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The many books on introductory electromagnetics can be roughly divided into two
main groups. The first group takes the traditional development: starting with the
experimental laws, generalizing them in steps, and finally synthesizing them in the
form of Maxwell’s equations. This is an inductive approach. The second group takes
the axiomatic development: starting with Maxwell’s equations, identifying each with
the appropriate experimental law, and specializing the general equations to static
and time-varying situations for analysis. This is a deductive approach. A few books
begin with a treatment of the special theory of relativity and develop all of electro-
magnetic theory from Coulomb’s law of force; but this approach requires the dis-
cussion and understanding of the special theory of relativity first and is perhaps
best suited for a course at an advanced level.

Proponents of the traditional development argue that it is the way electromag-
netic theory was unraveled historically (from special experimental laws to Maxwell's
equations), and that it is easier for the students to follow than the other methods.
I feel, however, that the way a body of knowledge was unraveled is not necessarily
the best way to teach the subject to students. The topics tend to be fragmented and
cannot take full advantage of the conciseness of vector calculus. Students are puzzied
at, and often form a mental block to, the subsequent introduction of gradient, di-
vergence, and curl operations. As a process for formulating an clectromagnetic model,
this approach lacks cohesiveness and elegance.

The axiomatic development usually begins with the set of four Maxwell’s equa-
tions, either in differential or in integral form, as fundamental postulates. These are
equations of considerable complexity and are difficult to master. They are likely to
cause consternation and resistance in students who are hit with all of them at the
beginning of a book. Alert students will wonder about the meaning of the field
vectors and about the necessity and sufficiency of these general equations. At the
initial stage students tend to be confused about the concepts of the electromagnetic
model, and they are not yet comfortable with the associated mathematical manip-
ulations. In any case, the general Maxwell’s equations are soon simplified to apply
to static fields, which allow the consideration of electrostatic fields and magneto-

. static fields separately. Why then should the entlre ‘set of four Maxwell’s equations

be introduced at the outset?
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It may be argued tl1at Coulomb’s law, thou h based on experimental evidence,
is in fact also a ‘postulate. Consider the two stlpulatxons of Coulomb’s law: that the
charged'bodies are very small compared with their distance of separation, and that
the force between the Qharged bodies is ;nverscly proportional to the square of their
distance. The question amses regarding the-first stipulation: How small must the
charged bodies be in ordar to be considered *‘very small”’ compared with their dxs-
tance? I practice the. charged bodies cannot be of vams'. g sizes (ideal poimnt

‘charges), and there is dlfﬁculty in determining the’ “true” distance between two bodies

of finite dimensions. Fqr given body sizes the relatlve accuracy in distance measure-

ments is better when the separation is larger However, practical considerations.

(weakness of*force, ex1stence of extraneous charged bodies, etc.) restrict the usable
distance of separation in the laboratory, and expenmental inaccuracies cannot be
entirely avoided. This leads to a more importanf question concerning the inverse-

square relation of the segond stipulation. Even if the charged bodics were of vanishing -

sizes, experimental megsurements could not be of an infinite accuracy no matter
how skillful and careful an experimentor was. How then was it possible for Coulomb
to know that the force, was exactly inversely prpportloml to the square (not the
2.000001th or the 1.999999th power) of the distance of ‘separation? This question
cannot be answe;ed from an experimental viewpomt because it is not likely that
during Coulomb’§ time exper:mems could Have been accurate to the seventh place.
We must thereforé conclude that Coulombis law:is itself a postulate and that it is
a law of nature discovered and assumed on the bas:s of his expenments of a limited
accuracy (see Section 3-2).

This book builds the ¢lectromagnetic model using an axiomatic approach in
steps: first for static electric fields (Chapter 3), then:for stanc magnetic fields (Chapter
6), and finally for time.varying fields Ieadmg to Maxwell’s equations (Chapter 7).
The mathematical. basis ifor.¢ach step is Helmholtz’s theorem which states that a
vector field is determmed tp within an additive conbtqnt if. both its divergence and
its curl are spec1ﬁed ev;rywhere Thus, for the: development of the electrostatic
model in free space, it is ‘pnly necessary to define a- smgle vector (namely. the electric
ficld tutensity E) by speeilying its divergende and its curl as postulates. All other
relations in electrostatlcs for free space, ihcluding Coulamb’s law and Gauss’s
law, can be derive ;he two rather simple postylates. Relations in material
media can be developed thrdugh the concept of equxvalent charge distributions of
polarized dielectrics. : "

Similarly, for- the magnetostatic model ‘in fr&: space it is necessary to define
only a single magnetlc fluxidensity vector B by specxfymg its divergence and its
curl as postulates‘ all ather formulas can be derived from these two postulates.
Relations in material medla ¢an be developed th;ough “the concept of equivalent
current densmes of cogrsp, the validity of the postulat’es lies in their ability to
yield results that eonform with experimental evidgnce.

For time-varying ﬁelds, the electric and} magnetlc field intensities are coupled.
The curl E postulate for, the electrostatic model must be modified to conform with
Faraday's law. In addmon the curl B postulate fqr the magnetostatic model must
also be modified 1 iy order to be consistent w1th theiquatxon of continuity. We have,

[
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PREFACE vii

then, the four Maxwell’s equations that constitute the electromagnetic model.
I believe that this gradual development of the electromagnetic model based on
Helmbholtz’s theorem is novel, systematic, and more easily accepted by students.

In the presentation of the material, I strive for lucidity and unity, and for smooth
and logical flow of ideas. Many worked-out examples (a total of 135 in the book)
are included to emphasize fundamental concepts and to illustrate methods for
solving typical problems. Review questions appear at the end of each chapter to
test the students’ retention 2nd understanding of the essential material in the chapter.
The problems in cach chapuer are designed !5 reinforee scordents’ comprehension of
the'interrelationships batween the different quantities in the formulas, and to extend
their abilityeof applying the formulas to solve practical problems. I do not believe
in simple-minded drill-type problems that accomplish little more than an exercise
on a calculator.

The subjects covered, besides the fundamentals of electromagnetic fields, include
theory and applications of transmission lines, waveguides and resonators, and
antennas and radiating systems. The fundamental concepts and the governing
theory of electromagnetism do not change with the introduction of new electromag-
netic devices. Ample reasons and incentives for learning the fundamental principles
of electromagnetics are given in Section 1-1. I hope that the contents of this book,
strengthened by the novel approach, will prov1de students with a secure and suf-
ficient background for understanding and analyzing basic electromagneuc phe-
nomena as well as prepare them for more advanced subjects in electromagnetic
theory.

There is enough material in this book for a two-semester sequence of courses.
Chapters 1 through 7 contain the material on fields, and Chapters 8 through 1! on
waves and applications. In schools where there is only a one-semester course on
electromagnetics, Chapters 1 through 7, plus the first four sections of Chapter 8
would provide a good foundation on fields and an introduction to waves :n un-
bounded media. The remaining material céuld serve as a useful reference book on
applications or as a textbook for a follow-up elective course. If one is pressed for
time, some material, such as Example 2-2 in Section 2-2, Subsection 3—11.2 on
electrostatic forces, Subsection 6-5.1 on scalar magnetic potential, Section 6-8
on magnetic circuits, and Subscctions 6-13.1 and 6~13.2 on magnetic forces und
torques, may be omitted. Schools on a quarter system could adjust the material to
be covered in accordance with the total number of hours assigned to the subject of
electromagnetics.

The book in its manuscript form was class-tested several times in my classes on
electromagnetics at Syracuse University. I would like to thank all of the students
in those classes who gave me feedback on the covered material. I would also like
to thank all the reviewers of the manuscript who offered encouragement and valuable
suggestions. Special thanks are due Mr. Chang-hong Liang and Mr. Bai-lin Ma
for their help in providing solutions to some of the problems.

Syracuse, New York . D. K. C.
January 1983
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INTRODUCTION R

Statedina 51mple fashlon, electromagneacs is the study of the effects of electric charges
at rest and in, motion. From elementary phy51cs we know there are two kinds of
charges: posnwe' afid negative. Both positive and negative charges are sources of an
electric fields: Mov;n&charges produce a current, which gives rise to a magnetic field
Here we tentatxvcly speak of electric field and magpetic ficld in a general way; more
definitive meanings;will be attached to these terms later. A field is a spatial distribution
of a quantlty, wh:ch may or may not be 4 function of time. A time-varying electric
field is accompamed by a magnetic field, and vice versa. In other words, time-varying
electric and magnatlc fields are coupled resuitmg il dn electromagnetic field. Under
certain conditfons, fime-dependent electromagnetic fields produce waves that radiate
from the soufce. The concept of fields and waves is essential in the explanation of
action at a- dlstance In this book, Field and Wabe Electromagnetics, we study the
principles a,nd apphcattons of the laws of electromagnetlsm that govern electro-
magnetic phenomena..

ElectromagnetiCS is of fundamental 1mportance to physicists and electrical
engineers. Electromagnetlc theory is mdxspensable in the understanding of the
principle of atem smashers cathode-ray oscﬂloscopas radar, satellite communicatior,
television receptlon remote sensing, radio astronomy, microwave devices, optical
fiber communication, instrument- -landing systems, electromechanical energy con-
version, and.s¢ on: Cirguit concepts represent a restricted version, a special case, of
electromagnetxc concepts As we shall see in Chapwr 7, when the source frequency is
very low so that thié dimensions of a conductmg nel’Work are much smaller than the
wavelength,. “We have a quasi-static situatiof, whick simplifies an electromacnenc
problem tQ\curcuit prablem. However, we hasten.to add that circuit theory is itself
a highly developed, sophisticated discipling. It apphes to a different class of electrical
engineering problems, and it is certainly important in its own right.

Two 81tuanons iillustrate the inadequacy of circuit-theory concepts and the need
of electroma'gnetxc-ﬁeld concepts. Figure 1-1 d«.pxcts a monopole antenna of the type
we sce on a walkie-lalkie. QH transmit, the source at the base feeds the antenna with
a message-carrying current atan appropriate carrier frequency. From a circuit-theory

1
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Fig. 1-1 A monopole ahtenna. ‘ Fig. 1-2 An electromagnetic

problem.

point of view, the source feeds into an open circuit because t}hpper tip of the antenna
is not connected to anything physically; hence no current would flow and nothing
would happen. This viewpoint, of course, cannot explain why communication can be
established between walkie-talkies at a distance. Electromagnetic concepts must be
used. We shall see in Chapter 11 that when the length of the antenna is an appreciable
part of the carrier wavelength®, a nonuniform current will flow along the open-ended
antenna. This current radiates a time-varying electromagnetic field in space, which
can induce current in another antenna at a distance. ,

In Fig. 1-2 we show a situation where an electromagnetic wave is incident from
the left on a large conducting wall containing a small hole {aperture). Electromagnetic

- fields will exist on the right side of the wall at points, such as P in the figure, that are

not necessarily directly behind the aperture. Circuit theory is obviously inadequate
here for the determination (or even the explanation of the existence) of the field at P.
The situation in Fig. 1-2, however, represents a problem of practical importance as
its solution is relevant in evaluating the shielding effectiveness of the conducting wall.

Generally speaking, circuit theory deals with lumped-parameter systems —
circuits consisting of components characterized by lumped paramecters such as
resistances, inductances, and capacitances, Voltuges and currents are the main
system variables. For DC circuits, the system variables are constants and the gov-

- erning equations are algebraic equations. The system variables in AC circuits are

time-dependent; they are scalar quantities and are independent of space coordinates.
The governing equations are ordinary differential equations. On the other hand, most
electromagnetic variables are functions of time as well as of space coordinates. Many
are vectors with both a magnitude and a direction, and their representation and
manipulation require a knowledge of vector algebra and vector calculus. Even in
static cases, the governing equations are, in general, partial differential equations. It

! The product of the wévelength and the frequency of an AC source is the velocity of wave propagation.
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¢

N



‘ve

the antenna
ind nothing
ton can be
plsml be
appr- ‘able
openaded
pace, which

cident from
romagnetic
ire, that are
inadequate
efieldat P.
portance as
ucting wall.
systems —
'rs such as
: the main
1d the gov-
circuits are
oordinates.
hand, most
ate(” Yany
tation and
1. % in
juations, It

propagation,

" s e Tt

Yo e T

%
>
t
:

: ! S
- Is essential that we afe equipped to handle! véctor quantities and variables that dfe
" both time- ahd SbaCEg-depéndent. The funflamentals of vector algebra and vectdir
calculus will;be dbveloped in Chapter 2 Techniques for solving partial differential
equations aré heetledt in dealing with certain types of electromagnetic problems. These
techniques will bé discyssed in Chaptér.4. The importance of acquiring a facility in
the use of these ‘nathemitical toolsiin the study of electromagnetics cannot be
overemphasized. ' '

"~
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1-2 THE ELECTROMA%NET!C‘ MODEL ' .
’ ] v, .

There are two approaches in the developnient of a scientific subject: the inductive

approach and thetleductive approach. {Using the inductive approach, one follows the

" historical developinent.of the subject, startihg with the observations of some simple

experiments and itfcrring from them laws and theorems. It is a process of reasoning

from particular pheriomena to general pridciples. The deductive approach, on the

other hand, post‘ﬁ]atesm few fundamental’relations for an idealized model. The

postulated relatidhs are axioms, frons which particular laws and theorems can be

derived. The validity of the model and the axjoms is verified by their ability to prediet

consequences that check with experimental observations. In this book we prefer to

use the dcductivc‘.br axiomatic approach because it is more elegant and cnables the
development of ik subject of clectromaguetics in an.orderly wily.

The idealized 'model we adopt for studying a scientific subject must relate 1o
real-world situatiohs and be able o explain physical phenomena; otherwise, we would
be engaged in merital exercises for no purposé. For example, a theoretical model could
be built, 'from,whxivchvone might obtain rhany mathematical relations: but, if these

relations disagree yvith_ observed results, the riodel is of no use. The mathematics may
be correct, bt the linderlying assumptions of the model may be wrong or the implied
approximations mday not be justified. =~ | g

Three essential steps are involved in building a theory on an idealized model:
First, some basic uantities germane to the $ubject of study are defined. Second, the
rules of operatior;(the mathematics) of these quantities are specified. Third, some
fundamental relatlpns are postulated. Thése postulates or laws are invariably based
on numerous expafimental observations acquired under controiled conditions and
synthesized by brilliant rhinds. A familiar example is the circuit theory built on a
circuit model of ideal so:l:jrces and pure resistéinces, inductances, and capacitances. In
this case thé'basic Ciuantities are voltages (V), purrehts (1), resistances (R), inductances
(L), and Tapacitarices (C); the rules of operatiors are those of algebra, ordinary
differential equatiqns, and Laplace transformation; and the fundamental postulates
are Kirchhoff’s vol’t’age and current laws. Many relations and formulas can be derived
from this basically father simple model, and the redponses of very claborate networks
can be determined. The validity and valueof tHe model have been amply demonstrated.

In a like manner, an electromagnetic theory can be built on a suitably chosen
electromagnetic model. In this section we shall take the first step of defining the basic
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quantities of electromagnetics. The second step, the rules of operation, encompasses *

vector algebra, vector calculus, and partial differential equations. The fundamentals
of vector algebra and vector calculus will be discussed in Chapter 2 (Vector Analysis),
and the techniques for solving partial differential cquations will be introduced when
these equations arise later in the book. The third step, the fundamental postulates, will
be presented in three siibsténs in Chapters 3, 6, and 7 as we deal with, respectively,
staticelectric fields, steady magetic ficlds,and electromagnetic fields.

The quantities in our elcciromdgnwc mode] can be divided roughly et two
categories: souree ind” field ghantitics. The source of an electromagnetic field is
invariably electric charges at rest or in motion. However, an electromagnetic field may
cause a redistribution of charges which will, in turn, change the field; hence, the
separation between the cause and the effect is not always so distinct.

We use the symbol ¢ (sometimes Q) to denote electric charge. Electric charge isa

fundamental property of matter and it exists only in pomxve or negative integral
multiples of the charge on an electron, ¢!

Tt

.

= —1.60 x 10719 (O, {(1-1)

‘where C is the abbreviation of the unit of charge, coulomb.? It is named after the
French physicist Charles A. de Coulomb, who formulated Coulomb’s law in 1785,
{Coulomb's law will be discussed in Chapter 3.) A coulomb is a very large unit for
-electric charge; it takes 1/(1.60 x 107 !%) or 6.25 billion electrons to make up —1 C.
In fact, two 1-C charges 1 m apart will exert a force of approximately 1 million tons
on each other. Some other physical constants for the electron are listed in Appendix
B-2.

The principle of conservali(m of electric charge, like the principle of conscervation
of momentum, is a fundamental postulate or law of physics. It states that electric
charge is conserved; that is, it can neither be created nor be destroyed. Electric charges
can move from one place to another and can be redistributed under the influence of
an electromagnetic field; but the algebraic sum of the positive and negative charges
in a closed (isolated) system remains unchanged. The principle of conservation of elec-
tric charge must be satisfied at all times and under any circumstances. It is represented
mathematically by the equation of continuity, which we will discuss in Section 5-4.
Any formulation or solution of an electromagnetic problem that violates the principle
of conservation of electric charge must be incorrect. We recall that the Kirchhoff’s
current law in circuit theory, which maintains that the sum of all the currents leaving
a junction must equal the sum of all the currentsentering the junction, is an assertion

' In 1962 Murray Gell-Mann hypothesized quarks' as the basic building blocks of matter. Quarks were
predicted to carry a fraction of the charge, e, of an electron; but, to date, their existence has not been veri-
fied experimentally,

! The system of units will be discussed in Section 1-3.

L e 7 e s

N ——r T s & &oee T

e T N T e ey R T B PN e




spmpasses
damentals
‘Anaulysis),
1ced when

dlates, will . ©

spectively;

- / into two
. tic field

cfieldmay

henﬁc, the’

charge is a
ve integral

(-1

)

«d af*  the

W in L85, .

ge unit for
zup —-1C.
nillion tons
1 Appendix

snservation

hat electric

tric charges
influence of
tive Charges
tion of elec-
represented
ection 5-4.
he principle
Kirchhoff’s
ents leaving

an £ ytioh

-, Quarks were
i not been veri-

,...,--‘N

5

of the conservatxoh property of electrrc charge (Implicit in the current law is the
assumption that thnere IS‘nO cumulatxon‘ of cHhrge at the junction.) ;‘i
Although in 1croscopxc sense, electrxccharge either does or does not exist at a
pointina drscrete Aariner, tHese abrupt vafiafjons on an atomic scale are unimportant
" when we considet] the etéctrbmagnetlc eﬂ’éct§ of large aggregates of charges. In cons
structing a macroii‘opxc or large-smle theorS/ of electromagnetism, we find that the
use of smoothedaq t avérage density functidns yields very good results. (The same
, approach is used: rrl mechanics where a srnoothed-out mass density function is defiper
in spite of the faét ﬂrat mass is associated only with ¢lementary particles in a discreté
manner on an atorrhc scagle ) We define & uoluﬁxe charge densit,, p, as a source qaanuty
as follows: T S : ?- : ,
N R (-2
R ‘ Av—0 Av -
where Aq is the ambunt of chiarge in a very small volume Av. How small should Av be?
It should be small enough to represent an accurate variation of p, but large enough to
contain a very large number OfdlSCI'Ctt. ch”trnes For example, an elemental cube with
sides as small as'1 mrcron (107 °mor! jum) has a volume of 10~ 13 m 3, which will still
contain about 10** (100 brlhon) atoms. A $ smoothed out function 01 space coordinates,
p, defined with such a small Av is expected to yleld accurate macroscopic results for
nearly all practxcai purposes.
In some physieal situations, an amount of charge Aq may be identified with an
element of surface As or an element of line A¢. fn such cases, it will be more appropriate
to define a surface charge density, p,, or.a line charge density, p,

= lim 24 ' {C/m?); {1-3)
As—0 ‘As -
T e gim
. p’_};To‘AZ’ ; (C/m). (1 4)

Except for certain Bpec al situations, charge densities vary from point to point; hence
p, ps, and p, are, ifi gereral, point functions of space coordinates.
Current is the rate of change of charge With respect to time; that is,

. ‘ dq

P 1‘=E ; C/sorA (1—5)
where I itself may: bE tlme-dependent The umt of current is coulomb per second (C /s
which 1s~the\same s ampere (A). A curreht must flow through a finite area (a con:
ducting wire of &, ﬁhrte ctoss section, for mstahce) hence it is not a point function. I
electromagnetrcs \r{e define d vector ‘point function volume current densit y (or simply,

«.current density) J, hich measures the amourt of current flowing through a unit area

normal to the dlrec‘hon of current flow. Ihe bold-faced J is a vector whose magnitude
is the current per. umt aréa (A/m?) and whose direction is the direction of current flow. -
We shall elahor'ite on lhe relation between [ and J in Clmptcr S. For very good

v




S ‘_1.

coriductdrs; high-frequeﬁcy alternating currents are confine

d in the surface layer, in-

" stead of flowing throughout the interior of the conductor. In such cases there is a need

to define a surface current density J, which is the current per unit width on the con-
ductor surface normal to the direction of current flow and has the unit of ampere per
meter (A/m). o ‘

<

.. There are fo'r fundamental vector field quantities in electromagnetic:s: electric . .
Sivld intensity K, eleetrice flux density (or electrie displacement) D, magimetic flux density

B, and magnetic field intensity 11, The definition and physicat signilicanee of these

-quantitics will be explained fully when they are introduced fater in the book. At this

time, we want only to establish the following. Electric field intensity E is the only
vector needed in discussing electrostatics (effects of stationary electric charges) in free
space, and is defined as the electric force on a unit test charge. Electric displacement
vector D is useful in the study of electric field in material media, as we shall see in
Chapter 3. Similarly, magnetic flux density B is the only vector saeeded in discussing
magnetostatics (effects of steady electric currents) in free space, and is related to the
magnetic force acting on a charge moving with a given velocity. The magnetic field
intensity vector H is useful in the study of magnetic field in material media. The
definition and significance of B and H will be discussed in Chapter 6.

The four fundamental electromagnetic field quantities, together with their units,
are tabulated in Table 1-1. In Table 1-1, V/m is volt per meter, and T stands for tesla
or volt-second per square meter. When there is np time variation (as in static, steady,

Table 1-1 Electromagnetic Field Quantities

Symbols and Units
for Field Quantities Field Quantity Symbol Unit
Electric field intensity E V/m
Electric Electric flux density D C/m?
. {Electric displacement)
) Magnetic flux density : B T
Magnetic
Magnetic field intensity H A/m

or stationary cases), the electric field quantities E and D and the magnetic field
quantities B and H form two separate vector pairs. In time-dependent cases, however,
electric and magnetic field quantities arc coupled; that is, time-varying E and D will
give rise to B and H, and vice versa. All four quantities are point functions; they are

~ defined at every point in space and, in general, are functions of space coordinates.

Material (or medium) properties determine the relations between E and D and
between B and H. These relations are called the constitutive relations of 2 medium and
wil] be examined later. .
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R 1-3 /4S1 UMITS AND UNIVERSAL CONSTANTS 7

ic., ! ,

The prlncipal objecnve of studying: electfomagnetlsm is to understand the inters
action between chargesxand currents at a.distance based on the electromagnetxc
model. Fields:and' waves (time- and spaeeaﬁependent fields) are basic conceptual
quantities of this rodel. Fundamental postulates will relate E, D, B, H, and the source
quantities; and d@nved relations will; lead to the explanation and prediction of
electromagnetir phenomena

:

' 1-3 Sl UNITS AND™ -’
UNIVERSAL CONQTANTQ

¢

i

- A measuroment owny praysicdl quanmy mu t be expressed as a number followed by

a unit. Thus, we mdy talk about a length of thtee meters, a mass of two kilograms, and
a time-period of teh seconds. To be useful, a urtit system should be based on somé
fundamental units of convenient (practical) sizes. In mechanics all quantities can be
expressed in terms,bf three basic units (for length, mass and time). In electromagnetics
work a fourth b.mc unit (for current) is needed. The S (International System of Units
or Le Sysiéme Inlernationale d Unitésy is dn MKSA system built from the four
fundamental units- hstcd in Table 1-2. All other units used in electromagnetics,
including those appearing in Table 1— 1 are derived units expressible in terms of
m, kg, s, andA For example, the unit for charge coulomb( }is ampere-second (A -s);
the unit for electric field intensity (V/m) is kg m/A-s%; and the unit for magnetic flux
density, tesla (T), i§ kg/A-s%. More complete tables of the units for various quantities
are given in Apperdix A.

In our electromagnetxc model there are three universal constants, in addition to
the field quantities:listed in Table 1-1. They relate to the properties of the free space
(vacuum). They aré as follows: velocity of electromagnetic wave (including light) in
free space, ¢; permittivity of frce space, €, and permeability of free space, ug. Many
experiments have been performed for prec1se measurement of the velocity of light;
to many déciral places For our purpose, it i sufficient to remember that

c=3x10%  (m/s). (1-6)

Table 1-2 Fundamental SI Units

\\
Quantity < Unit Abbrcviution
Length meier : o m
Mass kilogrim : kg
’ Time geeond s
Current ampere A
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The other two constants, €, and p,, pertain to electric and magnetxc phenomena
respectlvely €0 is the proportionality constant between the electric flux density D
and the electric field intensity E in free space, such that

D = ¢,E; | (1-7)

ls is the proportionality constant between the magnetic field intensity H and the
magnetic flux density B in free space, such that

L .
> | H=—B. 1-8
Ho ( )

The values of €, and y, are determined by the choice of the unit system, and they
are not independent. In the SI system (rationalized” MKSA system), which is almost

universally adopted for electromagnetics work, the permeability of free space is
chosen to be

to=4n x 107 (H/m), : (1-9)

where H/m stands for henry per meter. With the values of ¢ and p, fixed in Egs. (1-6)

and (1-9), the value of the permittivity of free space is then derived from the following
rclationships:

1
c= (m/s) (1-10)
~ €olo :
or
R
GO—CZHO=EX10 ‘ ‘
=~ 8.854 x 10712 (F/m), | . (1-11)

where F/m is the abbreviation for farad per meter. The three universal constants and
their values are summarized in Table 1-3.

Now that we have defined the basic quantities and the universal constants of the
electromagnetic model, we can develop the various subjects in electromagnetics. But,

! This system of units is said to be rationalized because the factor 4n does not appear in the Maxwell’s
equations (the fundamental postulates of electromagnetism). This factor, however, will appear in many
derived relations. In the unrationalized MKSA system, p, would be 10”7 (H/m), and the factor 4 would
appear in the Maxwell's equations. .
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Table 1-3 Umversal Const!mts in SI Units ! { ﬁ"

VAT —

Universal Cdnstants@, BN : Symboi Value Unit

" Velocity of light in ﬁjiée spa:ée ¢ i " 3 x 108 m/s

- Permeability of free ;ipaée ; T g 4 x 1077 H/m
OV : 1

Permittivity affree space , . & . | T 10~° F/m

! g‘; TN

before we do«tnat, Wwe-must-be equipped with the ¢ appro pnate mathemancal tools. I
the followmg chapfer we discuss the ba.sm rules of operation for vector algebra and
vector calculus { . -

REVIEW QUESTIONS:
R.1-1 What is electromagnencs”

R.1-2 Descnbe,. two phenomena or situations, otHer than those depicted in Figs. 1-1 and 1-2,
that cannot be adequately explamed by circuit theary.

R.1-3 What are the three essermal steps in buxldmg an 1deahzed model for the study of a scientific
subject? L . _‘4 :

R.1-4 What are the four findamental SI units in electromagnetics"

R.1-5 What are the four fundamental field quantitxes in the electromagnetic model? What are
* their units? : :
: {
R.1-6 What are the three mmversaI constants i in the electromagnetic model, and what are their
relations? o : :

~ R1-7 What are the Source quantities in the ‘electromagnetic model?

i



2-1

INTRODUCTION

As we noted in Chapter 1, some of the quantities in electromagnetics (such as charge,
current, cnergy) are scalars: and some others (such as cleetric and magnetic ficld
intensities) are vectors. Both scalars and vectors can be functionsof time and position.
At a given time and position, a scalar is completely specified by its magnitude (positive
or negative, together with its unit). Thus, we can specify, for instance, a charge of
~1 uC at a certain location at t = 0. The specification of a vector at a given location
and time, on the other hand, requires both a magnitude and a direction. How do we
specify the direction of a vector? In a three-dimensional space three numbers are
needed, and these numbers depend on the choice of a coordinate system. Conversion
of a given vector from one coordinate system to another will change these numbers.
However, physical laws and theorems relating various scalar and vector quantities
certainly must hold irrespective of the coordinate system. The general expressions of
the laws of electromagnetism, therefore, do not require the specification of a co-
ordinate system. A particular coordinate system is choscen only when a problem of a
given geometry is to be analyzed. For example, if we are to determine the magnetic
field at the center of a current-carrying wire loop, it is more convenient to use rec-
tangular coordinates if the loop is rectangular, whereas polar coordinates (two-
dimensional) will be more appropriate if the loop is circular in shape. The basic
electromagnetic relation governing the solution of such a problem is the same for
both geometries. ’

Three main topics will be dealt with in this chapter on vector analysis:

1. Vector algebra——additibn, subtraction, and multiplication of vectors.

2. Orthogonal coordinate systems—Cartesian, cylindrical, and spherical coordi-
nates. " :

3. Vector calculus— differentiation and integration of vectors; line, surface, and
volume integrals; “del” operator; gradient, divergence, and curl operations.

Throughout the rest of this book, we will decomp'ose, combine, differentiate, integrate,
and otherwise manipulate vectors. It is imperative that one acquire a [acility in vector
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VECTOR ADDITION AND SUBTRACTION 11
il ,

¥

algebra and y}éctoﬁ cqiqxélus. Ina three-f_dit_ﬂéhsional space a vector relation is, in fact,
three scalar relatiohs; The use of vector-analysis techniques in electromagnetics leads

to concise and elégant formulations. A :deﬁﬁiency in vector analysis in the study of

g o

electromagnetids I similar to a deficiengy in algebra and calculus in the study of

physics; and it is dbvious that these deficienties cannot yield fruitful results.

In solving pratticaliproblems, we alwayk dedl with regions or objects of a given
shape, and it is. nétessary to express gengral formulas in a coordinate system appro-
priate for thqk‘gi\(én geometry. For eXémﬁb,:;»tﬁngamiliar rectangnlar (x, y, z) co-
ordirates are, obyjously, awkward to yse qub'rob'iéms involving o circular cylinder
or a sphere becatlse thé boundaries of a clicular Eylinder and a sphere cannot be

_describéa by: tonstant values of x, y; anid z. Th this chapter,we discuss the three most

commonly used d%‘thog{mzﬂ (perpendic¢ular),coordinate systems and the representa-
tion and opératioh of ‘Vectors in these systems. Familarity with these coordinate
systems is essential in the solution of electrothagnetic problems.

Vector. ¢dlcullis pertains to the différentiation and integration of vectors. By
defining cértdin differential operators, we tan express the basic laws of electro-
magnetism i a cohciseiway that is invariant with the choice of a coordinate system.
In this chapter we.introduce the techniques for evaluating different types of integrals
involving ?%ctors, hnd define and discuss the various kinds of differential operators.

2-2 VECTOR ADDITION Lo
AND SUBTRACTION: '

We know that a vector has & magnitude and & direction. A vector A can be written as

where A4 is the mag‘nit‘udé (and has the unit and dimension) of A,
: .

1
i

A=Al e

and a, is a dimensionless unit vector' with a unity magnitude having the direction of
A. Thus, : '

Ay = = —- (2-3)

4

! ) Lk
The vector-A can be represented graphically by a directed straight-line segment of a
length |A} = A with its arrowhead pointing inithe direction of a . as shown in Fig. 2-1.

T'wo vectors.arg tqual il they have the suphe_’%hzi@ditudc and the same direction, even

:though they may be displaced in space. Since it I3 difficult to write boldfaced letters

by hand, it is a common practice to use an arrow or a bar over a letter (A or A) or

=
8 1

* In some books the unlt vector in the direction of A is Variéﬁﬂ}' denoted by A, u,, ori,.

b
.




Fig. 2-1 Graphical representation e
-of vector A.

a wiggly line under a lettér (A) to distinguish a vecior from a scalar. This distin-
guishing mark, once chosen, should never be omitted whenever and wherever vectors
are written. :

Two vectors A and B, which are not in the same direction nor in opposite direc-
tions, such as given in Fig. 2~2(a), determine a planc, Their sum is another vector C
in the same plane. C = A + B can be obtained graphically in two ways,

1. By the parallelogram rule: The resultant C is the diagonal vectot of the parallclo-
gram formed by A and B drawn from the same poing, as shown in Fig. 2-2(b).

2. By the head-to-tail rule: The head of A connects to the tail of B. Their sum C is
the vector drawn from the tail of A to the head of B, and vectors A, B, and C form

a triangle, as shown in Fig. 2-2(c).

It is obvious that vector addition obeys the commutative and associative laws.

Commutative law: A+ B=B + A. ‘ (2-4)
Associative law: A + (B + C)= (A + B) + C. 2-5)

Vector subtraction can be defined in terms of vector addition in the following way:

A-B=A+(-B), (2-6)

where — B is the negative of vector B; that is, —B has the same maghitude as B, but
its direction is opposite to that of B. Thus, :

—B =(—ag)B. ' ‘ 2-7)
The operation represented by Eq. (2-6) is illustrated in Fig. 2-3.

(a) Two vectors. (b) Parallelogram rule. (c) Head-to-tail rule.

Fig. 2-2 Vector addition, C = A + B.
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- Multxpllcatlon of ett vector A by a positive scalar k changes the magnitude of A by

k times without chklngmg its direction (k can bc cither greater or less than 1).
) - kA = aA(kA) (2-8)

Ttisnot sufﬁuem tosay “the multlphcmoﬂ of one vector by another” or “the prod-
uct of two vectors™ because there are two distihct and very different types of products
of two vectors. They arc (1) scalar or ddt protiucts, and (2) vector or cross products.
These will be defined in the following subsectibns.

:“ { , ‘
Scalar or Dot ProdUct :

The scalar or dot product of two vectors A and B, denoted by A - B, is a scalar, which
equals the product bf theimagmtudes ofi A and B and the cosine of the angle between
them, Thus . ,

g A-B2i4B cos 0. | (2-9)

3

'In Eq. (2-9), the syihbol 2 signifies “equal by definition” and 0, is the smaller angle

between A and B ahd is less than = radians (180°), as indicated in Fig. 2-4. The dot
product of two vectors (1) is less than or'equal to the product of their magnitudes;

(2) can be either a posmve ora neganve qudnuty, depending on whether the angle
between them is smalley or larger than /2 radians (90°); (3) is equal to the product of.

— ‘
B ' ' :

! g :

| 0 ! P

q AB . s

[SE WA LA > ST S

L \J[: A _‘ * Fig.2-4 Tlustrating the dot

B cos 8,45 * product of A and B.
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the magnitude of one vector and the projection of the other Vector\Upon the first one;

and (4) is zero when the vectors are perpendicular to each other. It is evident that
A-A=4% : ‘ (2-10)
A=YA K. - | (2-11)

‘ Equation (2-11) enables us to find the' magnitude of 4 vector when the ex
' the vector is given in any coordinate system:

or

ptession of

- The dot product is'commutative and distributive. =i o a0

Commutative law: A}- B=B-A. (2-12)
Distributive law: ,. A-B+C)=A"B+A-C. (2-13)

The commutative law is obvious from the definition of the dot product in Eq.(2-9),
and the proof of Eq. (2-13) is left as an exercise. The associative law does not apply
to the dot product, since no more than two vectors can be so multiplied and an ex-
pression such as A - B - C is meaningless. T~

Example 2-1 Prove the law of cosines for a triangle. :

Solution: The law of cosines is a scalar relationship that expresses the length of a
side of a triangle in terms of the lengths of the two other sides and the angle between
them. Referring to Fig. 2-5, we find the law of cosines states that

C=JA4*+ B* = 24B cos a.
We prove this by considering the sides as vectors; that is

C=A+B.
Taking the dot product of C with itself, we have, from Egs.(2-10)and (2-13).
C?=C-C=(A+B)-(A+B) '
=A"A+B-B+2A-B
=A%+ BY + 24B cos (5.

.

Fig. 2-5 Illustrating Example 2-1.
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Note that 8,5, is, by deﬁmtlon the sm&lter angle between A and B and is equal tU

2-3.2 Vector or Cross P“oduct i"; 1

(180° - a) hence, t‘.‘os 9 AlB = cos (180° + ‘d) "~ Cos o Therefore
;,'.1 :,"; : CZ—A2+B’ 2ABcoSa B
and the law of coslﬁes folioWs dlrectly ; , ‘,
. 15 AN
: ' P!

¢

The vector or cro TS pduct «ftwo vectors A and B, denoted by A x B, is a vectdr
perpendicular to t e planc containing A and B: its m~enitude is AB sin 8,5, wht. ré
A 15 100 smeller 'ﬂ\d«‘ betwee A und n “2i1a 1ts cirection follows that of the #umb

. of the right hand when the fingers rotate frorrLA to B through the angle 6 45 (the right=

hand rule.)

i

Ax B2 4Bsing,. (2-14)

This is illustrated it Fig. 2—6. Since B sini 0 .5 Is the height of the parallelogram formed
by the vectors A arid B, we récognize that the magnitude of A x B, |AB sin 6 45|, which
is always positive, I numerically equal toithe area of the parallelogram.

Using the dcﬁﬂmon in Eq. (2-14) and fo“owmg the right-hand rule, we find that

BxA—-—AxB (2-15)

Hence the cross prbduct is not commutathe We can see that the cross product obeys
the distributive law, . ;g

.

Ax&%Q AkB+AxC (2-16)

Can you show tﬂxs 1n= general w1thout resolvmg the vectors’ mto rectangulat
components?

The vector prdduct is obv1ously not assoc1at1ve that is,
Ax@x@#@xmxc (2-17)

. LI
‘ 4
L

: Flé 2-6 Cross product of A
A' . and B, A x B.
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[

3

-The vector representing the triple product on the left side of the expressfon above is

perpendicular to A and lies in the plane formed by B and C, whereas that on the right
side is perpendicular to C and lies in the plane formed by A and B. The order in which
the two vector products are performed is therefore vital and in no case should the
parentheses be omitted. ’

Product of Three Veciirs ‘ o )

There are two kinds of prosducts of three vectors; namely. e sedlir triple product
and the vector triple product. The sealar triple product is much the simpler of the two
and has the following property:

’

A-BxC)=B-(CxA)=C-(A x B). - (2-18)
Note the cyclic permutation of the order of the three vectors A, B, and C. Of course,
A-BxC)=-A-(CxB) i
=-B:-(Ax Q)
=—-C-(BxA). - (2-19)

As can be seen from Fig. 2-7, each of the three expressions in Eq. (2-18) has a magni-
tude equal to the volume of the parallelepiped formed by the three vectors A, B, and
C. The parallelepiped has a base with an area equal to |B-x C| = [BCsin 6| and a
height equal to |4 cos 0,|; hence the volume is [ABC sin 8, cos 6.

The vector triple product A x (B x C) can be expanded as the difference of two
simple vectors as follows:

AxBxC=BA-C)—CA:-B). (2-20)

Equation (2-20) is known as the “back-cab” rule and is a useful vector identity. (Note
“BAC-CAB” on the right side of the equation!)

A

. Fig. 2-7 . Illustrating scalar
Area=[B xC] B triple product A « (B x C).

tc

th

at

Co
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- triple product
pler of the two

(2-18)

1 C. Of course,

m (2-19)

$) ha. . magni-
stors A, B, and
Zsin0,) and a

fference of two

(2-20)

identity. (Note
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Example 2-2! ,Pro‘_‘/e the back-cab rule of vector triple product.

[

Solution: In order to prove Eq. (2-20), it is convenient to expand A into two

- components
; ' A=A“+A_L,
1 where A} and A are, respectively, parallel and perpendicular to the plane containing
Lo - Band C. Because the vector representing (B x C) is also perpendicular to the plane,
b ' the cross product of A, and (B x C' vanishes. Let D = A x (B x C). Since only A,
E o - 1is effective herc, we have
x o D=A;xBxC). "

Referring to Fig. 2-8, which shows the plane containing B, C, and A, we note
that D lies in the same plane and is normal to A;. The magnitude of (B x C) is
" BCsin (0, — 0,) and that of A); x (B x C) is A;BCsin (8, — 0,). Hence,

' ‘ D=D-ap= A;BCsin (8, — 0,)
\ = (B sin 0,)(4;,C cos 0,) ~ (C sin 0,)(4,,B cos 0,)
' . = [B(A” "C) bl C(A“ "B)] M aD.

B(Ay+ C)

‘C(A 0 B)

Fig. 2-8 Mlustrating the
back-cab rule of vector triple
product.

‘The expression above does not alone guarantee that the quantity inside the brackets
. to be D, since the former may contain a vector that is normal to D (parallel to A );
. thatis, D-ap=E-aj; does not guarantee E = D. In general, we can write -

R ' B(A, - C)— C(A;*B) =D +kA,,

= where k is a scalar quantity. To determine k, we scalar-multiply both sides of the
above equation by A and obtain :

(A B)A; - C)— (A" O)A) "By =0=A, D + kd?.

PR B

T The back-cab rulé can be verified in a straightforward manner by expanding the vectors in the Cartesian
coordinate system (Problem P.2-8). Only those interested in a general proof need to study this example.

.

oy e
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Since Aj-D=0,s0k=0and . . . o | S
; I ' ’ the

D = B(A“ C) C(A” -B), . the

which proves the back-cab rule masmuch as A” C=A- C and A, B=A-B. ‘ -

‘ s Division by a vector is not defméd ard expr=s51ons such as k/A and B/A are A 7 Ex
x po meaningless. : o S . o (b)

2-4 ORTHOGONAL COORDINATE SYSTEMS

We have indicated before that although the laws ofielectromagnetism are invariant
with coordinate system, solution of practical problerhs requires that the relations
derived from these laws be expressed in a coordinate system appropriate to the
geometry of the given problems. For example, if we are to determine the electric field (,\
at a certain point in space, we at least need to descrlbe the posmon of the source
and the location of this point in a coordinate system. In a three- dimensional space a L 'a)
point can be located as the mtersectlon of three surfaceq Assume that the three ,
families of surfaces are described by u; = constant, u, = constant, and uy = constant,
where the u’s need not all be lengths. (In the familiar Cartesian or rectangular coordi-
nate system, u;, #,, and u, correspond to x, y, and z rCSpectwer) When these three . b
surfaces are mutually perpendicular to one another, we have an orthogonal coordinate )
system. Nonorthogonal coordmate systems are not used because they complicate
problems.

Some surfaces represented byu, = constant (i= l; 2,01 3) in a coordinate system
may not be planes; they may be curved surfaces. Let a,,,:3,,; and a, be the unit
vectors in the three coordinate directions. They are:callgd the base vectors. In a
general right-handed, orthogonal, curvilinear coordinate system, the base vectors are
arranged in such a way that the followmg relations are satlsﬁed

a, x a,=a, - ‘,‘_. (2-21a) v

wXa, =a, 1 (2-21b) } 9
AR o t
A% A, =a,. ".'. " (2-21c)

‘ (
These three equations are not all mdepeqdent as the specxﬁcatxon of one automatically ’ o
implies the other two. We have, o{ cquise, 5 )
a, - a,=3,7a, =2,:" a,,l's:-—; 4] ' (2-22) . -
and o 's : oo ’
a, 2, ¥ a,,(; a,, =2, a,:= 1. (2-23)
Any vector A can be written as the sum of its companents in the three orthogonal
. directions, as follows: oy i Do "
| ’ .‘, '

A=a, A +a Au, + 2, A,,g,,

se!

) I
(2-24) perfo

I
R
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where the magnitudes of the three components, 4,,, 4,,, and 4,,, may change with
the location of A; that is, they may be functions of u,, u,, and u;. From Eq. (2-24)
- ‘the magnitude of A is : ‘

A=|Al= (42 + A2 + AL)2. (2-25)
Example 2-3  Given three vectors A, B, and C, obtain the expressions of (a) A * B,
(b) AxB, and (c) C~(A x B) in the orthogonal curvilinear coordinate system
(g, uy, us). B ‘
Solﬁtion: ~First we write A, B and C in the orthogbnallcopg.c}ipggqs. (y, Uz, Us):
. A= a, A, +a,4, + au\JA,JJ,‘ ‘
B
C=a,C, +1,C,+12,C,,.
a) A B = (2,4, +a,4, +2,4,) @,B,, + 2,8, +1,B,)
= A“IBul + A"zBuz + AugBuJa (2-26)

in view of Egs. (2-22) and (2-23).

B=u,B, + a,,B, +a,8,,

b) AxB= (au;/]u, + au;Auz + Il“‘/l“‘) X (ﬂ“lB‘“ + nluBuz + "]uJBuJ)

=, (A, By, — A B+ a, (4, B, — ALB) A+ a, (A, B, — A,.B,)

“lul auz au;
= |4, Auy Al (2-27)
B, B, B,

Equations (2-26) and (2-27) express, respectively, the dot and cross products
of two vectors in orthogonal curvilinear coordinates. They are important and
should be remembered.

¢) The expression for C -{A x B) can be written down immediately t;y combining
the results in Egs. (2-26) and (2-27).

