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ABSTRACT 

The present dissertation aims to make an in-depth study on the Radar pulse 

compression. Pulse compression is used in the radar systems to avail the benefits for large 

range detection and high range resolution capability by long and short duration pulses 

respectively. Usually, matched filter (MF) and auto-correlation function (ACF) are used to 

analyse the pulse compression output. The output of the pulse compression of a modulated 

signal is associated with range side-lobes along with the main-lobe. These side-lobes are 

undesirable because they may contain the information associated to the target which is nearer 

to a stronger or desired target due to this the performance of the radar detection system is 

affected. In this dissertation, to improve the performance of radar system, few investigations 

have been made to reduce the side-lobes in the pulse compression output. Firstly, a 

fundamental comparative analysis on time-bandwidth product of a short duration exponential 

signal is analysed. The amplitude variation has been varied with an exponent as an integer and 

non-integer are observed.  

In order to improve time-bandwidth product in the pulse compression, different 

Classical Orthogonal polynomials of different orders are analysed. Then Chebyshev 

polynomials are used to generate the sequence which has low sidelobe levels in the output of 

the compressed signal. In this dissertation using P4 code of length 1000, merit factors such as 

peak sidelobe level, integrated sidelobe level and relative mainlobe width are calculated for 

the proposed model. The results are compared with other techniques that use the Woo filter 

concepts. 
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CHAPTER-1 

INTRODUCTION 

1.1 Radar Principle 

Radar is an acronym of Radio Detection And Ranging. Radar basically transmitted an 

electromagnetic signal in to space by the transmitting antenna. Some portion of the 

transmitted signal incident on the target and gets reflected in many directions, some of the 

reflected signal or echoes are collected by the radar’s receiving antenna. These echoes are 

used to extract the information about the target such as range, velocity and other identifying 

characteristics in all weather conditions [1, 2]. 

There are two types of radars monostatic and bistatic. In the monostatic, transmitter 

and receiver are at the same location, where as in bistatic transmitter and receiver are 

separated by some distance as shown in Figure 1.1. 

 

(a) (b) 

Figure 1.1: Radar transmitter and receiver (a) Monostatic and (b) Bistatic radar 

Active and passive types of radars are exists. In active radars both the transmitter and 

receiver works simultaneously, where as in passive radar system only one work at a time. In 

the continuous radar, signals are transmitted continuously while receiving target echoes on a 

separate antenna. Usually continuous waveform (CW) is used for the measurement of 

unambiguous Doppler shift through which speed of the target can be determined. However, 

due to continuous nature of the waveform the target range measurement is entirely 

ambiguous. On the other hand, for accurate range measurement pulse waveform based radar 

system are used. The primary advantage of pulsed radar is that due to pulsating nature of 
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radar waveform, transmitter and receiver can share the same antenna. Range resolution and 

maximum range detection are the two important factors to be considered for radar waveform 

design. For range resolution duration of the pulse should be small. But, if the pulse width is 

decreased, the amount of energy in the pulse is decreased and hence maximum range 

detection gets reduced because signal strength at the receiver is very low, which is not 

sufficient for target detection. To overcome this problem pulse compression techniques are 

used in the radar systems. 

1.2 Range and Velocity Resolution 

In order to determine the range of the target, the delay between the transmitted pulse 

and reflected pulse have to be measured and by knowing the propagation speed of the 

electromagnetic wave in the space or different media [4]. For real time applications more 

pulses at some repetitive interval will be transmitted rather than transmitting a single pulse, 

whose period is called as pulse repetition interval (PRI).  

 

Figure 1.2: Pulsed radar waveform 

   and    are the pulse duration and pulse repetition interval respectively as shown in 

the Figure 1.2. The minimum distance between two nearby targets can be resolved is called as 

range resolution given by 

            (1.1) 

Where R is the range resolution,    is the pulse duration and   is the velocity of 

electromagnetic wave. The value of R should be small as much as possible because it can 

differentiate two nearby targets in term of small distance. 

In order to determine the velocity of the object or to find the velocity resolution, the 

relative frequency shift between the transmitted signal and the echo signal has to be measured 

and this frequency shift is used to find the radial velocity of the object using [1, 3] 

               (1.2) 
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Where the Doppler frequency shift is    and     is the radial velocity of the target. 

Velocity resolution is defined as, if two targets are moving with two dissimilar velocities 

which are close by, even then the radar system must identify them as two different targets. In 

general a radar system has to resolve the targets in both range and velocity without any 

ambiguities. This puts a constraint on the transmitted pulse duration and the power that has to 

be transmitted in pulse mode. If the spectral spreads are more, then that pulse is more suitable 

for the better resolution in frequency domain [5, 6] it means the resolution in frequency can 

be attained as the reciprocal of the time duration. Maximum unambiguous range    that can 

be measured by pulsed radar [6] can be calculated as 

   
   

 
    (1.3) 

It means it can distinguish two nearby target in terms of smaller distance. Generally 

range resolution depends on the bandwidth of the transmitted signal rather than the duration 

of the pulse. It means the waveforms which have higher bandwidth is preferred for good 

range resolution, that’s by in pulse compression long duration pulse is transmitted with angle 

modulation, that will increase the overall bandwidth and this bandwidth responsible for range 

determination. On the other hand, long duration pulse which is transmitted is responsible for 

good detection in radar system 

1.3 Pulse Compression 

Pulse compression is used in the radar system to get the benefits of long and short 

duration pulses by a single pulse. To detect a target, reflected pulse should have more 

strength, for this purpose transmitted pulse should have more energy for long distance 

transmission. The energy contents depend on the peak power as well as the duration of the 

transmitted pulse. The product of peak power and total pulse duration estimate the energy of 

the signal [3]. In pulse compression short duration pulses are used for range resolution. 

Practically, the pulse duration cannot be decreased indefinitely [5], because a very short pulse 

requires high peak power to get adequate energy for large distance transmission. To generate 

high peak power, overall radar equipment become heavier, bigger and by which cost of the 

system increases. That is by a pulse having low peak power and longer duration is required at 

the transmitter for long range detection. Large bandwidth implies narrow effective duration 

[5, 6]. The waveform with small effective duration is produced when the long duration 

waveform with angle modulation transmitted, and then the received signal is passed through 

the MF to observe the pulse compression output. This concept is called pulse compression [5].  
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So here pulse compression ratio (PCR) or time-bandwidth product concept comes, its 

value is always greater than unity [4, 6]. PCR is the main parameter in pulse compression it 

should be more for good detection as well as for good range resolution. The pulse 

compression ratio is defined as 

 

    
                                     

                                    
 

Using pulse compression, simultaneously system can obtain good detection and highly 

accurate range measurements.  

1.4 Ambiguity Function 

Ambiguity function (AF) is an analytical tool for designing the waveform and it 

analyse the waveform behaviour paired with its matched filter response. It is useful to 

examine resolution, sidelobe behaviour and ambiguities in both range and Doppler. It is often 

necessary to examine a waveform and understand its resolution and ambiguity in both range 

and speed domains. The range and speed is measured using the delay and Doppler shift 

respectively. In order to measure range and speed of an object ambiguity function can be 

used, that is represented as 

 (     )  ∫  ( )  (    )
 

    
             (1.4) 

 (     ) is ambiguity function,    and   are the time Delay and Doppler shift 

respectively.  ( ) is the transmitted signal. AF depends on the two parameters, time delay 

(  ) and Doppler shift (  ). Three properties of AF are of immediate interest. First states that 

total area under AF is always constant. This generally holds the conservation of energy 

statement implies that one cannot remove energy from AF surface until this portion is placed 

somewhere on the surface of AF. 

∫ ∫   (     )  
  

  
           

  
  (1.5) 

The second property states that when the filter matched Doppler to the echo and it is 

samples exactly at a delay corresponding to the target range then it gives energy of the 

waveform.  
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  (     )    (   )     (1.6) 

The third property states that AF response is always symmetrical around the delay 

Doppler plane. 

  (     )    (       )   (1.7) 

1.5 Literature Survey 

In order to start the study regarding pulse compression, the first step is to study the 

research papers that have been published by other researchers. The papers that are related to 

this title are chosen and studied. With the help of this literature review, it gives more clear 

understanding related to the pulse compression. So many techniques for pulse compression 

have been developed such as linear frequency modulation, non-linear frequency modulation, 

Barker codes. There are many several types of pulse compression waveforms useful in Radar. 

