	 Hashing	 (b)	 Collision
	 (c)	 Probing	 (d)	 Addressing
	 5.	 Which of the following methods is applied in the 

Berkeley Fast File System to allocate free blocks?
	 (a)	 Linear probing	 (b)	 Quadratic probing
	 (c)	 Double hashing	 (d)	 Rehashing
	 6.	 Which open addressing technique is free from 

clustering problems?
	 (a)	 Linear probing	 (b)	 Quadratic probing
	 (c)	 Double hashing	 (d)	 Rehashing

True or False
	 1.	 Hash table is based on the property of locality of 

reference.
	 2.	 Binary search takes O(n log n) time to execute.
	 3.	 The storage requirement for a hash table is O(k2), 

where k is the number of keys.
	 4.	 Hashing takes place when two or more keys map 

to the same memory location.
	 5.	 A good hash function completely eliminates 

collision.
	 6.	 M should not be too close to exact powers of 2.
	 7.	 A sentinel value indicates that the location 

contains valid data.
	 8.	 Linear probing is sensitive to the distribution of 

input values.
	 9.	 A chained hash table is faster than a simple hash table.

Fill in the Blanks
	 1.	 In a hash table, keys are mapped to array positions 

by a ______.
	 2.	 ______ is the process of mapping keys to 

appropriate locations in a hash table.
	 3.	 In open addressing, hash table stores either of two 

values ______ and ______.
	 4.	 When there is no free location in the hash table 

then ______ occurs.
	 5.	 More the number of collisions, higher is the number 

of ______ to find free location ______ which 
eliminates primary clustering but not secondary 
clustering.

	 6.	  ______ eliminates primary clustering but not 
secondaryclustering.



16.1  INTRODUCTION
Nowadays, most organizations use data collection applications which collect large amounts 
of data in one form or other. For example, when we seek admission in a college, a lot of data 
such as our name, address, phone number, the course in which we want to seek admission, 
aggregate of marks obtained in the last examination, and so on, are collected. Similarly, to open 
a bank account, we need to provide a lot of input. All these data were traditionally stored on 
paper documents, but handling these documents had always been a chaotic and difficult task.
	 Similarly, scientific experiments and satellites also generate enormous amounts of data. 
Therefore, in order to efficiently analyse all the data that has been collected from different 
sources, it has become a necessity to store the data in computers in the form of files.
	 In computer terminology, a file is a block of useful data which is available to a computer 
program and is usually stored on a persistent storage medium. Storing a file on a persistent 
storage medium like hard disk ensures the availability of the file for future use. These days, 
files stored on computers are a good alternative to paper documents that were once stored in 
offices and libraries.

16.2  DATA HIERARCHY
Every file contains data which can be organized in a hierarchy to present a systematic organization. 
The data hierarchy includes data items such as fields, records, files, and database. These terms 
are defined below.

Learning Objective
In this chapter, we will discuss the basic attributes of a file and the different ways 
in which files can be organized in the secondary memory. Then, we will learn about 
different indexing strategies that allow efficient and faster access to these files. 

Files and Their 
Organization

chapter 16
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	 ∑	 A data field is an elementary unit that stores a single fact. A data field is usually characterized 
by its type and size. For example, student’s name is a data field that stores the name of students. 
This field is of type character and its size can be set to a maximum of 20 or 30 characters 
depending on the requirement.

	 ∑	 A record is a collection of related data fields which is seen as a single unit from the application 
point of view. For example, the student’s record may contain data fields such as name, address, 
phone number, roll number, marks obtained, and so on.

	 ∑	 A file is a collection of related records. For example, if there are 60 students in a class, then 
there are 60 records. All these related records are stored in a file. Similarly, we can have a 
file of all the employees working in an organization, a file of all the customers of a company, 
a file of all the suppliers, so on and so forth.

	 ∑	 A directory stores information of related files. A directory organizes information so that users 
can find it easily. For example, consider Fig. 16.1 that shows how multiple related files are 
stored in a student directoy.

Student’s

Personal Info

File

Roll_no

Name

Address

Phone No

Student’s

Academic Info

File

Roll_no

Name

Course

Marks

Grade in Sports

Student’s

Fees Info

File

Roll_no

Name

Fees

Lab Dues

Hostel Dues

Library Dues

Figure 16.1  Student directory

16.3  FILE ATTRIBUTES
Every file in a computer system is stored in a directory. Each file has a list of attributes associated 
with it that gives the operating system and the application software information about the file and 
how it is intended to be used.
	 A software program which needs to access a file looks up the directory entry to discern the 
attributes of that file. For example, if a user attempts to write to a file that has been marked as a 
read-only file, then the program prints an appropriate message to notify the user that he is trying 
to write to a file that is meant only for reading.
	 Similarly, there is an attribute called hidden. When you execute the DIR command in DOS, then 
the files whose hidden attribute is set will not be displayed. These attributes are explained in this 
section.

File name  It is a string of characters that stores the name of a file. File naming conventions vary 
from one operating system to the other.

File position  It is a pointer that points to the position at which the next read/write operation 
will be performed.

File structure  It indicates whether the file is a text file or a binary file. In the text file, the numbers 
(integer or floating point) are stored as a string of characters. A binary file, on the other hand, 
stores numbers in the same way as they are represented in the main memory.
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File Access Method
It indicates whether the records in a file can be accessed sequentially or randomly. In sequential 
access mode, records are read one by one. That is, if 60 records of students are stored in the STUDENT 
file, then to read the record of 39th student, you have to go through the record of the first 38 students. 
However, in random access, records can be accessed in any order.

Attributes Flag
A file can have six additional attributes attached to it. These attributes are usually stored in a single 

byte, with each bit representing a specific attribute. If a particular 
bit is set to ‘1’ then this means that the corresponding attribute is 
turned on. Table 16.1 shows the list of attributes and their position 
in the attribute flag or attribute byte.
  If a system file is set as hidden and read-only, then its attribute 
byte can be given as 00000111. We will discuss all these attributes 
here in this section. Note that the directory is treated as a special 
file in the operating system. So, all these attributes are applicable 
to files as well as to directories.

Read-only  A file marked as read-only cannot be deleted or modified. For example, if an attempt 
is made to either delete or modify a read-only file, then a message ‘access denied’ is displayed on 
the screen.
Hidden  A file marked as hidden is not displayed in the directory listing.
System  A file marked as a system file indicates that it is an important file used by the system and 
should not be altered or removed from the disk. In essence, it is like a ‘more serious’ read-only flag.
Volume Label  Every disk volume is assigned a label for identification. The label can be assigned 
at the time of formatting the disk or later through various tools such as the DOS command LABEL.
Directory  In directory listing, the files and sub-directories of the current directory are 
differentiated by a directory-bit. This means that the files that have the directory-bit turned on are 
actually sub-directories containing one or more files.
Archive  The archive bit is used as a communication link between programs that modify files and 
those that are used for backing up files. Most backup programs allow the user to do an incremental 
backup. Incremental backup selects only those files for backup which have been modified since 
the last backup.
	 When the backup program takes the backup of a file, or in other words, when the program 
archives the file, it clears the archive bit (sets it to zero). Subsequently, if any program modifies 
the file, it turns on the archive bit (sets it to 1). Thus, whenever the backup program is run, it 
checks the archive bit to know whether the file has been modified since its last run. The backup 
program will archive only those files which were modified.

16.4  TEXT AND BINARY FILES
A text file, also known as a flat file or an ASCII file, is structured as a sequence of lines of alphabet, 
numerals, special characters, etc. However, the data in a text file, whether numeric or non-numeric, 
is stored using its corresponding ASCII code. The end of a text file is often denoted by placing a 
special character, called an end-of-file marker, after the last line in the text file.
	 A binary file contains any type of data encoded in binary form for computer storage and 
processing purposes. A binary file can contain text that is not broken up into lines. A binary file 
stores data in a format that is similar to the format in which the data is stored in the main memory. 

Table 16.1  Attribute flag

Attribute Attribute Byte

Read–Only 00000001

Hidden 00000010

System 00000100

Volume Label 00001000

Directory 00010000

Archive 00100000



492  Data Structures Using C

Therefore, a binary file is not readable by humans and it is up to the program reading the file to 
make sense of the data that is stored in the binary file and convert it into something meaningful 
(e.g., a fixed length of record).
	 Binary files contain formatting information that only certain applications or processors can 
understand. It is possible for humans to read text files which contain only ASCII text, while binary 
files must be run on an appropriate software or processor so that the software or processor can 
transform the data in order to make it readable. For example, only Microsoft Word can interpret 
the formatting information in a Word document.
	 Although text files can be manipulated by any text editor, they do not provide efficient storage. 
In contrast, binary files provide efficient storage of data, but they can be read only through an 
appropriate program.

16.5 B ASIC FILE OPERATIONS
The basic operations that can be performed on a file are given in Fig. 16.2.

Updation RetrievalCreation Maintenance

Insertion Modification Deletion Inquiry Report

generation

Restructuring Reorganization

File Operations

Figure 16.2  File operations

Creating a File
A file is created by specifying its name and mode. Then the file is opened for writing records 
that are read from an input device. Once all the records have been written into the file, the file is 
closed. The file is now available for future read/write operations by any program that has been 
designed to use it in some way or the other.

