
INSTRUCTOR’S
MANUAL FOR

ADVANCED 
ENGINEERING 
MATHEMATICS

imfm.qxd  9/15/05  12:06 PM  Page i



imfm.qxd  9/15/05  12:06 PM  Page ii



INSTRUCTOR’S
MANUAL FOR

ADVANCED 
ENGINEERING 
MATHEMATICS

NINTH EDITION

ERWIN KREYSZIG
Professor of Mathematics 
Ohio State University 
Columbus, Ohio

JOHN WILEY & SONS, INC.

imfm.qxd  9/15/05  12:06 PM  Page iii



Copyright © 2006 by John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (508) 750-8400, fax (508) 750-4470. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, E-Mail: PERMREQ@WILEY.COM.

ISBN-13: 978-0-471-72647-0
ISBN-10: 0471-72647-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Vice President and Publisher: Laurie Rosatone
Editorial Assistant: Daniel Grace
Associate Production Director: Lucille Buonocore
Senior Production Editor: Ken Santor
Media Editor: Stefanie Liebman
Cover Designer: Madelyn Lesure
Cover Photo: © John Sohm/Chromosohm/Photo Researchers

This book was set in Times Roman by GGS Information Services and printed and bound by 
Hamilton Printing. The cover was printed by Hamilton Printing.

This book is printed on acid free paper.

imfm.qxd  9/15/05  12:06 PM  Page iv



PREFACE
General Character and Purpose of the Instructor’s Manual

This Manual contains:
(I) Detailed solutions of the even-numbered problems.
(II) General comments on the purpose of each section and its classroom use, with

mathematical and didactic information on teaching practice and pedagogical aspects. Some
of the comments refer to whole chapters (and are indicated accordingly).

Changes in Problem Sets
The major changes in this edition of the text are listed and explained in the Preface of the
book. They include global improvements produced by updating and streamlining chapters
as well as many local improvements aimed at simplification of the whole text. Speedy
orientation is helped by chapter summaries at the end of each chapter, as in the last edition,
and by the subdivision of sections into subsections with unnumbered headings. Resulting
effects of these changes on the problem sets are as follows.

The problems have been changed. The large total number of more than 4000 problems
has been retained, increasing their overall usefulness by the following:

• Placing more emphasis on modeling and conceptual thinking and less emphasis on
technicalities, to parallel recent and ongoing developments in calculus.

• Balancing by extending problem sets that seemed too short and contracting others
that were too long, adjusting the length to the relative importance of the material
in a section, so that important issues are reflected sufficiently well not only in the
text but also in the problems. Thus, the danger of overemphasizing minor techniques
and ideas is avoided as much as possible.

• Simplification by omitting a small number of very difficult problems that appeared
in the previous edition, retaining the wide spectrum ranging from simple routine
problems to more sophisticated engineering applications, and taking into account the
“algorithmic thinking” that is developing along with computers.

• Amalgamation of text, examples, and problems by including the large number of
more than 600 worked-out examples in the text and by providing problems closely
related to those examples.

• Addition of TEAM PROJECTS, CAS PROJECTS, and WRITING PROJECTS,
whose role is explained in the Preface of the book.

• Addition of CAS EXPERIMENTS, that is, the use of the computer in “experimental
mathematics” for experimentation, discovery, and research, which often produces
unexpected results for open-ended problems, deeper insights, and relations among
practical problems.

These changes in the problem sets will help students in solving problems as well as in
gaining a better understanding of practical aspects in the text. It will also enable instructors
to explain ideas and methods in terms of examples supplementing and illustrating
theoretical discussions—or even replacing some of them if so desired.
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“Show the details of your work.”
This request repeatedly stated in the book applies to all the problem sets. Of course, it is
intended to prevent the student from simply producing answers by a CAS instead of trying
to understand the underlying mathematics.

Orientation on Computers
Comments on computer use are included in the Preface of the book. Software systems are
listed in the book at the beginning of Chap. 19 on numeric analysis and at the beginning
of Chap. 24 on probability theory.

ERWIN KREYSZIG

vi Instructor’s Manual
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Part A. ORDINARY DIFFERENTIAL
EQUATIONS (ODEs)

CHAPTER 1 First-Order ODEs

Major Changes

There is more material on modeling in the text as well as in the problem set.
Some additions on population dynamics appear in Sec. 1.5.
Electric circuits are shifted to Chap. 2, where second-order ODEs will be available.

This avoids repetitions that are unnecessary and practically irrelevant.
Team Projects, CAS Projects, and CAS Experiments are included in most problem sets.

SECTION 1.1. Basic Concepts. Modeling, page 2

Purpose. To give the students a first impression what an ODE is and what we mean by
solving it.
Background Material. For the whole chapter we need integration formulas and
techniques, which the student should review.

General Comments
This section should be covered relatively rapidly to get quickly to the actual solution
methods in the next sections.

Equations (1)–(3) are just examples, not for solution, but the student will see that
solutions of (1) and (2) can be found by calculus, and a solution y � ex of (3) by inspection.

Problem Set 1.1 will help the student with the tasks of

Solving y� � ƒ(x) by calculus

Finding particular solutions from given general solutions

Setting up an ODE for a given function as solution

Gaining a first experience in modeling, by doing one or two problems

Gaining a first impression of the importance of ODEs

without wasting time on matters that can be done much faster, once systematic methods
are available.

Comment on “General Solution” and “Singular Solution”
Usage of the term “general solution” is not uniform in the literature. Some books use the
term to mean a solution that includes all solutions, that is, both the particular and the
singular ones. We do not adopt this definition for two reasons. First, it is frequently quite
difficult to prove that a formula includes all solutions; hence, this definition of a general
solution is rather useless in practice. Second, linear differential equations (satisfying rather
general conditions on the coefficients) have no singular solutions (as mentioned in the
text), so that for these equations a general solution as defined does include all solutions.
For the latter reason, some books use the term “general solution” for linear equations only;
but this seems very unfortunate.

1
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SOLUTIONS TO PROBLEM SET 1.1, page 8

2. y � �e�3x/3 � c 4. y � (sinh 4x) /4 � c

6. Second order. 8. First order.

10. y � ce0.5x, y(2) � ce � 2, c � 2/e, y � (2/e)e0.5x � 0.736e0.5x

12. y � cex � x � 1, y(0) � c � 1 � 3, c � 2, y � 2ex � x � 1

14. y � c sec x, y(0) � c/cos 0 � c � 1_
2�, y � 1_

2� sec x

16. Substitution of y � cx � c2 into the ODE gives

y�2 � xy� � y � c2 � xc � (cx � c2) � 0.

Similarly,

y � 1_
4x2, y� � 1_

2x, thus 1_
4x2 � x(1_

2x) � 1_
4x2 � 0.

18. In Prob. 17 the constants of integration were set to zero. Here, by two integrations,

y� � g, v � y� � gt � c1, y � 1_
2gt2 � c1t � c2, y(0) � c2 � y0,

and, furthermore,

v(0) � c1 � v0, hence y � 1_
2gt2 � v0 t � y0,

as claimed. Times of fall are 4.5 and 6.4 sec, from t � �100/4.�9� and �200/4.�9�.
20. y� � ky. Solution y � y0ekx, where y0 is the pressure at sea level x � 0. Now

y(18000) � y0ek�18000 � 1_
2y0 (given). From this,

ek�18000 � 1_
2, y(36000) � y0ek�2�18000 � y0(ek�18000)2 � y0(1_

2)2 � 1_
4y0.

22. For 1 year and annual, daily, and continuous compounding we obtain the values

ya(1) � 1060.00, yd(1) � 1000(1 � 0.06/365)365 � 1061.83,

yc(1) � 1000e0.06 � 1061.84,

respectively. Similarly for 5 years,

ya(5) � 1000 � 1.065 � 1338.23, yd(5) � 1000(1 � 0.06/365)365�5 � 1349.83,

yc(5) � 1000e0.06�5 � 1349.86.

We see that the difference between daily compounding and continuous compounding
is very small.

The ODE for continuous compounding is y�c � ryc.

SECTION 1.2. Geometric Meaning of y� � ƒ(x, y). Direction Fields, page 9

Purpose. To give the student a feel for the nature of ODEs and the general behavior of
fields of solutions. This amounts to a conceptual clarification before entering into formal
manipulations of solution methods, the latter being restricted to relatively small—albeit
important—classes of ODEs. This approach is becoming increasingly important, especially
because of the graphical power of computer software. It is the analog of conceptual
studies of the derivative and integral in calculus as opposed to formal techniques of
differentiation and integration.

Comment on Isoclines
These could be omitted because students sometimes confuse them with solutions. In the
computer approach to direction fields they no longer play a role.

2 Instructor’s Manual
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Comment on Order of Sections
This section could equally well be presented later in Chap. 1, perhaps after one or two
formal methods of solution have been studied.

SOLUTIONS TO PROBLEM SET 1.2, page 11

2. Semi-ellipse x2/4 � y2/9 � 13/9, y � 0. To graph it, choose the y-interval large
enough, at least 0 � y � 4.

4. Logistic equation (Verhulst equation; Sec. 1.5). Constant solutions y � 0 and y � 1_
2.

For these, y� � 0. Increasing solutions for 0 	 y(0) 	 1_
2, decreasing for y(0) � 1_

2.

6. The solution (not of interest for doing the problem) is obtained by using

dy/dx � 1/(dx/dy) and solving dx/dy � 1/(1 � sin y) by integration,

x � c � �2/(tan 1_
2y � 1); thus y � �2 arctan ((x � 2 � c) /(x � c)).

8. Linear ODE. The solution involves the error function.

12. By integration, y � c � 1/x.

16. The solution (not needed for doing the problem) of y� � 1/y can be obtained by
separating variables and using the initial condition; y2/2 � t � c, y � �2t � 1�.

18. The solution of this initial value problem involving the linear ODE y� � y � t2 is 
y � 4e�t � t2 � 2t � 2.

20. CAS Project. (a) Verify by substitution that the general solution is y � 1 � ce�x.
Limit y � 1 (y(x) � 1 for all x), increasing for y(0) 	 1, decreasing for 
y(0) � 1.

(b) Verify by substitution that the general solution is x4 � y4 � c. More “square-
shaped,” isoclines y � kx. Without the minus on the right you get “hyperbola-like”
curves y4 � x4 � const as solutions (verify!). The direction fields should turn out in
perfect shape.

(c) The computer may be better if the isoclines are complicated; but the computer
may give you nonsense even in simpler cases, for instance when y(x) becomes
imaginary. Much will depend on the choice of x- and y-intervals, a method of trial
and error. Isoclines may be preferable if the explicit form of the ODE contains roots
on the right.

SECTION 1.3. Separable ODEs. Modeling, page 12

Purpose. To familiarize the student with the first “big” method of solving ODEs, the
separation of variables, and an extension of it, the reduction to separable form by a
transformation of the ODE, namely, by introducing a new unknown function.

The section includes standard applications that lead to separable ODEs, namely,

1. the ODE giving tan x as solution

2. the ODE of the exponential function, having various applications, such as in
radiocarbon dating

3. a mixing problem for a single tank

4. Newton’s law of cooling

5. Torricelli’s law of outflow.

Instructor’s Manual 3
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In reducing to separability we consider

6. the transformation u � y/x, giving perhaps the most important reducible class of
ODEs.

Ince’s classical book [A11] contains many further reductions as well as a systematic
theory of reduction for certain classes of ODEs.

Comment on Problem 5
From the implicit solution we can get two explicit solutions

y � ��c � (6�x)2�
representing semi-ellipses in the upper half-plane, and

y � ��c � (6�x)2�
representing semi-ellipses in the lower half-plane. [Similarly, we can get two explicit
solutions x(y) representing semi-ellipses in the left and right half-planes, respectively.]
On the x-axis, the tangents to the ellipses are vertical, so that y�(x) does not exist. Similarly
for x�(y) on the y-axis.

This also illustrates that it is natural to consider solutions of ODEs on open rather than
on closed intervals.

Comment on Separability
An analytic function ƒ(x, y) in a domain D of the xy-plane can be factored in D,
ƒ(x, y) � g(x)h(y), if and only if in D,

ƒxyƒ � ƒxƒy

[D. Scott, American Math. Monthly 92 (1985), 422–423]. Simple cases are easy to decide,
but this may save time in cases of more complicated ODEs, some of which may perhaps
be of practical interest. You may perhaps ask your students to derive such a criterion.

Comments on Application
Each of those examples can be modified in various ways, for example, by changing the
application or by taking another form of the tank, so that each example characterizes a
whole class of applications.

The many ODEs in the problem set, much more than one would ordinarily be willing
and have the time to consider, should serve to convince the student of the practical
importance of ODEs; so these are ODEs to choose from, depending on the students’
interest and background.

Comment on Footnote 3
Newton conceived his method of fluxions (calculus) in 1665–1666, at the age of 22.
Philosophiae Naturalis Principia Mathematica was his most influential work.

Leibniz invented calculus independently in 1675 and introduced notations that were
essential to the rapid development in this field. His first publication on differential calculus
appeared in 1684.

SOLUTIONS TO PROBLEM SET 1.3, page 18

2. dy/y2 � �(x � 2)dx. The variables are now separated. Integration on both sides gives

� � �1_
2x2 � 2x � c*. Hence y � .

2



x2 � 4x � c

1


y

4 Instructor’s Manual
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4. Set y � 9x � v. Then y � v � 9x. By substitution into the given ODE you obtain

y� � v� � 9 � v2. By separation, � dx.

Integration gives

arctan � x � c*, arctan � 3x � c

and from this and substitution of y � v � 9x,

v � 3 tan (3x � c), y � 3 tan (3x � c) � 9x.

6. Set u � y/x. Then y � xu, y� � u � xu�. Substitution into the ODE and subtraction
of u on both sides gives

y� � � � u � xu� � � u, xu� � .

Separation of variables and replacement of u with y/x yields

2u du � dx, u2 � 8 ln �x� � c, y2 � x2(8 ln �x� � c).

8. u � y/x, y � xu, y� � u � xu�. Substitute u into the ODE, drop xu on both sides,
and divide by x2 to get

xy� � xu � x2u� � 1_
2x2u2 � xu, u� � 1_

2u2.

Separate variables, integrate, and solve algebraically for u:

� 1_
2 dx, � � 1_

2(x � c*), u � .

Hence

y � xu � .

10. By separation, y dy � �4x dx. By integration, y2 � �4x2 � c. The initial condition
y(0) � 3, applied to the last equation, gives 9 � 0 � c. Hence y2 � 4x2 � 9.

12. Set u � y/x. Then y� � u � xu�. Divide the given ODE by x2 and substitute u and
u� into the resulting equation. This gives

2u(u � xu�) � 3u2 � 1.

Subtract 2u2 on both sides and separate the variables. This gives

2xuu� � u2 � 1, � .

Integrate, take exponents, and then take the square root:

ln (u2 � 1) � ln �x� � c*, u2 � 1 � cx, u � ��cx � 1�.

Hence
y � xu � �x�cx � 1�.

From this and the initial condition, y(1) � �c � 1� � 2, c � 5. This gives the answer

y � x�5x � 1�.

dx


x

2u du


u2 � 1

2x


c � x

2


c � x

1


u

du


u2

8


x

4


u

4


u

y


x

4x


y

v


3

v


3

1


3

dv


v2 � 9

Instructor’s Manual 5
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14. Set u � y/x. Then y � xu, y� � u � xu�. Substitute this into the ODE, subtract u on
both sides, simplify algebraically, and integrate:

xu� � cos (x2) uu� � 2x cos (x2), u2/2 � sin (x2) � c.

Hence y2 � 2x2(sin (x2) � c). By the initial condition, � � � (sin 1_
2� � c), c � 0,

y � xu � x�2 sin (�x2)�.

Problem Set 1.3. Problem 14. First five real branches of the solution

16. u � y/x, y � xu, y� � u � xu� � u � 4x4 cos2u. Simplify, separate variables, and
integrate:

u� � 4x3 cos2u, du/cos2u � 4x3 dx, tan u � x4 � c.

Hence
y � xu � x arctan (x4 � c).

From the initial condition, y(2) � 2 arctan (16 � c) � 0, c � �16. Answer:

y � x arctan (x4 � 16).

18. Order terms:

(1 � b cos �) � br sin �.

Separate variables and integrate:

� d�, ln r � ln (1 � b cos �) � c*.
b sin �




1 � b cos �

dr


r

dr


d�

y

x0 1 2 3 4–1–2–3–4

1

–1

–2

–3

–4

–5

–6

2

3

4

5

6

2x2



u

6 Instructor’s Manual
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Take exponents and use the initial condition:

r � c(1 � b cos �), r( ) � c(1 � b � 0) � �, c � �.

Hence the answer is r � � (1 � b cos �).
20. On the left, integrate g(w) over w from y0 to y. On the right, integrate ƒ(t) over t from

x0 to x. In Prob. 19,

�y

1
wew2

dw � �x

0
(t � 1) dt.

22. Consider any straight line y � ax through the origin. Its slope is y/x � a. The slope
of a solution curve at a point of intersection (x, ax) is y� � g(y/x) � g(a) � const,
independent of the point (x, y) on the straight line considered.

24. Let kB and kD be the constants of proportionality for the birth rate and death rate,
respectively. Then y� � kBy � kDy, where y(t) is the population at time t. By separating
variables, integrating, and taking exponents,

dy/y � (kB � kD) dt, ln y � (kB � kD)t � c*, y � ce(kB
�kD)t.

26. The model is y� � �Ay ln y with A � 0. Constant solutions are obtained from 
y� � 0 when y � 0 and 1. Between 0 and 1 the right side is positive (since ln y 	 0),
so that the solutions grow. For y � 1 we have ln y � 0; hence the right side is negative,
so that the solutions decrease with increasing t. It follows that y � 1 is stable. The
general solution is obtained by separation of variables, integration, and two subsequent
exponentiations:

dy/(y ln y) � �A dt, ln (ln y) � �At � c*,

ln y � ce�At, y � exp (ce�At).

28. The temperature of the water is decreasing exponentially according to Newton’s law
of cooling. The decrease during the first 30 min, call it d1, is greater than that, d2,
during the next 30 min. Thus d1 � d2 � 190 � 110 � 80 as measured. Hence the
temperature at the beginning of parking, if it had been 30 min earlier, before the arrest,
would have been greater than 190 � 80 � 270, which is impossible. Therefore Jack
has no alibi.

30. The cross-sectional area A of the hole is multiplied by 4. In the particular solution,
15.00 � 0.000332t is changed to 15.00 � 4 � 0.000332t because the second term
contains A/B. This changes the time t � 15.00/0.000332 when the tank is empty, to
t � 15.00/(4 � 0.000332), that is, to t � 12.6/4 � 3.1 hr, which is 1/4 of the original
time.

32. According to the physical information given, you have


S � 0.15S 
�.

Now let 
� * 0. This gives the ODE dS/d� � 0.15S. Separation of variables yields
the general solution S � S0e0.15� with the arbitrary constant denoted by S0. The 
angle � should be so large that S equals 1000 times S0. Hence e0.15� � 1000,
� � (ln 1000)/0.15 � 46 � 7.3 � 2�, that is, eight times, which is surprisingly little.
Equally remarkable is that here we see another application of the ODE y� � ky and
a derivation of it by a general principle, namely, by working with small quantities
and then taking limits to zero.

�


2

Instructor’s Manual 7
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36. B now depends on h, namely, by the Pythagorean theorem,

B(h) � �r2 � � (R2 � (R � h)2) � � (2Rh � h2).

Hence you can use the ODE

h� � �26.56(A/B)�h�

in the text, with constant A as before and the new B. The latter makes the further
calculations different from those in Example 5.

From the given outlet size A � 5 cm2 and B(h) we obtain

� �26.56 � �h�.

Now 26.56 � 5/� � 42.27, so that separation of variables gives

(2Rh1/2 � h3/2) dh � �42.27 dt.
By integration,

4_
3Rh3/2 � 2_

5h5/2 � �42.27t � c.

From this and the initial condition h(0) � R we obtain

4_
3R5/2 � 2_

5R5/2 � 0.9333R5/2 � c.

Hence the particular solution (in implicit form) is

4_
3Rh3/2 � 2_

5h5/2 � �42.27t � 0.9333R5/2.

The tank is empty (h � 0) for t such that

0 � �42.27t � 0.9333R5/2; hence t � R5/2 � 0.0221R5/2.

For R � 1 m � 100 cm this gives

t � 0.0221 � 1005/2 � 2210 [sec] � 37 [min].

The tank has water level R/2 for t in the particular solution such that

R � � 0.9333R5/2 � 42.27t.

The left side equals 0.4007R5/2. This gives

t � R5/2 � 0.01260R5/2.

For R � 100 this yields t � 1260 sec � 21 min. This is slightly more than half the
time needed to empty the tank. This seems physically reasonable because if the water
level is R/2, this means that 11/16 of the total water volume has flown out, and 5/16
is left—take into account that the velocity decreases monotone according to
Torricelli’s law.

Problem Set 1.3. Tank in Problem 36

R R = h

r
h

0.4007 � 0.9333




�42.27

R5/2



25/2

2


5

R3/2



23/2

4


3

0.9333


42.27

5



� (2Rh � h2)

dh


dt

8 Instructor’s Manual
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SECTION 1.4. Exact ODEs. Integrating Factors, page 19

Purpose. This is the second “big” method in this chapter, after separation of variables, and
also applies to equations that are not separable. The criterion (5) is basic. Simpler cases
are solved by inspection, more involved cases by integration, as explained in the text.

Comment on Condition (5)
Condition (5) is equivalent to (6�) in Sec. 10.2, which is equivalent to (6) in the case of two
variables x, y. Simple connectedness of D follows from our assumptions in Sec. 1.4. Hence
the differential form is exact by Theorem 3, Sec. 10.2, part (b) and part (a), in that order.

Method of Integrating Factors
This greatly increases the usefulness of solving exact equations. It is important in itself
as well as in connection with linear ODEs in the next section. Problem Set 1.4 will help
the student gain skill needed in finding integrating factors. Although the method has
somewhat the flavor of tricks, Theorems 1 and 2 show that at least in some cases one can
proceed systematically—and one of them is precisely the case needed in the next section
for linear ODEs.

SOLUTIONS TO PROBLEM SET 1.4, page 25

2. (x � y) dx � (y � x) dy � 0. Exact; the test gives �1 on both sides. Integrate 
x � y over x:

u � 1_
2x2 � xy � k(y).

Differentiate this with respect to y and compare with N:

uy � �x � k� � y � x. Thus k� � y, k � 1_
2 y2 � c*.

Answer: 1_
2x2 � xy � 1_

2 y2 � 1_
2(x � y)2 � c; thus y � x � c�.