Firstly linear frequency modulation (LFM) is developed; this is one of the most useful 

waveform in order to compress the pulse. In Costas frequency modulation (FM), frequency 

are chosen such that the resulting waveform has an uncertainty function that rapidly decrease 

from its maximum in both delay and Doppler frequency co-ordinates, and has very low side-

lobe levels over most of the delay-Doppler plane. 

In [10], the authors have proposed a technique in which auto-correlation function 

(ACF) for modified two and tri-stage non-linear frequency modulation (NLFM) signal are 

analysed and -19dB side-lobe suppression is achieved without disturbing the relative main-

lobe width. Peak sidelobe levels (PSL) and integrated sidelobe level (ISL) are reduced by 

sidelobe canceller, developed by Woo and Griffiths [11]. In [19], the application of least-

mean-squares approximated by developing inverse filtering techniques to radar range sidelobe 

reduction has been discussed. The performance of the least mean square inverse filter is 

compared with the matched filter. A filter which completely suppresses the range side-lobes 

of a 13-element Barker sequence is only 0.2 dB worse than a matched filter in noise. By using 

two different Barker codes, a neural fuzzy network is developed [20] which gives significant 

advantages for range and velocity resolution and also sidelobe are suppressed. 

Baghel and Panda [21], have proposed a hybrid model for the phase coded waveforms 

in which MF output is modulated by the output of radial function for different Barker codes. 

In addition to this, the hardware requirement is also significantly less to implement this hybrid 
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model without any training iterations as in the neural network. Vizitiu [22] has produced a 

technique to overcome the problems of LFM signal that is stretching of the main lobe width 

which disturb the range resolution by using nonlinear laws. The advantage of P4 codes are, it 

can be derived for any length sequence and these are cyclic shifted codes which gives better 

sidelobe reduction than other polyphase codes [26]. The weighting in time and frequency 

domain is applied in order to suppress the side-lobes as discussed in [27]. Rihaczek [29] has 

proposed a sidelobe suppression technique in which only few distinct tap weight line are used 

to reduce the side-lobes that reduces the complexity of digital processor. The Barker codes 

and multistage Barker codes are used for higher pulse compression factors. Indranil and Adly 

[30], have developed a model in which a mismatched filter, comprised of a matched filter is 

cascaded with a parameterized multiplicative finite-duration impulse response filter but this 

technique uses fewer multipliers and adders. . In [31], the author realized a filter that reduces 

the side-lobes of the quadrat phase-coded waveform by applying the bi-phase to quadrat 

phase transformation to the filter designs that reduce the side-lobes of the prototype bi-phase 

code. In [32], the author demonstrated that two sample sliding window sub tractor in the 

output of a digital Frank or Pl code compressor can limit the compressed pulse range and 

side-lobes to those of the Barker codes with unlimited pulse compression ratios. Its significant 

sidelobe reduction is attained at the cost of 1dB loss in the signal-to-noise ratio. In other 

approach, ACF for LFM signal is analysed in sinc function having -13dB sidelobe, it also 

represents modified two and tri-stage NLFM [33] by which -19dB sidelobe suppression is 

achieved. It is observed that NLFM are good for sidelobe reduction without disturbing signal 

to noise ratio (SNR). 

Lee [34] has proposed a simple technique for polyphase codes to synthesize amplitude 

weighting correlators at the cost of minimal range resolution loss. The side-lobes generated by 

these weighted codes are significantly smaller and uniformly flat over all time delays than 

those achieved in the Barker codes Felhauer [35], derived a new class of polyphase codes by 

step approximation of the phase function of a NLFM chirp signal with a favourable energy 

density spectrum. The significant advantages of these codes over the conventional polyphase 

codes are lower auto-correlation side-lobes and an improved tolerance of low Doppler shifts.  

A hyper chaotic coding scheme and corresponding optimal selection method are proposed by 

authors [36], to obtain the phase code signal, which exhibits great performance for sidelobe 

reduction. When Gaussian-noise variance is less than 0.01, reduction in the side lobe of  -

55dB exists, but the signal-to-noise ratio loss is less than 0.05dB.In [37], the authors have 
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presents a technique for the design of mismatched received finite impulse response filters 

based on the minimization of  Lp-norms of the side-lobes. The target is to reduce PSL for the 

convolution of the transmitted pulse and the received pulse after some delay. A closed-form 

solution is derived for the least-squares case and an expression for the optimization of the 

higher order norms is developed  

1.5 Problem Formulation 

In the pulse compression output, side lobes are undesired. In the literature there are many 

techniques based on LFM and NLFM for the sidelobe level reduction. So to reduce these side 

lobes investigations has been done regarding some transmitted waveforms. To analyse the 

time-bandwidth product, exponents signal of integer and non-integer order has been observed. 

Then different Classical Orthogonal polynomials are incorporated to observe the time-

bandwidth product. Chebyshev polynomial based sequence is generated that increase the 

length of the overall sequence and it gives better peak sidelobe level reduction. Woo filter 

based model is proposed which uses polyphase code, gives better reduction in the PSL, ISL 

and relative mainlobe width. 

1.6 Dissertation Organization  

This dissertation includes six chapters. An outline of each chapter is given below: 

Chapter 1
st
 gives an introduction of radar system, range and velocity resolution, pulse 

compression, ambiguity function, literature survey and problem formulation. 

Chapter 2
nd

 presents the comparative analysis on exponential form of pulse for better range 

and velocity resolution. 

Chapter 3
rd

 presents a study on different Classical Orthogonal polynomials in order to 

improve time-bandwidth product. 

Chapter 4
th

 presents the Chebyshev polynomial based sequence generation in order to reduce 

the side lobes of matched filter response. 

Chapter 5
th

 presents the Woo filter concept of sidelobe reduction, in which proposed 

techniques results are compared with other Woo filter sidelobe reduction techniques. 

Chapter 6
th

 concludes this dissertation, summarizing the major results of all chapters and 

offering suggestions for future work on this topic. 

 



8 

 

CHAPTER-2 

COMPARATIVE ANALYSIS ON AN EXPONENTIAL FORM 

OF PULSE WITH BETTER RESOLUTION IN RANGE AND 

VELOCITY 

2.1 Introduction 

There has been lot of research has been carried out on pulse compression, this chapter 

presents the pulse compression with the basic pulse in exponential form with its comparison 

in different expressions which serves as an extension on pulse compression with non-integer 

exponents. This analysis gives a new form of pulses that can be used in real time pulse 

compression techniques for practical applications. Here comparative analyses on an 

exponential form of pulse with an integer and non-integer exponent are done in order to 

improve resolution in range and velocity, which are used in pulse compression. The time-

bandwidth product is the figure of merit for the pulse compression and hence the frequency 

spectrum of the transmitted pulse is obtained with the help of fast Fourier transform (FFT) 

[7]. To make a comparative analysis, different pulses have been considered and time-

bandwidth products have been tabulated. It is often necessary to examine a waveform and 

understand its resolution and ambiguity in both range and speed domains. The range is 

measured using delay and speed is measured using the Doppler shift. In radar systems, the 

transmitted signal is represented with  ( ) and the received signal can be represented as  ( ). 

The received signal can be approximated in terms of transmitted signal with some attenuation, 

delay and frequency shift in the frequency domain as 

  ( )   ( )  (   )            (2.1) 

Where  ( ) can be taken as attenuation of the signal as a function of time. Usually, 

this can be considered as a constant.   represents the delay between the transmitted signal and 

received signal while the complex exponential multiplication represents the variation in the 

frequency of the received signal due to relative motion between target the radar system. In 

radar systems to maximize the peak signal to noise ratio, a matched filter (MF) is used which 

acts like a correlator and its impulse response can be given as [5, 6]. 

  ( )    (   )     (2.2) 
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Where    is the parameter used for maximizing the output of the filter at predefined time. 

The output of the MF can be used to find the peak side lobe levels in the ACF which 

gives an idea about the range resolution and velocity resolution. PSL which measures the ratio 

of maximum side lobe magnitude to the in phase value of the ACF. This can be calculated as 

                 
          ( ) 

  ( ) 
     (2.3) 

N is number of side lobes,  ( ) is output of MF. 