C- (A x B)=C,,(4,,B,, - A,,B,,) + C,,(4,,B,, — A4,,B,) + C.,(4,,B,, — 4,,B,)

ux™uy
Cl‘l C“Z. C“J . !
=4, A,, Al (2-28)
\ Bul Buz ' Bug

Eq. (2-28) can be used to prove Egs. (2-18) and (2-19) by observing that a
permutation of the order of the vectors on the left side leads simply to a rearrange-
ment of the rows in the determinant on the right side.

In vector calculus (and in electromagnetics work), we are often required to
perform line, surface, and’ volume integrals. In cach case we need to express the

.
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differential length-change corfe's'popdi?ng't'o Ta'diﬁ'cre;ntia} ghange in one of the co-
ordinates. However, some of the coordinates, say u, (i = 1, 2, or 3), may not be a

length; and a conversion factor is needed to convert a differential change duy, into a

change in length d¢;:

dty = h,du, (229
where h; is called a metric coejj‘icien;'z{nd may itself be a function of u;, u,, and us,.
For example, in the two-dimensiqnal polar coordinates (u,, u,) = (r, ¢), a differential
- change d¢ (=du,) in ¢(='1;sz)vcorrespor‘1ds to a differentiat length-change d7, = rd¢p
(hy'=r=u,) in the a, (=-a, -dirgetion. A direated diffevential fengtiv change in an
arbitrary direction can be written as thevector sum of the component fength changes:!
de=a, dfy +a,, dt, + a,, d¢, (2-30)
or o

-

de = a,(hy duy) + a,,(hy dus) + 8, 0hy duy). (2-31)

In view of Eq. (2-25), the magnitude of d¢ is ;
de = [(df,) + (dey)? + (de)?] 2
= [(hy duy + (b, dus)? + hy dus)?]H2, (2-32)

The differential volume dv formed by fiiﬁ"erential coordinate changes du,, du,, and
duy in directions a,, a,, and a,, respeét;‘vely is(dZ, df, df5), qr

do = hyhohy duy du, duy. - (2-33)

Later we will have occasion to express the current or flux flowing through a
differential area. In such cases the crdss-sectional ared. perpendicular to the current
or flux flow must be used, and it is con_ilé_nient to corisider the Qifferential area a vector
with a direction normal to the surface; that is, : :

és_‘:= a, ds.

(2-34)

v
i

T o
For instance, if current density J is no‘_t perpendicular to a differential arca of a mag-
nitude ds, the current, dI, flowing through ds must be the component of J normal to
the area multiplied by the area. Using the notation in Eq. (2-34), we can write simply

LN . H
tdl=J - ds By
'=Jra,ds. L (2-35)
In general orthogonal curvilinear coordinates, the differentigl area ds, normal to the
unit vector a,, is ' AN o
‘ ds, % a,(d?, dt;) .

*

t This £ is the symbol of the vector 7. i ) ’ ! p
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ds, =a,(hohyduy duy). |~ (2-36)

Similarly, the differential area normal to unit vectors a,, and a,, are, respectively,

. ds; = au,(h1h3 du, dus) | - | ' (2-37)
and '
lﬁa = a,(hihy duy duz). | - o '(2—'38_)

Many orthogonal coordinate systcms exist; but we shall only be concerned with
the three that are most common and most useful:

1. Cartesian (or rectangular) coordinates.’
2. Cylindrical coordinates.
3. Spherical coordinates.

These will be discussed separately in the following subsections.

Cartesian Coordinates

(ul’ u21 u3) = (x, ,V, Z)

A point P(x,, y, z,) in Cartesian coordinates is the intersection of three planes
specified by x = x,, y = y,, and z = z,, as shown in Fig. 2-9. It is a right-handed
system with base vectors a,, a,, and a, satisfying the following relations:

a,xXa, =a, {(2-39a)
a, X a, =a, _ (2-39b)
a, X a,=a,. {2—39¢)
The position vector to the point P(x,, y,, z;) is
' OF =ax, +a,y, +a.z,. (2-40)
A vecter A in Cartesian coordinates can be written as
A=a,A, +ad,+aA.. (2-41)

v

* The term “Cartesian coordinates” is preferred because the term “rectangular coordinates™ is customarily
associated with two-dimeénsional geometry. -

.
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y
x x = xy plane ] ’ .
V.= yy plane Fig, 2-9 Ca;tesian coordina'tes.
- - ‘\\\
The dot product of two yectors A and B is, from Eq (2-26),
A'B=AB, +AB, + AB, (2-42)

and the cross product of A and B is\f, from Eq. (2—27),'
A x B =248, ~ A.B)+ a,(A.B, — A,B) + a(4,B, — A,B,)

= |4, * A, A, N A (2-43)
Bx By ,, Bz .

Since x, y, and z are lengths themselves, all three metric coefficients are unity;
thatis.hy = hy = hy = 1. The expressions for the differe itial length, differential area,

and differential volume are — from Egs. (2-31), (2-36), (3-37),(2-38), and (2-33) —

respectively, R ; i 3
dé=a,dx +a,dy +a,dz; | (2-44)
| s | ds,=acdydz | " - (2-453)
L |ids, =a,dx dz I ' (2-45b)
ds, =a,dxdy; . - ' - (2-45¢)
N 1 P .

dnd ‘

tdv=dxdydz. |

(2-46)

N I
o [
A

e

in
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(2-43)
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rential area,
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- (2-44)

(2-45a)
AA545b)
\.;.-45(:)

(2-46)
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Example 2-4 A scalar line integral of a vector ﬁeld of the type
F dt’

is of considerable importance in both physics and electromagnetics. (If F is a force,
the integral is the work done by the force in moving from P, to P, along a specified
path; if F is replaced by E, the electric field intensity, then the"integral represeats an
electromotive force.) Assume F = axy + a,(3x — y?). Evaluate the scalar line
integral from P,(5, 6) to P,(3, 3) in Flg 2—10 (a) along the direct path@ P,P,; then

“(b) along path @ P{AP,.

Fig. 2210~ Paths of integration
(Example 2-4).

Solution: .First we must write the dot product F « 4€ in Cartesian coordinates. Since
this is a two-dimensional problem, we have, from Eq. (2—44),

F-dt=[axy+a(x—y)]-(a,dx +a,dy)
xydx + (3x — y?) dy. _ (2-47)

]

It is important to remember that d€ in Cartesian coordinates is always given by
Eq. (2-44) irrespective of -the path or the direction of integration. The direction of
Integration is taken care of by using the proper limits on the integral.

a) Along direct path (1) — The equation of the path P, P, is
\

y=3x-1. (2-48)

This is easily obtained by noting from Fig. 2—10 that the slope of the line P, P,
is 3. Hence y = (3)x is the equation of the dashed line passmg through the origin
and parallel to P,P,.-Since line P P2 intersects the x-axis at x = + 1, its equation
is that of the dashed line shifted one unit in the positive x-direction; it can be
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obtained by replaczng x with (x ~1). We have from Eqs (2-47) and (2-48),

"R .de = f [xvdx+(3x— ) dy] : |
Path@ : Pm@ ;- :

, -—-f (x—1)dx+f @y +3=i7dy
= -37+27 = -10. . '

In the integration with respect to y, the relation 3x = 2y + 3 derived from
Eq. (2-48) was used.’

.

b) Along path Q) — This path has two straight-line segments:
From P, to A: x=5,dx=0. » N

F:dé = (15— y¥dv. T~
From A to P:y = 3,dy = 0.

vF «d€ = 3x dx,
Hence,

de{’ f 15 - y%) dy+f 3xdx
Palh@ :

J (15 — yz)dv+j33xdx
=18-24= -6 ‘f_ ‘
We see here that the valug of the line integral depends on the path of integration.
In such a case, we say that the vector field F is not conservatlve

1

1

a

2-4.2 Cylindrical Coordinates

(1';1a uy, u3) =(r, ¢, ) ~

*In cylindrical coordinates a pomt P(: 1z s the intersection of a circular cylin-
drical surface r = ry, a half-pjane: cpntaining the z-axis and making an angle ¢ = ¢, g
with the xz-plane, and a plane parallel to the xy- plape at z = z,. As indicated in L
Fig. 2-11, angle ¢ is mcasured frOm the positive x-axjs, and the base vector a, is '
tangential to the cylindrical qurface The following right-hand relations apply:

ila, Xa, =2, ‘ _ (2—-49a)
Cagxa, =a, | (2-49b)
- ja, X a, = a¢,j, : (2—49¢)
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Z = 2y plane !

¢ = ¢y plane Fig. 2-11 Cylindrical coordinates.

Cylindrical coordinates are important for problems with long line charges or currents,
and in places where cylindrical or circular boundaries exist. The two-dimensional
polar coordinates are a special case at z = 0.

A vector in cylindrical coordinates is written as

i

0)

A gl FagAdy, gy, (2.

The expressions for the dot and cross products of two vectors in cylindrical coordi-
nates follow from Eqs. (2-26) and (2-27) directly.

Two of the three coordinates, » and z (u; and us), are themselves lengths; hence
h, = hy = 1. However, ¢ is an angle requiring a metric coefficient h, = r to convert

d¢ to df,. The general expression for a differential length in cylindrical coordinates
is then, from Eq. (2-31):

d€=a,dr +ay d + a_ dz, (2-51)

The expressions for differential areas and differential volume are

_ . 1 ds, = a,r do dz ' (2-52a)
~—— ds, = a, drdz (2-52b)
) ds, = ardrdg : (2-52¢)

and

.

do=rdrded:. (2-53)
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A typical differential volume element at a point (7, ¢, z) resulting from differential
changes dr, dp, and dz in the three orthogonal coordinate directions is shown in
Fig. 2-12. [ R
A vector given in cylindrical ¢oordinates can be trangformed into one in Cartesian
coordinates, and vice versa. Spppp‘se we want to expresg_‘ A=2A4, +2a,4,+a.A;in
Cartesian coordinates; that i§, we:want to write Aasa.d, +a,4, + a,A_ and deter-
mine A,, A,,and A.. First of a]l, we note that 4,, th'; z-component of A, is not changed
by the transformation from cylindrical to Cartesian coorqinagcs. To find A, we equate
the-dot products of both exprpssio?s of A with a,. Thus,
A7 A, ¢
C =Aaca + Aag i,
The term containing A4, disappequ'S;herc because a, - a, = 0. Referring to Fig. 2-13,
which shows the relative positions of the base Vectors a,, a,, a,, and a,, we see that

¥ a, ", =0s ¢ S (2-54)
and ‘ . '" " .
34 fx = cos <-27£ + qb) =/ —sinp. ‘ (2-55)
: . s o
Hence, B PEE R
' Ay =4, c05 ¢ = dysing. . (2-56)

.y

L .
Fig.2-13 Relations between
Riyay, a,anda, | .
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Similarly, to find A,, we take the dot products of both expressions of A with a,:

A,=A-a,
=A4,a,a,+ A,a,"3,.

From Fig. 2-13, we find

a, * a, = COS (721 - ¢'> = sin ¢ (2-57)
and. .
~a,+a, = Cos ¢, (2-58)
1t follows that
Ay = A, sin ¢ + A, cos ¢. (2-59)

It is convenient to write the relations between the components of a vector in Cartesian
and cylindrical coordinates in a matrix form:

Ay “cos —sing 0774,
A, | =sing cos¢p 0| Ayl. (2-60)
A 0 0 1] A,

Our problem is now solved except that the cos ¢ and sin ¢ in Eq. (2-60) should be
converted inte Cartesian coordinates. Moreover, 4,, A,, and A may themselves be
functions of 7, ¢, and z. In that case, they too should be converted into functions of
x, y, and z in the final answer. The following conversion formulas are obvious from
Fig. 2-13. From cylindrical to Cartesian coordinates:

X = rCos ¢ (2-61a)
y=rsin ¢ (2-61b)
z=z. (2-61¢)

\\‘
The inverse relations (from Cartesian to cylindrical coordinates) are

r=./x*>+y* (2-62a)

.

¢ =1tan”

1

“ =

i=2. (2-62¢)

2-4 / ORTHOGONAL COORDINATE SYSTEMS 27
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Example 2—5 Express the yectdr . 2 :
4—a}3cos¢)—a¢2r+a5

in Cartesian coordinates.

Solution: Usmg Eq. (2- 60) dlrgctly, we have _—
JAT . pd§¢ ‘—sm¢ ; 0 Bcosd)
A J 3 sm ' cos ¢«
A, LO - 0 P 1JLs

or P

’

=a,3cos?¢p + 2r sini) + a,(3 sin ({) cos 4; 2r cos @) + a, 5
But, from Egs. (2-61) and (2~ 62)

X i
cos ¢ = -
. \/x2 + y,2
and L
sin ¢ =
A 22 L 2
I o4
Therefore, s P
! oo
3xy.
A=a +a L a, 5
( ﬂ ) ’(xz*;:y’ ,« )+
which is the desired answer, | ‘ § L F ,
; o i

Example 2-6 GiveniF = a,?c_y -~ a,2x, evaluate ihe scalar line integral

L [TEeae

. i
along the quarter-circle shown in Fig. 2—14. :
o ¥ ) 1‘ '

B 2o Ly
R ; ’

E ;

[ :
r=3 ; *f . o

] S Flg, 2~l4 Path for lme 1ntegral

o T4 "% (Example 2-6). g
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Solution: We shall solve this problem in two ways: first in Cartesian coordinates,
then in cylindrical coordinates.

! a) In Cartesian coordinates. From the given F and the expression for d¢ in Eq.
2- 44), we have

F- dé=xydx—2xdy.
The equation ol the quarter-circle ic x2 4+ y2 = 9(0 < x, y < 3). Therefore,
J F-dé¢ = J x«/9 dx—ZJO \/ yT dy
_ 9 — 9gsin-17
[ y* + 9sin J

= _: 232
3 ®-

_9<1 +g>.

b) In cylindrical coordinates. Here we first transform F into cylindrical coordmdtes.
Inverting Eq. (2-55), we have

0

A, [cos ¢ —sin ¢ 017114,
Ay | = |sin¢ cos¢p .0 A,
A, 0 0 | A,

cos¢ - sin¢ 01 74
= | —sin ¢ cos ¢ 0|14
0 0 1] |4

.

With the given F, Eq. (2-63) gives

F, cos ¢ sin ¢ 0 Xy
Fyl={—sin¢ cos ¢ 0 |—2x],
F, 0 0 1 0

which leads to
F =a,(xy cos ¢ — 2x sin ¢) — a,(xy sin ¢ + 2x cos'¢>).

For the-present problem the path of integration is along a quarter-circle of a
radius 3. There is no change in r or z along the path (dr = 0 and dz = 0); hence
Eq. (2-51) simplifies to

d¢ = a,3 d¢
and '
F-df = —3(xysin ¢ + 2x cos ¢) do.
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Because of the c1rcu1ar path, F, is ;mmatcrml tq the prescnt mtcgratlon Along
the path, x = 3-cos ¢rand y = = 3 sin-¢p. Therefore. '

[ F-de=f0 -3 sin2¢cosq§+6cosjz¢)d¢
= —9(sin’® ¢ + ¢ + sin ¢h cos ¢)|. -
) . . ‘ o N
T : K L -

S(

" which is the same as before,

In this particular example, F is glven in Cartesian coordinates and the path is
circular. There is no compelling reaso to solve the problem in onc or the other
coordinates. We have shown the conversion of vectors ‘md the pr acedure of solution
in both coordinales.

Example 2-7 Given F = ak,/r + a.k,z, evaluate the scalar sur,fa\c?ﬁnegral

- éF-ds’

over the surface of a closed cylinder about the z-axis specified by z = +3 and r = 2,
as shown in Fig, 2-15.

Solution: - In connection with Eq. (2-34) we noted that the diyection of ds is normal
to the surface. This statement is actually imprecise because a ngrmal to a surface can
point in either of two directions. No ambiguity would arise in- Eq. (2-35), since the
choice of a, simply determines the reference direction of currept flow. In the present
case, where F - ds is to be integrated over a closed surface (denoted by the circle on
the integral sign), the direction of ds is always to be taken ap that of the outward
normal. Our problem is to carry out the-surface integral

‘ (_ﬁl‘ "l ":=",l' ca, s
J .

'

Fig.2-15 A cylindrical $urface
(Exapple 2-7). "
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»

over the entire specified surface. This integral gives the net outward flux of the vector
- F through the enclosed surface.
The cylinder in Fig. 2-15 has three surfaces: the top face, the bottom face, and
the side wall. So,

éF-dszf F-a,,ds+f F->a,,ds+  Fr-a,ds.
top bottom side
face face wall '

We evaluate the three integrals on the right side separately, -

a) Topfae z=3,a,=a,
F'hn=k22=3k2
ds = rdr d¢ (from Eq. 2-52);

F-a ds= ﬁf" foz 3k,r dr dp = 127k,

top
face
b) Bottom face. z= —3,a,= —a,
l‘ R, = ";\':; = ﬁ)l\s
ds =rdrd;
f Foea,ds = 12rk,,
Lot
face .

which is exactly the same as the integral over the top face.

¢ Sidewall. r=2a,=a,
ok K
F-a, = r 2
ds =rd¢dz = 2d¢ dz (from Eq. 2-52a);

3 2n
[ Frands = [7 [k, dg dz = 127k,

wall
Therefore, .
QF s = L2nk, + 122k, + 12k,
= 127t(k1 -+ 2k2).
~—

2-4.3 Spherical Coordinates

(ul’ Uz, u(S) = (R’ 9’ ¢)

A point P(Ry, 6,, ¢,) in spherical coordinates is specified as the intersection of the
following three surfaces: a 'spherical surface centered at the origin with a radius R =
R,; aright circular cone with its apex at the origin, its axis coinciding with the z-axis




Fig. 2-16 Spherical coordinates.

' Tt~
and having a half-angle § = 6,; and g half-plane contaifiing the z-axis and making an
angle ¢ = ¢, with the xz-plane. The base vector ax at P is radial from the origin and is
quite different from a, in cylindrical coordinates, the latter being perpendicular to the
z-axis. The base vector a, lies in the ¢ = ¢, plane and is tahger{tiajl to the spherical
surface, whereas the base vector a, is the same as that in ‘cylindrical coordinates.
These are illustrated in Fig. 2-16, For a right-handed system we have

t
v

aR}fg 2, =a, : . " (2-64a)
g X 3, =2, . - (2-64b)
lagXag=2a,. | (2-64c¢)

Spherical coordinates are important :for problems involving point sources and
regions with spherical boundaries. When an observer is very far from the source region
of a finite extent, the latter could be considered as the origin qf a spherical coordinate
system; and, as a result, suitable simplifying approximations could be made. This is
the reason that spherical coordinates are used in solving anienna problems in the fur
field. ‘ ] ’ e

A vector in spherical coordinates is;written as

A =agdp + 04, + a,d,. (265

The expressions for the dot and crqss products of two vectors in spherigal coordinates
can be obtained from Eqs. (2-26) and;(2-27). ; R :

In spherical coordinates, only R{u,) is a length. The other two coordinates, §
and ¢ (u, and us), are angles. Referring go,F ig.2-17, where a typical differential volume
element is shown, we see that metric cqefﬁcients h, = Rand hy = R sin 0 are required

;
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Fig. 2-17 A differential
volume element in spherical
R sin 0 d¢ coordinates.

/

to convert db and d¢ into d/, and d/ 3, Tespectively. The general expression for a
differential length is, from Eq. (2-31) '

3

"df =ag dR + a,R d + a,R sin 6 db. (2-66)

The expressions for differential areas and differential volume resulting from differ-
ential changes dR, d0, and d¢ in the three coordinate directions are

dsg = agR? sin 0 dO do (2-67a)

dsy = a,R sin 8 dR d¢ (2-67b)

ds, = a,R dR d6 (2-67¢)
and

dv = R?sin 0 dR df dp. (2-68)

For convenience the base vectors, metric coefficients, and expressions for the differ-
ential volume are tabulated in Table 2-1.

A vector given in spherical coordinates can be transformed into one in Cartesian
or cylindrical coordinates, and vice versa: From F ig. 2-17, it is easily seen that

x=Rsinfcosgp | - . (2-69a)
y = Rsin 0sin ¢ (2-69b)
z=Rcos . : ‘ (2-65¢)




34 VECTOR ANALYSIS/2- . . ]

v .

Table 2-1 Three Basic Orthogonal Coordinatchystems L

Cartesxan Cylindrical = - Spherical
Coordmatcs Coordinates . Coordinates
Coordinate-system Relations {x, y,2) {r,d,2) ‘ (R, 6, ¢)
. aul ' a: : ar i+ ag
Ras Vagtors. LA, C 24, : a
4 v
ay:; ‘H' i - “2 - a: ‘ a@
h, 1 1 , 1
Metric Coefficients hy 1, r ' R
|- 1 e Rsin 0.
Differential , e .
Vc1>1ume a dv dx dy dz rdrdddz  Rsin0dRdodo
v ~

Lonversely, measurements in Cartesw,n coordmates can be transformed into those
in spherical coordinates:

R= X%y’ 1 2 o (2-702)

11\/" X+ yE |

§=tan 1 X2 T o (2~70b)
. L 4 _

¢

N { .
¢ = tani™ ! %: : _ (2—70¢)

Example 2-8 The position of a met P in spherical coordmates is (8, 120°, 330°).
Specify its location (a) in Cartesxan coordmates and (b) i in. cylmdrlcal coardinates.

Solution: The spherical coordmates of the given point are R &= 8, = 120°, and
¢ = 330°, t

1

a) In Cartesian coordinates. We use Eqs (2 69a bo: 1
x = 8 sin 120° "cos 330°=6
= 8sin 120° g{n 330° = —2f
z—8005120°:‘=— .
Hence, the location of the point is P 6, ~2\/— —4), and the position vector (the
vector going from the origin to the pomt) IS S
OP—axﬁ azﬁ—a4 St
T

"
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.
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(2- T0a)
(2-70b}

- (2-70c)

1207, 330°).
yordinates.

120°, and -

vector (the
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- b) In cylindrical coordinates. The cylindrical coordinates of point P can be obtained ‘

by. applying Egs. (2-62a, b, c) to the results in part (a), but they can be calculated
directly from the given spherxca] coordinates by the followmg relations, which
can be verified by comparing Figs. 2~11 and 2-16:

r=Rsinf ‘ C(2-Ta)
$p=9¢ \ (2~71b)
z=Rcosd. ' (2-712)

We have ﬁ(4vf§, 330°, ~4); and its‘position vector-in cylindrical coordinates is
‘ OP = a,4\/§ —ad.

It is interesting to note here that the “position vector” of a point in cylindrical
coordinates, unlike that in Cartesian coordinates, does not specify the position of

the point exactly. Can you write down the position vector of the point P in spherical
coordinates?

Example 2-9 Convert the vector A = agAg + ay4, + a 4, into Cartesian co-
ordinates.

Solution: 1o this problem we want (o write A in the form of A = a A+ a4, -+ a .
This is very different from the preceding problem of converting the coordinates of
a point. First of all, we assume that the expression of the given vector A holds for
all points of interest and that all three given components Ag, Ag and 4, may be
functions of coordinate variables. Second, at a given point, A, 4y, and A, will have

-definite numerical values, but these values that determine the direction of A will,

in general, be entirely different from the coordinate values of the point. Takma dot
product of A thh a,, we have

Ay=Asa,
= Agag - a, + Apas* a2, + Aya, - a,.

Recalling that ag - a,, a, - a,, and a, - a, yield, respectively, the component of unit
vectors ag, 2y, and a, in the direction of a,, we find, from Fig. 2-16 and Egs.
(2-69a, b, ¢):

- . ' x
ag+a,=sinfcos ¢ =

__x (2-72)
X2yt 42
xz
2, a, =cosfcosp = : (2-73)
“ AR A+ D)
a0y = —sin h= = S S— ' ‘ (2-74)

b} 3
Xy
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R Ry

Thus, . .. . K o o .

A, —-ARsm9c05¢+A,cosc’)cos¢ A¢sm¢
AR‘C -+ : Awxz Asy (2--75)
\/x +y*+ 22 fx + y )(v "+v3, ) JxE eyt -

~ Similarly, : : o , : '

| A’—- A.{ Sl Gaxn + A,,cos OB.n ¢+ A, cos o

A Awz A (2-76)
\/A +y +ﬁ'r \/(’C FPNT+ ¥+ JxEF )R
and
. ; p) 3

A, = Agcos 8 — Aysip 6 = Ar? Aoy ) - (2-77)

\/72+'y2+.~2_’\/?7+y2+z2'

If A, Aq, and A, are themselves functlons of R, 0, and ¢, they tQo need to be converted
into functions of x, y, and z by the use of Egs. (2-70a, b, ¢). Equatbns (2-75),(2-76),

and (2-77) disclose the fact that when a vector has a sunple form in one coordinate °

system, its conversion into another coordinate system usually results in a more
complicated expression. o y

Example 2-10 Assummg that 3. cloud of electrons copfined in a regxon between
two spheres of radii 2 and 5 cm, has q charge density of
_3 X 1 1-8

. W"“COS ¢ (C/m3),

Fs

N
find the total charge contained in the region.

Solution: We have : i

3 X 10_
= e COS? (/;

Q fpdv

The given conditions of the prpb]em obviously pomt to the use of spherical coordi-
nates. Usmg the expression [or dv in q.(2-08), we puform a luplx. integration.

Q j‘Zw fo' ‘fo o2 2 sin 0 dR dﬁ do.

Two things are of 1mportance here Flrst since p is ngep in units of coulombs per

cubic meter, the limits of 1 mtegratxon for R must be converted to meters. Second, the

“full range of integration for 0 i 1s from O to = radians, not from O to 27 radians. A little

reflection will convince ug thata half-circle (not a full-circle) rotated about the z-axis
[ i ) .
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through 2z radians (¢ from 0 to 27) generates a sphere. We have

0.05

-"._‘Q‘=.—3><10 fznf foz chos qum(—)deQd(;b

2 1
= -3 x 10~ Bf f( 505 002>sm9d9cos ¢ dop

= 09 x 10°6 f“(—cbs 0) cost ¢ i
° !
= -5 (/b % \'P——Z(/) ’ P - 1t
1.8 x 10 \2 py . 1.87 (uC).

2-5 GRADIENT OF A SCALAR FIELD

In electromagnetics we have to deal with quantitics that depend on both time and
position. Since three coordinate variables are involved in a three-dimensional space,
we expect to encounter scalar and vector fields that are functions of four variables:
(¢, uy, Uy, uy). In general, the fields may change as any one of the four variables changes.
We now address the method for describing the space rate of change of a scalar ficld
at a given time. Partial derivatives with respect to the three space-coordinate variables
arc involved and, inasmuch as the rate of change may ‘be different in different direce-
tions, a vector is needed to define the space rate of change of a scalar field at a given
point and at a given time.

Let us consider a scalar function of space coordinates V(u,, u,, us), which may
represent, say, the temperature distribution in a building, the altitude of a mountain-
ous terrain, or the electric potential in a region. The magnitude of ¥, in general,
depends on the position of the point in space, but it may.be constant along certain
lines or surfaces. Figure 2-18 shows two surfaces on which the magnitude of V is
constant and has the values ¥, and ¥V, + dV, respectively, where dV indicates a small
change in V. We should note that constant-V surfaces need not-coincide with any of
the surfaces that define a particular coordinate system. Point P, is on surface V,; P,

Fig. 2-18 Concerning gradient
of a scalar.
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: l
4

is the corresponding point on surface V; + dV along the normal vector dn; and P, is
a point close to P, along angthgr vector d€ s dn. For the same change dV in V, the
space rate of change, dV/d/, js abviously greatest'along dn because dn is the shortest
distance between the two surfaces.! Since the magnitude of dV/d/ depends on the
direction of d¢, dV/d¢ is a directional derivative. We define the vector that represents
both the magnitude and the direction of the maximum sppce rate of increase of a scalar
as the gradient of that scalar, We wrltc

N7
e ! . L L —

oradV £ a ‘fd—‘/ (2-78)

.

For brevity it is customary ta employ the operator del. represented by the symbol V
and write VV in place of grad I Thus,

(2-79)

We have assumed that dV is posmve (an increase in V); if dV is negative (a decrease
in V from P, to P,), VV will be negative in the a, directjon.
The directional derivative along d¢ is

v dVdn dV

ZJZ -— -t—l;‘l— ‘—17 = d COS &
av
= e =) 2, (2-80)

Equation (2-80) states that the space rate of i increase of V in the a, direction is equal

to the projection (the component) of the gradient of V i m that direction. We can also
write Fq. (2 80) us

D "
: v =(vryede | (2-81)
where df = a, d/. Now, dVin Eq (f 1) is the total di rentlal of ¥V as a result of a
change in position (from P, tp P, in Fig. 2-18): 1t can pc expressed in terms of the
differential changes m coordinates
oV 'a
dV a¢, + d/ +
§ a{l ‘ l 2 a
e
‘where d/ |, d/ 2, and df 5 are the componcnts of the vector differential displacement
df in a chosen coordmate system. In terms of general orthogonal curvilinear coordi-

>

1

' In a more formal treatment, changes AV.'ahd A/ would be used, and the ratio AV/AZ would become the
derivative dV/d¢ as A¢ gpproaches zero. We} avoid this formali_x;y in favor of simplicity.

d/ 3 (2-82)

na
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. nates (uy, us, u,), d€ is (ffom Eq. 2-31),
) dt¢ =a, df, +a, df, + a,, dt,
. =a,(hy du,) + a,,(h; duy) + a, (hs du,). (2-83)

It is instructive to write' dV in Eq. (2-82) as the dot product of two vectors, as follows:

av ov avy -
V= — i il
| av - (a,“: i, + a,, 7 + a,, 6Z3> (a,, d{1’+ a, df, ,+ a, df;)

(v v v ' |
= EVE =5 — |- d¢. | . 2.-84)
(”"*azl““zazz““az) | B (2--84)
Comparing Eq. (2-84) with Eq. (2-81), we obtain
' v oV v
VWe=a, Vo V. 5_gs
T g TR Y e g, (2-85)
or
(7V' v oV
VV = : : : 2-86
VY s g T e i e (2-86)

Equation (2--86) is a useful formula for computing the gradient of a scalar, when
the scalar is given as a function of space coordinates.
In Cartesian coordinates, (uy, u,, us) = (x, y, z) and h, = h, = hy = 1, we have

v v oV
VW=a,—+a —+a, — 87
Vet h g Ay (2-87)
or
d d d ‘
VV = — = — V. 2848
(ax ERaLY 3 +a, 62) (2-88)

In view of Eq. (2-88), it is convenient to consider V in Cartesian coordinates as a
vector differential operator.

o . 0
| V=a,—~+a,—
— 0x Oy

0
+a o (2-89)

Looking at Eq. (2--86), one is tempted to define V as

| V=ia 0 +a g +a J
- “ hl 5u1 uz"hz 5u2 3 h3 6“3

in general orthogonal coordinates, but one must refrain from doing so. True, this
definition would yield a correct answer for the gradient of a scalar. However, the
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H
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same symbol v has been used cqnventionally to s;gmfy same differential operations C S
. of a vector (divergence and curl, which we will consiller laer in this chapter), where - :
an extension of Vasan operator ip gpneral orthogonal coordmates would be incorrect. by
Example 2-11 - The electrostat;c ﬁcld intensity Eis dertvable as the negative gradient ' o hfl;
of a scalar electric potentlal V; that 1s,,E = —VV, Determme E at the point (1, 1, 0y if i ?;le
o | '
- ny o ' © not
BV=VeeTsing o e : - fiel
b) V=VRcosd” o oo o wit
' ‘ ‘ ' : . the
Solution: We use Eq. (2-86) to evaluate E = —VV in Cartesian coordinates for ' ane
part (a) and in spherical coordinates f;or part (b). . - and
S DA P V Ty | :‘i\:
a) = - J,\' 5} + tly 'é;'*‘ ‘!: 5;_: ‘} O‘f’ Sin —‘1 | (‘\\‘
. \\. vipt
] T - :
= (ax sin 7 1 cos %) Voe™ ™
= - Vo.
Thus, E(1,1,0) (a -—a—)——*—:Ea,, .
TN T
where | 'i .
1 el 3 . “The
E* 5(”‘6 P } the .
L . :

= S surf:
ap = 1 (ax .l' a,Z). : whic¢
O JTH (=716) ey . 1 . vark

13

I

s a .0 L that
b) E=—|az—+ o VR co
) [ RFR " " Rap T R'sin 6 a(;)] oR e f type
= —(agcosf — a, sin 0)% ': J g L ' integ
In view of Eq. (2-77), the rpsult above converts very ‘simply to E = —a.V, in v fim(‘
Cartesian coordinates. This is not surprising since'a careful examination of the /\agg}r
given V reveals that V4R cos 6 is, ﬂn fact, equal to Voz In Cartesian coordinates, " ‘
; ] IR ) :
a > R : ‘\(.
E—— ""VV(* az——‘(VQZ) a,Vo : ( (:__0
, o ' : differ
2-6 DIVERGENCE OF A VECTOR F|FLd T .fi : ' - cnt

In the preceding section we consldc;ed the spatial derlvat;ves of a scalar field, which
led to the definition of the gradient.: ‘We now turn our attention to the spatial deriv-
atlves of a vector field. This will lead to the deﬁmtxons of ;he divergence and the curl

i
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of a vector. We discuss the meaning of divergence in this section and that of curl in

- Section 2-8. Both are very important in the study of electromagnetism.

In the study of vector fields it is convenient to represent field variations graphically
by directed field lines, which are called flux lines or streamlines. These are directed
lines or curves that indicate at each point the direction of the vector field. The mag-
nitude of the field at-a point is depicted by the density of the lines in the vicinity of
the point. In other words, the number of flux lines that pass through a unit surface
normal to a vector is a measure .of the magnitude of the vector. The flux of a vector

field is analogonrs *o the flow of an incrinpressible fluid such as water. For a volume

with an enclosed surface there will be an excess of outward or mward flow, thrg (gh
{ oy Z, y,_,

the surfice nnly when the volume contains, respectively, a »ource or “a st( that i,
a net positive divirgence indicates the presence of a source of fluid inside e the volume,

and a net negative divergence indicates the presence of a sink. The net outward flow -

of the fluid per unit volume is therefore a measure of the strength of the enclosed

source. . skraco, z'l

We define the divergence of a vector field A at a point, abbreviated div A, as the
net outward flux of A per unit volume as the volume about the p point tends to zero:

AA'ds
divA 2 lim L

Av—0

(2~90)

The numerator in Eq. {2-90), representing the net outward flux, is an integral over
the entire surface S that bounds the volume. We have been exposed to this type of
surface integral in Example 2 -7. Equation (2--90) is the general definition of div A
which is a scalar quantity whose magnitude may vary from point to point as A itself
varies. This.definition holds for any coordinate system; the expression for div A, like
that for A, will, of course, depend on the choice of the coordinate system.

At the beginning of this section we intimated that the divergence of a vector is a
type of spatial derivative: The rcader may perhaps wonder about the presence of an
integral in the expression given by Eq. (2-90); but a two-dimensional surface integral
divided by a three-dimensional volume will lead to spatial derivatives as the volumne
approaches zero. We shall now derive the expression for div A in Cartesian co-
ordinates. )

Consider a differential volume of sides Ax, Ay, and Az centered about a point
P(x4, Yo, 20) in the field of a vector A, as shown in Fig. 2—19. In Cartesian coordinates,
A=a4, *+a,4, + a.4.. We wish to find div A at the point (x,, yo, Zo). Since the
differential volume has six faces, the surface integral in the numerator of Eq. (2-90)
can be decomposed into six parts.

SBA db-[ ront fb.u.k fngm Ln J‘mp Lonom}A ds.  (2-91)°

face face face face face face
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4 e
P(xo, yo, 20)

L:;‘,‘\Tﬁ J ﬁ H '
Ay ~ 'v . .
- - -
Fig. 2-—19 A differential volumo in
b

Cartes an coordir:: thex L

x

On the front face,

J‘from A . d Afl’Pnl As front — Afmn\ ax(Ay AZ)

face fapc . face face

Ax
= Ax <X() + 2 * Vo, Lo) A\ Az, (2—’92)

\
The quantity A, ([x, + (Ax/2), Ya» -0]) can be expanded as a Taylor series about its
value at (xq, yo, Zo), as follows

Ax ’c aa,
Ax X +'“_a s 2y =A (X » 1
< o 2 o 0> 0 o 2 ax {x0, Y0, 20)
.+ highzr-order terms, (2-93)

where the higher-order terms (ﬁOT) contain the factors (Ax/2)2, (Ax/2)?, e
Similarly, on the back face, * ‘ i

N

back A dS,F Aback AS back — Aback ( a Ay AZ)

face g f“" 1. face face ~ - ‘
;':< . AX - . 2
= *;'Ax <x0 - _é—’ Yo Zo) Ay Az_ (2_94)
i . L Ax
The Taylor-scrics expansion of A, | x, — S Yoz )i
& e Axid, ,
A, (XQ — 3 Yo Zo) (‘Co, Yo» + HO.T. (2-95)
2 . 2 ’ﬁ\( (‘Q.\o 0

Substltutmg Eq. (2-93) in Eq. (2 9i) and Eq. ( —95) m Eq 2-94) and adding the
contributions, we have /

/ ﬁ' .

A o '
[t‘mnt+ back:IA ds—-(ax+HOT)i " AxAyAz. (2—96)

face face (Xo Yoi #o)

Here a Ax has been factored out from the HO.T. in Eqs (2-93) and (2-95), but all
terms of the H. O T. in Eq. (2- 96) st1}l contain powers of Ax
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- F ollowing',‘rt:he same procedure for the right and left faces, where the coordinate
changes are +Ay/2 and — Ay/2, respectively, and As = Ax Az, we find

0 0 '
f + f A-ds= (—A! + H.O.T.) Ax Ay Az. (2-97)
! YR A\ 0y xo, 0, 20)
. ‘ Here the higher-order terms contain the factors Ay, (Ay)?, etc. For the top and bottom
faces, we have ' '
5 a s Jooom | A+ ds = (24 ﬁ.o:r.\ Mcdyaz, (-9
5o e, Jpmem |70 /0,50

e B

Lo e where the higher-crder'terms contaifi the fictors Az, (Az)?, etc. Now the results from
: ‘ "Egs. {2-96), (2-97), and (2-98) are combined in Eqg. (2-91) to obtain

A, 0A, 0A

~ Acds = (=tx 4 200y 00 Ax Ay Az 2-99

(2-92) | | 435 <0x oy " oz ) o ron Y (2-99)
Lbout its , + higher-order terms in Ax, Ay, Az.

N - Since Av = Ax Ay Az, substitution of Eq. (2-99) in Eq. (2-90) yields the expression

- of div A in Cartesian coordinates

' div A = ady + a4, + ds ts 2100
(2-93) . . - v (7'.‘) Oz : (--~ )

/2%, ete.
' The higher-order terms vanish as the differential volume Ax A y Az approaches zero.
The value of div A, in general, depends on the position of the point at which it is
evaluated. We have dropped the notation (x,, y,, z,) in Eq. (2-100) because it applies
to any point at which A and its partial derivatives are defined.
2-94) With the vector differential operator del, V, defined in Eq. (2-89) far Cartesian
coordinates, we can write Eq. (2-100) alternatively as V - A. However, the notation
V - A has been customarily used to denote div A in all coordinate systems; that is,

V-A=divA. | (2-101)

(2-95) ’ -
We must keep in mind that V is just a symbol, not an operator, in coordinate systems
iding the o other than_Cartesian coordinates. In general orthogonal curvilinear coordinates
/&\ ; ) (uy, ug, u3), Eq.12-90) will lead to '

(| i ' : ‘ L

Y . . —_

" hyhgh,

0
Qu,

0
— (hyf
[Oul (hzhsA) " Ous

(hihsdsy) + (hlth})J. (2-102)

3), but all : . .
Example 2-12 Find the divergence of the position vector to an arbitrary point.
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Solution: We will find the sq}utlon in Cartesmn as well aswn spherical coordinates.

a) Cartesian coordinates. The expressmn for the posmon vector to an arbxtrary
point (x, y, z) is

‘ oR=agw+%yfag,i'» (2-103)
Using Eq. (2-100), we havg : S
, I 5 Dx 0y Loz -
| : - B (5}3)_(%( Fc)’%az 3 -

b) Spherical coordinates. Here tlu poslllon vu,lor is slmply
=2,R. ’ (2-104)

[ts divergence in spherical comdm ies (R, 0, /))mn he obtained from L, (2 -102)
by using Table 2-1 as follows:

1\ \aA [
Rsin® d¢

o i
— (A, sin 0) +

1
"Rsin 036 (2-103)

Substituting Eq. (2-104) in Eq (2~105), we also obtaijn V -(OP) = 3, as expected.

Example 2-13 The magnetx;: ﬁuxq density B out§1de a very long current-carrying

* wire is circumferential and is 1pversely proportlonal to tPe distance to the axis of the
i

wire. Find V - B. [ ] Yo

- .I-
‘b

Solution: Let the long wire be commdent with the z-ax;;; in a cylindrical coordinate
system. The problem states thp,t

. ko
i1 B=a,~
i o a¢ r ; .

In cylindriqal coordinates (r, (/5, z): E,q. (2-102) l’Cd._lthcs lb

s ST ) ? .
. , v A.-«'w(r A)+ ! A‘”+6A- (2-106)
' SR P uﬁ,

Now B, = k/r,and B, = B, = 0. Equatlon (2- 106) glves
- . L V-B=0. |

We have here a vector thq,t is not a constant, but whose divergence is zero. This
property indicates that the magngtlc flux lines close upqn themselves and that there
are no magnetic sources‘or sinks A divergenceless ﬁelq is called a solenoidal field.
More w111 be said about thls type of field later in the boqk

=.1 o
3! ‘

T

ti
d
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t arbitrary
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(2-104)
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Fig. 2-20 Subdivid: .. volume
for proof of divergence theargm. o=

2-7 DIVERGENCE THEOREM

In the preceding section we defined the divergence of a vector field as the net outward
flux per unit volume., We may expect intuitively that the volume integral of the diver-
gence of a vector field equals the total ourward flux of the vector through the surjfzce
that bounds the volume; that is,

[,v-ado=ga-as. (2-107)

This ldumly which will be proved in the following paragraph, is called the divergence
theorem." 1t applies to any volume V that is bounded by surface S. The direction of
ds is always that of the outward normal, perpendicular to the surface ds and directed
away from the volume.

For a very small differential volume element Av; bounded by a surface s;, the
definition of V - A in Eq. (2-90) gives directly

(V- A), Auj=§ﬁv A-ds. . (2-108)

In case of an arbitrary volume V, we can subdivide it into many, say N, small dif-
ferential volumes, of which Av; is typical. This is depicted in Fig. 2-20. Let us now

combine the contributions of all these differential volumes to both sides of Eq. (2-108).
We have

Avj—~0 Avj— 0

lim Z(V A), Av;| = lim 95 Ads| (2-109)
\\ =1

The left side of Eq. (2—109) is, by definition, the volume integral of V-+ A:

Av;—0

lim L(V Au, = [, v aya. (2-110)

' It is also known as Gauss’s theorem.
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ot s

The surface integrals on the right side of Eq. (2-109) are summed over all the faces
- of all the differential volume elements. The contributibns from the internal surfaces
of adjacent elements will, however, ¢ancel each other; beca,us‘g at a common internal
surface, the outward normals of the adjacent elemehts. point in opposite directions.
Hence, the net contribution of the right side of Eq. (2-109) is due culy to that of
the external surface S bounding the volume V; that is

lim [Z f A-ds § A- ds, ' 2—111)
Av:"“ L_,-l i : B

i1e suostituiion of Egs, (2-11Q) and {2-111) in Eq 2- 109) yields the divergence
theorem in Eq. (2-107).

The validity of the limiting processes leading to the proof of the divergence
theorem requires that the vector field: A, as well as its ﬁrst derivatives, exist and be
continuous both in ¥ and on §. Theidivergence theorem is an important ldumlv m
vector analysis. It converts a volume integral of the divergence of a vector.to a closed
surface integral of the vector, apd vice versa. We use it fteq*ently in establishing
other theorems and relations in electromagnetics. We note tilat aTthough a single
integral sign is used on both sides of Eq. (2-107) for sxmphmty, the volume and
surface integrals represent, respactively, triple and doublaiintegrations.

Example 2-14 Given A = a x? + 'a'xy + a,yz, verify the'div rgence theorem over
a cube one unit on each side. The cube is situated in the first octant of the Cartesian
coordinate system with one corner at the origin, .

I8

Solution: Refer to Fig. 2-21. Wg ﬁrst evaluate the surface }ntegral over the six faces.
1. Frontface: x =1,ds = a, dyd

J‘rrom Ads "f J dy d‘ = 1

face

2. Back face: x =0, ds = "5,: dy 43?::
et

’

¥.

