FUNDAMENTALS OF

DATA
STRUCTURES

ELLIS HOROWITZ
SARTAE Sa.

. COMPUTER SCIENCE PRESS

FUNDAMENTALS OF

DATA
STRUCTURES

ELLIS HOROWITZ
University of_ Southern California

SARTAJ SAHNI
University of Minnesota

COMPUTER SCIENCE PRESS

Copyright © 1982 Computer Science Press, Inc.
Copyright © 1976 Computer Science Press, Inc.
Printed in the United States of America

All rights reserved. No part of this work may be reproduced, transmit-
ted, or stored in any form or by any means, without the prior written
consent of the Publisher.

Computer Science Press, Inc.
11 Taft Court
Rockville, Maryland 20850

Printing 9 10 11 12 13 8 85 84 83 82 Year

This work is the result of the combined efforts of the authors. Their
names have been listed in alphabetical order with no implication that one
is senior and the other junior.

Library of Congress Cataloging in Publication Data

Horowitz, Ellis.
Fundamentals of data structures.

(Computer software engineering series)

Includes bibliographies and indexes.

1. Data structures (Computer science) 1. Sahni, Sartaj, joint
author. II. Title.
QA76.D35H67 001.6'42 76-15250
ISBN 0-914894-20'X

dedicated to our parents
Irving and Ruth Horowitz
Dharam Nath and Santosh Sahni

COMPUTER SOFTWARE ENGINEERING SERIES

ELLIS HOROWITZ, EDITOR
University of Southern California

WAYNE AMSBURY
Structured BASIC and Beyond

PETER CALINGAERT
Assemblers, Compilers, and Program Translation

M. S. CARBERRY, H. M. KHALIL, J. F. LEATHRUM, J. S. LEVY
Foundations of Computer Science

SHIMON EVEN
Graph Algorithms

W. FINDLAY and D. A. WATT
Pascal: An Introduction to Methodical Programming

ELLIS HOROWITZ and SARTAJ SAHNI
Fundamentals of Computer Algorithms

ELLIS HOROWITZ and SARTAJ SAHNI
Fundamentals of Data Structures

TOM LOGSDON
Computers and Social Controversy

IRA POHL and ALAN SHAW
The Nature of Computation: An Introduction to Computer Science

JEFFREY D. ULLMAN
Principles of Database Systems

PREFACE

For many years a data structures course has been taught in computer
science programs. Often it is regarded as a central course of the
curriculum. It is fascinating and instructive to trace the history of how
the subject matter for this course has changed. Back in the middle
1960’s the course was not entitled Data Structures but perhaps List
Processing Languages. The major subjects were systems such as SLIP
(by J. Weizenbaum), IPL-V (by A. Newell, C. Shaw, and H. Simon),
LISP 1.5 (by J. McCarthy) and SNOBOL (by D. Farber, R. Griswold,
and I. Polonsky). Then, in 1968, volume I of the Art of Computer
Programming by D. Knuth appeared. His thesis was that list processing
was not a magical thing that could only be accomplished within a specially
designed system. Instead, he argued that the same techniques could
be carried out in almost any language and he shifted the emphasis to
efficient algorithm design. SLIP and IPL-V faded from the scene, while
LISP and SNOBOL moved to the programming languages course. The
new strategy was to explicitly construct a representation (such as linked
lists) within a set of consecutive storage locations and to describe the
algorithms by using English plus assembly language.

Progress in the study of data structures and algorithm design has
continued. Out of this recent work has come many good ideas which
we believe should be presented to students of computer science. It
is our purpose in writing this book to emphasize those trends which
we see as especially valuable and long lasting.

The most important of these new concepts is the need to distinguish
between the specification of a data structure and its realization within
an available programming language. This distinction has been mostly
blurred in previous books where the primary emphasis has either been
on a programming language or on representational techniques. Our
attempt here has been to separate out the specification of the data structure
from its realization and to show how both of these processes can be
successfully accomplished. The specification stage requires one to
concentrate on describing the functioning of the data structure without
concern for its implementation. This can be done using English and

vi Preface

mathematical notation, but here we introduce a programming notation
called axioms. The resulting implementation independent specification
is valuable in two ways: (i) to help prove that a program which uses
this data structure is correct, and (ii) to prove that a particular imple-
mentation of the data structure is correct. To describe a data structure
in a representation independent way one needs a syntax. This can be
seen at the end of section 1.1 where we also precisely define the notions
of data object and data structure.

This book also seeks to teach the art of analyzing algorithms but
not at the cost of undue mathematical sophistication. The value of an
implementation ultimately relies on its resource utilization: time and
space. This implies that the student needs to be capable of analyzing
these factors. A great many analyses have appeared in the literature,
yet from our perspective most students don’t attempt to rigorously analyze
their programs. The data structures course comes at an opportune time
in their training to advance and promote these ideas. For every algorithm
that is given here we supply a simple, yet rigorous worst case analysis
of its behavior. In some cases the average computing time is also derived.

The growth of data base systems has put a new requirement on data
structures courses, namely to cover the organization of large files. Also,
many instructors like to treat sorting and searching because of the richness
of its examples of data structures and its practical application. The
choice of our later chapters reflects this growing interest.

One especially important consideration is the choice of an algorithm
description language. Such a choice is often complicated by the practical
matters of student background and language availability. Our decision
was to use a syntax which is particularly close to ALGOL, but not
to restrict ourselves to a specific language. This gives us the ability
to write very readable programs but at the same time we are not tied
to the idiosyncracies of a fixed language. Wherever it seemed advisable
we interspersed English descriptions so as not to obscure the main point
of an algorithm. For people who have not been exposed to the IF-THEN-
ELSE, WHILE, REPEAT-UNTIL and a few other basic statements,
section 1.2 defines their semantics via flowcharts. For those who have
only FORTRAN available, the algorithms are directly translatable by
the rules given in the appendix and a translator can be obtained (see
appendix A). On the other hand, we have resisted the temptation to
use language features which automatically provide sophisticated data
structuring facilities. We have done so on several grounds. One reason
is the need to commit oneself to a syntax which makes the book especially
hard to read by those as yet uninitiated. Even more importantly, these

Preface vii

automatic features cover up the implementation details whose mastery
remains a cornerstone of the course.

The basic audience for this book is either the computer science major
with at least one year of courses or a beginning graduate student with
prior training in a field other than computer science. This book contains
more than one semester’s worth of material and several of its chapters
may be skipped without harm. The following are two scenarios which
may help in deciding what chapters should be covered.

The first author has used this book with sophomores who have had
one semester of PL /I and one semester of assembly language. He would
cover chapters one through five skipping sections 2.2, 2.3, 3.2, 4.7,
4.11, and 5.8. Then, in whatever time was left chapter seven on sorting
was covered. The second author has taught the material to juniors who
have had one quarter of FORTRAN or PASCAL and two quarters of
introductory courses which themselves contain a potpourri of topics.
In the first quarter’s data structure course, chapters one through three
are lightly covered and chapters four through six are completely covered.
The second quarter starts with chapter seven which provides an excellent
survey of the techniques which were covered in the previous quarter.
Then the material on external sorting, symbol tables and files is sufficient
for the remaining time. Note that the material in chapter 2 is largely
mathematical and can be skipped without harm.

The paradigm of class presentation that we have used is to begin
each new topic with a problem, usually chosen from the computer science
arena. Once defined, a high level design of its solution is made and
each data structure is axiomatically specified. A tentative analysis is
done to determine which operations are critical. Implementations of
the data structures are then given followed by an attempt at verifying
that the representation and specifications are consistent. The finished
algorithm in the book is examined followed by an argument concerning
its correctness. Then an analysis is done by determining the relevant
parameters and applying some straightforward rules to obtain the correct
computing time formula.

In summary, as instructors we have tried to emphasize the following
notions to our students: (i) the ability to define at a sufficiently high
level of abstraction the data structures and algorithms that are needed;
(ii) the ability to devise alternative implementations of a data structure;
(iii) the ability to synthesize a correct algorithm; and (iv) the ability
to analyze the computing time of the resultant program. In addition
there are two underlying currents which, though not explicitly emphasized
are covered throughout. The first is the notion of writing nicely structured

viii Preface

programs. For all of the programs contained herein we have tried our
best to structure them appropriately. We hope that by reading programs
with good style the students will pick up good writing habits, A nudge
on the instructor’s part will also prove useful. The second current is
the choice of examples. We have tried to use those examples which
prove a point well, have application to computer programming, and
exhibit some of the brightest accomplishments in computer science.

At the close of each chapter there is a list of references and selected
readings. These are not meant to be exhaustive. They are a subset
of those books and papers that we found to be the most useful. Otherwise,
they are either historically significant or develop the material in the
text somewhat further.

Many people have contributed their time and energy to improve this
book. For this we would like to thank them. We wish to thank Arvind [sic], T.
Gonzalez, L. Landweber, J. Misra, and D. Wilczynski, who used the book in
their own classes and gave us detailed reactions. Thanks are also due to A.
Agrawal, M. Cohen, A. Howells, R. Istre, D. Ledbetter, D. Musser and to our
students in CS 202, CSci 5121 and 5122 who provided many insights. For
administrative and secretarial help we thank M. Eul, G. Lum, J. Matheson,
S. Moody, K. Pendleton, and L. Templet. To the referees for their pungent
yet favorable comments we thank S. Gerhart, T. Standish, and J. Ullman.
Finally, we would like to thank our institutions, the University of Southern
California and the University of Minnesota, for encouraging in every way
our. efforts to produce this book.

Ellis Horowitz
Sartaj Sahni

Preface to the Ninth Printing

We would like to acknowledge collectively all of the individuals who
have sent us comments and corrections since the book first appeared.
For this printing we have made many corrections and improvements.

October 1981 Ellis Horowitz
Sartaj Sahni

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Overview e e e

1.2 SPARKS e

1.3 How to Create Programs

1.4 How to Analyze Programs
References and Selected Readings
Exercises L

CHAPTER 2 ARRAYS

2.1 Axiomatization
2.2 Ordered Lists it i
2.3 Sparse Matrices e e
2.4 Representation of Arrays

Exercises e e

CHAPTER 3 STACKS AND QUEUES

3.1 Fundamentals

32 A MazingProblem

3.3 Evaluation of Expressions

3.4 Multiple Stacksand Queues
Exercises e e e

CHAPTER 4 LINKED LISTS

4.1 Singly Linked Lists
4.2 Linked Stacksand Queues
43 The Storage Pool
4.4 Polynomial Addition
4,5 Moreon Linked Lists
4.6 Equivalence Relations
4.7 Sparse MatriCes v v v v i e e e e e e e
4.8 Doubly Linked Lists and Dynamic

Storage Management00
4.9 Generalized Lists

ix

X Contents

4.10 Garbage Collection and Compaction
4.11 STRINGS—A Case Study
4.11.1 Data Representations for STRINGS
4.11.2 Pattern Matching in STRINGS
4.12 Implementing Node Structures
References and Selected Readings
Exercises

CHAPTER 5 TREES

5.1 Basic Terminology
5.2 BinaryTrees o ittt
5.3 Binary Tree Representations
5.4 Binary Tree Traversal
5.5 More on Binary Trees
5.6 Threaded Binary Trees
5.7 Binary Tree Representation of Trees
5.8 Applicationsof Trees
5.8.1 Set Representation
5.8.2 DecisionTrees
583 GameTrees« i
5.9 Counting Binary Trees
References and Selected Readings
Exercises

CHAPTER 6 GRAPHS

6.1 Terminology and Representations
6.1.1 Introduction
6.1.2 Definitions and Terminology
6.1.3 Graph Representations

6.2 Traversals, Connected Components and Spanning Trees . . .

6.3 Shortest Paths and Transitive Closure

6.4 Activity Networks, Topological Sort and Critical Paths

6.5 Enumerating AllPaths
References and Selected Readings
Exercises

CHAPTER 7 INTERNAL SORTING

7.1 Searching
7.2 Insertion Sort
7.3 Quicksort

Contents xi

7.4 How Fast Can We Sort? 350
7.5 2-Way Merge Sort 352
7.6 Heap Sort i e e e e e e 357
7.7 Sorting on Several Keys L. 359
7.8 Practical Considerations for Internal Sorting 368

References and Selected Readings 377

EXErciSes . . . v v v v v et e e e e e e e e e e e e e e e 378

CHAPTER 8 EXTERNAL SORTING

8.1 StorageDevices e 382
8.1.1 Magnetic Tapes« v v v v v 382
8.1.2 Disk Storage 386

8.2 SortingWithDisks 388
821 K-WayMerging L. 392
8.2.2 Buffer Handling for Parallel Operation 397
823 RunGeneration 406

8.3 Sorting with Tapes 407
8.3.1 Balanced Merge Sorts 411
8.3.2 Polyphase Merge 415
8.3.3 Sorting with Fewer Than 3 Tapes. 418
References and Selected Readings 419
Exercises e e 419

CHAPTER 9 SYMBOL TABLES

9.1 StaticTree Tables 423
9.2 Dynamic Tree Tables 438
93 HashTables 456
9.3.1 Hashing Functions 458
9.3.2 OverflowHandling 462
9.3.3 Theoretical Evaluation of Overflow
Techniques 469
References and Selected Readings 471
Exercises e e e e e e e 473

‘CHAPTER 10 FILES

10.1 Files, Queries and Sequential Organizations 478
10.2 Index Techniques 485
10.2.1 Cylinder-Surface Indexing 486
10.2.2 Hashed Indexes 491

10.2.3 Tree Indexing—B-Trees 496

xii Contents

10.2.4 Trielndexing 517
10.3 File Organizations v v v v v v v .. 525
10.3.1 Sequential Organizations 525
10.3.2 Random Organizations 525
10.3.3 Linked Organization 528
10.3.4 InvertedFiles 531
10.3.5 Cellular Partitions 533
10.4 Storage Management 533
References and Selected Readings 535
Exercises e e e e e 536
APPENDIX A: SPARKS 543
APPENDIX B: ETHICAL CODE IN
INFORMATION PROCESSING 553

APPENDIX C: ALGORITHM INDEX BY CHAPTER . 558

Chapter 1

INTRODUCTION

1.1 OVERVIEW

The field of computer science is so new that one feels obliged to furnish
adefinition before proceeding with this book. One often quoted definition
views computer science as the study of algorithms. This study en-
compasses four distinct areas:

(1) machines for executing algorithms—this area includes everything
from the smallest pocket calculator to the largest general purpose digital
computer. The goal is to study various forms of machine fabrication
and organization so that algorithms can be effectively carried out.

(i) languages for describing algorithms—these languages can be placed
on a continuum. At one end are the languages which are closest to
the physical machine and at the other end are languages designed for
sophisticated problem solving. One often distinguishes between two
phases of this area: language design and translation. The first calls
for methods for specifying the syntax and semantics of a language.
The second requires a means for translation into a more basic set of
commands.

(iii) foundations of algorithms—here people ask and try to answer
such questions as: is a particular task accomplishable by a computing
device; or what is the minimum number of operations necessary for
any algorithm which performs a certain function? Abstract models of
computers are devised so that these properties can be studied.

(iv) analysis of algorithms—whenever an algorithm can be specified
it makes sense to wonder about its behavior. This was realized as far
back as 1830 by Charles Babbage, the father of computers. An algorithm’s
behavior pattern or performance profile is measured in terms of the
computing time and space that are consumed while the algorithm is
processing, Questions such as the worst and average time and how
often they occur are typical.

2 Introduction

We see that in this definition of computer science, ‘‘algorithm™ is
a fundamental notion. Thus it deserves a precise definition. The dictio-
nary’s definition ‘‘any mechanical or recursive computational procedure™’
is not entirely satisfying since these terms are not basic enough.

Definition: An algorithm is a finite set of instructions which, if followed,
accomplish a particular task. In addition every algorithm must satisfy
the following criteria:

(1) input: there are zero or more quantities which are externally
supplied;

(ii) output: at least one quantity is produced;

(iii) definiteness: each instruction must be clear and unambiguous;

(iv) finiteness: if we trace out the instructions of an algorithm, then
for all cases the algorithm will terminate after a finite number
of steps;

(v) effectiveness: every instruction must be sufficiently basic that
it can in principle be carried out by a person using only pencil
and paper. It is not enough that each operation be definite as
in (iii), but it must also be feasible.

In formal computer science, one distinguishes between an algorithm,
and a program. A program does not necessarily satisfy condition (iv).
One important example of such a program for a computer is its operating
system which never terminates (except for system crashes) but continues
in a wait loop until more jobs are entered. In this book we will deal
strictly with programs that always terminate. Hence, we will use these
terms interchangeably.

An algorithm can be described in many ways. A natural language
such as English can be used but we must be very careful that the resulting
instructions are definite (condition iii). An improvement over English
is to couple its use with a graphical form of notation such as flowcharts.
This form places each processing step in a ‘‘box’’ and uses arrows
to indicate the next step. Different shaped boxes stand for different
kinds of operations. All this can be seen in figure 1.1 where a flowchart
is given for obtaining a Coca-Cola from a vending machine. The point
is that algorithms can be devised for many common activities.

Have you studied the flowchart? Then you probably have realized
that it isn’t an algorithm at all! Which properties does it lack?

Returning to our earlier definition of computer science, we find it
extremely unsatisfying as it gives us no insight as to why the computer
is revolutionizing our society nor why it has made us re-examine certain

Overview

COKES

AVALABLE No

SEARCH POCKETS
FOR CHANGE

1S A

CORRECT FRIEND WITH
CHA#GE CORRECT CHANGE

VIS1BLE
?

BORROW
ENTER COINS THE CORRECT

CHANGE
PRESS MONEY
COIN ACCEfTED
RELEASE {
YES
PRESS BUTTON
AND
K1CK MACHINE -

Figure 1.1: Flowchart for obtaining a Coca-Cola

4 Introduction

basic assumptions about our own role in the universe. While this may
be an unrealistic demand on a definition even from a technical point
of view it is unsatisfying. The definition places great emphasis on the
concept of algorithm, but never mentions the word ‘‘data’’. If a computer
is merely a means to an end, then the means may be an algorithm
but the end is the transformation of data. That is why we often hear
a computer referred to as a data processing machine. Raw data is input
and algorithms are used to transform it into refined data. So, instead
of saying that computer science is the study of algorithms, alternatively,
we might say that computer science is the study of data:

(1) machines that hold data;

(i) languages for describing data manipulation;

(iii) foundations which describe what kinds of refined data can be

produced from raw data;

(iv) structures for representing data.

There is an intimate connection between the structuring of data, and
the synthesis of algorithms. In fact, a data structure and an algorithm
should be thought of as a unit, neither one making sense without the
other. For instance, suppose we have a list of n pairs of names and
phone numbers (a,,b,)(a,.b,), ..., (a,,b,), and we want to write a
program which when given any name, prints that person’s phone number.
This task is called searching. Just how we would write such an algorithm
critically depends upon how the names and phone numbers are stored
or structured. One algorithm might just forge ahead and examine names,
a,,a,,a;, ... etc., until the correct name was found. This might be
fine in Oshkosh, but in Los Angeles, with hundreds of thousands of
names, it would not be practical. If, however, we knew that the data
was structured so that the names were in alphabetical order, then we
could do much better. We could make up a second list which told
us for each letter in the alphabet, where the first name with that letter
appeared. For a name beginning with, say, S, we would avoid having
to look at names beginning with other letters. So because of this new
structure, a very different algorithm is possible. Other ideas for algorithms
become possible when we realize that we can organize the data as we
wish. We will discuss many more searching strategies in Chapters 7
and 9,

Therefore, computer science can be defined as the study of data,
its representation and transformation by a digital computer. The goal
of this book is to explore many different kinds of data objects. For
each object, we consider the class of operations to be performed and
then the way to represent this object so that these operations may be

Overview 5

efficiently carried out. This implies a mastery of two techniques: the
ability to devise alternative forms of data representation, and the ability
toanalyze the algorithm which operates on that structure. The pedagogical
style we have chosen is to consider problems which have arisen often
in computer applications. For each problem we will specify the data
object or objects and what is to be accomplished. After we have decided
upon a representation of the objects, we will give a complete algorithm
and analyze its computing time. After reading through several of these
examples you should be confident enough to try one on your own.

There are several terms we need to define carefully before we proceed.
These include data structure, data object, data type and data representa-
tion. These four terms have no standard meaning in computer science
circles, and they are often used interchangeably.

A data type is a term which refers to the kinds of data that variables
may ‘‘hold’’ in a programming language. In FORTRAN the data types
are INTEGER, REAL, LOGICAL, COMPLEX, and DOUBLE PRECI-
SION. In PL/I there is the data type CHARACTER. The fundamental
data type of SNOBOL is the character string and in LISP it is the
list (or S-expression). With every programming language there is a set
of built-in data types. This means that the language allows variables
to name data of that type and provides a set of operations which
meaningfully manipulates these variables. Some data types are easy
to provide because they are already built into the computer’s machine
language instruction set. Integer and real arithmetic are examples of
this. Other data types require considerably more effort to implement.
In some languages, there are features which allow one to construct
combinations of the built-in types. In COBOL and PL/I this feature
is called a STRUCTURE while in PASCAL it is called a RECORD.
However, it is not necessary to have such a mechanism. All of the
data structures we will see here can be reasonably built within a
conventional programming language.

Data object is a term referring to a set of elements, say D.
For example the data object integers refers to D = {0, =1, %2, ...}.
The data object alphabetic character strings of length less than thirty
one implies D= {"",A’,’B’, ...,’Z',’AA’, ...}. Thus, D may be finite
or infinite and if D is very large we may need to devise special ways
of representing its elements in our computer.

The notion of a data structure as distinguished from a data object
is that we want to describe not only the set of objects, but the way
they are related. Saying this another way, we want to describe the
set of operations which may legally be applied to elements of the data

6 Introduction

object. This implies that we must specify the set of operations and
show how they work. For integers we would have the arithmetic
operations +, —, *, / and perhaps many others such as mod, ceil,
floor, greater than, less than, etc. The data object integers plus a
description of how +, —, *, /, etc. behave constitutes a data structure
definition.

To be more precise lets examine a modest example. Suppose we
want to define the data structure natural number (abbreviated natno)

where natno = {0,1,2,3, ...} with the three operations being a test for
zero addition and equality. The following notation can be used:
structure NATNO

1 declare ZERO() — natno

2 ISZERO(natno) — boolean

3 SUCC(natno) — natno

4 ADD(natno, natno) — natno

5 EQ(natno, natno) — boolean

6 for all x, y € natno let

7 ISZERO(ZERO) :: = true; ISZERO(SUCC(x)) ::= false

8 ADD(ZERO, y) ::
SUCC(ADD(x, y))

y, ADD(SUCC(x), y) :: =

9 EQ(x, ZERO) :: = if ISZERO(x) then true else false
10 EQ(ZERO, SUCC(y)) :: = false
EQ(SUCC(x), SUCC(y)) :: = EQ(x. y)
11 end
end NATNO

In the declare statement five functions are defined by giving their
names, inputs and outputs. ZERO is a constant function which means
it takes no input arguments and its result is the natural number zero,
written as ZERO. ISZERO is a boolean function whose result is either
true or false. SUCC stands for successor. Using ZERO and SUCC
we can define all of the natural numbers as: ZERO, 1 = SUCC(ZERO),
2 = SUCC(SUCC(ZEROQ)), 3 = SUCC(SUCC(SUCC(ZEROQ))), ... etc.
The rules on line 8 tell us exactly how the addition operation works.
For example if we wanted to add two and three we would get the following
sequence of expressions:

ADD(SUCC(SUCC(ZERO)),SUCC(SUCC(SUCC(ZERO))))
which, by line 8 equals

SUCC(ADD(SUCC(ZERO),SUCC(SUCC(SUCC(ZERO)))))
which, by line 8 equals

Overview 7
SUCC(SUCC(ADD(ZERO,SUCC(SUCC(SUCC(ZERO))))
which by line 8 equals
SUCC(SUCC(SUCC(SUCC(SUCC(ZERO)))))

Of course, this is not the way to implement addition. In practice we
use bit strings which is a data structure that is usually provided on
our computers. But however the ADD operation is implemented, it
must obey these rules. Hopefully, this motivates the following definition.

Definition: A data structure is a set of domains 2, a designated domain
de2, a set of functions # and a set of axioms .. The triple (2,%,«)
denotes the data structure d and it will usually be abbreviated by writing
d.

In the previous example
natno, 4 = {natno, boolean}

= {ZERO,ISZERO,SUCC,ADD}
& = {lines 7 thru 10 of the structure NATNO}

Wa

The set of axioms describe the semantics of the operations. The form
in which we choose to write the axioms is important. Our goal here
is to write the axioms in a representation independent way. Then, we
discuss ways of implementing the functions using a conventional
programming language.

An implementation of a data structure d is a mapping from d to a
set of other data structures e. This mapping specifies how every object
of d is to be represented by the objects of e. Secondly, it requires
that every function of d must be written using the functions of the
implementing data structures e. Thus we say that integers are represented
by bit strings, boolean is represented by zero and one, an array is
represented by a set of consecutive words in memory.

In current parlance the triple (2,%,) is referred to as an abstract
data type. It is called abstract precisely because the axioms do not
imply a form of representation. Another way of viewing the implementa-
tion of a data structure is that it is the process of refining an abstract
data type until all of the operations are expressible in terms of directly
executable functions. But at the first stage a data structure should be
designed so that we know what it does, but not necessarily how it

8 Introduction

will do it. This division of tasks, called specification and implementation,
is useful because it helps to control the complexity of the entire process.

1.2 SPARKS

The choice of an algorithm description language must be carefully made
because it plays such an important role throughout the book. We might
begin by considering using some existing language; some names which
come immediately to mind are ALGOL, ALGOL-W, APL, COBOL,
FORTRAN, LISP, PASCAL, PL/I, SNOBOL.

Though some of these are more preferable than others, the choice
of a specific language leaves us with many difficulties. First of all,
we wish to be able to write our algorithms without dwelling on the
idiosyncracies of a given language. Secondly, some languages have
already provided the mechanisms we wish to discuss. Thus we would
have to make pretense to build up a capability which already exists.
Finally, each language has its followers and its detractors. We would
rather not have any individual rule us out simply because he did not
know or, more particularly, disliked to use the language X.

Furthermore it is not really necessary to write programs in a language
for which a compiler exists. Instead we choose to use a language which
is tailored to describing the algorithms we want to write. Using it we
will not have to define many aspects of a language that we will never
use here. Most importantly, the language we use will be close enough
to many of the languages mentioned before so that a hand translation
will be relatively easy to accomplish. Moreover, one can easily program
a translator using some existing, but more primitive higher level language
as the output (see Appendix A). We call our language SPARKS. Figure
1.2 shows how a SPARKS program could be executed on any machine.

PRE
PROCESSOR

or

PROGRA COMPILER
IN LANGUAGE for MA&P)—I'IJgE
HAND a X
TRANSLATION

Figure 1.2: Translation of SPARKS

SPARKS
PROGRAM

Many language designers choose a name which is an acronym. But
SPARKS was not devised in that way; it just appeared one day as
Athena sprang from the head of Zeus. Nevertheless, computerniks still

Sparks 9

try to attach a meaning. Several cute ideas have been suggested, such
as

Structured Programming: A Reasonably Komplete Set
or
Smart Programmers Are Required To Know SPARKS.

SPARKS contains facilities to manipulate numbers, boolean values
and characters. The way to assign values is by the assignment statement

variable « expression.

In addition to the assignment statement, SPARKS includes statements
for conditional testing, iteration, input-output, etc. Several such state-
ments can be combined on a single line if they are separated by a
semi-colon. Expressions can be either arithmetic, boolean or of character
type. In the boolean case there can be only one of two values,

true or false.
In order to produce these values, the logical operators
and, or, not
are provided, plus the relational operators
<G L =S, =, #, =, R >
A conditional statement has the form

if cond then S, if cond then S,
or
else S,

where cond is a boolean expression and S,, S, are arbitrary groups
of SPARKS statements. If S, or S, contains more than one statement,

10 Introduction

these will be enclosed in square brackets. Brackets must be used to show
how each else corresponds to one if. The meaning of this statement is
given by the flow charts:

true
cond Y S

false -

or

true S

cond

false

We will assume that conditional expressions are evaluated in ‘‘short
circuit’> mode; given the boolean expression (condl or cond2), if condl
is true then cond2 is not evaluated; or, given (condl and cond2), if
condl is false then cond?2 is not evaluated.

To accomplish iteration, several statements are available. One of them
is

while cond do

S
end

where cond is as before, S is as S, before and the meaning is given
by

-

R @ true s e

false

It is well known that all ‘‘proper’’ programs can be written using only
the assignment, conditional and while statements. This result was obtained
by Bohm and Jacopini. Though this is very interesting from a theoretical

Sparks 11

viewpoint, we should not take it to mean that this is the way to program.
On the contrary, the more expressive our languages are, the more we
can accomplish easily. So we will provide other statements such as
a second iteration statement, the repeat-until,

repeat
S

until cond

which has the meaning

-

S @ false

true

In contrast to the while statement, the repeat-until guarantees that
the statements of S will be executed at least once. Another iteration
statement is

loop
S

forever

which has the meaning

As it stands, this describes an infinite loop! However, we assume that
this statement is used in conjunction with some test within S which
will cause an exit. One way of exiting such a loop is by using a

go to label

statement which transfers control to ‘‘label.”” Label may be anywhere
in the procedure. A more restricted form of the go to is the command

exit

12 Introduction

which will cause a transfer of control to the first statement after the
innermost loop which contains it. This looping statement may be a
while, repeat, for or a loop-forever. exit can be used either conditionally
or unconditionally, for instance

loop
S,
if cond then exit
S,

forever

which will execute as
3| cond false S >
true

The last statement for iteration is called the for-loop, which has the
form

for vble « start to finish by increment do
S
end

Vble is a variable, while start, finish and increment are arithmetic
expressions. A variable or a constant is a simple form of an expression.
The clause ‘‘by increment’’ is optional and taken as +1 if it does not
occur. We can write the meaning of this statement in SPARKS as

vble < start

fin « finish

incr < increment

while (vble — fin) * incr =0 do
S
vble « vble + incr

end

Another statement within SPARKS is the case, which allows one
to distinguish easily between several alternatives without using multiple

Sparks 13
if-then-else statements, It has the form

case
ccond1: S,
:cond?: S,

:condn: S,
zelse: S,
end

where the S;, 1 = i = n + 1 are groups of SPARKS statements.
The semantics is easily described by the following flowchart:

The else clause is optional.
A complete SPARKS procedure has the form

procedure NAME (parameter list)
S

end

A procedure can be used as a function by using the statement

return (expr)
where the value of expr is delivered as the value of the procedure.
The expr may be omitted in which case a return is made to the calling
procedure. The execution of an end at the end of procedure implies a

return. A procedure may be invoked by using a call statement

call NAME (parameter list)

14 Introduction

Procedures may call themselves, direct recursion, or there may be
a sequence resulting in indirect recursion. Though recursion often carries
with it a severe penalty at execution time, it remains an elegant way
to describe many computing processes. This penalty will not deter us
from using recursion. Many such programs are easily translatable so
that the recursion is removed and efficiency achieved.

A complete SPARKS program is a collection of one or more procedures,
the first one taken as the main program. All procedures are treated
as external, which means that the only means for communication between
them is via parameters. This may be somewhat restrictive in practice,
but for the purpose of exposition it helps to list all variables explicitly,
as either local or parameter, The association of actual to formal
parameters will be handled using the call by reference rule. This means
that at run time the address of each parameter is passed to the called
procedure. Parameters which are constants or values of expressions
are stored into internally generated words whose addresses are then
passed to the procedure.

For input/output we assume the existence of two functions

read (argument list), print (argument list)

Arguments may be variables or quoted strings. We avoid the problem
of defining a ‘‘format’ statement as we will need only the simplest
form of input and output.

The command stop halts execution of the currently executing proce-
dure. Comments may appear anywhere on a line enclosed by double
slashes, e.g.

/this is a comment/

Finally, we note that multi-dimensional arrays are available with
arbitrary integer lower and upper bounds. An n-dimensional array A with
lower and upper bounds /;, u; 1 = i = n may be declared by using
the syntax declare A(l,:u,,l,:u,). We have avoided introducing the
record or structure concept. These are often useful features and when
available they should be used. However, we will persist in building
up a structure from the more elementary array concept. Finally, we
emphasize that all of our variables are assumed to be of type INTEGER
unless stated otherwise.

Since most of the SPARKS programs will be read many more times
than they will be executed, we have tried to make the code readable.

How to Create Programs 1§

This is a goal which should be aimed at by everyone who writes programs.
The SPARKS language is rich enough so that one can create a good
looking program by applying some simple rules of style.
(i) Every procedure should carefully specify its input and output
variables.
(i) The meaning of variables should be defined.
(iii) The flow of the program should generally be forward except
for normal looping or unavoidable instances.
(iv) Indentation rules should be established and followed so that
computational units of program text can more easily be identified.
(v) Documentation should be short, but meaningful. Avoid sentences
like *“i is increased by one.”
(vi) Use subroutines where appropriate.
See the book The Elements of Programming Style by Kernighan and
Plauger for more examples of good rules of programming.

1.3 HOW TO CREATE PROGRAMS

Now that you have moved beyond the first course in computer science,
you should be capable of developing your programs using something
better than the seat-of-the-pants method. This method uses the philoso-
phy: write something down and then try to get it working. Surprisingly,
this method is in wide use today, with the result that an average
programmer on an average job turns out only between five to ten lines
of correct code per day. We hope your productivity will be greater.
But to improve requires that you apply some discipline to the process
of creating programs. To understand this process better, we consider
it as broken up into five phases: requirements, design, analysis, coding,
and verification.

(i) Requirements. Make sure you understand the information you are
given (the input) and what results you are to produce (the output). Try
to write down a rigorous description of the input and output which
covers all cases.

You are now ready to proceed to the design phase. Designing an
algorithm is a task which can be done independently of the programming
language you eventually plan to use. In fact, this is desirable because
it means you can postpone questions concerning how to represent your
data and what a particular statement looks like and concentrate on the
order of processing.

(ii) Design. You may have several data objects (such as a maze, a
polynomial, or a list of names). For each object there will be some

16 Introduction

basic operations to perform on it (such as print the maze, add two
polynomials, or find a name in the list). Assume that these operations
already exist in the form of procedures and write an algorithm which
solves the problem according to the requirements. Use a notation which
is natural to the way you wish to describe the order of processing.

(iii) Analysis. Can you think of another algorithm? If so, write it
down. Next, try to compare these two methods. It may already be
possible to tell if one will be more desirable than the other. If you
can’t distinguish between the two, choose one to work on for now
and we will return to the second version later.

(iv) Refinement and coding. You must now choose representations
for your data objects (a maze as a two dimensional array of zeros
and ones, a polynomial as a one dimensional array of degree and
coefficients, a list of names possibly as an array) and write algorithms
for each of the operations on these objects. The order in which you
do this may be crucial, because once you choose a representation, the
resulting algorithms may be inefficient. Modern pedagogy suggests that
all processing which is independent of the data representation be written
out first. By postponing the choice of how the data is stored we can
try to isolate what operations depend upon the choice of data representa-
tion. You should consider alternatives, note them down and review
them later. Finally you produce a complete version of your first program.

It is often at this point that one realizes that a much better program
could have been built. Perhaps you should have chosen the second
design alternative or perhaps you have spoken to a friend who has
done it better. This happens to industrial programmers as well. If you
have been careful about keeping track of your previous work it may
not be too difficult to make changes. One of the criteria of a good
design is that it can absorb changes relatively easily. It is usually hard
to decide whether to sacrifice this first attempt and begin again or just
continue to get the first version working. Different situations call for
different decisions, but we suggest you eliminate the idea of working
on both at the same time. If you do decide to scrap your work and
begin again, you can take comfort in the fact that it will probably be
easier the second time. In fact you may save as much debugging time
later on by doing a new version now. This is a phenomenon which
has been observed in practice.

The graph in figure 1.3 shows the time it took for the same group
to build 3 FORTRAN compilers (A, B and C). For each compiler there
is the time they estimated it would take them and the time it actually
took. For each subsequent compiler their estimates became closer to

How to Create Programs 17

72
overrun 36
months i
26
24
14
original 12
estimate
A B C

Figure 1.3: History of three FORTRAN compilers

the truth, but in every case they underestimated. Unwarrented optimism
is a familiar disease in computing. But prior experience is definitely
helpful and the time to build the third compiler was less than one fifth
that for the first one.

(v) Verification. Verification consists of three distinct aspects: program
proving, testing and debugging. Each of these is an art in itself. Before
executing your program you should attempt to prove it is correct. Proofs
about programs are really no different from any other kinds of proofs,
only the subject matter is different. If a correct proof can be obtained,
then one is assured that for all possible combinations of inputs, the
program and its specification agree. Testing is the art of creating sample
data upon which to run your program. If the program fails to respond
correctly then debugging is needed to determine what went wrong and
how to correct it. One proof tells us more than any finite amount of
testing, but proofs can be hard to obtain. Many times during the proving
process errors are discovered in the code. The proof can’t be completed
until these are changed. This is another use of program proving, namely
as a methodology for discovering errors. Finally there may be tools
available at your computing center to aid in the testing process. One
such tool instruments your source code and then tells you for every
data set: (i) the number of times a statement was executed, (ii) the

18 Introduction

number of times a branch was taken, (iii) the smallest and largest values
of all variables. As a minimal requirement, the test data you construct
should force every statement to execute and every condition to assume
the value true and false at least once.

One thing you have forgotten to do is to document. But why bother
to document until the program is entirely finished and correct? Because
for each procedure you made some assumptions about its input and
output. If you have written more than a few procedures, then you
have already begun to forget what those assumptions were. If you note
them down with the code, the problem of getting the procedures to
work together will be easier to solve. The larger the software, the more
crucial is the need for documentation.

The previous discussion applies to the construction of a single procedure
as well as to the writing of a large software system. Let us concentrate
for a while on the question of developing a single procedure which
solves a specific task. This shifts our emphasis away from the management
and integration of the various procedures to the disciplined formulation
of a single, reasonably small and well-defined task. The design process
consists essentially of taking a proposed solution and successively refining
it until an executable program is achieved. The initial solution may
be expressed in English or some form of mathematical notation. At
this level the formulation is said to be abstract because it contains no
details regarding how the objects will be represented and manipulated
in a computer. If possible the designer attempts to partition the solution
into logical subtasks. Each subtask is similarly decomposed until all
tasks are expressed within a programming language. This method of
design is called the top-down approach. Inversely, the designer might
choose to solve different parts of the problem directly in his programming
language and then combine these pieces into a complete program. This
is referred to as the bottom-up approach. Experience suggests that the
top-down approach should be followed when creating a program.
However, in practice it is not necessary to unswervingly follow the
method. A look ahead to problems which may arise later is often useful.

Underlying all of these strategies is the assumption that a language
exists for adequately describing the processing of data at several abstract
levels. For this purpose we use the language SPARKS coupled with
carefully chosen English narrative. Such an algorithm might be called
pseudo-SPARKS. Let us examine two examples of top-down program
development.

Suppose we devise a program for sorting a set of n = 1 distinct integers.
One of the simplest solutions is given by the following

How to Create Programs 19

*from those integers which remain unsorted, find the smallest and place
it next in the sorted list’’

This statement is sufficient to construct a sorting program. However,
several issues are not fully specified such as where and how the integers
are initially stored and where the result is to be placed. One solution
is to store the values in an array in such a way that the i-th integer
is stored in the i-th array position, A(i) 1 = { = n. We are now ready
to give a second refinement of the solution:

for i < 1to ndo
examine A(i) to A(n) and suppose the
smallest integer is at A(j); then inter-
change A (i) and A(j).

end

Note how we have begun to use SPARKS pseudo-code. There now
remains two clearly defined subtasks: (i) to find the minimum integer
and (ii) to interchange it with A(i). This latter problem can be solved
by the code

t< A(i); A(D) < A(j); A(D <t

The first subtask can be solved by assuming the minimumis A (i), checking
A(i) with A(i + 1),A(i + 2), ... and whenever a smaller element is
found, regarding it as the new minimum. Eventually A(n) is compared
to the current minimum and we are done. Putting all these observations
together we get

procedure SORT(A,n)
for i — 1to ndo
jei
for k—j+1tondo
if A(k) < A(j) then j« k
end
t—A(); A(i) < A(); A(J) <t
end
end SORT

R = WV, I SR UL S I

The obvious question to ask at this point is: ‘‘does this program work
correctly?”

20 Introduction

Theorem: Procedure SORT(A,n) correctly sorts a set of n = 1 distinct
integers, the resuit remains in A(i:n) such that A(l) < AQQ) < ...
< A(n).

Proof: If n is one then by the definition of the SPARKS for statement,
lines 3 thru S are not executed. Thus i = § = 1 and the interchange
at line 6 has no effect. Suppose that the program works correctly for
n — 1 inputs and SORT (A,n) is invoked. When i=1 the loop of lines
3 thru 5 is executed for k = 2,3, ...,n. A value for jis determined such
that A(j) < A(k), k = 2, ...,nusing common properties of integers. Either
j=1or A(j) < A(1) so at line 6 A(j) has been determined as the
smallest of n elements. It is interchanged with A(1). The program now
continues with { = 2, ...,n but this is equivalent to sorting n — 1 integers
which we assumed to work correctly. Since A(1) is never changed again,
the algorithm correctly sorts all n integers. O

We observe at this point that the upper limit of the for-loop in line
1 can be changed to n — 1 without damaging the correctness of the
algorithm.

From the standpoint of readability we can ask if this program is good.
Is there a more concise way of describing this algorithm which will
still be as easy to comprehend? Substituting while statements for the
for loops doesn’t significantly change anything. Also, extra initialization
and increment statements would be required. We might consider a
FORTRAN version using the ANSI language standard

IF (N. LE. 1) GO TO 100

NMi =N -1
DO 101 I = 1, NMI
J=1
JP1 =7 +1

DO 102 K = JP1, N
IF (A(K).LT.AJ) T =K
102 CONTINUE

T = A)
A = A(D)
A =T

101 CONTINUE
100 CONTINUE

FORTRAN forces us to clutter up our algorithms with extra statements.
The test for N = 1 is necessary because FORTRAN DO-LOOPS always
insist on executing once. Variables NM1 and JP1 are needed because

How to Create Programs 21

of the restrictions on lower and upper limits of DO-LOOPS.

Let us develop another program. We assume that we have n = 1
distinct integers which are already sorted and stored in the array A(1i:n).
Our task is to determine if the integer x is present and if so to return
j such that x = A(j); otherwise return j = 0. By making use of the
fact that the set is sorted we conceive of the following efficient method:

“let A(mid) be the middle element. There are three possibilities. Either x
< A(mid) in which case x can only occur as A(1) to A(mid — 1); or x
> A(mid) in which case x can only occur as A(mid + 1) to A(n); or x
= A(mid) in which case set j to mid and return. Continue in this way by
keeping two pointers, lower and upper, to indicate the range of elements
not yet tested.”

At this point you might try the method out on some sample numbers.
This method is referred to as binary search. Note how at each stage
the number of elements in the remaining set is decreased by about
one half. We can now attempt a version using SPARKS pseudo code.

procedure BINSRCH(A,n,x,j)
initialize lower and upper
while there are more elements to check do
let A(mid) be the middle element
case
1 x> A(mid): set lower to mid + 1
1 x < A(mid): set upper to mid — 1
: else: found
end
end
not found
end BINSRCH

The above is not the only way we might write this program. For instance
we could replace the while loop by a repeat-until statement with the
same English condition. In fact there are at least six different binary search
programs that can be produced which are all correct. There are many more
that we might produce which would be incorrect. Part of the freedom comes
from the initialization step. Whichever version we choose, we must be sure
we understand the relationships between the variables. Below is one
complete version.

22 Introduction

procedure BINSRCH (A,n,x,j)

1 lower < 1; upper <— n

2 while lower = upper do

3 mid < | (lower + upper) /2]

4 case

5 x> A(mid): lower « mid + 1
6 1 x < A(mid): upper «— mid — 1
7 : else: j « mid; return

8 end

9 end
10 j<0

end

To prove this program correct we make assertions about the relationship
between variables before and after the while loop of steps 2-9. As
we enter this loop and as long as x is not found the following holds:

lower =< upper and A (lower) = x < A(upper) and SORTED(A,n)

Now, if control passes out of the while loop past line 9 then we know
the condition of line 2 is false

lower > upper.

This, combined with the above assertion implies that x is not present.

Unfortunately a complete proof takes us beyond our scope but for
those who wish to pursue program proving they should consult our
references at the end of this chapter. An analysis of the computing
time for BINSRCH is carried out in section 7.1.

Recursion

We have tried to emphasize the need to structure a program to make
it easier to achieve the goals of readability and correctness. Actually
one of the most useful syntactical features for accomplishing this is
the procedure. Given a set of instructions which perform a logical
operation, perhaps a very complex and long operation, they can be
grouped together as a procedure. The procedure name and its parameters
are viewed as a new instruction which can be used in other programs.
Given the input-output specifications of a procedure, we don’t even
have to know how the task is accomplished, only that it is available.
This view of the procedure implies that it is invoked, executed and

How to Create Programs 23

returns control to the appropriate place in the calling procedure. What
this fails to stress is the fact that procedures may call themselves (direct
recursion) before they are done or they may call other procedures which
again invoke the calling procedure (indirect recursion). These recursive
mechanisms are extremely powerful, but even more importantly, many
times they can express an otherwise complex process very clearly. For
these reasons we introduce recursion here,

Most students of computer science view recursion as a somewhat
mystical technique which only is useful for some very special class
of problems (such as computing factorials or Ackermann’s function).
This is unfortunate because any program that can be written using
assignment, the if-then-else statement and the while statement can also
be written using assignment, if-then-else and recursion. Of course, this
does not say that the resulting program will necessarily be easier to
understand. However, there are many instances when this will be the
case. When is recursion an appropriate mechanism for algorithm exposi-
tion? One instance is when the problem itself is recursively defined.
Factorial fits this category, also binomial coefficients where

<n>_ n!
m/ m!(n- m)!

can be recursively computed by the formula

=)o)

= +

m m m-—1

Another example is reversing a character string, S = ‘x, ... x,,” where
SUBSTRING (S,i,j) is a function which returns the string x; ... x;
for appropriately defined i and j and S || T stands for concatenation

of two strings (as in PL/I). Then the operation REVERSE is easily
described recursively as

procedure REVERSE(S)
n «— LENGTH(S)
if n = 1 then return (S)
else return (REVERSE(SUBSTRING(S,2,n))
| SUBSTRING(S,1,1))
end REVERSE

If this looks too simple let us develop a more complex recursive

24 Introduction

procedure. Given a set of n = 1 elements the problem is to print all
possible permutations of this set. For example if the set is {a,b,c},
then the set of permutations is {(a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b),
(c,b,a)}. It is easy to see that given n elements there are n! different
permutations, A simple algorithm can be achieved by looking at the
case of four elements (a,b,c,d). The answer is obtained by printing

(i) a followed by all permutations of (b,c,d)

(i1) b followed by all permutations of (a,c,d)

(iii) c¢ followed by all permutations of (b,a,d)

(iv) dfollowed by all permutations of (b,c,a)
The expression ‘‘followed by all permutations’” is the clue to recursion.
It implies that we can solve the problem for a set with n elements
if we had an algorithm which worked on n — 1 elements. These
considerations lead to the following procedure which is invoked by call
PERM(A,l.n). A is a character string. eg. A = ‘abcd’. and INTER-
CHANGE (A k,i) exchanges the k-th character of A with the i-th character
of A.

procedure PERM(A, k,n)
if k¥ = n then [print (A); return]
B<A
fori— k tondo
call INTERCHANGE(A,k,i)
call PERM(A,k + 1,n)
A<B
end
end PERM

Try this algorithm out on sets of length one, two, and three to insure
that you understand how it works. Then try to do one or more of
the exercises at the end of this chapter which ask forrecursive procedures.

Another time when recursion is useful is when the data structure
that the algorithm is to operate on is recursively defined. We will see
several important examples of such structures, especially lists in section
4.9 and binary trees in section 5.4. Another instance when recursion
is invaluable is when we want to describe a backtracking procedure.
But for now we will content ourselves with examining some simple,
iterative programs and show how to eliminate the iteration statements
and replace them by recursion. This may sound strange, but the objective
is not to show that the result is simpler to understand nor more efficient
to execute. The main purpose is to make one more familiar with the
execution of a recursive procedure,

How to Create Programs 25

Suppose we start with the sorting algorithm presented in this section.
To rewrite it recursively the first thing we do is to remove the for
loops and express the algorithm using assignment, if-then-else and the
go-to statement.

procedure SORT(A,n)
i1
Ll:ifi=n—1 Y fori—1ton—1do/
then [j—i;k<—j+1
[2:ifk=n Y forke—j+ 1tondo /
then [if A(k) < A(j)
then j < k
k—k+1;goto L2]
t— A(i); A(i) < A(J); A(j) < ¢t
i—i+1;goto L1}
end SORT

Now every place where we have a label we introduce a procedure whose
parameters are the variables which are already assigned a value at that
point. Every place where a ‘‘go to label’” appears, we replace that
statement by a call of the procedure associated with that label. This
gives us the following set of three procedures.

procedure SORT(A,n)
call SORTL1(A,n,1)
end SORT

procedure SORTL 1(A,n,i)
ifi=n-1
then [j < i; call MAXL2(A,nj,i + 1)
t— A(i); A(i) < A()); A(j) « ¢t
call SORTLI1(A,n,i + 1)]
end SORTLI1

procedure MAXI.2(A,n,j k)
if k=n
then [if A(k) < A(j) then j < k
call MAXL2(A,n,j.k + 1)]
end MAXL.2

We can simplify these procedures somewhat by ignoring SORT(A,n)
entirely and begin the sorting operation by call SORTL1(A,n,1). Notice
how SORTLY1 is directly recursive while it also uses procedure MAXL.2.

26 Introduction

Procedure MAXL2 is also directly recursive. These two procedures
use eleven lines while the original iterative version was expressed in
nine lines; not much of a difference. Notice how in MAXL?2 the fourth
parameter k is being changed. The effect of increasing k by one and
restarting the procedure has essentially the same effect as the for loop.

Now let us trace the action of these procedures as they sort a set
of five integers

A(l) A(2) A(3) A(4) A(5) procedure calls return arrows

15 8 -5 6 4 SORTLI(A, 5, 1) A 4
MAXL2(A, 5, 1,2)
MAXL2(A, 5,2, 3)
MAXL2(A, 5, 3, 4)
MAXL2(A, 5, 3, 5)
MAXL2(A, 5, 3. 6)

-5 8 15 6 4 interchange A(1), A(3)
SORTLI(A, 5, 2) \
MAXL2(A, 5, 2, 3)
MAXL2(A, §, 2, 4)
MAXIL2(A, 5, 4, 5)
MAXIL2(A, 5,5, 6)

-5 4 15 6 8 interchange A(2), A(5)
SORTLI(A, 5, 3) 1\
MAXL2(A, 5, 3, 4)
MAXIL2(A, 5,4, 5)
MAXI2(A, 5, 4, 6)

-5 4 6 15 8 interchange A(3), A(4)
SORTLI(A, 5, 4) A
MAXI2(A, 5,4, 5)
MAXIL2(A, 5, 5, 6)

-5 4 6 8 15 interchange A(4), A(5)
SORTLI(A, 5, 5)

When a procedure is invoked an implicit branch to its beginning is
made. Thus a recursive call of a program can be made to simulate
a go to statement. The parameter mechanism of the procedure is a
form of assignment. Thus placing the argument k + 1 as the fourth
parameter of MAXL2 is equivalent to the statement k «— k + 1.

In section 4.9 we will see the first example of a recursive data structure,
the list. Also in that section are several recursive procedures, followed
in some cases by their iterative equivalents. Rules are also given there
for eliminating recursion.

How to Analyze Programs 27

1.4 HOW TO ANALYZE PROGRAMS

One goal of this book is to develop skills for making evaluative judgements
about programs. There are many criteria upon which we can judge
a program, for instance:

(i) Does it do what we want it to do?

(i) Does it work correctly according to the original specifications

of the task?

(iii) Is there documentation which describes how to use it and how

it works?

(iv) Are subroutines created in such a way that they perform logical

sub-functions?

(v) Is the code readable?

The above criteria are all vitally important when it comes to writing
software, most especially for large systems. Though we will not be
discussing how to reach these goals, we will try to achieve them throughout
this book with the programs we write. Hopefully this more subtle approach
will gradually infect your own program writing habits so that you will
automatically strive to achieve these goals.

There are other criteria for judging programs which have a more direct
relationship to performance. These have to do with computing time
and storage requirements of the algorithms. Performance evaluation can
be loosely divided into 2 major phases: (a) a priori estimates and (b)
a posteriori testing. Both of these are equally important.

First consider a priori estimation. Suppose that somewhere in one
of your programs is the statement

x<—x+ 1.

We would like to determine two numbers for this statement. The first
is the amount of time a single execution will take; the second is the
number of times it is executed. The product of these numbers will
be the total time taken by this statement. The second statistic is called
the frequency count, and this may vary from data set to data set. One
of the hardest tasks in estimating frequency counts is to choose adequate
samples of data. It is impossible to determine exactly how much time
it takes to execute any command unless we have the following informa-
tion:

(i) the machine we are executing on;

(ii) its machine language instruction set;

(iii) the time required by each machine instruction;

28 Introduction

(iv) thetranslationacompiler will make from the source to the machine
language.

It is possible to determine these figures by choosing a real machine
and an existing compiler. Another approach would be to define a
hypothetical machine (with imaginary execution times), but make the
times reasonably close to those of existing hardware so that resulting
figures would be representative. Neither of these alternatives seems
attractive. In both cases the exact times we would determine would
not apply to many machines or to any machine. Also, there would
be the problem of the compiler, which could vary from machine to
machine. Moreover, it is often difficult to get reliable timing figures
because of clock limitations and a multi-programming or time sharing
environment. Finally, the difficulty of learning another machine language
outweighs the advantage of finding ‘‘exact’ fictitious times. All these
considerations lead us to limit our goals for an a priori analysis. Instead,
we will concentrate on developing only the frequency count for all
statements. The anomalies of machine configuration and language will
be lumped together when we do our experimental studies. Parallelism
will not be considered.

Consider the three examples of Figure 1.4 below.

for i < 1to ndo
for i < 1to ndo

for j«— 1tondo

X «— x+1 x—x+1

. xX—x+1
end

end
end

(a (b) (c)

Figure 1.4: Three simple programs for frequency counting.

In program (a) we assume that the statement x < x + 1 is not contained
within any loop either explicit or implicit. Then its frequency count
is one. In program (b) the same statement will be executed n times
and in program (c) n’? times (assuming n = 1). Now 1, n, and n? are
said to be different and increasing orders of magnitude just like 1, 10,
100 would be if we let n = 10. In our analysis of execution we will
be concerned chiefly with determining the order of magnitude of an

How to Analyze Programs 29

algorithm. This means determining those statements which may have
the greatest frequency count.
To determine the order of magnitude, formulas such as

2L X X
I=i=n I=i=n l=i=n

often occur. In the program segment of figure 1.4(c) the statement x
«— x + 11is executed

E E 1= E n = n? times

I=i=n 1=j=n 1<=i=n
Simple forms for the above three formulas are well known, namely,

n(n+1) nin+ DQ2n + 1)

n’ >
2 6

In general

nk+1
E ik = 1 + terms of lower degree, k = 0.

1=si=n

To clarify some of these ideas, let us look at a simple program for
computing the n-th Fibonacci number. The Fibonacci sequence starts
as

0,1,1,2,3,5,8,13, 21, 34, 55, ...
Each new term is obtained by taking the sum of the two previous terms.
If we call the first term of the sequence F, then F, = 0, F, = 1
and in general

F,=F, +F,, n=2.

The program on the following page takes any non-negative integer n
and prints the value F,.

30 Introduction

1 procedure FIBONACCI

2 read (n)

3-4 if n < 0 then [print (‘error’); stop]
5-6 if n = 0 then [print (‘0’); stop]
7-8 if n = 1 then [print (‘1’); stop]
9 fram2 < 0; faml <1
10 for i <—2to ndo
11 fn < faml + fam2
12 fam2 < famli
13 faml « fn
14 end
15 print (fn)

16 end FIBONACCI

The first problem in beginning an analysis is to determine some reasonable
values of n. A complete set would include four cases: n < 0, n =0,
n=1and n > 1. Below is a table which summarizes the frequency
counts for the first three cases.

(=]
=
I
(=]
=
I
—_

Step n

O, —, O = O = - -

00 AN L bW -
OO OO O = = = = | A
OO D o O - -

9-15

These three cases are not very interesting. None of them exercises
the program very much. Notice, though, how each if statement has
two parts: the if condition and the then clause. These may have different
execution counts. The most interesting case for analysis comes when
n> 1. At this point the for loop will actually be entered. Steps 1,
2, 3,5, 7 and 9 will be executed once, but steps 4, 6 and 8 not at
all. Both commands in step 9 are executed once. Now, for n = 2
how often is step 10 executed: not n — 1 but n times. Though 2 to
n is only n — 1 executions, remember that there will be a last return
to step 10 where i is incremented to n + 1, the test i > n made and
the branch taken to step 15. Thus, steps 11, 12, 13 and 14 will be

How to Analyze Programs 31

executed n — 1 times but step 10 will be done n times. We can summarize
all of this with a table.

Step Frequency Step Frequency
1 1 9 2
2 1 10 n
3 1 11 n-1
4 0 12 n-1
5 1 13 n-1
6 0 14 n-1
7 1 15 1
8 0 16 1

Figure 1.5: Execution Count for Computing F,

Each statement is counted once, so step 9 has 2 statements and is
executed once for a total of 2. Clearly, the actual time taken by each
statement will vary. The for statement is really a combination of several
statements, but we will count it as one. The total count then is 5n
+ 5. We will often write this as O(n), ignoring the two constants 5.
This notation means that the order of magnitude is proportional to n.

The notation f(n) = O(g(n)) (read as f of n equals big-oh of g of
n) has a precise mathematical definition.

Definition: f(n) = O(g(n)) iff there exist two constants ¢ and n, such
that |f(n)| < c|g(n)|for all n = n,.

f(n) will normally represent the computing time of some algorithm. When
we say that the computing time of an algorithm is O(g(n)) we mean
that its execution takes no more than a constant times g(n). n is a
parameter which characterizes the inputs and/or outputs. For example
n might be the number of inputs or the number of outputs or their
sum or the magnitude of one of them. For the Fibonacci program n
represents the magnitude of the input and the time for this program
is written as T(FIBONACCI) = O(n).

We write O(1) to mean a computing time which is a constant. O(n)
is called linear, O(n?) is.called quadratic, O(n?) is called cubic, and
O@2") is called exponential. If an algorithm takes time O(log n) it is
faster, for sufficiently large n, than if it had taken O(n). Similarly,
O(n log n) is better than O(n?) but not as good as O(n). These seven
computing times, O(1), Olog n), O(n), O(n log n), O(n?), O(n?),
and O(2") are the ones we will see most often throughout the book.

32 Introduction

If we have two algorithms which perform the same task, and the
first has a computing time which is O(n) and the second O(n?), then
we will usually take the first as superior. The reason for this is that
as n increases the time for the second algorithm will get far worse
than the time for the first. For example, if the constant for algorithms
one and two are 10 and 1/2 respectively, then we get the following
table of computing times:

n 10n n%/2
1 10 1/2

5 50 12-1/2
10 100 50
15 150 112-1/2
20 200 200
25 250 312-1/2
30 300 450

For n < 20, algorithm two had a smaller computing time but once past
that point algorithm one became better. This shows why we choose
the algorithm with the smaller order of magnitude, but we emphasize
that this is not the whole story. For small data sets, the respective
constants must be carefully determined. In practice these constants
depend on many factors, such as the language and the machine one
is using. Thus, we will usually postpone the establishment of the constant
until after the program has been written. Then a performance profile
can be gathered using real time calculation.

Figures 1.6 and 1.7 show how the computing times (counts) grow
with a constant equal to one. Notice how the times O(n) and O(n
log n) grow much more slowly than the others. For large data sets,
algorithms with a complexity greater than O(nlog n) are often impractical.
An algorithm which is exponential will work only for very small inputs.
For exponential algorithms, even if we improve the constant, say by
1/2 or 1/3, we will not improve the amount of data we can handle
by very much.

Given an algorithm, we analyze the frequency count of each statement
and total the sum. This may give a polynomial

— k k—1
P(ny=cn*+c_n*1+.. +cn+c,

where the c; are constants, ¢, # 0 and n is a parameter. Using big-oh

How to Analyze Programs 33

notation, P(n) = O(n*). On the other hand, if any step is executed
2" times or more the expression

c2" + P(n) = O(2").

Another valid performance measure of an algorithm is the space it
requires. Often one can trade space for time, getting a faster algorithm
but using more space. We will see cases of this in subsequent chapters.

65536
327681
163841
8192
40961
20481
1024
5121
256
128-

T T 1 T

T T T T
I 2 4 8 6 32 64 i28

Figure 1.6: Rate of Growth of Common Computing Time Functions

log,n n nlog,n n? n3 2"
0 I 0 I I 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4096 65536
5 32 160 1024 32768 2, 147, 483, 648

Figure 1,7: Values for Computing Functions

We end this chapter with a problem from recreational mathematics
which uses many of the SPARKS features that have been discussed.
A magic square is an n X n matrix of the integers 1 to n® such that
the sum of every row, column and diagonal is the same. For example,
if n = 5 we have

34 Introduction

15 8 1 24 17
16 14 7 5 23
22 20 13 6 4

21 19 12 10
9 2 25 18 11

where the common sum is 65. When n is odd H. Coxeter has given
a simple rule for generating a magic square:

**Start with 1 in the middie of the top row; then go up and left assigning
numbers in increasing order to empty squares; if you fall off the square
imagine the same square as tiling the plane and continue; if a square is occu-
pied, move down instead and continue.”’

The magic square above was formed using this rule. We now write
a SPARKS program for creating an n X n magic square for n odd.

procedure MAGIC(square, n)
/ for n odd create a magic square which is declared as an array /
Jsquare (0:n—1,0:n— 1)/
/ (i.j) is a square position. 2 < key < n? is integer valued. /
if n is even then [print (‘input error’); stop])

SQUARE — 0
square (0,(n — 1)/2) < 1; / store 1 in middle &f first row /
key =2, i< 0;j—(n—1)/2 / i,j are current position /
while key < n® do
(k) = (i — 1) mod n, (j — 1) mod n) /look up and left /
if square (k,)) # 0
then i < (i + 1) mod n / square occupied, move down /
else (i,j) < (k,]) / square (k,l) needs to be assigned /
square (i,j) < key / assign it a value /
key < key + 1
end
print (n, square) / output result /
end MAGIC

MAGIC is a complete SPARKS procedure. The statement (i,j) «
(k,I) is a shorthand way of writing i « k; j « [. It emphasizes that
the variables are thought of as pairs and are changed as a unit. The
reserved word mod computes the nonnegative remainder and is a built

How to Analyze Programs 35

in function. The magic square is represented using a two dimensional
array having n rows and n columns. For this application it is convenient
to number the rows (and columns) from zero to n — 1 rather than
from one to n. Thus, when the program ‘‘falls off the square’ the
mod operator sets i and/or j back to zero or n — 1.

The while loop is governed by the variable key which is an integer
variable initialized to 2 and increased by one each time through the
loop. Thus each statement within the while loop will be executed no
more than n?> — 1 times and hence the computing time for MAGIC
is O(n?). Since there are n? positions in which the algorithm must place
a number, we see that O(n?) is the best bound an algorithm could
have.

REFERENCES AND SELECTED READINGS

For a discussion of algorithms and how to analyze them see

The Art of Computer Programming: Fundamental Algorithms, by D. E. Knuth,
vol. 1, chapter 1, 2-nd edition, Addison-Wesley, 1973.

For a discussion of good programming techniques see

Structured Programming by O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
Academic Press, 1972.

The Elements of Programming Style by B. W. Kernighan and P. J. Plauger,
McGraw-Hill, 1974,

ACM Computing Surveys, Special Issue: Programming, vol. 6, no. 4, December,
1974.

For a discussion of tools and procedures for developing very large software
systems see

Practical Strategies for Developing Large Software Systems, by E. Horowitz,
Addison-Wesley, May, 1975.

For a discussion of the more abstract formulation of data structures see

““Toward an understanding of data structures’ by J. Earley, CACM, vol. 14,
no. 10, October, 1971, pp. 617-627.

‘““Another look at data,”” by G. Mealy, Proc. AFIPS Fall Joint Computer
Conference, vol. 31, 1967, pp. 525-534.

For a further discussion of program proving see

‘“Assigning meaning to programs,”” by R. W. Floyd, Proc. of a Symposium

36

Introduction

in Applied Mathematics, vol. 19, J. T. Schwartz, ed., American Mathematical
Society, Providence, 1967, pp. 19-32.

“An

interactive program verification system,”” by D. I. Good, R. L. London,

W. W. Bledsoe, IEEE Transactions on Software Engineering, SE-1, vol. 1,
March, 1975, pp. 59-67.

EXERCISES

1

2
3
4
5
6
7

Look up the word algorithm or its older form algorism in the dictionary.

Consider the two statements: (i) Is n = 2 the largest value of n for which
there exists positive integers x, y and z such that x® + y” = z" has a
solution; (ii) Store 5 divided by zero into X and go to statement 10. Both
do not satisfy one of the five criteria of an algorithm. Which criteria do
they violate?

Describe the flowchart in figure 1.1 by using a combination of SPARKS
and English. Can you do this without using the go to? Now make it into
an algorithm.

Discuss how you would actually represent the list of name and telephone
number pairs in a real machine. How would you handle people with the
same last name.

Write FORTRAN equivalents of the while, repeat-until, loop-forever and
for statements of SPARKS.

Can you think of a clever meaning for S.P.A.R.K.S.? Concentrate on
the letter K first.

Determine the frequency counts for all statements in the following two
SPARKS program segments:

fori—1ton lie1
forj—1toi 2 while i < ndo
fork<—1toj 3 x<x+1
xe—x+1 4 je—i+1
end 5 end
end
end
(a) (b)

8. Horner’s Rule is a means for evaluating a polynomial A(x)=a, x"

10.

11,

12.

13.

14.

15.

Exercises 37

+a, ,x" '+ ...+ a,x+ a, at a point x, using a minimum number of
multiplications. The rule is:

AX)=(..((a,xg+ a,_)Xo+ ... +a)x,+ aq

Write a SPARKS program to evaluate a polynomial usi'ng Horner’s Rule.
Determine how many times each statement is executed.

Given nboolean variables x , ..., x, we wish to print all possible combinations
of truth values they can assume. For instance, if n = 2, there are four
possibilities: true, true; true, false; false, true; false, false. Write a SPARKS
program to accomplish this and do a frequency count.

Compare the two functions n? and 2"/4 for various values of n. Determine
when the second becomes larger than the first.

Write a SPARKS program which prints out the integer values of x, y,
Z in nondecreasing order. What is the computing time of your method?

Write a SPARKS procedure which searches an array A (1:n) for the element
x. If x occurs, then set j to its position in the array else set j to zero.
Try writing this without using the go to statement.

One useful facility we might add to SPARKS is the ability to manipulate
character strings. If x, y are variables of type character, then we might
like to implement the procedures:

(i) z< CONCAT(x,y) which concatenates a copy of string y to the end of a
copy of string x and assigns the resulting string to z. Strings x and y re-
main unchanged.

(ii) =z« SUBSTR(x,/,) which copies to z the i-th to the j-th character in
string x with appropriate definitions for j = 0, i > j, etc. String x is un-
changed.

(iii) z <« INDEX(x,y) which searches string x for the first occurrence of string
Y and sets z to its starting position in x or else zero.

Implement these procedures using the array facility.

Write a SPARKS procedure which is given an argument STRING, whose
value is a character string of length n. Copy STRING into the variable
FILE so that every sequence of blanks is reduced to a single blank. The
last character of STRING is nonblank.

Design a program that counts the number of occurrences of each character
in the string STRING of length n. Represent your answer in the array
ANS(1:k, 1:2) where ANS(i,1) is the i-th character and ANS(i,2) is the
number of times it occurs in STRING.

38

16.

17.

18.

19.

20.

21.

22.

23.

Introduction

Trace the action of the procedure below on the elements 2, 4, 6, 8, 10,
12, 14, 16, 18, 20 searching for 1, 3, 13 and 21.

i<—1;jen
repeat k < (i + j)/2
if A(k) = xtheni<—k + 1
else j<— k — 1
until i > j

What is the computing time for this segment in terms of n?

Prove by induction:

a) E i=nn+ 1)/2, n=1

I=i=n

b) E i2=nn+ D2n+1/6, n=1

1=i=n

¢) Exi=(x"”—1)/(x—l), x#1, n=0

O=i=n

List as many rules of style in programming that you can think of that
you would be willing to follow yourself.

Using the notation introduced at the end of section 1.1, define the structure
Boolean with operations AND, OR, NOT, IMP and EQV (equivalent) using
only the if-then-else statement. e.g. NOT (X) :: = if X then false else true.

Give a version of a binary search procedure which initializes lower to
zero and upper to n + 1.

Take any version of binary search, express it using assignment, if-then-else
and go to and then give an equivalent recursive program.

Analyze the computing time of procedure SORT as given in section 1.3.

n
Write a recursive procedure for computing the binomial coefficient (>
m

n n
as defined in section 1.3, where <0> = (> = 1. Analyze the time and
n

space requirements of your algorithm.

25.

26.

27.

28.

29.

30.

Exercises 39
Ackermann’s function A(m,n) is defined as follows:

n+1 ,ifm=0
A(mn) = {Am—1,1) ,ifn=0
Am-1, A(m,n - 1)) , otherwise

This function is studied because it grows very fast for small values of
m and n. Write a recursive procedure for computing this function. Then
write a nonrecursive algorithm for computing Ackermann’s function.

(Tower of Hanoi) There are three towers and sixty four disks of different
diameters placed on the first tower. The disks are in order of decreasing
diameter as one scans up the tower. Monks were reputedly supposed to
move the disks from tower 1 to tower 3 obeying the rules: (i) only one
disk can be moved at any time; (ii) no disk can be placed on top of
a disk with smaller diameter. Write a recursive procedure which prints
the sequence of moves which accomplish this task.

Write an equivalent recursive version of procedure MAGIC as given in
section 1.4,

The pigeon hole principle states that if a function f has n distinct inputs
but less than n distinct outputs then there exists two inputs a, b such
that a # b and f(a) = f(b). Give an algorithm which finds the values q,
b for which the range values are equal.

Given n, a positive integer determine if n is the sum of all of its divisors;
i.e. if n is the sum of all ¢ such that | < t < n and ¢t divides n.

Consider the function F(x) defined by
F(x) «if even(x) then x/2 else F(F(3x + 1))

Prove that F(x) terminates for all integers x. (Hint: consider integers of the
form (2/ + 1) 2% — 1 and use induction.)

If Sis a set of n elements the powerset of S is the set of all possible
subsets of S. For example if § = (g,b,c,) then POWERSET(S) = {(), (a),
(b), (¢), (a,b), (a,c), (b,c), (a,b,c)}. Write a recursive procedure to compute
powerset (S).

Chapter 2

ARRAYS

2.1 AXIOMATIZATION

It is appropriate that we begin our study of data structures with the
array. The array is often the only means for structuring data which
is provided in a programming language. Therefore it deserves a significant
amount of attention. If one asks a group of programmers to define
an array, the most often quoted saying is: a consecutive set of memory
locations. This is unfortunate because it clearly reveals a common point
of confusion, namely the distinction between a data structure and its
representation. It is true that arrays are almost always implemented
by using consecutive memory, but not always. Intuitively, an array
is a set of pairs, index and value. For each index which is defined,
there is a value associated with that index. In mathematical terms we
call this a correspondence or a mapping. However, as computer scientists
we want to provide a more functional definition by giving the operations
which are permitted on this data structure. For arrays this means we
are concerned with only two operations which retrieve and store values.
Using our notation this object can be defined as:

structure ARRAY (value, index)
declare CREATE()— array
RETRIEVE(array,index) — value
STORE (array,index,value) — array;
for all A € array, i,j € index, x € value let
RETRIEVE(CREATE,i) :: = error
RETRIEVE(STORE(A,i,x),]) - =
if EQUAL (i,j) then x else RETRIEVE(A,j)
end
end ARRAY

40

Ordered Lists 41

The function CREATE produces a new, empty array. RETRIEVE
takes as input an array and an index, and either returns the appropriate
value or an error. STORE is used to enter new index-value pairs. The
second axiom is read as ‘‘to retrieve the j-th item where x has already
been stored at index i in A is equivalent to checking if i and j are
equal and if so, x, or search for the j-th value in the remaining array,
A.” This axiom was originally given by J. McCarthy. Notice how the
axioms are independent of any representation scheme. Also, { and j
need not necessarily be integers, but we assume only that an EQUAL
function can be devised.

If we restrict the index values to be integers, then assuming a
conventional random access memory we can implement STORE and
RETRIEVE so that they operate in a constant amount of time. If we
interpret the indices to be n-dimensional, (i,,i,, ...,i,), then the previous
axioms apply immediately and define n-dimensional arrays. In section
2.4 we will examine how to implement RETRIEVE and STORE for
multi-dimensional arrays using consecutive memory locations.

2.2 ORDERED LISTS

One of the simplest and most commonly found data object is the ordered
or linear list. Examples are the days of the week

(MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY)

or the values in a card deck
(2,3,4,5,6,7,8,9, 10, Jack, Queen, King, Ace)
or the floors of a building
(basement, lobby, mezzanine, first, second, third)
or the years the United States fought in World War 11
(1941, 1942, 1943, 1944, 1945).

If we consider an ordered list more abstractly, we say that it is either
empty or it can be written as

(- - ee

42 Arrays
(a,,a,,a;, ...,a,)

where the a, are atoms from some set S.
There are a variety of operations that are performed on these lists.
These operations include:

(1) find the length of the list, n;

(ii) read the list from left-to-right (or right-to-left);

(ili) retrieve the i-th element, 1 = i = n;

(iv) store a new value into the i-th position, 1 = i = n;

(v) insert a new element at positioni, 1 =i = n + 1 causing elements
numbered i,/ + 1,n to become numbered i + 1.i + 2,...n + 1;

(vi) delete the element at position i, 1 =i = n causing elements
numbered / + 1,n to become numbered i,/ + 1, ...n — 1.

See exercise 24 for a set of axioms which uses these operations to
abstractly define an ordered list. It is not always necessary to be able
to perform all of these operations; many times a subset will suffice.
In the study of data structures we are interested in ways of representing
ordered lists so that these operations can be carried out efficiently.

Perhaps the most common way to represent an ordered list is by an array
where we associate the list element a, with the array index i. This we will refer
to as a sequential mapping, because using the conventional array representa-
tion we are storing a,and a, , , into consecutive locations i and i + 1 of the
array. This gives us the ability to retrieve or modify the values of random
elements in the list in a constant amount of time, essentially because a
computer memory has random access to any word. We can access the list
element values in either direction by changing the subscript values in a
controlled way. It is only operations (v) and (vi) which require real effort.
Insertion and deletion using sequential allocation forces us to move some of
the remaining elements so the sequential mapping is preserved in its proper
form. It is precisely this overhead which leads us to consider nonsequential
mappings of ordered lists into arrays in Chapter 4.

Let us jump right into a problem requiring ordered lists which we will
solve by using one dimensional arrays. This problem has become the
classical example for motivating the use of list processing techniques
which we will see in later chapters. Therefore, it makes sense to look
atthe problem and see why arraysoffer only a partially adequate solution.
The problem calls for building a set of subroutines which allow for
the manipulation of symbolic polynomials. By ‘‘symbolic,”” we mean
the list of coefficients and exponents which accompany a polynomial,
€.g. two such polynomials are

Ordered Lists 43
A(x) =3x2+2x+4 and B(x) = x*+ 10x> + 3x2 + 1

For a start, the capabilities we would include are the four basic arithmetic
operations: addition, subtraction, multiplication, and division. We will
also need input and output routines and some suitable format for preparing
polynomials as input. The first step is to consider how to define
polynomials as a computer structure. For a mathematician a polynomial
is a sum of terms where each term has the form ax®; x is the variable,
a is the coefficient and e is the exponent. However this is not an
appropriate definition for our purposes. When defining a data object
one must decide what functions will be available, what their input is,
what their output is and exactly what it is that they do. A complete
specification of the data structure polynomial is now given.

structure POLYNOMIAL
declare ZERO() — poly; ISZERO((poly) — Boolean
COEF(poly,exp) — coef;
ATTACH (poly,coef,exp) — poly
REM (poly,exp) — poly
SMULT (poly,coef,exp) — poly
ADD(poly,poly) — poly; MULT (poly,poly) — poly;
for all P,Q, € poly c,d, € coef e,f € exp let
REM(ZERO,f) :: = ZERO
REM(ATTACH (P,c,e),f) :: =
if e = f then REM(P,f) else ATTACH(REM(P,f),c,e)
ISZERO(ZERO) :: = true
ISZERO(ATTACH (P,c,e)) :: =
if COEF(P,e) = —c then ISZERO(REM(P,e)) else false
COEF(ZERO,e) :: =0
COEF(ATTACH(P,c,e),f) :: =
if ¢ = f then ¢ + COEF (P,f) else COEF(P,f)
SMULT(ZERO,d,f) :: = ZERO
SMULT(ATTACH(P,c,e),d,f) :: =
ATTACH (SMULT(P,d,f),c-d,e + f)
ADD(P,ZERO) :: = P
ADD(P,ATTACH (Q,d,f)) :: = ATTACH(ADD(P,Q),d.,f)
MULT(P,ZERO) :: = ZERO
MULT(P,ATTACH(Q,d,f)) :: =
ADDMULT(P,Q),SMULT(P,d,f))
end
end POLYNOMIAL

44 Arrays

In this specification every polynomial is either ZERO or constructed
by applying ATTACH to a polynomial. For example the polynomial
P =10x — 12x3 — 10x + 0x?2 is represented by the string

ATTACH(ATTACH(ATTACH(ATTACH(ZERO,10,1),—-12,3),
—-10,1),0,2).

Notice the absense of any assumptions about the order of exponents,
about nonzero coefficients, etc. These assumptions are decisions of
representation. Suppose we wish to remove from P those terms having
exponent one. Then we would write REM(P, 1) and by the axioms the
above string would be transformed into

ATTACH(REM(ATTACH (ATTACH(ATTACH(ZERO,10,1),-12,3),
-10,1),1),0,2)

which is transformed into

ATTACH(REM(ATTACH (ATTACH(ZERO,10,1),—12,3),1),0,2)
which becomes

ATTACH(ATTACH(REM (ATTACH(ZERO,10,1),1),-12,3),0,2)
which becomes

ATTACH(ATTACH(REM(ZERO,1),-12,3),0,2)
which becomes finally
ATTACH(ATTACH(ZERO,—12,3),0,2)

or —12x* + 0x2,

These axioms are valuable in that they describe the meaning of each
operation concisely and without implying an implementation. Note how
trivial the addition and multiplication operations have become.

Now we can make some representation decisions. Exponents should be
unique and in decreasing order is a very reasonable first decision. This
considerably simplifies the operations ISZERO, COEF and REM while

ADD, SMULT and MULT remain unchanged. Now assuming a new
function EXP (poly) = exp which returns the leading exponent of poly, we

Ordered Lists 45

can write a version of ADD which is expressed more like a program, but is
still representation independent.

/C = A + B where A,B are the input polynomials /
C «— ZERO
while not ISZERO(A) and not ISZERO(B) do
case
EXP(A) < EXP(B):
C « ATTACH(C,COEF(B,EXP(B)) ,EXP(B))
B « REM(B,EXP(B))
:EXP(A) = EXP(B):
C < ATTACH(C,COEF(A,EXP(4)) + COEF(B,EXP(B)). EXP(A))
A « REM(A,EXP(A)); B «— REM(B,EXP(B))
:EXP(A) > EXP(B):
C « ATTACH(C,COEF(A,EXP(A)).EXP(A))
A< REM(A,EXP(A))
end
end
insert any remaining terms in A or B into C

The basic loop of this algorithm consists of merging the terms of
the two polynomials, depending upon the result of comparing the
exponents. The case statement determines how the exponents are related
and performs the proper action. Since the tests within the case statement
require two terms, if one polynomial gets exhausted we must exit and
the remaining terms of the other can be copied directly into the result.
With these insights, suppose we now consider the representation question
more carefully.

A general polynomial A(x) can be written as

n -1
a,x"+a, x"'+...+a,x+a,

where a, # 0 and we say that the degree of A is n. Then we can
represent A(x) as an ordered list of coefficients using a one dimensional
array of length n + 2,

A=(na,a,_,...a,,a,).

The first element is the degree of A followed by the n + 1 coefficients
in order of decreasing exponent. This representation leads to very simple
algorithms for addition and multiplication. We have avoided the need
to explicitly store the exponent of each term and instead we can deduce

46 Arrays

its value by knowing our position in the list and the degree.

But are there any disadvantages to this representation? Hopefully
you have already guessed the worst one, which is the large amount
of wasted storage for certain polynomials. Consider x!%° + 1, for
instance. It will require a vector of length 1002, while 999 of those
values will be zero. Therefore, we are led to consider an alternative
scheme.

Suppose we take the polynomial A(x) above and keep only its nonzero
coefficients. Then we will really have the polynomial

Dp_yxemt 4+ b, ,xem2+ ..+ b, xe (1

where each b, is a nonzero coefficient of A and the exponents e; are
decreasing e,,_, > €,_,>...>¢,= 0. If all of A’s coefficients are
nonzero,thenm=n+ 1, ¢, =i,and b, = a;for 0 = i = n. Alternatively,
only a, may be nonzero, in which case m=1, b,=a,, and e, = n.
In general, the polynomial in (1) could be represented by the ordered
list of length 2m + 1,

(m,e b

"m-1>

m—l’em—z’bm~2’ ""eo’bo)'
The first entry is the number of nonzero terms. Then for each term
there are two entries representing an exponent-coefficient pair.

Is this method any better than the first scheme? Well, it certainly
solves our problem with x190 + 1 which now would be represented
as (2,1000,1,0,1). Basic algorithms will need to be more complex because
we must check each exponent before we handle its coefficient, but
this is not too serious. As for storage, this scheme could be worse
than the former. For example, x* + 10x> + 3x2 + 1 would have the two

forms
(4,1,10,3,0,1) or (4,4,1,3,10,2,3,0,1).

In the worst case, scheme 2 requires less than twice as much storage
as scheme 1 (when the degree = nand all n + 1 coefficients are nonzero).
But scheme 1 could be much more wasteful, ag in the case of x'%®
+ 1, where it needs more than 200 times as many locations. Therefore,
we will prefer representation scheme 2 and use it.

Let us now write a procedure in SPARKS for adding two polynomials
represented as in scheme 2.

Ordered Lists

procedure PADD(A,B,C)
JA02m+ 1), BU:2n+ 1), C(:Zm + n) + 1)/

1 m <« A(1); n « B(1)
2 peqere2
3 while p < 2m and q < 2n do
4 case /compare exponents /
:A(p)=B(q): Cr+)« A(p+ 1)+ B(g+ 1)
A add coefficients /
fECr+1)#0
then [C(r) « A(p); r e r+ 2]
// store exponent /
pe—p+2;q«q+2 #advance to next
terms /
:A(p) < B(q): C(r+ 1) « B(q+ 1); C(r) « B(q)
/store new term /
qe—q+2;rer+2 #advance to next
term /
:A(p) > B(q): C(r+ 1)« A(p + 1); C(r) « A(p)
/store new term,/
pe—p+2irer+2 /advance to next
term /
end
end
5 while p = 2m do / copy remaining terms of A/
CinN<—A(p; Cr+ D<A+ 1
pe—p+2;rer+2
end
6 while g = 2ndo /copy remaining terms of B/
C(r)«-B(q); C(r+ D« B(g+ 1)
qe—q+ 2;rer+2
end

7 Cye r/2 -1 #number of terms in the sum /
end PADD

47

As this is one of our first complex algorithms written in SPARKS,
suppose we point out some features. The procedure has parameters
which are polynomial (or array) names, and hence they are capitalized.

Three pointers (p,q,r) are used to designate a term in A, B, or C.

Comments appear to the right delimited by double slashes. The basic
iteration step is governed by a while loop. Blocks of statements are
grouped together using square brackets. Notice how closely the actual
program matches with the original design. The code is indented to
reinforce readability and to reveal more clearly the scope of reserved
words. This is a practice you should adopt in your own coding. Statement

48 Arrays
two is a shorthand way of writing
r<2qerp—q

Let us now analyze the computing time of this algorithm. It is natural
to carry out this analysis in terms of m and n, the number of nonzero
terms in A and B respectively. The assignments of lines 1 and 2 are
made only once and hence contribute O(1) to the overall computing
time. If either » = 0 or m = 0. the while loop of line 3 is not executed.

In case neither m nor n equals zero, the while loop of line 3 is entered.
Each iteration of this while loop requires O(l) time. At each iteration,
either the value of p or q or both increases by 2. Since the iteration
terminates when either p or g exceeds 2m or 2n respectively, the number
of iterations is bounded by m + n — 1. This worst case is achieved,
for instance, when A(x) = =, x? and B(x) = Z7_, x2*1 Since none
of the exponents are the same in A and B, A(p) # B(q). Consequently,
on each iteration the value of only one of p or q increases by 2. So,
the worst case computing time for this while loop is O(n + m). The
total computing time for the while loops of lines 5 and 6 is bounded
by O(n + m), as the first cannot be iterated more than m times
and the second more than n . Taking the sum of all of these steps,
we obtain O(n + m) as the asymptotic computing time of this algorithm.

This example shows the array as a useful representational form for
ordered lists. Returning to the abstract object—the ordered list—for
a moment, suppose we generalize our problem and say that it is now
required to represent a variable number of lists where the size of each
may vary. In particular we now have the m lists

(a,,a5, 0,01, (A41,009, . ,00,)s o (0,0 s -y,)

where n;, the size of the i-th list, is an integer greater than or equal
to zero.

A two dimensional array could be a poor way to represent these
lists because we would have to declare it as A(m,max{n,, ...,n,}),
which might be very wasteful of space. Instead we might store them
in a one dimensional array and include a front(i) and rear(i) pointer
for the beginning and end of each list. This only requires 2m + n,
+ n, + ... + n, locations rather than m times max{n,, ...,n,} locations.
But the one dimensional array presents problems when we try to insert
an item in list i and there is no more room unless we move the elements
of list i + 1 and perhaps list i + 2, ... list m to the right.

To make this problem more concrete, let us return to the ordered

Ordered Lists 49

list of polynomials represented using the second scheme. Suppose in
addition to PADD, we have also written procedures which subtract,
multiply, and divide two polynomials: PSUB, PMUL, and PDIV. We
are making these four procedures available to any user who wants to
manipulate polynomials. This hypothetical user may have many polyno-
mials he wants to compute and he may not know their sizes.

He would include these subroutines along with a main procedure he
writes himself. In this main program he needs to declare arrays for
all of his polynomials (which is reasonable) and to declare the maximum
size that every polynomial might achieve (which is harder and less
reasonable). If he declares the arrays too large, much of that space
will be wasted. Consider the main routine our mythical user might write
if he wanted to compute the Fibonacci polynomials. These are defined
by the recurrence relation '

F,(x)=xF,_ (x)+F,,(x),n=?2
where F,(x) = 1 and F,(x) = x. For example
Fy,(x) =x- F,(x) + Fj(x) = x> + 1.

Suppose the programmer decides to use a two dimensional array to
store the Fibonacci polynomials, the exponents and coefficients of F;(x)
being stored in the i-th row. For example F(2,*) = (2,2,1,0,1) implies
F,)=2, F22)=2, F2,3) =1, F(2,4)=0, F(2,5) =1 and is the
polynomial x? + 1. Then the following program is produced.

procedure MAIN
declare F(0:100,203), TEMP(203)
read (n)
if n > 100 then [print (‘n too large’) stop)
F(0,*) « (1,0,1) Jset Fy = 1x°/
F(1,%) « (1,1,1) Jset F = 1x'/
for i < 2 to ndo
call PMUL(F(1,1),F(i — 1,1), TEMP(1)) /TEMP = x -

F,_, (x)/
call PADD(TEMP(1),F(i — 2,1),F(i,1)) #/F, = TEMP +
Fo ./
/TEMP is no longer needed /
end
for i «- 0to ndo
call PPRINT(F(i,1)) /polynomial print routine /
end

end MAIN

50 Arrays

The author of this procedure has declared 101 * 203 = 20,503 locations
to hold the Fibonacci polynomials, which is about twice as much as
is actually needed. A much greater saving could be achieved if F;(x)
were printed as soon as it was computed in the first loop. Then by
storing all polynomials in a single array, 1000 locations would be more
than adequate. However, storing several polynomials in a single array
alters the way one creates new polynomials and complicates matters
if they are to be destroyed and the space reused.

This example reveals other limitations of the array as a means for data
representation. The array is usually a homogeneous collection of data which
will not allow us to intermix data of different types. Exponents and
coefficients are really different sorts of numbers, exponents usually being
small, non-negative integers whereas coefficients may be positive or nega-
tive, integer or rational, possibly double. triple or multiple precision integers
or even other polynomials. Different types of data cannot be accommodated
within the usual array concept. ldeally, we would like a representation which
would:

(i) require the programmer only to name his polynomial variables

and declare one maximum size for the entire working space;

(i) provide a system which would automatically maintain all polyno-

mials until the number of terms exceeds the work space;

-(ii1) allow the programmer to use different representations for dif-

ferent parts of the data object.

Let’s pursue the idea of storing all polynomials in a single array called
POLY. Let the polynomials be

A(Xx)=2x+3,B(x)=x2+5x+ 3, C(x) = 3x'° + 9x*
POLY: 12345678910111213 1415161718 19... max
values: 2120332115 03 2103 4 9

Then the name of a polynomial is never the array POLY, but a simple
variable whose value is a pointer into the place in POLY where it begins.
For instance, in the above case we might have A = 1, B = 6,and C = 13.
Also we need a pointer to tell us where the next free location is, as
above where free = 18.

If we made a call to our addition routine, say PADD(A,B,D), then
it would take the polynomials starting at POLY (A) and POLY (B) and
store the result starting at POLY (free). If the result has k terms, then
D < free and free < free + 2k + 1. Now we have localized all storage

Sparse Matrices 51

to one array. As we create polynomials, free is continually incremented
until it tries to exceed max. When this happens must we quit? We
must unless there are some polynomials which are no longer needed.
There may be several such polynomials whose space can be reused.
We could write a subroutine which would compact the remaining
polynomials, leaving a large, consecutive free space at one end. But
this may require much data movement. Even worse, if we move a
polynomial we must change its pointer. This demands a sophisticated
compacting routine coupled with a disciplined use of names for polyno-
mials. In Chapter 4 we will see an elegant solution to these problems.

2.3 SPARSE MATRICES

A matrix isa mathematical object which arises in many physical problems.
As computer scientists, we are interested in studying ways to represent
matrices so that the operations to be performed on them can be carried
out efficiently. A general matrix consists of m rows and n columns
of numbers as in figure 2.1.

coll col2 col3 coll col2 col3 cold col5 col6

row 1 =27, 3, 4 15, 0, 0, 22, 0, -15
row 2 6, 82, -03 0, 11, 3, 0, 0, 0
row 3 109, —64, 4 0, 0, 0, -6, 0, 0
row 4 12, 8, 9 0, 0, 0, 0, 0, 0
row § 3.4, 36, 27 91, 0, 0, 0, 0, 0
row 6 0, 0, 28, 0, 0, 0

(a) (b)
Figure 2.1: Example of 2 matrices

The first matrix has five rows and three columns, the second six rows
and six columns. In general, we write m x n (read m by n) to designate
a matrix with m rows and n columns. Such a matrix has mn elements.
When m is equal to n, we call the matrix square.

It is very natural to store a matrix in a two dimensional array, say
A(l:m, 1:n). Then we can work with any element by writing A(i,j);
and this element can be found very quickly, as we will see in the next
section. Now if we look at the second matrix of figure 2.1, we see
that it has many zero entries. Such a matrix is called sparse. There
is no precise definition of when a matrix is sparse and when it is not,
but it is a concept which we can all recognize intuitively. Above, only
8 out of 36 possible elements are nonzero and that is sparse! A sparse

52 Arrays

matrix requires us to consider an alternate form of representation. This
comes about because in practice many of the matrices we want to deal
with are large, e.g., 1000 x 1000, but at the same time they are sparse:
say only 1000 out of one million possible elements are nonzero. On
most computers today it would be impossible to store a full 1000 x 1000
matrix in the memory at once. Therefore, we ask for an alternative
representation for sparse matrices. The alternative representation will
explicitly store only the nonzero elements.

Each element of a matrix is uniquely characterized by its row and
column position, say i,j. We might then store a matrix as a list of 3-tuples
of the form

(i,j,value).

Also it might be helpful to organize this list of 3-tuples in some way,
perhaps placing them so that the row numbers are increasing. We can
go one step farther and require that all the 3-tuples of any row be
stored so that the columns are increasing. Thus, we might store the
second matrix of figure 2.1 in the array A(0:t,1:3) where t = 8 is the
number of nonzero terms.

1, 2, 3

AQ, 6, 6, 8
a, 1, 1, 15
@, 1, 4, 2
G, 1, 6, —I5
@4, 2, 2, 1
G, 2, 3, 3
6, 3, 4, -6
a, 5, 1, 91
@, 6, 3, 28

Figure 2.2: Sparse matrix stored as triples

The elements A(0,1) and A(0,2) contain the number of rows and columns
of the matrix. A(0,3) contains the number of nonzero terms.

Now what are some of the operations we might want to perform
on these matrices? One operation is to compute the transpose matrix.
This is where we move the elements so that the element in the i,j position
gets put in the j,i position. Another way of saying this is that we are
interchanging rows and columns. The elements on the diagonal will
remain unchanged, since i = j.

Sparse Matrices 53

The transpose of the example matrix looks like

1, 2, 3
B, 6, 6, 8
a, 1, 1, 15
@, 1, s, 91
3, 2, 2, 1
@, 3, 2, 3
s, 3, 6, 28
®, 4, 1, 2}
a, 4, 3, -6
@, 6, 1, 15

Since A is organized by row, our first idea for a transpose algorithm
might be

for each row i do

take element (i,j,val) and

store it in (j,i,val) of the transpose
end

The difficulty is in not knowing where to put the element (j,i, val) until
all other elements which precede it have been processed. In our example
of figure 2.2, for instance, we have item

(1,1,15) which becomes (1,1,15)
(1,4,22) which becomes (4,1,22)
(1,6,- 15) which becomes (6,1,-15).

If we just place them consecutively, then we will need to insert many
new triples, forcing us to move elements down very often. We can
avoid this data movement by finding the elements in the order we want
them, which would be as

for all elements in column j do
place element (i,j,val) in position (j,i,val)
end

This says find all elements in column 1 and store them into row 1,
find all elements in column 2 and store them in row 2, etc. Since the
rows are originally in order, this means that we will locate elements

54 Arrays

in the correct column order as well. Let us write out the algorithm
in full.

procedure TRANSPOSE (A,B)
/A is a matrix represented in sparse form /
/ B is set to be its transpose /

1 (m,n,t) < (A(0,1),A(0,2),A(0,3))

2 (B(0,1),B(0,2),B(0,3)) < (n,m,t)

3 if t = 0 then return / check for zero matrix /

4 q<1 / q is position of next term in B/

5 for col < 1 to ndo /transpose by columns /

6 for p<— 1to tdo /for all nonzero terms do /
7 if A(p,2) = col / correct column,/

8 then [(B(q,1),B(q,2),B(q,3)) <« /insert next term

of B/

9 (A(p,2),A(p,1),A(p,3))
10 g—q+1]
11 end
12 end

13 end TRANSPOSE

The above algorithm makes use of (lines 1, 2, 8 and 9) the vector
replacement statement of SPARKS. The statement

(a,b,c) < (d.e,f)

is just a shorthand way of saying

a—d;b—e;cf.

It is not too difficult to see that the algorithm is correct. The variable
q always gives us the position in B where the next term in the transpose
is to be inserted. The terms in B are generated by rows. Since the
rows of B are the columns of A, row i of B is obtained by collecting

Sparse Matrices 55

all the nonzero terms in column i of A. This is precisely what is being
done in lines 5-12. On the first iteration of the for loop of lines 5-12
all terms from column 1 of A are collected, then all terms from column
2 and so on until eventually, all terms from column n are collected.

How about the computing time of this algorithm! For each iteration
of the loop of lines 5-12, the if clause of line 7 is tested ¢ times. Since
the number of iterations of the loop of lines 5-12 is n, the total time
for line 7 becomes nt. The assignment in lines 8-10 takes place exactly
t times as there are only t nonzero terms in the sparse matrix being
generated. Lines 1-4 take a constant amount of time. The total time
for the algorithm is therefore O(nt). In addition to the space needed
for A and B, the algorithm requires only a fixed amount of additional
space, i.e. space for the variables m, n, t, g, col and p.