4. Exact; the test gives ey � ex on both sides. Integrate M with respect to x to get

u � xey � yex � k(y).

Differentiate this with respect to y and equate the result to N:

uy � xey � ex � k� � N � xey � ex.

Hence k� � 0, k � const. Answer: xey � yex � c.
6. Exact; the test gives �ex sin y on both sides. Integrate M with respect to x:

u � ex cos y � k(y). Differentiate: uy � �ex sin y � k�.

Equate this to N � �ex sin y. Hence k� � 0, k � const. Answer: ex cos y � c.
8. Exact; �1/x2 � 1/y2 on both sides of the equation. Integrate M with respect to x:

u � x2 � � � k(y).

Differentiate this with respect to y and equate the result to N:

uy � � � � k� � N, k� � 2y, k � y2.

Answer:

x2 � � � y2 � c.
y


x

x


y

1


x

x


y2

y


x

x


y
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10. Exact; the test gives �2x sin (x2) on both sides. Integrate N with respect to y to get

u � y cos (x2) � l(x).

Differentiate this with respect to x and equate the result to M:

ux � �2xy sin (x2) � l� � M � �2xy sin (x2), l� � 0.

Answer: y cos (x2) � c.
12. Not exact. Try Theorem 1. In R you have

Py � Qx � ex�y � 1 � ex�y(x � 1) � �xex�y � 1 � �Q

so that R � �1, F � e�x, and the exact ODE is

(ey � ye�x) dx � (xey � e�x) dy � 0.

The test gives ey � e�x on both sides of the equation. Integration of M � FP with
respect to x gives

u � xey � ye�x � k(y).

Differentiate this with respect to y and equate it to N � FQ:

uy � xey � e�x � k� � N � xey � e�x.

Hence k� � 0. Answer: xey � ye�x � c.
14. Not exact; 2y � �y. Try Theorem 1; namely,

R � (Py � Qx) /Q � (2y � y) /(�xy) � �3/x. Hence F � 1/x3.

The exact ODE is

(x � ) dx � dy � 0.

The test gives 2y/x3 on both sides of the equation. Obtain u by integrating N � FQ
with respect to y:

u � � � l(x). Thus ux � � l� � M � x � .

Hence l� � x, l � x2/2, �y2/2x2 � x2/2 � c*. Multiply by 2 and use the initial
condition y(2) � 1:

x2 � � c � 3.75

because inserting y(2) � 1 into the last equation gives 4 � 0.25 � 3.75.
16. The given ODE is exact and can be written as d(cos xy) � 0; hence cos xy � c, or

you can solve it for y by the usual procedure. y(1) � � gives �1 � c. 
Answer: cos xy � �1.

18. Try Theorem 2. You have

R* � (Qx � Py) /P � [ cos xy � x sin xy � (�x sin xy � )]�P � .

Hence F* � y. This gives the exact ODE

(y cos xy � x) dx � (y � x cos xy) dy � 0.

1


y

x


y2

1


y

y2



x2

y2



x3

y2
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y2
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y


x2

y2



x3
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In the test, both sides of the equation are cos xy � xy sin xy. Integrate M with respect
to x:

u � sin xy � 1_
2x2 � k(y). Hence uy � x cos xy � k�(y).

Equate the last equation to N � y � x cos xy. This shows that k� � y; hence
k � y2/2. Answer: sin xy � 1_

2x2 � 1_
2y2 � c.

20. Not exact; try Theorem 2:

R* � (Qx � Py) /P � [1 � (cos2 y � sin2 y � 2x cos y sin y)] /P

� [2 sin2 y � 2x cos y sin y] /P

� 2(sin y)(sin y � x cos y) /(sin y cos y � x cos2 y)

� 2(sin y) /cos y � 2 tan y.

Integration with respect to y gives �2 ln (cos y) � ln (1/cos2 y); hence F* � 1/cos2 y.
The resulting exact equation is

(tan y � x) dx � dy � 0.

The exactness test gives 1/cos2 y on both sides. Integration of M with respect to x
yields

u � x tan y � 1_
2x2 � k(y). From this, uy � � k�.

Equate this to N � x/cos2 y to see that k� � 0, k � const. Answer: x tan y � 1_
2x2 � c.

22. (a) Not exact. Theorem 2 applies and gives F* � 1/y from

R* � (Qx � Py) /P � (0 � cos x) /(y cos x) � � .

Integrating M in the resulting exact ODE

cos x dx � dy � 0

with respect to x gives

u � sin x � k(y). From this, uy � k� � N � .

Hence k � �1/y. Answer: sin x � 1/y � c.
Note that the integrating factor 1/y could have been found by inspection and by the

fact that an ODE of the general form

ƒ(x) dx � g(y) dy � 0

is always exact, the test resulting in 0 on both sides.

(b) Yes. Separation of variables gives

dy/y2 � �cos x dx. By integration, �1/y � �sin x � c*

in agreement with the solution in (a).

(d) seems better than (c). But this may depend on your CAS. In (d) the CAS may
draw vertical asymptotes that disturb the figure.

From the solution in (a) or (b) the student should conclude that for each nonzero
y(x0) � y0 there is a unique particular solution because

sin x0 � 1/y0 � c.

1


y2

1


y2

1


y

x


cos2 y

x


cos2 y
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24. (A) ey cosh x � c.

(B) R* � tan y, F � 1/cos y. Separation:

dy/cos2 y � �(1 � 2x) dx, tan y � �x � x2 � c.

(C) R � �2/x, F � 1/x2, x � y2/x � c. v � y/x, and separation:

2v dv/(1 � v2) � dx/x, x2 � y2 � cx;

divide by x. 

(D) Separation is simplest. y � cx�3/4. R � �9/(4x), F(x) � x�9/4, x3y4 � c. 
R* � 3/y, F*(y) � y3.

SECTION 1.5. Linear ODEs. Bernoulli Equation. Population Dynamics,
page 26

Purpose. Linear ODEs are of great practical importance, as Problem Set 1.5 illustrates
(and even more so are second-order linear ODEs in Chap. 2). We show that the
homogeneous ODE of the first order is easily separated and the nonhomogeneous ODE
is solved, once and for all, in the form of an integral (4) by the method of integrating
factors. Of course, in simpler cases one does not need (4), as our examples illustrate.

Comment on Notation
We write

y� � p(x)y � r(x).

p(x) seems standard. r(x) suggests “right side.” The notation

y� � p(x)y � q(x)

used in some calculus books (which are not concerned with higher order ODEs) would
be shortsighted here because later, in Chap. 2, we turn to second-order ODEs

y� � p(x)y� � q(x)y � r(x),

where we need q(x) on the left, thus in a quite different role (and on the right we would
have to choose another letter different from that used in the first-order case).

Comment on Content
Bernoulli’s equation appears occasionally in practice, so the student should remember
how to handle it.

A special Bernoulli equation, the Verhulst equation, plays a central role in population
dynamics of humans, animals, plants, and so on, and we give a short introduction to this
interesting field, along with one reference in the text.

Riccati and Clairaut equations are less important than Bernoulli’s, so we have put
them in the problem set; they will not be needed in our further work.

Input and output have become common terms in various contexts, so we thought this
a good place to mention them.

Problems 37–42 express properties that make linearity important, notably in obtaining
new solutions from given ones. The counterparts of these properties will, of course,
reappear in Chap. 2.

Comment on Footnote 5
Eight members of the Bernoulli family became known as mathematicians; for more details,
see p. 220 in Ref. [GR2] listed in App. 1.
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SOLUTIONS TO PROBLEM SET 1.5, page 32

4. The standard form (1) is y� � 4y � x, so that (4) gives

y � e4x [�e�4xx dx � c] � ce4x � x/4 � 1/16.

6. The standard form (1) is y� � y � . From this and (4) we obtain, with

c � �2 from the initial condition,

y � x�3 [�x3x�3 dx � c] � x�3[x � c] � x�2 � 2x�3.

8. From (4) with p � 2, h � 2x, r � 4 cos 2x we obtain

y � e�2x [�e2x 4 cos 2x dx � c] � e�2x[e2x(cos 2x � sin 2x) � c].

It is perhaps worthwhile mentioning that integrals of this type can more easily be
evaluated by undetermined coefficients. Also, the student should verify the result by
differentiation, even if it was obtained by a CAS. From the initial condition we obtain

y(1_
4�) � ce�� /2 � 0 � 1 � 2; hence c � e� /2.

The answer can be written

y � e�/2�2x � cos 2x � sin 2x.

10. In (4) we have p � 4x2; hence h � 4x3/3, so that (4) gives

y � e�4x3/3 [�e(4x 3/3)�x 2/ 2 (4x2 � x) dx � c].

The integral can be evaluated by noting that the factor of the exponential function
under the integral sign is the derivative of the exponent of that function. We thus
obtain

y � e�4x3/3 [e(4x3/3)�x2/2 � c] � ce�4x3/3 � e�x2/2.

12. y� tan x � 2(y � 4). Separation of variables gives

� 2 dx. By integration, ln �y � 4� � 2 ln �sin x� � c*.

Taking exponents on both sides gives

y � 4 � c sin2 x, y � c sin2 x � 4.

The desired particular solution is obtained from the initial condition

y(1_
2�) � c � 4 � 0, c � �4. Answer: y � 4 � 4 sin2 x.

14. In (4) we have p � tan x, h � �ln (cos x), eh � 1/cos x, so that (4) gives

y � (cos x) [� e�0.01x dx � c] � [�100 e�0.01x � c] cos x.
cos x


cos x

cos x


sin x

dy


y � 4

1


x3

3


x
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The initial condition gives y(0) � �100 � c � 0; hence c � 100. The particular
solution is

y � 100(1 � e�0.01x) cos x.

The factor 0.01, which we included in the exponent, has the effect that the graph of
y shows a long transition period. Indeed, it takes x � 460 to let the exponential function
e�0.01x decrease to 0.01. Choose the x-interval of the graph accordingly.

16. The standard form (1) is

y� � y � .

Hence h � 3 tan x, and (4) gives the general solution

y � e�3 tan x [� dx � c] .

To evaluate the integral, observe that the integrand is of the form
1_
3(3 tan x)� e3 tan x;

that is,
1_
3(e3 tan x)�.

Hence the integral has the value 1_
3e3 tan x. This gives the general solution

y � e�3 tan x [1_
3e3 tan x � c] � 1_

3 � ce�3 tan x.

The initial condition gives from this

y(1_
4�) � 1_

3 � ce�3 � 4_
3; hence c � e3.

The answer is y � 1_
3 � e3�3 tan x.

18. Bernoulli equation. First solution method: Transformation to linear form. Set 
y � 1/u. Then y� � y � �u�/u2 � 1/u � 1/u2. Multiplication by �u2 gives the linear
ODE in standard form

u� � u � �1. General solution u � cex � 1.

Hence the given ODE has the general solution

y � 1/(cex � 1).

From this and the initial condition y(0) � �1 we obtain

y(0) � 1/(c � 1) � �1, c � �2, Answer: y � 1/(1 � 2ex).

Second solution method: Separation of variables and use of partial fractions.

� ( � ) dy � dx.

Integration gives

ln �y � 1� � ln �y� � ln j j � x � c*.

Taking exponents on both sides, we obtain

� 1 � � c�ex, � 1 � c�ex, y � .

We now continue as before.

1


1 � cex

1


y

1


y

y � 1



y

y � 1



y

1


y

1


y � 1

dy


y(y � 1)

e3 tan x



cos2 x
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cos2 x
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20. Separate variables, integrate, and take exponents:

cot y dy � �dx/(x2 � 1), ln �sin y� � �arctan x � c*
and

sin y � ce�arctan x.

Now use the initial condition y(0) � 1_
2�:

1 � ce0, c � 1.

Answer: y � arcsin (e�arctan x).
22. First solution method: by setting z � cos 2y (linearization): From z we have

z� � (�2 sin 2y)y�. From the ODE, �1_
2z� � xz � 2x.

This is a linear ODE. Its standard form is

z� � 2xz � �4x. In (4) this gives p � �2x, h � �x2.

Hence (4) gives the solution in terms of z in the form

z � ex2 [� e�x2
(�4x) dx � c] � ex2

[2e�x2
� c] � 2 � cex2

.

From this we obtain the solution

y � 1_
2 arccos z � 1_

2 arccos (2 � cex2
).

Second solution method: Separation of variables. By algebra,

y� sin 2y � x(�cos 2y � 2).

Separation of variables now gives

dy � x dx. Integrate: 1_
2 ln �2 � cos 2y� � 1_

2x2 � c*.

Multiply by 2 and take exponents:

ln �2 � cos 2y� � x2 � 2c*, 2 � cos 2y � c�ex2
.

Solve this for y:

cos 2y � 2 � c�ex2
, y � 1_

2 arccos (2 � c�ex2
).

24. Bernoulli ODE. Set u � y3 and note that u� � 3y2y�. Multiply the given ODE by
3y2 to obtain

3y2y� � 3x2y3 � e�x3
sinh x.

In terms of u this gives the linear ODE

u� � 3x2u � e�x3
sinh x.

In (4) we thus have h � x3. The solution is

u � e�x3 [� ex3
e�x3

sinh x dx � c] � e�x3
[cosh x � c]

and y � u1/3.

sin 2y



2 � cos 2y
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26. The salt content in the inflow is 50(1 � cos t). Let y(t) be the salt content in the tank
to be determined. Then y(t) /1000 is the salt content per gallon. Hence (50/1000)y(t) is
the salt content in the outflow per minute. The rate of change y� equals the balance,

y� � ln � Out � 50(1 � cos t) � 0.05y.

Thus y� � 0.05y � 50(1 � cos t). Hence p � 0.05, h � 0.05t, and (4) gives the
general solution

y � e�0.05t (� e0.05t 50(1 � cos t) dt � c)
� e�0.05t (e0.05t (1000 � a cos t � b sin t) � c)

� 1000 � a cos t � b sin t � ce�0.05t

where a � 2.5/(1 � 0.052) � 2.494 and b � 50/(1 � 0.052) � 49.88, which we
obtained by evaluating the integral. From this and the initial condition y(0) � 200 we
have

y(0) � 1000 � a � c � 200, c � 200 � 1000 � a � �802.5.

Hence the solution of our problem is

y(t) � 1000 � 2.494 cos t � 49.88 sin t � 802.5e�0.05t.

Figure 20 shows the solution y(t). The last term in y(t) is the only term that depends
on the initial condition (because c does). It decreases monotone. As a consequence,
y(t) increases but keeps oscillating about 1000 as the limit of the mean value.

This mean value is also shown in Fig. 20. It is obtained as the solution of the ODE

y� � 0.05y � 50.

Its solution satisfying the initial condition is

y � 1000 � 800e�0.05t.

28. k1(T � Ta) follows from Newton’s law of cooling. k2(T � Tw) models the effect of
heating or cooling. T � Tw calls for cooling; hence k2(T � Tw) should be negative
in this case; this is true, since k2 is assumed to be negative in this formula. Similarly
for heating, when heat should be added, so that the temperature increases.

The given model is of the form

T� � kT � K � k1C cos (�/12)t.

This can be seen by collecting terms and introducing suitable constants, k � k1 � k2

(because there are two terms involving T ), and K � �k1A � k2Tw � P. The general
solution is

T � cekt � K/k � L(�k cos (� t/12) � (�/12) sin (� t/12)),

where L � k1C/(k2 � �2/144). The first term solves the homogeneous ODE 
T� � kT and decreases to zero. The second term results from the constants A (in Ta),
Tw, and P. The third term is sinusoidal, of period 24 hours, and time-delayed against
the outside temperature, as is physically understandable.

30. y� � ky(1 � y) � ƒ(y), where k � 0 and y is the proportion of infected persons.
Equilibrium solutions are y � 0 and y � 1. The first, y � 0, is unstable because 
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ƒ(y) � 0 if 0 	 y 	 1 but ƒ(y) 	 0 for negative y. The solution y � 1 is stable
because ƒ(y) � 0 if 0 	 y 	 1 and ƒ(y) 	 0 if y � 1. The general solution is

y � .

It approaches 1 as t * �. This means that eventually everybody in the population
will be infected.

32. The model is
y� � Ay � By2 � Hy � Ky � By2 � y(K � By)

where K � A � H. Hence the general solution is given by (9) in Example 4 with A
replaced by K � A � H. The equilibrium solutions are obtained from y� � 0; hence
they are y1 � 0 and y2 � K/B. The population y2 remains unchanged under harvesting,
and the fraction Hy2 of it can be harvested indefinitely—hence the name.

34. For the first 3 years you have the solution

y1 � 4/(5 � 3e�0.8t)

from Prob. 32. The idea now is that, by continuity, the value y1(3) at the end of the
first period is the initial value for the solution y2 during the next period. That is,

y2(3) � y1(3) � 4/(5 � 3e�2.4).

Now y2 is the solution of y� � y � y2 (no fishing!). Because of the initial condition
this gives

y2 � 4/(4 � e3�t � 3e0.6�t).

Check the continuity at t � 3 by calculating

y2(3) � 4/(4 � e0 � 3e�2.4).

Similarly, for t from 6 to 9 you obtain

y3 � 4/(5 � e4.8�0.8t � e1.8�0.8t � 3e�0.6�0.8t).

This is a period of fishing. Check the continuity at t � 6:

y3(6) � 4/(5 � e0 � e�3 � 3e�5.4).

This agrees with
y2(6) � 4/(4 � e�3 � 3e�5.4).

36. y1 � 1/u1,

u1(0) � 1/y1(0) � 0.5,

y�1 � �u�1/u1
2 � 0.8y1 � y1

2 � 0.8/u1 � 1/u1
2,

u�1 � 0.8u1 � 1,

u1 � 1.25 � c1e�0.8t

� 1.25 � 0.75e�0.8t � 1/y1

for 0 	 t 	 3. u�2 � u2 � 1, u2 � 1 � c2e�t. The continuity condition is

u2(3) � 1 � c2e�3 � u1(3) � 1.25 � 0.75e�2.4.

1



1 � ce�kt
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For c2 this gives

c2 � e3(�1 � 1.25 � 0.75e�2.4) � 0.25e3 � 0.75e0.6.

This gives for 3 	 t 	 6

u2 � 1 � 0.25e3�t � 0.75e0.6�t � 1/y2.

Finally, for 6 	 t 	 9 we have the ODE is u�3 � 0.8u3 � 1, whose general solution is

u3 � 1.25 � c3e�0.8t.

c3 is determined by the continuity condition at t � 6, namely,

u3(6) � 1.25 � c3e�4.8 � u2(6) � 1 � 0.25e�3 � 0.75e�5.4.

This gives
c3 � e4.8(�1.25 � 1 � 0.25e�3 � 0.75e�5.4)

� �0.25e4.8 � 0.25e1.8 � 0.75e�0.6.

Substitution gives the solution for 6 	 t 	 9:

u3 � 1.25 � (�0.25e4.8 � 0.25e1.8 � 0.75e�0.6)e�0.8t � 1/y3.

38. Substitution gives the identity 0 � 0.
These problems are of importance because they show why linear ODEs are

preferable over nonlinear ones in the modeling process. Thus one favors a linear ODE
over a nonlinear one if the model is a faithful mathematical representation of the
problem. Furthermore, these problems illustrate the difference between homogeneous
and nonhomogeneous ODEs.

40. We obtain
(y1 � y2)� � p(y1 � y2) � y�1 � y�2 � py1 � py2

� (y�1 � py1) � (y�2 � py2)

� r � r

� 0.

42. The sum satisfies the ODE with r1 � r2 on the right. This is important as the key to
the method of developing the right side into a series, then finding the solutions
corresponding to single terms, and finally, adding these solutions to get a solution of
the given ODE. For instance, this method is used in connection with Fourier series,
as we shall see in Sec. 11.5.

44. (a) y � Y � v reduces the Riccati equation to a Bernoulli equation by removing the
term h(x). The second transformation, v � 1/u, is the usual one for transforming a
Bernoulli equation with y2 on the right into a linear ODE.

Substitute y � Y � 1/u into the Riccati equation to get

Y� � u�/u2 � p(Y � 1/u) � g(Y2 � 2Y/u � 1/u2) � h.

Since Y is a solution, Y� � pY � gY2 � h. There remains

�u�/u2 � p/u � g(2Y/u � 1/u2).

Multiplication by �u2 gives u� � pu � �g(2Yu � 1). Reshuffle terms to get

u� � (2Yg � p)u � �g,

the linear ODE as claimed.
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(b) Substitute y � Y � x to get 1 � 2x4 � x � �x4 � x4 � x � 1, which is true.
Now substitute y � x � 1/u. This gives

1 � u�/u2 � (2x3 � 1)(x � 1/u) � �x2(x2 � 2x/u � 1/u2) � x4 � x � 1.

Most of the terms cancel on both sides. There remains �u�/u2 � 1/u � �x2/u2.
Multiplication by �u2 finally gives u� � u � x2. The general solution is

u � ce�x � x2 � 2x � 2

and y � x � 1/u. Of course, instead performing this calculation we could have used
the general formula in (a), in which

2Yg � p � 2x(�x2) � 2x3 � 1 � 1 and �g � �x2.

(c) Substitution of Y � x2 shows that this is a solution. In the ODE for u you find

2Yg � p � 2x2 (�sin x) � (3 � 2x2 sin x) � �3.

Also, g � �sin x. Hence the ODE for u is u� � 3u � sin x. Solution:

u � ce3x � 0.1 cos x � 0.3 sin x and y � x2 � 1/u.

(e) y� � y� � xy� � y�/y�2 by the chain rule. Hence y�(x � 1/y�2) � 0.
(A) From y� � 0 we obtain by integrations y � cx � a. Substitution into the given

ODE gives cx � a � xc � 1/c; hence a � 1/c. This is a family of straight lines.
(B) The other factor is zero when x � 1/y�2. By integration, y � 2x1/2 � c*.

Substituting y and y� � x�1/2 into the given equation y � xy� � 1/y�, we obtain

2x1/2 � c* � x � x�1/ 2 � 1/x�1/ 2;

hence c* � 0. This gives the singular solution y � 2�x�, a curve, to which those
straight lines in (A) are tangent.

(f) By differentiation, 2y�y� � y� � xy� � y� � 0, y�(2y� � x) � 0, (A) y� � 0,
y � cx � a. By substitution, c2 � xc � cx � a � 0, a � �c2, y � cx � c2, a family
of straight lines. (B) y� � x/2, y � x2/4 � c*. By substitution into the given ODE,
x2/4 � x2/2 � x2/4 � c* � 0, c* � 0, y � x2/4, the envelope of the family; see 
Fig. 6 in Sec. 1.1.