AF behaves like a MF when there is no Doppler-shift exists and its response is always 

symmetrical around the origin, and total area under this function is always constant. Generally 

AF gives single central peak at the origin while the remaining energy will be spread 

uniformly in the delay-Doppler plane only for the ideal case and this narrow peak which lie at 

the origin implies good resolution in both range and velocity
 
[3]. At the receiving end, when 

filter is matched in Doppler to the reflected signal and is sampled at a delay corresponding to 

the actual range of target, then the response of this filter will be maximum at the origin which 

gives good resolution property. If this function is sampled at some different delay, then the 

response of the filter will be less than to the maximum and there is possibility of ambiguity in 

range and velocity. 

An exponential pulse of the form 

  ( )      ( )     (   )      (2.4) 

has been analysed where  ( ) is of the form      where   is a constant and exponent   is 

integer and non-integer as well. Along with this simple pulse, this pulse has been modified 

with differentiation and multiplication with signum function, and modulating these pulses 

with a sinusoidal carrier signal.  

2.2 Simulation Results and Discussion 

In the first place a simple exponential pulse has been analysed. Mathematically this pulse can 

be represented as 

  ( )    (   
  (  )      

  ( ))  (2.5) 
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Here n,   are the order and amplitude of the signal. Exponential pulses having non-integer 

order of half and integer order of one, two, three, and five has been analysed for every case. 

Time domain and frequency spectrum analyses for exponent signal are shown in Figure 2.1. 

Frequency spectrum of the exponential pulses has been observed with the FFT.  

 

Figure 2.1: Time domain, frequency domain and ambiguity functions for the first exponential signal with 

different exponents 

Red trace is for n=0.5, blue trace is for n=1, magenta is for n=2, green is for n=3 and 

black is for n=5. The colour of the traces has been preserved in all the succeeding figures for 

comparison. From Figure 2.1 it is observed that for order two its spectrum is flat than other 

orders, but MF outputs are not compressed.  After observing this, the polarity of the pulse has 

been taken as positive half and negative half for the entire pulse. This is like multiplying the 

given pulse with signum function. Mathematically bi-phase exponential signal can be 

represented as 

   ( )    (   
  (  )      

  ( ))     (2.6) 
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Figure 2.2: Time domain, frequency domain and ambiguity functions for the second exponential signal with 

different exponents 

A simple mathematical operation is done on the original exponential pulse by 

differentiation. Differentiated exponential pulses can be represented as 

   ( )    (          
  (  )             

  ( ))           (2.7)  

Table 2.1: Represents the PSL, 3-dB beam-width, main lobe width for the simple exponential pulses 

Sr. 

No. 
Order(n) 

Peak sidelobe  

level(dB) 

3dB Beam 

width 

Mainlobe 

width 

1 0.5 -Nil- 0.14 0.70 

2 1 -Nil- 0.13 0.76 

3 2 -Nil- 0.19 2 

4 3 -Nil- 0.21 1.12 

5 5 -Nil- 0.23 1.08 
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Figure 2.3: Time domain, frequency domain and ambiguity functions for the third exponential signal with 

different exponents 

But usually for the transmission purposes, modulation of the input signal is required. 

Now these exponential pulses are to be multiplied by sinusoidal signal. Here cosine signal is 

incorporated having frequency 4Hz. In this chapter, this frequency is taken for convenience; 

by altering this frequency, conclusion will not altered, so this frequency can be  up scaled or 

down scaled as per requirements. By multiplying with cosine signal to the simple exponential 

pulses, there time analysis (auto correlation and matched filter response) and frequency 

spectrum are analysed. 

Mathematically cosine exponential pulses can be represented as 

  ( )       (    ) (   
  (  )      

  ( ))    (2.8) 

Now multiply the bi-phase exponents to the cosine signal as shown below 

  ( )        (    ) (   
  (  )      

  ( ))    (2.9) 
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Now multiply the differentiated exponents to the cosine signal as represented below 

  ( )        (    )(          
  (  )             

  ( ))  (2.10) 

Table 2.2: Represents the PSL, 3-dB beam-width, main lobe width for the Bi-phase exponential pulses 

Sr. 

No. 
Order(n) 

Peak sidelobe 

level(dB) 

3dB Beam 

width 

Mainlobe 

width 

1 0.5 -16.19 0.34 0.86 

2 1 -13.82 0.34 0.92 

3 2 -11.56 0.53 -- 

4 3 -9.32 0.57 -- 

5 5 -7.69 0.59 2.2 

By observing this table pulse having order half gives better PSL and order five have worst 

PSL.  

Table 2.3: Represents the PSL, 3-dB beam-width, main lobe width for the differentiated exponential pulses 

Sr. 

No. 
Order(n) 

Peak sidelobe 

level(dB) 

3dB beam 

width 

Mainlobe 

width 

1 0.5 -Nil- 0.26 -- 

2 1 -Nil- 0.13 0.80 

3 2 -6.94 0.10 1.86 

4 3 -6.03 0.14 0.56 

5 5 -6.10 0.14 0.54 

2.3 Discussions on Ambiguity Function 

In ambiguity analysis [2], x-axis represents the delay and y-axis represents the 

Doppler shift. If the same pattern is repeating in x-axis and in y-axis then range and velocity 

resolution can be determined respectively. In this chapter the ambiguity function has been 

analysed for different exponents of order one, two, five and half. For simple exponential pulse 

ambiguity functions analyses gives not any range as well as not any speed resolution as 

shown on Figure 2.1, because there is not any repetition of the pattern. Moreover order half 

has good ambiguity function result because pattern is more concentrated towards the origin as 

compared to the other exponents. 
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For Bi-phase exponential pulse ambiguity functions analyses gives not any range as 

well as not any speed resolution as shown in Figure 2.2 because of no repetition in pattern. 

But fractional order have good ambiguity results because pattern is more concentrated at 

origin and this analysis are good than simple exponential pulses because in half order bi-phase 

exponent pattern come closer to origin. Figure 2.3 represents the ambiguity analysis of 

differentiated exponential pulses, it is observed that for order one, two and half, resolution 

cannot be determined but for order five both resolutions exist, by which speed and range of an 

object can be measured. For order five there is more ambiguity for speed resolution. It is 

observed that for order half ambiguity result is good as compared to other exponents because 

pattern is more concentric at the origin. So non-integer exponents gives good result for pulse 

compression as well as better ambiguity analysis. 

Now by multiply these pulses to the sinusoidal signal of frequency 4Hz, for simple 

cosine exponential pulses Ambiguity analysis gives range resolution as well as Doppler shift, 

it is observed that when frequency is increasing then delay patterns come closer to each other 

and Doppler shift is increasing which is repeating after twice of the applied frequency . If in 

the delay axis pattern come closer its range resolution is good because pulse become 

narrower. Here applied frequency is 4Hz hence at 8Hz, 12Hz and an integer multiples of 4Hz 

s, the same pattern is repeating on the y-axis which gives the velocity ambiguity and same 

pattern is repeating on the x-axis which gives the ambiguity in range simultaneously. For bi-

phase cosine exponential pulses, Ambiguity analyses give range resolution as well as Doppler 

shift, by which range and speed resolution can be determined. 