We now have a matrix transpose algorithm which we believe is cor-
rect and which has a computing time of O(nt). This computing time
is a little disturbing since we know that in case the matrices had been
represented as two dimensional arrays, we could have obtained the
transpose of a n X m matrix in time O(nm). The algorithm for this
takes the form:

for j — 1 to ndo
for i < 1to mdo
B(j,i) < AG,))
end
end

The O(nt) time for algorithm TRANSPOSE becomes O(n?>m) when
t is of the order of nm. This is worse than the O(nm) time using arrays.
Perhaps, in an effort to conserve space, we have traded away too much
time. Actually, we can do much better by using some more storage.
We can in fact transpose a matrix represented as a sequence of triples
in time O(n + t). This algorithm, FAST_TRANSPOSE, proceeds by
first determining the number of elements in each column of A. This
gives us the number of elements in each row of B. From this information,
the starting point in B of each of its rows is easily obtained. We can
now move the elements of A one by one into their correct position
in B.

56 Arrays °

procedure FAST—TRANSPOSE(A,B)
/ Als an array representing a sparse m X nmatrix with ¢t nonzero
terms. The transpose is stored in B using only O(t + n)

operations /
declare S(1:n),T(1:n); /local arrays used as pointers /

1 (m,n,t) — (A0,1),A(0,2),A(0,3))

2 (B(0,1),B(0,2),B(0,3)) < (n,m,t) /store dimensions of

transpose /

3 if t = 0 then return // zero matrix /

4 for i<— 1tondo S(i) < 0 end

5 for i — 1to t do / S(k) is the number of /

6 S(A(,2)) < S(A(i,2)) + 1 /elements in row k of B/
7 end

8 T() <1

9 for i <— 2 to ndo / T() is the starting /
10 TAH)«<TE—-1D+SGE-1) Jposition of row i in

By

11 end
12 for i<— 1totdo /move all t elements of A to B/
13 je— A@,2) /] is the row in B/
14 (B(T(j),1),B(T(),2),B(T(j),3)) — / store in triple /
15 (A(1,2),A(,1),AG,3)
16 TG < TG + 1 /increase row j to next spot,/
17 end

18 end FAST—TRANSPOSE

The correctness of algorithm FAST-—TRANSPOSE follows from the
preceding discussion and the observation that the starting point of row
i,i>1of Bis T(i—1)+ S(i— 1) where S(i— 1) is the number of
elements in row i — 1 of B and T(i — 1) is the starting point of row
i— 1. The computation of S and T is carried out in lines 4-11. In
lines 12-17 the elements of A are examined one by one starting from
the first and successively moving to the t-th element. T(j) is maintained
so that it is always the position in B where the next element in row
j 1s to be inserted.

There are four loops in FAST—TRANSPOSE which are executed
n, t, n— 1, and t times respectively. Each iteration of the loops takes
only a constant amount of time, so the order of magnitude is O(n + t).
The computing time of O(n + t) becomes O(nm) when t is of the order
of nm. This is the same as when two dimensional arrays were in use.
However, the constant factor associated with FAST__TRANSPOSE is

Sparse Matrices 57

bigger than that for the array algorithm. When ¢t is sufficiently small
compared to its maximum of nm, FAST_TRANSPOSE will be faster.
Hence in this representation, we save both space and time! This was
not true of TRANSPOSE since t will almost always be greater than
max{n,m} and O(nt) will therefore always be at least O(nm). The
constant factor associated with TRANSPOSE is also bigger than the
one in the array algorithm. Finally, one should note that
FAST__TRANSPOSE requires more space than does TRANSPOSE. The
space required by FAST__TRANSPOSE can be reduced by utilizing
the same space to represent the two arrays S and T.

If we try the algorithm on the sparse matrix of figure 2.2, then after
execution of the third for loop the values of S and T are

1

B @ 6 @ 6 ®
2 2 0
4 8 8

S
T

S(i) is the number of entries in row i of the transpose. T(i) points
to the position in the transpose where the next element of row i is
to be stored.

Suppose now you are working for a machine manufacturer who is
using a computer to do inventory control. Associated with each machine
that the company produces, say MACH(1) to MACH(m), there is a
list of parts that comprise each machine. This information could be
represented in a two dimensional table

PART(1) PART(2) PART(3) ... PART(n)
MACH(1) 0, 5, 2, e 0
MACH(2) 0, 0, 0, 3
MACH(Q3) 1, 1, 0, 8
MACH(m) 6, 0, 0, 7
array MACHPT(m,n)

The table will be sparse and all entries will be non-negative integers.
MACHPT(,j) is the number of units of PART(j) in MACH(i). Each
part is itself composed of smaller parts called microparts. This data
will also be encoded in a table whose rows are PART(1) to PART(n)
and whose columns are MICPT(1) to MICPT(p). We want to determine

58 Arrays

the number of microparts that are necessary to make up each machine.
Observe that the number of MICPT (j) making up MACH (i) is

MACHPT(,1) » MICPT(1,j) + MACHPT(,2) » MICPT(2,))
+ ... + MACHPT(i,n) » MICPT(n,j)

where the arrays are named MACHPT(m,n) and MICPT(n,p). This sum
is more conveniently written as

n

MACHPT(i,k) * MICPT(k.j).

k=1

If we compute these sums for each machine and each micropart then
we will have a total of mp values which we might store in a third
table MACHSUM(m,p). Regarding these tables as matrices this applica-
tion leads to the general definition of matrix product:

Given A and B where A is m X nand B is n X p, the product matrix
C has dimension m x p. Its i,j element is defined as

Cij = 2 Ay by

1=sk=n

for1=i=mand 1= j=p. The product of two sparse matrices may
no longer be sparse, for instance,

I, 1, 1 I, 1, 1
=11, 1, 1
1, 1, 1

Consider an algorithm which computes the product of two sparse matrices
represented as an ordered list instead of an array. To compute the
elements of C row-wise so we can store them in their proper place
without moving previously computed elements, we must do the following:
fix a row of A and find all elements in column j of B for j=1,2,...,p.
Normally, to find all the elements in column j of B we would have
to scan all of B. To avoid this, we can first compute the transpose
of B which will put all column elements consecutively. Once the elements
in row i of A and column j of B have been located, we just do a
merge operation similar to the polynomial addition of section 2.2. An

Sparse Matrices 59

alternative approach is explored in the exercises.
Before we write a matrix multiplication procedure, it will be useful
to define a sub-procedure:

procedure STORESUM (C,q,row,col,sum)
/if sum is nonzero then along with its row and column position
it is stored into the g-th entry of the matrix /
if sum # 0 then [(C(q,1),C(q,2),C(q,3) <
(row,col,sum)
q < q+ 1; sum <« 0]
end STORESUM

The algorithm MMULT which multiplies the matrices A and B to
obtain the product matrix C uses the strategy outlined above. It makes
use of variables i,j,q,r,col and row__begin. The variable r is the row
of A thatis currently being multiplied with the columns of B. row__begin
is the position in A of the first element of row r. col is the column
of B that is currently being multiplied with row r of A. g is the position
in C for the next element generated. i and j are used to successively
examine elements of row r and column col of A and B respectively.
In addition to all this, line 6 of the algorithm introduces a dummy term
into each of A and B. This enables us to handle end conditions (i.e.,
computations involving the last ' row of A or last column of B) in an
elegant way.

Program on next page

We leave the correctness proof of this algorithm as an exercise. Let
us examine its complexity. In addition to the space needed for A, B,
C and some simple variables, space is also needed for the transpose
matrix B. Algorithm FAST__TRANSPOSE also needs some additional
space. The exercises explore a strategy for MMULT which does not
explicitly compute B and the only additional space needed is the same
as that required by FAST__TRANSPOSE. Turning our attention to the
computing time of MMULT, we see that lines 1-6 require only O(p
+ t,) time. The while loop of lines 7-34 is executed at most m times
(once for each row of A). In each iteration of the while loop of lines
9-29 either the value of i or j or of both increases by 1 or i and col
are reset. The maximum total increment in j over the whole loop is
t,. If d, is the number of terms in row r of A then the value of i
can increase at most d, times before i moves to the next row of A.

60 Arrays

procedure MMULT(A,B,C)
A Aisan mx n, Ban n X p sparse matrix, C= A* B,an m X p

matrix /

1 (m,n,t,) < (A(0,1),A(0,2),A(0,3))
2 it n = B(0,1) then (p,t,) « (B(0,2),B(0.3))
3 else [print (‘incompatible matrices’); stop]
4 call FAST_TRANSPOSE (B,B)
5 i« g« row_begin « 1; r« A(,l);
6 A, +1,)en+ 5B, + 1,1)ep+ 1; sum«0;
B(t, +12)«0
7 whilei<t, do /generate row r of C/
8 col « B(1,1); j « 1
9 while j= ¢, + 1 do # multiply row r of A by column col
of B/
10 case
11 CAGD # /end of row rof A/
12 call STORESUM(C,q,r,col,sum)
13 i « row__begin
14 while B(j,1) = col do /2o to next column
of B/
15 jej+1
16 end
17 _ col < B(j,1)
18 :B(j,1) # col: #end of column col of B/
19 call STORESUM(C,q,r,col,sum)
20 i « row__begin; col « B(j,1)
_//Set to multiply row r with next column/
21 :A(i,2) < B(j,2): /advance to next term in row r/
22 le—i+1
23 :AG,2) = B(j,2): »~add to sum/
24 sum « sum + A(i,3) * B(j,3)
25 i—it+ 1 je=j+1
26 selse: /advance to next term in column col /
27 jeji+1
28 end
29 end
30 while A(i,1) = rdo /advance to next row /
3] ie—i+1
32 end
33 row__begin « i; r « A(i,1)
34 end

35 (C0,1),C0,2),C(0,3) « (m,p,g - 1)
36 end MMULT

Sparse Matrices 61

When this happens, i is reset to row__begin in line 13. At the same
time col is advanced to the next column. Hence, this resetting can
take place at most p times (there are only p columns in B). The total
maximum increments in i is therefore pd,. The maximum number of
iterations of the while loop of lines 9-29 is therefore p + pd, + t,.
The time for this loop while multiplying with row r of Ais O(pd, + t,).
Lines 30-33 take only O(d,) time. Hence, the time for the outer while
loop, lines 7-34, for the iteration with row rof A 18 O(pd, + t,). The
overall time for this loop is then O(Z,(pd, + t,)) = O(pt, +mt,).

Once again, we may compare this computing time with the time to
multiply matrices when arrays are used. The classical multiplication
algorithm is:

for i — 1 to m do
for j<— 1to p do
sum <0
for k < 1 to ndo
sum < sum + A(i,k) B(k,j)
end
C(i,j) < sum
end
end

The time for this is O(mnp). Since t; = nm and t, < np, the time
for MMULT is at most O(mnp). However, its constant factor is greater
than that for matrix multiplication using arrays. In the worst case when
t,=nm or t,=np, MMULT will be slower by a constant factor.
However, when ¢, and ¢, are sufficiently smaller than their maximum
values i.e., A and B are sparse, MMULT will outperform the above
multiplication algorithm for arrays.

The above analysis for MMULT is nontrivial. It introduces some
new concepts in algorithm analysis and you should make sure you
understand the analysis.

As in the case of polynomials, this representation for sparse matrices
permits one to perform operations such as addition, transpose and
multiplication efficiently. There are, however, other considerations which
make this representation undesirable in certain applications. Since the
number of terms in a sparse matrix is variable, we would like to represent
all our sparse matrices in one array rather than using a separate array
for each matrix. This would enable us to make efficient utilization of
space. However, when this is done, we run into difficulties in allocating

62 Arrays

space from this array to any individual matrix. These difficulties also
arise with the polynomial representation of the previous section and
will become apparent when we study a similar representation for multiple
stacks and queues (section 3.4).

2.4 REPRESENTATION OF ARRAYS

Even though multidimensional arrays are provided as a standard data
object in most high level languages, it is interesting to see how they
are represented in memory. Recall that memory may be regarded as
one dimensional with words numbered from 1 to m. So, we are concerned
with representing n dimensional arrays in a one dimensional memory.
While many representations might seem plausible, we must select one
in which the location in memory of an arbitrary array element, say
A(i,,i,, ...,i,), can be determined efficiently. This is necessary since
programs using arrays may, in general, use array elements in a random
order. In addition to being able to retrieve array elements easily, it
is also necessary to be able to determine the amount of memory space
to be reserved for a particular array. Assuming that each array element
requires only one word of memory, the number of words needed is
the number of elements in the array. If an array is declared A(l,:u,,l,:u,,
....,l,:u,), then it is easy to see that the number of elements is

ﬁ(ui— I+ 1).
i=1

One of the common ways to represent an array is in row major order.
If we have the declaration

A(4:5,2:4,1:2, 3:4)

then we have a total of 2-3-2-2 = 24 elements. Then using row major
order these elements will be stored as

A@4.2,13), A(4,2,1,4), A(4,2,2,3), A(4,2,2,4)
and continuing

A(4,3,1,3), A(4,3,1,4), A(4,3,2,3), A(4,3,2,4)

Representation of Arrays 63

for 3 more sets of four until we get
A(5,4,1,3), A(5,4,1,4), A(5,4,2,3), A(5,4,2,4).

We see that the subscript at the right moves the fastest. In fact, if
we view the subscripts as numbers, we see that they are, in some sense,
increasing:

4213,4214, ...,5423,5424.

Another synonym for row major order is lexicographic order.

From the compiler’s point of view, the problem is how to translate
from the name A(i,,i,, ...,i,) to the correct location in memory. Suppose
A(4,2,1,3) is stored at location 100. Then A(4,2,1,4) will be at 101 and
A(5,4,2,4) at location 123. These two addresses are easy to guess. In
general, we can derive a formula for the address of any element. This
formula makes use of only the starting address of the array plus the
declared dimensions.

To simplify the discussion we shall assume that the lower bounds
on each dimension /; are 1. The general case when [; can be any integer
is discussed in the exercises. Before obtaining a formula for the case
of an n-dimensional array, let us look at the row major representation
of 1, 2 and 3 dimensional arrays. To begin with, if A is declared A(1:u,),
then assuming one word per element, it may be represented in sequential
memory as in figure 2.3. If a is the address of A(1), then the address
of an arbitrary element A(i) is just a + (i — 1).

array element: A(1), AQ), AQ3), ..., A(i), vy Auy)
address: a,a+l,a+2, .,a+i-1 ..,a+u —1
total number of elements = u,

Figure 2.3: Sequential representation of A(l:u,)

The two dimensional array A(l:u,,l:u,) may be interpreted as u,
TOWS: rOW ,,IoW,, ...,row . each row consisting of u, elements. In a
row major representation, these rows would be represented in memory
as in figure 2.4.

64 Arrays

col 1 col 2 col u,
row 1 X X X
row 2 X X X
row 3 X X X
row u, X X X
(a)
1 Uz | uz |
| 1 i
lelements | elements!
L] L] L] L] o L]
row | row 2 : row i row u,

. 1
e (i-l)up elements —=

(b)

Figure 2.4: Sequential representation of A(u,,u,)

Again, if o is the address of A(l1,1), then the address of A(i,1) is
a + (i — 1u,, as there are i — 1 rows each of size u, preceding the
first element in the i-th row. Knowing the address of A(i,1), we can
say that the address of A(i,j) is then simply a + (i — Du, + (G — 1).

Figure 2.5 shows the representation of the 3 dimensional array
A(l:u,1:u,,1:u,). This array is interpreted as u, 2 dimensional arrays
of dimension u, X u,. Tolocate A(i,j,k), we first obtain o + (i — 1) u, u;
as the addressvfor A(i,1,1) since there are i — 1 2 dimensional arrays
of size u, X u; preceding this element. From this and the formula for
addressing a 2 dimensional array, we obtain a + (i — Duyu; + (j— Dus
+ (k — 1) as the address of A(i,j,k).

Generalizing on the preceding discussion, the addressing formula for
any element A(i,,i,, ...,i,) in an n-dimensional array declared as A(u,,u,,
....u,) may be easily obtained. If a is the address for A(l,1, ...,1)
thena + (i, — D u,u;... u,is the address for A(i,,1,...,1). The address
for A(i,,i,,1, ...,1) is then o + (i; — Duyuz ... u, + (i, — Dusu, ...
u,.

Repeating in this way the address for A(i,,i,, ...,i,) is

i
Uz

i

s

Representation of Arrays

=

U

(a) 3-dimensional array A (u,,u,,u,) regarded as u, 2-dimensional arrays.

A(l,uz,us) A(2,u2,u3)

— TR elements—-l

A(i, “2‘”3)

A(u|,u2,u3)

65

(b) Sequential row major representation of a 3-dimensional array. Each 2-dimensional

array is represented as in Figure 2.4.

Figure 2.5: Sequential representation of A(u,,u,,u;)

a+ (i, — Du,u,.

+ (i — Dusu, ...

+ (i; — Duyus ...

+ (i,.;— Du,

+,- 1

=a+i(ij—1)a,-

j=1

Note that a; may be computed from a;,,, 1 =j<n using only one
multiplication as a; = u;,, a;,,. Thus, a compiler will initially take the

66 Arrays

declared bounds u,, ...,u, and use them to compute the constants a,,
..oy, _, using n— 2 multiplications. The address of A(i,, ...,i,) can
then be found using the formula, requiring n — 1 more multiplications
and n additions.

An alternative scheme for array representation, column major order,
is considered in exercise 21.

To review, in this chapter we have used arrays to represent ordered
lists of polynomials and sparse matrices. In all cases we have been
able to move the values around, accessing arbitrary elements in a fixed
amount of time, and this has given us efficient algorithms. However
several problems have been raised. By using a sequential mapping which
associates a; of (a,, ...,a,) with the i-th element of the array, we are
forced to move data around whenever an insert or delete operation
is used. Secondly, once we adopt one ordering of the data we sacrifice
the ability to have a second ordering simultaneously.

EXERCISES

1. Write a SPARKS procedure which multiplies two polynomials represented
using scheme 2in Section 2. 2. What is the computing time of your procedure?

2. Write a SPARKS procedure which evaluates a polynomial at a value x,
using scheme 2 as above. Try to minimize the number of operations.

3. If A=(a,, ...,a,) and B= (b, ...,b,) are ordered lists, then A < B
if a;=b,for 1=i<jand a;<bjorifa,=bfor1=i=nand n<m
Write a procedure which returns —1,0,+1 depending upon whether A < B,
A = Bor A> B. Assume you can compare atoms a; and bj.

4. Assume that n lists, n > 1, are being represented sequentially in the one dimen-
sional array SPACE (1:m). Let FRONTY(/) be one less than the position of the
first element in the ith list and let REAR(/) point to the last element of the ith
list, 1 < / < n. Further assume that REAR(/) < FRONT(+ 1),1 <i=<n
with FRONT(n + 1) = m. The functions to be performed on these lists are in-
sertion and deletion.

a) Obtain suitable initial and boundary conditions for FRONT(i) and
REARC()

b) Write a procedure INSERTY(i,j,item) to insert item after the (j — 1)st
element in list i. This procedure should fail to make an insertion only
if there are already m elements in SPACE.

5. Using the assumptions of (4) above write a procedure DELETEC(,j,item)

10.

11.

Exercises 67

which sets item to the j-th element of the i-th list and removes it. The
i-th list should be maintained as sequentially stored.

How much space is actually needed to hold the Fibonacci polynomials
F,.F,,F15?

In procedure MAIN why is the second dimension of F = 203?

The polynomials A(x) = x2"+ x2"2 4+ 4+ x2+ x° and B(x) = x2+!
+ x2n=1 4+ |, 4+ x3 + x cause PADD to work very hard. For these polyno-
mials determine the exact number of times each statement will be executed,

Analyze carefully the computing time and storage requirements of algorithm
FAST—TRANSPOSE. What can you say about the existence of an even
faster algorithm?

Using the idea in FAST—TRANSPOSE of m row pointers, rewrite algorithm
MMUL to multiply two sparse matrices A and B represented as in §2.3
without transposing B. What is the computing time of your algorithm?

When all the elements either above or below the main diagonal of a square
matrix are zero, then the matrix is said to be triangular. Figure 2.6 shows
a lower and upper triangular matrix.

X X X X X X x X X
X X X X
X non
X X
X X Zero X zero
X X
X X
X
X X
X non X zero X
Zero X X
X
X
X
X X X X X X
A - - -
lower triangular upper triangular
Figure 2.6

In a lower triangular matrix, A, with n rows, the maximum number of
nonzero terms in row i is i. Hence, the total number of nonzero terms
is ¢, i=n(n+ 1)/2. For large n it would be worthwhile to save the
space taken by the zero entries in the upper triangle. Obtain an addressing
formula for elements a;;in the lower triangle if this lower triangle is stored
by rows in an array B(l:n(n + 1)/2) with A(1,1) being stored in B(1).

68

13,

14,

Arrays

What is the relationship between i and j for elements in the zero part
of A?

Let A and B be two lower triangular matrices, each with n rows, The
total number of elements in the lower triangles is n(n + 1), Devise a scheme
to represent both the triangles in an array C(1:n,1:n + 1). [Hint: represent
the triangle of A as the lower triangle of C and the transpose of B as
the upper triangle of C.] Write algorithms to determine the values of
A(,)), B(i,j) 1 =i, j < nfrom the array C.

Another kind of sparse matrix that arises often in numerical analysis is
the tridiagonal matrix. In this square matrix, all elements other than those
on the major diagonal and on the diagonals immediately above and below
this one are zero

r -
X X
X X X zero
X X X
X X X
X
z€ero '
X X
X X X
X X
L. -

Figure 2.7: Tridiagonal matrix A

If the elements in the band formed by these three diagonals are represented
rowwise in an array, B, with A(1,1) being stored at B(1), obtain an algorithm
to determine the value of A(i,j), 1 < i, j < n from the array B.

Define a square band matrix A, , to be a n X n matrix in which all the
nonzero terms lie in a band centered around the main diagonal. The band
includes a — 1 diagonals below and above the main diagonal and also the
main diagonal.

Exercises 69

a diagonals upper

P n
rows

n columns
. N /
main diagonal

a) How many elements are there in the band of A, ?

b) What is the relationship between i and j for elements a; in the band
of A,

<) Assume that the band of A, , is stored sequentially in an array B by
diagonals starting with the lowermost diagonal. Thus A, ; above would
have the following representation:

B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) B(9 B(10) B(11) B(12) B(13) B(14)
9 7 8 3 6 6 0 2 8 7 4 9 8 4
a3 Ay Ay Ay A Ay Ayp Ay g 4 Ay 43 dp N

Obtain an addressing formula for the location of an element aj; in the
lower band of A, ,
e.g. LOC(a;,) = 1, LOC(a,,) = 2 in the example above.

15. A generalized band matrix A,_, is a n X n matrix A in which all the
nonzero terms lie in a band made up of a — 1 diagonals below the main
diagonal, the main diagonal and b — 1 diagonals above the main diagonal
(see the figure on the next page)

a) How many elements are there in the band of A, o b?

b) What is the relationship between i and j for elements a; in the band
Of A n.a, b

¢) Obtain a sequential representation of the band of A, ,, in the one
dimensional array B. For this representation write an algorithm VALUE
(n,a,b,i,j,B) which determines the value of element a;in the matrix A, , -
The band of A, _, is represented in the array B.

70 Arrays

n,a,b

N rows

n columns ‘—————*

16. How much time does it take to locate an arbitrary element A(i,j) in the
representation of §2.3 and to change its value?

17. A variation of the scheme discussed in §2.3 for sparse matrix representation
involves representing only the non zero terms in a one dimensional array
V, in the order described. In addition, a strip of n x m bits, B ,(n,m),
is also kept. B, (i,j) = 0 if A(i,j) = 0 and B, (i,j) = 1if A(i,j) # 0. The
figure below illustrates the representation for the sparse matrix of figure
2.1,

™15
22
-15
11
3
-6
. 91
L. 28
Va

o= o000~
oo —~,O
w'—‘OOO—O
OO =0 =
SO OO OO
(=R R e e

-

(i) On a computer with w bits per word, how much storage is needed
to represent a sparse matrix A, . with t nonzero terms?

18.

19.

20.

21.

22,

23.

24.

Exercises 71

(if) Write an algorithm to add two sparse matrices A and C represented
as above to obtain D= A + C. How much time does your algorithm
take?

(iii) Discuss the merits of this representation versus the representation
of §2.3. Consider space and time requirements for such operations
as random access, add, multiply, and transpose. Note that the random
access time can be improved somewhat by keeping another array
R ,(i) such that R, (i) = number of nonzero terms in rows 1 through
i-1.

A complex-valued matrix X is represented by a pair of matrices (A,B)
where A and B contain real values. Write a program which computes
the product of two complex valued matrices (A,B) and (C,D), where

(A,B)«(C,D)=(A+ iB)*(C+ iD) = (AC - BD) + i(AD + BC)

Determine the number of additions and multiplications if the matrices are
all n x n.

How many values can be held by an array with dimensions A(0:n),
B(-1:n,1:m), C(-n:0,2)?

Obtain an addressing formula for the element A(i,,i,, ...,i,) in an array
declared as A(l,:u,,l,:u,, ...,1:u,). Assume a row major representation
of the array with one word per element and o the address of A(l,,l,,

).

Do exercise 20 assuming a column major representation. In this representa-
tion, a 2 dimensional array is stored sequentially by column rather than
by rows.

An m x n matrix is said to have a saddle point if some entry A(i,j) is
the smallest value in row i and the largest value in column j. Write a
SPARKS program which determines the location of a saddle point if one
exists. What is the computing time of your method?

Given an array A(l:n) produce the array Z(1:n) such that Z(1) = A(n),
Z)=An-1),....Z(n-1) = A(Q2), Z(n) = A(1). Use a minimal amount
of storage,

One possible set of axioms for an ordered list comes from the six operations
of section 2.2,

72

25.

Arrays

structure ORDERED__LIST (atoms)
declare MTLST() — list
LEN (list) — integer
RET (list,integer) — atom
STO(list,integer,atom) — list
INS (list,integer,atom) — list
DEL (list,integer) — list;
for all L € list, i,] € integer a,b € atom let
LEN(MTLST) :: = 0; LEN(STO(L,i,a)) : =1+ LEN(L)
RET (MTLST.j) :: = error
RET(STO(L,i,a),j) :: =
if i = j then g else RET(L,j)
INS(MTLST,j,b) :: = STO(MTLST.j,b)
INS(STO(L,i,a),j,b) :: =
if i = j then STO(INS(L,j,b), i + 1,a)
else STO(INS(L,j,b),i,a)
DEL (MTLST.,j) :: = MTLST
DEL(STO(L,i,a),j) :: =
if i = j then DEL(L.,})
else if i > j then STO(DEL (L.,j),i — 1,a)
else STO(DEL(L,}),i,a)
end
end ORDERED__LIST

Use these axioms to describeithelist A = (a,b,c,d,e) and show what happens
when DEL(A,?2) is executed.

There are a number of problems, known collectively as ‘‘random walk”’
problems which have been of long standing interest to the mathematical
community. All but the most simple of these are extremely difficult to
solve and for the most part they remain largely unsolved. One such problem
may be stated as follows:

A (drunken) cockroach is placed on a given square in the middle of
a tile floor in a rectangular room of size n x m tiles. The bug wanders
(possibly in search of an aspirin) randomly from tile to tile throughout
the room. Assuming that he may move from his present tile to any of
the eight tiles surrounding him (unless he is against a wall) with equal
probability, how long will it take him to touch every tile on the floor
at least once?

Hard as this problem may be to solve by pure probability theory techniques,
the answer is quite easy to solve using the computer. The technique for
doing so is called “‘simulation’” and is of wide-scale use in industry to
predict traffic-flow, inventory control and so forth. The problem may be
simulated using the following method:

Exercises 73

An array KOUNT dimensioned N X M is used to represent the number
of times our cockroach has reached each tile on the floor. All the cells
of this array are initialized to zero. The position of the bug on the floor
is represented by the coordinates (IBUG,JBUG) and is initialized by a
data card. The 8 possible moves of the bug are represented by the tiles
located at (IBUG + IMOVE(K), JBUG + IMOVE(K)) where 1 < K < 8
and:

IM@VE(]) = -1 IM@VE(D) =1
IM@VE(Q2) = 0 JM@VE(Q) = 1
IMOVEQ3) = 1 IMOVEQR) = 1
IMOVE(®4) = 1 IMOVE@4) =0
IM@VE(S) = 1 JIM@VE(S) = -1
IM@VE(6) = 0 JIM@VE(®6) = —1
IM@VE(7) = -1 IM@VE(7) = —1
IM@VE(®) = —1 JM@VE®) =0

A random walk to one of the 8 given squares is simulated by generating
a random value for K lying between 1 and 8. Of course the bug cannot
move outside the room, so that coordinates which lead up a wall must
be ignored and a new random combination formed. Each time a square
is entered, the count for that square is incremented so that a non-zero
entry shows the number of times the bug has landed on that square so
far. When every square has been entered at least once, the experiment
is complete.

Write a program to perform the specified simulation experiment. Your
program MUST:

1) Handle values of Nand M

2) Perform the experiment for
a) N=15, M =15 starting point: (20,10)

b) N=39, M= 19 starting point: (1,1)

3) Have an iteration limit, that is, a maximum number of squares the
bug may enter during the experiment. This assures that your program
does not get ‘““hung’’ in an ‘“‘infinite’’ loop. A maximum of 50,000
is appropriate for this lab.

4) For each experiment print: a)the total number of legal moves which
the cockroach makes; b) the final KAUNT array. This will show
the ‘‘density’’ of the walk, that is the number of times each tile
on the floor was touched during the experiment.

(Have an aspirin) This exercise was contributed by Olson.

74

26.

Arrays

Chess provides the setting for many fascinating diversions which are quite
independent of the game itself. Many of these are based on the strange
“L-shaped” move of the knight. A classical example is the problem of
the knight’s tour, which has captured the attention of mathematicians and
puzzle enthusiasts since the beginning of the eighteenth century. Briefly
stated, the problem is to move the knight, beginning from any given square
on the chessboard, in such a manner that it travels successively to all
64 squares, touching each square once and only once. It is convenient
to represent a solution by placing the numbers 1,2, ...,64 in the squares
of the chessboard indicating the order in which the squares are reached.
Note that it is not required that the knight be able to reach the initial
position by one more move; if this is possible the knight’s tour is called
re-entrant. :

One of the more ingenious methods for solving the problem of the knight’s
tour is that given by J. C. Warnsdorff in 1823. His rule is that the knight
must always be moved to one of the squares from which there are the
fewest exits to squares not already traversed.

The goal of this exercise is to write a computer program to implement
Warnsdorff’s rule. The ensuing discussion will be much easier to follow,
however, if the student will first try to construct a particular solution
to the problem by hand before reading any further.

The most important decisions to be made in solving a problem of this
type are those concerning how the data is to be represented in the computer.
Perhaps the most natural way to represent the chessboard is by an 8 x
8 array BOARD as shown in the figure below. The eight possible moves
of a knight on square (5,3) are also shown in the figure.

BOARD
1 2 3 4 5 6 7 8
) 1
2
3 8 1
4 7 2
5 K
6 6 3
7 5 4
8

In general a knight at (I,J) may move to one of the squares (I — 2,J + 1),
dJ-1,J+2),d+1J+2),dJ+2,J+D,I+2J-1,d+1,J-2), (-
1,J-2), - 2,J—1). Notice, however that if (I,J) is located near one
of the edges of the board, some of these possibilities could move the

Exercises 75

knight off the board, and of course this is not permitted. The eight possible
knight moves may conveniently be represented by two arrays KTM@V1
and KTM@V?2 as shown below.

KTM@V1 KTM@V?2
-2 1
-1 2
1 2
2 1
2 ~1
1 -2
-1 ~2
-2 ~1

Then a knight at (IJ) may move to (I + KTM@V1(K), J + KTMOV2(K)),
where K is some value between 1 and 8, provided that the new square
lies on the chessboard.

Below is a description of an algorithm for solving the knight’s tour problem

using Warnsdorff’s rule. The data representation discussed in the previous
section is assumed.

a.
b.

c.
d.

[Initialize chessboard] For 1 < IJ < 8 set BOARD(I,J) = 0.

[Set starting position] Read and print I.J and then set BOARD(LJ)
to 1.

[Loop] For 2 = M =< 64 do steps d through g.

[Form set of possible next squares] Test each of the eight squares
one knight’s move away from (I,J) and form a list of the possibilities
for the next square (NEXTI(L), NEXTI(L)). Let NP@S be the number
of possibilities. (That is, after performing this step we will have
NEXTI(L) = I + KTM@VI(K) and NEXTIL) =J+ KTM@V2(K),
for certain values of K between 1 and 8. Some of the squares (I +
KTMOV1(K), J + KTM@V2(K)) may be impossible for the next move
either because they lie off the chessboard or because they have been
previously occupied by the knight—i.e., they contain a nonzero number.
In every case we will have 0 < NP@S < 8.)

[Test special cases] If NP@S = 0 the knight’s tour has come to a
premature end; report failure and then go to step h. If NP@S = 1 there
is only one possiblity for the next move; set MIN = 1 and go right
to step g.

[Find next square with minimum number of exits] For 1 =L =
NPOS set EXITS(L) to the number of exits from square
(NEXTI(L),NEXTIJ(L)). That is, for each of the values of L examine
each of the next squares (NEXTI(L) + KTM@V1(K), NEXTI(L) +
KTM@V2(K)) to see if it is an exit from NEXTI(L), NEXTIJ(L)), and
count the number of such exits in EXITS(L). (Recall that a square
is an exit if it lies on the chessboard and has not been previously

76

Arrays

h.

occupied by the knight.) Finally, set MIN to the location of the minimum
value of EXITS. (There may be more than one occurrence of the minimum
value of EXITS. If this happens, it is convenient to let MIN denote
the first such occurrence, although it is important to realize that by
so doing we are not actually guaranteed of finding a solution. Neverthe-
less, the chances of finding a complete knight’s tour in this way are
remarkably good, and that is sufficient for the purposes of this exercise.)

. [Move knight] Set [I=NEXTIMIN), J=NEXTIMIN) and

B@ARD(I,J) = M. (Thus, (I,J) denotes the new position of the knight,
and BOARD(I,J) records the move in proper sequence.)

[Print] Print out BOARD showing the solution to the knight’s tour,
and then terminate the algorithm.

The problem is to write a program which corresponds to this algorithm.
This exercise was contributed by Legenhausen and Rebman.

Chapter 3

STACKS AND QUEUES

3.1 FUNDAMENTALS

Two of the more common data objects found in computer algorithms
are stacks and queues. They arise so often that we will discuss them
separately before moving on to more complex objects. Both these data
objects are special cases of the more general data object, an ordered
list which we considered in the previous chapter. Recall that A = (a,,
a,, ...,a,), is an ordered list of n= 0 elements. The a; are referred
to as atoms which are taken from some set. The null or empty list
has n = 0 elements.

A stack is an ordered list in which all insertions and deletions are
made at one end, called the top. A queue is an ordered list in which
all insertions take place at one end, the rear, while all deletions take
place at the other end, the front. Given a stack S = (q,, ...,a,) then
we say that a, is the bottommost element and element q; is on top
of element a;_,, 1 <i=n. When viewed as a queue with a, as the
rear element one says that a;,, is behind q;, 1 <i<n.

Front Rear
} }
AB C DE
E «~Top Queue
D
C
B
A
Stack
Figure 3.1

The restrictions on a stack imply that if the elements A,B,C,D,E are

77

A

78 Stacks and Queues

added to the stack, in that order, then the first element to be removed / de-
leted must be E. Equivalently we say that the last element to be inserted
into the stack will be the first to be removed. For this reason stacks
are sometimes referred to as Last In First Out (LIFO) lists. The
restrictions on a queue require that the first element which is inserted
into the queue will be the first one to be removed. Thus A is the
first letter to be removed, and queues are known as First In First
Out (FIFO) lists. Note that the data object queue as defined here need
not necessarily correspond to the mathematical concept of queue in
which the insert /delete rules may be different.

One natural example of stacks which arises in computer programming
is the processing of subroutine calls and their returns. Suppose we
have a main procedure and three subroutines as below:

proc MAIN proc Al proc A2 proc A3

end end end end

Figure 3.2. Sequence of subroutine calls

The MAIN program calls subroutine A1. On completion of Al execution
of MAIN will resume at location r. The address r is passed to Al
which saves it in some location for later processing. Al then invokes
A2 which in turn calls A3. In each case the calling procedure passes
the return address to the called procedure. If we examine the memory
while A3 is computing there will be an implicit stack which looks like

(q ’r’s’t)-

The first entry, q, is the address in the operating system where MAIN
returns control. This list operates as a stack since the returns will be
made in the reverse order of the calls. Thus t is removed before s,
s before rand r before q. Equivalently, this means that A3 must finish
processing before A2, A2 before Al, and Al before MAIN. This list
of return addresses need not be maintained in consecutive locations.
For each subroutine there is usually a single location associated with
the machine code which is used to retain the return address. This can

Fundamentals 79

be severely limiting in the case of recursive calls and re-entrant routines,
since every time we call a subroutine the new return address wipes
out the old one. For example, if we inserted a call to A1 within subroutine
A3 expecting the return to be at location u, then at execution time
the stack would become (q,u,s,t) and the return address r would be
lost. When recursion is allowed, it is no longer adequate to reserve
one location for the return address of each subroutine. Since returns
are made in the reverse order of calls, an elegant and natural solution
to this subroutine return problem is afforded through the explicit use
of a stack of return addresses. Whenever a return is made, it is to
the top address in the stack. Implementing recursion using a stack is
discussed in Section 4. 10.

Associated with the object stack there are several operations that
are necessary:

CREATEC(S) which creates S as an empty stack;

ADD(i,S) which inserts the element i onto the stack S and returns
the new stack;
DELETE(S) which removes the top element of stack S and returns
the new stack;
TOP(S) which returns the top element of stack S;
ISEMTS(S) which returns true if S is empty else false;

These five functions constitute a working definition of a stack.
However we choose to represent a stack, it must be possible to build
these operations. But before we do this let us describe formally the
structure STACK.

structure STACK (item)

1 declare CREATE() — stack
2 ADD (item,stack) — stack
3 DELETE (stack) — stack
4 TOP(stack) — item
5 ISEMTS (stack) — boolean;
6 for all S € stack, i € item let
7 ISEMTS (CREATE) :: = true
8 ISEMTS (ADD(i,S)) :. = false
9 DELETE (CREATE) :: = error
10 DELETE (ADD(,S)) =S
11 TOP (CREATE) = error
12 TOP (ADD(i,S)) =i
13 end

end STACK

80 Stacks and Queues

The five functions with their domains and ranges are declared in lines
1 through 5. Lines 6 through 13 are the set of axioms which describe
how the functions are related. Lines 10 and 12 are the essential ones
which define the last-in-first-out behavior. The above definitions describe
an infinite stack for no upper bound on the number of elements is
specified. This will be dealt with when we represent this structure
in a computer.

The simplest way to represent a stack is by using a one-dimensional
array, say STACK(1:n), where n is the maximum number of allowable
entries. The first or bottom element in the stack will be stored at
STACK(1), the second at STACK{2) and the i-th at STACK(i). Associated
with the array will be a variable, top, which points to the top element
in the stack. With this decision made the following implementations
result:

CREATE () :: = declare STACK (1:n); top <0
ISEMTS(STACK) :: = if top = 0 then true
else false
TOP(STACK) :: = if top = 0 then error
else STACK (top)

The implementations of these three operations using an array are so
short that we needn’t make them separate procedures but can just use
them directly whenever we need to. The ADD and DELETE operations
are only a bit more complex.

procedure ADD (item, STACK, n, top)
/insert item into the STACK of maximum size n; top is the number
of elements currently in STACK /#
if top = n then call STACK__FULL
top«top + 1
STACK (top) « item
end ADD

procedure DELETE (item, STACK, top)
Zremoves the top element of STACK and stores it in item
unless STACK is empty /
if top = 0 then call STACK__EMPTY
item «— STACK (top)
top « top —1
end DELETE

Fundamentals 81

These two procedures are so simple that they perhaps need no more
explanation. Procedure DELETE actually combines the functions TOP
and DELETE. STACK__FULL and STACK_EMPTY are procedures
which we leave unspecified since they will depend upon the particular
application. Often a stack full condition will signal that more storage
needs to be allocated and the program re-run. Stack empty is often
a meaningful condition. In Section 3.3 we will see a very important
computer application of stacks where stack empty signals the end of
processing.

The correctness of the stack implementation above may be established
by showing that in this implementation, the stack axioms of lines 7-12
of the stack structure definition are true. Let us show this for the
first three rules. The remainder of the axioms can be shown to hold
similarly.

(i) line 7: ISEMTS (CREATE):: = true

Since CREATE results in top being initialized to zero, it follows from
the implementation of ISEMTS that ISEMTS (CREATE):: = true.

(ii) line 8: ISEMTS (ADD (i,S)):: = false

The value of top is changed only in procedures CREATE, ADD and
DELETE. CREATE initializes top to zero while ADD increments it
by 1 so long as top is less than n (this is necessary because we can
implement only a finite stack). DELETE decreases top by 1 but never
allows its value to become less than zero. Hence, ADD(i,S) either results
in an error condition (STACK_FULL), or leaves the value of top > 0.
This then implies that ISEMTS (ADD(i,S)):: = false.

(iii) line 9: DELETE(CREATE):: = error

This follows from the observation that CREATE sets top = 0 and
the procedure DELETE signals the error condition STACK_EMPTY
when top = 0.

Queues, like stacks, also arise quite naturally in the computer solution
of many problems. Perhaps the most common occurrence of a queue
incomputer applications is for the scheduling of jobs. In batch processing
the jobs are ‘‘queued-up’ as they are read-in and executed, one after
another in the order they were received. This ignores the possible
existence of priorities, in which case there will be one queue for each
priority.

82 Stacks and Queues

As mentioned earlier, when we talk of queues we talk about two
distinct ends: the front and the rear. Additions to the queue take place
at the rear. Deletions are made from the front. So, if a job is submitted
for execution, it joins at the rear of the job queue. The job at the
front of the queue is the next one to be executed. A minimal set of
useful operations on a queue includes the following:

CREATEQ(Q) which creates Q as an empty queue;

ADDQ(i,Q) which adds the element i to the rear of a queue and
returns the new queue;

DELETEQ(Q) which removes the front element from the queue Q
and returns the resulting queue;

FRONT(Q) which returns the front element of Q;

ISEMTQ(Q) which returns true if Q is empty else false.

A complete specification of this data structure is

structure QUEUE (item)

1 declare CREATEQ() — queue

2 ADDQ(item, queue) — queue

3 DELETEQ(queue) — queue

4 FRONT(queue) — item

5 ISEMTQ(queue) — boolean;

6 for all Q € queue, i € item let

7 ISEMTQ(CREATEQ) :: = true
8 ISEMTQ(ADDQ(i,Q)) :: = false
9 DELETEQ(CREATEQ) :: = error
10 DELETEQ(ADDQ(,Q)):: =

11 if ISEMTQ(Q) then CREATEQ
12 else ADDQ(i, DELETEQ(Q))
13 FRONT(CREATEQ) ;1 = error
14 FRONT(ADDQ(i,QQ)) :: =

15 if ISEMTQ(Q) then i else FRONT(Q)
16 end

17 end QUEUE

The axiom of lines 10-12 shows that deletions are made from the
front of the queue.

The representation of a finite queue in sequential locations is somewhat
more difficult than a stack. In addition to a one dimensional array
Q(l:n), we need two variables, front and rear. The conventions we

Fundamentals 83

shall adopt for these two variables are that front is always 1 less than
the actual front of the queue and rear always points to the last element
in the queue. Thus, front = rear if and only if there are no elements
in the queue. The initial condition then is front = rear = 0. With these
conventions, let us try an example by inserting and deleting jobs, J,,
from a job queue.

QA X 3)) 5)) () ... Remarks
front rear

0 0 queue empty Initial

0 1 J Job 1 joins Q
0 2 1) 12 Job 2 joins Q
0 3 bl 12 J3 Job 3 joins Q

1 3 J2 13 Job 1 leaves Q
1 4 12 I3 J4 Job 4 joins Q
2 4 13 Ja Job 2 leaves Q

With this scheme, the following implementation of the CREATEQ,
ISEMTQ, and FRONT operations results for a queue with capacity
n:

CREATEQ(Q) :: = declare Q(1:n); front < rear — 0

ISEMTQ(Q) :: = if front = rear then true
else false
FRONT(Q) :: = if ISEMTQ(Q) then error

else Q(front + 1)
The following algorithms for ADDQ and DELETEQ result:

procedure ADDQ (item, Q, n, rear)
Zinsert item into the queue represented in Q(1:n)/
if rear = n then call QUEUE__FULL
rear < rear + |
Q(rear)« item
end ADDQ

procedure DELETEQ(item, Q, front, rear)
/delete an element from a queue /
if front = rear then call QUEUE__ EMPTY
front < front + 1
item <— Q(front)
end DELETEQ

84 Stacks and Queues

The correctness of this implementation may be established in a manner
akin to that used for stacks. With this set up, notice that unless the
front regularly catches up with the rear and both pointers are reset
to zero, then the QUEUE__FULL signal does not necessarily imply
that there are n elements in the queue. That is, the queue will gradually
move to the right. One obvious thing to do when QUEUE__FULL
is signaled is to move the entire queue to the left so that the first
element is again at Q(1) and front = 0. This is time consuming, especially
when there are many elements in the queue at the time of the
QUEUE__FULL signal.

Let us look at an example which shows what could happen, in the
worst case, if each time the queue becomes full we choose to move
the entire queue left so that it starts at Q(1). To begin, assume there
are n elements J,, ...,J, in the queue and we next receive alternate
requests to delete and add elements. Each time a new element is added,
the entire queue of n — 1 elements is moved left.

front rear Q) 2 B) next operation

0 n A J,) I, initial state

1 n 1, | J, delete J,

0 n I, Js | Jooq addJ ., GobslJ,

through J are moved)

1 n I, | I, delete],

0 n 1, I, Jg oo Jorp addl .,

Figure 3.3

A more efficient queue representation is obtained by regarding the
array Q(1:n) as circular. It now becomes more convenient to declare
the array as Q(0:n — 1). When rear = n — 1, the next element is entered
at Q(0) in case that spot is free. Using the same conventions as before,
front will always point one position counterclockwise from the first
element in the queue. Again, front = rear if and only if the queue is
empty. Initially we have front = rear = 1. Figure 3.4 illustrates some
of the possible configurations for a circular queue containing the four
elements J1-J4 with n> 4. The assumption of circularity changes the
ADD and DELETE algorithms slightly. In order to add an element,
it will be necessary to move rear one position clockwise, i.e.,

if rear = n — 1 then rear < 0
else rear < rear + 1.

Fundamentals 85

(0} (n-1)
front =0; rear =4 front=n-4, rear =0

Figure 3.4: Circular queue of n elements and four jobs J1, J2, J3, J4

Using the modulo operator which computes remainders, this is just
rear < (rear + l)mod n. Similarly, it will be necessary to move front
one position clockwise each time a deletion is made. Again, using the
modulo operation, this can be accomplished by front < (front + 1)med n.
An examination of the algorithms indicates that addition and deletion
can now be carried out in a fixed amount of time or O(1).

procedure ADDQ(item, Q, n, front, rear)

/insert item in the circular queue stored in Q(0:n — 1);
rear points to the last item and front is one position
counterclockwise from the first item in Q/

rear < (rear + 1)mod n /advance rear clockwise /

if front = rear then call QUEUE-FULL

Q(rear) < item J/insert new item/

end ADDQ

procedure DELETEQ(item, Q, n, front, rear)
Zremoves the front element of the queue Q(0:n — 1)/
if front = rear then call QUEUE-EMPTY
front < (front + 1)med n /advance front clockwise /
item <— Q(front) /set item to front of queue /
end DELETEQ

One surprising point in the two algorithms is that the test for queue
full in ADDQ and the test for queue empty in DELETEQ are the same.
In the case of ADDQ, however, when front = rear there is actually
one space free, i.e. Q(rear), since the first element in the queue is
not at Q(front) but is one position clockwise from this point. However,

86 Stacks and Queues

if we insert an item here, then we will not be able to distinguish between
the cases full and empty, since this insertion would leave front = rear.
To avoid this, we signal queue-full, thus permitting a maximum of n — 1
rather than n elements to be in the queue at any time. One way to
use all n positions would be to use another variable, tag, to distinguish
between the two situations, i.e. tag = 0 if and only if the queue is empty.
This would however slow down the two algorithms. Since the ADDQ
and DELETEQ algorithms will be used many times in any problem
involving queues, the loss of one queue position will be more than
made up for by the reduction in computing time.

The procedures QUEUE__FULL and QUEUE__EMPTY have been
used without explanation, but they are similar to STACK__FULL and
STACK__EMPTY. Their function will depend on the particular applica-
tion.

3.2 A MAZING PROBLEM

The rat-in-a-maze experiment is a classical one from experimental psy-
chology. A rat (or mouse) is placed through the door of a large box
without a top. Walls are set up so that movements in most directions
are obstructed. The rat is carefully observed by several scientists as
it makes its way through the maze until it eventually reaches the other
exit. There is only one way out, but at the end is a nice hunk of
cheese. The idea is to run the experiment repeatedly until the rat will
zip through the maze without taking a single false path. The trials yield
his learning curve.

We can write a computer program for getting through a maze and
it will probably not be any smarter than the rat on its first try through.
It may take many false paths before finding the right one. But the
computer can remember the correct path far better than the rat. On
its second try it should be able to go right to the end with no false
paths taken, so there is no sense re-running the program. Why don’t
you sit down and try to write this program yourself before you read
on and look at our solution. Keep track of how many times you have
to go back and correct something. This may give you an idea of your
own learning curve as we re-run the experiment throughout the book.

Letus represent the maze by a two dimensional array, MAZE(1:m,]:n),
where a value of 1 implies a blocked path, while a 0 means one can
walk right on through. We assume that the rat starts at MAZE(1,1)
and the exit is at MAZE(m,n).

i
entrance —

A Mazing Problem 87

010001 1O0O0O0T1TT1TT1TFT11:1
1 o001 1011100T1T1:1
011000011 110011
11 0111101101100
110100101 11 1111
0011011 1010O0T1O0:1
o1 1 1100T1T1T1T1T1TFT1:1
001101 10T1TT1TT1TTT1F01
110001101 1000O0O00O0
001111 100O0T1T1T1T1F®O
0100111110111 1 0 —exit
]
Figure 3.5

With the maze represented as a two dimensional array, the location
of the rat in the maze can at any time be described by the row, i,
and column, j of its position. Now let us consider the possible moves
the rat can make at some point (i,j) in the maze. Figure 3.6 shows

NW

w

SwW

N NE
(i=1,j-1) (i-1,7) (i-1,j+1)
(i,j-1)=—— X ——(i,j+1) E
(i,li)
(i+1,j-1) (i+l,j) (i+1,j+1)
S SE
Figure 3.6

the possible moves from any point (i,j). The position (i,j)} is marked
by an X. If all the surrounding squares have a 0 then the rat can choose
any of these eight squares as its next position. We call these eight
directions by the names of the points on a compass north, northeast,

88 Stacks and Queues

east, southeast, south, southwest, west and northwest, or N, NE, E,
SE, S, SW, W, NW.

We must be careful here because not every position has eight neighbors.
If (i,j) is on a border where either i =1 or m, or j=1 or n, then
less than eight and possibly only three neighbors exist. To avoid checking
for these border conditions we can surround the maze by a border
of ones. The array will therefore be declared as MAZE(0:m + 1,0:n + 1).

Another device which will simplify the problem is to predefine the
possible directions to move in a table, MOVE(1:8.1:2). which has the
values

MOVE
)
)]
3)
4
(%)
(6)
M
®

l

north
northeast
east
southeast
south
-1 southwest
-1 west
—1 northwest

—_ O e = O =
c.—..—..—-oll\)

By equating the compass names with the numbers 1,2, ...,8 we make
it easy to move in any direction. If we are at position (i,j) in the maze
and we want to find the position (g,h) which is southwest of i,j, then
we set

g< i+ MOVE(®,1); h < j+ MOVE(,2)

For example, if we are at position (3,4), then position 3 + 1 = 4,4 +(—1)
= 3) is southwest.

As we move through the maze we may have the chance to go in
several directions. Not knowing which one to choose, we pick one
but save our current position and the direction of the last move in
a list. This way if we have taken a false path we can return and try
another direction. With each new location we will examine the possibil-
ities, starting from the north and looking clockwise. Finally, in order
to prevent us from going down the same path twice we use another
array MARK(0:m + 1,0:n + 1) which is initially zero. MARK(,j) is
set to 1 once we arrive at that position. We assume MAZE(m,n) =0
as otherwise there is no path to the exit. We are now ready to write
a first pass at an algorithm.

A Mazing Problem 89

set list to the maze entrance coordinates and direction north;
while list is not empty do
(i,j, mov) < coordinates and direction from front of list
while there are more moves do
(g,h) < coordinates of next move
if (g,h) = (m,n) then success
if MAZE (g,h) =0 /the move is legal /
and MARK (g,h) =0 /we haven’t been here before /
then [MARK (g,h) < 1
add (i,j, mov) to front of list
(i,j,mov) < (g,h, nui)]
end
end
print no path has been found

This is nota SPARKS program and yet it describes the essential processing
without too much detail. The use of indentation for delineating important
blocks of code plus the use of SPARKS key words make the looping
and conditional tests transparent.

What remains to be pinned down? Using the three arrays MAZE,
MARK and MOVE we need only specify how to represent the list
of new triples. Since the algorithm calls for removing first the most
recently entered triple, this list should be a stack. We can use the
sequential representation we saw before. All we need to know now
is a reasonable bound on the size of this stack. Since each position
in the maze is visited at most once, at most mn elements can be placed
into the stack. Thus mn locations is a safe but somewhat conservative
bound. In the following maze

00 000 0]
111110
000000
0011111
000000
111110
000000
01 1111
LooooooJ

the only path has at most [m/2](n + 1) positions. Thus mn is not too
crude a bound. We are now ready to give a precise maze algorithm.

90 Stacks and Queues

procedure PATH (MAZE, MARK, m,n, MOVE, STACK)

/# A binary matrix MAZE(0:m + 1, 0:n + 1) holds the maze.
MARK(0:m + 1, 0:n + 1) is zero in spot (i,j) if MAZEC(i,j) has not
yet been reached. MOVE(8,2) is a table used to change coordinates
(i,J) to one of 8 possible directions. STACK (mn, 3) holds the
current path,Z MARK(1,1) < 1

(STACK(1.1).STACK(1.2).STACK(1.3)) « (1.1.2);r0p « 1

while top# 0 do
(i,j,mov) «<— (STACK (top, 1),STACK (top,2),STACK (top,3) + 1)
top<—top — 1
while mov = 8 do

g<—i+MOVE(mov,1); h < j+ MOVE(mov,?2)
ifg=mand h=n

then [for p < 1 to top do Jgoal /g
print (STACK(p, 1),STACK (p,2))
end

print(i,j); print(m,n); return]
it MAZE(g,h) = 0 and MARK(g,h) = 0
then| MARK (g,h) < 1
top < top + 1
(STACK (top,1),STACK (top,2),STACK (top,3)) —
(i,j,mov) /save (i,]) as part of current path /
mov<—0;i—g;j<—h]
mov «— mov + 1 /point to next direction,/
end
end
print (‘no path has been found’)
end PATH

Now, what can we say about the computing time for this algorithm?
It is interesting that even though the problem is easy to grasp, it is
difficult to make any but the most trivial statement about the computing
time. The reason for this is because the number of iterations of the
main while loop is entirely dependent upon the given maze. What we
can say is that each new position (i,j) that is visited gets marked, so
paths are never taken twice. There are at most eight iterations of the
inner while loop for each marked position. Each iteration of the inner
while loop takes a fixed amount of time, O(1), and if the number of
zeros in MAZE is z then at most z positions can get marked. Since
z is bounded above by mn, the computing time is bounded by O(z) =
O(mn). (In actual experiments, however, the rat may be inspired by the

Evaluation of Expressions 91

watching psychologist and the invigorating odor from the cheese at the
exit. It might reach its goal by examining far fewer paths than those
examined by algorithm PATH. This may happen despite the fact that
the rat has no pencil and only a very limited mental stack. It is difficult
to incorporate the effect of the cheese odor and the cheering of the
psychologists into a computer algorithm.) The array MARK can be
eliminated altogether and MAZEC(i,j) changed to 1 instead of setting
MARK(,j) to 1, but this will destroy the original maze.

3.3 EVALUATION OF EXPRESSIONS

When pioneering computer scientists conceived the idea of higher level
programming languages, they were faced with many technical hurdles.
One of the biggest was the question of how to generate machine language
instructions which would properly evaluate any arithmetic expression.
A complex assignment statement such as

X<~ A/B»xC+D+E—~A~*C 3.1

might have several meanings; and even if it were uniquely defined,
say by a full use of parentheses, it still seemed a formidable task to
generate a correct and reasonable instruction sequence. Fortunately the
solution we have today is both elegant and simple. Moreover, it is
so simple that this aspect of compiler writing is really one of the more
minor issues.

An expression is made up of operands, operators and delimiters. The
expression above has five operands: A,B,C,D, and E. Though these
are all one letter variables, operands can be any legal variable name
or constant in our programming language. In any expression the values
that variables take must be consistent with the operations performed
on them. These operations are described by the operators. In most
programming languages there are several kinds of operators which
correspond to the different kinds of data a variable can hold. First,
there are the basic arithmetic operators: plus, minus, times, divide, and
exponentiation (+,—,*,/,**), Other arithmetic operators include unary
plus, unary minus and mod, ceil, and fleor. The latter three may sometimes
be library subroutines rather than predefined operators. A second class
are the relational operators: <, £, =, =, #, =, #, >. These are usually
defined to work for arithmetic operands, but they can just as easily
work for character string data. (‘CAT’ is less than ‘DOG’ since it precedes
‘DOG’ in alphabetical order.) The result of an expression which contains

92 Stacks and Queues

relational operators is one of the two constants: true or false. Such
an expression is called Boolean, named after the mathematician George
Boole, the father of symbolic logic.

The first problem with understanding the meaning of an expression
is to decide in what order the operations are carried out. This means
that every language must uniquely define such an order. For instance,
if A=4, B=C=2, D= E =3, then in eq. 3.1 we might want X to
be assigned the value

4/Q2*x2) + (3%3) — (4%2)
4/4)+9 -8
= 2.

However, the true intention of the programmer might have been to
assign X the value

(4/2) #* 2+ 3) % (3 — 4) *2
= 4/ ** 5% ~1%2

= (2 %% 5)x =2
= 32% -2
- —64.

Of course, he could specify the latter order of evaluation by using
parentheses:

X < ((((A/B) *+ (C + D)) » (E - A)) = C).

To fix the order of evaluation, we assign to each operator a priority.
Then within any pair of parentheses we understand that operators with
the highest priority will be evaluated first. A set of sample priorities
from PL /I is given in Figure 3.7.

Operator Priority
**, unary —, unary+, 7' 6
*,/ 5
+, - 4
< LS, =, #, = > F 3
and 2

1

or

Figure 3.7. Priority of arithmetic, Boolean and relational operators

Notice that all of the relational operators have the same priority. Similarly,

Evaluation of Expressions 93

exponentiation, unary minus, unary plus and Boolean negation all have
top priority. When we have an expression where two adjacent operators
have the same priority, we need a rule to tell us which one to perform
first. For example, do we want the value of —A ** B to be understood
as (—A)*x B or —(A *»*x B)? Convince yourself that there will be a
difference by trying A= —1 and B =2. From algebra we normally
consider A **x B+x C as A »~ (B** C) and so we rule that operators
in priority 6 are evaluated right-to-left. However, for expressions such
as A » B/ C we generally execute left-to-right or (A* B)/ C. So we
rule that for all other priorities, evaluation of operators of the same
priority will proceed left to right. Remember that by using parentheses
we can override these rules, and such expressions are always evaluated
with the innermost parenthesized expression first.

Now that we have specified priorities and rules for breaking ties we
know how X< A/B*x C+ D* E— A« C will be evaluated, namely
as

X< (A/(B*xC))+(D*E))—(AxC).

How can a compiler accept such an expression and produce correct
code? The answer is given by reworking the expression into a form
we call postfix notation. If eis an expression with operators and operands,
the conventional way of writing e is called infix, because the operators
come in-between the operands. (Unary operators precede their operand.)
The postfix form of an expression calls for each operator to appear
after its operands. For example,

infix: A = B/C has postfix: AB* C/.

If we study the postfix form of A » B/ C we see that the multiplication
comes immediately after its two operands A and B. Now imagine that
A * B is computed and stored in T. Then we have the division operator,
/, coming immediately after its two arguments T and C.

Let us look at our previous example

infix: A/Bx» C+D+E—-A+C
postfix: ABC »x /DE x + AC x —

and trace out the meaning of the postfix.
Every time we compute a value let us store it in the temporary location
T,, i = 1. Reading left to right, the first operation is exponentiation:

1

94 Stacks and Queues

Operation Postfix

T,<B«C AT, /DE * + AC * —
T, < A/T, T,DE « + AC * —
T,<D«E T,T, + AC —
T,«T,+T, T,AC * —

T, A *C T, T, -

T,—T,~ T, T,

So T, will contain the result. Notice that if we had parenthesized the
expression, this would change the postfix only if the order of normal
evaluation were altered. Thus, A/(B »x C)+ (D » E) — A » C will
have the same postfix form as the previous expression without parenthe-
ses. But (A/B) *»*x(C+ D)* (E— A)* C will have the postfix form
AB/CD + »x EA — * C .

Before attempting an algorithm to translate expressions from infix
to postfix notation, let us make some observations regarding the virtues
of postfix notation that enable easy evaluation of expressions. To begin
with, the need for parentheses is eliminated. Secondly, the priority of
the operators is no longer relevant. The expression may be evaluated
by making a left to right scan, stackirlg operands, and evaluating operators
using as operands the correct number from the stack and finally placing
the result onto the stack. This evaluation process is much simpler than
attempting a direct evaluation from infix notation.

procedure EVAL (E)

/ evaluate the postfix expression E. It is assumed that the
last character in E is an ‘©’, A procedure NEXT-TOKEN is
used to extract from E the next token. A token is either an
operand, operator, or ‘c’, A one dimensional array STACK(1:n) is
used as a stack /
top « 0 #initialize STACK /
loop

x «— NEXT-TOKEN (E)
case
1 x =‘x’ :return / answeris at top of stack /
: x is an operand: call ADD(x,STACK,n,10p)
:else: remove the correct number of operands
for operator x from STACK, perform
the operation and store the result, if
any, onto the stack
end
forever
end EVAL

Evaluation of Expressions 95

To see how to devise an algorithm for translating from infix to postfix,
note that the order of the operands in both forms is the same. In
fact, it is simple to describe an algorithm for producing postfix from
infix:

1) fully parenthesize the expression;

2) move all operators so that they replace their corresponding right

parentheses;

3) delete all parentheses.

For example, A/B »» C + D * E — A » C when fully parenthesized
yields

((A/(B=*x C)) + (DxE)) ¢ (AxC)).
e N2 A N
The arrows point from an operator to its corresponding right parenthesis.
Performing steps 2 and 3 gives

ABC*+/DE x +AC » —.

The problem with this as an algorithm is that it requires two passes:
the first one reads the expression and parenthesizes it while the second
actually moves the operators. As we have already observed, the order
of the operands is the same in infix and postfix. So as we scan an
expression for the first time, we can form the postfix by immediately
passing any operands to the output. Then it is just a matter of handling
the operators. The solution is to store them in a stack until just the
right moment and then to unstack and pass them to the output.

For example, since we want A + B » Cto yield ABC * + our algorithm
should perform the following sequence of stacking (these stacks will
grow to the right):

Next Token Stack Output
none empty none
A empty A
+ + A
B + AB

At this point the algorithm must determine if » gets placed on top of
the stack or if the + gets taken off. Since * has greater priority we
should stack * producing

C + ABC

96 Stacks and Queues

Now the input expression is exhausted, so we output all remaining
operators in the stack to get

ABC « +

For another example, A x (B + C) * D has the postfix form ABC
+ = D *, and so the algorithm should behave as

Next Token Stack Output
none empty none
A empty A

* * A

(*(A

B * (AB

+ * (+ AB

C * (+ ABC

At this point we want to unstack down to the corresponding left
parenthesis, and then delete the left and right parentheses; this_gives
us:

) * ABC +

* * ABC + «

D * ABC + «D
done empty ABC + « D«

These examples should motivate the following hierarchy scheme for
binary arithmetic operators and delimiters. The general case involving
all the operators of figure 3.7 is left as an exercise.

Symbol In-Stack Priority In-Coming Priority
) —_ —_
ok 3 4
*/ 2 2
binary +,— 1 1
(0 4

Figure 3.8 Priorities of Operators for Producing Postfix

The rule will be that operators are taken out of the stack as long as
their in-stack priority, isp, is greater than or equal to the in-coming
priority, icp of the new operator. ISP(X) and ICP(X) are functions
which reflect the table of figure 3.8.

Multiple Stacks and Queues 97

procedure POSTFIX (E)

/convert the infix expression E to postfix. Assume the last
character of E is a ‘x’, which will also be the last character of
the postfix. Procedure NEXT-TOKEN returns either the next
operator, operand or delimiter—whichever comes next.
STACK (1.n) is used as a stack and the character ‘—x" with

ISP(‘—%") = —1 is used at the bottom of the stack. ISP and ICP
are functions. /

STACK (1) « ‘—x; top « 1 / initialize stack /
loop
x «— NEXT-TOKEN(E) ,
case
:x =‘cc™ while top >1 do / empty the stack / =
- primt (STACK(top)); top «— top — | -
end T
print ()
return '
:x is an operand: print (x)
x =4 whlleSTACK(top) # ‘(* do / unstack until ‘Y 2
pm}o (STACK (top)); top « top — 1
top «—top— 1 Hdelete’C / -
:else: while ISP(STACK(top))J> ICP(x) do
print!(STACK (top)); top «—top— 1
end
call ADD(x,STACK,n,top) /insert xin STACK /
end
forever

end POSTFIX

As for the computing time, the algorithm makes only one pass across
the input. If the expression has n symbols, then the number of operations
is proportional to some constant times n. The stack cannot get any
deeper than the number of operators plus 1, but it may achieve that bound
as it does for 4 + B * C ** D.

3.4 MULTIPLE STACKS AND QUEUES

Up to now we have been concerned only with the representation of
a single stack or a single queue in the memory of a computer. For
these two cases we have seen efficient sequential data representations.

98 Stacks and Queues

What happens when a data representation is needed for several stacks
and queues? Let us once again limit ourselves to sequential mappings
of these data objects into an array V(1:m). If we have only 2 stacks
to represent, then the solution is simple. We can use V(1) for the
bottommost element in stack 1 and V(m) for the corresponding element
in stack 2. Stack 1 can grow towards V(m) and stack 2 towards V(1).
It is therefore possible to utilize efficiently all the available space. Can
we do the same when more than 2 stacks are to be represented? The
answer is no, because a one dimensional array has only two fixed points
V(1) and V(m) and each stack requires a fixed point for its bottommost
element. When more than two stacks, say n, are to be represented
sequentially, we can initially divide out the available memory V(1:m)
into n segments and allocate one of these segments to each of the n
stacks. This initial division of V(1:m) into segments may be done in
proportion to expected sizes of the various stacks if the sizes are known.
In the absence of such information, V(1:m) may be divided into equal
segments. For each stack i we shall use B(i) to represent a position
one less than the position in V for the bottommost element of that
stack. T(i), 1 =i=n will point to the topmost element of stack i.
We shall use the boundary condition B(i) = T(i) iff the i’th stack is
empty. If we grow the i’th stack in lower memory indexes than the
i + 1’st, then with roughly equal initial segments we have

B@)=TG) =|m/n](i-1),1<i=n (3.2)

as the initial values of B(i) and T(i), (see figure 3.9). Stack i, 1 =
i = n can grow from B(i) + 1 up to B(i + 1) before it catches up
with the i + 1’st stack. It is convenient both for the discussion and
the algorithms to define B(n + 1) = m. Using this scheme the add
and delete algorithms become:

procedure ADD(i,X)
/add element X to the i'th stack, | < i< ny/
if T() = B(i + 1) then call STACK-FULL (i)
T(i) « T(i) + 1
V(T(@i) « X /Zadd X to the i’th stack /
end ADD

procedure DELETE (i, X)
/ delete topmost element of stack i/
if T(i) = B{(i) then call STACK-EMPTY(i)
X « V(T(i))
T(i) « T() — 1
end DELETE

Multiple Stacks and Queues 99

The algorithms to add and delete appear to be as simple as in the
case of only 1 or 2 stacks. This really is not the case since the
STACK__FULL condition in algorithm ADD does not imply that all
m locations of V are in use. In fact, there may be a lot of unused
space between stacks jand j + 1 for | = j < nand j # i (figure
3.10). The procedure STACK_ _FULL (i) should therefore determine
whether there is any free space in V and shift stacks around so as
to make some of this free space available to the i’th stack.

Several strategies are possible for the design of algorithm STACK__
FULL. We shall discuss one strategy in the text and look at some

vV o 2 {m/n} 2lm/n] m
B(l) B(2) B(3) B(n-+l)
T T(2) T(3)

Figure 3.9 Initial configuration for n stacks in V(1:m). All stacks are empty and memory
is divided into roughly equal segments.

N = m1
I AR A A T]T

B(l) T(1) B(2) T(2) B(i) T() TGi+1) T()) B(n+l)
B(i+!) B(i+2) B(j+l)

Figure 3.10 Configuration when stack i meets with stack i + 1 but there is still free
space elsewhere in V.

others in the exercises. The primary objective of algorithm STACK-
FULL is to permit the adding of elements to stacks so long as there
is some free space in V. One way to guarantee this is to design
STACK _FULL along the following lines:

a) determine the least j, i < j < n such that there is free space
between stacks j and j + 1, i.e., T(j) < B(+ 1). If there is
such a j, then move stacks i + 1, i + 2, ...,j one position to
the right (treating V(1) as leftmost and V (m) as rightmost), thereby
creating a space between stacks i and i + 1.

100 Stacks and Queues

b) if there is no j as in a), then look to the left of stack i. Find
the largest j such that 1 = j < i and there is space between stacks
jand j + 1, i.e., T(G) < B(+ 1). If there is such a j, then
move stacks j + 1, j + 2, ...,i one space left creating a free space
between stacks i and i + 1.

¢) if there is no j satisfying either the conditions of a) or b), then
all m spaces of V are utilized and there is no free space.

The writing of algorithm STACK_FULL using the above strategy
is left as an exercise. It should be clear that the worst case performance
of this representation for the n stacks together with the above strategy
for STACK_FULL would be rather poor. In fact, in the worst case
O(m) time may be needed for each insertion (see exercises). In the
next chapter we shall see that if we do not limit ourselves to sequential
mappings of data objects into arrays, then we can obtain a data
representation for mstacks that has amuch better worst case performance
than the representation described here. Sequential representations for
n queues and other generalizations are discussed in the exercises.

EXERCISES

1. Consider a railroad switching network as below

Railroad cars numbered 1,2,3 ...,n are at the right. Each car is brought
into the stack and removed at any time. For instance, if n = 3, we could
move 1 in, move 2 in, move 3 in and then take the cars out producing
the new order 3,2,1. For n = 3 and 4 what are the possible permutations
of the cars that can be obtained? Are any permutations not possible?

2. Using a Boolean variable to distinguish between a circular queue being
empty or full, write insert and delete procedures.

3. Complete the correctness proof for the stack implementation of section
3.1.

FOA
; 47

s

10.

11.

Exercises 101

Use the queue axioms to prove that the circular queue representation of
section 3.1 1s correct.

A double ended queue {deque) is a linear list in which additions and deletions
may be made at either end. Obtain a data representation mapping a deque
into a one dimensional array. Write algorithms to add and delete elements
from either end of the deque.

[Mystery function] Let f be an operation whose argument and result is
a queue and which is defined by the axioms:

f(CREATEQ) :: = CREATEQ
f(ADDQ(i,q)) : = if ISEMTQ(q) then ADDQ(i,q)
else ADDQ(FRONT(q), f(DELETEQ(ADDQ(i,q))))

what does f do?

A linear list is being maintained circularly in an array C(0: n —1) with

F and R set up as for circular queues.

a) Obtain a formula in terms of F, R and n for the number of elements
in the list.

b) Write an algorithm to delete the k’th element in the list.

¢) Write an algorithm to insert an element Y immediately after the k’th
element.

What is the time complexity of your algorithms for b) and ¢)?

Let L = (a,,a,, ...,a,) be a linear list represented in the array V(l:n)
using the mapping: the i’th element of L is stored in V (i). Write an algorithm
to make an inplace reversal of the order of elements in V. l.e., the algorithm
should transform V such that V(i) contains the n — i + 1’st element
of L. The only additional space available to your algorithm is that for
simple variables. The input to the algorithm is V and n. How much time
does your algorithm take to accomplish the reversal?

a) Find a path through the maze of figure 3.5.
b) Trace out the action of procedure PATH on the maze of figure 3.5.
Compare this to your own attempt in a).

What is the maximum path length from start to finish in any maze of
dimensions n X m?

Write the postfix form of the following expressions:
a) A xx B+« C

102

12.

13.

14)

15.

16.

Stacks and Queues

b) - A+ B-C+ D

¢) A -B+ C
dA+B)«D+E/(F+A~D)+ C

e) A and Bor Cor —(E > F) (assuming PL/I precedence)
fy ~ (Aand = (B< CorC>D)orC<E

Obtain isp and icp priorities for all the operators of figure 3.7 together
with the delimiters ‘(’, and). These priorities should be such that algorithm
POSTFIX correctly generates the postfix form for all expressions made
up of operands and these operators and delimiters.

Use the isp and icp priorities obtained in exercise 12 to answer the following:

a) In algorithm POSTFIX what is the maximum number of elements that
can be on the stack at any time if the input expression E has n operators
and delimiters?

b) What is the answer to a) if E contains no operators of priority 6, has
n operators and the depth of nesting of parentheses is at most 6?

Another expression form that is easy to evaluate and is parenthesis free
is known as prefix. In this way of writing expressions, the operators precede
their operands. For example:

infix prefix
AxB/C /* ABC
A/B»«C+D+«E-AxC —~ +/A + BC+* DE » AC
A*(B+C)/D-G -/* A+ BCDG

Notice that the order of operands is not changed in going from infix to

prefix.

a) What is the prefix form of the expressions in exercise 11.

b) Write an algorithm to evaluate a prefix expression, E (Hint: Scan E
right to left and assume that the leftmost token of E is ‘x’.)

¢) Write an algorithm to transform an infix expression E into its prefix
equivalent. Assume that the input expression E begins with a ‘e’ and that
the prefix expression should begin with a ‘o0’.

What is the time complexity of your algorithms for b) and ¢)? How much

space is needed by each of these algorithms? '

Write an algorithm to transform from prefix to postfix. Carefully state
any assumptions you make regarding the input. How much time and space
does your algorithm take?

Do exercise 15 but this time for a transformation from postfix to prefix.

17,

18.

19.

20.

21.

22.

23.

24,

Exercises 103

Write an algorithm to generate fully parenthesized infix expressions from
their postfix form. What is the complexity (time and space) of your
algorithm?

Do exercise 17 starting from prefix form.

Two stacks are to be represented in an array V(1:m) as described in
§3.4. Write algorithms ADD(i,X) and DELETE(i) to add X and delete
an element from stack i, 1 < i < 2. Your algorithms should be able
to add elements to the stacks so long as there are fewer than m elements
in both stacks together.

Obtain a data representation mapping a stack S and a queue Q into a
single array V(1:n). Write algorithms to add and delete elements from
these two data objects. What can you say about the suitability of your
data representation?

Write a SPARKS algorithm implementing the strategy for STACK__
FULL (i) outlined in §3.4.

For the ADD and DELETE algorithms of §3.4 and the STACK__FULL (i)
algorithm of exercise 21 produce a sequence of adds and deletes that will
require O(m) time for each add. Use n = 2 and start from a configuration
representing a full utilization of V(1:m).

It has been empirically observed that most programs that get close to
using all available space eventually run out of space. In the light of this
observation, it seems futile to move stacks around providing space for
other stacks to grow in if there is only a limited amount of space that
is free. Rewrite the algorithm of exercise 21 so that the algorithm terminates
if there are fewer than C free spaces. C is an empirically determined
constant and is provided to the algorithm.

Another strategy for the STACK__FULL (i) condition of §3.4 is to redis-
tribute all the free space in proportion to the rate of growth of individual
stacks since the last call to STACK__FULL. This would require the use
of another array LT(i:n) where LT(j) is the value of T(j) at the last
call to STACK__FULL. Then the amount by which each stack has grown
since the last call is T(j) — LT(j). The figure for stack i is actually T(i)
- LT(@) + 1, since we are now attempting to add another element to
i.

Write algorithm STACK__FULL (i) to redistribute all the stacks so that
the free space between stacks jand j + 1 is in proportion to the growth
of stack jsince the last call to STACK__FULL. STACK__FULL (i) should
assign at least 1 free location to stack i.

104

25.

26.

27.

Stacks and Queues

Design a data representation sequentially mapping n queues into an array
V(1:m). Represent each queue as a circular queue within V. Write
algorithms ADDQ, DELETEQ and QUEUE-FULL for this representation.

Design a data representation, sequentially mapping n data objects into
an array V(l:m). r, of these data objects are stacks and the remaining
n, = n — n; are queues. Write algorithms to add and delete elements
from these objects. Use the same SPACE__FULL algorithm for both types
of data objects. This algorithm should provide space for the i-th data
object if there is some space not currently being used. Note that a circular
queue with space for r elements can hold only r — 1.

[Landweber]

People have spent so much time playing card games of solitaire that the
gambling casinos are now capitalizing on this human weakness. A form
of solitaire is described below. Your assignment is to write a computer
program to play the game thus freeing hours of time for people to return
to more useful endeavors.

To begin the game, 28 cards are dealt into 7 piles. The leftmost pile has
1 card, the next two cards, and so forth up to 7 cards in the rightmost
pile. Only the uppermost card of each of the 7 piles is turned face up.
The cards are dealt left to right, one card to each pile, dealing to one
less pile each time, and turning the first card in each round face up.

On the top-most face up card of each pile you may build in descending
sequences red on black or black on red. For example, on the 9 of spades
you may place either the 8 of diamonds or the 8 of hearts. All face up
cards on a pile are moved as a unit and may be placed on another pile
according to the bottommost face up card. For example, the 7 of clubs
on the 8 of hearts may be moved as a unit onto the 9 of clubs or the
9 of spades.

Whenever a face down card is uncovered, it is turned face up. If one
pile is removed completely, a face-up King may be moved from a pile
(together with all cards above it) or the top of the waste pile (see below))
into the vacated space. There are four output piles, one for each suit,
and the object of the game is to get as many cards as possible into the
output piles. Each time an Ace appears at the top of a pile or the top
of the stack it is moved into the appropriate output pile. Cards are added
to the output piles in sequence, the suit for each pile being determined
by the Ace on the bottom.

From the rest of the deck, called the stock, cards are turned up one by
one and placed face up on a waste pile. You may always play cards

off the top of the waste pile, but only one at a time. Begin by moving
a card from the stock to the top of the waste pile. If there is ever more

Exercises 105

than one possible play to be made, the following order must be observed:

i) Move a card from the top of a playing pile or from the top of the
waste pile to an output pile. If the waste pile becomes empty, move
a card from the stock to the waste pile.

ii) Move a card from the top of the waste pile to the leftmost playing
pile to which it can be moved. If the waste pile becomes empty move
a card from the stock to the waste pile.

iii) Find the leftmost playing pile which can be moved and place it on
top of the leftmost playing pile to which it can be moved.

iv) Try i), ii) and iii) in sequence, restarting with i) whenever a move
is made.

v) If no move is made via (i)-(iv) move a card from the stock to the
waste pile and retry (i).

Only the topmost card of the playing piles or the waste pile may be played
to an output pile. Once played on an output pile, a card may not be
withdrawn to help elsewhere. The game is over when either

i) all the cards have been played to the output or

i) the stock pile has been exhausted and no more cards can be moved
When played for money, the player pays the house $52 at the beginning
and wins $5 for every card played to the output piles.

Write your program so that it will play several games, and determine your
net winnings. Use a random number generator to shuffle the deck.

Output a complete record of two games in easily understood form. Include
as output the number of games played and the net winning (+ or —).

Chapter 4

LINKED LISTS

4.1 SINGLY LINKED LISTS

In the previous chapters, we studied the representation of simple data
structures using an array and a sequential mapping. These representations
had the property that successive nodes of the data object were stored
a fixed distance apart. Thus, (i) if the element a; of a table was stored
at location L, then a,;,, was at the location L;; + ¢ for some constant
¢; (i) if the ith node in a queue was at location L, then the i + |
— st node was at location L, + ¢ mod n for the circular representation;
(iii) if the topmost node of a stack was at location L, then the node
beneath it was at location L — ¢, etc. These sequential storage schemes
proved adequate given the functions one wished to perform (access
to an arbitrary node in a table, insertion or deletion of nodes within
a stack or queue).

However when a sequential mapping is used for ordered lists, operations
such as insertion and deletion of arbitrary elements become expensive.
For example, consider the following list of all of the three letter English
words ending in AT:

(BAT, CAT, EAT, FAT, HAT, JAT, LAT, MAT,
OAT, PAT, RAT, SAT, TAT, VAT, WAT)

To make this list complete we naturally want to add the word GAT,
which means gun or revolver. If we are using an array to keep this
list, then the insertion of GAT will require us to move elements already
in the list either one location higher or lower. We must either move
HAT, JAT. LAT, ..., WAT or else move BAT, CAT, EAT and FAT.
If we have to do many such insertions into the middle, then neither

106

Singly Linked Lists 107

alternative is attractive because of the amount of data movement. On
the other hand, suppose we decide to remove the word LAT which
refers to the Latvian monetary unit. Then again, we have to move
many elements so as to maintain the sequential representation of the
list.

When our problem called for several ordered lists of varying sizes,
sequential representation again proved to be inadequate. By storing each
list in a different array of maximum size, storage may be wasted. By
maintaining the lists in a single array a potentially large amount of data
movement is needed. This was explicitly observed when we represented
several stacks, queues, polynomials and matrices. All these data objects
are examples of ordered lists. Polynomials are ordered by exponent
while matrices are ordered by rows and columns. In this chapter we
shall present an alternative representation for ordered lists which will
reduce the time needed for arbitrary insertion and deletion.

An elegant solution to this problem of data movement in sequential
representations is achieved by using linked representations. Unlike a
sequential representation where successive items of a list are located
a fixed distance apart, in a linked representation these items may be
placed anywhere in memory. Another way of saying this is that in
a sequential representation the order of elements is the same as in the
ordered list, while in a linked representation these two sequences need
not be the same. To access elements in the list in the correct order,
with each element we store the address or location of the next element
inthat list. Thus, associated with each data item in a linked representation
is a pointer to the next item. This pointer is often referred to as a
link. In general, a node is a collection of data, DATAIL, ...,.DATAn
and links LINKI1, ...,.LINKm. Each item in a node is called a field.
A field contains either a data item or a link.

Figure 4.1 shows how some of the nodes of the list we considered
before may be represented in memory by using pointers. The elements
of the list are stored in a one dimensional array called DATA. But
the elements no longer occur in sequential order, BAT before CAT
before EAT, etc. Instead we relax this restriction and allow them to
appear anywhere in the array and in any order. In order to remind
us of the real order, a second array, LINK, is added. The values in
this array are pointers to elements in the DATA array. Since the list
starts at DATA(8) = BAT, let us set a variable F= 8. LINK(8) has
the value 3, which means it points to DATA(3) which contains CAT.
The third element of the list is pointed at by LINK(3) which is EAT.
By continuing in this way we can list all the words in the proper order.

108 Linked Lists

DATA LINK

1 HAT 15

2

3 CAT 4
4 EAT o |
5

6

7 WAT 0

8 BAT 3

9 FAT 1
10
" VAT 7

Figure 4.1 Non-Sequential List Representation

We recognize that we have come to the end when LINK has a value
of zero.

Some of the values of DATA and LINK are undefined suchas DATA(2),
LINK(2), DATA(5), LINK(5), etc. We shall ignore this for the moment.
It is customary to draw linked lists as an ordered sequence of nodes
with links being represented by arrows as in figure 4.2. Notice that

F

KKLBATH—- lcat] }— e «—[wat[o]

Figure 4.2 Usual Way to Draw a Linked List

we do not explicitly put in the values of the pointers but simply draw
arrows to indicate they are there. This is so that we reinforce in our
own mind the facts that (i) the nodes do not actually reside in sequential
locations, and that (ii) the locations of nodes may change on different
runs. Therefore, when we write a program which works with lists, we
almost never look for a specific address except when we test for zero.
Let us now see why it is easier to make arbitrary insertions and

Singly Linked Lists 109

deletions using a linked list rather than a sequential list. To insert the
data item GAT between FAT and HAT the following steps are adequate:
(i) get a node which is currently unused; let its address be X;
(i) set the DATA field of this node to GAT;
(iii) set the LINK field of X to point to the node after FAT which
contains HAT;
(iv) set the LINK field of the node containing FAT to X.
Figure 4.3a shows how the arrays DATA and LINK will be changed

DATA LINK
1 HAT 15
2
3 CAT
4 EAT 9
5 GAT 1
6
7 WAT 0
8 BAT
9 FAT 5
10
11 VAT 7

Figure 4.3a Insert GAT Into DATA(S)

£S5

BAT | EATH_.[EATH_.IFAT]/%L.IBAT_B_.

/
al -

i

X
Figure 4.3b Insert Node GAT Into List

GAT

after we insert GAT. Figure 4.3b shows how we can draw the insertion
using our arrow notation. The new’arrows are dashed. The important
thing to notice is that when we insert GAT we do not have to move
any other elements which are already in the list. We have overcome

110 Linked Lists

the need to move data at the expense of the storage needed for the
second field, LINK. But we will see that this is not too severe a
penalty.

Now suppose we want to delete GAT from the list. All we need
to do is find the element which immediately precedes GAT, which is
FAT, and set LINK(9) to the position of HAT which is 1. Again, there
is no need to move the data around. Even though the LINK field of
GAT still contains a pointer to HAT, GAT is no longer in the list (see
figure 4.4).

F

750 o 0 S £ e 7 B R (3.

Figure 4.4 Delete GAT from List

From our brief discussion of linked lists we see that the following
capabilities are needed to make linked representations possible:

(i) A means for dividing memory into nodes each having at least

one link field;

(ii) A mechanism to determine which nodes are in use and which

are free;

(iii) A mechanism to transfer nodes from the reserved pool to the

free pool and vice-versa.

Though DATA and LINK look like conventional one dimensional
arrays, it is not necessary to implement linked lists using them. For
the time being let us assume that all free nodes are kept in a ‘‘black
box’’ called the storage pool and that there exist subalgorithms:

(i) GETNODE(X) which provides in X a pointer to a free node

but if no node is free, it prints an error message and stops;

(i) RET(X) which returns node X to the storage pool.

In section 4.3 we shall see how to implement these primitives and
also how the storage pool is maintained.

Example 4.1: Assume that each node has two fields DATA and LINK.
The following algorithm creates a linked list with two nodes whose
DATA fields are set to be the values ‘MAT’ and ‘PAT’ respectively.
T is a pointer to the first node in this list.

Singly Linked Lists 111

procedure CREATE2(T)
call GETNODE(I) / get an available node /
T < I, DATA(I) « ‘MAT’ / store information into the node /
call GETNODE((I) /get a second available node /
LINK(T) « I / attach first node to the second /
LINK(I) < 0; DATA(I) < ‘PAT’
end CREATE?2

The resulting list structure is
Ek
Example 4.2: Let T be a pointer to a linked list as in Example 4.1.
T = 0 if the list has no nodes. Let X be a pointer to some arbitrary

node in the list T. The following algorithm inserts a node with DATA
field ‘OAT’ following the node pointed at by X.

MAT{—+— | PAT|O

procedure INSERT(T,X)
call GETNODE()
DATA(I) < ‘OAT’

if T=0then [T« I; LINK(I) « 0] /insert into empty list /
else [LINK(I) < LINK(X) A insert after X /
LINK(X) < I]
end INSERT

The resulting list structure for the two cases T=0and T # 0 is

T

0aT[] LK| H,..._.% [~

oar [}
7

I

TN

112 Linked Lists

Example 4.3: Let X be a pointer to some node in a linked list T as
in example 4.2. Let Y be the node preceding X. Y=0 if X is the
first node in T (i.e., if X = T). The following algorithm deletes node
X from T.

procedure DELETE(X, Y, T)
if Y =0 then T < LINK(T) //remove the first node /
else LINK(Y) < LINK(X) /remove an interior
node /
call RET(X) /return node to storage pool /
end DELETE

4.2 LINKED STACKS AND QUEUES

We have already seen how to represent stacks and queues sequentially.
Such a representation proved efficient if we had only one stack or
one queue. However, when several stacks and queues co-exist, there
was no efficient way to represent them sequentially. In this section
we present a good solution to this problem using linked lists. Figure
4.5 shows a linked stack and a linked queue.

top

(/Z\DATA LINK

L

front rear

L
DATA LINK

|
o O O £ N E S B
|

{a) Linked Stack {b) Linked Queue

Figure 4.5

Linked Stacks and Queues 113

Notice that the direction of links for both the stack and queue are
such as to facilitate easy insertion and deletion of nodes. In the case
of figure 4.5(a), one can easily add a node at the top or delete one
from the top. In figure 4.5(b), one can easily add a node at the rear
and both addition and deletion can be performed at the front, though
for a queue we normally would not wish to add nodes at the front.
If we wish to represent n stacks and m queues simultaneously, then
the following set of algorithms and initial conditions will serve our purpose:

T() Top of ith stack 1
F(i) Front of ith queue 1
R(i) = Rear of ith queue 1

Il
A IAIA
A A IA

i<n
i=m
i=m
Initial conditions:

T =0
F@i) =0

A A
T

Boundary conditions:

T =0 iff stack i empty
F@) =0 iff queue i empty

procedure ADDS(i, Y)
/add element Y onto stack i/
call GETNODE(X)
DATA(X) <« Y / store data value Y into new node /
LINK(X) « T(i) / attach new node to top of i-th stack /
T(i) <~ X /reset stack pointer /

end ADDS

procedure DELETES(i, Y)
/delete top node from stack i and set Y to be the DATA field of
this node /
if T(i) = 0 then call STACK _EMPTY
X« T(i) /set X to top node of stack i/
Y « DATA(X) /Y gets new data/
T(i) < LINK(X) /remove node from top of stack i/
call RET(X) /return node to storage pool /
end DELETES

114 Linked Lists

procedure ADDQ(i, Y)
/add Y to the ith queue /
call GETNODE(X)
DATA(X) < Y; LINK(X) <0
if F(i) =0 then [F(i) < R(i) < X] /the queue was empty /
else [LINK(R(i)) < X;R(i) < X] /the queue was

not empty /
end ADDQ

procedure DELETEQ(i, Y)
/delete the first node in the ith queue, set Y to its DATA field /
if F(i) =0 then call QUEUE_EMPTY
else [X < F(i); F(i) « LINK(X)
/ set X to front node /
Y <« DATA(X); call RET(X)] Jremove data
and return node /
end DELETEQ

The solution presented above to the n-stack, m-queue problem is
seen to be both computationally and conceptually simple. There is no
need to shift stacks or queues around to make space. Computation
can proceed so long as there are free nodes. Though additional space
is needed for the link fields, the cost is no more than a factor of 2.
Sometimes the DATA field does not use the whole word and it is possible
to pack the LINK and DATA fields into the same word. In such a
case the storage requirements for sequential and linked representations
would be the same. For the use of linked lists to make sense, the
overhead incurred by the storage for the links must be overriden by:
(i) the virtue of being able to represent complex lists all within the
same array, and (i) the computing time for manipulating the lists is
less than for sequential representation.

Now all that remains is to explain how we might implement the
GETNODE and RET procedures.

4.3 THE STORAGE POOL

The storage pool contains all nodes that are not currently being used.
So far we have assumed the existence of a RET and a GETNODE
procedure which return and remove nodes to and from the pool. In
this section we will talk about the implementation of these procedures.

The first problem to be solved when using linked allocation is exactly

The Storage Pool 115

how a node is to be constructed. The number and size of the data
fields will depend upon the kind of problem one has. The number of
pointers will depend upon the structural properties of the data and the
operations to be performed. The amount of space to be allocated for
each field depends partly on the problem and partly on the addressing
characteristics of the machine. The packing and retrieving of information
in a single consecutive slice of memory is discussed in section 4.12.
For now we will assume that for each field there is a function which
can be used to either retrieve the data from that field or store data
into the field of a given node.

The next major consideration is whether or not any nodes will ever
be returned. In general, we assume we want to construct an arbitrary
number of items each of arbitrary size. In that case, whenever some
structure is no longer needed, we will ‘‘erase’’ it, returning whatever
nodes we can to the available pool. However, some problems are not
so general, Instead the problem may call for reading in some data,
examining the data and printing some results without ever changing
the initial information. In this case a linked structure may be desirable
so as to prevent the wasting of space. Since there will never be any
returning of nodes there is no need for a RET procedure and we might
just as well allocate storage in consecutive order. Thus, if the storage
pool has n nodes with fields DATA and LINK, then GETNODE could
be implemented as follows:

procedure GETNODE(I)
/1 is set as a pointer to the next available node /
if AV > n then call NO_MORE__NODES
I<— AV
AV<— AV +1
end GETNODE

The variable AV must initially be set to one and we will assume it is
a global variable. In section 4.7 we will see a problem where this type
of a routine for GETNODE is used.

Now let us handle the more general case. The main idea is to initially
link together all of the available nodes in a single list we call AV.
This list will be singly linked where we choose any one of the possible
link fields as the field through which the available nodes are linked.
This must be done at the beginning of the program, using a procedure
such as:

116 Linked Lists

procedure INIT(n)

/initialize the storage pool, through the LINK field, to contain nodes
with addresses 1,2,3, ...,n and set AV to point to the first node
in this list /

fori<—1ton— 1do

LINK (i) <« i+ 1

end

LINK(n) < 0

AV <1

end INIT

This procedure gives us the following list:

AV
] 2 3 n

4 4 - cee —o= (0]

Figure 4.6 Initial Available Space List

Once INIT has been executed, the program can begin to use nodes.
Every time a new node is needed, a call to the GETNODE procedure
is made. GETNODE examines the list AV and returns the first node
on the list. This is accomplished by the following:

procedure GETNODE(X)
/X is set to point to a free node if there is one on AV /
it AV = 0 then call NO_MORE__NODES
X< AV
AV <« LINK(AV)
end GETNODE

Because AV must be used by several procedures we will assume
it is a global variable. Whenever the programmer knows he can return
a node he uses procedure RET which will insert the new node at the
front of list AV. This makes RET efficient and implies that the list
AV is used as a stack since the last node inserted into AV is the first
node removed (LIFO).

The Storage Pool 117

procedure RET(X)
/X points to a node which is to be returned to the available space
list/
LINK(X) < AV
AV« X
end RET

If we look at the available space pool sometime in the middle of
processing, adjacent nodes may no longer have consecutive addresses.
Moreover, it is impossible to predict what the order of addresses will
be. Suppose we have a variable ptr which is a pointer to a node which
is part of a list called SAMPLE.,

SAMPLE ptr

(/\DATA LINK 7
0

—e +—- - 4

What are the permissable operations that can be performed on a variable
which is a pointer? One legal operation is to test for zero, assuming
that is the representation of the empty list. (if ptr = 0 then ... is a correct
use of ptr). An illegal operation would be to ask if ptr=1 or to add
one to ptr (ptr<— ptr + 1). These are illegal because we have no way
of knowing what data was stored in what node. Therefore, we do not
know what is stored either at node one or at node ptr + 1. In short,
the only legal questions we can ask about a pointer variable is:

1) Is ptr =0 (or is ptr # 0)?

2) Is ptr equal to the value of another variable of type pointer, e.g.,

is ptr = SAMPLE?

The only legal operations we can perform on pointer variables is:

1) Set ptrto zero;

2) Set ptrto point to a node.
Any other form of arithmetic on pointers is incorrect. Thus, to move
down the list SAMPLE and print its values we cannot write:

ptr — SAMPLE

while ptr # 5 do
print (DATA (ptr))
ptr < ptr + 1

end

118 Linked Lists

This may be confusing because when we begin a program the first
values that are read in are stored sequentially. This is because the
nodes we take off of the available space list are, in the beginning,
at consecutive positions 1,2,3.4, ...,max. However, as soon as nodes
are returned to the free list, subsequent items may no longer reside
at consecutive addresses. A good program returns unused nodes to
available space as soon as they are no longer needed. This free list
is maintained as a stack and hence the most recently returned node
will be the first to be newly allocated. (In some special cases it may
make sense to add numbers to pointer variables, e.g., when ptr + i
is the location of a field of a node starting at ptr or when nodes are
being allocated sequentially, see sections 4.6 and 4.12).