SECTION 1.6. Orthogonal Trajectories. Optional, page 35

Purpose. To show that families of curves F(x, y, c) � 0 can be described by ODEs 
y� � ƒ(x, y) and the switch to y�� � �1/ƒ(x, y�) produces as general solution the orthogonal
trajectories. This is a nice application that may also help the student to gain more 
self-confidence, skill, and a deeper understanding of the nature of ODEs.

We leave this section optional, for reasons of time. This will cause no gap.
The reason why ODEs can be applied in this fashion results from the fact that

general solutions of ODEs involve an arbitrary constant that serves as the parameter
of this one-parameter family of curves determined by the given ODE, and then another
general solution similarly determines the one-parameter family of the orthogonal
trajectories.

Curves and their orthogonal trajectories play a role in several physical applications (e.g.,
in connection with electrostatic fields, fluid flows, and so on).
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SOLUTIONS TO PROBLEM SET 1.6, page 36

2. xy � c, and by differentiation, y � xy� � 0; hence y� � �y/x. The ODE of the
trajectories is y�� � x/y�. By separation and integration, y�2/2 � x2/2 � c*. Hyperbolas.
(So are the given curves.)

4. By differentiation, 2yy� � 4x; hence y� � 2x/y. Thus the ODE of the trajectories is
y�� � �y�/2x. By separating, integrating, and taking exponents on both sides,

dy�/y� � � dx/2x, ln �y�� � �1_
2 ln �x� � c**, y� � c*/�x�.

6. ye3x � c. Differentiation gives

(y� � 3y)e3x � 0.

Hence the ODE of the given family is y� � �3y. For the trajectories we obtain

y�� � 1/(3y�), y�y�� � 1_
3, 1_

2y�2 � 1_
3x � c**, y� � �2_

3x � c�*�.

8. 2x � 2yy� � 0, so that the ODE of the curves is y� � x/y.
Hence the ODE of the trajectories is y�� � �y�/x. Separating variables, integrating,

and taking exponents gives hyperbolas as trajectories; namely,

y��/y� � �1/x, ln �y�� � �ln �x� � c**, xy� � c*.

10. xy�1/2 � ĉ, or x2y�1 � c. By differentiation,

2xy�1 � x2y�2y� � 0, y� � 2y/x.

This is the ODE of the given family. Hence the orthogonal trajectories have the ODE

y�� � � . Thus 2y�y�� � �x, y�2 � �1_
2x2 � c* (ellipses).

12. x2 � y2 � 2cy � 0. Solve algebraically for 2c:

� � y � 2c.

Differentiation gives

� � y� � 0.

By algebra,

y�(� � 1) � � .

Solve for y�:

y� � � �( ) � .

This is the ODE of the given family. Hence the ODE of the trajectories is

y�� � � ( � ) .

To solve this equation, set u � y�/x. Then

y�� � xu� � u � (u � ) .
1


u

1


2

x


y�

y�


x

1


2

y�2 � x2



2xy�

�2xy


y2 � x2

y2 � x2



y2

2x


y

2x


y

x2



y2

x2y�



y2

2x


y

x2



y

x2 � y2



y

x


2y�
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Subtract u on both sides to get

xu� � � .

Now separate variables, integrate, and take exponents, obtaining

� � , ln (u2 � 1) � �ln �x� � c1, u2 � 1 � .

Write u � y�/x and multiply by x2 on both sides of the last equation. This gives

y�2 � x2 � c2x.
The answer is

(x � c3)2 � y�2 � c3
2.

Note that the given circles all have their centers on the y-axis and pass through the
origin. The result shows that their orthogonal trajectories are circles, too, with centers
on the x-axis and passing through the origin.

14. By differentiation, gx dx � gy dy � 0. Hence y� � �gx /gy. This implies that the
trajectories are obtained from

y�� � gy� /gx.

For Prob. 6 we obtain ye3x � c and by differentiation,

y�� � � , y�y�� � , � � c**

and so forth.
16. Differentiating xy � c, we have y � xy� � 0, so that the ODE of the given hyperbolas

is y� � �y/x. The trajectories are thus obtained by solving y�� � x/y�. By separation
of variables and integration we obtain

y�y�� � x and y�2 � x2 � c*

(hyperbolas).
18. Setting y � 0 gives from x2 � (y � c)2 � 1 � c2 the equation x2 � c2 � 1 � c2;

hence x � �1 and x � 1, which verifies that those circles all pass through �1 and
1, each of them simultaneously through both points. Subtracting c2 on both sides of
the given equation, we obtain

x2 � y2 � 2cy � 1, x2 � y2 � 1 � 2cy, � y � 2c.

Emphasize to your class that the ODE for the given curves must always be free of c.
Having accomplished this, we can now differentiate. This gives

� ( � 1) y� � 0.

This is the ODE of the given curves. Replacing y� with �1/y�� and y with y�, we obtain
the ODE of the trajectories:

� ( � 1)�(�y��) � 0.
x2 � 1



y�2

2x


y�

x2 � 1



y2

2x


y

x2 � 1



y

x


3

y�2



2

1


3

1


3y�

e3x



3y�e3x

c2


x

dx


x

2u du


u2 � 1

u2 � 1



2u
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Multiplying this by y�, we get

� � 1 � 0.

Multiplying this by y�2/x2, we obtain

� 1 � � � ( ) � 1 � � 0.

By integration,

� x � � 2c*. Thus, y�2 � x2 � 1 � 2c*x.

We see that these are the circles

y�2 � (x � c*)2 � c*2 � 1

dashed in Fig. 25, as claimed.
20. (B) By differentiation,

� � 0, y� � � � � .

Hence the ODE of the orthogonal trajectories is

y�� � . By separation, � .

Integration and taking exponents gives

ln �y�� � ln �x� � c**, y� � c*xa2/b2
.

This shows that the ratio a2/b2 has substantial influence on the form of the trajectories.
For a2 � b2 the given curves are circles, and we obtain straight lines as trajectories.
a2/b2 � 2 gives quadratic parabolas. For higher integer values of a2/b2 we obtain
parabolas of higher order. Intuitively, the “flatter” the ellipses are, the more rapidly
the trajectories must increase to have orthogonality.

Note that our discussion also covers families of parabolas; simply interchange the
roles of the curves and their trajectories.

(C) For hyperbolas we have a minus sign in the formula of the given curves. This
produces a plus sign in the ODE for the curves and a minus sign in the ODE for the
trajectories:

y� � � .

Separation of variables and integration gives

y � c*x�a2/b2
.

For a2/b2 � 1 we obtain the hyperbolas y � c*x, and for higher values of a2/b2 we
obtain less familiar curves.

(D) The problem set of this section contains other families of curves whose trajectories
can be readily obtained by solving the corresponding ODEs.

a2y


b2x

a2



b2

dx


x

a2



b2

dy�


y�

a2y�


b2x

b2x


a2y

2x/a2



2y/b2

2yy�



b2

2x


a2

1


x

y�2



x

1


x2

y�2



x

d


dx

y�2



x2

1


x2

2y�y��



x

x2 � 1



y�2

2xy��



y�
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SECTION 1.7. Existence and Uniqueness of Solutions, page 37

Purpose. To give the student at least some impression of the theory that would occupy a
central position in a more theoretical course on a higher level.
Short Courses. This section can be omitted.

Comment on Iteration Methods
Iteration methods were used rather early in history, but it was Picard who made them
popular. Proofs of the theorems in this section (given in books of higher level, e.g., [A11])
are based on the Picard iteration (see CAS Project 10).

Iterations are well suited for the computer because of their modest storage demand and
usually short programs in which the same loop or loops are used many times, with different
data. Because integration is generally not difficult for a CAS, Picard’s method has gained
some popularity during the past few decades.

SOLUTIONS TO PROBLEM SET 1.7, page 41

2. The initial condition is given at the point x � 1. The coefficient of y� is 0 at that
point, so from the ODE we already see that something is likely to go wrong. Separating
variables, integrating, and taking exponents gives

� , ln �y� � 2 ln �x � 1� � c*, y � c(x � 1)2.

This last expression is the general solution. It shows that y(1) � 0 for any c. Hence
the initial condition y(1) � 1 cannot be satisfied. This does not contradict the theorems
because we first have to write the ODE in standard form:

y� � ƒ(x, y) � .

This shows that ƒ is not defined when x � 1 (to which the initial condition refers).
4. For k � 0 we still get no solution, violating the existence as in Prob. 2. For k � 0

we obtain infinitely many solutions, because c remains unspecified. Thus in this case
the uniqueness is violated. Neither of the two theorems is violated in either case.

6. By separation and integration,

� dx, ln �y� � ln �x2 � 4x� � c*.

Taking exponents gives the general solution

y � c(x2 � 4x).

From this we can see the answers:

No solution if y(0) � k � 0 or y(4) � k � 0.
A unique solution if y(x0) equals any y0 and x0 � 0 or x0 � 4.
Infinitely many solutions if y(0) � 0 or y(4) � 0.

This does not contradict the theorems because

ƒ(x, y) �

is not defined when x � 0 or 4.

2x � 4


x2 � 4x

2x � 4


x2 � 4x

dy


y

2y


x � 1

2 dx


x � 1

dy


y
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8. (A) The student should gain an understanding for the “intermediate” position of a
Lipschitz condition: it is more than continuity but less than partial differentiability.

(B) Here the student should realize that the linear ODE is basically simpler than a
nonlinear ODE. The calculation is straightforward because

ƒ(x, y) � r(x) � p(x)y
and implies that

�ƒ(x, y2) � ƒ(x, y1)� � �p(x)� �y2 � y1� � M�y2 � y1�

where the boundedness �p(x)� � M for �x � x0� � a follows from the continuity of p
in this closed interval.

10. (B) yn � � � • • • � , y � ex � x � 1

(C) y0 � 1, y1 � 1 � 2x, y2 � 1 � 2x � 4x2 � , • • •

y(x) � � 1 � 2x � 4x2 � 8x3 � • • •

(D) y � (x � 1)2, y � 0. It approximates y � 0. General solution y � (x � c)2.

(E) y� � y would be a good candidate to begin with. Perhaps you write the initial
choice as y0 � a; then a � 0 corresponds to the choice in the text, and you see how
the expressions in a are involved in the approximations. The conjecture is true for
any choice of a constant (or even of a continuous function of x).

It was mentioned in footnote 9 that Picard used his iteration for proving his existence
and uniqueness theorems. Since the integrations involved in the method can be handled
on the computer quite efficiently, the method has gained in importance in numerics.

SOLUTIONS TO CHAP. 1 REVIEW QUESTIONS AND PROBLEMS, page 42

12. Linear ODE. Formula (4) in Sec. 1.5 gives, since p � �3, h � �3x,

y � e3x (�e�3x(�2x) dx � c) � e3x(e�3x(2_
3x � 2_

9) � c) � ce3x � 2_
3x � 2_

9.

14. Separate variables. y dy � 16x dx, 1_
2y2 � 8x2 � c*, y2 � 16x2 � c. Hyperbolas.

16. Linear ODE. Standard form y� � xy � �x3 � x. Use (4), Sec. 1.5, with p � �x, 
h � �x2/2, obtaining the general solution

y � ex2/2 (�e�x2/2 (�x3 � x) dx � c) � ex2/2[e�x2/2(x2 � 1) � c]

� cex2/2 � x2 � 1.

18. Exact; the exactness test gives �3� sin �x sinh 3y on both sides. Integrate the
coefficient function of dx with respect to x, obtaining

u � �M dx � cos �x cosh 3y � k(y).

Differentiate this with respect to y and equate the result to the coefficient function 
of dy:

uy � 3 cos �x sinh 3y � k�(y) � N. Hence k� � 0.

1


1 � 2x

8x3



3

xn�1



(n � 1)!

x3



3!

x2



2!

24 Instructor’s Manual

im01.qxd  9/21/05  10:17 AM  Page 24



The implicit general solution is

cos �x cosh 3y � c.

20. Solvable (A) as a Bernoulli equation or (B) by separating variables.

(A) Set y2 � u since a � �1; hence 1 � a � 2. Differentiate u � y2, substitute y�
from the given ODE, and express the resulting equation in terms of u; that is,

u� � 2yy� � 2y(y � 1/y) � 2u � 2.

This is a linear ODE with unknown u. Its standard form is u� � 2u � 2. Solve it by
(4) in Sec. 1.5 or by noting that the homogeneous ODE has the general solution ce2x,
and a particular solution of the nonhomogeneous ODE is �1. Hence u � ce2x � 1,
and u � y2.

(B) y� � y � 1/y � (y2 � 1)/y, y dy/(y2 � 1) � dx. Integrate and take exponents
on both sides:

1_
2 ln (y2 � 1) � x � c*, y2 � 1 � ce2x.

22. The argument of the tangent suggests to set y/x � u. Then y � xu, and by differentiation
and use of the given ODE divided by x,

y� � u � xu� � tan u � u; hence xu� � tan u.

Separation of variables gives

cot u du � dx/x, ln �sin u� � ln �x� � c*, sin u � cx.

This yields the general solution

y � xu � x arcsin cx.

24. We set y � 2x � z as indicated. Then y � z � 2x, y� � z� � 2 and by substitution
into the given ODE,

xy� � xz� � 2x � z2 � z � 2x.

Subtraction of 2x on both sides gives xz� � z2 � z. By separation of variables and
integration we obtain

� ( � ) dz � , ln j j � ln �x� � c*.

We now take exponents and simplify algebraically. This yields

� � cx, y � 2x � cx (y � 2x � 1).

Solving for y, we finally have

(1 � cx)y � 2x(1 � cx) � cx, y � 2x � 1 � 1/(1 � cx).

26. The first term on the right suggests the substitution u � y/x. Then y � xu, and from
the ODE, xy� � x(u � xu�) � u3 � xu. Subtract xu on both sides to get x2u� � u3.
Separate variables and integrate:

u�3 du � x�2 dx, �1_
2u�2 � �x�1 � c*; hence u2 � .

This gives the general solution

y � �xu � � .
x




�c � 2/�x�

1


c � 2/x

y � 2x



y � 2x � 1

z


z � 1

z


z � 1

dx


x

1


z � 1

1


z

dz


z2 � z
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28. Logistic equation. y � 1/u, y� � �u�/u2 � 3/u � 12/u2. Multiplication by �u2 gives
the linear ODE

u� � �3u � 12. Solution: u � ce�3x � 4.

Hence the general solution of the given ODE is

y � 1/u � 1/(ce�3x � 4).

From the given initial condition we obtain y(0) � 1/(c � 4) � 2; hence c � �3.5.
The answer is

y � .

30. Linear ODE. The corresponding homogeneous ODE has the general solution 
y � ce�� x. A solution of the nonhomogeneous equation can be found without
integration by parts and recursion if we substitute

y � A cos �x � B sin �x and y� � �A� sin �x � B� cos �x

and equate the result to the right side; that is,

y� � �y � (B � A)� cos �x � (�A � B)� sin �x � 2b cos �x.

This gives A � B � b/�. The general solution is

y � ce�� x � (cos �x � sin �x). Thus y(0) � c � b/� � 0, c � �b/�.

32. Not exact; in the test we get 2 � 2y/x on the left but 1 on the right. Theorem 1 in
Sec. 1.4 gives an integrating factor depending only on x, namely, F(x) � x; this follows
from

R � (2 � � 1) �

by integrating R and taking exponents. The resulting exact equation is

[2xy � y2 � ex(1 � x)] dx � (x2 � 2xy) dy � 0.

From it we calculate by integration with respect to y

u � �N dy � x2y � xy2 � l(x).

We differentiate this with respect to x and equate the result to the coefficient of dx
in the exact ODE. This gives

ux � 2xy � y2 � l� � 2xy � y2 � ex(x � 1); hence l� � ex(x � 1)

and by integration, l � xex. The general implicit solution is

u(x, y) � x2y � xy2 � xex � c.

From the initial condition, u(1, 1) � 1 � 1 � e � 2 � e. The particular solution of
the initial value problem is

u(x, y) � x2y � xy2 � xex � 2 � e.

1


x

2y


x

1


x � 2y

b


�

1



�3.5e�3x � 4

26 Instructor’s Manual

im01.qxd  9/21/05  10:17 AM  Page 26



34. In problems of this sort we need two conditions, because we must determine the
arbitrary constant c in the general solution and the constant k in the exponent. In 
the present case, these are the initial temperature T(0) � 10 and the temperature 
T(5) � 20 after 5 minutes. Newton’s law of cooling gives the model

T� � k(T � 25).

By separation of variables and integration we obtain

T � cekt � 25.

The initial condition gives T(0) � c � 25 � 10; hence c � �15. From the second
given condition we obtain

T(5) � �15e5k � 25 � 20, 15e5k � 5, k � (ln 1_
3) /5 � �0.2197.

We can now determine the time when T reaches 24.9, namely, from

�15ekt � 25 � 24.9, ekt � 0.1/15.
Hence

t � [ln (0.1/15)] /k � �5.011/(�0.2197) � 23 [min].

36. This will give a general formula for determining the half-life H from two
measurements y1 and y2 at times t1 and t2, respectively. Accordingly, we use letters
and insert the given numeric data only at the end of the derivation. We have

y� � ky, y � y0ekt

and from this
y1 � y(t1) � y0ekt1, y2 � y(t2) � y0ekt2.

Taking the quotient of the two measurements y1 and y2 eliminates y0 (the initial
amount) and gives a formula for k in terms of these measurements and the
corresponding times, namely,

y2 /y1 � exp [k(t2 � t1)], k � .

Knowing k, we can now readily determine the half-life H directly from its definition

ekH � 0.5.
This gives

H � � (ln 0.5) .

For the given data we obtain from this formula

H � �0.69315 � 12.05.

Thus the half-life of the substance is about 12 days and 1 hour.

38. Let y denote the amount of fresh air measured in cubic feet. Then the model is obtained
from the balance equation

“Inflow minus Outflow equals the rate of change”;

that is,

y� � 600 � y � 600 � 0.03y.
600


20000

10 � 5



ln (0.015/0.02)

t2 � t1



ln (y2/y1)

ln 0.5



k

ln (y2/y1)




t2 � t1
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The general solution of this linear ODE is

y � ce�0.03t � 20000.

The initial condition is y(0) � 0 (initially no fresh air) and gives

y(0) � c � 20000 � 0; hence c � �20000.

The particular solution of our problem is

y � 20000(1 � e�0.03t).

This equals 90% if t is such that

e�0.03t � 0.1

thus if t � (ln 0.1) /(�0.03) � 77 [min].

40. We use separation of variables. To evaluate the integral, we apply reduction by partial
fractions. This yields

� [ � ] dy � k dx,

where

A � and B � � �A.

By integration,

A[ln �y � a� � ln �y � b�] � A ln j j � kt � c*.

We multiply this on both sides by 1/A � a � b, obtaining

ln j j � (kt � c*)(a � b).

We now take exponents. In doing so, we can set c � ec* and have

� ce(a�b)kt.

We denote the right side by E and solve algebraically for y; then

y � a � (y � b)E, y(1 � E) � a � bE

and from the last expression we finally have

y � .

42. Let the tangent of such a curve y(x) at (x, y) intersect the x-axis at M and the y-axis
at N, as shown in the figure. Then because of the bisection we have

OM � 2x, ON � 2y,

where O is the origin. Since the slope of the tangent is the slope y�(x) of the curve,
by the definition of a tangent, we obtain

y� � �ON/OM � �y/x.

a � bE


1 � E

y � a


y � b

y � a


y � b

y � a


y � b

1


b � a

1


a � b

B


y � b

A


y � a

dy



(a � y)(b � y)
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By separation of variables, integration, and taking exponents, we see that

� � , ln �y� � � ln �x� � c*, xy � c.

This is a family of hyperbolas.

Section 1.7. Problem 42

x0

y

N

M

(x, y)

dx


x

dy


y
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CHAPTER 2 Second-Order Linear ODEs

Major Changes

Among linear ODEs those of second order are by far the most important ones from the
viewpoint of applications, and from a theoretical standpoint they illustrate the theory of
linear ODEs of any order (except for the role of the Wronskian). For these reasons we
consider linear ODEs of third and higher order in a separate chapter, Chap. 3.

The new Sec. 2.2 combines all three cases of the roots of the characteristic equation of
a homogeneous linear ODE with constant coefficients. (In the last edition the complex
case was discussed in a separate section.)

Modeling applications of the method of undetermined coefficients (Sec. 2.7) follow
immediately after the derivation of the method (mass–spring systems in Sec. 2.8, electric
circuits in Sec. 2.9), before the discussion of variation of parameters (Sec. 2.10).

The new Sec. 2.9 combines the old Sec. 1.7 on modeling electric circuits by first-order
ODEs and the old Sec. 2.12 on electric circuits modeled by second-order ODEs. This
avoids discussing the physical aspects and foundations twice.

SECTION 2.1. Homogeneous Linear ODEs of Second-Order, page 45

Purpose. To extend the basic concepts from first-order to second-order ODEs and to
present the basic properties of linear ODEs.

Comment on the Standard Form (1)
The form (1), with 1 as the coefficient of y�, is practical, because if one starts from

ƒ(x)y� � g(x)y� � h(x)y � r�(x),

one usually considers the equation in an interval I in which ƒ(x) is nowhere zero, so that
in I one can divide by ƒ(x) and obtain an equation of the form (1). Points at which 
ƒ(x) � 0 require a special study, which we present in Chap. 5.

Main Content, Important Concepts

Linear and nonlinear ODEs

Homogeneous linear ODEs (to be discussed in Secs. 2.1�2.6)

Superposition principle for homogeneous ODEs

General solution, basis, linear independence

Initial value problem (2), (4), particular solution

Reduction to first order (text and Probs. 15�22)

Comment on the Three ODEs after (2)
These are for illustration, not for solution, but should a student ask, answers are that the
first will be solved by methods in Sec. 2.7 and 2.10, the second is a Bessel equation 
(Sec. 5.5) and the third has the solutions ��c1x ��c2� with any c1 and c2.

Comment on Footnote 1
In 1760, Lagrange gave the first methodical treatment of the calculus of variations. The
book mentioned in the footnote includes all major contributions of others in the field and
made him the founder of analytical mechanics.
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Comment on Terminology
p and q are called the coefficients of (1) and (2). The function r on the right is not called
a coefficient, to avoid the misunderstanding that r must be constant when we talk about
an ODE with constant coefficients.

SOLUTIONS TO PROBLEM SET 2.1, page 52

2. cos 5x and sin 5x are linearly independent on any interval because their quotient, 
cot 5x, is not constant. General solution:

y � a cos 5x � b sin 5x.

We also need the derivative

y� � �5a sin 5x � 5b cos 5x.

At x � 0 we have from this and the initial conditions

y(0) � a � 0.8, y�(0) � 5b � �6.5, b � �1.3.

Hence the solution of the initial value problem is

y � 0.8 cos 5x � 1.3 sin 5x.