5o D A-ds=0, !
 back -
face

o b
oy o

] IR
!

r

\j

Fig. 2-21  A'uhit cube '
- (Example 2-14), L :
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dentity in
o a closed
:ablishing
1 a single

Imr(*\'md

srem over
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: six faces.
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3. Left face: y = 0, ds = —a, dx dz;

A-ds=0.
left
face

' 4. Right face: y=1ds=a, dxdz,

fn_gm A-ds= folfol x dk dz = 1.

face
5. Topface:z=1*,ds=dxdya,
| N N S ST RS R S
3 . L . face . e

E B - 6. Bottom face: z =0, ds = —a, dx dy;

me A-ds=0.

face

Adding the above six values, we have
(ﬁf\'dsz L+0+0+3+5+0=2,
Now the divergence of A is
o, d d ’
. s o (¢ e s 7) = 3 . ),
VA ax(x ) Fay(xy) Paz(y) Xy
Hence,

1 ‘ 1 1
ny-Adv: fo fo fo (3x + y) dx dy dz = 2,
as before. ‘
‘Example 2-15 Given F = agkR, determine whether the divergence theorem holds

for the shell region enclosed by spherical surfaces at R = R rand R=R,(R, > R))
centered at the origin, as shown in Fig. 2-22.

Fig. 2-22 A sphe_;'ical shell
region (Example 2-15).

.
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¢

Solution: Here the spemﬁed reglon has two surfaces at R R, and R =R,.
At outer surface: R = R2, gs = aRR sin 8: d6 dd>

Joe Frds = [N fo (kR;)RS sin 6 df d¢ 4rckR3.
surface :
At inner surface: R = Ry, ds = —azR?sin 8 ded b
. »finn“ Feds= _-j‘:n j‘: (kRR? sin 6 d0 d¢b = —471/&3

surface

e e it

-

Actually, since the integrand is independent of 0 or-¢ in hoth cases, the integral of a
constant over a spherical-surface is-simply the constant multiplied by the area of
the surface (4nR3 for the outer surfade and 4nR? for the inner surfacc) and no integra-
tion is necessary. Adding the two results, we have :

J> I+ s k(R ~ R*)

P

T
To find the volume mtegral we first determine'V - F for an F that has only an
F component: - : :

R
1 ¢ 1
V-F= 2 3___
(1% Fr) =g aR(kR) 3k

_R? GR
Since V - F is a constant, its volume integral equals.the product of the constant and

the volume. The volume of the shell regxon between the two spherical surfaces with
radii R, and R, is 4n(R3 = R})/3. Therefore, (-

fv de_?(v F)V = 4nk(R3 RY),

as before. - . : is

4

This example shows that the dxvergence theorean holds even when the volume
has holes—that is, even when the volume is enclosed ‘bya mulnply connected surface.

Fiboow : i
ot "'i f ’

2-8 CURL OF A VECTOR FIELD . P

i P : c
In Section 2—-6 we stated that a net -outward flux of a vector A through a surface
bounding a volume indicates the presence of a spurce. ThlS source may be called a
. flow source and div A is a measure of the strength of the ﬂow source. There is another
kind of source, called vortex source, whxch causes a 01rculat1on of a vector field around
it. The net circulation (or snnply czrculanon) ofa vector field around a closed path is
defined as the scalar line integral of tl;xe vector over the pa,;h We have

v
b

Circulation of A around contonr (f: & Eﬂc A - dé. (2-112)
Equation (2-112) is a mathematical definition. The ’iphysi'eal meaning of circulation
depends on what kind of field the vector A represents. If A is a force acting on an
object, its circulation will be the wor\« done by the force in moving the object once
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Fig. 2-23 Relation between a,
and d?¢ in defining curi.

around the contour; if A represen s an «iz:tric field intensity, then the circulation
will be an electromotive force aiound the closed path, as we shall see later in the-

“book. The familiar phenomenon of water whirling down 4 sink drain is an example

of a vortex sink causing a circulation of fluid velocity. A circulation of A may exist
even when div A = 0 {when there is no flow source).

- Since circulation as defined in Eq. (2-112) is a line integral of a dot product, its
value obviously depends on the orientation of the contour C relative to the vector
A. In order to define a point function, which is & measure of the strength of a vortex

source, we must make C very small and orient it in such a way that the circulation is
a maximum. We define’

CurlA =V % A .
L C (2-113)
élim—[anss A-de] .
As—0Q AS c max

In words, Eq. (2-113) states that the curl of a vector field A, denoted by Curl A or
V x A, is a vector whose magnitude is the maximum ner circulation of A per unit area
as the area tends 1o zero and whose direction is the normal direction of the area when
the area is oriented to make the net circulation maximum. Because the normal to an
area can point in two opposite directions, we adhere to the right-hand rule that when
the fingers of the right hand follow the direction of dé, the thumb points to the a,
direction. This is illustrated in Fig. 2-23. Curl A is a vector point function and is
conventionally written as V x A (del cross A) although V is not to be considered a
vector operator except in Cartesian coordinates. The component of V x A in any
other direction a, is a, * (V x A), which can be determined from the circulation per
unit area nermal to a, as the area approaches zero.

o " 1
(Vx A),=a, (Vx A= lim —»——( ). A d(’), (2-114)

Asy =0 B8y

where the direction of the line integration around the contour C, bounding arca
As, and the direction a, follow the right-hand rule.

.

't In books published in Europe the curl of A is often called the rotation of A and written as rot A.



Az 4 — P(X0. Yo Z0)

. P b

- , Fig. 2-24 Determining (V x A),.

We now use Eq. (2-114) ‘tio find the three corhponents of V x A in Cartesian
coordinates. Refer to Fig, 2-24 where a differential rectangular aren parallel to the
yz-planc and having sides Ay gnd Az is drawn about a typical point P{xy, Vos 20)

"Wehavea, = a_and As, = Ay Az and the contour C, consists of-the | four sides 1, 2, 3,
and 4. Thus

1 L
. ; . de). ~1t
(V x A)x Aylir:r-):'o A_V Az (éldesa . A df) (2 1 5)

12134

In Cartesian coordinates A = ‘a, A x+ a,4, + a. A., The conmbutlons of the four
sides to the line integral are

1

Side 1: dé=a.dz, A-dl= Af.(xo, Yo + %X, h;"o> dz,

A A "’ o l .
where 4, <xo, Yo + ":%7 [éo) can be expanded as'a Taylor series:

Ay 0/1
2 (’)y

where H.O.T. contams 1hc factors (Ay)?, (Ay)‘ Ltc Thus,
N T Y S S
de . Adl = {A:(Jgo, _1.02 Zo) + 55 3 S H.O.T.} Az, (2-U7)

‘ tffo.-)’o. ;-'p)
) [ A " - ‘;
Side3: dt=a.dz,A- df= A':<xo, Yo —~ . ) dz,"

+ H.OT., (2-116)

(xu. Yo, Z0)

A
A:<x0, Yo + 'EX’ ?«'Q) A (x()a Yo» 2o) + ==

2
3
where T :
- A s Y aA A
A: <x0’ YO - —21)’ zO) = Az(x()’ }’o, z(]) Zy a -+ H.O.T.; (2—118)
S Y xo. yo. 20) .

. Ay oA,
Lide 3 A * dt, = {A ('xO? y01 zo 2 a

55 . -FH.O.T}(—A:). (2-119)
(xo.n_i.zo) ; -
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-

Note that d¢ is the same for'sides 1 and 3, but that the integration on side 1 is geing

‘upward (a Az change in z), while that on side 3 is going downward (a — Az change
in z). Combining Egs. {2-117) and (2-119), we have

Ay Az. (2-120)

(xu, yo, z0)

f  A-de= (".Az + H.O.T.>
sides oy

1&3

The H.O.T. in Eq. (2-120) still contain powers of Ay. Similarly, it may be shown hat

' fu A de= (“% + HO-T-)’ Ay Az. (2-121}

2&4 i(xo. Yo, 20}

 Substituiing Egs. (2-120) and (2-121) in Eq. (2':1}5) and noting that the highér-_
-order terms tend to zero as Ay — 0, we obtain the x-component of V x A:

0A. 04,
(VxA)x=—él—%~ (

Ny

dy 0z
A close examination of Eq. (2-122) wili reveal a cyclic order in x, v, and = and

enable us to write down the y- and z-components of V x A. The entire expression
for the curl of A in Cartesian coordinates is

VxA:a‘(aAu% +a.(OA"—@i pa (PGS 50y
Ay 0z "\ 0z Ix /- Ox oy

Compared to the expression for V- A in Eq. (2-100), that for V x A in Eq. (2-123)
1s morc complicated, as it is expected to be, because it is a vector with three compo-
nents, whereas V - A is a scalar. Fortunately Eq. (2-123) can be remembered rather
easily by arranging it in a determinantal form in the manner of the cross product
exhibited in Eq. (2-43). ‘

a, a, a_
¢ 0 ¢
0x dy 0z
A, A, A

The derivation of V x A in other coordinate systems follows the same procedure.
However, it is more involved because in curvilinear coordinates not only A but also
d¢ changes in Tiagnitude as the integration of A - d¢ is carried out on opposite sides
of a curvilinear rectangle. The expression for V x A in general orthogonal curvi-
linear coordinates (1, uy, uy) is given below.

a,ly - a,h, a,,h;

T o 8 ¢
VxA= < ° <. 2-125
R u, E (2-123)

hyA4, haA, hyA,
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{

It is apparent from Eq (2- 175) tl)ax an operator form cannot be found here for the
symbol V in order to cons1der Y X A a cross product, The expressions of V.x A

in cylindrical and spherlcal coordmates can be easily obtained from Eq. (2-125) by o
using the appropriate u,, u,, fmd q3 and their metric coeﬂﬁcxents hy, hy,and hs. !

Ewmm216SMWmmVxN oif g

a) A =ay(k/r)in cylmdrlccxl cpordmatc° where kiis a cpnshmt or f
b) A =a,f(R) in sphﬂpcal coordmates wherc f(R) w any fux;nmon of the radial :

distance R.
¢ ]
Solution ' . ) :
a) In cylindrical coordinates the following apply: (uy, u,, u3) = (r, ¢, 2D h=1, R
hy =r.and hy = 1. We have, from Eq. (2 -125). (
a, Aur A ' {
*1% ; ol T o
VxA=_i— % %= (2-126) )
?iA, rAs A. N
which yields, for the given A, - ;‘
; . agr 't a a0
[ oo a
VxA=7j'€7 Eaij‘a;g'=0' :’c
Lo k .«
b)-In spherical coordinates the foHowmg apply (u,, Uy, uz) = (R, 0. ) h, =1, ' ' .
h, = R, and h3 = Rsin {. Hence , .
7 ay a,,R :1,,,/{ sin 0
YXA—RZSImG oTcﬁ Z‘% i . 5% ’ (2-127)
i | Ar RA(,?: : I§"sin»§A¢ j ' N
and, for the given A, 4 3 .
vll ag 4R ‘a,Rgin 0 ‘ c('
1y é & woa ,
VASRTRpaR @ |7 5
' JR) Q 0
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A curl-free vector field is called an irrotational or a conservative field. We will
see in the next chapter that an electrostatic field is irrotational (or conservative). The
expressions for V. x A given in Egs. (2-126) and (2-127) for cylindrical and spherical

» coordinates, respectively, will be useful for later reference.

2-9 STOKES'S THEOREM

For a very small differential area As; bounded by a contour C;, the definition of
VxA i;n Eq. (2-113) leads to

.
(V X A)j- (As) = A~ de. (2-128)

In ohtnliung Eq. (2-128), we have taken the dot product of both sides of Eq. (2-113)

with a, As; or As;. For an arbitrary surface S, we can subdivide it into many, say N,

small differential areas. Figure 2-25 shows such a scheme with As; as a typical

differential element. The left side of Eq. (2~128) is the flux of the vector V x A through

the area As;. Adding the contributions of all the differential areas to the flux, we have
N

lim Y (V x A)- (As) = v xayas. (2-129)

Now we sum up the line integrals around the contours of all the differential elements
represented by the right side of Eq. (2-128). Since the common part of the contours
ol two adjiucent clements is traversed in opposite directions by two contours, the net
cotttribution of sl the commuon parts b the interior to the total line integral is zero,
and only the contribution from the external contour C bounding the entire area §
remains after the summation. ’

N
Alsl,-rfOFx (ﬁl A d{)) B fC A-de. (2-130)

Combining Egs. (2-129) and (2-130), we obtain the Stokes’s theorem:

fS(VxA)-ds=9SCA-d£, (2-131)

»

Fig. 2-25 Subdivided area for
proof of Stokes's theorem.
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. G | |
S [ . :
which states that the surfuce mtec{ral of the curl oj'a vector field over an open surface ‘ ~
is equal to the clpsed line integral Q( the vector along the contour bounding the surface. ! T
As with the divergence theorerng the validity of the limiting processes leading to :
the Stokes’s theorem requires that the vector field A, as well as its first derivatives,
exist and be continuous both on S and along C. Stokes § theorem converts a surface
integral of the curl of a vector tq ‘a1 line integrai 01 the vector, and vice versa. Like

the divergence theorem, Stokes’s theorem 1$ an 1mportant identity in vector analysxs . C f;
and we will use it frcquently m establle‘n g other theorems ‘and relations in '
obwrirs nagnetics, o ’ ; . ‘ "
If the surface integral of V x A is cwmed over a closed surface, there will be no '
surface-bounding external contour, and Eq. (2-131) tells us that . F
| fﬁg(V xA) ds=0 ; (2-132) | F:
for any closed surface S. The L.mfnctxy in Fig. 2-25 is chosen deliberately to em-
phasize the fact that a nontrivial application of Stokes's theorem always implies an '
open surface with a rim. The simplest open surface- would be a two-dimensional ) fre
plane or disk with its circumference as the contout. We remind ourselves here that : !
the directions of d€ dnd ds (a,) foHQw the right-hand rule, '
v id:
Example 2-17 Given F = AXYy = a, 2x, verify St‘okes s theorem over a quarter- ex
circular disk with a radius 3 in the first quadrant as was shown in Fig. 2-14 ‘ ve
{Example 2-6). ,,: g as
. St 3
Solution: Let us first find the surfade integral of V x F. From Egq. (2-130),
S ‘ 5 2-10 TW
a, Siag a1, v ;
Ll N I . Tw
d i+ ol :
VXxF=|— e :—#—a,(Z-i—x). n
ox s 0y 1 W
xy . ~2x 0. ;
Therefore, . AN Lo _ 2-101 o
3 ‘J9—y2 ! : j
LWxF*“=ﬁuk (V x F) * (a, dx'dy) ~

!

= ‘I; Eﬁjg"' — Q2+ ) dx] dy /o
i i ‘ - —of
=—fpﬁf_+w yPldy ;
1 FL y: P : (2-
{y 9—y +9s,1n,'1 + y—-——} sur
v}
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Itis unpurtant to use the propc,r timits for the two varlablcs of mu.;:,ratnon We can
interchange the order of i mtegratxon as.

J;(VXF)'ds=f [:J\/‘TT —(2+x)dy]dx.

and get the same result. But it would be quite wrong if the 0 to 3 range were used as
the range of integration for both x and y. (Do you know why?)

For the line integral around 4B0.4 we have already evaluated the part around
the arc from A to B in Examplc 2-6.

FromBto O:x =0, and F - df=F- (n dv)_- —2x dy =0.

- From O to A:y =0,and'F - d¢ = F - (a, dx) = xy dx = 0. Hence,

Sb;B; F-de= J 11€—m9(1+—§>,

from Example 2~6, and Stokes’s theorem is verified.

Of course, Stokes’s theorem has been established in Eq. (2—131) as a general
identity; there is no need to use a particular example to prove it. We worked out the
example above for practice on surface and line integrals. (We note here that both the
vector field and its first spatial derivatives are finite and continuous on the surface
as well us on the contour of interest.) '

2-10 TWO NULL IDENTITIES

2-10.1

Two identities involving repeated del operations are of considerable importance

in the study of electromagnetism, especially when we introduce potential functions.
We shall discuss them separately below.

Identity |

V x (VV) =0 ' (2-133)

In words, the curl of the gradient of any scalar field is identically zero. (The existence
of V and its first derivatives everywhere is implied here.)’

Equation (2—133) can be proved readily in Cartesian coordinates by using £q.
(2-89) for ¥ and performing the indicated operations. In general, if we take the
surface integral of V x (VV) over any surface, the result is equal to the line integral of
VV around the closed path bounding th§ surface, as asserted by Stokes’s theorem:

v xwn)-das= 9Sc (VV)- de. (2-134)
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2-10.2

However, from Eq. (2—81),  ; ’1 :
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(VV) A= dV =}0 | (2-135)
fuae-S,

The combination of Egs. (2-134) and (2-135) states® that the surface mtegral of Vx
(VV') over any surface is zero. The m,tegrand itself must therefore vanish, which leads
to the identity in Eq. (2-133). Since a cqordmate system is ot specified in the deriva-
tion. the 1dentxty is a general qne Ar;d is invariant! thh the choxccs of coordmdtc
systems.’ A

A converse statement Identity I can be madé as fqllows If o soctor field s,

" curl-free, then it can be expressed as the gradient of a scalgr ﬂeld Let a vector ﬁeld

be E. Then, if V x E = 0, we can definie a scalar field' ¥ such that
= —VV. ' (2-136)

S .
The negative sign here is unimportant as far as Identity I is concerned. (It is included
in Eq. (2-136) because this relation conforms with d basic relation between electric
field intensity E and electric scalar potenml V'in electrostatics, which we will take up
in the next chapter. At this stage it is immaterial what E and V represent) We know
from Section 2-8 that a curl-free vector field is a conservative field; hence an irrota-

tional (a conservative) vector ﬁeld can alwa\s be expressed as the gradient of a scalar
freld.

.

Identity Ii

V-(VxA)=0|., C(2-137)
In words, the divergence of the curl of wany vector jtech is Ldenucally zero.

Equation (2-137), too, can pe proved easily j in Cartesian ¢oordinates by using
Eq. (2-89) for V and performing the- indicated operatipns. We can prove it in general

without regard to a coordinate system by taking the- ‘volume integral of V- (V x A)
on the left side. Applying the dlvcrg,cncc theorem, wo hd.V(.

v VxA)du—gg(VxA) ds. (2-138)

Let us choose. for example, the arbltrary volume V encl Josed 'by asurface Sin Fig. 2-26.

. The closed surface S can be splif into two open surfaces, §, and S,, connected by a

common boundary which has begn d‘ra!wn twice as C1 and G,. We then apply Stokes’s
theorem to surface S, bounded by Cl, and surface S‘Z boundcd by C,, and writc the
right side of Eq.(2-138) as s "
s i
SES(VxA)-ds=f (V% A) - -anlds+f (V x A)-a,, ds

¢, A‘d€+§ A dé’ - -139)
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Fig. 2-26 An arbitraty volume ¥
enclosed by surtace S.

The nor~.als a,; and a,, to surfaces S, and $, are cutward normals, and their relations

‘with the path directions of C, and C, follow the right-hand rule. Since the contours,
"C, and C, are, in fact, one and the same common boundary between S, and S,, the

two line integrals on the right side of Eq. (2-139) traverse the same path in opposite
directions. Their sum is therefore zero, and the volume integral of V - (V x A) on the
left side of Eq. (2—-138) vanishes. Because this is true for any arbitrary volume, the
integrand itself must be zero, as indicated by the identity in Eq. (2—-137).

A converse statement of Identity 11 is as follows: If a vector field is divergenceless.
then it can be expressed as the curl of another vector field. Let a vector field be B.
This converse statement asserts that if V- B = 0, we can define a vector field A such
that

B-:VxA, (2~ 140)
ln Section 2-6 we mentioned that a divergenceless ficld is also called a solenoidal
ficld. Solenoidal fickds are not associated with flow sources or sinks. The net outward
flux of a solenoidal ficld through any closed surface is zero, and the Hlux lines ciose
upon themselves. We are reminded of the circling magnetic flux lines of a solenoid
or an inductor. As we will see in Chapter 6, magnetic flux density B is solenoidal

and can be expressed as the curl of another vector field called magnetic vector
potential A.

HELMHOLTZ’S THEOREM

In previous sections we mentioned that a divergenceless field is solenoidal, and a
curl-free field is irrotational. We may classify vector fields in accordance with their
being solenoidal and/or irrotational. A vector field F is

1. Solenoidal and irrotational if
_ - V:F=0  and V x F =0.
Example: A statie eleetrie tield in a charge-lree region,
‘2. Solenoidal but not irrotational if
V-F=0 ‘and VxF#0.

Example: A steady magnetic field in a current-carrying conductor.

.
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3. Irrotational but not solenoidal if .
VxF=0 and ~V-F#0

Example: A static electric field in a charged region.
4. Neither solenoidal nor irrotational if ",

oo L
V-F#0 anl Vxip#0.
Example: Anelectricfield inp e pged meding with a vpre-vgrying magaetic feld.

The most general vector field then has both-a nonzero divergence and a nonzero curl,
and can be considered as the sum ol 4 solevoidal ficld and an irrotational field.

Helmholt='s Theorem: A vector field (vector point Junctipn) is determined to
within an additive constant if both its divergence and its curl are specified everywhere.
In an unbounded region we assume that both the divergence and the curl of the
vector field vanish at infinity. If the vector field is confined within a region bounded
by a surface, then it is determined if its divergence and curl throughout*the region,
as well as the normal component of the vector over the boundmg surface, are given.
Here we assume that the vector function is smgle-valued dnd that its derivatives are
finite and continuous. :

Helmholtz's thecorem can be proved as a mdlhcmallcdl 1hc.orcm in a general way'
For our purposes, we remind Qursqlves (sce Section 2- 8) that the d1vergence of a
vector is a measure of the strength of the flow source and -that the curl of a vector is
a measure of the strength of the yortex source. When the strengths of both the flow
source and the vortex source arg specxﬁed we expect that the vector field will be

determined. Thus, we can decompose a’ general vector ﬁeld F into‘an irrotational
part F; and a solenoidal part F,: :

~|“.~

F= F,,_+ F,, L (2-141)
with i
VxF:=0 } (2-142a)
V' F.%g [T (2-142b)
and ‘ ' .
V-F,=0 . . (2—143a)
VxF,=G, s (2-143b)
where g and G are assumed to be known;' We have e
V-F=V:F,=¢ P (2-144)
and ! ‘J ’ l :
' VxF=VxF =G L | (2-145)

Helmhaltz's theorem asserts that when ¢ and G aTe specified. the vector fuaction F

’

B f ‘e

* See. for instance. G. Ariken. Mathematical \I erh_(;af's jor Physicists, A;;’ad‘emié Press (1966). Section 1.13.
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is determined. Since V- and V x are differential operators, F must be obtained by
integrating g and G in some manner, which will lead to constants of integration. The
determination of these additive constants requires the knowledge of some boundary
conditions. The procedure for obtaining F from given g and G is not obvious at this
time; it will be developed in stages in later chapters.

The fact that F; is irrotational enables us to define a scalar (potential) function
V, in view of identity (2-133), such that

F,= —VV. BZ146)

Similarly, identify (2-137) and Eq. (2—143a) allow the definition of a vecior (potential)
function A such that :

.=V xA. C o 2-147)

Helmholtz's theorem states that a general vector function F can be written as the

. sum of the gradient of a scalar function and the curl of a vector function. Thus,

= —VV+VxA. (2-148)

In following chapters we will rely on Helmholtz's theorem as a basic element in
the axiomatic development of electromagnetism.

Example 2-18 Given a vector function
o= 3y - epm voade,y 25—,y ¥ 2).

a) Delermine the constants ¢, ¢,, and ¢; if ¥ is irrotational.

~ b) Determine the scalar potential function V whose negative gradient equals F.

Solution
a) For F to be irrotational, V x F = 0; that is,

a, a, a.
0 0 ¢
VxF=|— = =
X ay cz

3y —¢;z Cyx — 2z —{¢3y + o)

=a—~c;+2) —a,c, +ac; —3)=0.
Each-eomponent of V x F must vanish. Hence, ¢, = 0, ¢y =3,and ¢3 = 2.
b) Since F is irrotational, it can be expressed as the negative gradient of a scalar
function ¥: that is,
eV oV v
F=-VV=—-a,-——a,——a_ —
*ox Yoy TFoz

= a3y + a,(3x — 2z) — a,(2y + z).
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Three equations are obtaineg: R a : : ‘ K
' ; : e . » R
ov' " :
s —3y ; . (2-149) R
Py b : . R
—= =3x+2z } (2—-150) ‘ B
ﬁy ' S oL
6V : i
AT 2v+ EIE T S 2151y R
oz ' .
_ v d
Integrating Eq. (2-149) partially with respect to x, we have - R
V= =3+ Al (2-152) R
where fi{y. 2) is a function of y dlld zyet 1o be determined. Similarly, integrating N\
Eq. (2- 150) with respect to y and hq (2-151) w1Lh respect to-z leads to ‘R
V= —=3xy+ 2yz + fo( x,iz) (2-153) -
and .
. :2 ’
V =12yz .+ =+ filx, ). (2-154)
: R.
Examination of Egs. (2-152), (2— 153) and (2~ 154\ enables us to write the scalar R
potential function as '
. L. 2% o R.
= —3xy+ 2yr + —. 2-155
¥ +2yz + T o ( ) R
Any constant added to Eq. (2—-155) would still mike Van answer. The constant R.
1s to be determined by a boundary‘condition or the congition at infinity. R.
: a S i
1 l{
REVIEW QUESTIONS ‘ ' ; : X R.
R.2-1 Threc vectors A, B, and C, drqwn ina hc 1d-to-tail fmhlon fprm three eldcs of a triangle. R
WhatisA + B+C?A +B—C? O ‘ R
[ [ o R
R.2-2  Under what conditions can the dot product of two vgctors be negative? —R
R.2-3  Write down the results of A - B arid/A x B if (a) A B, and {p)A L B. R
R.2-4 Which of the following produg:ts of vectors do not ma,kc sense” Explam : R
a){(A-B)x C b) A(B - C);;' . o .
) AxBxC d AB I R.

¢ Aa, "HAxP-C T ' fu
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R.2-5 Is(A-B)Cequalto A(B- C)?
R2-6 DoesA-B = A - Cimply B = C? Explain.
R.2-7 Does A x B=A x Cimply B = C? Explain.

R.2-8 Given two vectors A and B, how do you find (a) the component of A in the direction of
B and (b) the component of B in the direction of A?

R.2-9 What makes a coordinate system (a) orthogonal? (b) curvilinear? and (c) right-handed?

R.2-16 Given a vector F in orthogonal curv;lmear coordinates (uy, u,, u;), explain how to
determins (a) F and (b) a,.

R.2-11 What are metiic coeflicicuts 7

"R.2-12 Given two points P,(1, 2, 3} and P,(—1,0, 2) in Cartesian coordinates, write the expres-

sions of the vectors I’ P,y md 1’ I’

R.2-13 What are the expressions for A - B and A x B in Cartesian coordinates?
R.2-14 What are the values of the following dot products of base vectors?

), b) a, - a,
¢) ay-a, d) ag - a
e) ag- a, fy a,-a,

R.2-15 What is the physical definition of the gradicnt of a scalar field?

R.2-16 Express the space rate of change of a scalar in a given dircction in terms of its gradient.
R.2-17 What does the del operator V stand for in Cartesian coordinates?

R.2-18 What is the physical definition of the divergence of a vector field?

R.2-19 A vector field with only radial flux lines cannot be solenoidal. True or false? Explain.

R.2-20 A vector field with only curved fiux lines can have a nonzero dlvergence True or false?
Explain.

R.2-21 State the divergence theorem in words.

R.2-22 What is the physical definition of the curl of a vector field?

R.2-23 A vector field with only curved (lux lines cannot be irrotational, True or false? Explain.
R.2-24 A vector field with only straight flux lines can be solenoidal. True or false? Explain.
R.2-25 State Stokes’s theorem in words.

R.2-26 What is the difference between an irrotational field and a solenoidal field?

R.2-27 Stale Helmholts theorem in words,

R.2-28 Explain how a ﬂeneral vector functiorr can be expressed in terms of a scalar potential
function and a vector potential function.
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P2-1 Given three vectors A, B, and C ;j_lérfollows,

A=a,+a2—2a3

B="—ad +a,
. C =p15 - 3:2, H
find o S b
a) a, o b) |A —Bj
QA-B. T 4) 0.5
¢) the component of A in the djrection of C ) A x C
2) A-(Bx Cand(A x' B)-C : I ( AxB));CandAx(BxC)

P.2-2  The three corners of a triangle arg‘at P{0. 1. —=2), Py(4, 1, —3), and P46, 2, 5).
a) Determine whether AP P.1P is o right trinngle.
b) Find the area of the triangle,

P.2-3 Show that the two diagonals of a rhombus are perpendxcular to each.other. (A rhombus
is an equilateral parallelogram.) :

P.2-4 Showthat,iffA-B=A" CandA >¢ B=AxC_, whereA is pot a null vector, then B ='C.

P.2-5 Unit vectors a, and a, denote the directions of two dlmepsmnal vectors A angd B that
make angles « and f, respectively, with a téference x-axis, as shown i n Fig.2-27. Obtain a formula

for the expansion of the cosine of the dlﬁerence of two angles cos(ac - [i) by taking the scalar
product a, - a,, . ;

i

Fig. 2-37 Graphfor ! °@
Problem P.2--5,

> X

>
- ¢
P.2-6 Prove the law of sines for a trmnvlc

N )

*P.2-7 Prove that an angle mscrlbeq ina §emlclrcle isa rlght angle

P.2-8 Verify the back-cab rule of the vqctor tnple product of fhree vectors, as expressed in
Eq. (2-20) in Cartesian coordmates

St 5\ ’ ',

P.2-9 An unknown vector can be determmed if both its scalar product and its vector product -

with g known vector are givén, Assummg A is a known vector determine the unknown vector
X if both p and P are given, where p=A- X and P=A x K

P.2-10 Find the component of the vectan = -—a;z+ a-y at the point P,(0, —2, 3), which is "

directed toward the point P, \/ 3. —60c })

]
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P.2-11 The position of a pbint in cylindrical coordinates is specified by (4, 2r/3, 3). What is the
location of the point

a) in Cartesian coordinates?
b) in spherical coordinates?
P.2-12 A ficld is expressed in spherical coordinates by E = a,(25/R?).
a) Find |[E| and E, at the point P(—3,4, —5).
b) Find the angle which E makes with the vector B = 2,2 — 2,2 + a,.

P.2-13 Express the base vcctors ag, a,, and a, of a spherical coordinate system in Cartesian
coordinates.

P.2-14 Given a vector function E -\—Qva-fy;rsr-ayx, evaluate the scalar line integral § E - J€ from -

P21, — D)o P8, 2, =1)

a) along the parabola x = 2y?,
b) along the straight line joining the two points.
Is this E a conservative field?

P.2-15 For the E of Problem P.2-14, evaluate j E- d¢from P4(3,4, —1) to P4, —3, — i) by
converting both E and the positions of P; and P, into cylindrical coordinates. .

. N
V=<sm5x><bm§y>e 5

a) the magnitude and the direction of the maximum rate of increase of V at the point
P(1,2,3),

b) the rate of increase of V at P in the direction of the origin.

P.2-17 Evaluate

P.2-16 Given a scalar function

determine
»

955 (ag3 sin 6) - ds
over the surface of a sphere of a radius 5 centered at the origin

P.2-18 For a scalar function f and a vector function A, prove

» V-(JA)=fV-A+A-Vf
in Cartesian coordinates.

P.2-19 For vector function A = a,r* + a,2z, verify the divergence theorem for the circular
cylindrical region enclosed by r = 5,z = 0, and z = 4.
i

P.2-20 For the vector function F = aky/r + ak,z given in Example 2-7 evaluate | V - F dv over
the volume specified in that example. Explain why the divergence theorem fails here,
P.2-21 A vector field D = acos?p)/R? exists in the region between two spherical shells defined
by R =1 and R = 2. Evaluate .

2) $D-ds

b) {V-Ddv
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. é 3/(
; :

.
P.2-22 A radial vector field is rcprcsented by F = ap f(R) (R What do we know about the function
SR)ifV-F =02 , :
P.2-23 For two differentiable vector fﬁnctions A and H, prove

) : V(AxH)‘— “(Vx A)—E-(Vx A).
P.2-24 Assume the vector functxop A =1aJlx?? ~ ayx yi. : T "

2) Find § A - d¢around the tpangular contour shown in F i«g 2 28
b) Evaluate | (V- A) - ds over the triangular area, | R
RS . ©) Can A'beexpressed as the gradient of a scalar? Explam

. I3-1 IN

. Fig. 2-28 Graph for
g Problem P.2-24,

P.2-25 Given the vector function A = a,,, sin(¢/2), verify Stokes’s theorem over the hemispherical ‘ .
surface and its circular contour that are shown in Fig. 2~ 79 -

Fig.2~29 Graph for:
Problem P.2-25, ’

— e~ e

" P.2-26 For a scalar functlon S anda vector function G, prove

Vx(fc) foG+(Vf)xG f T
in Cartesian coordinates, "": C . ' o

P2-27 Verify the null identities o , . ;
. a) Vx (VV)=0 n ' T ' :
b) V-(VxA)=0 . . . : '

by expansion in general orthogonal ’cur\iilinear coordinates.’

— e e et 'n
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3-1 N1 KUUUCTION

In Scction 1-2 we mentioned that three essential steps are involved in constructing a
deductive theory for the study of a scientific subject. They are the definition of basic
quantities, the development of rules of operation, and the postulation of fundamental
relations. We have defined the source and ficld quantities for the clectromagnetic
model in Chapter | and developed the fundamentals of vector algebra and vector
calculus in Chapter 2. We are now ready to introduce the fundamental postulates for
the study of source-field relationships in electrostatics. In electrostatics, electric
charges (the sources) are at rest, and clectric fields do not change with time. There are
no magnetic lickds; henee we deal with a relatively simple situation. After we have
studied the behavior of static electric ficlds and mastered the techniques for solving
clectrostatic boundary-value problems, we will then go on to the subject of magnetic
fields and time-varying electromagnetic fields.

The development of electrostatics in elementary physics usually begins with the
experimental Coulomb’s law (formulated in 1785) for the force between two point
charges. This law states that the force between two charged bodies, ¢, and ¢, that

-are very small compared with the distance of separation, R,,, is proportional to the .

product of the charges and inversely proportional to the square of the distance. the
direction of the force being along the line connecting the charges. In addition, Cou-
lomb found that unlike charges attract and like charges repel cach other. Using vector
notation, Coulomb’s law can be written mathematically as

414>

Fi, =ag k ?%—2’ (:j‘l)

T~
where F, is the vector force exerted.by ¢, on ¢,, 2, , is a unit vector in the direction
from ¢ 1o ¢, and & iy & proportionality constant depending on the medium and the
system of units, Note that if ¢, and ¢, arc of the same sign (both positive or both
negative), |, is positive {repulsive); and if g, and ¢, are of opposite signs, F, is
negative (attractive). Electrostatics can proceed from Coulomb’s law to define electric
field intensity E, electric scalar potential, V, and electric flux density, D, and then lead
to Gauss’s law and other relations. This approach has been accepted as “logical,”

65
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perhaps because it begins with an pxpenmental laW obseyved in a laboratory and
not with some abstract postulates. ;

We maintain, however, thaj Coulomb’s law, though based on experimental
evidence, is in fact also a postulate. Consider the two'stipulations of Coulomb’s law:
that the charged bodies be very Small compdred w1tq the djstance of separation and
that the force is inversely propoftlonal to the square of the distance. The question
arises regarding the first stipulation} How small must the charged bodies be in order
to be considered “very small” Qompared to the distahce? In pmctlce the charged
bodies cannot be of vanishing sjzes.(ideal point charges), and there is difficulty in
determining the “true” distance between two bodies of finjte dimensions. For given
body sizes. the relative accuracy in distance measurements is better.when the separa-
tion is larger. However, practical considerations (weakness of force, existence of
extraneous charged bodies, etc.) restrict the usable distapce of separation in the
laboratory, and experimenital ingecuracies cannot beentirely avoided. This leads to
a more important question concerning the inverse-square relation of the second
stipulation. Even if the charged bodies are of vanishing sizas, expérimental measure-
ments cannot be of infinite accuracy, no matter how: skillful and careful an experi-
mentor is. How then was it possiple for Coulomb to know that the force was exactly
inversely proportional to the square (not the 2.000001th- or'the 1.999999th power) of
the distance of separation? "This question cannot be answered from an experimental
viewpoint because it is not likely that during Coulomb’s time experiments could
have been accurate to the seventh place We must therefore conclude that Coulomb's
law is itsell a postulate and that the exact relation stipulated by Eq. (3~1) is a law of
nature discovered and assumed by Coulomb on the bams of his' experiments of

limited accuracy. i o I

Instead of following the: his;oncal development .of electrostatxcs we introduce
the subject by postulating both’ the divergence and the curl. .of the electric field inten-
sity in free space. From Helmholtz S theorem in Section 2— ,11 we know that a vector
field is determined if its dlvergenqe and curl are spec1ﬁed We derive Gauss’s law and
Coulomb’s law from the dlvergence and curl relatiohs, and do net: present them as
separate postulates. The conceptof scalar potential follow nutumlly from a vector
identity. Field behaviors in materia} medld will be studied and’ expressmns for elec-
trostatic energy and forces will be deve]oped (.

}
¢ %

i
b
|

We start the study of electroma netlsm with the conslderanon of electric fields due

. to stationary (static) electric charges 111 free space. Electrostatxcs in free space is the -

Y

.
i . L

! The exponent on the distance in Coulomb’s’ Iaw has been verlﬁéd by an mdlrect gxperiment to be 2 to

within one part in 10!%. {See E. R. Wllha{ns J,E Faller, and H. ApHall P/Iys Rev. Letter? vol. 26, 1971,

. p.721)
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simplest\spccial case of electromagnetics. We need only consider one of the four
fundamental vector field quantities of the electromagnetic model discussed in Section
12, namely, the electric field intensity, E. Furthermore, only the permittivity of free
space €, of the three universal constants mentioned in Section 1-3 enters into our
formulation.

Electric field intensity is defined as the force per unit charge that a very small

stationary. test charge experiences when it is placed in a region where an electric
field exists. That is,

E = 1im»qF; (V/m). (3-2)

q-0 (

" The electric field intensity ¥ ic than. vroportional to and in the direction of the force

e . \ . N L.
FATE is measured in newtons'(N) and charge g i coulombs (C), then E is in newtons

per coulomb (N/C), which is the same as volts per meter (V/m). The test charge ¢,
of course, cannot be zero in practice; as a matter of fact, it cannot be less than the
charge on an electron. However, the finiteness of the test charge would not make the
measured E differ appreciably from its calculated value if the test charge is small
enough not to disturb the charge distribution of the source. An inverse relation of
Eq. (3-2) gives the force, F, on a stationary charge ¢ in an electric field E:

F=qgE (N).| (3-3)

The two fundamental postulutes of clectrostatics in frec space specify the
divergence and curl of E. They are

v-E=Z (3-4)
€
and
VxE=0. (3-5)

In Eq. (3-4), p is the volume charge density (C/m?), and €, is the permittivity of
free space, a universal constant.! Equation (3—5) asserts that staric electric fields are
irrotationdat~whercas Eq. (3-4) implies that a static clectric fictd is m%i!_ solenoidal
unless p = 0. These two postulates arc concise, simple, and independent of any
coordinate system; and they can be used to derive all other relations, laws, and
theorems in electrostatics! Such iy the beuuty of the deductive, axiomatic approuch.

¢

| .
! The permittivity of free space 5 e x 107? (F/m). See Eq. (1-11).
. 2
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Equations (3—4) and (3-5) arg pomt relations; that is, the)g;hold at every point
in space. They are referred to as thq diffetential form of the pastulates of electrostatics,
since both divergence and curl operat1ons involve spatial derivatives. In practical
applications we are usually interested in the total field ofdn aggregate or a distribution
of charges. This is more convemcntly ‘obtained by an integral form of Eq. (3-4).
Taking the volume integral of both sides of Eq. (3 4} over,an arbltrary volume V
we have P

V EdL_—f pdv ~ o (3-6)

In view of the dlvergence theorem in Eq. (2-- 104) Eq. (3 6) becomes

2

}'2 Fods o] - : (7

Co

gy

where Q is the total charge contained’in volume V bounded by “siirface S. Equa-
tion (3—-7) is a form of Gauss's law, which states that.the tptal outward flux of the
electric field intensity over any closed surface in free space is equal to the total charge
enclosed in the surfuce divided by €4. Gauss’s law is one ¢f the most important relations
in electrostatics. We will discuss it fu:lher in Su,tlon 3 -4, along with illustrative
examples.

An integral form can also be obtamed for the curl reglation in Eq. (3-5) by
integrating V x E over an open s surface and invoking Stokes s theorem as expressed

in Eq. (2-131). We have R i

955’\'5;-(16:0. o (3-8)

i
i

J

,‘

¥

Loa

The line integral is performed over a clgsed contour C; boundmg an arbitrary surface;
hence C is itsclf arbitrary. As a matter‘ of fact, the surface.does not even enter into
Eq. (3-8), which asserts that the s;alar line integral of gthe static electric field intensity
around any closed path vanishes. Thls is.simply anothe{ way of saying that E is irrota-
tional or conservative, Rt.fu rm(y ‘to Fw 3- —l we seg;that ff the scalar line integral
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o ah SA

~of

or

or

Ec
pe
fli.
av
of

T oe

3-3 Cou

We
aft
N we
. Che
{ 3;1(
Fxg

or




ry point -
ostatics, *~
yractical S
-ribution = " n
LG4
lume V,

(2-6)

. Lqua-
: (‘77'. the
’ 1}
Doth
Sl

sSLrdtive

5) by
pressed

(3_8) . :

surfuce: -0
er into
wensity
s ITrola-
integral

_Equation (3-11) says that the scalar ling inrearal of the irrotational E ficld is
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of E over the arbitrary closed contour C 1C5 is zero, then

[ E-ae+ fcz E-d¢=0 : (3-9)
or * ’ :
f:z E-df = — P”‘ E - deé (3-10)
Along C, Along C,
or
Pz Py
fp, E-dé’:fpl E-de. , (3-11)
Along C, Along C,

i
pendent of the pathy it depends.only on the end points. As we shall see in Section 3 5,
the integral in Eq. (3—11) represents the work done by the electric field in moving
a unit charge from point P, to point P,; hence Eqs. (3--8) and (3 -9} imply a statement
of conservation of work or energy in an electrostatic field.

The two fundamental postulates of electrostatics in free space are repeated below
because they form the foundation upon which we build the structure of clectrostatics,

Postulates of Electrostatics in Free Space
Diffcrential Form - Integral Form
V-E= £— . E-ds = 2

€9 S €5

VxE=0 SBCE~d€=O

3-3 COULOMB’S LAW

We consider the simplest possible electrostatic problem of a single point charge, g
at rest in a boundless free space. In order to find the electric ficld intensity due to ¢,
we draw a hypothetical spherical surface of a radius R centered at g. Since a point
charge has no preferred directions, its electric field must be everywhere radial and
has the same intensity at all points on the spherical surface. Applying Eq. (3-7) 10

IFig. 3-2(a), we have

. T 4
gpsls cds = g;s(aRl:R) cagds =€—0
or . ‘ .

Eg 955 ds = Ex(4nR?) = %

.




70 STATIC ELECTRIC FIELDS /3

C

z1k EY
///’_ \\\? //’ R\ ~
/s / Ve
/ \ ‘ R - R\
/ Rz N /- \
/ ’ \ / \
{ ('aR ‘ 3 R B afIP ‘
| i / \" LR /
\ / AL .
\ / 0 7
N\ / \ /
~ e : AN /S
\\‘-__// x \\\-_‘//
(a) Point charge at the origin, ~(b) Point charge not at the origjn.
Fig, 3-2  Flectrie field intensity dpe (oo point charpe, .
Therefore,
——
E=agEp=az—— (V/m). (3-12)
* ' . 47'(60R . . .

Equation (3~12) tells us that the electric field intensity of a point charge is in the
outward radial direction and hqs a magnitude proportional to the charge and inversely
proportional to the square of the distance from the charge. This is a very important
basic formula in electrostatics, It Is readily verlﬁed that V x E = 0 for the E given in
Eq. (3-12).

Il the charge ¢ is not located at the origin of a chosc.n coordinate system, suitable
changes should be made to the unitvector az and the distapce R to reflect the locations
of the charge and of the point at whxch E is to be determined. Let the position vector

of ¢ be R" and that of a field pomt P. be R, as shown in Fu, 3- 2(b) Then, from
Eq. (3-12), ,

rd

Ep = ;a

q o
—r, 3-13
T 4ne]R — R ( )
where a, is the unit vector drawnl-ffom gtoP, Sirice‘
n E R-R ‘ R
we have . \ . R |
: * ' q(R _ R’) - :
E e 2 =7 V/m). 3-15
P~ 4néR — R’ __c, /m] G-

->—

Example 3-1 Determme the elecfrlc field mtensnv at P(=~0.2,0, —2.3) due to a
point charge of +5 (nC) at Q(O 2, 01 —2.5) in air. All dimensions are in meters.

TN
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Solution: ~ The position vector for the field point P
R=0P= —a,02-2,23.
.The positioﬂ- vector for the point charge Q is
R' =00 = 2,02 +2a,0.1 —a.25.
The difference is
R-R = —2,04—a01+2a02,

which has a magnitude

) SRR = [(—v4)P + (-0, 1) +(0.2)*]? = 0458  (m).

: Substltutmg in Eq. (3-15), we obtain

e 1 \oR-R)
7 \dne,) R~ RP
5x107°

= (9 x 10" 0ase (=204 —2a,01 +2.0.2)

= 214.5(~2a,0.873 — a,0.218 + a.0.437) (V/m).
The quantity within the parentheses is the unit vector ag, = (R — R)/|R — R'|,
and Ep has o magoitude of 20405 (V).