Finally, ACF which is the outputs of the MF is represented in Figure 2.4. The best 

ACF should have the narrow beam and very small relative side lobe levels. It is observed that 

there output of the MF for non-integer value is giving better result compared to the other 

forms of the signals. ACF response is better for non-integer order that is half. It is observed 

that pulse is narrower and it has no side lobe which is desired. Order one also have not any 

side lobe but the MF response is wider which is not desired. So results are good for non-

integer order pulse. 
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Figure 2.4: ACF for all the signals in sequence 

2.4 Conclusion 

After the detailed analysis on the quantitative parameters of the pulse compression is 

carried out with an exponential kind of pulse in different mathematical forms. The exponents 

used in this chapter are of an integer and non-integer. From the analysis, it is observed that the 

differentiated exponential with non-integer index is giving slightly better requirements with 

reference to pulse compression which can be used in practical applications. From the 

simulation it is concluded that ambiguity analysis are also good for non-integer form of pulses 

because delay-Doppler plane is more concentrated at the origin than other exponents 

ambiguity function. 
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CHAPTER-3 

ANALYSIS ON TIME-BANDWIDTH PRODUCT WITH 

DIFFERENT CLASSICAL ORTHOGONAL POLYNOMIALS 

3.1 Introduction 

The theme of this chapter is to analyse and compare the pulse compression with 

Classical Orthogonal polynomials namely, Chebyshev, Laguerre, Legendre and Hermite 

polynomials for different orders [13, 14]. Pulse compression is used in radar systems to 

improve the range resolution by increasing the time-bandwidth product [1] of the transmitted 

pulse. Pulse compression is done by modulating the instantaneous angle of the transmitted 

carrier pulse of fixed duration [3]. The instantaneous angle modulations considered in this 

chapter are of three types. In first case, angle is varied in proportional to the Classical 

Orthogonal polynomials. In second case, angle is proportional to integral of Classical 

Orthogonal polynomials and lastly, angle is proportional to derivative of the Classical 

Orthogonal polynomial. The main purpose of this analysis is to use the best of all these 

Classical Orthogonal polynomials in pulse compression and to compare the quantitative 

parameters of pulse compression such as time-bandwidth product. For all these polynomials, 

the optimal value of time-bandwidth product are tabulated and compared with each other. For 

a better range resolution,   must be as small as possible. A rectangular pulse with duration   

has resolution bandwidth (  ) as    . Hence the range resolution can be expressed in terms 

of bandwidth as 

     (   )     (3.1) 

  For better resolution in range, the bandwidth of the pulse has to be very large which 

indicates a shorter pulse. This shorter pulse makes difficulty in decision of the target. Hence 

the BW of the pulse has to be increased as much as possible while maintaining the duration of 

the pulse fixed [4, 5]. To satisfy this constraint, modulation can be applied on the pulse with 

the equation  

     ( )      (      ( ))         (   )           (3.2) 

Where     (   ) a rectangular pulse of duration is  . Here   has been fixed and the 

search has to be conducted for the best possible function  ( ), such that the spectrum of  ( ) 
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has to spread flatly over the large band of frequencies. There are many functions possible 

for  ( ), but in this chapter, the functions are confined to the Classical polynomials due to the 

wide area applications of these Classical polynomials in engineering domain [16]. This 

chapter presents the detailed analysis of the pulse compression with respect to Classical 

orthogonal polynomials. In order to observe time-bandwidth product, spectrum of different 

Classical Orthogonal polynomials has been obtained. Depending on the values of   

(optimizing factor), the spectrum is expanding smoothly up to a certain value after that 

spectrum get distorted. Hence this variable   has to be selected such that the time-bandwidth 

can be improved without any distortion in the signal spectrum. 

3.2 Classical Orthogonal Polynomials Implementation 

The transmitted pulse can be expressed in mathematical form as  ( ). This precisely 

represents a carrier of duration   seconds whose angle is varied in accordance with  ( ). 

Variations in the function   ( ) give the modulation in the transmitted pulse. Here three types 

of variations are considered. Firstly,  ( ) is varied in proportion to the Classical Orthogonal 

polynomial    ( )  Here   ( ) can be any Orthogonal polynomial of order  . Secondly,   ( ) 

is varied in proportion to the integral of the Classical Orthogonal polynomial and finally  ( ) 

is varied in proportion to the derivative of the Classical Orthogonal polynomial. First case is 

considered as the phase modulation of the carrier with  ( ) and second case can be 

considered as frequency modulation. Third case can be treated as general angle modulation of 

carrier with  ( )  The argument of the cosine function has been taken as  ( )       

    ( )  and   ( )          ∫   ( )    and  ( )             ( )   ⁄ . The 

maximum variations in the instantaneous frequency and the maximum phase deviation the 

transmitted pulse can be controlled with the parameter   and after the analysis is carried out, 

it is possible to come up with the maximization of time-bandwidth product. Hence   is 

considered as optimizing parameter for maximum bandwidth. 

In the simulations, the above mentioned three variations are considered with first four 

order polynomials of all Classical Orthogonal polynomials. The duration of the pulse has been 

fixed constant for all simulations and the carrier frequency   has been taken as 61 Hz. This is 

arbitrary and the conclusions are not going to change because of this choice, as the frequency 

can be scaled up according to the requirements in practical applications. All four types of the 

Classical polynomials are given in Table 3.1. 
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Table 3.1: Recursive equations for Classical Orthogonal Polynomials of order n 

Chebyshev(  )                

Legendre(  )      
 

   
((    )         ) 

Laguerre(  )      
 

   
((      )        ) 

Hermite(  )                  

3.3 Simulation Results and Discussion 

 Figure 3.1 represents the transmitted signals with different polynomials for the same 

optimizing parameter   with  ( ) proportional to   ( )  With the help of fast Fourier 

transform, the spectrum for the transmitted pulse is obtained. 

 

Figure 3.1: Transmitted signal with different Classical Orthogonal Polynomials 

Figure 3.2 represents the frequency spectrum for different optimizing parameters for 

all four types of polynomials. First, second, third and fourth columns are for Chebyshev, 

Legendre, Laguerre and Hermite Polynomials respectively. 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

A
m

p
li

tu
d
e

Chebyshev

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Legendre

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Time(s)

A
m

p
li

tu
d
e

Laguerre

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Hermite

Time(s)



19 

 

 

Figure 3.2: Spectrum for Classical Orthogonal Polynomials having order one and different values of α 

From Figure 3.2 it is observed that by increasing the   from small number to large 

number, the spectrum of the signal is spreading smoothly from narrow band to large band and 

then there is a distortion in the spectrum distribution. This can be observed in the column-

wise plots. This indicates that there is an optimal value of   which maximizes the time- 

bandwidth product which is the main requirement in pulse compression. This has been 

calculated for all types of polynomials and tabulated. The optimal value is possible for all the 

Classical polynomials except for the Laguerre polynomials which are deviated from the rest 

of the polynomials. This can be attributed to the fact that Laguerre polynomials are monotonic 

in the entire time duration and the variations in the arguments are too fast (very high 

frequency). If there is a practical device which can support such a huge frequency variations 

with high accuracy in a short period of time (restriction on the physical reliability of the 

source), the Laguerre polynomials are a better choice as far as the pulse compression is 

require. 
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Figure 3.3: Spectrum for Classical Orthogonal Polynomials having different order in Phase Modulation 

A comparative analysis on all the spectral properties of these transmitted pulses have 

been carried out with the three above mentioned cases. Figure 3.3 to Figure 3.5 represents the 

spectral variations of different order Classical polynomials in phase modulation (first case), 

frequency modulation (second case) and finally the general case of angle modulation. In 

which Black, Blue, Red and Magenta represents Chebyshev, Legendre, Laguerre and Hermite 

polynomials respectively. The colour of the traces has been preserved in all the succeeding 

figures for comparison.  
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Figure 3.4: Spectrum for Classical Orthogonal Polynomials having different order in Frequency Modulation 

 

Figure 3.5: Spectrum for differentiated Classical Orthogonal Polynomials having different order 
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The spectrum is observed for order of two, three and four for proportional, integral 

and derivative variations and the results are tabulated in the Table 3.2, Table 3.3 and Table 

3.4 for phase, frequency and general angle modulations. 

Table 3.2: Optimal values (α) and bandwidth for Classical Orthogonal Polynomials in Phase modulation 

Polynomials 

2
nd

 order 4
th

 order 

α B.W. α B.W. 

Chebyshev 85 110 21 82 ⃰ 

Legendre 130 117 50 116 ⃰ 

Laguerre 600 ⃰  ⃰ 178 ⃰  ⃰ 21 35 

Hermite 48 117 3 50 ⃰ 

⃰  Represents averaging the spectrum is required. 

⃰  ⃰  Laguerre polynomials whose spectrum is increasing up to any optimising value. 

Table 3.3: Optimal values (α) and bandwidth for Classical Orthogonal Polynomials in Frequency modulation 

Polynomials 

1
st
 order 2

nd
 order 3

rd
 order 4

th
 order 

α B.W. α B.W. α B.W. α B.W. 

Chebyshev 400 120 -- -- -- -- -- -- 

Legendre 400 120 -- -- -- -- -- -- 

Laguerre 200 ⃰  ⃰ 55 ⃰  ⃰ 760 471 570 560 610 880 

Hermite 200 120 -- -- 70 120 -- -- 

 

From the tables and graphs, it is observed that, when the order of the polynomial is 

increased, the spectral distribution is not smooth and the first order polynomials are giving 

better properties in case of frequency modulation compared to all other polynomials. At the 

same time, it is also observed that the frequency modulation with first order is similar to 
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phase modulation with second order which is a known fact of frequency modulation and 

phase modulations are inter-related. 