4.4 POLYNOMIAL ADDITION

Let us tackle a reasonable size problem using linked lists. This problem,
the manipulation of symbolic polynomials, has become a classical example
of the use of list processing. As in chapter 2, we wish to be able to
represent any number of different polynomials as long as their combined
size does not exceed our block of memory. In general, we want to
represent the polynomial

AX)=a,x"+ ... +a,x9

where the a; are non-zero coefficients with exponents e, such that
e.>e, > .. > e,>¢e =0. Each term will be represented by a
node. A node will be of fixed size having 3 fields which represent
the coefficient and exponent of a term plus a pointer to the next term

COEF EXP LINK

For instance, the polynomial A = 3x'* + 2x® + 1 would be stored as

A
LL‘3I4

Polynomial Addition 119

while B = 8x'* — 3x'° + 10x° would look like

B

‘/\am

In order to add two polynomials together we examine their terms
starting at the nodes pointed to by A and B. Two pointers p and ¢
are used to move along the terms of A and B. If the exponents of
two terms are equal, then the coefficients are added and a new term
created for the result. If the exponent of the current term in A is
less than the exponent of the current term of B, then a duplicate of

S BCE S ROES oD
DREESDESnO0

q

BDEEDOEEnEL
o [e[a]] [0] ©le]o]

q

(i) EXP(p) =EXP(q)

w

O

>

(i) EXP(p) < EXP(q)

¢ [uia] 4—+-3]10]0]
soEsanes nno RN

B [a{m -3 |o] 10 : 0

¢ Wl e[e

Figure 4.7 Generating the First Three Terms of C= A + B

120 Linked Lists

the term of B is created and attached to C. The pointer g is advanced
to the next term. Similar action is taken on A if EXP(p) > EXP(q).
Figure 4.7 illustrates this addition process on the polynomials A and
B above.

Each time a new node is generated its COEF and EXP fields are
set and it is appended to the end of the list C. In order to avoid having
to search for the last node in C each time a new node is added, we
keep a pointer d which points to the current last node in C. The complete
addition algorithm is specified by the procedure PADD. PADD makes
use of a subroutine ATTACH which creates a new node and appends
it to the end of C. To make things work out neatly, C is initially given
a single node with no values which is deleted at the end of the algorithm.
Though this is somewhat inelegant, it avoids more computation. As
long as its purpose is clearly documented, such a tactic is permissible.

procedure ATTACH(C, E, d)
/create a new term with COEF= C and EXP= E and attach it
to the node pointed at by d /#
call GETNODE(I)

EXP(I) « E
COEF(I) < C
LINK(d) < I attach this node to the end of this list/
de—1 /move pointer d to the new last node /
end ATTACH

Procedure PADD on next page

This is our first really complete example of the use of list processing,
so it should be carefully studied. The basic algorithm is straightforward,
using a merging process which streams along the two polynomials either
copying terms or adding them to the result. Thus, the main while loop
of lines 3-15 has 3 cases depending upon whether the next pair of
exponents are =, <, or >. Notice that there are 5 places where a
new term is created, justifying our use of the subroutine ATTACH.

Finally, some comments about the computing time of this algorithm.
In order to carry out a computing time analysis it is first necessary
to determine which operations contribute to the cost. For this algorithm
there are several cost measures:

(1) coefficient additions;

(1) coefficient comparisons;

(iii) additions/deletions to available space;

—

[RN N WAV I S

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26

Polynomial Addition 121

procedure PADD(A, B, C)
/polynomials A and B represented as singly linked lists are
summed to form the new list named C/

p—A;q<B /p.q pointers to next term of A, B/
call GETNODE(C); d<— C /initial node for C, returned
later #
while p # 0 and q # 0 do / while there are more terms in
Aand B/
case
: EXP(p) = EXP(q): /equal exponents /

x < COEF(p) + COEF(q)
if x # 0 then call ATTACH(x, EXP(p),d)
p «— LINK(p); g «<— LINK(q) / advance to next
terms /
: EXP(p) < EXP(q):
call ATTACH(COEF(q),EXP(q),d)
q<— LINK(q) / advance to next term /
. else : call ATTACH(COEF(p),EXP(p),d)
p < LINK(p) /advance to next term of A/
end
end
while p # 0 do / copy remaining terms of A/
call ATTACH(COEF(p),EXP(p),d)
p < LINK (p)
end
while q # 0 do / copy remaining terms of B/
call ATTACH(COEF(q),EXP(q),d)
q < LINK(q)
end
LINK(d) < 0; t < C; C« LINK(C) / delete extra initial
node /
call RET(t)
end PADD

(iv) creation of new nodes for C.

Let us assume that each of these four operations, if done once, takes
a single unit of time. The total time taken by algorithm PADD is then
determined by the number of times these operations are performed.
This number clearly depends on how many terms are present in the
polynomials A and B. Assume that A and B have m and n terms
respectively.

122 Linked Lists

AX)=a,x+ ..+ ax®, B(x)=b,xf+ ...+ b, xh

where
a,b;#0 and e, >..>e, =0,f,>...>f =0
Then clearly the number of coefficient additions can vary as
0 = coefficient additions =< min {m, n}.

The lower bound is achieved when none of the exponents are equal,
while the upper bound is achieved when the exponents of one polynomial
are a subset of the exponents of the other.

As for exponent comparisons, one comparison is made on each iteration
of the while loop of lines 3-15. On each iteration either p or q or
both move to the next term in their respective polynomials. Since the
total number of terms is m + n, the number of iterations and hence
the number of exponent comparisons is bounded by m + n. One can
easily construct a case when m + n — 1 comparisons will be necessary:
e.g. m= nand

en>fo>en > fa > >f,>e >...>e >f.

n-m+2

The maximum number of terms in C is m + n, and so no more than
m + n new nodes are created (this excludes the additional node which
is attached to the front of C and later returned). In summary then,
the maximum number of executions of any of the statements in PADD
is bounded above by m + n. Therefore, the computing time is O(m + n).
This means that if the algorithm is implemented and run on a computer,
the time taken will be ¢, m + ¢,n + ¢, where ¢,,c,,c; are constants,
Since any algorithm that adds two polynomials must look at each nonzero
term at least once, every algorithm must have a time requirement of
¢;m+ cyn + cy. Hence, algorithm PADD is optimal to within a constant
factor.

The use of linked lists is well suited to polynomial operations. We
can easily imagine writing a collection of procedures for input, output
addition, subtraction and multiplication of polynomials using linked lists
as the means of representation. A hypothetical user wishing to read
in polynomials A(x), B(x) and C(x) and then compute D(x) = A(x)
* B(x) + C(x) would write in his main program:

Polynomial Addition 123

call READ(A)
call READ(B)
call READ(C)
T «— PMUL(A, B)
D «— PADD(T, C)
call PRINT(D)

Now our user may wish to continue computing more polynomials. At
this point it would be useful to reclaim the nodes which are being used
to represent T(x). This polynomial was created only as a partial result
towards the answer D(x). By returning the nodes of T(x), they may
be used to hold other polynomials.

procedure ERASE(T)
#return all the nodes of T to the available space list avoiding repeated
calls to procedure RET/
if T = O then return
p—T
while LINK (p) # 0 do /find the end of T/
p <« LINK (p)
end
LINK (p) < AV / p points to the last node of T/
AV<T / available list now includes T/
end ERASE

Study this algorithm carefully. It cleverly avoids using the RET procedure
to return the nodes of T one node at a time, but makes use of the
fact that the nodes of T are already linked. The time required to erase
T(x) is still proportional to the number of nodes in T. This erasing
of entire polynomials can be carried out even more efficiently by
modifying the list structure so that the LINK field of the last node
points back to the first node as in figure 4.8. A list in which the last
node points back to the first will be termed a circular list. A chain
is a singly linked list in which the last node has a zero link field.

L"314 2|8 |o__>

A ——o

Figure 4.8 Circular List Representation of A = 3x!* + 2x8 + 1

Circular lists may be erased in a fixed amount of time independent
of the number of nodes in the list. The algorithm below does this.

124 Linked Lists

procedure CERASE(T)
/return the circular list T to the available pool /
if T = 0 then return;
X« LINK(T)
LINK(T) « AV
AV X
end CERASE

Figure 4.9 is a schematic showing the link changes involved in erasing
a circular list.

TE{}}.[‘}....,[I-}) AV e[T9

Figure 4.9 Dashes Indicate Changes Involved in Erasing a Circular List

A direct changeover to the structure of figure 4.8 however, causes
some problems during addition, etc., as the zero polynomial has to be
handled as a special case. To avoid such special cases one may introduce
a head node into each polynomial;i.e., each polynomial, zero or non-zero,
will contain one additional node. The EXP and COEF fields of this
node will not be relevant. Thus the zero polynomial will have the
representation:

)

A —

while A = 3x!% + 2x® + 1 will have the representation

R _J— 3 (14| — 2|8 il o} —

For this circular list with head node representation the test for T= 0
may be removed from CERASE. The only changes to be made to
algorithm PADD are:

Polynomial Addition 125

(i) at line 1 define p, g by p<— LINK(A); q — LINK(B)

(ii) at line 3: while p # A and q # B do

(iii) at line 16: while p # A do

(iv) at line 20: while q # B do

(v) at line 24: replace this line by LINK(d) < C

(vi) delete line 25

Thus the algorithm stays essentially the same. Zero polynomials are
now handled in the same way as nonzero polynomials.

A further simplification in the addition algorithm is possible if the
EXP field of the head node is set to —1. Now when all nodes of A
have been examined p = A and EXP(p) = —1. Since —1 = EXP(q) the
remaining terms of B can be copied by further executions of the case
statement. The same is true if all nodes of B are examined before
those of A. This implies that there is no need for additional code to
copy the remaining terms as in PADD. The final algorithm takes the
following simple form.

procedure CPADD (A, B, C)

#polynomials A and B are represented as circular lists with head
nodes so that EXP(A) = EXP(B) = —1. Cis returned as their sum,
represented as a circular list /

p < LINK(A); q < LINK(B)

call GETNODE(C); EXP(C) «— —1 / set up head node /
dC /last node in C/
loop

case

: EXP(p) = EXP(q) : f EXP(p)=—1then[LINK (d)«<C; return]
x <~ COEF(p) + COEF(q)
if x # 0 then call ATTACH(x,EXP(p),d)
p < LINK(p); q < LINK(q)

: EXP(p) < EXP(q) : call ATTACH(COEF(q), EXP(q),d)

q < LINK (gq)
: else : call ATTACH(COEF(p), EXP(p),d)
p < LINK(p)
end
forever
end CPADD

Let us review what we have done so far. We have introduced the
notion of a singly linked list. Each element on the list is a node of

126 Linked Lists

fixed size containing 2 or more fields one of which is a link field.
To represent many lists all within the same block of storage we created
a special list called the available space list or AV. This list contains
all nodes which are currently not inuse. Since all insertions and deletions
for AV are made at the front, what we really have is a linked list
being used as a stack.

There is nothing sacred about the use of either singly linked lists
or about the use of nodes with 2 fields. Our polynomial example used
three fields: COEF, EXP and LINK. Also, it was convenient to use
circular linked lists for the purpose of fast erasing. As we continue,
we will see more problems which call for variations in node structure
and representation because of the operations we want to perform.

4.5 MORE ON LINKED LISTS

It is often necessary and desirable to build a variety of routines for
manipulating singly linked lists. Some that we have already seen are:
1) INIT which originally links together the AV list; 2) GETNODE and
3) RET which get and return nodes to AV. Another useful operation
is one which inverts a chain. This routine is especially interesting because
it can be done ‘“‘in place” if we make use of 3 pointers.

procedure INVERT(X)

a chain pointed at by X is inverted so that if X=(a,, ...,a,,)
then after execution X =(a,,, ...,a,) /
p—X;q<0
while p # 0 do
re—gq;q<p /r follows q; q follows p/
p < LINK(p) /p moves to next node /
LINK(q) «r /link q to previous node /
end
X<gq
end INVERT

The reader should try this algorithm out on at least 3 examples: the
empty list, and lists of length 1 and 2 to convince himself that he
understands the mechanism. For a list of m = 1 nodes, the while loop
is executed m times and so the computing time is linear or O(m).

Another useful subroutine is one which concatenates two chains X
and Y.

More on Linked Lists 127

procedure CONCATENATE(X, Y, Z)

/X=(a,, ...,a,), Y=(b,, ..,b,), mn=0, produces a new chain
Z=(a,,...a,b,, ...b)/
Z— X

if X=0then [Z <« Y, return]

if Y = 0 then return

p<—X

while LINK (p) # 0 do /find last node of X/
p < LINK(p)

end

LINK(p) <Y A/ link last node of Xto Y/
end CONCATENATE

This algorithm is also linear in the length of the first list. From an
aesthetic point of view it is nicer to write this procedure using the
case statement in SPARKS. This would look like:

procedure CONCATENATE(X, Y, Z)
case
1 X=0:Z«<Y
1Y=0:Z< X
celse i pe— X, Z— X
while LINK(p) # 0 do
p < LINK(p)
end
LINK(p) < Y
end
end CONCATENATE

Now let us take another look at circular lists like the one below:

A—o xl/ X, x)

DATA LINK

A = (x,,x,%;). Suppose we want to insert a new node at the front
of this list. We have to change the LINK field of the node containing
x5. This requires that we move down the entire length of A until we
find the last node. It is more convenient if the name of a circular
list points to the last node rather than the first, for example:

128 Linked Lists

—

! X

X

a—A

Now we can write procedures which insert a node at the front or at
the rear of a circular list and take a fixed amount of time.

procedure INSERT FRONT(A, X)
/insert the node pointed at by X to the front of the circular list
A, where A points to the last node /
if A=0then [A—X
LINK(X) < A]
else [LINK(X) <« LINK(A)
LINK(A) « X]
end INSERT—FRONT

To insert X at the rear, one only needs to add the additional statement
A « X to the else clause of INSERT_FRONT.

As a last example of a simple procedure for circular lists, we write
a function which determines the length of such a list.

procedure LENGTH(A)
/ find the length of the circular list A /

i—0
if A#0then [ptr— A
repeat
i< i+ 1; ptr < LINK(ptr)
until ptr = A
return (i)
end LENGTH

4.6 EQUIVALENCE RELATIONS

Let us put together some of these ideas on linked and sequential
representations to solve a problem which arises in the translation of
computer languages, the processing of equivalence relations. In FOR-
TRAN one is allowed to share the same storage among several program
variables through the use of the EQUIVALENCE statement. For
example, the following pair of Fortran statements

Equivalence Relations 129

DIMENSION A(3), B(2,2), C(6)
EQUIVALENCE (A(2), B(1,2), C4)), (A(1),D), (D,E,F), (G,H)

would result in the following storage assignment for these variables:

MEMORY

1 c

2 B(1,1) 8¢))]

3 A B(2,1) c@3) D E F
4 AQ2) B(1,2) c4

5 AQ3) B(2,2) C(5)

6 C(6)

7 G H

As a result of the equivalencing of A(2), B(1,2) and C(4), these were as-
signed the same storage word 4. This in turn equivalenced A(1), B(2,1)
and C(3), B(1,1) and C(2), and A(3), B(2,2) and C(5). Because
of the previous equivalence group, the equivalence pair (A (1), D) also
resulted in D sharing the same space as B(2,1) and C(3). Hence,
an equivalence of the form (D, C(5)) would conflict with previous equiv-
alences, since C(5) and C(3) cannot be assigned the same storage. Even
though the sum of individual storage requirements for these variables
is 18, the memory map shows that only 7 words are actually required
because of the overlapping specified by the equivalence groups in the
EQUIVALENCE statement. The functions to be performed during the
processing of equivalence statements, then, are:

(i) determine whether there are any conflicts;

(i) determine the total amount of storage required;

(i) determine the relative address of all variables (i.e., the address

of A(l), B(1,1), C(1), D, E, F, G and H in the above example).

In the text we shall solve a simplified version of this problem. The
extension to the general Fortran equivalencing problem is fairly straight-
forward and appears as an exercise. We shall restrict ourselves to the
case in which only simple variables are being equivalenced and no arrays
are allowed. For ease in processing, we shall assume that all equivalence
groups are pairs of numbers (i,j), where if EQUIVALENCE(A,F)

130 Linked Lists

appears then i,j are the integers representing A and F. These can be
thought of as the addresses of A and F in a symbol table. Furthermore,
it is assumed that if there are n variables, then they are represented
by the numbers 1 to n.

The FORTRAN statement EQUIVALENCE specifies a relationship
among addresses of variables. This relation has several properties which
it shares with other relations such as the conventional mathematical
equals. Suppose we denote an arbitrary relation by the symbol = and
suppose that:

(i) For any variable x, x=x, e.g. x is to be assigned the same

location as itself. Thus = is reflexive,

(ii) For any two variables x and y, if x = y then y = x, e.g. assigning

y the same location as x is the same as assigning x the same
location as y. Thus, the relation = is symmetric.

(iii) For any three variables x, yand z, if x=yand y= zthen x =z,

e.g. if x and y are to be assigned the same location and y and
z are also to be assigned the same location, then so also are
x and z. The relation = is transitive.

Definition: A relation, =, over a set S, is said to be an equivalence
relation over S iff it is symmetric, reflexive and transitive over S.

Examples of equivalence relations are numerous. For example, the ‘‘equal
to”’ (=) relationship is an equivalence relation since: (i) x = x, (i) x =y
implies y = x, and (iii) x=y and y = z implies x = z. One effect of
an equivalence relation is to partition the set S into equivalence classes
such that two members x and y of S are in the same equivalence class
iff x=y. For example, if we have 12 variables numbered 1 through
12 and the following equivalences were defined viathe EQUIVALENCE
statement:

1=5,4=2,7=11,9=10,8=5,7=9,4=6,3=12and 12 =1
then, as a result of the reflexivity, symmetry and transitivity of the

relation =, we get the following partitioning of the 12 variables into
3 equivalence classes:

{1,3,5,8, 12}; {2, 4, 6}; {7,9, 10, 11}.

So, only three words of storage are needed for the 12 variables.
In order to solve the FORTRAN equivalence problem over simple

Equivalence Relations 131

variables, all one has to do is determine the equivalence classes. The
number of equivalence classes is the number of words of storage to
be allocated and the members of the same equivalence class are allocated
the same word of storage.

The algorithm to determine equivalence classes works in essentially
two phases. In the first phase the equivalence pairs (i,j) are read in
and stored somewhere, In phase two we begin at one and find all pairs
of the form (1,j). The values 1 and j are in the same class. By transitivity,
all pairs of the form (j,k) imply k is in the same class. We continue
in this way until the entire equivalence class containing one has been
found, marked and printed. Then we continue on.

The first design for this algorithm might go this way:

procedure EQUIVALENCE (m,n)
initialize
for k< 1to mdo
read the next pair (i,])
process this pair
end
initialize for output
repeat
output a new equivalence class
until done
end EQUIVALENCE

The inputs m and nrepresent the number of related pairs and the number
of objects respectively. Now we need to determine which data structure
should be used to hold these pairs. To determine this we examine the
operations that are required. The pair (i,j) is essentially two random
integers in the range 1 to n. Easy random access would dictate an
array, say PAIRS (1: n, 1: m). The i-th row would contain the elements
jwhich are paired directly to iin the input. However, this would potentially
be very wasteful of space since very few of the array elements would
be used. It might also require considerable time to insert a new pair,
(i,k), into row i since we would have to scan the row for the next
free location or use more storage.

These considerations lead us to consider a linked list to represent
each row. Each node on the list requires only a DATA and LINK
field. However, we still need random access to the i-th row so a one
dimensional array, SEQ(1:n) can be used as the headnodes of the n
lists. Looking at the second phase of the algorithm we need a mechanism

132

Linked Lists

which tells us whether or not object i has already been printed. An
array of bits, BIT(1:n) can be used for this. Now we have the next

refinement of the algorithm.

procedure EQUIVALENCE (m,n)
declare SEQ(1:n), DATA(1:2m), LINK(1:2m), BIT(1:n)

initialize BIT, SEQ to zero

for k < 1to mdo

read the next pair (i,])

put j on the SEQC(i) list

put i on the SEQ(j) list
end

index « 1
repeat
if BIT(index) =10

end

then [BIT (index) « 1

output this new equivalence class |
index « index + 1
until index > n

Let us simulate the algorithm as we have it so far, on the previous
data set. After the for loop is completed the lists will look like this.

SEQ

DATA
LINK

DATA
LINK

() (@ 3 @ (5) (e) (7) (8) (9) (|o) (n) (|2)
: i i i i =

(0] [O] L]

-

For each relation i=j, two nodes are used. SEQ(i) points to a list
of nodes which contains every number which is directly equivalenced

to i by an input relation.

In phase two we can scan the SEQ array and start with the first
i, 1 =i= n such that BIT(i) = 0. Each element in the list SEQ(i) is
printed. In order to process the remaining lists which, by transitivity,

Equivalence Relations 133

belong in the same class as i a stack of their nodes is created. This
is accomplished by changing the LINK fields so they point in the reverse
direction. The complete algorithm is now given.

procedure EQUIVALENCE (m,n)
/Input: m, the number of equivalence pairs
n, the number of variables
Output: variables 1, ...,n printed in equivalence classes /
declare SEQ(1:n), BIT(1:n)
DATA(1: 2m), LINK(1: 2m);
for i — 1 to ndo SEQ(i) «— BIT(i) «— 0 end
av «— 1
for k< 1 to m do # phase 1: process all input /
read next equivalence pair (i, j)
DATA (av) « j; LINK (av) < SEQ(i) /add jto list i/
SEQ(i) < av;av <« av + 1
DATA(av) < i; LINK (av) < SEQ()) /add ito list j/
SEQ(j) «av;ave—av + 1
end
index « 1
repeat / phase 2: output all classes /
if BIT(index) =0
then [print (‘A new class’, index)
BIT(index) « 1 / mark class as output/
ptr < SEQ(index); top <0 /initialize stack /
loop /find the entire class /
while ptr # 0 do /process a list/
j < DATA (ptr)
if BIT(j) =0
then [print (j); BIT(j) « 1
t < LINK (ptr); LINK (ptr) < top
top « ptr; ptr «— t]
else ptr — LINK (ptr)
end
if top = 0 then exit /stack empty /
ptr <— SEQ(DATA (top))
top «— LINK (top)
forever]
index < index + 1
until index > n
end EQUIVALENCE

134 Linked Lists

Analysis of Algorithm EQUIVALENCE

The initialization of SEQ and BIT takes O(n) time. The processing
of each input pair in phase 1 takes a constant amount of time. Hence,
the total time for this phase is O(m). In phase 2 each node is put
onto the linked stack at most once. Since there are only 2m nodes
and the repeat loop is executed » times, the time for this phase is O(m + n).
Hence. the overall computing time is O(m + n). Any algorithm which
processes equivalence relations must look at all the m equivalence pairs and
also at all the n variables at least once. Thus, there can be no algorithm with a
computing time less than O(m + n). This means that the algorithm EQUIV-
ALENCE is optimal to within a constant factor. Unfortunately, the space
required by the algorithm is also O(m + n). In chapter 5 we shall see an
alternative solution to this problem which requires only O(n) space.

4.7 SPARSE MATRICES

In Chapter 2, we saw that when matrices were sparse (i.e. many of
the entries were zero), then much space and computing time could be
saved if only the nonzero terms were retained explicitly. In the case
where these nonzero terms did not form any ‘‘nice’ pattern such as
a triangle or a band, we devised a sequential scheme in which each
nonzero term was represented by a node with three fields: row, column
and value. These nodes were sequentially organized. However, as matrix
operations such as addition, subtraction and multiplication are performed,
the number of nonzero terms in matrices will vary, matrices representing
partial computations (as in the case of polynomials) will be created
and will have to be destroyed later on to make space for further matrices.
Thus, sequential schemes for representing sparse matrices suffer from
the same inadequacies as similar schemes for polynomials. In this section
we shall study a very general linked list scheme for sparse matrix
representation. As we have already seen, linked schemes facilitate
efficient representation of varying size structures and here, too, our
scheme will overcome the aforementioned shortcomings of the sequential
representation studied in Chapter 2.

In the data representation we shall use, each column of a sparse
matrix will be represented by a circularly linked list with a head node.
In addition, each row will also be a circularly linked list with a head
node. Each node in the structure other than a head node will represent
a nonzero term in the matrix A and will be made up of five fields:

Sparse Matrices 135

ROW, COL, DOWN, RIGHT and VALUE. The DOWN field will be
used to link to the next nonzero element in the same column, while
the RIGHT field will be used to link to the next nonzero element in
the same ROW. Thus, if a; # 0, then there will be a node with VALUE
field a; ROW field i and COL field j. This node will be linked into
the circular linked list for row i and also into the circular linked list
for column j. It will, therefore, be a member of two lists at the same
time.

In order to avoid having nodes of two different sizes in the system,

we shall assume head nodes to be configured exactly as nodes being

DOWN |[ROW |COL ([RIGHT — | i])| 4+—»
VALUE oij
Typical Node Set up for o;j

Figure 4.10 Node Structure for Sparse Matrix Representation

used to represent the nonzero terms of the sparse matrix. The ROW
and COL fields of head nodes will be set to zero (i.e. we assume that
the rows and columns of our matrices have indices >0). Figure 4.12
shows the structure obtained for the 6 X 7 sparse matrix, A, of figure
4.11.

- -
o0 0, 11, o0, 0 13, 0O
12, 0, 0 0 0 0 14
o0 -4, 0, 0 0 -8 0
o0 0 0 0 o0 0
00 0, 0 0 0 0

L0, -9, 0o, o 0 0

Figure 4.11 6 x 7 Sparse Matrix A

For each nonzero term of A, we have one five field node which
is in exactly one column list and one row list. The head nodes are
marked H1-H7. As can be seen from the figure, the VALUE field of the
head nodes for each column list is used to link to the next head node
while the DOWN field links to the first nonzero term in that column

Linked Lists

136

Vv Xuiepy asreds oyl jo uoneluasaiday paqury Iy aandyy

8-

JH o} sjulod

ﬁ

jojo]_

i

O_O_Q

- [o[o]

role]

/

€l

\//

I@L\l

ool

b

Jolo]

ZH

100} -
SH

SH

SH

GH

vH

¢H

Z¢H

Sparse Matrices 137

(or to itself in case there is no nonzero term in that column). This
leaves the RIGHT field unutilized. The head nodes for the row lists
have the same ROW and COL values as the head nodes for the
column lists. The only other field utilized by the row head nodes is the
RIGHT field which is not used in the column head nodes. Hence it is
possible to use the same node as the head node for row i as for col-
umn i. It is for this reason that the row and column head nodes have
the same labels. The head nodes themselves, linked through the VALUE
field, form a circularly linked list with a head node pointed to by A.
This head node for the list of row and column head nodes contains
the dimensions of the matrix. Thus, ROW(A) is the number of rows
in the matrix A while COL(A) is the number of columns. As in the
case of polynomials, all references to this matrix are made through
the variable A. If we wish to represent an n X m sparse matrix with
rnonzero terms, then the number of nodes needed is r + max {n,m} + 1.
While each node may require 2 to 3 words of memory (see section
4.12), the total storage needed will be less than nm for sufficiently
small r.

Having arrived at this representation for sparse matrices, let us see
how to manipulate it to perform efficiently some of the common operations
on matrices. We shall present algorithms to read in a sparse matrix
and set up its linked list representation and to erase a sparse matrix
(i.e. to return all the nodes to the available space list). The algorithms
will make use of the utility algorithm GETNODE(X) to get nodes from
the available space list.

To begin with let us look at how to go about writing algorithm
MREAD(A) to read in and create the sparse matrix A. We shall assume
that the input consists of s, the number of rows of A, m the number
of columns of A, and r the number of nonzero terms followed by r
triples of the form (i,j,a;). These triples consist of the row, column
and value of the nonzero terms of A. It is also assumed that the triples
are ordered by rows and that within each row, the triples are ordered
by columns. For example, the input for the 6 x 7 sparse matrix of
figure 4.11, which has 7 nonzero terms, would take the form: 6,7,7;
1,3,11;1,6,13;2,1,12;2,7,14;3,2,—4;3,6,—8,6,2,—-9. We shall not concern
ourselves here with the actual format of this input on the input media
(cards, disk, etc.) but shall just assume we have some mechanism to
get the next triple (see the exercises for one possible input format).
The algorithm MREAD will also make use of an auxiliary array
HDNODE, which will be assumed to be at least as large as the largest
dimensioned matrix to be input. HDNODE (i) will be a pointer to the

138 Linked Lists

head node for column i, and hence also for row i. This will permit
us to efficiently access columns at random while setting up the input
matrix. Algorithm MREAD proceeds by first setting up all the head
nodes and then setting up each row list, simultaneously building the
column lists. The VALUE field of headnode i is initially used to keep
track of the last node in column i. Eventually, in line 27, the headnodes
are linked together through this field.

Program on next page

Analysis of Algorithm MREAD

Since GETNODE works in a constant amount of time, all the head
nodes may be set up in O(max {n,m}) time, where n is the number
of rows and m the number of columns in the matrix being input. Each
nonzero term can be set up in a constant amount of time because of
the use of the variable LAST and a random access scheme for the
bottommost node in each column list. Hence, the for loop of lines
9-20 can be carried out in O(r) time. The rest of the algorithm takes
O(max {n,m})time. The total time is therefore O(max {n,m} + r) = O(n
+ m + r). Note that this is asymptotically better than the input time
of O(nm) for an n X m matrix using a two-dimensional array, but slightly
worse than the sequential sparse method of section 2.3.

Before closing this section, let us take a look at an algorithm to return
all nodes of a sparse matrix to the available space list.

procedure MERASE(A)

/returnall nodes of A to available space list. Assume that the available
space list is a singly linked list linked through the field RIGHT
with AV pointing to the first node in this list./

RIGHT(A) « AV; AV « A; NEXT « VALUE(A)

while NEXT # A do /erase circular lists by rows /

T <~ RIGHT(NEXT)
RIGHT(NEXT) « AV
AV<T
NEXT « VALUE(NEXT)
end
end MERASE

Analysis of Algorithm MERASE

Since each node is in exactly one row list, it is sufficient to just
return all the row lists of the matrix A. Each row list is circularly

Sparse Matrices 139

procedure MREAD(A)

/read in a matrix A and set up its internal representation as
discussed previously, The triples representing nonzero terms
are assumed ordered by rows and within rows by columns,
An auxiliary array HDNODE is used./

1 read (n,m,r) / m,n are assumed positive. ris the number
of nonzero elements/

2 p < max {m,n}
3 for i < 1 to p do /get p headnodes for rows and
columns /
4 call GETNODE(X); HDNODE(i) «— X
S ROW(X) <~ COL(X) < 0
6 RIGHT(X) « VALUE(X) <« X /these fields point to
themselves /
7 end
8 current _row — 1; LAST «— HDNODE(1)
9 for i < 1 to rdo
10 read (rrow. ccol, val) / get next triple /
11 if rrow > current__row /current row is done; close it and
begin another /
12 then [RIGHT(LAST) « HDNODE (current__row)
13 current_row < rrow; LAST <« HDNODE(rrow)]
/ LAST points to rightmost node /
14 call GETNODE(X)
15 ROW(X) « rrow; COL(X) < ccol; VALUE(X) « val
/ store triple into new node /
16 RIGHT(LAST) <« X; LAST < X /link into row list /
17 DOWN(VALUE(HDNODE(ccol))) < X;
/link into column list,/
18 VALUE(HDNODE(ccol)) < X
19
20 end

21 Aclose last row /
if r # 0 then RIGHT(LAST) < HDNODE (current__row)

22 for i < | to m do /close all column lists /
23 DOWN(VALUE(HDNODE(i))) < HDNODE(i)
24 end

25 /set up list of headnodes linked through VALUE field /
26 call GETNODE(A); ROW(A) < n; COL(A) < m
/set up headnode of matrix,/
27 for l<—| to p— 1 do VALUE(HDNODE(i)) < HDNODE(i + 1)
end

28 if p=0then VALUE(A) < A
29 else [VALUE(HDNODE (p)) < A

VALUE(A) <« HDNODE(1)]
30 end MREAD

140 Linked Lists

linked through the field RIGHT. Thus, nodes need not be returned
one by one as a circular list can be erased in a constant amount of
time. The computing time for the algorithmis readily seento be O(n + m).
Note that even if the available space list had been linked through the
field DOWN, then erasing could still have been carried out in O(n + m)
time. The subject of manipulating these matrix structures is studied
further in the exercises. The representation studied here is rather general.
For most applications this generality is not needed. A simpler representa-
tion resulting in simpler algorithms is discussed in the exercises.

4.8 DOUBLY LINKED LISTS AND DYNAMIC
STORAGE MANAGEMENT

So far we have been working chiefly with singly linked linear lists.
For some problems these would be too restrictive. One difficulty with
these lists is that if we are pointing to a specific node, say P, then
we can easily move only in the direction of the links. The only way
to find the node which precedes P is to start back at the beginning
of the list. The same problem arises when one wishes to delete an
arbitrary node from a singly linked list. As can be seen from example
4.3, in order to easily delete an arbitrary node one must know the
preceding node. If we have a problem where moving in either direction
is often necessary, then it is useful to have doubly linked lists. Each
node now has two link fields, one linking in the forward direction and
one in the backward direction.

A node in a doubly linked list has at least 3 fields, say DATA, LLINK
(left link) and RLINK (right link). A doubly linked list may or may
not be circular. A sample doubly linked circular list with 3 nodes is
given in figure 4.13. Besides these three nodes a special node has been

LLINK DATA RLINK Head Node

Figure 4.13 Doubly Linked Circular List with Head Node

Doubly Linked Lists and Dynamic Sterage Management 141

added called a head node. As was true in the earlier sections, head
nodes are again convenient for the algorithms. The DATA field of the
head node will not usually contain information. Now suppose that P
points to any node in a doubly linked list. Then it is the case that

P = RLINK (LLINK(P)) = LLINK (RLINK(P)).
This formula reflects the essential virtue of this structure, namely, that

one can go back and forth with equal ease. An empty list is not really
empty since it will always have its head node and it will look like

Now to work with these lists we must be able to insert and delete
nodes. Algorithm DDLETE deletes node X from list L.

procedure DDLETE(X, L)
if X = L then call NO_MORE_NODES
/ L is a list with at least one node /
RLINK(LLINK (X)) « RLINK(X)
LLINK(RLINK (X)) « LLINK(X)
call RET(X)

end DDLETE

X now points to a node which is no longer part of list L. Let us see
how the method works on a doubly linked list with only a single node.

Before After

L— G &

|

]

142 Linked Lists

Even though the RLINK and LLINK fields of node X still point to
the head node, this node has effectively been removed as there is no
way to access X through L.

Insertion is only slightly more complex.

procedure DINSERT (P, X)
/insert node P to the right of node X/
LLINK(P) <« X /set LLINK and RLINK fields of node P/
RLINK(P) « RLINK(X)
LLINK(RLINK(X)) « P
RLINK(X) < P
end DINSERT

In the next section we will see an important problem from operating
systems which is nicely solved by the use of doubly linked lists.

Dynamic Storage Management

In a multiprocessing computer environment, several programs reside
in memory at the same time. Different programs have different memory
requirements. Thus, one program may require 60K of memory, another
100K, and yet another program may require 300K. Whenever the
operating system needs to request memory, it must be able to allocate
a block of contiguous storage of the right size. When the execution
of a program is complete, it releases or frees the memory block allocated
to it and this freed block may now be allocated to another program.
In a dynamic environment the request sizes that will be made are not
known ahead of time. Moreover, blocks of memory will, in general,
be freed in some order different from that in which they were allocated.
At the start of the computer system no jobs are in memory and so
the whole memory, say of size M words, is available for allocation
to programs. Now, jobs are submitted to the computer and requests
are made for variable size blocks of memory. Assume we start off
with 100,000 words of memory and five programs P1, P2, P3, P4 and
P5 make requests of size 10,000, 15,000, 6,000, 8,000 and 20,000
respectively. Figure 4,14 indicates the status of memory after storage

2% DAY

1 10,000 31,000 59,000 100,000
25,000 39,000

Figure 4.14 Memory After Allocation to P1-P5

Free Space

Doubly Linked Lists and Dynamic Storage Management 143

for P5 has been allocated. The unshaded area indicates the memory
that is currently not in use. Assume that programs P4 and P2 complete
execution, freeing the memory used by them. Figure 4.15 shows the

Free

I 10000 31,000 59,000 100,000
25,000 39,000

Figure 4.15 Status of Memory After Completion of P2 and P4

status of memory after the blocks for P2 and P4 are freed. We now
have three blocks of contiguous memory that are in use and another
three that are free. In order to make further allocations, it is necessary
to keep track of those blocks that are not in use. This problem is
similar to the one encountered in the previous sections where we had
to maintain a list of all free nodes. The difference between the situation
then and the one we have now is that the free space consists of variable
size blocks or nodes and that a request for a block of memory may
now require allocation of only a portion of a node rather than the whole
node. One of the functions of an operating system is to maintain a
list of all blocks of storage currently not in use and then to allocate
storage from this unused pool as required. One can once again adopt
the chain structure used earlier to maintain the available space list.
Now, in addition to linking all the free blocks together, it is necessary
to retain information regarding the size of each block in this list of
free nodes. Thus, each node on the free list has two fields in its first
word,i.e., SIZE and LINK. Figure 4.16 shows the free list corresponding
to figure 4.15. The use of a head node simplifies later algorithms.

If we now receive a request for a block of memory of size N, then

AV
(,\\ SIZE LINK

o 15000 8000 41000|0

Figure 4.16 Free List with Head Node Corresponding to figure 4.15

144 Linked Lists

it is necessary to search down the list of free blocks finding the first
block of size =N and allocating N words out of this block. Such an
allocation strategy is called first fit. The algorithm below makes storage
allocations using the first fit strategy. An alternate strategy, best fit,
calls for finding a free block whose size is as close to N as possible,
but not less than N. This strategy is examined in the exercises.

procedure FF(n, p)

A/ AV points to the available space list which is searched for a node
of size at least n. p is set to the address of a block of size n
that may be allocated. If there is no block of that size then p = 0.
It is assumed that the free list has a head node with SIZE field = 0,/

p < LINK(AV); q < AV

while p # 0 do
if SIZE(p) = n then [SIZE(p) < SIZE(p) ~ n

if SIZE(p) = 0 then LINK(q) < LINK(p)
else p — p + SIZE(p)
return |
q < p; p < LINK(p)
end
//no block is large enough /
end FF

This algorithm is simple enough to understand. In case only a portion
of a free block is to be allocated, the allocation is made from the bottom
of the block. This avoids changing any links in the free list unless
an entire block is allocated. There are, however, two major problems
with FF. First, experiments have shown that after some processing
time many small nodes are left in the available space list, these nodes
being smaller than any requests that would be made. Thus, a request
for 9900 words allocated from a block of size 10,000 would leave behind
a block of size 100, which may be smaller than any requests that will
be made to the system. Retaining these small nodes on the available
space list tends to slow down the allocation process as the time needed
to make an allocation is proportional to the number of nodes on the
available space list. To get around this, we choose some suitable constant
€ such that if the allocation of a portion of a node leaves behind a
node of size <e, then the entire node is allocated. I.e., we allocate
more storage than requested in this case. The second problem arises
from the fact that the search for a large enough node always begins
at the front of the list. As a result of this, all the small nodes tend

Doubly Linked Lists and Dynamic Storage Management 145

to collect at the front so that it is necessary to examine several nodes
before an allocation for larger blocks can be made. In order to distribute
small nodes evenly along the list, one can begin searching for a new
node from a different point in the list each time a request is made.
To implement this, the available space list is maintained as a circular
list with a head node of size zero. AV now points to the last node
from which an allocation was made. We shall see what the new allocation
algorithm looks like after we discuss what has to be done to free a
block of storage.

The second operation is the freeing of blocks or returning nodes to
AV. Not only must we return the node but we also want to recognize
if its neighbors are also free so that they can be coalesced into a single
block. Looking back at figure 4.15, we see that if P3 is the next program
to terminate, then rather than just adding this node onto the free list
to get the free list of figure 4.17, it would be better to combine the
adjacent free blocks corresponding to P2 and P4, obtaining the free
list of figure 4.18. This combining of adjacent free blocks to get bigger
free blocks is necessary. The block allocation algorithm splits big blocks

AV 25,001 10,001 31,001 59,001
o 6000 15000 8000 41000; O

Figure 4.17 Available Space List When Adjacent Free Blocks Are Not Coalesced.

AV 10,001 59,00l
0 29000 41000]| O

Figure 4.18 Available Space List When Adjacent Free Blocks Are Coalesced.

146 Linked Lists

while making allocations. As a result, available block sizes get smaller
and smaller. Unless recombination takes place at some point, we will
no longer be able to meet large requests for memory.

With the structure we have for the available space list, it is not easy
to determine whether blocks adjacent to the block (n, p) (n = size of
block and p = starting location) being returned are free. The only way
to do this, at present, is to examine all the nodes in AV to determine
whether:

(i) the left adjacent block is free, i.e., the block ending at p — 1;

(ii) the right adjacent block is free, i.e., the block beginning at p + n.

In order to determine (i) and (ii) above without searching the available
space list, we adopt the node structure of figure 4.19 for allocated and
free nodes:

TAG = || SIZE LLINK | TAG=0} SIZE [RLINK

TAG= | | TAG=OIUPLINK1

Allocated Node Free Node
Figure 4.19

The first and last words of each block are reserved for allocation
information. The first word of each free block has four fields: LLINK,
RLINK, TAG and SIZE. Only the TAG and SIZE field are important
for a block in use. The last word in each free block has two fields:
TAG and UPLINK. Only the TAG field is important for a block in
use. Now by just examining the tagat p — 1 and p + none can determine
whether the adjacent blocks are free. The UPLINK field of a free
block points to the start of the block. The available space list will
now be a doubly linked circular list, linked through the fields LLINK
and RLINK. It will have a head node with SIZE = 0. A doubly linked
list is needed, as the return block algorithm will delete nodes at random
from AV. The need for UPLINK will become clear when we study
the freeing algorithm. Since the first and last nodes of each block have
TAG fields, this system of allocation and freeing is called the Boundary
Tag method. It should be noted that the TAG fields in allocated and
free blocks occupy the same bit position in the first and last words
respectively. This is not obvious from figure 4.19 where the LLINK

Doubly Linked Lists and Dynamic Storage Management 147

field precedes the TAG field in a free node. The labeling of fields
in this figure has been done so as to obtain clean diagrams for the
available space list. The algorithms we shall obtain for the boundary
tag method will assume that memory is numbered 1 to m and that
TAG(0) = TAG(m + 1) = 1. This last requirement will enable us to
free the block beginning at 1 and the one ending at m without having
to test for these blocks as special cases. Such a test would otherwise
have been necessary as the first of these blocks has no left adjacent
block while the second has no right adjacent block. While the TAG
information is all that is needed in an allocated block, it is customary
to also retain the size in the block. Hence, figure 4.19 also includes
a SIZE field in an allocated block.

Before presenting the allocate and free algorithms let us study the
initial condition of the system when all of memory is free. Assuming
memory begins at location 1 and ends at m, the AV list initially looks
like:

TAG SIZE
Av O[O - Ofm

Programs on next two pages

While these algorithms may appear complex, they are a direct conse-
quence of the doubly linked list structure of the available space list
and also of the node structure in use. Notice that the use of a head
node eliminates the test for an empty list in both algorithms and hence
simplifies them. The use of circular linking makes it easy to start the
search for a large enough node at any point in the available space list.
The UPLINK field in a free block is needed only when returning a
block whose left adjacent block is free (see lines 18 and 24 of algorithm
FREE). The readability of algorithm FREE has been greatly enhanced
by the use of the case statement. In lines 20 and 27 AV is changed
so that it always points to the start of a free block rather than into

148 Linked Lists

procedure ALLOCATE (n,p)

/Use next fit to allocate a block of memory of size at least
n, n> 0. The available space list is maintained as described
above and it is assumed that no blocks of size < € are to
be retained. p is set to be the address of the first word in
the block allocated. AV points to a node on the available list. /

1 p < RLINK(AV) /begin search at p /
2 repeat
3 if SIZE (p) = n then /block is big enough /
4 [diff < SIZE(p) — n
5 if diff < € then /allocate whole block /
6 [RLINK (LLINK (p)) < RLINK (p) /delete node
from AV /
7 LLINK (RLINK (p)) < LLINK (p)
8 TAG(p) <« TAG(p + SIZE(p) — 1) « 1 A set
tags /
9 AV <« LLINK (p) //set starting point of next
search /
10 return |
11 else A allocate lower n words /
12 [SIZE(p) « diff
13 UPLINK (p + diff - 1) < p
14 TAG(p + diff = 1) < 0 //set upper portion as
unused /
15 AV <p / position for next search/
16 p < p + diff //set p to point to start of allocated
block /
17 SIZE(p) < n
18 TAG(p) <« TAG(p + n — 1) <1
/ set tags for allocated block /
19 return]]
20 p < RLINK(p) /examine next node on list /

21 until p = RLINK(AV)

22 - /no block large enough /
23 p<«0;

24 end ALLOCATE

W N =

(9]

(o]

10
11
12

13

14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
29

Doubly Linked Lists and Dynamic Storage Management 149

procedure FREE(p)
/return a block beginning at p and of size SIZE(p)/
n < SIZE(p)
case
:TAG(p ~ 1) = 1 and TAG(p + n) = 1.
/both adjacent blocks in use /
TAG(p) < TAG(p + n — 1) <0 /set up a free
block /
UPLINK(p+n-1)<p
LLINK(p) < AV; RLINK(p) < RLINK(AV)
/insert at right of AV /
LLINK(RLINK(p)) < p; RLINK(AV) < p

:TAG(p + n) = 1 and TAG(p — 1) = 0: »only left block
free /
q< UPLINK(p - 1) / start of left block /

SIZE(q) < SIZE(q) + n
UPLINK(p+ n—-1)«<q; TAG(p+ n—-1) <0
:TAG(p + n) = 0and TAG(p - 1) = 1:
 only right adjacent block free /

RLINK(LLINK(p + n)) < p /replace block
beginning /

LLINK(RLINK(p + n)) < p Aat p + nby one /

LLINK(p) < LLINK(p + n) /beginning at p /

RLINK(p) < RLINK(p + n)
SIZE(p) < n + SIZE(p + n)
UPLINK (p + SIZE(p) — 1)< p
TAG(p) <0
if AV=p+ nthen AV<p
else: Zboth adjacent blocks free /
/ delete right free block from AV list /
RLINK (LLINK (p + n)) < RLINK (p + n)
LLINK(RLINK (p + n)) < LLINK(p + n)
q<— UPLINK({ - 1) / start of left free
block /
SIZE(q) < SIZE(q) + n + SIZE(p + n)
UPLINK (q + SIZE(q) — 1) < q
if AV=p+ nthen AV< LLINK(p + n)
end
end FREE

150 Linked Lists

the middle of a free block. One may readily verify that the algorithms
work for special cases such as when the available space list contains
only the head node.

The best way to understand the algorithms is to simulate an example.
Let us start with a memory of size 5000 from which the following
allocations are made: r, = 300, r, = 600, r; = 900, r, = 700, r; = 1500
and r, = 1000. At this point the memory configuration is as in figure
4.20. This figure also depicts the different blocks of storage and the
available space list. Note that when a portion of a free block is allocated,
the allocation is made from the bottom of the block so as to avoid
unnecessary link changes in the AV list. First block r, is freed. Since
TAG(5001) = TAG(4700) = 1, no coalescing takes place and the block
is inserted into the AV list (figure 4.21a). Next, block r, is returned.
Since both its left adjacent block (rs) and its right adjacent block (r;)
are in use at this time (TAG(2500)-= TAG(3201) =1), this block is just
inserted into the free list to get the configuration of figure 4.21b. Block
r, is next returned. Its left adjacent block is free, TAG(3200) = 0; but
its right adjacent block is not, TAG(4101) = 1. So, this block is just
attached to the end of its adjacent free block without changing any
link fields (figure 4.21c). Block r next becomes free. TAG(1000) = 1
and TAG(2501) = 0 and so this block is coalesced with its right adjacent
block which is free and inserted into the spot previously occupied by
this adjacent free block (figure 4.21(d)). r, is freed next. Both its upper
and lower adjacent blocks are free. The upper block is deleted from
the free space list and combined with r,. This bigger block is now
just appended to the end of the free block made up of r;, r, and r;
(figure 4.21(e)).

(e[] [2 [5]

r
I
j000 1500 700 900 600 300

| 100! 250l 3201 410] 4701
i [1000] [1] 1500 1] 700] [1]s00] [1] 600 i | 300

r6 r5 r4 r3 r2 r

|
|] | 11 | | l |]
1000 2500 3200 4100 4700 5000

Figure 4.20

151

Doubly Linked Lists and Dynamic Storage Management

walsAg Se] Arepunog ul syoolg Jo Suisard Jg'p aundyy

"pasueyo syul ¢ *paaiy st 4 yooid (q)

10s2 |0 _
102t | O
NL m_ m_ w_
L. .
00g |0 ooz lol._To]o j 009 |1 | [ooe 1| [oosi 1] [oooi]
10Lb 10S¢ IOl 102§ 100!
pagueyo syuI| ¢ ‘paay st 11 Yd0[q (v)
oLy | o L L L l l
N.h NL Q‘_ mL @L
ﬁ 00€ | 0 I 0|0 009 [L| o006 | L] | ooz |1 |o0SL]L] |o0OL|L
LoLy LOLY LOZE L0SZ LOOL L
€) vy Sy 9

Linked Lists

152

104Y

(*pIuoo) WasAg Sey Alepunogd ul syoo[g Jo Suidalf 1Ty N3

0S¢

‘padueyd syuif ou ‘paay) st & yoolg (o)

00¢

0091

0|0 009 | |

006l

000! § I

10

1062

153

Doubly Linked Lists and Dynamic Storage Management

('pwod) walsAg e Arepunog ul syoo[g jo Sursald Ig'p sandiyg

1001

0

104

198 $UI| ‘paay 4 Yd0ld (P)

00¢

0101}

L]

100!

(*puod) WwalsAS S, Arepunog ul syoo[d jo Suisaid 7'y aandig

pasSueyd syulj g ‘paaiy st U yooig (3)

1addn 3)op0p 18114

100l |0

1001 | |

000t (0 — oolg |0 J 000l | 1

154 Linked Lists

Generalized Lists 155

As for the computational complexity of the two algorithms, one may
readily verify that the time required to free a block of storage is
independent of the number of free blocks in AV. Freeing a block takes
a constant amount of time. In order to accomplish this we had to pay
a price in terms of storage. The first and last words of each block
in use are reserved for TAG information. Though additional space is
needed to maintain AV as a doubly linked list, this is of no consequence
as all the storage in AV is free in any case. The allocation of a block
of storage still requires a search of the AV list. In the worst case
all free blocks may be examined.

An alternative scheme for storage allocation, the Buddy System, is
investigated in the exercises.

4.9 GENERALIZED LISTS

In Chapter 3, a linear list was defined to be a finite sequence of n =0
elements, a, ...,a,, which we write as A = (o, ...,a,). The elements
of a linear list are restricted to be atoms and thus the only structural
property a linear list has is the one of position, i.e. a;precedes a;,,, 1 < i
< n. It is sometimes useful to relax this restriction on the elements
of a list, permitting them to have a structure of their own. This leads
to the notion of a generalized list in which the elements o, 1 =i<n
may be either atoms or lists.

Definition. A generalized list, A, is a finite sequence of n = 0 elements,
a,,...,a, where the o;are either atoms or lists. The elementsa;, | = i< n
which are not atoms are said to be the sublists of A.

The list A itself is written as A = (o, ...,a,). A is the name of
the list (a,, ...,a,) and n its length. By convention, all list names will
be represented by capital letters. Lower case letters will be used to
represent atoms. If n= 1, then «, is the head of A while (a5, ...,a,)
is the tail of A.

The above definition is our first example of a recursive definition
so one should study it carefully. The definition is recursive because
within our description of what a list is, we use the notion of a list.
This may appear to be circular, but it is not. It is a compact way
of describing a potentially large and varied structure. We will see more
such definitions later on. Some examples of generalized lists are:

156 Linked Lists

i D=() the null or empty list; its length is zero.

i) A= (a, (b)) a list of length two; its first element is the
atom ‘a’ and its second element is the linear
list (b,c).

(i) B = (A,A,()) a list of length three whose first two elements
are the lists A, the third element the null list.

(iv) C=(a, C) a recursive list of length two. C corresponds
to the infinite list C = (a,(a,(a, ...).

Example one is the empty list and is easily seen to agree with the
definition. For list A, we have

head (A) = ‘a’, tail (A) = ((b,c)).

The tail (A) also has a head and tail which are (b,c¢) and () respectively.
Looking at list B we see that

head (B) = A, tail (B) = (A, ()
Continuing we have
head (tail(B)) = A, tail (tail(B)) = (())
both of which are lists.

Two important consequences of our definition for a list are: (i) lists
may be shared by other lists as in example iii, where list A makes
up two of the sublists of list B; and (ii) lists may be recursive as in
example iv. The implications of these two consequences for the data
structures needed to represent lists will become evident as we go along.

First, let us restrict ourselves to the situation where the lists being
represented are neither shared nor recursive. To see where this notion
of a list may be useful, consider how to represent polynomials in several
variables. Suppose we need to devise a data representation for them
and consider one typical example, the polynomial P(x,y,z) =

x10y312+2x8y312+ 3x8yzzz+x“y“z+6x3y“z+2yz

One can easily think of a sequential representation for P, say using

157

Generalized Lists

spou Jad spjary sa1y) Bursn (2°4°x)J Jo uolejuasardey zz'p samdiy

a0l _-_m

(2'A*x)d

158 Linked Lists

nodes with four fields: COEF, EXPX, EXPY, and EXPZ. But this
would mean that polynomials in a different number of variables would
need a different number of fields, adding another conceptual inelegance
to other difficulties we have already seen with sequential representation
of polynomials. If we used linear lists, we might ¢onceive of a node
of the form

COEF EXPX EXPY
EXPZ LINK

These nodes would have to vary in size depending on the number
of variables, causing difficulties in storage management. The idea of
using a general list structure with fixed size nodes arises naturally if
we consider re-writing P(x,y,z) as

((x'° 4+ 2x8)y® + 3xBy2)z2 + ((x* + 6x3)y* + 2y)z

Every polynomial can be written in this fashion, factoring out a main
variable z, followed by a second variable y, etc. Looking carefully now
at P(x,y.z) we see that there are two terms in the variable z, Cz? + Dz,
where C and D are polynomials themselves but in the variables x and
y. Looking closer at C(x,y), we see that it is of the form Ey? + Fy?,
where E and F are polynomials in x. Continuing in this way we see
that every polynomial consists of a variable plus coefficient exponent
pairs. Each coefficient is itself a polynomial (in one less variable) if
we regard a single numerical coefficient as a polynomial in zero variables.

We can represent P(x,y,z) as a list in the following way using nodes
with three fields each, COEF, EXP, LINK, as in section 4.4. Note
that each level has a head node indicating the variable that has been
factored out. This variable is stored in the COEF field.

The list structure of figure 4.22 uses only fixed size nodes. There
is, however, one difficulty which needs to be resolved: how do we
distinguish between a coefficient and a pointer to another list? Ultimately,
both of these values will be represented as numbers so we cannot readily
distinguish between them. The solution is to add another field to each
node. This field called TAG, will be zero if the COEF field truly contains
a numerical coefficient and a one otherwise. Using the structure of
figure 4.22 the polynomial P = 3x? y would be represented as

Generalized Lists 159

P
(/kTAG COEF EXP LINK
|

N T ITe

T TH+{o3z 1]

Notice that the TAG field is set to one in the nodes containing x and
y. This is because the character codes for variable names would not
really be stored in the COEF field. The names might be too large.
Instead a pointer to another list is kept which represents the name in
a symbol table. This setting of TAG =1 is also convenient because
it allows us to distinguish between a variable name and a constant.

It is a little surprising that every generalized list can be represented
using the node structure:

TAG=0/1 | DATA LINK

The reader should convince himself that this node structure is adequate
for the representation of any list A. The LINK field may be used
as a pointer to the tail of the list while the DATA field can hold an
atom in case head (A) is an atom or be a pointer to the list representation
of head (A) in case it is a list. Using this node structure, the example
lists i-iv have the representation shown in figure 4.23.

D=0 null list
A——=|0O|a | 0]
olb olclo A=(a,(bgc)
B —al1 |} | Ilo]|o B=(A,A()
R
c —=|0la 1o C =(a,C)

Figure 4.23 Representation of Lists i-iv

160 Linked Lists

Recursive Algorithms for Lists

Now that we have seen a particular example where generalized lists
are useful, let us return to their definition again. Whenever a data object
is defined recursively, it is often easy to describe algorithms which
work on these objects recursively. If our programming language does
not allow recursion, that should not matter because we can always
translate a recursive program into a nonrecursive version. To see how
recursion is useful, let us write an algorithm which produces an exact
copy of a nonrecursive list L in which no sublists are shared. We
will assume that each node has three fields, TAG, DATA and LINK,
and also that there exists the procedure GETNODE(X) which assigns
to X the address of a new node.

procedure COPY (L)
/L points to a nonrecursive list with no common sublists. COPY
returns a pointer to a new list which is a duplicate of L /

ptr<0
if L # 0 then
[it TAG(L) = 0 then q — DATA(L) /save an atom /
else g — COPY(DATA(L)) /recursion #
r< COPY(LINK(L)) /copy tail /
call GETNODE (ptr) /get a node /

DATA((ptr) « q; LINK(ptr) « r / combine head and tail /
TAG (ptr) « TAG(L)]
return (ptr)
end COPY

The above procedure reflects exactly the definition of a list. We
immediately see that COPY works correctly for an empty list. A simple
proof using induction will verify the correctness of the entire procedure.
Once we have established that the program is correct we may wish
to remove the recursion for efficiency. This can be done using some
straightforward rules.

(i) At the beginning of the procedure, code is inserted which de-
clares a stack and initializes it to be empty. In the most general
case, the stack will be used to hold the values of parameters,
local variables, function value, and return address for each
recursive call.

(i) The label L1 is attached to the first executable statement.

Now, each recursive call is replaced by a set of instructions which do the
following:
(iii) Store the values of all parameters and local variables in the
stack. The pointer to the top of the stack can be treated as
global.

Generalized Lists 161

(iv) Create the ith new label, Li, and store i in the stack. The value
i of this label will be used to compute the return address. This
label is placed in the program as described in rule (vii).

(v) Evaluate the arguments of this call (they may be expressions)
and assign these values to the appropriate formal parameters.

(vi) Insert an unconditional branch to the beginning of the procedure.

(vii) Attach the label created in (iv) to the statement immediately
following the unconditional branch. If this procedure is a func-
tion, attach the label to a statement which retrieves the function
value from the top of the stack. Then make use of this value in
whatever way the recursive program describes.

These steps are sufficient to remove all recursive calls in a procedure.
We must now alter any return statements in the following way. In place
of each return do:

(viii) If the stack is empty then execute a normal return.

(ix) Otherwise take the current values of all output parameters
(explicitly or implicitly understood to be of type out or inout)
and assign these values to the corresponding variables which are
in the top of the stack.

(x) Now insert code which removes the index of the return address
from the stack if one has been placed there. Assign this address
to some unused variable.

(xi) Remove from the stack the values of all local variables and
parameters and assign them to their corresponding variables.

(xii) If this is a function, insert instructions to evaluate the expression
immediately following return and store the result in the top of
the stack.

(xiii) Use the index of the label of the return address to execute a

branch to that label.

By following these rules carefully one can take any recursive program
and produce a program which works in exactly the same way, yet which
uses only iteration to control the flow of the program. On many compilers
this resultant program will be much more efficient than its recursive
version. On other compilers the times may be fairly close. Once the
transformation to iterative form has been accomplished, one can often
simplify the program even further thereby producing even more gains
in efficiency. These rules have been used to produce the iterative ver-
sion of COPY which appears on the next page.

It is hard to believe that the nonrecursive version is any more intelligible
than the recursive one. But it does show explicitly how to implement
such an algorithm in, say, FORTRAN. The non-recursive version does
have some virtues, namely, itis more efficient. The overhead of parameter
passing on most compilers is heavy. Moreover, there are optimizations
that can be made on the latter version, but not on the former. Thus,

162 Linked Lists

procedure COPY (L)
// nonrecursive version /

i<0 /initialize stack index /
1. ptr<0
if L # 0 then

lif TAG(L) =0
then g — DATA(L)
else [STACK(i+ 1) «—gq / stack local variables /
STACK(i+ 2)«r
STACK (i + 3) < ptr

STACK(i+4) < L / stack parameter /
STACK (i + 5) <2 /stack return address /
i—i+5;
L« DATA(L); go to | / set parameter and
begin/
2: q<— STACK()) /#remove function value /

i—i—1]

STACK(i + 1)« q: STACK(i + 2) — r / stack

variables and /
STACK(i + 3) « ptr; STACK(i + 4) < L
/ parameter for second /
STACK(i+5)«<3;i—i+5 Arecursive call /
L« LINK(L); go to |
3: r— STACK(i); i< i—1 /remove function value /
call GETNODE (ptr)
DATA((ptr) < q; LINK(ptr) < r
TAG (ptr) — TAG(L)]
if i # 0 then [addr— STACK(i); L — STACK(i— D)
/execute a return,/
t — STACK(i —2); r< STACK(i — 3)
q < STACK(i - 4);

STACK(i — 4) < ptr; ptr—t /store function
value /
i< i—4;go to addr] #branch to 2 or 3/

return (ptr)
end COPY

both of these forms have their place. We will often use the recursive

version for descriptive purposes.
Now let us consider the computing time of this algorithm. The null

One Onp
o[F{o[s[o] [T [Fole[e]

w X
Olc 0| d|{0

Figure 4.24 Linked Representation for A

Generalized Lists 163
list takes a constant amount of time. For the list
A = ((a,b),((c,d),e))

which has the representation of figure 4.24 L takes on the values given
in figure 4.25.

Levels of Continuing Continuing
recursion Value of L Levels L Levels L
1 q 2 r 3 u
2 s 3 u 4 v
3 t 4 w 5 0o
4 o S X 4 v
3 t 6 o 3 u
2 s 5 X 2 r
I q 4 w 3 o
2 r
1 q

Figure 4.25 Values of Parameter in Execution of COPY(A)

The sequence of values should be read down the columns. ¢, r, s,
t, u, v, w, x are the addresses of the eight nodes of the list. From
this particular example one should be able to see that nodes with TAG = 0
will be visited twice, while nodes with TAG = 1 will be visited three
times. Thus, if a list has a total of m nodes, no more than 3m executions
of any statement will occur. Hence, the algorithm is OQ(m) or linear
which is the best we could hope to achieve. Another factor of interest
is the maximum depth of recursion or, equivalently, how many locations
one will need for the stack. Again, by carefully following the algorithm
on the previous example one sees that the maximum depth is a combination
of the lengths and depths of all sublists. However, a simple upper bound
to use is m, the total number of nodes. Though this bound will be
extremely large in many cases, it is achievable, for instance, if

L = (((((a)))-

Another procedure which is often useful is one which determines
whether two lists are identical. This means they must have the same
structure and the same data in corresponding fields. Again, using the
recursive definition of a list we can write a short recursive program
which accomplishes this task.

164 Linked Lists

procedure EQUAL(S,T)
/S and T are nonrecursive lists, each node having three fields: TAG,
DATA and LINK. The procedure returns the value true if the
lists are identical else false /

ans <« false

case
:S=0and T = 0: ans « true
S#0and T # 0:

if TAG(S) = TAG(T)
then [if TAG(S) =0
then ans «— DATA(S) = DATA(T)
else ans «— EQUAL(DATA(S),DATA(T))
if ans then
ans < EQUAL(LINKS(S),LINK(T))]
end
return (ans)
end EQUAL

Procedure EQUAL is a function which returns either the value true
or false. Its computing time is clearly no more than linear when no
sublists are shared since it looks at each node of S and T no more
than three times each. For unequal lists the procedure terminates as
soon as it discovers that the lists are not identical.

Another handy operation on nonrecursive lists is the function which
computes the depth of a list. The depth of the empty list is defined
to be zero and in general

0, if Sis an atom
1 + max{depth(x,), ...,depth(x,)}, if Sis the list

(x;, ..,x,), n= 1.

depth(S) = {

Procedure DEPTH is a very close transformation of the definition
which is itself recursive.

Program on next page

By now you have seen several programs of this type and you should
be feeling more comfortable both reading and writing recursive al-
gorithms. To convince yourself that you understand the way these work,
try exercises 37, 38, and 39.

Generalized Lists 165

procedure DEPTH(S)
/S is a nonrecursive list having nodes with fields TAG, DATA and
LINK. The procedure returns the depth of the list /#
max « 0
if S = 0 then return (max) #null list has zero depth/
ptreS
while ptr # 0 do
if TAG(ptr) = 0 then ans <0
else ans « DEPTH(DATA (ptr)) A recursion /
if ans > max then max < ans /find a new maximum /
ptr < LINK (ptr)
end
return (max + 1)
end DEPTH

Reference Counts, Shared and Recursive Lists

In this section we shall consider some of the problems that arise
when lists are allowed to be shared by other lists and when recursive
lists are permitted. Sharing of sublists can in some situations result
in great savings in storage used, as identical sublists occupy the same
space. In order to facilitate ease in specifying shared sublists, we extend
the definition of a list to allow for naming of sublists. A sublist appearing
within a list definition may be named through the use of a list name
preceding it. For example, in the list A = (a,(b,c)), the sublist (b,c)
could be assigned the name Z by writing A = (a,Z(b,c)). In fact, to
be consistent we would then write A(a,Z(b,c)) which would define
the list A as above.

Lists that are shared by other lists, such as list A of figure 4.23,
create problems when one wishes to add or delete a node at the front.
If the first node of A is deleted, it is necessary to change the pointers
from the list B to point to the second node. In case a new node is
added then pointers from B have to be changed to point to the new
first node. However, one normally does not know all the points from
which a particular list is being referenced. (Even if we did have this
information, addition and deletion of nodes could require a large amount
of time.) This problem is easily solved through the use of head nodes.
In case one expects to perform many add/deletes from the front of
lists, then the use of a head node with each list or named sublist will
eliminate the need to retain a list of all pointers to any specific list.
If each list is to have a head node, then lists i-iv are represented as
in figure 4.26. The TAG field of head nodes is not important and is

166 Linked Lists

assumed to be zero. Even in situations where one does not wish to
dynamically add or delete nodes from lists, as in the case of multivariate
polynomials, head nodes prove useful in determining when the nodes
of a particular structure may be returned to the storage pool. For example,
let T and U be program variables pointing to the two polynomials (3x*
+ 5x* + 7x)y? and (3x* + S5x + Tx)y® + (6x)y of figure 4.27. If
PERASE(X) is an algorithm to erase the polynomial X, then a call
to PERASE(T) should not return the nodes corresponding to the coeffi-
cient 3x* + 5x3 + 7x since this sublist is also part of U.

Thus, whenever lists are being shared by other lists, we need a
mechanism to help determine whether or not the list nodes may be
physically returned to the available space list. This mechanism is generally
provided through the use of a reference count maintained in the head
node of each list. Since the DATA field of the head nodes is free,
the reference count is maintained in this field. This reference count
of a list is the number of pointers (either program variables or pointers
from other lists) to that list. If the lists i-iv of figure 4.26 are accessible
via the program variables X, Y, Z and W, then the reference counts
for the lists are:

(i) REF(X) =1 accessible only via X

(ii) REF(Y) =3 pointed to by Y and two points from Z

(i) REF(Z) =1 accessible only via Z

(iv) REF(W) =2 two pointers to list C

Now a call to LERASE(T) (list erase) should result only in a

TAG DATA LINK

W x— o] 1] o]
(i) Y4-{O]3l o]a]m o] A=(a,(bc))
lo] 1| J—~{ofo[J+ofc]o]

i oo T LT T3 T3 T Te] seann

oo vt [AT [3L 0] LT e tao

{numbers in data field of head nodes is a reference count)

Figure 4.26 Structure with Head Nodes for Lists i-iv

167

Generalized Lists

£x9 + o (XL + ¢X§ + ,X€) =]
e&(XL + ¢XS + ,X€) = I LTy aanSig

o[s]o] olz]o] o]s]o]
ol folt "I R [T [l Jo T T o[T Te[o

] \

168 Linked Lists

decrementing by | of the reference counter of T. Only if the reference
count becomes zero are the nodes of T to be physically returned to
the available space list. The same is to be done to the sublists of T.

Assuming the structure TAG, REF, DATA, LINK, an algorithm to
erase a list X could proceed by examining the top level nodes of a
list whose reference count has become zero. Any sublists encountered
are erased and finally, the top level nodes are linked into the available
space list. Since the DATA field of head nodes will usually be unused,
the REF and DATA fields would be one and the same.

procedure LERASE(X)

/recursive algorithm to erase a list assuming a REF field in each
head node which has the number of pointers to this list and a
TAG field such that TAG(X) = 0 if DATA(X) is actually an atom
and TAG(X) = | if DATA(X) is a link to a sublist. The storage
pool is assumed linked through the field LINK with AV pointing
to the first node in the pool /

REF(X) < REF(X) - | / decrement reference count/
if REF(X) # 0 then return

Y « X/ will traverse top levelof X /
while LINK(Y) = 0 do
Y «— LINK(Y)

if TAG(Y) = | then call LERASE (DATA(Y)) / recursion /
end

LINK(Y) < AV /attach top level nodes to avail list /
AV X
end LERASE

A call to LERASE(Y) will now only have the effect of decreasing
thereference count of Y to2. Suchacall followed by a call to LERASE(Z)
will result in:

(i) reference count of Z becomes zero;

(i) next node is processed and REF(Y) reduces to 1;

(iii) REF(Y) becomes zero and the five nodes of list A(a,(b,c)) are

returned to the available space list;

(iv) the top level nodes of Z are linked into the available space list

The use of head nodes with reference counts solves the problem of
determining when nodes are to be physically freed in the case of shared
sublists. However, for recursive lists, the reference count never becomes
zero. LERASE(W) just results in REF(W) becoming one. The reference
count does not become zero even though this list is no longer accessible
either through program variables or through other structures. The same
is true in the case of indirect recursion (figure 4.28). After calls to

Garbage Collection and Compaction 169

A= (B,B)
R—+ 0} 2 | | | 0| B=(A)

S—al 0|3]

Figure 4.28 Indirect Recursion of Lists A and B Pointed to by Program Variables R
and S.

LERASE(R) and LERASE(S), REF(R) = 1 and REF(S) = 2 but the
structure consisting of R and S is no longer being used and so it should
have been returned to available space.

Unfortunately, there is no simple way to supplement the list structure
of figure 4.28 so as to be able to determine when recursive lists may
be physically erased. It is no longer possible to return all free nodes
to the available space list when they become free. So when recursive
lists are being used, it is possible to run out of available space even
though not all nodes are in use. When this happens, it is possible to
collect unused nodes (i.e., garbage nodes) through a process known
as garbage collection. This will be described in the next section.

4.10 GARBAGE COLLECTION AND COMPACTION

As remarked at the close of the last section, garbage collection is
the process of collecting all unused nodes and returning them to available
space. This process is carried out in essentially two phases. In the
first phase, known as the marking phase, all nodes in use are marked.
In the second phase all unmarked nodes are returned to the available
space list. This second phase is trivial when all nodes are of a fixed
size. In this case, the second phase requires only the examination of
each node to see whether or not it has been marked. If there are a
total of n nodes, then the second phase of garbage collection can be
carried out in O(n) steps. In this situation it is only the first or marking
phase that is of any interest in designing an algorithm. When variable
size nodes are in use, it is desirable to compact memory so that all
free nodes form a contiguous block of memory. In this case the second
phase is referred to as memory compaction. Compaction of disk space
to reduce average retrieval time is desirable even for fixed size nodes.
In this section we shall study two marking algorithms and one compaction
algorithm.

170 Linked Lists

Marking

In order to be able to carry out the marking, we need a mark bit
in each node. It will be assumed that this mark bit can be changed
at any time by the marking algorithm. Marking algorithms mark all
directly accessible nodes (i.e., nodes accessible through program variables
referred to as pointer variables) and also all indirectly accessible nodes
(i.e., nodes accessible through link fields of nodes in accessible lists).
It is assumed that a certain set of variables has been specified as pointer
variables and that these variables at all times are either zero (i.e., point
to nothing) or are valid pointers to lists. It is also assumed that the
link fields of nodes always contain valid link information.

Knowing which variables are pointer variables, it is easy to mark
all directly accessible nodes. The indirectly accessible nodes are marked
by systematically examining all nodes reachable from these directly
accessible nodes. Before examining the marking algorithms let us review
the node structure in use. Each node regardless of its usage will have
a one bit mark field, MARK, as well as a one bit tag field, TAG.
The tag bit of a node will be zero if it contains atomic information.
The tag bit is one otherwise. A node with a tag of one has two link
fields DLINK and RLINK. Atomic information can be stored only
in a node with tag 0. Such nodes are called atomic nodes. All other
nodes are list nodes. This node structure is slightly different from the
one used in the previous section where a node with tag 0 contained
atomic information as well as a RLINK. It is usually the case that
the DLINK field is too small for the atomic information and an entire
node is required. With this new node structure, the list (a,(b)) is
represented as:

list nodes

MARK TAG
| | 0

atomic nodes

Garbage Collection and Compaction 171

Both of the marking algorithms we shall discuss will require that all
nodes be initially unmarked (i.e. MARK(i) = 0 forall nodes i). In addition
they will require MARK() = 1 and TAG(0) = 0. This will enable us
to handle end conditions (such as end of list or empty list) easily. Instead
of writing the code for this in both algorithms, we shall instead write
a driver algorithm to do this. Having initialized all the mark bits as
well as TAG(0), this driver will then repeatedly call a marking algorithm
to mark all nodes accessible from each of the pointer variables being
used. The driver algorithm is fairly simple and we shall just state it
without further explanation. In line 7 the algorithm invokes MARKI.
In case the second marking algorithm is to be used this can be changed
to call MARK2. Both marking algorithms are written so as to work on
collections of lists (not necessarily generalized lists as defined here).

procedure DRIVER
/driver for marking algorithm. n is the number of nodes in the
system /
1 for i <1 to ndo »~unmark all nodes /
2 MARK (i) <0
3 end
4 MARK(0) < 1; TAG(0) <0 #boundary conditions /
5 for each pointer variable X with MARK(X) = 0 do
6 MARK(X) <1
7 if TAG(X) = 1 then call MARK 1(X) /X is a list node /
8 end
9 end DRIVER

The first marking algorithm MARKI1(X) will start from the list node
X and mark all nodes that can be reached from X via a sequence of
RLINK’s and DLINK'’s; examining all such paths will result in the
examination of all reachable nodes. While examining any node of type
list we will have a choice as to whether to move to the DLINK or
to the RLINK. MARKI1 will move to the DLINK but will at the same
time place the RLINK on a stack in case the RLINK is a list node
not yet marked. The use of this stack will enable us to return at a
later point to the RLINK and examine all paths from there. This strategy
is similar to the one used in the previous section for LERASE.

Program on next page

Analysis of MARKI1

In line 5 of MARKI1 we check to see if Q = RLINK(P) can lead
to other unmarked accessible nodes. If so, Qis stacked. The examination

172 Linked Lists

procedure MARK 1(X)
/ Xisalist node. Mark all nodes accessible from X. Itis assumed
that MARK(0) = 1 and TAG(0) = 0. ADD and DELETE per-
form the standard stack operations,/

1 P < X; initialize stack

2 loop / follow all paths from P, Pis a marked list node /

3 loop »move downwards stacking RLINKs if needed /

4 Q < RLINK(P)

5 if TAG(Q) = 1 and MARK(Q) = 0 then call ADD(Q)

/stack Q/

6 MARK(Q) <1 / Q may be atomic/

7 P« DLINK(P)

/any unmarked nodes accessible from P?/

8 if MARK(P) = 1 or TAG(P) = 0 then exit

9 MARK(P) <1
10 forever
11 MARK (P) <1 /P may be an unmarked atomic node /
12 if stack empty then return / all accessible nodes marked /
13 call DELETE(P) Aunstack P/

14 forever
15 end MARK 1

of nodes continues with the node at DLINK(P). When we have moved
downwards as far as is possible, line 8, we exit from the loop of lines
3-10. At this point we try out one of the alternative moves from the
stack, line 13. One may readily verify that MARK1 does indeed mark
all previously unmarked nodes which are accessible from X.

In analyzing the computing time of this algorithm we observe that
on each iteration (except for the last) of the loop of lines 3-10, at
least one previously unmarked node gets marked (line 9). Thus, if the
outer loop, lines 2-14, is iterated rtimes and the total number of iterations
of the inner loop, lines 3-10, is p then at least g = p — r previously
unmarked nodes get marked by the algorithm. Let m be the number
of new nodes marked. Then m=qg= p — r. Also, the number of
iterations of the loop of lines 2-14 is one plus the number of nodes
that get stacked. The only nodes that can be stacked are those previously
unmarked (line 5). Once a node is stacked it gets marked (line 6). Hence
r=m + 1. From this and the knowledge that m = p — r, we conclude
that p <2m + 1. The computing time of the algorithm is O(p + r).
Substituting for p and r we obtain O(m) as the computing time. The
time is linear in the number of new nodes marked! Since any algorithm

Garbage Collection and Compaction 173

to mark nodes must spend at least one unit of time on each new node
marked, it follows that there is no algorithm with a time less than O(m).
Hence MARKI1 is optimal to within a constant factor (recall that 2m = O
(m) and 10m = O(m)).

Having observed that MARKI1 is optimal to within a constant factor
you may be tempted to sit back in your arm chair and relish a moment
of smugness. There is, unfortunately, a serious flaw with MARKI.
This flaw is sufficiently serious as to make the algorithm of little use
in many garbage collection applications. Garbage collectors are invoked
only when we have run out of space. This means that at the time
MARKI1 is to operate, we do not have an unlimited amount of space
available in which to maintain the stack. In some applications each
node might have a free field which can be used to maintain a linked
stack. In fact, if variable size nodes are in use and storage compaction
is to be carried out then such a field will be available (see the compaction
algorithm COMPACT). When fixed size nodes are in use, compaction
can be efficiently carried out without this additional field and so we
will not be able to maintain a linked stack (see exercises for another
special case permitting the growth of a linked stack). Realizing this
deficiency in MARKI, let us proceed to another marking algorithm
MARK2. MARK?2 will not require any additional space in which to
maintain a stack. Its computing is also O(m) but the constant factor
here is larger than that for MARKI1.

Unlike MARK1(X) which does not alter any of the links in the list
X, the algorithm MARK?2(X) will modify some of these links. However,
by the time it finishes its task the list structure will be restored to
its original form. Starting from a list node X, MARK?2 traces all possible
paths made up of DLINK’s and RLINK’s. Whenever a choice is to
be made the DLINK direction is explored first. Instead of maintaining
a stack of alternative choices (as was done by MARK1) we now maintain
the path taken from X to the node P that is currently being examined.
This path is maintained by changing some of the links along the path
from X to P.

Consider the example list of figure 4.29(a). Initially, all nodes except
node A are unmarked and only node E is atomic. From node A we
can either move down to node B or right to node I. MARK?2 will always
move down when faced with such an alternative. We shall use P to
point to the node currently being examined and T to point to the node
preceding Pin the path from X to P. The path Tto X will be maintained
as a chain comprised of the nodes on this T — X path. If we advance
from node P to node Q then either Q = RLINK(P) or Q = DLINK(P)

174 Linked Lists

X
Al | olilo

H
Bi{o| |l ojt]o}o0
C{O]1I 0

F G
D|O| I o|l1}|o 0
E{0|0]| abec

{a) Initial list

X
\/(I J
A1 |O]|O oj1|o

H
B|I|O oj1j0jo0
To,
cjrjo}] '|o
R F G
D| I cj1}o0
EjO| O] abc

(b) Status when P is at D

Figure 4.29 Example List for MARK?2

Garbage Collection and Compaction 175

=

(o1}
-
o
o
o
o

o [(TT D [T TeT L [TTiTeTs]
f [

{(c) Status when Pis at G

AnnnESnnnESnnnG
InnREPnnnn
InonEFnooERnnnn

(d) Terminal status

A B CDTFGF DCOBHOBATILI JIA
(e) Path taken by P

Figure 4.29 Example List for MARK2 (contd.)

176 Linked Lists

and Qwill become the node currently being examined. The node preceding
Q on the X — Q path is P and so the path list must be updated to
represent the path from P to X. This is simply done by adding node
P to the T — X path already constructed. Nodes will be linked onto
this path either through their DLINK or RLINK field. Only list nodes
will be placed onto this path chain. When node P is being added to
the path chain, Pis linked to T via its DLINK field if Q = DLINK(P).
When Q = RLINK(P), P is linked to T via its RLINK field. In order
to be able to determine whether a node on the T — X path list is linked
through its DLINK or RLINK field we make use of the tag field.
Notice that since the T — X path list will contain only list nodes, the
tag on all these nodes will be one. When the DLINK field is used
for linking, this tag will be changed to zero. Thus, for nodes on the
T — X path we have:

0 if the node is linked via its DLINK field

TAG = { . - . .
1 if the node is linked via its RLINK field
The tag will be reset to 1 when the node gets off the T — X path list.
Figure 4.29(b) shows the T — X path list when node P is being exam-
ined. Nodes A, B and C have a tag of zero indicating that linking
on these nodes is via the DLINK field. This also implies that in the
original list structure, B = DLINK(A), C = DLINK(B) and D= P
= DLINK(C). Thus, the link information destroyed while creating the
T — X path list is present in the path list. Nodes B, C, and D have
already been marked by the algorithm. In exploring P we first attempt
to move down to Q = DLINK(P) = E. E is an atomic node so it gets
marked and we then attempt to move right from P. Now, Q = RLINK(P)
= F. This is an unmarked list node. So, we add P to the path list
and proceed to explore Q. Since P is linked to Q by its RLINK field,
the linking of P onto the T — X path is made throught its RLINK
field. Figure 4.29(c) shows the list structure at the time node G is being
examined. Node G is a deadend. We cannot move further either down
or right. At this time we move backwards on the X — T path resetting
links and tags until we reach a node whose RLINK has not yet been
examined. The marking continues from this node. Because nodes are
removed from the T — X path list in the reverse order in which they
were added to it, this list behaves as a stack. The remaining details
of MARK?2 are spelled out in the formal SPARKS algorithm. The same
driver as for MARKI is assumed.

N B W N -

—
SO0~

11
12
13

14
15
16
17

18
19
20
21
22

23
24
25
26
27
28
29

Garbage Collection and Compaction 177

procedure MARK?2(X)

/ same funct

ion as MARK1/

P—X;T<0 Vinitialize T — X path list /
repeat
Q <« DLINK (P) /go down list,/
case
:MARK(Q) = 0 and TAG(Q) = 1: /Q is an unexam-

ined list node /

MARK(Q) <1, TAG(P) <0
DLINK(P) < T; T< P /add Pto T — Xpath list/

P—Q
:else:

/ move down to explore Q/
/Q is an atom or already examined /

MARK(Q) « 1
L1: Q< RLINK(P) / move right of P/

case

:MARK(Q) = 0 and TAG(Q) = 1: /explore Q

further /
MARK(Q) <1
RLINK(P)«<T; T« P
P<Q

:else: MARK(Q) <1 /Qis not to be explored;

end

end
until T = 0
end MARK 2

back up on path list,/

while T # 0 do # while path list not empty /

Q<T

if TAG(Q) = 0 Alink to P through DLINK /

then [T « DLINK(Q); DLINK(Q) < P

TAG(Q) « 1; P« Q; go to L1]

/P is node to right of Q/

T« RLINK(Q); RLINK(Q) < P

P—Q
end

178 Linked Lists

Analysis of MARK?2

The correctness of MARK2 may be proved by first showing that
the T — X path list is always maintained correctly and that except when
T = 0 it is the case that the node T was previously linked to P. Once
this has been shown, it is a simple matter to show that the backup
procedure of lines 17-25 restructures the list X correctly. That all paths
from X are examined follows from the observation that at every list
node when a DLINK path is used, that node gets added to the path
list (lines 6-8) and that backing up along the T — X path stops when
a node whose RLINK hasn’t yet been examined is encountered (lines
20-22). The details of the proof are left as an exercise. One can also
show that at the time the algorithm terminates P = X and so we need
not use two distinct variables P and X.

Figure 4.29(e) shows the path taken by P on the list of 4.29(a). It
should be clear that a list node previously unmarked gets visited at
most three times. Except for node X, each time a node already marked
is reached at least one previously unmarked node is also examined
(i.e. the one that led to this marked node). Hence the computing time
of MARK?2 is O(m) where m is the number of newly marked nodes.
The constant factor associated with m is, however, larger than that for
MARKI1 but MARK?2 does not require the stack space needed by MARKI.
A faster marking algorithm can be obtained by judiciously combining
the strategies of MARK1 and MARK?2 (see the exercises).

When the node structure of section 4.9 is in use, an additional one
bit field in each node is needed to implement the strategy of MARK2.
This field is used to distinguish between the case when a DLINK is
used to link into the path list and when a RLINK is used. The already
existing tag field cannot be used as some of the nodes on the T~ X
path list will originally have a tag of 0 while others will have a tag
of 1 and so it will not be possible to correctly reset tag values when
nodes are removed from the T — X list.

Storage Compaction

When all requests for storage are of a fixed size, it is enough to
just link all unmarked (i.e., free) nodes together into an available space
list. However, when storage requests may be for blocks of varying
sizes, it is desirable to compact storage so that all the free space forms
one contiguous block. Consider the memory configuration of figure 4.30.
Nodes in use have a MARK bit = 1 while free nodes have their MARK
bit = 0. The nodes are labeled 1 through 8, with n;, 1 <i=< 8 being
the size of the i™ node.

Garbage Collection and Compaction 179

| 2 3 4 S 6 7 8

Onlln20n3ln40 ng(l n O n

| n 8

Figure 4.30 Memory Configuration After Marking. Free Nodes Have MARK bit = 0

The free nodes could be linked together to obtain the available space
list of figure 4.31. While the total amount of memory available is n, + n,4
+ ns + ng, a request for this much memory cannot be met since the
memory is fragmented into 4 nonadjacent nodes. Further, with more
and more use of these nodes, the size of free nodes will get smaller
and smaller.

AV — I'\| I'\3 I'\5 ne

Figure 4.31 Available Space List Corresponding to Figure 4.30

Ultimately, it will be impossible to meet requests for all but the smallest
of nodes. In order to overcome this, it is necessary to reallocate the
storage of the nodes in use so that the used part of memory (and hence
also the free portion) forms a contiguous block at one end as in figure
4.32. This reallocation of storage resulting in a partitioning of memory

free
space

+n8 -

-‘-—-n|+n3+n5

Figure 4.32 Memory Configuration After Reallocating Storage to Nodes in Use

into two contiguous blocks (one used, the other free) is referred to
as storage compaction. Since there will, in general, be links from one
node to another, storage compaction must update these links to point
to the relocated address of the respective node. If node n, starts at
location I; before compaction and at I; after compaction, then all link
references to [; must also be changed to /] in order not to disrupt the
linked list structures existing in the system. Figure 4.33(a) shows a
possible link configuration at the time the garbage collection process
is invoked. Links are shown only for those nodes that were marked
during the marking phase. It is assumed that there are only two links

180 Linked Lists

per node. Figure 4.33(b) shows the configuration following compaction.
Note that the list structure is unchanged even though the actual addresses
represented by the links have been changed. With storage compaction
we may identify three tasks: (i) determine new addresses for nodes
in use; (i) update all links in nodes in use; and (iii) relocate nodes
to new addresses. Qur storage compaction algorithm, COMPACT, is
fairly straightforward, implementing each of these three tasks in a separate
scan of memory. The algorithm assumes that each node, free or in

4 4 A N4 4
To— ~
/4 /7 14 12
‘le 47 17, 0

(b)
Figure 4.33

use, has a SIZE field giving the length of the node and an additional
field, NEW__ADDR, which may be used to store the relocated address
of the node. Further, it is assumed that each node has two link fields
LINKI1 and LINK2. The extension of the algorithm to the most general
situation in which nodes have a variable number of links is simple and
requires only a modification of phase II.

Program on next page

In analyzing this algorithm we see that if the number of nodes in memory
is n, then phases I and II each require n iterations of their respective

Garbage Collection and Compaction 181

procedure COMPACT(MEMORY,MARK,SIZE,M,NEW__ADDR)

/ compact storage following the marking phase of garbage collection.
Nodes in use have MARK bit = 1. SIZE(i) = number of words
in that node. NEW__ADDR is a free field in each node. Memory
is addressed 1 to M and is an array MEMORY . /

/phase 1. Scan memory from left assigning new addresses to nodes
in use. AV = next available word /

AVel;iel / variable i will scan all nodes left to right /

while i = M do
if MARK (i) = 1 then [/relocate node/

NEW__ADDR(i) « AV
AV «— AV + SIZE(i)]
i—i+ SIZE(i) //next node /

end

/phase II: update all links. Assume the existence of a fictitious
node with address zero and NEW__ADDR(0) = 0/

i1
while i = M do
if MARK (i) = 1 then [Zupdate all links to reflect new
addresses /
LINK 1(i) « NEW__ADDR(LINK 1(i))
LINK?2(i) « NEW_ADDR(LINK?2(i))]
i«— i+ SIZE(i)
end
/ phase III: relocate nodes /
i1
while i = M do

if MARK (i) = 1 then [/relocate to NEW__ADDR (i) /
k < NEW__ADDR(i); l — k
for je—ito i+ SIZE(i) — 1 do
MEMORY (k) « MEMORY (j)
ke—k+1
end
i+ SIZE(])]
else i — i+ SIZE(i)
end
end COMPACT

while loops. Since each iteration of these loops takes a fixed amount
of time, the time for these two phases is O(n). Phase III, however,
will in general be more expensive. Though the while loop of this phase

182 Linked Lists

is also executed only n times, the time per iteration depends on the
size of the node being relocated. If s is the amount of memory in
use, then the time for this phase is O(n + s). The overall computing
time is, therefore, O(n + s). The value of AV at the end of phase
I marks the beginning of the free space. At the termination of the
algorithm the space MEMORY(AV) to MEMORY(M) is free space.
Finally, the physical relocation of nodes in phase III can be carried
out using a long shift in case your computer has this facility.

In conclusion, we remark that both marking and storage compaction
are slow processes. The time for the former is O (number of nodes)
while the time for the latter is O (number of nodes + X (size of nodes
relocated)). In the case of generalized lists, garbage collection is necessi-
tated by the absence of any other efficient means to free storage when
needed. Garbage collection has found use in some programming languages
where it is desirable to free the user from the task of returning storage.
In both situations, a disciplined use of pointer variables and link fields
is required. Clever coding tricks involving illegal use of link fields could
result in chaos during marking and compaction. While compaction has
been presented here primarily for use with generalized list systems using
nodes of variable size, compaction can also be used in other environments
such as the dynamic storage allocation environment of section 4.8. Even
though coalescing of adjacent free blocks takes place in algorithm FREE
of section 4.8, it is still possible to have several small nonadjacent blocks
of memory free. The total size of these blocks may be large enough
to meet a request and it may then be desirable to compact storage.
The compaction algorithm in this case is simpler than the one described
here. Since all addresses used within a block will be relative to the
starting address rather than the absolute address, no updating of links
within a block is required. Phases I and III can, therefore, be combined
into one phase and phase II eliminated altogether. Since compaction
is very slow one would like to minimize the number of times it is carried
out. With the introduction of compaction, several alternative schemes
for dynamic storage management become viable. The exercises explore
some of these alternatives,

4.11 STRINGS—A CASE STUDY

Suppose we have two character strings S = ‘x, ... x,,”and T = ‘y, ... y,.
The characters x;,y; come from a set usually referred to as the character
setof the programming language. The value n is the length of the character
string T, an integer which is greater than or equal to zero. If n=20

Strings—A Case Study 183

then T is called the empty or null string. In this section we will discuss
several alternate ways of implementing strings using the techniques of
this chapter.

We begin by defining the data structure STRING using the axiomatic
notation. For a set of operations we choose to model this structure
after the string operations of PL/I. These include:

(i) NULL produces an instance of the null string;

(ii) ISNULL returns true if the string is null else false;

(ili) IN takes a string and a character and inserts it at the end of

the string;

(iv) LEN returns the length of a string;

(v) CONCAT places a second string at the end of the first string;

(vi) SUBSTR returns any length of consecutive characters;

(vii) INDEX determines if one string is contained within another.

We now formally describe the string data structure.

structure STRING
declare NULL() — string; ISNULL (string) — boolean
IN((string, char) — string; LEN (string) — integer
CONCAT ((string, string) — string
SUBSTR (string, integer, integer) — string
INDEX (string, string) — integer;
for all S,T € string, i,j € integer, c,d € charlet
ISNULL(NULL) :: = true; ISNULL(IN(S,c)) :: = false
LEN(NULL) :: =0; LEN(N(S,¢)) :: =1+ LEN(S)
CONCAT(S,NULL) :: = S
CONCAT(S,IN(T,c)) :: = IN(CONCAT(S,T),c)
SUBSTR(NULL,i,j) :: = NULL
SUBSTR(IN(S,c),i,j) :: =
ifj=0o0ri+j—1>LEN(N(S,c))then NULL
elseif i+ j— 1 = LEN(IN(S,c))
then IN(SUBSTR(S,i,j — 1),¢)
else SUBSTR(S,i,))
INDEX(S,NULL) :: = LEN(S) + 1
INDEX(NULL,IN(T,d)) :: =0
INDEX(IN(S,¢),IN(T,d)) :: =
if INDEX(S,IN(T,d)) # 0 then INDEX(S,IN(T,d))
else if ¢ = d and INDEX(S,T) = LEN(S) — LEN(T) + 1
then INDEX(S,T) else 0
end
end STRING

184 Linked Lists

As an example of how these axioms work, let S = ‘abcd’. This will
be represented as

IN(IN(IN(IN(NULL,a),b),c),d).

Now suppose we follow the axioms as they apply to SUBSTR(S,2,1).
By the SUBSTR axioms we get

SUBSTR(S,2,1) = SUBSTR(IN(IN(IN(NULL,a),b),c),2,1)
SUBSTR(IN(IN(NULL,a),b),2,1)
IN(SUBSTR(IN(NULL,a),2,0),b)
IN(NULL,b)
= ‘p°

Suppose we try another example, SUBSTR(S,3,2)

IN(SUBSTR(IN(IN(IN(NULL,a),b),c),3,1),d)
INAON(SUBSTR(IN(IN(NULL,a),b),3,0),¢),d)
IN(IN(NULL,,c),d)

= ‘ed’

For the readers amusement try to simulate the steps taken for
INDEX(S,T) where T = ‘bc’ = IN(IN(NULL,b),c).

4.11.1 DATA REPRESENTATIONS FOR STRINGS

In deciding on a data representation for a given data object one must
take into consideration the cost of performing different operations using
that representation. In addition, a hidden cost resulting from the necessary
storage management operations must also be taken into account. For
strings, all three types of representation: sequential, linked list with
fixed size nodes, and linked list with variable size nodes, are possible
candidates. Let us look at the first two of these schemes and evaluate them
with respect to storage management as well as efficiency of operation.
We shall assume that the available memory is an array C of size n
and that each element of Cis large enough to hold exactly one character.

On most computers this will mean that each element of C uses only
a fraction of a word and hence several such elements will be packed
intoone word. On a 60 bit per word machine requiring 6 bits per character,
each word will be able to hold 10 characters. Thus, C(1) through C(10)
will occupy one word, C(11) thru C(20) another and so on.

Data Representations for Strings 185

Sequential. In this representation successive characters of a string will
be placed in consecutive character positions in the vector C. The string

= ‘x;,...,x,’ could then be represented as in figure 4.34 with S a
lS=i
X' X2 LIS Xn
arrayC C(i) C(i#1) == Cli+n-1)

Figure 4.34 Sequential Representation of S = ‘x, ... x,’

pointer to the first character. In order to facilitate easy length determi-
nation, the length of string S could be kept in another variable, SL.
Thus, we would have SL = n. SUBSTRING(S,j,k — j + 1) could be done
now by copying over the characters x;,...,x, fromlocations C(S+ j— 1)
through C(S + k — 1) into a free space. The length of the string created
would be kK — j+ 1 and the time required O(k — j+ 1) plus the time
needed to locate a free space big enough to hold the string. CONCAT
(S,T) could similarly be carried out; the length of the resulting string
would be SL + TL. For storage management two possibilities exist.
The boundary tag scheme of section 4.8 could be used in conjunction
with the storage compaction strategies of section 4.10. The storage
overhead would be enormous for small strings. Alternatively, we could
use garbage collection and compaction whenever more free space was
needed. Thiswould eliminate the need to return free spaces toan available
space list and hence simplify the storage allocation process (see exercises).