Note: The permittivity of air is essentially the same as that of the free space.
The factor 1/(4ne,) appears very frequently in electrostatics. From Eq. (1-11) we
know that €, = 1/(c?uo). But py = 47 x 1077 (H/m) in SI units; so

1 pec?
47[50 - 477:

=10"7¢? (m/F) . (3-16)
exactly. If we use the approximate value ¢ =3 x 10® (my/s), then 1/(drep) =9 x 10° (m/F).
When a point charge ¢, is placed in the field of another point charge ¢, at the

origin, a force IF,, is experienced by ¢, due to electric field intensity E,, of ¢, at ¢,.
Combining Eqgs. (3-3) and (3-12), we have

\\

9192

F 3 = E 5=4a 5
12 = 4283 R4n_€0R_

(N). (3-17)

v

Equationq3~17) is a mathematical form of Coulomb’s law alrcady stated in Section 31
in conjunction with Eq. (3-1). Note that the exponent on R is exactly 2, which is a
consequence of the fundamental postulate Eq. (3—4). In SI units the proportionality
constant k equals 1/(4n¢y), and the force is in newtons (N).
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Screen

Deflection -

do .
_J "0y L “ l »2
e v [ j N .
Cathode 0T ¥¥op, > |
w

Fig. 3-3 Electrostatic deflection system’of a cathode-ray -
oscillograph (Fxample 3-2),

Example 3-2 The electrostatjc defiection system of a cathode-ray oscillograph is
depicted in Fig. 3-3. Electrons from a heated cathode are given an initial velocity
Vo = a.Uy by a positively charged anode (not shown). The electrons enter at z =

into a region of deflection plates where a uniform electric field E; = — a E, is main-
tained over a width w. Ignoring gravitational effects, find the vertical deflection of the
electrons on the fluorescent screen.at = = L. .

Solution: Since there is no force in the z-direction in the z > 0 region, the horizontal
velocity v, is maintained. The field .E, exerts a force on the electrons each carrying
a charge — e, causing a deflection in the y direction.

F = (—e)E, = a,¢E,.

From Newton'’s second law of motion in the vertical direction, we have

dv,
m —2 = ¢E,,
. dt ¢
where m is the mass of an clectroq.;lplcgrating hoth. sides, we obtain
cidy e :
vy=-—=—E;t
Yoode om d’r.

where the constant of mtegrauon 1s sct to zero bncduse v) =0 at r = 0. Integrating
again, we have

b,

Y= — E [2.
y 2m * , .
The constant of integration iy again zero because y = 0 at t = 0. Note that the
electrons have a parabolic trajectpry between thc deﬂectlon plates.

At the exit from the deflection pla;es, t = w,,

3-2 E
Discrate

o

i@}

Ll el



When the electrons reach the screen they have traveled a further horizontal distance

of (L — w) which takes (L — w)/v, seconds. During that time there is an additional
vertical deflection

: L—w eE, w(L — w)
d2=vy1<—————->=——"—i————l-

Yo m v%

Hence the deflection at the screen is

. o eE, w
T o dy=dy +dy = —wlL-Z)
0 ! 2T mud < 2)
araph is : . .
velocity ) 3-3.1 Electric Field due to a System of -
at = =0 Discrete Charges
i “(\7“ » . Suppose an clectrostatic ficld is created by a group of n discrete point charges ¢4,
mofrhe 43, - - - 4, located at different positions. Since electric field intensity is a linear funci lon
X of (proportional to) azq/R?, the principle of superposition applies, and the total E
_ . field at a point is the vector sum of the fields caused by all the individual char:es.
rizontal From Eq. (3--15) we cun write the clectric itensity at a field point whose posit on
carrving . vector is R as :
1 v qR - R;
E = R ~ Ry (3-18)
4re, R — R}
k=1
Although Eq. (3-18) is a succinct expression, it is somewhat inconvenient to use,
because of the need to add vectors of different magnitudes and directions.
Let us consider the simple case of an electric dipole that consists of a pair of equal
H and opposite charges, +q and —g, separated by a small distance, d, as showr. in
Fig. 3~4. Let the center of the dipole coincide with the origin of a spherical coordinate
system. Then the E field at the point P is the sum of the contributions due to +gq
cgrating . za
- i

thit -

Fig. 3-4 Electric field of a
dipole.
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and —g. Thus, .
d

S .
R = = R+ =
q ji+ 2 L2
E=-2q 2 __ .20 (3-19)
47[.60 -R ﬂ R + ﬂ :
: o2 2
The first term on the right side of Eﬁ.§(3—19) can be éimpliﬁeci ifd « R. We write

R -3

i 1% .
-3 . d vod =3/2 "
-

277-3/2
=[R2—R d+d}

4

~ | l R d o

== - [\‘- \
- 3R: d

~ R 1 , -2
L [: T3 2 R2 :l ‘\\~ (3 O)

where the binomial expansion has been used and all terms containing the second
and higher powers of (d/R) have beer neglected. Slmllarly, for the second term on
the right side of Eq. (3-19), we have' :

=3 ‘ 3R-d
_3 ]
:R 1——2—““2 (.)—21)

’R 4
Substitution of Egs. (3-20) and (3- 21)\1n Eq. (3-19) leads fo

2

E~—'4—[ R dR d] ' (3-22)
471:qu :

The derivation and imcrprotatmp of Fq. (3»—22) require the manipulation of
vector guantitics. We can appreciate that determining the clectric field caused by
three or more discrete charges willthe even more tedious, In Section 35 we will
introduce the concept of a scalar ¢léctric potential, witl) which the ¢lectric ficld
intensity caused by a distribution of ’chargcs can be found more easily.

The electric dipole is an 1mporfant entity in tHe study of the electric field in
dielectric media. We define the product of the chdrge q ang the vector d (going from

~—g and +q) as the electric dzpoie nw)ment p:

p=qd. . (3-23)

Equation (3-22) can then be rewrltten as

R i
3-24
E 47(603&3 [ Rz R pjl . ( i )
where the approximate sign (~) ov_eg ',the equal sjgn has been left out for simplicity.
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If the dipole lies along the z-axis as in Fig. 3—4, then (see Eq.2-77)

1

L. B . P =2p=p(agcos 6 — a,sin ) . (3-25)
: R:p=Rpcos, (3-26)
and Eq. (3-24) becomes
= dre R3 (ag 2 cos 6 + a, sin 6) (V/m). (3-27)
- T€g :

i .
Equation (3-27) gives the electric field intensity of an electric dipole in spherical
coordinates. We see that E of a dipole is inversely propottional to the cube of the
distance R. This is reasonable because as R increases, the fields due to the closely
spaced +¢ and —¢ tend to cancel each other more completely, thus decreasing more
rapidly than that of a single point charge.

3-3.2 Electric Field due to a Continuous
Distribution of Charge

The electric field caused by a continuous distribution of charge can be obtained by
integrating (sgperposing) the contribution of an element of charge over the charge
distribution. Refer to Fig, 35, where a volume charge distribution is shown. The
valomie chavge denmity p (Cinty is o funiction of the coordimates, Sinee a dillerential
clement of charge behaves like a point charge, the contribution of the charge p Ao’
in a differential volume element dv’ to the electric field intensity at the field point P is

- _ . pav < A
i dE = ag —-———4MOR2- (3-28)
We have
—_ 1 p ’ 2700
E ~4T[€0 f ’aR}z*sz (V/m), (3-29)

v

Fig. 3-5  Electric field due to
a continuous charge distribution.
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or, since ap = R/R, . S )

TR | ‘ |
=Z;€;j'y,pﬁdu HV/m). (3-30)

T

IRy

- Except for some espeCIally 51mple cases the vector trlple iitegral in Eq. (3-29) or

Eq. (3-30) 1s difficult to carry out because, in general all‘three quantities in the
integrand (ag, p, and R) change with the location of the differential volume dv'.

If the charge is distributed on asurface with a,_surface charge density p, (C/m?),
then the integration is to be carried out over the surface (not necessarily flat). Thus,

. 1 N
For a line charge, we have ' T
E= [ anBbar v 3-32
—47I€0 RRZ .(/m)a \ (3- )

where p, (C/m) is the line charge ‘density. and L’ the line (not necessarily straight)

along which the charge is dist}fibt’;tfed. {

Example 3-3 Determine the elecmc field mten51tv of an infinitely long, straight.
line charge of a umform den51ty pd m air. 'j'

Solution: Let us assume that the line charge lxc‘s alom, the z’-axis as shown in
Fig. 3-6.(We are perfectly free to do this because llil(. field obviously does not depend
on how we designate the line, It I|\ i accepted codvention to use primed coordinates
Jor source points and unpr unc( ‘coordinates for Sielil poings when there is a possibility
of confusion.) The problem asks us to find the eléctric field intensity at a point P,
which is at a distance r from ;he lme Since the problem has a cylindrical symmetry
(that is, the electric field is mdependent of the azimutly dn"’l&. ¢). it would be most
convenient to work with cylu;drl?a.i coordinates. We xewrlte Eq. (3-32) as

i

T d
*

i R . " .
E—E.‘L,p,ﬁ—gd[ (y/?). (3-33)

For the problem at hand p, is. const;mt and a line §lement df' =dz' is chosen to be at
an arbitrary distance z' from the; orlgln It is most xmportant to remember that R
is the distance vector dlrected frpm the saurce to the ﬁeld point, not the other way

3 .
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Fig. 3-6 An infinitely long
straight-line charge.

around. We have .
R=a,r~a.rz. (3-34)
The electric field, dE, due to the differential line charge element p, d¢' = p, d=' is

prdz ar—az’

1K 5
i dne, (r¥ + /232
=a,dl, +a_, dE,, (3-33)
where
_ prdz e
dE, = dmeo(r? + 2232 (3-332)
and
—p,2 d7 az
e e v s

In Eq. (3-35) we have decomposed dE into its components in the a, and a_ directicns.
[tis easy to see that for every p, dz’ at + 2’ there is a charge element p, dz’ at — =, which
will produce a dE with components dE, and —dE,. Hence the a_ components will
cancel in the integration process, and we only need to integrate the dE, in Eq. (3-35a):

. Pt [ dz’
T~ E = arEr =a, J‘ 3
dnegdw (2 4 232
or

E=a 2~ (v/m). | (3-36)
2neyr ,
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.

Equation (3-36) is an important result for an infinite line ehmgc. Of course, no
physical line charge is infinitcly long; nevertheless, Eq. (3-36) gives the approx1mate
E field of a long straight-line charge at a point close to the ling charge.

Gauss’s law follows directly from the divergence postulate of elect;ostatxcs Eq. (3-4),
by the application of the divergence theorem. It has heen derived in Section 3-2
as Eq. (3-7) and is repeated here on account of its xmportancet

f E-ds=2. (3-37)
S €p

Gauss’s law asserts that the total ounward flux of the Esfield over any closed surface
in free spuce is equal to the total charge enclosed in the surfuce divided by €,. We note
that the surface S can be any hypothetical (mathematical) closed sur face chosen for
convenience: it does not have to be. and usually is not, a physical surface.

Gauss’s law is particularly useful in determining the E-ﬁeld‘ofcharge distributions
with some symmetry conditions, such that the normal component of the electric field
intensity is constant over an enclosed surface. In such cases the surface integral on the
left side of Eq. (3-37) would be very casy to evaluate, and Gauss’s law would be a
much more efficient way for finding the electri¢ field intensity than Egs. (3-29)
through (3-33). On the other hand, when symmetry conditions do not exist. Gauss's
law would not be of much hejp. The essence of applymg Gauss’s law lies first in the
recognition of symmetry condltxons and second in ths: suitable choice of a surface
over which the normal component of E resulting from a given charge distribution
1s a constant. Such a surface js refened to as a Cauwcm surface. This basic principle
was used to obtain By (3 123) far i point charpe that possesses spherical symmetry;

I
- consequently, & proper Guussian wrhu is lht, surfnee! of a sphere centered at the

point charge. Gauss’s law cquld ‘not help in the deuv‘;tlon of Eq. (3-22) or (3-27)

for an electric dipole, since a surfdce about a sepdrdted pair of equal and opposite

charges over which the norrqal component of E’ remams constant was not known.
i

Example 3-4 Use Gauss'slaw to determme the electrlc field intensity of an infinitely

long, straight, line charge of a umform density p,in-air.

Solution: This problem was solved in Example 3 3 by using Eq. (3-32). Since the
line charge is infinitely long, the resultant E ﬁeld, must be radial and perpendicular
to the line charge (E = a,E,), and a component. of E along the line cannot exist.
With the obvious cylindrical symmetry, we construct a'cylindrical Gaussian surface
of a radius r and an arbitrary lenéth L with the line charge as its axis, as shown in

Fig. 3-7. On this surface E, is constant and ds =a,r d¢ dz (from Eq. 2-52a). We

! il
I.; i

b 22 o
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ourse, No -
oroximate v
) ‘ Cylindrical : T
-4 . : Gaussian |* .
: (3-4), & ' surface -1 1<
ition 3-2 2 , ‘ '\\L
13 - X
(3-37) ¥ T Infinitely long
’r : . . uniform line .
charge, py. Fig. 3-7 Applying Gauss's
1 sur ' law to an infinitely long line
‘ 5,""-/( ace R charge (Example 3-4).
We note
wsen for -
b s have
fric peld g) E-ds= f f S dep dz = 2rrLL,.
aloi. . y ) . o ‘
mldlbe . 5 There is no contribution from the top or the bottom-face of the ¢ylinder because on
5 o A the top face ds = a_r dr dip but E has no z-component there, making E <ds = 0.
(3 29)
; . similurty for the hottant faee The tolal chirpge enclosed i the cylinder is Q= oL
it s
wLin the 2 Substitution into Eq. (3-37) gives us immediately
L surface p,L
ribution 2nrLE, €0
principle or
mimetry; ’ 00
-d at the E = arEr =a, .
R 2me or
T (3-27)
opposne This result is, of course, the same as that given in Eq. (3—36), but it is obtained here
known. in a much simpler way. We note that the length, L, of the cylindrical Guassian surface
does not appear in the final expression; hence we could have chosen a cylinder of a
nfinitely unit length.
Example 3-S5 Determine the electric field intensity of an infinite planar charge with
incy” a uniform sutface charge density p,.
adicwar
ot ey Solution:  Ttis clear that the F field cirused by a charged sheet ol an infinite extent is
st faed & tormal to the shecet. Equation (3-31) could be used to find E, but this would involve
oWl in K a double integration between infinite hmlts of a general expressxon of l/R2 Gauss’s
2a). We & law can be used to much advantage here.
Y
i .
A
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Gaussian

surface ‘/‘ - b
' Fig. 3-8 L‘Applying Gauss's

s law to an-infinite planar charge
! (Example 3-5).

)

Infinite uniform
surface charge, p;

We choose as the Gaussian surface a rectangular box with top and bottom faces
of an arbitrary area A equidistant from the planar charge, as shown in Fig. 3-8.
The sides of the box are perpendicular to the charged sheet. If the charged sheet
coincides with the xy-plane, then on the top face,

E-ds=(a.E) (a,ds)= L, ds. -
On the bottom face, . ‘
E-ds=(-a,E,) (—a,ds)=E,ds.
Since there is no contribution from the side faces, we have
565 Erds=2E, [, ds=2E.A.

The total charge enclosed in the box i;s Q = pA. Thérefore',

‘ ZEZA = pSA ) 1
. H . E0
from which we obtain .
‘ :.' Py
E = a E- ='az ) i’ > 0

o 2z 1 ] 260 ‘

and ‘ '
E=—aF -2, i<o. :
A 2€9 oo » : i

Of course, the charged sheet mé,y ,Aot coincide with‘IthYe x:y-pla.ne (in which case we
do not speak in terms of above"ﬁ_d below the plane); bug the E field always points
away from the sheet if p, is positjve, : N '
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Example 3-6 Determine the E field caused by a spherical cloud of electrons with

~a volume charge density p = —p, for 0 < R < b (both p, and b are positive) and

‘

p=0forR>b.

Solution: First we recognize that the given source condition has spherical symmetry.
The proper Gaussian surfaces must therefore be concentric spherical surfaces. We
must find the E field in two regions. Refer to Fig. 3-9. ’

a) 0<R<b

A hypothetical sphefical Gaussian surface S; with R < b is constructed within the
electron cloud. On this surface, E is radial and has a constant magnitude.

E=aE; . .ds=ayds.
The total outward E flux is ) ‘

Sﬁs.- E-ds=Ep | ds=EpnR®.

The total charge enclosed within the Gaussian surface is

Q= fy p dv

ar, .
==, J", (/U 5‘ “/)“-i" R ,

Si

)

|

/

/

/" >Electron
cloud

Eph
0f—= ? —»R
|
| | Fig, 3-9 Blectric hicld intensity
_g_u_b e . . . of 4 spherical electron cloud
€0

(Example 3-6). -

i
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¥ v
: : ; :‘ : :
Substltutlon into Eq (3- 7) ylelds ;
' i . b
E=—~2R3PO‘R OSR<b
)

We sce that within the unjform electron cloud the E field is directed toward the
center and has a magmtude pydportxonal ta thc distance from the center.

b) R>b ‘ » r‘
For this case we construct a pherlcal Gaussmh, surfacc S, with R> b outs1de

the electron cloud. We obtain the same expressxon ot §¢ E - ds as in case (a).
The total charge erclosed i Is !

Q = =f, 4;-:{ b3 .
Conscquently, . ' :
! pob3 3 '
= — : >
E aR 3€0R2 Rz b, T

which follows the inverse squaré law and could have been obtained directly from
Eq. (3-12). We obscrve that autside the charggd cloud the E field is exactly the
same as though the total charge is concentrated on a single point charge at the

center. This is true, in general,; for a sphcrrcally symmemcal charged region cven
though p is a function of R. - R

The variation of E versus R is blotted in Fig, 3 9 Note that the formal solution
of this problem requires only'a few lines. If Gauss s law is not used, it is necessary
(1) to choose a differential volume element arb1trar11y located in the electron cloud,
(2) to express its vector distance Rito a field pomt in 3 chosen coordinate system,
and (3) to perform a triple mtcgration as mdlcdted‘m Eq, (3-29). This is a hopelessly
involved process. The moral is: Tty to apply GJUss s law if symmetry conditions
exist for the given charge dlsmbutmn :

Tyl [

In connection with the null identfty in Eq. (2—130} we poted that a curl-free vector

field could always be expressed as the gradient of a sczziar field. This induces us to .

define a scalar electric potentigl, I/f, such that

: :
‘6 Pal N AN
P

E=-VV |51 . (3-38)

1

s U t o
because scalar quantities are aasiér to handle thad vect(zr quantities. If we can deter-
mine V more easﬂy, then E cap be‘ fbund by a gradient operatlon which is a straight-
forward process in an orthogonal'coordinate systém The reason for the inclusion of
a negative sign in Eq. (3-38) \inll be explained presemly,

u‘

TITTAT. AT

.
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Example 3-6 Determine the E field caused by a spherical cloud of electrons with

‘a volume charge density p = —p, for 0 < R < b (both p, and b are positive) and
p =0 for R >b.

'

Solution' ‘First we recognize that the given source condition has spherical symmetry.
The proper Gaussian surfaces must therefore be concentric spherxcal surfaces. We
must find the E field in two regions. Refer to Fig. 3-9.

a)0<R<b

A hypothetical sphencal Gaussian surface S; with R < b is constructed within the
electron cloud. On this surface, E is radial and has a constant magnitude.

E=axEy, . ds=ayds.
The total outward E flux is . '

) E-ds = Eq fs,- ds = Eq4nR>.
The total charge enclosed within the Gaussian surface is
Q= [, pdv

4r,
= = J‘,‘, do :' --{)".i_ I{J.

/" Electron
~—— cloud

, Vig. 3-9  Electric ficld intensity
R == . o, of a spherical electron cloud
€0 (Example 3-6).
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Electric potential does have physical significance, and it is related to the work
done in carrying a charge from one point to another. In Section 3-2 we defined the

, electric field intensity as the force acting on a unit test charge. Therefore, in moving

a unit charge from point P, to point P, in an electric field, work must be done against
the, field and is equal to

w_ —f“E-de (/Cor V). (3-39)

q Py .

<Many paths may be followed in going from P, to P, . Two such paths are drawn in
Fig. 3-10. Since the path between P, and P, is not specified in Eq. (3-39), the question
naturally arises, iow does (e work depend on the path taken? A little thought wiii
lead 0s to conclude that W/q in Eq. (3-39) should not depend on the path; for, if it’
did, one would be able to go from P, to P, along a path for which W is smaller and
then to come back to P, along another path, achieving a net gain in work or energy.
This would be contrary to the principle of conservation of energy. We have already
alluded to the path-independence nature of the scalar line integral of the irrotational
(conservative) E field when we discussed Eq. (3-8).

Analogous to the concept of potential energy in mechanics, Eq, (3~39) represents

the difference in electric potential energy of a unit charge between point P, and point

P;. Denoting the electric potential energy per unit charge by V, the electric potential,
we have )

Vy ~ V, = — ; E-d¢ (V) (3-40)

Mathematically, Eq. (3-40) can be obtained by substituting Eq. (3-38) in Eq. (3-39).
Thus, in view of Eq. (2-81),

—f: E-de= f: (VV) - (a, df)

Fig. 3-10 Two paths leading
from P, to P, in an clectric.
field.
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Py

+ ¥ g ;
‘ Diréction of . }
increasing V7 ! ) .

- ez ——l 22722277 o Fig. 3-11  Relative directions
. of E and increasing V.

4
¢

P o, ' {

What we have defined in Eq, (3-40) is a potemibl difference (electrostatic voltage)

between points P, and P,. It makes no more sense to talk about the absolute potential

of a point than about the absolute phasc of g phasor ar the absolute altitude of a

geographical location: a referepce 7ero-potential point, a reference zero phase (usually

at == 0), or a reference zerp .|lnlmk (usually at sealevdl) must first be spegified, In

most (but notall) cases, the zero-potential point is taken af infinity. When the reference

sero-potential point is not at mnmly it should bc specifically stated. -~
We want to make two more paints about Eq; (3~ 3R). First, the inclusion of the

negative sign is necessary in ordu‘ to copform with the convention that in going

against the E field the electric potential V increases. For |nstance. when a DC battery ' -

of a voltage V; is connected between two paralle} condugting plates, as in Fig. 311,

positive and negative charges;cumulate, respectively, on the top and bottom plates.

The E field is directed from pdsxme to negative charges while the potential increascs

in the opposite direction. bu,qnd we know from SLuan 2--5 when we defined the

gradient of a scalar field that the dlrectlon of VV'is noxmql to the surfaces of constant

V. Hence, if we use directed ffeld lines or streamlines:to indicate the direction of the

E ficld. they are everywhere perpendlcular to equtpotant:al lines and equipotential ¥
surfaces. oo i' ) 9
P ; ;
3-5.1 Electric Potentialduetoa = ! :
Charge Distribution i) i
The electric potential of 4 point at 4 distance R frofn a point charge g referred to that L <

at infinity, can be obtained rcadxly from Eq. (3—40) i

V="t J" &(ax ) caR da), (3-41) o

which gives : B L

e

ra 1 Lo

q

_9_ 3-42 ;
4meyR ( )

-
(o
) :
T ; x, ; '
This is a scalar quantity and q;pqnds omn, besides q;»only the distance R. The potential
difference between any two pmqts P, and P, 3t dlstaq;es R, and R,, respectively,
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from q is
q 1 1
Vou= Vo, = Vp, =—"— | —— ). 3-43
21 P; Py 47[6() (Rg Rl> (3 )

This result may appear a litte surprising at lirst, since 2, and Py may not lic on the
same radial line through g, as illustrated in Fig. 3-12. However, the concentric circles
(spheres) passing through P, and P, are equipotential lines (surfaces) and Vo, = Vs, is
the same as ¥, — V... From the point of view of Eq. (3 40) we can choose the path
ol integention feom 1) 1o Py and then from P 1o £y, No work is done from ' Lo
Pj because E is perpendicular to d€ = ayR, d¢ along the circular path (E - d¢€ = 0).

The electric potential due to a system of n discrete point charges ¢,, 4,5, ... .4,

located at R, R}, ..., R} is, by superposition, the sum of the potentials due to the
individual charges:

1 ¢ 0 A
- . 44
v 4ne, ; R — R} G-

Since this is a scalar sum, it is, in general, easier to determine E by taking the negative
gradient of V than from the vector sum in Eq. (3-18) directly.

As an example, let us again consider an electric dipole consisting of charges +¢
and —g with a small separation d. The distances from the charges to a field point P are

~ designated R, and R_, as shown in Fig. 3-13. The potential at P can be written down
Cdirectly: - : '

a1 . <
f d‘<ﬁ< R, we have o ) o .
1 ‘~’ 4 -1 -t .d ' ,
E::(R—gcos 9) ~R (1 +§—Ecos 9> (3-46)




v,
:'Fig. 3-13 (An elggtric dipole.

T

and B
L o R+dcos'a _l~ l cos0 (3-47)
R— — 2 oY = ~
Substitution of Lgs. (3-40) and (3 ~4?) in Ly, ( )glvw
.V:—- qd cos @ ‘ T~
' '— 4meyR?
or o S :
{ p - ag ] ‘
= — : -4
V= ane.R? v, | (3-48)

. T g ’
where p = gd. (The “approximate” sign (~) has been drogped for simplicity.)
The E field can be obtaineq-from — VV. In spherical goordinates we have

v v
E= —VV = — —_
, AR FR 'a"R 0
P (a 2¢os 0 + a sin ()) (3--49)
47!6 1{3 n 1) .

Equation (3—49) is the same as Eq. (3 —27), but has been qbtamed by a simpler pro-
cedure without manipulating ppsmon vectors. o

. Example 3-7 Make a two-d;;nensxonal skctch of the ggulpotentxal Imes and the

electric field lines for an electrxc dlpole

Solution: The equation of an ‘equipotential surfacle of 3 charge distribution is ob-
tained by setting the expressiop for ' to equal a constant Since g, d, and €, in Eq.
(3-48) for an electric dipole are fixed quantities, a constant V requires a constant
ratio (cos 0/R?). Hence the equatlon for an eqmpotentlaI surface is

; F’—cy«/cose ; (3-50)

DR S i

o~




(3-47)

{3-4%)

(3 -49)

sler pro-

and the

m is ob-
to I
constant

(3-50)
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~

where ¢y is a constant. By plotting R versus 6 for various values of ¢y, we draw the

) 4 solid equipotential lines in Fig. 3-14. In the range 0 < § < n/2, V is positive; R is
% ' maximum at 8 =0 and zero at § = 90°."A ‘mirror image is obtained in the range
: " m/2 < 0 < 7 where V is negative. - A
gﬁ ‘The electric field lines or streamli_gc,/s' represent the direction of the E field in
“f space. We set ’ ‘ .
5‘ , dé = kE, (3-51)
. % / . -
b . za ;
u B V>0
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where k is a constant In spherlgal coordmates, Eq (3 51) becomes (see Eq. 2-66).
ap dR + aaR do + a,,,R §1‘n 0dop = k(aRE;p-!- agEa +a,E,), (3-52)

which can be written
dR. RdB Rsnn6d¢

(3-53)
, LEx i E, - '
For an electric dipole, there is nQ E¢ component and *
1 LA
'dR _Radf ¥ :
Zfbc‘os 2cosf sinf
or :
i@;—; 2 d(.sm 0)‘ (3-54)
R. sin 0
Integrating Eq. (3-54), we obtajp -
L , T
R=cgsin? 0, , (3-55)

where ¢ is a constant. The elec;nc ﬁeld lines, havmg maxjma at 6 = n/2, are dashed
in Fig. 3-14. They are rotationally symmetrxcal abdut thq z-axis (independent of ¢)
and are everywhere normal to ;he equxpotennal lmés &

The electric potential due fo a: contmuous dlstributlon of charge confined in a
given region is obtained by 1ntegratmg the contr;butlon of an element of charge over
the charged region. We have, fqr T {/Glume charge dlstrxbgtlon,

D

B 1 i 1 ." ) (. .
‘ .‘:‘ b | 4 , 12V i,
Ve Zﬁfv £ dv (V) ? (3-56)

For a surface charge distributign, - ;

V. ) rs d ;o
T 4reg _[9' R

T AR R T

V): . (3-57)

and, for a line charge,

‘.{"‘,‘ :13 p{ N . , )
e [ Zar | -58
Ve {&:f . iV (3-58)

R 1\‘1 )‘ } .
Example 3-8 Obtain a formula ‘for the electr;o ﬁeld‘!mtensxty on the axis of a
circular disk of radius b that cgmeb a uniform surface charge density p,.

i 4 -, . 3 Z
R T }
e i “y
. X “'! ,

y ~ [ A
i H L i
g T.oL i i
AR R T ;
! 5,1 o d

e i o e Ao e e AR X A
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i

Solution: Although the disk has circular symmetry, we cannot visualize a surface

" around it over which the normal component of E has a constant magnitude; hence
- Gauss’s law is not useful for the solution of this problem. We use Eq. (3-57). Working
+ with cylmdncal coordmates indicated in Fig. 3- 15 we have

ds' =r dr d¢’

R=,/z2 2

and

: The electrxc potentxal at the point P(0, 0, 2) referrmg to the pomt at infinity is

, y I
R 2r
B V 4neof f (22 + r?)i2 dr dd) |

= [+ b =[] - (3-59)
Therefore
’ V
E=~-VV=-a, g
a, 5"61 [1—z(z + bz)"”]-, 2>0 (3-60a)
a, -1/2] z<0. (3-60b)
2 €o

The determination of E field at an oﬁ—éxis point would be a much more difficult
problem. Do you know why?
For very large z, it is convenient to expand the second term in Egs. (3-60a) and

(3-60D) into a binomial series and neglect the second and all higher powers of the
ratio (b?/z%). We have

zN-12 2
(2 +bY) "2 = (l+b) él-—i

£y
oo
-

’

Fig. 3-15 A uniformly
charged disk (Example 3-8).

)
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Substltutmg thlS mto Eqs. @3 -Q()a) and @3 60b), we obtax

; | ; B
! E=ana, (Rb pl) S

' : gneoz
A i _‘ az‘ 41:6__022, | . Ez_> 0‘( o (3“613)
: - - o Q , o Q » 361b
: ""’”‘W’ z2<Q; . ( )

Y

where Q is the total chargg on the disk. Hence, when the point of observation is very
far away from the charged disk, the ] E field approxxmately follows the inverse square
law as if the total charge were cor;centrated at a point.

Example 3-9 Obtain a formula for the electric field i ;ensity along the axis of a
uniform line charge of length 1,. The uniform line-¢harge densit\@ Os-

Solution: For an mﬁmtely ]opg line charge, the E field gan be determined readily

by applying Gauss’s law, 4s ip the solution to Examplq 3-4. However, for a line .

charge of finite length, as showr; in Fig. 3-16, we cannot cqnstruct a Gaussian surface
over which E - ds is constant. (}auss s law is thergfore not useful here.

Instead, we use Eq. (3-58) by taking an element of gharge d¢' = dz' at . The

distance R from the charge elefnent to the point P(O 0, z) along the axis of the line
charge is . : 5

i . . B -\j

ek IR 7R

Rf.: -~ ! —_— )

. @, z), 2= 2 ﬁ

Here it is extremely impaortant ;p dlsnngulsh the posmon gf thc field point (unprimed
coordinates) from the posmon pf the source point (pnmeq coordmates) We integrate

l

- .
’

:
A . , [
$P(0, 0, 2) ‘ R ;1_ v
. _ N . - "‘ . ” :' :
) : o IR
g .‘1' L e . o M ‘ ‘-’ ) . . Vi
Z{:dz‘ ‘ N RN
. ! L/2 ey R
0 : ng 3-;16 Aﬁmte line chargle A
L2 vofaumfonn'hne density Pe R

—_— ‘ (Example 3—§) w
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.over the source region = S A

: 1._ | V = _Pe fL/z d7

dnegJ-Li2z — 7 o h

 ps 7+ (L/2) ; L :

= 1 3 — | - 2
dneg l:z ) ) (3-62)

The E field at P is the negative gradlent of V. w1th respect to the unprimed field

_coordinates, For this problem, :

E= —a, av =a, pel
v dz 4ne, [ 22 (L/2)2]
The preceding two exampies iliustrate the procedure for determining E by first
finding ¥ when Gauss’s law cannot be conveniently applied. However, we emphasize
that, if symmetry conditions exist such that a Gaussian surface can be constructed over
which E + ds is constant, it is always easier to determine E directly. The potential V,
if desired, may be obtained from E by integration.

lo_l ~

z> (3-63)

3-6- CONDUCTORS IN STATIC
ELECTRIC FIELD

So far we have discussed only the electric field of statxonary charge distributions in
free space or air, We now cxamine the ficld behavior in material media. In general,
we classify materials according to their electrical properties into three types: con-

- ductors, semiconductors, and insulators (or dielectrics). In terms of the crude atomic

mode] of an atom consisting of a positively charged nucleus with orbiting electrons,
the clectrons in the outermost shells of the atoms of conductors are very loosely held

. and migrate easily from one atom to another. Most metals belong to this group. The

electrons in the atoms of insulators or dielectrics, however, are held firmly to their
orbits; they cannot be liberated in normal circumstances, even by the application of
an external electric field. The electrical properties of semiconductors fall between those
of conductors and insulators in that they possess a relatively small number of freely
movable charges.

In terms of the band theory of solids, we find that there are allowed energy bands
for electrons, each band consisting of many closely spaced, discrete energy states.
Between these energy bands there may be forbidden regions or gaps where no eiec-
trons of the-salid’s atom can reside. Conductors have an upper energy band partially
filled with electrons or an upper pair of overlapping bands that are partially filled so
that the electrons in these bands can move from one to another with only a small
change in energy. Insulators or dielectrics are materials with a completely filled upper
band, so conduction could not normally. occur because of the existence of a large
energy gap to the next higher band. If the energy gap of the forbidden region is
relatively small, small amounts of external energy may be sufficient to excite the

electrons in the filled upper band to jump into the next band, causing conduction.
Such matcnals are scmxconductors
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The macroscopic electn 1 pi;operty ofa matenal medxum 1s characterized by a
constitutive parameter’ calle?cona‘iacthty, whxch we will deﬁne in Chapter 5. The
definition of conductivity, however, is not important in this chapter because we are
not dealing with current flow and are now interested qnly m the behavior of static
electric fields in material media, In this sectipn we examine the electric field and
charge distribution both inside the bulk and on the surfpee aof a conductor.

Assume for the present that yome positive (of negqpve);chalges are introduced '

in the interior of a conductof. An electric field will be set up in the conductor, the
field exerting a force on the charges and making them mjpve away from one another.
This movement will continue until alf the charges reach the conductor surface and

redistribute themselves j m such a way that both the chargp and the field inside vanish.
Hence, v 2 :

!

Inside a Conducto)_‘r
(Pnder Static Conditjons)

~r

K . -~

p=0 —~ . -6
E=0 @ S (3-65)

e oo
When there is no charge in the. mterlor of a conqucter (p f 0), E must be zero because,
according to Gauss’s law, the totgl ‘outward electric ﬁux through any closed surface
constructed inside the conductor ‘st vanish. ¢ o

The charge distribution of thesurface of a conduc; r depends on the shape of
the surface. Obviously the chagges would not bejn a statgof equ;l;bnum if there were
a tangential component of the electtic field intensity that proQuces a tangential force
and moves the charges. Therefore, tinder static condmo s the E field on a conductor
surface is everywhere normal ta thasurface In other words, thé surface of a conductor
is an equipotential surface ung jer smnc comlttmns ;As n‘mattcr of fact, sincc E =0
everywhere inside a eonduelpr, ltm. whole u)nduelor has*the same clectrostatic
potential. A finite time is req xred for the cha,r;,qs to ;pdlstrlbutc on a conductor
surface and reach the eguilibripmestate. This time erenq§ on the conductivity of the
material. For a good copduct r sgch as copper, thjs tnmg is irf the order of 10719(s),
a very brief transient. (This ppinis swill be elaborated.in Sectxon 5-4)

Figure 3-17 shows an inteyface E}etween a cond,ﬂctor bnd free space. Con51der the
contour abcda, which has wc;th qa =cd = Aw and. he; ht be = da = Ah. Sides ab
and cd are parallel to the intgrface] Applying Eq 13+ 8); lett;pg Ah — 0, and noting
that E in a conductor i 1s zero . ye. gpiam 1mmed;atély oy

-;’.*
.j"f.ﬁu“E @€ = EAw 0

or . [N ' P

R

et

‘ﬁ: i R

3 }g; E, _0 , ;; o (3 66)

which says that the tangentlal companent of the K ﬁ‘eld on a condugtor surface is zero.

In order to find E,, the normagl cqxﬁponent of E at. the *prface of the conductor, we
4

P
I

}t

i
1

\

y

I

‘ T
N

SS :

9




qdbya
5. The .
we are
{ static
1d m@d

oduced ’
or, the

nother.
ceand d
vanish. ]

i s

(3-64)

(-6

acause,
surface

uipe of
re were
al force
wductor
wluctor
"E=0
‘ostatic
«ductor
“of the
“19s),

der the
des ab
noting

v and the conductor is again an equipotential body.
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Fig.3-17 A conductor-free
space interface. . ’

i

" construct a Gaussian surface in the form of a thin pilibox with the top face in free

space and the bottom face in the conductor where E = 0, Using Eq. (3-7), we obtain

ps AS

S{S,E-ds=E"AS=
S . €,

or
E=%. (3-67)
€

Hence, the normal component of the E field at a conductor-free space boundary is
equal to the surfuce churge density on the conductor divided by the permittivity of free
space. Summarizing the boundary conditions at the conductor surface, we have

Boundary Conditions
at a Conductor-Free Space Interface

E, = (3-66)

=P  (3-67)

When an uncharged conductor is-placed in a static electric field, the external
field will cause loosely held electrons inside the conductor to move in a direction
opposite to that of the field and cause net positive charges to move in the direction
of the ﬁel@ese induced free charges will distribute on the conductor surface and
create an induced field in such a way that they cancel the external field both inside
the conductor and tangent to its surface. When the surface charge distribution
reaches an equilibrium, all four relations, Egs. (3-64) through (3-67), will hold; -

B

Example 3-10 A positive point charge Q is at the center of a spherical conducting

shell of an inner radius R, and an outer radius R,. Determine E and V as functions
of the radial distance R. ‘
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L : L

Solution:  The geometry of the problem is shown. m Fhlg 13 18(a). Smce there is
spherical symmetry, it is simplest | ;o use Gauss’s Iaw go detcrmme E and then find
V by integration. There are three distinet regions: (a, R> 1{", (b) R, <R <R, and

(¢} R < R;. Suitable spherical Gaugsxa,n surfaces Wlu bc consgructed in these regions.

Obv10usly, E = agEg in all ;hree rﬁglohs

T

3 iy
a) R > R, (Gaussian surface Sl) 31 : R ; )
Y ¥
. :, 5: ‘e 5
G- = Eatnri =2 |
. } s‘!,‘ sy 0 ¥
or ' b : e
Epy=—%_ R 3-68
t “; 47ze0R2 if o : ( )
£ Y *‘ N 1‘ b
o v
PR g
4 : i
‘o NN |
! :?";’. Uy ; - ' ;’ i ¢

b pp s = e
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The E field is the same as that ofa point charge Q without the presence of the
shell. The potential referring to the point at infinity is

i
M
i
]
!
|

-y

S . . s ) R B Q .
R RAEN : ) o V, = — = —. -6
‘ e | - . v=— " (Exy) dR R (3-69)
‘ . . b) R; <R < R, (Gaussian surface S,): Because of Eq. (3-65), we know
Egp=0. - (3-70)

. o - . Since p = 0in the Conducting shell and since the total charge enclosed in surface
B g S, must be zero, an amount of negative charge equal to —Q must be induced
on the inner shell'surface at R = R;. (This also means an amount of positive-
charge equal (o + @ Is induced on the outer shell surface at R = R,.) The con-
ducting shell is an equipotential body. Hence,

0 .
v,=V,| = : 71
2 ! R=R, 47[60R0 (3 )
—~ £ ©) R < R;(Gaussian surface S3): Application of Gauss’s law yields the same formula
S for Eg, as Eg, in Eq. (3—68) for the first region:
Q

- . 3-72
R3™ 4ne R? ( )

The potential in this region is

W= - [EdR+ C= 47reQOR+C’

fi where the integration constant C is determined by requiring V5 at R = R, to
’ equal V; in Eq. (3-71). We have '
' 11
c=2 (L_1
47t€0 Ra R,
. and
A 1 1 1
here Is ‘% - Vy = 47:Qeo <_Ii + T F) (3-73)
o find Y , ’ ‘ i
:l :md & The variations of Ex and V versus R in all three regions are plotted in Figs.
egions. , " 3-18(b) and 3-18(c).
~ 3-7 DIELECTRICS™IN. STATIC

ELECTRIC FIELD

Ideal dielectrics do not contain free charges. When a dielectric body is placed in an

external electric field, there are no induced free charges that move to the surface and

. ) - make the interior charge density and electric field vanish, as with conductors. How-

3-68 R ever, since dielectrics contain bound charges, we cannot conclude that they have no
(3-68) : effect on the electric field in whlch they are placed
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All material media are composed of ;atoms with agp(>s1qyely‘cj1\arged nucleus ,
surrounded by negatively charged electrons. Although the m lecules Ot dielectrics
are macroscopically neutral, the pregence of an extexjnalgelectqc figld causes a force : : anc
to be exerted on each charged particle and results in small disg‘aggments of positive o s
and negative charges in opposite qirqétions. Thesg displacaments, though small :
compared to atomic dimensions, ney rtheless polarize a didéctrfc material and create
electric dipoles. The situation is depieted in Fig. 3—19, Inasmych gs electric dipoles
do have nonvanishing electric potem"ﬁal and electric figld ir;tens; ¥, We expect that the Her
induced electric dipoles will modify the glectric field b(?lh‘iq ide. and outside the
dielectric material, S I P :
The molecules of some dielectrigs possess permanent dinﬁe moments, even in i
the absence of an external polarizin ﬁeld Such molecyles usu. lly gonsist of two or ; Rec:
more dissimilar atoms and are called pplar molecules, in conirz@st P noi;polaq molecules, ;
which do not have permanent dipolg ' moments. The dipole moents of polar mole- |
cules arc of the order of 1020 (C-mj,» When there is ng cﬁétcrnaﬂ field, the individual : and
dipoles in a polar dielectric are randqmly’qriented, produting ng nefdipoile moment : .
macroscopically. An applied ,cl__ectrip' fidld will exert a,torqy on the individual
dipoles and tend to align them ;fwith*-}h@fﬁéld in a mapner simflar Yo that shown in b
Fig. 3-19. T £ . o ; . % The
o 13 i ,::"; -;j',,j: i ”SUI'fL
3-7.1 Equivalent Charge Distributions of_'lf i3 L ;4 o
Polarized Dielectrics R PR _ oo \{ }
. . Lokl "" ) 1 . LI . : . :
| To analyze the macroscopic eﬂ;ect of ,»{nciuﬁad dipoles we c;i,eﬁneia g%{gr;zatzon vector, whe:
P, as : RS S R Lt ‘ fth
T i P - f of
: DY I -
P= o - C/m?), it 1 3-74 : we
41.,~01;Au'-;, (C/m?) G (3-749) ¢ V'on
. oo S
| RLE I i %
4 -1 &
S f ;
ARER i
i1 Iy E
LA ) .'§ .
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i

where n is the numbcr of atoms per unit volume and the numerator represents the
vector sum of the induced dipole moments contained in a very small volume Av.
The vector P, a smoothed point function, is the volume densxty of electric dipole

moment. The dipole moment dp of an. elemental volume dv is dp = P dv’, which

produces an electrostatlc potenual (see Eq. 3-48)

PaR

dV = 4MOR2d | (3-73)

Integrating over the volume V' of the dielectric, we obtain the potential due to the
polarized dielectric.

1 P-aR '
—_ i b R ’ 3—76*-
V=t R | 570

where R is the distance from the elemental volume du to a fixed field point. In
Cartesian coordinates,

R=x—-xP+(y—-yP+(~-2)?, (3-77)
and it is readily verified that the gradient of 1/R with respect to the primed coordinates
is : ’

1 a

Vi=]=-2 ‘ : 3-78
()-2 . 3-8

Hence, Eq. (3—-76) can be written as ) ;

1 ' | :

V=-— PV — " . 3-75

Recalling the vector identity (Problem 2-18),
V- (fA)=fV-A+A-VF, " (3-80)

and letting A = P and f = 1/R, we can rewrite Eq. (3-79) as

1 P V' -P
— AN e r_ ’ . _81
v ————4n€0 [fv v ( R>du fy, R dv :| {3-81)

The first volume integral on the right side of Eq. (3—-81) can be converted into a closed
surface integral by the divergence theorem. We have

. 1 P-a 1 (-V+P)
. V= u d /, 3-82
- 4re, Js' R . + 4ne, f R do ( ) .

where a) is the outward normal to the surface element ds’ of the dielectric. Comparison
of the two 1ntegrals on the right side of Eq (3- 82) with Eqs (3- 57) and (3-56),

' We note here that V on the left side of Eq. (3-76) represcnts the electric polennal at a field point, and
V' on the right side is the volume of the polarized dielectric.