Table 3.4: Optimal values (α) and bandwidth for differentiated Classical Orthogonal Polynomials 

Polynomials 

3
nd

 order 

derivative 

5
th

 order 

derivative 

α B.W. α B.W. 

Chebyshev 16 118 2 115 ⃰ 

Legendre 27 118 5 135 ⃰ 

Laguerre 120 ⃰  ⃰ 35 ⃰  ⃰ 40 ⃰  ⃰ 120 ⃰  ⃰ 

Hermite 8 118 0.8 120 ⃰ 

Even though they appear to be almost same in spectrum, there is a slight difference in 

the spectrum due to the difference in the functions in the arguments. Out of these two options, 

frequency modulation is better than the phase modulation. In frequency modulation, by 

comparing time-bandwidth product in polynomials to polynomials, Except Laguerre, all other 

polynomials have good bandwidth in first order. Second ordered Laguerre polynomial has 

good bandwidth that is 500Hz at   is equal to 760. Polynomials having order three, Laguerre 

and Hermite gives flat spectrum but Laguerre have better result that is bandwidth of 560Hz at 

  is equal to 570. Laguerre polynomial having order four gives better bandwidth than other 

order polynomials that is 880Hz at   is equal to 610. So Laguerre polynomials are better in 

order to improve time-bandwidth product than other polynomials. It is also observed that 

when  ’s value is increased then spectrum of the signal is spreading but there are some 

ripples in the response along with attenuation in the spectrum. These ripples can be averaged 

in order to make the response smooth. 

In phase modulation, polynomials having order one have not any optimal bandwidth. 

For order two all the polynomials have good bandwidth with different   values. Polynomials 

having order four, Hermite have better bandwidth that is 50Hz at   is equal to 3.Finally, the 

spectral contents are observed for higher order polynomials and they are not suitable for the 
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pulse compression as the spectral distribution is highly non-uniform as represented in Figure 

3.6. Here the order of the polynomials (for Chebyshev) is taken as 2 and 31. 

 

Figure 3.6: Spectrum for Chebyshev Polynomial of n=2 (Black) and n=31 (Blue) 

3.4 Conclusion 

The complete detailed analysis on pulse compression with the Classical Orthogonal 

polynomials is carried out and it is concluded that the Laguerre polynomials are a better 

choice for pulse compression if there is no restrictions on the physical implementation of the 

source. After Laguerre polynomials, Legendre polynomials are giving better time-bandwidth 

product for frequency modulation with order one. After the analysis, it is observed that the 

Laguerre polynomials are better than others with respect to pulse compression and frequency 

modulation gives better time-bandwidth product for these polynomials than phase 

modulation. 
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CHAPTER-4 

 SEQUENCE GENERATION WITH CHEBYSHEV 

POLYNOMIAL HAVING SMALL RELATIVE SIDELOBE 

LEVEL 

4.1 Introduction 

This chapter describes the improvement in PSL, time-bandwidth product and AF with 

Chebyshev polynomial of different orders. This new signal is obtained by changing the 

polarities of the pulses depending on the zero-crossing [13, 14]. In maximizing the output of 

MF, PSL and relative main lobe width are the main parameters to indicate the suitability of 

the pulse to avoid the ambiguities in range and velocity at the radar receiver. Here two cases 

has been considered to analyse the PSL, time-bandwidth product and AF behaviour for 

Chebyshev polynomial of different orders [15, 16], second is modification in the cycles of 

Chebyshev polynomial of different order is incorporated. Also time-bandwidth product [2, 3] 

is analysed for the modified polynomials. A binary sequence with bi-polarity has been 

multiplied these pulses to get reduce further in the side lobe level. After this the smallest 

duration of the pulse has been used in determining the optimal duration of binary sequence to 

have the smallest MSE [17, 18] between the number of pulses incorporated and original 

sequence. This is giving a much larger sequence with less PSL by reducing the search domain 

considerably. It is observed that the polynomial which is derived with half cycle modification 

have better results for PSL at the output of ACF. By using this approach higher order 

polynomials PSL can be observed with the help of low order polynomials that saves the 

simulation time. 

 The transmitted signal in radar system [1] can be represented as 

 ( )   ( )    (      ( ))            (4.1) 

Where  ( ) represents the AM whose amplitude varies with respect to the time and 

 ( ) represents the angle modulation. The received signal can be represented as 

        ( )     (       ( )    )    (4.2) 

 Where  ( ) can be taken as the phase differences coming from relative velocity between 

the target and the radar system, while    can be taken as the round trip time delay
 
[3]. This 

received signal is passed through the MF in order to improve the signal to noise ratio [4, 5].  
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In summary, during the process of pulse compression side-lobes are undesired. In two 

ways these side-lobes can be suppressed [1, 3, 4] in one matched filter’s output can be passed 

through some weighting filters but by this technique SNR of the system is reduced to some 

extent. In the second method, the search for the transmitting waveform which has low side-

lobes in the MF response can be used during angle modulation. In this chapter second case 

has been considered to reduce the side-lobes, so the search has to be conducted for the best 

possible function  ( ) as represented in equation 4.1, such that the spectrum of  ( ) has to 

spread flatly over the large band of frequencies. There are many functions possible for   ( ), 

but here this function is confined to the Chebyshev polynomial due to the wide applications of 

this polynomial in engineering domain [13, 16]. This chapter presents the detailed analysis on 

side-lobes reduction in pulse compression with respect to modified Chebyshev polynomial 

and also their AF are observed, which tells about the range and velocity resolution. 

 4.2 Generation of the Sequence for Chebyshev Polynomial 

Chebyshev polynomial introduces a trigonometric mapping method which produces a 

real valued sequence having better auto-correlation property [14, 15]. Here two cases has been 

considered to check the PSL behaviour, in the first case Chebyshev polynomial are analysed, 

after that cycle of the Chebyshev polynomials are modified by multiplying the Chebyshev 

polynomials cycle with some +1 or -1 polarity which are generated by polynomial zero-

crossing, basically two possibilities exist to change the cycle of polynomial i.e. half cycle and 

full cycle can be changed. Here both modifications have been done and their MF responses 

are analysed. Depending upon the order of the polynomials there are many possibility to 

change the cycle of polynomials, here out of these possibilities best case (gives better PSL) 

has been considered, after that MF response is analysed for these modified polynomials. In 

order to generate full cycle modification, only odd number ordered polynomial has to be 

considered, if even number order polynomials are incorporated for full cycle modification 

then some part of the signal is truncated which alter the desired results. Whereas half cycle 

modification are possible for both (even and odd) ordered polynomials.  
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Recursive equation for Chebyshev polynomial of order   can be calculated
 
[13] as 

represented in Table 4.1.  

Table 4.1: Chebyshev Polynomials of order n 

Order(n) 
Chebyshev 

polynomial(  ) 

0 1 

1 x 

2       

3        

n                

 

Steps to generate sequence: 

Step 1: Take a Chebyshev polynomial. 

Step 2: Modify cycles of the polynomial in the following manner. 

 Find the zero crossings of the polynomial. Count the number of positive and 

negative pulses in the region -1 to 1. 

 Generate all the possible binary sequences according to the number of pulses 

obtained above. 

 Multiply this binary sequence with Chebyshev polynomial. 

 Out of these possibilities, the smallest PSL is stored and designate this as best 

PSL. 

Step 3: Find the optimal duration (    ) for the modified half cycle polynomial. 

 Calculate least duration of the pulse by zero-crossing and divide by it with 

overall length of the polynomial. 

 Get the fractional duration of all the pulses. 

 Round-off this duration to its nearest integer value. 

Step 4: Calculate mean square between rounded and actual duration. 

 Take the duration which has least MSE. 
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 Calculate numbers of cycles that can be added to the modified half cycle 

polynomial. 

 For the above obtained durations, expand the each pulse by integer number of 

     duration. 

Step 5: Analysed their MF response. 