While a sequential representation of strings might be adequate for
the functions discussed above, such a representation is not adequate
when insertions and deletions into and from the middle of a string are
carried out. An insertion of ‘y,, ...,y,’ after the i-th character of S
will, in general require copying over the characters x,, ...,x; followed
by y,,....y,. and then x,,,, ...,x, into a new free area (see figure 4.35).
The time required for this is O(rn + m). Deletion of a substring may
be carried out by either replacing the deleted characters by a special
symbol & or by compacting the space originally occupied by this substring
(figure 4.36). The former entails storage waste while the latter in the
worst case takes time proportional to LENGTH(S). The replacement
of a substring of S by another string T is efficient only if the length
of the substring being replaced is equal to LENGTH(T). If this is not
the case, then some form of string movement will be required.

186 Linked Lists

(b) after insertion

Figure 4.35 Insertion Into a Sequential String

S
Ko wom e oo o Xy
(a) before deletion
S
Xpees XX pre e X
(b) deletion of Xjeee Xy followed by compaction of Xig e X
)
x'...xi_'¢¢...¢xiﬂ... X

(c) deletion of x.... X followed by no compaction

Figure 4.36 Deletion of a Substring

Linked List—Fixed Size Nodes. An alternative to sequential string
representationis a linked list representation. Available memory is divided
into nodes of a fixed size. Each node has two fields: DATA and LINK.
The size of a node is the number of characters that can be stored
in the DATA field. Figure 4.37 shows the division of memory into
nodes of size 4 with a link field that is two characters long. On a
computer with 6 bits/character this would permit link values in the
range [0,2'2 — 1]. In the purest form of a linked list representation

Data Representations for Strings 187

of strings, each node would be of size one. Normally, this would represent
extreme wastage of space.

cC 1 2 3 4 5 6 7 8 9 10 Il 12

|
-~ DATA‘-*'LINKJ'— DATA"i"LINKJ

r NODE (])—-—s———NODE (2)—=

Figure 4.37 Partitioning Available Memory Into Nodes of Size 4.

With a link field of size two characters, this would mean that only
2/3 of available memory would be available to store string information
while the remaining 1/3 will be used only for link information. With
a node size of 8, 75% of available memory could be used for string
information. When using nodes of size > 1, it is possible that a string
may need a fractional number of nodes. With a node size of 4, a string
of length 13 will need only 3-1/4 nodes. Since fractional nodes cannot
be allocated, 4 full nodes may be used with the last three characters
of the last node set to ¢ (figure 4.38(a)). An in place insertion might

S
"
BpTO¥ BRIN GATH Ed¢dd | O
T
L
b HEA L THDd TObL$| O
(a)
LS

B TOB|—{BRIN | —Gb¢¢ |—= b HEA|—|LT Hb|—= TOBG|—

LMTH E¢¢d | O

{b)

Figure 4.38

188 Linked Lists

require one node to be split into two as in figure 4.38(b). Deletion
of a substring can be carried out by replacing all characters in this
substring by & and freeing nodes in which the DATA field consists
only of &’s. In place replacement can be carried similarly. Storage
management is very similar to that of section 4.3. Storage compaction
may be carried out when there are no free nodes. Strings containing
many occurrences of & could be compacted freeing several nodes. String
representation with variable sized nodes is similar.

When the node size is 1 things work out very smoothly. Insertion,
deletion and concatenation are particularly easy. The length may be
determined easily by retaining a head node with this information. Let
us look more closely at the operations of insertion and concatenation
when the node size is one and no head node is maintained. First, let
us write a procedure which takes two character strings and inserts the
second after the ith character of the first.

procedure SINSERT (S,T,i)
/insert string T after the i-th character of S destroying the original /'
/ strings S, T and creating a new string S/

1 case / degenerate cases /

2 :i<0ori> LENGTH(S): print (‘string length error’); stop
3 : T=0: return

4 :§=0:S<«T,;return

S end

/at this point LENGTH(S) > 0, LENGTH(T) > 0,0 < i <
LENGTH(S) /

6 ptr<8S;j<1

7 while j < i do /find i-th character of S/

8 ptr< LINK (ptr); j < j+ 1 /ptr points to i-th node/

9 end
10 if i = O then [save < S; ptr—T;, S—T] /save i+ 1 character/
11 else [save < LINK (ptr)
12 LINK (ptr) « T / attach list T to list S/
13 while LINK (ptr) # 0 do /find end of T/
14 ptr < LINK (ptr)
15 end
16 LINK (ptr) < save /point end of T to/

A i+ 1-st character of S/
17 end SINSERT

Data Representations for Strings 189

Examine how the algorithm works on the strings below.

R

T

G

0 w b{O

T is to be inserted after the fifth character of S to give the result
‘THIS NOW IS.” The fifth character in S and the last character of

T are blanks. After the if statement is executed in SINSERT the following
holds.

S ptr save

(/\ 7 ¢
T H 1 S j 1 1 S|O
. |

k/\N 0 w K| 0

The list S has been split into two parts named S and save. The node
pointed at by ptr has been attached to T. This variable will now move
across the list T until it points to the last node. The LINK field will
be set to point to the same node that save is pointing to, creating a
single string.

T H | s [| s S
!
N 0 W b T

Figure 4.39 Circular Representation of Sand T

190 Linked Lists

The computing time of SINSERT is proportional to i + LENGTH(T.
We can produce a more efficient algorithm by altering the data structure
only slightly. If we use singly linked circular lists, then S and T will
be represented as in Figure 4.39 above. The new version of SINSERT
is obtained by replacing lines 6-16 by:

ptr—S;j«0
whilej < i do
ptr— LINK (ptr); j—j+ 1 /find i-th character of S/
end
save « LINK (ptr) / save i + 1-st character of §/

else LINK (ptr) « LINK(T)
LINK(T) « save Jattach end of Tto S/
ifptrr =Sandi # OthenS « T

By using circular lists we avoided the need to find the end of list T.
The computing time for this version is O(i) and is independent of the
length of T.

4.11.2 PATTERN MATCHING IN STRINGS

Now let us develop an algorithm for a more sophisticated application
of strings. Given two strings S and PAT we regard the value of PAT
as a pattern to be searched for in S. If it occurs, then we want to
know the node in S where PAT begins. The following procedure can
be used.

Program on next page

This algorithm is a straightforward consequence of the data representa-
tion. Unfortunately, it is not very efficient. Suppose

S=‘aaa ... a’; PAT = ‘aaa ... ab’

where LENGTH(S) = m, LENGTH(PAT) = n and m is much larger
than n. Then the first n — 1 letters of PAT will match with the a’s
in string S but the n-th letter of PAT will not. The pointer p will be
moved to the second occurrence of ‘a’ in S and the n — 1 a’s of PAT
will match with S again. Proceeding in this way we see there will be
m — n + | times that Sand PAT have n — 1 a’s in common. Therefore,

Pattern Matching in Strings 191

procedure FIND (S,PAT,i)
/find in string S the first occurrence of the string PAT and return
ias a pointer to the node in S where PAT begins. Otherwise return

ias zero/
i«0
if PAT = 0 or S = 0 then return
p<S
repeat
save « p; q «— PAT /save the starting position /
while p # 0 and g # 0 and DATA (p) = DATA(q) do
p < LINK(p); q < LINK(q) / characters match,
move to next pair,/
end
if g = 0 then [i « save; return] /a match is found /
p < LINK (save) / start at next character in S/
until p =0 /loop until no more elements in S/
end FIND

algorithm FIND will require at least(m — n + 1)(n — 1) = O(mn) opera-
tions. This makes the cost of FIND proportional to the product of
the lengths of the two lists or quadratic rather than linear.

There are several improvements that can be made. One is to avoid
the situation where LENGTH(PAT) is greater than the remaining length
of S but the algorithm is still searching for a match. Another improvement
would be to check that the first and last characters of PAT are matched
in Sbefore checking the remaining characters. Of course, these improve-
will speed up processing on the average. Procedure NFIND incorporates
these improvements.

Program on next page

If we apply NFIND to the strings S= ‘aa ... a’ and PAT = ‘q ...
ab’, then the computing time for these inputs is O(m) where m =
LENGTH(S) which is far better than FIND which required O(mn).
However, the worst case computing time for NFIND is still O(mn).

NFIND is a reasonably complex program employing linked lists and
it should be understood before one reads on. The use of pointers like
P, q, J, ris very typical for programs using this data representation.

It would be far better if we could devise an algorithm which works
in time O(LENGTH(S) + LENGTH(PAT)), which is linear for this
problem since we must certainly look at all of PAT and potentially

192 Linked Lists

procedure NFIND (S,PAT,i)
/string S is searched for PAT and i is set to the first node in S
where PAT occurs else zero. Initially the last and first characters
of PAT are checked for in S/
if PAT = 0 or S = 0 then return
pe—q«—PAT; it 0

while LINK(q) # 0 do / q points to last node of PAT/
q<— LINK(g); t«—1t+ 1
end /'t + 1is the length of PAT/
jeresave«— S
for k < 1 to t while j # 0 do /find t + 1-st node of S/
j < LINK(j)
end
while j # 0 do #while S has more chars to inspect/
p < PAT; r « save
if DATA(q) = DATA(j) /check last characters /
then [while DATA (p) = DATA(r) and p # q do
p <« LINK (p); r < LINK (r) / check pattern /
end
if p = q then [i « save; return]] /success /
save « LINK (save); j « LINK (j)
end
end NFIND
PAT S
‘aab’ ababbaabaa nomatch
2 ~ 1
p q r j
a babbaabaa nomatch
T
roj
ababbaabaa partial match
T
ro
ababbaabaa nomatch
T
r j
ababbaabaa no match
rT T
j

ababbaabaa success

)

roj

Figure 4.40 Action of NFIND on S and PAT

Pattern Matching in Strings 193

all of S. Another desirable feature of any pattern finding algorithm
is to avoid rescanning the string S. If S is so large that it cannot
conveniently be stored in memory, then rescanning adds complications
to the buffering operations. Such an algorithm has recently been devel-
oped by Knuth, Morris and Pratt. Using their example suppose

PAT=‘abcabcacabdb’

LetS = 5,5, ... 5,,andassume that we are currently determining whether
or not there is a match beginning at s;. If s, # a then clearly, we may
proceed by comparing s;., and a. Similarly if s;,=a and s;,, # b
then we may proceed by comparing s,,, and a. If s;s,,, = ab and
$;.» # c then we have the situation:

2. ...

S=*‘—ab?
¢ bcabcacab’

a
PAT= a
The ? implies we do not know what the character in S is. The first
? in S represents s,,, and s,,, # ¢. At this point we know that we
may continue the search for a match by comparing the first character
in PAT with s,,,. There is no need to compare this character of PAT
with s, ; as we already know that s, , is the same as the second character
of PAT, b and so s,,, # a. Let us try this again assuming a match
of the first four characters in PAT followed by a non-matchi.e. s,,, # b.
We now have the situation:

S=*“—-ab
PAT= ‘ab

We observe that the search for a match can proceed by comparing
s,;.4 and the second character in PAT, b. This is the first place a partial
match can occur by sliding the pattern PAT towards the right. Thus,
by knowing the characters in the pattern and the position in the pattern
where a mismatch occurs with a character in S we can determine where
in the pattern to continue the search for a match without moving backwards
in S. To formalize this, we define a failure function for a pattern.
Definition: If P= p,p, ... p, is a pattern, then its failure function, f,
is defined as:

largest i < jsuchthat p,p,... p; =P 11 1Pj_i42 --- Pj
f(j) =<if such an i = 1 exists
0 otherwise

194 Linked Lists

For the example pattern above, PAT = abcabcacab, we have

PA

P"SH'—:.
o -
ST N
o6 w
- A
[\ M e iV]
w o
VI
S0 R
—_ O
VoS

From the definition of the failure function we arrive at the following
rule for pattern matching: If a partial match is found such that
Si_j+1 -+ Sioy = PPy .- Pj, and s, # p; then matching may be resumed
by comparing s; and pg;_,,., if fG—-1#0. If f(j —1)=0 then we
may continue by comparing s,,, and p;.

In order to use the above rule when the pattern is represented as
a linked list as per our earlier discussion, we include in every node
representing the pattern, an additional field called NEXT. If LOC(j)
is the address of the node representing p;, 1 < j < n, then we define

0 ifj=1
NEXT(LOC(@)) =40 iffG—1)=0
LOCUG-D+1) iffGj—1D#0

Figure 4.41 shows the pattern PAT with the NEXT field included.

With this definition for NEXT, the pattern matching rule translates to
the following algorithm:

procedure PMATCH (S,PAT)
/ determine if PAT is a substring of S/

1 i3S /i will move through S/
2 j <« PAT /] will move through PAT/
3 while i # 0 and j # 0 do
4 if DATA(i) = DATA())
5 then [/ match/
6 i« LINK ()
7 j < LINK(j)]
8 else [j <« NEXT(j)
9 if j = 0 then [j «— PAT i « LINK())]]
10 end
11 if j = 0 then print (‘a match’)
12 else print (‘no match’)

13 end PMATCH

The correctness of PMATCH follows from the definitions of the failure
function and of NEXT. To determine the computing time, we observe

195

Pattern Matching in Strings

PIOld LXEAN WM LVd Wishied pauawsny [ppy aumdyg

0

D

:

ElE o

E

196 Linked Lists

that the then clauses of lines 4-6 and 8-9 can be executed for a total
of at most m = LENGTH(S) times as in each iteration i moves right
on S but i never moves left in the algorithm. As a result j can move
right on PAT at most m times (lines 6 and 8). Since each execution
of the else clause in line 7 moves j left on PAT, it follows that this
clause can be executed at most m times as otherwise j must fall off
the left end of PAT. As a result, the maximum number of iterations
of the while loop of lines 3-10 is m and the computing time of PMATCH
is O(m). The performance of the algorithm may be improved by starting
with a better failure function (see exercise 57).

The preceding discussion shows that NFIND can be improved to an
O(m) algorithm provided we are either given the failure function or
NEXT. We now look into the problem of determining f. Once f is
known, it is easy to get NEXT. From exercise 56 we know that the
failure function for any pattern p,p, ... p, is given by:

0 ifj=0
fG =)f"(— 1)+ 1 where mis the least integer k for which
Ppg-1+1= P;j
0 if there is no k satisfying the above

(note that f' () = f(j) and () = f¢F"1(H)
This directly yields the following algorithm to compute f.

procedure FAIL (PAT,f)
/ compute the failure function for PAT = p,p, ... p./

1 f(1) «0

2 for j«<—2to ndo /compute f(j) /
3 i—fG-1

4 while p; # p;, ,and i > 0 do

5 i < f(i)

6 end

7 if p; = p;,, then f(j) « i+ 1

8 else f(j) « 0

9 end
10 end FAIL

In analyzing the computing time of this algorithm we note that in
each iteration of the while loop of lines 4-6 the value of i decreases
(by the definition of f). The variable i is reset at the beginning of
each iteration of the for loop. However, it is either reset to 0 (when
j = 2 or when the previous iteration went through line 8) or it is reset

Implementing Node Structures 197

to a value 1 greater than its terminal value on the previous iteration
(i.e. when the previous iteration went through line 7). Since only n
executions of line 3 are made, the value of i therefore has a total increment
of at most n. Hence it cannot be decremented more than n times.
Consequently the while loop of lines 4-6 is iterated at most n times
over the whole algorithm and the computing time of FAIL is O(n).

Even if we are not given the failure function for a pattern, pattern
matching can be carried out in time O(n + m). This is an improvement
over NFIND.

4.12 IMPLEMENTING NODE STRUCTURES

Throughout this chapter we have dealt with nodes without really seeing
how they may be set up in any high level programming language. Since
almost all such languages provide array variables, the easiest way to
establish n nodes is to define one dimensional arrays, each of size n,
for each of the fields in a node. The node structure to represent univariate
polynomials (section 4.4) consisted of three fields: EXP, COEF and
LINK. Assuming integer coefficients, 200 polynomial nodes can be set
up in FORTRAN through the statement:

INTEGER EXP(200), COEF(200), LINK(200)

The nodes then have indices 1 through 200. The values of various fields
in any node i, 1 = i =200 can be determined or changed through the
use of standard assignment statements. With this structure for nodes,
the following FORTRAN subroutine would perform the function of
algorithm INIT of section 4.3.

SUBROUTINE INIT(N)
LINK N NODES TO FORM THE INITIAL AVAILABLE
SPACE LIST AND SET AV TO POINT TO FIRST NODE.
ARRAYS EXP, COEF AND LINK AND VARIABLE AV
ARE IN BLANK COMMON.
INTEGER EXP(200),COEF(200), LINK (200),AV
COMMON EXP,COEF,LINK,AV
M=N-1
DO10I=1,M
10 LINK(I)=1+1

LINK(N) =0

AV =1

RETURN

END

nnan

198 Linked Lists

Using global one dimensional arrays for each field, the function INIT
can be realized in PASCAL by the procedure:

PROCEDURE INIT(N: INTEGER);
{This procedure initializes the available space list. LINK is a global
array of type integer. AV is a global variable of type integer.}
VAR I: INTEGER; {Local variable I'}
BEGIN FORI:=1TON -1 DO LINK(I): =1+ 1;

LINK(N): = 0;
AV:=1

END;

Usually one does not need a full memory word for each field. So
space can be saved by packing several fields into one word. If we
have a 60 bit word, as in a CDC computer, choosing field sizes of
15 bits for the EXP field, 15 bits for the LINK field and 30 bits for
the COEEF field would permit the use of one word per node. This node
structure would be adequate to handle LINK and EXP values in the
range [0,32767] and coefficient values in excess of the range [—5 X 108,
+ 5 x 108]. On a 32 bit per word machine roughly the same ranges
could be obtained through the use of two words per node. One word
of each node could be used for the COEF field and half of the second
word would be used for each of the remaining two fields. In the case
of 60 bit words, this packing of fields would reduce storage requirements
by 2/3, while in the 32 bit case the reduction would be by a factor
of 1/3 (this, of course, assumes that the field sizes discussed above
are enough to handle the problem being solved). If we are going to
pack fields into words, then we must have a way to extract and set
field values in any node. In a language like FORTRAN this can be
done through the use of the SHIFT function together with masking
operations using the logical operations of AND, OR and NOT. The
SHIFT function has two arguments, X and N, where X is the word
whose bits are to be shifted and N is the amount of the shift. If N> 0,
then the result of the shift is X shifted circularly left by N bits. The
value of X is left unchanged. If N <0, then the result is X shifted
right with sign extension by N bits. X is left unchanged. Figure 4.42
illustrates the result of a left circular and right shift on the bits of
a 5 bit word. Figure 4.43 lists FORTRAN subroutines to extract and
set the three fields of a 1 word node. Figure 4.44 does this for the

Implementing Node Structures 199

[b4 |25 | Py [P5]bs]

[Tee s e]
!

Sign bit

SHIFT (X,3)

(left circular shift by 3)

oo (%] B

b, b3

5 b,
{
direction of shift
is anticlockwise

by [b By [by [b |

Sign bit SHIFT (X,-2) SHIFT (X,—-4)
right shift by 2 bits
sign bit b, propogotes
Figure 4.42 Left and Right Shifts
« 30 bits » « 15 bits — « 15 bits »
COEF EXP [i~k |

node structure using one 60 bit word per node

INTEGER FUNCTION COEF{)
C EXTRACT COEF FIELD OF] BY
C USING A RIGHT SHIFT BY 30 BITS.
COEF = SHIFT(J,-30)
RETURN
END

INTEGER FUNCTION EXP(J)
C EXTRACT EXP FIELD BY SHIFTING
C RIGHT AND ZEROING OUT EXTRA
BITS -
EXP = SHIFT{,-15).AND.77777B
RETURN
END

FUNCTION LINK{J)

C EXTRACT LINK FIELD OF J
LINK = J.AND.77777B
RETURN
END

aaaan

SUBROUTINE SCOEF{,I)

SET THE COEF FIELD OF] TO I BY

FIRST ZEROING OUT OLD

CONTENTS AND THEN USE AN OR

TO PUT IN NEW VALUE. ASSUME 1 IS

IN RIGHT RANGE.

J = (J.,AND.7777777777B).OR.
SHIFT(1.AND.7777777777B,30)

RETURN

END

SUBROUTINE SEXP(J,1)
SET EXP FIELD OF] TO 1

J = (J,LAND.77777777770000077777B)
.OR.SHIFT(I,15)

RETURN

END

SUBROUTINE SLINK({J,I)

SET LINK FIELDOF J TO 1

J = (J,AND.77777777777777700000B)
.OR.I

RETURN

END

Figure 4.43 Setting and Extracting Fields in a 60 Bit Word
(EXP, LINK nonnegative integers)

200 Linked Lists

« 16 bits - « 16 bits —
EXP LINK |
INTEGER FUNCTION EXP(J) SUBROUTINE SEXP(J,I)
C EXTRACT EXP FIELD OF J C SET EXP FIELD OF J TO I
EXP = SHIFT{J,-16).AND.177777B J = (J.AND. 177777B).OR.SHIFT(l, 16)
RETURN RETURN
END END

(NOTE: the AND operation is needed
to mask out sign bit extension)

INTEGER FUNCTION LINK(J) SUBROUTINE SLINK{,I)

C EXTRACT LINK FIELD OF § C SET LINK FIELDOF J TO 1
LINK = J.AND. 177777B J = (JLAND. 37777600000B).OR.1I
RETURN RETURN
END END

These subroutines and functions assume that negative numbers
are stored using 'ls complement arithmetic. A ‘B’ following
a constant means that the constant is an octal constant.

Figure 4.44 Setting and Extracting Fields in a 32 Bit Word

VAR LINK: ARRAY[1..200] OFO0. . 32767;
EXP: ARRAY([1..200] OF 0. . 32767;
COEF: ARRAY (1. .200] OF —1073741823 . . 1073741823,

Figure 4.45 PASCAL Array Declaration to Get Field Sizes

two fields packed into 1 word for the case of a 32 bit word.

In PASCAL, the task of packing fields into words is simplified or
eliminated as the language definition itself permits specifying a range
of values for each variable. Thus, if the range of variable I is defined
to be [0,2'5 — 1], then only 15 bits are allocated to I. The PASCAL
declaration, figure 4.45 for arrays EXP, COEF and LINK would result
in the same storage requirements for 200 nodes as the packing and
unpacking routines of figure 4.44. Alternatively, one could use record
variables as in figure 4.46.

TYPE POLY = PACKED RECORD COEF: —-1073741823 . . 1073741823
EXP: 0. . 32767
LINK: 0. . 32767
END;
VAR NODE: ARRAY [1 . . 200] OF POLY
usage ... NODE [subscript]. COEF; NODE [subscript]. EXP; NODE [subscript]. LINK

Figure 4.46 Declaring NODE(200) to be a Record Variable With Fields EXP, LINK
and COEF of the Same Size as in Figure 4.45

Implementing Node Structures 201

REFERENCES AND SELECTED READINGS

A general reference for the topics discussed here is The Art of Computer
Programming: Fundamental Algorithms by D. Knuth, volume I 2nd edition,
Addison-Wesley, Reading, 1973.

For a discussion of early list processing systems see ‘‘Symmetric list processor’’
by J. Weizenbaum, CACM, vol. 6, no. 9, Sept. 1963, pp. 524-544,

““A comparison of list processing computer languages,”” by Bobrow and B.
Raphael, CACM, vol. 7, no. 4, April 1964, pp. 231-240.

‘“An introduction to IPL-V” by A. Newell and F. M. Tonge, CACM, vol.
3, no. 4, April 1960, pp. 205-211.

“‘Recursive functions of symbolic expressions and their computation by machine:
I,”” by J. McCarthy, CACM, vol. 3, no. 4, April 1960, pp. 184-195.

For a survey of symbol manipulation systems see Proceedings of the Second
Symposium on Symbolic and Algebraic Manipulation, ed. S. R. Petrick, March,
1971, available from ACM.

For further articles on dynamic storage allocation see ‘‘An estimate of the
store size necessary for dynamic storage allocation” by J. Robson, JACM,
vol. 18, no. 3, July 1971, pp. 416-423.

“Multiword list items”” by W. T. Comfort, CACM, vol. 7, no. 6, June 1964,
pp. 357-362.

““A weighted buddy method for dynamic storage allocation”” by K. Shen and
J. Peterson, CACM, vol. 17, no. 10, October 1974, pp. 558-562.

‘“‘Statistical properties of the-buddy system,”’ by P. Purdom and S. Stigler JACM,
vol. 14, no. 4, October 1970, pp. 683-697.

‘A class of dynamic memory allocation algorithms,’’ by D. Hirschberg, CACM,
vol. 16, no. 10, October 1973, pp. 615-618.

The reference count technique for lists was first given in ‘“A method for
overlapping and erasure of lists,”” by G. Collins, CACM, vol. 3, no. 12, December
1960, pp. 655-657.

The algorithm MARK?2 is adapted from: ‘‘An efficient machine-independent
procedure for garbage collection in various list structures,”” by H. Schorr and
W. Waite, CACM, vol. 10, no. 8, Aug. 1967, p. 501-506.

More list copying and marking algorithms may be found in ‘‘Copying list structures
using bounded workspace,”” by G. Lindstrom, CACM, vol. 17, no. 4, April
1974, p. 198-202, ‘A nonrecursive list moving algorithm,”” by E. Reingold,
CACM, vol. 16, no. 5, May 1973, p. 305-307, “‘Bounded workspace garbage
collection in an address-order preserving list processing environment,”” by D.
Fisher, Information Processing Letters, vol. 3, no. 1, July 1974, p. 29-32.

202 Linked Lists

For string processing systems see the early works ‘““COMIT” by V. Yngve,
CACM, vol. 6, no. 3, March 1963, pp. 83-84. SNOBOL, A String Manipulation
Language by D. Farber, R. Griswold and I. Polonsky, JACM, vol. 11, no.
1, 1964, pp. 21-30. “‘String processing techniques’ by S. Madnick, CACM,
vol. 10, no. 7, July 1967, pp. 420-427. ‘‘Fast Pattern Matching in Strings”’
by D. Knuth, J. Morris and V. Pratt Stanford Technical Report #74-440, August
1974.

EXERCISES

For exercises 1-6 assume that each node has two fields: DATA and LINK. Also
assume the existence of subalgorithms GETNODE(X)and RET(X) to get and return
nodes from/to the storage pool.

@ Write an algorithm LENGTH(X) to count the number of nodes in a singly
./ linked list P, where P points to the first node in the list. The last node
has link field 0.

J node in this list. Write an algorithm to delete this node from the list.

1f X = P, then P should be reset to point to the new first node in the
list.

@ Let Pbe a pointer to the first node in a singly linked list and X an arbitrary

3. Let X=(x,,x,,....x,)and Y =(y,.y,,....y,,) be two linked lists. Write
an algorithm to merge the two lists together to obtain the linked list Z =
(XY (X2 Y50 XY o X s -oaX,) if m=n and Z=(x,,y,,X,,y,.
e XmYnsYn+ly -« ¥m) if m > n. No additional nodes may be used.

4. Do exercise 1 for the case of circularly linked lists.
(5.} Do exercise 2 for the case of circularly linked lists.
6. Do exercise 3 for the case of circularly linked lists.

. 7. Devise a representation for a list where insertions and deletions can be
“ made at either end. Such a structure is called a deque. Write a procedure
for inserting and deleting at either end.

8. Consider the hypothetical data object X2. X2 is a linear list with the
restriction that while additions to the list may be made at either end,
deletions can be made from one end only.

Design a linked list representation for X2. Write addition and deletion
algorithms for X2. Specify initial and boundary conditions for your repre-
sentation.

Exercises 203

Give an algorithm for a singly linked circular list which reverses the direction

Let P be a pointer to a circularly linked list. Show how this list may
be used as a queue. l.e., write algorithms to add and delete elements.

It is possible to traverse a singly linked list in both directions (i.e., left
to right and a restricted right to left traversal) by reversing the links during
the left to right traversal. A possible configuration for a list P under this

l
HEa Bk o]

P points to the node currently being examined and L to the node on its
left. Note that all nodes to the left of P have their links reversed.
i} Write an algorithm to move P, n nodes to the right from a given

ii) Write an algorithm to move P, n nodes left from any given position

9.
of the links.
10.
Specify the value for P when the queue is empty.
11.
scheme would be:
L P
RN
0 HA
position (L,P).
(L,P).
12.

Consider the operation XOR (exclusive OR, also written as @) defined
as below (for i,j binary):

.. foif iand jare identical
iDj=

1 otherwise
This differs from the usual OR of logic in that

0ifi=j=0

iOR j= { .
1 otherwise

The definition can be extended to the case where i and j are binary strings
(i.e., take the XOR of corresponding bits of i and j). So, for example,
if i=10110and j = 01100,then i XOR j=i® j= 11010.

Notethat a® (@@ b)=(a@ a)®b=>

andthat (@@ b)) b=a®@bDb)=a

This gives us a space saving device for storing the right and left links
of a doubly linked list. The nodes will now have only two fields: INFO

204

13.

14.

15.

16.

Linked Lists

and LINK. If L, is to the left of node X and R, to its right, then
LINK(X) = L, @ R,. For the leftmost node L, = 0 and for the rightmost
node R, = 0.

Let (L,R) be a doubly linked list so represented. L points to the left
most node and R to the right most node in the list.
i) Write an algorithm to traverse the doubly linked list (L,R) from left
to right listing out the contents of the INFO field of each node.
ii) Write an algorithm to traverse the list right to left listing out the
contents of the INFO field of each node.

Write an algorithm PREAD(X) to read in n pairs of coefficients and
exponents, (c,,e;) | = i= nof a univariate polynomial, X, and to convert
the polynomial into the circular linked list structure of section 4.4. Assume
e,>e,,,1=i<n,andthat ¢, # 0,1 = i = n. Your algorithm should leave
X pointing to the head node. Show that this operation can be performed
in time O(n).

Let A and B be pointers to the head nodes of two polynomials represented
as in exercise 13. Write an algorithm to compute the product polynomial
C = A+ B. Your algorithm should leave A and B unaltered and create
C as a new list. Show that if n and m are the number of terms in A
and B respectively, then this multiplication can be carried out in time
O(nm?) or O(mn?). If A, B are dense show that the multiplication takes
O(mn).

Let A be a pointer to the head node of a univariate polynomial as in
section 4.4. Write an algorithm, PEVAL(A,x) to evaluate the polynomial
A at the point x, where x is some real number.

Extend the equivalence algorithm of section 4.6 to handle the case when
the variables being equivalenced may be subscripted. The input now consists
of 4-tuples (i, ioff, j, joff) where i and j as before represent the variables.
Ioff and joff give the position in i of j being equivalenced relative to
the start of i or j. For example, if i represents the array A dimensioned
A(—6:10) and, the array B dimensioned B(1:20), the equivalence EQUIVA-
LENCEC(A (5),B(6)) will berepresented by 4-tuple (i, 12, j, 6). Your algorithm
will begin by reading in these 4-tuples and setting them up in lists as
in section 4.6. Each node on a list will have three fields: IOFF, JVAR,
JOFF. Thus, for the equivalence 4-tuple above, the node [12] j [6]will
be put into the list for i and the node[6 [i [12]onto the list for j. Now
process these lists outputting equivalence classes. With each class, output
the relative position of each member of the class and check for conflicting
equivalences.

In exercises 17-21 the sparse matrices are represented as in section 4.7

17.

18.

19.

20.

21.

22,

23.

Exercises 205

Let A and B be two sparse matrices represented as in section 4.7. Write
an algorithm, MADD(A,B,C) to create the matrix C= A+ B. Your
algorithm should leave the matrices A and B unchanged and set up C
as a new matrix in accordance with this data representation. Show that
if A and B are n X m matrices with r, and r; nonzero terms, then this
addition can be carried out in O(n + m + r, + ry) time.

Let A and B be two sparse matrices. Write an algorithm MMUL(A,B,C)
to set up the structure for C = A = B. Show that if A is a n X m matrix
with'r, nonzero terms and if B is a m X p matrix with rz nonzero terms,
then C can be computed in time O(pr, + nry). Can you think of a way
to compute C in O(min{pr,,nrg}?

Write an algorithm to write out the terms of a sparse matrix A as triples
(i,j,a,.j). The terms are to be output by rows and within rows by columns.
Show that this operation can be performed in time O(n+ r,) if there
are r, nonzero terms in A and A is a n X m matrix.

Write an algorithm MTRP(A,B) to compute the matrix B = AT, the trans-
pose of the sparse matrix A. What is the computing time of your algorithm?

Design an algorithm to copy a sparse matrix. What is the computing time
of your method?

A simpler and more efficient representation for sparse matrices can be
obtained when one is restricted to the operations of addition, subtraction
and multiplication. In this representation nodes have the same fields as
in the representation of section 4.7. Each nonzero term is represented
by a node. These nodes are linked together to form two circular lists.
The first list, the rowlist, is made up by linking nodes by rows and within
rows by columns. This is done via the RIGHT field. The second list,
the column list, is made up by linking nodes via the DOWN field. In
this list, nodes are linked by columns and within columns by rows. These
two lists share a common head node. In addition, a node is added to
contain the dimensions of the matrix. The matrix A of figure 4.11 has
the representation shown on page 206.

Using the same assumptions as for algorithm MREAD of section 4.7 write
an algorithm to read in a matrix A and set up its internal representation
as above. How much time does your algorithm take? How much additional
space is needed?

For the representation of exercise 22 write algorithms to
(i) erase a matrix
(ii) add two matrices

Linked Lists

206

77 9S1019X3 JO swayds ay) Suisn [y M1y Jo v xLnew Jo uolejussaiday

IsI] BWN[O> Juasaldal s)uI[paysep
1SI] MO1 Juasa1dal SYUI] PIOS

v 10
suolsuawlp
|||||||||||||||| .
LT |||||||||| .“UIIIIMHHIIIII._F IIIIIIIII I__J Buinib apou
—— | pily eyl
i B _ } b B b \
6- 8- v-) vl 2l €l e - -
- [2]9), olely 2lg|’ L2l et ol |i el oo|' [T |4[2
1 1 * [} t i
N S, s S]
[vttt — —— 4

ISI| UWN[OD pUD MOJ JO} IPOU pPD3IY

24,

25,

50

27.

28.

29,

Exercises 207

(i) multiply two matrices

(iv) print out a matrix
For each of the above obtain computing times. How do these times compare
with the corresponding times for the representation of section 4.77

Compare the sparse representations of exercise 22 and section 4.7 with
respect to some other operations. For example how much time is needed
to output the entries in an arbitrary row or column?

(a) Write an algorithm BF(n,p) similar to algorithm FF of section 4.8
to allocate a block of size n using a best fit strategy. Each block in the
chain of available blocks has a SIZE field giving the number of words
in that block. The chain has a head node, AV (see Figure 4.16). The
best fit strategy examines each block in this chain. The allocation is made
from the smallest block of size = n. P is set to the starting address of
the space allocated. .

(b) Which of the algorithms BF and FF take less time?

(c) Give an example of a sequence of requests for memory and memory
freeing that can be met by BF but not by FF.

(d) Do (c) for a sequence that can be met by FF but not by BF.

./ Which of the two algorithms ALLOCATE and FREE of section 4.8 require

the condition TAG(0) = TAG(m + 1) = 1 in order to work right? Why?

The boundary tag method for dynamic storage management maintained
the available space list as a doubly linked list. Is the XOR scheme for
representing doubly linked lists (see exercise 12) suitable for this application?
Why?

Design a storage management scheme for the case when all requests for
memory are of the same size, say k. Is it necessary to coalesce adjacent
blocks that are free? Write algorithms to free and- allocate storage in this
scheme.

Consider the dynamic storage management problem in which requests for
memory are of varying sizes as in section 4.8. Assume that blocks of
storage are freed according to the LAFF discipline (Last Allocated First
Freed).

i) Design a structure to represent the free space.

ii) Write an algorithm to allocate a block of storage of size n.

iil) Write an algorithm to free a block of storage of size n beginning at

p.

In the case of static storage allocation all the requests are known in advance.

208 Linked Lists

If there are n requests r,,r,,...,r, and 2r, <= M where M is the total
amount of memory available, then all requests can be met. So, assume
Zr,> M.
i} Which of these n requests should be satisfied if we wish to maximize
the number of satisfied requests?
ii) Under the maximization criteria of (i), how small can the ratio
storage allocated

M
iii) Would this be a good criteria to use if jobs are charged a flat
rate, say $3 per job, independent of the size of the request?
iv) The pricing policy of (iii) is unrealistic when there can be much
variation in request size. A more realistic policy is to charge say
x cents per unit of request. Is the criteria of (i) a good one for
this pricing policy? What would be a good maximization criteria for
storage allocation now?
Write an algorithm to determine which requests are to be satisfied now.
How much time does your algorithm take as a function of n, the number
of requests? [If your algorithm takes a polynomial amount of time, and
works correctly, take it to your instructor immediately. You have made
a major discovery.]

get?

31. [Buddy System] The text examined the boundary tag method for dynamic
storage management. The next 6 exercises will examine an alternative
approach in which only blocks of size a power of 2 will be allocated.
Thus if a request for a block of size n is made, then a block of size
2Meenl i allocated. As a result of this, all free blocks are also of size
a power of 2. If the total memory size is 2™ addressed from 0 to 2™ — 1,
then the possible sizes for free blocks are 2% 0 < k < m. Free blocks of
the same size will be maintained in the same available space list. Thus,
this system will have m + 1 available space lists. Each list is a doubly
linked circular list and has a head node AVAIL(i), 0 < i< m. Every free
node has the following structure:

LLINK | TAG | KVAL | RLINK

TAG =0
KVAL = (k such that 2%
= size of node)

Free Node

Initially all of memory is free and consists of one block beginning at 0
and of size 2™ Write an algorithm to initialize all the available space
lists.

32,

33.

34.

Exercises 209

[Buddy System Allocation] Using the available space list structure of
exercise 31 write an algorithm to meet a request of size n if possible.
Note that a request of size # is to be met by allocating a block of size 2*
k = {log,n]. To do this examine the available space lists AVAIL(i), k < i
= m finding the smallest i for which AVAIL(i) is not empty. Remove
one block from this list. Let P be the starting address of this block.
If i > k, then the block is too big and is broken into two blocks of size
2i-'beginningat Pand P + 2i~'respectively. The block beginningat P + 2-!
is inserted into the corresponding available space list. If i — 1 > k, then
the block is to be further split and so on. Finally, a block of size 2*
beginning at Pis allocated. A block in use has the form:

| TAG | size

TAG =1

Block in Use

i) Write an algorithm using the strategy outlined above to allocate a
block of storage to meet a request for n units of memory.

ii) For a memory of size 2™ = 16 draw the binary tree representing the
splitting of blocks taking place in satisfying 16 consecutive requests
for memory of size 1. (Note that the use of the TAG in the allocated
block does not really create a problem in allocations of size | since
memory would be allocated in units where 1 unit may be a few thousand
words.) Label each node in this tree with its starting address and
present KVAL, i.e., power of 2 representing its size.

[Locating Buddies] Two nodes in the tree of exercise 32 aré said to be
buddies if they are sibling nodes. Prove that two nodes starting at x and
y respectively are buddies iff:
i) the KVALS for x and y are the same; and
ii) x = y ® 2% where @ is the. exclusive OR (XOR) operation defined
in exercise 12. The @® is taken pair wise bit wise on the binary
representation of y and 2.

[Freeing and Coalescing Blocks] When a block with KVAL k becomes
free it is to be returned to the available space list. Free blocks are combined
into bigger free blocks iff they are buddies. This combining follows the
reverse process adopted during allocation. If a block beginning at P and
of size k becomes free, it is to be combined with its buddy P@® 2* if
the buddy is free. The new free block beginning at L = min {P,P® 2}

210 Linked Lists

and of size k + 1 is to be combined with its buddy L ® 2%+! if free and
so on. Write an algorithm to free a block beginning at P and having KVAL
k combining buddies that are free.

3s. i) Does the freeing algorithm of exercise 34 always combine adjacent
free blocks? If not, give a sequence of allocations and freeings
of storage showing this to be the case.

. . storage requested
it) How small can the ratio ——————————be for the Buddy System?
storage allocated

Storage requested = Xn; where n; is actual amount requested. Give
an example approaching this ratio.

iii) How much time does the allocation algorithm take in the worst
case to make an allocation if the total memory size is 2™?

iv) How much time does the freeing algorithm take in the worst case
to free a block of storage?

36. [Buddy system when memory size is not a power of 2]
i) How are the available space lists to be initialized if the total storage
available is not a power of 27
ii) What changes are to be made to the block freeing algorithm to take
care of this case? Do any changes have to be made to the allocation
algorithm?

37. Write a nonrecursive version of algorithm LERASE(X) of section 4.9.

38. Write a nonrecursive version of algorithm EQUALS(S,T) of section 4.9.

39. Write a nonrecursive version of algorithm DEPTH(S) of section 4.9.

40. Write a procedure which takes an arbitrary nonrecursive list L with no
shared sublists and inverts it and all of its sublists. For example, if L = (a,
(b,c)), then inverse (L) = ((¢,b),a).

41. Devise a procedure that produces the list representation of an arbitrary
list given its linear form as a string of atoms, commas, blanks and

parentheses. For example, for theinput L = (a,(b,c)) your procedure should
produce the structure:

LLTAG DATA LINK
0 Q 1 0

42,

Exercises 211

One way to represent generalized lists is through the use of two field
nodes and a symbol table which contains all atoms and list names together
with pointers to these lists. Let the two fields of each node be named
ALINK and BLINK. Then BLINK either points to the next node on
the same level, if there is one, or is a zero. The ALINK field either
points to a node at a lower level or, in the case of an atom or list name,
to the appropriate entry in the symbol table. For example, the list
B(A,(D,E),(),B) would have the representation:

nome type address

D [15
HE=N —
| E | 2
—+ NIL o -
L1 g8 | 10
| A 0 _
symbal
table

(The list names D and E were already in the table at the time the list
B was input. A was not in the table and so assumed to be an atom.)

The symbol table retains a type bit for each entry. Type = 1 if the entry
is a list name and type = 0 for atoms. The NIL atom may either be in
the table or ALINKS can be set to 0 to represent the NIL atom. Write
an algorithm to read in a list in parenthesis notation and to set up its
linked representation as above with X set to point to the first node in
the list. Note that no head nodes are in use. The following subalgorithms
may be used by LREAD:

i) GET(A,P) ... searches the symbol table for the name A. P is set
to 0 if A is not found in the table, otherwise, P is set to the position
of A in the table.

ii) PUT(A,T,P) ... enters A into the table. P is the position at which
A was entered. If A is already in the table, then the type and address
fields of the old entry are changed T = 0 to enter an atom or T >0
to enter a list with address T. (Note: this permits recursive definition
of lists using indirect recursion).

iii) NEXT TOKEN ... gets next token in input list. (A token may be
a list name, atom, ‘(*,")’ or ‘,". A ‘L’ is returned if there are no
more tokens.)

iv) GETNODE(X) ... gets a node for use.

You may assume that the input list is syntactically coirect. In case a
sublist is labeled as in the list C(D,E(F,G)) the structure should be set

212

43,

44,

45.

46.

47,

48.

Linked Lists

up as in the case C(D,(F,G)) and E should be entered into the symbol
table as a list with the appropriate storing address.

Rewrite algorithm MARKI of section 4.10 using the conventions of section
4.9 for the tag field.

Rewrite algorithm MARKI of section 4.10 for the case when each list
and sublist has a head node. Assume that the DLINK field of each head
node is free and so may be used to maintain a linked stack without using
any additional space. Show that the computing time is still O(m).

When the DLINK field of a node is used to retain atomic information
as in section 4.9, implementing the marking strategy of MARK?2 requires
an additional bit in each node. In this exercise we shall explore a marking
strategy which does not require this additional bit. Its worst case computing
time will however be O(mn) where m is the number of nodes marked
and n the total number of nodes in the system. Write a marking algorithm
using the node structure and conventions of section 4.9. Each node has
the fields: MARK, TAG, DLINK and RLINK. Your marking algorithm
will use variable P to point to the node currently being examined and
NEXT to point to the next node to be examined. If L is the address
of the as yet unexplored list node with least address and P the address
of the node currently being examined then the value of NEXT will be
min {L,P + 1}. Show that the computing time of your algorithm is O(mn).

Prove that MARK?2(X) marks all unmarked nodes accessible from X.

Write a composite marking algorithm using MARK1, MARK?2 and a fixed
amount M of stack space. Stack nodes as in MARKI until the stack is
full. When the stack becomes full, revert to the strategy of MARK2.
On completion of MARK?2, pick up a node from the stack and explore
it using the composite algorithm. In case the stack never overflows, the
composite algorithm will be as fast as MARKI1. When M = 0, the algorithm
essentially becomes MARK2. The computing time will in general be
somewhere in between that of MARK1 and MARK2.

Write a storage compaction algorithm to be used following the marking
phase of garbage collection. Assume that all nodes are of a fixed size
and can be addressed NODE(i), | = i< m. Show that this can be done
in two phases, where in the first phase a left to right scan for free nodes
and a right to left scan for nodes in use is carried out. During this phase,
used nodes from the right end of memory are moved to free positions
at the left end. The relocated address of such nodes is noted in one of
the fields of the old address. At the end of this phase all nodes in use

49.

50.

51.

52,

53.

54,

55.

Exercises 213

occupy a contiguous chunk of memory at the left end. In the second
phase links to relocated nodes are updated.

Write a compaction algorithm to be used in conjunction with the boundary
tag method for storage management. Show that this can be done in one
left to right scan of memory blocks. Assume that memory blocks are inde-
pendent and do not reference each other. Further assume that all memory
references within a block are made relative to the start of the block. Assume
the start of each in-use block is in a table external to the space being al-
located.

Design a dynamic storage management system in which blocks are to be
returned to the available space list only during compaction. At all other
times, a TAG is set to indicate the block has become free. Assume that
initially all of memory is free and available as one block. Let memory
be addressed 1 through M. For your design, write the following algorithms:

(i) ALLOCATE(n,p) ... allocates a block of size n; p is set to its
starting address. Assume that size n includes any space needed
for control fields in your design.

(ii)) FREE(n,p) ... free a block of size n beginning at p.

(iii) COMPACT ... compact memory and reinitialize the available space
list. You may assume that all address references within a block
are relative to the start of the block and so no link fields within
blocks need be changed.

Write an algorithm to make an in-place replacement of a substring of X
by the string Y. Assume that strings are represented using fixed size nodes
and that each node in addition to a link field has space for 4 characters.
Use ¢ to fill up any unused space in a node.

Using the definition of STRING given in section 4.11, simulate the axioms
as they would apply to (i) CONCAT(S,T) (ii)) SUBSTR(S,2,3), (iii)
INDEX(S,T) where S = ‘abcde’ and T = ‘cde’.

If X=(x,,....x,) and Y=(y,,....,y,) are strings where x; and y, are
letters of the alphabet, then X is less than Y if x,=y,for 1 =i=<jand
x;<y;orif x,=y for l=i=<mand m<n. Write an algorithm which
takes two strings X,Y and returns either —1, 0, +1 if X<Y, X=Y or
X > Y respectively.

Let X and Y be strings represented as singly linked lists. Write a procedure
which finds the first character of X which does not occur in the string
Y.

Show that the computing time for procedure NFIND is still O(mn). Find
a string and a pattern for which this is true.

214

56.

57.

8.

Linked Lists

(a) Compute the failure function for the following patterns:
6) aaaakb
(i) ababaa
(iii) abaabaabhb

(b) For each of the above patterns obtain the linked list representations
including the field NEXT as in figure 4.41.

(c) let p,p, ... p, be a pattern of length n. Let f be its failure function.
Define f' (j) = f(j) and f™(§) = f(f™'(j)),] = j=< nand m > 1. Show
using the definition of f that:

0 ifj=1
f() = Yfm(— 1) + 1 where m is the least integer k for which
Pge_ny+1 = P
0 if there is no k satisfying the above

The definition of the failure function may be strengthened to

largest i <j suchthatp,p,...p;=Pp;_;,) Pjoiss - Pj
f = andp,., # p;,,
0 if there is no i = 1 satisfying above

(a) Obtain the new failure function for the pattern PAT of the text.

(b) Show that if this definition for f is used in the definition of NEXT
then algorithm PMATCH still works correctly.

(¢) Modify algorithm FAIL to compute f under this definition. Show that
the computing time is still O(n).

(d) Are there any patterns for which the observed computing time of
PMATCH is more with the new definition of f than with the old one?
Are there any for which it is less? Give examples.

[Programming Project]

Design a linked allocation system to represent and manipulate univariate
polynomials with integer coefficients (use circular linked lists with head
nodes). Each term of the polynomial will be represented as a node. Thus,
a node in this system will have three fields as below:

Exponent I Link

Coefficient

For purposes of this project you may assume that each field requires
one word and that a total of 200 nodes are available.
The available space list is maintained as a chain with AVAIL pointing

to the first node. To begin with, write computer subprograms or procedures
to perform the following basic list handling tasks:

59.

Exercises 215

1) INIT(N) ... initialize the storage pool. l.e., set it up as a singly
linked list linked through the field LINK with AVAIL pointing to
the first node in this list.

ii) GETNODE(X) ... provides the node X from the storage pool for
use. It is easiest to provide the first node in AVAIL if there is
a free node.

ili) RET(X) ... return node X to the storage pool.

iv) LENGTH(X) ... determines the number of nodes in the list X where
X may be either a circular list or a chain.

The external (i.e., on computer card or print out) representation of a
univariate polynomial will be assumed to be a sequence of integers of
the form: ne, c,e,c,e5¢, ... €,c,, where the e, represents the exponents
and the c, the coefficients. n gives the number of terms in the polynomial.
The exponents are in decreasing order, i.e., e, >e,> ... >¢,.

Write and test (using the routines 1-4 above) the following routines:

v) PREAD(X)...read in aninput polynomial and convert it to a circular
list representation using a head node. X is set to point to the head
node of this polynomial.

vi) PWRITE(X) ... convert the polynomial X from its linked list
representation to external representation and print it out.

Note: Both PREAD and PWRITE may need a buffer to hold the
input while setting up the list or to assemble the output. Assuming
that at most 10 terms may appear on an input card or output line,
we can use the two arrays E(10) .and C(10) for this.

vii) PADD(X, Y, Z)...Z=X+Y

viii) PSUB(X, Y, Z)...Z=X-Y

ix) PMUL(X,Y,Z)..Z=X+Y

x) PEVAL(X,A,V)... A is a real constant and the polynomial X is
evaluated at the point A. Vis set to this value.

Note: Routines vi-x should leave the input polynomials unaltered
after completion of their respective tasks.
xi) PERASE(X) ... return the circular list X to the storage pool.

Use the routine LENGTH to check that all unused nodes are returned
to the storage pool.
E.g., LO= LENGTH(AVAIL)

CALL PMUL(X, Y, Z)

LN = LENGTH(Z) + LENGTH(AVAIL)

should result in LN = LO.

[Programming Project] In this project, we shall implement a complete
linked list system to perform arithmetic on sparse matrices using the
representation of section 4.7. First, design a convenient node structure
assuming VALUE is an integer for the computer on which the program
is to be run. Then decide how many bits will be used for each field

216

60.

Linked Lists

of the node. In case the programming language you intend to use is
FORTRAN, then write function subprograms to extract various fields that

may

be packed into a word. You will also need subroutine subprograms

to set certain fields. If your language permits use of structure variables,

then

these routines would not be needed. To begin with, write the basic

list processing routines:

a)

b)
)

d

~—

€)

f)

g)

h
i)

~

)

INIT(N) ... initialize the available space list to consist of N nodes.
Depending on your design each node may be 2 or 3 words long.
GETNODE(X) ... provide node X for use.

RET(X) ... return node X to the available space list.

Test these routines to see if they work. Now write and test these
routines for matrix operations:

MREAD(A) ... read matrix A from cards and set up according to
the representation of section 4.7. The input has the following format:

card 1: nmr n = # or rows
m = # or columns
r = # of nonzero terms
Format is 214, 16
card 2
Format 6(214, I5), 6 triples of (row, columns, value)
card r+ 1

These triples are in increasing order by rows. Within rows, the triples
are in increasing order of columns. The data is to be read in one
card at a time and converted to internal representation. The variable
A is set to point to the head node of the circular list of head nodes
(as in the text).

MWRITE(A) ... print out the terms of A. To do this, you will have
to design a suitable output format. In any case, the output should
be ordered by rows and within rows by columns.

MERASE(A) ... return all nodes of the sparse matrix A to the available
space list.

MADD(A,B,C) ... create the sparse matrix C=A + B. A and B
are to be left unaltered.

MSUB(A,B,C)...C=A-B

MMUL(A,B,C) ... create the sparse matrix C= A* B. A and B are
to be left unaltered.

MTRP(A,B) ... create the sparse matrix B= AT. A is to be left
unaltered.

[Programming Project] Do the project of exercise 59 using the matrix

representation of exercise 22.

Exercises 217

. ;1\ (Landweber)

" This problem is to simulate an airport landing and takeoff pattern. The
airport has 3 runways, runway 1, runway 2 and runway 3. There are
4 landing holding patterns, two for each of the first two runways. Arriving
planes will enter one of the holding pattern queues, where the queues
are to be as close in size as possible. When a plane enters a holding
queue, it is assigned an integer ID number and an integer giving the number
of time units the plane can remain in the queue before it must land (because
of low fuel level). There is also a queue for takeoffs for each of the
three runways. Planes arriving in a takeoff queue are also assigned an
integer ID. The takeoff queues should be kept the same size.

At each time 0-3 planes may arrive at the landing queues and 0-3 planes
may arrive at the takeoff queues. Each runway can handle one takeoff
or landing at each time slot. Runway 3 is to be used for takeoffs except
when a plane is low on fuel. At each time unit, planes in either landing
queue whose air time has reached zero must be given priority over other
landings and takeoffs. If only one plane is in this category, runway 3
is to be used. If more than one, then the other runways are also used
(at each time at most 3 planes can be serviced in this way).

Use successive even (odd) integers for ID’s of planes arriving at takeoff
(landing) queues. At each time unit assume that arriving planes are entered
into queues before takeoffs or landings occur. Try to design your algorithm
so that neither landing nor takeoff queues grow excessively. However,
arriving planes must be placed at the ends of queues. Queues cannot
be reordered.

The output should clearly indicate what occurs at each time unit. Periodically
print (a) the contents of each queue; (b) the average takeoff waiting time;
(c) the average landing waiting time; (d) the average flying time remaining
on landing; and (e) the number of planes landing with no fuel reserve.
(b)-(c) are for planes that have taken off or landed respectively. The
output should be self explanatory and easy to understand (and uncluttered).

The input can be on cards (terminal, file) or it can be generated by a
random number generator. For each time unit the input is of the form:

coll: 0-3 indicating the number of planes arriving at takeoff queues.
col2: 0-3 indicating # of planes arriving at landing queues
col4-5 1-20 units of flying time for planes arriving in landing queues
6-7 1-20
(from col2)

8-9 1-20

Chapter 5

TREES

5.1 BASIC TERMINOLOGY

In this chapter we shall study a very important data object, trees.
Intuitively, a tree structure means that the data is organized so that
items of information are related by branches. One very common place
where such a structure arises is in the investigation of genealogies.
There are two types of genealogical charts which are used to present
such data: the pedigree and the lineal chart. Figure 5.1 gives an example
of each.

The pedigree chart shows someone’s ancestors, in this case those
of Dusty, whose two parents are Honey Bear and Brandy. Brandy’s
parents are Nuggett and Coyote, who are Dusty’s grandparents on her
father’s side. The chart continues one more generation farther back
to the great-grandparents. By the nature of things, we know that the
pedigree chart is normally two-way branching, though this does not
allow for inbreeding. When that occurs we no longer have a tree structure
unless we insist that each occurrence of breeding is separately listed.
Inbreeding may occur frequently when describing family histories of
flowers or animals.

The lineal chart of figure 5.1(b), though it has nothing to do with
people, is still a genealogy. It describes, in somewhat abbreviated form,
the ancestry of the modern European languages. Thus, this is a chart
of descendants rather than ancestors and each item can produce several
others. Latin, for instance, is the forebear of Spanish, French, Italian
and Rumanian. Proto Indo-European is a prehistoric language presumed
to have existed in the fifth millenium B.C. This tree does not have
the regular structure of the pedigree chart, but it is a tree structure
nevertheless.

With these two examples as motivation let us define formally what
we mean by a tree.

218

219

Basic Terminology

surey) [eoidojosuan) Jo sadA], oml 'S amByy

[esury ()

ueuLIsd uewIs3
ysippiA ySIpams uerdamiou OIpUR|3dI UBIUBWINI uBIE) ydudlj ysweds uelLqun uedso

N N NV~

1SoMm y1ou v_o\o.—w une| UBLIQUIN-03SO0

/ o_:m;:ow/ o_cso__o:\ Sten
ueadoins-opui ojoid

30.81pad(e)
seg SNON 3soJwld sSndoI) 207 poam], Assuej, no
_/ N/ N/ N /
1933nN 310A0D A11a], ap|iyunig

-
o

Aisng

220 Trees

Definition: A tree is a finite set of one or more nodes such that: (i)
there is a specially designated node called the root; (ii) the remaining
nodes are partitioned into n =0 disjoint sets T,, ...,T, where each
of these sets is a tree. T, ...,T, are called the subtrees of the root.

Again we have an instance of a recursive definition (compare this
with the definition of a generalized list in section 4.9). If we return
to Figure 5.1 we see that the roots of the trees are Dusty and Proto
Indo-European. Tree (a) has two subtrees whose roots are Honey Bear
and Brandy while tree (b) has 3 subtrees with roots Italic, Hellenic,
and Germanic. The condition that T,, ...,T, be disjoint sets prohibits
subtrees from ever connecting together (no cross breeding). It follows
that every item in a tree is the root of some subtree of the whole.
For instance, West Germanic is the root of a subtree of Germanic which
itself has three subtrees with roots: Low German, High German and
Yiddish. Yiddish is a root of a tree with no subtrees.

There are many terms which are often used when referring to trees.
A node stands for the item of information plus the branches to other
items. Consider the tree in figure 5.2. This tree has 13 nodes, each
item of data being a single letter for convenience. The root is A and
we will normally draw trees with the root at the top. The number of
subtrees of a node is called its degree. The degree of A is 3, of C
is 1 and of F is zero. Nodes that have degree zero are called leaf
or terminal nodes. {K,L,F,G,M,I,J} is the set of leaf nodes. Alternative-
ly, the other nodes are referred to as nonterminals. The roots of the
subtrees of a node, X, are the children of X. X is the parent of its
children. Thus, the children of D are H, I, J; the parent of Dis A.

LEVEL
I

Figure 5.2 A Sample Tree

Basic Terminology 221

Children of the same parent are said to be siblings. H, I and J are
siblings. We can extend this terminology if we need to so that we
can ask for the grandparent of M which is D, etc. The degree of a
tree is the maximum degree of the nodes in the tree. The tree of
figure 5.2 has degree 3. The ancestors of a node are all the nodes
along the path from the root to that node. The ancestors of M are
A, Dand H.

The level of a node is defined by initially letting the root be at level
one. If a node is at level [, then its children are at level [+ 1. Figure
5.2 shows the levels of all nodes in that tree. The height or depth
of a tree is defined to be the maximum level of any node in the tree.

A forest 1s a set of n = 0 disjoint trees. The notion of a forest
is very close to that of a tree because if we remove the root of a
tree we get a forest. For example, in figure 5.2 if we remove A we
get a forest with three trees.

There are other ways to draw a tree. One useful way is as a list.
The tree of figure 5.2 could be written as the list

(A(B(E(K,L).F).C(G).D(H(M).1.J)))

The information in the root node comes first followed by a list of the
subtrees of that node.

Now, how do we represent a tree in memory? If we wish to use
linked lists, then a node must have a varying number of fields depending
upon the number of branches.

DATA [LINK | |LINK 2| eee [INKn

However it is often simpler to write algorithms for a data representation
where the node size is fixed. Using data and pointer fields we can
represent a tree using the fixed node size list structure we devised in
Chapter 4. The list representation for the tree of Figure 5.2 is on page
222. We can now make use of many of the general procedures that
we originally wrote for handling lists. Thus, the data object tree is
a special instance of the data object list and we can specialize the list
representation scheme to them. In a later section we will see that another
data object which can be used to represent a tree is the data object binary
tree.

Trees

222

'S 281y Jo 331 3Y) o) uonejussardal is1]

Binary Trees 223

5.2 BINARY TREES

A binary tree is an important type of tree structure which occurs very
often. It is characterized by the fact that any node can have at most
two branches, i.e., there is no node with degree greater than two. For
binary trees we distinguish between the subtree on the left and on the
right, whereas for trees the order of the subtrees was irrelevant. Also a
binary tree may have zero nodes. Thus a binary tree is really a different
object than a tree.

Definition: A binary tree is a finite set of nodes which is either empty
or consists of a root and two disjoint binary trees called the left subtree
and the right subtree.

Using the notation introduced in chapter one we can define the data
structure binary tree as follows:

structure BTREE
declare CREATE() — btree
ISMTBT(btree) — boolean
MAKEBT((btree,item,btree) — btree
LCHILD(btree) — btree
DATA (btree) — item
RCHILD (btree) — btree
for all p,re btree, d e item let
ISMTBT(CREATE) :: = true
ISMTBT(MAKEBT(p,d,r)) :: = false
LCHILD(MAKEBT(p,d,r)) :: = p; LCHILD(CREATE):: = error
DATAMAKEBT(p,d,r)) :: = d; DATA(CREATE) :: = error
RCHILD(MAKEBT(p,d,r)) :: = r; RCHILD(CREATE) :: = error
end
end BTREE

This set of axioms defines only a minimal set of operations on binary
trees. Other operations can usually be built in terms of these. See
exercise 35 for an example.

The distinctions between a binary tree and a tree should be analyzed.
First of all there is no tree having zero nodes, but there is an empty
binary tree. The two binary trees below

B &)

224 Trees

are different. The first one has an empty right subtree while the second
has an empty left subtree. If the above are regarded as trees, then
they are the same despite the fact that they are drawn slightly differently.

(a) {b)

Figure 5.3 Two Sample Binary Trees

Figure 5.3 shows two sample binary trees. These two trees are special
kinds of binary trees. The first is a skewed tree, skewed to the left
and there is a corresponding one which skews to the right. Tree 5.3b
is called a complete binary tree. This kind of binary tree will be defined
formally later on. Notice that all terminal nodes are on adjacent levels.
The terms that we introduced for trees such as: degree, level, height,
leaf, parent, and child all apply to binary trees in the natural way.
Before examining data representations for binary trees, let us first make
some relevant observations regarding such trees. First, what is the
maximum number of nodes in a binary tree of depth k?

Lemma 5.1 (i) The maximum number of nodes on level i of a binary
treeis 2171, i= 1 and

(ii) The maximum number of nodes in a binary tree of depth
kis2k—1,k=1.
Proof: (i) The proof is by induction on i.
Induction Base: The root is the only node on level i = 1. Hence the
maximum number of nodes on level i = 11is2° =271,
Induction Hypothesis: Forall j, 1 < j < i, the maximum number of nodes
on level jis 2i~ 1,
Induction Step: The maximum number of nodes on level i — 1 is 2172,
by the induction hypothesis. Since eachnode in a binary tree has maximum

Binary Tree Representatives 225

degree 2, the maximum number of nodes onlevel iis 2 times the maximum
number on level i — 1 or 271,

(ii)) The maximum number of nodes in a binary tree of depth
k is =¥, (maximum number of nodes on level i)

k
=>2t=2-1. o0
i=1

Next, let us examine the relationship between the number of terminal
nodes and the number of nodes of degree 2 in a binary tree.

Lemma 5.2: For any nonempty binary tree, 7, if n, is the number of ter-
minal nodes and 7, the number of nodes of degree 2, then no = n, + 1.
Proof: Let n, be the number of nodes of degree 1 and n the total number
of nodes. Since all nodes in T are of degree <2 we have:

n=mnyg+ n, tn, G.n

If we count the number of branches in a binary tree, we see that
every node except for the root has a branch leading into it. If B is
the number of branches, then n = B + 1. All branches emanate either
from a node of degree one or from a node of degree 2. Thus, B = n,; +
2n,. Hence, we obtain

n=1+n,+2n, 5.2)
Subtracting (5.2) from (5.1) and rearranging terms we get
no=n,+ 1 O
In Figure 5.3(a) n, = 1 and n, = 0 while in Figure 5.3(b) n, = 5 and
ny,=4.

As we continue our discussion of binary trees, we shall derive some
other interesting properties.

5.3 BINARY TREE REPRESENTATIONS

A full binary tree of depth k is a binary tree of depth k having 2% — 1
nodes. By lemma 5.1, this is the maximum number of nodes such a
binary tree can have. Figure 5.4 shows a full binary tree of depth 4.

226 Trees

A very elegant sequential representation for such binary trees results
from sequentially numbering the nodes, starting with nodes on level
1, then those on level 2 and so on. Nodes on any level are numbered
from left to right (see figure 5.4). This numbering scheme gives us
the definition of a complete binary tree. A binary tree with n nodes
and of depth k is complete iff its nodes correspond to the nodes which
are numbered one to n in the full binary tree of depth k. The nodes
may now be stored in a one dimensional array, TREE, with the node
numbered i being stored in TREE(i). Lemma 5.3 enables us to easily
determine the locations of the parent, left child and right child of any
node i in the binary tree.

Figure 5.4 Full Binary Tree of Depth 4 with Sequential Node Numbers

Lemma 5.3: If a complete binary tree with n nodes (i.e., depth =
llog,n] + 1) is represented sequentially as above then for any node
with index i, | = i< n we have:
(i) PARENT() is at [i/2] if i# 1. When i =1, i is the root and
has no parent.
(ii)) LCHILDC() is at 2i if 2i = n. If 2i > n, then i has no left child.
(iii) RCHILD(i) is at 2i + 1 if 2i + 1 = n. If 2i + 1 > n, then i has
no right child.
Proof: We prove (ii). (iii) is an immediate consequence of (ii) and the
numbering of nodes on the same level from left to right. (i) follows
from (ii) and (iii)). We prove (ii) by induction on i. For i =1, clearly

Binary Tree Representatives 227

the left child is at 2 unless 2 > n in which case 1 has no left child.
Now assume that for all j, 1 =j< i, LCHILD(j) is at 2j. Then, the
two nodes immediately preceding LCHILD (i + 1) in the representation
are the right child of i and the left child of i. The left child of i is
at 2i. Hence, the left child of i+ 1 is at 2i+ 2 =2(i+ 1) unless
2(i + 1) > n in which case i + 1 has no left child. O

This representation can clearly be used for all binary trees though
in most cases there will be a lot of unutilized space. For complete
binary trees the representation is ideal as no space is wasted. For the
skewed tree of figure 5.3(a), however, less than half the array is utilized.
In the worst case a skewed tree of depth k will require 2% — 1 spaces.
Of these only k will be occupied.

TREE TREE
ey A A
2 B B
(3) — C
4 C D
5) — E
6) — F
) — G
8) D H
9 — I
(16) E

Figure 5.5 Array Representation of the Binary Trees of Figure 5.3

While the above representation appears to be good for complete binary
trees it is wasteful for many other binary trees. In addition, the
representation suffers from the general inadequacies of sequential repre-
sentations. Insertion or deletion of nodes from the middle of a tree
requires the movement of potentially many nodes to reflect the change
in level number of these nodes. These problems can be easily overcome
through the use of a linked representation. Each node will have three
fields LCHILD, DATA and RCHILD as below:

228 Trees

LCHILD| DATA [RCHILD @

LCHILD R CHILD

While this node structure will make it difficult to determine the parent
of a node, we shall see that for most applications, it is adequate. In
case it is necessary to be able to determine the parent of random nodes,
then a fourth field PARENT may be included. The representation of
the binary trees of figure 5.3 using this node structure is given in figure

5.6.
éT

OlE|O

{a) {b)

Figure 5.6 Linked Representation for the Binary Trees of Figure 5.3.

5.4 BINARY TREE TRAVERSAL

There are many operations that we often want to perform on trees.
One notion that arises frequently is the idea of traversing a tree or
visiting each node in the tree exactly once. A full traversal produces

Binary Tree Traversal 229

a linear order for the information in a tree. This linear order may be
familiar and useful. When traversing a binary tree we want to treat
each node and its subtrees in the same fashion. If we let L, D, R
stand for moving left, printing the data, and moving right when at a
node then there are six possible combinations of traversal: LDR, LRD,
DLR, DRL, RDL, and RLD. If we adopt the convention that we
traverse left before right then only three traversals remain: LDR, LRD
and DLR. To these we assign the names inorder, postorder and preorder
because there is a natural correspondence between these traversals and
producing the infix, postfix and prefix forms of an expression. Consider
the binary tree of figure 5.7. This tree contains an arithmetic expression
with binary operators: add(+), multiply(»), divide(/), exponentiation (»«)
and variables A, B, C, D, and E. We will not worry for now how this
binary tree was formed, but assume that it is available. We will define
three types of traversals and show the results for this tree.

Figure 5.7 Binary Tree with Arithmetic Expression

Inorder Traversal: informally this calls for moving down the tree towards
the left until you can go no farther. Then you *‘visit’’ the node, move
one node to the right and continue again. If you cannot move to the
right, go back one more node. A precise way of describing this traversal
is to write it as a recursive procedure.

230 Trees

procedure INORDER (T)
/T is a binary tree where each node has three fields L-
CHILD,DATA,RCHILD /
if T # 0 then [call INORDER(LCHILD(T))
print (DATA(T))
call (INORDER(RCHILD(T))]
end INORDER

Recursion is an elegant device for describing this traversal. Let us
trace how INORDER works on the tree of figure 5.7.

Call of value
INORDER in root Action

MAIN +
1 *
2 /
3 A
4 0 print (‘A’)
4 0 print (/")
3 *k
4 B
b 0 print (‘B”)
5 0 print (‘*+’)
4 C
b 0 print (‘C”)
b 0 print (‘*°)
2 D
3 0 print (‘D”)
3 0 print (‘+°)
1 E
2 0 print (‘E")
2 0

The elements get printed in the order
A/Bx»xC»D+ E

which is the infix form of the expression.
A second form of traversal is preorder:

procedure PREORDER (T)
/T is a binary tree where each node has three fields L-
CHILD,DATA,RCHILDy
if T # 0 then [print (DATA(T))
call PREORDER(LCHILD(T))
call PREORDER(RCHILD(T))]
end PREORDER

Binary Tree Traversal 231

In words we would say ‘‘visit a node, traverse left and continue again.
When you cannot continue, move right and begin again or move back
until you can move right and resume.”” The nodes of figure 5.7 would
be printed in preorder as

++ /A BCDE

which we recognize as the prefix form of the expression.
At this point it should be easy to guess the next traversal method
which is called postorder:

procedure POSTORDER (T)
/T is a binary tree where each node has three fields L-
CHILD,DATA,RCHILDy/
it T# 0 then [call POSTORDER(LCHILD(T))
call POSTORDER(RCHILD(T))
print (DATA(T))]
end POSTORDER

The output produced by POSTORDER is
ABC*x/ D+E+

which is the postfix form of our expression.

Though we have written these three algorithms using recursion, it
is very easy to produce an equivalent nonrecursive procedure. Let us
take inorder as an example. To simulate the recursion we need a stack
which will hold pairs of values (pointer, returnad) where pointer points
to a node in the tree and returnad to the place where the algorithm
should resume after an end is encountered. We replace every recursive
call by a mechanism which places the new pair (pointer, returnad) onto
the stack and goes to the beginning; and where there is a return or
end we insert code which deletes the top pair from the stack if possible
and either ends or branches to returnad (see section 4.10 for the exact

details).

Program on next page

Though this procedure seems highly unstructured its virtue is that
it is semiautomatically produced from the recursive version using a fixed
set of rules. Our faith in the correctness of this program can be justified

232 Trees

procedure INORDERI(T)
/ a nonrecursive version using a stack of size n/
i<0 /initialize the stack /
Ll:if T#0then [i< i+ 2;if i> nthen call STACK FULL
STACK (i — 1)« T; STACK(i) « ‘L2’
T« LCHILD(T); goto L1; /traverse left
subtree /
L2: print (DATA(T))
i< i+ 2;if i> nthen call STACK—FULL
STACK (i — 1)« T; STACK{(i) < ‘L3’
T < RCHILD(T); go to L 1] / traverse right
subtree /
L3: if i# 0 then [/stack not empty, simulate a return/
T« STACK (i — 1); X« STACK (i)
i—i—2;g0to X]
end INORDER]1

if we first prove the correctness of the original version and then prove
that the transformation rules result in a correct and equivalent program.
Also we can simplify this program after we make some observations
about its behavior. For every pair (T,,L3) in the stack when we come
to label L3 this pair will be removed. All such consecutive pairs will
be removed until either i gets set to zero or we reach a pair (T,,L.2).
Therefore, the presence of L3 pairs is useful in no way and we can
delete that part of the algorithm. This means we can eliminate the two
lines of code following print (DATA(T)). We next observe that this
leaves us with only one return address, L2, so we need not place that
on the stack either. Our new version now looks like:

procedure INORDER?2(T)
/ a simplified, nonrecursive version using a stack of size n/
i<0 /initialize stack /
L1:if T#Othen [i< i+ 1;if i > n then call STACK_FULL
STACK (i)« T; T< LCHILD(T); go to L1
L2: print (DATA(T))
T «— RCHILD(T); go to L1]
if i # 0 then [/ stack not empty /
T STACK (i): i< i—1;goto L2]
end INORDER?

Binary Tree Traversal 233

This program is considerably simpler than the previous version, but
it may still offend some people because of the seemingly undisciplined
use of go to’s. A SPARKS version without this statement would be:

procedure INORDER3(T)
/ a nonrecursive, no go to version using a stack of size n/
[< 0 Zinitialize stack /
loop
while T # 0 do /move down LCHILD fields /
i<— i+ 1;if i> nthen call STACK—FULL
STACK (i) « T; T« LCHILD(T)
end
if i = 0 then return
T<—STACK (i);i<—i—1
print(DATA(T)); T < RCHILD(T)
forever
end INORDER3

In going from the recursive version to the iterative version INORDER3
one undesirable side effect has crept in. While in the recursive version
T was left pointing to the root of the tree, this is not the case when
INORDERS3 terminates. This may readily be corrected by introducing
another variable P which is used in place of T during the traversal.

What are the computing time and storage requirements of INORDER3?
Let n be the number of nodes in T. If we consider the action of the
above algorithm, we note that every node of the tree is placed on the
stack once. Thus, the statements STACK(i) « T and T « STACKJ()
are executed n times. Moreover, T will equal zero once for every
zero link in the tree which is exactly

2ng+n,=ng+n, +n,+1=n+1.

So every step will be executed no more than some small constant times
nor O(n). With some further modifications we can lower the constant
(see exercises). The space required for the stack is equal to the depth
of T. This is at most n.

Before we leave the topic of tree traversal, we shall consider one
final question. Is it possible to traverse binary trees without the use
of extra space for a stack? One simple solution is to add a PARENT
field to each node. Then we can trace our way back up to any root
and down again. Another solution which requires two bits per node

234 Trees

is given in section 5.6. If the allocation of this extra space is too costly
then we can use the method of algorithm MARK2 of section 4.10.
No extra storage is required since during processing the LCHILD and
RCHILD fields are used to maintain the paths back to the root. The
stack of addresses is stored in the leaf nodes. The exercises examine
this algorithm more closely.

5.5 MORE ON BINARY TREES

Using the definition of a binary tree and the recursive version of the
traversals, we can easily write other routines for working with binary
trees. For instance, if we want to produce an exact copy of a given
binary tree we can modify the postorder traversal algorithm only slightly
to get:

procedure COPY(T)
/for a binary tree T, COPY returns a pointer to an exact copy of
T; new nodes are gotten using the usual mechanism /
Q<0
it T# 0 then [R — COPY(LCHILD(T)) 4/ copy left subtree /
S <« COPY(RCHILD(T)) / copy right subtree /
call GETNODE(Q)
LCHILD(Q) < R; RCHILD(Q) < S
/store in fields of Q/
DATA(Q) < DATA(T)]
return (Q) /copy is a function /
end COPY

Another problem that is especially easy to solve using recursion is
determining the equivalence of two binary trees. Binary trees are
equivalent if they have the same topology and the information in
corresponding nodes is identical. By the same topology we mean that
every branch in one tree corresponds to a branch in the second in
the same order. Algorithm EQUAL traverses the binary trees in preorder,
though any order could be used.

Program on next page
We have seen that binary trees arise naturally with genealogical

information and further that there is a natural relationship between the
tree traversals and various forms of expressions. There are many other

More on Binary Trees 235

procedure EQUAL(S,T)
/This procedure has value false if the binary trees S and T are not
equivalent. Otherwise, its value is true /
ans < false
case
:S=0and T = 0: ans < true
:S#0and T # 0:
if DATA(S) = DATA(T)
then [ans < EQUAL(LCHILD(S),LCHILD(T))
if ans then ans «— EQUAL(RCHILD(S),RCHILD(T))]
end
return (ans)
end EQUAL

instances when binary trees are important, and we will look briefly
at two of them now. The first problem has to do with processing a
list of alphabetic data, say a list of variable names such as

X1, 1, J, Z, FST, X2, K.

We will grow a binary tree as we process these names in such a way
that for each new name we do the following: compare it to the root
and if the new name alphabetically precedes the name at the root then
move left or else move right; continue making comparisons until we
fall off an end of the tree; then create a new node and attach it to
the tree in that position. The sequence of binary trees obtained for
the above data is given in figure 5.8. Given the tree in figure 5.8(g)
consider the order of the identifiers if they were printed out using an
inorder traversal

FST, I, J, K, X1, X2, Z

So by growing the tree in this way we turn inorder into a sorting method.
In Chapter 9 we shall prove that this method works in general.

As a second example of the usefulness of binary trees, consider the
set of formulas one can construct by taking variables x,,x,,X;, ... and
the operators A (and), v (or) and 1 (not). These variables can only
hold one of two possible values, true or false. The set of expressions
which can be formed using these variables and operators is defined
by the rules: (i) a variable is an expression, (ii) if x,y are expressions
then x A y, x v y, ™ x are expressions. Parentheses can be used

Trees

236

(P)

(%)

(9)

SIDIFIUIP JO 2211, §°S aandig

(9)

(®)

(D)

More on Binary Trees 237

to alter the normal order of evaluation which is net before and before
or. This comprises the formulas in the propositional calculus (other
operations such as implication can be expressed using A, v, 7). The
expression

X, v (X, ATX3)

is a formula (read ““x, or x, and not x;’"). If x, and x, are false and
X, is true, then the value of this expression is

false v (true A — false)
= false v true

= true

The satisfiability problem for formulas of the propositional calculus asks
if there is an assignment of values to the variables which causes the
value of the expression to be true. This problem is of great historical
interest in computer science. It was originally used by Newell, Shaw
and Simon in the late 1950°s to show the viability of heuristic programming
(the Logic Theorist).

Again, let us assume that our formula is already in a binary tree,
say

(x; A X)) v X A Xy)V Xy

in the tree

Figure 5.9 Propositional Formula in a Binary Tree

238 Trees

The inorder of this tree is x; A 7 x, v 77X, A X3 vV 7 X5, the infix form
of the expression. The most obvious algorithm to determine satisfiability
is to let (x,,x,,x;) take on all possible combinations of truth and falsity
and to check the formula for each combination. For n variables there
are 2" possible combinations of true = ¢t and false = f, e.g. for n =3
(t,.,0), (LL]), (L)), (1.0, (F.t.0), (L), (£.£.0), (Lf.f). The algorithm
will take at least O(g2") or exponential time where g is the time to
substitute values for x,,x,,x; and evaluate the expression.

To evaluate an expression one method would traverse the tree in
postorder, evaluating subtrees until the entire expression is reduced to
a single value. This corresponds to the postfix evaluation of an arithmetic
expression that we saw in section 3.3. Viewing this from the perspective
of the tree representation, for every node we reach, the values of its
arguments (or children) have already been computed. So when we reach
the v node on level two, the values of x; A 7 x, and = x; A x; will
already be available to us and we can apply the rule for or. Notice
that a node containing — has only a single right branch since not is
a unary operator.

For the purposes of this algorithm we assume each node has four
fields:

| Lcoip | pata | vaL | RcHILD |

where LCHILD, DATA, RCHILD are as before and VAL is large enough
to hold the symbols true or false. Also we assume that DATA(T) instead
of containing the variable ‘x;’, is a pointer to a table DEF which has
one entry for each variable. Then DEF(DATA(T)) will contain the current
value of the variable. With these preparations and assuming an expression
with n variables pointed at by T we can now write a first pass at our
algorithm for satisfiability:

for all 2" possible combinations do
generate the next combination;
store it in DEF(1) to DEF(n);
call POSTORDER and evaluate T;
it VAL(T) = true then [print DEF(1) to DEF(n)
stop]
end
print (‘no satisfiable combination’)

Threaded Binary Trees 239

Now let us concentrate on this modified version of postorder. Changing
the original recursive version seems the simplest thing to do.

procedure POSTORDER__EVAL(T)
/abinary tree T containing a propositional formula is evaluated with
the result stored in the VAL field of each node /
it T# 0 then[call POSTORDER EVAL(LCHILD(T))
call POSTORDER__EVAL(RCHILD(T))
case
:DATA(T) = «— : VAL(T) < not VAL(RCHILD(T))
:DATA(T) = ¢y : VAL(T) < VAL(LCHILD(T) or

VAL(RCHILD(T))

:DATA(T) = ‘A’ : VAL(T) < VAL(LCHILD(T) and
VAL(RCHILD(T))

relse: VAL(T) < DEF(DATA(T))

end]
end POSTORDER EVAL

5.6 THREADED BINARY TREES

If we look carefully at the linked representation of any binary tree,
we notice that there are more null links than actual pointers. As we
saw before, there are n + 1 null links and 2n total links. A clever way
to make use of these null links has been devised by A. J. Perlis and
C. Thornton. Their idea is to replace the null links by pointers, called
threads, to other nodes in the tree. If the RCHILD(P) is normally equal
to zero, we will replace it by a pointer to the node which would be
printed after P when traversing the tree in inorder. A null LCHILD
link at node P is replaced by a pointer to the node which immediately
precedes node P in ‘inorder. Figure 5.10 shows the binary tree of
figure 5.3(b) with its new threads drawn in as dotted lines.

The tree T has 9 nodes and 10 null links which have been replaced
by threads. If we traverse T in inorder the nodes will be visited in
the order HDIB E A F C G. For example node E has a predecessor
thread which points to B and a successor thread which points to A.

In the memory representation we must be able to distinguish between
threads and normal pointers. This is done by adding two extra one
bit fields LBIT and RBIT.

LBIT(P) = 1 if LCHILD(P) is a normal pointer
LBIT(P) =0 if LCHILD(P) is a thread

240 Trees

Figure 5.10 Threaded Tree Corresponding to Figure 5.3(b)

RBIT(P) = 1 if RCHILD(P) is a normal pointer
RBIT(P) = 0 if RCHILD(P) is a thread

In figure 5.10 we see that two threads have been left dangling in
LCHILD(H) and RCHILD(G). In order that we leave no loose threads
we will assume a head node for all threaded binary trees. Then the
complete memory representation for the tree of figure 5.10 is shown
in figure 5.11. The tree T is the left subtree of the head node. We
assume that an empty binary tree is represented by its head node as

This assumption will permit easy algorithm design. Now that we have
made use of the old null links we will see that the algorithm for inorder
traversal is simplified. First, we observe that for any node X in a binary
tree, if RBIT(X) = 0, then the inorder successor of X is RCHILD(X)
by definition of threads. 1If RBIT(X) = 1, then the inorder successor
of X is obtained by following a path of left child links from the right
child of X until a node with LBIT = 0is reached. The algorithm INSUC
finds the inorder successor of any node X in a threaded binary tree.

241

Threaded Binary Trees

331, papeaiy] Jo uoneasaidoy Arowsp [r's aJndig

e B o i I s
o 11 |o f ol 0 ”
Lo -5 Wﬁ |
s SR e I i N i | s S st / L\ M
e TsT 1o} BT 1= 1el, el T2l I8} ([T el T |
/| i \ K J
/\h \« ; ' \ -
INEIEE i _ 8 ! -
\ / -
T)
_ v _ T
— -

1184 QTHO

vlvad aHo

242 Trees

procedure INSUC(X)
/find the inorder successor of X in a threaded binary tree /

S « RCHILD(X) /if RBIT(X) = 0 we are done /
if RBIT(X) = 1 then {while LBIT(S) = 1 do /follow left /
S « LCHILD(S) »until a thread /
end]
return (S)
end INSUC

The interesting thing to note about procedure INSUC is that it is
now possible to find the inorder successor of an arbitrary node in a
threaded binary tree without using any information regarding inorder
predecessors and also without using an additional stack. If we wish
to list in inorder all the nodes in a threaded binary tree, then we can
make repeated calls to the procedure INSUC. Since the tree is the
left subtree of the head node and because of the choice of RBIT = 1
for the head node, the inorder sequence of nodes for tree T is obtained
by the procedure TINORDER.

procedure TINORDER (T)
/ traverse the threaded binary tree, T, in inorder /
HEAD < T
loop
T < INSUC(T)
if T= HEAD then return
print(DATA(T))
forever
end TINORDER

The computing time is still O(n) for a binary tree with n nodes.
The constant here will be somewhat smaller than for procedure IN-
ORDER3.

We have seen how to use the threads of a threaded binary tree for
inorder traversal. These threads also simplify the algorithms for preorder
and postorder traversal. Before closing this section let us see how to
make insertions into a threaded tree. This will give us a procedure
for growing threaded trees. We shall study only the case of inserting
a node T as the right child of a node S. The case of insertion of a
left child is given as an exercise. If S has an empty right subtree,
then the insertion is simple and diagrammed in figure 5.12(a). If the
right subtree of S is non-empty, then this right subtree is made the
right subtree of T after insertion. When this is done, T becomes the

Binary Tree Representation of Trees 243

inorder predecessor of a node which has a LBIT = 0 and consequently
there is a thread which has to be updated to point to T. The node
containing this thread was previously the inorder successor of S. Figure
5.12(b) illustrates the insertion for this case. In both cases S is the
inorder predecessor of T. The details are spelled out in algorithm
INSERT__RIGHT.

AN

(a)

before

(b)

Figure 5.12 Insertion of T as a Right Child of S in a Threaded Binary Tree

244 Trees

procedure INSERT_RIGHT (S,T)
#insert node T as the right child of S in a threaded binary tree /
RCHILD(T) < RCHILD(S) : RBIT(T) < RBIT(S)
LCHILD(T) < S LBIT(T) <0 #/ LCHILD(T) is a thread /
RCHILD(S) < T RBIT(S) < 1 /attach node Tto S/
if RBIT(T) = | then [W <« INSUC(T) /S had a right child /

LCHILD(W) « T}
end INSERT _RIGHT

5.7 BINARY TREE REPRESENTATION OF TREES

We have seen several representations for and uses of binary trees.
In this section we will see that every tree can be represented as a
binary tree. This is important because the methods for representing
a tree as suggested in section 5.1 had some undesirable features. One
form of representation used variable size nodes. While the handling
of nodes of variable size is not impossible, in section 4.8 we saw that
it was considerably more difficult than the handling of fixed size nodes
(section 4.3). An alternative would be to use fixed size nodes each
node having k child fields if k is the maximum degree of any node.
As Lemma 5.4 shows, this would be very wasteful in space.

Lemma 5.4: If T is a k-ary tree (i.e., a tree of degree k) with n nodes,
each having a fixed size as in figure 5.13, then n(k — 1) + 1 of the
nk link fields are zero, n = 1.

Proof: Since each nonzero link points to a node and exactly one link
points to each node other than the root, the number of nonzero links
in an n node tree is exactly n — 1. The total number of link fields
in a k-ary tree with n nodes is nk. Hence, the number of null links
isnk—(n—-—10D=ntk—=—1 + 1. O

Lemma 5.4 implies that for a 3-ary tree more than 2/3 of the link
fields are zero! The proportion of zero links approaches 1 as the degree
of the tree increases. The importance of using binary trees to represent
trees is that for binary trees only about 1/2 of the link fields are zero.

CHILD! [cHILD2 | -+ ... | cup«

Figure 5.13 Possible Node Structure for a k-ary Tree

In arriving at the binary tree representation of a tree we shall implicitly
make use of the fact that the order of the children of a node is not
important. Suppose we have the tree of figure 5.14.

Binary Tree Representation of Trees 245

(A)
(8) © (D)

® ® ©@ & O O

Figure 5.14 A Sample Tree

Then, we observe that the reason we needed nodes with many link
fields is that the prior representation was based on the parent-child
relationship and a node can have any number of children. To obtain
a binary tree representation, we need a relationship, between the nodes,
that can be characterized by at most two quantities. One such relationship
is the leftmost-child-next-right-sibling relationship. Every node has
at most one leftmost child and at most one next right sibling. In the
tree of figure 5.14, the leftmost child of B is E and the next right
sibling of B is C. Strictly speaking, since the order of children in a
tree is not important, any of the children of a node could be its leftmost
child and any of its siblings could be its next right sibling. For the
sake of definiteness, we choose the nodes based upon how the tree
is drawn. The binary tree corresponding to the tree of figure 5.14 is
thus obtained by connecting together all siblings of a node and deleting
all links from a node to its children except for the link to its leftmost
child. The node structure corresponds to that of

DATA
CHILD SIBLING

Using the transformation described above, we obtain the following
representation for the tree of figure 5.14.

(&)
B—0O—0

&—6® © O—/{_CO—™~0

246 Trees

This does not look like a binary tree, but if we tilt it roughly 45°
clockwise we get

Figure 5.15 Associated Binary Tree for Tree of Figure 5.14

Let us try this transformation on some simple trees just to make sure

we’vg got it.
® (D)
yields
(8 (&

tree binary tree
(A) (A)
yields
® © (8)
©

tree binary tree

Binary Tree Representation of Trees 247

One thing to notice is that the RCHILD of the root node of every
resulting binary tree will be empty. This is because the root of the
tree we are transforming has no siblings. On the other hand, if we
have a forest then these can all be transformed into a single binary
tree by first obtaining the binary tree representation of each of the
trees in the forest and then linking all the binary trees together through
the SIBLING field of the root nodes. For instance, the forest with
three trees

(A)

® © ©

yields the binary tree

We can define this transformation in a formal way as follows:

If T,,....,T, is a forest of trees, then the binary tree corresponding
to this forest, denoted by B(T,, ...,T,):

(1) is empty if n=0;

(ii) has root equal to root (T,); has left subtree equal to B(T,,,T,,,

.,T,,) where T,,, ...,T,,, are the subtrees of root(T,); and has
right subtree B(T,, ...,T,).

Preorder and inorder traversals of the corresponding binary tree T

of aforest F have a natural correspondence with traversals on F. Preorder

248 Trees

traversal of T is equivalent to visiting the nodes of F in tree preorder
which is defined by:

(i) if Fis empty then return;

(i) visit the root of the first tree of F;

(ii1) traverse the subtrees of the first tree in tree preorder;

(iv) traverse the remaining trees of F in tree preorder.
Inorder traversal of T is equivalent to visiting the nodes of F in tree
inorder as defined by:

(1) if Fis empty then return;

(1) traverse the subtrees of the first tree in tree inorder;

(ii1) visit the root of the first tree;

(iv) traverse the remaining trees in tree inorder.
The above definitions for forest traversal will be referred to as preorder
and inorder. The proofs that preorder and inorder on the corresponding
binary tree are the same as preorder and inorder on the forest are left
as exercises. There is no natural analog for postorder traversal of the
corresponding binary tree of a forest. Nevertheless, we can define the
postorder traversal of a forest as:

(1) if Fis empty then return;

(i) traverse the subtrees of the first tree of F in tree postorder;

(iii) traverse the remaining trees of F in tree postorder;

(iv) visit the root of the first tree of F.
This traversal is used later on in section 5.8.3 for describing the minimax
procedure.

5.8 APPLICATIONS OF TREES

5.8.1 Set Representation

In this section we study the use of trees in the representation of
sets. We shall assume that the elements of the sets are the numbers
1,2,3, ...,n. These numbers might, in practice, be indices into a symbol
table where the actual names of the elements are stored. We shall assume
that the sets being represented are pairwise disjoint; i.e., if S; and S;,
i # j, are two sets then there is no element which is in both S; and
S;. For example, if we have 10 elements numbered 1 through 10, they
may be partitioned into three disjoint sets S, = {1, 7, 8, 9}; S, = {2,
5, 10} and S; = {3, 4, 6}. The operations we wish to perform on these
sets are:

(i) Disjoint set union ... if S; and S; are two disjoint sets, then their
union S; U S; = {all elements x such that x is in S; or S;}. Thus,

Applications of Trees 249

S,usS,={1,7,8,9, 2,5, 10}. Since we have assumed that all sets
are disjoint, following the union of S; and S; we can assume that the
sets S; and S; no longer exist independently, i.e., they are replaced
by S; U S, in the collection of sets.

(i1) Find(i) ... find the set containing element i. Thus, 4 is in set
S;and 9 is in set S,.

The sets will be represented by trees. One possibie representation
for the sets S,, S, and S; is:

S) S2 S3

Note that the nodes are linked on the parent relationship, i.e. each
node other than the root is linked to its parent. The advantage of this
will become apparent when we present the UNION and FIND algorithms.
First, to take the union of S, and S, we simply make one of the trees
a subtree of the other. S, U S, could then have one of the following
representations

sus2 S, US,

In order to find the union of two sets, all that has to be done is
to set the parent field of one of the roots to the other root. This can
be accomplished easily if, with each set name, we keep a pointer to
the root of the tree representing that set. If, in addition, each root
has a pointer to the set name, then to determine which set an element
is currently in, we follow parent links to the root of its tree and use

250 Trees

the pointer to the set name. The data representation for S,, S, and
S, may then take the form:

Set
Name Pointer
s, ps EEE E—e (5)
S2 - —%.
S & : ® @ ©
3 R -

In presenting the UNION and FIND algorithms we shall ignore the
actual set names and just identify sets by the roots of the trees representing
them. This will simplify the discussion. The transition to set names
is easy. If we determine that element [is in a tree with root j and
j has a pointer to entry k in the set name table, then the set name
is just NAME(k). If we wish to union sets S; and S;, then we wish
to union the trees with roots POINTER(S;) and POINTER(S;). As we
shall see, in many applications the set name is just the element at the
root. The operation of FIND(i) now becomes: determine the root of
the tree containing element i. UNIONC(I,j) requires two trees with roots
i and j to be joined. We shall assume that the nodes in the trees are
numbered 1 through n so that the node index corresponds to the element
index. Thus, element 6 is represented by the node with index 6.
Consequently, each node needs only one field: the PARENT field to
link to its parent. Root nodes have a PARENT field of zero. Based
on the above discussion, our first attempt at arriving at UNION, FIND
algorithms would result in the algorithms U and F below.

procedure U(i,j)
replace the disjoint sets with roots i and j, i # j with their union/
PARENT (i) <
end U

procedure F(i)
~find the root j of the tree containing element i/

i |
while PARENT (j) > 0 do /PARENT (j) = 0 if this node is a
t
j < PARENT (j) oot/
end
return (j)

end F

Applications of Trees 251

While these two algorithms are very easy to state, their performance
characteristics are not very good. For instance, if we start off with
p elements each in a set of its own, i.e., S; = {i}, 1 =i = p, then the
initial configuration consists of a forest with pnodes and PARENT(i) = 0,
1 =i=p. Now let us process the following sequence of UNION-FIND
operations.