.
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- respectively, reveals that the eleq;_ric potential (and ;héreforp’ the electric field intensity
" also) due to a polarized dielectrig can be calculated from the contributions of surface

and volume charge distributions haying, respectively} densities

. 'p;,=P-an|
R S

and - B

1

(3-83)"

——-—rarE Y W L - o
N

o

To=-vorp] (3-84)"
. ——— ] . ' .
These are referred to as polarizgtion_charge densities or hound-charge densities. In

other words, a polarized dielectrig can.be replaced hy ap equipalent polarization surface

charge density p,, and an equivalent. polarization volume carge density p, for field
calculations. : '

R

L ¢ oo 1 evp, . -
_.—s. 4 ——nn —hdl. \ —_—
dre, Js R ds +.47t€Q v R v (3-83)

[

V=

Although Egs. (3-83) and (3—84) were derived mathefpatically with the aid of
avector identity, a physical interpretation can be provided fo}" the charge distributions.
The sketch in Fig. 3-19 clearly*indicates that charges. frqm the ends of similarly
oriented dipoles exist on surfaces not parallel to the direction pf polarization. Consider
an imaginary elemental surface As of a nonpolar diglectrig. The application of an
external electric field normal to As!éauses a separatioh 4 of the bound charges:
positive charge +¢ move a distancg' 4/2 in the direction gf the field and negative
charges —g move an equal distapce against the dire&ioh q\{ithe{i field. The net total

charge AQ that crosses the surfacg A§’ig the directjon of thei ql@iis nq d(As), where n
is the number of molecules per init ydlume. If the externgl field is not normal to
As, the separation of the bound charges in the directign of #. will be d - a, and

.. 1 !,
AQ = ngd - a4s), |
A poe BT 1

; (3-86)
But ngd, the dipole moment per u}ﬁit volume, is by Qeﬁnitloq the polarization vector -
’ I o

P. We have g , v
40=P-ads) .. (3-87)
str‘*"_‘:P'a:a’ i }

as given in Eq. (3-83). Remember ;hat’ 4, is always _thcz‘oy‘tw*‘ d normal. This relation

3

-‘Q Calt

negative surface charge on the lef hand surface, 3 Lol

it o ! N
.’% b IR

. correctly gives a positive surface ¢ afg‘ef on the nghtﬁhand syrface in Fig. 3-19 and a

; I
— — 3

IS e Lo ;’:’ 2; ; W o '
! The prime sign on a, and V has heen dropped. for simplicity, &jPGE:ES-IS- g;—m; and (3~84) involve only
source coordinates and no confusjap w;llf"ﬁull.; ; Pt o :
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For a surface § bounding a volume V, the net total charge flowing out of V as

~a result of polarlzatlon is obtained by integrating Eq. (3- -87). The net charge remaining
thhm the volume V is the negative of this integral. ‘

B2
&~

i o =—4)‘P a, ds
=fy(—V-P)dv=prpdv, | (3-88)

which leads to the expression for the volume charge density in Eq. (3—84). Hence,
when the divergence of P does not vanish, the bulk of the polarized dielectric appears
o be charged. However, since we started with an electrically neutral dielectric body, =

the total charge of the body after polarization must remain zero. This can be readily
verified by noting that

Tolal charge = 565,0,,s ds + fv ppdv
=g§SP-a,,ds—fVV-Pdv=0, (3-89)

where the divergence theorem has again been applied.

3-8 ELECTRIC FLUX DENSITY AND
DIELECTRIC CONSTANT

Because a polarized dickectric gives rise to o volume charge density p,. we expect
the electric field intensity duc to a given source distribution in a dielectric to be
different from that in free space. In particular, the divergence postulated in Eq. (3-4)
must be modified to include the effect of p,; that is,

7

1
V-E=-Ap+p,). . (3-90)
, € _
Using Eq. (3-84), we have . _
V- (eE + P) = p. (3-91)

We now define a new fundamental ficld quantity, the electric flux density, or electric
displacement, D, such that -

— D=¢E+P (C/m?). (3-92)

* The use of the vector D enables us to write a divergence relation between the electric

field and the distribution of fiee charges in any medium without the necessity of
dealing explicitly with the polarization veetor P or the polarization charge density
pp. Combining Eqgs. (3-91) and (3-92), we obtain the new equation

V:D=p (C/m¥, (3-93)
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-where p is the volume depsity cif free, charges. Equations "‘3_-93_)',and (3-5) are the
~ two fundamental governing diffare tial equations for electrostatics in any medium.
‘Note that the'permittivity of freg space, €,, does not! appaar ex;ij'licitly in these two
equations. oo Toa
The corresponding integral formof Eq. (3-93) is obtai
integral of both sides. We have 2 ' ;

J:.V'*[; dv= fv pdv i iy

ed by taking the volume

|5

it
»

PR

(3-94)
or

¢

' @D«}iﬁg (C)[ (3-95)

. LA : r ! ; .
Equation (3-95), another form of Géuss's law, statesithat the total outward flux of
the electric displacement (or, simply, the total outward electric flux) over any closed
surface is equal to the total free charg,é; enclosed in thefgurfaqe. As-has been indicated
in Section 3-4, Gauss's law is most iugeful in determiningithe electric field due to
charge distributions under symmgtry conditions. fi .

When the dielectric propertjes: ’_of the medium:are jinear and isotropic, the
polarization is directly proportiqpal t6 the electrig field intensity, and the propor-
tionality constant is independent of the direction of the field. We write

A (3-96)
clled electric suscbiptibiljey.! A dielectricmedium
B, and homogeneous'if* %eAis independent of space
' —?ﬁ)}in Eq. (3-92) yields ; .-

¥

% P;: GOXeEv Y ’i‘t .

where y, is a dimensionless quanti
is linear if y, is independent of
coordinates. Substitution of Eq.

.
L

D = §(} * 7)E Lo

= %,,G;E F eF, (C/m_z,-). g (3-97)
where ) é ’ l ' “ f
£ kT € o

e, =1+ xe=— . (3-98)

o € b 3 .

’ SRETTE S U
is a dimensionless constant knowr as fhc relative permittidity.or the dielectric constant
of the medium. The coefficient € = eaf:el,f is the absolute é"erg'nit'ivity (often called simply
permittivity) of the medium and js 'ﬁg‘é‘gsured in faradls peg meter (F/m). Air has a
dielectric constant of 1.009:59\;‘hehcéti,'t'$ permittivity i:S‘qs ally taken as that of free
-. -space. The dielectric constants qf soi_rff other materid|s a{;‘e included in a table in
Appendix B. ' ' b e
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' A tensor would be required to represent the dectric susceptibilityif the q)gdium is anisotropic,
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Note that €, can be a function of space coordinales. Il ¢, is independent of position,
the medium is said to be homogeneous. A linear, homogeneous, and isotropic medium

is calleda simple medium. The relative permittivity of a simple medium is a constant.

Example 3-11 A positive point charge Q is at the center of a gpherical dielectric
shell of an inner radius R; and an outer radius R,. The dielectric constant of the shell
is €,. Determine E, V, D, and P as functions of the radial distance R.

Solution: The géometry of this problem is the same as that of Example 3-10. The
conducting shell has now been replaced by a dielectric shell, but the procedure of
solution is similar. Because of the spherical symmetry, we apply Gauss's law to. .

. find E.and D in three regions: (a) R> R,; (b)) R, < R < R,; and (¢) R <R,. Potential

V is found from the negative line integral of E, and polarization P is determined by
the relation

P =D — €,E = ¢4(e, — 1)E. (3-99)

The E, D, and P vectors have only radial components. Refer to Fig. 3-20(a), where
the Gaussian surfaces are not shown in order to avoid cluttering up the figure.

a) R>R,

The situation in this region is exactly the same as that in Example 3—-10. We have,
from Eqs. (3-68) and (3-69), . )

-~
D

Rl = 3
! 4n€0R2

Q
V, = .
. ! 47T€0R
From Egs. (3-97) and (3-99), we obtain
| Dgpy =€xEg = < (3-100)
“R1 o+R1 47:R2
and
Pgr,=0. ‘ (3-101)

b) R, < R <R, .
The application of Gauss’s law in this region gives us directly

o~ ; 0 )
- . Eg, = = 3-102
' R2 ™ 4ne,e,R? 4neR? (3-162)
: 4

(. 1) ¢ N
P,u—(l ?,)I{R—f (3-104)
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"¢) R<R;- : :
Since the medium in this region is the same as that in the region R > R,, the

application of Gausss Iaw yiélds the same expressions for E, Dy, and PR in
both regions:

R3 = 477:60R2
Q
Dgs = -2
B3 anR?
PR.3 = 0.

To hnd v,, we must add to FVZ at R = R, the negative line integral of Eg5:

V, = VZ‘R;Ri— f: Egs dR

_ 0 ERAR RN e 106
—47r€0[:<1 e,)Ro <1 e,>Ri+R} (3-106)

The variations of €, E and Dy versus R are plotted in Fig. 3-20(b). The difference
(Dg — €0ER) is Py and is shown in Fig. 3-20(c). The plot for V in Fig. 3-20(d) is a
composite graph for V,, V,, and V;, in the three regions. We note that Dy is a con-
tinuous curve exhibiting no sudden changes in going from one medium to another
and that Py exists only in the dielectric region. It is instructive to compare Figs.
3-20(b) and 3-20(d) with, respectively, Figs. 3-18(b) and 3-18(c) of Example 3-11.

From Eqgs. (3-83) and (3-84) we find

R=R; p- (—aR)‘R=R.' = _~PRZIR=R.~

- (1-1).¢ G-
_—(1 6’) P (3-107)

» pps_i

on the inner shell surface;

Prsigp, = P aRlR=R,, = P“‘R=Ro
. 1\ Q '
= <1v - ~€—r-) ey (3-103)
on the outer shell surface; and ‘
pp=—-V-P
[} ‘ ‘\ ‘
- Rt o {R*Pq) = 0. (3-109)

Equations (3-107), (3—108), and (3-109) indicate that there is no net polarization
volume charge inside the dielectric shell. However, negative polarization surface
charges exist on the inner surface; positive polarization surface charges, on the outer
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Table 3-1 Dmleptr;;: Strengths of Some} Common Materials -

s

Material b - D_xclé_ctr_lc Slrcnp,th (V/m)
Air (atmdspheric gr)es'sure) ‘ o3 100
Mineral il i ' } o 15ix 108
Polystyrene R ! 20'% 10®
Rubber S .25 x 108
Glass e " 30 x 10‘_6 ,
Mica | S 200 % 10°

'
'

surface. These surface charges produce an electric ﬁald intensity that is directed

radially inward, thus reducmg the E field in reglon 2 due to the point charge +Q

at the center. . ‘ DT~

{ .

Ly

Dielectric Strength :'?-

We have explained that an q}ectrrc field causes small 1sp1acements of the bound
charges in a dielectric materigl, resulting in polarization. If the electric field is very
strong, it will pull electrons completely out of the mglecules, causing permanent
dislocations in the molecular structure Free charges will appear. The material will
become conducting, and large chérents may rcsult T}ns phenomenon is called a
dielectric breakdown. The ma;rmum electric figld dfntenslty that a dielectric material
can withstand without breakdown is the dielectiic stgength of the material. The
approximate dielectric strengyhs qf some common,Subst@nces are given in Table 3—-1.
The dielectric strength of a mqtenal must not be cénfused with its dielectric constant.

A convenient number to ! rcmcmhcr is that the diclectric strength. of air at the
atmospheric pressure is 3 k\//mm When the clectria ticld intensity exceeds this
value, air breaks down..‘Massrvg=1emzatlon takes pldce, and sparking (corona dis-
charge) follows. Charge tendsgto concentrate at sharp gomts In view of Eq. (3-67).
the electric field intensity ip tl}c 1mmedxdte vicinjty.of shprp pointg’is higher than that
at points on a surface with, small curvature. This: is. the principle upon which a
lightning arrester works. Disghayge through the sharp points of a lightning arrester
prevents damaging discharggs through nearby @b_)ect The fagt that the electric
field intensity tends to be higher at a point near the sufface of a charged conductor
with a larger curvature is lll\j;trated in the followmg egample

X.

Example 3-12 Consider, twp spherrcal conducto‘rs w;;h radu b, and b, (b, > by),
which are connected by a: copducting wire. The drst‘ange of:separation between the
conductors is assumed to. be. Very, s large compafcd to lg so that the charges on the

spherical conductors may bef)coﬁsddercd as umfor;nly istributed. A total charge Q

) % P2
. ;

M

,
!
0
!

e e

e 3 A £ e = -

o Gy

N
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Fig. 3-21 Two connected
conducting spheres
(Ex_ample 3-12).

is dep051ted on the spheres Find (a) the charges on the two spheres and (b) the electric
field intensities at the sphere surfaces.

Solution
a) Refer to Fig. 3221 Smce the spherlcal conductors are at the same potential,
we have
R — Q,
4n€0b1 47r€0b2
or
. . & = E.
‘ Q, b,
* Hence the charges on the spheres are dlrectly proportional to their radii. But,
since
0;+0,=0,
we find
‘ bl b2
= ——— and =—
@ b1+b2Q 2 b1+b2Q
b) The electric field intensities at the surfaces of the two conducting spheres are
| Q, 0, '
E,,=—"-— d =",
"7 4re bl an Ean 4meqb?

SO
B (ML
| Es, 0. b,
The electric field intensities are therefore inversely proportional to the radii,
being higher at the surface of the smaller sphere which bas a larger curvature.

3-9 BOUNDARY CONDITIONS FOR
ELECTROSTATIC FIELDS

Electromagnetic problems often involve media with different physical properties
and require the knowledge of the relatxons of the field quantities at an interface
between two media. For instance, we may wish to determine how the E and D vectors
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change in crossing an interface. We already know the boundary conditions that must
be satisfied at a conductor-free space interface. These copditions have been given
in Egs. (3-66) and (3-67). We now consider an interface bétwegn%‘ general media
shown in Fig. 3-22. I B

Let us construct a smqll path ahcda with sides/ ab and ¢g in media 1 and 2 respec-
tively, both being parallel to the int;iiface and equal to Aw; Equation (3~8), which is
assumed to be valid for regions contdining discontifiuous‘medja, is. applied to this
path.” If we let sides bc ='da = 'Ah \@pproach zero, itheir gontributions to the line
integral of E around the path can beirieglected. We héve o

/

s B+ 46 =B} - AW + 3 - (—Aw) = E Aw = E;, Aw = 0.
Therefore : :_‘ l ; j. o
Evzfa (V)| + ' (3-110)

1 e

which states that the tangeni;‘al c;gmp_o;ﬁaent of an E field is aéntiriyqus across an inter-

face. Eq. (3-110) simplifies 10 Bg. (3-66) if one of the megia is a conductor. When
media 1 and 2 are dieleétri,cs*"Withlp_ermittivities 61:;_ and €, rcsgectively, we have
Fu D D0 (3-111)

G @ BL
In order to find a relation hetweén the normal:compenents of the fields at a
boundary, we construct a small jpilljox with its top face ip medium 1 and bottom
face in medium 2, as was illustrated in Fig. 3-22. Thelfaces:have an area AS, and the
height of the pillbox Ah is vanisﬁ;.vngli% small. Applfyin‘g’ Qaqfs’s law Eq. (3-95) to the

| a
i .

i

I

o T RN
' See C. T. Tai, “On the presentation of N’axwe}i’s theory,” Procee_:s{_ngs of:
August 1972. : ! 3 fo 0 Ty

the 1EEE, vol. 60, pp. 936-945,
i
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pillbox, we have ‘ :
S Sﬁsn-ds=(Dl-7a"2+Dz-a"1)As
A 0 =85 (D;-Dy)As

= p, AS, (3-112)
where we have used the relation a,, = —a, . Unit vectors a,; and a,, are, respectively,
outward unit normals to media 1 and 2. From Eq. (3-112) we obtain

a, (D, —Dy)=p, | | (3-113a)

~ Dy,—Dy=p, (C/m?), C (3-113b)

where the reference unit normal is ourward from medium 2,

Eq. (3—113) states that the normal component of D field is discontinuous across an
interface where a surface charge exists—the amount of discontinuity being equal to
the surface charge density. If medium 2 is a conductor, D, = 0 and Eq. (3-113b)
becomes

D1n=€1E1n=ps’ ) (3—“4)
which simplifies to Eq. (3—67) when medium  is free space.

When two dielectrics are in contact with no free charges at the interface, p, = 0,
we have

D,,=D,, ' (3-115)
or

€1E1,,=62E2,,. (3"‘116)

Recapitulating, we find the boundary conditions that must be satisfied for static
electric fields are as follows:

Tangential components, E,, = E,,; (3-110)

Normal components, a,, (D, — D,) = p,. (3-113b)

Example 3=13 . A lucite sheet (¢, = 3.2) is introduced perpendicularly in a uniform
electric field E, = a E, in free space. Determine E;, D;, and P; inside the lucite.

Solution: We assume that the introduction of the lucite sheet does not disturb the
original uniform electric field E,. The sittation is depicted in Fig. 3-23. Since the
interfaces are perpendicular to the electric field, only the normal field components
need be considered. No free charges exist.
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Eo=a,E,

D, = aye Ex|
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~¢+ " clectric field (Examplg 3~13).

Boundary condition Eq:“ (3—1:14) at the left iﬁtérfagc gives
: Di =aD;= axDé

or

. (.
There is no change in electric fl
intensity inside the lugjte sheet is

P Di = ax€0E0'.:b

EERERY
fi —%E D= €

D=

A

px density achsS the interface: The electric field

1

32

The polarization vector is zéro oxitside the luci;teg:jsheeg“(Po = 0). Inside the sheet,

Clearly, a similar épplicatign pf the boundary ¢
interface will yield the prigipal Ef and D, in th
sheet, Doces the solution alithig problem chan

SIS
- Py=Dj- ek =

)

I I VIR
ax(l Fﬁ)foEa

+ 3088756,E,  (Cfm?)y
Ty D ¥

I

ondifion Eq. (3-114) on the right
exfrée §paceon the right of the lucite
giz if the original clectric ficld is not

uniform, that is, if E, = axEIy)?, : &
RESE A £
- ‘ I
P vy
SR o) it
I A S R w0
Ean ’ 4. ;} . IR P
e : woe Fig. 3-24 Bdundary conditions at
2 \4 - the interface betw 8n two dielectric
Ear 4 ¢ media(Examtple3-f4).
x .
r{ e S: . L‘t ’
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’1

b
R IA

Example 3-14 TWO dielectric media thh permittivities €, and ¢, are separated ‘

- bya charge-freé boundary as shown in Fig. 3~24. The electric field intensity in medium

1 at the point P, has a magnitude E, and makes an angle «, with the normal, Deter-
mine the magm;ude and direction of the electric field intensity at point £, in medium 2.
Solution: Two équatlons are needed to solvé for two unkgxowns E,, and E,,. After

E; and E,, have been found, E, and «, will follow directly. Using Egs. (3-110)
and (3— 115) we ‘have

» SN T E,sina, = Et sin a; o ' . ‘ (3-117)
and, e . " L o | :
‘ NI I ezE2 cos o, = €,E, cos’ al B (3~-118)

FAN

Division of Eq (3- 117) by Eq. (3-118) gives

fand; _ €2 (3-119)
tano, €

The magnitude of E, is
E, = JE3 + E3, = J(E, sin o) + (E, cos a,)?

. v p 27172
= [(Ex sin o,)® + <—1Ex cos cq) ]
or ' €2 B
. € 271172
E, =L, [sjn2 oy + (E—’ cos a1> ] . (3-120)
; 2

By examining Fig. 3-24, qan you tell whether €, is larger or smaller than €,?

3-10 CAPACITANCE AND CAPACITORS f

From Section 3-6 we understand that a conductor in a static electric field is an
equipotential body and that charges deposxted on a conductor will distribute them-
selves on its surface in such a way that the electrxc field inside vanishes. Suppose
the potential dueto a charge Q is V. Obviously, increasing the total charge by some
factor k would merely increase the surface chatge density p, everywhere by the same
factor, without_affecting the charge distribution because the conductor remains an
equipotential body in a static situation. We may conclude from Eq. (3-57) that the
potential of an isolated conductor is directly proportional to the total charge on it.
This may also bé seen from the fact that increasing V by a factor of k increases E =
— V¥ by a factor: of k. But, from Eq. (3-67), E = a,p,/¢,; it follows that p, and con-
sequently the total charge Q will also increase by a factor of k. The ratio Q/V therefore
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remains unchanged. We write

where the constant of proportionality C is called the capacitance of the isolated
conducting body. The capacitance is the electric charge that must be added to the
body per unit increase in its electric potential. Its SI unit is coulomb per volt, or
farad (F). . .

Of considerable importance in practice is the capacitor which consists of two
conductors separated by free space or a dielectric medium. The conductors may be
of arbitrary shapes as in Fig. 3-25. When a DC voltage source is connected between
the conductors, a charge transfer occurs, resulting in a charge + Q on one conductor
and —Q on the other. Several electric field lines originating from positive charges
and terminating on negative charges are shown in Fig. 3-25. Notc that the field
lines are perpendicular to the conductor surfaces, which are equipotential surfaces.
Equation (3-121) applies here if V is taken to mean the potential difference between
the two conductors, V,,. That s,

—~—

Q
C== (F). 3-122
=, (F) (‘ )

The capacitance of a capacitor is a physical property of the two-conductor
system. It depends on the geometry of the conductors and on the permittivity of the

medium between them; it does not depend on either the charge O or the potential -

difference V,,. A capacitor has a capacitance even when no voltage is applied to it
and no free charges exist on its conductors. Capacitance C can be determined from
Eq. (3-122) by cither (1) assuming a V¥, and determining Q in terms of Vi, or (2)
assuming a ¢ and determining V,, in terms of Q. At this stage, since we have not yet

Fig, 3-25 A two-conductor
. capacitor. . ' :

o=cv, | | o 3-121)

=
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studied the methods for solving boundarylvaluﬁ probléms (which will be taken up in
Chapter 4), we find C by the second method. The procedure is as follows:

1. Choose an apperriaté coordinate system for the given geometry.
2. Assume chargés 4 Q and —Q on the conductors.

3. Find E from @ by Eq. (3-114), Gauss’s law; or other relations.

4. Find V;, by evaluating

Vip = -f; E-de

from the condilctor carrying — Q to the other carrying + Q.
5. Find C by taking the ratio Q/V,,.

-

Example 3-15 A paralliel-'plate capacitor consists of two parallel conducting plates .
of area S separated by a uniform distance d. The space between the plates is filled
with a dielectric of a constant permittivity €. Determine the capacitance.

Solution: A cross section of the capacitor is shown in Fig. 3-26. It is obvious that
the appropriate coordinate system to use is the Cartesian coordinate system. Follow-
ing the procedure outlined above, we put charges +@Q and —Q on the upper and
lower conducting plates respectively. The charges are assumed to be uniformly
distributed over the conducting plates with surface densities +p, and —p,, where

From Eq. (3-114), we have

which is constant within the dielectric if the fringing of the electric field at the edges of
the plates is neglected. Now

' /
. y=d d Q . Q
Vig = —J;,:O E-dé = -J‘O_(—ay-es)'(ay d}’)‘——GS d.

ya :
Dielectric
+ _(permittivity ¢) Area S
T TITIT

2/ e e / + [+ [+ I+

1

I E -

: J J J Fig. 3-26 Cross section of a
] —*',—77 Y-~ 4’—4, y— Y- parallel-plate capacitor

(Example 3-15).
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- Therefore, for a parallel-plate capacitor,

Q
Vis.

c= =@ g0 (3-123)

aluy

which is mdependent of QorV,,.

For this problem we could have started by assummg a potential difference V,,
- between the upper and lower plates. The electric field intensity between the plates is
uniform and equals

The surface charge densities at the upper and lower conductmg plates are +p; and
=Py rcqpectlvely where, in vnew ol Eq. (3-67),

U

Therefore, Q = p.§ = (€S/d)V,, and C = Q/V,, = €S/d, as before.

Example 3-16 A cylindrical capacitor consists of an inn:ehdnductor of radius a
" and an outer conductor whose inner radius is b. The space between the conductors
is filled with a dielectric of permittivity ¢, and the length of the capacitor is L. Deter-
mine the capacitance of this capacitor.

Solution:  We use cylindrical coordinates for this problem. First we assume charges
+ @ and —Q on the surface of the inner conductor and the inner surface of the outer
conductor, respectively. The E field in the dielectric can be obtained by applying
Gauss’s law to a cylindrical Gaussian surface within the dielectric a < r < b. (Note
that Eq. (3—~114) gives only the normal component of the E field at a conductor surface.
Since the conductor surfaces are not planes here, the E field is not constant in the

dielectric and Eq. (3—114) cannot be used to find Ein the ¢ < r < b region.) Referring
to Fig. 3-27, we have .

Q

=q —=,
rer "2neLr

=1
]

)

2]
!

(3-124)

Dielectric, ¢

Fig. 3-27. A cylindrical capacitor
{Example 3-16).

A sy e T 1

i




(3-123)

rence Vi,

s plaies is

§
i

-+, and

,/.\‘

iradius d
hdue
L, Deter-

charges
¢ outer
ppiying
. {Note
surface.
bt in the
eferring

(3-124)

Vi

e

.+ Again we neglect the fringing effect of thekﬁgld

!
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L)
1

the »‘ear the edges of the conductors. The
potential difference Between the inner and outer conductors is

| V== Ede=-]] (a'2neLr> (a, dr)

Q b A
= ~ ). -12
. 27'c€L1n p (3-129)
Therefore, for a cylin’r:iricall capacitor,
: ' - 2mé
C=V2=—ﬁ£ (3-126)

ab In (é) :
a

We could not soi_Ve this problem from an assumed V,, because the electric field
is not uniform between the inner and outer conductors. Thus we would not know how
to express E and Q in terms of V,, until we learned how to solve such a boundary-
value problem. ‘

Example 3-17 A spherical capacitor consists of an inner conducting sphere of
radius R; and an outer conductor with a spherical inner, wall of radius R,. The space
in-between is filled with a dielectric of permittivity €. Determine the capacitance.

Solution: 'Assume charges +Q and —Q, respectively, on the inner and outer con-
ductors of the spherical capacitor in Fig. 3-28. Applying Gauss’s law to a spherical
Gaussian surface with radius R(R; < R < R,), we have

Q
; E=afr=arp 0
_ & . (A 0} _ Q 1 _ 1
V= fRu E-(agdR) = Ro 4meR? dR = 4re <_R-, E)

Dielectric, ¢ .

.

Fig. 3-28 A spherical capacitor
(Example 3-17). °
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e

Cy C E Cp ' ~Csr

-+ LQ+§”—Q +—Q'{ -0 : —15“'_67 - . ’ _ g )
& 7

Fig. 3-29 Series connection of
capacitors.

| O—
<

+
|

_ 4 | (3-127)

3-10.1 Series and Parallel Connections -
of Capacitors

Capacitors are often combined in various ways in electric ¢ireuits. The two basic
ways are series and parallel connections. In the series, or head-to-tail. connection
shown in Fig. 3-29," the external terminals are from the first and last capacitors only.
When a potential difference or clectrostatic voltage V is applied, charge cumulations
on the conductors connected to the external terminals are +Q and — Q. Charges will
be induced on the internally connected conductors such that +Q and. —Q will
appear on each capacitor independently of its capacitance. The potential differences

across the individual capacitors are Q/C,, Q/C,, ..., Q/C,, and
Csr CI C2 Cn
‘ where C,, is the equivalent capacitance of the series-connected capacitors. We have l
11 1 1
=t —. 3-128
o, To gt G128

In the parallel connection of capacitors, the external terminals are connected to
the conductors of all the capacitors as in Fig. 3-30. When a potential difference V
is applied to the terminals, the charge cumulated on a capacitor depends on its
capacitance. The total charge is the sum of all the charges. :

Q=0+ + +Q,
=CV+CV+-+CV=

et s, st

PO

* Capacitors, whatever their actual shape, are conventionally represented in circuits by pairs of parallel
bars.




(3-127)
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R

Gy
| (
+Ql -0
. v .
d é -J é
+ -
|4 - . .
5 Y Fig. 3-30 Parallel connection
+ -

of capacitors.

Therefore the equivalent capacitance of the parallel-connected capacitors is

C]|=C[+C2+”'+C“.

(3-129)

We note that the formula for the equivalent capacitance of series-connected capacitors
is similar to that for the equivalent resistance of parallel-connected resistors and that
the formula for the equivalent capacitance of parallel-connected capacitors is similar

to that for the equlvalent resistance of series-connected resistors. Can you explain
this?

Example 3-18 Four capacitors C, = 1 uF, C, =2 uF, Cy = 3 uF, and C, = 4 uF
are connected as in Fig. 3-31. A DC voltage of 100 V is applied to the external
terminals a-b. Deterinine the following: (a) the total equivalent capacitance between

terminals a-b; (b) the charge on each capacitor; and (c) the potenual difference
across each capacitdr.

Cy Cy

‘—;—Vn_“’i‘TtVz‘:—* Cs

T

-
T
+ .

DLy N

v

"Fig. 3-31 A combination of

100 (V) . capacitors (Example 3~18).
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Solution

a) The equlvalent capacitance Cy, of C i and C, in series is
1 C,C,

Cir= = == (uF
VA it )
The combination of C,, in parallel with C; gives
Ci23 = C12 + C3 =4 (uF).
The total equivalent capacitance C,, is then
' C,.5C 44
Cop = =222 = 1913 (uF)._

Cias +C¢_§

b) Since the capacitances are given, the voltages can be found as soon as the charges
have been determined. We have four unknowns: Q,, Q,, Q3, and Q,. Four equa-
tions are needed for their determination.

Series connection of C, and C,: Q, = Qz.
Kirchhoff’s voltage law, V|, + V, = V;: % + g: = 63-
. y — . Q3 Q4-
Kirchhoff’s voltage law, V5 + V, = 100: == = 100.
Series connection at d: 0,4+ 03 =10,.

Using the given values of C,, C,, C5, and C, and solving the equations, we obtain

0, =0,= ?939 = 34.8 (uC),

Q3—3~6@— 156.5 (uC),

0= = 1913 (4).
¢) Dividing the ch.arges by the capacitances, we find

Vi = gi =348 (V),

V, = %z =174 (V),

Vy = g—z =522 (V),

V, = %: =478 (V)

These results can be checked by verifying that V, + V, = V; and that ¥, + V, =
100 (V).

R L

© e gt g

iy e

3-11
AND




the charges
* Four equa-

;. we obtain

Vit Vo=
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P
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In Section 3- 5 xﬁdlca.ted that electric potentlal at a poimt in an electric field is

the work requh‘ed t& bring a unit positive charge from infinity (at reference zero-
potential) to that pomt In order to bring a charge 0, (slowly, so that kinetic energy
and radiation effects may be neglected) from ififinity against the field of a charge Q,
in free space to a distance R, ,, the amount of work required is

S0

. W =0,V =0, 47‘C€OR (3-130)
: 12

Becuusce clectrostatic ficlds ure conservative, W2 15 independent of the path followed -

by 0,. Another form of Eq. (3-130) is

wzzo,*—(%—_g,v,. (3-131)

This work is stored in the assembly of the two charges as potential energy. Combining
Egs. (3—130) and (3-131), we can write
Wa=3(Q Vi + Q,Va). (3-132)

Now suppose adother charge Q; is brought from-infinity to a point that is R,
from Q; and R,; from Q,; an additional work is required that equals

Q. Q. >

AW = Q3V3 Q3<

. (3-133)
47{60R13 47I€0R23

The sum of AW in Eq (3-133) and W, in Eq. (3—130) is the potential energy, Wj,
stored in the assembly of the three charges Q,, Q,, and Q5. That is,

, ‘ I (0,0, 0,0 QzQa .
Wy = W, + AW = 3-134
3=t 47reo<R12 "R, TR, (3-139)

We can rewrite W; ih the following form:

1 Q. Qs Q, Qs
W= + + +
T2 [Q‘ <47zeoR12 4meoR 5 2 4megR,,  4megRa,

] 0, Q.
~.  F Q:‘<4neoR13 +A4neOR23)}
=301V, + 0.y + Q4 V). (3-135)

In Eq. (3-135), V,, the potential at the position of Q,, is caused by charges Q, and .
051t is dz_[ferent from the V| in Eq. (3-131) in the two-charge case. Similarly, V, and
V5 are the potentials, respectively, at Q, and Q5 in the three-charge assembly.
Extending thi§ procedure of bringing in additional charges, we arrive at the
following general expression for the potential energy of a group of N discrete point
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charges at rest. (The purpose of the subscript e on W, is to denote that the energy is
of an electric nature.) We have

N
' W=1> 0¥ O, | (3-136)

where V,, the electric potential at Q,, is caused by all the otk.ier charges and has the
following expression: ‘

1 &g
V=-————- ——'. ) 3_137
¢ 4”502 ik ( )
j=1 .
(J#k) ’

Two remarks are in order here. First, W, can be negative. For instance, W, in Eq.
(3—-130) will be negative if Q, and Q, are of opposite signs. In that case, work is done
by the field (not against the field) established by @, in moving @, from infinity.
Second, W, in Eq. (3—136) represents only the interaction energy (mutual energy) and

does not include the work required to assemble the individual point charges them-
selves (self-energy).

Example 3-19 Find the energy required to assemble a uniform sphere of charge of
radius b and volume charge density p.

Solution: Because of symmetry, it is simplest to assume that the sphere of chafge is
assembled by bringing up a succession of spherical layers of thickness dR. Let the
uniform volume charge density be p. At a radius R shown in Fig. 3~32, the potential
is
_ O
R™ 4neoR’

- where Qp is the total charge contained in a sphere of radius R:

Q= p3nR>.

Fig. 3-32 Assembling a
uniform sphere of charge
(Example 3-19),
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The differentiat charge ina spherlcal layer. of thickness dR is
' dQy = p4nR? dR,

and the work or erlergy in bringing up dQ is. ‘

o
AW = Vi dQg = gg—sz“ dR.
0

Hence the total work or energy rcquired to assbmble a uniform sphere of charge of
radius b and charge density. p is

47rp2b5
S = — 4 d -

W fdw p f R T O (3-138)

In terms of the total tharge o

4n:
Q=yp T bs’
we have
302

S . 3-139
"Oneob () = )

Equation (3-139) Shows that the energy is directly proportional to the square of the
total charge and inversely proportional to the tadius. The sphere of charge in Fig.
3-32could be a clod‘d of electrons, for instance,

Fora contmuous charge distribution of density p the formula for W, in Eq.(3-136)
for discrete charges must be modified. Without going through a separate proof, we
replace Q, by p dv and the summation by an integration and obtain

Wo=4[ pvav Q) (3-140)

In Eq. (3-140), V is the potential at the point where the volume charge density is p.
and V" is the volume ofthe region where p exists.

Example 3-20 So]vc the probiem in E)\ample 3-19 by using Eq. (3-140).

Solution: In Example 3-19 we solved the problem of assembling a sphere of charge
by bringing up a succession of spherical {ayers of a dilterential thickness. Now we
assume that the sphere of charge is already in place. Since p is a constant, it can be
taken out of thé integral sign. For a spherically symmetrical problem,

f Vdo pf V4nR? dR, (3-141)

where V is the potential at a point R from the center. To find V at R, we must find
the negative of the line integral of E in two regions: (1) E, = azEg, from R = w0 to
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" R=b, and(Z) E,=a3Ez, fromR=btoR=0. We have

. ‘0 ob? .
Eg, =2 = > b;
BRI TR 47e R2 Az 3¢,R? R=zb;
and
Ep=ag—28_ a2 PR g r<p

dre,R? "% 3¢,

Consequently, we obtain :
V= _f:E.dR= _U:Em dR+LRER2dR}
pb3 ' r pR .
= dR — dR
{f 3€0R2 +~J. d 1

p B RN p (3, R
L SRR R i ) ©(-142
3€0<b 1) 3 T3 (3-142

Substituting Eq. (3-142) in Eq. (3—141), we get

3 R
W—pf < bz—B—)dmR“dR: we
3¢, 2

15¢,

i

which is the same as the result in Eq. (3—138).

Note that W, in Eq. (3-140) includes the work (self-energy) required to assemble
the distribution of macroscopic charges, because it is the energy of interaction of
every infinitesimal charge element with all other infinitesimal charge elements. As a
matter of fact, we have used Eq. (3-140) in Example 3-20 to find the sclf-cnergy of
a uniform sphericul charge. As the radius h approaches zero, the self-energy of a
(mathematical) point charge of a given Q is infinite (see Eq. 3-139). The self-energies
of point charges Qy are not included in Eq. (3-136). Of course, there are, strictly, no
point charges inasmuch as the smallest charge unit, the electron, is itself a distribution
of charge.

Electrostatic Energy in Terms of

Field Quantities

In Eq. (3-140), the expression of electrostatic energy of a charge distribution contains
the source charge density p and the potential function V. We.frequently find it more
convenient to have an expression of W, in terms of field quantities E and/or D,
without knowing p explicitly. To this end, we substitute V - D for p in Eq. (3-140):

m:%fw (V- D)V do. (3-143)

Now, using the vector identity (from Problem P.2~18)
V-(VD)=VV-D + D VV, (3-144)

e Pt e
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we can wrlte Eq (3- 143) as
W_jf V- (VD)d u——f D-VV d

5§,VD-a,,ds+7f_D-Edv\ (3-145)

where the dxvergence theorem has been used to change the first volume integral
into a closed surface integral and E has been -substituted for — VV in the second
volume integral, Smce V' can be any volume that includes all the charges, we may
choose it to be avery large sphere with radius, R As we let R — o, electric potential
V and the magnitude of electric displacement D fall off at least as fast as, respectively,

1/R and 1/R2.! The Hrea of the bounding surface S increases as R2. Hence the surface
integral in Eq. (3-145) decreases at least as fast as 1/R and will vanish as R —» s=¢.’
We are then left with only the second integral bn the right side of Eq. (3—143).

4

] :5[ D-Edv (J)j (3-146a)

L J

B

Using the relation D = €E for a linear medium, Eq. (3—146a} can be written in
two other forms:

W, =1 fv, Erdy () {3-146b)
and
Dl
W, =1 fV, —dv Q. (3-146¢)

We can always define an electrostatic energy density w, mathematically, such that
1ts volume integral equals the total electrostatic energy:

W, = fv: w, dv. (3-147)
We can, therefore, write
w,=3iD" E (J/m?3) : (3-148a)
or
—~ . w, = 1eE? (3/m?) (3—-148b)
or N : ‘
D? 3
W, = — (J/m>). (3-148¢)
2e

! For point charges V « 1/R and D o« 1/R?; for dipoles ¥ o« 1/R? and D « 1/R3.



Fig.3-33 A charged'parallel-
plate capacitor (Example 3-21).

However, this definition of energy density is artificial because a physical justification
- has not been found to localize energy with an electric field; all we know is that the
volume integrals in Eqgs. (3—-146a, b, ¢) give the correct total electrostatic energy.

Example 3-21 In Fig. 3-33, a parallel-plate capacitor of area S and separation d

is charged to a voltage V. The permittivity of the dielectric is . Find the stored electro-
static energy. :

Solution: With the DC source (batteries) connected as shown, the upper and lower
plates are charged positive and negative, respectively. If the*feinging of the field at
the edges is neglected, the electric field in the dielectric is uniform (over the plate)
and constant (across the dielectric), and has a magnitude

V
E=7'

Using Eq. (3-146b), we have

1 V\? I /V\? 1/ S

The quantity in the parentheses of the last expression, €5/d, is the capacitance of the
parallel-plate capacitor (see Eq. 3-123). So,

W, =13iCVv? (J). , (3-14%a)

Since Q = CV, Eq. (,3—149a)'can be put in two other forms:

w,=40v () (3-149b)
and
_o )
W, = c J. _ (3~149c¢)

It so happens that Eqgs. (3-149a, b, ¢) hold true for any two-conductor capacitor
(see Problem P.3-35),

.
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.

" 3-11.2 Electrostatic Fdfcés

Coulomb’s law governs the force between twod point charges. In a more complex
system of charged Bodies, using Coulomb’s law to determine the force on one of
the bodies that i3 cgiuéed by the charges on other bodies would be very tedious.
This would be so-even in the simple case of fihding the force between the plates of
a charged parallelépl:ate capacitor. We will now discuss a method for calculating the
force on an object il a charged system from the electrostatic energy of the system.
This method is based on the principle of virtual displacement. We will consider two
cases: (1) that of dn,isolated system of bodies with fixed charges, and (2) that of a
system of conducting bodies with fixed potentials. )

System of Bodies with Fixed Charges We consider an isolated system of charged
conducting, as well as dielectric, bodies separated from one another with no con-
nection to the outside world. The charges on the bodies are constant. Imagine that
the electric forces Have displaced one of the bodies by a differential distance d¢
{a virtual displacemqnt). The mechanical work done by the system would be

dW = F, - de, (3-150)

where F is the total blectric force acting on the body under the condition of constant
charges. Since we hdve an isolated system with no external supply of encrgy, this
mechanical work must be done at the expense of the stored electrostatic energy:
that is,

dW = —dW, =F, - d¢. {3-151)

Noting from Lq.(2-81)in Section 2--5 that the differential change of a scalar resulting
from a position change d¢ is the dot product of the gradient of the scalar and d¢,
we write

AW, = (VW) + de. o (3-152)

Since d¢ is arbitrary, comparison of Egs. (3—151) and (3—152) leads to

Fo=—VW, (N). (3-153)

Equation (3—153) is & very simple formula for the calculation of F,, from the electro-
static energy of the system. In Cartesian coordinates, the component forces are

T~ . -
-~ : W, .
(Fohe = = (3-154a)
oW,
(Fo)y =% (3~154b)
A .
. (Fo).= — Er (3-154¢)
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If the body under consideration is constrained to rotate about an axis, say the
z-axis, the mechanical work done by the system for a virtual angular displacement
d¢ would be : ,

\ dW = (T,). do, - (3-155)

where (Tp), is the z-component of the torque acting on the body under the condition
of constant charges. The foregoing procedure will lead to

W Nem). | (3-156)

(Tg): = ey

Syster of Conducting Bodies with Fixed Potentials Now consider a system where
conducting bodies are held at fited potentials through connections to such external
sources as batteries. Uncharged dielectric bodies may also be present. A displacement
d¢ by a conducting body would result in a change in total electrostatic energy and
require the sources to transfer charges to the conductors in order to keep them at
their fixed potentials. If a charge dQ, (which may be positive-or negative) is added
to the kth conductor that is maintained at potential ¥, the work done or energy

supplied by the sources is V, dQ,. The total energy supplied by the sources to the
system is

dW;=Z v, dQ,. (3-157)
P .

The mechanical work done by the system as a consequence of the virtual displace-
ment is

dW =F, - de, , (3-158)

where F, is the electric force on the conducting body under the condition of constant

potentials. The charge transfers also change the electrostatic energy of the system
by an amount dW,, which, in view of Eq. (3~136), is

AW, =4 V,d0, =} dW,. (3-159)
k
Conservation of energy demands that .
AW + dW, = dW.,. : L (3-160)
Substitution of Egs. (3—-157), (3-158), and (3-159) in‘Eq. (3-160) gives
Fy - dé = dW, n
| = (VW,)-d¢
’ or :
F,=VW, (N). (3-161)
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Comparison of Eqs. (3- 161) and {3-153) reveals that the only difference between

‘the formulas for the electric forces in the two cases is in the sign. It is clear that, if the

conducting body is constrained to rotate about the z-axis, the z-component of the

electric torque w111 e

ow,

= £ . ~162
(Ty), 2% (N-m), (3-162)

which differs from Eq. {3-156) also only by a sign change.
Example 3-22 Determine the force on the conducting plates of a charged parallel-
platc capacitor. Thejplates have an arca S and are separated in air by a distance .

Solution:  We solve the problem in two ways: (a) by assuming fixed charges; and
then (b) by assuming fixed potentials. The fringing of field around the edges of the
plates will be neglected.

a) Fixed charges: With fixed charges +Q on the plates, an electric field intensity
E, = Q/(€,S) = V/x exists in the air between the plates regardless of their separa-
tion (uncl mnged by a virtual displacement). From Eq. (3-1490b),

W, =20V =30E.x,
where Q and E, are constants. Using Eq. (3—154a), we obtain

| /1 0 o
. (FQ)": .‘—ax <§ QEx“>" —""Q x= - {3~163)

7605

where the negatlve signs indicate that the force is Opp051te to the direction of
increasing x. It 1s an attractive force.

b) Fixed potentials: With fixed potentials it is more convenient to use the expression
in Eq. (3-149a) for W,. Capacitance C for the parallel-plate air capacitor is
€0S/x. We have, from Eq. (3-161),

oW, ¢ (1 , V¢ ) /2
(Fpo= e o O (Leopay o D0 feSy _eST7 0 oy
(.\' (.\',2 20

How different are (Fp), in Eq. (3-163) and (F}), in Eq. (3-164)? Recalling the

relation
—— Q= CV=E°SV,
R : X
we find
(FQ)x = (FV)x' (3—165)

The force is the same in both cases, in spite of the apparent sign difference in the
formulas as expressed by Egs. (3-153) and (3-161). A little reflection on the physical
problem will convince us that this must be true. Since the charged capacitor has
fixed dimensions, a given Q will result in a fixed V, and vice versa. Therefore there is
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a unique force between: the plates regardless of whether Q or V is given, and the
force certainly does not depend on virtual displacements. A change in the conceptual
constraint (fixed Q or fixed V) cannot change the unique force between the plates.