Updating a File
Updating a file means changing the contents of the file to reflect a current picture of reality. A file 
can be updated in the following ways:
	 ∑	 Inserting a new record in the file. For example, if a new student joins the course, we need to 

add his record to the STUDENT file.
	 ∑	 Deleting an existing record. For example, if a student quits a course in the middle of the 

session, his record has to be deleted from the STUDENT file.
	 ∑	 Modifying an existing record. For example, if the name of a student was spelt incorrectly, 

then correcting the name will be a modification of the existing record.

Retrieving from a File
It means extracting useful data from a given file. Information can be retrieved from a file either 
for an inquiry or for report generation. An inquiry for some data retrieves low volume of data, 
while report generation may retrieve a large volume of data from the file.

Maintaining a File
It involves restructuring or re-organizing the file to improve the performance of the programs that 
access this file. Restructuring a file keeps the file organization unchanged and changes only the 
structural aspects of the file (for example, changing the field width or adding/deleting fields). On 
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the other hand, file reorganization may involve changing the entire organization of the file. We 
will discuss file organization in detail in the next section.

16.6  FILE ORGANIZATION
We know that a file is a collection of related records. The main issue in file management is 
the way in which the records are organized inside the file because it has a significant effect on  
the system performance. Organization of records means the logical arrangement of records in the file  
and not the physical layout of the file as stored on a storage media.
	 Since choosing an appropriate file organization is a design decision, it must be done keeping 
the priority of achieving good performance with respect to the most likely usage of the file. 
Therefore, the following considerations should be kept in mind before selecting an appropriate 
file organization method:
	 ∑	 Rapid access to one or more records
	 ∑	 Ease of inserting/updating/deleting one or more records without disrupting the speed of 

accessing record(s)
	 ∑	 Efficient storage of records
	 ∑	 Using redundancy to ensure data integrity
	 Although one may find that these requirements are in contradiction with each other, it is the 
designer’s job to find a good compromise among them to get an adequate solution for the problem 
at hand. For example, the ease of addition of records can be compromised to get fast access to data.
	 In this section, we will discuss some of the techniques that are commonly used for file 
organization.

16.6.1  Sequential Organization
A sequentially organized file stores the records in the order in which they were entered. That is, 
the first record that was entered is written as the first record in the file, the second record entered 
is written as the second record in the file, and so on. As a result, new records are added only at 
the end of the file.
  Sequential files can be read only sequentially, starting with the first record in the file. Sequential 
file organization is the most basic way to organize a large collection of records in a file. Figure 
16.3 shows n records numbered from 0 to n–1 stored in a sequential file.
  Once we store the records in a file, we cannot make any changes to the records. We cannot even 

delete the records from a sequential file. In case we need to delete or 
update one or more records, we have to replace the records by creating 
a new file.
  In sequential file organization, all the records have the same size and 
the same field format, and every field has a fixed size. The records are 
sorted based on the value of one field or a combination of two or more 
fields. This field is known as the key. Each key uniquely identifies a 
record in a file. Thus, every record has a different value for the key field. 
Records can be sorted in either ascending or descending order.
  Sequential files are generally used to generate reports or to perform 
sequential reading of large amount of data which some programs need 
to do such as payroll processing of all the employees of an organization. 
Sequential files can be easily stored on both disks and tapes. Table 16.2 
summarizes the features, advantages, and disadvantages of sequential 
file organization.
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organization
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Table 16.2  Sequential file organization

Features Advantages Disadvantages

∑	Records are written in the or-
der in which they are entered

∑	Records are read and written 
sequentially

∑	Deletion or updation of one or 
more records calls for replac-
ing the original file with a new 
file that contains the desired 
changes

∑	Records have the same size and 
the same field format

∑	Records are sorted on a key 
value

∑	Generally used for report gen-
eration or sequential reading

∑	Simple and easy to 
handle

∑	No extra overheads in-
volved

∑	Sequential files can 
be stored on magnetic 
disks as well as mag-
netic tapes

∑	Well suited for batch–
oriented applications

∑	Records can be read only 
sequentially. If ith 
record has to be read, 
then all the i–1 records 
must be read

∑	Does not support update 
operation. A new file has 
to be created and the 
original file has to be 
replaced with the new 
file that contains the 
desired changes

∑	Cannot be used for in-
teractive applications

16.6.2  Relative File Organization
Relative file organization provides an effective way to access individual records directly. In a 
relative file organization, records are ordered by their relative key. It means the record number 
represents the location of the record relative to the beginning of the file. The record numbers range 
from 0 to n–1, where n is the number of records in the file. For example, the record with record 
number 0 is the first record in the file. The records in a relative file are of fixed length.
	 Therefore, in relative files, records are organized in ascending relative record number. A relative 
file can be thought of as a single dimension table stored on a disk, in which the relative record 
number is the index into the table. Relative files can be used for both random as well as sequential 
access. For sequential access, records are simply read one after another.
	 Relative files provide support for only one key, that is, the relative record number. This key must 
be numeric and must take a value between 0 and the current highest relative record number –1.  
This means that enough space must be allocated for the file to contain the records with relative 
record numbers between 0 and the highest record number –1. For example, if the highest  
relative record number is 1,000, then space must be allocated to store 1,000 records in the file.
  Figure 16.4 shows a schematic representation of a relative file which has been allocated enough 
space to store 100 records. Although it has space to accommodate 100 records, not all the locations 

are occupied. The locations marked as FREE are yet to store records 
in them. Therefore, every location in the table either stores a 
record or is marked as FREE.
  Relative file organization provides random access by directly 
jumping to the record which has to be accessed. If the records 
are of fixed length and we know the base address of the file and 
the length of the record, then any record i can be accessed using 
the following formula:

Address of ith record = base_address + (i–1) * record_length

  Note that the base address of the file refers to the starting 
address of the file. We took i–1 in the formula because record 
numbers start from 0 rather than 1.
	 Consider the base address of a file is 1000 and each record 
occupies 20 bytes, then the address of the 5th record can be given 

Relative record

number

Records stored

in memory

0 Record 0

1 Record 1

2 FREE

3 FREE

4 Record 4

98 FREE

99 Record 99

.................. ..................

Figure 16.4  Relative file organization
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as:
1000 + (5–1) * 20
= 1000 + 80
= 1080

Table 16.3 summarizes the features, advantages, and disadvantages of relative file organization.

Table 16.3  Relative file organization

Features Advantages Disadvantages

∑	Provides an effective 
way to access individual 
records

∑	The record number rep-
resents the location of 
the record relative to 
the beginning of the file

∑	Records in a relative 
file are of fixed length

∑	Relative files can be 
used for both random as 
well as sequential ac-
cess

∑	Every location in the 
table either stores a 
record or is marked as 
FREE

∑	Ease of processing
∑	If the relative record number of the 

record that has to be accessed is 
known, then the record can be ac-
cessed instantaneously

∑	Random access of records makes ac-
cess to relative files fast

∑	Allows deletions and updations in 
the same file

∑	Provides random as well as sequen-
tial access of records with low 
overhead

∑	New records can be easily added in 
the free locations based on the 
relative record number of the record 
to be inserted

∑	Well suited for interactive applica-
tions

∑	Use of relative 
files is restricted 
to disk devices

∑	Records can be of 
fixed length only

∑	For random access 
of records, the 
relative record 
number must be 
known in advance

16.6.3  Indexed Sequential File Organization
Indexed sequential file organization stores data for fast retrieval. The records in an indexed sequential 
file are of fixed length and every record is uniquely identified by a key field. We maintain a table 
known as the index table which stores the record number and the address of all the records. That 
is for every file, we have an index table. This type of file organization is called as indexed sequential 
file organization because physically the records may be stored anywhere, but the index table stores 
the address of those records.
	 The ith entry in the index table points to the ith record of the file. Initially, when the file is 
created, each entry in the index table contains NULL. When the ith record of the file is written, 

free space is obtained from the free space manager and its 
address is stored in the ith location of the index table.
  Now, if one has to read the 4th record, then there is no 
need to access the first three records. Address of the 4th 
record can be obtained from the index table and the record 
can be straightaway read from the specified address (742, 
in our example). Conceptually, the index sequential file 
organization can be visualized as shown in Fig. 16.5.
  An indexed sequential file uses the concept of both 
sequential as well as relative files. While the index table is 
read sequentially to find the address of the desired record, a 
direct access is made to the address of the specified record 
in order to access it randomly.
  Indexed sequential files perform well in situations where 
sequential access as well as random access is made to 
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Figure 16.5  Indexed sequential file organization
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the data. Indexed sequential files can be stored only on devices that support random access, for 
example, magnetic disks.
	 For example, take an example of a college where the details of students are stored in an indexed 
sequential file. This file can be accessed in two ways:
	 ∑	 Sequentially—to print the aggregate marks obtained by each student in a particular course or
	 ∑	 Randomly—to modify the name of a particular student.
	 Table 16.4 summarizes the features, advantages, and disadvantages of indexed sequential file 
organization.