UQ.2), F(1), U@2,3), F(1), UG ,4)
F), U4,5), ..., F(1), U(n - 1,n)

This sequence results in the degenerate tree:

Since the time taken for a union is constant, all the n — 1 unions can
be processed in time O(n). However, each FIND requires following
a chain of PARENT links from one to the root. The time required
to process a FIND for an element at level i of a tree is O(i). Hence,
the total time needed to process the n — 2 finds is OEr-2i) = O(n?).
It is easy to see that this example represents the worst case behavior
of the UNION-FIND algorithms. We can do much better if care is
taken to avoid the creation of degenerate trees. In order to accomplish
this we shall make use of a Weighting Rule for UNION (i.j). If the
number of nodes in tree i is less than the number in tree j, then make
J the parent of i, otherwise make i the parent of j. Using this rule on the
sequence of set unions given before we obtain the trees on page 252.
Remember that the arguments of UNION must both be roots. The
time required to process all the n finds is only O(n) since in this case
the maximum level of any node is 2. This, however, is not the worst
case. In lemma 5.5 we show that using the weighting rule, the maximum

252 Trees

D @G ? @ B R @ @
initial (25 (é é

UNION (1,2), I=F (), UNION(2,3), | =F(I)

/(R@...@ « o e
& 6 ®

UNION (1,4}, 1=F(1), ,

Trees obtained using the weighting rule

level for any node is {log n] + 1. First, let us see how eaSy it
is to implement the weighting rule. We need to know how many nodes
there are in any tree. To do this easily, we maintain a count field
in the root of every tree. If iis a root node, then COUNT (i) = number
of node# in that tree. The count can be maintained in the PARENT
field as a negative number. This is equivalent to using a one bit field
to distinguish a count from a pointer. No confusion is created as for
all other nodes the PARENT is positive.

procedure UNION (i,j)
/ union sets with roots iand j, [# j, using the weighting rule. PARENT
(i) = —COUNT (i) and PARENT (j) = —COUNT (j)/
x < PARENT (i) + PARENT (j)
it PARENT (i) > PARENT (j)

then [PARENT (i) « j /1 has fewer nodes /
PARENT (j) « x]
else [PARENT (j) < i /] has fewer nodes /#

PARENT (i) < x]
end UNION

The time required to perform a union has increased somewhat but is
still bounded by a constant, i.e. it is O(1). The FIND algorithm remains

Applications of Trees 253

unchanged. The maximum time to perform a find is determined by
lemma 5.5.

Lemma 5.5: Let T be a tree with n nodes created as a result of algorithm
UNION. No node in T has level greater |log, n] + 1.

Proof: The lemma is clearly true for n = 1. Assume it is true for all
trees with i nodes, i< n— 1. We shall show that it is also true for
i=n. Let T be a tree with n nodes created by the UNION algorithm.
Consider the last union operation performed, UNION(k,j). Let m be
the number of nodes in tree j and n — m the number in k. Without
loss of generality we may assume 1 = m =< n/2. Then the maximum
level of any node in T is either the same as that in k or is one more
than that in j. If the former is the case, then the maximum level in
Tis <|log, (n— m)| + 1 =|log, n| + 1. If the latter is the case then
the maximum level in Tis <|log, m| + 2 <|log, n/2 | + 2 <|log, n|
+ 1. O

Example 5.1 shows that the bound of lemma 5.5 is achievable for
some sequence of unions.

Example 5.1: Consider the behavior of algorithm UNION on the following
sequence of unions starting from the initial configuration
PARENT (i) = —COUNT (i) = -1, 1<=i=n=2?3
UNION(1,2), UNION(3.4), UNION(S,6), UNION(7.8),
UNION(1,3), UNION(S,7), UNION(1,5).

The following trees are obtained:

0 (] (] [

)
—
|
—
—
|
)
—
|
—
—
'
)

Level Command

O ® ® & O | Initial
2] (-2] (-2] (-2]
@\ ® @ [UNION (1,2)
UNION (3,4)
E‘D ® (® 2 UNION (5,6)

UNION (7,8}

LEVEL COMMAND

(4]
(5)] UNION (1,3)
(€)) 2 UNION (5,7)
(®
-8
(] |
@ 3 (5) 2
UNION (1,5)
@Oe O 3
(8) 4

As is evident, the maximum level in any tree is |log,m| + 1 if the
tree has m nodes. a

As a result of lemma 5.5, the maximum time to process a find is
at most O(log n) if there are n elements in a tree. If an intermixed
sequence of n ~ 1 UNION and m FIND operations is to be processed,
then the worst case time becomes O(n + m log n). Surprisingly, further
improvement is possible. This time the modification will be made in
the FIND algorithm using the Collapsing Rule: If j is a node on the
path from i to its root and PARENT(j) # root(i) then set PARENT(j)
<« root(i). The new algorithm then becomes:

Program on next page

This modification roughly doubles the time for an individual find.
However, it reduces the worst case time over a sequence of finds.

Example 5.2: Consider the tree created by algorithm UNION on the
sequence of unions of example 5.1. Now process the following 8 finds:

FIND(8), FIND(8), ... FIND(8)

Applications of Trees 255

procedure FIND(i)
/find the root of the tree containing element i. Use the collapsing
rule to collapse all nodes from i to the root j/
]t
while PARENT(j) > 0 do /find root/
j < PARENT(j)
end
kei
while k # j do / collapse nodes from i to root j/
t — PARENT(k)
PARENT(k) « j
ket
end
return (j)
end FIND

Using the old version F of algorithm FIND, FIND(8) requires going
up 3 parent link fields for a total of 24 moves to process all 8 finds.
In algorithm FIND, the first FIND(8) requires going up 3 links and
then resetting 3 links. Each of the remaining 7 finds requires going
up only 1 link field. The total cost is now only 13 moves.

The worst case behavior of the UNION-FIND algorithms while
processing a sequence of unions and finds is stated in Lemma 5.6.
Before stating this lemma, let us introduce a very slowly growing function
a(m,n) which is related to a functional inverse of Ackermann’s function
A(p,q). We have the following definition for a(m,n):

a(m,n) =min{z= 1| A(z,4[fm/n1) > log,n}
The definition of Ackermann’s function used here is:

2q p=0

0 g=0andp=1
A(p.q) =
.9 2 p=landg=1

Al(p-1,A(pg— 1)) p=landg=2

The function A(p,q) is a very rapidly growing function. One may
prove the following three facts:

256 Trees

_2
AGA) =2" } 65.536 two's ... (a)
A(p,g+ 1)> A(p.q) ... (b
A(p + 1.q) = A(p.q9) ... (©)

If we assume m # 0 then (b) and (c¢) together with the definition of
a(m,n) imply that a(m,n) = 3 for log,n < A(3,4). But from (a), A(3,4)
is a very large number indeed! In lemma 5.6 n will be the number
of UNIONSs performed. For all practical purposes we may assume
log,n < A(3.4) and hence a(m,n) = 3 for all practical purposes.

Lemma 5.6: [Tarjan] Let T(m,n) be the maximum time required to pro-
cess any intermixed sequence of m=n FINDs and n — 1 UNIONs. Then
k,ma(m,n) < T(m,n) < k,ma(m,n) for some positive constants k, and
k,. O

Even though the function a(m,n) is a very slowly growing function,
the complexity of UNION-FIND is not linear in m, the number of
FINDs. As far as the space requirements are concerned, the space
needed is one node for each element.

Let us look at an application of algorithms UNION and FIND to
processing the equivalence pairs of section 4.6. The equivalence classes
to be generated may be regarded as sets. These sets are disjoint as
no variable can be in two equivalence classes. To begin with all n
variables are in an equivalence class of their own; thus PARENT({) = —1,
1 =i=n. If an equivalence pair, i = j, is to be processed, we must
first determine the sets containing i and j. If these are different, then
the two sets are to be replaced by their union. If the two sets are
the same, then nothing is to be done as the relation i = j is redundant;
i and j are already in the same equivalence class. To process each
equivalence pair we need to perform at most two finds and one union.
Thus, if we have n variables and m = n equivalence pairs, the total
processing time is at most O(ma(2m,m)). While for very large n this
is slightly worse than the algorithm of §4.6, it has the advantage of
needing less space and also of being ‘‘on line.”’

In Chapter 6 we shall see another application of the UNION-FIND
algorithms.

Example 5.3: We shall use the UNION-FIND algorithms to process

Applications of Trees 257

the set of equivalence pairs of section 4.6. Initially, there are 12 trees,
one for each variable. PARENT() = -1, | < i< 12.

0 A) T Y 0 I 0 B A VB) R R U R D I Input
ONORONCONO) ONCNONCRONC) initial
[-2] [-2] [-2] [2] [-] [[-\] (1] =5
cRoloRoRclcR: =

| 7=1

@ (10) 9=10

[_3] [4] [3] - 8=5
7=9

4=6

3@ & ® ©®

A
58 L

Each tree represents an equivalence class. It is possible to determine
if two elements are currently in the same equivalence class at each
stage of the processing by simply making two finds. o

5.8.2 Decision Trees

Another very useful application of trees is in decision making. Consider
the well-known eight coins problem. Given coins a,b,c,d,ef.g,h, we
are told that one is a counterfeit and has a different weight than the
others. We want to determine which coin it is, making use of an equal
arm balance. We want to do so using a minimum number of comparisons
and at the same time determine whether the false coin is heavier or
lighter than the rest. The tree below represents a set of decisions by
which we can get the answer to our problem. This is why it is called
a decision tree. The use of capital H or L means that the counterfeit

Trees

258

201, UOISIOd(Suto) YStg 91'S aundiyg

(4+2+P ¢ 2+49+D)

Applications: of Trees 259

coin is heavier or lighter. Let us trace through one possible sequence.
If a+ b+ c<d+ e+ f, then we know that the false coin is present
among the six and is neither g nor h. If on our next measurement
we find that a + d < b + e, then by interchanging d and b we have
no change in the inequality. This tells us two things: (i) that ¢ or f
is not the culprit, and (ii) that b or d is also not the culprit. If a + d
was equal to b + e, then ¢ or f would be the counterféit coin. Knowing
at this point that either a or e is the counterfeit, we compare a with
a good coin, say b. If a= b, then e is heavy, otherwise a must be
light.

By looking at.this tree we see that all possibilities are covered, since
there are 8 coins which can be heavy or light and there are 16 terminal
nodes. Every path requires exactly 3 comparisons. Though viewing
this problem as a decison tree is very useful it does not immediately
give us an algorithm. To solve the 8 coins problem with a program,
we must write a series of tests which mirror the structure of the tree.
If we try to do this in SPARKS using the if-then-else statement, we
see that the program looks like a dish of spaghetti. It is impossible
to discern the flow of the program. Actually this type of processing
is much more clearly expressed using the case statement.

We will make use of a procedure to do the last comparison.

procedure COMP(x,y.z)
/ X is compared against the standard coin z,/
if x > z then print (x ‘heavy’)
else print (y ‘light’)
end COMP

The procedure EIGHTCOINS appears on the next page. The program
is now transparent and clearly mirrors the decision tree of figure 5.16.

5.8.3 Game Trees

Another interesting application of trees is in the playing of games
such as tic-tac-toe, chess, nim, kalah, checkers, go, etc. As an example,
let us consider the game of nim. This game is played by two players
A and B. The game itself is described by a board which initially contains
a pile of n toothpicks. The players A and B make moves alternately

260 Trees

procedure EIGHTCOINS
/eight weights are input; the different one is discovered using only
3 comparisons /
read (a, b, c, d, e, f, g. h)
case
ta+b+c=d+ e+ f:if g> hthen call COMP (g, h,a)
else call COMP (h,g,a)
ta+b+c>d+ e+ f:case
ta+ d= b+ e: call COMP (c,f,a)
:a+ d> b+ e: call COMP (a,e,b)
ca+d< b+ e:call COMP(b,d,a)
end
ta+b+c<d+ e+ f: case
:a+ d= b+ e: call COMP (f,c,a)
:a+d> b+ e:call COMP(d,b,a)
:a+ d< b+ e:call COMP (e,a,b)
end
end
end EIGHTCOINS

with A making the first move. A legal move consists of removing either
1, 2 or 3 of the toothpicks from the pile. However, a player cannot
remove more toothpicks than there are on the pile. The player who
removes the last toothpick loses the game and the other player wins.
The board configurationat any time is completely specified by the number
of toothpicks remaining in the pile. At any time the game status is
determined by the board configuration together with the player whose
turn it is to make the next move. A terminal board configuration is
one which represents either a win, lose or draw situation. All other
configurations are nonterminal. In nim there is only one terminal
configuration: there are no toothpicks in the pile. This configuration
is a win for player A if B made the last move, otherwise it is a win
for B. The game of nim cannot end in a draw.

A sequence C,, ...,C,, of board configurations is said to be valid

if:

(i) C, is the starting configuration of the game;

(i) C;, 0 < i< m, are nonterminal configurations;

(iii) C,,, is obtained from C, by a legal move made by player A
if i is odd and by player B if i is even. It is assumed that there
are only finitely many legal moves.

A valid sequence C,, ...,C,, of board configurations with C,, a terminal

Applications of Trees 261

configuration is an instance of the game. The length of the sequence
C,.C,,C, 1s m. A finite game is one in which there are no valid
sequences of infinite length. All possible instances of a finite game
may be represented by a game tree. The tree of figure 5.17 is the game
tree for nim with n = 6. Each node of the tree represents a board
configuration. The root node represents the starting configuration C,.
Transitions from one level to the next are made via a move of A or
B. Transitions from an odd level represent moves made by A. All other
transitions are the result of moves made by B. Square nodes have
been used in figure 5.17 to represent board configurations when it was
A’sturn tomove. Circular nodes have been used for other configurations.
The edges from level 1 nodes to level 2 nodes and from level 2 nodes
to level 3 nodes have been labeled with the move made by A and B
respectively (for example, an edge labeled 1 means 1 toothpick is to
be removed). It is easy to figure out the labels for the remaining edges
of the tree. Terminal configurations are represented by leaf nodes.
Leaf nodes have been labeled by the name of the player who wins
when that configuration is reached. By the nature of the game of nim,
player A can win only at leaf nodes on odd levels while B can win
only at leaf nodes on even levels. The degree of any node in a game
tree is at most equal to the number of distinct legal moves. In nim
there are at most 3 legal moves from any configuration. By definition,
the number of legal moves from any configuration is finite. The depth
of a game tree is the length of a longest instance of the game. The
depth of the nim tree of figure 5.17 is 7. Hence, from start to finish
this game involves at most 6 moves. It is not difficult to see how
similar game trees may be constructed for other finite games such as
chess, tic-tac-toe, kalah, etc. (Strictly speaking, chess is not a finite
game as it is possible to repeat board configurations in the game. We
can view chess as a finite game by disallowing this possibility. We
could, for instance, define the repetition of a board configuration as
resulting in a draw.)

Now that we have seen what a game tree is, the next question is
“‘of what use are they?’’ Game trees are useful in determining the
next move a player should make. Starting at the initial configuration
represented by the root of figure 5.17 player A is faced with the choice
of making any one of three possible moves. Which one should he make?
Assuming that player A wants to win the game, he should make the
move that maximizes his chances of winning. For the simple tree of
figure 5.17 this move is not too difficult to determine. We can use
an evaluation function E(X) which assigns a numeric value to the board

Figure 5.17 Complete Game Tree for Nim with n = 6

configuration X. This function is a measure of the value or worth of
configuration X to player A. So, E(X) is high for a configuration from
which A has a good chance of winning and low for a configuration
from which A has a good chance of losing. E(X) has its maximum
value for configurations that are either winning terminal configurations
for A or configurations from which A is guaranteed to win regardless
of B’s countermoves. E(X) has its minimum value for configurations
from which B is guaranteed to win.

For a game such as nim with n = 6, whose game tree has very few
nodes, it is sufficient to define E(X) only for terminal configurations.
We could define E(X) as:

E(X) = { 1 if Xis a winning configuration for A

—1 if Xis a losing configuration for A

Using this evaluation function we wish to determine which of the
configurations b, ¢, d player A should move the game into. Clearly,
the choice is the one whose value is max {V(b), V(c), V(d)} where
V(x) is the value of configuration x. For leaf nodes x, V(x) is taken
to be E(x). For all other nodes x let d =1 be the degree of x and

Applications of Trees 263

move

countermove

move

countermove

A's move

B's countermove

let ¢,,¢,, ...,c4 be the configurations represented by the children of
x. Then V(x) 1s defined by:

max {V(c)} if xis a square node

l=i=d
V(x) = (5.3)
lm.ind {V(c,)} if xisa circular node

The justification for (5.3) is fairly simple. If x is a square node,
then it is at an odd level and it will be A’s turn to move from here
if the game ever reaches this node. Since A wants to win he will move
to that child node with maximum value. In case x is a circular node
it must be on an even level and if the game ever reaches this node,
then it will be B’s turn to move. Since B is out to win the game for
himself, he will (barring mistakes) make a move that will minimize A’s
chances of winning. In this case the next configuration will be min

I=i=d
{V(c)}. Equation (5.3) defines the minimax procedure to determine
the value of a configuration x. This is illustrated on the hypothetical
game of figure 5.18. P,, represents an arbitrary board configuration
from which A has to make a move. The values of the leaf nodes are

264 Trees

y 28!
3 max
optional
move for A D2 D24
-] P21)P 22 ~|) min
D3 D32 D33 D34 D3s Dis b3
+00 -0 3 + 00| - 2 -00 max
A wins A loses Awins A loses A loses
3P4 2) P42 0YP a3 (-x)\P4a 2 P45 min
0] [3] (18] [9][2] 17 1] 5] (9 I3 2
PsiPs2Ps3ypPsapsspPse Ps51Pss P5,9Ps, 10 Ps, i

l:l Player A to move
O Plagyer B to move

Figure 5.18 Portion of Game Tree for a Hypothetical Game. The value of terminal
nodes is obtained from the evaluation function E(x) for player A.

obtained by evaluating the function E(x). The value of P, is obtained
by starting at the nodes on level 4 and computing their values using
eq. (5.3). Since level 4 is a level with circular nodes all unknown values
on this level may be obtained by taking the minimum of the children
values. Next, values on levels 3, 2 and 1 may be computed in that or-
der. The resulting value for P, is 3. This means that starting from P,,
the best A can hope to do is reach a configuration of value 3. Even
though some nodes have value greater than 3, these nodes will not
be reached, as B’s countermoves will prevent the game from reaching
any such configuration (assuming B’s countermoves are optimal for B
with respect to A’s evaluation function). For example, if A made a
move to P,,, hoping to win the game at P,,, A would indeed be surprised
by B’s countermove to P, resulting in a loss to A. Given A’s evaluation
function and the game tree of figure 5.18, the best move for A to make
is to configuration P,,. Having made this move, the game may still
not reach configuration P, as B would, in general, be using a different
evaluation function, which might give different values to various board

Applications of Trees 265

configurations. In any case, the minimax procedure can be used to
determine the best move a player can make given his evaluation function.
Using the minimax procedure on the game tree for nim (figure 5.17)
we see that the value of the root node is V(a) = 1. Since E(X) for this
game was defined to be 1 iff A was guaranteed to win, this means
that if A makes the optimal move from node a then no matter what
B’s countermoves A will win. The optimal move is to node b. One
may readily verify that from b A can win the game independent of
B’s countermove!

For games such as nim with n = 6, the game trees are sufficiently
small that it is possible to generate the whole tree. Thus, it is a relatively
simple matter to determine whether or not the game has a winning
strategy. Moreover, for such games it is possible to make a decision
on the next move by looking ahead all the way to terminal configurations.
Games of this type are not very interesting since assuming no errors
are made by either player, the outcome of the game is predetermined
and both players should use similar evaluation functions, i.e., E ,(X) = 1
for X a winning configuration and E,(X) = —1 for X a losing configu-
ration for A; Eg(X) = —E 4(X).

Of greater interest are games such as chess where the game tree
is too large to be generated in its entirety. It is estimated that the
game tree for chess has >10!% nodes. Even using a computer which
is capable of generating 10!' nodes a second, the complete generation
of the game tree for chess would require more than 10% years. In
games with large game trees the decision as to which move to make
next can be made only by looking at the game tree for the next few
levels. The evaluation function E(X) is used to get the values of the
leaf nodes of the subtree generated and then eq. (5.3) can be used
to get the values of the remaining nodes and hence to determine the
next move. In a game such as chess it may be possible to generate
only the next few levels (say 6) of the tree. In such situations both
the quality of the resulting game and its outcome will depend upon
the quality of the evaluating functions being used by the two players
as well as of the algorithm being used to determine V(X) by minimax
for the current game configuration. The efficiency of this algorithm
will limit the number of nodes of the search tree that can be generated
and so will have an effect on the quality of the game.

Let us assume that player A is a computer and attempt to write an
algorithm that A can use to compute V(X). It is clear that the procedure
to compute V(X) can also be used to determine the next move that
A should make. A fairly simple recursive procedure to evaluate V(X)

266 Trees

using minimax can be obtained if we recast the definition of minimax
into the following form:

e(X) if Xis aleaf of the subtree generated
V(X)) = 5.4)
max {—V’'(c)} If X is not a leaf of the
1=i=d subtree generated and c;,
1 < i =< dare the children
of X.

where e(X) = E(X) if X is a position from which A is to move and
e(X) = —E(X) otherwise.

Starting at a configuration X from which A is to move, one can easily
prove that eq. (5.4) computes V'(X) = V(X) as given by eq. (5.3).
In fact, values for all nodes on levels from which A is to move are
the same as given by eq. (5.3) while values on other levels are the
negative of those given by eq. (5.3).

The recursive procedure to evaluate V'(X) based on eq. (5.4) is then
VE(X,Il). This algorithm evaluates V'(X) by generating only [levels
of the game tree beginning with X as root. One may readily verify
that this algorithm traverses the desired subtree of the game tree in
postorder.

procedure VE(X,!)

/compute V'(X) by looking at most l moves ahead. e(X) is the
evaluation function for player A. For convenience, it is assumed
that starting from any board configuration X the legal moves of
the game permit a transition only to the configurations C,,C,, ...,C,
if X is not a terminal configuration. /

if X is terminal or | = 0 then return e(X)

ans — —VE(C,,l - 1) /A traverse the first subtree /
for i —2to ddo /traverse the remaining subtrees /
ans < max {ans, — VE(C,,l — 1)}
end
return (ans)
end VE

An Initial call to algorithm VE with X = P, and | =4 for the
hypothetical game of figure 5.18 would result in the generation of the
complete game tree. The values of various configurations would be
determined in the order: P,,, P,,, P,,, Py, Ps,, Ps;, P, Ps,, P,

Applications of Trees 267

Py, P, , Py, ...,Py;, P,,, P,,. Itis possible to introduce, with relative
ease, some heuristics into algorithm VE that will in general result in
the generation of only a portion of the possible configurations while
still computing V'(X) accurately.

Consider the game tree of figure 5.18. After V(P,,) has been computed,
it is known that V(Ps;) is at least V(P,;) = 3. Next, when V(Pi;)
is determined to be 2, then we know that V(P,,) is at most 2. Since
P, is a max position, V(P,,) cannot affect V(P,;). Regardless of the
values of the remaining children of P,,, the value of P, is not determined
by V(P,,) as V(P,) cannot be more than V(P,;). This observation
may be stated more formally as the following rule: The alpha value
of a max position is defined to be the minimum possible value for
that position. If the value of a min position is determined to be less
than or equal to the alpha value of its parent, then we may stop generation
of the remaining children of this min position. Termination of node
generation under this rule is known as alpha cutoff. Once V(P,,) in
figure 5.18 is determined, the alpha value of P,, becomes 3. V(Ps;) <
alpha value of P, implies that P, need not be generated.

A corresponding rule may be defined for min positions. The beta
value of a min position is the maximum possible value for that position.
If the value of a max position is determined to be greater than or equal
to the beta value of its parent node, then we may stop generation of
the remaining children of this max position. Termination of node genera-
tion under this rule is called beta cutoff. In figure 5.18, once V(P;;)
isdetermined, the beta value of P,;is known to be at most —1. Generation
of P,, Py, Py gives V(P,,) = 0. Thus, V(P,,) is greater than or equal
to the beta value of P,; and we may terminate the generation of the
remaining children of P;¢. The two rules stated above may be combined
together to get what is known as alpha-beta pruning. When alpha-beta
pruning is used on figure 5.18, the subtree with root P, is not generated
at all! This is because when the value of P,; is being determined the
alpha value of P, is 3. V(P;,) is less than the alpha value of P,
and so an alpha cutoff takes place. It should be emphasized that the
alpha or beta value of a node is a dynamic quantity. Its value at any
time during the game tree generation depends upon which nodes have
so far been generated and evaluated.

In actually introducing alpha-beta pruning into algorithm VE it is
necessary to restate this rule in terms of the values defined by eq.
(5.4). Under eq. (5.4) all positions are max positions since the values
of the min positions of eq. (5.3) have been multiplied by —1. The
alpha-beta pruning rule now reduces to the following rule: let the B

268 Trees

value of a position be the minimum value that that position can have.

For any position X, let B be the B-value of its parent and let D = —B.
Then, if the value of X is determined to be greater than or equal to
D, we may terminate generation of the remaining children of X. Incorpo-
rating this rule into algorithm VE is fairly straightforward and results
in algorithm VEB. This algorithm has the additional parameter D which
is the negative of the B value of the parent of X.

procedure VEB(X,[,D)

/determine V'(X) as in eq. (5.4) using the B-rule and looking
only | moves ahead. Remaining assumptions and notation are
the same as for algorithm VE./

if X is terminal or | = 0 then return e(x)

ans «— —o, Jcurrent lower bound on V' (x) /

for i<—1toddo
ans < max{ans, — VEB(C,,I-1,-ans)}
if ans = D then return (ans) Juse B-rule /

end

return (ans)
end VEB

If Y is a position from which A is to move, then the initial call
VEB(Y,l,») correctly computes V'(Y) with an | move look ahead.
Further pruning of the game tree may be achieved by realizing that
the B-value of a node X places a lower bound on the value grandchildren
of X must have in order to affect X’s value. Consider the subtree
of figure 5.19(a). If V(GC(X)) = B then V'(C(X)) = —B. Following
the evaluation of C(X), the B-value of X is max{B,—V'(C(X))} = B
as V' (C(X)) = —B. Hence unless V'(GC(X)) > B, it cannot affect
V'(X) and so B is a lower bound on the value GC(X) should have.
Incorporating this lowerbound into algorithm VEB yields algorithm AB.
The additional parameter I.LB is a lowerbound on the value X should
have.

procedure AB(X,I,LB,D)
/same as algorithm VEB. LB is a lowerbound on V' (X)/
if X is terminal or | = 0 then return e(X)
ans — LB /current lowerbound on V' (X)/
for i—1to ddo
ans «— max {ans,— AB(C,,l-1,— D, —ans)}
if ans = D then return (ans)
end
return (ans)
end AB.

Applications of Trees 269

One may easily verify that the initial call AB(Y,l,—»,x) gives the
same result as the call VE(Y,I).

Figure 5.19(b) shows a hypothetical game tree in which the use of
algorithm AB results in greater pruning than achieved by algorithm VEB.
Let us first trace the action of VEB on the tree of figure 5.19(b).
We assume the initial call to be VEB(P,,l,) where ! is the depth
of the tree. After examining the left subtree of P,, the B value of

GC(X)

P

: /
VI(GC(X)=B
> V(CX))=-B
Pg P,

/N

9

B

/ \-

(a) (b)

Figure 5.19 Game trees showing lower bounding

270 Trees

P, is set to 10 and nodes P,, P,, P, and P, are generated. Following
this, V'(P,) is determined to be 9 and then the B-value of P becomes
—9. Using this, we continue to evaluate the node P,. In the case of
AB however, since the B-value of P, is 10, the lowerbound for P,
is 10 and so the effective B-value of P, becomes 10. As a result the
node P, is not generated since no matter what its value V'(P5)= -9
and this will not enable V' (P,) to reach its lower bound.

5.9 COUNTING BINARY TREES

As a conclusion to our chapter on trees, we determine the number
of distinct binary trees having n nodes. We know that if n = 0 or
n = 1 there is one such tree. If n = 2, then there are two distinct
binary trees

and

and if n = 3, there are five

A4S

How many distinct binary trees are there with n nodes?

Before solving this problem let us look at some other counting problems
that are equivalent to this one,

In section 5.4 we introduced the notion of preorder, inorder and
postorder traversals. Suppose we are given the preorder sequence

ABCDEFGHI

and the inorder sequence

Counting Binary Trees 271

BCAEDGHFI

of the same binary tree. Does such a pair of sequences uniquely define
a binary tree? Asked another way, can the above pair of sequences
come from more than one binary tree. We can construct the binary
tree which has these sequences by noticing that the first letter in preorder,
A, must be the root and by the definition of inorder all nodes preceding
A must occur in the left subtree and the remaining nodes occur in
the right subtree.
This gives us

as our first approximation to the correct tree. Movingright in the preorder
sequence we find B as the next root and from the inorder we see B
has an empty left subtree and Cis in its right subtree. This gives

® Gererd
©

as the next approximation. Continuing in this way we arrive at the
binary tree

272 Trees

By formalizing this argument, see the exercises, we can verify that
every binary tree has a unique pair of preorder-inorder sequences.

Let the nodes of an n node binary tree be numbered 1 to n. The
inorder permutation defined by such a binary tree is the order in which
its nodes are visited during an inorder traversal of the tree. A preorder
permutation is similarly defined.

As an example, consider the binary tree above with the following
numbering of nodes:

Its preorder permutation is 1,2, ...,9 and its inorder permutation is
2,3,1,5,4,7,8,6,9.

If the nodes of a binary tree are numbered such that its preorder
permutation is 1,2, ...,n, then from our earlier discussion it follows
that distinct binary trees define distinct inorder permutations. The number
of distinct binary trees is thus equal to the number of distinct inorder
permutations obtainable from binary trees having the preorder permuta-
tion 1,2, ...,n.

Using this concept of an inorder permutation, it is possible to show
that the number of distinct permutations obtainable by passing the
numbers | to n through a stack and deleting in all possible ways is
equal to the number of distinct binary trees with n nodes (see the
exercises). If we start with the numbers 1,2,3 then the possible permuta-
tions obtainable by a stack are

1,2,3; 1,3.2;2,1,3; 2.3,1; 3,215

Counting Binary Trees 273

It is not possible to obtain 3,1,2. Each of these five permutations
corresponds to one of the five distinct binary trees with 3 nodes

Py

Another problem which surprisingly has connection with the previous
two is the following: we have a product of n matrices

M, * My My*...x M,

that we wish to compute. We can perform these operations in any
order because multiplication of matrices is associative. We ask the
question: how many different ways can we perform these multiplications?
For example, if n = 3, there are two possibilities

M, *M,)* M, and M, * (M, M,)
and if n = 4, there are five ways

(M, * M) » My) » M,, (M, x (M, » My)) * M,
M, » (M, * M3) * M)
(M, * (M, * (M4 * M,))), (M, * M,) » (M, « M,))

Let b, be the number of different ways to compute the product of
n matrices. Then b, =1, b; =2, b, = 5. Let M, i <, be the product
M;* M, *...* M. The product we wish to compute is M,,. M,, may
be computed by computing any one of the products M, » M, ., 1
= i < n. The number of ways to obtain M;; and M, , , is b; and
b,_ respectively. Therefore, letting b, = 1 we have:

n

n i
l=i=n-1

b,= 2 b;b,_;., n>1

274 Trees

If we can determine an expression for b, only in terms of n, then
we have a solution to our problem. Now instead let b, be the number
of distinct binary trees with n nodes. Again an expression for b, in
terms of n is what we want. Then we see that b, is the sum of all
possible binary trees formed in the following way, a root and two subtrees
with b; and b,_;_, nodes,

for 0 = i< n — 1. This says that

b,= > bib,;,,n=1andb,=1 (5.5)

O0=<i=n-—-1

This formula and the previous one are essentially the same.

So, the number of binary trees with n nodes, the number of permutations
of 1 to n obtainable with a stack, and the number of ways to multiply
n + 1 factors are all equal to the same number!

To obtain this number we must solve the recurrence of eq. (5.5).
To begin we let

B(x) =) bx' (5.6)
i=0

which is the generating function for the number of binary trees. Next,
observe that by the recurrence relation we get the identity

x B%(x) = B(x) — 1

Using the formula to solve quadratics and the fact (eq. (5.5)) that B(0)
= by, = 1 we get:
1-V1-4dx

B g
(x) »

Counting Binary Trees 275

It is not clear at this point that we have made any progress but by
using the binomial theorem to expand (1 — 4x)!'/2 we get

o= (-3 (7) o)

n=0

1/2
= 2 (/ >(—1)’"22’"“x’" 5.7
m+1

m=0

Comparing eqgs. (5.6) and (5.7) we see that b, which is the coefficient

of x"in B(x) is:
1/2
(/ > (_1)n22n+1
n+1

Some simplification yields the more compact form
1 2n
=i ()
n+1\n

b,= 0(4"/n%?)

which is approximately

REFERENCES AND SELECTED READINGS

For other representations of trees see
The Art of Computer Programming: Fundamental Algorithms, by D. Knuth,
second edition, Addison-Wesley, Reading, 1973.

For the use of trees in generating optimal compiled code see

“The generation of optimal code for arithmetic expressions’ by R. Sethi and
J. Ullman, JACM, vol. 17, no. 4, October 1970, pp. 715-728.

““The generation of optimal code for a stack machine’ by J. L. Bruno and
T. Lassagne, JACM, vol. 22, no. 3, July 1975, pp. 382-396.
Algorithm INORDER4 of the exercises is adapted from

““An improved algorithm for traversing binary trees without auxiliary stack,”
by J. Robson, Information Processing Letters, vol. 2, no. 1, March 1973, p.
12-14.

276 Trees

Further tree traversal algorithms may be found in:

““‘Scanning list structures without stacks and tag bits,”” by G. Lindstrom,
Information Processing Letters, vol. 2, no. 2, June 1973, p. 47-51.

““Simple algorithms for traversing a tree without an auxiliary stack,”” by B.
Dwyer, Information Processing Letters, vol. 2, no. 5, Dec. 1973, p. 143-145.

The use of threads in connection with binary trees is given in

‘‘Symbol manipulation by threaded lists,”’ by A. Perlis and C. Thornton, CACM,
vol. 3, no. 4, April 1960, pp. 195-204.

For a further analysis of the set representation problem see

The Design and Analysis of Computer Algorithms, A. Aho, J. Hopcroft and
J. Ullman, Addison-Wesley, Reading, 1974.

The computing time analysis of the UNION-FIND algorithms may be found
in:

“‘Efficiency of a good but not linear set union algorithm’’ by R. Tarjan, JACM,
vol. 22, no. 2, April 1975, pp. 215-225.

Our discussion of alpha-beta cutoffs is from

‘“An analysis of alpha beta cutoffs”” by D. Knuth, Stanford Technical Report
74-441, Stanford University, 1975.

For more on game playing see

Problem Solving Methods in Artificial Intelligence by N. Nilsson. McGraw-Hill,
New York, 1971.

Artificial Intelligence: The Heuristic Programming Approach by J. Slagle, Mc-
Graw-Hill, New York, 1971.

EXERCISES

1. For the binary tree below list the terminal nodes, the nonterminal nodes
and the level of each node.

9.

10.

Exercises 277

Draw the internal memory representation of the above binary tree using
(a) sequential, (b) linked, and (c) threaded linked representations.

Write a procedure which reads in a tree represented as a list as in section
5.1 and creates its internal representation using nodes with 3 fields, TAG,
DATA, LINK.

Write a procedure which reverses the above process and takes a pointer
to a tree and prints out its list representation,

Write a nonrecursive version of procedure PREORDER.

Write a nonrecursive version of procedure POSTORDER without using
goto’s.

Rework INORDERS3 so it is as fast as possible. (Hint: minimize the stacking
and the testing within the loop.)

Write a nonrecursive version of procedure POSTORDER using only a
fixed amount of additional space. (See exercise 36 for details)

Do exercise 8 for the case of PREORDER.

Given a tree of names constructed as described in section 5.5 prove that
an inorder traversal will always print the names in alphabetical order.

Exercises 11-13 assume a linked representation for a binary tree.

11.

12.

13.

Write an algorithm to list the DATA fields of the nodes of a binary tree
T by level. Within levels nodes are to be listed left to right.

Give an algorithm to count the number of leaf nodes in a tree T. What
is its computing time?

Write an algorithm SWAPTREE(T) which takes a binary tree and swaps
the left and right children of every node. For example, if Tis the binary tree

SWAPTREE (N

278

14.

15.

16.

17.

18.

19.

20.

21.

22,

23,

Trees

Devise an external representation for formulas in the propositional calculus.
Write a procedure which reads such a formula and creates a binary tree
representation of it. How efficient is your procedure?

Procedure POSTORDER—EVAL must be able to distinguish between the
symbols A, v, T and a pointer in the DATA field of a node. How should
this be done?

What is the computing time for POSTORDER—EVAL? First determine
the logical parameters.

Write an algorithm which inserts a new node T as the left child of node

S in a threaded binary tree. The left pointer of § becomes the left pointer
of T.

Write a procedure which traverses a threaded binary tree in postorder.
What is the time and space requirements of your method?

Define the inverse transformation of the one which creates the associated
binary tree from a forest. Are these transformations unique?

Prove that preorder traversal on trees and preorder traversal on the associated
binary tree gives the same result.

Prove that inorder traversal for trees and inorder traversal on the associated
binary tree give the same result.

Usingthe result of example 5.3, draw the trees after processing the instruction
UNION(12,10).

Consider the hypothetical game tree:

OB G ® ® ® OGO G O®6(E

=

25.

26.

27.

28,

29.

30.

31.

32,

33.

Exercises 279

(a) Using the minimax technique (eq. (5.3)) obtain the value of the root
node.

(b) What move should player A make?

(c) List the nodes of this game tree in the order in which their value
is computed by algorithm VE.

(d) Using eq. (5.4) compute V'(X) for every node X in the tree.

(e} Which nodes of this tree are not evaluated during the computation
of the value of the root node using algorithm AB with X = root, | = «,
LB =—->and D = x?

Show that V’(X) computed by eq. (5.4) is the same as V(X) computed
by eq. (5.3) for all nodes on levels from which A is to move. For all
other nodes show that V(X) computed by eq. (5.3) is the negative of
V’(X) computed by eq. (5.4).

Show that algorithm AB when initially called with LB = —% and D= »
yields the same results as VE does for the same X and [.

Prove that every binary tree is uniquely defined by its preorder and inorder
sequences.

Do the inorder and postorder sequences of a binary tree uniquely define
the binary tree? Prove your answer.

Answer exercise 27 for preorder and postorder.

Write an algorithm to construct the binary tree with a given preorder and
inorder sequence.

Do exercise 29 for inorder and postorder.

Prove that the number of distinct permutations of 1,2, ...,n obtainable
by a stack is equal to the number of distinct binary trees with n nodes.
(Hint: Use the concept of an inorder permutation of a tree with preorder
permutation 1,2, ...,n).

Using Stirling’s formula derive the more accurate value of the number
of binary trees with n nodes,

b,=@4"/n¥2Va X1+ 0(1/n)

Consider threading a binary tree using preorder threads rather than inorder
threads as in the text. Is it possible to traverse a binary tree in preorder
without a stack using these threads?

280

3.

3s.

37.

Trees

Write an algorithm for traversing an inorder threaded binary tree in preorder.

The operation PREORD(btree) — queue returns a queue whose elements
are the data items of btree in preorder. Using the operation
APPENDQ(queue, queue) — queue which concatenates two queues,
PREORD can be axiomatized by

PREORD(CREATE) :: = MTQ
PREORDXMAKBT(p,d,r)) :: =
APPENDQ(APPENDQ(ADDQ(MTQ,d),(PREORD(p})),PREORD(r))

Devise similar axioms for INORDER AND POSTORDER.

The algorithm on page 281 performs an inorder traversal without using
threads, a stack or a PARENT field. Verify that the algorithm is correct
by running it on a variety of binary trees which cause every statement
to execute at least once. Before attempting to study this algorithm be
sure you understand MARK? of section 4.10.

Extend the equivalence algorithm discussed in section 5.8.1 so it handles
the equivalencing of arrays (see section 4.6). Analyze the computing time
of your solution.

[Wilczynski] Following the conventions of LISP assume nodes with two

fields [TAIL]. If A =(a(bc)) then HEAD(A) = (a(bc)),

TAIL(A) = NIL, HEADMHEAD(A)) = a, TAIL(HEAD(A)) = ((bc)).

CONS(A,B) gets a new node T, stores A in its HEAD, B in its TAIL

andreturns T. B must alwaysbealist. If L = a, M = (bc) then CONS(L,M)

= (abc), CONS(M,M) = ((bc)bc). Three other useful functions are:

ATOM(X) which is true if X is an atom else false, NULL(X) which is

true if X is NIL else false, EQUAL(X,Y) which is true if X and Y are

the same atoms or equivalent lists else false.

a) Give a sequence of HEAD, TAIL operations for extracting a from
the lists: ((cat)), ((a)), (mart), (((cb))a).

b) Write recursive procedures for: COPY, REVERSE, APPEND.

c) Implement this “‘LISP’’ subsystem. Store atoms in an array, write
procedures MAKELIST and LISTPRINT for input and output of lists.

Exercises

procedure INORDERA(T)
/inorder traversal of binary tree T using a fixed amount of
additional storage /
it T = O then return /empty binary tree/
top < last__right —0; p—q« T /initialize /
loop
loop /move down as far as possible /
case
:LCHILD(p) = 0 and RCHILD(p) = 0:
/can’'t move down/
print (DATA(p)); exit
:LCHILD(p) = 0: #move to RCHILD(p)y/
print (DATA(p)) S Visit pJ
r< RCHILD(p); RCHILD(p) < q;

qepip—r
selse: #move to LCHILD(p)y/
r<« LCHILD(p); LCHILD(p) < q; q < p;
pe<r
end
forever

/pis a leaf node, move upwards to a node whose right
subtree hasn’t yet been examined /
av<p /leaf node to be used in stack /
loop / move up from p/
case
:p = T: return /can’t move up from root,/
:LCHILD(q) = 0: /qis linked via RCHILD /
r<« RCHILD(q); RCHILD(q) < p;p<—q;q<r
:RCHILD(q) = 0: #q is linked via LCHILD 7
r<— LCHILD(q); LCHILD(q) < p;p<—q;q<r;
print (DATA(p))
selse: Jcheck if pis RCHILD of q/
if g = last__right then [/pis RCHILD of q/
r < top; last__right «— LCHILD(r) /update
last__right /
top < RCHILD(r); S unstack /
LCHILD(r) «< RCHILD(r) <0 Jreset leaf
node links/
r< RCHILD(q): RCHILD(q) < p; p—q; q < r]
else [/pis LCHILD of q ¢/
print (DATA(q)) A Visit qf
LCHILD(av) < last__right; RCHILD(av) < top;
top < av
last__right < q
r < LCHILD(q); LCHILD(q) < p
A restore link to p/
r, < RCHILD(q); RCHILD(q) < r; p < r,; exit
/ move right /]
end
forever

forever
end INORDER4

281

Chapter 6

GRAPHS

6.1 TERMINOLOGY AND REPRESENTATIONS

6.1.1 Introduction

The first recorded evidence of the use of graphs dates back to 1736
when Euler used them to solve the now classical Koenigsberg bridge
problem. In the town of Koenigsberg (in Eastern Prussia) the river
Pregal flows around the island Kneiphof and then divides into two.
There are, therefore, four land areas bordering this river (figure 6.1).
These land areas are interconnected by means of seven bridges a-g.
The land areas themselves are labeled A-D. The Koenigsberg bridge
problem is to determine whether starting at some land area it is possible
to walk across all the bridges exactly once returning to the starting
land area. One possible walk would be to start from land area B; walk
across bridge a to island A; take bridge e to area D; bridge g to C;
bridge d to A; bridge b to B and bridge f to D. This walk does not
go across all bridges exactly once, nor does it return to the starting
land area B. Euler answered the Koenigsberg bridge problem in the
negative: The people of Koenigsberg will not be able to walk across
each bridge exactly once and return to the starting point. He solved
the problem by representing the land areas as vertices and the bridges
as edges in a graph (actually a multigraph) as in figure 6.1(b). His solution
is elegant and applies to all graphs. Defining the degree of a vertex
to be the number of edges incident to it, Euler showed that there is
a walk starting at any vertex, going through each edge exactly once
and terminating at the start vertex iff the degree of each vertex is even.
A walk which does this is called Eulerian. There is no Eulerian walk
for the Koenigsberg bridge problem as all four vertices are of odd degree.

Since this first application of graphs, they have been used in a wide
variety of applications. Some of these applications are: analysis of

282

Terminology and Representations 283

e JULLTTIIITY

Kneiphof

Figure 6.1 Section of the river Pregal in Koenigsberg and Euler’s graph.

electrical circuits, finding shortest routes, analysis of project planning,
identification of chemical compounds, statistical mechanics, genetics,
cybernetics, linguistics, social sciences, etc. Indeed, it might well be
said that of all mathematical structures, graphs are the most widely
used.

6.1.2 Definitions and Terminology

A graph, G, consists of two sets V and E. Vis a finite non-empty
set of vertices. E is a set of pairs of vertices, these pairs are called
edges. V(G) and E(G) will represent the sets of vertices and edges
of graph G. We will also write G = (V,E) to represent a graph. In
an undirected graphthe pair of vertices representing any edge is unordered.
Thus, the pairs (v,,v,) and (v,,v,) represent the same edge. Ina directed
graph each edge is represented by a directed pair (v,,v,). v, is the
tailand v, the head of the edge. Therefore (v,,v,)and (v,,v,) represent
two different edges. Figure 6.2 shows three graphs G,, G, and G,.

284

Figure 6.2 Three sample graphs.

The graphs G, and G, are undirected. G, is a directed graph.

V(G,) = {1,2,3,4}; E(G)) = {(1,2),(1,3),(1,4),(2,3),(2,4).3.4}
V(G,) = {1,2,3,4,5,6,7}; E(G,) = {(1,2),(1,3),(2,4),(2,5),(3,6),(3,7}
V(G3) = {1’273}7 E(G3) = {(172>a (2’1>7 (2’3>}

Note that the edges of a directed graph are drawn with an arrow
from the tail to the head. The graph G; is also a tree while the graphs
G, and G, are not. Trees can be defined as a special case of graphs.
but we need more terminology for that. If (v,,v,) or (v,,v,) is an
edge in E(G), then we require v, # v,. In addition, since E(G) is
a set, a graph may not have multiple occurrences of the same edge.
When this restriction is removed from a graph, the resulting data object
isreferred to as a multigraph. The data object of figure 6.3 is a multigraph
which is not a graph.

The number of distinct unordered pairs (v;,v;) with v, # v, in a graph
with n vertices is n(n — 1)/2. This is the maximum number of edges
in any n vertex undirected graph. An n vertex undirected graph with
exactly n(n — 1)/2 edges is said to be complete. G, is the complete
graph on 4 vertices while G, and G, are not complete graphs. In the
case of a directed graph on n vertices the maximum number of edges
is n(n—1).

If (v,,v,) is an edge in E(G), then we shall say the vertices v, and
v, are adjacent and that the edge (v,,v,) is incident on vertices v,
and v,. The vertices adjacent to vertex 2 in G, are 4, 5 and 1. The
edges incident on vertex 3 in G, are (1,3), (3,6) and (3,7). If (v ,v,)
is a directed edge, then vertex v, will be said to be adjacent to v,
while v, is adjacent from v,. The edge (v,,v,) is incident to v, and

Terminology and Representations 285

D
Q,}O

Figure 6.3 Example of a multigraph that is not a graph.

v,. In G, the edges incident to vertex 2 are (1,2), (2,1) and (2,3).

A subgraph of G is a graph G’ such that V(G') C V(G) and
E(G’) C E(G). Figure 6.4 shows some of the subgraphs of G, and
G;.

A path from vertex v, to vertex v, in graph G is a sequence of
vertices v, v;,,v Vi Vg such that (v,,v;),(v;,,v.,),(v;,v,) are

i27 * Vi Vg

edges in E(G). If G’ is directed then the path consists of

® Oam© O
© © '9
(i) G (iii) (iv) (4)

(a) Some of the subgraphs of G,

O, ® @
®

(i) (i) (iii) (iv)
{b) Some of the subgraphs of G,

Figure 6.4 (a) Subgraphs of G, and (b) Subgraphs of G,

286 Graphs

(Wi 2 oAVi,sViy)s wn{Vvy,v,), edges in E(G'). The length of a path
is the number of edges on it. A simple path is a path in which all
vertices except possibly the first and last are distinct. A path such
as (1,2) (2,4) (4,3) we write as 1,2,4,3. Paths 1,2,4,3 and 1,2,4,2 are
both of length 3 in G,. The first is a simple path while the second
is not. 1,2,3 is a simple directed path in G;. 1,2,3,2 is not a path
in G; as the edge (3,2) is not in E(G;). A cycle is a simple path
in which the first and last vertices are the same. 1,2,3,1 is a cycle
in G,. 1,2,1 is a cycle in G;. For the case of directed graphs we
normally add on the prefix ‘‘directed”” to the terms cycle and path.
In an undirected graph, G, two vertices v, and v, are said to be connected
if there is a path in G from v, to v, (since G is undirected, this means
there must also be a path from v, to v,). An undirected graph is said
to be connected if for every pair of distinct vertices v;, v; in V(G)
there is a path from v; to v; in G. Graphs G, and G, are connected
while G, of figure 6.5 is not. A connected component or simply a

Figure 6.5 A graph with two connected components.

component of an undirected graph is a maximal connected subgraph. G, has
two components H, and H, (see figure 6.5). A tree is a connected acyclic (i.e.,
has no cycles) graph. A directed graph G is said to be strongly connected if for
every pair of distinct vertices v;, v;in ¥(G) there is a directed path from v;to v;
and also from v;to v;. The graph Gj is not strongly connected as there is no path

®

Figure 6.6 Strongly connected components of G,.

Terminology and Representations 287

from v, to v,. A strongly connected component is a maximal subgraph
that is strongly connected. G, has two strongly connected components.

The degree of a vertex is the number of edges incident to that vertex.
The degree of vertex 1 in G, is 3. In case G is a directed graph,
we define the in-degree of a vertex v to be the number of edges for
which v is the head. The out-degree is defined to be the number of
edges for which v is the tail. Vertex 2 of G, has in-degree 1, out-degree
2 and degree 3. If d, is the degree of vertex i in a graph G with n
vertices and e edges, then it is easy to see that e = (1/2) 2'_, d;.

In the remainder of this chapter we shall refer to a directed graph
as a digraph. An undirected graph will sometimes be referred to simply
as a graph.

6.1.3 Graph Representations

While several representations for graphs are possible, we shall study
only the three most commonly used: adjacency matrices, adjacency lists
and adjacency multilists. Once again, the choice of a particular repre-
sentation will depend upon the application one has in mind and the
functions one expects to perform on the graph.

Adjacency Matrix

Let G=(V,E) be a graph with n vertices, n= 1. The adjacency
matrix of G is a 2-dimensional n X n array, say A, with the property
that A(i,j) = 1 iff the edge (v;,v;) ((v;,v;) for a directed graph) is in
E(G). A(i,j) = 0 if there is no such edge in G. The adjacency matrices
for the graphs G,, G; and G, are shown in figure 6.7. The adjacency
matrix for an undirected graph is symmetric as the edge (v;,v;) is in
E(G) iff the edge (v;,v;) is also in E(G). The adjacency matrix for
a directed graph need not be symmetric (as is the case for G;). The
space needed to represent a graph using its adjacency matrix is n? bits.
About half this space can be saved in the case of undirected graphs
by storing only the upper or lower triangle of the matrix.

From the adjacency matrix, one may readily determine if there is
an edge connecting any two vertices { and j. For an undirected graph
the degree of any vertex i is its row sum X, A(i,j). For a directed
graph the row sum is the out-degree while the column sum is the in-degree.
Suppose we want to answer a nontrivial question about graphs such
as: How many edges are there in G or is G connected. Using ad-
jacency matrices all algorithms will require at least O(n?) time as
n? — n entries of the matrix (diagonal entries are zero) have to be ex-
amined. When graphs are sparse, i.e., most of the terms in the adjacency

288 Graphs

2 3 4 o2 3
T o R T B 1o 1 o
2 R T T T 2 |1 0
3l 1 o 3 Lo o o
I T
() (i)
12 3 s 6 71 8
1 o 1 1 0o o 0o 0]
2|1 0 o 1 0o o 0o o
301 0o 0 1 0 0o o o
alo 1 1 0o o o 0o o0
slo o o o o 1 0o o
6|0 o o o o 1 0
710 0o o 0 o 0
8 Lo o o o o 1 0]

(iii)

Figure 6.7 Adjacency matrices for (i) G,, (il) G, and (iii) G,.

matrix are zero, one would expect that the former questions would
be answerable in significantly less time, say O(e + n) where e is the
number of edges in G and ¢ < n?/2. Such a speed up can be made
possible through the use of linked lists in which only the edges that
are in G are represented. Thisleads to the next representation for graphs.

Adjacency Lists

In thisrepresentation the nrows of the adjacency matrix are represented
as n linked lists. There is one list for each vertex in G. The nodes
in list i represent the vertices that are adjacent from vertex i. Each
node has at least two fields: VERTEX and LINK. The VERTEX fields
contain the indices of the vertices adjacent to vertex i. The adjacency
lists for G,, G,y and G, are shown in figure 6.8. Each list has a headnode.
The headnodes are sequential providing easy random access to the
adjacency list for any particular vertex. In the case of an undirected
graph with n vertices and e edges, this representation requires n head
nodes and 2e¢ list nodes. Each list node has 2 fields. In terms of the
number of bits of storage needed, this count should be multiplied by

Terminology and Representations 289

vertex | - 2 3 410
vertex 2 — | 3 410

vertex 3 —-LT_]3—’L 2 l 4—{4 FOJ
vertex 4 —{ 1 [2] J—+{3]0]

(i) Adjacency lists for G,

vertex | — 210
vertex 2 ———-UT —]——-[3 La
vertex 3 0]

(i) Adjacency lists for G4

vertex | — 2 310

vertex 2 +—-{ 1] J-+{4a]0]
verfex 3 —
vertex 4 —+—{ 2] 4= 3]0]
vertex 5 —

vertex 6 —
vertex 7 f
vertex 8 ——-7[0]

(iii) Adjacency lists for G,

Figure 6.8 Adjacency Lists

290 Graphs

log n for the head nodes and log n + log e for the list nodes as it takes O(log
m) bits to represent a number of value m. Often one can sequentially pack
the nodes on the adjacency lists and eliminate the link fields.

The degree of any vertex in an undirected graph may be determined
by just counting the number of nodes in its adjacency list. The total
number of edges in G may, therefore, be determined in time O(n + e).
In the case of a digraph the number of list nodes is only e. The out-degree
of any vertex may be determined by counting the number of nodes
on its adjacency list. The total number of edges in G can, therefore,
be determined in O(n + ¢). Determining the in-degree of a vertex is
a little more complex. In case there is a need to repeatedly access
all vertices adjacent to another vertex then it may be worth the effort
to keep another set of lists in addition to the adjacency lists. This
set of lists, called inverse adjacency lists, will contain one list for each
vertex. Each list will contain a node for each vertex adjacent to the
vertex it represents (figure 6.9). Alternatively, one could adopt a

vertex | — m

vertex 2 —
vertex 3 —] m

Figure 6.9 Inverse adjacency lists for G,.

:

simplified version of the list structure used for sparse matrix representa-
tion in §4.6. Each node would now have four fields and would represent
one edge. The node structure would be

column link row link

tail head for head for tail

Figure 6.10 shows the resulting structure for the graph G;. The headnodes
are stored sequentially.

The nodes in the adjacency lists of figure 6.8 were ordered by the
indices of the vertices they represented. It is not necessary that lists
be ordered in this way and, in general, the vertices may appear in any
order. Thus, the adjacency lists of figure 6.11 would be just as valid
a representation of G, .

Adjacency Multilists

In the adjacency list representation of an undirected graph each edge
(v;,v;) is represented by two entries, one on the list for v, and the

Terminology and Representations 291

veat nases —L 1] [Tzl 1] (T30
f | [2|o]o]

sl
A

Figure 6.10 Orthogonal List Representation for G;.

verfex | | JaT 3 2] 3 J3]0]
vertex 2 —;43]HIL——]—44101
vertex 3 ———-[4THI [J<{2]0]
vertex 4 —b—ﬁ]—}—*IZI‘—J——'{IIO1

Figure 6.11 Alternate Form Adjacency List for G,.

other on the list for v;. As we shall see, in some situations it is necessary
to be able to determine the second entry for a particular edge and mark
that edge as already having been examined. This can be accomplished
easily if the adjacency lists are actually maintained as multilists (i.e.,
lists in which nodes may be shared among several lists). For each edge
there will be exactly one node, but this node will be in two lists, i.e.,
the adjacency lists for each of the two nodes it is incident to. The

node structure now becomes

LINK 1 LINK 2

M v v
! 2 for v, for v,

where M is a one bit mark field that may be used to indicate whether
or not the edge has been examined. The storage requirements are the
same as for normal adjacency lists except for the addition of the mark
bit M. Figure 6.12 shows the adjacency multilists for G,. We shall
study multilists in greater detail in Chapter 10.

Sometimes the edges of a graph have weights assigned to them. These
weights may represent the distance from one vertex to another or the

292 Graphs

VERTEX
| ————=Ni [[1]2]N2][N4] edge(1,2)
L N2[TT[3IN3[N4] edge (1,3)
N3[_ T 1 Ta4J0INS] edge (1,4)
Na[T 2] 3INSIN6] edge (2,3)
NS [2]4]0[N6] edge (2,4)
N6[[3]a]o]0] edge (3,9

\

H W N
AY

The lists are: vertex 1: N1— N2 — N3
vertex 2: N1 — N4 — NS
vertex 3: N2 — N4 — N6
vertex 4: N3 — NS — N6

Figure 6.12 Adjacency Multilists for G,.

cost of going from one vertex to an adjacent vertex. In this case the
adjacency matrix entries A(i,j) would keep this information, too. In
the case of adjacency lists and multilists this weight information may
be kept in the list nodes by including an additional field. A graph with
weighted edges is called a network.

6.2 TRAVERSALS, CONNECTED COMPONENTS AND
SPANNING TREES

Given the root node of a binary tree, one of the most common things
one wishes to do is to traverse the tree and visit the nodes in some
order. In the chapter on trees, we defined three ways (preorder, inorder,
and postorder) for doing this. An analogous problem arises in the case
of graphs. Given an undirected graph G = (V,E) and a vertex v in
V(G) we are interested in visiting all vertices in G that are reachable
from v (i.e., all vertices connected to v). We shall look at two ways
of doing this: Depth First Search and Breadth First Search.

Depth First Search

Depth first search of an undirected graph proceeds as follows. The
start vertex v is visited. Next an unvisited vertex w adjacent to v is

Traversals, Connected Components and Spanning Trees 293

selected and a depth first search from w initiated. When a vertex u
is reached such that all its adjacent vertices have been visited, we back
up to the last vertex visited which has an unvisited vertex w adjacent
to it and initiate a depth first search from w. The search terminates
when no unvisited vertex can be reached from any of the visited ones.
This procedure is best described recursively as in

procedure DFS(v)

#Given an undirected graph G = (V,E) with n vertices and an array
VISITED(n) initially set to zero, this algorithm visits all vertices
reachable from v. G and VISITED are global. /

VISITED(v) <« 1
for each vertex w adjacent to v do
if VISITED(w) = 0 then call DFS(w)
end
end DFS

In case G is represented by its adjacency lists then the vertices w adjacent
to v can be determined by foliowing a chain of links. Since the algorithm
DFS would examine each node in the adjacency lists at most once
and there are 2e list nodes, the time to complete the search is Of(e).
If G is represented by its adjacency matrix, then the time to determine
all vertices adjacent to v is O(n). Since at most n vertices are visited,
the total time is O(n?).

The graph G of figure 6.13(a) is represented by its adjacency lists
as in figure 6.13(b). If a depth first search is initiated from vertex
v,, then the vertices of G are visited in the order: v,, v,, v,, v,
Vs, Vg, V3, V5. One may easily verify that DFS(v,) visits all vertices
connected to v,. So, all the vertices visited, together with all edges
in G incident to these vertices form a connected component of G.

Breadth First Search

Starting at vertex v and marking it as visited, breadth first search
differs from depth first search in that all unvisited vertices adjacent
to v are visited next. Then unvisited vertices adjacent to these vertices
are visited and so on. A breadth first search beginning at vertex v,
of the graph in figure 6.13(a) would first visit v, and then v, and v,.
Next vertices v,, vs, v and v, will be visited and finally v4. Algorithm
BFS gives the details.

294 Graphs

procedure BFS(v)

/ A breadth first search of G is carried out beginning at vertex v,
All vertices visited are marked as VISITED(i) = 1. The graph G
and array VISITED are global and VISITED is initialized to zero./
VISITED(v) « 1
initialize Q to be empty #/ Qs a queue /
loop

for all vertices w adjacent to v do
if VISITED(w) =0 /#add w to queue /
then [call ADDQ(w, Q); VISITED(w) « 1]
#mark w as VISITED 7

end
if Q is empty then return
call DELETEQ(v,Q)
forever
end BFS

(a)

v, 12| ++3][0]
v, Tl 4] F+5]0]
vy Tt {6 F—7]0]

v, ——{2] F—{8T0]
vs T2 ++8]0o]
A +—{3] F—~{8]0]
v, (3] +—+{8]0]
Va T4l 715 el T7]0]

Figure 6.13 Graph G and Its Adjacency Lists.

Traversals, Connected Components and Spanning Trees 295

Each vertex visited gets into the queue exactly once, so the loop
forever is iterated at most n times. If an adjacency matrix is used, then
the for loop takes O(n) time for each vertex visited. The total time
is, therefore, O(n?). In case adjacency lists are used the for loop has
a total cost of d, + """+ d, = O(e) where d, = degree (v,). Again, all
vertices visited, together with all edges incident to them form a connected
component of G.

We now look at two simple applications of graph traversal: (i) finding
the components of a graph, and (ii) finding a spanning tree of a connected
graph.

Connected Components

If G is an undirected graph, then one can determine whether or not
it is connected by simply making a call to either DFS or BFS and
then determining if there is any unvisited vertex. The time to do this
is O(n?) if adjacency matrices are used and O(e) if adjacency lists
are used. A more interesting problem is to determine all the connected
components of a graph. These may be obtained by making repeated
calls to either DFS(v) or BFS(v), with v a vertex not yet visited. This
leads to algorithm COMP which determines all the connected components
of G. The algorithm uses DFS. BFS may be used instead if desired.
The computing time is not affected.

procedure COMP(G,n)
/ determine the connected components of G. G has n =1 vertices.
VISITED is now a local array./
fori < 1tondo

VISITED(i) « 0 / initialize all vertices as unvisited /
end
for i< 1to ndo
if VISITED(i) = 0 then [call DFS(i); /find a component /

output all newly visited vertices together
with all edges incident to them]
end
end COMP

If G is represented by its adjacency lists, then the total time taken
by DFS is O(e). The output can be completed in time Of(e) if DFS
-keeps a list of all newly visited vertices. Since the for loops take O(n)
time, the total time to generate all the connected components is O(n + e).
By the definition of a connected component, there is a path between

hamiie |

296 Graphs

every pair of vertices in the component and there is no path in G from
vertex v to w if v and w are in two different components. Hence,
if A is the adjacency matrix of an undirected graph (i.e., A is symmetric)
then its transitive closure A* may be determined in O(n?) time by
first determining the connected components. A™* (i,j) = 1 iff there is a
path from vertex i to j. For every pair of distinct vertices in the same
component A* (i,j) = 1. On the diagonal A* (i,i) = 1 iff the component
containing i has at least 2 vertices. We shall take a closer look at transitive
closure in section 6.3.

Spanning Trees and Minimum Cost Spanning Trees

When the graph G is connected, a depth first or breadth first search
starting at any vertex, visits all the vertices in G. In this case the
edges of G are partitioned into two sets T (for tree edges) and B (for
back edges), where T is the set of edges used or traversed during the
search and B the set of remaining edges. The set T may be determined
by inserting the statement T < T U {(v,w)} in the then clauses of DFS
and BFS. The edges in T form a tree which includes all the vertices
of G. Any tree consisting solely of edges in G and including all vertices
in G is called a spanning tree. Figure 6.14 shows a graph and some
of its spanning trees. When either DFS or BFS are used the edges
of T form a spanning tree. The spanning tree resulting from a call
to DFS is known as a depth first spanning tree. When BFS is used,
the resulting spanning tree is called a breadth first spanning tree.

KT o

Figure 6.14 A Complete Graph and Three of Its Spanning Trees.

Figure 6.15 shows the spanning trees resulting from a depth first and
breadth first search starting at vertex v, in the graph of figure 6.13.
If any of the edges (v,w) in B (the set of back edges) is introduced
into the spanning tree T, then a cycle is formed. This cycle consists
of the edge (v,w) and all the edges on the path from w to v in T.
If the edge (8,7) is introduced into the DFS spanning tree of figure
6.15(a), then the resulting cycle is 8,7,3,6,8.

Spanning trees find application in obtaining an independent set of
circuit equations for an electrical network. First, a spanning tree for

Traversals, Connected Components and Spanning Trees 297

Ce)

(a) DFS (1) Spanning Tree (b) BFS (1) Spanning Tree
Figure 6.15 DFS and BFS Spanning Trees for Graph of Figure 6.13.

the network is obtained. Then the edges in B (i.e., edges not in the
spanning tree) are introduced one at a time. The introduction of each
such edge results in a cycle. Kirchoff’s second law is used on this
cycle to obtain a circuit equation. The cycles obtained in this way are
independent (i.e., none of these cycles can be obtained by taking a
linear combination of the remaining cycles) as each contains an edge
from B which is not contained in any other cycle. Hence, the circuit
equations so obtained are also independent. In fact, it may be shown
that the cycles obtained by introducing the edges of B one at a time
into the resulting spanning tree form a cycle basis and so all other
cycles in the graph can be constructed by taking a linear combination
of the cycles in the basis (see Harary in the references for further
details).

It is not difficult to imagine other applications for spanning trees.
One that is of interest arises from the property that a spanning tree
is a minimal subgraph G’ of G such that V(G’) = V(G) and G’ is
connected (by a minimal subgraph, we mean one with the fewest number
of edges). Any connected graph with n vertices must have at least
n —] edges and all connected graphs with n — 1 edges are trees. If
the nodes of G represent cities and the edges represent possible communi-
cation links connecting 2 cities, then the minimum number of links needed
to connect the n cities is n# — 1. The spanning trees of G will represent
all feasible choices. In any practical situation, however, the edges will
have weights assigned to them. These weights might represent the cost
of construction, the length of the link, etc. Given such a weighted

298 Graphs

graph one would then wish to select for construction a set of communi-
cation links that would connect all the cities and have minimum total
cost or be of minimum total length. In either case the links selected
will have to form a tree (assuming all weights are positive). In case
this is not so, then the selection of links contains a cycle. Removal
of any one of the links on this cycle will result in a link selection
of less cost connecting all cities. We are, therefore, interested in finding
a spanning tree of G with minimum cost. The cost of a spanning tree
is the sum of the costs of the edges in that tree.

One approach to determining a minimum cost spanning tree of a graph
has been given by Kruskal. In this approach a minimum cost spanning
tree, T, is built edge by edge. Edges are considered for inclusion in
T in nondecreasing order of their costs. An edge is included in T if
it does not form a cycle with the edges already in T. Since Gis connected
and has n > 0 vertices, exactly n — 1 edges will be selected for inclusion
in T. As an example, consider the graph of figure 6.16(a). The edges

18
@ (b)
Figure 6.16 Graph and A Spanning Tree of Minimum Cost,

of this graph are considered for inclusion in the minimum cost spanning
tree in the order (2,3), (2,4), (4,3), (2,6), (4,6), (1,2), (4,5), (1,5) and
(5,6). This corresponds to the cost sequence 5, 6, 10, 11, 14, 16, 18,
19 and 33. The first two edges (2,3) and (2,4) are included in T. The
next edge to be considered is (4,3). This edge, however, connects two
vertices already connected in T and so it is rejected. The edge (2,6)
is selected while (4,6) is rejecied as the vertices 4 and 6 are already
connected in T and the inclusion of (4,6) would result in a cycle. Finally,
edges (1,2) and (4,5) are included. At this point, T has n — 1 edges
and is a tree spanning n vertices. The spanning tree obtained (figure
6.16(b)) has cost 56. It is somewhat surprising that this straightforward
approach should always result in a minimum spanning tree. We shall
soon prove that this is indeed the case. First, let us look into the details

Traversals, Connected Components and Spanning Trees 299

edge cost action

.
®©O @ ® @ 6 e

(23) 5 accept ®©O 66 @ 6
®

(2.4) 6 accept

@
4,3) 10 reject @ (2) 3 @
(2.6) " accept 6 @
(4,6) 14 reject (D (2) ®
(1,2) 16 accept 6 @ 3

(4,5) I8 accept (D
®

Figure 6.17 Stages in Kruskal’s Algorithm Leading to a Minimum Cost Spanning Tree.

of the algorithm. For clarity, the Kruskal algorithm is written out more
formally in figure 6.18. Initially, E is the set of all edges in G. The
only functions we wish to perform on this set are: (i) determining an
edge with minimum cost (line 3), and (ii) deleting that edge (line 4).
Both these functions can be performed efficiently if the edges in E
are maintained as a sorted sequential list. In Chapter 7 we shall see

T ¢
while T contains less than n - 1 edges and E not empty do
choose an edge (v,w) from E of lowest cost;
delete (v,w) from E;
if (v,w) does not create a cyclein T
then add (v,w) to T
else discard (v,w)
end

if 7 contains fewer than n - 1 edges then print (‘no spanning tree’)

O 00 ~1 N WL b W=

Figure 6.18 Early Form of Minimum Spanning Tree Algorithm-Kruskal.

300 Graphs

how to sort these edges into nondecreasing order in time Of(e log e),
where e is the number of edges in E. Actually, it is not essential to
sort all the edges so long as the next edge for line 3 can be determined
easily. It will be seen that the heap of Heapsort (section 7.6) is ideal
for this and permits the next edge to be determined and deleted in
O(log e) time. The construction of the heap itself takes O(e) time.

In order to be able to perform steps 5 and 6 efficiently, the vertices
in G should be grouped together in such a way that one may easily
determine if the vertices v and w are already connected by the earlier
selection of edges. In case they are, then the edge (v,w) is to be discarded.
If they are not, then (v,w) is to be added to T. One possible grouping
is to place all vertices in the same connected component of T into
a set (all connected components of T will also be trees). Then, two
vertices v,w are connected in T iff they are in the same set. For example,
when the edge (4,3) is to be considered, the sets would be {1}, {2,3,4},
{5}, {6}. Vertices 4 and 3 are already in the same set and so the edge
(4,3) is rejected. The next edge to be considered is (2,6). Since vertices
2 and 6 are in different sets, the edge is accepted. This edge connects
the two components {2,3,4} and {6} together and so these two sets
should be unioned to obtain the set representing the new component.
Using the set representation of section 5.8 and the FIND and UNION
algorithms of that section we can obtain an efficient implementation
of lines 5 and 6. The computing time is, therefore, determined by the
time for lines 3 and 4 which in the worst case is O(e log ¢). We leave
the writing of the resulting algorithm as an exercise. Theorem 6.1 proves
that the algorithm resulting from figure 6.18 does yield a minimum
spanning tree of G. First, we shall obtain a result that will be useful
in the proof of this theorem.

Definition: A spanning forest of a graph G = (V,E) is a collection of
vertex disjoint trees T, = (V,E,), l=i=<ksuchthat V= U V,and
E,CE@G), 1=i<k. 1=i=k

Lemma 6.1: Let T, =(V,,E;), 1=i=<k, k> 1, be a spanning forest
for the connected undirected graph G = (V,E). Let w be a weighting
function for E(G) and lete = (u,v) be an edge of minimum weight such that
ifucVthenv&V_leti=land E'= U E;. Thereis a spanning tree for G

which includes E’ U {e} and has mlm{ml:lm weight among all spanning
trees for G that include E'.

Proof: If the lemma is false, then there must be a spanning tree
T = (V,E") for G such that E” includes E’ but not e and T has a weight

Shortest Paths and Transitive Closure 301

less than the weight of the minimum spanning tree for G including
E’ U {e}. Since T is a spanning tree, it has a path from u to v.
Consequently, the addition of e to E” creates a unique cycle (exercise
22). Since u € V, and v& V, it follows that there is another edge,
e’ = (u’',v") on this cycle such that 4’ € V, and v' € V| (v' may be
v). By assumption, w(e) = w(e"). Deletion of the edge ¢’ from E” U {e}
breaks this cycle and leaves behind a spanning tree T’ that includes
E’ U {e}. But, since w(e) = w(e’), it follows that the weight of T’
is no more than the weight of T. This contradicts the assumption on
T. Hence, there is no such T and the lemma is proved. m]

Theorem 6.1: The algorithm described in figure 6.18 generates a minimum
spanning tree.

Proof: The proof follows from lemma 6.1 and the fact that the algorithm
begins with a spanning forest with no edges and then examines the
edges of G in nondecreasing order of weight. i

6.3 SHORTEST PATHS AND TRANSITIVE CLOSURE

Graphs may be used to represent the highway structure of a state or
country with vertices representing cities and edges representing sections
of highway. The edges may then be assigned weights which might be
either the distance between the two cities connected by the edge or
the average time to drive along that section of highway. A motorist
wishing to drive from city A to city B would be interested in answers
to the following questions:

(i) Is there a path from A to R?

(ii) If there is more than one path from A to B, which is the shortest

path?

The problems defined by (i) and (ii) above are special cases of the
path problems we shall be studying in this section. The length of a
path is now defined to be the sum of the weights of the edges on
that path rather than the number of edges. The starting vertex of the
path will be referred to as the source and the last vertex the destination.
The graphs will be digraphs toallow for one way streets. Unless otherwise
stated, we shall assume that all weights are positive.

Single Source All Destinations

In this problem we are given a directed graph G = (V,E), a weighting
function w(e) for the edges of G and a source vertex v,. The problem
is to determine the shortest paths from v, to all the remaining vertices

302 Graphs

of G. It is assumed that all the weights are positive. As an example, con-
sider the directed graph of figure 6.19(a). The numbers on the edges
are the weights. If v is the source vertex, then the shortest path from
v,to v, is v, v, v5 v,. The length of this path is 10 + 15 + 20 = 45.
Even though there are three edges on this path, it is shorter than the
path v v, which is of length 50. There is no path from v, to v,.
Figure 6.19(b) lists the shortest paths from v, to v,, v,, v, and v,.
The paths have been listed in nondecreasing order of path length. If

Path Length
1) VoV, 10
2) Vo Vy Vy 25
3) Vo Vy V3 vy 45
4) Vo Vg 45
@ (b)

Figure 6.19 Graph and Shortest Paths from v, to All Destinations.

we attempt to devise an algorithm which generates the shortest paths
in this order, then we can make several observations. Let S denote
the set of vertices (including v,) to which the shortest paths have already
been found. For w not in S, let DIST (w) be the length of the shortest
path starting from v, going through only those vertices which are in
S and ending at w. We observe that:

(i) If the next shortest path is to vertex u, then the path begins at
v,, ends at u and goes through only those vertices which are in S.
To prove this we must show that all of the intermediate vertices on
the shortest path to u must be in S. Assume there is a vertex w on
this path that is not in S. Then, the v, to u path also contains a path
from v to w which is of length less than the v to u path. By assumption
the shortest paths are being generated in nondecreasing order of path
length, and so the shorter path v, to w must already have been generated.
Hence, there can be no intermediate vertex which is not in S.

(ii) The destination of the next path generated must be that vertex
u which has the minimum distance, DIST(u), among all vertices not
in S. This follows from the definition of DIST and observation (i).

Shortest Paths and Transitive Closure 303

In case there are several vertices not in S with the same DIST, then
any of these may be selected.

(iii) Having selected a vertex u as in (ii) and generated the shortest
v, to u path, vertex u becomes a member of S. At this point the length
of the shortest paths starting at v,, going through vertices only in S
and ending at a vertex w not in S may decrease. I.e., the value of
DIST(w) may change. If it does change, then it must be due to a
shorter path starting at v, going to u and then to w. The intermediate
vertices on the v, to u path and the u to w path must all be in S.
Further, the v, to u path must be the shortest such path, otherwise
DIST (w) is not defined properly. Also, the u to w path can be chosen
so as to not contain any intermediate vertices. Therefore, we may
conclude that if DIST(w) is to change (i.e., decrease), then it is because
of a path from v, to u to w where the path from v, to u is the shortest
such path and the path from u to w is the edge (u,w). The length
of this path is DIST («) + length ({u,w))).

The algorithm SHORTEST__PATH as first given by Dijkstra, makes
use of these observations to determine the cost of the shortest paths
from v, to all other vertices in G. The actual generation of the paths
is a minor extension of the algorithm and is left as an exercise. It
is assumed that the n vertices of G are numbered 1 through n. The
set S is maintained as a bit array with S(i) = 0 if vertex i is not in
Sand S(@i) = 1if it is. It is assumed that the graph itself is represented
by its cost adjacency matrix with COST(i,j) being the weight of the
edge (i,j). COST(i,j) will be set to some large number, +o, in case
the edge (i,j) is not in E(G). For i = j, COST(i,j) may be set to any
non-negative number without affecting the outcome of the algorithm.

Program on next page
Analysis of Algorithm SHORTEST PATH

From our earlier discussion, it is easy to see that the algorithm works.
The time taken by the algorithm on a graph with n vertices is O(n?).
To see this note that the for loop of line 1 takes O(n) time. The while
loop is executed n — 2 times. Each execution of this loop requires O(n)
time at line 6 to select the next vertex and again at lines 8-10 to update
DIST. So the total time for the while loop is O(n?). In case a list
T of vertices currently not in Sis maintained, then the number of nodes
on this list would at any time be n — num. This would speed up lines
6 and 8-10, but the asymptotic time would remain O(n?). This and

304 Graphs

procedure SHORTEST-PATH (v,COST,DIST,n)

/DIST(j), 1 = j= n is set to the length of the shortest path
from vertex v to vertex jin a digraph G with n vertices. DIST(v)
is set to zero. G is represented by its cost adjacency matrix,
COST(n,n)/
declare S(1: n)
for i< 1 to ndo /initialize set S to empty /

S(i) < 0; DIST (i) < COST (v,i)
end
S(v) < 1; DIST(v) < 0; num <2 /put vertex v in set
S7
while num < n do /determine n — 1 paths from vertex v/
choose u: DIST(u) = Sr(lli)rlo {DIST (w)}

Su) < 1; num < num + 1 /put vertex uin set S/

for all w with S(w) = 0 do /update distances /
DIST(w) < min{DIST (w),DIST (u) + COST(u,w)}

10 end

11 end

12 end SHORTEST-PATH

W N -

O o3 N

other variations of the algorithm are explored in the exercises.

Any shortest path algorithm must examine each edge in the graph
at least once since any of the edges could be in a shortest path. Hence,
the minimum possible time for such an algorithm would be O(e). Since
cost adjacency matrices were used to represent the graph, it takes O(n?)
time just to determine which edges are in G and so any shortest path
algorithm using this representation must take O (n2). For this representa-
tion then, algorithm SHORTEST PATH is optimal to within a constant
factor. Even if a change to adjacency lists is made, only the overall
time for the for loop of lines 8-10 can be brought down to O(e) (since
the DIST can change only for those vertices adjacent from u). The
total time for line 6 remains O(n?).

Example 6.1: Consider the 8 vertex digraph of figure 6.20(a) with cost
adjacency matrix as in 6.20(b). The values of DIST and the vertices
selected at each iteration of the while loop of line 5 for finding all
the shortest paths from Boston are shown in table 6.21. Note that the
algorithm terminates when only seven of the eight vertices are in S.
By the definition of DIST, the distance of the last vertex, in this case

Shortest Paths and Transitive Closure 305
Chi
icago 1500 Bo;ton
San 1200 1000
Francisco gop \Q\ 250
Denver -
300 1000 T ﬁii?ﬁ
|4OQ/ /
I 1700 :
Los Angeles\—\\ 900
New Orleans
Miami
Figure 6.20(a)
1 2 3 4 6 7 8
1 [o 7]
2 300 0
3 1000 800 0
4 1200 0
5 1500 0 250
6 1000 0 900 1400
7 0 1000
8 L”OO 0 _J
Figure 6.20(b) Cost Adjacency Matrix for Figure 6.20(a). All Entries not Shown are
+ 2,
Vertex LA SF D C B NY M NO
Iteration S Selected DIST (1) (2) 3) 4) (5) (6) (©) ()
Initial — +x 43 4+ 1500 0 250 +x 4
1 5 6 +x +x 4= 1250 0 250 1150 1650
2 5,6 7 +x 4+ 4+ 1250 0 250 1150 1650
3 5,6,7 4 +x 42 2450 1250 0 250 1150 1650
4 5,6,7,4 8 3350 +>= 2450 1250 O 250 1150 1650
5 5,6,7,4,8 3 3350 3250 2450 1250 O 250 1150 1650
6 5,6,7483 2 3350 3250 2450 1250 O 250 1150 1650
5,6,7,4,8,3.2

Table 6.21 Action of SHORTEST__PATH

Los Angeles is correct as the shortest path from Boston to Los Angeles

can go through only the remaining six vertices.

0

306 Graphs

All Pairs Shortest Paths

The all pairs shortest path problem calls for finding the shortest paths
between all pairs of vertices v;,v;, i # j. One possible solution to this
is to apply the algorithm SHORTEST _PATH n times, once with each
vertex in V(G) as the source. The total time taken would be O(n?).
For the all pairs problem, we can obtain a conceptually simpler algorithm
which will work even when some edges in G have negative weights
so long as G has no cycles with negative length. The computing time
of this algorithm will still be O(n?®) though the constant factor will
be smaller.

The graph G is represented by its cost adjacency matrix with COST (i,i)
=0 and COST(i,j) = +% in case edge (i,j), i jis not in G. Define
A¥(i,j) to be the cost of the shortest path from i to j going through
no intermediate vertex of index greater than k. Then, A"(i,j) will be
the cost of the shortest i to j path in G since G contains no vertex
with index greater than n. A°(i,j) is just COST(i,j) since the only i
to j paths allowed can have no intermediate vertices on them. The
basic idea in the all pairs algorithm is to successively generate the matrices
A°, A', A%, ... A". If we have already generated A*~!, then we may
generate A* by realizing that for any pair of vertices i,j either (i) the
shortest path from i to j going through no vertex with index greater
than k does not go through the vertex with index k and so its cost
is A*"1(i,j); or (ii) the shortest such path does go through vertex k.
Such a path consists of a path from i to k and another one from k
to j. These paths must be the shortest paths from i to k and from
k to j going through no vertex with index greater than k — 1, and so
their costs are A*"'(i,k) and A*!(k,j). Note that this is true only
if G has no cycle with negative length containing vertex k. If this is
not true, then the shortest i to j path going through no vertices of
index greater than k may make several cycles from k to k and thus
have a length substantially less than A*~! (i,k) + A*~' (k,j) (see example
6.2). Thus, we obtain the following formulas for A*(i,j):

A*(i,j) = min {A*7V(L)), ALK + ALY k=1
and
A°(i,j) = COST(,j).
Example 6.2: Figure 6.22 shows a digraph together with its matrix A°.

For this graph A%(1,3) # min {A'(1,3), A'(1,2) + A'(2,3)} = 2. Instead

i

Shortest Paths and Transitive Closure 307
we see that A%(1,3) = —o as the length of the path
1,2,1,2,1,2, ,1,2,3

can be made arbitrarily small. This is so because of the presence of
the cycle 1 2 1 which has a length of —1. w

-2 0, 1, =
| x, o, 0
Figure 6.22 Graph with Negative Cycle

The algorithm ALL__COSTS computes A~(i,j). The computation is
done in place so the superscript on A is dropped. The reason this
computation can be carried out in place is that A*(i,k) = A*~'(i,k) and
A*(k,j) = A*"1(k,j) and so the in place computation does not alter the
outcome.

procedure ALL__COSTS(COST, A, n)
/ COST(n,n) is the cost adjacency matrix of a graph with n
vertices; A(i,j) is the cost of the shortest path between vertices
Vi, Vj. COST(I,I) = 0, l<ix< n/

1 for i<—1tondo

2 for j<—1tondo

3 A(i,j) <« COST(,j) #copy COST into A/

4 end

h) end

6 for k< 1 to ndo / for a path with highest vertex index k/
7 fori<—1tondo for all possible pairs of vertices /
8 for j<—1to ndo

9 A(i,j) < min {A(L,j),AG,k) + A(k,j)}
10 end
11 end
12 end

13 end ALL__COSTS

This algorithm is especially easy to analyze because the looping is
independent of the data in the matrix A.

308 Graphs

The total time for procedure ALL__COSTS is O(n?). An exercise
examines the extensions needed to actually obtain the (i,j) paths with
these lengths. Some speed up can be obtained by noticing that the
innermost for loop need be executed only when A(i,k) and A(k,j) are
not equal to . '

Example 6.3: Using the graph of figure 6.23(a) we obtain the cost matrix
of figure 6.23(b). The initial A matrix, A’ plus its value after 3 iterations
AV AP AD s given in figure 6.24.)

1 2 3

1 0 4 11

2 6 0 2

3 3 ES 0

(a) G (b) Cost Matrix for G

Figure 6.23 Directed Graph and Its Cost Matrix.

AL |] 2 3 A®M 1 2 3
1 0 4 11 1 0 4 11
2 6 0 2 2 6 0 2
3 3 x 0 3 3 7 0
AD| 2 3 A® 1 2 3
1 0 4 6 1 0 4 6
2 6 0 2 2 5 0 2
3 3 7 0 3 3 7 0

Figure 6.24 Matrices A¥ Produced by ALL__COSTS for the Digraph of Figure 6.23.

Transitive Closure

A problem related to the all pairs shortest path problem is that of
determining for every pair of vertices i,j in G the existence of a path
from i to j. Two cases are of interest, one when all path lengths (i.e.,
the number of edges on the path) are required to be positive and the
other when path lengths are to be nonnegative. If A is the adjacency

Shortest Paths and Transitive Closure 309

matrix of G, then the matrix A* having the property A*(i,j) =1 if
there is a path of length >0 from i to j and 0 otherwise is called the
transitive closure matrix of G. The matrix A* with the property A*(i,j) = 1
if there is a path of length =0 from i and j and 0 otherwise is the
reflexive transitive closure matrix of G.

1 0 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 0

S eve SN P
S 0 0 1 0 0

(a) Digraph G (b) Adjacency Matrix A for G

1 2 3 4 5 1 2 3 4 5

1 0 1 1 1 1 1 1 1 1 1 1
2 0 0 1 1 1 2 0 1 1 1 1
3 0 0 1 1 1 3 0 0 1 1 1
4 0 0 1 1 1 4 0 0 1 1 1
5 0 0 1 1 1 5 0 0 1 1 1

(c) A* (d) A*

Figure 6.25 Graph G and Its Adjacency Matrix A, A* and A*

Figure 6.25shows A* and A* fora digraph. Clearly, the only difference
between A* and A* is in the terms on the diagonal. A*(i,i) = 1 iff
there a cycle of length > 1 containing vertex i while A*(i,i) is always
one as there is a path of length 0 from i to i. If we use algorithm
ALL__COSTS with COST(i,j) = 1if (i,j) is an edge in G and COST(i,})
= +o if (i,j) is not in G, then we can easily obtain A* from the
final matrix A by letting A™* (i,j) = 1iff A (i,j) < +%=. A* canbe obtained
from A™* by setting all diagonal elements equal 1. The total time is
O(n*). Some simplification is achieved by slightly modifying the al-
gorithm. In this modification the computation of line 9 of ALL__COSTS
becomes A(i,j) « A(i,j) or (A(i,k) and A(k,j)) and COST(,j) is just
the adjacency matrix of G. With this modification, A need only be
a bit matrix and then the final matrix A will be A*.

310 Graphs

6.4 ACTIVITY NETWORKS, TOPOLOGICAL SORT
AND CRITICAL PATHS

Topological Sort

All but the simplest of projects can be subdivided into several
subprojects called activities. The successful completion of these activities
will result in the completion of the entire project. A student working
towards a degree in Computer Science will have to complete several
courses successfully. The project in this case is to complete the major,
and the activities are the individual courses that have to be taken. Figure
6.26 lists the courses needed for a computer science major at a hypothetical
university. Some of these courses may be taken independently of others
while other courses have prerequisites and can be taken only if all their
prerequisites have already been taken. The data structures course cannot
be started until certain programming and math courses have been
completed. Thus, prerequisites define precedence relations between the
courses. The relationships defined may be more clearly represented
using a directed graph in which the vertices represent courses and the
directed edges represent prerequisites. This graph has an edge (i,j)
iff course i is a prerequisite for course j.

Definition: A directed graph G in which the vertices represent tasks
or activities and the edges represent precedence relations between tasks
is an activity on vertex network or AOV-network.

Definition: Vertex i in an AOV network G is a predecessor of vertex
jiff there is a directed path from vertex i to vertex j. iis an immediate
predecessor of j iff (i,j) is an edge in G. If iis a predecessor of j,
then j is a successor of i. If i is an immediate predecessor of j, then
jis an immediate successor of i.

Figure 6.26(b) is the AOV-network corresponding to the courses of figure
6.26(a). C3, C4 and C10 are the immediate predecessors of C7. C2,
C3 and C4 are the immediate successors of Cl1. C12 is a succesor of
C4 but not an immediate successor. The precedence relation defined
by the set of edges on the set of vertices is readily seen to be transitive.
(Recall that a relation - is transitive iff it is the case that for all triples
i,j,k, i-j and j-k=i-k.) In order for an AOV-network to represent
a feasible project, the precedence relation should also be irreflexive.

Activity Networks, Topological Sort and Critical Paths n

Course Number Course Name Prerequisites
C1 Introduction to Programming None
C2 Numerical Analysis Cl1,Cl4
C3 Data Structures C1,Cl4
C4 Assembly Language C1,C13
Cs Automata Theory C15
(&) Artificial Intelligence C3
Cc7 Computer Graphics C3,C4, Cl10
C8 Machine Arithmetic C4
(o] Analysis of Algorithms C3
C10 Higher Level Languages C3,C4
C11 Compiler Writing C10
C12 Operating Systems C11
C13 Analytic Geometry and Calculus 1 None
Cl4 Analytic Geometry and Calculus 11 c13
C15 Linear Algebra Cl4

(a) Courses Needed for a Computer Science Degree at Some Hypothetical University

(b) AOV-Network Representing Courses as Vertices and Prerequisites as Edges
Figure 6.26 An Activity on Vertex Network
Definition: A relation - is irreflexive on a set S if for no element x in

S it is the case that x-x. A precedence relation which is both transitive and
irreflexive is a partial order.

If the precedence relation is not irreflexive, then there is an activity
which is a predecessor of itself and so must be completed before it

312 Graphs

can be started. This is clearly impossible. When there are no inconsisten-
cies of this type, the project is feasible. Given an AOV network one
of our concerns would be to determine whether or not the precedence
relation defined by its edges is irreflexive. This is identical to determining
whether or not the network contains any directed cycles. A directed
graph with no directed cycles is an acyclic graph. Our algorithm to
test an AOV-network for feasibility will also generate a linear ordering,
Vi Viy .- V;,, Of the vertices (activities). This linear ordering will have
the property that if i is a predecessor of j in the network then i precedes
j in the linear ordering. A linear ordering with this property is called
a topological order. For the network of figure 6.26(b) two of the possible
topological orders are: C1, C13, C4, C8, C14, C15, C5, C2, C3, C10,
C7, Cl11, C12, C6, C9 and C13, Cl4, CI15, C5, C1, C4, C8, C2, C3,
C10, C7, C6, C9, C11, C12. If a student were taking just one course
per term, then he would have to take them in topological order. If
the AOV-network represented the different tasks involved in assembling
an automobile, then these tasks would be carried out in topological
order on an assembly line. The algorithm to sort the tasks into topological
order is straightforward and proceeds by listing out a vertex in the
network that has no predecessor. Then, this vertex together with all
edges leading out from it are deleted from the network. These two
steps are repeated until either all vertices have been listed or all remaining
vertices in the network have predecessors and so none can be performed.
In this case there is a cycle in the network and the project is infeasible.
Figure 6.27 is a crude form of the algorithm.

input the AOV-network. Let n be the number of vertices.
1 fori<1tondo Joutput the vertices /

2 if every vertex has a predecessor

then [the network has a cycle and is infeasible. stop]
3 pick a vertex v which has no predecessors
4 output v
5 delete v and all edges leading out of v from the network
6 end

Figure 6.27 Design of a Topological Sorting Algorithm

Trying this out on the network of figure 6.28 we see that the first
vertex to be picked in line 2 is v, as it is the only one with no predecessors,
v, and the edges (v,,v,), (v,,v3) and (v,,v,) are deleted. In the
resulting network (figure 6.28(b)), v,, v; and v, have no predecessor.

Activity Networks, Topological Sort and Critical Paths 313

(%)

a) initial “ 9

oy
i
(&)

©

c) v e
(%)

o v (H—(N v,

q) v

)
J
© ©

Topological order generated: v,, v,, v5, Vg, V,, Vs

Figure 6.28 Action of Algorithm of Figure 6.27 on an AOV Network

Any of these can be the next vertex in the topological order. Assume that v, is
picked. Deletion of v,and the edges (v4, v,)and{v,v;)results in the network
of figure 6.28(c). Either v, or v, may next be picked. Figure 6.28 shows the
progress of the algorithm on the network. In order to obtain a complete
algorithm that can be easily translated into a computer program, it is
necessary to specify the data representation for the AOV-network. The
choice of a data representation, as always, depends on the functions one
wishes to perform. In this problem, the functions are: (i) decide whether a
vertex has any predecessors (line 2), and (ii) delete a vertex together with all

314 Graphs

its incident edges. (i) is efficiently done if for each vertex a count of the
number of its immediate predecessors is kept. (ii) is easily implemented if the
network is represented by its adjacency lists. Then the deletion of all edges
leading out of a vertex v can be carried out by decreasing the predecessor
count of all vertices on its adjacency list. Whenever the count of a vertex
drops to zero, that vertex can be placed onto a list of vertices with a zero
count. Then the selection in line 3 just requires removal of a vertex from this
list. Filling in these details into the algorithm of figure 6.27, we obtain the
SPARKS program TOPOLOGICAL__ORDER.

The algorithm assumes that the network is represented by adjacency
lists. The headnodes of these lists contain two fields: COUNT and
LINK. The COUNT field contains the in-degree of that vertex and
LINK is a pointer to the first node on the adjacency list. Each list
node has 2 fields: VERTEX and LINK. COUNT fields can be easily
set up at the time of input. When edge (i,j) is input, the count of
vertex j is incremented by 1. The list of vertices with zero count is
maintained as a stack. A queue could have been used but a stack is
slightly simpler. The stack is linked through the COUNT field of the
headnodes since this field is of no use after the COUNT has become
zero. Figure 6.29(a) shows the input to the algorithm in the case of
the network of figure 6.28(a).

COUNT LINK VERTEX LINK

v, 0 2 3 41| 0
v, | 5 o

Vi | 5 6 0

A | 6 5 o

Vg 3 o

Ve 2 o

Figure 6.29 Input for Algorithm TOPOLOGICAL__ORDER

Activity Networks, Topological Sort and Critical Paths 315

procedure TOPOLOGICAL__ORDER(COUNT,VERTEX,LINK, n)

/the nvertices of an AOV-network are listed in topological order.

The network is represented as a set of adjacency lists with
COUNT(i) = the in-degree of vertex i/

1 top <0 Vinitialize stack /
2 fori<—1tondo Jcreate a linked stack of vertices with
no predecessors /

3 it COUNT (i) = 0 then [COUNT(i) < top; top < i]

4 end

5 for i< 1to ndo / print the vertices in topological order /
6 it top = 0 then [print (‘network has a cycle’); stop]

7 j < top; top < COUNT (top); print (j) Zunstack a vertex /
8 ptr < LINK (j)

9 while ptr # 0 do

/decrease the count of successor vertices of j/

10 k < VERTEX((ptr) A/ k is a successor of j/
11 COUNT (k) < COUNT(k) — 1 / decrease count/
12 if COUNT (k) =10 /add vertex k to stack /
13 then [COUNT(k) < top; top < k]

14 ptr < LINK (ptr)
15 end

16 end

17 end TOPOLOGICAL__ORDER

As a result of a judicious choice of data structures the algorithm
is very efficient. For a network with n vertices and e edges, the loop
of lines 2-4 takes O(n) time; Lines 6-8 take O(n) time over the entire
algorithm; the while loop takes time O(d;) for each vertex i, where
d; is the out-degree of vertex i. Since this loop is encountered once
for each vertex output, the total time for this part of the algorithm
isO((Zr,d;) + n) = O(e + n). Hence, the asymptotic computing time
of the algorithm is O(e + n). It is linear in the size of the problem!