4. e3x and xe3x form a linearly independent set on any interval because xe3x/e3x � x is
not constant. The corresponding general solution is

y � (c1x � c2)e3x

and has the derivative
y� � (c1 � 3c1x � 3c2)e3x.

From this and the initial conditions we obtain

y(0) � c2 � �1.4, y�(0) � c1 � 3c2 � c1 � 4.2 � 4.6, c1 � 8.8.

The answer is the particular solution

y � (8.8x � 1.4)e3x.

6. This is an example of an Euler–Cauchy equation x2y� � axy� � by � 0, which 
we shall consider systematically in Sec. 2.5. Substitution shows that x3 and x5 are
solutions of the given ODE, and they are linearly independent on any interval because
their quotient x5/x3 � x2 is not constant. Hence the corresponding general solution is

y � c1x3 � c2x5.
Its derivative is

y� � 3c1x2 � 5c2x4.

From this and the initial conditions we have

y(1) � c1 � c2 � 0.4, y�(1) � 3c1 � 5c2 � 1.0.

Hence c1 � 0.5 and c2 � �0.1, so that the solution (the particular solution satisfying
the initial conditions) is (see the figure)

y � 0.5x3 � 0.1x5.
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Section 2.1. Problem 6

8. Yes when n � 2. Emphasize that we also have linear independence when n � 0.
The intervals given in Probs. 7�14 serve as reminder that linear independence and

dependence always refer to an interval, never just to a single point, and they also help
exclude points at which one of the functions is not defined.

Linear independence is important in connection with general solutions, and these
problems are such that the computer is of no great help.

The functions are selected as they will occur in some of the later work. They also
encourage the student to think of functional relations between those functions. For
instance, ln x2 � 2 ln x in Prob. 11 and the formula for sin 2x in Prob. 13 help in
obtaining the right answer (linear dependence).

10. Yes. The relation cos2 x � sin2 x � 1 is irrelevant here.

12. Yes. Consider the quotient.

14. No. Once and for all, we have linear dependence of two (or more) functions if one
of them is identically 0. This problem is important.

16. y� � � � z

18. z� � 1 � z2, dz /(1 � z2) � dx, arctan z � x � c1, z � tan (x � c1),
y � �ln �cos (x � c1)� � c2

This is an obvious use of problems from Chap. 1 in setting up problems for this
section. The only difficulty may be an unpleasant additional integration.

20. The formula in the text was derived under the assumption that the ODE is in standard
form; in the present case,

y� � y� � y � 0.

Hence p � 2/x, so that e��p dx � x�2. It follows from (9) in the text that

U � � � .

The integral of U is tan x; we need no constants of integration because we merely
want to obtain a particular solution. The answer is

y2 � y1 tan x � .

22. The standard form is

y� � y� � y � 0.
2

�
1 � x2

2x
�
1 � x2

sin x
�

x

1
�
cos2 x

1
�
x2

x2

�
cos2 x

2
�
x

dz
�
dy

dy
�
dx

dy�
�
dy

dy�
�
dx

x

1

0.5

0

–0.5

–1

–1.5

0.5 1 1.5 2 2.5 3

y
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Hence in (9) we have

� �p dx � � dx � �ln �1 � x2� � ln j j .

This gives, in terms of partial fractions,

U � � � � � .

By integration we get the answer

y2 � y1u � y1 �U dx � �1 � 1_
2 x ln j j .

The equation is Legendre’s equation with parameter n � 1 (as, of course, need not
be mentioned to the student), and the solution is essentially a Legendre function. This
problem shows the usefulness of the reduction method because it is not difficult to see
that y1 � x is a solution. In contrast, the power series method (the standard method)
would give the second solution as an infinite series, whereas by our present method we
get the solution directly, bypassing infinite series in the present special case n � 1.

Also note that the transition to n � 2, 3, • • • is not very complicated because U
depends only on the coefficient p of the ODE, which remains the same for all n, since
n appears only in the last term of the ODE. Hence if we want the answer for other
n, all we have to do is insert another Legendre polynomial for y1 instead of the present
y1 � x.

24. z� � (1 � z2)1/2, (1 � z2)�1/2 dz � dx, arcsinh z � x � c1. From this,
z � sinh (x � c1), y � cosh (x � c1) � c2. From the boundary conditions y(1) � 0,
y(�1) � 0 we get

cosh (1 � c1) � c2 � 0 � cosh (�1 � c1) � c2.

Hence c1 � 0 and then c2 � �cosh 1. The answer is (see the figure)
y � cosh x � cosh 1.

Section 2.1. Problem 24

SECTION 2.2. Homogeneous Linear ODEs with Constant Coefficients,
page 53

Purpose. To show that homogeneous linear ODEs with constant coefficients can be solved
by algebra, namely, by solving the quadratic characteristics equation (3). The roots may be:

(Case I) Real distinct roots

(Case II) A real double root (“Critical case”)

(Case III) Complex conjugate roots.

In Case III the roots are conjugate because the coefficients of the ODE, and thus of (3),
are real, a fact the student should remember.

–1 –0.5 0.5 1 x

–0.54

y

x � 1
�
x � 1

1/2
�
x � 1

1/2
�
x � 1

1
�
x2

1
�
1 � x2

1
�
x2

1
�
1 � x2

2x
�
1 � x2
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To help poorer students, we have shifted the derivation of the real form of the solutions
in Case III to the end of the section, but the verification of these real solutions is done
immediately when they are introduced. This will also help to a better understanding.

The student should become aware of the fact that Case III includes both undamped
(harmonic) oscillations (if c � 0) and damped oscillations.

Also it should be emphasized that in the transition from the complex to the real form
of the solutions we use the superposition principle.

Furthermore, one should emphasize the general importance of the Euler formula (11),
which we shall use on various occasions.

Comment on How to Avoid Working in Complex
The average engineering student will profit from working a little with complex numbers.
However, if one has reasons for avoiding complex numbers here, one may apply the
method of eliminating the first derivative from the equation, that is, substituting y � uv
and determining v so that the equation for u does not contain u�. For v this gives

2v� � av � 0. A solution is v � e�ax/2.

With this v, the equation for u takes the form

u� � (b � 1_
4a2)u � 0

and can be solved by remembering from calculus that cos 	x and sin 	x reproduce under
two differentiations, multiplied by �	2. This gives (9), where

	 � �b � 1_
4a�2�.

Of course, the present approach can be used to handle all three cases. In particular,
u� � 0 in Case II gives u � c1 � c2x at once.

SOLUTIONS TO PROBLEM SET 2.2, page 59

2. The standard form is

y� � 0.7y� � 0.12y � 0.

The characteristic equation


2 � 0.7
 � 0.12 � (
 � 0.4)(
 � 0.3) � 0

has the roots 0.4 and 0.3, so that the corresponding general solution is

y1 � c1e0.4x � c2e0.3x.

4. The characteristic equation 
2 � 4�
 � 4�2 � (
 � 2�)2 � 0 has the double root
�2�, so that the corresponding general solution is

y � (c1 � c2x)e�2�x.

6. The characteristic equation 
2 � 2
 � 5 � (
 � 1)2 � 4 � 0 has the roots �1 � 2i,
so that the general solution is

y � e�x(A cos 2x � B sin 2x).

8. The characteristic equation is 
2 � 2.6
 � 1.69 � (
 � 1.3)2 � 0, so that we obtain
the general solution

y � (c1 � c2x)e�1.3x.
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10. From the characteristic equation 
2 � 2 � (
 � �2�)(
 � �2�) � 0 we see that the
corresponding general solution is

y � c1e�x�2� � c2ex�2�

12. The characteristic equation 
2 � 2.4
 � 4 � (
 � 1.2)2 � 1.62 � 0 has the roots
�1.2 � 1.6i. The corresponding general solution is

y � e�1.2x(A cos 1.6x � B sin 1.6x).

14. The characteristic equation 
2 � 
 � 0.96 � (
 � 0.6)(
 � 1.6) � 0 has the roots
0.6 and �1.6 and thus gives the general solution

y � c1e0.6x � c2e�1.6x.

16. To the given basis there corresponds the characteristic equation

(
 � 0.5)(
 � 3.5) � 
2 � 3
 � 1.75 � 0.

The corresponding ODE is

y� � 3y� � 1.75y � 0.

18. The characteristic equation 
(
 � 3) � 
2 � 3
 � 0 gives the ODE y� � 3y� � 0.

20. We see that the characteristic equation is

(
 � 1 � i)(
 � 1 � i) � 
2 � 2
 � 2 � 0

and obtain from it the ODE
y� � 2y� � 2y � 0.

22. From the characteristic equation


2 � 2
 � 1 � (
 � 1)2 � 0

we obtain the general solution

y � (c1 � c2x)e�x.
Its derivative is

y� � (c2 � c1 � c2x)e�x.

Setting x � 0, we obtain

y(0) � c1 � 4, y�(0) � c2 � c1 � c2 � 4 � �6, c2 � �2.

This gives the particular solution

y � (4 � 2x)e�x.

24. The characteristic equation is

10
2 � 50
 � 65 � 10[
2 � 5
 � 6.5] � 10[(
 � 2.5)2 � 0.25] � 0.

Hence a general solution is

y � e2.5x(A cos 0.5x � B sin 0.5x) and y(0) � A � 1.5.

From this we obtain the derivative

y� � e2.5x(2.5 � 1.5 cos 0.5x � 2.5B sin 0.5x � 0.75 sin 0.5x � 0.5B cos 0.5x).
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From this and the second initial condition we obtain

y�(0) � 3.75 � 0.5B � 1.5; hence B � �4.5.

The answer is
y � e2.5x(1.5 cos 0.5x � 4.5 sin 0.5x).

26. Dividing the ODE by 10 to get the standard form, we see that the characteristic
equation is


2 � 1.8
 � 0.56 � (
 � 0.4)(
 � 1.4) � 0.

Hence a general solution is

y � c1e�0.4x � c2e�1.4x.

Now y(0) � c1 � c2 � 4 from the first initial condition, and by differentiation and
from the second initial condition,

�0.4c1 � 1.4c2 � �3.8.

The solution of this system of equations is c1 � 1.8, c2 � 2.2. Hence the initial value
problem has the solution

y � 1.8e�0.4x � 2.2e�1.4x.

28. The roots of the characteristic equation 
2 � 9 � 0 are 3 and �3. Hence a general
solution is

y � c1e�3x � c2e3x.

Now c1 � c2 � �2 from the first initial condition. By differentiation and from the
second initial condition, �3c1 � 3c2 � �12. The solution of these two equations is
c1 � 1, c2 � �3. Hence the answer is

y � e�3x � 3e3x.

30. The characteristic equation is


2 � 2k
 � (k2 � 	2) � (
 � k)2 � 	2 � 0.

Its roots are �k � i	. Hence a general solution is

y � e�kx(A cos 	x � B sin 	x).

For x � 0 this gives y(0) � A � 1. With this value of A the derivative is

y� � e�kx(�k cos 	x � Bk sin 	x � 	 sin 	x � B	 cos 	x).

For x � 0 we obtain from this and the second initial condition

y�(0) � �k � B	 � �k; hence B � 0.

The answer is
y � e�kx cos 	x.

32. The characteristic equation is 
2 � 2
 � 24 � (
 � 6)(
 � 4) � 0. This gives as a
general solution

y � c1e6x � c2e�4x.

Hence y(0) � c1 � c2 � 0, and by differentiation, 6c1 � 4c2 � y�(0) � 20. The
answer is

y � 2e6x � 2e�4x.
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34. Team Project. (A) We obtain

(
 � 
1)(
 � 
2) � 
2 � (
1 � 
2)
 � 
1
2 � 
2 � a
 � b � 0.

Comparison of coefficients gives a � �(
1 � 
2), b � 
1
2.

(B) y� � ay� � 0. (i) y � c1e�ax � c2e0x � c1e�ax � c2. (ii) z� � az � 0, where
z � y�, z � ce�ax and the second term comes in by integration:

y � � z dx � c�1e�ax � c�2.

(D) e(k�m)x and ekx satisfy y� � (2k � m)y� � k(k � m)y � 0, by the coefficient
formulas in part (A). By the superposition principle, another solution is

.

We now let m * 0. This becomes 0/0, and by l’Hôpital’s rule (differentiation of
numerator and denominator separately with respect to m, not x!) we obtain

xekx/1 � xekx.

The ODE becomes y� � 2ky� � k2y � 0. The characteristic equation is


2 � 2k
 � k2 � (
 � k)2 � 0

and has a double root. Since a � �2k, we get k � �a/2, as expected.

SECTION 2.3. Differential Operators. Optional, page 59

Purpose. To take a short look at the operational calculus of second-order differential
operators with constant coefficients, which parallels and confirms our discussion of ODEs
with constant coefficients.

SOLUTIONS TO PROBLEM SET 2.3, page 61

2. (8D2 � 2D � I)(cosh 1_
2x) � 8 � 1_

4 cosh 1_
2x � 2 � 1_

2 sinh 1_
2x � cosh 1_

2x � ex/2. The same
result is obtained for sinh 1_

2x. By addition of these two results we obtain the result
2ex/2 for ex/2.

4. (D � 5I)(D � I) � (D � I)(D � 5I), and

(D � I)(D � 5I)(e�5x sin x) � (D � I)(�5e�5x sin x � e�5x cos x � 5e�5x sin x)

� (D � I)(e�5x cos x)

� �6e�5x cos x � e�5x sin x.

For the second given function the answer is 40e5x and for the third it is
�5x2 � 8x � 2.

6. (D � 3.7I)(D � 1.8I), y � c1e3.7x � c2e1.8x

8. (D � 0.7I)(D � 0.7I), y � c1e0.7x � c2e�0.7x

10. (D � (0.1 � 0.4i)I)(D � (0.1 � 0.4i)I), y � e�0.1x(A cos 0.4x � B sin 0.4x)

12. 4(D � 1_
2�I)2, y � (c1 � c2x)e��x/2

14. y is a solution, as follows from the superposition principle in Sec. 2.1 because the
ODE is homogeneous linear. In the application of l’Hôpital’s rule, y is regarded as a
function of �, the variable that is approaching the limit, whereas 
 is fixed.

e(k�m)x � ekx

��
m
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Accordingly, differentiation of the numerator with respect to � gives xe�x � 0, and
differentiation of the denominator gives 1. The limit of this is xe
x.

16. The two conditions follow trivially from the condition in the text. Conversely, by
combining the two conditions we have

L(cy � kw) � L(cy) � L(kw) � cLy � kLw.

SECTION 2.4. Modeling: Free Oscillations (Mass–Spring System), page 61

Purpose. To present a main application of second-order constant-coefficient ODEs

my� � cy� � ky � 0

resulting as models of motions of a mass m on an elastic spring of modulus k (
 0) under
linear damping c (� 0) by applying Newton’s second law and Hooke’s law. These are
free motions (no driving force). Forced motions follow in Sec. 2.8.

This system should be regarded as a basic building block of more complicated systems,
a prototype of a vibrating system that shows the essential features of more sophisticated
systems as they occur in various forms and for various purposes in engineering.

The quantitative agreement between experiments of the physical system and its
mathematical model is surprising. Indeed, the student should not miss performing
experiments if there is an opportunity, as I had as a student of Prof. Blaess, the inventor
of a (now obscure) graphical method for solving ODEs.

Main Content, Important Concepts

Restoring force ky, damping force cy�, force of inertia my�

No damping, harmonic oscillations (4), natural frequency 	0 /(2�)

Overdamping, critical damping, nonoscillatory motions (7), (8)

Underdamping, damped oscillations (10)

SOLUTIONS TO PROBLEM SET 2.4, page 68

2. (i) �k1/m�/(2�) � 3/(2�), (ii) 5/(2�)
(iii) Let K denote the modulus of the springs in parallel. Let F be some force that

stretches the combination of springs by an amount s0. Then F � Ks0. Let k1s0 � F1,
k2s0 � F2. Then

F � F1 � F2 � (k1 � k2)s0.

By comparison, K � k1 � k2 � 102 [nt /m], �K/m�/(2�) � �34�/(2�) � 5.83/(2�).
(iv) Let F � k1s1, F � k2s2. Then if we attach the springs in series, the extensions

s1 and s2 under F add, so that F � k(s1 � s2), where k is the modulus of the
combination. Substitution of s1 and s2 from the other two equations gives

F � k(F/k1 � F/k2).
Division by kF gives

1/k � 1/k1 � 1/k2, k � k1k2/(k1 � k2) � 19.85.

Hence the frequency is

ƒ � �k/m�/(2�) � �6.62�/(2�) � 2.57/(2�).
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4. mg � ks0 by Hooke’s law. Hence k � mg/s0, and

ƒ � (1/2�)�k/m� � (1/2�)�mg/s0m� � (1/2�)�g/s0� � (1/2�)�9.80/0�.1�.

The numeric value of the last expression is 1.58 sec�1, approximately; here, 
s0 � 10 cm � 0.1 m is given.

6. my� � �� � 0.32y�, where � � 0.32y is the volume of water displaced when the buoy
is depressed y meters from its equilibrium position, and � � 9800 nt is the weight of
water per cubic meter. Thus y� � 	0

2y � 0, where 	0
2 � � � 0.32�/m and the period

is 2� /	0 � 2; hence

m � � � 0.32� /	0
2 � 0.32� /� � 281

W � mg � 281 � 9.80 � 2754 [nt] (about 620 lb).

8. Team Project. (a) W � ks0 � 25, s0 � 2, m � W/g, and

	0 � �k/m� � �(W/s0)�/(W/g)� � �980/2� � 22.14.

This gives the general solution

y � A cos 22.14t � B sin 22.14t.

Now y(0) � A � 0, y� � 22.14B cos 22.14t, y�(0) � 22.14B � 15, B � 0.6775.
Hence the particular solution satisfying the given initial conditions is

y � 0.6775 sin 22.14t [cm].

(b) 	0 � �K/I0� � �17.64� � 4.2 sec�1. Hence a general solution is

� � A cos 4.2t � B sin 4.2t.
The derivative is

�� � �4.2A sin 4.2t � 4.2B cos 4.2t.

The initial conditions give �(0) � A � �/4 � 0.7854 rad (45°) and

��(0) � �/12 � 0.2618 rad � sec�1 (15°sec�1), hence B � 0.2618/4.2 � 0.0623.

The answer is

� � 0.7854 cos 4.2t � 0.0623 sin 4.2t.

(c) The force of inertia in Newton’s second law is my�, where m � 5 kg is the mass
of the water. The dark blue portion of the water in Fig. 45, a column of height 2y, 
is the portion that causes the restoring force of the vibration. Its volume is 
� � 0.022 � 2y. Hence its weight is � � 0.022 � 2y�, where � � 9800 nt is the weight of
water per cubic meter. This gives the ODE

y� � 	0
2y � 0

where

	0
2 � � 0.000 5027� � 4.926

and 	0 � 2.219. Hence the corresponding general solution is

y � A cos 2.219t � B sin 2.219t.

The frequency is 	0 /(2�) � 0.353 [sec�1], so that the water makes about 
20 oscillations per minute, or one cycle in about 3 sec.

� � 0.022 � 2 � �
��

5
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10. y� � e�2t(�2 cos t � sin t) � 0, tan t � �2, t � 2.0344 � n�, n � 0, 1, • • •.

12. If an extremum is at t0, the next one is at t1 � t0 � �/	*, by Prob. 11. Since the
cosine and sine in (10) have period 2�/	*, the amplitude ratio is

exp(��t0) /exp(��t1) � exp(��(t0 � t1)) � exp(��/	*).

The natural logarithm is ��/	*, and maxima alternate with minima. Hence 
� � 2��/	* follows.

For the ODE, � � 2� � 1/(1_
2�4 � 5 �� 22�) � �.

14. 2�/	* � 2 sec; 	* � �. The time for 15 cycles is t � 30 sec. The quotient of the
corresponding amplitudes at t0 and t0 � 30 is

e��(t0�30)/e��t0 � e�� � 30 � 0.25.

Thus e30� � 4, � � (ln 4)/30 � 0.0462. Now � � c/(2m) � c/4; hence
c � 4� � 0.1848.

To check this, use 	*2 � 4m2 � 4mk � c2 by (9) which gives

k � (4m2	*2 � c2) � (4m2�2 � c2) � 19.74,

and solve 2y� � 0.1848y� � 19.74y � 0 to get

y � e�0.0462t(A cos 3.14t � B sin 3.14t) and e�0.0462 � 30 � 1_
4.

16. y � c1e�(���)t � c2e�(���)t, y(0) � c1 � c2 � y0. By differenting and setting t � 0
it follows that

y�(0) � (�� � �)c1 � (�� � �)c2 � v0.

From the first equation, c2 � y0 � c1. By substitution and simplification,

(�� � �)c1 � (�� � �)(y0 � c1) � v0

c1(�� � � � � � �) � v0 � (� � �)y0.

This yields the answer

c1 � [(� � �)y0 � v0] /(2�), c2 � [(� � �)y0 � v0] /(2�).

18. CAS Project. (a) The three cases appear, along with their typical solution curves,
regardless of the numeric values of k/m, y(0), etc.

(b) The first step is to see that Case II corresponds to c � 2. Then we can choose
other values of c by experimentation. In Fig. 46 the values of c (omitted on purpose;
the student should choose!) are 0 and 0.1 for the oscillating curves, 1, 1.5, 2, 3 for
the others (from below to above).

(c) This addresses a general issue arising in various problems involving heating,
cooling, mixing, electrical vibrations, and the like. One is generally surprised how
quickly certain states are reached whereas the theoretical time is infinite.

(d) General solution y(t) � e�ct/2(A cos 	*t � B sin 	*t), where 	* � 1_
2�4 � c2�.

The first initial condition y(0) � 1 gives A � 1. For the second initial condition we
need the derivative (we can set A � 1)

y�(t) � e�ct/2 (� cos 	*t � B sin 	*t � 	* sin 	*t � 	*B cos 	*t) .
c
�
2

c
�
2

1
�
4m

1
�
4m
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From this we obtain y�(0) � �c/2 � 	*B � 0, B � c/(2	*) � c/�4 � c2�. Hence
the particular solution (with c still arbitrary, 0 � c � 2) is

y(t) � e�ct/2 (cos 	*t � sin 	*t) .

Its derivative is, since the cosine terms drop out,

y�(t) � e�ct/2 (�sin 	*t) ( � �4 � c2�)
� e�ct/2 sin 	*t.

The tangent of the y-curve is horizontal when y� � 0, for the first positive time

when 	*t � �; thus t � t2 � �/	* � 2�/�4 � c2�. Now the y-curve oscillates
between �e�ct/2, and (11) is satisfied if e�ct/2 does not exceed 0.001. Thus 
ct � 2 ln 1000, and t � t2 gives the best c satisfying (11). Hence

c � (2 ln 1000)/t2, c2 � (4 � c2).