Table 16.4  Indexed sequential file organization

Features Advantages Disadvantages

∑	Provides fast data retrieval
∑	Records are of fixed length
∑	Index table stores the address of 

the records in the file
∑	The ith entry in the index table 

points to the ith record of the file
∑	While the index table is read se-

quentially to find the address of 
the desired record, a direct ac-
cess is made to the address of the 
specified record in order to access 
it randomly

∑	Indexed sequential files perform 
well in situations where sequential 
access as well as random access is 
made to the data

∑	The key improvement 
is that the indices 
are small and can be 
searched quickly, al-
lowing the database to 
access only the records 
it needs

∑	Supports applications 
that require both batch 
and interactive process-
ing

∑	Records can be accessed 
sequentially as well as 
randomly

∑	Updates the records in 
the same file

∑	Indexed sequential 
files can be stored 
only on disks

∑	Needs extra space 
and overhead to 
store indices

∑	Handling these files 
is more complicated 
than handling se-
quential files

∑	Supports only fixed 
length records

16.7  INDEXING
An index for a file can be compared with a catalogue in a library. Like a library has card catalogues 
based on authors, subjects, or titles, a file can also have one or more indices.
	 Indexed sequential files are very efficient to use, but in real-world applications, these files are 
very large and a single file may contain millions of records. Therefore, in such situations, we 
require a more sophisticated indexing technique. There are several indexing techniques and each 
technique works well for a particular application. For a particular situation at hand, we analyse 
the indexing technique based on factors such as access type, access time, insertion time, deletion 
time, and space overhead involved. There are two kinds of indices:
	 ∑	 Ordered indices that are sorted based on one or more key values
	 ∑	 Hash indices that are based on the values generated by applying a hash function

16.7.1  Ordered Indices
Indices are used to provide fast random access to records. As stated above, a file may have multiple 
indices based on different key fields. An index of a file may be a primary index or a secondary index.

Primary Index
In a sequentially ordered file, the index whose search key specifies the sequential order of the file 
is defined as the primary index. For example, suppose records of students are stored in a STUDENT 
file in a sequential order starting from roll number 1 to roll number 60. Now, if we want to search 
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a record for, say, roll number 10, then the student’s roll number is the primary index. Indexed 
sequential files are a common example where a primary index is associated with the file.

Secondary Index
An index whose search key specifies an order different from the sequential order of the file is 
called as the secondary index. For example, if the record of a student is searched by his name, 
then the name is a secondary index. Secondary indices are used to improve the performance of 
queries on non-primary keys.

16.7.2  Dense and Sparse Indices
In a dense index, the index table stores the address of every record in the file. However, in a sparse 
index, the index table stores the address of only some of the records in the file. Although sparse 
indices are easy to fit in the main memory, a dense index would be more efficient to use than a 
sparse index if it fits in the memory. Figure 16.6 shows a dense index and a sparse index for an 
indexed sequential file.
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Figure 16.6  Dense index and sparse index

	 Note that the records need not be stored in consecutive memory locations. The pointer to the 
next record stores the address of the next record.
	 By looking at the dense index, it can be concluded directly whether the record exists in the file 
or not. This is not the case in a sparse index. In a sparse index, to locate a record, we first find an 
entry in the index table with the largest search key value that is either less than or equal to the 
search key value of the desired record. Then, we start at that record pointed to by that entry in the 
index table and then proceed searching the record using the sequential pointers in the file, until 
the desired record is obtained. For example, if we need to access record number 40, then record 
number 30 is the largest key value that is less than 40. So jump to the record pointed by record 
number 30 and move along the sequential pointer to reach record number 40.
	 Thus we see that sparse index takes more time to find a record with the given key. Dense 
indices are faster to use, while sparse indices require less space and impose less maintenance for 
insertions and deletions.

16.7.3  Cylinder Surface Indexing
Cylinder surface indexing is a very simple technique used only for the primary key index of a 
sequentially ordered file. In a sequentially ordered file, the records are stored sequentially in the 
increasing order of the primary key. The index file will contain two fields—cylinder index and 
several surface indices. Generally, there are multiple cylinders, and each cylinder has multiple 
surfaces. If the file needs m cylinders for storage then the cylinder index will contain m entries. 



498  Data Structures Using C

Each cylinder will have an entry corresponding to the largest key value into that cylinder. If the 
disk has n usable surfaces, then each of the surface indices will have n entries. Therefore, the ith 
entry in the surface index for cylinder j is the largest key value on the jth track of the ith surface. 
Hence, the total number of surface index entries is m.n. The physical and logical organization of 
disk is shown in Fig. 16.7.

Note	 The number of cylinders in a disk is only a few hundred and the cylinder index occupies only one track.

	 When a record with a particular key value has to be searched, then the following steps are 
performed:
	 ∑	 First the cylinder index of the file is read into memory.
	 ∑	 Second, the cylinder index is searched to determine which cylinder holds the desired record. 

For this, either the binary search technique can be used or the cylinder index can be made 
to store an array of pointers to the starting of individual key values. In either case the search 
will take O (log m) time. 

	 ∑	 After the cylinder index is searched, appropriate cylinder is determined.
	 ∑	 Depending on the cylinder, the surface index corresponding to the cylinder is then retrieved 

from the disk. 
	 ∑	 Since the number of surfaces on a disk is very small, linear search can be used to determine 

surface index of the record. 
	 ∑	 Once the cylinder and the surface are determined, the corresponding track is read and searched 

for the record with the desired key. 
	 Hence, the total number of disk accesses is three—first, for accessing the cylinder index, 
second for accessing the surface index, and third for getting the track address. However, if track 

sizes are very large then it may not be a 
good idea to read the whole track at once. In 
such situations, we can also include sector 
addresses. But this would add an extra level 
of indexing and, therefore, the number of 
accesses needed to retrieve a record will then 
become four. In addition to this, when the 
file extends over several disks, a disk index 
will also be added. 
  The cylinder surface indexing method 
of maintaining a file and index is referred 
to as Indexed Sequential Access Method 
(ISAM). This technique is the most popular 
and simplest file organization in use for 
single key values. But with files that contain 

multiple keys, it is not possible to use this index organization for the remaining keys. 

16.7.4  Multi-level Indices
In real-world applications, we have very large files that may contain millions of records. For such 
files, a simple indexing technique will not suffice. In such a situation, we use multi-level indices. 
To understand this concept, consider a file that has 10,000 records. If we use simple indexing, 
then we need an index table that can contain at least 10,000 entries to point to 10,000 records. If 
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Figure 16.7  Physical and logical organization of disk
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each entry in the index table occupies 4 bytes, then we need an index table of 4 ¥ 10000 bytes = 
40000 bytes. Finding such a big space consecutively is not always easy. So, a better scheme is 
to index the index table.
	 Figure 16.8 shows a two-level multi-indexing. We can continue further by having a three-level 
indexing and so on. But practically, we use two-level indexing. Note that two and higher-level 
indexing must always be sparse, otherwise multi-level indexing will lose its effectiveness. In the 
figure, the main index table stores pointers to three inner index tables. The inner index tables are 
sparse index tables that in turn store pointers to the records.
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Figure 16.8  Multi-level indices

16.7.5  Inverted Indices
Inverted files are commonly used in document retrieval systems for large textual databases. An 
inverted file reorganizes the structure of an existing data file in order to provide fast access to all 
records having one field falling within the set limits.
	 For example, inverted files are widely used by bibliographic databases that may store author names, 
title words, journal names, etc. When a term or keyword specified in the inverted file is identified, 
the record number is given and a set of records corresponding to the search criteria are created.
	 Thus, for each keyword, an inverted file contains an inverted list that stores a list of pointers 
to all occurrences of that term in the main text. Therefore, given a keyword, the addresses of all 
the documents containing that keyword can easily be located.
	 There are two main variants of inverted indices:
	 ∑	 A record-level inverted index (also known as inverted file index or inverted file) stores a list 

of references to documents for each word
	 ∑	 A word-level inverted index (also known as full inverted index or inverted list) in addition to a 

list of references to documents for each word also contains the positions of each word within 
a document. Although this technique needs more time and space, it offers more functionality 
(like phrase searches)



500  Data Structures Using C

	 Therefore, the inverted file system consists of an index file in addition to a document file (also 
known as text file). It is this index file that contains all the keywords which may be used as search 
terms. For each keyword, an address or reference to each location in the document where that word 
occurs is stored. There is no restriction on the number of pointers associated with each word.
	 For efficiently retrieving a word from the index file, the keywords are sorted in a specific order 
(usually alphabetically).
	 However, the main drawback of this structure is that when new words are added to the documents 
or text files, the whole file must be reorganized. Therefore, a better alternative is to use B-trees.

16.7.6  B-Tree Indices
A database is defined as a collection of data organized in a fashion that facilitates updating, 
retrieving, and managing the data (that may include any item, such as names, addresses, pictures, 
and numbers). Most organizations maintain databases for their business operations. For example, 
an airline reservation system maintains a database of flights, customers, and tickets issued. A 
university maintains a database of all its students. These real-world databases may contain millions 
of records that may occupy gigabytes of storage space.
	 For a database to be useful, it must support fast retrieval and storage of data. Since it is 
impractical to maintain the entire database in the memory, B-trees are used to index the data in 
order to provide fast access.
	 For example, searching a value in an un-indexed and unsorted database containing n key values 
may take a running time of 0(n) in the worst case, but if the same database is indexed with a 
B-tree, the search operation will run in O(log n) time.
	 Majority of the database management systems use the B-tree index technique as the default 
indexing method. This technique supersedes other techniques of creating indices, mainly due to 
its data retrieval speed, ease of maintenance, and simplicity. Figure 16.9 shows a B-tree index.
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	 It forms a tree structure with the root at the top. The index consists of a B-tree (balanced tree) 
structure based on the values of the indexed column. In this example, the indexed column is name 
and the B-tree is created using all the existing names that are the values of the indexed column. 
The upper blocks of the tree contain index data pointing to the next lower block, thus forming a 
hierarchical structure. The lowest level blocks, also known as leaf blocks, contain pointers to the 
data rows stored in the table.
	 If a table has a column that has many unique values, then the selectivity of that column is said 
to be high. B-tree indices are most suitable for highly selective columns, but it causes a sharp 
increase in the size when the indices contain concatenation of multiple columns.
	 The B-tree structure has the following advantages:
	 ∑	 Since the leaf nodes of a B-tree are at the same depth, retrieval of any record from anywhere 

in the index takes approximately the same time.
	 ∑	 B-trees improve the performance of a wide range of queries that either search a value having 

an exact match or for a value within specified range.
	 ∑	 B-trees provide fast and efficient algorithms to insert, update, and delete records that maintain 

the key order.
	 ∑	 B-trees perform well for small as well as large tables. Their performance does not degrade 

as the size of a table grows.
	 ∑	 B-trees optimize costly disk access.