The preceding discussion holds true for a general charged two-conductor capaci- : !
tor with capacitance C. The electrostatic force F, in the direction of a virtual displace- ' 1
ment d¢ for fixed charges is

. ¥
__GW,. 3/ 0*\ Q?écC S R
Fole = —77= ’52(56) =37 (3~166) 5 B

For fixed potentials,

W, o1 .\ ViiC- Q* éC :
= {2 LA A S ~16 R
(Fyv)e 57 az( CV> 5 — (3~167) :

2

, ' R
It is clear that the forces calculated from the two procedures, which assumed different -
constraints imposed on the same charged capacitor, are equal, ‘ _ R
R
— | X
" REVIEW QUESTIONS ' ; "R
R.3-1 Write the differentjal form of the fundamental postulates of clectrostatics in free spuce. R
R3-2  Under what conditions will the electric field intensity be both solenoidal and irrotational? : R
R3-3 Write the integral form of the fundamental postulates of electrostatics in free spzice. and of
state their meaning in words. : R
R3-4 When the formula for the electric field intensity of a point charge, Eq. (3~12), was derived, dic
a) why was it necessary to stipulate that q is in a boundless free space? z R.
b) why did we not construct a cubic or a cylindrical surface around ¢? ! tw
R.3-5 In what ways does the electric field intensity vary with distance for ; R.
a) a point charge? b) an electric dipole? T co
R3-6 State Coulomb's law. : R.
. é dit
R.3-7 State Gauss's law. Winder what conditions is Gauss's law especially useful in determining : ¥
the electric field intensity of a charge distribution? z ‘ R
-R.3-8 Describe the ways in which the electric field intensity of an infinitely long, straight line 1 ™ R.
’ - charge of uniform density varies with distance? { R
R3-9 Is Gauss's law useful in finding the E field of a finite liné'charge‘.’ Explain. ; LW
R.3-10 See Example 3--5, Fig. 3—-8. Could a cylindrical pillbox with circular top and bottom { R
faces be chosen as a Gaussian surface? Explain. & at
f

R.3-11 Make a two-dimensional sketch of the electric field lines and the equipotential lines of a
point charge. . ’
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R.3-12 At what valu(i of 8 is the E field of a z-dirécted electric dipole pointed in the negative

“z-direction?

R.3 13 Refer to Eq. (3 59). Explain why the absolute sign around z is required.

R 3-14 If the electric potexmal at a point is zero, does it follow that the electrical field intensity
is also zero at that potht? Explain.

R.3-15 If the electric fleld intensity at a point is zerb does it follow that the electric potential is
also zero at that point? Explain.

R.3-16 An uncharged spherical conducting shell of a finite thickness is placed in an external
electric field E,, what is the electric field intensity at the center of the shell? Describe the charge
distributions on both the outer and the inner surfaces of the shell.

AT, Can VUI/R)Y in Ly (3--79) be repluced by V(1/R)? Explain,
R.3-18 bcﬁne polarizution vector. What is its SI unit?
R.3-19 What are polarization charge densities? What are the SI units for P-a, and V- P?
R.3-20 What do we dlean by simple medium?
R.3-21 Define electrie displacement vector. What is its SI unit?
R.3-22 Define electrit susceptibility. What is its unit?
R.3-23 What is the diﬂercncc between the permittivity and the dielectric constant of ¢ medium?

R.3-24 Does the electrlc flux density due to a given tharge distribution depend on the properties
of the medium? Does the electric field intensity?

R.3-25 What is the difference between the dielectric constant and the dielectric strength of a
dielectric material?

R.3-26 What are the general boundary conditions for electrostatic fields at an interface between
two different dielectric media?

R.3-27 What are the boundary conditions for electrostatic fields at an interface between a
conductor and a dielectric with permittivity €?

R.3-28 What is the boundury condition for electrostatic potential at an interface between two
different dielectric media?

R.3-29 Does a force exist between a point charge and a dielectric body? Explain.

R.3-30 Define capacitance and capacitor.

R.3-31 Assum¢ that the permittivity of the dielectric in a parallel-plate capacitor is not constant,
Will Eq. (3—-123) hold if the average value of permittivity is used for € in the formula? Explain.

R.3-32 Given three 1suF capacitors, explain how they should be connected in order to obtain
a total capacitance of

’

o1 . 2 ' 3
a) 5 (uF) b) 7 (W) ©) 5 (uF) d) 3 (uF).




128 STATIC ELECTRIC FIELDS / 3

R.3-33 What is the expression for the electrostatic energy of an assembly of four discrete point
charges?

R.3-34 What is the expression for the electrostatic energy of a continuous distribution of charge
in a volume? on a surface? along a line?

R.3-35 Provide a mathematical expression for electrostatic energy in terms of E and/or D.
R.3-36 Discuss the meaning and use of the principle of virtual displacement.

R.3-37 What is the relation between the force and the stored energy in a system of stationary
charged objects under the condition of constant charges? under the condition of fixed potentials?

PROBLEMS
P3-1 Refer to Fig. 3-3.

a) Find the relation between the angle of arrival, «, of the electron beam at the screen and
the deflecting electric field intensity E,.

b) Find the relation between w and L such that d, = d,,/20. S~

P3-2 The cathode-ray oscillograph (CROY shown in Fig. 3 3 is used to measure the voltage
applied to the parallel deflection plates.
a) Assuming no breakdown in insulation, what is the maximum voltage that can be mea-
sured if the distance of separation between the plates is 1?7
b) What is the restriction on L if the diameter of the screen is D?

¢) What can be done with a fixed geometry to double the CRO’s maximum measurabie
voltage?

P3-3 Calculate the electric force between the electron and nucleus of a hydrogen atom, as-
suming they are separated by a distance 5.28 x 107! (m).

P.3-4 Two point charges, @, and Q,, are located at (1, 2, 0) and (2, 0, 0), respectively. Find the

relation between @, and Q,, such that the total force on a test charge at the point P(—1, 1, 0) will
have )

a) no x-component, b) no y-component.

P3-5 Two very small conductiﬁg spheres, each of a mass 1.0 x 107% (kg) are suspended at

a common point by very thin nonconducting threads of a length 0.2 (m). A charge @ is placed on

each sphere. The electric force of repulsion separates the spheres, and an equilibrium is reached

when the suspending thread makes an angle of 10°. Assuming a gravitational force of 9.80 (N/kg)
~and a negligible mass for the threads, find Q.

P.3-6 A line charge of uniform density p, in free space forms a semicircle of radius b. Determine
the magnitude and direction of the electric field intensity at the center of the semicircle.

P.3-7 Three uniform line charges—p,,, p;,, and p,,, each of length L—form an equilateral

triangle. Assuming p,; = 20,, = 2p,3, determine the electric field intensity at the center of the
triangle. :
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e

o ) ‘
P.3-8 Assuming that the electric field density is E 41 a,100x (V/m), find the total electric chatge
contained inside . ; !
a) a cubical Vc';lume 100 (mm) on a side cemeréd at the origin,
b) a cylindricat v?lume of radius 50 (mm) and Height 100 (mm) centered at the origin.

P3-9 - A spherical didtribution of charge p = po/[t ~ {R*/bH)] exists in the region 0 < R < b.

This charge disiiibutidn is concentrically surroundéd by a conducting shell with inner radius
R; (>b) and outer radius R,. Determine E everywherk.

P.3-10 Two inﬁnitély%long coaxial cylindrical surfdces, r = and r = b (b > a), carry surface
charge densities p,, and py, respectively. i
. i

. P |
a) Dectermine E crcrywhcrc.
he relation between a and b ib order that E vanishes for r > b7

b) What must be

P3-11 At what values of 0 does the electric field intensity of a z-directed dipole have no z-
component? .
i
P.3-12 Three charges (+¢, —2¢, and +¢) are arranged along the z-axis at = = d/2, = = 0, and
= —dJ2, respectivelys

a) Determine V bipd E at a distant point P(R, 0, ¢).

b) Find the equatlons for equipotential surfaces and streamlines.

¢) Sketch a farnily of equipotential lines and streamlines.
(Such an arrangemeht _&)f three charges is called a linear electrostatic quadrupole )

>

L

P.3-13 A finite lin€ charge of length L carries a uniform line charge density p, .
a) Determine V it the plane bisecting the line charge.
b) Determine E from p, directly by applying Coulomb's law.
¢) Check the dnswer in part (b) with -VV.

P.3-14 A charge Q is distributed uniformly over an L x L square plate. Determine V and E at
a point on the axis perpendicular to the plate, and through its center.

P3-15 A charge Q is distributed uniformly over the wall of a circular tube of radius b and height
h. Determine V and E on its axis

a) at a point outside the tube, then

b) at a point inside the tube.

P.3-16 A simple classical model of an atom consists of a nucleus of a positive charge Nlel
surrounded by a spHerical electron cloud of the same total negative charge. (N is the atomic
number and e is the electronic charge.) An external electric field E, will cause the nucleus to be
displaced a distance r, from the center of the electron cloud, thus polarizing the atom. Assuming
a uniform “charge\distribution within the electron cloud of radius b, find r,.

P3-17 Determine the work done in carrying a —2 (uC) charge from Py(2, 1, —1)to Py(8,2, ~ 1)
in the field E = a,) + a,x

a) along the parabola x = 2?2, j
b) along the straight line joining P, and P,.
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. P.3-18 The polarization in a dielectric cube of side L centered at the origin is given by P =
Pfa.x +ayy+a.z).
a) Determine the surface and volurhe bound-charge densities.
" b) Show that the total bound charge is zero.

P.3-19 Determine the electric field intensity at the center of a small spherical cavity cut out of a
large block of dielectric in which a polarization P exists.

P.3-20 Solve the following problems:

a) Find the breakdown voltage of a parallel-plate capacitor, assuming that conducting
plates are 50 (mm) apart and the mediym between them is air.

b) Find the breakdown voltage if the entire space between the conducting plates is filled with
plexiglass, which has a dielectric constant 3 and a dielectric strength 20 (KV /mm).

¢) If a 10-(mm) thick plexiglass is inserted between the plites, what is the maximum voltage
that can be applied to the platés without a breakdown?

P.3-21 Assume that the z = 0 plane separates two lossless dielectric regions with é,l =2 and
€,; = 3. 1f we know that E, in region 1 isa 2y — a3x + a_(5 + z), what do we also know about
E; and D, in region 2? Can we determine E, and D, at any point ip region 2?7 Explain.

P.3-22 Determine the boundary conditions Jor the tangential and the normal components of
P at an interface between (wo perfect diclectric media with dielectric constants €,, and «,,.

-P.3-23 What are the boundary conditions that must be satisfied by the electric potential at an
interface between two perfect dielectrics with dielectric constants ¢,, and €, ?

P.3-24 Dielectric lenses can be used to collimate clectromagnetic fields. In Fig. 3-34, the left
surface of the lens is that of a circular cylinder, and the right surface is a plane. If E, at point

P(r,, 45°, z) in region 1 is a,5 — a,3, what must be the dielectric constant of the lens in order
" that E, in region 3 is parallel to the x-axis?

Fig. 3-34 Dielectric lens
(Problem P.3-24).

P.3-25 The space between a parallel-plate capacitor of area S is filled with a dielectric whose
permittivity varies linearly from €, at one plate (y = 0} to €, at the other plate (y = d). Neglecting
fringing effect, find the capacitance.
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P. 3-—26 Consmler the earth as a conducting sphere of radius 6.37 (Mm)
a) Determind its Ldpacxtance

b) Determine the muaximum charge that can exlst on it without causing a breakdown of the
air surrounding it.

P.3-27 Determine the capacitance of an 1solated cbnducting sphere of radius b that is coated
with a dielectric layer of uniform thickness 4. The dilectric has an electric susceptibility , .

P3-28 A capacitor consisis of two concentric spHerical shells of radii R; and R,. The space
between them is filled with a dielectric of relative permittivity €, from R, to b(R; < b < R,) and
another dielectric of relative permittivity 2, from b to R,.

a) Determine E dnd D everywhere in terms of an appiied voltage V.
b) Determine the cupacitance.

P.3-2) Assume that the ourter conductor of the cylindrical capacitor in Example 3-16 is
grounded, and the inner conductor is maintained at a potential V.

3) Find the electtic field intensity, E(q), at the.surface of the inner conductor.

b) With the innér radius, b, of the outer conductor fixed, ﬁnd a so that E(a) is minimized.
¢) Find this minimum E(a).

d) Deterthine the capacitance under the conditions of part (b).

P.3-30 The radius of the core and the inner radius of the outer conductor of a very long coaxial
transmission line are r; and r, respectively. The space between the conductors is filled with two
coaxial layers of dielectrics. The dielectric canstant? of the dielectrics are €, for r, <r<band
€,; for b < r < r,. Determine its capacitance per udit length.

P.3-31 A cylindrical capacitor of length L consists of coaxial conducting surfaces of radii r;
and r,. Two dielectric media of different diclectric copstants €,, and €,, fill the space between thc
conducting surfaces as shown in Fig. 3-35. Determihe its capacitance.

Fig.3-35 A cy‘lindrical capacitor
with two dielectric media
(Problem P.3-31).

P.3-32 A capacitor consists of two coaxial metallic cylindrical surfaces of a length 30 (mm) and
radii 5 (mm) and 7 (mm). The dielectric material between the surfaces has a relative permittivity
€, = 2 + (4/r), where r is measured in mm. Determine the capacitance of the capacitor.

v
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P3-33 Calculate the amount of electrostatic energy of a uniform sphere of charge with radius
b and volume charge density p stored in the following regions: '

a) inside the sphere,
b) outside the sphere.

Check your results with those in Example 3-19.

P.3-34 Find the electrostatic energy stored in the region of space R > b around an electric
dipole of moment p.

P.3~35 Prove that Eqgs. (3-149) for stored electrostatic energy hold true for any two-conductor
capacitor.

P.3-36 A parallel-plate capacitor of width w, length L, and separation d is partially filled with a
dielectric medium of dielectric constant ¢,~as shown in Fig! 3-36. A battery of V), volts is con-
nected between thié plates. '

a) Find D, E, and p, in each region.

b) Find distarice x such that the electrostatic energy stored in each region s the same.

} Fig. 3-36 A parallel-plate
— capacitor (Problem P.3-36).

P.3-37 Using the principle of virtual displacement, derive an expression for the force between
two point charges +Q and —Q separated by a distance x in free space.

P.3-38 A parallel-plate capacitor of width w. length L, and separation d has a solid dielectric
slab of permittivity € in the space between the plates. The capacitor is charged to a voltage V, by
a battery, as indicated in Fig. 3-37. Assuming that the dielectric slab is withdrawn to the position
shown, determine the force acting on the slab

a) with the switch closed, _

b) after the switch is first opened.

Switch
Yo B
o),

T

Vo

|

Fig. 3-37 A partially filled parallcl-plate capacitor
(Problem P.3-38), :
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3 Electrostatic problems are those which deal with the effects of electric charges at
s the same. : rest. These proble_fné can present themselves in several different ways according to
s what is initially knhown. The solution usually calls for the determination of electric
S~ potential, electric figld intensity, and/or electric charge distribution. If the charge
' 3 distribution is given; both the electric potentifil and the electric field intensity can
3 - be found by the formulas developed in Chapter 3. In many practical problems,
however, the exact charge distribution is not Enown everywhere, and the formulas
in Chapter 3 cannhot be applied directly for finding the potential and field inten-
sity. For instance, if the charges at certain disertte points in space and the potentials
ol some conducting bodics are given, it is rather difficult to find the distribution
of surface charges on the conducting bodies and/or the electric field intensity in
space. When the conducting bodies have botindaries of a simple geometry, the
. method of images thay be used to great advantdge. This method will be discussed in
d diclectric i Section 4-4.

ltage 1./0.by In another tyi)e; of problem, the potentials of all conducting bodies may be
he position known, and we wish to find the potential and field intensity in the surrounding
space as well as the distribution of surface charges on the conducting boundaries.
Differential equations must be solved subject to the appropriate boundary condi-
tions. The techniques for solving partial diiferentjai equations in the various co-
3 ordinate systems will be discussed in Sectio‘n'sj 4-3 through 4-7.

‘ce between 4

— : 4-2 POISSON’S AND
' LAPLACE’S EQUATIONS

In Section 3-8, we pointed out that Eqgs. (3-93) and (3-5) are the two fundamental
governing differentidl equations for clectrostatics in any medium. These equations
are repeated below for convenience.

Eq. (3-93): : V- -D=p, 4-1)
Eq. (3-95): - Vx E=0, (4-2)
133
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H e ey

~

The irrotational nature of E md1cated by Eq.(4-2) enables us to deﬁne a scalar electric
potential V, as in Eq. (3-38).

Eq. (3-38): | E=—VV. - (4-3)
In a linear anci isotropic medium, D = €E, and Eq. (4-1) becomes
VeeE=p. . (4-4)
Substitution of Eq (4-3) in Eq. (4—4) yields .
Ve )=-p, (4-5)

where € can be a function of position. For a simple mediun® that is, for a medium

that is also homogeneous, € is a constant and can then be taken out of the divergence
operation. We have

’,

V2 = L. (4-6)
€

~—
~—

In Eq. (4-6), we have introduced a new operator, V2, the Laplacian operator, which
stands for “the divergence of the gradient of,” or V -'V. Equation (4-6) is known as
Poisson’s equation; it states that the Laplacian (the divergence of the gradient) of
V equals —p/e for a simple medium, where € is the permittivity of the medium (which
1s a constant) and p is the volume charge density (which may be a function of space
coordinates). v

. Since both divergence and gradient operations involve first-order spatial deriva-
tives, Poisson’s equation is a second-order partial differential equation that holds at
every point in space where the second-order derivatives exist. In Cartesian coordi-

nates,
' 0 0 oV 24 a4
V2V=V-VV=<ax:~+a,_ +a:£)-(a‘:—+ayg—+a_€f>;
ox ’ 0y 0z

ay 0z Ox

and Eq. (4-6) becomes

lervy a2y oy
s JE) (V/m?). (4-7)

Similarly, by using Eqgs. (2 86) and (2- 102) we can easily verify the following ex-
pressions for V2V in cylindrical and spherical coordinates.
Cylindrical coordinates: ‘
2 A2
16(()V> L é*v oV (4-8)

)t T

.

[ S

Sy e T P T W T MW M mT b

o o oy




ir electric
B

(4-4)

Lo@es

i
1 medium
iivergence

(4-6)
ya

1OF. v ..Ch
known as
-adient) of
um (which
1 of space"

-1al deriva-
at holds at
an coordi-

@y

ool o etk

PRI

o "“‘“"."FSpherical'cooi‘;iii‘ dtes: ' -

4-2 1 Pons$ori'é' AND LAPLACE'S EQUATIONS 135

R

R A B . }
X : et et

. Vv = {7 , 0V 1 e, v 1V
B aiﬁ. (_R ZR) T R¥sn 0 a0 1(5“‘ 9% ) " 'RrmToaer Y
The solution of Poisdon’s equation in three dirﬂensions subject to prescribed bound-

ary conditions is,.in 'gcneral, not an easy task.
At points ih a simple medium where there 15 no free charge, p = 0 and Eq. (4-6)

‘ ViV =0, {4-10)

which is known as Laplace’s equation. Laplace’s equation occupies a very important
position in electromégnetics. It is the governing equation for problems involving a
set of conductors, sfich as capacitors, maintained at different potentials. Once V
is found from Eq. (4-10), E can be determined from — V¥, and the charge distribution
on the conductor surfaces can be determined from p, = €E, (Eq. 3-67).

.reduces to i3

Example 4-1 The hwa plates of a parallel-plate capacitor are separated by a
distance d and maintained at potentials 0 and V;, as shown in Fig. 4-1. Assuming
negligible finging effect at the edges, determine {a) the potential at any point between
the plates, and (b) the surface charge densities at the plates.

Solution: ) '

a) Laplace’s equation is the governing equatidn for the potential between the plates
since p = 0 there. Ignoring the fringing effect of the electric field is tantamount to
assuming that the field distribution between the plates is the same as though the
plates were inﬁditely large and that there is no variation of V in the x and z
directions. Equation (4-7) then simplifies to

L=, (4-11)

&y
where d?/dy? is used instead of 6%/5y*, since y is the only space variable.

~ ’

+
+
+
o
+
+
+

- +l
==

- v v ¥ Fig. 4-1 A parallel-plate capacitor
0 ’ (Example 4-1).
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b)

Integration of Eq. (4—11) with respect to y gives ..

~where the constant of integration C, is yet to be determined. Integrating again,

we obtain
V=C1y+ Cz- ’ ] (4'—12)

 Two boundary conditions are required for the determination of the two constants

of integration:
Aty=0, V=0 (4-13a)
Aty=d, V=1V,. . (4-13b)

Substitution of Egs. (4~13a) and (4-13b) in Eq. (4-12) yields immediately C,=
Vo/d and C, = 0. Hence the potential at any point y between the plates is, from
Eq. 4-12), '

V -~
v=0y. T (4-14)

The potential increases linearly from y = 0 to y = d.

In order to find the surface charge densities, we must first find E at the conducting
plates at y =0 and y = d. From Eqs. (4-3) and (4-14), we have

dv v,
‘E=—%E=—%£, (4-15)

which is a constant and is independent of y. Note that the direction of E is opposite
to the direction of increasing V. The surface charge densities at‘the conducting
plates are obtained by using Eq. (3-67),

14

B, o, o B

At the lower plate, ‘
a, = a,, E.= ——ZQ, Psr = -%/9.
At the upper plate,
a, = —a, E,,“=—I;£; oo psu=f-:_°..

Electric field lines in an electrostatic field begin from positive charges and end
in negative charges. :

e e e e v e
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C o

‘*-\,EXample 4-2 Detei’mme the E field both 1n81de and outside a spherical cloud of -
" electrons with a unifbrm volume charge denslfy p=—pofor0<R<bandp=0

for R > b by solving‘Pmsson s and Laplace’s equatlons for V.

Solution: We- rechﬁl that this problem - ‘was Solved in Chapter 3 (Example 3-6)
by applying Gauss’s

aw. We now use the samg problem to illustrate the solution of
one-dimensional Poisson’s and Laplace’s equdtions. Since there are no variations
infand ¢ dxrectlons, we are only dealing with functions of R in spherical coordinates.

_J
a) Inside the eloud,; ¢
.,-ri; O<R<bpt—po

In this reglon, Poisson’s equation (V¥ =- s+ — p/ey) holds. Dropping ¢/30 and .
0] terms from Eq (4-9), we have

_l_i RZd_V'. =22,
R* 3R oR/) ¢,

d dv; £0 1n .
R* —|=-—=R*. 4-16
iR < dR) 6 3-10)

Integratlon of Edi (4-16) gives

i

which reduces to

v, '
fh 4-17
. dR 360 2R+ R2 =17

The electric field intensity inside the electron cloud is

i ' L (dV,
e (®)

Since E; cannot be infinite at R = 0, the mtegratxon constant C, in Eq 4-17)
must vanish, We obtain

. E;=—3R§£;R, 0<R<b. (4-18)
b) Outside the cloud, -
. o R>b,p =.0.
Laplace’s equé;fion holds in this region. We have V>V, = 0 or
~ A
_ Integrating Eq. (4~19), we obtain
' ’ Ve C,

R=RE ‘ (4-20)
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or. » R ,
B, = W= —ap @ = —an 53 - (@-21)

The integration constant C, can be found by equating E, and Ei at R = b, where
there is no discontinuity in medium characteristics.

G _po
b* 3¢y
from which we find
pob?
C,= (4-22)
3e,
and
’ pob*
Ea = - — 5 > . 4—‘
8 ag T R=b ) (4-23)

Since the total charge contained in the clectron cloud is

-

: 4n T~
Q= —po 7 b2,
Equation (4-23) can be written as |
Q
E,=ap——, 4-24
Ax 4re,R> (4-24)

which is the familiar expression for the electric field intensity at a point R from
a point charge Q.

Further insight to this problem can be gained by examining the potential as a
function of R. Integrating Eq. (4-17), remembering that C, = 0, we have

V= POR2
be,

+C. {4--25)
It is important to riote that C is a new integration constant and is not the same as
C,. Substituting Eq. (4-22) in Eq. (4-20) and integrating, we obtain

_ _Pob3
°7 . 3e,R

+ C;. (4-26)

However, C), in Eq. (4-26) must vanish since V, is zero at infinity (R — oo). As electro-

static potential is continuous at a boundary, we determine C; by equating V; and
V,at R = b: ‘
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o i s

i
.
~ :'/pf)ﬂz. ) S .
| i = (4-27)
- 'and, from Eq. (4-25), ,
N 2 2 .
R A (-3—1’— —5—>. (4-28)
A e\ 2 2
We see that V; in Eq, (4-28) is the same as ¥ in Eq. (3-142), with p = — p,
- . s ‘ . i o ] : .
b

4-3 UNIQUENESS OF
ELECTROSTATIC SOLUTIONS

In the two refutively simple examples i the ldst section, we obtained the solutions
by direct integration. In more complicated situations other methods of solution
must be used. Before these methods are discussed, it is important to know that
a solution of Poisson’s equation (of which Laplace’s equation is a special case) that
satisfies the given boundary conditions is a unique solution. This statement is called the
uniqueness theorem. The implication of the uniqueness theorem is that a solution of
an electrostatic problem with its boundary conditions is the only possible solution
irrespective of the method by which the solutlon is obtained. A solution obtained
even by intelligent guessing is the only correct solution. The importance of this
theorem will be dpprecmted when we discuss-the method of images in Section 4-4.

To prove the umqueness theorem, suppose a volume tis bounded outside by a
surface S,, which may be a surface at infinity. Inside the closed surface S, there are
a number of charged conductmg, bodies with surfaces S, S,,...,S, at specified
potentials, as depicted in the two-dimensional Fig, 4-2. Now assume (h‘u contrary

to the uniqueness the0rem there are two solutions, V, and V,, to Poisson’s equation
inT:

Il
|

ns.rc mo

vy, (4-29a)

. (4-29b)

Fig. 4-2 .Surface S, enclosing volume
© with conducting bodies.
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Alsoassume that both IA/1 and V, satisfy the sume boundary conditionson S, S,, ..., S,
and S,. Let us try to define a new difference potential

Vd = Vl - Vz. (4—30)
From Eqs. (4;—29a) and (4-29b), we see that V, satisfies Laplace’s equation in t
V2V, =0. : 4-3D)

On conducting boundaries the potchtials are specified and ¥, = 0.
Recalling the vector identity (Problem 2-18),

VA =V A+ AV | (43

J)
and letting f = V,and A = VVQ,;W'e have
VeV, VV) =V, V2V, + [V, © o (4-33)
where, because of Eq. (4-31), the first term on the right side vanishes. Integration
of Eq. (4-33) over a volume t yiclds T~
Jswavvy-aas= [ pwvpa, (4-34)

where a, denotes the unit normal outward from z. Surface S consists of S, as well as
S1,S,,...,and §,. Over the conducting boundaries, ¥, = 0. Over the large surface
S,, which encloses the whole system, the surface integral on the left side of Eq. (4-34)
can be evaluated by considering S, as the surface of a very large sphere with radius R.
As R increases, both V; and ¥, (and therefore also V}) fall off as 1/R; consequently,
VV, falls off as 1/R?, making the integrand (V, VV,) fall off as 1/R>. The surface area
S,, however, increases as R*. Hence the surface integral on the left side of Eq. (4-34)
decreases as 1/R and approaches zero at infinity. So must also the volume integral
on the right side. We have

fr{v'v,,tz dv = 0. (4-35)

Since the integrand |VV,|* is nonnegative everywhere, Eq. (4-35) can be satisfied
only if |VV,| is identically zero. A vanishing gradient everywhere means that ¥, has
the same value at all points in 7 as it has on the bounding surfaces, S,, S,,..., S,
where V; = 0. It follows that V; = 0 throughout the volume t. Therefore V, = V,,
and there is only one possible solution. _

It is easy to see that the uniqueness theorem holds if the surface charge distri-
butions (p, = €E, = —e V/0n), rather than the potentials, of the conducting bodies
are specified. In such a case, VV, will be zero, which in turn, makes the left side of
Eq. (4-34) vanish and leads to the same conclusion. In fact, the uniqueness thcorem
applies even if an inhomogeneous dielectric (one whose permittivity varies with
position) is present. The proof, however, is more involved and will be omitted here.
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‘ the conditions on the boundmg surfaces in these

y
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There is a classl‘of‘émctrostanc problems with Boundary conditions that appear to
be difficult to satisf 1f the governing Laplace’s équation is to be solved directly, but

zroblems can be set up by appropriate
image (equlvalent)lcharges and the potential distributions can then be determined in
a straightforward Marner. This method of replacing bounding surfaces by appropriate
image charges in heu of a formal solution of Laplace s equation is called the method
of images. "~ .

Consider the case of a posmve point chargc Q, locatcd at a distance d above a
large grounded (zero-potential) conducting plane, as shown in Fig. 4-3(a). The
problem is to find thé potential at every point above the conducting plane (y > 0).
The formal procedure for doing so would be to solve Laplace’s equation in Cartesian |
coordinates

= =0, (4-36)

which must hold fdr ¥ > 0 except at the point charge. The solution V{x, y, z) should
satisfy the following conditions:

1. At all points on the grounded conducting plane, the potential is zero; that is,
Vix,0,2)=0.
2. At points very close to Q, the potential dpproaches that of the point charge
alone; that is
0
_ 4meoR’
‘where R is the distance to Q.

3. At points very far from Q(x > + o0,y — +o0, or 2 + o), the potential ap-
proaches zero.

4 00,4, 0)

Grounded
plane conductor

== 7

— ~—

T, .
(a) Physical arrangement.

(Image charge)

« (b) Image charge and field lines.

Fig. 4-3 - Point charge und grounded plane conductor.
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4. The potential function is even with respect to the x and z coordinates; that is,

Vix,y,2) = V(~x,y, 2)
and .
V(x, y,2) = V(x, y, —2).
It does appear difficult to construct a solution for V' that will satisfy all of these
conditions, :

From another point of view, we may reason that the presence of a positive
charge Q at y = d would induce negative charges on the surface of the conducting

plane, resulting in a surface charge density p,. Hence the potential at points above
the conducting plane would be ’ >

Q Lt ps
4n€0\/‘< +(y—d)? +z* 4neg ISR,

Vix,y,z)= ds,

where R, is the distance from ds to the point under consideration and S is the surface
of the entire conducting plane. The trouble here is that p, must first be determined
from the boundary condition 1(x, 0. ) = 0. Morcover, the indicated surface integral
s difficult to evaluate even after py has been determined at every point on the con-
ducting plane. In the following subsections, we demonstrate how the method of
images greatly simplifies these problems.

Point Charge and Conducting Planes

"fhe problem in Fig. 4-3(a) is that of a positive point charge, Q, located at a distance d
above a large plane conductor that is at zero potential. If we remove the conductor

and replace it by an image point charge —Q at y = —d, then the potential at a point
P(x, y, z) in the y > 0 region is
o /1 1
V(: = —— ), 4-37
(., 2) 4ne, \R. R ( )
where .

R = [+ (y—dF + ]2,
R_=[x*+ y+d)2+22]”2.

It is easy to prove by direct substitution (Problem P.4—5a) that V(x, y, z) in Eq. (4-37)
satisfies the Laplace’s equation in Eq. (4-36), and it is obvious that all four conditions
listed after Eq. (4-36) arc satisfied. Therefore Eq. (4~37) is a solution of this problem;
and, in view of the uniqueness theorem, it is the only solution.

Electric field intensity E in the y > 0 region can be found easily from — VV with
- Eq. (4-37). It is exactly the same as that between two point charges, +Q and —Q,

P -
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Fig. 4-4 Point chargfg and perpendicular conductirg planes.

spaced a distance 2d apart. A few of the field lines are shown in F ig. 4-3(b). The
solution of this electostatic problem by the method of images is extremely simple:;
but it must be emphasized that the image charge is located ourside the region in
which the field is to be determined. In this problem the point charges +Q and —Q
cannot be used to cziiculutc the V or K in the y < 0 region. As a matter of fact, both
V and E are zero in the y < 0 region. Can you txplain that?

It is readily seed that the electric field of a line charge p, above an infinite con-
ducting plane can be found from p, and its mage —p, (with the conducting plane
removed). '

Example 4-3 A positive point charge @ is located at distances o, and d,, res-
pectively, from two. grounded perpendicular conducting half-planes, as shown in

Fig. 4-4(a). Determihe the force on Q caused Yy the charges induced on the planes.

Solution: A formal solution of Poisson’s equation, subject to the zero-potential
boundary condition at the conducting half-platies, would be quite difficult. Now an
image charge ~Q in the fourth quadrant would make the potential of the horizontal
half-plane (but not that of the vertical half-plane) zero. Similarly, an image charge
—Q in the second quadrant would make the potential of the vertical half-plane
(but not that of the Hbrizontal plane) zero. But if a third image charge +Q is added
in the third quadrant, we see from symmetry that the image-charge arrangement in
Fig. 4-4(b) satisfies the zero-potential boundary condition on both half-planes and
is electricalty-equivalént to the physical arrangement in Fig. 4~4(a). ‘

Negative surface charges will be induced on the half-planes, but their effect on Q
can be determined from that of the three image charges. Referring to Fig. 4-4(c),
we have, for the net force on 0,

1

F=F1+F2+F3’
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.Fl‘— ay.4n€o(2d2)2, _ ‘ | ‘ E
Fa= =t e Gdy” - o Lo
¢ |
F;= 2 2d,). ; 3
‘ 3 477.50[(2(]‘)2 + (2‘12)2]3/2 (ax d1 + a}2d2) ] : "
- Therefore, = . ’ : ' : v o

0* (T 4 17 4 ) o
F= = 4 1y
Tone, | " @+ a0 &) S| @+ & ..

The electric potential and electric field intensity at points in the first quadrant and
the surface charge density induced on the two half-planes can also be found from
the system of four charges.

TN

4-4.2 Line Charge and Parallel ' . : R
Conducting Cylinder

We now consider the problem of a line charge p, (C/m) located at a distance d from
the axis of a parallel, conducting, circular cylinder of radius a. Both the line charge ;
and the conducting cylinder are assumed to be infinitely long. Figure 4-5(a) shows a !
cross section of this arrangement. Preparatory to the solution of this problem by the :
method of images, we note the following: (1) The image must be a parallel line charge '
inside the cylinder in order to make the cylindrical surface at r = ¢ an equipotential
surface. Let us call this image line charge p;. (2) Because of symmetry with respect g
to the line OP, the image line charge must lie somewhere along OP, say at point P,, 3
which is at a distance d; from the axis (Flg 4-5b). We need to determine the two f
unknowns, p; and d,. :

~ - : Ty

= ' : (a) Line charge and parallel conducting cylinder. " (b) Line charge and its image. ' S

Fig. 4-5 Cross section of line charge and its image in a parallel conducting
circular cylinder.
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pi=—pr] (4-38)

R

At this stage, Eq. (4458) is just a trial solution (?m intelligent guess), and we are not
sure that it will hold t}‘u‘e. We will, on the one hand, proceed with this trial solution

. until we find that it ﬁiils.to‘_ satisfy the boundary conditions. On the other hand, if
. Eq. (4-38) leads to.a Bolution that does satisfy dll boundary conditions, then by the

uniqueness the,o_rexﬁi | is the only solution. Ouf neéxt job will be to see whether we
can determine ;. -~ ¥ ' ':
The electric potetitial at a distance r from-a line charge of density p, can be

obtained by integrating the clectric field intensity E given in Eq. (3~36).

V= ~ [ B dr= —é—:i;—gﬁ;%dr

f o

= P’ (4-39)
2neq

Note that the refefenpe point for zero potential, ry, cannot be at infinity becausz

_ setting rq = o in Eq. (4-39) would make V infinite everywhere else. Let us leave

ro unspecified for the time being. The potential at a point on or outside the cylindrical
surface is obtained By ddding the contributjons of p, and p;. In particular, at a point M
on the cylindrical surface shown in Fig. 4-5(b),.we have

i V, =A..f)_”_1nf2.___p_f__1 o

2ne, r  2mey,
_ _Pe | i

Tl (4-40)

i

In Eq. (4-40) we héqu? chosen, for simplicity, a point equidistant from p, and p; as
the reference point fot zero potential so that the In ro terms cancel. Otherwise, a
constant term should be included in the right side of Eq. (4-40), but it would not
affect what follows. Equipotential surfaces are specified by

% = Constant. ' 4-41)

If an equipotential sutface is to coincide with the cylindrical surface (OM = a), the
point P; must be located in such a way as to make triangles OM P, and OPM similar.

Note thatvthe{t_wo ttiangles already have one common angle, £ MOP,. Point P,
should be chosento make /. OMP; = £ OPM. We have '

.= Constant. - (4-42)
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From Eq..(4-42) we see that if

2 v -
a R
di = i . (4-43)

the image line charge — p,, together with p,, will make the dashed cylindrical surface
in Fig. 4~5(b) equipotential. As the point M changes its location on the dashed circle,
both r; and r will change; but their ratio remains a constant that equals a/d. Point
P; is called the inverse point of P with respect to a circle of radius a.

The image line charge —p, can then replace the cylindrical conducting surface,
and V and E at any point outside the surface can be determined from the line charges
p. and —p,. By symmetry, we find that the parallel cylindrical surface surrounding
the original line charge p, with.radius a and its axis at a distance d; to the right of P
Is also an equipotential surface. This observation enables us to calculate the capaci-
tance per unit length of an open-wire transmission line consisting of two parallel
conductors of circular cross section.

. . . TS
Example 4-4 Determine the capacitance per unit length between two long, parallel,
circular conducting wires of radius a. The axes of the wires are separated by a
distance D.

Solution: Refer to the cross section of the two-wire transmission line shown in
Fig. 4--6. The equipotential surfaces of the two wircs can be considered to have been
generated by a pair of line charges p, and-— p, separated by a distance (D — 2d,) =
d — d;. The potential difference between the two wires is that between any two points
on their respective wires. Let subscripts 1 and 2 denote the wires surrounding the
equivalent line charges p, and —p, respectively. We have, from Egs. (4—40) and
(4-42), ,

Fig. 4-6 Cross section of two-wire transmission line and
equivalent line charges (Example 4-4).
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. ! Pe ;‘J T€g '
N C = ——————— = ) 4—44
. A rYrr 4=
where - ' i S
. o L . . [ az. B
) - :'i‘a . _d=D~d;=D—'E-’
from which we obtain’
‘_ d=4(D + /D¥ = 4d%). (4-45)
Using Eq. (4-45) in Eq. (4-44), we have
= L
€y . R
C= F/m). 4-46
In [(D/2a) + /1D/2a)F = 1] (F/m) ( _ )

Since
In[x+x¥=1]=cosh™!x
for x > 1, Eq. (4~46) can be written alternatively as

i

3
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PO \
Point Charge and. C%nducting Sphere

The method Qf irf%agés can also be applied to solve the electrostatic problem of a
point charge in the presence of a sphérical conductor. Referring to Fig. 4-7(a)
where a positivebp:id{ charge Q islocated at a distance d {from the center of a grounded
conducting spheré;ofradius a(a < d), we now proceed to find the V and E at points
external to the sphete. By reason of symmetry, we expect the image charge Q; to
be a negative poifit charge situated inside the sphere and on the fine joming O and

Q. Let it be at a dislunce d; [tom 0. It is obvious that Q, cannot be equal to —Q,

since —Q and'the 6riginal Q do not make the spherical surface R = q a zero-potential
surface as requiréd. (What would the zero-potential surface be if Q;,=—-07 We
must, therefore, treat both 4; and Q, as unknowns.

i

¢

. ] _
' The other solution, d = -&(D ~ /D% — 4g?), is discarded because both D and 4 are usually much larger
than a. -

’



(2) Point charge and grounded conducting spherc. (b) Point charge and its image.

Fig. 4-7 Point charge and its image in a gtounded sphere,

In Fig. 4-7(b) the conducting sphere has been replaced by the image point
charge @;, which makes the potential at all points on the spherical surface R =«
7ero. At a typical point M, the potential caused by Q and Q; is

1 .
y, = (2+9g=m (4-48)
dreg \ 1 1 -
which requires T
i 0
A - : 4-4
. 0 Constant (4-49)

Noting that the requirement or the ratio r;/r is the same as that in Eq. (4-41), we
conclude from Egs. (4-42), (4-43), and (4—-49) that

_Qi_a
0 d
or
a ' .
Q= _ZQ : - : (4-50)
and
a2 - - :» .
di"‘g' ST (4=51)

” The point Q; is, thus, the inverse point of Q with respect to a circle of radius a. The
V and E of all points external to the grounded sphere can now be calculated from the
V and E caused by the two point charges Q and —aQ/d.”

Example 4-5 A point charge Q is at a distance d from the center of a grounded
conducting sphere of radius a (a < d). Determine (a) the charge distribution induced
on the surface of the sphere, and (b) the total charge induced on the sphere.

.

;
;
;
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Fig. -8 Diagram for computing induced
charge distribution (Example 4-5).
i

Soluuon The bhysxca“ problem is that shown m! Fig. 4-7(a). We solve the problem
by the method of imagks and replace the grounded sphere by the image charge Q, =
—aQ/d at a distance dy = u*/d from the center of the sphere, as shown in Fig. 4-8.
The electric potential at an drbitrary point P(R 0) is

, ‘ Q (1 a -57
P r& 0)_4”60(RQ dRQ> 4-52)

where, by the law of cosines,

Ry=[R*+d*~ 2Rd cos g143 (4~52a)
Q

L a2\2 dz 12
o[- 2) -m(d)cosg] e

Note that 0 is measured from the line OQ The R-component of the electric field
intensity, E, is ‘

and

“ _ (R90) _
| : Ex(R, §) = R (4-33)
Using Eq. (4-52) in Eq. (4-53), we have

9 —dcosl
ER(R 0) = dre, {(R"' + d* — 2Rd cos 9)32

- : o a[R —(a*/d)cos 6] (4-54)
i T d[R*+ (az/d) 2R(a2/d ) cos 67372 ("
a) In order to-find the induced surface charge ot the sphere we set R = a in Eq.
’ (4 54) and evaluate
LA Ps= EoEk(a, 6), o : ‘ {4-55)
: whlch yxelds the follovwng aftet mmphﬁcatxon ’

DR . »— V dz _ ai
SR o - ah

4na(a® + d* — 2ad cos 6)3% (4-36)

149 i ;
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Eq (4 56) tells us that the mduoed surface charge isneg ti that s rhaghi-" S

tude is maximum at § = 0 and minimuin at § = =, as expected

- b) The total charge induced on the sphere is obtamed by mtegratmg p, over the p F
surface of the sphere, We have s PR

Total induced charge = Eﬁps ds = — f" f p,a sin 0 d@ do

(- 57) =

" We note that the total mduced charge is exactly equal to. the 1mage charge Q: ; P
that replaced the sphere. Can you explain thrs" '

If the conducting sphere is’electrically neutral and is not grounded, the image of ;
a point charge Q at a distance d from the center of the sphere would still be Q; at
d; given, respectively, by Eqs. (4—50) and (4-51) in order to make the spherical surface
R = a cquipotential. However, an udditional point charge ‘
, aQ
Q=-0= —d—

at the center would be needed to make the net charge on the replaced sphere zero.
The electrostatic problem of a point charge Q in the presence of an electrically
neutral sphere can then be solved as a problem with three point charges: Q' at R = 0,
Q;atR=a?/d,and Q at R = d.

4-5 BOUNDARY- VALUE PROBLEMS IN
CARTESIAN COORDINATES '

We have seen in the precedmg section that thc method of i 1mages is very useful in
solving certain types of electrostatic problems involving free charges near conducting
boundaries that are geometrically simple. However, if the problem consists of a
system of conductors maintained at specified potentials and with no free charges, it
- cannot be solved by the method of images. This type of problem requires the solution
of Laplace’s equation. Example 4—1 was such a problem where the electric potential
was a function of only one coordinate. Of course, Laplace’s equation applied to three
dimensions is a partial differential equation, where the potential is, in general, a func-
tion of all three coordinates. We will now develop a method for solving three-
_ - dimensional problems where the boundaries, over which the potential or its normal
ET - w207 . derivatjve is specified, coincide with the coordinate surfaces of an orthogonal, curvi-
oy -wzow - linear coordinate system. In such cases the solution can be expressed as a product of
’ o three one-dimensional functions, each depending separately on one coordinate
variable only. The procedure is called the method of separation of variables.
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L Prdblem§A(gl&ctfor_rj‘agnetiq or otherwise) hoverned by partial differential equa-’

tionswith' preseri  boundary conditionsare called boundary-value problems.