4.3 Simulation Results and Discussion 

ACF for n=27 is analysed as represented in Figure 4.1, first row just gives time-

domain representation of Chebyshev polynomial and its MF response. It is observed that PSL 

level are not suppressed, which may lead to the unwanted target detection. In order to 

suppress the PSL, modifications in the cycle of Chebyshev polynomial is incorporated, here 

in Figure 4.1 full cycle modification is done (Row two) for this particular polynomial, red 

signal is used for polarity generation that will multiply with the above Chebyshev polynomial 

in order to change the cycles of the polynomial and this modified full cycle polynomial MF 

response is analysed.  

 

Figure 4.1: Time-domain representation and MF output of Chebyshev Polynomial for n=27 
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It is observed that it have better PSL than simple Chebyshev polynomial. Here n=27 is 

taken just for convenience, by altering order of these polynomials overall conclusion does not 

changed. Figure 4.1 represents the time-domain representation and MF response for 

Chebyshev polynomial (First Row) and Full cycle modified polynomial (Second Row) for 

n=27. In the same manner, for n=15 Chebyshev polynomial response is observed which have 

no better PSL, so modification in the cycle is incorporated to reduce PSL, here half cycle are 

modified for the particular polynomial and its MF response is analysed, it is observed that this 

half cycle modified Chebyshev polynomial have better PSL as represented Figure 4.2 to all 

other observed cases, first row corresponds to the Chebyshev polynomials and second row 

corresponds to the half cycle modified Chebyshev polynomial. 

 

Figure 4.2: Time-domain representation and MF output of Chebyshev Polynomial for n=15 

Using this step by step approach, PSL of Chebyshev polynomial, full and half cycle 

modified polynomial are observed and represented in the Figure 4.3. This represents the best 

PSL level out of all the possibility of the different Chebyshev polynomials (Black : 
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polynomial gives better PSL than other two cases and Chebyshev polynomial gives worst 

PSL.  

 

Figure 4.3: Relative side-lobe levels for different Chebyshev Polynomial 

As time-bandwidth product is the main parameter in pulse compression it should be 

more for good detection as well as for good resolutions. If bandwidth of the transmitting 

signal is high, then the pulse duration is small and this gives a good range resolution. Usually 

duration of the pulse cannot be reduced too much because Fourier theory says that a signal 

having bandwidth B have always duration greater than 1/B i.e. its time-bandwidth product is 

always greater than unity. This time-bandwidth product usually describes in term of PCR [22, 

23] which is the ratio of width of the pulse after compression to the width of the pulse before 

compression. If its value is greater than one then pulse compression exists. After pulse 

compression overall bandwidth of the transmitted pulse has been increased which responsible 

for range resolution and the long duration pulse which is transmitted in time-domain that 

responsible for detection of the object. So in Figure 4.4 spectral contents of Chebyshev 

polynomials are compared and it is observed that the modified half cycle polynomial have 

considerably wider frequency response than the simple Chebyshev polynomial, these 

frequency spectrums are obtained with the help of FFT [7].  
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Figure 4.4: Spectral comparison for n=15 

In order to observe the range and velocity resolution; AF for Chebyshev polynomials 

(Figure 4.5(a)) and modified half cycle polynomials (Figure 4.5(b)) are analysed. From the 

simulation it is observed that for simple Chebyshev polynomials delay-Doppler plane have 

not uniform energy spreading which may lead to the unwanted target detection and its 

resolution is not good for range and velocity determination, it means these polynomials 

cannot be used for resolution purposes. Now for half cycle modified Chebyshev polynomial’s 

ambiguity analysis [2, 4] are carried for these modified polynomial delay-Doppler plane is 

more concentrated at the origin which tells about the target characteristics without any 

ambiguity in range and velocity. Similarly for full cycle modified polynomials AF for order 

27 is analysed in Figure 4.6 and from the simulation, it is observed that half cycle modified 

Chebyshev polynomials are good for range as well as velocity resolution because first one AF 

is more concentrated around the origin in delay-Doppler plane than latter one. 
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(a) 

 

 

(b) 

Figure 4.5: AF for n=15 (a) Chebyshev Polynomial and (b) modified full cycle Polynomial 
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(a) 

 

(b) 

Figure 4.6: AF for n=27 (a) Chebyshev Polynomial and (b) modified full cycle Polynomial 
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cycle duration is an integer multiple to the optimal one. Depending on this duration, numbers 

of cycles are calculated that are added into modified polynomial. MSE is calculated between 

original and rounded duration of the cycles after division with the least duration pulse. Then 

only that duration of the modified half cycle polynomial is taken which has least MSE. After 

this appends the number of cycles having duration of the      in the modified half cycle 

polynomial and finally their MF response are analysed. 

 

Figure 4.7: Time-domain representation and MF output of Chebyshev Polynomial for n=7 

Here in Figure 4.7 order of the polynomial is taken as seven and it is plotted in time-

domain which consists of three complete cycles, it means for odd number ordered 

polynomials 
   

 
 complete cycles will exist, ACF for this polynomial is observed and it is 

concluded that output of the MF have some high PSL which are undesired, because these 

side-lobes may contains the information associated with some nearby targets. In order to 

suppress these side-lobes some modification in the cycles of the polynomial is incorporated. 

Half cycle modification has been considered because it is giving better PSL than full cycle 

modified polynomial.  
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All cycles in the polynomial are not of equal duration as observed in the Figure 4.7. 

Let      is the optimal duration of modified half cycle polynomial which can be calculated by 

zero-crossing of cycles and divide this duration by total length of the polynomial. This      is 

calculated only for that modified polynomial which has better PSL in the MF response and 

then divide all the half cycle duration of modified polynomial with     . It is clear that after 

dividing, duration may be in the form of fraction, so this fractional duration is rounded to its 

nearest integer value. It means number of pulses which are integer multiple to the optimal 

duration can be added into the modified half cycle polynomial, each added cycle have 

duration equal to the optimal one. 

 

Figure 4.8: Multiplied signal polarity and optimal duration MSE for n=7 

During rounding the fractional duration to its nearest integer number, some part of the 

signal may be discarded that alter the performance of the system. So only those modified 
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So MSE can be calculated as 

    
 

  
∫  ( )   

 

 
   (4.4) 

T is the overall duration of the polynomial. 

Here Figure 4.8 represents the polarities of the multiplied signal and percentage of 

error present in rounded duration with respect to the original duration after division for order 

seven. Only those modified polynomial sequence whose MSE is small and contain maximum 

duration of the optimal one, is considered here. First three best cases have been analysed for 

order seven and eight. It is observed that order seven has low MSE at 82 % (first optimal), at 

57% (second optimal) and at 46 % (third optimal) of the minimum duration pulse, depending 

on these particular points, modification in the cycles is incorporated by adding more number 

of cycles, for first optimal (5,9,12,12,9,5) cycles can be added, it means five cycles for first 

duration having polarity -1 , nine cycles for second duration having polarity -1, twelve cycles 

for third duration having polarity -1 and so on, can be added in seventh order modified half 

cycle polynomial. Each added cycle has duration equal to the optimal one. Here polarities of 

these added cycles are same as that of the modified polynomial. Now modified polynomial 

contains total 52 half cycles, whose ACF is observed as shown in Figure 4.8 and it has better 

PSL. Similarly for the second optimal case, numbers of cycles that can be added to the 

modified polynomial are of total length 22 cycles that are of (2,4,5,5,4,2), for first duration 

two cycles, second duration four cycles, third duration five cycles and so on can be added. In 

the same manner for third optimal, number of cycles are calculated and there PSL are 

observed. 

From the simulation it can be concluded that by appending the cycles in to modified 

half cycle polynomial, level has been suppressed and overall numbers of cycles have been 

increased, this corresponds to the higher order polynomial. So using low order polynomials, 

PSL behaviour of higher orders can be observed by which simulation time can be saved to run 

the high order polynomials. It is also observed that by adding Barker codes in to the modified 

polynomial have not suppressed PSL in the MF response. No doubt side-lobes have been 

suppressed but main-lobe width is increased slightly that disturb the range resolution. It 

happens in pulse compression if side-lobes are suppressed then its main-lobe width is 

increased slightly as observed in Figure 4.8 and vice versa. Here Figure 4.9 represents the 
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polarities of the multiplied signal and percentage of error present in rounded duration with 

respect to the original duration after division for order eight. 