16.7.7  Hashed Indices
In the last chapter, we discussed hashing in detail. The same concept of hashing can be used to 
create hashed indices.
	 So far, we have studied that hashing is used to compute the address of a record by using a hash 
function on the search key value. If at any point of time, the hashed values map to the same address, 
then collision occurs and schemes to resolve these collisions are applied to generate a new address.
	 Choosing a good hash function is critical to the success of this technique. By a good hash 
function, we mean two things. First, a good hash function, irrespective of the number of search 
keys, gives an average-case lookup that is a small constant. Second, the function distributes records 
uniformly and randomly among the buckets, where a bucket is defined as a unit of one or more 
records (typically a disk block). Correspondingly, the worst hash function is one that maps all the 
keys to the same bucket.
	 However, the drawback of using hashed indices includes:
	 ∑	 Though the number of buckets is fixed, the number of files may grow with time.
	 ∑	 If the number of buckets is too large, storage space is wasted.
	 ∑	 If the number of buckets is too small, there may be too many collisions.
	 It is recommended to set the number of buckets to twice the number of the search key values 
in the file. This gives a good space–performance tradeoff.
	 A hashed file organization uses hashed indices. Hashing is used to calculate the address of disk 
block where the desired record is stored. If K is the set of all search key values and B is the set of 
all bucket addresses, then a hash function H maps K to B.
	 We can perform the following operations in a hashed file organization.

Insertion
To insert a record that has ki as its search value, use the hash function h(ki) to compute the address 
of the bucket for that record. If the bucket is free, store the record else use chaining to store the 
record.
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Search
To search a record having the key value ki, use h(ki) to compute the address of the bucket where 
the record is stored. The bucket may contain one or several records, so check for every record in 
the bucket (by comparing ki with the key of every record) to finally retrieve the desired record 
with the given key value.

Deletion
To delete a record with key value ki, use h(ki) to compute the address of the bucket where the 
record is stored. The bucket may contain one or several records so check for every record in the 
bucket (by comparing ki with the key of every record). Then delete the record as we delete a node 
from a linear linked list. We have already studied how to delete a record from a chained hash 
table in Chapter 15.
	 Note that in a hashed file organization, the secondary indices need to be organized using hashing.

∑	 A file is a block of useful information which is 
available to a computer program and is usually stored 
on a persistent storage medium.

∑	 Every file contains data. This data can be organized 
in a hierarchy to present a systematic organization. 
The data hierarchy includes data items such as fields, 
records, files, and database.

∑	 A data field is an elementary unit that stores a single 
fact. A record is a collection of related data fields 
which is seen as a single unit from the application 
point of view. A file is a collection of related records.  
A directory is a collection of related files.

∑	 A database is defined as a collection of data 
organized in a fashion that facilitates updating, 
retrieving, and managing the data.

∑	 There are two types of computer files—text files and 
binary files. A text file is structured as a sequence of 
lines of alphabet, numbers, special characters, etc. 
However, the data in a text file is stored using its 
corresponding ASCII code. Whereas in binary files, 
the data is stored in binary form, i.e., in the format 
it is stored in the memory.

∑	 Each file has a list of attributes associated with it 
which can have one of two states—on or off. These 
attributes are: read-only, hidden, system, volume 
label, archive, and directory.

∑	 A file marked as read-only cannot be deleted or 
modified.

∑	  A hidden file is not displayed in the directory listing.
∑	 A system file is used by the system and should not 

be altered or removed from the disk.

∑	 The archive bit is useful for communication between 
programs that modify files and programs that are used 
for backing up files.

∑	 A file that has the directory bit turned on is actually 
a sub-directory containing one or more files.

∑	 File organization means the logical arrangement 
of records in the file. Files can be organized as 
sequential, relative, or index sequential.

∑	 A sequentially organized file stores records in the 
order in which they were entered.

∑	 In relative file organization, records in a file are 
ordered by their relative key. Relative files can be 
used for both random access as well as sequential 
access of data.

∑	 In an indexed sequential file, every record is uniquely 
identified by a key field. We maintain a table known 
as the index table that stores record number and the 
address of the record in the file.

∑	 There are several indexing techniques, and each 
technique works well for a particular application.

∑	 In a dense index, index table stores the address of 
every record in the file. However, in a sparse index, 
index table stores address of only some of the records 
in the file.

∑	 Cylinder surface indexing is a very simple technique 
which is used only for the primary key index of a 
sequentially ordered file.

∑	 In multi-level indexing, we can create an index to 
the index itself. The original index is called the first-
level index and the index to the index is called the 
second-level index.

 Points to Remember
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Review Questions
	 1.	 Why do we need files?
	 2.	 Explain the terms field, record, file organization, 

key, and index.
	 3.	 Define file. Explain all the file attributes.
	 4.	 How is archive attribute useful?
	 5.	 Differentiate between a binary file and a text file.
	 6.	 Explain the basic file operations.
	 7.	 What do you understand by the term file 

organization? Briefly summarize the different file 
organizations that are widely used today.

	 8.	 Write a brief note on indexing.
	 9.	 Differentiate between sparse index and dense 

index.
	 10.	 Explain the significance of multi-level indexing 

with an appropriate example.
	 11.	 What are inverted files? Why are they needed?
	 12.	 Give the merits and demerits of a B-tree index.

Multiple-choice Questions
	 1.	 Which of the following flags is cleared when a 

file is backed up?
	 (a)	 Read-only
	 (b)	 System
	 (c)	 Hidden
	 (d)	 Archive
	 2.	 Which is an important file used by the system and 

should not be altered or removed from the disk?
	 (a)	 Hidden file
	 (b)	 Archived file
	 (c)	 System file
	 (d)	 Read-only file
	 3.	 The data hierarchy can be given as

	 (a)	 Fields, records, files and database
	 (b)	 Records, files, fields and database
	 (c)	 Database, files, records and fields
	 (d)	 Fields, records, database, and files
	 4.	 Which of the following indexing techniques is 

used in document retrieval systems for large 
databases?

	 (a)	 Inverted index
	 (b)	 Multi-level indices
	 (c)	 Hashed indices
	 (d)	 B-tree index

True or False
	 1.	 When a backup program archives the file, it sets 

the archive bit to one.
	 2.	 In a text file, data is stored using ASCII codes.
	 3.	 A binary file is more efficient than a text file.
	 4.	 Maintenance of a file involves re-structuring or 

re-organization of the file.
	 5.	 Relative files can be used for both random access 

of data as well as sequential access.
	 6.	 In a sparse index, index table stores the address 

of every record in the file.
	 7.	 Higher level indexing must always be sparse.
	 8.	 B-tree indices are most suitable for highly 

selective columns.

Fill in the Blanks

	 1.	 ______ is a block of useful information.
	 2.	 A data field is usually characterized by its ______ 

and ______.
	 3.	 ______ is a collection of related data fields.

∑	 Inverted files are frequently used indexing technique 
in document retrieval systems for large textual 
databases. An inverted file reorganizes the structure 
of an existing data file in order to provide fast access 
to all records having one field falling within set 
limits.

∑	 Majority of the database management systems use 
B-tree indexing technique. The index consists of a 

hierarchical structure with upper blocks containing 
indices pointing to the lower blocks and lowest level 
blocks containing pointers to the data records.

∑	 Hashed file organization uses hashed indices. Hashing 
is used to calculate the address of disk block where 
the desired record is stored. If K is the set of all search 
key values and B is the set of bucket addresses, then 
a hash function H maps K to B.

 exercises
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	 4.	 ______ is a pointer that points to the position 
at which next read/write operation will be 
performed.

	 5.	 ______ indicates whether the file is a text file or 
a binary file.

	 6.	 Index table stores ______ and ______ of the 
record in the file.

	 7.	 In a sequentially ordered file the index whose 

search key specifies the sequential order of the 
file is defined as the ______ index.

	 8.	 ______ files are frequently used indexing 
technique in document retrieval systems for large 
textual databases.

	 9.	 ______ is a collection of data organized in a 
fashion that facilitates updating, retrieving, and 
managing the data.