The solution of this is c � 1.821, approximately. For this c we get by substitution
	* � 0.4141, t2 � 7.587, and the particular solution

y(t) � e�0.9103t(cos 0.4141t � 2.199 sin 0.4141t).

The graph shows a positive maximum near 15, a negative minimum near 23, a positive
maximum near 30, and another negative minimum at 38.

(e) The main difference is that Case II gives

y � (1 � t)e�t

which is negative for t 
 1. The experiments with the curves are as before in this project.

SECTION 2.5. Euler–Cauchy Equations, page 69

Purpose. Algebraic solution of the Euler–Cauchy equation, which appears in certain
applications (see our Example 4) and which we shall need again in Sec. 5.4 as the simplest
equation to which the Frobenius method applies. We have three cases; this is similar to
the situation for constant-coefficient equations, to which the Euler–Cauchy equation can
be transformed (Team Project 16); however, this fact is of theoretical rather than of
practical interest.

Comment on Footnote 4
Euler worked in St. Petersburg 1727–1741 and 1766–1783 and in Berlin 1741–1766. He
investigated Euler’s constant (Sec. 5.6) first in 1734, used Euler’s formula (Secs. 2.2, 13.5,
13.6) beginning in 1740, introduced integrating factors (Sec. 1.4) in 1764, and studied
conformal mappings (Chap. 17) starting in 1770. His main influence on the development
of mathematics and mathematical physics resulted from his textbooks, in particular from
his famous Introductio in analysin infinitorum (1748), in which he also introduced many
of the modern notations (for trigonometric functions, etc.). Euler was the central figure
of the mathematical activity of the 18th century. His Collected Works are still incomplete,
although some seventy volumes have already been published.

(ln 1000)2

��
�2

�2
��
�4 � c2�

1
�
2

c2

��
2�4 � c2�

c
��
�4 � c2�
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Cauchy worked in Paris, except during 1830–1838, when he was in Turin and Prague.
In his two fundamental works, Cours d’Analyse (1821) and Résumé des leçons données
à l’École royale polytechnique (vol. 1, 1823), he introduced more rigorous methods in
calculus, based on an exactly defined limit concept; this also includes his convergence
principle (Sec. 15.1). Cauchy also was the first to give existence proofs in ODEs. He
initiated complex analysis; we discuss his main contributions to this field in Secs. 13.4,
14.2�14.4, and 15.2. His famous integral theorem (Sec. 14.2) was published in 1825 and
his paper on complex power series and their radius of convergence (Sec. 15.2), in 1831.

SOLUTIONS TO PROBLEM SET 2.5, page 72

2. 4m(m � 1) � 4m � 1 � 4(m � 1_
2)(m � 1_

2) � 0, c1�x� � c2/�x�
4. (c1 � c2 ln x) /x

6. 2[m(m � 1) � 2m � 2.5] � 2(m2 � m � 2.5) � 2[(m � 1_
2)2 � 1.52] � 0. The roots

are �0.5 � 1.5i. Hence the corresponding real general solution is

y � x�0.5[A cos (1.5 ln �x�) � B sin (1.5 ln �x�)].

8. 4(m(m � 1) � 1_
4) � 4(m � 1_

2)2 � 0 has the double root m � 1_
2; hence a general

solution is
y � (c1 � c2 ln �x�)�x�.

10. 10m(m � 1) � 6m � 0.5 � 10[m(m � 1) � 0.6m � 0.05] � 10[m2 � 0.4m � 0.05]
� 10[(m � 0.2)2 � 0.12] � 0. Hence a real general solution is

y � x0.2[A cos (0.1 ln �x�) � B sin (0.1 ln �x�)].

12. The auxiliary equation is

m(m � 1) � 3m � 1 � m2 � 2m � 1 � (m � 1)2 � 0.

It has the double root �1. Hence a general solution is

y � (c1 � c2 ln �x�) /x.

The first initial condition gives y(1) � c1 � 4. The derivative of y is

y� � c2 /x2 � (c1 � c2 ln �x�) /(�x2).

Hence the second initial condition gives y�(1) � c2 � c1 � �2. Thus c2 � 2. This
gives the particular solution

y � (4 � 2 ln �x�) /x.

Make sure to explain to the student why we cannot prescribe initial conditions at 
t � 0, where the coefficients of the ODE written in standard form (divide by x2)
become infinite.

14. The auxiliary equation is

m(m � 1) � 2m � 2.25 � m2 � 3m � 2.25 � (m � 1.5)2 � 0,

so that a general solution is

y � (c1 � c2 ln �x�)x1.5.

The first initial condition gives y(1) � c1 � 2.2. The derivative is

y� � (c2/x)x1.5 � 1.5(c1 � c2 ln �x�)x0.5.
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From this and the second initial condition we obtain

y�(1) � c2 � 1.5c1 � 2.5;
hence

c2 � 2.5 � 1.5c1 � �0.8.

16. Team Project. (A) The student should realize that the present steps are the same as
in the general derivation of the method in Sec. 2.1. An advantage of such specific
derivations may be that the student gets a somewhat better understanding of the
method and feels more comfortable with it. Of course, once a general formula is
available, there is no objection to applying it to specific cases, but often a direct
derivation may be simpler. In that respect the present situation resembles, for instance,
that of the integral solution formula for first-order linear ODEs in Sec. 1.5.

(B) The Euler–Cauchy equation to start from is

x2y� � (1 � 2m � s)xy� � m(m � s)y � 0

where m � (1 � a) /2, the exponent of the one solution we first have in the critical
case. For s * 0 the ODE becomes

x2y� � (1 � 2m)xy� � m2y � 0.

Here 1 � 2m � 1 � (1 � a) � a, and m2 � (1 � a)2/4, so that this is the Euler–Cauchy
equation in the critical case. Now the ODE is homogeneous and linear; hence another
solution is

Y � (xm�s � xm) /s.

L’Hôpital’s rule, applied to Y as a function of s (not x, because the limit process is
with respect to s, not x), gives

(xm�s ln �x�) /1 * xm ln �x� as s * 0.

This is the expected result.

(C) This is less work than perhaps expected, an exercise in the technique of
differentiation (also necessary in other cases). We have y � xm ln x, and with 
(ln x)� � 1/x we get

y� � mxm�1 ln �x� � xm�1

y� � m(m � 1)xm�2 ln �x� � mxm�2 � (m � 1)xm�2.

Since xm � x(1�a) /2 is a solution, in the substitution into the ODE the ln-terms drop
out. Two terms from y� and one from y� remain and give

x2(mxm�2 � (m � 1)xm�2) � axm � xm(2m � 1 � a) � 0

because 2m � 1 � a.

(D) t � ln x, dt/dx � 1/x, y� � y
.
t� � y

.
/x, where the dot denotes the derivative with

respect to t. By another differentiation,

y� � (y
.
/x)� � ÿ /x2 � y

.
/(�x2).

Substitution of y� and y� into (1) gives the constant-coefficient ODE

ÿ � y
.

� ay
.

� by � ÿ � (a � 1)y
.

� by � 0.
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The corresponding characteristic equation has the roots


 � 1_
2(1 � a) � �1_

4(1 ��a)2 ��b�.

With these 
, solutions are e
t � (et)
 � (eln �x�)
 � x
.

(E) te
t � (ln �x�)e
 ln �x� � (ln �x�)(eln �x�)
 � x
 ln �x�.

SECTION 2.6. Existence and Uniqueness of Solutions. Wronskian, page 73

Purpose. To explain the theory of existence of solutions of ODEs with variable
coefficients in standard form (that is, with y� as the first term, not, say, ƒ(x)y�)

y� � p(x)y� � q(x)y � 0

and of their uniqueness if initial conditions

y(x0) � K0, y�(x0) � K1

are imposed. Of course, no such theory was needed in the last sections on ODEs for which
we were able to write all solutions explicitly.

Main Content

Continuity of coefficients suffices for existence and uniqueness.

Linear independence if and only if the Wronskian is not zero

A general solution exists and includes all solutions.

Comment on Wronskian
For n � 2, where linear independence and dependence can be seen immediately, the
Wronskian serves primarily as a tool in our proofs; the practical value of the independence
criterion will appear for higher n in Chap. 3.

Comment on General Solution
Theorem 4 shows that linear ODEs (actually, of any order) have no singular solutions.
This also justifies the term “general solution,” on which we commented earlier. We did
not pay much attention to singular solutions, which sometimes occur in geometry as
envelopes of one-parameter families of straight lines or curves.

SOLUTIONS TO PROBLEM SET 2.6, page 77

2. y� � �2y � 0. Wronskian

W � j j � �.

4. Auxiliary equation (m � 3)(m � 2) � m2 � m � 6 � m(m � 1) � 6 � 0. Hence
the ODE is x2y� � 6y � 0. The Wronskian is

W � j j � �2 � 3 � �5.

6. Characteristic equation (
 � 3.4)(
 � 2.5) � 
2 � 0.9
 � 8.5 � 0. Hence the ODE
is y� � 0.9y� � 8.5y � 0. Wronskian

W � j j � �5.9e0.9x.
e�2.5x

�2.5e�2.5x

e3.4x

3.4e3.4x

x�2

�2x�3

x3

3x2

sin �x

� cos �x

cos �x

�� sin �x
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8. Characteristic equation (
 � 2)2 � 0, ODE y� � 4y� � 4y � 0, Wronskian

W � j j � e�4x.

10. Auxiliary equation (m � 3)2 � m2 � 6m � 9 � m(m � 1) � 7m � 9 � 0. Hence
the ODE (an Euler–Cauchy equation) is

x2y� � 7xy� � 9y � 0.
The Wronskian is

W � j j � x�7.

12. The characteristic equation is

(
 � 2)2 � 	2 � 
2 � 4
 � 4 � 	2 � 0.

Hence the ODE is

y� � 4y� � (4 � 	2)y � 0.

The Wronskian is

W � j j � 	e�4x

where e � e�2x, c � cos 	x, and s � sin 	x.

14. The auxiliary equation is

(m � 1)2 � 1 � m2 � 2m � 2 � m(m � 1) � 3m � 2 � 0.

Hence the Euler–Cauchy equation is

x2y� � 3xy� � 2y � 0.
The Wronskian is

W � j j � x�3

where x�1 in the second row results from the chain rule and (ln �x�)� � 1/x. Here,
c � cos (ln �x�), s � sin (ln �x�).

16. The characteristic equation is

(
 � k)2 � �2 � 0.

This gives the ODE

y� � 2ky� � (k2 � �2)y � 0.

The Wronskian is

W � j j � �e�2kx

where e � e�kx, c � cos �x, s � sin �x.

18. Team Project. (A) c1ex � c2e�x � c*1 cosh x � c*2 sinh x. Expressing cosh and
sinh in terms of exponential functions [see (17) in App. 3.1], we have

1_
2(c*1 � c*2)ex � 1_

2(c*1 � c*2)e�x;

es

e(�ks � c�)

ec

e(�kc � s�)

x�1 s

�x�2s � x�1cx�1

x�1 c

�x�2c � x�1sx�1

es

e(�2s � 	c)

ec

e(�2c � 	s)

x�3 ln �x�

�3x�4 ln �x� � x�4

x�3

�3x�4

xe�2x

(1 � 2x)e�2x

e�2x

�2e�2x
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hence c1 � 1_
2(c*1 � c*2), c2 � 1_

2(c*1 � c*2). The student should become aware that for
second-order ODEs there are several possibilities for choosing a basis and making up
a general solution. For this reason we say “a general solution,” whereas for first-order
ODEs we said “the general solution.”

(B) If two solutions are 0 at the same point x0, their Wronskian is 0 at x0, so that
these solutions are linearly dependent by Theorem 2.

(C) The derivatives would be 0 at that point. Hence so would be their Wronskian W,
implying linear dependence.

(D) By the quotient rule of differentiation and by the definition of the Wronskian,

(y2 /y1)� � (y�2y1 � y2y�1) /y1
2 � W/y1

2.

In Prob. 10 we have (y2 /y1)�y1
2 � (ln �x�)�x�6 � x�7.

y2 /y1 is constant in the case of linear dependence; hence the derivative of this
quotient is 0, whereas in the case of linear independence this is not the case. This
makes it likely that such a formula should exist.

(E) The first two derivatives of y1 and y2 are continuous at x � 0 (the only x at which
something could happen). Hence these functions qualify as solutions of a second-order
ODE. y1 and y2 are linearly dependent for x � 0 as well as for x � 0 because in each
of these two intervals, one of the functions is identically 0. On �1 � x � 1 they are
linearly independent because c1y1 � c2y2 � 0 gives c1 � 0 when x � 0, and c2 � 0
when x � 0. The Wronskian is

W � y1y�2 � y2y�1 � { } � 0 if { .

The Euler–Cauchy equation satisfied by these functions has the auxiliary equation

(m � 3)m � m(m � 1) � 2m � 0.
Hence the ODE is

xy� � 2y� � 0.

Indeed, xy�1 � 2y�1 � x � 6x � 2 � 3x2 � 0 if x � 0, and 0 � 0 for x � 0. Similarly
for y2. Now comes the point. In the present case the standard form, as we use it in
all our present theorems, is

y� � y� � 0

and shows that p(x) is not continuous at 0, as required in Theorem 2. Thus there is
no contradiction.

This illustrates why the continuity assumption for the two coefficients is quite
important.

(F) According to the hint given in the enunciation, the first step is to write the ODE
(1) for y1 and then again for y2. That is,

y�1 � py�1 � qy1 � 0

y�2 � py�2 � qy2 � 0

where p and q are variable. The hint then suggests eliminating q from these two ODEs.
Multiply the first equation by �y2, the second by y1, and add:

(y1y�2 � y�1y2) � p(y1y�2 � y�1y2) � W� � pW � 0

2
�
x

x � 0

x � 0

0 � 3x2 � x3 � 0

x3 � 0 � 0 � 3x2
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where the expression for W� results from the fact that y�1y�2 appears twice and drops
out. Now solve this by separating variables or as a homogeneous linear ODE.

In Prob. 12 we have p � 4; hence W � ce�4x by integration from 0 to x, where
c � y1(0)y�2(0) � y2(0)y�1(0) � 1 � 	 � 0 � (�2) � 	.

SECTION 2.7. Nonhomogeneous ODEs. page 78

Purpose. We show that for getting a general solution y of a nonhomogeneous linear ODE
we must find a general solution yh of the corresponding homogeneous ODE and then—
this is our new task—any particular solution yp of the nonhomogeneous ODE,

y � yh � yp.

Main Content, Important Concepts

General solution, particular solution

Continuity of p, q, r suffices for existence and uniqueness.

A general solution exists and includes all solutions.

Comment on Methods for Particular Solutions
The method of undetermined coefficients is simpler than that of variation of parameters
(Sec. 2.10), as is mentioned in the text, and it is sufficient for many applications, of which
Secs. 2.8 and 2.9 show standard examples.

Comment on General Solution
Theorem 2 shows that the situation with respect to general solutions is practically the
same for homogeneous and nonhomogeneous linear ODEs.

Comment on Table 2.1

It is clear that the table could be extended by the inclusion of products of polynomials
times cosine or sine and other cases of limited practical value. Also, � � 0 in the last
pair of lines gives the previous two lines, which are listed separately because of their
practical importance.

SOLUTIONS TO PROBLEM SET 2.7, page 83

2. y � c1e�1.5x � c2e�2.5x � 2.72 cos 5x � 2.56 sin 5x. This is a typical solution of a
forced oscillation problem in the overdamped case. The general solution of the
homogeneous ODE dies out, practically after some short time (theoretically never),
and the transient solution goes over into a harmonic oscillation whose frequency is
equal to that of the driving force (or electromotive force).

4. y � A cos 3x � B sin 3x � 1_
8 cos x � _1

18x sin 3x. An important point is that the
Modification Rule applies to the second term on the right. Hence the best way seems
to split yp additively, yp � yp1 � yp2, where

yp1 � K1 cos x � M1 sin x, yp2 � K2x cos 3x � M2x sin 3x.

In the previous problem (Prob. 3) the situation is similar.
6. y � (c1 � c2x)e�2x � 1_

4e�2x sin 2x. The characteristic equation of the homogeneous
ODE has the double root �2. The function on the right is such that the Modification
Rule does not apply.
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8. �5 is a double root. 100 sinh 5x � 50e5x � 50e�5x. Hence we may choose 
yp � yp1 � yp2 with yp2 � Cx2e�5x according to the Modification Rule. Substitution
gives yp1 � 1_

2e5x, yp2 � �25x2e�5x. Answer:

y � (c1 � c2x)e�5x � 1_
2e5x � 25x2e�5x.

10. y � e�2x(A cos 1.5x � B sin 1.5x) � 0.5x2 � 0.36x � 0.1096. The solution of the
homogeneous ODE approaches 0, and the term in x2 becomes the dominant term.

12. Corresponding to the right side, write yp � yp1 � yp2. Find yp1 � 2x by inspection
or as usual. Since sin 3x is a solution of the homogeneous ODE, write by 
the Modification Rule for a simple root yp � x(K cos 3x � M sin 3x). 
Answer: y � A cos 3x � B sin 3x � 2x � 6x cos 3x.

14. 2x sin x is not listed in the table because it is of minor practical importance. However,
by looking at its derivatives, we see that

yp � Kx cos x � Mx sin x � N cos x � P sin x

should be general enough. Indeed, by substitution and collecting cosine and sine terms
separately we obtain

(1) (2K � 2Mx � 2P � 2M) cos x � 0

(2) (�2Kx � 2M � 2N � 2K) sin x � 2x sin x.

In (1) we must have 2Mx � 0; hence M � 0 and then P � �K. In (2) we must have
�2Kx � 2x; hence K � �1, so that P � 1 and from (2), finally, �2N � 2K � 0,
hence N � 1. Answer:

y � (c1 � c2x)e�x � (1 � x) cos x � sin x.

16. y � yh � yp � (c1 � c2x)e1.5x � 12x2 � 20x � 16. From this and the initial conditions,

y � 4[(1 � x)e1.5x � 3x2 � 5x � 4].

18. yh � c1e2x � c2, yp � C1xe2x � C2e�2x by the Modification Rule for a simple root.
Answer:

y � 2e2x � 3 � 6xe2x � e�2x.

20. The Basic Rule and the Sum Rule are needed. We obtain

yh � e�x(A cos 3x � B sin 3x)

y � e�x cos 3x � 0.4 cos x � 1.8 sin x � 6 cos 3x � sin 3x.

22. Team Project. (b) Perhaps the simplest way is to take a specific ODE, e.g.,

x2y� � 6xy� � 6y � r(x)

and then experiment by taking various r(x) to find the form of choice functions. The
simplest case is a single power of x. However, almost all the functions that work as
r(x) in the case of an ODE with constant coefficients can also be used here.

SECTION 2.8. Modeling: Forced Oscillations. Resonance, page 84

Purpose. To extend Sec. 2.4 from free to forced vibrations by adding an input (a driving
force, here assumed to be sinusoidal). Mathematically, we go from a homogeneous to a
nonhomogeneous ODE, which we solve by undetermined coefficients.
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New Features

Resonance (11) y � At sin 	0 t in the undamped case

Beats (12) y � B(cos 	t � cos 	0 t) if input frequency is close to natural

Large amplitude if (15*) 	2 � 	0
2 � c2/(2m2) (Fig. 56)

Phase lag between input and output

SOLUTIONS TO PROBLEM SET 2.8, page 90

2. yp � �0.6 cos 1.5t � 0.2 sin 1.5t. Note that a general solution of the homogeneous
ODE is yh � e�t(A cos 1.5t � B sin 1.5t), and the student should perhaps be reminded
that this is not resonance, of course.

4. yp � 0.25 cos t. Note that yh � e�2t(A cos t � B sin t); of course, this is not resonance.
Furthermore, it is interesting that whereas a single term on the right will generate two
terms in the solution, here we have—by chance—the converse.

6. yp � _1
10 cos t � 1_

5 sin t � _1
90 cos 3t � _1

45 sin 3t

8. yp � 2 cos 4t � 1.5 sin 4t

10. y � (c1 � c2t)e�2t � 0.03 cos 4t � 0.04 sin 4t

12. y � c1e�t � c2e�4t � 0.1 cos 2t. Note that, ordinarily, yp will consist of two terms
if r(x) consists of a single trigonometric term.

14. y � e�t(A cos 2t � B sin 2t) � 0.2 � 0.1 cos t � 0.2 sin t

16. y � �_1
63 cos 8t � 1_

8 sin 8t � _1
63 cos t. From the graph one can see the effect of

(cos t) /63. There is no corresponding sine term because there is no damping and
hence no phase shift.

18. y � (33 � 31t)e�t � 37.5 cos t � 6 cos 2t � 4.5 sin 2t � 1.5 cos 3t � 2 sin 3t

20. y � 100 cos 4.9t � 98 cos 5t

22. The form of solution curves varies continuously with c. Hence if you start from c � 0
and let c increase, you will at first obtain curves similar to those in the case of c � 0.
For instance, consider y� � 0.01y� � 25y � 100 cos 4.9t � 98 cos 5t.

24. CAS Experiment. The choice of 	 needs experimentation, inspection of the curves
obtained, and then changes on a trial-and-error basis. It is interesting to see how in
the case of beats the period gets increasingly longer and the maximum amplitude gets
increasingly larger as 	 /(2�) approaches the resonance frequency.

26. If 0 � t � �, then a particular solution

yp � K0 � K1t � K2t2

gives y�p � 2K2 and

y�p � yp � K0 � 2K2 � K1t � K2t2 � 1 � t2;

thus,

K2 � � , K1 � 0, K0 � 1 � 2K2 � 1 � .

Hence a general solution is

y � A cos t � B sin t � 1 � � t2.
1

�
�2

2
�
�2

2
�
�2

1
�
�2

1
�
�2
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From this and the first initial condition,

y(0) � A � 1 � � 0, A � �(1 � ) .

The derivative is

y� � �A sin t � B cos t � t

and gives y�(0) � B � 0. Hence the solution is

(I) y(t) � (1 � 2/�2)(1 � cos t) � t2/�2 if 0 � t � �,

and if t 
 �, then

(II) y � y2 � A2 cos t � B2 sin t

with A2 and B2 to be determined from the continuity conditions

y(�) � y2(�), y�(�) � y�2(�).

So we need from (I) and (II)

y(�) � 2(1 � 2/�2) � 1 � 1 � 4/�2 � y2(�) � �A2

and
y�(t) � (1 � 2/�2) sin t � 2t /�2

and from this and (II),

y�(�) � �2/� � B cos � � �B2.

This gives the solution

y � �(1 � 4/�2) cos t � (2/�) sin t if t 
 �.

Answer:

y � { .