 

Figure 4.9: Multiplied signal polarity and optimal duration MSE for n=8 
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49 % of the minimum duration pulse. Append numbers of cycles into modified polynomial 

depending on these optimal cases. Now ACF are analysed for these modified polynomials 

having order eight as shown in Figure 4.10 and it have some improvement in PSL. So these 

half cycles modified polynomial can be used in pulse compression in order to suppress the 

PSL in place of  ( ) in equation 4.1. 
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Figure 4.10: ACF for n= 7 and 8 having different optimal duration 

4.4 Conclusion 

After the detailed study, it is observed that half cycle modified Chebyshev polynomial 

has better PSL in the ACF. Along with this, there is slightly improvement in the time-

bandwidth product exists. Multiplying sequences which generate the full cycle and half cycle 

modifications have the same auto-correlation response. Simulated results shows that AF is 

more concentrated towards the centre, that means good range and velocity resolution exists. 

By adding more number of cycles which have duration equal to the optimal one and have 

least mean square error into the modified half cycle polynomial, gives better results for PSL. 

Drawback of this approach is to increase the main-lobe width of ACF response that affects the 

range resolution. It is also concluded that by using low order polynomial, ACF for higher 

order polynomial can be observed which saves the simulation time. So these modified 

polynomials can be used for transmission in radar system to suppress the PSL. 
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CHAPTER-5 

SIDE-LOBE LEVEL REDUCTION USING WOO FILTER  

5.1 Introduction 

In this chapter a technique for the reduction of side-lobes in pulse compression is 

presented. The peak side-lobe level, integrated side-lobe level and relative main-lobe width 

are computed using P4 polyphase codes, and compared the proposed technique results with 

other pulse compression techniques such as Woo filter as well as modified Woo filter [24, 

25]. This new pulse compression technique is implemented by shifting the input P4 polyphase 

codes and multiplied it with reference signal in the frequency domain, after that the side-lobe 

behaviour is analysed by converting it into the time domain. It is observed the method which 

is introduced in this chapter gives good results for sidelobe reduction but mainlobe width is 

increased slightly that affects the range resolution. Woo filter is the combination of MF for P4 

codes [25]. The two correlation filters are combined together to produce a single discrete filter 

called Woo filter. First correlator is the ACF of the original P4 code and second correlator is 

generated by correlating the original code with the conjugate signal of itself but shifted by one 

bit. 

This chapter describes a new form of pulse compression filter for polyphase codes are 

presented which generates a flat uniform sidelobe pattern. A uniform sidelobe level pattern 

represents an optimum performance criterion [26] in the design of pulse compression 

waveforms. The side-lobes levels are decided solely by the length of the phase codes, which 

can be set arbitrarily. The use of P4 codes involves a small loss and degradation in range 

resolution, but excellent Doppler tolerance [27, 28]. Phase coded waveforms tend to be 

favoured when low side-lobes levels are desired. Barker codes are known to give good 

performance [29, 30]; they achieve unit peak side-lobes level throughout the entire sidelobe 

regions that is why they are known as perfect codes. However, their limited code length and 

high Doppler shift sensitivity restrict their applications. In radars systems, pulse compression 

is used to increase the range resolution. Range resolution is the capability of the system to 

separate two nearby targets in term of distance as two different targets [1]. Generally in radar, 

short and long duration pulses are required for good range and velocity resolution 

respectively. In pulse compression long duration pulses are transmitted by angle modulation 

to achieve the larger time-bandwidth. It means long duration pulse which is transmitted is 
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responsible for detection and bandwidth which is increased after modulation is responsible for 

range resolution determination. For a particular waveform MF and ACF can be used to 

observe pulse compression response [3]; for good pulse compression main peak should be 

narrow and it contain low side-lobes level. The mainlobe of the filter respond to the main 

target but due to the presence of small PSL in the MF output that may corresponds to some 

nearby targets. These side lobes decreases pulse compression ratio. To reduce the PSL many 

pulse compression techniques has been developed. In order to suppress these side lobes in this 

chapter a new pulse compression technique has been developed that is based on Woo filter 

concepts for P4 codes. 

5.2 Polyphase Codes 

The codes that use harmonically related phases based on a certain fundamental phase 

increment are called Polyphase codes [31, 32] and by frequency modulation pulse 

compression waveform with either a local oscillator at the band edge of the waveform these 

codes are derived conceptually coherently detecting. These codes are derived by dividing the 

waveform into sub codes of equal duration, and using phase value for each sub code that best 

matches the overall phase trajectory of the underlying waveform. 

Frank and P1 are well known for low range side lobes to derive these codes step 

frequency is used. By LFM P3 and P4 polyphase codes can be derived [33, 34] which can be 

used for pulse compression. The advantage of P4 codes are, it can be derived for any length 

sequence and these are cyclic shifted codes which gives better sidelobe reduction than other 

polyphase codes [35, 36]. So in this chapter P4 code is considered to analyse the response of 

newly developed Woo filter. Phases of the P4 codes [24] are calculated using 

 ( )  
 

 
(     )(   )   (5.1) 

Where N is total length of polyphase code. 

P4 code elements are calculated by  ( )         ( ) . 

5.3 Performance Measures 

Based on these parameters performance of this proposed model is compared with 

other pulse compression technique that uses woo filter concepts for P4 codes [24, 25]. These 

are explained as: 

PSL for a code of length N measures the ratio of maximum sidelobe magnitude to the 

main lobe amplitude. Its value should be low as much as possible and it can be calculated as  
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   (  )         
           ( ) 

  ( ) 
    (5.2) 

Where M(l) is amplitude of lth sample number of compressed pulse. 

Ratio of energy in the side lobes to the mainlobe of the compressed pulse is called as 

ISL. For better pulse compression its value should be low and it can be calculated by 

   (  )         
 ∑   ( )     

   

  ( )  
   (5.3) 

Relative mainlobe width stretched a little bit in time domain after pulse compression 

that disturbs the range resolution. For perfect case it should remain narrow and it is defined as 

                        

                                      (  )     
   (  )            

                                    (  )     
   (  )          

  

5.4 New Pulse Compression Technique 

Lewis [32] argued that the adjacent cells within the P3 and P4 autocorrelation outputs 

differ in magnitude by no more than the magnitude of one element cell. This assertion was 

made intuitively on the ground that an additional input into the matched filter cannot cause 

variations of more than its own magnitude at the output. The time range side-lobes reduction 

scheme introduced by Lewis can be interpreted as a pulse compression on P codes by use of 

combination of two separate correlation filters. Thus a new type of compression filter is 

needed to achieve this optimal uniform side-lobe which is explained here.  

 

Figure 5.1: A block diagram of Woo filter based on FFT and IFFT 

Figure 5.1 represents the Woo filter model which is based on FFT and IFFT. It is the 

combination of uncompressed input signal as well as the reference signal. Input signal is the 

summation of coming P4 code and one bit rotation of the code that is passed through the FFT 
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in order to get its frequency domain. The reference signal (P4 code) is converted in to 

frequency domain and then complex conjugate is taken which further multiplied with the 

coming input signal in frequency domain. To observe pulse compression output this 

combined signal is converted in to time domain by IFFT.  

In the proposed filter for pulse compression, reference signal is the combination of one 

bit left rotation and one bit right rotation and multiply the P4 code by factor two which is 

converted in to frequency domain. Conjugate version of this signal is multiplied with the 

coming input signal. This proposed filter is divided in to two forms. In first form the input 

signal is the summation of one and two bit left rotation of P4 codes as shown in Figure 5.2 

(a). Weighting technique is also incorporated here in order to suppress the side lobes further 

[33]. There are many window techniques some of these are explained in this chapter. In the 

proposed filter form-2 the reference signal is same as for form-1, but applied input signal is 

also same as of reference signal as shown on Figure 5.2 (a). 

 

 

(a) 
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(b) 

Figure 5.2: A block diagram for pulse compression (a) proposed filter-1 and (b) filter-2 

In proposed filter-2, raised weighting is applied rather than simple weighting to the 

coming input signal in time domain because it suppress the PSL more and remaining structure 

is  same  as of filter-1.  