Critical Paths

An activity network closely related to the AOV-network is the activity
on edge or AOE network. The tasks to be performed on a project
are represented by directed edges. Vertices in the network represent
events. Events signal the completion of certain activities. Activities
represented by edges leaving a vertex cannot be started until the event
at that vertex has occurred. An event occurs only when all activities

316 Graphs

entering it have been completed. Figure 6.30(a) is an AOE network
for a hypothetical project with 11 tasks or activities a,, ...,a,,;. There
are 9 events v,,v,, ...,vy. The events v, and v4 may be interpreted
as ‘‘start project’’ and ‘finish project’ respectively. Figure 6.30(b) gives
interpretations for some of the 9 events. The number associated with
each activity is the time needed to perform that activity. Thus, activity
a, requires 6 days while a,, requires 4 days. Usually, these times are
only estimates. Activities a,, a, and a; may be carried out concurrently

Figure 6.30(a) AOE Network. Activity Graph of a Hypothetical Project.

event interpretation
v, start of project
vy completion of activity a,
Vs completion of activities a, and a;
vy completion of activities ag and a,
vy completion of project

Figure 6.30(b) Interpretation for Some of the Events in the Activity Graph of Figure
6.30(a).

after the start of the project. a,, as; and a4 cannot be started until
events v,, vy and v,, respectively, occur. a, and ag can be carried
out concurrently after the occurrence of event v, (i.e., after a, and
a; have been completed). In case additional ordering constraints are
to be put on the activities, dummy activities whose time is zero may
be introduced. Thus, if we desire that activities a, and ag not start
until both events v, and v, have occurred, a dummy activity a,,
represented by an edge (v¢,vs) may be introduced. Activity networks
of the AOE type have proved very useful in the performance evaluation

Activity Networks, Topological Sort and Critical Paths 317

of several types of projects. This evaluation includes determining such
facts about the project as: what is the least amount of time in which
the project may be completed (assuming there are no cycles in the
network); which activities should be speeded up in order to reduce
completion time; etc. Several sophisticated techniques such as PERT
(performance evaluation and review technique), CPM (critical path
method), RAMPS (resource allocation and multi-project scheduling) have
been developed to evaluate network models of projects. CPM was
originally developed in connection with maintenance and construction
projects. Figure 6.31 shows a network used by the Perinia Corporation
of Boston in 1961 to model the construction of a floor in a multistory
building. PERT was originally designed for use in the development of
the Polaris Missile system.

Since the activities in an AOE network can be carried out in parallel
the minimum time to complete the project is the length of the longest
path from the start vertex to the finish vertex (the length of a path
is the sum of the times of activities on this path). A path of longest
length is a critical path. The path v,,v,,vs,v,,v, is a critical path in
the network of figure 6.30(a). The length of this critical path is 18.
A network may have more than one critical path (the path v,,v,,vs,vg,v,
is also critical). The earliest time an event v, can occur is the length
of the longest path from the start vertex v, to the vertex v;. The earliest
time event vscan occuris7. Theearlist time an event can occur determines
the earliest start time for all activities represented by edges leaving
that vertex. Denote this time by e(i) for activity a,. For example
e(7) = e(8) = 7. For every activity a; we may also define the latest
time, I(i), an activity may start without increasing the project duration
(i.e., length of the longest path from start to finish). In figure 6.30(a)
we have ¢(6) =S and 1(6) = 8, e(8) =7 and [(8) = 7. All activities for
which e(i) = [(i) are called critical activities. The difference I(i) — e(i)
is a measure of the criticality of an activity. It gives the time by which
an activity may be delayed or slowed without increasing the total time
needed to finish the project. If activity a4 is slowed down to take
2 extra days, this will not affect the project finish time. Clearly, all
activities on a critical path are critical and speeding noncritical activities
will not reduce the project duration.

The purpose of critical path analysis is to identify critical activities
so that resources may be concentrated on these activities in an attempt
to reduce project finish time. Speeding a critical activity will not result
in a reduced project length unless that activity is on all critical paths.
In figure 6.30(a) the activity a,, is critical but speeding it up so that

318 Graphs

Plumbing
10 days
l Spray Ceiling
Form Pour Core Strip Curtain walls -Sash glaze fireproof ducts & fixtures Test

START
4days (D 2 days©|4dc|ys ©2days@ 5 days @ 5 days @ 5 days @ 5 days 3d0ys

Insutate wall etc

Risers 5 doys
10 days
Doors Port masor
I doy 2 day
Electrical walls
16 days
Balance of elevator fittings and frames
3 days

Figure 6.31 AOE network for the construction of a typical floor in a multistory building
[Redrawn from Engineering News-Record (McGraw-Hill Book Company,
Inc., January 26, 1961).]

it takes only three days instead of four does not reduce the finish time
to seventeen days. This is so because there is another critical path
V,,V,,Vs,V,,Ve that does not contain this activity. The activities a, and
a, are on all critical paths. Speeding a, by two days reduces the critical
path length to sixteen days. Critical path methods have proved very
valuable in evaluating project performance and identifying bottlenecks.
In fact, it is estimated that without such analysis the Polaris missile
project would have taken seven instead of the five years it actually
took.

Critical path analysis can also be carried out with AOV-networks.
The length of a path would now be the sum of the activity times of
the vertices on that path. For each activity or vertex, we could analogously
define the quantities e(i) and [(i). Since the activity times are only
estimates, it is necessary to re-evaluate the project during several stages
of its completion as more accurate estimates of activity times become
available. These changes in activity times could make previously non-
critical activities critical and vice versa. Before ending our discussion
on activity networks, let us design an algorithm to evaluate e(i) and
I(i) for all activities in an AOE-network. Once these quantities are
known, then the critical activities may be easily identified. Deleting
all noncritical activities from the AOE network, all critical paths may
be found by just generating all paths from the start to finish vertex
(all such paths will include only critical activities and so must be critical,
and since no noncritical activity can be on a critical path, the network
with noncritical activities removed contains all critical paths present
in the original network).

Activity Networks, Topological Sort and Critical Paths 319

@FOOr finish
! 5 days
Insulate Lath Plaster ({8)Tiling _ yPaint (part) Finish paint Caulking &

@mechcmiccll @3 days@S days i3 days 5 days @ @clean up @FINISH
3 days

i 4 days
Marble_ ¢ Acoustic_|y Finish

work @ tiles mechcmiccll
3days 5 days 5 days

/' Finish masonry

®

’

Figure 6.31 (continued)

In obtaining the e(i) and I(i) for the activities of an AOE network,
it is easier to first obtain the earliest event occurrence time, ee(j), and
latest event occurrence time, le(j), for all events, j, in the network.
Then if activity a; is represented by edge (k,l), we can compute e(i)
and [(i) from the formulas:

e(i) = ee(k)
and o 6.1)
1(i) le(l) — duration of activity a;

The times ee(j) and le(j) are computed in two stages: a forward stage
and a backward stage. During the forward stage we start with ee(1) =0
and compute the remaining early start times, using the formula

ee(j) = max {ee(i) + duration of {(i,j)} (6.2)
i€ P(j)

where P(j) is the set of all vertices adjacent to vertex j. In case this
computation is carried out in topological order, the early start times
of all predecessors of j would have been computed prior to the computation
of ee(j). The algorithm to do this is obtained easily from algorithm
TOPOLOGICAL__ORDER by inserting the step

ee(k) < max {ee(k), ee(j) + DUR (ptr)}

between lines 11 and 12. It is assumed that the array ee is initialized
to zero and that DUR is another field in the adjacency list nodes which

1

320 Graphs

contains the activity duration. This modification results in the evalua-
tion of equation (6.2) in parallel with the generation of a topological
order. ee(j) is updated each time the ee(i) of one of its predecessors is
known (i.e., when iis ready for output). The step print(j) of line 7 may
be omitted. To illustrate the working of the modified TOPOLOGI-
CAL_ORDER algorithm let us try it out on the network of figure
6.30(a). The adjacency lists for the network are shown in figure 6.32(a).
The order of nodes on these lists determines the order in which vertices
will be considered by the algorithm. At the outset the early start time
for all vertices is 0, and the start vertex is the only one in the stack.
When the adjacency list for this vertex is processed, the early start
time of all vertices adjacent from v, is updated. Since vertices 2, 3
and 4 are now in the stack, all their predecessors have been processed
and equation (6.2) evaluated for these three vertices. ee(6) is the next
one determined. When vertex v, is being processed, ee(8) is updated
to 11. This, however, is not the true value for ee(8) since equation
(6.2) has not been evaluated over all predecessors of vy (v has not
yet been considered). This does not matter since vy cannot get stacked
until all its predecessors have been processed. ee(5) is next updated
to 5 and finally to 7. At this point ee(5) has been determined as all
the predecessors of v, have been examined. The values of ee(7) and
ee(8) are next obtained. ee(9) is ultimately determined to be 18, the
length of a critical path. One may readily verify that when a vertex
is put into the stack its early time has been correctly computed. The
insertion of the new statement does not change the asymptotic computing
time; it remains O(e + n).

COUNT LINK VERTEX DUR LINK

0 +—2]6] J—-[3T4] F+[47T5T0]

© @ N s wWN
|
HH

:
f

sl 7] o]

(M
|
H

(a) Adjacency Lists for Figure 6.30(a)

Activity Networks, Topological Sort and Critical Paths 321

ee 4y 2) 3) (€)] (&) 6) (@)) ®8) (&) stack
initial 0o 0 o0 o o o0 0 0 0 |1]
4
output v, 0 6 4 5 0 0 0 0 0 3
2
6
output v, 0 6 4 5 0 7 0 0 0 3
2
output v, 0 6 4 5 0 7 0 n 0 Ii
output v, 0 6 4 5 5 7 0 11 0 L2
output v, 0 6 4 5 7 7 0 11 0 Ls
output v 0 6 4 5 7 7 16 14 0 |_78J
output v o 6 4 5 7 71 16 14 16 |2d
output v, 0 6 4 s 7 7 16 14 18 9]
output v,

(b) Computation of ee

Figure 6.32 Action of Modified Topological Order

In the backward stage the values of le(i) are computed using a procedure
analogous to that used in the forward stage. We start with le(n) = ee(n)

and use the equation

le(f) = min { le(i) — duration of (j,i)} (6.3)
i€S()
where S(j) is the set of vertices adjacent from vertex j. The initial
values for le(i) may be set to ee(n). Basically, equation (6.3) says that
if (j,i) is an activity and the latest start time for event i is le(i), then
event j must occur no later than le(i) — duration of (j,i). Before le(j)
can be computed for some event j, the latest event time for all successor
events (i.e., events adjacent from j) must be computed. These times
can be obtained in a manner identical to the computation of the early

322 Graphs

times by using inverse adjacency lists and inserting the step le(k) < min
{le(k), le(j) — DUR(ptr)} at the same place as before in algorithm
TOPOLOGICAL__ORDER. The COUNT field of a headnode will ini-
tially be the out-degree of the vertex. Figure 6.33 describes the process
on the network of figure 6.30(a). In case the forward stage has already
been carried out and a topological ordering of the vertices obtained,
then the values of le(i) can be computed directly, using equation (6.3),
by performing the computations in the reverse topological order. The
topological order generated in figure 6.32(b) is v,,v,, Vg, V3, V,, Vs, Vg,
v,,Ve. We may compute the values of le(i) in the order 9,7,8,5,2,3,6,4,1
as all successors of an event precede that event in this order. In practice,
one would usually compute both ee and le. The procedure would then
be to compute ee first using algorithm TOPOLOGICAL__ORDER modi-
fied as discussed for the forward stage and to then compute le directly
from equation (6.3) in reverse topological order.

Using the values of ee (figure 6.32) and of le (figure 6.33) and equation
6.1) we may compute the early and late times e(i) and (i) and the
degree of criticality of each task. Figure 6.34 gives the values. The
critical activities are a,,a,,a,.d4,a,, and a,,;. Deleting all noncritical
activities from the network we get the directed graph of figure 6.35.
All paths from v, to v, in this graph are critical paths and there are
no critical paths in the orginal network that are not paths in the graph
of figure 6.35.

As a final remark on activity networks we note that the algorithm
TOPOLOGICAL-ORDER detects only directed cycles in the network.
There may be other flaws, such as vertices not reachable from the

310

© ® NP L obd WP
I

~
|
r

T

[

3]1]0]

| —
o —

s]7] J—+6f4a]o0]
rje] 4—+{s8f4]o]

(a) Inverted Adjacency Lists for AOE-Network of Figure 6.30(a)

i

Activity Networks, Topological Sort and Critical Paths 323

le m @ & @» 6o © O B (9 stack
initial 18 18 18 18 18 18 18 18 18 L9l
output v, 18 18 18 18 18 18 16 14 18 |_§_]
output v, 8 18 18 18 7 10 16 14 18 I_ﬂ
output v, 18 18 18 18 7 10 16 14 18 I ; I
output v, 3 18 18 8 7 10 16 14 18 171
output v, 3 18 18 8 7 10 16 14 18 Ls|
output v, 3 6 6 8 7 10 16 14 18 [_:z;_l
output v, 2 6 6 8 7 10 16 14 18 L2
output v, 0 6 6 8 7 10 16 14 18 [1]

(b) Computation of TOPOLOGICAL-ORDER Modified to Compute Latest Event Times.

le(9) = ee(9) =18

le(7) = min {le(9) — 2} = 16

le(8) = min {le(9) — 4} = 14

le(5) = min{le(7) — 9, le(®) — 7} =7

le(2) = min {le(5) — 1} =6

le(3) = min {le(5) — 1} =6

le(6) = min {le(8) — 4} = 10

le(4) = min {le(6) — 2} =8

le(1) = min {le(2) - 6, le(3) — 4, le(4) — S} = 0

(c) Computation of le Directly from Equation (6.3) Using a Reverse Topological Order.

Figure 6.33
activity 4 { [~e
a, 0 0 0
a, 0 2 2
a, 0 3 3
a, 6 6 0
as 4 6 2
ag 5 8 3
a, 7 7 0
ag 7 7 0
a, 7 10 3
a, 16 16 0
a; 14 14 0

Figure 6.34 Early, Late and Criticality Values

324 Graphs

Figure 6.35 Graph Obtained After Deleting All Noncritical Activities.

a3

Figure 6.36 AOE-Network with Some Non-Reachable Activities.

start vertex (figure 6.36). When a critical path analysis is carried out
on such networks, there will be several vertices with ee(i) = 0. Since
all activity times are assumed > 0 only the start vertex can have ee(i) = 0.
Hence, critical path analysis can also be used to detect this kind of
fault in project planning.

6.5 ENUMERATING ALL PATHS

In section 6.3 we looked at the problem of finding a shortest path between
two vertices. In this section we will be concerned with listing all possible
simple paths between two vertices in order of nondecreasing path length.
Such a listing could be of use, for example, in a situation where we
are interested in obtaining the shortest path that satisfies some complex
set of constraints. One possible solution to such a problem would be
generate in nondecreasing order of path length all paths between the
two vertices. Each path generated could be tested against the other

Enumerating All Paths 325

constraints and the first path satisfying all these constraints would be
the path we were looking for.

Let G=(V,E) be a digraph with n vertices. Let v, be the source
vertex and v, the destination vertex. We shall assume that every edge

has a positive cost. Let p, = r(0), r(1), ..., r(k) be a shortest path
from v, to v,. Le., p, starts at v, = v,, goes to v,,, and then to
Vo2)r s Vo = Vo I Pis the set of all simple v, to v, paths in G,

then it is easy to see that every path in P— {p,} differs from p, in
exactly one of the following k ways:
(1): It contains the edges (r(1), r(2)), ..., (r(k = 1), r(k))
but not (r(0), r(1))
(2): It contains the edges (r(2), r(3)), ..., (r(tk = 1), r(k))
but not (r(1), r(2))

(k): It does not contain the edge (r(k — 1), r(k)).
More compactly, for every path p in P— {p,} there is exactly one
j, 1 = j= k such that p contains the edges

r(), rG+ 1), ..., (rtk = 1), r(k)) butnot (r(j — 1), r(j)).

The set of paths P— {p,} may be partitioned into k disjoint sets
PY ., P® with set PP containing all paths in P— {p,} satisfying
condition j above, 1 =j= k.

Let p® be a shortest path in P and let q be the shortest path
from v, to v, in the digraph obtained by deleting from G the edges
(r(G — D, r(),(r(),r(+ 1)), ...,(r(k — 1),r(k)). Then one readily obtains
p? =gq, r(j), r(j+ 1), ...,r(k) = n. Let p» have the minimum length
among p'”, ...,p®. Then, p" also has the least length amongst all
paths in P — {p,} and hence must be a second shortest path. The set
P® — {p®} may now be partitioned into disjoint subsets using a criterion
identical to that used to partition P— {p,}. If p™® has k' edges, then
this partitioning results in k' disjoint subsets. We next determine the
shortest paths in each of these k' subsets. Consider the set Q which
is the union of these k' shortest paths and the paths p‘P, ...,p¢~— 1,
...,p® . The path with minimum length in Q is a third shortest path
ps. The corresponding set may be further partitioned. In this way we
may successively generate the v, to v, paths in nondecreasing order
of path length.

At this point, an example would be instructive. Figure 6.38 shows
the generation of the v, to v, paths of the graph of figure 6.37.

A very informal version of the algorithm appears as the procedure
M__SHORTEST.

326 Graphs

procedure M__SHORTEST(M)

/ Given a digraph G with positive edge weights this procedure outputs
the M shortest paths from v, to v,. Q contains tuples of the
form (p,C) where p is a shortest path in G satisfying constraints
C. These constraints either require certain edges to be included
or excluded from the path/

1 Q < {(shortest v, to v, path, d)}

2 for i< 1 to Mdo / generate M shortest paths /
3 let (p,C) be the tuple in Q such that path p is of minimal length.
/p is the i'th shortest path /

4 print path p; delete path p from Q

5 determine the shortest paths in G under the constraints C and
the additional constraints imposed by the partitioning described
in the text

6 add these shortest paths together with their constraints to Q

7 end

8 end M__SHORTEST

Since the number of v, to v, paths in a digraph with n vertices ranges
from 0 to (n— 1)}, a worst case analysis of the computing time of
M__SHORTEST is not very meaningful. Instead, we shall determine
the time taken to generate the first m shortest paths. Line 5 of the for
loop may require determining n — 1 shortest paths in a n vertex graph.
Using a modified version of algorithm SHORTEST__PATH this would
take O(n?) for each iteration of the for loop. The total contribution
of line 5 is therefore O(mn3). In the next chapter, when we study
heap sort, we shall see that it is possible to maintain Q as a heap
with the result that the total contribution of lines 3 and 6 is less than
O(mn®). The total time to generate the m shortest paths is, therefore,
O(mn?). The space needed is determined by the number of tuples in

Figure 6.37 A Graph

Enumerating All Paths 327

Shortest
Path Cost Included Edges Excluded Edges New Path

v V3VsVg 8 none none
none (vsvg) ViViV,Ve =9
(vsve) (v4vs) ViV,VsVe = 12
(V3vs)vsvg) (v,v3) ViV,VaVsVe = 14

I A 9 none (vsvg)
none (VaVedVsve) %
(V4ve) (Vv)(Vsvg) ViVoVave = 13
(v,)(v,ve) (v v3)(vsvg) ViVavaV,ve =15

ViVyVsVe 12 (vgvg) (v3vs)
(Vsvg) (Vv (vyvs) ViV3V,VsVe = 16
(vvs)(vsve) (Vv)(v3vs) %

ViVaV,aVe 13 (vyv) (V3v) (vsve)
(v4ve) (V2v4)(v3v4)(v5V6) @
(Vv v, ve) (Vv)vsve)

ViVaVaVsVe 14 (v3vs)(vsve) (vyvs)
(v3vs)vsve) (vav3)(vyv3) @
(avs)v3vs)(vsvg) (Vyvy)(vsve)

Va3V, Ve 15 (v3v,)(v,vg) (AR AN
(V3)(vyve) (V2V3)(V1V3)(V5V6) @
(VZVJ)(ngs)(stg) (VIVZ)(VIVJ)(sté) oo

VyV3VaVsVe 16 (vsvg) (Vovs)(vsvs)
(vsve) (VaVs)(vavs)Avyvs) ®
(v,vs)(vsve) V3V)(vyvs)(vyvs) ViVaVaVsVe =20
(v)V vsd(vsve) (Vv (v, v)(vyvy) V VY3V, VsV = 22

Figure 6.38 Action of M__SHORTEST

Q. Since at most n — 1 shortest paths are generated at each iteration
of line S, at most O(mn) tuples get onto Q. Each path has at most
O(n) edges and the additional constraints take less space than this.
Hence, the total space requirements are O(mn?).

REFERENCES AND SELECTED READINGS

Eulers original paper on the Koenigsberg bridge problem makes interesting
reading. This paper has been reprinted in:

“‘Leonhard Euler and the Koenigsberg Bridges,”” Scientific American, vol. 189,
no. 1, July 1953, pp. 66-70.

Good general references for this chapter are:
Graph Theory by F. Harary, Addison-Wesley, Reading, Massachusetts, 1972.
The theory of graphs and its applications by C. Berge, John Wiley, 1962.

328 Graphs

Further algorithms on graphs may be found in:

The design and analysis of computer algorithms by A. Aho, J. Hopcroft and
J. Ullman, Addison-Wesley, Reading, Massachusetts, 1974.

Graph theory with applications to engineering and computer science by N. Deo,
Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

Combinatorial Optimization by E. Lawler, Holt, Reinhart and Winston, 1976.

“‘Depth-first search and linear graph algorithms’’> by R. Tarjan, SIAM Journal
on Computing, vol. 1, no. 2, 1972, pp. 146-159.

Flows in Networks by L. Ford and D. Fulkerson, Princeton University Press,
1962.
4

Integer Programming and Network Flows by T. C. Hu, Addison-Wesley, Reading,
Massachusetts, 1970.

For more on activity networks and critical path analysis see:

Project Management with CPM and PERT by Moder and C. Phillips, Van Nostrand
Reinhold Co., 1970.

EXERCISES

1. Does the multigraph below have an Eulerian walk? If so, find one.

()
5

2. For the digraph at the top of page 329 obtain:
i) the in degree and out degree of each vertex;
ii) its adjacency matrix;
iii) its adjacency list representation;
iv) its adjacency multilist representation;
v) its strongly connected components

3. Devise a suitable representation for graphs so they can be stored on punched
cards. Write an algorithm which reads in such a graph and creates its
adjacency matrix. Write another algorithm which creates the adjacency
lists from those input cards.

Exercises 329

4. Draw the complete undirected graphs on one, two, three, four and five
vertices. Prove that the number of edges in a n vertex complete graph
isn(n-1/2.

5. Is the directed graph below strongly connected? List all the simple paths.

(1 @

@ _3

6. Show how the graph above would look if represented by its adjacency
matrix, adjacency lists, adjacency multilist.

7. For an undirected graph G with n vertices and e edges show that 27 d; = 2e
where d; = degree of vertex i.

8. (a) Let G be a connected undirected graph on n vertices. Show that G
must have at least n — 1 edges and that all connected undirected graphs
with n — | edges are trees.

(b) What is the minimum number of edges in a strongly connected
digraph on n vertices? What shape do such digraphs have?

9. For an undirected graph G with n vertices prove that the following are

equivalent:

(a) Gis atree;

(b) G is connected, but if any edge is removed the resulting graph is not
connected;

(¢) For any distinct vertices u € V(G) and v € V(G) there is exactly
one simple path from u to v;

(d) G contains no cycles and has n — 1 edges;

(e) G is connected and has n — 1 edges.

10. A bipartite graph G = (V,E) is an undirected graph whose vertices can

330

11.

12.

13.

14.

15.

16.

17.

Graphs

be partitioned into two disjoint sets V,and V, = V —~ V, with the properties
(i) no two vertices in V, are adjacent in G and (ii) no two vertices in
Vv, are adjacent in G. The graph G, of figure 6.5 is bipartite. A possible
partitioning of Vis: V| = {1,4,5,7} and V, = {2,3,6,8}. Write an algorithm
to determine whether a graph G is bipartite. In case G is bipartite your
algorithm should obtain a partitioning of the vertices into two disjoint
sets V, and V), satisfying properties (i) and (ii) above. Show that if G
is represented by its adjacency lists, then this algorithm can be made to
work in time O(n + ¢) where n = |V| and e = |E|.

Show that every tree is a bipartite graph.
Prove that a graph G is bipartite iff it contains no cycles of odd length.

The following algorithm was obtained by Stephen Bernard to find an Eulerian
circuit in an undirected graph in case there was such a circuit.

procedure EULER (v)
path < {}
for all vertices w adjacent to v and edge (v,w) not yet used do
mark edge (v,w) as used
path < {{(v,w)} U EULER(w) U path
end
return (path)
end EULER

NN R W N —

a) Show that if G is represented by its adjacency muitilists and path by
a linked list, then algorithm EULER works in time O(n + e).

b) Prove by induction on the number of edges in G that the above algorithm
does obtain an Euler circuit for all graphs G having such a circuit.
The initial call to Euler can be made with any vertex v.

¢) At termination, what has to be done to determine whether or not G
has an Euler circuit?

Apply depth first and breadth first search to the complete graph on four
vertices. List the vertices in the order they would be visited.

Show how to modify algorithm DFS as it is used in COMP to produce
a list of all newly visited vertices.

Prove that when algorithm DFS is applied to a connected graph the edges
of T form a tree.

Prove that when algorithm BFS is applied to a connected graph the edges
of T form a tree.

18.

19.

20.

21.

22,

23.

24,

Exercises 331

Show that A* = A* X A where matrix multiplication of the two matrices
is defined as aj = V[_ a} ra,. V is the logical or operation and A is
the logical and operation.

Obtain the matrices A~ and A* for the digraph of exercise 5.

Another way to represent a graph is by its incidence matrix, INC. There
is one row for each vertex and one column for each edge. Then INC(,j) = |
if edge j is incident to vertex i. The incidence matrix for the graph of
figure 6.13(a) is:

1 2 3 4 5 6 7 8 9 10
1 —l 1 0 0 0 0 0 0 0 0-
2 1 0 1 1 0 0 0 0 0 0
3 0 1 0 0 1 I 0 0 0 0
4 0 0 1 0 0 0 1 0 0 0
5 0 0 0 1 0 0 0 1 0 0
6 0 0 0 0 1 0 0 0 1 0
7 0 0 0 0 0 1 0 0 0 1
8 | 0 0 0 0 0 1 1 1 1_]

The edges of figure 6.13(a) have been numbered from left to right, top
to bottom. Rewrite algorithm DFS so it works on a graph represented
by its incidence matrix.

If ADJ is the adjacency matrix of a graph G = (V,E) and INC is the
incidence matrix, under what conditions will ADJ = INC x INCT -1
where INCT is the transpose of matrix INC. Matrix multiplication is defined
as in exercise 18. I is the identity matrix.

Show that if T is a spanning tree for the undirected graph G, then the
addition of an edge ¢, e& E(T) and e € E(G), to T creates a unique
cycle.

By considering the complete graph with n vertices, show that the number
of spanning trees is at least 271 — 1.

The radius of a tree is the maximum distance from the root to a leaf.
Givenaconnected, undirected graph write an algorithm for finding a spanning
tree of minimum radius. (Hint: use breadth first search.) Prove that your
algorithm is correct.

332

25.

26.

27.

28.

29.

30.

31.

Graphs

The diameter of a tree is the maximum distance between any two vertices.
Given aconnected, undirected graph write an algorithm for finding a spanning
tree of minimum diameter. Prove the correctness of your algorithm.

Write out Kruskal’s minimum spanning tree algorithm (figure 6.18) as a
complete SPARKS program. You may use as subroutines the algorithms
UNION and FIND of Chapter 5. Use algorithm SORT to sort the edges
into nondecreasing order by weight.

Using the idea of algorithm SHORTEST__PATH, give an algorithm for
finding a minimum spanning tree whose worst case time is O(n?).

Use algorithm SHORTEST__PATH to obtain in nondecreasing order the
lengths of the shortest paths from vertex 1 to all remaining vertices in
the digraph:

Rewrite algorithm SHORTEST__PATH under the following assumptions:

(i) G is represented by its adjacency lists. The head nodes are HEAD(1),
...HEAD(n) and each list node has three fields: VERTEX, COST,
and LINK. COST is the length of the corresponding edge and n the
number of vertices in G.

(ii) Instead of representing S, the set of vertices to which the shortest
paths have already been found, the set T= V(G) — S is represented
using a linked list.

What can you say about the computing time of your new algorithm relative

to that of SHORTEST__PATH?

Modify algorithm SHORTEST__PATH so that it obtains the shortest paths
in addition to the lengths of these paths. What is the computing time
of your algorithm?

Using the directed graph below, explain why SHORTEST_PATH will
not work properly. What is the shortest path between vertices v, and

v, ?

3.

33.

34.

3s.

36.

Exercises 333

Modify algorithm ALL__COSTS so that it obtains a shortest path for
all pairs of vertices i,j. What is the computing time of your new algorithm?

By considering the complete graph with n vertices show that the maximum
number of paths between two vertices is (n — I)!

Use algorithm ALL__COSTS to obtain the lengths of the shortest paths
between all pairs of vertices in the graph of exercise 31. Does ALL__COSTS
give the right answers? Why?

Does the following set of precedence relations (<) define a partial order
on the elements | thru 57 Why?

1 <2, 2<4; 2<3; 3<4; 3<5; 5«1

a) For the AOE network below obtain the early, e(), and late I(), start
times for each activity. Use the forward-backward approach.

b) What is the earliest time the project can finish?

¢) Which activities are critical?

d) Is there any single activity whose speed up would result in a reduction
of the project length?

37.

Define a critical AOE-network to be an AOE-network in which all activities
are critical. Let G be the undirected graph obtained by removing the
directions and weights from the edges of the network.

334

38.

39.

Graphs

a) Show that the project length can be decreased by speeding exactly
one activity if there is an edge in G which lies on every path from
the start vertex to the finish vertex. Such an edge is called a bridge.
Deletion of a bridge from a connected graph disconnects the graph
into two connected components.

b) Write an O(n + e) algorithm using adjacency lists to determine whether
the connected graph G has a bridge. In case G has a bridge, your
algorithm should output one such bridge.

Write a set of computer programs for manipulating graphs. Such a collection
should allow input and input of arbitrary graphs, determining connected
components and spanning trees. The capability of attaching weights to
the edges should also be provided.

Make sure you can define the following terms.

adjacent(v) connected(v prVa)
adjacent-to(v) connected(G)
adjacent-from(v) connected component
degree(v) strongly connected
in-degree(v) tree

out-degree(v) network

path spanning tree

simple path

cycle

subgraph

Chapter 7

INTERNAL SORTING

7.1 SEARCHING

A file is a collection of records, each record having one or more fields.
The fields used to distinguish among the records are known as keys.
Since the same file may be used for several different applications, the
key fields for record identification will depend on the particular applica-
tion. For instance, we may regard a telephone directory as a file, each
record having three fields: name, address, and phone number. The key
is usually the person’s name. However, one may wish to locate the
record corresponding to a given number, in which case the phone number
field would be the key. In yet another application one may desire the
phone number at a particular address, so this field too could be the
key. Once we have a collection of records there are at least two ways
in which to store them: sequentially or non-sequentially. For the time
being let us assume we have a sequential file F and we wish to retrieve
a record with a certain key value K. If F has n records with K; the
key value for record R;, then one may carry out the retrieval by examining
the key values K, ,K,_;, ...,K, in that order, until the correct record
is located. Such a search is known as sequential search since the records
are examined sequentially.

procedure SEQSRCH (F,n,i,K)
/Search a file F with key values K, ...,K, for a record R; such
that K; = K. If there is no such record, i is set to 0/
Ko< K;i<n
while K; # K do
i—i—-1
end
end SEQSRCH

335

336 Internal Sorting

Note that the introduction of the dummy record R, with key K,
= K simplifies the search by eliminating the need for an end of file
test (i < I) in the while loop. While this might appear to be a minor
improvement, it actually reduces the running time by 50% for large
n (see table 7.1). If no record in the file has key value K, then i =0,
and the above algorithm requires n + 1 comparisons. The number of
key comparisons made in case of a successful search, depends on the
position of the key in the file. If all keys are distinct and key K, is
being searched for, then n — i + 1 key comparisons are made. The
average number of comparisons for a successful search is, therefore,
2ici=n(n =i+ 1)/n=(n+ 1)/2. For large n this many comparisons
is very inefficient. However, we all know that it is possible to do much
better when looking up phone numbers. What enables us to make an
efficient search? The fact that the entries in the file (i.e., the telephone
directory) are in lexicographic order (on the name key) is what enables
one to look up a number while examining only a very few entries in
the file. So, if the file is ordered one should be able to search for
specific records quickly.

One of the better known methods for searching an ordered sequential
file is called binary search. Inthis method, the search begins by examining
the record in the middle of the file rather than the one at one of the
ends as in sequential search. Let us assume that the file being searched
is ordered by nondecreasing values of the key (i.e., in alphabetical order
for strings) Then, based on the results of the comparison with the middle
key, K,,, one can draw one of the following conclusions:

(i) if K< K,, then if the record being searched for is in the file,

it must be in the lower numbered half of the file;

(i) if K = K,, then the middle record is the one being searched for;

(iii) if K > K,, then if the record being searched for is in the file,

it must be in the higher numbered half of the file.

Consequently, after each comparison either the search terminates suc-
cessfully or the size of the file remaining to be searched is about one
half of the original size (note that in the case of sequential search,
after each comparison the size of the file remaining to be searched
decreases by only 1). So after k key comparisons the file remaining
to be examined is of size at most [n/2*1 (n is the number of records).
Hence, in the worst case, this method requires O(log n) key comparisons
to search a file. Algorithm BINSRCH implements the scheme just
outlined.

Searching 337

procedure BINSRCH(F,n,i,K)

/Search an ordered sequential file F with records R,, ...,R, and
the keys K, = K, = --- = K, for a record R, such that K, = K;
i=0 if there is no such record else K, = K. Throughout the
algorithm, [is the smallest index such that K, may be K and u
the largest index such that K, may be K/
l—1l,uen
while | = u do

m< [(I+u)/2] #compute index of middle record /
case
K>K,:l—m+1 / look in upper half /
:K = K,,: i < m; return
K<K,:u<m-1 /look in lower half /
end
end

i<0 #no record with key K/
end BINSRCH

In the binary search method described above, it is always the key
in the middle of the subfile currently being examined that is used for
comparison. This splitting process can be described by drawing a binary
decision tree in which the value of a node is the index of the key
being tested. Suppose there are 31 records, then the first key tested
is K¢ since [(1 +31)/2] = 16. If K s less than K ¢, then Kj is tested
next [(1 + 15)/2] = 8; or if K is greater than K, then K., is tested.
The binary tree describing this process is

338 Internal Sorting

A path from the root to any node in the tree represents a sequence
of comparisons made by BINSRCH to either find K or determine that
it is not present. From the depth of this tree one can easily see that
the algorithm makes no more than O(log, n) comparisons.

It is possible to consider other criteria than equal splitting for dividing
the remaining file. An alternate method is Fibonacci search, which splits
the subfile according to the Fibonacci sequence,

0,1,1,2,3,5,8, 13,21, 34, ...
which is defined as F, = 0, F, = | and
F.=F_ +F_,i=2

An advantage of Fibonacci search is that it involves only addition and

subtraction rather than the division in BINSRCH. So its average perfor-

mance is better than that of binary search on computers for which division
takes sufficiently more time than addition/subtraction.

Suppose we begin by assuming that the number of records is one
less than some Fibonacci number, n = F, — 1. Then, the first comparison
of key K is made with K, with the following outcomes:

(i) K < Kp,_, in which case the subfile from | to F, , — | is searched
and this file has one less than a Fibonacci number of records;

(i) K = Kp, , in which case the search terminates successfully;

(iii) K> K, , in which case the subfile from F, , + 1 to F,~ 1 is
searched and the size of this file is F, — 1 — (F,_; + 1) + 1
=F,-F_,-1=F_,—- 1L

Again it is helpful to think of this process as a binary decision tree;

the resulting tree for n = 33 is given on page 340.

This tree is an example of a Fibonacci tree. Such a tree has n = F, — 1
nodes, and its left and right subtrees are also Fibonacci trees with F,_,
— 1 and F,_, — | nodes respectively. The values in the nodes show
how the file will be broken up during the searching process. Note how
the values of the children differ from the parent by the same amount.
Moreover, this difference is a Fibonacci number. If we look at a
grandparent, parent and two children where the parent is a left child,
theniif the difference from grandparent to parent is F;, the next difference
is F;_;. If instead the parent is a right child then the next difference
is F;_,.
The following algorithm implements this Fibonacci splitting idea.

Searching 339

procedure FIBSRCH (G,n,i,K)

/ search a sequential file G with keys ordered in nondecreasing order,
for a record R; with key K, = K. Assume that F, + m=n+ 1,
m=0and F,,, > n+ 1. nis the number of records in G. F,
and F, ., are consecutive Fibonacci numbers. If K is not present,
iis set to zero./

i—F, .p<—F, _,;q< F,_;

if K > K, then [/set i so that size of the right subfile is F, _, /

i—i+m]

while | # 0 do
case
K< K;if g=0then <0

else [i—i-q;t—p;pe—q q<it—q]
:K = K;: return
:K>K;if p=1theni<0

else [i<—i+q,p—p—q;q<—q—p]
end

end

end FIBSRCH

Getting back to our example of the telephone directory, we notice
that neither of the two ordered search methods suggested above corre-
sponds to the one actually employed by humans in searching the directory.
If we are looking for a name beginning with W, we start the search
towards the end of the directory rather than at the middle. A search
method based on this interpolation search would then begin by comparing
key K; with i = —I—<K—II<<'— n (K,, K, are the values of the smallest

u]
and largest keys in the file). The behavior of such an algorithm will
clearly depend on the distribution of the keys in the file.

The four search procedures sequential, binary, Fibonacci and in-
terpolation search were programmed in Fortran and their performance
evaluated on a Cyber 74 computer. The results of this evaluation are
presented in table 7.1. Since the input for the last three algorithms
is a sorted file, algorithm SEQSRCH was modified to take advantage
of this. This was achieved by changing the conditional in the while
statement from K;# K to K; > K and introducing an additional test

340

Internal Sorting

DAD

@ O ®E

=33

Fibonacci search with n

Searching 341

after the end of the while to determine whether K, = K. The inferior
sequential method referred to in the table differs from the SEQSRCH
just described in that the line K, <« K is not included and a test for
i < 1is made in the while loop. As the table indicates, inferior sequential
search takes almost twice as much time as normal sequential search.
For average behavior, binary search is better than sequential search
for n > 15, while for worst case behavior binary search is better than
a sequential search for n> 4,

As can be seen, Fibonacci search always performed worse than binary
search. The performance of interpolation search is highly dependent on
key value distribution. Its performance is best on uniform distributions.
Its average behavior on uniform distributions was better than that for
binary search for n = 500.

We have seen that as far as the searching problem is concerned,
something is to be gained by maintaining the file in an ordered manner
if the file is to be searched repeatedly. Let us now look at another
example where the use of ordered files greatly reduces the computational
effort. The problem we are now concerned with is that of comparing
two files of records containing data which is essentially the same data
but has been obtained from two different sources. We are concerned
with verifying that the two files contain the same data. Such a problem
could arise, for instance, in the case of the U.S. Internal Revenue Service
which might receive millions of forms from various employers stating
how much they paid their employees and then another set of forms
from individual employees stating how much they received. So we have
two files of records, and we wish to verify that there is no discrepancy
between the information on the files. Since the forms arrive at the
IRS in essentially a random order, we may assume a random arrangement
of the records in the files. The key here would probably be the social
security numbers. Let the records in the two files, F and F be
(R,,R,,....R,) and (R,,R,, ...,R,,). The corresponding keys are K,
l=<i=<n, and K;, 1 =i=< m. Let us make the following assumptions
about the required verification: (i) if corresponding to a key K, in the
employer file there is no record in the employee file a message is to
be sent to the employee; (ii) if the reverse is true, then a message
is to be sent to the employer; and (iii) if there is a discrepancy between
two records with the same key a message to that effect is to be output.

If one proceeded to carry out the verification directly, one would
probably end up with an algorithm similar to VERIFY1.

(ons] [[epuey Aq patedord 9[qe]) "SPUODISI[[IU Ul 38 SIW) [[V "SPOYIAW YDIeds JUIIOFIp 10J sowWl) dFeloAe pue ased ISIoM 'L Aqel

SuiSeloar pue 90UO A2y yoed JoJ Surydleds Aq paurejqo sawn a3erday (q)

(88 1v09 |osT|1ct|evl | —)} —f — —te60 | — | —| — | — ||~ — | — | — fenuauodxy
S =)
7] wno
)))) 5, e 3
SIp | LST LI 8907 €SO | — | — | — | — (€0 —{ — | —| —||—| —| — | — _mE_oZm. mm
=3 =
S g
01°) 6807 [6L0°| 85O vSO°) — | — | — | —J0sO'} — — | —| —| —| —| — | — o
181 1z1°| 180" £S0°| 9¥0°| 9¥0"| L¥O"| 6¥0°[OV0'| LEO™ | 6€0°| LEO'| 1¥0°| T€O'| T€O™| S€0° | §TO" | 8TO° Yo.1eag 1ooeuoqi
671 | 660°| 890°| Lv0°| TH0*| €40 | THO" | OFO°| OK0"| 8€0" | LEO'| SE0°| €£0° T€O'| 1€0°| 620" | §TO" | STO’ yoresg Areurg
— oL gl 69¢€] 2807 S90° [790" | 850" | #S0°| 6¥0°(9¥0" | €¥0°| 6£0°| LEO| ££0°| 0£0°| LTO" | €C0" [OTO 3 = ° mnoyim (Jorsagur)
yoleag enuanbeg
601|681 L1T'] 950°| T¥0°] OVO'| 1¥0°| O¥O°[8€0°| SE€O°[1€0°] 0€0°| 0£0°| LTO'| 9T0°| €20 | TLO" | 0TO° yoleag [enuanbag
sauin) ased Jsiop (e)
— |1z sb°T| vy | 86€°| SS€7| TeE | 90€] 64T 14T LTT| 10T| 6L1°| TST') LT1'| ¥O1°| 8LO" | 150° yoreag uonejodiaju]
1€7°| 681°| T21°| 060°| 6L0° | 820°| 8L0° [9L0°| €90°{ +90°| €90°| ¥90°| §90°(1S0°| 1S0°| TSO"| LEO" | 6£0° ydg1eag 1oeuoqty
0ST°| L11°] 8L0°]| 950'] ¥S0°| St0°| ¥¥0"| ¥¥0°] €407 SYO°| SYO'| S¥O°| 9¥0°| p£0°| S€0°| S€0°| $£0° | STO yoleag Areutq
— | stLfzoL] 9si| 6117 #11°] 901" [660°| 060°| #80°| 9L0°| 0L0'| €90° SSO°| 8¥0°| 1¥0°| £€0° [920° 3 = % noylim (Jorajur)
4o1ea§ [enuanbog
— | €0'p| Tiv'| 60| €407 6907 990" | T90°| 090°| €SO°[0S0*[LvO°| S¥O°| OVO°[LEOT| €£0°| 6C0°| LTO yo1edg [enuanbag
000§ 0001 001 0OC SI ¥l ¢l Tl I 0l 6 8 L 9 S 14 3 [4 «<u

342

Searching 343

procedure VERIFY I(F,n,F,m)
/compare two unordered files F and F of size n and m respectively.
Output ~
(i) all R;such that there is no R with K, = K,
(ii) all R such that there is no R with K; = K; -
(iii) all R for which there is a R, ‘with K, =K, butR,;# R,/
for i—1to n do
call SEQSRCH (F,m,j,K) // search for j: K K./
it j = O then print (K,, ‘not in F’) /satlsfles output W/
else [if R # R then print (‘discrepancy in’, R,, R, i)
mark R,] /output (iii) /
end
for i< 1 to mdo /output all keys in F not marked /
1fR is unmarked then print(K;, ‘not in F?)
_ / satisfies output (ii) /
else unmark R;
end
end VERIFY1

One may readily verify that the worst case asymptotic computing
time of the above algorithm is O(mn). On the other hand if we first
ordered the two files and then made the comparison it would be possible
to carry out the verification task in time O(t, (n) + t,,,(m) + n + m)
where t . (n) is the time needed to sort a file of n records. As we
shall see, it is possible to sort n records in O(n log n) time, so the
computing time becomes O(max {n log n, m log m}). The algorithm
VERIFY2 achieves this.

Program on next page

We have seen two important uses of sorting: (i) as an aid in searching,
and (ii) as a means for matching entries in files. Sorting also finds
application in the solution of many other more complex problems, e.g.
from operations research and job scheduling. In fact, it is estimated
that over 25% of all computing time is spent on sorting with some
installations spending more than 50% of their computing time sorting
files. Consequently, the problem of sorting has great relevance in the
study of computing. Unfortunately, no one method is the ‘‘best’” for
all initial orderings of the file being sorted. We shall therefore study
several methods, indicating when one is superior to the others.

First let us formally state the problem we are about to consider.

344 Internal Sorting

procedure VERIFY2(F,n,F,m) B
/Same task as VERIFY 1. However this time sort F and F so that
the keys are in increasing order in each file. We assume that the
keys in each file are distinct,/
call SORT(F); call SORT(F)
i—1;j«1
while i = nand j < mdo

case
K, < K;:print (K, ‘not in F’); i i+ 1 /output (i) /
:K; = K;:if R;# R, then print (‘discrepancy in’ K,,K;)
/output (iii) /

~ i—i+1;j—j+1
:K, > K;: print (K; ‘not in F’); j«—j+ 1
/output (i) /
end
end i
if i < n then print (K;, ...,K,,, ‘not in F")
else if j < m then print (K;,K,,, ‘not in F")
end VERIFY?2

We are given a file of records (R,,R,, ...,R,). Each record, R;, has
key value K,. In addition we assume an ordering relation (<) on the
key so that for any two key values x and y either x=y or x <y or
y < x. The ordering relation (<) is assumed to be transitive, i.e., for
any three values x, y and z, x < y and y < z implies x < z. The sorting
problem then is that of finding a permutation, o, suchthat K_;, = K _, >
1 =i=n- 1. The desired ordering is then (R,,,R), ---»Ro(m))-

Note that in the case when the file has several key values that are
identical, the permutation, o, defined above is not unique. We shail
distinguish one permutation, o, from all the others that also order the
file. Let o, be the permutation with the following properties:

(i) Koiy=K sy, I=i=n—1

(i) If i<j and K; = K; in the input file, then R; precedes R; in
the sorted file.
A sorting method generating the permutation o, will be said to be stable.

To begin with we characterize sorting methods into two broad catego-
ries: (i) internal methods, i.e., methods to be used when the file to
be sorted is small enough so that the entire sort can be carried out
in main memory; and (ii) external methods, i.e., methods to be used
on larger files. In this chapter we shall study the following internal
sorting methods:

Insertion Sort 345

a) Insertion sort
b) Quick sort
¢) Merge sort
d) Heap sort
e) Radix sort
External sorting methods will be studied in Chapter 8.

7.2 INSERTION SORT

The basic step in this method is to insert a record R into a sequence
of ordered records, R,,R,, ...,R;, (K, = K,, ..., = K;) in such a way
that the resulting sequence of size i + 1 is also ordered. The algorithm
below accomplishes this insertion. It assumes the existence of an artificial
record R, with key K, = —« (i.e., all keys are = K).

procedure INSERT (R,i)
/Insert record R with key K into the ordered sequence R, ...,R,;
in such a way that the resulting sequence is also ordered on key
K. We assume that R, is a record (maybe a dummy) such that
K=K,/
jei
while K < K, do
/move R; one space up as R is to be inserted left of R;/
R, < Ryjej-1
end
Rj+l <R
end INSERT

Again, note that the use of R enables us to simplify the while loop,
avoiding a test for end of file, i.e., j < 1.

Insertion sort is carried out by beginning with the ordered sequence
R,,R, and then successively inserting the records R,,R;, ... R, into
the sequence. Since each insertion leaves the resultant sequence ordered,
the file with n records can be ordered making n — 1 insertions. The
details are given in algorithm INSORT on the next page.

Analysis of INSERTION SORT

In the worst case algorithm INSERT(R,i) makes i + 1 comparisons
before making the insertion. Hence the computing time for the insertion
is O(i). INSORT invokes procedure INSERT for i = 1,2,n — 1

346 Internal Sorting

procedure INSORT (R,n)
/ sort the records R, ...,R
Assume n > 1/

in nondecreasing value of the key K.

n

Ky« - / Create a dummy record R, such that K, < K|,
l=i<ny
for j <2 to ndo
T <R,
call INSERT(T, j — 1) /insert records R, to R,/
end
end INSORT

resulting in an overall worst case time of 022! i) = O(n?).

One may also obtain an estimate of the computing time of this method
based upon the relative disorder in the input file. We shall say that
the record R, is left out of order (LOO) iff R; < max {R;}. Clearly,

I=j<i
the insertion step has to be carried out only for those records that
are LOO. If k is the number of records LOO, then the computing
time is O((k + 1)n). The worst case time is still O(n?). One can also

show that O(n?) is the average time.

Example 7.1: Assume n = 5 and the input sequence is (5,4,3,2,1) [note
the records have only one field which also happens to be the key].
Then, after each insertion we have the following:

-%,5,4,3,2,1 [initial sequence]
-»,4,5,3,2,1 i=2
-%,3,4,52,1 i=3
-%,2,3,4,5,1 i=4
-%,1,2,3,4,5 i=5
Note that this is an example of the worst case behavior. O

Example 7.2: n =5 and the input sequence is (2, 3, 4, 5, 1). After
each execution of INSERT we have:

-%,2,3,4,5,1 [initial]
-0,2,3,4,5,1 i=2
—0,2,3,4,5,1 i=3
—-0,2,3,4,5,1 i=4
-%,1,2,3,4,5 i=5

In this example only R, is LOO and the time for each i= 2,3 and
4 is O(1) while for i = S it is O(n). 0

Quicksort 347

It should be fairly obvious that this method is stable. The fact that
the computing time is O(kn) makes this method very desirable in sorting
sequences where only a very few records are LOO (i.e., k < n). The
simplicity of this scheme makes it about the fastest sorting method
for n = 20 — 25 elements, depending upon the implementation and ma-
chine properties. For variations on this method see exercises 3 and
4,

7.3 QUICKSORT

We now turn our attention to a sorting scheme with a very good average
behavior. The quicksort scheme developed by C. A. R. Hoare has the
best average behavior among all the sorting methods we shall be studying.
In Insertion Sort the key K, currently controlling the insertion is placed
into the right spot with respect to the sorted subfile (R,, ...,R,_;).
Quicksort differs from insertion sort in that the key K, controlling the
process is placed at the right spot with respect to the whole file. Thus,
if key K; is placed in position s(i), then K; = K, for j < s(i) and
K; =K, for j > s(i). Hence after this positioning has been made,
the original file is partitioned into two subfiles one consisting of records
R,, ...,R,; -, and the other of records R ,,, ...,R,. Since in the
sorted sequence all records in the first subfile may appear to the left
of s(i) and all in the second subfile to the right of s(i), these two
subfiles may be sorted independently. The method is best stated recur-
sively as below and where INTERCHANGE (x,y) performs ¢ «— x; x « y;
y e
procedure QSORT (m.n)
#sort records R,,, ...,R, into nondecreasing order on key K. Key
K,, is arbitrarily chosen as the control key. Pointers i and j are
used to partition the subfile so that at any time K, = K, | < i
and K, = K, [> j. It is assumed that K,, < K, ,/ .
ifm<n
then [i<—m;j—n+1; K< K,
loop
repeat i — i + | until K, = K;
repeat j«<j — 1 until K; < K;
ifi<j
then call INTERCHANGE((R(i),R(j))
else exit
forever
call INTERCHANGE(R(m),R(j))
call QSORT(m,j - 1)
call QSORT(j + 1, n)]
end QSORT

348 Internal Sorting

Example 7.3: The input file has 10 records with keys (26, 5, 37, 1,
61, 11, 59, 15, 48, 19). The table below gives the status of the file
at each call of QSORT. Square brackets are used to demarcate subfiles
yet to be sorted.

R, R, R, R, R, R, R, R R, R, m n
[26 5 37 1 6l 1 59 15 48 19 1 10
[s 19 1 151 26 [59 61 48 37] 1 5
[1 5] 11 [19 151 26 [59 6l 48 37] 1 2

1 s 1 [19 151 26 [59 6l 48 371 4 5

1 5 1 15 19 26 [59 6l 48 371 7 10

15 1 15 19 26 [48 371 59 [61] 7 8

1 s 1 15 19 26 37 48 59 [611 10 10

15 1 15 19 26 37 48 59 6l o

Analysis of Quicksort

The worst case behavior of this algorithm is examined in exercise
5 and shown to be O(n?). However, if we are lucky then each time
a record is correctly positioned, the subfile to its left will be of the
same size as that to its right. This would leave us with the sorting
of two subfiles each of size roughly n/2. The time required to position
a record in a file of size n is O(n). If T(n) is the time taken to sort
a file of n records, then when the file splits roughly into two equal
parts each time a record is positioned correctly we have

T(n) = cn+ 2T(n/2) , for some constant ¢
= cn+ 2(cn/2 +2T(n/4))
< 2¢n + 4T(n/4)

= cnlog,n + nT(1) = O(nlog, n)

In our presentation of QSORT, the record whose position was being
fixed with respect to the subfile currently being sorted was always chosen
to be the first record in that subfile. Exercise 6 examines a better
choice for this control record. Lemma 7.1 shows that the average
computing time for Quicksort is O(n log, n). Moreover, experimental
results show that as far as average computing time is concerned, it
is the best of the internal sorting methods we shall be studying.

Unlike Insertion Sort where the only additional space needed

Quicksort 349

was foronerecord, Quicksort needs stack space toimplement therecursion.
In case the files split evenly as in the above analysis, the maximum
recursion depth would be log n requiring a stack space of O(log n).
The worst case occurs when the file is split into a left subfile of size
n — 1 and a right subfile of size 0 at each level of recursion. In this
case, the depth of recursion becomes n requiring stack space of O(n).
The worst case stack space can be reduced by a factor of 4 by realizing
that right subfiles of size less than 2 need not be stacked. An asymptotic
reduction in stack space can be achieved by sorting smaller subfiles first.
In this case the additional stack space is at most O(log n).

Lemma 7.1: Let T, (n) be the expected time for QSORT to sort a
file with nrecords. Then there exists a constant k such that T, (n) <k
nlog, nfor n=2.

Proof: In the call to QSORT (1,n), K, gets placed at position j. This
leaves us with the problem of sorting two subfiles of size j— 1 and
n—j. The expected time for this is T, (j— 1) + T, (n—j). The
remainder of the algorithm clearly takes at most cn time for some constant
c. Since j may take on any of the values 1 to n with equal probability
we have:

1 n
Tag (M < cn+ = (To(i = D + Toy(n =), n=2
n

n—1

cn+— 2 T () 7.1
n <

We may assume T, (0) =< b and T,,(1) =< b for some constant b.

avg

We shall now show T, (n) <kn log, n for n=2 and k= 2(b + ¢).
The proof is by induction on n.

Induction Base: For n = 2 we have from eq. (7.1):
T,(2) =2c+ 2b=<knlog,.2

Induction Hypothesis: Assume T

avg

(ny<knlog_nforl =n<m

Induction Step: From eq. (7.1) and the induction hypothesis we have:

350 Internal Sorting

m-—1

4b 2
cm + -+ — > T

j=2

Tog(m)

A

4b 2km}
= cm+—+—2}log j (7.2)
m.

j=2

Since jlog, j is an increasing function of j eq. (7.2) yields:

4b
cm + — + — xlog, x dx
m m

A

Tyug(m)

4b 2k [m2 log,m mz]
=m+— 4 — | —_—
m m 2 4

4b km
= cm+ — + kmlog,m — —
m 2

A

kmlogem , form=2.)

7.4 HOW FAST CAN WE SORT?

Both of the sorting methods we have seen have a worst case behavior
of O(n?). It is natural at this point to ask the question: ‘““What is the
best computing time for sorting that we can hope for?”’ The theorem
we shall prove shows that if we restrict our question to algorithms
for which the only operations permitted on keys are comparisons and
interchanges then O(n log, n) is the best possible time.

The method we use is to consider a tree which describes the sorting
process by having a vertex represent a key comparison and the branches
indicate the result. Such a tree is called a decision tree. A path through
a decision tree represents a possible sequence of computatlons that an
algorithm could produce.

As an example of such a tree, let us look at the tree obtained for
Insertion Sort working on a file with three records in it. The input
sequence is R,, R, and R, so the root of the tree is labeled (1,2,3).
Depending on the outcome of the comparison between K, and K,,
this sequence may or may not change. If K, < K,, then the sequence
becomes (2,1,3) otherwise it stays (1,2,3). The full tree resulting from
these comparisons is shown below. The leaf nodes are numbered I-VI
and are the only points at which the algorithm may terminate. Hence
only six permutations of the input sequence are obtainable from this

How Fast Can We Sort? 351

algorithm. Since all six of these are different and 3! = 6, it follows
that this algorithm has enough leaves to constitute a valid sorting algorithm
for three records. The maximum depth of this tree is 3. The table
below gives six different orderings of key values 7, 9, 10 which show
that all six permutations are possible. The tree is not a full binary
tree of depth 3 and so it has fewer than 23 = 8 leaves. The possible
output permutations are:

SAMPLE INPUT KEY VALUES WHICH

LEAF PERMUTATION GIVE THE PERMUTATION
I 123 (7,9,10)
I 132 (7,10,9)
I 312 9,10,7)
v 213 9,7,10)
\" 231 (10,79
\1 321 (10,9,7)

The decision tree is

1,3,2) (stop) Gstop) (3.1,2) 23n(s) (sep)t3.2.n
1I Vv VI

I

Theorem 7.1: Any decision tree that sorts n distinct elements has a
height of at least log,(n!)+1.

Proof: When sorting n elements there are n! different possible results,
Thus, any decision tree must have n! leaves. But a decision tree is

352 Internal Sorting

also a binary tree which can have at most 2%-! leaves if its height is
k. Therefore, the height must be at least log, n! + 1. 0

Corollary: Any algorithm which sorts by comparisons only must have
a worst case computing time of O(n log, n).

Proof: We must show that for every decision tree with n! leaves there
is a path of length ¢ nlog, n, ¢ a constant. By the theorem, there
is a path of length log, n!. Now

n! = n(n— 1n-2)...3)2x
= (n/2)"2,

so log,n!' = (n/2) log, (n/2) = O(nlog, n). a

7.5 2-WAY MERGE SORT

Before looking at the merge sort algorithm to sort n records let us
see how one may merge two files (X,, ...,X,) and (X,,,,, ...,X,) that
are already sorted to get a third file (Z,, ...,Z,) that is also sorted.
Since this merging scheme is very simple, we directly present the
algorithm.

procedure MERGE(X,I,m,n,Z)

/X, ...,X,,) and (X, ., -..,X,) are two sorted files with keys
x,=..=<xpand x,,,, = ... < x,. They are merged to obtain the
sorted file (Z,, ...,Z,) such that z,< ... = z,/
ie—kel;jem+1 /i, jand k are position in the three files /

while i = mand j < ndo

if x, < x;then [Z, « X;; i i+ 1]
else [Z, «— X;;j—j+1]

ke—k+1
end
if i>mthen (Z,,....Z,) < (X,X,)
else (Z,,Z,) < (X,X,)

end MERGE

Analysis of Algorithm MERGE

At each iteration of the while loop k increases by 1. The total increment
in kis n— 1+ 1. Hence the while loop is iterated at most n — [+ 1
times. The if statement moves at most one record per iteration.

2-Way Merge Sort 353

The total time is therefore O(n — [+ 1). If records are of length M
then this time is really O(M(n — [+ 1)). When M is greater than 1
we could use linked lists (X,, ...,X,,) and (X, .,, .-.,X,) and obtain
a new sorted linked list containing these n — [+ 1 records. Now,
we won't need the additional space for n — I + 1 records as needed
above for Z. Instead only space for n — [+ I links is needed. The
merge time becomes independent of M and is O(n — [+ 1). Note that
n — [+ 1 is the number of records being merged. m]

Two-way merge sort begins by interpreting the input as n sorted files
each of length 1. These are merged pairwise to obtain n/2 files of
size 2 (if n is odd, then one file is of size 1). These n/2 files are
then merged pairwise and so on until we are left with only one file.
The example below illustrates the process.

Example 7.4.1 The input file is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19).
The tree below illustrates the subfiles being merged at each pass:

(26] Ls1 (1 Cn ren] [[591 (151 [48] [19]

[s 26] [1 77] [11 61] [15 59] [19 48]
\/

[1 5 2\677]/[11/_, s 59 611 [19 | 48]
[1 5 1 s 26 59 61 771 [19 48]
[1 5 11 15 19 26 48 59 61 7

As is apparent from the example above, merge sort consists of several
passes over the records being sorted. In the first pass files of size
1 are merged. In the second, the size of the files being merged is 2.
On the ™ pass the files being merged are of size 2°-.Consequently,
a total of llog, nl passes are made over the data. Since two files
can be merged in linear time (algorithm MERGE), each pass of merge
sort takes O(n) time. As there are [log, n1 passes, the total computing
time is O(n log n).

In formally writing the algorithm for 2-way merge, it is convenient
to first present an algorithm to perform one merge pass of the merge
sort.

354 Internal Sorting

procedure MPASS(X,Y,n,l)
/ This algorithm performs one pass of merge sort. It merges adjacent
pairs of subfiles of length [from file X to fileY. n is the number
of records in X/
i—1
while i=n -2l +1do
call MERGE(X,i,i+1—1,i+2l-1,Y)
P—i+2l
end
// merge remaining file of length <21/
ifi+ 11— 1< nthen cal MERGE(X,i,i+1—-1,nY)
else (Y,Y,))— (X, ...X,)
end MPASS

The merge sort algorithm then takes the form:

procedure MSORT (X, n)
/ Sort the file X = (X, ...,X,) into nondecreasing order of the keys
Xy esXpn

declare X(n), Y(n) /Y is an auxilliary array,/
/L is the size of subfiles currently being merged /
l—1

while | < n do
call MPASS(X,Y,n,l)
l—2%1
call MPASS(Y.X,n,l) / interchange role of X and Y/
le2%*]
end
end MSORT

It is easy to verify that the above algorithm results in a stable sorting
procedure. Exercise 10 discusses a variation of the two-way merge sort
discussed above. In this variation the prevailing order within the input

file is taken into account to obtain initially sorted subfiles of length
=1.

Recursive Formulation of Merge Sort

Merge sort may also be arrived at recursively. In the recursive
formulation we divide the file to be sorted into two roughly equal parts
called the left and the right subfiles. These subfiles are sorted using
the algorithm recursively and then the two subfiles are merged together

2-Way Merge Sort 355

to obtain the sorted file. First, let us see how this would work on
our earlier example,

Example 7.4.2 The input file (26, 5, 77, 1, 61, 11, 59, 15, 49, 19) is
to be sorted using the recursive formulation of 2-way merge sort. If
the subfile from [to u is currently to be sorted then its two subfiles
are indexed from [to [(I + u)/2] and from [(I+ u)/2] + 1 to u. The
subfile partitioning that takes place is described by the following binary
tree. Note that the subfiles being merged are different from those being
merged in algorithm MSORT.

(261 [s1 (771 [1 [e1] [u]l [591 [15] [48] [19]

[5\/26]\/ \/ (n 59]\/

(5 26 77] (1 61] (1 15 59] [19 48]
\/

[1 5 26 61 77] [11 15 19 48 59]

[1 5 11 15 19 26 48 59 61 77

From the preceding example, we may draw the following conclusion.
If algorithm MERGE is used to merge sorted subfiles from one array
into another, then it is necessary to copy subfiles. For example to
merge (5, 26] and [77] we would have to copy [77] into the same
array as [5, 26]. To avoid this unnecessary copying of subfiles using
sequential allocation, we look to a linked list representation for subfiles.
This method of representation will permit the recursive version of merge
sort to work efficiently.

Each record is assumed to have two fields LINK and KEY. LINK{(i)
and KEY(i) are the link and key value fields in record i, 1 =i=<n.
We assume that initially LINK(i) =0, 1 =< i=< n. Thus each record is
initially in a chain containing only itself. Let Q and R be pointers to
two chains of records. The records on each chain are assumed linked
in nondecreasing order of the key field. Let RMERGE(Q,R,P) be an
algorithm to merge the two chains Q and R to obtain P which is also
linked in nondecreasing order of key values. Then the recursive version
of merge sort is given by algorithm RMSORT. To sort the records
X,, ...,X, this algorithm is invoked as call RMSORT(X,1,n,P). P is
returned as the start of a chain ordered as described earlier. In case
the file is to be physically rearranged into this order then one of the
schemes discussed in section 7.8 may be used.

356 Internal Sorting

procedure RMSORT(X,[,u,P)
A The file X=(X,, ...,X,) is to be sorted on the field KEY. LINK
is a link field in each record and is initially set to 0. The sorted
file is a chain beginning at P/
if] = uthen P<|
else [mid < |(I+ u)/2]
call RMSORT (X, I, mid, Q)
call RMSORT (X, mid + 1, u, R)
call RMERGE(Q, R, P)]
end RMSORT

The algorithm RMERGE below uses a dummy record with index d.
It is assumed that d is provided externally and that d is not one of
the valid indexes of records i.e. d is not one of the numbers 1 through
n.

procedure RMERGE(X,Y,Z)
/The linked files X and Y are merged to obtain Z. KEY(i) denotes
the key field and LINK(i) the link field of record i. In X, Y and
Z the records are linked in order of nondecreasing KEY values.
A dummy record with index d is made use of. d is not a valid
index in X or Y/
i—X;,j<Y;z«<d
while i # 0 and j # 0 do
if KEY(i) = KEY(j) then [LINK(z) < i
2« i; i< LINK())]
else [LINK(z)«j
z<«]J; j«< LINK(®{]
end
// move remainder /
if i = 0 then LINK(z) «j
else LINK(z) «i
Z «— LINK(d)
end RMERGE

One may readily verify that this linked version of 2-way merge sort
results in a stable sorting procedure and that the computing time is
O(nlog n).

Heap Sort 357

7.6 HEAP SORT

While the Merge Sort scheme discussed in the previous section has
a computing time of O(n log n) both in the worst case and as average
behavior, it requires additional storage proportional to the number of
records in the file being sorted. The sorting method we are about to
study will require only a fixed amount of additional storage and at the
same time will have as its worst case and average computing time O(n
log n). In this method we shall interpret the file to be sorted R = (R,,
.»R,) as a binary tree. (Recall that in the sequential representation
of a binary tree discussed in Chapter 5 the parent of the node at location
iis at |i/2], the left child at 2i and the right child at 2i + 1. If 2i or
2i + 1 is greater than n (the number of nodes), then the corresponding
children do not exist.) Thus, initially the file is interpreted as being

structured as below:

@@@

Heap sort may be regarded as a two stage method. First the tree
representing the file is converted into a heap. A heap is defined to
be a complete binary tree with the property that the value of each node
is at least as large as the value of its children nodes (if they exist) (i.e.,
K|ij2y = K for 1 = |j/2] <j=n). This implies that the root of the
heap has the largest key in the tree. In the second stage the output
sequence is generated in decreasing order by successively outputting
the root and restructuring the remaining tree into a heap.

(X|v "‘,Xn) @

358 Internal Sorting

Essential to any algorithm for Heap Sort is a subalgorithm that takes
a binary tree T whose left and right subtrees satisfy the heap property
but whose root may not and adjusts T so that the entire binary tree
satisfies the heap property. Algorithm ADJUST does this.

procedure ADJUST (i,n)

/ Adjust the binary tree with root i to satisfy the heap property.
The left and right subtrees of i, i.e., with roots 2iand 2i + 1, already
satisfy the heap property. The nodes of the trees contain records,
R, with keys K. No node has index greater than n/
R<—R; K« K, je<2i
while j < n do

if j<nand K;<K;,, then j« j+1 /find max of left
and right child /

/ compare max. child with K. If Kis max. then done/

if K = K then exit

Rijj2) < R;;j<2j / move R; up the tree /
end
Rijj2 < R

end ADJUST

Analysis of Algorithm Adjust

If the depth of the tree with root i is k, then the while loop is executed
at most k times. Hence the computing time of the algorithm is O(k). a
The heap sort algorithm may now be stated.

procedure HSORT (R,n)

/The file R = (R,, ...,R,) is sorted into nondecreasing order of
the key K/

for i<—{n/2jto1 by —1do / convert R into a heap /
call ADJUST (i,n)

end

fori—n—1tol by —1.do Jsort R/
T<R,,;R,.,,<R,;R,«<T /interchange R, and R, ,/
call ADJUST (1,i) /recreate heap /

end

end HSORT

Example 7.5: The input file is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19).
Interpreting this as a binary tree we have the following transformations:

Sorting on Several Keys 359

() (77
(s) @ (61) (53
O E@W @9 (9 () @
(1968 ©0J0

Input File Initial Heap

The figures on pages 360-361 illustrate the heap after restructuring and
the sorted part of the file.

Analysis of Algorithm HSORT

Suppose 247! < n < 2% so that the tree has k levels and the number
of nodes on level iis2 -1 Inthe first for loop ADJUST is called once
for each node that has a child. Hence the time required for this loop
is the sum, over each level, of the number of nodes on a level times
the maximum distance the node can move. This is no more than

E 21 (k-i) = E 2k-i-1j < nE il12i< 2n = 0(n)

1<i<k 1<isk-1 1<isk-1

In the next for loop n — 1 applications of ADJUST are made with maxi-
mum depth k = [log,(n + 1)1. Hence the computing time for this loop is
O(nlogn). Consequently, the total computing time is O(nlogn). Note
that apart from pointer variables, the only additional space needed is
space for one record to carry out the exchange in the second for loop.
Note also that instead of making the exchange, one could perform the
sequence R «— R;, |, R;, | « R, and then proceed to adjust the tree.

7.7 SORTING ON SEVERAL KEYS

Let us now look at the problem of sorting records on several keys,
K',K?, ..., K" (K! is the most significant key and K" the least). A

Internal Sorting

360

22 ‘19 ‘68

:921s doaH

1pa}i0s

361

Sorting on Several Keys

jnsau 2=
2219'6S ‘8b 92 61 ‘SI11'G ‘I 22'19'6S‘8b ‘92 ‘6l1'Gl'II
¢=1 b =l G=l 9=
LL°19°6G '8V '9Z ‘6L ‘Gl 22'19'6G ‘8b°92 ‘6l 2219 ‘6G ‘8p ‘92 22 ‘19 ‘66 ‘8p

:9zis dosyH

! pajiog

:9z1s doaH

1 pajios

362 Internal Sorting

file of records R,, ...,R, will be said to be sorted with respect to
the keys K',K?, ...,K"iff for every pair of records i,j,i < j, (K}, ...,K])
= (K}, .--,K[). The r-tuple (x,, ...,x,) is less than or equal to the r-tuple
(y,, --.,y,) iff either x,=y,, 1 =i<jand x;,, <y,,, for some j=r
orx;=y,l=si=r

For example, the problem of sorting a deck of cards may be regarded
as a sort on two keys, the suit and face values, with the following
ordering relations:

Suits: B O<V<d

and face values: 2<3<4...<10<J< Q< K<A.

There appear to be two popular ways to accomplish the sort. The
first is to sort on the most significant key K' obtaining several ‘‘piles”
of records each having the same value for K'. Then each of these
piles is independently sorted on the key K? into ‘‘subpiles’ such that
all the records in the same subpile have the same values for K' and
K?. The subpiles are then sorted on K?, etc., and the piles put together.
In the example above this would mean first sorting the 52 cards into
four piles one for each of the suit values. Then sort each pile on the
face value. Now place the piles on top of each other to obtain the
ordering: 2, . A% .. .28, .. AM.

A sort proceeding in this fashion will be referred to as a most significant
digit first (MSD) sort. The second way, quite naturally, is to sort on
the least significant digit first (LSD). This would mean sorting the cards
first into 13 piles corresponding to their face values (key K?). Then,
place the 3’s on top of the 2’s, ..., the kings on top of the queens,
the aces on top of the kings; turn the deck upside down and sort on
the suit (K') using some stable sorting method obtaining four piles each
of which is ordered on K?; combine the piles to obtain the required
ordering on the cards.

Comparing the two procedures outlined above (MSD and LSD) one
notices that LSD is simpler as the piles and subpiles obtained do not
have to be sorted independently (provided the sorting scheme used for
sorting on key Ki, 1 =< i < ris stable). This in turn implies less overhead.

LSD and MSD only specify the order in which the different keys
are to be sorted on and not the sorting method to be used within each
key. The technique generally used to sort cards is a MSD sort in which
the sorting on suit is done by a bin sort (i.e., four ‘‘bins’” are set up,
one for each suit value and the cards are placed into their corresponding
“bins”’). Next, the cards in each bin are sorted using an algorithm

Sorting on Several Keys 363

similar to Insertion Sort. However, there is another way to do this.
First use a bin sort on the face value. To do this we need thirteen
bins one for each distinct face value. Then collect all the cards together
as described above and perform bin sort on the suits using four bins.
Note that a bin sort requires only O(n) time if the spread in key values
is O(n).

LSD or MSDsorting can also be used to sort records on only one logical
key by interpreting this key as being composed of several keys. For
example, if the keys are numeric, then each decimal digit may be regarded
as a key. So if all the keys are in the range 0 < K <999, then we
can use either the LSD or MSD sorts for three keys (K',K?,K?), where
K' is the digit in the hundredths place, K? the digit in the tens place,
and K that in the units place. Since all the keyslieintherange0 <= K' <9,
the sort within the keys can be carried out using a bin sort with ten
bins. This, in fact, is essentially the process used to sort records punched
on cards using a card sorter. In this case using the LSD process would
be more convenient as it eliminates maintaining several independent
subpiles. If the key is interpreted as above, the resulting sort is called
a radix 10 sort. If the key decomposition is carried out using the binary
representation of the keys, then one obtains a radix 2 sort. In general,
one could choose any radix r obtaining a radix r sort. The number
of bins required is r.

Let us look in greater detail at the implementation of an LSD radix

r sort. We assume that the records R, ...,R, have keys that are d-tuples
(x,,%;, -..,x4) and 0 < x; < r. Thus, we shall need r bins. The records
are assumed to have a LINK field. The records in each bin will be
linked together into a linear linked list with F(i), 0 =i < r, a pointer
to the first record in bin { and E(i) a pointer to the last record in
bin i. These lists will essentially be operated as queues. Algorithm
LRSORT formally presents the LSD radix r method.

Program on next page

Analysis of LRSORT

The algorithm makes d passes over the data, each pass taking O(n + r)
time. Hence the total computing time is O(d(n + r)). In the sorting
of numeric data, the value of d will depend on the choice of the radix
r and also on the largest key. Different choices of r will yield different
computing times (see Table 7.2).

364 Internal Sorting

procedure LRSORT(R,n,d)

Jrecords R = (R, ...,R,) are sorted on the keys K!, ...,K4 The
range of each key is 0 = K < r. Sorting within a key is done using
bin sort. All records are assumed to be initially linked together
such that LINK (i) points to R,,,, 1 = i=n and LINK(n) = 0./

declare E(0:r — 1), F(0:r — 1) / queue pointers /

p<1 / pointer to start of list of records/

fori<—dto1by —1do /sort on key Ki /
for j<~0tor—1do /initialize bins to be empty queues /

F(j) <0
end
while p # 0 do / put records into queues /
kK / k is the i-th key of p-th record /
if F(k) =0 then F(k) < p Jattach record p into bin k /
else LINK(E(k)) < p
E(k) «p
p < LINK (p) /get next record /
end
j<O0; while F(j) =0doj<—j+ 1end /find first nonempty
queue/
p < F(j); t< E(j)
fork<—j+1tor—1do / concatenate remaining queues,/
if F(k) # 0 then [LINK(t) « F(k); t— E(k)]
end
LINK(t) <0
end
end LRSORT

Example 7.6: We shall illustrate the operation of algorithm LRSORT
while sorting a file of 10 numbers in the range [0,999]. Each decimal
digit in the key will be regarded as a subkey. So, the value of d is
3 and that of ris 10. The input file is linked and has the form given
on page 365 labeled R, ...,R,,. The figures on pages 365-367 illustrates
the r = 10 case and the list after the queues have been collected from
the 10 bins at the end of each phase. By using essentially the method
above but by varying the radix, one can obtain (see exercises 13 and
14) linear time algorithms to sort n record files when the keys are in
the range 0 = K, < n* for some constant k.

— g

365

Sorting on Several Keys

ssed 15113 19))€ UrRy)

g -1
6 658 61 802 90¢ g 86 s 6 122
(6)d (8)4d (2)4d (9)d (g)d (t)d (e)3 (2)d (1)4d (0)4
| | | ﬁ | | | _ F |
6.1 _IW_O_WL 90¢ — SS 86 6 122
Ea KN
6
6)3 (8)3 (2)3 ©3 (©)3 ()3 (€)3 (2)3 (13 (0)3
induy fentug
c¢ 122 6 S T v86 658 6 90¢ 802 6.
O_m mm wm hm wm mm ¢m mm Nm _m

Internal Sorting

366

ssed puooas JIalje urey)d

112 ecs me f— e¢ b 6 F 80z | 90¢

¢6 86 6Ll
(6)d (8)4 (4 vaﬁu_ (G)4 (b)d (e)d (2)4 (14 AOMU_
jm_.m] ﬁvwm 1 [z | ss | | c¢ 908
6.1 | 658 | 802

6
(6)3 (8)3 (2)3 (9)3 (S) 3 (b)) 3 ()3 (2)3 (13 AOHu

367

Sorting on Several Keys

ssed pIIy) 1938 UIRYD Pa1Ios [eul]

| sv6 =— 658 — s0¢ b 122 }—{ 202 _uﬂ|_[mt 6 55 o e b 6]

(6)d (8)4 ()4 (9)4 (s)d (v 4 ()4 ()4 (N4 (0)4

) (e] (o] (o] [

|

122 ce

=
e]

(6) (8)3 ()3 (9)3 (€3 (t) 3 (€)3 (2)3 (n3 (0)3

368 Internal Sorting

7.8 PRACTICAL CONSIDERATIONS FOR INTERNAL
SORTING

Apart from radix sort, all the sorting methods we have looked at require
excessive data movement; i.e., as the result of a comparison, records
may be physically moved. This tends to slow down the sorting process
when records are large. In sorting files in which the records are large
it is necessary to modify the sorting methods so as to minimize data
movement. Methods such as Insertion Sort and Merge Sort can be
easily modified to work with a linked file rather than a sequential file.
In this case each record will require an additional link field. Instead
of physically moving the record, its link field will be changed to reflect
the change in position of that record in the file (see exercises 4 and
8). At the end of the sorting process, the records are linked together
in the required order. In many applications (e.g., when we just want
to sort files and then output them record by record on some external
mediain the sorted order) this is sufficient. However, in some applications
it is necessary to physically rearrange the records in place so that they
are in the required order. Even in such cases considerable savings can
be achieved by first performing a linked list sort and then physically
rearranging the records according to the order specified in the list. This
rearranging can be accomplished in linear time using some additional
space.

If the file, F, has been sorted so that at the end of the sort P is
a pointer to the first record in a linked list of records then each record
in this list will have a key which is greater than or equal to the key
of the previous record (if there is a previous record), see figure 7.1.
To physically rearrange these records into the order specified by the
list, we begin by interchanging records R, and R,. Now, the record
in the position R, has the smallest key. If P # 1 then there is some
record in the list with link field = 1. If we could change this link field
to indicate the new position of the record previously at position 1 then we
would be left with records R,, ...,R, linked together in nondecreasing order.
Repeating the above process will, after n — 1 iterations, result in the desired
rearrangement. The snag, however, is that in a singly linked list we do not
know the predecessor of a node. To overcome this difficulty, our first
rearrangement algorithm LIST 1, begins by converting the singly linked list P
into a doubly linked list and then proceeds to move records into their correct
places.

Practical Considerations for Internal Sorting 369

R, R, Ry Ry Rs

15 7 [20 9 | Key

Link Field
(after sorting)

Figure 7.1 List Sort

procedure LIST1(R,n,P)

/P is a pointer to a list of n sorted records linked together by the
field LINK. A second link field, LINKB, is assumed to be present
in each record. The records are rearranged so that the resulting
records R,R, are consecutive and sorted /

U—0;s<P

while s # 0 do /convert P into a doubly linked list using LINKB #
LINKB(s) « u Zufollows s /7
u<«s;s < LINK(s)

end

fori<—1ton—1do # move R, to position i while /
if P#i / maintaining the list /

then [if LINK(i)+ O then LINKB(LINK())«< P
LINK(LINKB(i))«<P;A<R,
Rp—R; R, —A]
P« LINK(i) /examine the next record /
end
end LIST1

Example 7.7: After a list sort on the input file (35,18,12,42,26,14) has
been made the file is linked as below (only three fields of each record
are shown):

R, R; Ry Ry Rs Rg

Key 35{ |18 [12] (42| [26] |14
LINK 4 5 6 o | 2| P=3

LINK B

370 Internal Sorting

Following the links starting at R, we obtain the logical sequence of
records R;, R4, R,, R5, R, and R, corresponding to the key sequence
12, 14, 18, 26, 35, and 42. Filling in the backward links, we have

R, R, R, R, Ry R

! 2 3 4
35| |18 2 42| |26 |14

4 5 6 o | 2 | P=3
6 o | 2 3

The configuration at the end of each execution of the for loop is:

121 {181 |35] 142| |26| |14

i=1

The logical sequence of the remaining list (LS) is: Ry, R,, Rs, R5,
R,. The remaining execution yields

12 {14] |35 |42 [26] |8

4 P=6
o|3]|5]|]3
LS: Rg Rs, Ry, R, 1=2
12| [1a] [18] |42] |26] |35
6||e|]|5]]0 P=5
oli3|[e||e||6]|]5
L L
LS: RS, R6, R4 i=3

12| |14 18] |26| |42 |35
6 6 5 6 o 5| P=6
0 3 6 6 6
LS: R6, RS i=4

Practical Considerations for Internal Sorting 371

12 m 18] [26] [35] (42
6| (6| [5||6]|6]|o]P=6
0 lel [6] 5] [s

LS: R6 i=5

Analysis of Algorithm LIST1

If there are n records in the file then the time required to convert
the chain P into a doubly linked list is O(n). The for loop is iterated
n — 1 times. In each iteration at most two records are interchanged.
This requires 3 records to move. If each record is m words long, then
the cost per interchange is 3m. The total time is therefore O(nm).
The worst case of 3(n — 1) record moves is achievable. For example
consider the input key sequence R,,R,, ... R, with R, <R; < ... <R,
and R, > R,. For n =4 and keys 4, 1, 2, 3 the file after each iteration
has the following form: i=1: 1,4,2,3; i=2: 1,2,4,3; i=3: 1,2,34. A
total of 9 record moves is made. o

Several modifications to algorithm LIST1 are possible. One that is
of interest was given by M. D. MacLaren. Thisresults in a rearrangement
algorithm in which no additional link fields are necessary. In this
algorithm, after the record Ry is exchanged with R, the link field of
the new R, is set to P to indicate that the original record was moved.
This, together with the observation that P must always be = i, permits
a correct reordering of the records. The computing time remains O (nm).

procedure LIST2(R,n,P)
#Same function as LIST1 except that a second link field LINKB
is not required /

fori—1ton—1do

/find correct record to place into i'th position. The index of this
record must be = ias records in positions 1,2, ...,i — 1 are already
correctly positioned, 7

while P < i do
P« LINK (P)

end

Q< LINK(P) /R, is nextrecord with largest key /

if P # i then [Zinterchange R, and R, moving R, to its correct
spot as R has i'th smallest key. Also set link from
old position of R;tonewone/ T<—R,,R,<R,:R,«T
LINK(i) < P]

P—Q
end
end LIST?2

372 Internal Sorting

Example 7.8: The data is the same as in Example 7.7. After the list
sort we have:

| 2 3 4 5 6
Key |35| |18 a2| |26] |14
Lnk (4] [s] [s] [of [1][2] P=3

After each iteration of the for loop, we have:

i2] [18] [2s] [a2] [26] |14

E 5| [a] [o] [1] 2]P=6
i<l

[12] [1a] [35] [a2] [26] [18

3] [6] [a] [0 [1]][5]p=2

2] Lo

2] (14} |I8] {42]| |26] |35
3 6 6 F | 4| P=5
i=3
121 {141 |! 26| |42 135
6 ? 5 0 4| P=|
=4

Again P < § and following links from R, we find R, to be the record
with fifth smallest key.

35| 142

Practical Considerations for Internal Sorting 373

Analysis of Algorithm LIST2

The sequence of record moves for LIST?2 is identical to that for LIST1.
Hence, in the worst case 3(n — 1) record moves for a total cost of
O(n m) are made. No node is examined more than once in the while
loop. So the total time for the while loop is O(n). While the asymptotic
computing time for both LIST1 and LIST2 is the same and the same
number of record moves is made in either case, we would expect LIST2
to be slightly faster than LIST1 because each time two records are
interchanged LIST1 does more work than LIST2 does. LIST1 is inferior
to LIST2 on both space and time considerations. O

The list sort technique discussed above does not appear to be well
suited for use with sort methods such as Quick Sort and Heap Sort.
The sequential representation of the heap is essential to Heap Sort.
In such cases as well as in the methods suited to List Sort, one can
maintain an auxiliary table with one entry per record. The entries in
this table serve as an indirect reference to the records. Let this table
be T(1), T(2), ..., T(n). At the start of the sort T(i)=1i, 1 <i< n.
If the sorting algorithm requires an interchange of R; and R;, then only
the table entries need be interchanged, i.e., T(i) and T(j). At the end
of the sort, the record with the smallest key is Ry, and that with
the largest Ry,,. In general, following a table sort R is the record
with the i’th smallest key. The required permutation on the records
is therefore R1,,,R (), ...,R r(,, (see Figure 7.2). This table is adequate
even in situations such as binary search, where a sequentially ordered
file is needed. In other situations, it may be necessary to physically

R, R, R R, R

5
Key 50 S I 8 3
| ! .
—+ L } Auxillary
Before It i ! l
Sorting L : l 2 I ‘3] 4] > Tabﬂ}e

é:)tr?irng L 5 l 4 I 2 l 3] Ij

Figure 7.2 Table Sort

374 Internal Sorting

rearrange the records according to the permutation specified by T. The
algorithm to rearrange records corresponding to the permutation T(1),
T(2), ...,T(n) is a rather interesting application of a theorem from
mathematics: viz, every permutation is made up of disjoint cycles. The
cycle for any element i is made up of i, T(i), T?(i), ...,T*(i), (where
Ti(iy = T(Ti7'(i)) and T°(i) = i) such that T*(i) = i. Thus, the per-
mutation T of figure 7.2 has two cycles, the first involving R, and
R and the second involving R,, R; and R,. Algorithm TABLE utilizes
this cyclic decomposition of a permutation. First, the cycle containing
R, is followed and all records moved to their correct positions. The
cycle containing R, is the next one examined unless this cycle has
already been examined. The cycles for R;, R,, ...,R,_, are followed
in that order, achieving a reordering of all the records. While processing
a trivial cycle for R, (i.e. T(i) = i), no rearrangement involving record
R, is required since the condition T(i) = i means that the record with
the i’th smallest key is R;. In processing a nontrivial cycle for record
R; (i.e. T(i) # i), R; is moved to a temporary position P, then the
record at T(i) is moved to (i); next the record at T(T(i)) is moved
to T(i); and so on until the end of the cycle T*(i) is reached and the
record at Pis moved to T* ' (i).

procedure TABLE(R,n,T)
/ Therecords R, ...,R, are rearranged to correspond to the sequence
Rrays - Ry, n= 1/
fori—1ton—1do
it T(i) # i then /there is a nontrivial cycle starting at i/
[P—R;j<i / move R, to a temporary spot P and follow /
repeat Zcycle i, T(i), T(T(i)), ... until the correct spot/
k< T(j)
R; <R,
T(G) <]
i<k
until T(j) =i
R; <P A/ J is position for record P/
T(j) <]
end
end TABLE

Example 7.9: Following a table sort on the file F we have the following
values for T (only the key values for the 8 records of F are shown):

Practical Considerations for Internal Sorting 375

RI RZ R3 R4 RS R6 R7 RS
F 35 14 12 42 26 50 31 18
T 3 2 8 5 7 1 4 6

There are two nontrivial cycles in the permutation specified by T.
The first is R;, R;, Ry, R; and R,. The second is R,, R5, R;, R,.
During the first iteration (i = 1) of the for loop of algorithm TABLE,
the cycle R,, Ry(,,, Rr2), Ry, Ry is followed. Record R, is moved
to a temporary spot P. Ry, (i.e. R;) is moved to the position R;
R 2, (i.e. Rg) is moved to R;; Ry to Ry and finally P to R,. Thus,
at the end of the first jteration we have:

For i =2,3, T(i) =i, indicating that these records are already in
their correct positions. When i = 4, the next nontrivial cycle is discovered
and the records on this cycle R,, Rs, R;, R, are moved to their correct
positions. Following this we have:

F 12 14 18 26 31 35 42 50
T 1 2 3 4 5 6 7 8

For the remaining values of i (i =5, 6 and 7), T(i) = i, and no more
nontrivial cycles are found. O

Analysis of Algorithm TABLE

If each record uses m words of storage then the additional space
needed is m words for P plus a few more for variables such as i, j
and k. To obtain an estimate of the computing time we observe that
the for loop is executed n — 1 times. If for some value of i, T(i) # i
then there is a nontrivial cycle including k > 1 distinct records R;, R,

.»R«-1(;. Rearranging these records requires k + 1 record moves. Fol-
lowing this, the records involved in this cycle are not moved again
at any time in the algorithm since T(j) = j for all such records R;.
Hence no record can be in two different nontrivial cycles. Let k, be
the number of records on a nontrivial cycle starting at R, when i=1[
in the algorithm. Let k, = 0 for a trivial cycle. Then, the total number
of record moves is T Okpag {k; + 1). Since the records on nontrivial
cycles must be different, ¥k,<n. The total record moves is thus
maximum when Xk, = n and there are |n/2] cycles. When n is even,

376 Internal Seorting

each cycle contains 2 records. Otherwise one contains three and the others
two. In either case the number of record moves is |3n/2|. One record
move costs O(m) time. The total computing time is therefore O(nm).

O

In comparing the algorithms LIST2 and TABLE for rearranging records
we see that in the worst case LIST2 makes 3(n — 1) record moves while
TABLE makes only |3n/2] record moves. For larger values of m it

n— 10 20 50 100 250 500 1000
Quicksort [with median of 3]
(File: [N,1,2,3, ...,
N-2,N-1)) 499 1.26 4.05 129 68.7 257. 1018.
Quicksort [without median
of 3] (File: [1,2,3, ...,
N - I, N}) .580 1.92 9.92 38.2 226. 856. 3472.
Insertion Sort
[with K(0) = —)
(File: [N,N -1, ...,2,1]) .384 1.38 8.20 31.7 203. 788. —
Insertion Sort
[without K(0) = —<c]
(File: [N,N =1, ...,2,1]) .382 1.48 9.00 35.6 214. 861. —
|Heap Sort 583 1.52 4.96 11.9 36.2 80.5 | 177.
Merge Sort 726 1.66 4.76 11.3 35.3 73.8 151
(a) Worst case times in milliseconds
n— 10 20 50 100 250 500 1000
Radix Sort (L.S.D.) (RD = 1.82 3.0 5.68 9.04 20.1 325 58.0
100,000; optimal D & R) R=18; |R=18; [R=47;{ R=47; { R=317; | R=317; |R=317,
=4 D=4 D=3 D=3 D=2 D=2 D=2
Radix Sort (L.S.D.)
(R=10,D=5) 1.95 3.23 6.97 13.2 32.1 66.4 129.
Quicksort [with median.
of 3] 448 1.06 3.17 7.00 20.0 43.1 94.9
Quicksort [without median
of 3] 372 918 2.89 6.45 20.0 43.6 94.0
Insertion Sort 232 813 4.28 16.6 97.1 385. —
Insertion Sort
(without K(0) = —) .243 .885 4.72 18.5 111. 437. —
Heap Sort 512 1.37 4.52 10.9 33.2 76.1 166.
Merge Sort 642 1.56 4.55 10.5 29.6 68.2 144.

(b) Average times in milliseconds

Table 7.2 Computing times for sorting methods. (Table prepared by Randall Istre)

Practical Considerations for Internal Sorting 377

would therefore be worthwhile to make one pass over the sorted list
of records creating a table T corresponding to a table sort. This would
take O(n) time. Then algorithm TABLE could be used to rearrange
the records in the order specified by T.

Of the several sorting methods we have studied there is no one method
that is best. Some methods are good for small n, others for large n.
Insertion Sort is good when the file is already partially ordered. Because
of the low overhead of the method it is also the best sorting method
for ‘““small’’ n. Merge Sort has the best worst case behavior but requires
more storage than Heap Sort (though also an O(n log n) method it
has slightly more overhead than Merge Sort). Quick Sort has the best
average behavior but its worst case behavior is O(n?). The behavior
of Radix Sort depends on the size of the keys and the choice of r.

These sorting methods have been programmed in FORTRAN and
experiments conducted to determine the behavior of these methods.
The results are summarized in Table 7.2. Table 7.2(a) gives the worst
case sorting times for the various methods while table 7.2(b) gives the
average times. Since the worst case and average times for radix sort
are almost the same, only the average times have been reported. Table
7.2(b) contains two rows for Radix Sort. The first gives the times when
an optimal radix ris used for the sort. The second row gives the times
when the radix is fixed at 10. Both tables contain two rows for Insertion
Sort. Comparing the two rows gives us an indication of the time saved
by using a dummy key, K(0), in the algorithm as opposed to explicitly
checking for the left most record (i.e. R(1)). In a separate study it
was determined that for average times, Quicksort is better than Insertion
Sort only when n =23 and that for worst case times Merge Sort is
better than Insertion Sort only when n = 25. The exact cut off points
will vary with different implementations. In practice, therefore, it would
be worthwhile to couple Insertion Sort with other methods so that subfiles
of size less than about 20 are sorted using Insertion Sort.

REFERENCES AND SELECTED READINGS

A comprehensive discussion of sorting and searching may be found in:

The Art of Computer Programming: Sorting and Searching, by D. Knuth, vol.
3, Addison-Wesley, Reading, Massachusetts, 1973.

Two other useful references on sorting are:

Sorting and Sort Systems by H. Lorin, Addison-Wesley, Reading, Massachusetts,
1975.

378 Internal Sorting

Internal sorting methods illustrated with PL /1 Programs by R. Rich, Prentice-Hall,
Englewood Cliffs, 1972.

For an in depth study of quicksort and stable merge sort see:

““‘Quicksort’’ by R. Sedgewick, STAN-CS-75-492, May 1975, Computer Science
Department, Stanford University.

‘‘Stable Sorting and Merging With Optimal Space and Time Bounds’ by L.
Pardo, STAN-CS-74-470, December 1974, Computer Science Department, Stan-
ford University.

EXERCISES

1. Work through algorithms BINSRCH and FIBSRCH on an ordered file
with keys (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16) and determine the number
of key comparisons made while searching for the keys 2, 10 and 15. For
FIBSRCH we need the three Fibonnaci numbers F, =5, F =8, F, = 13,

2. [Count sort] About the simplest known sorting method arises from the
observation that the position of a record in a sorted file depends on the
number of records with smaller keys. Associated with each record there
is a COUNT field used to determine the number of records which must
precede this one in the sorted file. Write an algorithm to determine the
COUNT of each record in an unordered file. Show that if the file has
n records then all the COUNTs can be determined by making at most
n(n — 1)/2 key comparisons.

3. The insertion of algorithm INSERT was carried out by (a) searching for
the spot at which the insertion is to be made and (b) making the insertion.
If as a result of the search it was decided that the insertion had to be
made between R; and R then records R,,,,R, were moved one
space to locations R, ,,....,R,,,. This was carried out in parallel with
the search of (a). (a) can be sped up using the idea of BINSRCH or
FIBSRCH. Write an INSERT algorithm incorporating one of these two
searches.

i+1?

4. Phase (b) (see exercise 3) can be sped up by maintaining the sorted file
as a linked list. In this case the insertion can be made without any
accompanying movement of the other records. However, now (a) must
be carried out sequentially as before. Such an insertion scheme is known
as list insertion. Write an algorithm for list insertion. Note that the insertion
algorithms of exercises 3 and 4 can be used for a sort without making
any changes in INSORT.

10.

Exercises 379

a) Show that algorithm QSORT takes O(n?) time when the input file is
already in sorted order.
b) Why is K,, = K, ,, required in QSORT?

(a) The quicksort algorithm QSORT presented in section 7.3 always fixes
the position of the first record in the subfile currently being sorted. A
better choice for this record is to choose the record with key value which
is the median of the keys of the first, middle and last record in the subfile.
Thus, using this median of three rule we correctly fix the position of
the record R, with K, = median {K,, K ,,. ,/»» K,} i.e. K, is the second
largest key e.g. median {10,5,7} = 7 = median {10,7,7}. Write a nonrecur-
sive version of QSORT incorporating this median of three rule to determine
the record whose position is to be fixed. Also, adopt the suggestion of
section 7.8 and use Insertion Sort to sort subfiles of size less than 21.
Show that this algorithm takes O(n log n) time on an already sorted file.

(b) Show that if smaller subfiles are sorted first then the recursion in algorithm
QSORT can be simulated by a stack of depth O(log n).

Quicksort is an unstable sorting method. Give an example of an input
file in which the order of records with equal keys is not preserved.

a) Write a nonrecursive merge sort algorithm using linked lists to represent
sorted subfiles. Show that if n records each of size m are being sorted
then the time required is only O(n log n) as no records are physically
moved.

b) Use the rules of section 4.9 to automatically remove the recursion from
the recursive version of merge sort.