The function in the second line gives a harmonic oscillation because we disregarded
damping.

SECTION 2.9. Modeling: Electric Circuits, page 91

Purpose. To discuss the current in the RLC-circuit with sinusoidal input E0 sin 	t. 
ATTENTION! The right side in (1) is E0	 cos 	t, because of differentiation.

Main Content

Modeling by Kirchhoff’s law KVL

Electrical–mechanical strictly quantitative analogy (Table 2.2)

Transient tending to harmonic steady-state current

A popular complex method is discussed in Team Project 20.

if 0 � t � �

if t 
 �

(1 � 2/�2)(1 � cos t) � t2/�2

�(1 � 4/�2) cos t � (2/�) sin t

2
�
�2

2
�
�2

2
�
�2
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SOLUTIONS TO PROBLEM SET 2.9, page 97

2. The occurring integral can be evaluated by integration by parts, as is shown (with
other notations) in standard calculus texts. From (4) in Sec. 1.5 we obtain

I � e�Rt/L [ �eRt/L sin 	t dt � c]
� ce�Rt/L � (R sin 	t � 	L cos 	t)

� ce�Rt/L � sin (	t � �), � � arctan .

4. This is another special case of a circuit that leads to an ODE of first order,

RI� � I/C � E� � 	E0 cos 	t.

Integration by parts gives the solution

I(t) � e�t/(RC) [ �et/(RC) cos 	t dt � c]
� ce�t/(RC) � (cos 	t � 	RC sin 	t)

� ce�t/(RC) � sin (	t � �),

where tan � � �1/(	RC). The first term decreases steadily as t increases, and the last
term represents the steady-state current, which is sinusoidal. The graph of I(t) is similar
to that in Fig. 62.

6. E � t2, E� � 2t, 0.5I� � (104/8)I � 2t, I� � 2500I � 4t, I(0) � 0 is given. I�(0) � 0
follows from

LI�(0) � Q(0) /C � E(0) � 0.
Answer:

I � 0.0016(t � 0.02 sin 50t).

8. Write 
1 � �� � � and 
2 � �� � �, as in the text before Example 1. Here 
� � R/(2L) 
 0, and � can be real or imaginary. If � is real, then � � R/(2L) because
R2 � 4L /C � R2. Hence 
1 � 0 (and 
2 � 0, of course). If � is imaginary, then Ih(t)
represents a damped oscillation, which certainly goes to zero as t * �.

10. E� � 200 cos 2t, 0.5I� � 8I� � 10I � 200 cos 2t, so that the steady-state solution is

I � 5 cos 2t � 10 sin 2t A.

12. The ODE is

I� � 2I� � 20I � _157
3 cos 3t.

The steady-state solution is Ip � 2 sin 3t � _11
3 cos 3t.

Note that if you let C decrease, the sine term in the solution will become increasingly
smaller, compared with the cosine term.

14. The ODE is
0.1I� � 0.2I� � 0.5I � 377 cos 0.5t.

	E0C
��
�1 � (	�RC)2�

	E0C
��
1 � (	RC)2

	 E0
�

R

	L
�
R

E0
��
�R2 � 	�2L2�

E0
��
R2 � 	2L2

E0
�
L
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Its characteristic equation is

0.1[(
 � 1)2 � 4] � 0.

Hence a general solution of the homogeneous ODE is

e�t(A cos 2t � B sin 2t).
The transient solution is

I � e�t(A cos 2t � B sin 2t) � 760 cos 0.5t � 160 sin 0.5t.

16. The ODE is
0.1I� � 4I� � 40I � 100 cos 10t.

A general solution is

I � (c1 � c2t)e�20t � 1.2 cos 10t � 1.6 sin 10t.

The initial conditions are I(0) � 0, Q(0) � 0, which because of (1�), that is,

LI�(0) � RI(0) � � E(0) � 0,

leads to I�(0) � 0. This gives

I(0) � c1 � 1.2 � 0, c1 � �1.2

I�(0) � �20c1 � c2 � 16 � 0, c2 � �40.

Hence the answer is

I � �(1.2 � 40t)e�20t � 1.2 cos 10t � 1.6 sin 10t.

18. The characteristic equation of the homogeneous ODE is

0.2(
 � 8)(
 � 10) � 0.

The initial conditions are I(0) � 0 as given, I�(0) � E(0) /L � 164/0.2 � 820 by
formula (1�) in the text and Q(0) � 0. Also, E� � �1640 sin 10t. The ODE is

0.2I� � 3.6I� � 16I � �1640 sin 10t.

The answer is

I � 160 e�8t � 205e�10t � 45 cos 10t � 5 sin 10t.

20. Team Project. (a) I�p � Kei	t, I��p � i	Kei	t, I��p � �	2Kei	t. Substitution gives

(�	2L � i	R � ) Kei	t � E0	ei	t.

Divide this by 	ei	t on both sides and solve the resulting equation algebraically for
K, obtaining

(A) K � �

where S is the reactance given by (3). To make the denominator real, multiply the
numerator and the denominator of the last expression by �S � iR. This gives

K � .
�E0(S � iR)
��

S2 � R2

E0
�
�S � iR

E0
���

� (	L � �
	

1

C
�) � iR

1
�
C

Q(0)
�

C
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The real part of Kei	t is

(Re K)(Re ei	t) � (Im K)(Im ei	t) � cos 	t � sin 	t

� (S cos 	t � R sin 	t),

in agreement with (2) and (4).

(b) See (A).

(c) R � 2 �, L � 1 H, C � 1_
3 F, 	 � 1, S � 1 � 3 � �2, E0 � 20. 

From this and (4) it follows that a � 5, b � 5; hence

Ip � 5 cos t � 5 sin t.

For the complex method we obtain from (A)

K � � � 5 � 5i.

Hence
Ip � Re(Keit) � Re[(5 � 5i)(cos t � i sin t)]

� 5 cos t � 5 sin t.

SECTION 2.10. Solution by Variation of Parameters, page 98

Purpose. To discuss the general method for particular solutions, which applies in any case
but may often lead to difficulties in integration (which we by and large have avoided in
our problems, as the subsequent solutions show).

Comments
The ODE must be in standard form, with 1 as the coefficient of y�—students tend to
forget that.

Here we do need the Wronskian, in contrast with Sec. 2.6 where we could get away
without it.

SOLUTIONS TO PROBLEM SET 2.10, page 101

2. y1 � e2x, y2 � xe2x, W � e4x, yh � (c1 � c2x)e2x,

yp � �e2x�x3e�x dx � xe2x�x2e�x dx � (x2 � 4x � 6)ex.

4. yh � (c1 � c2x)ex, yp � ex(A cos x � B sin x), A � 0 from the cosine terms, 
B � �1 from the sine terms, so that

yp � �ex sin x.

6. Division by x2 gives the standard form, and r � x�1 ln �x�. A basis of solutions is
y1 � x, y2 � x ln �x�; W � x. The corresponding particular solution obtained from
(2) is

yp � �x�(x ln �x�)(x�1 ln �x�)x�1 dx � (x ln �x�)�x(x�1 ln �x�)x�1 dx

� �x�(ln �x�)2 x�1 dx � x ln �x��(ln �x�)x�1 dx

� x (ln �x�)3/6.

20(2 � 2i)
��

8

20
�
2 � 2i

�E0
�
S2 � R2

E0R
�
S2 � R2

�E0S
�
S2 � R2
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8. yh � (c1 � c2x)e2x, y1 � e2x, y2 � xe2x, W � e4x. From (2) we thus obtain

yp � �12e2x�x�3 dx � 12xe2x�x�4 dx � 2x�2e2x.

10. The right side suggests the following choice of a basis of solutions:

y1 � cosh x, y2 � sinh x.

Then W � 1, and

yp � �cosh x�(sinh x) /cosh x dx � sinh x�(cosh x) /cosh x dx

� �(cosh x) ln �cosh x� � x sinh x.

12. Divide by x2 to get the standard form with r � 3x�3 � 3x�1. A basis of solutions is
y1 � x1/2, y2 � x�1/2. The Wronskian is W � �x�1. From this and (2) we obtain

yp � �x1/2�x�1/2(3x�3 � 3x�1)(�x) dx

� x�1/2�x1/2(3x�3 � 3x�1)(�x) dx

� 4x�1 � 4x.

14. y1 � x�2, y2 � x2, W � �4x�1. Hence (2) gives

yp � �x�2�x2x�4(x/4) dx � x2�x�2x�4(x/4) dx

� �1_
4x�2 ln �x� � _1

16x�2.

16. y � ux�1/2 leads to u� � u � 0 by substitution. (This is a special case of the method
of elimination of the first derivative, to be discussed in general in Prob. 29 of Problem
Set 5.5 on the Bessel equation. The given homogeneous ODE is a special Bessel
equation for which the Bessel functions reduce to elementary functions, namely, to
cosines and sines times powers of x.) Hence a basis of solutions of the homogeneous
ODE corresponding to the given ODE is

y1 � x�1/2 cos x, y2 � x�1/2 sin x.

The Wronskian is W � x�1 and r � x�1/2 cos x. Hence (2) gives

yp � �x�1/2 cos x�x�1/2 (sin x) x�1/2 (cos x) x dx

� x�1/2 sin x�x�1/2 (cos x) x�1/2 (cos x) x dx

� �x�1/2 cos x�sin x cos x dx � x�1/2 sin x�cos2 x dx

� 1_
2x1/2 sin x.

Note that here we have used that the ODE must be in standard form before we can
apply (2). This is similar to the case of the Euler–Cauchy equations in this problem
set.

18. Team Project. (a) Undetermined coefficients: Substitute

yp � A cos 5x � B sin 5x

y�p � �5A sin 5x � 5B cos 5x

y�p � �25A cos 5x � 25B sin 5x.
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The cosine terms give �25A � 10B � 15A � 0; hence B � 4A. The sine terms give

�25B � 10A � 15B � �170A � 17; hence A � �0.1, B � �0.4.

For the method of variation of parameters we need

y1 � e3x, y2 � e�5x; hence W � �8e�2x.

From this and formula (2) we obtain integrals that are not too pleasant to evaluate,
namely,

yp � �e3x�e�5x � 17 sin 5x (�e2x/8) dx

�e�5x�e3x � 17 sin 5x (�e2x/8) dx

� �0.1 cos 5x � 0.4 sin 5x.

(b) Apply variation of parameters to the first term, yp1 � sec 3x, using y1 � cos 3x,
y2 � sin 3x, and W � 3. Formula (2) gives

yp1 � �cos 3x�(sin 3x sec 3x) /3 dx

� sin 3x�(cos 3x sec 3x) /3 dx

� 1_
9 cos 3x ln �cos 3x� � 1_

3x sin 3x.

For yp2 the method of undetermined coefficients gives

yp2 � �1_
6x cos 3x.

SOLUTIONS TO CHAP. 2 REVIEW QUESTIONS AND PROBLEMS, page 102

10. Undetermined coefficients, where �3 is a double root of the characteristic equation
of the homogeneous ODE, so that the Modification Rule applies. The second term
on the right, �27x2, requires a quadratic polynomial. A general solution is

y � (c1 � c2x)e�3x � 1_
2x2e�3x � 3x2 � 4x � 2.

12. y� � z, y� � (dz /dy)z by the chain rule, yz dz/dy � 2z2, dz /z � 2 dy/y,

ln �z� � 2 ln �y� � c*, z � c1y2 � y�, dy/y2 � c1 dx, �1/y � c1x � c2; 

hence
y � 1/(c�1x � c�2).

Also, y � 0 is a solution.
14. y1 � x�2, y2 � x�3, W � �x�6, r � 1 because to apply (2), one must first cast the

given ODE into standard form. Then (2) gives

yp � �x�2�x�3 � 1(�x6) dx � x�3�x�2 � 1(�x6) dx � x2(1_
4 � 1_

5) � _1
20x2.

16. y1 � e2x cos x, y2 � e2x sin x, W � e4x, so that (2) gives

yp � �e2x cos x�e2x sin x e2x csc x e�4x dx

� e2x sin x�e2x cos x e2x csc x e�4x dx

� �e2x (cos x) x � e2x (sin x) ln �sin x�.
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18. This is an Euler–Cauchy equation, with the right-side 0 replaced with 36x5. The
homogeneous ODE has the auxiliary equation

4m(m � 1) � 24m � 49 � 4(m2 � 7m � 3.52) � 4(m � 3.5)2 � 0.

m � 3.5 is a double root, so that a general solution of the homogeneous ODE is

yh � x3.5(c1 � c2 ln �x�).
We try

yp � Cx5. Then y�p � 5Cx4, y�p � 20Cx3.

Substitution gives

(4 � 20 � 24 � 5 � 49)Cx5 � 9Cx5 � 36x4; hence C � 4.

This yields the general solution

y � x3.5(c1 � c2 ln �x�) � 4x5

of the nonhomogeneous ODE.
Variation of parameters is slightly less convenient because of the integrations. For

this we need y1 � x3.5, y2 � x3.5 ln �x�, W � x6. The ODE must be written in standard
form (divide by 4x2), so that r � 9x3. With these functions, equation (2) yields

yp � �x3.5�x3.5 ln �x� � 9x3/x6 dx

� x3.5 ln �x��x3.5 � 9x3/x6 dx

� �9x3.5�x1/2 ln �x� dx � 9x3.5 ln �x��x1/2 dx

� �x5(6 ln �x� � 4) � x5 � 6 ln �x� � 4x5.

20. The characteristic equation is


2 � 6
 � 18 � (
 � 3)2 � 32 � 0.

Hence a general solution is

y � e�3x(A cos 3x � B sin 3x)

and the initial values give A � 5 and B � �2.
22. The auxiliary equation is

m(m � 1) � 15m � 49 � (m � 7)2 � 0.

Hence a general solution is
y � (c1 � c2 ln �x�)x�7.

From the initial conditions, c1 � 2, c2 � 3.
24. The characteristic equation is


2 � 
 � 2.5 � (
 � 0.5)2 � 1.52 � 0.

Hence a general solution of the homogeneous ODE is

yh � e�0.5x(A cos 1.5x � B sin 1.5x).

A particular solution of the given ODE is 6 cos x � 4 sin x (by undetermined
coefficients). Hence

y � e�0.5x(A cos 1.5x � B sin 1.5x) � 6 cos x � 4 sin x

and from the initial conditions, A � 2, B � 1.
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26. The ODE is
4y� � 4y� � 17y � 202 cos 3t.

Thus
y� � y� � 4.25y � 50.5 cos 3t.

The steady-state solution is obtained by the method of undetermined coefficients:

yp � 4.8 sin 3t � 7.6 cos 3t.

28. y � e�0.5t(A cos 2t � B sin 2t) � 7.6 cos 3t � 4.8 sin 3t. From this general solution
and the initial conditions we obtain

y(0) � A � 7.6 � 10. Hence A � 17.6

and by differentiating and setting t � 0

y�(0) � �0.5A � 2B � 3 � 4.8 � 0.
Hence

B � 0.5(0.5A � 14.4) � �2.8.

30. The ODE is
2y� � 6y� � 27y � 10 cos 	t.

The amplitude C*(	) is given by (14) in Sec. 2.8. Its maximum is obtained by equating
the derivative to zero; this gives the location 	 as solution of (15) in Sec. 2.8. In our
case this is

36 � 2 � 22(13.5 � 	2).

The solution is (15*); in our case,

	max
2 � 13.5 � 4.5 � 9; thus 	max � 3.

For this 	 � 	max we obtain the maximum value of the amplitude from (16), Sec. 2.8;
in our case,

C*(	max) � � � 0.496904.

By undetermined coefficients we obtain

yp � 2_
9 cos 3t � 4_

9 sin 3t.

The amplitude is

C � �a2 � b�2� � �(2/9)2�� (4/9�)2�; � �20� / 9,

in agreement with our previous result.

32. 0.1I� � 20I� � 5000I � 110 � 415 cos 415t. The characteristic equation of the
homogeneous ODE is


2 � 200
 � 50000 � (
 � 100)2 � 2002 � 0.

Hence a general solution of the homogeneous ODE is

Ih � e�100t(A cos 200t � B sin 200t).

The method of undetermined coefficients gives the following particular solution of
the nonhomogeneous ODE:

Ip � 1.735825 sin 415t � 2.556159 cos 415t.

�20�
�

9

2 � 2 � 10
���
6�4 � 22 �� 13.5 �� 36�
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34. The real ODE is

0.4I� � 40I� � 10000I � 220 � 314 cos 314t.

The complex ODE is

0.4I�� � 40I�� � 10000I� � 220 � 314e314it.

Substitution of

I� � Ke314it, I�� � 314iKe314it, I�� � �3142Ke314it

into the complex ODE gives

(0.4(�3142) � 40 � 314i � 10000)Ke314it � 220 � 314e314it.

Solve this for K. Denote the expression (• • •) on the left by M. Then

K � � �1.985219 � 0.847001i.

Furthermore, the desired particular solution Ip of the real ODE is the real part of
Ke314it; that is,

Re(Ke314it) � Re K Re(e314it) � Im K Im(e314it)

� �1.985219 cos 314t � (�0.847001) sin 314t.

220 � 314
�

M
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CHAPTER 3 Higher Order Linear ODEs

This chapter is new. Its material is a rearranged and somewhat extended version of material
previously contained in some of the sections of Chap 2. The rearrangement is such that
the presentation parallels that in Chap. 2 for second-order ODEs, to facilitate comparisons.

Root Finding

For higher order ODEs you may need Newton’s method or some other method from
Sec. 19.2 (which is independent of other sections in numerics) in work on a calculator
or with your CAS (which may give you a root-finding method directly).

Linear Algebra

The typical student may have taken an elementary linear algebra course simultaneously
with a course on calculus and will know much more than is needed in Chaps. 2 and 3.
Thus Chaps. 7 and 8 need not be taken before Chap. 3.

In particular, although the Wronskian becomes useful in Chap. 3 (whereas for n � 2
one hardly needs it), a very modest knowledge of determinants will suffice. (For n � 2
and 3, determinants are treated in a reference section, Sec. 7.6.)

SECTION 3.1. Homogeneous Linear ODEs, page 105

Purpose. Extension of the basic concepts and theory in Secs. 2.1 and 2.6 to homogeneous
linear ODEs of any order n. This shows that practically all the essential facts carry over
without change. Linear independence, now more involved as for n � 2, causes the
Wronskian to become indispensable (whereas for n � 2 it played a marginal role).

Main Content, Important Concepts

Superposition principle for the homogeneous ODE (2)

General solution, basis, particular solution

General solution of (2) with continuous coefficients exists.

Existence and uniqueness of solution of initial value problem (2), (5)

Linear independence of solutions, Wronskian

General solution includes all solutions of (2).

Comment on Order of Material
In Chap. 2 we first gained practical experience and skill and presented the theory of the
homogeneous linear ODE at the end of the discussion, in Sec. 2.6. In this chapter, with
all the experience gained on second-order ODEs, it is more logical to present the whole
theory at the beginning and the solution methods (for linear ODEs with constant
coefficients) afterward. Similarly, the same logic applies to the nonhomogeneous linear
ODE, for which Sec. 3.3 contains the theory as well as the solution methods.

SOLUTIONS TO PROBLEM SET 3.1, page 111

2. Problems 1–5 should give the student a first impression of the changes occurring in
the transition from n � 2 to general n.

59

im03.qxd  9/21/05  11:04 AM  Page 59



8. Let y1 � x � 1, y2 � x � 2, y3 � x. Then

y2 � 2y1 � y3 � 0
shows linear dependence.

10. Linearly independent

12. Linear dependence, since one of the functions is the zero function

14. cos 2x � cos2 x � sin2 x; linearly dependent

16. (x � 1)2 � (x � 1)2 � 4x � 0; linearly dependent

18. Linearly independent

20. Team Project. (a) (1) No. If y1 � 0, then (4) holds with any k1 � 0 and the other
kj all zero.

(2) Yes. If S were linearly dependent on I, then (4) would hold with a kj � 0 on I,
hence also on J, contradicting the assumption.

(3) Not necessarily. For instance, x2 and x�x� are linearly dependent on the interval 0
� x � 1, but linearly independent on �1 � x � 1.

(4) Not necessarily. See the answer to (3).

(5) Yes. See the answer to (2).

(6) Yes. By assumption, k1y1 � • • • � kpyp � 0 with k1, • • • , kp not all zero (this
refers to the functions in S ), and for T we can add the further functions with coefficients
all zero; then the condition for linear dependence of T is satisfied.

(b) We can use the Wronskian for testing linear independence only if we know that
the given functions are solutions of a homogeneous linear ODE with continuous
coefficients. Other means of testing are the use of functional relations, e.g., 
ln x2 � 2 ln x or trigonometric identities, or the evaluation of the given functions at
several values of x, to see whether we can discover proportionality.

SECTION 3.2. Homogeneous Linear ODEs with Constant Coefficients,
page 111

Purpose. Extension of the algebraic solution method for constant-coefficient ODEs from
n � 2 (Sec. 2.2) to any n, and discussion of the increased number of possible cases:

Real different roots

Complex simple roots

Real multiple roots

Complex multiple roots

Combinations of the preceding four basic cases

Explanation of these cases in terms of typical examples

Comment on Numerics
In practical cases, one may have to use Newton’s method or another method for computing
(approximate values of) roots in Sec. 19.2.

SOLUTIONS TO PROBLEM SET 3.2, page 115

2. The form of the given functions shows that the characteristic equation has a triple
root �2; hence it is

(� � 2)3 � �3 � 6�2 � 12� � 8 � 0.
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Hence the ODE is

y� � 6y� � 12y	 � 8y � 0.

4. The first two functions result from a factor �2 � 1 of the characteristic equation, and
the other two solutions show that the roots i and �i are double roots, so that the
characteristic equation is

(�2 � 1)2 � 0
and the ODE is

yiv � 2y� � y � 0.

6. The given functions show that the characteristic equation is

(� � 2)(� � 1)(� � 1)(� � 2)� � �5 � 5�3 � 4� � 0.

This gives the ODE
yv � 5y� � 4y	 � 0.

8. The characteristic equation is quadratic in 
 � �2. The roots are


 � � �� � 100� � � � y

The roots of this are � � �5 and �2. Hence a general solution is

y � c1e�2x � c2e2x � c3e�5x � c4e5x.

10. The characteristic equation is

16(�4 � 1_
2�2 � _1

16) � 16(�2 � 1_
4)2 � 0.

It has the double roots � � �1_
2. This gives the general solution

y � (c1 � c2x)ex/2 � (c3 � c4x)e�x/2.

12. The characteristic equation is

�4 � 3�2 � 4 � (�2 � 1)(�2 � 4) � 0.

Its roots are �1 and �2i. Hence the corresponding real general solution is

y � c1ex � c2e�x � c3 cos 2x � c4 sin 2x.