C supports three kinds of memory allocation through the variables in C programs: 
Static allocation  When we declare a static or global variable, static allocation is done for the 
variable. Each static or global variable is allocated a fixed size of memory space. The number of 
bytes reserved for the variable cannot change during execution of the program. 
Automatic allocation  When we declare an automatic variable, such as a function argument or 
a local variable, automatic memory allocation is done. The space for an automatic variable is 
allocated when the compound statement containing the declaration is entered, and is freed when 
it exits from a compound statement. 
Dynamic allocation  A third important kind of memory allocation is known as dynamic allocation. 
In the following sections we will read about dynamic memory allocation using pointers.

Memory Usage
Before jumping into dynamic memory allocation, let us first understand how memory is used. 
Conceptually, memory is divided into two parts—program memory and data memory (fig. A1). 

Memory

Program memory Data memory

main() Other

function

Global HeapStack

Figure A1  Memory usage

the program memory consists of memory used for the main() and other called functions in the 
program, whereas data memory consists of memory needed for permanent definitions such as 
global data, local data, constants, and dynamic memory data. The way in which C handles the 
memory requirements is a function of the operating system and the compiler.
	 When a program is being executed, its main() and all other functions are always kept in the 
memory. However, the local variables of the function are available in the memory only when 
they are active. when we studied recursive functions, we have seen that the system stack is used 
to store a single copy of the function and multiple copies of the local variables. 

Author Query:- 
Please rephrase 
the text. We 
haven’t studied 
system stack in 
this much detail 
in the chapter 
on stacks

Memory Allocation in C Programs

appendix A
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	 Apart from the stack, we also have a memory pool known as heap. Heap memory is unused 
memory allocated to the program and available to be assigned during its execution. When we 
dynamically allocate memory for variables, heap acts as a memory pool from which memory is 
allocated to those variables. 
	 However, this is just a conceptual view of memory and implementation of the memory is 
entirely in the hands of system designers.  

Dynamic Memory Allocation
The process of allocating memory to the variables during execution of the program or at run time 
is known as dynamic memory allocation. C language has four library routines which allow this 
function. 
Till now whenever we needed an array we had declared a static array of fixed size as

int arr[100];

When this statement is executed, consecutive space for 100 integers is allocated. It is 
not uncommon that we may be using only 10% or 20% of the allocated space, thereby 
wasting rest of the space. To overcome this problem and to utilize the memory efficiently, 
C language provides a mechanism of dynamically allocating memory so that only the 
amount of memory that is actually required is reserved. We reserve space only at the run 
time for the variables that are actually required. Dynamic memory allocation gives best 
performance in situations in which we do not know memory requirements in advance.
	 C provides four library routines to automatically allocate memory at the run time. These routines are 
shown in Table A1.

Table A1  Memory allocation/de-allocation functions

Function Task

malloc() Allocates memory and returns a pointer to the first byte of allo-
cated space

calloc() Allocates space for an array of elements, initializes them to zero 
and returns a pointer to the memory

free() Frees previously allocated memory 

realloc() Alters the size of previously allocated memory

	 When we have to dynamically allocate memory for variables in our programs then pointers 
are the only way to go. When we use malloc() for dynamic memory allocation, then you need to 
manage the memory allocated for variables yourself. 

Memory allocations process
In computer science, the free memory region is called heap. The size of heap is not constant 
as it keeps changing when the program is executed. In the course of program execution, some 
new variables are created and some variables cease to exist when the block in which they were 
declared is exited. For this reason it is not uncommon to encounter memory overflow problems 
during dynamic allocation process. When an overflow condition occurs, the memory allocation 
functions mentioned above will return a null pointer. 

Allocating a block of memory 
Let us see how memory is allocated using the malloc()function. malloc is declared in <stdlib.h>, so 
we include this header file in any program that calls malloc. The malloc function reserves a block 
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of memory of specified size and returns a pointer of type void. This means that we can assign it 
to any type of pointer. The general syntax of malloc() is

ptr =(cast-type*)malloc(byte-size); 

where ptr is a pointer of type cast-type. malloc() returns a pointer (of cast type) to an area of 
memory with size byte-size. 
For example, 

arr=(int*)malloc(10*sizeof(int)); 

This statement is used to dynamically allocate memory equivalent to 10 times the area of int 
bytes. On successful execution of the statement the space is reserved and the address of the first 

byte of memory allocated is assigned to the pointer arr of type int. 
calloc() function is another function that reserves memory at the run 
time. It is normally used to request multiple blocks of storage each 
of the same size and then sets all bytes to zero. calloc() stands for 
contiguous memory allocation and is primarily used to allocate memory 
for arrays. The syntax of calloc() can be given as:

ptr=(cast-type*) calloc(n,elem-size); 

	 The above statement allocates contiguous space for n blocks each of size elem-size bytes. The 
only difference between malloc() and calloc() is that when we use calloc(), all bytes are initialized 
to zero. calloc() returns a pointer to the first byte of the allocated region. 
	 when we allocate memory using malloc() or calloc(), a NULL pointer will be returned if there is 
not enough space in the system to allocate. A NULL pointer, points definitely nowhere. It is a not 
a pointer marker; therefore, it is not a pointer you can use. Thus, whenever you allocate memory 
using malloc() or calloc(), you must check the returned pointer before using it. If the program 
receives a NULL pointer, it should at the very least print an error message and exit, or perhaps figure 
out some way of proceeding without the memory it asked for. But in any case, the program cannot 
go on to use the NULL pointer it got back from malloc()/calloc().
	 A call to malloc, with an error check, typically looks something like this: 

int *ip = malloc(100 * sizeof(int));
if(ip == NULL)
{
	 printf("\n Memory could not be allocated");
	 return;
}

Write a program to read and display values of an integer array. Allocate space dynamically for 
the array. 

#include <stdio.h>
#include <stdlib.h>
int main()
{
	 int i, n;
	 int *arr;
	 printf("\n Enter the number of elements ");
	 scanf("%d", &n);	
	 arr = (int *)malloc(n  *  sizeof(int));
	 if(arr == NULL)
	 {
		  printf("	 \n Memory Allocation Failed");
		  exit(0);
	 }

Programming Tip

To use dynamic memory 
allocation functions, you must 
include the header file stdlib.h. 
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	 for(i = 0;i < n;i++)
	 {
		  printf("\n Enter the value %d of the array: ", i);
		  scanf("%d", &arr[i]);
	 }
	 printf("\n The array contains \n");
	 for(i = 0;i < n;i++)
		  printf("%d", arr[i]); 
	 return 0;
}

	 Now let us also see how we can allocate memory using the calloc function. the calloc() function 
accepts two parameters—num and size, where num is the number of elements to be allocated and size 
is the size of elements. The following program demonstrates the use of calloc() to dynamically 
allocate space for an integer array.

#include <stdio.h>
#include <stdlib.h>
int main ()
{
	 int i,n;
	 int *arr;
	 printf ("\n Enter the number of elements: ");
	 scanf("%d",&n);
	 arr = (int*) calloc(n,sizeof(int));
	 if (arr==NULL) 
		  exit (1);
	 printf("\n Enter the %d values to be stored in the array", n);
	 for (i = 0; i < n; i++)
 	  scanf ("%d",&arr[i]);
	 printf ("\n You have entered: ");
	 for(i = 0; i < n; i++) 
		  printf ("%d",arr[i]);
	 free(arr);
	 return 0;
}

Releasing the Used Space
When a variable is allocated space during the compile time, then the memory used by that 
variable is automatically released by the system in accordance with its storage class. But when 
we dynamically allocate memory then it is our responsibility to release the space when it is not 
required. This is even more important when the storage space is limited. Therefore, if we no longer 
need the data stored in a particular block of memory and we do not intend to use that block for 
storing any other information, then as a good programming practice we must release that block 
of memory for future use, using the free function. The general syntax of the free()function is,

free(ptr); 

where ptr is a pointer that has been created by using malloc() or calloc(). When memory is de-
allocated using free(), it is returned back to the free list within the heap.

To alter the size of allocated memory
At times the memory allocated by using calloc() or malloc() might be insufficient or in excess. 
In both the situations we can always use realloc() to change the memory size already allocated 
by calloc() and malloc(). This process is called reallocation of memory. The general syntax for 
realloc() can be given as, 
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ptr = realloc(ptr,newsize); 

The function realloc() allocates new memory space of size specified by newsize to the pointer 
variable ptr. It returns a pointer to the first byte of the memory block. The allocated new block 
may be or may not be at the same region. Thus, we see that realloc() takes two arguments. The 
first is the pointer referencing the memory and the second is the total number of bytes you want 
to reallocate. If you pass zero as the second argument, it will be equivalent to calling free(). Like 
malloc() and calloc(), realloc returns a void pointer if successful, else a NULL pointer is returned. 
	 If realloc() was able to make the old block of memory bigger, it returns the same pointer. 
Otherwise, if realloc() has to go elsewhere to get enough contiguous memory then it returns a 
pointer to the new memory, after copying your old data there. However, if realloc() cannot find 
enough memory to satisfy the new request at all, it returns a null pointer. So again you must check 
before using that the pointer returned by the realloc() is not a null pointer.

/*Example program for reallocation*/ 
#include < stdio.h> 
#include < stdlib.h>
#define NULL 0 
int main() 
{ 
	 char *str; 
	 str = (char *)malloc(10);
	 if(str==NULL) 
	 {
		  printf("\n Memory could not be allocated");
		  exit(1); 
} 
	 strcpy(str,"Hi"); 
	 printf("\n STR = %s", str); 
	 /*Reallocation*/ 
	 str = (char *)realloc(str,20);
	 if(str==NULL) 
	 {
		  printf("\n Memory could not be reallocated");
		  exit(1); 
}
printf("\n STR size modified\n");
printf("\n STR = %s\n", str); 
strcpy(str,"Hi there"); 
printf("\n STR = %s", str); 
/*freeing memory*/ 
free(str); 
return 0;
}

Note	 with realloc(), you can allocate more bytes without losing your data.