¢) Take the two algorithms written above and run them on random data
for n = 100, 200, ...,1000 and compare their running times.

(i) Prove that algorithm MSORT is stable.
(ii) Heap sort is unstable. Give an example of an input file in which the
order of records with equal keys is not preserved.

In the 2-way merge sort scheme discussed in section 7.5 the sort was
started with n sorted files each of size 1. Another approach would be
to first make one pass over the data determining sequences of records
that are in order and then using these as the initially sorted files. In this
case, a left to right pass over the data of example 7.4 would result in
the following partitioning of the data file into sorted subfiles. This would
be followed by pairwise merging of the files until only one file remains.

380 Internal Serting

[26] [s. 77] 1 61] [11 59] [15._ 48] [19]
[5 26 _77] [1 11 59 61] [15 19 48]
[1 5 11 26 59 61 77] [15 19 48]

[1 5 11 15 19 26 48 59 61 77}

Rewrite the 2-way merge sort algorithm to take into account the eXisting
order in the records. How much time does this algorithm take on an initially
sorted file? Note that the original algorithm took O(n log n) on such
an input file. What is the worst case computing time of the new algorithm?
How much additional space is needed? Use linked lists.

11. Does algorithm LRSORT result in a stable sort when used to sort numbers
as in Example 7.6?

12. Write a sort algorithm to sort records R,, ...,R, lexically on keys (K,

....,K") for the case when the range of each key is much larger than n.
In this case the bin sort scheme used in LRSORT to sort within each
key becomes inefficient (why?). What scheme would you use to sort within
a key if we desired an algorithm with

a) good worst case behavior

b) good average behavior

¢) nis small, say <I185.

13. If we have n records with integer keys in the range [0, n2),then they may
be sorted in O(n log n) time using heap or merge sort. Radix sort on a
single key, i.e., d = 1 and r = n? takes O(n?) time. Show how to interpret
the keys as 2 subkeys so that radix sort will take only O(n) time to sort
n records. (Hint: each key, K;, may bewritten asK, = K! n + K? with K/
and K? integers in the range [0, n).)

14. Generalize the method of the previous exercise to the case integer keys
in the range [0, n”) obtaining an O(pn) sorting method.

15. Write the status of the following file F at the end of each phase of the
following algorithms;
a) INSORT
b) QSORT
¢) MSORT
d) HSORT
e) LRSORT - radix 10

F=(12,2, 16, 30, 8, 28, 4, 10, 20, 6, 18)

16.

17.

18.

19.

20.

Exercises 381

Write a table sort version of quicksort. Now during the sort, records
are not physically moved. Instead, T(i) is the index of the record that
would have been in position i if records were physically moved around
as in algorithm QSORT. To begin with T(i) =i, 1 =i=< n. At the end
of the sort T(i) is the index of the record that should be in the i’th position
in the sorted file. So now algorithm TABLE of section 7.8 may be used
to rearrange the records into the sorted order specified by T. Note that
this reduces the amount of data movement taking place when compared
to QSORT for the case of large records.

Write an algorithm similar to algorithm TABLE to rearrange the records
of a file if with each record we have a COUNT of the number of records
preceding it in the sorted file (see Exercise 2).

Under what conditions would a MSD Radix sort be more efficient than
an LSD Radix sort?

Assume you are given a list of five-letter English words and are faced
with the problem of listing out these words in sequences such that the
words in each sequence are anagrams, i.e., if x and y are in the same
sequence, then word x is a permutation of word y. You are required
to list out the fewest such sequences. With this restriction show that no
word can appear in more than one sequence. How would you go about
solving this problem?

Assume you are working in the census department of a small town where
the number of records, about 3,000, is small enough to fit into the internal
memory of a computer. All the people currently living in this town were
born in the United States. There is one record for each person in this
town. Each record contains

i) the state in which the person was born;

ii) county of birth;

iii) name of person.
How would you produce a list of all persons living in this town? The
list is to be ordered by state. Within each state the persons are to be
listed by their counties. The counties being arranged in alphabetical order.
Within each county the names are also listed in alphabetical order. Justify
any assumptions you may make.

Chapter 8

EXTERNAL SORTING

In this chapter we consider techniques to sort large files. The files
are assumed to be so large that the whole file cannot be contained
in the internal memory of a computer, making an internal sort impossible.
Before discussing methods available for external sorting it is necessary
first to study the characteristics of the external storage devices which
can be used to accomplish the sort. External storage devices may broadly
be categorized as either sequential access (e.g., tapes) or direct access
(e.g.,drums and disks). Section 8.1 presents a brief study of the properties
of these devices. In sections 8.2 and 8.3 we study sorting methods
which make the best use of these external devices.

8.1 STORAGE DEVICES

8.1.1 Magnetic Tapes

Magnetic tape devices for computer input /output are similar in principle
to audio tape recorders. The data is recorded on magnetic tape approxi-
mately 1/2" wide. The tape is wound around a spool. A new reel of
tape is normally 2400 ft. long (with use, the length of tape in a reel
tends to decrease because of frequent cutting off of lengths of the tape).
Tracks run across the length of the tape, with a tape having typically
7to9tracks across its width. Depending on the direction of magnetization,
aspot onthe track canrepresent eitheraQora 1(i.e., a bit of information).
At any point along the length of the tape, the combination of bits on
the tracks represents a character (e.g., A-Z, 0-9, +, :, ;, etc.). The
number of bits that can be written per inch of track is referred to
as the tape density. Examples of standard track densities are 800 and
1600 bpi (bits per inch). Since there are enough tracks across the width
of the tape to represent a character, this density also gives the number
of characters per inch of tape. Figure 8.1 illustrates this. With the

382

Storage Devices 383

arrows in track

indicate direction

of magnetization
f =

8 tracks of an
8—track tape

Figure 8.1 Segment of a Magnetic Tape

conventions of the figure, the code for the first character on the tape
is 10010111 while that for the third character is 00011100. If the tape
is written using a density of 800 bpi then the length marked x in the
figure is 3 /800 inches.

Reading from a magnetic tape or writing onto one is done from a
tape drive, as shown in figure 8.2. A tape drive consists of two spindles.
On one of the spindles is mounted the source reel and on the other
the take up reel. During forward reading or forward writing, the tape
is pulled from the source reel across the read/write heads and onto
the take up reel. Some tape drives also permit backward reading and
writing of tapes; i.e., reading and writing can take place when tape
is being moved from the take up to the source reel.

If characters are packed onto a tape at a density of 800 bpi, then
a 2400 ft. tape would hold a little over 23 x 106 characters. A density
of 1600 bpi would double this figure. However, it is necessary to block
data on a tape since each read/ write instruction transmits a whole block
of information into/from memory. Since normally we would neither
have enough space in memory for one full tape load nor would we

384 External Sorting

take up source

reel \\\ /Vreel

forward tape motion
-—

ot
write
head

read
head

Figure 8.2 A Tape Drive

wish to read the whole tape at once, the information on a tape will
be grouped into several blocks. These blocks may be of a variable
or fixed size. In between blocks of data is an interblock gap normally
about 3/4 inches long. The interblock gap is long enough to permit
the tape to accelerate from rest to the correct read /write speed before
the beginning of the next block reaches the read /write heads. Figure
8.3 shows a segment of tape with blocked data.

interblock gap = 3/4"

BLOCK | BLOCK 2 BLOCK 3

Figure 8.3 Blocked Data on a Tape

In order to read a block from a tape one specifies the length of
the block and also the address, A, in memory where the block is to
be transmitted. The block of data is packed into the words A, A + 1,
A+ 2, Similarly, in order to write a block of data onto tape one
specifies the starting address in memory and the number of consecutive
words to be written. These input and output areas in memory will be
referred to as buffers. Usually the block size will correspond to the
size of the input/output buffers set up in memory. We would like
these blocks to be as large as possible for the following reasons:

Storage Devices 385

(i) Between any pair of blocks there is an interblock gap of 3/4".
With a track density of 800 bpi, this space is long enough to write
600 characters. Using a block length of 1 character/block on a 2400
ft. tape would result in roughly 38,336 blocks or a total of 38,336 characters
onthe entire tape. Tape utilizationis 1/601 < 0.17%. With 600 characters
per block, half the tape would be made up of interblock gaps. In this
case, the tape would have only about 11.5 % 10¢characters of information
on it, representing a 50% utilization of tape. Thus, the longer the blocks
the more characters we can write onto the tape.

(ii) If the tape starts from rest when the input/output command is
issued, then the time required to write a block of n characters onto
the tape is t, + nt,, where ¢t is the delay time and ¢, the time to transmit
one character from memory to tape. The delay time is the time needed
to cross the interblock gap. If the tape starts from rest then ¢, includes
the time to accelerate to the correct tape speed. In this case t, is larger
than when the tape is already moving at the correct speed when a
read /write command is issued. Assuming a tape speed of 150 inches
per second during read/write and 800 bpi the time to read or write
a character is 8.3 X 10¢sec. The transmission rate is therefore 12 x 104
characters /second. The delay time ¢, may typically be about 10 millisec-
onds. If the entire tape consisted of just one long block, then it could

. 2400 ft . .
be read in —————— + 10 msec = 3 min 12 sec, thus effecting an
150 in/sec
average transmission rate of almost 12 x 104 charac/sec. If, on the
other hand, each block were one character long, then the tape would
have at most 38,336 characters or blocks. This would be the worst
case and the read time would be about 6 min 24 sec or an average
of 100 charac/sec. Note that if the read of the next block is initiated
soon enough after the read of the present block, then the delay time
would be reduced to 5 milliseconds, corresponding to the time needed
to get across the interblock gap of 3/4” at a tape speed of 150 inches
per second. In this case the time to read 38,336 /character blocks would
be 3 min 12 sec, corresponding to an average of about 200 charac/sec.

While large blocks are desirable from the standpoint of efficient tape
usage as well as reduced input/output time, the amount of internal
memory available for use as input/output buffers puts a limitation on
block size.

Computer tape is the foremost example of a sequential access device.
If the read head is positioned at the front of the tape and one wishes
to read the information in a block 2000 ft. down the tape then it is

386 External Sorting

necessary to forward space the tape the correct number of blocks.
If now we wish to read the first block, the tape would have to be
rewound 2000 ft. to the front before the first block could be read.
Typical rewind times over 2400 ft. of tape could be around one minute.

Unless otherwise stated we will make the following assumptions about

our tape drives:

(i) Tapes can be written and read in the forward direction only.

(i) The input/output channel of the computer is such as to permit
the following three tasks to be carried out in parallel: writing
onto one tape, reading from another and CPU operation.

(iii) If blocks 1, ...,i have been written on a tape, then the tape can
be moved backwards block by block using a backspace command
or moved to the first block via a rewind command. Overwriting
block i — 1 with another block of the same size destroys the
leading portion of block i. While this latter assumption is not
true of all tape drives, it is characteristic of most of them.

8.1.2 Disk Storage

As an example of direct access external storage, we consider disks.
As in the case of tape storage, we have here two distinct components:
(1) the disk module (or simply disk or disk pack) on which information
is stored (this corresponds to a reel of tape in the case of tape storage)
and (2) the disk drive (corresponding to the tape drive) which performs
the function of reading and writing information onto disks. Like tapes,
disks can be removed from or mounted onto a disk drive. A disk pack
consists of several platters that are similar to phonograph records. The
number of platters per pack varies and typically is about 6. Figure
8.4 shows a disk pack with 6 platters. Each platter has two surfaces
on which information can be recorded. The outer surfaces of the top
and bottom platters are not used. This gives the disk of figure 8.4
a total of 10 surfaces on which information may be recorded. A disk
drive consists of a spindle on which a disk may be mounted and a
set of read /write heads. There is one read /write head for each surface.
During a read/write the heads are held stationary over the position
of the platter where the read /write is to be performed, while the disk
itself rotates at high speeds (speeds of 2000-3000 rpm are fairly common).
Thus, this device will read /write in concentric circles on each surface.
The area that can be read from or written onto by a single stationary
head is referred to as a track. Tracks are thus concentric circles, and
each time the disk completes a revolution an entire track passes a
read /write head. There may be from 100 to 1000 tracks on each surface

Storage Devices 387

access
assembly
platter
track that
access arm can be

read/written
at this position

¥,

@;'

\/
—'—

.

cylinder formed
by all tracks under
read/write heads
simultaneously

CV
_'

6

\

=

Figure 8.4 A Disk Drive with Disk Pack Mounted (Schematic).

of a platter. The collection of tracks simultaneously under a read/write
head on the surfaces of all the platters is called a cylinder. Tracks
are divided into sectors. A sector is the smallest addressable segment
of a track. Information is recorded along the tracks of a surface in
blocks. In order to use a disk, one must specify the track or cylinder
number, the sector number which is the start of the block and also
the surface. The read /write head assembly is first positioned to the

388 External Sorting

right cylinder. Before read/write can commence, one has to wait for
the right sector to come beneath the read /write head. Once this has
happened, data transmission can take place. Hence, there are three
factors contributing to input/output time for disks:

(i) Seek time: time taken to position the read/write heads to the
correct cylinder. This will depend on the number of cylinders
across which the heads have to move.

(i) Latency time: time until the right sector of the track is under

. the read /write head.

(iii) Transmission time: time to transmit the block of data to/from
the disk.

Maximum seek times on a disk arearound 1/10sec. A typical revolution
speed for disks is 2400 rpm. Hence the latency time is at most 1/40
sec (the time for one revolution of the disk). Transmission rates are
typically between 10° characters /second and 5 X 10° characters /second.
The number of characters that can be written onto a disk depends on
the number of surfaces and tracks per surface. This figure ranges from
about 107 characters for small disks to about 5 x 10® characters for
a large disk.

8.2 SORTING WITH DISKS

The most popular method for sorting on external storage devices is
merge sort. This method consists of essentially two distinct phases.
First, segments of the input file are sorted using a good internal sort
method. These sorted segments, known as runs, are written out onto
external storage as they are generated. Second, the runs generated in
phase one are merged together following the merge tree pattern of Example
7.4, until only one run is left. Because the merge algorithm of §7.5
requires only the leading records of the two runs being merged to be
present in memory at one time, it is possible to merge large runs together.
It is more difficult to adapt the other methods considered in Chapter
7 to external sorting. Let us look at an example to illustrate the basic
external merge sort process and analyze the various contributions to
the overall computing time. A file containing 4500 records, A, ...,A 50>
is to be sorted using a computer with an internal memory capable of
sorting at most 750 records. The input file is maintained on disk and
has a block length of 250 records. We have available another disk which
may be used as a scratch pad. The input disk is not to be written
on. One way to accomplish the sort using the general procedure outlined
above is to:

Sorting with Disks 389

(i) Internally sort three blocks at a time (i.e., 750 records) to obtain
six runs R ;-R4. A method such as heapsort or quicksort could be used.
These six runs are written out onto the scratch disk (figure 8.5).

0D 00 00 000 00 0.0

3 blocks per run

Figure 8.5 Blocked Runs Obtained After Internal Sorting

(ii) Set aside three blocks of internal memory, each capable of holding
250 records. Two of these blocks will be used as input buffers and
the third as an output buffer. Merge runs R, and R,. This is carried
out by first reading one block of each of these runs into input buffers.
Blocks of runs are merged from the input buffers into the output buffer.
When the output buffer gets full, it is written out onto disk. If an
input buffer gets empty, it is refilled with another block from the same
run. After runs R, and R, have been merged, R, and R, and finally
R, and R¢ are merged. The result of this pass is 3 runs, each containing
1500 sorted records of 6 blocks. Two of these runs are now merged
using the input/output buffers set up as above to obtain a run of size
3000. Finally, this run is merged with the remaining run of size 1500
to obtain the desired sorted file (figure 8.6).

Let us now analyze the method described above to see how much
time is required to sort these 4500 records. The analysis will use the
following notation:

maximum seek time
t, = maximum latency time
t,, = time to read or write one block of 250 records
th = ts+ tl+ trw
t;s = time to internally sort 750 records
nt, = time to merge n records from input buffers to the output
buffer

We shall assume that each time a block is read from or written onto
the disk, the maximum seek and latency times are experienced. While
this is not true in general, it will simplify the analysis. The computing
time for the various operations are:

External Sorting

390

suni g ay) SuiBlo 9'§ amsig

srooss]I [T LTI TITTTTTT] smens
s coos (LT L LT T[T o wane
smmos [TT1T1] [TLITT] CILTILT] &%
wew e (L1 (110 (J17 (LT3 [T [TT]

Sorting with Disks 391

Operation Time
1) read 18 blocks of input, 18t,,, internally sort, 6t
write 18 blocks, 18t,q 36t + 6tyg
2) merge runs 1-6 in pairs 36 t,o + 4500 t,,
3) merge 2 runs of 1500 records each, 12 blocks 24t + 3000t
4) merge one run of 3000 records with one run of 1500
records 36t,5 +4500t,,

Total Time 132 t,o + 12000 t,, + 6t

Note that the contribution of seek time can be reduced by writing
blocks on the same cylinder or on adjacent cylinders. A close look
at the final computing time indicates that it depends chiefly on the
number of passes made over the data. In addition to the initial input
pass made over the data for the internal sort, the merging of the runs
requires 2-2/3 passes over the data (one pass to merge 6 runs of length
750 records, two thirds of a pass to merge two runs of length 1500
and one pass to merge one run of length 3000 and one of length 1500).
Since one full pass covers 18 blocks, the input and output time is
2X(22/3+1)x18¢t,,=1321t,,. The leading factor of 2 appears
because each record that is read is also written out again. The merge
time is 2-2/3 x 4500 t,, = 12,000 t,,. Because of this close relationship
between the overall computing time and the number of passes made
over the data, future analysis will be concerned mainly with counting
the number of passes being made. Another point to note regarding the
above sort is that no attempt was made to use the computer’s ability
to carry out input/output and CPU operation in parallel and thus overlap
some of the time. In the ideal situation we would overlap almost all
the input /output time with CPU processing so that the real time would
be approximately 132 ¢,, = 12000 ¢,, + 6 ¢ 5.

If we had two disks we could write on one while reading from the
other and merging buffer loads already in memory all at the same time.
In this case a proper choice of buffer lengths and buffer handling schemes
would result in a time of almost 66 t,,. This parallelism is an important
consideration when the sorting is being carried out in a non-multi-pro-
gramming environment. In this situation unless input/output and CPU
processing is going on in parallel, the CPU is idle during input/output.
In a multi-programming environment, however, the need for the sorting
program to carry out input/output and CPU processing in parallel may
not be so critical since the CPU can be busy working on another program
(if there are other programs in the system at that time), while the sort
program waits for the completion of its input/output. Indeed, in many

392 External Sorting

multi-programming environments it may not even be possible to achieve
parallel input, output and internal computing because of the structure
of the operating system.

The remainder of this section will concern itself with: (1) reduction
of the number of passes being made over the data and (2) efficient
utilization of program buffers so that input, output and CPU processing
is overlapped as much as possible. We shall assume that runs have
already been created from the input file using some internal sort scheme.
Later, we investigate a method for obtaining runs that are on the average
about 2 times as long as those obtainable by the methods discussed
in Chapter 7.

8.2.1 k-Way Merging

The 2-way merge algorithm of Section 7.5 is almost identical to the
merge procedure just described (figure 8.6). In general, if we started
with m runs, then the merge tree corresponding to figure 8.6 would
have [log,m] + 1 levels for a total of [log,m] passes over the data
file. The number of passes over the data can be reduced by using
a higher order merge, i.e., k-way merge for k= 2. In this case we
would simultaneously merge k runs together. Figure 8.7 illustrates a
4-way merge on 16 runs. The number of passes over the data is now
2, versus 4 passes in the case of a 2-way merge. In general, a k-way
merge on m runs requires at most [log, m| passes over the data. Thus,
the input/output time may be reduced by using a higher order merge.
The use of a higher order merge, however, has some other effects on
the sort. To begin with, k-runs of size S,,S,,S;, ...,S, can no longer
be merged internally in O(2¥ S;) time. In a k-way merge, as in a 2-way
merge, the next record to be output is the one with the smallest key.
The smallest has now to be found from k possibilities and it could
be the leading record in any of the k-runs. The most direct way to
merge k-runs would be to make k — 1 comparisons to determine the
next record to output. The computing time for this would be O((k — 1)
$kS,). Since log, m passes are being made, the total number of key
comparisons being made is n(k — 1)log, m = n(k — 1)log, m/log, kwhere
n is the number of records in the file. Hence, (k — 1)/log, k is the
factor by which the number of key comparisons increases. As kincreases,
the reduction in input /output time will be overweighed by the resulting
increase in CPU time needed to perform the k-way merge. For large
k (say, k= 6) we can achieve a significant reduction in the number
of comparisons needed to find the next smallest element by using the
idea of a selection tree. A selection tree is a binary tree where each

Sorting with Disks 393

I 2 3 4 5 6 7 8 9 10 Il 12 13 14 1516

Figure 8.7 A 4-way Merge on 16 Runs

. m
| 2.k kel ... 2K c ke m
L]
[Iogk m]+ 1 levels .
K
r m—e \

Figure 8.8 A k-Way Merge

node represents the smaller of its two children. Thus, the root node
represents the smallest node in the tree. Figure 8.9 illustrates a selection
tree for an 8-way merge of 8-runs.

The construction of this selection tree may be compared to the playing
of a tournament in which the winner is the record with the smaller
key. Then, each nonleaf node in the tree represents the winner of a
tournament and the root node represents the overall winner or the smallest
key. A leaf node here represents the first record in the corresponding
run. Since the records being sorted are generally large, each node will
contain only a pointer to the record it represents. Thus, the root node

394 External Sorting

contains a pointer to the first record in run 4. The selection tree may
be represented using the sequential allocation scheme for binary trees
discussed in section 5.3. The number above each node in figure 8.9
represents the address of the node in this sequential representation.
The record pointed to by the root has the smallest key and so may
be output. Now, the next record from run 4 enters the selection tree.
It has a key value of 15. To restructure the tree, the tournament has
to be replayed only along the path from node 11 to the root. Thus,
the winner from nodes 10 and 11 is again node 11 (15 < 20). The winner
from nodes 4 and 5 is node 4 (9 < 15). The winner from 2 and 3 is
node 3 (8 < 9). The new tree is shown in figure 8.10. The tournament
is played between sibling nodes and the result put in the parent node.

1S 20 20 | 15 15 I 10 18
16 38 30 25 50 16 110 20
run | run2 run3d run4 runS run6 run7 run8

Figure 8.9 Selection tree for 8-way merge showing the first three keys in each of the
8 runs.

Sorting with Disks 395

Lemma 5.3 may be used to compute the address of sibling and parent
nodes efficiently. After each comparison the next takes place one higher
level in the tree. The number of levels in the tree is [log, k] + 1.
So, the time to restructure the tree is O(log, k). The tree has to be
restructured each time a record is merged into the output file. Hence,
the time required to merge all n records is O(nlog, k). The time required
to set up the selection tree the first time is O(k). Hence, the total
time needed per level of the merge tree of figure 8.8 is O(nlog, k).
Since the number of levels in this tree is O(log, m), the asymptotic
internal processing time becomes O(n log, k log, m) = O(nlog, m). The
internal processing time is independent of k.

Note, however, that the internal processing time will be increased
slightly because of the increased overhead associated with maintaining
the tree. Thisoverhead may bereduced somewhat if each node represents

15 20 20 25 15 I 100 18
16 38 30 25 50 16 1o 20

Figure 8.10 Selection tree of Figure 8.9 after one record has been output and tree
restructured. Nodes that were changed are marked by /.

396 External Sorting

the loser of the tournament rather than the winner. After the record
with smallest key is output, the selection tree of figure 8.9 is to be
restructured. Since the record with the smallest key value is in run
4, this restructuring involves inserting the next record from this run
into the tree. The next record has key value 15. Tournaments are played
between sibling nodes along the path from node 11 to the root. Since
these sibling nodes represent the losers of tournaments played earlier,
we could simplify the restructuring process by placing in each nonleaf
node a pointer to the record that loses the tournament rather than to
the winner of the tournament. A tournament tree in which each nonleaf
node retains a pointer to the loser is called a tree of losers. Figure
8.11 shows the tree of losers corresponding to the selection tree of
figure 8.9. For convenience, each node contains the key value of a
record rather than a pointer to the record represented. The leaf nodes
represent the first record in each run. An additional node, node 0,
has been added to represent the overall winner of the tournament.
Following the output of the overall winner, the tree is restructured by

0 oyeroll
// winner

Figure 8.11 Tree of Losers Corresponding to Figure 8.9

Sorting with Disks 397

playing tournaments along the path from node 11 to node 1. The records
with which these tournaments are to be played are readily available
from the parent nodes. We shall see more of loser trees when we study
run generation in section 8.2.3.

In going to a higher order merge, we saveon the amount of input / output
being carried out. There is no significant loss in internal processing
speed. Even though the internal processing time is relatively insensitive
to the order of the merge, the decrease in input/output time is not
as much as indicated by the reduction to log, m passes. This is so
because the number of input buffers needed to carry out a k-way merge
increases with k. Though k + 1 buffers are sufficient, we shall see in
section 8.2.2 that the use of 2k + 2 buffers is more desirable. Since
the internal memory available is fixed and independent of k, the buffer
size must be reduced as k increases. This in turn implies a reduction
in the block size on disk. With the reduced block size each pass over
the data results in a greater number of blocks being written or read.
This represents a potential increase in input/output time from the
increased contribution of seek and latency times involved in reading
a block of data. Hence, beyond a certain k value the input/output
time would actually increase despite the decrease in the number of passes
being made. The optimal value for k clearly depends on disk parameters
and the amount of internal memory available for buffers (exercise 3).

8.2.2 . Buffer Handling for Parallel Operation

If k runs are being merged together by a k-way merge, then we clearly
need at least k input buffers and one output buffer to carry out the
merge. This, however, is not enough if input, output and internal merging
are to be carried out in parallel. For instance, while the output buffer
is being written out, internal merging has to be halted since there is
no place to collect the merged records. This can be easily overcome
through the use of two output buffers. While one is being written out,
records are merged into the second. If buffer sizes are chosen correctly,
then the time to output one buffer would be the same as the CPU
time needed to fill the second buffer. With only k input buffers, internal
merging will have to be held up whenever one of these input buffers
becomes empty and another block from the corresponding run is being
read in. This input delay can also be avoided if we have 2k input buffers.
These 2k input buffers have to be cleverly used in order to avoid reaching
a situation in which processing has to be held up because of lack of
input records from any one run. Simply assigning two buffers per run
does not solve the problem. To see this, consider the following example.

398 External Sorting

Example 8.1: Assume that a two way merge is being carried out using
four input buffers, IN(i), 1 =i=4, and two output buffers, OU(1)
and OU(2). Each buffer is capable of holding two records. The first
few records of run 1 have key value 1, 3, 5, 7, 8, 9. The first few
records of run 2 have key value 2, 4, 6, 15, 20, 25. Buffers IN(1)
and IN(3) are assigned to run 1. The remaining two input buffers are
assigned to run 2. We start the merging by reading in one buffer load
from each of the two runs. At this time the buffers have the configuration
of figure 8.12(a). Now runs 1 and 2 are merged using records from
IN(1) and IN(2). In parallel with this the next buffer load from run
1 is input. If we assume that buffer lengths have been chosen such
that the times to input, output and generate an output buffer are all
the same then when OU (1) is full we have the situation of figure 8.12(b).
Next, we simultaneously output OU(1), input into IN(4) from run 2
and merge into OU(2). When OU(2) is full we are in the situation of
figure 8.12(c). Continuing in this way we reach the configuration of
figure 8.12(e). We now begin to output QU(2), input from run 1 into
IN(3) and merge into OU(1). During the merge, all records from run
1 get exhausted before QU (1) gets full. The generation of merged output
must now be delayed until the inputting of another buffer load from
run 1 is completed! |

Example 8.1 makes it clear that if 2k input buffers are to suffice
then we cannot assign two buffers per run. Instead, the buffers must
be floating in the sense that an individual buffer may be assigned to
any run depending upon need. In the buffer assignment strategy we
shall describe, for each run there will at any time be, at least one input
buffer containing records from that run. The remaining buffers will
be filled on a priority basis. I.e., the run for which the k-way merging
algorithm will run out of records first is the one from which the next
buffer will be filled. One may easily predict which run’s records will
be exhausted first by simply comparing the keys of the last record
read from each of the k runs. The smallest such key determines this
run. We shall assume that in the case of equal keys the merge process
first merges the record from the run with least index. This means that
if the key of the last record read from run i is equal to the key of
the last record read from run j, and i < j, then the records read from
i will be exhausted before those from j. So, it is possible that at any
one time we might have more than two bufferloads from a given run
and only one partially full buffer from another run. All bufferloads
from the same run are queued together. Before formally presenting
the algorithm for buffer utilization, we make the following assumptions

399

Sorting with Disks

(2)

uonesado pajered

panunuod 10§ y3noua jou a1e uni 1ad s13Jjnq paxij oml jeyl Suimoys sdutexy zr'g amdig

(#) NI otut yndul

(9)

(2) NO ojui absaw
(1) N0 #ndyno

(D)
(B)NI (£) NI
(S)NI ojur yndut
() N0 odur abssw (o) (1) N
b ¢
2 |
(2)no (1HnNo

External Sorting

400

()

Sl

°T4
o4

(€)N| ndwy

(1)NO oyw abiaw
(2)NO ndyno

5

Sl

G
o<

(panupuod) Zr°g 3mdy

(2)N1 4ndu

(2) N0 o abiaw
(1HNO indyno

(p)

[

(1) NI indus

(1)NO owun abiaw
(2) nO ndyno

e [=7]

Sorting with Disks 401

about the parallel processing capabilities of the computer system available:

(i) We have two disk drives and the input/output channel is such
that it is possible simultaneously to read from one disk and write onto
the other.

(i) While data transmission is taking place between an input /output
device and a block of memory, the CPU cannot make references to
that same block of memory. Thus, it is not possible to start filling
the front of an output buffer while it is being written out. If this were
possible, then by coordinating the transmission and merging rate only
one output buffer would be needed. By the time the first record for
the new output block was determined, the first record of the previous
output block would have been written out.

(iii) To simplify the discussion we assume that input and output buffers
are to be the same size.

Keeping these assumptions in mind, we first formally state the algorithm
obtained using the strategy outlined earlier and then illustrate its working
through an example. Our algorithm merges k-runs, k = 2, using a k-way
merge. 2k input buffers and 2 output buffers are used. Each buffer
is a contiguous block of memory. Input buffers are queued in k queues,
one queue for each run. It is assumed that each input/output buffer
is long enough to hold one block of records. Empty buffers are stacked
with AV pointing to the top buffer in this stack. The stack is a linked
list. The following variables are made use of:

IN (i) ... input buffers, 1 <i =<2k
OUT (i) ... output buffers, 0<i<1
FRONT (i) ... pointer to first buffer in queue for runi, 1 <i<k
END (i) ... end of queue for i-thrun, 1 =i<k
LINK (i) ... link field for i-th input buffer
in a queue or for buffer in stack 1 =i = 2k
LAST (i) ... value of key of last record read
fromruni, l=i=<k
OU ... buffer currently used for output.

The algorithm also assumes that the end of each run has a sentinel
record with a very large key, say +oo. If block lengths and hence buffer
lengths are chosen such that the time to merge one output buffer load
equals the time to read a block then almost all input, output and
computation will be carried out in parallel. It is also assumed that in
the case of equal keys the k-way merge algorithm first outputs the
record from the run with smallest index.

402 External Sorting

procedure BUFFERING
for i <— 1 to k do /input a block from each run /
input first block of run i into IN (i)
end
while input not complete do end S wait /
for i—1to kdo /initialize queues and free buffers /
FRONT(i) «— END(i) < i
LAST (i) < last key in buffer IN(i)
LINK(k +iy<—k+i+1 / stack frée buffer /
end
LINKQ2k) <~ 0; AV<—k+ 1, 0U<0
/ first queue exhausted is the one whose last key read is smallest /
11 find j such that LAST(j) =]Tjilk {LAST (i)}

SN O~ AW —

—

12 l— AV; AV<— LINK(AV) / get next free buffer /

13 if LAST(j) # +> then [begin to read next block for run j into
buffer IN(1)]

14 repeat / KWAYMERGE merges records from the k buffers

FRONT(i) into output buffer OU until it is full.
If an input buffer becomes empty before OU is
filled, the next buffer in the queue for this run
is used and the empty buffer is stacked or last key

= +oo/

15 call K WAYMERGE
16 while input /output not complete do / wait loop /
17 end

if LAST (j) # +oo then
18 [LINK(END(j)) < I; END(j) « l; LAST(j) < last key read

/ queue new block /7
19 find j such that LAST(j) = lrEiin {LAST(i)}
20 | — AV; AV « LINK(AWN)] /get next free buffer /
21 last-key-merged < last key in OUT(OU)
22 if LAST(j) # += then [begin to write OUT(OU) and read
next block of run j into IN(1)]

23 else [begin to write OUT(OU)]
24 OU<1-0U
25 until last-key-merged = +x
26 while output incomplete do / wait loop /
27 end

28 end BUFFERING

Sorting with Disks 403

Notes: 1) For large k, determination of the queue that will exhaust
first can be made in log, k comparisons by setting up a selection tree
for LAST(i), 1 = i = k, rather than making k — 1 comparisons each time
a buffer load is to be read in. The change in computing time will not
be significant, since this queue selection represents only a very small
fraction of the total time taken by the algorithm.

2) For large k the algorithm KWAYMERGE uses a selection tree
as discussed in section 8.2.1.

3) All input/output except for the initial k blocks that are read and
the last block output is done concurrently with computing. Since after
k runs have been merged we would probably begin to merge another
set of k runs, the input for the next set can commence during the final
merge stages of the present set of runs. I.e., when LAST(j) = +» we
begin reading one by one the first blocks from each of the next set
of k runs to be merged. In this case, over the entire sorting of a file,
the only time that is not overlapped with the internal merging time
is the time for the first k blocks of input and that for the last block
of output.

4) The algorithm assumes that all blocks are of the same length.
This may require inserting a few dummy records into the last block
of each run following the sentinal record +cc.

Example 8.2: To illustrate the working of the above algorithm, let us
trace through it while it performs a three-way merge on the following
three runs:

Run | 20 25 26 28 29 30 33 +00

Run 2 23 29 34 36 38 60 70 +00

Run 3 24 28 3l 33 40 43 5 +o0

Each run consists of four blocks of two records each; the last key
in the fourth block of each of these three runs is +=. We have six
input buffers IN(i), 1 = { < 6, and 2 output buffers OUT(0) and OUT(1).
The diagram on page 404 shows the status of the input buffer queues,
the run from which the next block is being read and the output buffer
being ouput at the beginning of each iteration of the repeat-until of
the buffering algorithm (lines 14-25).

External Sorting

404

xau ou

1xau ou

2 unJ

¢ unJ

2 uni

¢ unJ

| unJ

2unJ

¢ uniJ

| unJ

| uniJ

wouJ 4
poay buiag
32018 XN

®+ 0L

o
0
Q
wn

o]
<
2]

®
2]
0
[\2]

%
R

3]
5]

n

on Q
o M
@©

N N

9¢ b¢
9¢ e
62

82 92 ¢€e Ie 82

sz b2 sz |

€ 02 82 b

indyno ou 82 té
ndin0 ¢ uny

] -
o

@+ € 9
3 S
S
Bz ozk—fsz | 2
¢ @ |
| uny ananp aui

Sorting with Disks 405

From line § it is evident that during the k-way merge the test for
“‘output buffer full?”’ should be carried out before the test ‘‘input buffer
empty?’’ as the next input buffer for that run may not have been read
in yet and so there would be no next buffer in that queue. In lines
3 and 4 all 6 input buffers are in use and the stack of free buffers
is empty. O

We end our discussion of buffer handling by proving that the algorithm
BUFFERING works. This is stated formally in Theorem 8.1.

Theorem 8.1: The following is true for algorithm BUFFERING:

(i) There is always a buffer available in which to begin reading the
next block; and

(ii) during the k-way merge the next block in the queue has been

read in by the time it is needed.
Proof: (i) Each time we get to line 20 of the algorithm there are at
most k + 1 buffer loads in memory, one of these being in an output
buffer. For each queue there can be at most one buffer that is partially
full. If no buffer is available for the next read, then the remaining
k buffers must be full. This means that all the k partially full buffers
are empty (as otherwise there will be more than k + 1 buffer loads
in memory). From the way the merge is set up, only one buffer can
be both unavailable and empty. This may happen only if the output
buffer gets full exactly when one input buffer becomes empty. But
k > 1 contradicts this. So, there is always at least one buffer available
when line 20 is being executed.

(ii) Assume this is false. Let run R, be the one whose queue becomes
empty during the KWAYMERGE. We may assume that the last key
merged was not the sentinel key +« since otherwise KWAYMERGE
would terminate the search rather then get another buffer for R;. This
means that there are more blocks of records for run R; on the input
file and LAST(i) # +. Consequently, up to this time whenever a block
was output another was simultaneously read in (see line 22). Input/output
therefore proceeded at the same rate and the number of available blocks
of data is always k. An additional block is being read in but it does
not get queued until line 18. Since the queue for R; has become empty
first, the selection rule for the next run to read from ensures that there
is at most one block of records for each of the remaining k — 1 runs.
Furthermore, the output buffer cannot be full at this time as this condition
is tested for before the input buffer empty condition. Thus there are

406 External Sorting

fewer than k blocks of data in memory. This contradicts our earlier
assertion that there must be exactly k such blocks of data. a

8.2.3 Run Generation

Using conventional internal sorting methods such as those of Chapter
7 it is possible to generate runs that are only as large as the number
of records that can be held in internal memory at one time. Using
a tree of losers it is possible to do better than this. In fact, the algorithm
we shall present will on the average generate runs that are twice as
long as obtainable by conventional methods. This algorithm was devised
by Walters, Painter and Zalk. In addition to being capable of generating
longer runs, this algorithm will allow for parallel input, output and internal
processing. For almost all the internal sort methods discussed in Chapter
7, this parallelism is not possible. Heap sort is an exception to this.
In describing the run generation algorithm, we shall not dwell too much
upon the input/output buffering needed. It will be assumed that
input/output buffers have been appropriately set up for maximum
overlapping of input, output and internal processing. Wherever in the
run generation algorithm there is an input/output instruction, it will
be assumed that the operation takes place through the input/output
buffers. We shall assume that there is enough space to construct a
tree of losers for k records, R(i), 0 = i < k. This will require a loser
tree with k nodes numbered 0 to k — 1. Each node, i, in this tree will
have one field L (i). L (i), 1 = i < krepresents the loser of the tournament
played at node i. Node O represents the overall winner of the tournament.
This node will not be explicitly present in the algorithm. Each of the
krecord positions R (i), has a run number field RN (i},0 = i < kassociated
with it. This field will enable us to determine whether or not R(i)
can be output as part of the run currently being generated. Whenever
the tournament winner is output, a new record (if there is one) is input
and the tournament replayed as discussed in section 8.2.1. Algorithm
RUNS is simply an implementation of the loser tree strategy discussed
earlier. The variables used in this algorithm have the following signifi-
cance:

R@i), 0 <i <k ... the k records in the tournament tree
KEY(), 0 =i <k ... key value of record R(1)
L@), 0 <i<k ... loser of the tournament played at node i
RN(), 0 =i <k ... the run number to which R(1) belongs
RC ... run number of current run

Q ... overall tournament winner

Sorting with Tapes 407

RQ ... run number for R(Q)
RMAX ... number of runs that will be generated
LAST_KEY ... key value of last record output

The loop of lines 5-25 repeatedly plays the tournament outputting
records. The only interesting thing about this algorithm is the way in
which the tree of losers is initialized. This is done in lines 1-4 by
setting up a fictitious run numbered 0. Thus, we have RN(i) = 0 for
each of the k records R(i). Since all but one of the records must be
a loser exactly once, the initialization of L (i) < i sets up a loser tree
with R(0) the winner. With this initialization the loop of lines 5-26
correctly sets up the loser tree for run 1. The test of line 10 suppresses
the output of these k fictitious records making up run 0. The variable
LAST _KEY is made use of in line 13 to determine whether or not
the new record input, R(Q), can be output as part of the current run.
If KEY(Q) < LAST_KEY then R(Q) cannot be output as part of the
current run RC as a record with larger key value has already been
output in this run. When the tree is being readjusted (lines 18-24),
arecord with lower run number wins over one with a higher run number.
When run numbers are equal, the record with lower key value wins.
This ensures that records come out of the tree in nondecreasing order
of their run numbers. Within the same run, records come out of the
tree in nondecreasing order of their key values., RMAX is used to terminate
the algorithm. In line 11, when we run out of input, a record with
run number RMAX + 1 is introduced. When this record is ready for
output, the algorithm terminates in line 8. One may readily verify that
when the input file is already sorted, only one run is generated. On
the average, the run size is almost 2k. The time required to generate
all the runs for an n run file is O(nlog k) as it takes O(log k) time
to adjust the loser tree each time a record is output. The algorithm
may be speeded slightly by explicitly initializing the loser tree using
the first k records of the input file rather than k fictitious records as
in lines 1-4. In this case the conditional of line 10 may be removed
as there will no longer be a need to suppress output of certain records.

Program on next page

8.3 SORTING WITH TAPES

Sorting on tapes is carried out using the same basic steps as sorting
on disks. Sections of the input file are internally sorted into runs which
are written out onto tape. These runs are repeatedly merged together

-

408

External Sorting

procedure RUNS

1

O O ~I AN AW

—
<

11
12
13
14

15
16

17

18
19
20

21

22
23
24
25
26

/ generate runs using a tree of losers /
fori—1tok— Ido /set up fictitious run 0 to initialize
tree /
RN(i) « 0; L(i) « i; KEY(i) « O
end
Q< RQ<«— RC«— RMAX « RN(0) «0; LAST__KEY «x
loop /Zoutput runs /#
if RQ # RC then [Zend of run/
if RC # 0 then output end of run marker
if RQ > RMAX then stop
else RC < RQ]
#output record R(Q) if not fictitious /
if RQ # 0 then [output R(Q); LAST__KEY « KEY(Q)]
/input new record into tree /
if no more input then RQ « RMAX + 1
else [input a new record into R(Q)
if KEY(Q) < LAST__KEY
then [#new record belongs to next
run/
RQ<RQ+1
RN(Q) < RQ
RMAX < RQ]
else [RN(Q) < RC]]
/ adjust losers /
T [tk+ Q)/2] # T is parent of Q7
while T # 0 do
it RN(L(T)) < RQor (RN(L(T)) = RQand KEY(L(T)) <
KEY(Q))
then [TEMP « Q; Q « L(T); L(T) < TEMP
/T is the winner /
RQ < RN(Q)]

T« |T/2] /move up tree /
end
forever

end RUNS

until there is only one run. The difference between disk and tape sorting
lies essentially in the manner in which runs are maintained on the external
storage media. In the case of disks, the seek and latency times are
relatively insensitive to the specific location on the disk of the next

Sorting with Tapes 409

block to be read with respect to the current position of the read/write
heads. (The maximum seek and latency times were about 1/10 sec
and 1/40sec. respectively.) Thisis not true for tapes. Tapes are sequential
access. If the read/write head is currently positioned at the front of
the tape and the next block to be read is near the end of the tape
(say ~ 2400 feet away), then the seek time, i.e., the time to advance
the correct block to the read /write head, is almost 3 min 2 sec. (assuming
a tape speed of 150 inches/second). This very high maximum seek
time for tapes makes it essential that blocks on tape be arranged in
such an order that they would be read in sequentially during the k-way
merge of runs. Hence, while in the previous section we did not concern
ourselves with the relative position of the blocks on disk, in this section,
the distribution of blocks and runs will be our primary concern. We
shall study two distribution schemes. Before doing this, let us look
at an example to see the different factors involved in a tape sort.

Example 8.3: A file containing 4,500 records, R, ...,R s, is to be sorted
using a computer with an internal memory large enough to hold only
800 records. The available external storage consists of 4 tapes, T1,
T2, T3 and T4. Each block on the input tape contains 250 records.
The input tape is not to be destroyed during the sort. Initially, this
tape is on one of the 4 available tape drives and so has to be dis-
mounted and replaced by a work tape after all input records have been
read. Let us look at the various steps involved in sorting this file. In
order to simplify the discussion, we shall assume that the initial run gener-
ation is carried out using a conventional internal sort such as quicksort.
In this case 3 blocks of input can be read in at a time, sorted and out-
put as a run. We shall also assume that no parallelism in input, output
and CPU processing is possible. In this case we shall use only one
output buffer and two input buffers. This requires only 750 record spaces.

Time

Step 1 Rewind all tapes) 0 assuming all tapes ini-
tially rewound.

Step 2 Internally sort sets of 3 blocks of 250 records each 36t + 61t
to obtain runs 750 records long. Write these runs
alternately onto tapes T1 and T2 to obtain the following
tape configuration.

T1 | Run1 | Run3 | Run$

A Read /Write Head

410

T2

Input
Tape

Note: Runs 1-6 each consist of three blocks of 250 records each.

Step 3

Step 4

T1

T2

T3

T4

Step 5
Step 6

Tl
T2
T3
T4
Step 7
Step 8

Step 9

External Sorting

| Run2 | Run4 | Runé

A Read /Write Head

14500 record input, 250 records /block

]

Read /Write Head A

Rewind T1, T2 and input tape. Dismount input tape
and replace by a work tape T4. (All tapes may be
rewound in parallel, we need not wait for T4 as the
next step requires only T3 initially).

Using a 2-way merge, merge runs from file T1 with
those on file T2 and distribute the resulting bigger
runs alternately onto T3 and T4. The four tapes now
take the form:

{ Runil | Run3 [Runs

A

l

Run 2 [Run 4 I Run 6

A

L Run 1 ‘ Run 3

I

Run 2

A

9t.,+4A

rew

36t,, +4500t,,

Run 1 on T3 was obtained by merging run 1 from T1 with run 2 from T2
Run 2 on T4 was obtained by merging run 3 from T1 with run 4 from T2
Run 3 on T3 was obtained by merging run 5 from T1 with run 6 from T2

Rewind T1-T4

Merge run 1 from T3 with run 2 from T4 onto TI
to get:

| Run 1 = 12 blocks = 3000 records

L Run 3]
A

Rewind tapes T1 and T4

Merge the run on T1 with run 3 on T3 onto T2 to
obtain the sorted file

Rewind all tapes. T2 is the output tape

Total Time =

t,s = time to internally sort 750 records

lztrew
241, + 30001,

12t
36t,, + 45001,

18t,.,

6t,g + 132t + 12000-
t,+S5lt,, +A

Sorting with Tapes 411

-
1

time to read or write one block of 250 records onto tape starting
at present position of read /write head

time to rewind tape over a length corresponding to 1 block

time to merge n records from input buffers to output buffers using
a 2-way merge

delay caused by having to wait for T4 to be mounted in case we
are ready to use T4 in step 4 before the.completion of this tape
mount,

rew

nt,,

o

B
i

The above computing time analysis assumes that no operations are carried
out in parallel. The analysis could be carried out further as in the case
of disks to show the dependence of the sort time on the number of
passes made over the data.

8.3.1 Balanced Merge Sorts

Example 8.3 performed a 2-way merge of the runs. As in the case
of disk sorting, the computing time here too depends essentially on
the number of passes being made over the data. Use of a higher order
merge results in a decrease in the number of passes being made without
significantly changing the internal merge time. Hence, we would like
to use as high an order merge as possible. In the case of disks the
order of merge was limited essentially by the amount of internal memory
available for use as input/output buffers. A k-way merge required the
use of 2k + 2 buffers. While this is still true of tapes, another probably
more severe restriction on the merge order k is the number of tapes
available. In order to avoid excessive tape seek times, it is necessary
that runs being merged together be on different tapes. Thus, a k-way
merge requires at least k-tapes for use as input tapes during the merge.

In addition, another tape is needed for the output generated during
this merge. Hence, at least k + 1 tapes must be available for a k-way
tape merge (recall that in the case of a disk, one disk was enough
for a k-way merge though two were needed to overlap input and output).
Using k + 1 tapes to perform a k-way merge requires an additional
pass over the output tape to redistribute the runs onto k-tapes for the
next level of merges (see the merge tree of figure 8.8). This redistribution
pass can be avoided through the use of 2k tapes. During the k-way
merge, k of these tapes are used as input tapes and the remaining k
as output tapes. At the next merge level, the role of input-output tapes
is interchanged as in example 8.3, where in step 4, T1 and T2 are
used as input tapes and T3 and T4 as output tapes while in step 6,
T3 and T4 are the input tapes and T1 and T2 the output tapes (though
there is no output for T2). These two approaches to a k-way merge

412 External Sorting

are now examined. Algorithms M1 and M2 perform a k-way merge
with the k + 1 tapes strategy while algorithm M3 performs a k-way
merge using the 2k tapes strategy.

procedure M1
/ Sort a file of records from a given input tape using a k-way
merge given tapes T,, ...,T,., are available for the sort. /

1 Create runs from the input file distributing them evenly over
tapes Ty, ..., T,

2 Rewind T,, ...,T, and also the input tape

3 if there is only 1 run then return / sorted file on T,/

4 replace input tape by T, ,

5 loop s repeatedly merge onto T,,, and redistribute back

onto Ty, ..., T,/

6 merge runs from T,, ..., T, onto T,

7 rewind T,, ..., T, .,

8 if number of runs on T,,, = 1 then return Joutput on
Tk+1/

9 evenly distribute from T, ., onto T,, ..., T,

10 rewind Ty, ..., T, .,

11 forever

12 end M1

Analysis of Algorithm M1

To simplify the analysis we assume that the number of runs generated,
m, is a power of k. Line 1 involves one pass over the entire file. One pass
includes both reading and writing. In lines 5-11 the number of passes is
log, m merge passes and log,m — 1 redistribution passes. So, the total
number of passes being made over the file is 2log,m. If the time to re-
wind the entire input tape is t.w, then the non-overlapping rewind time
is roughly 2log,m t ew. a

A somewhat more clever way to tackle the problem is to rotate the
output tape, i.e., tapes are used as output tapes in the cyclic order,
k + 1,1,2, ...,k. When this is done, the redistribution from the output
tape makes less than a full pass over the file. Algorithm M2 formally
describes the process. For simplicity the analysis of M2 assumes that
m is a power of k.

Program on next page

Analysis of Algorithm M2
The only difference between algorithms M2 and M 1 is the redistributing

Sorting with Tapes 413

procedure M2
/ same function as M1/

1 Create runs from the input tape, distributing them evenly over
tapes T, ..., T,.

2 rewind T,, ..., T, and also the input tape

3 if there is only 1 run then return /sorted file is on T, /

4 replace input tape by T, .,

5 ie—k+1 /iis index of output tape /

6 loop

7 merge runs from the k tapes T;, 1 = j<k + 1 and j # i onto
T;

8 rewind tapes T,, ..., T, .,

9 if number of runs on T, = 1 then return /output on T,/

10 evenly distribute (k — 1) /k of the runs on T, onto tapes T;, 1 <
j=k+landj#iandj# imodk + 1)+ 1

11 rewind tapes T;,, | < f <k + landj # i

12 i< imod(k + 1) + 1

13 forever

14 end M2

time. Once again the redistributing is done log, m — 1 times. m is the
number of runs generated in line 1. But, now each redistributing pass
reads and writes only (k — 1) /k of the file. Hence, the effective number
of passes made over the data is (2 — 1/k)log, m + 1/k. For two-way
merging on three tapes this means that algorithm M2 will make 3/2
logiym + 1/2 passes while M1 will make 2 log,m. If t,, is the rewind
time then the non-overlappable rewind time for M2 is at most (1 + 1/k)
(logim)t,e. + (1 — 1/k)t . as line 11 rewinds only 1/k of the file. In-
stead of distributing runs as in line 10 we could write the first m/k runs
onto one tape, begin rewind, write the next m/k runs onto the second
tape, begin rewind, etc. In this case we can begin filling input buffers
for the next merge level (line 7) while some of the tapes are still rewinding.
This is so because the first few tapes written on would have completed
rewinding before the distribution phase is complete (for k£ > 2). .

In case a k-way merge is made using 2k tapes, no redistribution is
needed and so the number of passes being made over the file is only
log, m + 1. This means that if we have 2k + 1 tapes available, then
a 2k-way merge will make (2 — 1/(2k))log,, m + 1/(2k) passes while

414 External Sorting

a k-way merge utilizing only 2k tapes will make log, m + 1 passes.
Table 8.13 compares the number of passes being made in the two methods
for some values of k.

k 2k -way k-way
1 3/2log,m + 1/2 —
2 7/8log,m + 1/4 log,m + 1
3 1.124log;m + 1/6 log;m+ 1
4 1.25log,m + 1/8 log,m + 1

Table 8.13 Number of passes using a 2k-way merge versus a k-way merge on 2Kk + 1
tapes

As is evident from the table, for k > 2 a k-way merge using only 2k
tapes is better than a 2k-way merge using 2k + 1 tapes.
Algorithm M3 performs a k-way merge sort using 2k tapes.

procedure M3
/Sort a file of records from a given input tape using a k-way
merge on 2k tapes T, ...,T, /
1 Create runs from the input file distributing them evenly over tapes
T,,....,T,
2 rewind T,, ...,T,; rewind the input tape; replace the input tape by
tape T,,; i< 0

3 while total number of runs on Ty .y, ...,Ty, > 1do
4 je-1-1i
5 perform a k-way merge from Ty, ..., Ty, evenly distributing
output runs onto Ty 15 -, Tis-
6 rewind T,, ...,T,
7 iej / switch input and output tapes /
8 end
/sorted file is on Ty .,/
9 end M3

Analysis of M3

To simplify the analysis assume that m is a power of k. In addition
to the initial run creation pass, the algorithm makes log, m merge passes.
Let t,,, be the time to rewind the entire input file. The time for line

Sorting with Tapes 415

2 is t,,, and if m is a power of k then the rewind of line 6 takes
t,.../ k for each but the last iteration of the while loop. The last rewind
takes time t,,. The total rewind time is therefore bounded by
2 + (log, m — 1)/k)t,,,. Some of this may be overlapped using the
strategy described in the analysis of algorithm M2 (exercise 4). a

One should note that M1, M2 and M3 use the buffering algorithm
of section 8.2.2 during the k-way merge. This merge itself, for large
k, would be carried out using a selection tree as discussed earlier. In
both cases the proper choice of buffer lengths and the merge order
(restricted by the number of tape drives available) would result in an
almost complete overlap of internal processing time with input/output
time. At the end of each level of merge, processing will have to wait
until the tapes rewind. Once again, this wait can be minimized if the
run distribution strategy of exercise 4 is used.

8.3.2 Polyphase Merge

Balanced k-way merging is characterized by a balanced or even
distribution of the runs to be merged onto kinput tapes. One consequence
of this is that 2k tapes are needed to avoid wasteful passes over the
data during which runs are just redistributed onto tapes in preparation
for the next merge pass. It is possible to avoid altogether these wasteful
redistribution passes, when using fewer than 2k tapes and a k-way merge,
by distributing the ‘‘right number’’ of runs onto different tapes. We
shall see one way to do this for a k-way merge utilizing k + 1 tapes.
To begin, let us see how m = 21 runs may be merged using a 2-way
merge with 3 tapes T'1, T2 and T3. Lengths of runs obtained during
the merge will be represented in terms of the length of initial runs
created by the internal sort. Thus, the internal sort creates 21 runs
of length 1 (the length of initial runs is the unit of measure). The runs
on a tape will be denoted by s" where s is the run size and n the
number of runs of this size. If there are six runs of length 2 on a
tape we shall denote this by 26. The sort is carried out in seven phases.
In the first phase the input file is sorted to obtain 21 runs. Thirteen
of these are written onto T'1 and eight onto T2. In phase 2, 8 runs
from T2 are merged with 8 runs from T1 to get 8 runs of size 2 onto
T3. In the next phase the 5 runs of length 1 from T1 are merged
with 5 runs of length 2 from T3 to obtain 5 runs of length 3 on T2.
Table 8.14 shows the 7 phases involved in the sort.

416 External Sorting

Fraction of
Total Records
Phase T1 T2 T3 Read
1 13 18 — 1 initial distribution
2 13 — 28 16/21 merge to T3
3 — 33 23 15/21 merge to T2
4 53 32 — 15/21 merge to T1
5 5t — 82 16/21 merge to T3
6 — 13! 8! 13/21 merge to T2
7 21! — — 1 merge to T1

Table 8.14 Polyphase Merge on 3 Tapes

Counting the number of passes made during each phase we get 1 + 16 /21
+15/21 + 15/21 + 16/21 + 13/21 + 1 = 5-4/7 as the total number of
passes needed to merge 21 runs. If algorithm M2 of section 8.3.1 had
been used with k = 2, then 3/2[log,21] + 1/2 = 8 passes would have
been made. Algorithm M3 using 4 tapes would have made [log, 21] = 5
passes. What makes this process work? Examination of Table 8.14
shows that the trick is to distribute the runs initially in such a way
that in all phases but the last only 1 tape becomes empty. In this case
we can proceed to the next phase without redistribution of runs as
we have 2 non-empty input tapes and one empty tape for output. To
determine what the correct initial distribution is we work backwards
from the last phase. Assume there are n phases. Then in phase n we
wish to have exactly one run on T1 and no runs on T2 and T3. Hence,
the sort will be complete at phase n. In order to achieve this, this
run must be obtained by merging a run from T2 with a run from T3,
and these must be the only runs on T2 and T3. Thus, in phase n — 1
we should have one run on each of T2 and T3. The run on T2 is
obtained by merging a run from T1 with one from T3. Hence, in phase
n — 2 we should have one run on T'1 and 2 on T3.

Table 8.15 shows the distribution of runs needed in each phase so
that merging can be carried out without any redistribution passes. Thus,
if we had 987 runs, then a distribution of 377 runs onto T1 and 610
onto T3 at phase 1 would result in a 15 phase merge. At the end
of the fifteenth phase the sorted file would be on T1. No redistribution
passes would have been made. The number of runs needed for a n
phase merge is readily seento be F, + F,_, where F,is the i-th Fibonacci
number (recall that F;, = 13and F¢ = 8and that F,; = 610and F,, = 377).
For this reason this method of distributing runs is also known as Fibonacci
merge. It can be shown that for three tapes this distribution of runs

Sorting with Tapes 417

and resultant merge pattern requires only 1.04 log, m + 0.99 passes over
the data. This compares very favorably with the log, m passes needed
by algorithm M3 on 4 tapes using a balanced 2-way merge. The method
can clearly be generalized to k-way merging on k+ 1 tapes using
generalized Fibonacci numbers. Table 8.16 gives the run distribution
for 3-way merging on four tapes. In this case it can be shown that
the number of passes over the data is about 0.703 log, m + 0.96.

Phase T1 T2 T3

n 1 0 0
n—1 0 1 1
n-—-2 1 0 2
n-—-3 3 2 0
n—4 0 5 3
n—3S5 5 0 8
n—6 13 8 0
n-7 0 21 13
n-28 21 0 34
n—9 55 34 0
n—10 0 89 55
n—11 89 0 144
n—12 233 144 0
n— 13 0 377 233
n— 14 377 0 610

Table 8.15 Run Distribution for 3-Tape Polyphase Merge

Phase T1 T2 T3 T4

n 1 0 0 0
n—1 0 1 1 1
n—2 1 0 2 2
n-3 3 2 0 4
n-—4 7 6 4 0
n—1>5 0 13 11 7
n—-6 13 0 24 20
n—7 37 24 0 44
n—28 81 68 44 0
n—9 0 149 125 81
n— 10 149 0 274 230
n—11 423 274 0 504
n—12 927 778 504 0
n—13 0 1705 1431 927
n— 14 1705 0 3136 2632

Table 8.16 Polyphase Merge Pattern for 3-Way 4-Tape Merging

418 External Sorting

Example 8.4: The initial internal sort of a file of records creates 57
runs. 4 tapes are available to carry out the merging of these runs.
The table below shows the status of the tapes using 3-way polyphase
merge.

Fraction of
Total Records
Phase T1 T2 T3 T4 Read
1 (R — 124 120 1 initial distribution
2 — 3 m 17 39/57 merge onto T2
3 57 36 14 — 35/57 merge onto T1
4 53 32 — 94 36/57 merge onto T4
5 St — 172 9?2 34/57 merge onto T3
6 — 31! 17! 9! 31/57 merge onto T2
7 57! — — — 1 merge onto T1

The total number of passes over the datais | + 39/57 + 35/57 + 36/57
+34/57 +31/57 + 1 = 5-4/57 compared to [log,57] = 6 passes for
2-way balanced merging on 4 tapes.

Remarks on Polyphase Merging

Our discussion of polyphase merging has ignored altogether the rewind
time involved. Before one can begin the merge for the next phase it
is necessary to rewind the output tape. During this rewind the computer
is essentially idle. It is possible to modify the polyphase merge scheme
discussed here so that essentially all rewind time is overlapped with
internal processing and read/write on other tapes. This modification
requires at least 5 tapes and can be found in Knuth Vol. 3. Further,
polyphase merging requires that the initial number of runs be a perfect
Fibonacci number (or generalized Fibonacci number). In case this is not
$0, one can substitute dummy runs to obtain the required number of
runs.

Several other ingenious merge schemes have been devised for tape
sorts. Knuth, Vol. 3, contains an exhaustive study of these schemes.

8.3.3 Sorting with Fewer Than 3 Tapes

Both the balanced merge scheme of section 8.3.1 and the polyphase
scheme of section 8.3.2 required at least 3 tapes to carry out the sort.
These methods are readily seen to require only O(nlog n) time where
n is the number of records. We state without proof the following results
for sorting on 1 and 2 tapes.

Theorem 8.2: Any one tape algorithm that sorts n records must take
time = O(n?),

Exercises 419

Theorem 8.3: n records can be sorted on 2 tapes in O(nlog n) time
if itis possible to perform an inplace rewrite of a record without destroying
adjacent records. l.e. if record R, in the sequence R, R, R; can be
rewritten by an equal size record R; to obtain R,R;R,.

REFERENCES AND SELECTED READINGS

See the readings for chapter 7.

The algorithm for theorem 8.3 may be found in:

““‘Alinear time two tape merge’” by R. Floyd and A. Smith, Information Processing
Letters, vol. 2, no. 5, December 1973, pp. 123-126.

EXERCISES

1. Write an algorithm to construct a tree of losers for records R, 1 =i=k
with key values K;, 1 =i= k. Let the tree nodes be T;, 0 =i < k with
T,, 1 = i<k a pointer to the loser of a tournament and T, a pointer to

the overall winner. Show that this construction can be carried out in time
O(k).

2. Write an algorithm, using a tree of losers, to carry out a k-way merge
of k runs k= 2. Show that if there are n records in the k runs together,
then the computing time is O(nlog, k).

3. a) nrecords are to be sorted on a computer with a memory capacity of
S records (S << n). Assume that the entire S record capacity may be
used for input/output buffers. The input is on disk and consists of
m runs. Assume that each time a disk access in made the seek time
is t; and the latency time is ¢,. The transmission time is ¢, per record
transmitted. What is the total input time for phase II of external sorting
if a kK way merge is used with internal memory partitioned into I/O
buffers so as to permit overlap of input, output and CPU processings
as in algorithm BUFFERING?
Let the CPU time needed to merge all the runs together be t.p, (we
may assume it {s independent of k and hence constant). Let ¢, = 80 ms,
= 20 ms, n = 200,000, m = 64, t, = 1073 sec/record, S = 2000. Obtain
a rough plot of the total input tlme t. versus k, Will there always
be a value of k for which tp, = ¢,

b

~

mput ’

mput

4. a) Modify algorithm M3 using the run distribution strategy described in
the analysis of algorithm M2.
b) Let t,, be the time to read /write a block and ¢, the time to rewind

bt |

420

External Sorting

over one block length, If the initial run creation pass generates m runs
for m a power of k, what is the time for a k-way merge using your
algorithm, Compare this with the corresponding time for algorithm M2.

5. Obtain a table corresponding to Table 8.16 for the case of a S-way polyphase
merge on 6 tapes. Use this to obtain the correct initial distribution for
497 runs so that the sorted file will be on T1. How many passes are made
over the data in achieving the sort? How many passes would have been
made by a 5-way balanced merge sort on 6 tapes (algorithm M2)? How
many passes would have been made by a 3-way balanced merge sort on
6 tapes (algorithm M3)?

6. In this exercise we shall investigate another run distribution strategy for
sorting on tapes. Let us look at a 3-way merge on 4 tapes of 157 runs.
These runs are initially distributed according to: 70 runs on T1, 56 on
T2 and 31 on T3. The merging takes place according to the table below.

Line Phase T1 T2 T3 T4
1 1 (1 1% 1% — initial distribution
2 2 1% 1% — 331 merge on to T4
3 2 14 — 2% 33 merge T1, T2 to T3
4 3 [5— 61 21 37 merge T1, T3, T4 to T2
5 n 614 — 36 merge T3, T4, to T1
6 4 [55 68 148 — merge T1, T2, T4 to T3
7 — 63 146 113 merge T1, T2 to T4
8 5 |:313 — 143 112 merge T2, T3, T4 to T1
9 313 252 14! — merge T3, T4 to T2
10 312 251 — 701 merge T1, T2, T3 to T4
11 31! — 561 70! merge T1, T2 to T3
12 7 — 157! — — merge T1, T3, T4 to T2

i.e., each phase consists of a 3-way merge followed by a two-way merge
and in each phase almost all the initial runs are processed.

a) Show that the total number of passes made to sort 157 runs is 6-62/157.
b) Using an initial distribution from Table 8.16 show that Fibonacci merge

on 4 tapes makes 6-59 /193 passes when the number of runs is 193,

The distribution required for the process discussed above corresponds to
the cascade numbers which are obtained as below for a k-way merge: Each
phase (except the last) in a k-way cascade merge consists of a k-way merge
followed by a k — 1 way merge followed by a k — 2 way merge ... a 2-way
merge. The last phase consists of only a k-way merge. The table below gives
the cascade numbers corresponding to a k-way merge. Each row represents
a starting configuration for a merge phase. If at the start of a phase we have

the distribution ny, n2, ..., ny where n; > nis1, 1 < i < k, then at the
k k-1

start of the previous phase we need ni, S ni, ..., B1 + N2, N1 TUNS
I 1

on the k input tapes respectively.

Exercises 421

Number of Runs
1 0 0 1
1 1 1 1 k
: :)
n, n, Ny My e Zni

k k-1 k-2
E"i Eni Eni n, +n, n,
1 1
Initial Distribution for a k-way Cascade Merge

It can be shown that for a 4-way merge Cascade merge results in more
passes over the data than a 4-way Fibonacci merge.

a) Generate the first 10 rows of the initial distribution table for a 5-way
Cascade merge using 6 tapes (see exercise 6).

b) Observe that 671 runs corresponds to a perfect 5-way Cascade distribution.
How many passes are made in sorting the data using a 5-way Cascade

561
merge? | Ans: 5 —
671
¢) How many passes are made by a 5-way Fibonacci merge starting with
400
497 runs and the distribution 120, 116, 108, 92, 61? <Ans: 5 4—97—>

The number of passes is almost the same even though Cascade merge
started with 35% more runs! In general, for = 6 tapes Cascade merge
makes fewer passes over the data than does Fibonacci merge.

List the runs output by algorithm RUNS using the following input file and
k=4,

100, 50, 18, 60, 2, 70, 30, 16, 20, 19, 99, 55, 20

For the example of figure 8.14 compute the total rewind time. Compare
this with the rewind time needed by algorthm M2.

Chapter 9

SYMBOL TABLES

The notion of a symbol table arises frequently in computer science.
When building loaders, assemblers, compilers, or any keyword driven
translator a symbol table is used. In these contexts a symbol table
is a set of name-value pairs. Associated with each name in the table
is an attribute, a collection of attributes, or some directions about what
further processing is needed. The operations that one generally wants
to perform on symbol tables are (i) ask if a particular name is already
present, (ii) retrieve the attributes of that name, (iii) insert a new name
and its value, and (iv) delete a name and its value. In some applications,
one wishes to perform only the first three of these operations. However,
in its fullest generality we wish to study the representation of a structure
which allows these four operations to be performed efficiently.

Is a symbol table necessarily a set of names or can the same name
appear more than once? If we are translating a language with block
structure (such as ALGOL or PL/I) then the variable X may be declared
at several levels. Each new declaration of X implies that a new variable
(with the same name) must be used. Thus we may also need a mechanism
to determine which of several occurrences of the same name has been
the most recently introduced.

These considerations lead us to a specification of the structure symbol
table. A set of axioms are given on the next page.

Imagine the following set of declarations for a language with block
structure:
begin

integer i,j;

begin
real x,i;

422

Static Tree Tables 423

The representation of the symbol table for these declarations would
look like S =

INSERT(INSERT(INSERT(INSERT(CREATE,i,integer),
j,integer),x,real),i,real)

Notice the identifer i which is declared twice with different attributes.
Now suppose we apply FIND(S,i). By the axioms EQUAL(i,i) is tested
and has the value true. Thus the value real is returned as a result.
If the function DELETE(S,i) is applied then the result is the symbol
table

INSERT(INSERT(INSERT(CREATE,i,integer),j,integer), x,real)

If we wanted to change the specification of DELETE so that it removes
all occurrences of i then one axiom needs to be redefined, namely

DELETE(INSERT(S,a,r),b) :: =
if EQUAL(a,b) then DELETE(S,b)
else INSERT(DELETE(S,b),a,r)

structure SYMBOL _TABLE
declare CREATE() — symtb
INSERT (symtb,name, value) — symtb
DELETE(symtb,name) — symtb
FIND(symtb,name) — value
HAS(symtb,name) — Boolean
ISMTST(symtb) — Boolean;
for all S € symtb, a,b € name, r € value let
ISMTST(CREATE) = = true
ISMTST(INSERT(S,a,r)) :: = false
HAS(CREATE,a) :: = false
HAS(INSERT(S,a,r),b) :: =
if EQUAL(a,b) then true else HAS(S,b)
DELETE(CREATE.,a) :: = CREATE
DELETE(INSERT(S,a,r),b) :: =
if EQUAL(a,b) then S
else INSERT(DELETE(S,b),a,r)
FIND(CREATE,a) :: = error
FIND(INSERT(S,a,r),b) :: = if EQUAL(a,b) then r
else FIND(S,b)
end
end SYMBOL__TABLE

424 Symbol Tables

The remaining sections of this chapter are organized around different
ways to implement symbol tables. Different strategies are preferable
given different assumptions. The first case considered is where the
identifiers are known in advance and no deletions or insertions are
allowed. Symbol tables with this property are called static. One solution
is to sort the names and store them sequentially. Using either the binary
search or Fibonacci search method of section 7.1 allows us to find
any name in O(log, n) operations. If each name is to be searched for
with equal probability then this solution, using an essentially balanced
binary search tree, is optimal. When different identifiers are searched
for with differing probabilities and these probabilities are known in
advance this solution may not be the best. An elegant solution to this
problem is given in section 9.1.

In section 9.2 we consider the use of binary trees when the identifiers
are not known in advance. Sequential allocation is no longer desirable
because of the need to insert new elements. The solution which is
examined is AVL or height balanced trees. Finally in section 9.3 we
examine the most practical of the techniques for dynamic search and
insertion, hashing.

9.1 STATIC TREE TABLES

Definition: A binary search tree T is a binary tree; either it is empty
or each node in the tree contains an identifier and:

(i) all identifiers in the left subtree of T are less (numerically or
alphabetically) than the identifier in the root node T;

(i) all identifiers in the right subtree of Tare greater than the identifier
in the root node T;

(iii) the left and right subtrees of T are also binary search trees.
For a given set of identifiers several binary search trees are possible.
Figure 9.1 shows two possible binary search trees for a subset of the
reserved words of SPARKS.

To determine whether an identifier X is present in a binary search tree,
X is compared with the root. If X is less than the identifier in the
root, then the search continues in the left subtree; if Xequals the identifier
in the root, the search terminates successfully; otherwise the search
continues in the right subtree. This is formalized in algorithm SEARCH.

Static Tree Tables 425

OO

0@

(a) (b)

Figure 9.1 Two possible binary search trees

procedure SEARCH(T,X,i)

/ search the binary search tree T for X. Each node has fields
LCHILD, IDENT, RCHILD. Return i =0 if X is not in T.
Otherwise, return. i such that IDENT(i) = X. LCHILD (empty
binary tree) = RCHILD(empty binary tree) = 0./

1 i—T

2 while i # 0 do

3 case

4 :X < IDENTV(i): i < LCHILD(i) / search left subtree /
bl :X = IDENT(i): return

6 :X > IDENT(i): i < RCHILD(i) / search right subtree /
7 end

8 end

9 end SEARCH

426 Symbol Tables

In our study of binary search in chapter 7, we saw that every sorted
file corresponded to a binary search tree. For instance, a binary search
on the file (do, if, stop) corresponds to using algorithm SEARCH on
the binary search tree of figure 9.2. While this tree is a full binary
tree, it need not be optimal over all binary search trees for this file
when the identifiers are searched for with different probabilities. In
order to determine an optimal binary search tree for a given static file,

Figure 9.2 Binary search tree corresponding to a binary search on the file (do,if,stop).

we must first decide on a cost measure for search trees. In searching
for an identifier at level k using algorithm SEARCH, k iterations of
the while loop of lines 2-8 are made. Since this loop determines the
cost of the search, it is reasonable to use the level number of a node
as its cost.

Consider the two search trees of figure 9.1 as possibly representing
the symbol table of the SPARKS compiler. As names are encountered
a match is searched for in the tree. The second binary tree requires
at most three comparisons to decide whether there is a match. The
first binary tree may require four comparisons, since any identifier which
alphabetically comes after if but precedes repeat will test four nodes.
Thus, as far as worst case search time is concerned, this makes the

Static Tree Tables 427

second binary tree more desirable than the first. To search for an identifier
in the first tree takes one comparison for the if, two for each of for
and while, three for repeat and four for leop. Assuming each is searched
for with equal probability, the average number of comparisons for a
successful search is 2.4. For the second binary search tree this amount
is 2.2. Thus, the second tree has a better average behavior, too.

In evaluating binary search trees, it is useful to add a special ‘‘square”
node at every place there is a null link. Doing this to the trees of
figure 9.1 yields the trees of figure 9.3. Remember that every binary

@) (b)
Figure 9.3 Extended binary trees corresponding to search trees of figure 9.1.

tree with n nodes has n + 1 null links and hence it will have n + 1
square nodes. We shall call these nodes external nodes because they
are not part of the original tree. The remaining nodes will be called
internalnodes. Each time a binary search tree is examined for an identifier
which is not in the tree, the search terminates at an external node.
Since all such searches represent unsuccessful searches, external nodes
will also be referred to as failure nodes. A binary tree with external
nodes added is an extended binary tree. Figure 9.3 shows the extended
binary trees corresponding to the search trees of figure 9.1. We define
the external path length of a binary tree to be the sum over all external
nodes of the lengths of the paths from the root to those nodes.
Analogously, the internal path length is defined to be the sum over
all internal nodes of the lengths of the paths from the root to those
nodes. For the tree of figure 9.3(a) we obtain its internal path length,
I, to be:

428 Symbol Tables
I=0+14+1+2+3=7
Its external path length, E, is:

E=2+2+4+4+3+2=17.

Exercise 1 shows that the internal and external path lengths of a
binary tree with n internal nodes are related by the formula E = I + 2n.
Hence, binary trees with the maximum E also have maximum I. Over
all binary trees with n internal nodes what is the maximum and minimum
possible values for I? The worst case, clearly, is when the tree is skewed
(i.e., when the tree has a depth of n). In this case,

n—1
I=Y i=n(n-1/2.
i=0

To obtain trees with minimal I, we must have as many internal nodes
as close to the root as possible. We can have at most 2 nodes at distance
1, 4 at distance 2, and in general the smallest value for I is

0+2-14+4-2+8-3+ ...

This can be more compactly written as

2 llog, k] = O(nlog, n).

l=k=n

One tree with minimal internal path length is the complete binary
tree defined in section 5.2.

Before attempting to use these ideas of internal and external path
lengths to obtain optimal binary search trees, let us look at a related
but simpler problem. We are given a set of n + 1 positive weights q,,
--»dn+1- Exactly one of these weights is to be associated with each
of the n + 1 external nodes in a binary tree with n internal nodes. The
weighted external path length of such a binary tree is defined to be
2 =i=ns+1 4: k; where k, is the distance from the root node to the external
node with weight q,. The problem is to determine a binary tree with
minimal weighted external path length. Note that here no information
is contained within internal nodes.

For example, suppose n = 3 and we are giventhe four weights: g, = 15,

Static Tree Tables 429

q, =2, q;=4and q, = 5. Two possible trees would be:

and

Their respective weighted external path lengths are:
2-34+44-34+5-2+15-1=43
and
2-24+4-2+5-2+15-2=752.

Binary trees with minimal weighted external path length find application
in several areas. One application is to determine an optimal merge pattern
for n + 1 runs using a 2-way merge. If we have four runs R,-R, with
q; being the number of records in run R;, 1 =i =4, then the skewed
binary tree above defines the following merge pattern: merge R, and
R,; merge the result of this with R, and finally merge with R,. Since
two runs with n and m records each can be merged in time O(n + m)
(cf., section 7.5), the merge time following the pattern of the above
skewed tree is proportional to (g, + q3) + {(4, + q3) + 94} + {9, + 9,
+ g5 + q,}. This is just the weighted external path length of the tree.
In general, if the external node for run R; is at a distance k; from
the root of the merge tree, then the cost of the merge will be proportional
to £q;k; which is the weighted external path length.

Another application of binary trees with minimal external path length
is to obtain an optimal set of codes for messages M,, ...,M,.,. Each
code is a binary string which will be used for transmission of the
corresponding message. At the receiving end the code will be decoded
using a decode tree. A decode tree is a binary tree in which external
nodes represent messages. The binary bits in the code word for a message

430 Symbol Tables

determine the branching needed at each level of the decode tree to
reach the correct external node. For example, if we interpret a zero
as a left branch and a one as a right branch, then the decode tree

corresponds to codes 000, 001, 01 and 1 for messages M,, M,, M,
and M, respectively. These codes are called Huff man codes. The cost
of decoding a code word is proportional to the number of bits in the
code. This number is equal to the distance of the corresponding external
node from the root node. If g, is the relative frequency with which
message M, will be transmitted, then the expected decode time is
2 <i=n+14; d; where d; is the distance of the external node for message
M; from the root node. The expected decode time is minimized by
choosing code words resulting in a decode tree with minimal weighted
external path length!

A very nice solution to the problem of finding a binary tree with
minimum weighted external path length has been given by D. Huffman.
We simply state his algorithm and leave the correctness proof as an
exercise. The algorithm HUFFMAN makes use of a list L of extended
binary trees. Each node in a tree has three fields: WEIGHT, LCHILD
and RCHILD. Initially, all trees in L have only one node. For each
tree this node is an external node, and its weight is one of the provided
q;’s. During the course of the algorithm, for any tree in L with root .
node T and depth greater than 1, WEIGHT(T) is the sum of weights
of all external nodes in T. Algorithm HUFFMAN uses the subalgorithms
LEAST and INSERT. LEAST determines a tree in L with minimum

WEIGHT and removes it from L. INSERT adds a new tree to the
list L.

Static Tree Tables 431
procedure HUFFMAN(L,n)

/L is a list of n single node binary trees as described above /
fori—]1ton—1do /loop n — 1 times /
call GETNODE(T) / create a new binary tree /
LCHILD(T) « LEAST(L) /by combining the trees /
RCHILD(T) < LEAST(L) / withthe two smallest weights /7

WEIGHT(T) « WEIGHT(LCHILD(T))
+ WEIGHT(RCHILD(T))

call INSERT(L.T)
end

end HUFFMAN

We illustrate the way this algorithm works by an example. Suppose
we have the weights g, =2,49,=3,¢9¢;=5,9,=7,9s; =9and q, = 13.
Then the sequence of trees we would get is: (the number in a circular
node represents the sum of the weights of external nodes in that subtree).

(a)

(d)

432 Symbol Tables
The weighted external path length of this tree is
2:4+3-44+5-34+13-2+7-249-2=93

In comparison, the best complete binary tree has weighted path length
9s.

Analysis of Algorithm HUFFMAN

The main loop is executed n — 1 times. If L is maintained as a heap
(section 7.6) then each call to LEAST and INSERT requires only
O(log n) time. Hence, the asymptotic computing time for the algorithm
is O(n log n). o

Let us now return to our original problem of representing a symbol
table as a binary search tree. If the binary search tree contains the
identifiers a,,a,, ...,a, with a; < a, < ... <a, and the probability of
searching for each q; is p;, then the total cost of any binary search
tree is 2, ;=, P;'level (a;) when only successful searches are made.
Since unsuccessful searches, i.e., searches for identifiers not in the
table, will also be made, we should include the cost of these searches
in our cost measure, too. Unsuccessful searches terminate with i =0
in algorithm SEARCH. Every node with a null subtree defines a point
at which such a termination can take place. Let us replace every null
subtree by a failure node. The identifiers not in the binary search tree
may be partitioned into n + 1 classes E;,, 0 =i=n. E, contains all
identifiers X such that X < a,. E, contains all identifiers X such that
a,<X<a;, 1=i<nand E, contains all identifiers X, X >a,. It
is easy to see that for all identifiers in a particular class E;, the search
terminates at the same failure node and it terminates at different failure
nodes for identifiers in different classes. The failure nodes may be
numbered 0 to n with i being the failure node for class E,, 0 = i< n.
If g, is the probability that the identifier being searched for is in E,,
then the cost of the failure nodes is 2. ;., q; (level (failure node i) — 1).
The total cost of a binary search tree is therefore:

Y pi-level (@) + > gq; - (level (failure node i) — 1) (9.1)
1=i=n O=i=n

An optimal binary search tree for the identifier set a,, ...,a, is one
which minimizes eq. (9.1) over all possible binary search trees for this

Static Tree Tables 433

identifier set. Note that since all searches must terminate either success-
fully or unsuccessfully we have £ ,_,_,, p; + 2o=i=n ¢; = 1.

Example 9.1: The possible binary search trees for the identifier set
(a,,a,,a;) = (do, if, stop) are:

With equal probabilities p; = q; = 1/7 for all i and j we have:
cost (tree a) = 15/7; cost (tree b) = 13/7

cost (tree ¢) = 15/7; cost (tree d) = 15/7
cost (tree e) = 15/7.

434 Symbol Tables

Asexpected, tree b is optimal. With p, = .5, p, = .1, p; = .05, g, = .15,
q,= .1, g, = .05 and g5 = .05 we have

cost (tree a) = 2.65; cost (tree b) = 1.9
cost (tree ¢) = 1.5; cost(tree d) = 2.05

cost (tree e) = 1.6
Tree c is optimal with this assignment of p’s and ¢’s. O

From among all the possible binary search trees how does one determine
the optimal tree? One possibility would be to proceed as in example
9.1 and explicitly generate all possible binary search trees. The cost
of each such tree could be computed and an optimal tree determined.
The cost of each of the binary search trees can be determined in time
O(n) for an n node tree. If N(n) is the total number of distinct bi-
nary search trees with n identifiers, then the complexity of the algorithm
becomes O(n N(n)). From section 5.9 we know that N(n) grows too
rapidly with increasing n to make this brute force algorithm of any
practical significance. Instead we can find a fairly efficient algorithm
by making some observations regarding the properties of optimal binary
search trees.

Leta, <a, <... < a,be the nidentifiers to be represented in a binary
search tree. Let us denote by T; an optimal binary search tree for
a1, --,a;, i <j. We shall adopt the convention that T is an empty
tree for 0 = i =< n and that T} is not defined for i > j. We shall denote
by c; the cost of the search tree T;;. By definition c; will be 0. r; will
denote the root of T; and w; = q; + £i_;,, (g, + p,) will denote the
weight of T;;. By definition we will have r; = 0and w; = q;,, 0= i= n.

An optimal binary search tree for a,, ...,a, is therefore T,,, its cost
is ¢,,, its weight w_ and its root r,,.

If T, is an optimal binary search tree for a,,,, ...,a; and r; =k,
i<k=j, then T; has two subtrees L and R. L is the left subtree
and contains the identifiers a;,,, ...,a,_, and R is the right subtree
and contains the identifiers a,, ,, ...,a; (figure 9.4). The cost c; of T}
is

Cij = Pit cost(L) + cost(R) + w;, | + w,; 9.2)

weight (L) = weight (T, _,) = w,,_,
weight (R) = weight (T ;) = w,;

Static Tree Tables 435

/N R

Figure 9.4 An optimal binary search tree T

From eq. (9.2) it is clear that if c;;is to be minimal, then cost (L) = ¢;,_,
and cost (R) = c,; as otherwise we could replace either L or R by
a subtree of lower cost thus getting a binary search tree for a,,,, ...,q;
with lower cost than c;;. This would violate the assumption that T
was optimal. Hence, eq. (9.2) becomes:

Cij = Pt Wiy T Wi+ €y + €y

= Wit Cip—g t Cyj 9.3)
Since Tj; is optimal it follows from eq. (9.3) that r; = k is such that

Wit Ciymy + €= min {wy + ¢, + ¢y}

i<l=j
or

T N ,IE}E, {ciimy + eyt 9.4)

Equation (9.4) gives us a means of obtaining T,, and c,, starting from
the knowledge that T;; = ¢ and ¢; = 0.

Example 9.2: Let n=4 and (a,,a,, a;,a,) = (do, if, read, while). Let
(P1,P2,P3,P4) = (3,3,1,1)and (4,,4,,92,95,94) = (2,3,1,1,1). The p’s and

q’s have been multiplied by 16 for convenience. Initially, we have w,;
=q;,c;=0and r; =0, 0=i=4. Using egs. (9.3) and (9.4) we get:
Wor = D1+ W+ Wy =P+ g+ we =38
Coy = Wo, + min{cyy + ¢} =8
=1

Wi =Pt Wi+t wy=p,+q+w, =17

436 Symbol Tables

Cpp = Wy +min{c,, + ¢} =7

rip = 2

Wy = P3t W+ Wi =p3+ g3+ wy=3
Cp3 = Wy + min{c,, + ¢33} =3

rys = 3

B3
b
!

= Pat Wi+ Wy =Dyt gyt Wy =3
Cyq = Wiy + min{cy; + ¢4yt =3

ry = 4

Knowing w;;,, and ¢;;,,, 0 =i <4 we can again use equations (9.3)
and (9.4) to compute W, .5, €2, Fiisr, 0=1i<3. This process may
be repeated until wgy,, ¢y, and ry, are obtained. The table of figure
9.5 shows the results of this computation. From the table we see that
Coq = 32 is the minimal cost of a binary search tree for a, to a,. The

0 1 2 3 4
Woo = Wi = Wy = 1 Wiy =1 Wa =1
0 Coo = Cn = Cp = Cy = €u=0
Too = = Iyp = T3 = 1, =0
Wor = Wi = Wa3 = Wiy =
1 cy =8 Cpp = Cypy =3 Cy =
T =1 T2 = Iy =3 r;, =4
Wy = 12 Wiy = W =
2 cpp =19 cpy =12 Cyy =
T =1 ry=2 Ty =3
Wos = 14 W, =11
3 Cpy =25 cy =19
oy =2 Ty =2
wo, = 16
4 Coq = 32
Tog =2

Figure 9.5 Computation of ¢y, wo, and ry,. The computation is carried out row wise
from row 0 to row 4.

Static Tree Tables 437

Figure 9.6 Optimal search tree for example 9.2

root of tree T, is a,. Hence, the left subtree is T, and the right
subtree T,,. T, has root a, and subtrees T,, and T;;,. T,, has root
a,; its left subtree is therefore T,, and right subtree T,,. Thus, with
the data in the table it is possible to reconstruct T,,. Figure 9.6 shows
Toq- 0

The above example illustrates how equation (9.4) may be used to
determine the ¢’s and r’s and also how to reconstruct T, knowing
the r’s. Let us examine the complexity of this procedure to evaluate
the c’sand r’s. The evaluation procedure described in the above example
requires us to compute c¢; for (j — i) = 1,2, ...,n in that order. When
j—i=m there are n— m+ 1 ¢;’s to compute. The computation of
each of these c;’s requires us to find the minimum of m quantities
(see equation (9.4)). Hence, each such ¢; can be computed in time
O(m). The total time for all ¢;;’s with j — i = m is therefore O(nm — m?2).
The total time to evaluate all the c¢;’s and r;;’s is therefore

b (nm — m?) = O(n?).

I=m=n

Actually we can do better than this using a result due to D. E. Knuth
which states that the optimal | in equation (9.4) may be found by limiting
the search to the range r;;_, =<[=<r, ;. In this case the computing
time becomes O(n?) (exercise 4). Algorithm OBST uses this result to
obtain in O(n?) time the values of wy, r;;and ¢, 0 <i=<j= n. The
actual tree T,, may be constructed from the values of r; in O(n) time.
The algorithm for this is left as an exercise.

438 Symbol Tables

procedure OBST(p;,q,,n)

/Given n distinct identifiers a, < a, < ... < a, and probabilities p,,
l=i=nand q;, 0=<i=n this algorithm computes the cost c;
of optimal binary search trees T} for identifiers a,_,, ...,a;. It also
computes r;, the root of T;;. wy; is the weight of T,/

fori—0ton—1do
(Wi rircy) < (q,;,0,0) Vinitialize /

WiiensiivsClivt) < (@i + iy T P i+ 1, G0+ Gigy + Pisy)
/ optimal trees with one node /
end

(wnn’rnn7cnn) « (qn’O’O)

for m <2 to ndo /find optimal trees with m nodes /
for i< 0ton— mdo

jei+m
wWiewii T Dt q;

k < a value of l'in theranger,;_,<1=r

i+1,j
that minimizes{c;,_, + c,;} /sol\]'e (9.4) using
Knuth’s result /
Cij e Wi+ Cipy + Cy Z¢eq. (9.3)/
ry<k
end
end
end OBST

9.2 DYNAMIC TREE TABLES

Dynamic tables may also be maintained as binary search trees. An
identifier X may be inserted into a binary search tree T by using the
search algorithm of the previous section to determine the failure node
corresponding to X. This gives the position in T where the insertion
is to be made. Figure 9.7 shows the binary search tree obtained by
entering the months JANUARY to DECEMBER in that order into an
initially empty binary search tree. Algorithm BST is a more formal
rendition of the insertion process just described.

Program on next page

The maximum number of comparisons needed to search for any
identifier in the tree of figure 9.7 is six for NOVEMBER. The average
number of comparisons is (1 for JANUARY + 2 each for FEBRUARY
and MARCH + 3 each for APRIL, JUNE and MAY + ... + 6 for

Dynamic Tree Tables 439

procedure BST (X, T,j)
/search the binary search tree T for the node j such that IDENT(j)
= X. If X is not already in the table then it is entered at the
appropriate point. Each node has LCHILD, IDENT and RCHILD

fields /7

p<0;je«T / p will trail j through the tree /
while j # 0 do
case
: X < IDENT(j): p < j; j « LCHILD(j) /search left sub-
tree /
: X = IDENT(j): return
: X> IDENT(j): p < j; j <« RCHILD(j) /search right sub-
tree /
end
end

/X is not in the tree and can be entered as a child of p/
call GETNODE(j); IDENT(j) « X; LCHILD(j) < 0;
RCHILD(j) <0
case
:T=0:T«j /insert into empty tree /
: X< IDENT(p): LCHILD(p) < j
: else: RCHILD(p) < j
end
end BST

Figure 9.7 Binary search tree obtained for the months of the year.

440 Symbol Tables

NOVEMBER)/12 = 42/12 = 3.5. If the months are entered in the order
JULY, FEBRUARY, MAY, AUGUST, DECEMBER, MARCH, OC-
TOBER, APRIL, JANUARY, JUNE, SEPTEMBER and NOVEMBER
then the tree of figure 9.8 is obtained. This tree is well balanced and
does not have any paths to a node with a null link that are much longer
than others. This is not true of the tree of figure 9.7 which has six
nodes on the path from the root to NOVEMBER and only two nodes,
JANUARY and FEBRUARY, on another path to a null link. Moreover,
during the construction of the tree of figure 9.8 all intermediate trees
obtained are also well balanced. The maximum number of identifier

Figure 9.8 A balanced tree for the months of the year.

comparisons needed to find any identifier is now 4 and the average
is 37/12 = 3.1. If instead the months are entered in lexicographic order,
the tree degenerates to a chain as in figure 9.9. The maximum search
time is now 12 identifier comparisons and the average is 6.5. Thus,
in the worst case, binary search trees correspond to sequential searching
in an ordered file. When the identifiers are entered in a random order,
the tree tends to be balanced as in figure 9.8. If all permutations are
equiprobable then it can be shown the average search and insertion
time is O(log n) for an n node binary search tree.

From our earlier study of binary trees, we know that both the average
and maximum search time will be minimized if the binary search tree
is maintained as a complete binary tree at all times. However, since we
are dealing with a dynamic situation, identifiers are being searched for

Dynamic Tree Tables 41

Figure 9.9 Degenerate binary search tree

442 Symbol Tables

while the table is being built and so it is difficult to achieve this ideal
without making the time required to add new entries very high. This
is so because in some cases it would be necessary to restructure the
whole tree to accommodate the new entry and at the same time have
a complete binary search tree. It is, however, possible to keep the trees
balanced so as to ensure both an average and worst case retrieval time
of O(log n) for a tree with n nodes. We shall study one method of
growing balanced binary trees. These balanced trees will have satisfactory
search and insertion time properties.

Height Balanced Binary Trees

Adelson-Velskii and Landis in 1962 introduced a binary tree structure
that is balanced with respect to the heights of subtrees. As a result
of the balanced nature of this type of tree, dynamic retrievals can be
performed in O(log n) time if the tree has n nodes in it. At the same
time a new identifier can be entered or deleted from such a tree in
time O(log n). The resulting tree remains height balanced. The tree
structure introduced by them is given the name AVL-tree. As with
binary trees it is natural to define AVL trees recursively.

Definition: An empty tree is height balanced. If T is a nonempty binary
tree with T, and Ty as its left and right subtrees, then T is height
balanced iff (i) T, and Ty are height balanced and (i) |h, — hg| =1
where h; and hg are the heights of T, and T respectively.

The definition of a height balanced binary tree requires that every
subtree also be height balanced. The binary tree of figure 9.7 is not
height balanced since the height of the left subtree of the tree with
root ‘APRIL’ is 0 while that of the right subtree is 2. The tree of
figure 9.8 is height balanced while that of figure 9.9 is not. To illustrate
the processes involved in maintaining a height balanced binary search
tree, let us try to construct such a tree for the months of the year.
This time let us assume that the insertions are made in the order MARCH,
MAY, NOVEMBER, AUGUST, APRIL, JANUARY, DECEMBER,
JULY, FEBRUARY, JUNE, OCTOBER and SEPTEMBER. Figure
9.10 shows the tree as it grows and the restructuring involved in keeping
the tree balanced. The numbers within each node represent the difference
in heights between the left and right subtrees of that node. This number
is referred to as the balance factor of the node.

Definition: The balance factor, BF(T), of a node T in a binary tree
is defined to be h; — hg where h; and hj are the heights of the left

443

Dynamic Tree Tables

*183A oY1 JO SYIUOW JY} 10} paUlBlqO $I21] padueleqg 0’6 nBL]

dy

H39W3AON (11)

papaau buisub|pqas ON AVIN (1)

papaau buidoubjpqas ON HOHVW (1)

0“';‘

buioup|Dgay 1944y UOIjIasU| 13}y 19141Uap| MaN

Symbol Tables

444

ddv
0

papaau bBuidub pqas ON

(panunuod)

01°6 a3y

ddv

T14dv (7)

1Snonv (Al)

Dynamic Tree Tables 445

papaau bBuidubipgqas ON

ddv

41

(ponunuod) QY6 3andiy

ddv

ddv

439W393a (11A)

AHVNNVE (1A)

Symbol Tables

446

papasu buidupjpqas oN

ddv

1

(panuiuod)

016 231y

RO ON IS

ddv

ddv

AdVYNYE3d (x1)

Anr (1)

447

Dynamic Tree Tables

(Ponunuod) 016 NSy

@% 0
o mmq
o

udv ydv
o] [o]
Goy (T ()
@ @ INAP (X)

H¥380.00 (Ix)

Symbol Tables

448

papasu bBuidoupjpogas ON

(ponunuod)

01°6 dan3 4

Hdv

H3IGW3ILd3S (1ix)

Dynamic Tree Tables 449

and right subtrees of T. For any node T in an AVL tree BF(T) = —1,
Oor .