14. The particular solution, solving the initial value problem, is

y � 4e�x � 5e�x/2 cos 3x.

From it, the general solution is obvious.

16. y � ex(_516 cos x � _3
16 sin x) � e�x(_316 cos x � _23

16 sin x)

18. y � 10e�4x(cos 1.5x � sin 1.5x) � 0.05e0.5x

20. Project. (a) Divide the characteristic equation by � � �1 if e�1x is known.

(b) The idea is the same as in Sec. 2.1.

(c) We first produce the standard form because this is the form under which the
equation for z was derived. Division by x3 gives

y� � y� � ( � 1)y	 � ( � )y � 0.
1
�
x

6
�
x3

6
�
x2

3
�
x

50/2.

8/2.

21
�
2

29
�
2

292

�
4

29
�
2
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With y1 � x, y	1 � 1, y�1 � 0, and the coefficients p1 and p2 from the standard equation,
we obtain

xz� � [3 � (� )x]z	 � [2(� ) • 1 � ( � 1)x]z � 0.

Simplification gives

xz� � (� � � x)z � x(z� � z) � 0.

Hence
z � c1ex � c�2e�x.

By integration we get the answer

y2 � x � z dx � (c1ex � c2e�x � c3)x.

SECTION 3.3. Nonhomogeneous Linear ODEs, page 116

Purpose. To show that the transition from n � 2 (Sec. 2.7) to general n introduces no
new ideas but generalizes all results and practical aspects in a straightforward fashion;
this refers to existence, uniqueness, and the need for a particular solution yp to get a general
solution in the form

y � yh � yp.

Comment on Elastic Beams
This is an important standard example of a fourth-order ODE that needs no lengthy
preparations and explanations.

Vibrating beams follow in Problem Set 12.3. This leads to PDEs, since time t comes
in as an additional variable.

Comment on Variation of Parameters
This method looks perhaps more complicated than it is; also the integrals may often be
difficult to evaluate, and handling the higher order determinants that occur may require
some more skill than the average student will have at this time. Thus it may be good to
discuss this matter only rather briefly.

SOLUTIONS TO PROBLEM SET 3.3, page 122

2. The characteristic equation is

�3 � 3�2 � 5� � 39 � (�2 � 6� � 13)(� � 3) � [(� � 3)2 � 4](� � 3) � 0.

Hence a general solution of the homogeneous ODE is

yh � e�3x(c1 cos 2x � c2 sin 2x) � c3e3x.

Using the method of undetermined coefficients, substitute yp � a cos x � b sin x,
obtaining

yp � �0.7 cos x � 0.1 sin x.

4. The characteristic equation is

�3 � 2�2 � 5� � 6 � (� � 1)(� � 2)(� � 3) � 0.

6
�
x

6
�
x

6
�
x2

3
�
x

3
�
x
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Hence a general solution of the homogeneous ODE is

yh � c1e�x � c2e2x � c3e�3x.

Since both terms on the right are solutions of the homogeneous ODE, the Modification
Rule for undetermined coefficients applies. Substitution into the nonhomogeneous
ODE gives the particular solution

yp � (7 � 10x)e�3x � (1_
2 � 3x)e�x.

6. The homogeneous Euler–Cauchy equation can be solved as usual by substituting xm.
The auxiliary equation has the roots �2, 0, 1; hence a general solution is

yh � c1x�2 � c2 � c3x.

This result can also be obtained by separating variables and integrating twice; that is,

y�/y� � �4/x, ln y� � �4 ln x � c, y� � c1x�4,

and so on. Variation of parameters gives

yp � 8ex(x�1 � x�2).

8. The characteristic equation of the homogeneous ODE

�3 � 2�2 � 9� � 18 � 0

has the roots �3, 2, and 3. Hence a general solution of the homogeneous ODE is

yh � c1e�3x � c2e2x � c3e3x.

This also shows that the function on the right is a solution of the homogeneous ODE.
Hence the Modification Rule applies, and the particular solution obtained is

yp � �0.2xe2x.

10. The characteristic equation of the homogeneous ODE is

�4 � 16 � (�2 � 4)(�2 � 4) � 0.

Hence a general solution of the homogeneous ODE is

yh � c1e�2x � c2e2x � c3 cos 2x � c4 sin 2x.

A particular solution yp of the nonhomogeneous ODE can be obtained by the method
of undetermined coefficients; this yp can be written in terms of exponential or
hyperbolic functions:

yp � �1.5(e�2x � e2x) � 2x(e�2x � e2x)

� �3 cosh 2x � 4x sinh 2x.

Applying the initial conditions, we obtain the answer

y � 4e�2x � 16 sin 2x � yp,

from which we cannot immediately recognize a basis of solutions. Of course, when
sin 2x occurs, cos 2x must be in the basis. But e2x remains hidden and cannot be seen
from the answer.

12. The characteristic equation is quadratic in �2, the roots being �5, �1, 1, 5. The right
side requires a quadratic polynomial whose coefficients can be determined by
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substitution. Finally, the initial conditions are used to determine the four arbitrary
constants in the general solution of the nonhomogeneous ODE thus obtained. The
answer is

y � 5e�x � e�5x � 6.16 � 4x � 2x2.

Again, two of four possible terms resulting from the homogeneous ODE are not visible
in the answer. The student should recognize that all or some or none of the solutions
of a basis of the homogeneous ODE may be present in the final answer; this will
depend on the initial conditions, so the student should experiment a little with this
problem to see what is going on.

14. The method of undetermined coefficients gives

yp � 0.08 cos x � 0.04 sin x.

A basis of solutions of the homogeneous ODE is e�2x, e2x, ex/2. From this and the
initial conditions we obtain the answer

y � 0.11e�2x � 0.15e2x � 0.96ex/2 � yp

in which all three basis functions occur.

16. The first equation has as a general solution

y � (c1 � c2x � c3x2)e4x � _8
105x7/2e4x.

Hence in cases such as this, one can try

yp � x1/2(a0 � a1x � a2x2 � a3x3)e4x.

One can now modify the right side systematically and see how the solution changes.
The second ODE has as a general solution

y � c1x�2 � c2x � c3x3 � _1
216x(18(ln �x�)2 � 6 ln �x� � 7).

This shows that undetermined coefficients would not be suitable—the function on the
right gives no clue of what yp may look like.

Of course, the dependence on the left side also remains to be explored.

SOLUTIONS TO CHAP. 3 REVIEW QUESTIONS AND PROBLEMS, page 122

6. The characteristic equation is

�3 � 6�2 � 18� � 40 � [(� � 1)2 � 9](� � 4) � 0.

Hence a general solution is

y � c1e�4x � e�x(c2 cos 3x � c3 sin 3x).

8. The characteristic equation is quadratic in �2; namely,

(�2 � 1)(�2 � 9) � 0.

Hence a general solution is

y � c1 cos x � c2 sin x � c3 cos 3x � c4 sin 3x.

10. The characteristic equation has the triple root �1 because it is

(� � 1)3 � 0.
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Hence a general solution of the homogeneous ODE is

yh � (c1 � c2x � c3x2)e�x.

The method of undetermined coefficients gives the particular solution

yp � x2 � 6x � 12.

12. The characteristic equation is

�2(� � 2)(� � 4) � 0.

Hence a general solution of the homogeneous ODE is

yh � c1 � c2x � c3e4x � c4e�2x.

The method of undetermined coefficients gives the particular solution of the
nonhomogeneous ODE in the form

yp � 0.3 cos 2x � 0.1 sin 2x.

14. The auxiliary equation of the homogeneous ODE

x3y� � ax2y� � bxy	 � cy � 0
is

m(m � 1)(m � 2) � am(m � 1) � bm � c

� m3 � (a � 3)m2 � (b � a � 2)m � c � 0.

In our equation, a � �3, b � 6, and c � �6. Accordingly, the auxiliary equation
becomes

m3 � 6m2 � 11m � 6 � (m � 1)(m � 2)(m � 3) � 0.

Hence a general solution of the homogeneous ODE is

yh � c1x � c2x2 � c3x3.

Variation of parameters gives the particular solution

yp � �0.5x�2.

16. The characteristic equation of the ODE is

�3 � 2�2 � 4� � 8 � (� � 2)(�2 � 4) � 0.

Hence a general solution is

yh � c1e2x � c2 cos 2x � c3 sin 2x.

Using the initial conditions, we obtain the particular solution

y � 3e2x � 4 cos 2x � 12 sin 2x.

18. The characteristic equation of the homogeneous ODE is

�(�2 � 25) � 0.

Hence a general solution of the homogeneous ODE is

yh � c1 � c2 cos 5x � c3 sin 5x.
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Using cos2 x � 1_
2(1 � cos 2x), we can apply the method of undetermined coefficients

to obtain a particular solution of the nonhomogeneous ODE in the form

yp � _16
25x � _2

39 sin 8x.

Finally, from the initial conditions we obtain the answer

y � � sin 5x � yp.

20. We can use the formula in the solution of Prob. 14,

m3 � (a � 3)m2 � (b � a � 2)m � c � 0,

where, in our present ODE, a � 5, b � 2, and c � �2. Hence this formula becomes

m3 � 2m2 � m � 2 � (m � 1)(m � 1)(m � 2) � 0

and gives the basis of solutions x, x�1, x�2. Variation of parameters gives the particular
solution of the nonhomogeneous ODE

yp � 1.6x3/2.

From this and the initial conditions we obtain the answer

y � 5x�2 � 4x � 1.6x3/2.

224
�
4875
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CHAPTER 4 Systems of ODEs. Phase Plane. 
Qualitative Methods

Major Changes

This chapter was completely rewritten in the previous edition, on the basis of suggestions
by instructors who have taught from it and my own recent experience. The main reason
for rewriting was the increasing emphasis on linear algebra in our standard curricula, so
that we can expect that students taking material from Chap. 4 have at least some working
knowledge of 2 � 2 matrices.

Accordingly, Chap. 4 makes modest use of 2 � 2 matrices. n � n matrices are mentioned
only in passing and are immediately followed by illustrative examples of systems of two
ODEs in two unknown functions, involving 2 � 2 matrices only. Section 4.2 and the
beginning of Sec. 4.3 are intended to give the student the impression that for first-order
systems, one can develop a theory that is conceptually and structurally similar to that in
Chap. 2 for a single ODE. Hence if the instructor feels that the class may be disturbed by
n � n matrices, omission of the latter and explanation of the material in terms of two
ODEs in two unknown functions will entail no disadvantage and will leave no gaps of
understanding or skill.

To be completely on the safe side, Sec. 4.0 is included for reference, so that the
student will have no need to search through Chap. 7 or 8 for a concept or fact needed in
Chap. 4.

Basic throughout Chap. 4 is the eigenvalue problem (for 2 � 2 matrices), consisting
first of the determination of the eigenvalues �1, �2 (not necessarily numerically distinct)
as solutions of the characteristic equation, that is, the quadratic equation

j j � (a11 � �)(a22 � �) � a12a21

� �2 � (a11 � a22)� � a11a22 � a12a21 � 0,

and then an eigenvector corresponding to �1 with components x1, x2 from

(a11 � �1)x1 � a12x2 � 0

and an eigenvector corresponding to �2 from

(a11 � �2)x1 � a12x2 � 0.

It may be useful to emphasize early that eigenvectors are determined only up to a nonzero
factor and that in the present context, normalization (to obtain unit vectors) is hardly of
any advantage.

If there are students in the class who have not seen eigenvalues before (although the
elementary theory of these problems does occur in every up-to-date introductory text on
beginning linear algebra), they should not have difficulties in readily grasping the meaning
of these problems and their role in this chapter, simply because of the numerous examples
and applications in Sec. 4.3 and in later sections.

Section 4.5 includes three famous applications, namely, the pendulum and van der
Pol equations and the Lotka–Volterra predator–prey population model.

a12

a22 � �

a11 � �

a21
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SECTION 4.0. Basics of Matrices and Vectors, page 124

Purpose. This section is for reference and review only, the material being restricted to
what is actually needed in this chapter, to make it self-contained.

Main Content

Matrices, vectors

Algebraic matrix operations

Differentiation of vectors

Eigenvalue problems for 2 � 2 matrices

Important Concepts and Facts

Matrix, column vector and row vector, multiplication

Linear independence

Eigenvalue, eigenvector, characteristic equation

Some Details on Content
Most of the material is explained in terms of 2 � 2 matrices, which play the major role
in Chap. 4; indeed, n � n matrices for general n occur only briefly in Sec. 4.2 and at the
beginning in Sec. 4.3. Hence the demand of linear algebra on the student in Chap. 4 will
be very modest, and Sec. 4.0 is written accordingly.

In particular, eigenvalue problems lead to quadratic equations only, so that nothing
needs to be said about difficulties encountered with 3 � 3 or larger matrices.

Example 1. Although the later sections include many eigenvalue problems, the complete
solution of such a problem (the determination of the eigenvalues and corresponding
eigenvectors) is given in Sec. 4.0.

SECTION 4.1. Systems of ODEs as Models, page 130

Purpose. In this section the student will gain a first impression of the importance of
systems of ODEs in physics and engineering and will learn why they occur and why they
lead to eigenvalue problems.

Main Content

Mixing problem

Electrical network

Conversion of single equations to systems (Theorem 1)

The possibility of switching back and forth between systems and single ODEs is practically
quite important because, depending on the situation, the system or the single ODE will
be the better source for obtaining the information sought in a specific case.
Background Material. Secs. 2.4, 2.8.
Short Courses. Take a quick look at Sec. 4.1, skip Sec. 4.2 and the beginning of Sec. 4.3,
and proceed directly to solution methods in terms of the examples in Sec. 4.3.

Some Details on Content
Example 1 extends the physical system in Sec. 1.3, consisting of a single tank, to a system
of two tanks. The principle of modeling remains the same. The problem leads to a typical
eigenvalue problem, and the solutions show typical exponential increases and decreases.
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Example 2 leads to a nonhomogeneous first-order system (a kind of system to be
considered in Sec. 4.6). The vector g on the right in (5) causes the term �3 in I1 but has
no effect on I2, which is interesting to observe. If time permits, one could add a little
discussion of particular solutions corresponding to different initial conditions.

Reduction of single equations to systems (Theorem 1) should be emphasized. Example
3 illustrates it, and further applications follow in Sec. 4.5. It helps to create a “uniform”
theory centered around first-order systems, along with the possibility of reducing higher
order systems to first order.

SOLUTIONS TO PROBLEM SET 4.1, page 135

2. The two balance equations (Inflow minus Outflow) change to

y�1 � 0.004y2 � 0.02y1

y�2 � 0.02y1 � 0.004y2

where 0.004 appears because we divide through the content of the new tank, which
is five times that of the old T2. Ordering the system by interchanging the two terms
on the right in the first equation and writing the system as a vector equation, we have

y� � Ay, where A � [ � ] .

The characteristic polynomial is �2 � 0.024� � �(� � 0.024). Hence the eigenvalues
are 0 (as before) and �0.024. Eigenvectors can be obtained from the first component
of the vector equation Ax � �x; that is,

�0.02x1 � 0.004x2 � �x1.

For � � �1 � 0 this is 0.02x1 � 0.004x2, say, x1 � 1, x2 � 5. For � � �2 � �0.024
this is �0.02x1 � 0.004x2 � �0.024x1. This simplifies to

0.004x1 � 0.004x2 � 0. A solution is x1 � 1, x2 � �1.

Hence a general solution of the system of ODEs is

y � c1 [ ] � c2 [ ]e�0.024t.

For t � 0 this becomes, using the initial conditions y1(0) � 0, y2(0) � 150,

y(0) � [ ] � [ ] . Solution: c1 � 25, c2 � �25.

This gives the particular solution

y � 25 [ ] � 25 [ ]e�0.024t.

The situation described in the answer to Example 1 can no longer be achieved with
the new tank, because the limits are 25 lb and 125 lb, as the particular solution shows.

1

�1

1

5

0

150

c1 � c2

5c1 � c2

1

�1

1

5

0.004

�0.004

�0.02

0.02

Instructor’s Manual 69

im04.qxd  9/21/05  11:08 AM  Page 69



4. With

a �

we can write the system that models the process in the following form:

y�1 � ay2 � ay1

y�2 � ay1 � ay2,

ordered as needed for the proper vector form

y�1 � �ay1 � ay2

y�2 � ay1 � ay2.

In vector form,

y� � Ay, where A � [ ] .

The characteristic equation is

(� � a)2 � a2 � �2 � 2a� � 0.

Hence the eigenvalues are 0 and �2a. Corresponding eigenvectors are

[ ] and [ ]
respectively. The corresponding “general solution” is

y � c1 [ ] � c2 [ ]e�2at.

This result is interesting. It shows that the solution depends only on the ratio a, not
on the tank size or the flow rate alone. Furthermore, the larger a is, the more rapidly
y1 and y2 approach their limit.

The term “general solution” is in quotation marks because this term has not yet
been defined formally, although it is clear what is meant.

6. The matrix of the system is

A � Y � � Z .

The characteristic polynomial is

�3 � 0.08�2 � 0.0012� � �(� � 0.02)(� � 0.06).

This gives the eigenvalues and corresponding eigenvectors

�1 � 0, x(1) � Y Z , �2 � �0.02, x(2) � Y Z , �3 � �0.06, x(3) � Y Z .
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Hence a “general solution” is

y � c1 Y Z � c2 Y Z e�0.02t � c3 Y Z e�0.06t.

We use quotation marks since the concept of a general solution has not yet been
defined formally, although it is clear what is meant.

8. R1 � 8 changes the first ODE to

I�1 � �8I1 � 8I2 � 12.

R1 � 8 and R2 � 12 change the second ODE to

12I2 � 8(I2 � I1) � 4�I2 � 0.

By differentiation and simplification,

20I�2 � 8I�1 � 4I2 � 0.

Divide by 20 and get rid of I�1 by using the first ODE,

I�2 � 0.4(�8I1 � 8I2 � 12) � 0.2I2 � 0.

Simplify and order terms to get

I�2 � �3.2I1 � 3.0I2 � 4.8.

In vector form this gives

J� � AJ � g � [ ][ ] � [ ] .

The eigenvalues are �1 � �4.656 and �2 � �0.3436 (rounded values). Corresponding
eigenvectors are

x(1) � [ ] and x(2) � [ ] .

From these we can construct a “general solution” of the homogeneous system. A
“particular solution” Jp of the nonhomogeneous system is suggested by the constant
vector g, namely, to try constant

Jp � [ ] .

Then J�p � 0, and substitution into the formula for J� gives

J� � AJp � g � 0,
in components,

�8a1 � 8a2 � �12

�3.2a1 � 3.0a2 � �4.8.

The solution is a1 � 1.5, a2 � 0. Hence the answer is

J � c1 [ ] e�4.656t � c2 [ ] e�0.3436t � [ ] .
1.5

0

1

0.9570

1

0.4180

a1

a2

1

0.9570

1
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12
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1
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1

1
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�1

1

1
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10. The first ODE remains unchanged. The second is changed to

I�2 � 0.4I�1 � 0.54I2.

Substitution of the first ODE into the new second one gives

I�2 � �1.6I1 � 1.06I2 � 4.8.

The matrix of the new system is

A � [ ] .

Its eigenvalues are �1.5 and �1.44. Corresponding eigenvectors are

x(1) � [ ] and x(2) � [ ] .

Hence the corresponding general solution of the homogeneous system is

Jh � c1x(1)e�1.5t � c2x(2)e�1.44t.

A particular solution of the nonhomogeneous system is obtained as in Example 2 from

[ ][ ] � [ ] � 0. Solution: a � [ ] .

Hence a general solution of the nonhomogeneous system is

J � c1 [ ] e�1.5t � c2 [ ] e�1.44t � [ ] .

From this and the initial conditions we have

The solution is c1 � �128, c2 � 125.
12. The system is

The matrix has the eigenvalues 4 and �6, as can be seen from the characteristic
polynomial

�2 � 2� � 24 � (� � 4)(� � 6).

Corresponding eigenvectors are [1 4]T and [1 �6]T. A general solution is

y1 � c1e4t � c2e�6t � y

and its derivative is

y2 � 4c1e4t � 6c2e�6t � y�.

14. y�1 � y2, y�2 � �50y1 � 15y2. The matrix is

A � [ ] .
1

�15

0

�50

y2.

� 2y2.

y�1 �

y�2 � 24y1

�3

0.

�

�

c2

0.64c2

�

�

c1

0.625c1

3
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1

0.64
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The characteristic equation is �2 � 15� � 50 � (� � 5)(� � 10) � 0. The roots are
�5 and �10. Eigenvectors are

x(1) � [ ] and x(2) � [ ] .

The corresponding general solution is

y � c1 [ ] e�5t � c2 [ ] e�10t.

16. Team Project. (a) From Sec. 2.4 we know that the undamped motions of a mass on
an elastic spring are governed by my� � ky � 0 or

my� � �ky

where y � y(t) is the displacement of the mass. By the same arguments, for the two
masses on the two springs in Fig. 80 we obtain the linear homogeneous system

(11)

for the unknown displacements y1 � y1(t) of the first mass m1 and y2 � y2(t) of the
second mass m2. The forces acting on the first mass give the first ODE, and the forces
acting on the second mass give the second ODE. Now m1 � m2 � 1, k1 � 12, and
k2 � 8 in Fig. 80 so that by ordering (11) we obtain

or, written as a single vector equation,

y� � [ ] � [ ][ ] .

(b) As for a single equation, we try an exponential function of t,

y � xe	t. Then y� � 	2xe	t � Axe	t.

Writing 	2 � � and dividing by e	t, we get

Ax � �x.
Eigenvalues and eigenvectors are

�1 � �4, x(1) � [ ] and �2 � �24, x(2) � [ ] .

Since 	 � ��� and ��4� � 
2i and ��24� � 
i�24�, we get

y � x(1)(c1e2it � c2e�2it) � x(2)(c3ei�24� t � c4e�i�24� t)

or, by (10) in Sec. 2.2,

y � a1x(1) cos 2t � b1x(1) sin 2t � a2x(2) cos �24� t � b2x(2) sin �24� t

2
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where a1 � c1 � c2, b1 � i(c1 � c2), a2 � c3 � c4, b2 � i(c3 � c4). These four
arbitrary constants can be specified by four initial conditions. In components, this
solution is

y1 � a1 cos 2t � b1 sin 2t � 2a2 cos �24� t � 2b2 sin �24� t

y2 � 2a1 cos 2t � 2b1 sin 2t � a2 cos �24� t � b2 sin �24� t.