Dynamically Allocating a 2-d Array
We have seen how malloc() can be used to allocate a block of memory which can simulate an array. 
Now we can extend our understanding further to do the same to simulate multidimensional arrays. 
	 If we are not sure of the number of columns that the array will have, then we will first allocate 
memory for each row by calling malloc. Each row will then be represented by a pointer. Look at 
the code below which illustrates this concept. 

#include <stdlib.h>
#include <stdio.h>
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int main()
{
	 int **arr, i, j, ROWS, COLS;
	 printf("\n Enter the number of rows and columns in the array: ");
	 scanf("%d %d", ROWS, COLS);
	 arr = (int **)malloc(ROWS * sizeof(int *));
	 if(arr == NULL)
	 {
		  printf("\n Memory could not be allocated");
		  exit(-1);
	 }
	 for(i=0; i<ROWS; i++)
	 {
		  arr[i] = (int *)malloc(COLS * sizeof(int));
		  if(arr[i] == NULL)
		  {
			   printf("\n Memory Allocation Failed");
			   exit(-1);
		  }
	 }
	 printf("\n Enter the values of the array: ");
	 for(i = 0; i < ROWS; i++)
	 {
		  for(j = 0; j < COLS; j++)
			   scanf("%d", &arr[i][j]);
	 }
	 printf("\n The array is as follows: ");
	 for(i = 0; i < ROWS; i++)
	 {
		  for(j = 0; j < COLS; j++)
			   printf("%d", arr[i][j]);
	 }
	 for(i = 0; i < ROWS; i++)
		  free(arr[i]);
	 free(arr);
	 return 0;
}

Here, arr is a pointer-to-pointer-to-int: at the first level as it points to a block of pointers, one for 
each row. We first allocate space for rows in the array. The space allocated to each row is big 
enough to hold a pointer-to-int, or int *. If we successfully allocate it, then this space will be 
filled with pointers to columns (number of ints). This can be better understood from fig. A2.

arr

Row

Column

Figure A2  Memory allocation of two-dimensional array
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	 Once the memory is allocated for the two-dimensional array, we can use subscripts to access 
its elements. When we write, arr[i][j], it means we are looking for the ith pointer pointed to by 
arr, and then for the jth int pointed to by that inner pointer. 
	 When we have to pass such an array to a function, then the prototype of the function will be 
written as 
func(int **arr, int ROWS, int COLS);
	 In the above declaration, func accepts a pointer-to-pointer-to-int and the dimensions of the 
arrays as parameters, so that it will know how many rows and columns are there. 



Garbage collection is a dynamic approach used for automatic memory management to reduce 
the memory leak problems. The garbage collection process identifies unused memory blocks 
and reallocates that storage for reuse. Garbage collection is implemented using the following 
approaches: 
 Mark-and-sweep  In this approach when memory runs out, the garbage collection process locates 
all accessible memory and then reclaims the available memory.
Reference counting  The garbage collection process here maintains a reference count of referencing 
number for each allocated object. When the memory count becomes zero, the object is marked 
as garbage and then destroyed by freeing its memory. The freed memory is finally returned to 
the memory heap.
Copy collection  The garbage collection process maintains two memory partitions. When the first 
partition is full, the garbage collection process identifies all accessible data structures and copies 
them to the second partition. Then it compacts memory to allow continuous free memory.

Note	 Some programming languages like Java, C#, .NET, etc., have built-in garbage collection process to self-manage 
memory leak problem.

Advantages of Garbage Collection
Garbage collection frees the programmer from manually dealing with memory de-allocation, 
thereby eliminating or substantially reducing following types of programming bugs:
Dangling pointer bugs are often encountered when the memory allocated to a variable (or an object) 
is freed but there are still pointers pointing to it. If such pointers are de-referenced especially when 
that memory is re-allocated to another variable or object, then results are simply unpredictable. 
Double free bugs occur when the program tries to free a piece of memory that has already been 
freed. It may be a case that the freed memory has now been re-allocated to some other variable or 
object of the same or a different program. In such a case, the program will again give erroneous 
results. 
Memory leaks occur when a program is unable to free memory occupied by objects that have 
become unreachable. 
Garbage collection also helps in efficient implementation of persistent data structures.

Garbage Collection

appendix B



Disadvantages of Garbage Collection
The typical disadvantages of garbage collection process include: 
	 ∑	 Garbage collection consumes computing resources to decide which piece of memory must 

be freed. This information may already be available with the programmer. 
	 ∑	 The time at which the garbage collection process will be executed is unpredictable which may 

lead to stalls scattered throughout a session. This is unacceptable in real-time environments, 
transaction processing, or in interactive programs. Although incremental, concurrent, and 
real-time garbage collectors solve this problem but with some or the other trade-off.

	 ∑	 Some of the bugs addressed by garbage collection can have certain security implications.

Requirements for Automatic Garbage Collection
An effective and efficient garbage collection process must have the following properties: 
	 ∑	 Must identify garbage
	 ∑	 The object or variable identified as garbage must actually be garbage.
	 ∑	 Must have less overhead
	 ∑	 During garbage collection, the execution of the program is temporarily delayed. This delay 

must be minimum.
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Backtracking is a general algorithm that finds all or some solutions to any computational problem 
that incrementally builds candidates to the solutions. At each step, while the valid candidates to 
the solution are extended, the other candidates are discarded. That is, each partial candidate c is 
immediately abandoned after it is determined that c cannot be a possible and valid solution to the 
problem. Hence, the name, backtrack. 
	 The concept of backtracking is applicable only to problems that support partial candidate 
solutions and a relatively quick test to determine if the partial candidate solution can be completed 
to a valid solution. Backtracking is extensively used to solve constraint satisfaction problems such 
as following:
	 ∑	 Puzzles like Sudoku, eight queen’s problem, crosswords, verbal arithmetic, Solitaire
	 ∑	 Combinational optimization problem like parsing and Knapsack problem
	 ∑	 Logic programming languages that internally use backtracking include Icon, Planner and Prolog
	 ∑	 diff which is a version comparing engine for the MediaWiki software
	 Backtracking is said to be a meta-heuristic algorithm (in contrast to a specific algorithm) that 
is guaranteed to find all solutions to a finite problem in a bounded amount of time. The term 
meta-heuristic implies that the algorithm works based on user-given procedures that define the 
problem to be solved, the nature of the partial candidates, and how they are extended into complete 
candidates. 
	 Conceptualizing the backtracking process as potential search tree, the partial candidates of 
the solution can be viewed as the nodes of the tree. Each partial candidate has child nodes that 
represent the candidates that differ from it by a single extension step. Of course, the leaf nodes 
are the partial candidates that cannot be extended further.
	 The backtracking algorithm recursively traverses the search tree in depth-first order (starting 
from the root node). At each node  c, the algorithm checks if c  can be completed to a valid 
solution. If it cannot be completed, then the entire sub-tree rooted at c is pruned. However, if 
there is a possibility that c may lead to valid solution then the algorithm first checks if c itself is 
a valid solution. If yes, then the algorithm declares c as the valid solution otherwise it recursively 
enumerates all sub-trees of c. 

Note	 The tests to determine the valid solution and children of each node are all defined by user-given procedures.

Backtracking
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Look at the search tree given below.

Root

Solution A

Solution

C (bad)

Solution

D (bad)

Solution B

Solution

E (bad)

Solution

F (good)

Step 1  Start with the root node. The two available options are—Solution A and Solution B. Select 
Solution A.
Step 2  At Solution A there are again two options—Solution C and Solution D. Select Solution C.
Step 3  Since Solution C is not a good (valid and possible) candidate, backtrack to Solution A 
and now select Solution D.
Step 4  Since Solution D is not a good (valid and possible) candidate, backtrack to Solution A. 
now there are no more options available at Solution A, so select Solution B.
Step 5  At Solution B there are two options—Solution E and Solution F. Select Solution E.
Step 6  Since Solution E is not a good (valid and possible) candidate, backtrack to Solution B 
and now select Solution F.
Step 7  Solution F is a good (valid and possible) candidate, so the algorithm stops here. 
Advantage: By terminating searches and not exploring candidates that cannot lead to valid possible 
solutions, the backtracking technique reduces the number of nodes examined. The algorithm can be 
used to solve exponential time problems in a reasonable amount of time.

Note	 Backtracking is not an optimization technique. It just reduces the search space.
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In real-world applications, especially in the operating system, multiple activities have to be 
performed. The biggest issue is not just performing these activities but also completing them in 
minimum time. The Johnson’s algorithm is used in such applications where an optimal order of 
execution of different activities has to be determined. 
	 Consider a problem that consists of independent tasks T1, T2, º, Tn and two independent 
processes P1 and P2. If it is specified that P1 must be completed before P2, then Johnson’s problem 
can be given as:
Step 1  Determine P1 and P2 times for each task. 
Step 2  Make two queues, Q1 and Q2 where Q1 is formed at the beginning of the schedule and Q2 
is formed at its end.
Step 3  For each task, analyse P1 and P2 times to determine the smallest time. If P1 is the smallest 
time, then insert the corresponding task at the end of Q1. Otherwise, insert the corresponding task 
at the beginning of Q2. In case of a tie, take P1 as the smallest time.