Boundary-value prdblems for potential functibns can be classified into three types:

w2, (1) Dirichlet problenf, in Which the value of the potential is specified everywhere on

i the boundaries; (2) Neumann problems, il whicH the normal derivative of the potential
is specified everywHere on the boundaries; (3) Mixed boundary-value problems, in
which the potential is specified over some boyindaries and the normal derivative of ‘
the potential is specified over the remaining ongs. Different specified boundary condi-
tions will require the choice of different potéhtial functions, but the procedure of
~ solving these types df problems — that is, by tHe method of separation of variables —
for the three types 5{ problems is the same. THe solutions of Laplace’s equation are

often called harmon? Junctions. ‘

Laplace’s equatibn for scalar clectric potential V in Cartesian coordinates is

*V v oty

= 0. 4--58
o Ty T #-39)
To apply the method of separation. of variables, we assume that the solution Vix,y,2)
can be expressed as d product in the following form: :
' i ;
. Vix y,2) = XY (5)2(2), (4-59)

where X(x), Y(y), ad_ﬁ Zjz) are functions, respectively, of x, y, and z only. Substituting
Eq. (4-59) in Eq. (4—-58), we have ’ |

b 2K (x) 2Y(y) d2Z(z)

| 2? — T X2 ; 57 T XQYO) —= =0,
which, when diviégi through by the product X (x)Y(»)Z(2), yields

SOl X 1 vy 1 4?2(;) |
X0 o TYO) & tTze e S0 @0

¥

Yz

Note that each of fbé:three terms on the jgf} side of Eq. (4-60) is a function of only one
coordinate variab’fe dnd that only ordinery detivatives are involved. In order for Eq.

(4-60) to be satigﬁédkfor gll values of x, y, z, eacnt 05 txe three terms must be a constant.
For instance, if we differentiate Eq. (4-60) with tespect to x, we have ’

“

d[ 1 42X C
— zr[m“—-‘d ]—_0’, el

[

since the othef two terms are independent of x. Eq'p‘ation {4—61) requires that
X0 o - ka, - (4-62)

]
ks
3
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ity

. where k2 is a constant of mtegratlon to be determmed from the. boundary condmons .

- of the problem. The negative sign on the rlght side of Eq (4-62) is arbitrary, just as
the square sign on k, is arbltrary The separatzon constant k; can be a real or an
imaginary number. If k, is imaginary, k?'is a negative real numbcr making —k2 a
positive real number. It is convement to rewrite Eq. (4-62) as

d* X n _ |
——dxgx)+kiX(x)=0. S (463
) Ina sumlar fﬁ;ﬁher we have . o ! -
d*y | -
.7$2+Wﬂw=o,-_- (4-64)
and ’ '
27(, »
;iJ4-@Z&)=0, (4-65)

where the sepafation constants k, and k. will, in generalﬁf different from k,; but,
because of Eq. (4-60), the following condition must be satisfied:

k2+ K2+ k2=0. - (4-66)

Our problem has now been reduced to finding the appropriate solutions — X(x),
Y(y), and Z(z)—from the second-order ordinary differéntial equations, respectively,
Egs. (4-63), (4—64), and (4-65). The possible solutions of Eq. (4-63) are known from
our study of ordinary differential equations with constant coefficients. They are
listed in Table 4-1. That the listed solutions satisfy Eq. (4—63) is easily verified by
direct substitution. The specified boundary conditions will determine the choice of
the proper form of the solution and of the constants 4 and B or C and D. The solutions
of Egs. (4—64) and (4-65) for Y(y) and Z(z) are entirely similar.

Table 4-1 Possible Solutions of X"(x} + k2X(x) =

k2 k. o X(x) Exponential forms' of X(x)
0 .0 Apx + By
+ k A, sin kx + By cos kx C,e/™ 4 D e~

~— < jk_ - Aysinhkx + B, coshkx - C,* + Dye™

- ' The exponential forms of X(x) are related to the trigonometric and hyperbolic
. forms listed in the third column by the following formulas:

‘ ; . 1 - _
e = cos kx + jsin kx, cos kx = §(e + e” ), sin kx = —z;(e”" — e~y

‘e** = cosh kx + sinh kx, cosh kx = §(e** + ™), sinh kx = 4(e** — ™),

Foejengn
<

R




(4-66)

1 - X(x), -

spectively,
jown from

They are
verified by

. choice of -
zsolutions

——
. ..A/ — —— —— __’
77707070700 ¢ 1EIFTILTS TLIIILIEAIFELIEIITLLITIIIIILEFELEESIIFIEI L CETIEIEFS g

Flg 4—9 Cross-sectloﬂal ﬁgure for Example 4-6 The plane
electrodes are mﬁmte i z-direction. . ’

f?‘;; o :
,‘ .

Example 4-6 Two grounded semi- mﬁmte parallel- planc clectrodes are separated
by a distance b, A lhlrd clectrode perpendicular to both is maintained at a constant

- potential ¥, (see Fig. 4 —9). Determine the potential distribution in the region enclosed

by the electrodes.

'
'

A

Solution: Referrmg to the coordinates in Fig. 4-9, we write down the boundary
conditions for the pqtentlal function V(x, y, z) as follows.

With V mdependfnt of z:

H V(X, Vs Z) = V(xs J’)- ‘ (4—673)
In the x-dircctiolﬂl: ’
| v(0,y) =V, (4-67b)
i V(co, y) = 0. . (4-67¢)
In the yédirectiotﬂz '
L Vix,0)=0 (4-67d)
f;‘ V(x,b)=0. - (4-67e¢)
Condition (4-67a) miblxeb k. =0 and, from Table 4-1,
Z(z) = (4-68)
The constant A4, vanishes because Z is independent of z. From Eq. (4-66), we have
1 B=-r=k * (4-69)

where k is a real number ThlS choice of k implies that k, is imaginary and that k,

- is real. The-use of k, = jk, together with the condition of Eq. (4-67¢), requires us

to choose the exponehtlally decreasing form fot X(x), which is

D X(x) = De~®. (4-70)

In the y-d1rect10ﬂ k, = k. Condition (4 67d) indicates that the proper choice
for Y(y) from Table 4—1 is

.. Y(y) = A, sin ky. (4-71)
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Combmmg the solutlons given by Egs. (4- 68) (4- 70), and (4—71)1n Eq (4 59), we
obtain
! .v ‘ V,,(X, y) (BoDzAl)e—kx sin ky

= C,e " sin ky, (4-72)

where the arbitrary constant C, has been written for the pféduct BoD,A,.
Now, of the five boundary conditions listed in Egs. (4-67a) through (4-67¢),

we have used conditions (4-67a), (4-67¢), and (4-67d). In order to meet condmon
(4-67e), we require

Vx, b) = C,e”*sinkb = 0 R (4-73)

which can be satisfied, for all values of x, only if
’ sinkb=20
or
kb = nn )

or

k=%- He= 1,230 T~ (d-74)
Therefore, Eq. (4—72) becomes ‘

» . Vx, y) = C e~ "x/b gin Ei;—z y. | ‘ (4-75)

Question: Why are 0 and negative mtegral values of n not included in Eq. (4-74)?

We can readily verify by direct substitution that V,(x, y) in Eq. (4-75) satisfies
the Laplace’s equation (4—58). However, V,(x, y) alone cannot satisfy remaining
boundary condition (4—67b)at x = 0 for all values of y from O to b. Using the technique
of expanding an arbitrary function w1th1n a spe01ﬁed interval into a Fourier series,
we form the infinite sum

o

v, y) = Z (0, y) = ZCsm—

. = Vo, O<y< b. . (4-76)
In order ;to evaluate the coefficients C,, we multiply both sides of Eq. (4-76) by

sin m—;— y and integrate the products from y =0to y = b:

| ,.Z,f C sin 5 ysm—b—ydy f Vo sm—E—ydy : 4-77)
The integral on the right side of Eq. (4-77) is easily evaluated:
1®Y% tmisodd ~
N V, sin —b~ ydy={mn . (4-78)

0, if m is even
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3h (4-67¢),
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rier series,

(4-76)
(4-76) by
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mn ol (ri— ma . (n+mn
f C sm '3 ysill yd 2 [cos 5 y_— cos — y] dy
B G b, : If m=n
=42 (4-79)
0, {f ms n.
Substltutmg Eqs (4-4‘;8 and (4-79) in Eq. (4 7‘} ‘we obtain
R A s
d C, = e 1f{1 is odd (4-30)
' 0, if n is cven, ’

The desired potentiai distribution is, then, a suﬁerposition of V{x, ) in Eq. (4-75).

4V, = 1 iy o P A
> — x —— 4‘481\
; = — > —-e | sin ; ¥, {

L : n=1,3,‘5,:...,
x>0 and O<y<bh.

Equatxon (4-81) is a rather complicated expression to plot in two dimensions:
but, since thc ampli jxdc of the sine terms in the series decreases very rapidly as n
increases, only the firSt fe v terms are needed to obtain a good approximation. Several
equipotential lines atf sketched in Fi 1g 4-9,

Example 4-7 ConSider the region enclosed on three sides by the grounded con-
ducting planes showt! in Fig. 4-10. The end plate on the left has a constant potential
Vo. All planes are ds$umcd to be infinite in extent in the z-direction. Determine the
potential distributiod within this region.

Solution: The bou{idary conditions for the potential function V(x, y, z) are as
follows. '

/

th |4 mdependent of z:
TN

< S V0=V, ). (4-82a)

In the x-dlrectxoh: } _
. : Vo, =V, ) (4-82b)
; V(a,y) =(, (4-82¢)

t Since Laplace’s equanor{ isa hnear partial dlﬂerenual equation, the superposition of solutions is also a
solution. . .
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Fig. 4- 10 Cross- sectlonal ﬁgure for
~ Example 4- 7

In the y-direction:

V(x,0) =0 | (4-82d)
V(x, b) = 0. (4--82¢)
Condition (4—82a) implies k, = 0 and, from Table 4-1, .
Z(2) = B,. (4-83)
As a conscquence, Eq. (4-66) reduces to e
k2= —kZ=1k? (4-84)

which is the same as Eq. (4-69) in anmplc 4-6,

The boundary conditions in the y-direction, Eqgs. (4-82d) and Eq (4-82¢), are
the same as those specified by Eqs. (4-67d) and (4-67¢). To make V(x, 0) =0 for
all values of x between 0 and q, Y(0) must be zero, and we have -

Y(y) = A, sin ky, o (4-85)

as in Eq. (4-71). However, X(x) given by Eq. (4-70) is obviously not a solutlon here,
because it does not satisfy the boundary condition (4-82c). In this case, it is convenient
to use the general form for k, = jk given in the third column of Table 4-1. (The
exponential solution form given in the last column could be used as well, but it
would not be as convenient because it is not as easy to see the condition under
which the sum of two exponential terms vanishes at x = a as it is to make a sinh term
zero. This will be clear presently.) We have

X(x) = A4, sinh kx + B, cosh kx. _ (4-86)

A relation exists between the arbitrary constants 4, and B, because of the boundary
condition in Eq. (4—82c), which demands that X(a) = 0; that is,
0 = A, sinh ka + B, cosh ka
or ,
sinh ka
cosh ka

,

Bz = —dy——

LT T




(“-82d)
(4-82¢)

(4-83)
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-82e), are’

)) = O for

(4--85)

tion here,
onvenient
4-1. (The
cll, but it
ion under
sinh term

(4-86)

boundary

"of the sinh function is

CYLINDRICAL COORDINATES

A

\;v

, 3 0 iy
| X(x) - A2 [smh kx — Sinhka o h kx] .
: K osh cosh ka
o ﬁicosh T [cosh ka smh, kxs— sinh ka cosh kx]

=4 A, sinh k(x — a), * (4-87)

- where 43 has been ertten for A,/cosh ka. It is &vndent that Eq. (4-87) satisfies the
condmon X(a) =0 With expetrience, we shouldj be able to write the solution given
in Eq. (4-87) dnrectly, ithout the steps leading ib it, as only a shift in the argument
heeded to make it vanish at x = a.

Collecting Egs. (4483), (4-85) and (4- 87), we obtain the product solution

Vi(x, y) = BoA; Ay sinh k(x — a) sint ky

;- , . hTW . hm
=-“C smh—b—(x—a)sm—b—

where C, = ByA 43, hnd k has been set to equal nn/b in order to satisfy boundary
condition (4-82¢). i
We have now usecl all of the bounddry conditions except Eq. (4-82b), which may

be satisfied by a Fourier-series expansion of V(O y) =V, over the interval from
y=0toy= bWehd\/e . :

YW, n=1,2,3,..., (4-88)

Vi = z V,,f(). V) = Z C, smh a sin -T v, O<y<hbh. (4-89)

nul

We note that Eg.( 4~—89 ) is of the same form as Eq (4-76), except that C,, is replaced

by —C, sinh (nrca/b) The values for the. coefﬁcwht C, can then be written down from
Eq (4-80). Do

; : Vo . ifnisodd

~ - ——y . 1 S .

G, = {. nmsinh(nnu/b) . s (4-90)
N 0, ' if nis even,

The desired potentiial istribution wiihin (g enclosed region in Fig.4-10is a summa-
tion of V(x y)in Eq 4—88)

V(k y) = Z C, sinj; ~—(». —'a) sm—

n=l b
4V, < x L,x(a—x /b] .
=2 4-91
o "z < asa (map)  Sm by’ (491
L ’ ) . v‘-n=0dd
) n= 1/3, 5, .

‘O<x<a,and O0<y<b.
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. 4-6 BOUNDARY-VALUE PROBLEMS IN .
' CYLINDRICAL COORDINATES _ : L
| " - For problems with c1rcular cylmdrlcal boundarles we write the governing equations ‘ E e
in the cylindrical coordinate system. Laplace’s equation for scalar electric potential 2
V in cylindrical coordinates is, from Eq. (4-8), » :
1a(rav)+1azv &V_, -
A L 4-92 -
ror\ or 2 092 az3 : P ( ) 8
" A general solutlon of Eq. (4- 92) requires the knowledge of Bessel functzons whxch we j
do not discuss in this textbook. In situations where the lengthwise dimension of the - f
cylindrical geometry is large compared to its radius, the associated field quantities
may be considered to be approximately independent of z. In such cases, 62V/¢z* = 0 i
and Eq. (4-92) becomes a two-dimensional equation: : )
1o /[ av\ 18V
— |+ 5—=0. . 4-93
)u<’ 0r>+r2(7(/)2 0 ( ) —
Applying the method of separation of variables, we assume\a‘ﬁr‘oduct solution i
Vir, ) = ROID(P), (4-94) i
where R(r) and ®(¢) are, respectively, functions of r and ¢ only. Substituting solution ;
(4-94) in Eq. (4-93) and dividing by R(r)®(¢), we have |
rod[ dR(Y] 1 d*O(¢) %'
—_— = 4-95
R() dr [r dr ] ") d (4-99) )
" In Eq. (4-95) the first term on the left side is a function of r only, and the second ;
“ term is a function of ¢ only. (Note that ordinary derivatives have replaced partial $
derivatives.) For Eq. (4-95) to hold for all values of r and ¢, each term must be a f ;
constant and be the negative of the other. We have . P
T dR(r) 2 ! o
4-96 : .
R(r)dr[’ dr]k | . (4-96) ! o
and - oo SEETE
—_— = _kz, . (4—-97) o S
%y o o U
. N 7' . 3 ‘ /\ L
where k is a separation constant. i R
Equation (4 97) can be rewrltten as . i
. d2<D . /_. | L

This is of the same form as Eq. (4 63), and its solutlon can be any one of those listed
in Table 4-1. For circular cylindrical conﬁguratxons potential functions and therefore
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Sy oo

O(¢) are pexjiodié 1x{¢ tind the hyperbolic functichs do not apply. In fact, if the range

of ¢ is unrestricted, k thust be an integer. Lét k équal n. The appropriate solution is
_ 3 O($) = A, sin nd + Bycosng, (4-99)
where 4, and B, afé a{i‘bitrary constants. .
" We now turn olr ﬁttent'_ipn to Eq. (4-96), wk@ich can be rearranged as
LR ROy

i r2'z pre; +r 5 n_,..'R(r)=0, ' (4-100)

a '

Poa ,
- where iriteger n has been written for k, implying a 2n-range for ¢. The solution of

Eq. (4-100) is. .
R(r)= As" + Byr™". (4-101)

This can be verilied By direct substitution. Taking the product of the solutions in

(4-99) and (4-101), %e obtain a general“solution of the z-independent Laplace’s

equation (4-93) for ci#‘cular’cylindrical regions with an unrestricted range for ¢:
Vir, &b) = r"(A, sin np + :B,, cos ne)
A +r7"(A}, sin n¢ + Bj, cos ng), n# 0. (4-102)

Depending on the bohndary conditions, the complete solution of a problem may be
a summation of the tfrms in Eq. (4—102). It is useful to note that, when the region
of interest includes the cylindrical axis where ¥ = 0,"the terms containing the ™"
factor cannot exist. Oh the other hand, if the region of interest includes the point at
infinity, the terms cob'taining the r* factor cannot exist, since the potential must be
ZEro as r — co,

When the potent)}tl is not a function of ¢, K = 0:and Eq. (4-98) becomes

'; 4*0(¢) _
S e

L;} .
The general solution 8f Eq. (4—103) is ®(¢) = Ag¢p + B,. If there is no circumferential
variation, A, vanishes,” and we have

0. (4-103)

. O¢)=B,, k=0. (4-104)

The equation for R(rj also becomes simpl{cf when k = 0. We obtain from Eq. (4-96)
d [ dR@)

o [r o } 0, (4-105)

which has aselution’

]

"R()=Colnr+D,, k=0. (4-106)

v

t The term Aq¢ should bé retained if there is circumferential variation, such as in problems involving a
wedge. . )

’
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Fig. 4-11 Cross section of a
. coaxial cable (Example 4-8).

The product of Eqs (4-104) and (4-106) gives a solution that is mdependent of either

ZOr ¢:
Vin=C,Inr + C,, _ (4-107)

where the arbitrary constants €, and C, are determined from boundary conditions.

Example 4-8 Consider a very long coaxial cable. The inner conductor has a radius
a and Is maintained at a potential ;. The outer conductor has an inner radius b
and is grounded. Determine the potential distribution in n the space between the
conductors.

Solution: Figure 4-11 shows a cross section of the coaxial cable. We 2ssume no
=-dependence and, by symmetry, also no ¢-dependence (k = 0). Therefore, the clectric
potential is a function of r only dnd is given by Eq. (4-107).
The boundary conditions are
V(b) =0 _ (4-108a)
Via) = V. ’ (4-108b)
Substitution of Egs. (4-108a). and (4-108b) in Eq. (4-107) leads to two relations:
C1 ln b + C2 = 0, . (4—1093.)
Cl ln a + ,CZ = VO' . (4‘109b)

Expressions C , and C, are »reédily determined:

Vo
In (b/a)’

V,lnb

C=q (b/a)'

Cl = -
Therefore, the potential distribution in the space a<r<bis ’
Vs b o
Vi) =—2 . EE (4-110)
() In (b/a) <> S :

Obviously, equipotential surfaces are coaxial cylindrical surfaces. ‘

’
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4~6 / EOUNDA 4

ki
N ~

‘E
!
!
IR o f,
of either - {
(4- 107)
nditions. Fig. 4-12 Cross section of split
. circular cylintler and equipotential
; a radius lines (Example 4-9).
ra¢/” b
ween -ne ,
Example 4-9 An ifYﬁnitely long, thin, ¢onducting circular tube of radius b is split
- in two halves. The upber half is kept at a potential V =V, and the lower halfat V = .
;sume Ho 9 ~V,. Determine the otential distribution both inside and outside the tube. -
e electtic , ¥ ;
' ' Solution: A cross section of the split circular t’hbc 1s shown in Fig. 4~12. Since the
, tube is assumed to be infinitely long, the potential is independent of z and the two-
(4-1082) i dimensional Laplace’s equation (4-93) appliés. The boundary conditions are:
' Vo, fdr O<op<nm
(4-108b) V(b )= 0 . ¢ (4-111)
, N ; -V, forn < ¢ < 2n.
tions: - N . ! N . . L
! o These conditions are plotted in Fig. 4~13. Obviously V(r, ¢) is an odd function of ¢.
(4-109a) We shall determine_ V(r, ¢) inside and outside the tube separately.
(4-109b) a) Inside the tube, @ o
' p : r<b.
=~ ) : (b, '
/\\ ’ R (AL&;
( == Vo ‘ =" \
o l | ! !
| G
@-u0) — e,
- ‘ | NP s - ‘ .
B ! o . Fig. 4~13 Boundary condition for
; B R a .
' Vo . )Example 4-9.
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R ©° Because this region includes r = 0, terms contairing the r™" factor cannot exist.
AL . Moreover, since V(r, ¢) is an odd function of ¢, the approprxate form of solution
T .. s, from Eq. (4 102), _ ;

Vir, ¢) = A" sin mb (4—112)

However, a single such term does not satisfy the boundary conditions specified
in Eq. (4-111). We form a serxes solution .

Ve.d= Y i )

(4-113)

and require that Eq. (4-111) be satisfied at r = b. This amounts to expanding the
rectangular wave (period = 27), shown in Fig. 413, into a Fourier sine series.

- ) Voo for0 << n
Z Ab"sin ng = v
— Vo

(4-114)
form < ¢ < 2n.

n=1
The coefficients 4, can be found by the method illustrated in Example 4-6. As a
matter of fact, because-we already have the result in Eq. (4—80), we can directly

write ,
3%
0 if n is odd
A, =< nnb" (4-115)
0, “if n is even,

The potentlal distribution msxde the tube is obtained by substltutmg Eq. (4-115)
in Eq. (4-113),

Vir, ¢y = 200 Y %(%) sinnd, r<b. (4-116)
b) Outside the tube,
r>b.

In this region, the potential must decrease to zero as r — co. Terms containing
the factor 7" cannot exist, and the approprlate form of solution is

I
78

V(r, ¢) V,(r, )

=
u
—

B,r~"sin ng. (4-117)

N
g

4-7
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(4-1 17)

(4—1f$)" o

pu

,z, .
= Z B b’ sxh nqS
(e "=1 }"'x
o e Vor for0<</><n
§ Lz s form < ¢ < 2m. (4-118)

_ The coefficients g in Eq 4-118) are analogous to A4, in Eq. (4-114). From Eq.
(4= 115) we obtaih L
SRR -3 SN §
'- : R 4Vob_"‘ S ' S '
: Jg B =i Tm if n is odd (4-119)
0, if nis even.

Therefore, the pdtential distribution outside the tube is

: 4V, & 1/bY . »
Vi ¢y =2 ;(;) sin no, r>b. (4-120)

] n=odd

\

Several equipotehtial lines both inside and outside the tube have been sketched
in Fig. 4-12. i ‘

\-

4-7 BOUNDARY-VALUE ﬁnoaLEMs
IN SPHERICAL COORDINA‘TES

i

The general solution J)f Laplace s equa*lon in spherical coordinates is a very involved
procedure, so we will limit our discussion to cases where the electric potential is

_independent of the Bzimuthal angle ¢. Even with this limitation we will need to
introduce some new. functlons From Eq. (4- 9) we have

lJ 0 19 |4
RT3k (R 6R>+—--—1-—~§00<sin()—é?)—>=0. (4-121)
- Applying the method of séparation of variables, we assume a product solution

i VIR0 =TRBO. (4-122)

Subsmuucm-af this golutlon m Eq. (4-121) yields, after rearrangement,

L od LATRY) T 1 d [ dew)

' — - —i=o. 4-123
, , R)?Iﬁ[R iR | T e@snoag| "0 (3-129)

" InEq.(4-123) the ﬁrsi term o the left side i is a function of R only, and the second term
isa functxon of 0 only If the equation is to hold for all values of R and 0, each term

.

163
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‘must be a constant and be the negative of the other. We write - =

L d [ drRy) ,,
~ F(R)dR[R aR }"" @1
and » ; |
L 4l d@(O) = 2 ‘ 5
) smOdO[S no—n ]-— k2, (4-125)

where k is a separatlon constant. We must now solve the two second-order, ordinary
differential equations (4—124), and (4-125). ;
Equation (4-124) can be rewritten as

2
g2 @’T(R) o dO(R)

— K2T(R) = 4-126
IR%. 1R k (R)=0, | ( )

which has a solution of the form '
[ (R)= A,R" 4+ B,R™"* 1), (4-127)

In Eq. (4-127), 4, and B, are arbitrary constants, and the fottowing relation between
n and k can be verified by substitution:

e+ 1) = k2, (4-128)

wheren =0, 1,2, ... is a positive integer.
With the value of k? given in Eq. (4—128), we have, from Eq. (4—125),

ag do

which is a form of Legendre's equation. For problems involVing the full range of 0,
from 0 to &, the solutions to Legendre’s equation (4—129) are called Legendre functions,
usually denoted by P(cos 6). Since Legendre functions for integral values of n are
polynomials in cos 0, they are also called Legendre polynomials. We write

©/0) = P, (cos ). (4-130)

Table 4-2 lists the exprcssi'ons for Legendre polynomials' for several values of n.

4 [sin M] + n(n + 1)©0) sin § =0, (4-129)

Combining solutions (4~127) and (4—-130) in Eq. (4—122), we have, for spherlcal
boundary-value problems with no azimuthal variation,

V,(R, 8) = [4,R" + B,R~"*V]P, (cos ). O (4-13))

Depending on the boundary conditions of the givch problem, the complete solution
may be a summation of the terms in Eq. (4-131). We illustrate the application of

.1 Actually Legendre polynomials are Legendre functions of the first kind. There is another set of solutions
to Legendre’s equation, called Legendre functions of the second kind; but they have singularities at § = 0
and 7 and must, therefore, be excluded if the polar axis is a region of interest.
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-3 Several Legendre Polynomials ,

» : S ’7‘ 5 4 Pp(cos 0)
i - §
, ‘i 2 ‘ : cos 0
R B , #(3cos? 9 - 1)
B 1(500539—3c058)
R S :
:’;& 'Y R (!

Legendre polyno’rﬁi:ﬁs in the dolution of a siiple boundary-value problem in the .
following example, *

A

Example 4-10 An tincharged conducting sphere of radius b is placed in an initially
uniform electric field E, = a_E,. Determine (a) the potential distribution V{(R, 0) and
(b} the electric field idtensity E(R, 0) after the introduction of the sphere.

Solution:  After the tonducting sphere is introduced into the electric field, a separa-
tion and redistributidn of charges will take place in such a way that the surface of the
sphere is maintained“"equipotential. The electric field intensity within the sphere is
zero. Outside the splere the field lines will intersect the surface normally, and the
field intensity at points very far away from the sphere will not be affected appreciably.
The geometry of thisiproblem is depicted in Fig. 4—14. The potential is, obviously,
independent of the az‘?nuthal angle ¢, and the solution obtained in this section applies.
8

: Zf

- Fig, 4-14 Conducting sphere in a uniform
electric field (Example 4-10).
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" a) To determine the potent1a1 dxstnbutlon V(R 0) for R 2 b we note the following
boundary conditions:

V(b, 0) = - L " (4-132a)
V(R, ) = —Eoz = —EyR cos 0 . for R>»b. (4-132b)

Equation (4-132b) is a statement that the original E, is not disturbed at points

. very far away from the sphere. By using Eq. (4—131), we write the general solution
_as :

V(R, 0) = Z [4.R+ B,R""*D]P(cosf), R=zb. (4-133)

n=0

However, in view of Eq. (4~132b), all 4, except 4, must vamsh and A, = —E,.
We have, from Eq. (4-133) and Table 4 2,

V(R, ) = — EoRP,(cos 6) + Z B,R™"*DP (cos 6)

n=0

-

0 \ ‘
BoR™' + (B;R™? — E,R) cos 0 + Z B.R-™ VP (cos ), R>b.

n=2

I

(4-134)

Actually the first term on the right side of Eq. (4—134) corresponds to the potential

of a charged sphere. Since the sphere is uncharged, B, = 0, and Eq. (4-134)
becomes

B,
V(R, 8) = (F - E0R> cos 0 + Z B,R™"*DP (cos (), R=b.

. . (4-135)
Now applying boundary condition (4-132a) at R = b, we require

B
0= (b; Eob> cos 0 + Z B,b~ "'“’P (cos 0),
from which we obtain .

Bl = E0b3
and

* For this problem it is convenient to assume V = 0 in the equatorial piane © ='7:/2.), which leads
ta V(b,0) = 0, since the surface of the conducting sphere is equipotential.. (Sec Problem P.4-21 for
V(b,6) = Vo)

R

e )
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‘at points;
1 solution

¢

Y

(4-134)

potential
I (4—13{})

(4-135)

which ylca'}ds . ‘
P:4-21 for .

P R

" REVIEW QUESTIONS ST A
We have, | A
0= —Eo[l - (E) JRcos6,  Rxb. (4-136)
¥ 5o . - ‘
The electfic’ ﬁelﬂ lntensxty E(R, 0) for R 2 b can be easily determined from
o .

-VV(R,0): . | - .
E(R, 0) = agEg + 2oE,, (4-137a)

- e S

where s E

jgf__'?_‘i*g 1;‘2;3 0, R>b (4-137b)
RETERTE R) |50 7=

T oV b\ , ’
SR AU S PR A L @-137
| EOT 270 E, l:l (R) ]sm 9, R>b {4-137¢)

The surface Charée density on the sphere can be found by noting

and

4

_," ‘ ‘»‘ ’ pb(()) = GOER]sz = SEOEO COS 8, (4‘—138)

which is pfbportional'to cos 0, being zero at § = /2. Some equipotential and
field lines are gketched in Fig. 4-14.

In this chapter: wé have discussed the analytxcal solution of electrostatic problems
by the method of 1mages and by direct solutiofi of Laplace’s equation. The method
of images is useful when charges exist near cortducting bodies of a simple and com-
patible geometry a point charge near a conduéting sphere or an infinite conducting
planc; and a lin¢ chakge near a parailel conducting cylinder or a parallel conducting
plane. The solition of Laplace’s equation by the method of separation of variables
requires that the bouhdarles coincide with cootdinate surfaces. These requirements
restrict the usefmnesslof both methods. In practical problems we are often faced with
more complicated bdynddrxcs, which are not amenable to neat analytical solutions.
In such cases, we must resort to approximate griphical or numerical methods. These
methods are beyord the scope of this book."

}
‘ ]
REVIEW QUESTIONS |
; 1
Rd-1 Write Pox:,son S equatxon in vector notation
\_

a) for a simple medlum

b) for a linesiy and lSO[l‘DplL., but mlmmog,a.nc.ous medium.,
R.4-2 Repeaﬂh Cartesian goordinates both par;s of R4-1.

.

' See, for instance, B.D. Popovig, Introductory Engineering Electromagnetics, Addison-Wesley Publishing
Co. (1971), Chapter 5.
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R.4-3 Write Laplace’s equation for a simplé medium |

{

a) in vector notation, . b) in Cartesxan coordmates
R4-4 If VU =0, why does it not follow that U is 1dent1cally zero"

R4-5 A fixed voltage is connected across a parallel-plate capacntor

a) Does the electric field intensity in the space bctween the plates depend on the permittivity
of the medium?

b) Does the electric flux density depend on the permxttmty of the medmm"

Explam i

‘R.4-6 Assume that fixed charges + Q and - Q are deposited on the plates of an isolated parallel-
plate capacitor.

a) Does the electric field intensity in the space between the plates depend on the permittivity
of the medium?
b) Does the electric flux densxty depend on the permittivity of the medium?

Explain.

R.4-7 Why is the electrostatic potential continuous at a boundary?
e

R.4-8 State in words the uniqueness theorem of electrostatics.

R.4-9 What is the image of a spherical cloud of electrons with respect to an infinite conducting
plane?

R.4-10 Why cannot the point at infinity be used as the point for the zero reference potential for
an infinite line charge as it is for a point charge? What is the physical reason for this difference?

R.4-11 What is the image of an infinitely long line charge of density p, with respect to a parallel
conducting circular cylinder?

R.4-12 Where is the zero-potential surface of the two-wire transmission line in Fig. 4-67

R.4-13 In finding the surface charge induced on a grounded sphere by a point charge, can we
- set R = ain Eq. (4-52) and then evaluate Ds by ~€o 0V(a, 8)/0R? Explain,

R.4-14 What is the method of separauon of variables? Under what conditions is it useful in
solving Laplace’s equation?

R.4-15 What are boundary-value problems?

R.4-16 Can all three s‘eparation constants (k,, k,, and k) in Cartesian coordinates be real? Can
they all be imaginary? Explain.

R.4-17 Can the separation constant k in the solution of the two-dlmensmnal Laplaces equa-
tion (4-97) be imaginary?

R.4-18 What should we do to modify the solution in Eq. (4-110) for Example 4-8 if the inner
conductor of the coaxial cable is grounded and the outer conductor is kept at a potential V;,?

R.4-19 What should we do to modify the solution in Eq. (4-116) for Example 4-9 if the con-

ducting circular cylinder is split vertically in two halves, with V =V, for —n/2 < ¢ < n/2 and
V=—V,forn/2 < ¢ < 3n/27
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4
k]
\
H
!

P
i
R4—20 Can functlbns P,(R 9) . C,R cos 6 and’ Vz(ﬁ

= C,R™? cos 0, where C, and C, are
arbitrary constants, be dblutxons of Laplace ] equano o m sphencal coordinates? Explain. -

T

P.4~1 The upper and ower conducting plates of a Iarge parallel-plate capacitor are separated
by a distance 4 and mal tamed at potentials ¥, and O respectively. A dielectric slab of dielectric

constant €, and uniforni, hlckness 0.8d is placed over the lower plate. Assummg negligible fringing
effect, determine $ ! Y

,..‘”.-‘—n—-e‘

a) the potential aiid electnc field dlsmbutlon in. the dielectric slab,

" b) the potential de électric ficld distribution ift the air space between the dielectric slab
and the upper: plate

©) the surface chdrge densities on the upper aihd lower plates
P.4~2 Prove that the scalar potential V in Eq. (3—56) satisfies Poisson‘s equation; Eq. (4-6).

P.4-3 Prove thata potennal function satlsfymg Laplace’s equation in a given region possesses
no maximum or minimum within the region.

P.4-4 Verify that
5 ; . N
i V).=C,/R and V= C,z/(x* + y* + :})¥3
where C; and C, are dtbitrai’y constants, are solutions of Laplace’s equation.,

P.4-5 Assume a point charge Q above an inﬁnite conducting plane at y =

a) Prove that V(x, ¥ z) in Eq. (4-37) satlsﬁes Laplace’s equation if the conductmg plane is
maintained at zero potential.

b) What should tHi expressmn for V(x, y, ) be if the conducting plane has a nonzero poten-

tial V;,? i
c) What is the ele‘:trostdtlc force of attraction between the charge Q and the conducting
plane? ¢

:
v

P4-6 Assume that spﬁce between the inner and outer conductors of a long coaxial cylindrical
structure is filled with aff electron cloud having a voluthe density of charge p = A/rfora <r < b,
where a and b are, respéctively, the radii of the inner atid outer conductors. The inner conductor
is maintained at a potefitial V), and the outer conductor is grounded. Determine the potential
distribution in the reglﬁn a < r < b by solving Poisson’s equation.

- P4-7 A point charge Q exists 4t a dlstance d above a large grounded conducting plane.

Determine

a) the surface charke density p,, ‘
b) the t'oia.Lc:ﬁarge1 indyced on the conducsiiy 1)1&.;;;.

Rl . : ) ) .
P4-8 Determine the systems of image chziygs that will replace the conducting boundaries
that are maintained at zero potential for

a) a point charge b located between two large, grounded, paralle! conducting planes as
shown in Fig. 4 —15(a),

" b) an infinite line charge p; located midway between two large, intersecting conducting
planes forming & 60-degree angle, as shown In Fig. 4-15(b).



Qe
poee 2 Td/3 ] ‘ ) Fig. 4-15 Diagrams
— L —  forProblem P.4-8.

|||—

le— QL —»

(b) Line charge between

(a) Point charge between .
grounded intersecting planes.

grounded parallel planes.

"PA4-9 Two infinitely long, parallel liﬁe charges with line densities p, and Fp, are located at

b b
"z=+- and z= ——
, 2 2 o
respectively. Find the equations for the equipotential surfaces, and sketch a typical pair.

P.4-10 Determine the capacitance per unit length of a two-wire transmission line with parallel

conducting cylinders of different radii ¢, and a,, their axes being separated by a distance D '

(where D > a, + a,). . ~

P.4-11 A straight conducting wire of radius « is parallel to and at height i from the surface of
the earth. Assuming that the earth is perfectly conducting, determine the capacitance per unit
length between the wire and the earth.

P.4-12 A point charge Q is located inside and at distance d from the center of a grounded spherical
conducting shell of radius b (where b > d). Use the method of images to determine

a) the potential distribution inside the shell,

b) the charge density p, induced on the inner surface of the shell,
P.4-13 Two dielectric media with dielectric constants €, and e, are separated by a plane bound-
ary at x = 0, as shown in Fig. 4-16. A point charge Q exists in medium 1 at distance d from
the boundary.

a) Verify that the field in medium 1 can be obtained from Q and an image charge —Q,,
both acting in medium 1. .

. P4 Py
Q (Point charge)
_ -0 +02 o
(Image charge) (Image charge)
Medium 2 (¢e3) Medium 1 (¢7) " . .
' Fig. 4-16 Image charges in dielectric

x=0 - media (Problem P.4-13).
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i

b) Verlfy that the field in hxedxum 2 can be obtained ftom © and an image charge +Q,,
both acting in mediui 2,

©) Determine Q, and Q,. (Hmt Consider neighboring bomts P, and P, in media 1 and 2
respectively and requit® the continuity of the tangential component of the E-field and
of the normal corripon %t of the D-field.) :

P.4-14 In what way shoulti we modlfy the solution in Eq. (4 -9i) for Example 4-7 if the boundary
conditions on the top, bottdm and nght planes in Fig. 4-10 are oV/dn = 07

P.4~15 In what way should we. modxfy the solution in Eq 4 -91) for Example 4~7 if the top,

bottom, and left planes in Fxg 4‘-10 are grounded (V = 0) and an end plate on the right is main-
tained at a constant potentldl

P.4-16 Consider the rcctangu].u‘ region shown in Fig. 410 ag the cross scction of an enclosure

. formed by Tour conducting plates, The left and right plates are grounded, and the top and bottom

plates are maintained al constalit potentials ¥, and ¥, respectively, Determine the potential
distribution inside the enclostire;

P.4-17 Consider a metallic reétﬁhgular'box with sides « and b and height c. The side walls and
the bottom surface are grounded: The top surface is isolated and kept at a constant potential
V. Determine the potential dxsttibuuon inside the box.

P.4-18 An infinitely ong, thin, conducting circular (.ylmdcr of radius b is split in four quarter-
cylinders, as shown in Fig. 4~17. The quarter-cylmdcrs in the second and fourth quadrants are
grounded, and those in the first and third quadrants gre kept dt polcmmla Vo and ~ by respec-
tively, Determine the potential d{amb\mon both lnbld(. and outside the cylinder.

y4
V=0 b V=V
>k '
= -V V=20 Fig. 4-17 Cross section of long
circulat cylinder split in four
quarters (Problem P.4-18},

P.4-19 A long, grounded conductitxh cylinder of radius b is placed along the z-axis in an initially
uniform electric field Eq = a,E,. Détermine potential distribution ¥(r, ¢) and electric field in-

‘tensity E(r, ¢) outside the cylinder.

‘P4-20 A long dielectriCtylinder of tadius b and dielectric constant e, is placed along the z-axis

in_an initially uniform electric field Eo = a,E,. Determine V(r, ¢) and E(r, ¢) both inside and
outside the dielectric cylinder. '

P.4-21 Rework Example 4-10, assumipg Vb, §) = V, in Eq. (4-132a).

: P'4-—22 A dielectric sphere of radius b and dielectric constant e, is placed in an initially uniform

electric field, Eq = a, Eo, in air. Determme V(R 8 and E(R, 6) both inside and outside the di-
electric sphere.

.
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5-1 INTRODUCTION

B e

In Chapters 3 and 4 we dealt with electrostatic problems, field problems associated
with electric charges at rest. We now consider the charges in motion that constitute
current flow. There are several types of electric currents caused by the motion of free
charges.” Conduction currents in conductors and semiconductors are caused by drift
motion of conduction electrons and/or holes; electrolytic—currents are the result of
migration of positive and negative ions; and convection currents result from motion
of clectrons and/or ions in a vacuum, In this chapter we shall pay special attention to
conduction currents that are governed by Ohm's law. We will proceed from the
point form of Ohm’s law that relates current density and electric field intensity and
obtain the ¥V = IR relationship in circuit theory. We will also introduce the concept
of electromotive force and derive the familiar Kirchhoff’s voltage law. Using the

principle of conservation of charge, we will show how to obtain a point relationship

between current and charge densities, a relationship called the equation of continuity
from which Kirchhoff’s current law follows.

When a current flows across the interface between two media of different

conductivities, certain boundary conditions must be satisfied, and the direction of

current flow is chuanged. We will discuss these bounduary conditions, We will also
show that for a homogencous conducting medium, the current density can be
expressed as the gradient of a scalar field, which satisfies Laplace’s equation. Hence,
an analogous situation exists between steady-current and electrostatic fields that
is the basis for mapping the potential distribution of an electrostatic problem in
an electrolytic tank. .

The electrolyte in an electrolytic tank is essentially a liquid medium with a low
conductivity, usually a diluted salt solution. Highly conducting metallic electrodes
are inserted in the solution. When a voltage or potential difference is applied to the
electrodes, an electric field is established within the solution, and the molecules of
the electrolyte are decomposed into oppositely charged ions by a chemical process
called electrolysis. Positive ions move in the direction of the electric field, and negative

' In a time-varying situation, there is another type of current caused by bound charges. The time-rate of
change of electric displacement leads to a displacement current. This will be discussed in Chapter 7.
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ions move in a directidn opposite td the field, both contributing to a current-flow in
the direction of thi¢ field. An experimental model tan be set up in an electrolytic tank,
with electrodes ofpropér geomettical shapes sxmuiatmg the boundaries in electrostatic
problems. The measuréd potential distribution ifi the electrolyte is then the solution
to Laplace s eqifiition f"Or difficult-to-solve analytic problems having complex bound-
aries in a homogeneoys medium.

Convection, curreﬁts are the result of the motlon of positively or negatively
charged particles in a'yacuum or rarefied gas. Familiar examples are electron beams
in a cathode-ray tube gnd the violent motions of ¢harged particles in a thunderstorm.
Convection curtents, the result of hydrodynam\c motion involving a mass transport,
arc not governed by Ghm’s law.

The mechanism of conduction currents is dxf'ferent from that of both electrolytic
currents and corwectbn currehts. In their norrhal state, the atoms of a conductor
occupy regular positions in i crystalline structure. The atoms consist of positively
charged nuclei surrounded By electrons in a shell-like arrangement. The electrons in
the inner shells are ughtly bound to the nuclei and are not free to move away. The
electrons in the outermiost shells of a conductor atom do not completely fill the shells:
they are valence or codduction electrons, and are only very loosely bound to the nuclei.
These latter electrons may wander from one atom to another in a random manner.
The atoms, on the dverage, remain electrically neutral, and there is no net drift
motion of electrons. When an external electric field is applied on a conductor, an
organized motion of the conduction electrons will result, producing an elecmc
current. The average drift velocity of the clectrans is very low (on the order of 107
or 107* m/s) even for: very good conductors, because they collide with the atoms in -
the course of their Hotion, d1551patmg part of their kinetic energy as heat. Even
with the drift motioh of conduction electrons, a conductor remains elecmcally
neutral. Electric forcés prevent excess electrons from accumulating at any point in a
conductor. We will show analytically that the charge density in a conductor decreases
exponentially with tirtfe. In a good conductor the charge density diminishes extremely
rapidly toward zero as the state of equilibrium is approached.

5-2 CURRENT DENSITY AND OHM’S LAW

Consider the steady mouon of one kind of chdrge carriers, each of charge g (which is
negative for electrons) across an element of surface As with a velocity u, as shown in
Fig. 5-1. [{ N is the ﬂumber of charge carriers per unit volume, then in time At each
charge carrier moves a distance u At, and the amount of charge passing through the
surface As is

‘ . ‘ AQ = Nqu-a, As At (C). : (5-1)

Since current is the time rate of change ofcharge, we have

A .
AI=—A—?=Nqu-a,, As = Nqu - As (A). (5-2)
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Fig. 5-1 Conduction current
due to drift motion of charge
carriers across a surface.

m

RN

In Eq. (5-2), we have written As = a, As as a vector lquantity' It is convenient to

define a vector point function, uolume current density, or simply current density,
J, in amperes per square meter,

J=Neu  (Am?; ' (5-3)
so that Eq. (5-2) can be written as ‘

",

Al =J - As. : (5-4)

The total current I flowing through an arbitrary surface S is then the flux of the J
vector through S:

1=LJ-¢15 (A). 6

Noting~ that the product Ng is in fact charge per unit volume, we may rewrite
Eq.(5-3) as

J=pu (A/mz); . (5-6)

which is the relation between the convection current density and the velocity of the
charge carrier. .

In the case of conduction currents there may be more than one kind of charge
carriers (electrons, holes, and ions) drifting with different velocities. Equatlon (5-3)
should be generalized to read

I=) Ngu,  (A/m?). o (-7

As indicated in Section 5-1, conduction currents are the result of the drift motion of
charge carriers under the influence of an applied electric field. The atoms remain
neutral (p = 0). It can be justified analytically that for most conducting materials
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R A

the average drift vel ‘: city ié directly propbfﬁoﬁul to the electric field intensity. Con-
sequently, we can write Eq. (5-3) or Eq. (5-7) &s

t

‘ .