Inserting MARCH and MAY results in the binary search trees (i)
and (i) of figure 9.10. When NOVEMBER is inserted into the tree,
the height of the right subtree of MARCH becomes 2, while that of
the left subtree is 0. The tree has become unbalanced. In order to
rebalance the tree, a rotation is performed. MARCH is made the left
child of MAY and MAY becomes the root. The introduction of AUGUST
leaves the tree balanced. However, the next insertion, APRIL, causes
the tree to become unbalanced again. To rebalance the tree, another
rotation is performed. This time, it is a clockwise rotation. MARCH
is made the right child of AUGUST and AUGUST becomes the root
of the subtree (figure 9.10(v)). Note that both the previous rotations
were carried out with respect to the closest parent of the new node
having a balance factor of +2. The insertion of JANUARY results
in an unbalanced tree. This time, however, the rotation involved is
somewhat more complex than in the earlier situations. The common
point, however, is that it is still carried out with respect to the nearest
parent of JANUARY with balance factor +2. MARCH becomes the
new root. AUGUST together with its left subtree becomes the left
subtree of MARCH. The left subtree of MARCH becomes the right
subtree of AUGUST. MAY and its right subtree, which have identifiers
greater than MARCH, become the right subtree of MARCH. If MARCH
had a non-empty right subtree, this could have become the left subtree
of MAY since all identifiers would have been less than MAY. Inserting
DECEMBER and JULY necessitates no rebalancing. When FEBRUARY
is inserted the tree again becomes unbalanced. The rebalancing process
is very similar to that used when JANUARY was inserted. The nearest
parent with balance factor =2 is AUGUST. DECEMBER becomes the
new root of that subtree. AUGUST with its left subtree becomes the
left subtree. JANUARY and its right subtree becomes the right subtree
of DECEMBER, while FEBRUARY becomes the left subtree of JAN-
UARY. If DECEMBER had had a left subtree, it would have become
the right subtree of AUGUST. The insertion of JUNE requires the
same rebalancing as in figure 9.10 (vi). The rebalancing following the
insertion of OCTOBER is identical to that following the insertion of
NOVEMBER. Inserting SEPTEMBER leaves the tree balanced.

In the preceding example we saw that the addition of a node to a
balanced binary search tree could unbalance it. The rebalancing was
carried out using essentially four different kinds of rotations LL, RR,

450 Symbol Tables

LR and RL (figure 9.10 (v), (iii), (vi) and (ix) respectively). LL and
RR are symmetric as are LR and RL. These rotations are characterized
by the nearest ancestor, A, of the inserted node, Y, whose balance
factor becomes =2. The following characterization of rotation types
is obtained:

LL: new node Y is inserted in the left subtree of the left subtree
of A

LR: Y is inserted in the right subtree of the left subtree of A

RR: Y is inserted in the right subtree of the right subtree of A

RL: Y is inserted in the left subtree of the right subtree of A

Figures 9.11 and 9.12 show these rotations in terms of abstract binary
trees. The root node in each of the trees of the figures represents
the nearest ancestor whose balance factor has become *+2 as a result
of the insertion. A moments reflection will show that if a height balanced
binary tree becomes unbalanced as a result of an insertion then these
are the only four cases possible for rebalancing (if a moments reflection
doesn’t convince you, then try exercise 6). In both the example of
figure 9.10 and the rotations of figures 9.11 and 9.12, notice that the
height of the subtree involved in the rotation is the same after rebalancing
as it was before the insertion. This means that once the rebalancing
has been carried out on the subtree in question, it is not necessary
to examine the remaining tree. The only nodes whose balance factors
can change are those in the subtree that is rotated.

In order to be able to carry out the rebalancing of figures 9.11 and
9.12 it is necessary to locate the node A around which the rotation
is to be performed. As remarked earlier, this is the nearest ancestor
of the newly inserted node whose balance factor becomes =2. In order
for a node’s balance factor to become =2, its balance factor must have
been x| before the insertion. Furthermore, the nearest ancestor whose
balance factor becomes *+2 is also the nearest ancestor with balance
factor +1 before the insertion. Therefore, before the insertion, the balance
factors of all nodes on the path from A to the new insertion point
must have been 0. With this information, the node A is readily determined
to be the nearest ancestor of the new node having a balance factor
+1 before insertion. To complete the rotations the address of F, the
parent of A, is also needed. The changes in the balance factors of
the relevant nodes is shown in figures 9.11 and 9.12. Knowing F and
A, all these changes can easily be carried out. What happens when

451

Dynamic Tree Tables

144 UIDWaJ

g Jo saangns jo.jybiay

ybiay

2314qns

paoup|pgay

AN pue 77 2dA) Jo suonelod Sudureqey [1°¢ M3l

[+4 o}
saspasoui dg jo yybiay

-—
4y
[+Y o}
saseanu| 'g jo ybiay
-—
11
adk) uo1}J3su|

uo1|D4}01 Buimo|joj padub|bqun

2+4 by

E

991)Qns padsupipg

Symbol Tables

452

T pue ¥7 2dA) Jo suonejor Suppuerqay gI'¢ 33

mu -
@ [
(®)

e;
(a)y L V.

&)
i (o)y1 @ @
O, & ®

994iQns pacuD|DQIY ad&, uo1}Iasul dalyqns paoup|og
uoi} DO Buimojjoy pasupjoqup

Dynamic Tree Tables 453

LR{c)

RL a,b and ¢ are symmetric to LR a,b and c (see exercise (6))

Figure 9.12 (continued)

the insertion of a node does not result in an unbalanced tree (figure
9.10 (i), (i), (iv), (vii), (viii) and (xii))? While no restructuring of the
tree is needed, the balance factors of several nodes change. Let A
be the nearest ancestor of the new node with balance factor =1 before
insertion. If as a result of the insertion the tree did not get unbalanced
even though some path length increased by 1, it must be that the new
balance factor of A is 0. In case there is no ancestor A with balance
factor =1 (as in figure 9.10 (i), (i), (iv), (vii) and (xii)), let A be the
root. The balance factors of nodes from A to the parent of the new
node will change to x1 (see figure 9.10 (viii), A = JANUARY). Note
that in both cases the procedure for determining A is the same as when
rebalancing is needed. The remaining details of the insertion-rebalancing
process are spelled out in algorithm AVL-INSERT.

Program on next page

In order to really understand the insertion algorithm, the reader should
try it out on the example of figure 9.10. Once you are convinced that
it does keep the tree balanced, then the next question is how much
time does it take to make an insertion? An analysis of the algorithm
reveals that if h is the height of the tree before insertion, then the
time to insert a new identifier is O(h). This is the same as for unbalanced
binary search trees, though the overhead is significantly greater now.

454 Symbol Tables

In the case of binary search trees, however, if there were n nodes
in the tree, then h could in the worst case be n (figure 9.9) and the
worst case insertion time was O(n). In the case of AVL trees, however,
h can be at most O(log n) and so the worst case insertion time is
O(log n). To see this, let N, be the minimum number of nodes in
a height balanced tree of height h. In the worst case, the height of
one of the subtrees will be h — 1 and of the other h — 2. Both these
subtrees are also height balanced. Hence, N, = N, _, + N, _, + | and
N,=0, N, =1and N, = 2. Note the similarity between this recursive
definition for N, and that for the Fibonacci numbers F, = F, |, + F, _,,
F,=0and F, = I. Infact, we can show (exercise 16) that N, = F, ., -~ |
for h = 0. From Fibonacci number theory it is known that F, = d)"/\/?
where = (1 + V'5)/2. Hence, N, = $"*2/\V/5 — 1. This means that
if there are n nodes in the tree, then its height, A, is at most log, (V5(n
+ 1)) — 2. The worst case insertion time for a height balanced tree
with n nodes is, therefore, O(log n).

procedure AVL-INSERT(X,Y,T)

/the identifier X is inserted into the AVL tree with root T. Each
node is assumed to have an identifier field IDENT, left and right
child fields LCHILD and RCHILD and a two bit balance factor
field BF. BF(P) = height of LCHILD(P) - height of RCHILD(P).
Y is set such that IDENT(Y) = X. /

/special case: empty tree T = 0./

it T= 0 then [call GETNODE(Y); IDENT(Y) < X; T« Y;

BF(T) « 0;
LCHILD(T) « 0; RCHILD(T) « 0; return]

//Phase 1. Locate insertion point for X. A keeps track of most recent
node with balance factor =1 and F is the parent of A. Q follows
P through the trez. /

F—0O,A<T;P<T;Q<0

while P # 0 do #search T for insertion point for X/
if BF(P)# Othen [A«— P; F< Q]
case

:X < IDENT(P): Q « P; P« LCHILD(P) /take left
branch/

:X > IDENT(P): Q< P; P— RCHILD(P) / take right
branch /

:else: Y « P; return /Xisin T/
end
end

Dynamic Tree Tables 455

//Phase 2: Insert and rebalance. X is not in T and may be inserted
as the appropriate child of Q/
call GETNODE(Y); IDENT(Y) « X; LCHILD(Y) «0;
RCHILD(Y) < 0; BF(Y) <0
if X < IDENT(Q) then LCHILD(Q) < Y JZinsert as left child /
else RCHILD(Q) « Y /insert as right child /
/adjust balance factors of nodes on path from A to Q. Note that
by the definition of A, all nodes on this path must have balance
factors of 0 and so will change to =1. d = +1 implies X is inserted
in left subtree of A. d = —1 implies X is inserted in right subtree
of Ay
if X > IDENT(A) then [P« RCHILD(A); B+ P;d« -1]
else [P~ LCHILD(A); B« P; d« +1]

while P# Y do
if X > IDENT(P)
then [BF(P) « —1; P« RCHILD(P)] / height of right in-
creases by 1/
else [BF(P) « +1; P« LCHILD(P)} /height of left in-
creases by 1/
end
/1s tree unbalanced?/
it BF(A) = 0 then [BF(A) « d; return] /tree still balanced /
if BF(A) + d = 0 then [BF(A) < 0; return] Jtree is balanced /
/ tree unbalanced, determine rotation type /
~— it d= +1 then /left imbalance /
| case
:BF(B) = +1: /rotation type LL /

LCHILD(A) <« RCHILD(B); RCHILD(B) « A;
BF(A) < BF(B) <0
i celse: Jype LR/
i C <« RCHILD(B)
| RCHILD(B) «— LCHILD(C)
i LCHILD(A) < RCHILD(C)
| LCHILD(C)« B
RCHILD(C)«— A
r case
i :BF(C)=+1: BF(A)« ~1; BF(B) <0 /LR(b)/
! :BF(C) = -1: BF(B) « +1; BF(A) <0 J/LR(c)y/
: :else: BF(B) «<0; BF(A) «0; /LR(a)y/
-end
BF(C)«<0; B<C /B is a new root/
-end
else [/right imbalance; this is symmetric to left imbalance /
/and is left as an exercise /]
/ subtree with root B has been rebalanced and is the new subtree /
#of F. The original subtree of F had root A/
case
i F=0:T<B
{ :A=LCHILD(F): LCHILD(F) < B
: A= RCHILD(F): RCHILD(F) < B
--end
end AVL__INSERT

456 Symbol Tables

Exercises 9-13 show that it is possible to find and delete a node
with identifier X and to find and delete the k'™ node from a height
balanced tree in O(log n) time. Results of an empirical study of deletion
in height balanced trees may be found in the paper by Karlton, et.al.
(see the references). Their study indicates that arandom insertion requires
no rebalancing, a rebalancing rotation of type LL or RR and a rebalancing
rotation of type LR and RL with probabilities .5349, .2327 and .2324
respectively. Table 9.12 compares the worst case times of certain
operations on sorted sequential lists, sorted linked lists and AVL-trees.
Other suitable balanced tree schemes are studied in Chapter 10.

Operation Sequential List Linked List AVL-Tree
Search for X O(log n) O(n) O(log n)
Search for k" item o) O(k) O(log n)
Delete X O(n) Oo(1) O(log n)

(doubly linked list
and position of X

known)
Delete k™ item O - k) O(k) O(log n)
Insert X O(n) o) O(log n)

(if position for
insertion is known)
Output in order O(n) O(n) O(n)

Table 9.12 Comparison of various structures

9.3 HASH TABLES

In tree tables, the search for an identifier key is carried out via a sequence
of comparisons. Hashing differs from this in that the address or location
of an identifier, X, is obtained by computing some arithmetic function,
f, of X. f(X) gives the address of X in the table. This address will
be referred to as the hash or home address of X. The memory available
to maintain the symbol table is assumed to be sequential. This memory
is referred to as the hash table, HT. The hash table is partitioned into
b buckets, HT(0), ..., HT(b — 1). Each bucket is capable of holding
s records. Thus, a bucket is said to consist of s slots, each slot being
large enough to hold 1 record. Usually s = 1 and each bucket can hold
exactly 1 record. A hashing function, f(X), is used to perform an identifier
transformation on X. f(X) maps the set of possible identifiers onto

Hash Tables 457

the integers 0 through b — 1. If the identifiers were drawn from the
set of all legal Fortran variable names then there would be T = X5 26
x 361 > 1.6 x 10° distinct possible values for X. Any reasonable pro-
gram, however, would use far less than all of these identifiers. The
ratio n/ T is the identifier density, while a = n/(sb)is the loading density
or loading factor. Since the number of identifiers, n, in use is usually
several orders of magnitude less than the total number of possible
identifiers, T, the number of buckets b, in the hash table is also much
less then T. Therefore, the hash function f must map several different
identifiers into the same bucket. Two identifiers I,, I, are said to be
synonyms with respect to fif f(I,) = f(I,). Distinct synonyms are entered
into the same bucket so long as all the s slots in that bucket have
not been used. An overflow is said to occur when a new identifier
I is mapped or hashed by f into a full bucket. A collision occurs when
two nonidentical identifiers are hashed into the same bucket. When
the bucket size s is 1, collisions and overflows occur simultaneously.
As an example, let us consider the hash table HT with b = 26 buckets,
each bucket having exactly two slots, i.e., s = 2. Assume that there
are n = 10 distinct identifiers in the program and that each identifier
begins with a letter. The loading factor, o, for this table is 10/52 = 0.19.
The hash function f must map each of the possible identifiers into one
of the numbers 1-26. If the internal binary representation for the letters
A-Z corresponds to the numbers 1-26 respectively, then the function
f defined by: f(X) = the first character of X; will hash all identifiers
X into the hash table. The identifiers GA, D, A, G, L, A2, Al, A3,
A4 and E will be hashed into buckets 7, 4, 1, 7, 12, 1, 1, 1, 1 and
5 respectively by this function. The identifiers A, Al, A2, A3 and

SLOT 1 SLOT 2
1 A A2
2 0 0
3 0 0
4 D 0
5 0 0
6 0 0
7 GA G
26 0 0

Zeros indicate empty slots

Figure 9.13 Hash table with 26 buckets and two slots per bucket

458 Symbol Tables

Adare synonyms. Soalso are Gand GA. Figure 9.13 shows the identifiers
GA, D, A, G, and A2 entered into the hash table. Note that GA and
G are in the same bucket and each bucket has two slots. Similarly,
the synonyms A and A2 are in the same bucket. The next identifier,
Al, hashes into the bucket HT(1). This bucket is full and a search
of the bucket indicates that Al is not in the bucket. An overflow has
now occurred. Where in the table should A1 be entered so that it may
be retrieved when needed? We will look into overflow handling strategies
in section 9.3.2. In the case where no overflows occur, the time required
to enter or search for identifiers using hashing depends only on the
time required to compute the hash function f and the time to search
one bucket. Since the bucket size s is usually small (for internal tables
s is usually 1) the search for an identifier within a bucket is carried
out using sequential search. The time, then, is independent of n the
number of identifiers in use. For tree tables, this time was, on the
average, log n. The hash function in the above example is not very
well suited for the use we have in mind because of the very large
number of collisions and resulting overflows that occur. Thisis so because
it is not unusual to find programs in which many of the variables begin
with the same letter. Ideally, we would like to choose a function f
which is both easy to compute and results in very few collisions. Since
the ratio b/ T is usually very small, it is impossible to avoid collisions
altogether.

In summary, hashing schemes perform an identifier transformation
through the use of a hash function f. It is desirable to choose a function
fwhich is easily computed and also minimizes the number of collisions.
Since the size of the identifier space, T, is usually several orders of
magnitude larger than the number of buckets b, and s is small, overflows
necessarily occur. Hence a mechanism to handle overflows is also needed.

9.3.1 Hashing Functions

A hashing function, f, transforms an identifier X into a bucket address
in the hash table. As mentioned earlier the desired properties of such
a function are that it be easily computable and that it minimize the
number of collisions, A function such as the one discussed earlier is
not a very good choice for a hash function for symbol tables even
though it is fairly easy to compute. The reason for this is that it depends
only on the first character in the identifier. Since many programs use
several identifiers with the same first letter, we expect several collisions
to occur. In general, then, we would like the function to depend upon
all the characters in the identifiers. In addition, we would like the hash

Hash Tables 459

function to be such that it does not result in a biased use of the hash
table for random inputs. I.e., if X is an identifier chosen at random
from the identifier space, then we want the probability that f(X) = i
to be 1/b for all buckets i. Then a random X has an equal chance
of hashing into any of the b buckets. A hash function satisfying this
property will be termed a uniform hash function.

Several kinds of uniform hash functions are in use. We shall describe
four of these. :

(1) Mid-Square

One hash function that has found much use in symbol table applications
is the ‘middle of square’ function. This function, f,, is computed by
squaring the identifier and then using an appropriate number of bits
from the middle of the square to obtain the bucket address; the identifier
is assumed to fit into one computer word. Since the middle bits of
the square will usually depend upon all of the characters in the identifier,
it is expected that different identifiers would result in different hash
addresses with high probability even when some of the characters are
the same. Figure 9.14 shows the bit configurations resulting from squaring
some sample identifiers. The number of bits to be used to obtain the
bucket address depends on the table size. If r bits are used, the range
of values is 2", so the size of hash tables is chosen to be a power
of 2 when this kind of scheme is used.

IDENTIFIER INTERNAL REPRESENTATION

X X X?
A 1 1
Al 134 20420
A2 135 20711
A3 136 21204
A4 137 21501
A9 144 23420
B 2 4
C 3 11
G 7 61
DMAX 4150130 21526443617100
DMAX]1 415013034 5264473522151420
AMAX 1150130 1345423617100
AMAX]1 115013034 3454246522151420

Figure 9.14 Internal representations of X and X2 in octal notation. X is input right
justified, zero filled, six bits or 2 octal digits per character.

460 Symbeol Tables
(i) Division
Another simple choice for a hash function is obtained by using the

modulo (mod) operator. The identifier X is divided by some number
M and the remainder is used as the hash address for X.

fp(X) = Xmod M

This gives bucket addresses in the range 0 — (M — 1) and so the hash
table is at least of size b = M. The choice of M is critical. If M is
a power of 2, then f,(X) depends only on the least significant bits
of X. For instance, if each character is represented by six bits and
identifiers are stored right justified in a 60-bit word with leading bits
filled with zeros (figure 9.15) then with M = 2% i< 6 the identifiers
Al, B1, C1, X41, DNTXY1, etc. all have the same bucket address.
With M = 2i, { = 12 the identifiers AXY, BXY, WTXY, etc. have the
same bucket address. Since programmers have a tendency to use many
variables with the same suffix, the choice of M as a power of 2 would
result in many collisions. This choice of M would have even more

48 bits 48 bits
[ofofoJoJofoJafui] [a]rfolofoJofo]o]
right justified zero filled left justified

Figure 9.15 Identifier A1 right and left justified and zero filled. (6 bits per character)

disastrous results if the identifier X is stored left justified zero filled.
Then, all 1 character identifiers would map to the same bucket, 0, for
M =2i i< 54; all 2 character identifiers would map to the bucket 0
for M =2 i< 48etc. As a result of this observation, we see that when
the division function f is used as a hash function, the table size should
not be a power of 2 while when the ‘‘middle of square’’ function f,,
is used the table size is a power of 2. If M is divisible by 2 then
odd keys are mapped to odd buckets (as the remainder is odd) and
even keys are mapped to even buckets. The use of the hash table
is thus biased.

Let us try some other values for M and see what kind of identifiers
get mapped to the same bucket. The goal being that we wish to avoid
a choice of M that will lead to many collisions. This kind of an analysis
is possible as we have some idea as to the relationships between different

Hash Tables 461

variable names programmers tend to use. For instance, the knowledge
that a program tends to have variables with the same suffix led us
toreject M = 2¢. For similar reasons even values of M prove undesirable.
Let X = x,x, and Y = x,x, be two identifiers each consisting of the
characters x, and x,. If the internal binary representation of x, has
value C(x,) and that for x, has value C(x,) then if each character
is represented by 6 bits, the numeric value of X is 2C(x,) + C(x,)
while that for Y is 2°C(x,) + C(x,). If p is a prime number dividing
M then (fp(X) — fp(Y)) mod p = 2°C(x,)mod p + C(x,)mod p
- 2%C(x,)mod p — C(x,)mod p) mod p. If p = 3, then

(fp(X) = fp(Y)mod p

= (64 mod 3 C(x,)mod 3 + C(x,)mod 3
— 64 mod 3 C(x,)mod 3 — C(x,)mod 3) mod 3
C(x,)mod 3 + C(x,)mod 3 ~ C(x,)mod 3 — C(x,)mod 3
0 mod 3.

Il

I.e., permutations of the same set of characters are hashed at a distance
a factor of 3 apart. Programs in which many variables are permutations
of each other would again result in a biased use of the table and hence
result in many collisions. This happens because 64 mod 3 = 1. The same
behavior can be expected when 7 divides M as 64 mod 7 = 1. These
difficulties can be avoided by choosing M a prime number. Then, the
only factors of M are M and 1. Knuth has shown that when M divides
rk + a where kand a are small numbers and ris the radix of the character
set (in the above example r = 64), then X mod M tends to be a simple
superposition of the characters in X. Thus, a good choice for M would
be: M a prime number such that M does not divide r* = a for small
k and a. In section 9.3.2 we shall see other reasons for choosing M
a prime number. In practice it has been observed that it is sufficient
to choose M such that it has no prime divisors less than 20.

(iii) Folding

In this method the identifier X is partitioned into several parts, all
but the last being of the same length. These parts are then added together
to obtain the hash address for X. There are two ways of carrying out
this addition. In the first, all but the last part are shifted so that the

least significant bit of each part lines up with the corresponding bit
of the last part (figure 9.16(a)). The different parts are now added together

462 Symbol Tables

P, P, P, P, P P, =123 P, =203 P, =241 P, =112 P, =20

P, 123 P, 123
P, 203 P 302
P, 241 P, 241
P, 112 P 211
P 20 P 20

699 897

(a) shift folding (b) folding at the boundaries Pr=

reverse of P,

Figure 9.16 Two methods of folding

to get f(X). This method is known as shift folding. The other method
of adding the parts is folding at the boundaries. In this method, the
identifier is folded at the part boundaries and digits falling into the
same position are added together (figure 9.16(b)) to obtain f(X).

(iv) Digit Analysis

This method is particularly useful in the case of a static file where
all the identifiers in the table are known in advance. Each identifier
X is interpreted as a number using some radix r. The same radix is
used for all the identifiers in the table. Using this radix, the digits
of each identifier are examined. Digits having the most skewed distribu-
tions are deleted. Enough digits are deleted so that the number of digits
left is small enough to give an address in the range of the hash table.
The criterion used to find the digits to be used as addresses, based
on the measure of uniformity in the distribution of values in each digit,
is to keep those digits having no abnormally high peaks or valleys and
those having small standard deviation. The same digits are used for
all identifiers.

Experimental results presented in §9.3.2 suggest the use of the division
method with a divisor M that has no prime factors less than 20 for
general purpose applications.

9.3.2 Overflow Handling

In order to be able to detect collisions and overflows, it is necessary
to initialize the hash table, HT, to represent the situation when all slots

Hash Tables 463

are empty. Assuming that no record has identifier zero, then all slots
may be initialized to zero.tf When a new identifier gets hashed into
a full bucket, it is necessary to find another bucket for this identifier.
The simplest solution would probably be to find the closest unfilled
bucket. Let us illustrate this on a 26-bucket table with one slot per
bucket. Assume the identifiers to be GA, D, A, G, L, A2, Al, A3,
A4, Z, ZA, E. For simplicity we choose the hash function f(X) = first
character of X. Initially, all the entries in the table are zero. f(GA) =17,
this bucket is empty, so GA and any other information making up the
record are entered into HT(7). D and A get entered into the buckets
HT(4) and HT(1) respectively. The next identifier G has f(G) = 7.
This slot is already used by GA. The next vacant slot is HT(8) and
so G is entered there. L enters HT(12). A2 collides with A at HT(1),
the bucket overflows and A2 is entered at the next vacant slot HT(2).
Al, A3 and A4 are entered at HT'(3), HT(5) and HT(6) respectively.
Zis entered at HT (26), ZA at HT(9), (the hash table is used circularly),

A
A2
Al

D
A3
A4
GA

G
ZA

N 00 N2 N ks W N =

—
(=2

—

—
w

o
oloir|o|m

26 z

Figure 9.17 Hash table with linear probing. 26 buckets, 1 slot per bucket

tA clever way to avoid initializing the hash table has been discovered by T. Gonzalez
(see exercise 22).

464 Symbol Tables

and E collides with A3 at HT(5) and is eventually entered at HT(10).
Figure 9.17 shows the resulting table. This method of resolving overflows
is known as linear probing or linear open addressing.

In order to search the table for an identifier, X, it is necessary to
first compute f(X) and then examine keys at positions HT(f(X)),
HT({f(X) + 1),HT(f(X) + j) such that HT(f(X) + j) either equals
X (X is in the table) or 0 (X is not in the table) or we eventually
return to HT (f(X)) (the table is full).

procedure LINSRCH (X,HT,b,j)

/search the hash table HT(0: b - 1) (each bucket has exactly 1
slot) using linear probing. If HT(j) = 0 then the j-th bucket is empty
and X can be entered into the table. Otherwise HT(j) = X which
is already in the table. fis the hash function/

i f(X); jei /compute hash address for X/
while HT(j) # X and HT(j) # 0 do
je<(G+ Dmodb / treat the table as circular,/
if j = i then call TABLE _FULL /no empty slots,/
end
end LINSRCH

Our earlier example shows that when linear probing is used to resolve
overflows, identifiers tend to cluster together, and moreover, adjacent
clusters tend to coalesce, thus increasing the search time. To locate
the identifier, ZA, in the table of figure 9.17, it is necessary to examine
HT(Q26), HT(1), ...,HT(9), a total of ten comparisons. This is far worse
than the worst case behavior for tree tables. If each of the identifiers
in the table of figure 9.12 was retrieved exactly once, then the number
of buckets examined would be 1 for A, 2 for A2, 3 for Al, 1 for
D, 5 for A3, 6 for A4, 1 for GA, 2 for G, 10 for ZA, 6 for E, 1
for L and 1 for Z for a total of 39 buckets examined. The average
number examined is 3.25 buckets per identifier. An analysis of the
method shows that the expected average number of identifier compari-
sons, P, to look up an identifier is approximately (2 — «)/(2 — 2a) where
o is the loading density. This is the average over all possible sets of
identifiers yielding the given loading density and using a uniform function
f. In the above example o = 12/26 = 47 and P = 1.5. Even though
the average number of probes is small, the worst case can be quite
large.

One of the problems with linear open addressing is that it tends to
create clusters of identifiers. Moreover, these clusters tend to merge

Hash Tables 465

as more identifiers are entered, leading to bigger clusters. Some improve-
ment in the growth of clusters and hence in the average number of
probes needed for searching can be obtained by quadratic probing. Linear
probing was characterized by searching the buckets (f(X) + i) mod b;
0 = i=< b - 1 where b is the number of buckets in the table. In quadratic
probing, a quadratic function of iis used as the increment. In particular,
the search is carried out by examining buckets f(X), (f(X) + i?) mod b
and (f(X) — i®»mod bfor 1 =i=<(b— 1)/2. When bis a prime number
of the form 4j + 3, for j an integer, the quadratic search described above
examines every bucket in the table. The proof that when b is of the
form 4j + 3, that quadratic probing examines all the buckets 0 to b — 1
relies on some results from number theory. We shall not go into the
proof here. The interested reader should see Radke [1970] for a proof.
Table 9.18 lists some primes of the form 4j + 3. Another possibility

Prime j Prime j
3 0 43 10
7 1 59 14
11 2 127 31
19 4 251 62
23 5 503 125
31 7 1019 254

Table 9.18 Some primes of the form 4j + 3

is to use a series of hash functions f,,f,, ...,f,. This method is known
as rehashing. Buckets f,(X), 1 =i =< m are examined in that order.
An alternate method for handling bucket overflow, random probing,
is discussed in exercise 19.

One of the reasons linear probing and its variations perform poorly
is that searching for an identifier involves comparison of identifiers
with different hash values. In the hash table of figure 9.17, for instance,
searching for the identifier ZA involved comparisons with the buckets
HT(1) to HT(8), even though none of the identifiers in these buckets
had a collision with HT(26) and so could not possibly be ZA. Many
of the comparisons being made could be saved if we maintained lists
of identifiers, one list per bucket, each list containing all the synonyms
for that bucket. If this were done, a search would then involve computing
the hash address f(X) and examining only those identifiers in the list
for f(X). Since the sizes of these lists is not known in advance, the
best way to maintain them is as linked chains. Additional space for
a link is required in each slot. Each chain will have a head node. The

Symbol Tables

466

*L1°6 2In81 01 Buipuodsaliod suleyod yseH ¢I°¢ 3m3iy

")UI| © PIOY UDD §34NQ Y03 ‘S4YONQ 9Z YHM 3|qO} YSOH

o]z R vZ K]

(o171]

B
T
L

o)
i

[o]v 1

[2v Jod Jiv o Jev oo [pv |

¥NITIN3QI —

Hash Tables 467

head node, however, will usually be much smaller than the other nodes
since it has to retain only a link. Since the lists are to be accessed
at random, the head nodes should be sequential. We assume they are
numbered 1 to M if the hash function f has range 1 to M.

Using chaining to resolve collisions and the hash function used to
obtain figure 9.17, the hash chains of figure 9.19 are obtained. When
a new identifier, X, is being inserted into a chain, the insertion can
be made at either end. This is so because the address of the last node
in the chain is known as a result of the search that determined X was
not in the list for f(X). In the example of figure 9.19 new identifiers
were inserted at the front of the chains. The number of probes needed
to search for any of the identifiers is now 1 for each of A4, D, E,
G, L, and ZA; 2 for each of A3, GA and Z; 3 for Al; 4 for A2 and
5 for A for a total of 24, The average is now 2 which is considerably
less than for linear probing. Additional storage, however, is needed
for links.

procedure CHNSRCH (X,HT,b,j)

/ search the hash table HT(0:b — 1) for X. Either HT(i) =0 or it
is a pointer to the list of identifiers X: f(X) =i. List nodes have
field IDENTand LINK. Either j points to the node already containing
Xorj=0y/
je HT(f(X)) # compute head node address /

/ search the chain starting at j/
while j # 0 and IDENT(j) # X do

j< LINK(j)
end
end CHNSRCH

The expected number of identifier comparisons can be shown to be
=]+ %where a is the loading density n /b (b = number of head nodes).

For a = 0.5 this figure is 1.25 and for a = 1 it is about1.5.This scheme
has the additional advantage that only the b head nodes must be sequential
and reserved at the beginning. Each head node, however, will be at
most 1/2 to 1 word long. The other nodes will be much bigger and
need be allocated only as needed. This could represent an overall
reduction in space required for certain loading densities despite the links.
If each record in the table is five words long, n = 100 and a = 0.5,
then the hash table will be of size 200 x 5 = 1000 words. Only 500

(6€2-87 "dd ‘p
'ON ‘¢l '[OA ‘161 MMdY ‘WOVD ..'seltd pawtewnsoj Sunsixg afie] uo Apmig aouewWIoidd [euswepund Y :sanbuyoa]
WIOJSUBI] SSAIPPY-01-A93],, ‘PPO(PUE UAN A ‘WINTT WIOI] PISUIPUOD) PIAILIIAL IdJIUIP! Jad $38§30IB 1939NQ JO Joquinu aFeIdAy 7'6 2mB1g

I = 1onq Jad s10[s JO JoqunN

sA9) wopues uo paseq —
uonedadxa |esnaloayl = OFHL 05°01 8b'1 (Y St'l 0T Le'l 0s'1 YA OdHL
Ma_ﬂ_MN up = va 65Tl TSl | 0T68 TS1 | T90E 601 | S se'l va
saLrepunoq e supjoj = g 4104 :
Au1p(oy 114S = § ATOd 96 ISl | €969 ST | OU8y LS | L6TT 6€d € a104
UOISIAIp = AIQ LS8 1§71 10°LL ov'l 01's9 8yl SLIT tel S 104
arenbs jo ajppiw = OSAIN 6L'ST Il W sel 0T'L €1 494 61°1 Ald
Aysusp 3uipeo| = ©
Suissaippe uado Jeaur] = J 139A3 i LT sl SL'6 ovl eL'l 9l OSAIN
Sumureys = D 1 o) 1 o) 1 o) 1 o) ad&y
. . . . - uonouny
s6 6 SL § UM =P\ ey

Symbol Tables

468

Hash Tables 469

of these are used as a = 0.5. On the other hand, if chaining is used
with one full word per link, then 200 words are needed for the head
nodes (b = 200). Each head node is one word long. One hundred nodes
of six words each are needed for the records. The total space needed
is thus 800 words, or 20% less than when no chaining was being used.
Of course, when « is close to 1, chaining uses more space than linear
probing. However, when a is close to 1, the average number of probes
using linear probing or its variations becomes quite large and the additional
space used for chaining can be justified by the reduction in the expected
number of probes needed for retrieval. If one wishes to delete an entry
from the table, then this can be done by just removing that node from
its chain. The problem of deleting entries while using open addressing
to resolve collisions is tackled in exercise 17.

The results of this section tend to imply that the performance of
a hash table depends only on the method used to handle overflows
and is independent of the hash function so long as a uniform hash
function is being used. While this is true when the identifiers are selected
at random from the identifier space, it is not true in practice. In practice,
there is a tendency to make a biased use of identifiers. Many identifiers
in use have a common suffix or prefix or are simple permutations of
other identifiers. Hence, in practice we would expect different hash
functions to result in different hash table performance. The table of
figure 9.20 presents the results of an empirical study conducted by Lum,
Yuen and Dodd. The values in each column give the average number
of bucket accesses made in searching eight different tables with 33,575;
24,0505 4909; 3072; 2241; 930; 762 and 500 identifiers each. As expected,
chaining outperforms linear open addressing as a method for overflow
handling. In looking over the figures for the various hash functions,
we see that division is generally superior to the other types of hash
functions. For a general application, it is therefore recommended that
the division method be used. The divisor should be a prime number,
though it is sufficient to choose a divisor that has no prime factors
less than 20. The table also gives the theoretical expected number of
bucket accesses based on random keys.

9.3.3 THEORETICAL EVALUATION OF OVERFLOW
TECHNIQUES

The experimental evaluation of hashing techniques indicates a very

good performance over conventional techniques such as balanced trees.

The worst case performance for hashing can, however, be very bad.

In the worst case an insertion or a search in a hash table with n identifiers

470 Symbol Tables

may take O(n) time. In this section we present a probabilistic analysis
for the expected performance of the chaining method and state without
proof the results of similar analyses for the other overflow handling
methods. First, we formalize what we mean by expected performance.

Let HT(0: b — 1) be a hash table with b buckets, each bucket having
one slot. Let f be a uniform hash function with range [0, b — 1]. If
n identifiers X,,X,,...,X, are entered into the hash table then there
are b distinct hash sequences f(X,), f(X,),f(X,). Assume that
each of these is equally likely to occur. Let S, denote the expected
number of identifier comparisons needed to locate a randomly chosen
X;, 1 =i=<n. Then, S, is the average number of comparisons needed
to find the j’th key X;; averaged over 1 = j= n with each j equally
likely and averaged over all b hash sequences assuming each of these
to also be equally likely. Let U, be the expected number of identifier
comparisons when a search is made for an identifier not in the hash
table. This hash table contains n identifiers. The quantity U, may be
defined in a manner analogous to that used for S,,.

Theorem 9.1 Let a = n/b be the loading density of a hash table using
a uniform hashing function f. Then:
(i) for linear open addressing

(i) for rehashing, random probing and quadratic probing

U,=~1/(1 —a)

S, ~-— (l) log, (1 — o)
o

(iii) for chaining

U,=a

S,~1+a/2

Proof Exact derivations of U, and S, are fairly involved and can be

Hash Tables 471

found in Knuth’s book: The Art of Computer Programming: Sorting
and Searching. Here, we present a derivation of the approximate formulas
for chaining. First, we must make clear our count for U, and S,,.
In case the identifier X being searched for has f(X) =i and chain i
has k nodes on it (not including the head node) then k comparisons
are needed if X is not on the chain. If X is j nodes away from the
head node, 1 = j = k then j comparisons are needed.

When the n identifiers distribute uniformly over the b possible chains,
the expected number in each chain is n/b = a. Since, U, = expected
number of identifiers on a chain, we get U, = a.

When the i’thidentifier, X, is being entered into the table, the expected
number of identifiers on any chain is (i — 1)/ b. Hence, the expected
number of comparisons needed to search for X, after all n identifiers
have been entered is 1 + (i — 1)/ b (this assumes that new entries will
be made at the end of the chain). We therefore get:

n-—1 a

{ o , _
S,,=;gl{1+(1—1)/b}—1+

REFERENCES AND SELECTED READINGS

The O(n?) optimum binary search tree algorithm is from:

“Optimum Binary Search Trees’’ by D. Knuth, Acta Informatica, vol. 1,
Fasc 1, 1971, pp. 14-25.

For a discussion of heuristics that obtain in O(nlogn) time nearly optimal
binary search trees see:

““‘Nearly Optimal Binary Search Trees,”” by K. Melhorn, Acta Informatica,
vol. 5, pp. 287-295, 1975,

‘‘Binary Search Trees and File Organization,” by J. Nievergelt, ACM Computing
Surveys, vol. 6, no. 3, Sept. 1974, pp. 195-207.

For more on Huffman codes see: An Optimum Encoding with Minimum Longest
Code and Total Number of Digits, by E. Schwartz, Information and Control,
vol. 7, 1964, pp. 37-44.

Additional algorithms to manipulate AVL trees may be found in:

“Linear lists and priority queues as balanced binary trees’’ by C. Crane,
STAN-CS-72-259, Computer Science Department, Stanford University, February
1972.

472 Symbol Tables

The art of computer programming: sorting and searching by D. Knuth, Addison-
Wesley, Reading, Massachusetts, 1973 (section 6.2.3).

Results of an empirical study on height balanced trees appear in:

“‘Performance of Height-Balanced Trees,”” by P. L. Karlton, S. H. Fuller, R.
E. Scroggs and E. B. Koehler, CACM, vol. 19, no. 1, Jan. 1976, pp. 23-28.

Several interesting and enlightening works on hash tables exist. Some of
these are:

“‘Scatter storage techniques’ by R. Morris, CACM, vol. 11, no. 1, January
1968, pp. 38-44.

““Key to Address Transform Techniques: A Fundamental Performance Study
on Large Existing Formatted Files’” by V. Lum, P. Yuen and M. Dodd, CACM,
vol. 14, no. 4, April 1971, pp. 228-239.

““The quadratic quotient method: a hash code eliminating secondary clustering’’
by J. Bell, CACM, vol. 13, no. 2, February 1970, pp. 107-109.

““Full table quadratic searching for scatter storage’ by A. Day, CACM, vol.
13, no. 8, August 1970, pp. 481-482.

“‘Identifier search mechanisms: a survey and generalized model’” by D. Se-
verence, ACM Computing Surveys, vol. 6, no. 3, September 1974, pp. 175-194,

‘A practitioners guide to addressing algorithms: a collection of reference tables
and rules-of-thumb™ by D. Severence and R. Duhne, Technical Report No.
240, Department of Operations Research, Cornell University, November 1974.

‘‘Hash table methods” by W, Mauer and T. Lewis, ACM Computing Surveys,
vol. 7, no. 1, March 1975, pp. 5-20.

*“The quadratic hash method when the table size is not prime’’ by V. Batagelj,
CACM, vol. 18, no. 4, April 1975, pp. 216-217.

The art of computer programming: sorting and searching by D. Knuth, Addison-
Wesley, Reading, Massachusetts, 1973.

“Reducing the retrieval time of scatter storage techniques” by R. Brent, CACM.
vol. 16, no. 2, February 1973, pp. 105-109.

“‘General performance analysis of key-to-address transformation methods using
an abstract file concept’” by V. Lum, CACM, vol. 16, no. 10, October 1973,
pp- 603-612,

““The use of quadratic residue research,”” by C. E. Radke, CACM, vol. 13
no. 2, Feb, 1970, pp. 103-105.

’

A method to avoid hash table initialization may be found in:

Exercises 473

““Algorithms for sets and related problems,”” by T. Gonzalez, University of
Oklahoma, Nov, 1975.

EXERCISES

1.

(a) Prove by induction that if T is a binary tree with n internal nodes,
I its internal path length and E its external path length, then E = I + 2n,
nz0.

(b) Using the result of (a) show that the average number of comparisons
s in a successful search is related to the average number of comparisons,
u, in an unsuccessful search by the formula

s=(1+1/nu-1, n=1.

(a) Show that algorithm HUFFMAN correctly generates a binary tree of
minimal weighted external path length.

(b) When nrunsare to be merged together using an m-way merge, Huffman’s
method generalizes to the following rule: ‘‘First add (1 — n) mod (m — 1)
runs of length zero to the set of runs. Then repeatedly merge together
the m shortest remaining runs until only one run is left.”” Show that this
rule yields an optimal merge pattern for m-way merging.

Using algorithm OBST compute w;, r,and ¢;;, 0 < i < j =< 4 for the identifier
set (a,,a,,dy,a,) = (end, goto, print, stop) with p, = 1/20, p,=1/5,
p,=1/10, p,=1/20, q,=1/5,q,=1/10, q,=1/5, q; = 1/20, q, =
1/20. Using the r;’s construct the optimal binary search tree.

(a) Show that the computing time of algorithm OBST is O(n?).

(b) Write an algorithm to construct the optimal binary search tree T,
given the roots r,, 0 = i< j= n. Show that this can be done in time
O(n).

i

Since, often, only the approximate values of the p’s and g’s are known,
it is perhaps just as meaningful to find a binary search tree that is nearly
optimal i.e. its cost, eq. (9.1), is almost minimal for the given p’s and
q’s. This exercise explores an O(nlogn) algorithm that results in nearly
optimal binary search trees. The search tree heuristic we shall study is:

Choose the root A, such that |wy,_; — w,_|

is as small as possible, Repeat this procedure to find the left and right
subtrees of A, .

(a) Using this heuristic obtain the resulting binary search tree for the data
of exercise 3. What is its cost?

474

10.

11.

12.

13.

14.

Symbol Tables

(b) Write a SPARKS algorithm implementing the above heuristic. Your
algorithm should have a time complexity of at most O(n log n).

An analysis of the performance of this heuristic may be found in the
paper by Melhorn.

(a) Convince yourself that Figures 9.11 and 9.12 take care of all the possible
situations that may arise when a height balanced binary tree becomes
unbalanced as a result of an insertion. Alternately come up with an example
that is not covered by any of the cases in Figures 9.11 and 9.12.

(b) Complete Figure 9.12 by drawing the tree configurations for the rotations
RL (a), (b) and (c).

Complete algorithm AVL—INSERT by filling in the steps needed to
rebalance the tree in case the imbalance was of type RL.

Obtain the height balanced trees corresponding to those of Figure 9.10
using algorithm AVL—INSERT, starting with an empty tree, on the following
sequence of insertions:

DECEMBER, JANUARY, APRIL, MARCH, JULY, AUGUST, OC-
TOBER, FEBRUARY, NOVEMBER, MAY, JUNE.

Label the rotations according to type.

Assume that each node in an AVL tree T has the field LSIZE. For any
node, A, LSIZE(A) is the number of nodes in its left subtree +1. Write
an algorithm AVL—FINDK(T,k) to locate the k'™ smallest identifier in
the subtree T. Show that this can be done in O(log n) if there are n
nodes in T. :

Rewrite algorithm AVL—INSERT with the added assumption that each
node has a LSIZE field as in exercise 9. Show that the insertion time
remains O(log n).

Write an algorithm to list the nodes of an AVL-tree T in ascending order
of IDENT fields. Show that this can be done in O(n) time if T has n
nodes.)

Write an algorithm to delete the node with identifier X from an AVL-tree
T. The resulting tree should be restructured if necessary. Show that the
time required for this is O(log n) when there are n nodes in T.

Do exercise 12 for the case when each node has a LSIZE field and the
k™ smallest identifier is to be deleted.

Write an algorithm to merge the nodes of the two AVL-trees T, and T,
together. What is the computing time of your algorithm?

15.

16.

17.

18.

19.

Exercises 475

Write an algorithm to split an AVL tree, T, into two AVL trees T, and
T, such that all identifiers in T, are =X and all those in T, are >X.

Prove by induction that the minimum number of nodes in an AVL tree
of height his N, =F,,,— 1, h=0.

Write an algorithm to delete identifier X from a hash table which uses
hash function f and linear open addressing to resolve collisions. Show
that simply setting the slot previously occupied by X to 0 does not solve
the problem. How must algorithm LINSRCH be modified so that a correct
search is made in the situation when deletions are permitted? Where can
a new identifier be inserted?

(i) Show thatif quadratic searching is carried out in the sequence (f(x) + g?),
(f(x) + (@ = D?),....(f(x) + 1), f(x), (f(x) = 1), ..,(f(x) — g*) withq = (b -
1)/2 then the address difference mod b between successive buckets being
examined is

b-2,b-4,b-6,...,53,1,1,3,5, ..,b—-6,b—4,b—-2

(i) Write an algorithm to search a hash table HT (0,b — 1) of size b for
the identifier X. Use fas the hash function and the quadratic probe scheme
discussed in the text to resolve. In case X is not in the table, it is to
be entered. Use the results of part (i) to reduce the computations.

[Morris 1968] In random probing, the search for an identifier, X, in a
hash table with b buckets is carried out by examining buckets f(x),
f(x)+ S@), 1=i=<b—-1 where S(i) is a pseudo random number. The
random number generator must satisfy the property that every number
from 1 to b — 1 must be generated exactly once. (i) Show that for a table
of size 27, the following sequence of computations generates numbers with
this property:

Initialize R to 1 each time the search routine is called.

On successive calls for a random number do the following:

R« R=*S5

R < low order r + 2 bits of R

S({@)<—R /4
(i) Write an algorithm, incorporating the above random number generator,
to search and insert into a hash table using random probing and the middle
of square hash function, f,,.

It can be shown that for this method, the expected value for the average
number of comparisons needed to search for X is —(1/a)log(l — o) for
large table sizes. a is the loading factor.

476

20.

21.

22,

23.

24,

25.

26.

Symbeol Tables

Write an algorithm to list all the identifiers in a hash table in lexicographic
order. Assume the hash function fis f(X) = first character of X and linear
probing is used. How much time does your algorithm take?

Let the binary representation of identifier X be x,x,. Let |x| denote the
number of bits in x and let the first bit of x, be 1. Let |x,| = [|x|/2]
and |x,| = ||x]|/2]. Consider the following hash function

f(X) = middle k bits of (x;, XOR x,)

where XOR is exclusive or. Is this a uniform hash function if identifiers
are drawn at random from the space of allowable FORTRAN identifiers?
What can you say about the behavior of this hash function in a real symbol
table usage?

[T. Gonzalez] Design a symbol table representation which allows one to
search, insert and delete an identifier Xin O(1) time. Assumethat | = X=m
and that m + n units of space are available where n is the number of
insertions to be made (Hint: use two arrays A(l:n) and B(1:m) where
A(i) will be the ith identifier inserted into the table. If Xis the ith identifier
inserted then B(X) = i.). Write algorithms to search, insert and delete
identifiers. Note that you cannot initialize either A or B to zero as this
would take O(n + m) time. Note that X is an integer.

[T. Gonzalez] Let S = {x,,x,,....x,} and T = {y,,¥,5, ...,¥,} be two sets.
Assume l=x,=m, l=i=nand 1 =y,=m, 1l =i=r Using the idea
of exercise 22 write an algorithm to determine if S C T. Your algorithm
should work in O(r+ n) time. Since S=T iff SC T and T C S, this
implies that one can determine in linear time if two sets are equivalent.
How much space is needed by your algorithm?

[T.Gonzalez] Usingthe idea of exercise 22 writean O(n + m) time algorithm
to carry out the function of algorithm VERIFY2 of section 7.1. How
much space does your algorithm need?

Complete table 9.12 by adding a column for hashing.
For a fixed k, k = 1 we define a height balanced tree HB(k) as below:

Definition An empty binary tree is a HB(k) tree. If T is a non-empty
binary tree with T, and Ty as its left and right subtrees, then T is HB(k)
iff (i) T, and Tg are HB(k) and (ii) |h, — hg| = k where h; and hg are
the heights of T, and T respectively.

For the case of HB(2) trees obtain the rebalancing transformations.

27.

28.

29,

Exercises 477

Write an insertion algorithm for HB(2) trees.

Using the notation of §9.3.3 show that when linear open addressing is
used: '

1 n—1
S,=— > U,
Using this equation and the approximate equality:

1 1 n
U"—'=—<1+———) wherea = —
2 (1-—a)? b

1 1
show that §, ~ — <1 +)
2 (1 -

[Guttag] The following set of operations define a symbol table which

handles a language with block structure. Give a set of axioms for these

operations:

INIT—creates an empty table;

ENTERB—indicates a new block has been entered;

ADD—places an identifier and its attributes in the table;

LEAVEB—deletes all identifiers which are defined in the innermost block;

RETRIEVE—returns the attributes of the most recently defined identifier;

ISINB—returns true if the identifier is defined in the innermost block
else false.

Chapter 10

FILES

10.1 FILES, QUERIES AND SEQUENTIAL
ORGANIZATIONS

A file, as described in earlier chapters, is a collection of records where
each record consists of one or more fields. For example, the records
in an employee file could contain these fields:

Employee Number (E#)

Name

Occupation

Degree (Highest Degree Obtained)

Sex

Location

Marital Status (MS)

Salary
Sample data for such a file is provided in figure 10.1.

Record | E# Name Occupation | Degree | Sex Location |MS | Salary
A 800 | HAWKINS | programmer | B.S. M | Los Angeles| S | 10,000
B 510 | WILLIAMS | analyst B.S. F Los Angeles| M | 15,000
C 950 | FRAWLEY | analyst M.S. F Minneapolis | S | 12,000
D 750 | AUSTIN programmer | B.S. F Los Angeles| S | 12,000
E 620 | MESSER programmer | B.S. M | Minneapolis | M | 9,000

Figure 10.1 Sample Data for Employee File

The primary objective of file organization is to provide a means for
record retrieval and update. The update of a record could involve its
deletion, changes in some of its fields or the insertion of an entirely
new record. Certain fields in the record are designated as key fields.
Records may be retrieved by specifying values for some or all of these

478

Files, Queries and Sequential Organizations 479

keys. A combination of key values specified for retrieval will be termed
a query. Let us assume that in the employee file of figure 10.1. the
fields Employee Number, Occupation, Sex and Salary have been desig-
nated as key fields. Then, some of the valid queries to the file are:

Retrieve the records of all employees with

Ql: Sex=M

Q2: Salary > 9,000

Q3: Salary > average salary of all employees

Q4: (Sex =M and Occupation = Programmer) or (Employee

Number > 700 and Sex = F)

One invalid query to the file would be to specify location = Los Angeles,
as the location field was not designated as a key field. While it might
appear that the functions one wishes to perform on a file are the same
as those performed on a symbol table (chapter 9), several complications
are introduced by the fact that the files we are considering in this chapter
are too large to be held in internal memory. The tables of chapter
9 were small enough that all processing could be carried out without
accessing external storage devices such as disks and tapes.

In this chapter we are concerned with obtaining data representations
for files on external storage devices so that required functions (e.g.
retrieval, update) may be carried out efficiently. The particular organiza-
tion most suitable for any application will depend upon such factors
as the kind of external storage device available, type of queries allowed,
number of keys, mode of retrieval and mode of update. Let us elaborate
on these factors.

Storage Device Types

We shall be concerned primarily with direct access storage devices,
(DASD) as exemplified by disks. Some discussion of tape files will
also be made.

Query Types
The examples Q1-Q4 above typify the kinds of queries one may wish
to make. The four query types are:
Q1: Simple Query: The value of a single key is specified.
Q2: Range Query: A range of values for a single key is specified
Q3: Functional Query: Some function of key values in the file is
specified (e.g. average or median)
Q4: Boolean Query: A boolean combination of Q1-Q3 using logical
operators and, or, not.

480 Files

Number of Keys

The chief distinction here will be between files having only one key
and files with more than one key.

Mode of Retrieval

The mode of retrieval may be either real time or batched. In real
time retrieval the response time for any query should be minimal (say
a few seconds from the time the query is made). In a bank the accounts
file has a mode of retrieval which is real time since requests to determine
a balance must be satisfied quickly. Similarly, in an airline reservation
system we must be able to determine the status of a flight (i.e. number
of seats vacant) in a matter of a few seconds. In the batched mode
of retrieval, the response time is not very significant. Requests for
retrieval are batched together on a “‘transaction file’’ until either enough
requests have been received or a suitable amount of time has passed.
Then all queries on the transaction file are processed.

Mode of Update

The mode of update may, again, be either real time or batched. Real
time update is needed, for example, in a reservation system. As soon
as a seat on a flight is reserved, the file must be changed to indicate
the new status. Batched update would be suitable in a bank account
system where all deposits and withdrawals made on a particular day
could be collected on a transaction file and the updates made at the
end of the day. In the case of batched update one may consider two
files: the Master File and the Transactions File. The Master File represents
the file status after the previous update run. The transaction file holds
all update requests that haven’t yet been reflected in the master file.
Thus, in the case of batched update, the master file is always ‘out
of date’ to the extent that update requests have been batched on the
transaction file. In the case of a bank file using real time retrieval
and batched update, this would mean that only account balances at
the end of the previous business day could be determined, since today’s
deposits and withdrawals haven’t yet been incorporated into the master
file.

The simplest situation is one in which there is only one key, the
only queries allowed are of type Q1 (simple query), and all retrievals
and updates are batched. For this situation tapes are an adequate storage
medium. All the required functions can be carried out efficiently by
maintaining the master file on a tape. The records in the file are ordered

Files, Queries and Sequential Organizations 481

by the key field. Requests for retrieval and update are batched onto
a transaction tape. When it is time to process the transactions, the
transactions are sorted into order by the key field and an update process
similar to algorithm VERIFY2 of section 7.1 is carried out, creating
a new master file. All records in the old master file are examined,
changed if necessary and then written out onto a new master file. The
time required for the whole process is essentially O(n + mlog m) where
n and m are the number of records in the master and transaction files
respectively (to be more accurate this has to be multiplied by the record
length). This procedure is good only when the number of transactions
that have been batched is reasonably large. If m = 1 and n = 106 then
clearly it is very wasteful to process the entire master file. In the case
of tapes, however, this is the best we can do since it is usually not
possible to alter a record in the middle of a tape without destroying
information in an adjacent record. The file organization described above
for tape files will be referred to as: sequentially ordered.

In this organization, records are placed sequentially onto the storage
media, (i.e., they occupy consecutive locations and in the case of a
tape this would mean placing records adjacent to each other). In addition,
the physical sequence of records is ordered on some key, called the
primary key. For example, if the file of figure 10.1. were stored on
a tape in the sequence A, B, C, D, E then we would have a sequential
file. This file, however, is unordered. If the primary key is Employee
Number then physical storage of the file in the sequence B, E, D,
A, C would result in an ordered sequential file. For batched retrieval
and update, ordered sequential files are preferred over unordered sequen-
tial files since they are easier to process (compare VERIFY2 with
VERIFY1 of 7.1).

Sequential organization is also possible in the case of a DASD such
as a disk. Even though disk storage is really two dimensional (cylinder
X surface) it may be mapped down into a one dimensional memory
using the technique of §2.4. If the disk has ¢ cylinders and s surfaces,
one possibility would be to view disk memory sequentially as in figure
10.2. Using the notation t;; to represent the j’th track of the i’th surface,
the sequence is £, 1, t5 1, b3 1, sl qs by a5 oonal o €LC.

If each employee record in the file of figure 10.1 were one track
long, then a possible sequential organization would store the records
A,B,C,D,E onto tracks 5 4, t,4, ts4, te4and t, , respectively (assuming
c=4 and s=7). Using the interpretation of figure 10.2 the physical
sequence in which the records have been stored is A,B,C,D,E. If the
primary key is Employee Number then the logical sequence for the

482 Files

records is B,E,D,A,C as E#(B) < E#(E) < ... <E#(C). This would
thus correspond to an unordered sequential file. In case the records
are stored in the physical sequence B,E,D,A,C, then the file is ordered
on the primary key, the logical and physical record sequences are the
same, and the organization is that of a sequentially ordered file. Batched
retrieval and update can be carried out essentially in the same way
as for a sequentially ordered tape file by setting up input and output
buffers and reading in, perhaps, one track of the master and transaction
files at a time (the transaction file should be sorted on the primary
key before beginning the master file processing). If updates do not
change the size of records and no insertions are involved then the updated
track may be written back onto the old master file. The sequential
interpretation of figure 10.2 is particularly efficient for batched update

cylinder j
surface

L1 [L]

cylinder | cylinder 2 eee cylinder ¢
sequence for cylinders

rsurfoce | [surfoce ZI-u liurfoce s]

sequence within a cylinder

|

2
3
4

(@

® ocoon

Figure 10.2 Interpreting Disk Memory as Sequential Memory

and retrieval as the tracks are to be accessed in the order: all tracks
on cylinder 1 followed by all tracks on cylinder 2 etc. As a result
of this the read/write heads are moved one cylinder at a time and
this movement is necessitated only once for every s tracks read (s =
number of surfaces). The alternative sequential interpretation (figure
10.3) would require accessing tracks in the order: all tracks on surface
1, all tracks on surface 2, etc. In this case a head movement would
be necessitated for each track being read (except for tracks 1 and c).

surface 1 surface 2 surface s
track 1 track 2 J track ¢ 0Odd surfaces
track ¢ track ¢ — 1] track 1 Even surfaces

Figure 10.3 Alternative Sequential Interpretation of Disk Memory

Files, Queries and Sequential Organizations 483

Since in batched update and retrieval the entire master file is scanned
(typical files might contain 10° or more records), enough transactions
must be batched for this to be cost effective. In the case of disks
it is possible to extend this sequential ordered organization for use even
in situations where the number of transactions batched is not enough
to justify scanning the entire master file. First, take the case of a retrieval.
If the records are of a fixed size then it is possible to use binary search
to obtain the record with the desired key value. For a file containing
n records, this would mean at most [log, n] accesses would have to
be made to retrieve the record. For a file with 10° records of length
300 characters this would mean a maximum of 17 accesses. On a disk
with maximum seek time 1/10 sec, latency time 1/40 sec and a track
density of 5000 characters/track this would mean a retrieval time of

at most 17(1/10 + 1/40 + —3?—9— X —1~> sec = 2.15 sec. Retrieving an
5000 40

arbitrary record from the same file stored on a tape with density 1600

bpi and a tape speed of 150 in/sec would in the worst case require

125 sec as the entire file must be read to access the last record (this

does not include the time to cross interblock gaps and to restart tape

motion etc. The actual time needed will be more than 125 sec).

When records are of variable size, binary search can no longer be
used as given the address of the first and last records in a file one
can no longer calculate the address of the middle record. The retrieval
time can be considerably reduced by maintaining an index to guide the
search. An index is just a collection of key value and address pairs.
In the case of the file of figure 10.1 stored in the physical sequence
B,E,D,A,C ataddresses t, ,, t,,, ts,, t4,and ts, the index could contain
five entries, one for each record in the file. The entries would be the
pairs (510,t,,) (620,t,,) (750,t,) (800,t,,) (900,ts,). An index which
contains one entry for every record in the file will be referred to as
a dense index. If a dense index is maintained for the primary key then
retrieval of a record with primary key = x could be carried out by
first looking into the index and finding the pair (x,addr). The desired
record would then be retrieved from the location addr. The total number
of accesses needed to retrieve a record would now be one plus the
number of accesses needed to locate the tuple (x,addr) in the index.
In §10.2 we shall look at efficient indexing techniques that allow index
searches to be carried out using at most three accesses even for reasonably
large files. This means that a retrieval from the file of 10° records
discussed earlier could be carried out making at most four accesses

484 Files

rather than the seventeen accesses needed by a binary search. Since
all addresses are kept in the index, it is not necessary to have fixed
size records.

Sequential file organizations on a disk suffer from the same deficiencies
as sequential organizations in internal memory. Insertion and deletion
of records require moving large amounts of data in order to create
space for the new record or to utilize the space used by the record
being deleted. In practice these difficulties can be overcome to some
extent by marking deleted records as having been deleted and not
physically deleting the record. If a record is to be inserted, it can be
placed into some ‘‘overflow’ area rather than in its correct place in
the sequentially ordered file. The entire file will have to be periodically
reorganized. Reorganization will take place when a sufficient number
of overflow records have accumulated and when many *‘deletions’” have
been made. While this method of handling insertions and deletions results
in a degradation of system performance as far as further retrievals and
updates is concerned, it is preferable to copying over large sections
of the file each time an update is made. In situations where the update
rate is very high or when the file size is too large to allow for periodic
file reorganization (which would require processing the whole file), other
organizations are called for. These will be studied in a later section.

So far, we have discussed only file organization when the number
of keys is one. What happens when there is more than one key? A
sequential file, clearly, can be ordered on only one key, the primary
key. If an employee file is maintained on a disk using sequential
organization with Employee Numbers as the primary key then how does
one retrieve all records with occupation = programmer? One obvious,
and inefficient, way would be to process the entire file, outputting all
records that satisfy this query. Another, possibly more efficient way
would be to maintain a dense index on the occupation field, search
this index and retrieve the necessary records. In fact one could maintain
a dense index on every key. This and other possibilities will be studied
in section §10.3.

Let us summarize the ideas we have discussed. File organization
is concerned with representing data records on external storage media.
The choice of a representation depends on the environment in which
the file is to operate, e.g., real time, batched, simple query, one key,
multiple keys, etc. When there is only one key, the records may be
sorted on this key and stored sequentially either on tape or disk. This
results in a sequentially ordered file. This organization is good for files
operating in batched retrieval and update mode when the number of

Index Techniques 485

transactions batched is large enough to make processing the entire file
cost effective. When the number of keys is more than one or when
real time responses are needed, a sequential organization in itself is
not adequate. In a general situation several indexes may have to be
maintained. In these cases, file organization breaks down into two more
or less distinct aspects: (i) the directory (i.e. collection of indexes) and
(ii) the physical organization of the records themselves. This will be
referred to as the physical file. We have already discussed one possible
physical organization i.e. sequential (ordered and unordered). In this
general framework, processing a query or update request would proceed
in two steps. First, the indexes would be interrogated to determine
the parts of the physical file that are to be searched. Second, these
parts of the physical file will be searched. Depending upon the kinds
of indexes maintained, this second stage may involve only the accessing
of records satisfying the query or may involve retrieving nonrelevant
records too.

10.2 INDEX TECHNIQUES

One of the important components of a file is the directory. A directory
is a collection of indexes. The directory may contain one index for
every key or may contain an index for only some of the keys. Some
of the indexes may be dense (i.e., contain an entry for every record)
while others may be nondense (i.e., contain an entry for only some
of the records). In some cases all the indexes may be integrated into
one large index. Whatever the situation, the index may be thought of
as a collection of pairs of the form (key value, address). If the records
A,B,C,D,E of figure 10.1 are stored on disk addresses a,,a,, ...,as
respectively then an index for the key Employee Number would have
entries (800,a,); (510,a,); (950,a,); (750,a,) and (620,as). This index
would be dense since it contains an entry for each of the records in
the file. We shall assume that all the key values in an index are distinct.
This may appear to be restrictive since several records may have the
same key value as in the case of the Occupation key in figure 10.1.
Records A,D,E all have the value ‘programmer’ for the Occupation
key. This difficulty can be overcome easily by keeping in the address
field of each distinct key value a pointer to another address where
we shall maintain a list of addresses of all records having this value.
If at address b, we stored the list of addresses of all programmer records
i.e. a,, a, and ay, and at b, we stored the address list for all analysts,
i.e. a, and a, then we could achieve the effect of a dense index for

486 Files

Occupation by maintaining an index with entries (‘programmer’, b))
and (‘analyst’, b,). Another alternative would be to change the format
of entries in an index to (key value, address 1, address 2, ...address
n). In both cases, different entries will have distinct key values. The
second alternative would require the use of variable size nodes. The
use of variable size nodes calls for complex storage management schemes
(see §4.8), and so we would normally prefer the first alternative. An
index, then, consists of pairs of the type (key value, address), the key
values being distinct. The functions one wishes to perform on an index
are: search for a key value; insert a new pair; delete a pair from the
index; modify or update an existing entry. These functions are the same
as those one had to perform on a dynamic table (§9.2). Anindex differs
from a table essentially in its size. While a table was small enough
to fit into available internal memory, an index is too large for this and
has to be maintained on external storage (say, a disk). As we shall
see, the techniques for maintaining an index are rather different from
those used in chapter 9 to maintain a table. The reason for this is
the difference in the amount of time needed to access information from
a disk and that needed to access information from internal memory.
Accessing a word of information from internal memory takes typically
about 10~® seconds while accessing the same word from a disk could
take about 10~! seconds.

10.2.1 Cylinder-Surface Indexing

The simplest type of index organization is the cylinder-surface index.
It is useful only for the primary key index of a sequentially ordered
file. It assumes that the sequential interpretation of disk memory is
that of figure 10.2 and that records are stored sequentially in increasing
order of the primary key. The index consists of a cylinder index and
several surface indexes. If the file requires ¢ cylinders (1 through c)
for storage then the cylinder index contains c¢ entries. There is one
entry corresponding to the largest key value in each cylinder. Figure
10.4 shows a sample file together with its cylinder index (figure 10.4(b)).
Associated with each of the ¢ cylinders is a surface index. If the disk
has s usable surfaces then each surface index has s entries. The i’th
entry in the surface index for cylinder j, is the value of the largest
key on the j’th track of the i’th surface. The total number of surface
index entries is therefore c¢-s. Figure 10.4(c) shows the surface index
for cylinder S of the file of figure 10.4(a). A search for a record with
a particular key value X is carried out by first reading into memory
the cylinder index. Since the number of cylinders in a disk is only

487

Index Techniques

1JeloNE [T Jep\ PHOM, (B)p'0T 2an3y
¢ ¢ A € L4 000°€€ 9191 - LLT 214 4SSN ¥-11 UlysnjI 17
(4 ¢ A L4 (4 001°67 $T6l1 8S1 S67 14q vsn IAIP[IPH | 0T
(4 ¢ N 9 (4 009°6€ 374! 9te 9y AN 1RO SV 6ITIMUPRH | 61
I € A 9 S 0L6°TT 08v¢ 9T Lit qgH R 1V LLT [URH | 8l
I € N (4 1 0LE‘6E 909 - 1399 1 R VIOl PYURH | LI
L4 (4 A L S 006°LT 08¢l 14 (44 qn 130 HIII PYUIRH | 91
L4 (4 A 14 I 00$°9¢ ovL l6¢ 9ty g4 g9 1sodwa], 1mey Sl
€] ¢ A €l 01 009°9¢ 00T 012 LIg 1d vsn ssaniog Suikld | 1
¢ (4 N S I 0S9°Cy $201 143 $8¢ et | Aper OINeIu]) el ¢l
(4 (4 A S I 000‘vv oSy 067 1444 g4 vsn looug dooig | zI
(4 (4 A (4 ¢ 00L°61 0001 87l 99T 41 vSsn 101e15BA3(11
I (4 N 14 I $68°67 65S 661 €0t 1 Jouely uoipned [0l
I (4 A L4 ¢ 000°81 6¢8 34| $91 214 Ay woided | ¢
L4 I A 9 (4 001 ‘€1 6£8 981 867 av duel 169 magaig 8
14 I A 9 I 000°67 €6 - S6t EC| sy Suerswoog L
¢ 1 N 14 I 000°€E 86¢ 6LC 0t G| duel] S-dinysolg | 9
€ I A 8 ¢ 001°€E 00S¢C - 99¢ AN vsn MOPIM HOelg S
(4 I A (4 ¢ 009°91 989 - .14 4 41 D IT AN epnoelieg L4
(4 I A 0l L 005‘vT 0991 01T L8T qgH g9 I2)5€0URT OIAY ¢
I 1 A € ¢ 00r'TT (1354 94! 1z 41 vsSn BBuaAy | ¢
I I A 14 S 076°ST L 13y t6l aN duel £yl 101y 1
S D | squog| sunn [maI) 129] So[Iwt yduw yduw adA L uoneN eIy
apnnfy 3uey Buisini) Xe
Xe paadg

Files

488

1yeIIre [T Jep PlHOM

‘(B)p°01 a3y

! 9 A 9 (4 0/8°8T 9L - 0¢ q71 dssn NS 10YYAS (44
1 9 A ¢l 01 0S8°1€ (1y43 0¢C LS¢ qH vsn ssanopradng 134
L4 S N 9 ! 00S°Ty 086 8Tt sovy et | a9 IAX AW 2a1pds oy
L4 S A 9 11 026°ST 00£2 (44 9T qgH dssn 8-2d AojeAad 6t
¢ S A (4 ¢ 001°LZ LeTl 091 9¢T qg1 uedef INSH euwifeyeN 8¢
¢ S A 9 I 006°1¢ 056 ¢ Ley 1 vSn ais-d Suersniy Lt
(4 S A 8 (4 000°€E $68l1 394 8L g4 40 IA N oynbso [9¢
(4 S A S 9 0L0°1€ 19¢¢ 6vC 8Lt qgH uedef L9715 UsIqnsiN 33
I 9 A 9 L 000°6Z 0SLE 961 LT g uedef TAYD YsIQnsitiN | p¢
1 S A 14 1 - — - 0Lt g4 dssn S-DIN 133
[280AwIMS
L4 L4 N 14 1 §9¢°L€E (43 - 823 1 19D NIWUYDSSIISSOIN [43
L4 L4 N (4 1 005°6€ — - L6S et | "120) 112WO3] NIWYDSIISSIN 153
assIuIoHq
¢ 14 N 8 (4 000°€€ 0501 L9¢ 88¢ JH 1RO NIuydsIassay 0t
¢ L4 A 11 L 008°61 0011 91T 13.14 a1 vsn lapnesep 67
(4 L4 N S I 016°9¢ Z19 - 16¢ e | Aer] OIPA TYIOB 8¢
(4 L4 N 14 1 SIs‘ot 8L01 Ie 6ty et | dssn 6-E] UDYS0AET] L7
! 14 A 9 ! 000°€Y 0sy 8L 80v a4 vsn ©1q023Ury 9
I 14 N 14 1 00€°SE $901 0£T 0Lt 1 uedef| [-ZHIN lysiuemes] Y4
L4 ¢ A S L4 099°0¢€ 60¢1 13X g g 1RO 1-d 881 sinjunf | 4T
14 ¢ A 0l ¢ 001°7Z 00v! 12:%4 1393 a1 vsn Iapeal] €<
¢ ¢ A 9 (4 009°vT 99 66l 15T av USSN | Maoulnys urysnAjy [44
S D | squog [sunn | ma1D 199} Sa[Iw ydw ydw adAL uoneN 1JeIoly
appnny J3uey Fuismi) Xe
Xe] paadg

489

Index Techniques

e Jo 1Byl SI uoneziuedio ayy

*1JRIOITY —P[a1J 3Y) UO paIapio 3|1y fenuanbas

"yoen Jod spiodal om) Julunsse pue sadBLINS INOJ Yum JSIP © Ioj SI Surxapur adejins/Iapulhd

("1L6] “OX MmN € 0D ooq [IH-MBINOI ‘10on[aduy ozuyg Aq sauvjdiy WO pasuapuo))

SIK
aoeuns
ou

1aydry s
Jaquoq Y3
19quIoq WNIpaw
Taquioq 1437

pquoq Aaeay gH

A Auewran ‘120
S ureugIedln g0
N sy 1
AN Isquoq 1aydy g
aN Jopuy[A>)
an laquoq Ig

g1 lquoqyoene gv

*1Jelddie I Jepy PIOA\ dWOs Jo 9 (B)p g1 31y

121y31y Aaeay JH elensny sny
SUONIALQQY
(4 9 A 9 (4 00€°7T 000C 0¢¢ 6LT 19 vsSn 20UBaFUIA | b
(4 9 A L v 000°€€ 5391 85T Sve 19 dssn L Adjodny 34
S D | squog| sunn | maI1) 199] S9[Iw ydw yduw adAl uoneN 1Jenary #
spnmiy a3uey Suisini) XBN
XeN paadg

490 Files

cylinder highest key value

1 Bregeut 691

Heinkel III H

Junkers 188 E-1
Messerschmitt Sturmvogel
Spitfire Mk XVI
Vengeance

AW bW

Figure 10.4(b) Cylinder index for file of figure 10.4(a)

surface highest key value
1 Mitsubishi G 4M1
2 Mosquito MkV1
3 Nakajima B5SN2
4 Spitfire MkXVI

Figure 10.4(c) Surface index for cylinder 5.

a few hundred the cylinder index typically occupies only one track.
The cylinder index is searched to determine which cylinder possibly
contains the desired record. This search can be carried out using binary
search in case each entry requires a fixed number of words. If this
is not feasible, the cylinder index can consist of an array of pointers
to the starting point of individual key values as in figure 10.5. In either
case the search can be carried out in O(log ¢) time. Once the cylinder
index has been searched and the appropriate cylinder determined, the
surface index corresponding to that cylinder is retrieved from the disk.

a, 2, a3
la, I a, | a, l value 1 | value 2 | value3|

Track Layout

Figure 10.5 Using an Array of Pointers to Permit Binary Search with Variable Length
Key Values

The number of surfaces on a disk usually is very small (say 10) so
that the best way to search a surface index would be to use a sequential
search. Having determined which surface and cylinder is to be accessed,
this track is read in and searched for the record with key X. In case
the track contains only one record, the search is trivial. In the example
file, a search for the record corresponding to the Japanese torpedo bomber
Nakajima B5N2 which was used at Pearl Harbor proceeds as follows:

Index Techniques 491

the cylinder index is accessed and searched. It is now determined that
the desired record is either in cylinder 5 or it is not in the file. The
surface index to be retrieved is that for cylinder 5. A search of this
index results in the information that the correct surface number is 3.
Track t55 is now input and searched. The desired record is found on
this track. The total number of disk accesses needed for retrieval is
three (one to access the cylinder index, one for the surface index and
one to get the track of records). When track sizes are very large it
may not be feasible to read in the whole track. In this case the disk
will usually be sector addressable and so an extra level of indexing
will be needed: the sector index. In this case the number of accesses
needed to retrieve a record will increase to four. When the file extends
over several disks, a disk index is also maintained. This is still a great
improvement over the seventeen accesses needed to make a binary search
of the sequential file.

This method of maintaining a file and index is referred to as ISAM
(Indexed Sequential Access Method). It is probably the most popular
and simplest file organization in use for single key files. When the
file contains more than one key, it is not possible to use this index
organization for the remaining keys (though it can still be used for the
key on which the records are sorted in case of a sequential file).

10.2.2 Hashed Indexes

The principles involved in maintaining hashed indexes are essentially
the same as those discussed for hash tables in §9.3. The same hash
functions and overflow handling techniques are available. Since the
index is to be maintained on a disk and disk access times are generally
several orders of magnitude larger than internal memory access times,
much consideration must be given to hash table design and the choice
of an overflow handling technique. Let us reconsider these two aspects
of hash system design, giving special consideration to the fact that the
hash table and overflow area will be on a disk.

Overflow Handling Techniques
The overflow handling techniques discussed in §9.3.2 are:
(i) rehashing
(ii) open addressing (a) random
(b) quadratic
(¢) linear
(iii) chaining.
The expected number of bucket accesses when s =1 is roughly the

492 Files

same for methods (i), (iia) and (iib). Since the hash table is on a disk,
and these overflow techniques tend to randomize the use of the hash
table, we can expect each bucket access to take almost the maximum
seek time. In the case of (iic), however, overflow buckets are adjacent
to the home bucket and so their retrieval will require minimum seek
time. While using chaining we can minimize the tendency to randomize
use of the overflow area by designating certain tracks as overflow tracks
for particular buckets. In this case successive buckets on a chain may
be retrieved with little or no additional seek time. To the extent that
this is possible, we may regard one bucket access to be equally expensive
using methods (iic) and (iii). Bucket accesses using the other methods
are more expensive, and since the average number of buckets retrieved
isn’t any better than (iii), we shall not discuss these further.

Hash Table

Let b, s, « and n be as defined in §9.3. For a given o and n we
have a = n/(bs), and so the product bs is determined. In the case
of a hash table maintained in internal memory we chose the number
of slots per bucket, s, to be 1. With this choice of s, the expected
number of buckets accessed when open linear addressing is used is
2 - o)/ —2a), and 1 + /2 when chaining is used to resolve over-
flows. Since individual bucket accesses from a disk are expensive, we
wish to explore the possibility of reducing the number of buckets accessed
by increasing s. This would of necessity decrease b, the number of
buckets, as bs is fixed. We shall assume that when chaining is used,
the home bucket can be retrieved with one access. The hash table
for chaining is similar to that for linear open addressing. Each bucket
in the hash table, i.e. each home bucket, has s slots. Each such bucket
also has a link field. This differs from the organization of §9.3.2 where
s = 0 for home buckets using chaining. Remaining buckets on individual
chains have only one slot each and require additional accesses. Thus,
if the key value X is in the i’th node on a chain (the home bucket
being the 1st node in the chain), the number of accesses needed to
retrieve X is i. In the case of linear open addressing if X is i buckets
away from the home bucket, f(X), then the number of accesses to
retrieve Xis 1 + i.

By way of example, consider the hash function f(x) = first character
of X and the values B, B1, B2, B3, A. Using a hash table with b =
6 and s = 1, the assignment of figure 10.6(a) is obtained if overflows
are handled via linear open addressing. If each of the values is searched
for once then the total number of bucket retrievals is 1(for A) + 1(for

Index Techniques 493

Slot 1 Slot 2
bucket 1 A B B1
2 B B2 B3
3 Bl A
4 B2 s =2
5 B3 (b)
6

Figure 10.6 Hash Tables With s = 1 and 2.

B) + 2(for B1) + 3(for B2) + 4(for B3) = 11. When the same table
space is divided into 3 buckets each with two slots and f' (X) = [f(X)/2]
the assignment of key values to buckets is as in figure 10.6(b). The
number of bucket retrievals needed now is 1 (for each of B and B1)
+ 2(for each of B2 and B3) + 3(for A) = 9. Thus the average number
of buckets retrieved is reduced from 11/5 per search to 9/5 per search.
The buckets of figure 10.6(b) are twice as big as those of figure 10.6(a).
However, unless the bucket size becomes very large, the time to retrieve
a bucket from disk will be dominated largely by the seek and latency
time. Thus, the time to retrieve a bucket in each of the two cases
discussed above would be approximately the same. Since the total average
search time is made up of two components—first, the time, t,, to read
in buckets from disk and second, the time, t,, to search each bucket
ininternal memory—we should choose band s so as to minimize a(t, + t,)
where a = average number of buckets retrieved. Using a sequential
search within buckets, the time ¢, is proportional to s. Thus the average
t, for figure 10.6(b) is one and a half times that for figure 10.6(a).
When s is small and the hash table is on a disk, we have t,>> ¢,
and it is sufficient to minimize a -¢,. Let us contrast this to the situation
in §9.3 where ¢, and t, are comparable. The table of figure 10.6(a)
can be searched with an average of 11/5 key comparisons and accesses.
The table of figure 10.6(b) requires 1 comparison to find B, 2 for Bl,
3 for B2, 4 for B3 and 5 for A for a total of 15 comparisons. This
implies an average of 3 comparisons per search. In this case the search
time has actually increased with the increase in s. But, when the table
is on disk, the average times are roughly 11¢,/5 and 9¢,/5, and the
table with s = 2 gives better performance. In general, we can conclude
that increasing s while maintaining b - s fixed reduces a (see figure 10.7).

494 Files

bucket sizes |

average ‘T 5
number
of buckets

retrieved

N

a=.5 a=.8

Figure 10.7 o = .5

The table of figure 10.8 shows the results of some experiments conducted
on existing hashed files maintained on disk. As is evident from this
table, for a fixed a, the average number of bucket accesses decreases
with increasing s. Moreover, for s = 10, the average number of accesses
for open linear addressing is roughly the same as for chaining. This
together with our earlier observation that unless care is taken while
using chaining, successive accesses will access random parts of the disk,
while in the case of open linear addressing consecutive disk segments
would be accessed, leads us to the conclusion that with suitable a and
s linear addressing will outperform chaining (contrast this with the case
of internal tables).

While both the data of figures 10.7 and 10.8 might suggest a choice
for b = 1 (thus maximizing the value of s), such a choice for s clearly
is not best. The optimal value of s will depend very much on the values
of the latency time, seek time and transmission rates of the disk drive
inuse. We may rewrite the retrieval time per bucket, t,,as t, + t, + s-t,
where ¢, t, and t, are the seek time, latency time and transmission
time per slot respectively. When the seek time is very large relative
to t, the optimal s would tend to be larger than when ¢ is very small
compared to t, (as in the case of a drum). Another consideration is
the size of the input buffer available. Since the bucket has to be read
into some part of internal memory, we must set aside enough space
to accomodate a bucket load of data.

495

Index Techniques

(1261 ‘1dy ‘g "ON ‘¢l *[OA
WOV "saij panewso] unsixa ag1e| uo Apnis souewoyiad [eyuswepuny
:sanbuyds) wiIoJsuel], SS2IPPY 01 A9 :ppo(l PUB USNK ‘W] WO} PIsuIp
-U0D) 'S pue © JUaIdJJIP IOJ $3SSIOVE 123ONq JO laquinu IFeldae paalasq) R0 g

‘BaIR
dleledss © Ul PI[puBy 1B SMO[JI9A0 St] uey) adeds alow $asn) © swes ay) 10 ION
(319®1 ysey ui s310]s JO laqunu)/(S91uad JO Iaquinu) = I0)dey Juipeo| = ©
Buissaippe uado Ieaul] =
Suwrey = o
arenbs jo gipplu = W
uorsialp = @
80°1 £0'1 6C'1 STl 6C'1 (434 9T wy 08°01 080l | €57Le 6L°ST 1 6= ®
si'l 80°1 8Tl L1l 8’1 0zl (4| sT'l 6¢'1 vl wl 1v°1 o
€0'1 10°1 11 80°1 (U (43! 18°1 1) 149 08’y PI'LE T 1 6 ="n
L0l £0°] sl 60'1 8Tl 911 ra el Le'l 0¢'] vl 8¢°] 8
I I w0l 1071 901 'l 0z'l 6Tl 08’1 Se'e SL'6 L 1 sl =
€0°1 I €01 €0°1 601 L0°1 91"l 11 6’1 61'1 ov'l 1€l o
I I 1 I I I €0'1 [0zl L1 €L’l (43 4 1 ¢ =n
I I 1 I 1071 I €0'1 w01 148 601 9T'1 611 o
1o
10108] 3uipeo]
W a W a W a W a W a W a <= uonduny yseHy
0s (174 01 1 « s ‘2z]s 19yong

496 Files

Loading Order

As in the case of internal tables, the order in which key values are
entered into the hash table is important. To the extent possible, an
attempt should be made to enter these values in order of nonincreasing
frequency of search. When this is done, new entries should be added
to the end of the overflow chain rather than at the front.

10.2.3 Tree Indexing—B-Trees

The AVL tree of §9.2 provided a means to search, insert and delete
entries from a table of size n using at most O(log n) time. Since these
same functions are to be carried out in an index, one could conceivably
use AVL trees for this application too. The AVL tree would itself
reside on a disk. If nodes are retrieved from the disk, one at a time,
then a search of an index with n entries would require at most 1.4
log n disk accesses (the maximum depth of an AVL tree is 1.4 log
n). For an index with a million entries, this would mean about 23 accesses
in the worst case. This is a lot worse than the cylinder sector index
scheme of §10.2.1. In fact, we can do much better than 23 accesses
by using a balanced tree based upon an m-way search tree rather than
one based on a binary search tree (AVL trees are balanced binary search
trees).

Definition: An m-way search tree, T, is a tree in which all nodes are
of degree =m. If T is empty, (i.e., T =0) then T is an m-way search
tree. When T is not empty it has the following properties:

(i) Tis anode of the type

n’ A07 (KlyAl)y (K27A2)7 ey (Kn,An)

where the A;, 0 =< i< n are pointers to the subtrees of T and
the K;, | =i < narekey values; and 1 < n < m.

(i) K;<K;,,,1=i<n

(iii) All key values in the subtree A; are less than the key value
K.,,,0=i<n

(iv) All key values in the subtree A, are greater than K.

(v) The subtrees A;, 0 < i = n are also m-way search trees.

As an example of a 3-way search tree consider the tree of figure
10.9 for key values 10, 15, 20, 25, 30, 35, 40, 45 and 50. One may
easily verify that it satisfies all the requirements of a 3-way search

Index Techniques 497

schematic
node format

2,b,(20,¢),(40,d)
2,0,(10,0),(15,0)
2,0,(25,0),(30,¢)
2,0,(45,0),(50,0)
1,0,(35,0)

o a0 g

Figure 10.9 Example of a 3-way search tree.

tree. In order to search for any key value X in this tree, we first ‘‘look
into’’ the root node T = a and determine the value of i for which K; = X
< K;,, (for convenience we use K, = [—=] and K, ,, = [+%=] where
[—o] is smaller than all legal key values and [+cc] is larger than all
legal key values). In case X = K, then the search is complete. If X # K,
then by the definition of an m-way search tree X must be in subtree
A, if it is in the tree. When n (the number of keys in a node) is ‘‘large,’’
the search for the appropriate value of i above may be carried out
using binary search. For ‘‘small”’ na sequential search is more appropri-
ate. In the example if X = 35 then a search in the root node indicates
that the appropriate subtree to be searched is the one with root A, = c.
A search of this root node indicates that the next node to search is
e. The key value 35 is found in this node and the search terminates.
If this search tree resides on a disk then the search for X = 35 would
require accessing the nodes a, ¢ and e for a total of 3 disk accesses.
This is the maximum number of accesses needed for a search in the
tree of figure 10.9. The best binary search tree for this set of key
values requires 4 disk accesses in the worst case. One such binary
tree is shown in figure 10.10.

Algorithm MSEARCH searches an m-way search tree T for key value
X using the scheme described above. In practice, when the search tree

498 Files

Figure 10.10 Best AVL-tree for data of figure 10.9

represents an index, the tuples (K;,A,) in each of the nodes will really
be 3-tuples (K;,A;,B;) where B, is the address in the file of the record
with key K;. This address would consist of the cylinder and surface
numbers of the track to be accessed to retrieve this record (for some
disks this address may also include the sector number). The A,,0<i<n
are the addresses of root nodes of subtrees. Since these nodes are
also on a disk, the A, are cylinder and surface numbers.

procedure MSEARCH(T,X)
/ Search the m-way search tree T residing on disk for the key
value X. Individual node format is n,A,, (K ,A)), ...,(K,,A,),
n < m. A triple (P,i,j) is returned. j = | implies X is found
at node P, key K,. Else j = 0 and P is the node into which
X can be inserted /
P—T;K,« [-x]; Q<0 / Q is the parent of P/
while P # 0 do
input node P from disk
Let P define n, Ay, (K,,A,), ..., (K_,A,)
K, < [+~]
Let i be such that K; = X < K,
if X = K, then [/X has been found / return (P,i,1)]
Q< P; P A,
end
/X not in T; return node into which insertion can take place/
10 return (Q,i,0)
11 end MSEARCH

O 0O~ NN AW —

Index Techniques 499

Analyzing algorithm MSEARCH is fairly straightforward. The maxi-
mum number of disk accesses made is equal to the height of the tree
T. Since individual disk accesses are very expensive relative to the
time needed to process a node (i.e. determine the next node to access,
lines 4-8) we are concerned with minimizing the number of accesses
needed to carry out a search. This is equivalent to minimizing the height
of the search tree. In a tree of degree m and height h = 1 the maximum
number of nodes is 2 ,_;_,_, m'= (m*" — 1)/(m — 1). Since each node
has at most m — 1 keys, the maximum number of entries in an m-way
tree index of height h would be m" — 1. For a binary tree with h =3
this figure is 7. For a 200-way tree with h = 3 we have m" — 1 = 8 x
108 — 1.

Clearly, the potentials of high order search trees are much greater
than those of low order search trees. To achieve a performance close
to that of the best m-way search trees for a given number of entries
n, it is necessary that the search tree be balanced. The particular variety
of balanced m-way search trees we shall consider here is known as
a B-tree. In defining a B-tree it is convenient to reintroduce the concept
of failure nodes as used for optimal binary search trees in §9.1. A
failure node represents a node which can be reached during a search
only if the value X being searched for is not in the tree. Every subtree
with root =0 is a point that is reached during the search iff X is not
in the tree. For convenience, these empty subtrees will be replaced
by hypothetical nodes called failure nodes. These nodes will be drawn
square and marked with an F. The actual tree structure does not contain
any such nodes but only the value 0 where such a node occurs. Figure
10.11 shows the 3-way search tree of figure 10.9 with failure nodes.
Failure nodes are the only nodes that have no children.

Definition: A B-tree, T, of order m is an m-way search tree that is
either empty or is of height =1 and satisfies the following properties:
(i) the root node has at least 2 children
(ii) all nodes other than the root node and failure nodes have at
least [m/2] children
(iii) all failure nodes are at the same level.

The 3-way search tree of figure 10.11 is not a B-tree since it has
failure nodes at levels 3 and 4. This violates requirement (iii). One
possible B-tree of order 3 for the data of figure 10.9 is shown in figure
10.12. Notice that all nonfailure nodes are either of degree 2 or 3.
In fact, for a B-tree of order 3, requirements (i), (i) and the definition

500 Files

level

Figure 10.12 B-tree of order 3 for data of figure 10.9.

of a m-way search tree together imply that all nonfailure nodes must
be of degree 2 or 3. For this reason, B-trees of order 3 are also known
as 2-3 trees.

While the total number of nonfailure nodes in a B-tree of a given
order may be greater than the number of such nodes in the best possible

Index Techniques 501

search tree of that order (the 2-3 tree of figure 10.12 has 7 nodes while
the 3-way search tree of figure 10.9 has only 5), we shall see later
that it is easier to insert and delete nodes into a B-tree retaining the
B-tree properties than it is to maintain the best possible m-way search
tree at all times. Thus, the reasons for using B-trees rather than optimal
m-way search trees for indexes, are the same as those for using AVL-trees
as opposed to optimal binary search trees when maintaining dynamic
internal tables.

Number of Key Values in a B-Tree

If T is a B-tree of order m in which all failure nodes are at level
I + 1 then we know that the maximum number of index entries in T
is m' — 1. What is the minimum number, N, of entries in T? From
the definition of a B-tree we know that if > 1, the root node has
at least 2 children. Hence, there are at least two nodes at level 2.
Each of these nodes must have at least [m/2] children. Thus there
are at least 2] m/2] nodes at level 3. At level 4 there must be at least
2[m/21?% nodes, and continuing this argument, we see that there are
at least 2[m/2]'~2 nodes at level ! when !> 1. All of these nodes
are nonfailure nodes. If the key values in the tree are K ,,K,, ..., Ky
and K; < K;,,, 1 =i< N then the number of failure nodes is N + 1.
This is so because failures occur for K; < X< K,,,, 0=i= N and
Ko = [-»], Ky,; = [+%]. This results in N + 1 different nodes that
one could reach while searching for a key value X not in T. Therefore,
we have,

N + 1 = number of failure nodes in T
= number of nodes at level [+ 1
= 2[m/2]'"!
and so, N=2[m/21""'-1,1=1

This in turn implies that if there are N key value in a B-tree of order
m then all nonfailure nodes are at levels less than or equal to I, I =
log /21 {(N +1)/2} + 1. The maximum number of accesses that have
to be made for a search is I. Using a B-tree of order m = 200, an
index with N = 2 x 10® — 2 will have I < log,e {(N + 1)/2} + 1. Since
I is integer, we obtain | = 3. For n=2 X 10® — 2 we get I < 4. Thus,
the use of a high order B-tree results in a tree index that can be searched
making a very small number of disk accesses even when the number
of entries is very large.

502 Files

Choice of m

B-trees of high order are desirable since they result in a reduction
in the number of disk accesses needed to search an index. If the index
has N entries then a B-tree of order m = N + 1 would have only one
level. This choice of m clearly is not reasonable, since by assumption
the index is too large to fit in internal memory. Consequently, the single
node representing the index cannot be read into memory and processed.
In arriving at a reasonable choice for m, we must keep in mind that
we are really interested in minimizing the total amount of time needed
to search the B-tree for a value X. This time has two components.
One, the time for reading in a node from the disk and two, the time
needed to search this node for X. Let us assume that each node of
a B-tree of order m is of a fixed size and is large enough to accomodate
n, A, and m — 1 values for (K;,A;,B;), 1 =i<m. If the K; are at
most « characters long and the A, and B; each p characters long, then
the size of a node is approximately m(a + 2B) characters. The time,
t;, required to read in a node is therefore:

L=t 4+t + mo + 2B) ¢,

a+ bm

i

where a = t, + t, = seek time + latency time
b

ft

(o + 2B)t. and t, = transmission time per character

If binary search is used to carry out the search of line 6 of algorithm
MSEARCH then the internal processing time per node is clog,m +
d for some constants ¢ and d. The total processing time per node is
thus,

T=a+ bm+clog,m+d (10.1)

For an index with N entries, the number of levels, [, is bounded
by:

log, {(N + 1)/2}
log, m

for some constant f

The maximum search time is therefore given by (10.2).

Index Techniques 503

a+d bm
+ ¢ seconds (10.2)

maximum search time = g { +
log,m log, m .

where g= f-log, {(N +1)/2}.

We therefore desire a value of m that minimizes (10.2). Assuming
that the disk drive available has a t,=1/100 sec and t, = 1/40 sec
we get a = 0.035 sec. Since d will typically be a few microseconds,
we may ignore it in comparison with a. Hence, a + d = a = 0.035
sec. Assuming each key value is at most 6 characters long and that
each A, and B, is 3 characters long, & = 6 and § = 3. If the transmission
rate t,= 5 x 107° sec/character (corresponding to a track capacity of
5000 characters), b = (o + 2B)t, =6 x 107° sec. The right hand side
of equation (10.2) evaluates to

{ 35 0.06m
g +

+ 1000 c} milliseconds (10.3)
log,m log,m
Plotting this function gives us the graph of figure 10.13. From this
plot it is evident that there is a wide range of values of m for which
nearly optimal performance is achieved. This corresponds to the almost
flat region m € [50,400]. In case the lowest value of m in this region
results in a node size greater than the allowable capacity of an input
buffer, the value of m will be determined by the buffer size.

Total maximum search time

50 125 400

Figure 10.13 Plot of 35 + .06m)/log, m

504 Files

Insertion

In addition to searching an index for a particular key value X, we
also wish to insert and delete entries. We shall now focus attention
on the problem of inserting a new key value X into a B-tree. The
insertion is to be carried out in such a way that the tree obtained following
the insertion is also a B-tree. As we shall see, the algorithm for doing
this is conceptually much simpler than the corresponding insertion
algorithm for AVL-trees.

In attempting to discover the operations needed to carry out the
insertion, let us insert X = 38 into the 2-3 tree of figure 10.12. First,
a search of the tree is carried out to determine where the 38 is to
be inserted. The failure node that is reached during this search for
X = 38 is the fourth from the right. Its parent node is f. The node
f contains only one key value and thus has space for another. The
38 may therefore be entered here, and the tree of figure 10.14(a) is
obtained. In making this insertion, the tree nodes a, c and f were accessed
from the disk during the search. In addition the new node f had to
be written back onto the disk. The total number of accesses is therefore
four. Next, let us insert X = 55. A search into the B-tree of figure
10.14(a) indicates that this key value should go into the node g. There
is no space in this node, since it already contains m — 1 key values.
Symbolically inserting the new Kkey value at its appropriate position in
a node that previously had m — 1 key values would yield a node, P,
with the following format

m,Ag (K ,Ap) oo (KpyA)

and K; <K I=i<m.

i+1
This node may be split into two nodes P and P’ with the following
formats

node P: [m/21 — 1, Ag,(K1,A}), « oK [m21-1>Armsz1—1) (10.4)
nOde P’: m — [m/z],Arm/z], (K[m/2]+l’Afm/2]+l)’ ..-,(Km,Am)

Theremaining value K, ,; and the new node P’ forma tuple (K ;,,/5,P"),
and an attempt is made to insert this tuple into the parent of P. In
the current example the node g splits into two nodes g and h. The
tuple (50,h) is inserted into the parent of g i.e. node c