Note	 If there is a tie between multiple P1 or multiple P2 times, select the first task in the list.

Consider the table given below, which specifies the tasks and time it takes to complete processes 
P1 and P2.

TASK TIME TO PERFORM P1 TIME TO PERFORM P2

0 17 6

1 24 12

2 5 8

3 14 10

4 11 8

5 14 11

	 Now, for each task, analyse P1 and P2 times to determine the smallest time. Tasks with P1 time 
less than P2 are assigned to the head of Q1, other tasks are assigned to the tail of Q2. 

TASK TIME TO PERFORM P1 TIME TO PERFORM P2 MINTIME LOCATION

0 17 6 6 TAIL

1 24 12 12 TAIL

Josephus Problem

appendix d



2 5 8 5 HEAD

3 14 10 10 TAIL

4 11 8 8 TAIL

5 14 11 11 TAIL

Sort the table using the MINTIME field.

TASK TIME TO PERFORM 
P1

TIME TO PERFORM 
P2

MINTIME LOCATION

2 5 8 5 HEAD

0 17 6 6 TAIL

4 11 8 8 TAIL

3 14 10 10 TAIL

5 14 11 11 TAIL

1 24 12 12 TAIL

	 There is an alternative implementation strategy which states that if LOCATION has the value 
TAIL then the task is added at the front of Q2. Once all the tasks are assigned, HEAD and TAIL 
can be concatenated to create the final complete QUEUE. 
	 When calculating the efficiency of the Johnson’s algorithm, we see that the data is processed 
as one observation at a time, thereby taking O(n) time where n is the volume of the data. Then the 
data must be sorted which will again take at least O(n × log n) time. Since, O(n × log n) term 
dominates. Johnson’s algorithm gives an optimal schedule in O(n log n) time.
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1.	 Write a program to store records of an employee in employee file. The data must be stored 
using binary file.
#include <stdio.h>
#include <conio.h>
int main()
{
	 typedef struct employee
	 {
		  int emp_code; 

		  char name[20]; 
	 };

	 FILE *fp;
	 struct employee e[2];
	 int i;
	 fp = fopen("employee.txt", "wb");
	 if(fp==NULL)
	 {
		  printf("\n Error opening file"); 

		  exit(1);
	 }
	 printf("\n Enter the details employees");
	 for(i = 0; i < 2; i++)
	 {
		  printf("\n\n Enter the employee code:"); 

		  scanf(„%d", &e[i].emp_code); 
		  printf("\n\n Enter the name of the employee: "); 
		  scanf("%s", e[i].name); 
		  fwrite(&e[i], sizeof(e[i]), 1, fp);

	 }
	 fclose(fp);
	 getch();
	 return 0;
}

	 Output
Enter the details of employees
Enter the employee code: 01
Enter the name of the employee: Gargi
Enter the employee code: 02
Enter the name of the employee: Nikita

2.	 Write a program to read the records stored in ‘employee.txt’ file in binary mode.
#include <stdio.h>
#include <conio.h>
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int main()
{
	 typedef struct employee
	 {
		  int emp_code; 

		  char name[20]; 
	 };

	 FILE *fp;
	 struct employee e;
	 int i;
	 clrscr();
	 fp = fopen("employee.txt", "rb");
	 if(fp==NULL)
	 {
		  printf("\n Error opening file"); 

		  exit(1);
	 }
	 printf("\n THE DETAILS OF THE EMPLOYEES ARE ");
	 while(1)
	 {
		  fread(&e, sizeof(e), 1, fp); 

		  if(feof(fp))	  
		  break; 
		  printf("\n\n Employee Code: %d", e.emp_code); 
		  printf("\n\n Name: %s", e.name); 
	 }

	 fclose(fp);
	 getch();
	 return 0;

	 Output
Employee Code: 01
Name: Gargi
Employee Code: 02
Name: Nikita
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Write a program to sort elements of an array using address calculation sort.
#include <stdio.h>
#include <stdlib.h>
#define MAX 5
struct node
{
	 int data;
	 struct node *next;
}*nodes[10]={NULL};

struct node *insert(struct node *start, int num)
{
	 struct node *ptr,*new_node;
	 ptr=start;
	 new_node = (struct node*)malloc(sizeof(struct node));
	 new_node->data=num;
	 new_node->next=NULL;
	 if(start==NULL)
		  start = new_node;
	 else
	 {
		  //insert the new node at its right position
		  while((ptr->next->data<=num) && (ptr->next!=NULL))
			   ptr=ptr->next;
		  if(new_node->data < ptr->data)
		  {
			   new_node->next=ptr;
			   start=new_node;
		  }
		  else
		  {
			   new_node->next=ptr->next;
			   ptr->next=new_node;
		  }
	 }
	 return start;
}
void addr_calc_sort(int arr[],int n)
{
	 int i,j=0,pos;
	 for(i=0;i<n;i++)
	 {
		  pos = arr[i] / 10;
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		  nodes[pos]=insert(nodes[pos],arr[i]);
	 }
	 for(i=0;i<10;i++)
	 {
		  while(nodes[i]!=NULL)
		  {
			   arr[j++]=nodes[i]->data;
			   nodes[i]=nodes[i]->next;
		  }
	 }
	 printf("\nSorted output is: ");
	 for(i=0;i<n;i++)
		  printf("%d\t",arr[i]);
	 getch();
}
void main()
{
	 int arr[MAX],i,n;
	 printf("\n Enter the number of elements : ");
	 scanf("%d",&n);
	 printf("\n Enter the elements : ");
	 for(i=0;i<n;i++)
		  scanf("%d",&arr[i]);
	 addr_calc_sort(arr,n);
}

	 Output
Enter the number of elements : 5
Enter the elements: 23  53  14  78  22
Sorted output is : 14  22  23  53  78
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Chapter 1

Multiple-choice Questions
	 1.	 (b)	 2.	 (c)	 3.	 (d)	 4.	 (d)	 5.	 (b) 	 6.	 (b)	 7.	(d)
	 8.	 (c)	 9.	 (c)	 10.	 (d)	 11.	 (c)	 12.	 (b)	 13.	 (c)	 14.	(a)
	15.	 (b)

True or False
	 1.	 False	 2.	 True	 3.	 False	 4.	 False	 5.	 True	 6.	 False	 7.	True
	 8.	 False	 9.	 True	 10.	 False	 11.	 False	 12.	 False	 13.	 True	 14.	True
	15.	 False	 16.	 False	 17.	 True	 18.	 False	 19.	 True	 20.	 False	 21.	True
	22.	 True	 23.	 True	 24.	 True	 25.	 True

Fill in the Blanks
	 1.	 Dennis Ritchie	 2.	 main()	 3.	ASCII codes
	 4.	 Operating system	 5.	 Modulus operator (%)	 6.	Unary
	 7.	 Typecasting	 8.	 Default case	 9.	printf()
	10.	 Closing bracket	 11.	 \n	 12.	const
	13.	 sizeof	 14.	 %hd	 15.	%x
	16.	 –	 17.	 Calling function	 18.	Calling function
	19.	 Arguments/parameters	 20.	 Function header and function body	 21.	Call by reference
	22.	 I byte	 23.	 NULL	 24.	Rvalue
	25.	 *

Chapter 2

Multiple-choice Questions
	 1.	 (a)	 2.	 (c)	 3.	 (a)	 4.	 (b)	 5.	 (a)	 6.	 (b)	 7.	(a)
	 8.	 (d)	 9.	 (d)	 10.	 (b)	 11.	 (b)	 12.	 (a)	 13.	 (b)

True or False
	 1.	 False	 2.	 True	 3.	 False	 4.	 False	 5.	 False	 6.	 True	 7.	False
	 8.	 False	 9.	 False	 10.	 False	 11.	 False	 12.	 True	 13.	 False	 14.	False
	15.	 False

Answers

appendix G
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Fill in the Blanks
	 1.	 Data structures	 2.	 Functions	 3.	Arrays
	 4.	 Data type	 5.	 Root = NULL
	 6.	 Considered apart from the detailed specifications or implementation
	 7.	 Input size	 8.	 Amortized case	 9.	Index or subscript
	10.	 Top	 11.	 Peep or peek
	12.	 An attempt is made to insert an element in an array, stack or queue that is already full.
	13.	 Queue	 14.	 Rear, front	 15.	Linear data structure
	16.	 Program	 17.	 Time complexity	 18.	Average case running time
	19.	 O(1)	 20.	 Modules	 21.	Top down
	22.	 Worst	 23.	 Omega	 24.	Non-asymptotically
	25.	 Is in

Chapter 3

Multiple-choice Questions
	 1.	 (b)	 2.	 (b)	 3.	 (d)	 4.	 (b)	 5.	 (b)	 6.	 (d)

True or False
	 1.	 True	 2.	 True	 3.	 True	 4.	 False	 5.	 False	 6.	 True	 7.	True
	 8.	 True	 9.	 False	 10.	 True	 11.	 True	 12.	 False	 13.	 False	 14.	False
	15.	 True

Fill in the Blanks
	 1.	 Index or subscript	 2.	 Consecutive	 3.	n
	 4.	 Pointer	 5.	 Data type, name, and size	 6.	Base address
	 7.	 The number of elements stored in it	 8.	Array of arrays
	 9.	 Integral value	 10.	 Fourth