J=0E . (Ajm?), - (5-8)

it ' a
where the proportioLality_ cottstant, ¢, is a macroscopic constitutive parameter of
the medium called cgnductivit y. Equation (S —8& is a constitutive relation of the con-

~ ducting medium. Isdtropit materials for-whicH the linear relation Eq. (5-8) holds

are called ohmfic media. The unit for ¢ is ampef.fe per volt-meter (A/V-m), or siemens
per meter (S/m‘). Caéper,xthe most commonly.used conductor, has a conductivity
5.80 x 107 (S/). On the other hand, hard rubbet, a good insulator, has a conductivity

of only 107 '5(S/m). Appendix B 4 lists the cohductivities of some other frequently .

used malterialss. Howgver, note that, unlike the dielectric constant, the conductivity
of materials varies dfer an extremely wide range. The reciprocal of conductivity is
called resistivity, in olm meter (Q- m). We prefer to use conductivity; there is really no
compelling neéd;tt_) u@je both conductivity and resistivity. -

We recall Ohm’s faw from circuit theory that the voltage V,, across a resistance
R, in which a current I flows from point 1 to pdint 2, is equal to RI; that is,

Vio=RI.. (5-9)

Here R is usually a piece of conducting materidi of a given length: ¥, is the voltage
between two terminals 1 and 25 and [ is the total current {fowing (rom terminal | to
terminal 2 through a finite cross scction. B ‘

Equation (5-9) s not a point relation. Although there is little resemblance
between Eq. (5-8) anll Eq. (5-9), the former. is génerally referred to as the point form
of Ohnr's law. 1t holds at all points in space, and ¢ can be a function of space co-
ordinates. ' :

i ‘ 3
Let us use the pohn form of Ohm’s law to derive the voltage-current relationship

of a piece of homogéheous material of conductivity o, length ¢ and uniform cross- -

section S, as shown ii;i Fig. 5-2. Within the conducting material, J = ¢E where both
J and E are in the direction of current flow. The potential difference or voltage between

Fig. 5-2 Homogeneous conductor
with a constant cross section.




. terminals 1and 2 is'

.or .

The total current is -
oo : R i L
SN s - o i

e = | -11 L
o - 2Ty (5-11) |
Using Eqs. (5-10) and (5-11) in Eq. (5-8), we obtain
’ [V,
ST ‘
or :
¢ _ : —
V,y = (——)1 =RI, ~~_ (5-12) |
S ;

which is the same as Eq. (5-9). From Eq. (5-12) we have the formula for the resistance
of a straight piece of homogeneous material of a uniform cross section for steady !
current (DC). '

/ .
R=— (@ , O (5-13)

We could have started with Eq. (5-9) as the experimental Ohm's'law and applied it _ : v
to a homogeneous conductor of length ¢ and uniform cross-section S. Using the L - 5-3
formuia in Eq. (5-13), we could derive the point relationship in Eq. (5-8). - ' . KIRC

Example 5—-1 - Determine the DC resistance of | (km) of wire having a 1-(mm) radius
(a) if the wire is made of copper, and (b) if the wire is made of aluminum.

Solution: Since we are dealing with conductors of a uniform cross section, Eq. (5-13)
applies. ‘ '

a) For copper wire, o, = 5.80 x 107 (S/m): : o .

¢£=103(m), S=mn(10"%2%=10"%x(m?). g
We have . , 3
\ ¢ 10 '
"Ry=——= =549 (Q). .- _
Ra= =S80 x 107 x 10-% © S

.

- -t We will discuss the significance of ¥, and E more in detail in Section 5-3.
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b) For alummum wire a, o =3.54 x 107 (S/mi
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The conductanceﬂG or the reciprocal of remstanoe is useful in combmmg resis-
tances in parallel: . N

RTINS + G===0~ ' (8). ' -14

S R / ‘ ®) (5-14

From circuit theory We know the followmg b

a) When resistaticel R, ‘and R, are connected in series (same current), the total .
resistance Ris

L R, =R, +R,. (5-15)

b) When resistances R, and R, are connected in parallel (same voltage), we have

o1t (5-16a)
R, R, R,

or ]
Gy =G, +G,. (5-16b)

5-3 ELECTROMOTIVE FORCE AND
KIRCHHOFF’S VOLTAGE LAW

In Section 3-2 we p&)mted out that static electrlc field is conservative and that the
scalar line integral of static electric intsréity around any closed path is zero; that is,

§os 95 E-dé=0. (5-17)
For an ohmic material J= oE Eq. (5-17) becomes
o Eﬁ—J-d£=10. (5-18)
\\ ¢ CO—,

Equation (5-18) tellg'us that a stead y current cannot be maintained in the same direction
in a closed circuit by an electrostatic field. A steady current in a circuit is the result
of the motion of charge carriers, which, in thexr paths, collide with atoms and dissipate
energy in the circuit; This energy must come from a nonconservative field, since a
charge carrier completing a closed circuit in 4 conservative field neither gains nor

v
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Fig. 5-3 . Electric fields inside an -
- Electric battery - electric battery.

loses energy. The source of the nonconservative field may be electric batteries (con-
version of chemical energy to electric energy), electric generators (conversion of
mechanical energy to electric energy), thermocouples (conversion of thermal energy
to electric energy), photovoltaic cells (conversion of light energy to electric energy),
or other devices. These. electrical energy sources, when connected in an electric
circuit, provide a driving force for the charge carriers. This _force manifests itself as
an equivalent impressed electric field intensity E,. T

Consider an electric battery with electrodes | and 2, shown schematically in
Fig. 5-3. Chemical action creates a cumulation of positive and negative charges at
electrodes 1 and 2 respectively. These charges give rise to an electrostatic field in-
tensity E both outside and inside the battery. Inside the battery, E must be equal in
magnitude and opposite in direction to the nonconservative E; produced by chemical
action, since no current flows in the open-circuited battery and the net force acting
on the charge carriers must vanish. The line integral of the impressed ficld intensity
E; from the negative to the positive electrode (from electrode 2 to electrode | in
Fig. 5-3) inside the battery is customarily called the electromotive force' (emf) of
the battery. The SI unit for emf is volt, and an emf is not a force in newtons. Denoted
by 77, the electromotive force is a measure of the strength of the nonconservative
source. We have

yf—f E,- de__f E-de. (5-19)

Inside
the source

The conservative electrostatic field intensiiy E satisfies Eq. (5-17).

: 2 1
SBCE-d€=f1 E-de+ [/ E-de=0. (5-20)
Qutside Inside
the source the source

t Also called electromotance.
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 Combining Eqs. (5-19) and (5-20), we have |
Lo ¥ = fl. E* de | (5-21)
o _Qutside *
fo i : the source:
or & o
" V=V,=V~V,. (5-22)

In Eqs. (5-21) and §5~22) we have expressed the emf of the source as a line integral
of the conservative E and interpreted it as a vgliage rise. In spite of the nonconserva-
tive nature of E;, theemf can be expressed as a potential difference between the positive
and negative termﬂ’:}als. This was what we did in arriving at Eq. (5-10).

When a resistof’ in the form of Fig. 5-2 is connected between terminals 1 and 2.
of the battery, complcling the circuit, the total clectric ficld intensity (clectrostatic
E caused by chargé cumulation, as well as impressed E; caused by chemical action)
must be used in the point form of Ohm’s law. We have, instead of Eq. (5-8),

J=0(E+E), (5-23)

where E, exists inside the battery only, while B has a nonzero value both insidé and
outside the source. From Eq. (5-23), we obtain

J
E+E== . (5-24)

The scalar line integtal of Eq. (5-24) around the closed circuit yields, in view of Egs.
{5-17) and (5-19),

I . v ’ 1
o = 56c (E+E)-de __SBC ~J-de. (5-25)
Equation (5-25) should be compared to Eq. (5-18), which holds when there is no

source of nonconsei‘yative field. If the resistor has a conductivity o, length 7, and

uniform cross-section S, J.= I/S and the right side of Eq. (5-25) becomes RI. We
have! - ‘

v =RI. (5-26)

If there are more thdn >nc sourcs of eleviyoanotive force and more than one resistor
(including the iiterdal resistances ot the sourdes) in the closed path, we generalize

. Eq.(5-26) to

—~—_ s —
Z«/fj;, Y R, (V). ] (5-27)

'

. t

. N Pl
' We assume the battery to have a fegligible internal resistance; otherwise its effect must be included in
Eq. (5-26). An ideal voltage source is one whose terminal voltage is equal to its emf and is independent
of the current flowing thtough it. This implies that an ideal voltage source has a zero internal resistance.

.




5~4 EQUATION OF CONTINUITY AND
- KIRCHHOFF’S CURRENT LAW

- 180 . STEADY ELECTRIC CURRENTS /5 R

Equation (5-27) is an expression of Kirchhoff’s voltage law. 1t states that around a
" closed path in an electric circuit the algebraic sum of the emf’s (voltage rises) is equal
to the algebraic sum of the voltage drops across the resistances. It applies to any closed
path in a network. The direction of tracing the path can be arbitrarily assigned, and
the currents in the different resistances need not be the same. Kirchhoff’s voltage
law is the basis for loop analysis in circuit theory,

The principle of conservation of charge is one of the fundamental postulates of physics.
Electric charges may not be created or destroyed; all charges either at rest or in
motion must be accounted for at all times. Consider an arbitrary volume V bounded
by surface S. A net charge Q exists within this region. If a net current I flows across
the surface our of this region, the charge in the volume must decrease at a rate that
equals the current. Conversely, il a net current lows across the surface into the region,
the charge in the volume must increase at a rate equal to the-current. The current
leaving the region is the total outward flux of the current density vector through the
surface S. We have

I =9SSJ-ds= _4o_ f%fypdu.< (5-28)

Divergence theorem, Eq. (2-107), may be invoked to convert the surface integral of
J to the volume integral of V- J. We obtain, for a stationary volume,

[v-ad=—[%a (5-29)

In moving the time derivative of p inside the volume integral, it is-necessary to use
partial differentiation because p may be a function of time as well as of space co-
ordinates. Since Eq. (5-29) must hold regardless of the choice of V, the integrands
must be equal. Thus, we have,

V-J= _%% (A/m?). ‘ (5-30)

This point relationship derived from the principle of conservation of charge is called
the equation of continuity, :

For steady currents, charge density does not vary with time, dp/d: = 0. Equation

(5-30) becomes »

. vV:J=0. (5-31)

~ Thus, steady electric currents are divergenceless or solenoidal. Equation (5-31)
- Isa point relationship and holds also at points where p = 0 (no flow source). It means

st oy o ae
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) is equal | E those of electrostatil field intensity that origlhate and end on charges. Over any
ny closed =~ L _ > enclosed surface, Eq;;‘(5—351) leads to the fojlowing integral form:
med,and . -8 : : Vool S i
svoltage | . L G J-ds =0, (5-32
which can be writted as y
o 1D =0 A (5-33)
1' i ' j . .
[ physics, Equation (5-33) is ai‘i‘iexpr‘éssion of Kirch[&;ff’s ¢urrent law. [t states that the algebruic
st or in - ; sum of all the currentS.flowing out of u junction in an electric circuit is zero.’ Kirchhoff's -
bounded . current law is the bilsis for node analysis in circuit theory.
NS ACTOSS A In Section 3-6 We stated that charges introduced in the interior of a conductor
rate that % will move to the codductor surface and redistribute themselves in such a way 4s to
ic region, ¢ make p = 0 and E =0 inside under equilibrium conditions. We are now in a position
¢ current to prove this statement and to calculate the time it takes to reach an equilibrium.
ougV” e Combining Ohm’s ldw, Eq. (5-8), with the equation of continuity and assuming a
‘ -k . constant ¢, we have :
5 ] , , dp o
{5-28) 3 . oV-EkE = —5—[- (5-34)
’ In a simple medium, V + £ = p/e and Eq. "5‘-—34 becomes
iegral of . p nad P p/ 4 (A )
: : : op « §
—+Zp=0. 5-35
G te” ( )
-2 . < .
(5-29) The solution of Eq. (§-34) is
ry touse v p = poe” " (C/m?3), (5-36)
pace co- y: i - :
nds . . i . ; .
tegrands where p, is the mmat_iE charge density at ¢ = 0. Both p and p, can be functions of the
space coordinates, and Eq. (5~36) says that the charge density at a given location
: will decrease with tithe exporentially. An- initial charge density p, will decay to
| (5-30) 1/e or 36.8% of its vdlue in a time equal to

r'd

T=-

is c?.ﬂe\d .: : — ‘ “ ¢

The time constant t is called the relaxatis e, Tor a good conductor such as

SR
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S

that the ficld lines of streamlines of steady ciirrents,close upon themselves, unlike

(5-37)

Zqua ¥ copper—o = 580 x 107 (S/m), € = € = 8.85 x 107'2 (F/m)—1 equals 152 x
107'%(s), a very short time indeed. The transient time is so brief that for all practical

(5-31)° .
n (5-31) * This includes the currents of current generators at the junction, if any. An ideal current generator is one
It means S . whose current is independent of its terminal voltage. This implies that an ideal current source has an

infinite internal resistance.
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h]

+ purposes p can be considered zero in the interior of a- conductor———see Eq (3-64) in

- Section 3-6. The relaxation time for-a good msulator is not mﬁmte but can be Co
hours or days ‘ . . P

¥

5-5 POWER DlSSlPATION
AND JOULE'S LAW

In section 5~1 we indicated that under the influence of an electric field, conduction
electrons in a conductor undergo a drift motion macroscomcally Microscopically
these electrons collide with atoms on lattice sites. Energy is thus transmitted from
the electric field to the atoms in thermal vibration. The work Aw done by an clectric
field E in moving a charge ¢ a distance AC is ¢F - (AL), which corresponds to i power

+p= lim ~A~\=qE u, (5-38)

at—0 At

where u is the drift velocity. The total power delivered to all the charge carriers i a

. volume dv is ‘ —_
dP = Z pi=E- (2 N,q,-u,-) Ao~ - :

which, by virtue of Eq. (5-7), is

dP =E-Jdv
or dP

S =E-J  (Wmd. (5-39)
dv .

“Thus the point function E - J is a power density under steady-current conditions. For
a given volume V, the total electric power converted into heat is

P={E-Jd (W) (5-40)

This is known as Joule’s law. (Note that the ST unit for P is watt, not joule, which is
the unit for energy or work.) Equation (5-39) is the corresponding point relationship.

In a conductor of a constant cross section, dv = ds d7, w1th d¢ measured in the
direction J. Equation (5-40) can be written as

P=fLEa/fsts=V1,

where [ is the current in the conductor. Since ¥ = RI, we have

P=I*R (W) ' (5-41)

Equation (5-41) is, of course, the familiar expression for ohmic power representmg
- the heat dissipated in resistance R per unit time:
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- CURRENT DENSITY I

b BN ¥ )

~ When current;oﬁlici‘,ﬁ;ely crosses an interfaceéibetween two media with different ,
. conductivities, the cufrent denisity vector changgs both in direction and in magnitude.
A set of boundary cohditions can be derived fér J in a way similar to that used in
- Section 3-9 for obtdining the boundary conditions for D and E. The governing

duction equations for steady;'currcpt density J in the“‘ absence of nonconservative energy
naue y . sources are . SOR
copica y;‘ ' .. Governjng Equations for Steady Current Density
‘ted from’ L : '
n electric Differential Form Integral Form
ya power a
‘ CveI=0 ,3-as=0 5-42
(5-38) , ‘ 5 (5-42)
o fd 1 .
Tiers in a v Vox s= 0 gSC p J-d¢=0 (3-43)

The divergence equation is the same as Eq. (5-31), and the curl equation is obtained
by combining Ohni’s' law (J = ¢E) with V x E = 0. By applying Egs. (5-42) and
(5-43) at the interface between two ohmic media with conductivities o, and g,, we
obtain the boundary conditions for the normat and tangential components of J.
Without actually Sonstructing a pillbox at the interface as was done in Fig. 322,
(5-39) - we know from Sectiont 3-9 that the normaf 2.'0171/7r)nen[ of a divergenceless vector field

is continuous. Hence; ffomv:J= 0, we have

. i
ions. For

'
1

Jin=Js = (A/m?). (5-44)

- {5-40)

Similarly, the tangentigl compontent of u curl-free vector field is continwous across an

which is

interface. We conclude from V x (J/6) = 0 that

tonship. ,
ed in the J g
¢ Y=L (5-45)
J;)r 62 :
Equation (5-45) states that the ratio of the tangential components of J at two sides
of an interface is equal to the ratio of the conductivities.
(5-41) Example 5-2 Two c‘ﬁnductjn'g media with conductivities ¢, and g, are separated
» by an interface, as shown in Fig. 5-4. The steady current density in medium 1 at
resenting -

point P, has a magnitude J, dnd makes an angle o, with the normal. Determine
the magnitude and direction of the current density at point P, in medium 2.




Fig. 5-4 Bdundary conditions at interface

J; ;
vy 2n between two conducting media (Example 5-2).

Solution: Using Eqs. (5-44) and (5-45), we have

Jycosay = sz‘ cos a, (5-46)
and ‘
o J sin o, = ¢,J, sin a,. (5-47)

Division of Eq. (5-47) by Eq. (5-46) yiclds

tana, o, T~ (5-48)

tana, g,

1f medium 1 is a much better conductor than medium 2 (s, » o, Or 0,/0, —0), o,
approaches zero and J, emerges almost perpendicular to the interface (normal to
the surface of the good conductor), The magnitude of J, is

Iy =I5+ 7%, = U, sinay)* + (J; cos )

o, R 2 1/2
= (G— Jysina, | + (J; cos a,)?
1 ' .

. 2 1/2 o R
J,= J{[(EE sin ozl> + cos? al} . (5-49)

or

1

: By-examinihg Fig. 3—4, can you tell whether medium 1 or medium 2 is the better

conductor?

For a homogeneous conducting me\dium, the differential form of Eq'. (5-43)
simplifies to : '

VxJ=0. 1 (5-50)

From Section 2-10 we know that a curl-free vector field can be expressed as the

. gradient of a scalar potential field. Let us write

-~y o | (5-51)

’

7 et e s i TR e
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(5-46)

(5--47)

(78)

'1 —r U), az
1ormal to

i
(5-49)

,

the bettet

sed as the

(5-51)
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Substltutxon of Eq (3 51) mto V J O yxelds a Laplaces equation in ; that is,
U Vi =0., (5-52)
N

A problem in steady*burrent flow can thereforé be solved by determining ¥ (A/m)
from Eq. (5~52), subjéct to appropriate boundary conditions and then by finding J
from its negative gradient in exactly the same way as a problem in electrostatics is
solved. As a matter of fact, y and electrostatic potential are simply related: = oV.
As indicated in Sectldn 5=, this similarity between electrostatic and steady-current
fields is the basis for} txsmg an electrolytic tank to map the potential distribution of
difficult-to-solve electrostatic; boundary-value problems.

When a steady current flows across the boundary between two diflerent lossy
diclectrics (diclectrics with permittivities €, and €, and finite conductivities o, and a,),
the tangential component of the clectric tield is continuous across the interfuce as
usual; that is, E,, = E,,, which is equivalent to Eq. (5-45). The normal component

of the electric field, however, must simultaneously satisfy both Eq. (5-44) and
Eq. (3-113). We requlre

‘]Irlz‘lln - GIEM:(TZEZH (5 57’)
Dln"DZn:px - ElEln‘ezEZn:psv (5-54)

where the reference uhit normal is outward from medium 2. Hence, unless ¢,/¢, =
€,/€,, a surface charge must exist at the mterface From Egs. (5-33) and (5-34),

we find )
T, . -
Ps =1 € o € )E=1¢ — 62 Eln (5-53)
2 1

Again, if medium 2 is & much better condugtor than medium 1 (g, » g, oro,/c, —0),
Eq. (5-55) becomes abproxxmately

s=€lE1n=Dln, (5_5())
which is the same as Eq. (3-114).

Example 5-3 An emf ¥ is,applied across a parallel-plate capacitor of area S. The
space between the conductive plates is filled with two different lossy dielectrics of
thicknesses d, and d,, permittivities €, and €,, and conductivities ¢, and o, respec-
tively. Determine (a) the current density between the plates, (b) the electric field

intensities in both dlelectrlcs and (c) the surface charge densities on the plates and at
the interface.

! See, for instance, E. Webet, Electromagnetic Fields, Vol. 1: Mapping of Fields, pp. 187-193, John Wiley
and Sons, 1950.

v
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¥

F

dy

o Fig. 5-5 * Parallel-plate
capacitor with two lossy
dielectrics (Example 5-3).

Solution: Refer to Fig. 5-5.

a) The continuity of the normal component of J assures that the current densities
-and, therefore, the currents in both media are the same. By Kirchhoff’s voltage

law we have |
d d \:
V= (4, %2,
({21 + R)I <0’,S + O'ZS>I
Hence, | .
f 4 010,77
S (dy/oy) +(dy/o))  0yd, +0,d, (A/m?) ( )
T

. s
b) To determine the electric tield intensitics Ey and I in both media, two cquations
are needed. Negleeting Iringing effect at the cdges of the plates, we have
¥V =Ed, + E,d, (5-58)
and
6,E, =0,E,. (5~59)

. Equation (5-59) comes from J, = J,. Solving Egs. (5-58) and (5-59), we obtain

02V .
. El 0ydy + 0,d, . (V/m) ( )
and.
av
= V/m). . 5-61
= e i) (5-61)

¢) The surface charge densities on the upper and lower plates can be determined by
using Eq. (5-56): :

= ey =" (Cfm? 5-62
Pyt € 1 szx + 0’1(12 (C/[n ) . ) ( ) )
€0,V

7 C/m?). ’ 5-63
g4dy + 0,d, (C/m%) ( )

Ps2 = —€E; = —

The negative sign in Eq. (5-63) comes about because E, and the outward normal
at the lower plate are in opposite directions.

¢ e gy e = g




densitie! s
voltage. -

{5-57)
e f

JUatrous

(5-58)

(5-59)

e obtain

(5-60)

(5-61)

1ined by

(5-62)
T

(5-67

''norral i
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.
b

4

P
Equatmﬂ ZS 53) can be used to ﬁnd the surface charge densxty atthe 1nterface

of the d1elect rics. \?/e have i .

i

j

: ) 'f:,-.f-;? g 7 ) ‘ 'R
. Bt si-=\| €3~ - €] a—E—
. P Zaz » ! ayd, + o, dz
k ‘ (€201 — 510'2)4/, .
T e sz, 3-64
o (C/m?) (5-64)

From these resulté we see that p, # p“, but that p,, + p,, + p; =0.

In Exarnp]e 5-3 WE encounter a situation wHere both static charges and a steady
current exist. As we di\all see in Chapter 6, a steady current gives rise to a steady
magnetic field. We hate, then, both a static electric field and a steady magnetic field.
They constitute an eléctromagnetostatic field. The electric and magnetic fields of an

electromagnetostaticfleld are coupled through the constitutive relation J = oE of
the conducting mediutn.

'

}
5-7 RESISTANCE CALCULATIONS

In Section 3-10 we discussed the procedure for finding the capacitance between two
conductors separated by a dielectric medium. These conductors may be of arbitrary
shapes, as was shown in Fig. 3-25, whlch is reproduced here as Fig. 5-6. In terms of
electric field quatities, the basic formula for capacitance can be written as

Lo D ds _EﬁeE-ds

) (5-65)
g,.* Vo [ Eae -[E-ar

where the surface inté%ral ir{ the numerator is carried out over a surface ¢nclosing the
positive conductor, and the line integral in the denominator is from the negative (lower
potential) condiictor tb the positive (higher potential) conductor (see Eq. 5-21).

’,--: -bs.\\
N \

————

——

L L : .
+1 I ; = < + Fig.5-6 Two conductors in a lossy
Vi - dielectric medium.
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When the dielectric medium is lossy (having a small but nonzero. cohduéti&iij), a

- current will flow from the positive to the negative conductor and a current-
field will be established in the medium. Ohm’s law, J
lines for J and E will be
conductors is

density
= ¢gE, ensures that the stream-
the same in an isotropic medium. The resistance between the

a —f;E-dé’_ ~[E-ae

1~ »SesJ.ds 985013-(15" e (5-66)

o wflére the line and surface integrals are taken over the same
(5-65). Comparison of Egs. (5-65) and (5
relationship:

—66) shows the following interesting

RC =

Qi oy

(5-67)

Q_I_’h

Equation (5-67) holds if € and ¢ of the medium have the same space deﬁdence or if
the medium is homogeneous (independent of space coordinates). In these cases, if the
capacitance between two conductors is known, the resistance (or conductance) can be
obtained directly from the €/o ratio without recomputation. .

Example 5-4 Find the leakage resistance per unit length (a) between the inner and
outer conductors of a coaxial cable that has an inner conductor of radius a, an outer
conductor of inner radius b, and a medium with conductivity ¢; and (b) of a parallel-

wire transmission line consisting of wires of radius a separated by a distance Dina
medium with conductivity o.

Solution

a) The capacitance per unit length of a coaxial cable has been obtained from Eq.
(3-126) in Example 3-16.

2n¢ v
=— F/m).
1o ln’(b/a) (F/m)
- Hence the leakage resistance per unit length is, from Eq. (5'~6_7), _
| ef1\ L . (b R
=~ — | = — ed N L. e 5'—68
Ry== (cn) 7a 10 (a> @m). . (5-68)
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b) For the parallel-wire transmxssxon lme Eq (4 47) m Example 4 4 gives the
capdcxtance per uhit length A

o : © f"

: ¥ . e

Cl:‘———_-cosh—x DY
\2a,

Therefore, the lea{(age resistance per unit lépgth is, without further ado,
. &1\ 1 . (D
we )
| D DY .
= —— —— -— Q s —§C
~in {20 f(;() 1] ( /m) (5-69)

The conductance per unit lengthis G o= [/R .

(F/m).

It must be empHasized here that the resistance between the conductors for a
length ¢ of the coaxidl cable is R,/Z, not /R, ; similarly, the leakage resistance of a
length £ of the parallel-wire transmission line is R, /7, not /R. Do you know why?

In certain situations, clectrostatic and steady-current problems are not exacily
analogous, even wheh the geometrical configurations are the same. This is because
current {low can be tonfined strictly within a conductor (which has « very large o
compared to that of the surrounding medium), whereas electric flux usually cannot
be contained within & dieléctric slab of finite dimensions. The range of the dielectric
constant of available materials is very limited (see Appendix B- -3), and the flux-
fringing around conductor edges makes the computation of capacitance less accurate.

The procedure for computing the resistance of a piece of conducting material
between specified eqliipotential surfaces (or terminals) is as follows:

1. Choose an apprdpriate coordinate system for the given geometry.
2. Assume a potential difference ¥, between conductor terminals.

3. Find electric field iutensity E within the conductor. (If the material is homo-
geneous, having a constant conductivity, the general method is to solve Laplace’s
equation V2V =0 for ¥ in the chosen coordinate system, and then obtain
E=-VV) ‘

4. Find total currefit

! : szSJ-ds=j(:.crE-ds

R
T~ E
where S is the ctoss-sectional area over whici I flows.

5. Find resistance R by taking the ratio /1.

It-is important to note that if the conducting material is inhomogeneous and if the
conductivity is a funiction of space coordinates, Laplace’s equation for ¥ does not
hold. Can you explain why and indicate how E can be determined under these

circumstances? : . ’

S
w
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., . When the given geometry is such that J can be deterfnined easily from a total

~current I, we may start the solution by assuming an I. From I, J and E = J/o are
. found. Then the potential difference V, is determined from the relation

Vo_—fE de,

where the integration is from the low-potential terminal to the high-potential terminal.

" The resistance R = V,/I is independent of the assumed 1, which will be canceled in

the process.

Example 5~5 A conducting material of uniform thickness h and conductivity ¢
has the shape of a quarter of a flat circular washer, with inner radius a and outer
radius b, as shown in Fig. 5-7. Determine the resistance between the end faces.

Solution: Obviously the appropriate coordinate system to use for this problem is
the cylindrical coordinate system. Following the foregoing procedure, we first assume
a potential difference V;, between the end faces, say ¥ = Q. on the end face at y = 0,
and V = ¥, on the end face at x = 0. We are to solve Laplace’sequation in V subject
to the following boundary conditions:

V=0 at ¢=0 (5-70a)
V=V, a  p=np.. (5-70b)

Since potential V is a function of ¢ only, Laplace s equation in cylindrical coordinates
simplifies to

a*v :
— =0, . 5-71
| =t .
The general solution of Eq. (5 —71) is
= C1¢ + Ca,
which, upon using the boundary conditions in Egs. (5- 70a) and (5-70b), becomes
. . V= 2V, . (5-72)
7 ,
ya
b -
.
oo
b ¢ ' , o
2 g X Fig. 5=7 A quarter of a flat circular
0 !

X washer (Example 5-5).
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6V . 20V, -
- g 2270, 5-73
a ¢ —a, r . ( )

The total current I Ean be found by mtegratmg J over the ¢ = n/2 surface at which
ds = —a¢h dr. We Have

»

!
[ R 2aV0 b dr
E T I=J- ds =——h
P ‘ i;i . f ‘ f .

; = 2"W° In2. (5-74)

, . n a .
. Therefore,
R= Vo e

T~ 20hln(bja)

Note that, for this problem, it is not convenient to begin by assuming a total
current / because it is not obvious how J varies with r for a given I. Without J, E
and ¥, cannot be détermined.

REVIEW QUESTIONS ' , )

I:
R.5-1  Explain the dxfference between conducnon and convection currents.

R.5-2 Explain the qpcra:xon of an electrolytic tank. In what ways do electrolytic currents
differ from conduction’and convection currents?.

R5-3 What is the point f>rn for Ohm's [aw.?
R.5-4  Define conduchvity. What is its ST unit?

R.5-5 Why does the tesisiance formula in Eq. (5-13) require that the material be homogeneous
and straight and that it havz 4 uniform cross section?

R.5-6 Prove Egs. (5-15) and (5-16b).

R5-7 Define clectrothotive Jorce in words.

R.S5-8 Whatis the dii‘i‘ercncé between impresscd and electrostatic field intensities?
R.5-9 State Kirchhofi’s voltage law in words.

R.5-10 What are the characteristics of an ideal voltage source?

R.5-11 Can the currefits in different branches (resistors) of a closed loop in an electric network
flow in opposite directfons? Explain. .

R.5~12 What is the pﬂysxcal significance of the eqﬁation of continuity?

,
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R5-13 State Kirchhoff’s current law in words. :
R5-14 What are the characteristics of an ideal current source?

" R.5-15 Define relaxdtion time.

R.5-16 1n what ways should Eq. (5-34) be modified when ¢ is a function of space coordinates?

R.5-17 State Joule’s law. Express the power dissipated in a volume o

a) in terms of E and o,
b) in terms of J and ¢.

R.5-18 Does the relation V x J.=0 hold in a medium whose conductivity is not constant?
Explain. '

A b ——ETEAT Lo £ e

R.5~19 What are the boundary conditions of the normal and tangential components of steady
. ' current at the interface of two media with different conductivities? p

R.5-20 What is the basis of using an electrolytic tank to map the potential distribution of elec- ‘
trostatic boundary-value problems? :

RS5-21 What is the relation between the tesistance and the capacitance formed by two con-
ductors immersed in a lossy dielectric medium that has permittivity € and conductlvxty a?

R.5-22 Under what situations will the relation between R and C in R.5-21 be only approximatety
correct? Give a specific example.

PPOBLEMS , 1

P.5-1 Starting with Ohm’s law as expressed in Eq. (5 :12) applied to a resistor of length 7, !
conductivity ¢, and uniform cross- sectlon S, verify the pomt form of Ohm’s law represented by '
Eq. (5-3).

P.5-2 A long, round wire of radius a and conductivity a is coated with a material of conduc-
tivity O.1e6.

a) What must be. the thickness of the coating so that the resistance per unit length of the
uncoated wire is reduced by 50%?

b) Assuming a total current / in the coated wire, find J and E in both the core and the
coating material.

et

R . o ’ !
5 ‘ ‘Fig. 5-8 A network problem I o L el
t * (Problem P.5-3). SR , : R
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AP e A,

.P5-3 Find the current dnd the heat dlssrpated m each of the five resistors in the network shown
in Fig. 5-8if*" - " "‘ o o

=4 (Q), [ Ry=20(@), Ry =30(Q); R =8(0) Ry = 10(@),

and if the source is an 1dehl DC voltage generator of 0.2 (V) with its positive polarity at terminal
1. What is the total resistdnce seen by the source; at tenhmal pair 1-2?

P.5-4 Solve problem P.5-3, assummg the source is &n ideal current generator that supplies
a direct current of 0.7 (A) out of terminal I, i 2

X

" P.5-5 Lightning stnke& a lossy dielectric sphere——e & 1.2 g, 0 = 10 (S/m)—of radius 0.1 (m)
at time ¢ = 0, depositing’ hmformly in the sphere a tothl charge 1 (mC). Determine, for all ¢,

a) the electric ficld lmn.nsrly both inside and-outslde the sphere,
b) the current density in the sphere.

P.5-6 Rcfer to Problem P.5-5,

a) Calculate the time it takes for the charge density in the sphere to diminish to 19, of its
initial value, :

b) Calculate the chdnge in the electrostatic energy stored in the sphere as the charge density
diminishes from the nitial value to 17% of its value. What happens to this energy?

¢) Determine the electrostatic energy stored in the space outside the sphere. Does this
energy change with time?

P.5-7 A DC voltage of 6 (V) applied to the ends of 1 (km) of a conducting wire of 0.5 (mm)
radius results in a curretf of 1,6 (A). Find
a) the conductivity of the wire,
b) the electric field Intensity in the wire,
¢) the power dissiphted in the wire.

P5-8 Rcferto Exdmplt:S 3.

a) Draw the equrvalent circuit of the two-layer, bdrallel -plate capacitor with lossy dielec-
trics, and identify the magnitude of each component.

b) Determine the power dissipated in the capacitor.

P.5-9 Anemf ¥ is appliec across a cylindrical capacitor of length L. The radii of the inner
and outer conductors are a und b tespectively. The space between the conductors is filled with
two different lossy dielectrics having, respectively, permittivity €, and conductivity ¢, in the
region a < r < ¢, and permitlivity €, and conductivity uz in the region ¢ < r < b. Determine

a) the current density in each region,

b) thesurface charge densities on the inner and outer conductors and at the interface between
the two dielectrics.

—
P.5-10 Refer to the flat uarter-circular washer n. Example 5-5and Fig. 5~7. Find the resistance
between the curved sides.

P.5-11 Determine the resictance between concentric spherical surfaces of radii R, and
R; (Ry < R,), assuming that a ‘material of conductivity ¢ = ool + k/R) fills the space between
them. (Note: Laplace’s équation for V does not apply here.)
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-P5-12 A homogeneous matcnal of uniform conductmty ois shaped hke a truncated comcal
* . block and defined in spherical coordinates by : .

R,<R<R, “and O<0$90'-“

" Determine the resistance between the R = R, and R R, surfaces

P.5-13 Redo problem P.5- 12 assummg that the truncated conical block is composed of an
inhomogeneous material with a nonuniform conductmty o(R) = o¢R,/R, where R, < R < R,.

P.5-14 Two conducting spheres of radii b, and b, that have a very high conductivity are immersed
in a poorly conducting medium (for example, they are buried very deep in the ground) of con-
ductlvny o and permittivity €. The distance, d, between the spheres is very large compared with
the radii. Determine the resistance between the conducting spheres. Hint: Find the capacitance
between the spheres by following the procedure in Section 3-10 and using Eq. (5-67).

P.5-15 Justify the statement that thc steady-current problem associated with a conductor
buried in a poorly conducting medium near a plane boundary with air, as shown in Fig. 5-9(a),
can be replaced by that of the conductor and its image, both immersed in the poorly conducting
medium as shown in Fig. 5~9(b).

Boundary
removed
o=0
o Fig. 5-9 Steady
current problem with a
. : , _ plane boundary
b e s s £ Moo il ©  (Problem P.5-15).
(a) Conductor ina poorly (b) Image conductor in conducting .,
conducting medium near medium replacing the
a plane boundary. plane boundary.

P.5-16 A ground connection is made by burying a hemispherical conductor of radius 25 (mm)
in the earth with its base up, as shown in Fig. 5-10. Assuming the carth conductivity to be
107 ¢ S/m, find the resistance of the conductor to far-away points in the ground.

.

W . oAk
=107 (S/m)y’

Fig. 5-10 - Hemispherical conductor
in ground (Problem P.5~16)...

P5-17 Assume a rectangular conducting sheet of conductivity o, width g, and height b. A

. potential difference V}, is applied to the side edges, as shown in Fig. 5-11. Fmd

a) the potential distribution
b) the current density everywhere within the sheet. Hmz Solve Laplace’s equation in
Cartesian coordinates subject to approprlate boundary conditions.

v

e g e o T e T+

s e e




sed of an o
:R<R;.

immersed Cod
dyofcons ;. .
sared with _
apacitance *
).

conductor
‘g, 5-9(a),
zonducting

k—\

sady

em with a '
iry

-15).

dius 25 (mm)
ictivity to be

s
d heis** b A

s equation in

»

geohans a3

o

B, 01

195

S

| Fig. 5-11 A‘conclucting sheet
| a » - (Problem P.5-17).

P.5-18 A uniform currefit density J = a,J, flowsina ‘Very large block of homogeneous material
of conductivity ¢. A holé of radius b is drilled: in thé material. Assuming no variation in the
z-directiofi, find the nev? current density J' in the cofiducting material. Hint: Solve Laplace’s
equation in cylindrical cordinates and note that ¥ approaches —(J ot/6)cos ¢ as r — co.

A e g
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INTRODUCTION

In Chapter 3 we dealt with St;ltic electric fields caused by electric charges at rest.
We saw that electric field intensity E is the only fundamental vector field quantity
required for the study of electrostatics in free space. In a material medium, it is con-
venient to define a second vector field quantity, the electric flux density D, to account
for the effect of polarization. The following two equations™form the ba51s of the
electrostatic model:

V:D=p (6-1)

VxE=0. (6-2)

The electrical property of the medium determines the relation between D and E. If
the medium is linear and isotropic, we have the simple constitutive relation D = €E.

When a small test charge g is placed in an electric field E, it experiences an
electric force F,, which is a function of the position of ¢. We have

F.=¢E (N) (6-3)

When the test charge is in motion in a magnetic field (to be defined presently), experi-
ments show that it experiences another force, F,,, which has the following character-
istics: (1) The magnitude of F,, is proportional to ¢; (2) the direction of F,, at any
point is at right angles to the velocity vector of the test charge as well as to a fixed
direction at that point; and (3) the magnitude of F,, is also proportional to the com-
ponent of the velocity at right angles to this fixed direction. The force F,, is a-magnetic
Jorce; it cannot be expressed in terms of E or D. The characteristics of F,, can be

described by defining a new vector field quantity, the magnetic flux density B, that

specifies both the fixed direction and the constant of proportionality. In SI units, the
magnetic force can be expressed as

196

F,=quxB N), (6-4).

6-2
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where u (m/s) is_ e velocny vector, and B 1s measured in webers per square meter

(Wb/m?) or tesfhé ! Thc total electromagrﬁetzc force on a charge g is, then,
F=F, +F,,,,thatis .

e v

i
i b
i
\

F=4E+uxB) . (N), (6-5)

.

which is called Lo; ehn 5 jorce equation. Its vahdxty has been unquestionably

established by expemm:nts We may consider F,/g {or a small ¢ as the definition for

electric field intensity £ (as,we did in Eq. 3-2)yand F, /g = u x B as the defining

eiy, we may consider Lorentz’s force'

equation as a fundaniental postulate of our eléctromagnetic model; it cannot be
derived from other potulates. ‘

We begin the study of static magnetic fields in free space by two postulates
specifying the dwergeﬂce and the curl of B. From the solenoidal character of B, a
vector magnetic potenual is defined, which is shown to obey a vector Poisson’s
equation. NexXt we detive the Biot-Savart law, which can be used to determine the
magnetic field of a curbent- -carrying circuit. The postulated curl relation leads dxrectly
to Ampére’s circuital law which is particularly useful when symmetry exists.

The macroscopic effect of magnetic materials in a magnetic field can be studied
by defining a magneniatlon vector. Here we introduce a fourth vector field quantity,
the magnetic field intensity H. From the relation between B and H, we define the
permeability of the material, following which we discuss magnetic circuits and the
microscopic behavioriof magnetic materials. We then examine the boundary con-
ditions of B and H at the interface of two different magnetic media; seif- and mutual
inductances; and magncn energy, forces and torques.

4
’

6-2 FUNDAMENTAL POSTULATES OF
MAGNETOSTATICS IN FREE SPACE

To study magnetostat{cs (steady magnetic helds) in free space, we need only consider

the magnetic flux demlty sector, B. The two fundamental postulates that specify the
divergence and the cutl of B in free space are

V:-B=0 (6-6)

- | VxB= ol (6-7)

* One weber per aquare metur cr one tesla equals 1Q* gauss in CGS units. The earth magnetic field is
about + gauss or 0.5 x 1074 "T.(A weber is the same as a volt-second.)
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_In Eq. (6-7), uo is the permeability of free space" ;

Ho =47 x 1077 (H/m) =~ |
(see Eq. 1-9),'and J is the current density. Since the divergence of the curl of any
vector field is zero (see Eq. 2-137), we obtain from Eq. (6-7)
vV-d=0,.

which is consistent with Eq. (5-31) for steady currents. ‘
Comparison of Eq. (6—6) with the analogous equatien for electrostatics in free
space, V * E = p/e, (Eq. 3-4), leads us to conclude that there is no magnetic analogue

. for electric charge density p. Taking the volume integral of Eq. (6-6) and applying

divergence theorem, we have

»

gﬁsn-ds=o, | L (6-8)

where the surface integral is carried out over the bounding surface of an arbitrary

“volume. Comparing Eq. (6-8) with Eq. (3—7). we again deny the existence of isolated

magnetic charges. There are no magnetic flow sources, and the magnetic flux lines
always close upon themselves. Equation (6-8) is also referred to as an expression for
the law of conservation of magnetic flux, because it states that the total outward
magnetic flux through any closed surface is zero.

The traditional designation of north and south poles in a permanent bar magnet
does not imply that an isolated positive magnetic charge exists at the north pole and
a corresponding amount of isolated negative magnetic charge exists at the south pole.

‘Consider the bar magnet with north and south poles in Fig. 6—1(a). If this magnet is

cut into two segments, new south and north poles appear and we have two shorter
magnets as in Fig. 6-1(b). If each of the two shorter magnets is cut again into two
segments, we have four magnets, each with a north pole and a south pole as in Fig.
6-1(#). This process could be continued until the magnets are of atomic dimensions;
but each infinitesimally small magnet would still have a north pole and a south pole.

) N
s s
N

‘ NT - .
LS | LS| S5 | Fig. 6-1 Successive division
(a) (v) ©) of a bar magnet.
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T obyiousﬁngﬁh‘ q,-.machtiq poles cannot be }iso& ted. The magnetic flux lines follow

closed paths fi¥m bndjend ‘of 1 magnet to the otfier end outside the magnet, and then
continue inside'the magnet back to the first end, The designation of north and south

poles is in-accordiinch with the fact that the re§pective ends of a bar magnet freely

suspended-in the éarth’s magnetic field wilt seek_ the north and south directions.

The integral formof the cutl relation in Eq.{6-7) can be obtained by integrating
both sides over an oﬁén surface and applying Stokes’s theorem. We have

S 4 P N T . h

ics in free! * - Y f {VxB)-ds = yoiif J-ds
analogue ... T oL s s
. ST 3 or S ) C
‘applying - © @ ' :
| ,-. G, B+ de=po, (6-9)
-(6-8) F S :
where the path C forthe fine integral is the contour bounding the surfuce S, and [
arbitrary : is the total current th}:ough S. The sense of tracing C and the direction of current
of isg~ed 3 flow follow the right-hand rule. Equation (6-9) is a form of Ampere’s circuital law,
flux ..ies B which states that the ¢irculation of the magnetic flux density in free space uround any
ession for " closed path is equal to y, times the total current Sowing through the surface bounded
fov d ' by the path. Amﬁére’i; cir:yital law is very useftl in determining the magnetic flux
| density B caused. by # current / when there is a closed path C around the current
4ar magnet : such that the magnitutle cf B is constant pver the path.
1 pole and ! The following is u,fsummury of the two fundamental postulates of magnetostatics
outh pole. ' in free space: o
ma%lnc;tt 18 . . , 4 Postulates of Magnetostatics in
vo shorter R T ' Free Space
pmotwo o E » . ,
asinFig. ¥ Differential Form . Integral Form
mensions; I ; ' :
outhpole._ 3 Y V<B =0 - SBSB-ds=0
o OV x B =yl _-Sﬁ:B-d{’=u01
- | ; .
~ Example 6~1__An infinitely long, straight' conductor with a circular cross section
R 1 of radius b carries a Steady. current 1. Determine the magnetic flux density both
. inside and outside the tonductor. o
3 : Solution: First we note that this is a problem with cylindrical symmetry and that
of

Ampére’s circuital law tan be used to advantage. If we align the conductor along the
z-axis, the magnetic flux density B will be ¢-directed and will be constant along any

’
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Fig. 6-2  Cross section of a straight
- circular conductor carrying a current / out
of paper (Example 6-1). ‘

" circular path around the z-axis. Figure 6-2 shows a cross section of the conductor

and the two circular paths of integration, C, and C,, inside and outside, respectively,
the current-carrying conductor. Note again that the directions of C, and C, and the
direction of I follow the right-hand rule. (When the fingers of the right hand follow
the direct