5.5 Simulation Results and Discussion 

Here P4 code of length 1000 is taken, performance of this new technique is compared 

with other pulse compression techniques related to the Woo filter in order to suppress the side 

lobes. The authors [24], developed a modified Woo filter technique in which uncompressed 

input signal (P4) is summed by one bit rotation of the same input signal. These rotations of 

the bits may be right side and left side, named as modified Woo filter-1 and filter-2 

respectively. Here the reference signal is same as in our proposed technique. Starting with p4 

code to proposed model output for pulse compression is analysed. In Figure 5.3 (a), a P4 code 

output is observed having PSL value of -36.37dB to the main peak. Figure 5.3 (b), output of 

Woo filter [24] is observed for the Figure 5.1, it have PSL at -58.15dB. This Woo filter is 

further classified in to two forms [25]. In form-1, input signal is shifted toward right by one 

bit and added with coming P4 code. The reference signal is passed to the same Woo filter as 

of input combination and the remaining structure is same. In the form-2 structures is almost 

same but shift the input P4 code to the left side. There pulse compression output is observed 

and shown in the Figure 5.4 (a) and 5.4 (b) respectively. From the simulation it is observed 

that PSL exists at -88.57dB and -88.67dB for the modified form-1 and form-2. 
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Figure 5.5 (a) shows the pulse compression results for modified Woo filter-1 [24] 

having -104dB PSL. Figure 5.5 (b) shows the output for filter-2 having -107.6dB PSL. It is 

observed that this technique is good for side lobe reduction than other modified Woo filters. 

 

  

(a) (b) 

Figure 5.3: Pulse compression output generated by  (a) P4 code and (b) Woo filter 

  

(a) (b) 

Figure 5.4: Pulse compression output generated by modified (a) Woo filter of form-1 and (b) Woo filter of 

form-2 

Figures 5.6 (a) and (b) represent the output of proposed filter form-1 and form-2 

without weighting. For proposed filter form-1 in which applying input signal is the 

combination of one and two bits left rotations that is applied to the FFT as shown Figure 5.2 

(a). It is observed that PSL level exists at -104.1dB, ISL is -75.34dB and relative mainlobe 

width is 2.51. By comparing it to the modified Woo filter form-1 without weighting it has 

0.1dB more reduction in side lobes and ISL is also improved a little bit, whereas -46.29dB 

reduction in PSL is achieved than Woo filter, as shown in Table 5.1. 
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(a) (b) 

Figure 5.5: Pulse compression output generated by modified  (a)  Woo filter-1  and  (b)  Woo filter-2 

Investigation has been done regarding the rotation of bits, it is observed if second and 

third shifts are combined to make input signal then there is no improvement in PSL. It is also 

concluded that left rotation of bits are more suitable for pulse compression because these has 

more reduction in side lobes than other combination of shifts. Here also in all the proposed 

methods left rotation is done for input signal. Performance measuring parameters for P4, Woo 

filter, modified Woo filter [24] and proposed methods are calculated and represented in Table 

5.1. In proposed filter form-2 has the same input signal which is applied at the reference 

section. Its performance parameters are calculated and it is observed that there is little 

improvement in ISL than recently developed Woo filter. 

  

(a) (b) 

Figure 5.6: Pulse compression output generated by proposed filter without weighting (a) form-1 and (b) form-2 
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(a) (b) 

Figure 5.7: Pulse compression output generated by proposed (a) filter-2 and (b) filter form-1 with Blackman 

window 

Table 5.1:  PSL, ISL and relative mainlobe width comparison for various sidelobe reduction techniques 

Pulse Compression 

Techniques 

Peak Side-lobes 

Level(dB) 

Integrated Side-

lobes Level (dB) 

Relative Main-lobe 

Width 

P4 code -36.37 -16.99 1 

Woo filter -58.15 -27.08 2.03 

Modified Woo filter -

1 

 

-104 

 

-75.18 

 

2.51 

Modified Woo filter -

2 

 

-107.6 

 

-79.11 

 

2.47 

Modified Woo filter-1 

with Hamming 

window 

 

-110.8 

 

 

-82.18 

 

3.20 

Modified Woo filter-2 

with Hamming 

window 

 

-112.1 

 

-83.10 

 

3.37 

Proposed filter form-1 

Without Windowing 

 

-104.1 

 

-75.34 

 

2.51 

Proposed filter from-2 

Without Windowing 

 

-107.6 

 

-80.43 

 

2.97 

Proposed filter -2 -111.8 -81.44 4.77 
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In proposed filter-2 as shown in Figure 5.2 (b), pulse compression output is shown in 

Figure 5.7 (a), have -42dB side lobe reduction than Woo filter. By comparing the results of 

this proposed method with the modified Woo filter [25], there is around -19dB PSL gain and -

8dB ISL gain exists. It is observed that raised window is giving more reduction in side lobes 

than directly applying weighting to the signal as shown in filter-2. All these simulations have 

been done in MATLAB with 4096 FFT points. No doubt weighting can be used for further 

reduction in side lobes [29, 34] but on the loss of signal to noise ratio or relative main lobe 

width that affect the range resolution. From the results it can be observed that by applying 

different window relative mainlobe width has been increased slightly. 

Figure 5.7 (b) shows the pulse compression output for proposed filter form-1 with 

Blackman weighting, by which -7dB gain is achieved. In the similar way, other weighting 

techniques are applied for the proposed models; results for PSL and ISL are tabulated in 

Table 5.2. 

Table 5.2: PSL and ISL comparison for proposed method with various windows 

Window 

Techniques  

Proposed filter form-1 Proposed filter form-2 Proposed filter-2 

PSL(dB) ISL(dB) PSL(dB) ISL(dB) PSL(dB) ISL(dB) 

Hamming -110.9 -83.02 -111.5 -83.95 -111.6 -81.21 

Hanning -112 -83.46 -112 84.03 -111.8 -81.40 

Blackman -111.3 -83.41 -111.3 -83.99 -111.8 -81.44 

Nuttall -110.5 -83.44 -110.5 -83.86 -111.7 -81.46 

5.6 Conclusion 

The analysis and simulation in this chapter have demonstrated a new pulse 

compression technique which gives significant improvement in PSL and ISL but mainlobe 

width is increased slightly that affects the range resolution. Further it is observed that if more 

numbers of shifts are incorporated for the input P4 code then results deviate from the optimal 

PSL. By applying amplitude weighting in time domain more PSL and ISL reduction is 

achieved. The proposed model enhances the performance for the pulse compression in radar 

system but at the sacrifice in range resolution. 
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CHAPTER-6 

CONCLUSION AND FUTURE SCOPE 

6.1 Conclusion  

The dissertation emphases on the sidelobe level reduction in the pulse compression. In 

the present work, investigation has been made on developing the efficient pulse compression 

techniques for better range and velocity resolution. From the analysis, it is observed that the 

differentiated exponential with non-integer index is giving slightly better requirements with 

reference to pulse compression. The complete detailed analysis on pulse compression with the 

Classical Orthogonal polynomials is carried out and it is concluded that the Laguerre 

polynomials are a better choice for pulse compression if there is no restrictions on the 

physical implementation of the source. It is observed that frequency modulation gives better 

time-bandwidth product for these polynomials than phase modulation. Simulated results 

shows that better PSL as well as better time-bandwidth product exist for modified half cycle 

Chebyshev polynomials, and its ambiguity function is more concentrated towards the centre, 

so these polynomials can be applied for the practical applications in radar system. It is also 

concluded that by using low order polynomial, ACF for higher order polynomial can be 

observed which saves the simulation time. 

In another section, a new pulse compression technique is developed which gives 

significant improvement in PSL and ISL but mainlobe width is increased slightly that affects 

the range resolution. This technique uses the Woo filter concepts. Further it is observed that if 

more numbers of shifts are incorporated for the input P4 code then results deviate from the 

optimal PSL. By applying amplitude weighting in time domain more PSL and ISL reduction 

is achieved.  

6.2 Future Scope 

The research work presented in this dissertation can be extended. The ACF for 

Classical Orthogonal polynomials has been observed, to analyse the range and velocity 

resolution AF can be analysed. Sequence generated by Chebyshev polynomial can be used to 

analyse the pulse compression output for better ambiguity in range and velocity. To improve 

the PSL, ISL and relative mainlobe width the sidelobe cancellation technique can be 

investigated that reduces the side-lobes. There is a scope of designing the polyphase codes for 

Woo filter which has lower side-lobes in the pulse compression output. 
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