Chapter 4

Multiple-choice Questions
	 1.	 (b)	 2.	 (c)	 3.	 (a)	 4.	 (c)	 5.	 (d)	 6.	 (a)	 7.	(c)
	 8.	 (b)	 9.	 (b)	 10.	 (b)

True or False
	 1.	 False	 2.	 False	 3.	 True	 4.	 True	 5.	 False	 6.	 False	 7.	True
	 8.	 False	 9.	 True	 10.	 False	 11.	 True	 12.	 False	 13.	 True	 14.	False
	15.	 False

Fill in the Blanks
	 1.	 A null-terminated character array		  2.	Null character
	 3.	 5	 4.	 zero	 5.	Consecutive
	 6.	 99	 7.	 scanf()	 8.	65-97
	 9.	 Convert a character into upper case
	10.	 When in dictionary order S1 will come after S2
	11.	 strrev()	 12.	 Morning	 13.	15
	14.	 Index operation	 15. str2 is less than str1	 16.	strlen
	17.	 puts
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Chapter 5

Multiple-choice Questions
	 1.	 (d)	 2.	 (c)	 3.	 (b)	 4.	 (b)	 5.	 (b)	 6.	 (b)	 7.	(d)

True or False
	 1.	 False	 2.	 False	 3.	 True	 4.	 True	 5.	 True	 6.	 False	 7.	True
	 8.	 False	 9.	 False	 10.	 True	 11.	 True	 12.	 True	 13.	 True	 14.	False

Fill in the Blanks
	 1.	 User defined 	 2.	 Structure declaration	 3.	Structure name
	 4.	 Typedef	 5.	 Zero	 6.	Null character
	 7.	 Dot operator	 8.	 Nested structure	 9.	Self-referential 
	10.	 We declare a variable of a structure
	11.	 Union	 12.	 Refer to the individual members of structure or union
	13.	 Union

Chapter 6

Multiple-choice Questions
	 1.	 (b)	 2.	 (c)	 3.	 (d)	 4.	 (c)	 5.	 (b)	 6.	 (d)	 7.	(b)

True or False
	 1.	 True	 2.	 True	 3.	 False	 4.	 False	 5.	 False	 6.	 False	 7.	True
	 8.	 False	 9.	 True	 10.	 True

Fill in the Blanks
	 1.	 AVAIL	 2.	 O(1)	 3.	 O(n)	 4.	 Two	 5.	 One	 6.	 Two	 7.	Two
	 8.	 One	 9.	 Two	 10.	 One	 11.	 Node	 12.	 START	 13.	 Node
	14.	 There is no memory that can be allocated for the new node to be inserted	 15.	First

Chapter 7

Multiple-choice Questions
	 1.	 (a)	 2.	 (b)	 3.	 (a)	 4.	 (c)

True or False
	 1.	 False	 2.	 True	 3.	 True	 4.	 True	 5.	 False	 6.	 True	 7.	False
	 8.	 True	 9.	 False	 10.	 True	 11.	 False	 12.	 False

Fill in the Blanks
	 1.	 stack	 2.	 stack	 3.	O(n)
	 4.	 We try to delete a node from a stack that is empty	 5.	Left to right
	 6.	 Non-tail 	 7.	 Directly
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Chapter 8

Multiple-choice Questions
	 1.	 (b)	 2.	 (a)	 3.	 (b)	 4.	 (a)	 5.	 (b)

True or False
	 1.	 False	 2.	 False	 3.	 False	 4.	 True	 5.	 False	 6.	 True	 7.	True
	 8.	 True

Fill in the Blanks
	 1.	 Rear	 2.	 Dequeue	 3.	O(1)
	 4.	 Input restricted dequeue	 5.	 Circular array or a circular doubly linked list
	 6.	 Priority queues	 7.	 Queues	

Chapter 9

Multiple-choice Questions
	 1.	 (a)	 2.	 (a)	 3.	 (d)	 4.	 (a)	 5.	 (c)	 6.	 (d)

True or False
	 1.	 True	 2.	 True	 3.	 True	 4.	 False	 5.	 True	 6.	 False	 7.	True
	 8.	 False

Fill in the Blanks
	 1.	 Ascendant	 2.	 Nodes	 3.	2k – 1

	 4.	 Two	 5.	 Siblings	 6.	Structure and contents
	 7.	 n and log2(n+1). 	 8.	 Each node in the tree has either no child or exactly two children
	 9.	 Preorder
	10.	 The estimated probability of occurrence for each possible value of the source character.

Chapter 10

Multiple-choice Questions
	 1.	 (a)	 2.	 (b)	 3.	 (b)	 4.	 (d)	 5.	 (a)

True or False
	 1.	 True	 2.	 False	 3.	 False	 4.	 True	 5.	 True	 6.	 False	 7.	True
	 8.	 False	 9.	 False	 10.	 False

Fill in the Blanks
	 1.	 Two way threaded binary tree	 2.	 Right sub tree	 3.	In-order successor
	 4.	 Subtracting the height of its right sub-tree from the height of the left sub-tree.
	 5.	 The left sub-tree of the tree is one level lower than that of the right sub-tree.
	 6.	 O(log n)	 7.	 LL	 8.	Black and black
	 9.	 P (the parent of n) is the root of the splay tree.
	10.	 Splay
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Chapter 11

Multiple-choice Questions
	 1.	 (b)	 2.	 (a)	 3.	 (c)	 4.	 (c)	 5.	 (c)

True or False
	 1.	 True	 2.	 True	 3.	 False	 4.	 False	 5.	 False	 6.	 True	 7.	True
	 8.	 False	 9.	 False

Fill in the blanks
	 1.	 M and M-1	 2.	 m and m-1	 3.	m/2
	 4.	 B tree	 5.	 O(log N)

Chapter 12

Multiple-choice Questions
	 1.	 (b)	 2.	 (a)	 3.	 (c)	 4.	 (d)	 5.	 (b)	 6.	 (d)	 7.	(d)

True or False
	 1.	 True	 2.	 False	 3.	 True	 4.	 True	 5.	 False	 6.	 False	 7.	True
	 8.	 False	 9.	 True	 10.	 False	 11.	 False

Fill in the blanks
	 1.	 2i + 1	 2.	 Priority queues	 3.	Partially ordered trees
	 4.	 Min heap	 5.	 Root	 6.	i
	 7.	 A set of binomial trees that satisfy binomial-heap properties	 8.	2i

	 9.	 O(1)	 10.	 Collection of heap-ordered trees
	11.	 Whether node x has lost a child since the last time x was made the child of another node

Chapter 13

Multiple-choice Questions
	 1.	 (b)	 2.	 (c)	 3.	 (b)	 4.	 (a)	 5.	 (b)	 6.	 (d)	 7.	(a)

True or False
	 1.	 False	 2.	 False	 3.	 True	 4.	 False	 5.	 True	 6.	 False	 7.	True
	 8.	 True	 9.	 True	 10.	 True

Fill in the Blanks
	 1.	 An isolated node	 2.	 Terminate 	 3.	Bit matrix or Boolean matrix
	 4.	 Cycle	 5.	 Multi-graph	 6.	Tree vertices
	 7.	 Transitive closure	 8.	 Articulation point	 9.	bi-connected
	10.	 Bridge



Appendix G: Answers  527

Chapter 14

Multiple-choice Questions
	 1.	 (b) 	 2.	 (d)	 3.	 (c)	 4.	 (d)	 5.	 (b)	 6.	 (a)	 7.	(d)
	 8.	 (a)	 9.	 (c)	 10.	 (d)	 11.	 (d)

True or False
	 1.	 False	 2.	 False	 3.	 False	 4.	 False	 5.	 True	 6.	 False	 7.	True
	 8.	 False	 9.	 True	 10.	 True	 11.	 True	

Fill in the Blanks
	 1.	 Sorted array	 2.	 O(n)
	 3.	 The process of arranging values in a predetermined order.
	 4.	 Merge sort / heap sort/ quick sort		  5.	External sorting
	 6.	 Bubble sort	 7.	 O(n2)	 8.	Merge sort/ quick sort
	 9.	 O(n log n)	 10.	 O(n.k)	 11.	O(n log n)
	12.	 Pivot element

Chapter 15

Multiple-choice Questions
	 1.	 (c)	 2.	 (a)	 3.	 (a)	 4.	 (c)	 5.	 (b)	 6.	 (c)

True or False
	 1.	 False	 2.	 False	 3.	 False	 4.	 False	 5.	 False	 6.	 True	 7.	False
	 8.	 True	 9.	 True

Fill in the Blanks
	 1.	 Hash function	 2.	 Hashing	 3.	Sentinel value and a data value
	 4.	 Collision	 5.	 Probes	 6.	Quadratic probing

Chapter 16

Multiple-choice Questions
	 1.	 (d)	 2.	 (c)	 3.	 (a)	 4.	 (a)

True or False
	 1.	 False	 2.	 True	 3.	 True	 4.	 True	 5.	 True	 6.	 False	 7.	True
	 8.	 True

Fill in the Blanks
	 1.	 File	 2.	 Type and size	 3.	Record
	 4.	 File position	 5.	 File structure	 6.	Record number and address 
	 7.	 Primary	 8.	 Inverted 	 9.	Database
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