(c) The first two terms in y1 and y2 give a slow harmonic motion, and the last two
a fast harmonic motion. The slow motion occurs if at some instant both masses are
moving downward or both upward. For instance, if a1 � 1 and all other arbitrary
constants are zero, we get y1 � cos 2t, y2 � 2 cos 2t; this is an example of such a
motion. The fast motion occurs if at each instant the two masses are moving in opposite
directions, so that one of the two springs is extended, whereas the other is
simultaneously compressed. For instance, if a2 � 1 and all other constants are zero,
we have y1 � 2 cos �24� t, y2 � �cos �24� t; this is a fast motion of the indicated
type. Depending on the initial conditions, one or the other motion will occur, or a
superposition of both.

SECTION 4.2. Basic Theory of Systems of ODEs, page 136

Purpose. This survey of some basic concepts and facts on nonlinear and linear systems
is intended to give the student an impression of the conceptual and structural similarity
of the theory of systems to that of single ODEs.

Content, Important Concepts

Standard form of first-order systems

Form of corresponding initial value problems

Existence of solutions

Basis, general solution, Wronskian

Background Material. Sec. 2.6 contains the analogous theory for single equations. See
also Sec. 1.7.
Short Courses. This section may be skipped, as mentioned before.

SECTION 4.3. Constant-Coefficient Systems. Phase Plane Method, page 139

Purpose. Typical examples show the student the rich variety of pattern of solution curves
(trajectories) near critical points in the phase plane, along with the process of actually
solving homogeneous linear systems. This will also prepare the student for a good
understanding of the systematic discussion of critical points in the phase plane in Sec. 4.4.

Main Content

Solution method for homogeneous linear systems

Examples illustrating types of critical points

Solution when no basis of eigenvectors is available (Example 6)

Important Concepts and Facts

Trajectories as solution curves in the phase plane

Phase plane as a means for the simultaneous (qualitative) discussion of a large number
of solutions

Basis of solutions obtained from basis of eigenvectors
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Background Material. Short review of eigenvalue problems from Sec. 4.0, if needed.

Short Courses. Omit Example 6.

Some Details on Content
In addition to developing skill in solving homogeneous linear systems, the student is
supposed to become aware that it is the kind of eigenvalues that determine the type of
critical point. The examples show important cases. (A systematic discussion of all cases
follows in the next section.)

Example 1. Two negative eigenvalues give a node.
Example 2. A real double eigenvalue gives a node.
Example 3. Real eigenvalues of opposite sign give a saddle point.
Example 4. Pure imaginary eigenvalues give a center, and working in complex is

avoided by a standard trick, which can also be useful in other contexts.
Example 5. Genuinely complex eigenvalues give a spiral point. Some work in complex

can be avoided, if desired, by differentiation and elimination. The first ODE is

(a) y2 � y�1 � y1.

By differentiation and from the second ODE as well as from (a),

y�1 � �y�1 � y�2 � �y�1 � y1 � (y�1 � y1) � �2y�1 � 2y1.

Complex solutions e(�1
i)t give the real solution

y1 � e�t(A cos t � B sin t).

From this and (a) there follows the expression for y2 given in the text.
Example 6 shows that the present method can be extended to include cases when A

does not provide a basis of eigenvectors, but then becomes substantially more involved.
In this way the student will recognize the importance of bases of eigenvectors, which also
play a role in many other contexts.

SOLUTIONS TO PROBLEM SET 4.3, page 146

2. The eigenvalues are 5 and �5. Eigenvectors are [1 1]T and [1 �1]T, respectively.
Hence a general solution is

y1 � c1e5t � c2e�5t

y2 � c1e5t � c2e�5t.

4. The eigenvalues are 13.5 and 4.5. Eigenvectors are [3 1]T and [3 �1]T,
respectively. Hence a general solution is

y1 � 3c1e13.5t � 3c2e4.5t

y2 � c1e13.5t � c2e4.5t.

6. The eigenvalues are complex, 2 � 2i and 2 � 2i. Corresponding complex eigenvectors
are [1 �i]T and [1 i]T, respectively. Hence a complex general solution is

y1 � c1e(2�2i)t � c2e(2�2i)t

y2 � �ic1e(2�2i)t � ic2e(2�2i)t.
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From this and the Euler formula we obtain a real general solution

y1 � e2t[(c1 � c2) cos 2t � i(c1 � c2) sin 2t]

� e2t(A cos 2t � B sin 2t),

y2 � e2t[(�ic1 � ic2) cos 2t � i(�ic1 � ic2) sin 2t]

� e2t(�B cos 2t � A sin 2t)

where A � c1 � c2 and B � i(c1 � c2).

8. The eigenvalue of algebraic multiplicity 2 is 9. An eigenvector is [1 �1]T. There is
no basis of eigenvectors. A first solution is

y(1) � [ ] e9t.

A second linearly independent solution is (see Example 6 in the text)

y(2) � [ ] te9t � [ ] e9t

with [u1 u2]T determined from

(A � 9I)u � [ ][ ] � [ ] .

Thus u1 � u2 � �1. We can take u1 � 0, u2 � �1. This gives the general solution

y � c1y(1) � c2y(2) � (c1 � c2t) [ ] e9t � c2 [ ] e9t.

10. The eigenvalues are 3 and �1. Eigenvectors are [1 2]T and [1 �2]T, respectively.
Hence a general solution is

y � c1 [ ] e3t � c2 [ ] e�t.

From this and the initial condition we obtain

y(0) � c1 [ ] � c2 [ ] � [ ] .

Hence c1 � c2 � 1, c1 � c2 � 3, c1 � 2, c2 � �1. The answer is

y1 � 2e3t � e�t, y2 � 4e3t � 2e�t.

12. The eigenvalues are 5 and 1. Eigenvectors are [1 1]T and [1 �1]T, respectively.
A general solution is

y � c1 [ ] e5t � c2 [ ] et.

From this and the initial conditions we obtain c1 � c2 � 7, c1 � c2 � 7, c1 � 7, 
c2 � 0. This gives the answer

y1 � 7e5t, y2 � 7e5t.
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14. The eigenvalues are complex, 1 � i and 1 � i. Eigenvectors are [2 � i 1]T and 
[2 � i 1]T, respectively. Using the Euler formula, we get from this the general
solution

y � et(c1 [ ] (cos t � i sin t) � c2 [ ] (cos t � i sin t)) .

In terms of components this equals

y1 � et[(c1(2 � i) � c2(2 � i)) cos t � (ic1(2 � i) � ic2(2 � i)) sin t]

y2 � et[(c1 � c2) cos t � (ic1 � ic2) sin t].

Setting A � c1 � c2 and B � i(c1 � c2), we can write this in the form

y1 � et[(2A � B) cos t � (A � 2B) sin t]

y2 � et[A cos t � B sin t].

From this and the initial conditions we obtain y1(0) � 2A � B � 7, y2(0) � A � 2,
B � �3. The answer is

y1 � et(7 cos t � 4 sin t)

y2 � et(2 cos t � 3 sin t).

16. The system is

(a) y�1 � 8y1 � y2

(b) y�2 � y1 � 10y2.

10(a) � (b) gives 10y�1 � y�2 � 81y1; hence

(c) y�2 � �10y�1 � 81y1.

Differentiating (a) and using (c) gives

0 � y�1 � 8y�1 � y�2
� y�1 � 8y�1 � 10y�1 � 81y1

� y�1 � 18y�1 � 81y1.
A general solution is

y1 � (c1 � c2t)e9t.

From this and (a) we obtain

y2 � �y�1 � 8y1 � [�c2 � 9(c1 � c2t) � 8(c1 � c2t)]e9t

� (�c2 � c1 � c2t)e9t,

in agreement with the answer to Prob. 8.

18. The restriction of the inflow from outside to pure water is necessary to obtain a
homogeneous system. The principle involved in setting up the model is

Time rate of change � Inflow � Outflow.

For Tank T1 this is (see Fig. 87)

y�1 � (48 � 0 � y2) � y1.
64
�
400

16
�
400

2 � i

1

2 � i

1
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For Tank T2 it is

y�2 � y1 � y2.

Performing the divisions and ordering terms, we have

The eigenvalues of the matrix of this system are �0.24 and �0.08. Eigenvectors are
[1 �2]T and [1 2]T, respectively. The corresponding general solution is

y � c1[ ]e�0.24t � c2[ ]e�0.08t.

The initial conditions are y1(0) � 100, y2(0) � 40. This gives c1 � 40, c2 � 60. In
components the answer is

y1 � 40e�0.24t � 60e�0.08t

y2 � �80e�0.24t � 120e�0.08t.

Both functions approach zero as t * �, a reasonable result, because pure water flows
in and mixture flows out.

SECTION 4.4. Criteria for Critical Points. Stability, page 147

Purpose. Systematic discussion of critical points in the phase plane from the standpoints
of both the geometrical shapes of trajectories and stability.

Main Content

Table 4.1 for the types of critical points

Table 4.2 for the stability behavior

Stability chart (Fig. 91), giving Tables 4.1 and 4.2 graphically

Important Concepts

Node, saddle point, center, spiral point

Stable and attractive, stable, unstable

Background Material. Sec. 2.4 (needed in Example 2).
Short Courses. Since all these types of critical points already occurred in the previous
section, one may perhaps present just a short discussion of stability.

Some Details on Content
The types of critical points in Sec. 4.3 now recur, and the discussion shows that they
exhaust all possibilities. With the examples of Sec. 4.3 fresh in mind, the student will
acquire a deeper understanding by discussing the stability chart and by reconsidering
those examples from the viewpoint of stability. This gives the instructor an opportunity
to emphasize that the general importance of stability in engineering can hardly be
overestimated.

Example 2, relating to the familiar free vibrations in Sec. 2.4, gives a good illustration
of stability behavior, namely, depending on c, attractive stability, stability (and instability
if one includes “negative damping,” with c � 0, as it will recur in the next section in
connection with the famous van der Pol equation).
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SOLUTIONS TO PROBLEM SET 4.4, page 150

2. p � 7, q � 12 
 0, � � 49 � 48 
 0, unstable node, y1 � c1e4t, y2 � c2e3t

4. p � �2, q � 5, � � 4 � 20 � 0, stable and attractive spiral. The components of a
general solution are

y1 � c1e(�1�2i)t � c2e(�1�2i)t

� e�t((c1 � c2) cos 2t � i(c1 � c2) sin 2t)

� e�t(A cos 2t � B sin 2t),

y2 � (�1 � 2i)c1e(�1�2i)t � (�1 � 2i)c2e(�1�2i)t

� e�t((�c1 � c2 � 2ic1 � 2ic2) cos 2t � i(2ic1 � 2ic2 � c1 � c2) sin 2t)

� e�t((�A � 2B) cos 2t � (2A � B) sin 2t)

where A � c1 � c2 and B � i(c1 � c2).

6. p � �7, q � �78, saddle point, unstable,

y1 � c1e�13t � c2e6t

y2 � �1.4c1e�13t � 0.5c2e6t

8. p � 0, q � 16, center, stable, eigenvalues 4i, �4i, eigenvectors [1 �0.6 � 0.8i]T

and [1 �0.6 � 0.8i]T, respectively, solution:

y1 � c1e4it � c2e�4it � A cos 4t � B sin 4t

y2 � (�0.6 � 0.8i)c1e4it � (�0.6 � 0.8i)c2e�4it

� (�0.6 � 0.8i)c1(cos 4t � i sin 4t) � (�0.6 � 0.8i)c2(cos 4t � i sin 4t)

� (�0.6(c1 � c2) � 0.8i(c1 � c2)) cos 4t

� (�0.6i(c1 � c2) � 0.8(c1 � c2)) sin 4t

� (�0.6A � 0.8B) cos 4t � (0.6B � 0.8A) sin 4t

where A � c1 � c2 and B � i(c1 � c2).

10. y1 � y � c1e�5t � c2, y2 � y� � �5c1e�5t � �5(y1 � c2), parallel straight lines
5y1 � y2 � const

12. y1 � y � A cos 1_
4t � B sin 1_

4t, y2 � y� � �1_
4A sin 1_

4t � 1_
4B cos 1_

4t; hence

y1
2 � 16y2

2 � (A2 � B2)(cos2 1_
4t � sin2 1_

4t) � const.

Ellipses.
14. y�1 � �dy1/d�, y�2 � �dy2/d�, reversal of the direction of motion. To get the usual

form, we have to multiply the transformed system by �1. This amounts to multiplying
the matrix by �1, changing p into �p (changing stability into instability and
conversely when p � 0) but leaving q and � unchanged.

16. We have p � 0 and q 
 0. We get p� � 2k � 0 and

q� � (a11 � k)(a22 � k) � a12a21 � q � k(a11 � a22) � k2 � q � k2 
 0

and
�
�

� p�2 � 4q� � (2k)2 � 4(q � k2) � �4q � 0.

This gives a spiral point, which is stable and attractive if k � 0 and unstable if k 
 0.
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SECTION 4.5. Qualitative Methods for Nonlinear Systems, page 151

Purpose. As a most important step, in this section we extend phase plane methods from
linear to nonlinear systems and nonlinear ODEs.

Main Content

Critical points of nonlinear systems

Their discussion by linearization

Transformation of single autonomous ODEs

Applications of linearization and transformation techniques

Important Concepts and Facts

Linearized system (3), condition for applicability

Linearization of pendulum equations

Self-sustained oscillations, van der Pol equation

Short Courses. Linearization at different critical points seems the main issue that the
student is supposed to understand and handle practically. Examples 1 and 2 may help
students to gain skill in that technique. The other material can be skipped without loss of
continuity.

Some Details on Content
This section is very important, because from it the student should learn not only techniques
(linearization, etc.) but also the fact that phase plane methods are particularly powerful
and important in application to systems or single ODEs that cannot be solved explicitly.
The student should also recognize that it is quite surprising how much information these
methods can give. This is demonstrated by the pendulum equation (Examples 1 and 2)
for a relatively simple system, and by the famous van der Pol equation for a single ODE,
which has become a prototype for self-sustained oscillations of electrical systems of
various kinds.

We also discuss the famous Lotka–Volterra predator–prey model.
For the Rayleigh and Duffing equations, see the problem set.

SOLUTIONS TO PROBLEM SET 4.5, page 158

2. Writing the system in the form

y�1 � y1(4 � y1)

y�2 � y2

we see that the critical points are (0, 0) and (4, 0). For (0, 0) the linearized system is

y�1 � 4y1

y�2 � y2.
The matrix is

[ ] .

Hence p � 5, q � 4, � � 25 � 16 � 9. This shows that the critical point at (0, 0)
is an unstable node.

0

1

4

0
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For (4, 0) the translation to the origin is

y1 � 4 � y�1, y2 � y�2.

This gives the transformed system

y��1 � (4 � y�1)(�y�1)

y��2 � y�2

and the corresponding linearized system

y��1 � �4y�1

y��2 � y�2.

Its matrix is

[ ] .

Hence p� � �3, q� � �4. Thus the critical point at (4, 0) is a saddle point, which is
always unstable.

4. Writing the system as

(a) y�1 � �3y1 � y2(1 � y2)

(b) y�2 � y1 � 3y2

we see that a critical point is at (0, 0). A second critical point is obtained by noting
that the right side of (b) is zero when y1 � 3y2. Substitution into (a) gives 
�9y2 � y2(1 � y2), which is zero when y2 � �8. Then y1 � 3y2 � �24. Hence a
second critical point it at (�24, �8).

At (0, 0) the linearized system is

y�1 � �3y1 � y2

y�2 � y1 � 3y2.
Its matrix is

[ ] .

Hence p � �6, q � 8, � � 36 � 32 � 4 
 0. The critical point at (0, 0) is a stable
and attractive node.

We turn to (�24, �8). The translation to the origin is

y1 � �24 � y�1, y2 � �8 � y�2.

The transformed system is

y��1 � �3(�24 � y�1) � (�8 � y�2)(1 � (�8 � y�2))

� �3y�1 � 17y�2 � y�2
2

y��2 � �24 � y�1 � 24 � 3y�2

� y�1 � 3y�2.

Its linearization is
y��1 � �3y�1 � 17y�2

y��2 � y�1 � 3y�2.

1

�3

�3

1

0

1

�4

0
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Its matrix is

[ ] .

Hence q� � �8. The critical point at (�24, �8) is a saddle point.
6. The system may be written

y�1 � y2(1 � y2)

y�2 � y1(1 � y1).

From this we see immediately that there are four critical points, at (0, 0), (0, 1), 
(1, 0), (1, 1).

At (0, 0) the linearized system is

y�1 � y2

y�2 � y1.
The matrix is

[ ] .

Hence p � 0, q � �1, so that we have a saddle point.
At (0, 1) the transformation is y1 � y�1, y2 � 1 � y�2. This gives the transformed system

y��1 � (1 � y�2)(�y�2)

y��2 � y�1(1 � y�1).
Linearization gives

with matrix [ ]
for which p� � 0, q� � 1, �� � �4, and we have a center.

At (1, 0) the transformation is y1 � 1 � y�1, y2 � y�2. The transformed system is

y��1 � y�2(1 � y�2)

y��2 � (1 � y�1)(�y�1).
Its linearization is

with matrix [ ]
for which p� � 0, q� � 1, �� � �4, so that we get another center.

At (1, 1) the transformation is

y1 � 1 � y�1, y2 � 1 � y�2.

The transformed system is
y��1 � (1 � y�2)(�y�2)

y��2 � (1 � y�1)(�y�1).
Linearization gives

with matrix [ ]
for which p� � 0, q� � �1, and we have another saddle point.

�1

0

0

�1

y��1 � �y�2

y��2 � �y�1

1

0

0

�1

y��1 �  y�2

y��2 � �y�1

�1

0

0

1

y��1 � �y�2

y��2 � y�1

1

0

0

1

17

�3

�3

1
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8. y�1 � y2, y�2 � y1(�9 � y1). (0, 0) is a critical point. The linearized system at (0, 0)
is

with matrix [ ]
for which p � 0 and q � 9 
 0, so that we have a center.

A second critical point is at (�9, 0). The transformation is

y1 � �9 � y�1, y2 � y�2.

This gives the transformed system

y��1 � y�2

y��2 � (�9 � y�1)(�y�1).
Its linearization is

with matrix [ ]
for which q� � �9 � 0, so that we have a saddle point.

10. The system is
y�1 � y2

y�2 � �sin y1.

The critical points occur at (
n�, 0), n � 0, 1, • • • , where the sine is zero and 
y2 � 0.

At (0, 0) the linearized system is
y�1 � y2

y�2 � �y1.
Its matrix is

[ ] .

Hence p � 0 and q � 1, so that we have a center. By periodicity, the points 
(
2n�, 0) are centers.

We consider (�, 0). The transformation is

y1 � � � y�1, y2 � y�2.

This gives the transformed system

y��1 � y�2

y��2 � �sin (� � y�1) � sin y�1.

Linearization gives the system
y��1 � y�2

y��2 � y�1.
The matrix is

[ ] .

Hence q� � �1. This is a saddle point. By periodicity the critical points at 
(� 
 2n�, 0) are saddle points.

1

0

0

1

1

0

0

�1

1

0

0

9

y��1 � y�2

y��2 � 9y�1

1

0

0

�9

y�1 � y2

y�2 � �9y1

Instructor’s Manual 83

im04.qxd  9/21/05  11:08 AM  Page 83



12. The system is
y�1 � y2

y�2 � �y1(2 � y1) � y2.

The critical points are (0, 0) and (2, 0). At (0, 0) the linearized system is

y�1 � y2

y�2 � �2y1 � y2.
Its matrix is

[ ] .

Hence p � �1, q � 2, � � 1 � 8 � 0. This gives a stable and attractive spiral point.
At (2, 0) the transformation is

y1 � 2 � y�1, y2 � y�2.

This gives the transformed system

y��1 � y�2

y��2 � �(2 � y�1)(�y�1) � y�2.
Its linearization is

y��1 �         y�2

y��2 � 2y�1 � y�2.
Its matrix is

[ ] .

Hence p� � �1, q� � �2 � 0. This gives a saddle point.
14. The system is

(a) y�1 � y2

(b) y�2 � 4y1 � y1
3.

Multiply the left side of (a) by the right side of (b) and the right side of (a) by the
left side of (b), obtaining

y2y�2 � (4y1 � y1
3)y�1.

Integrate and multiply by 2:

y2
2 � 4y1

2 � 1_
2y1

4 � c*.

Setting c* � c2/2 � 8, write this as

y2
2 � 1_

2(c � 4 � y1
2)(c � 4 � y1

2).

Some of these curves are shown in the figure.

16. The system is
y�1 � y2

y�2 � �2y2 � 4y1 � y1
3

� �y1(y1 � 2)(y1 � 2) � 2y2.

Hence the critical points are (0, 0), (2, 0), (�2, 0).

1

�1

0

2

1

�1

0

�2
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At (0, 0) the linearized system is

with matrix [ ] .

Hence p � �2, q � �4 � 0, which gives a saddle point.
At (2, 0) the transformation is y1 � 2 � y�1, y2 � y�2. This gives the system

y��1 � y�2

y��2 � �(2 � y�1)y�1(y�1 � 4) � 2y�2

linearized

with matrix [ ] .

Hence p� � �2, q� � 8, �� � 4 � 32 � 0. This gives a stable and attractive spiral
point.

At (�2, 0) the transformation is y1 � �2 � y��1, y2 � y��2. This gives the system

y���1 � y��2

y���2 � �(�2 � y��1)(�4 � y��1)y��1 � 2y��2.
Linearization gives

with matrix [ ]
as before, so that we obtain another stable and attractive spiral point.

Note the similarity to the situation in the case of the undamped and damped
pendulum.

18. A limit cycle is approached by trajectories (from inside and outside). No such approach
takes place for a closed trajectory.

20. Team Project. (a) Unstable node if � � 2, unstable spiral point if 2 
 � 
 0, center
if � � 0, stable and attractive spiral point if 0 
 � 
 �2, stable and attractive node
if � � �2.

1

�2

0

�8

y���1 � y��2

y���2 � �8y��1 � 2y��2

1

�2

0

�8

y��1 �            y�2

y��2 � �8y�1 � 2y�2

1

�2

0

4

y�1 � y2

y�2 � 4y1 � 2y2

Instructor’s Manual 85

y1

2–2 c = 3

c = 4

c = 5
y2

Section 4.5. Problem 14

im04.qxd  9/21/05  11:08 AM  Page 85



(c) As a system we obtain

(A) y�1 � y2

(B) y�2 � �(	0
2y1 � �y1

3).

The product of the left side of (A) and the right side of (B) equals the product of the
right side of (A) and the left side of (B):

y�2y2 � �(	0
2y1 � �y1

3)y�1.

Integration on both sides and multiplication by 2 gives

y2
2 � 	0

2y1
2 � 1_

2�y1
4 � const.

For positive � these curves are closed because then �y3 is a proper restoring term,
adding to the restoring due to the y-term. If � is negative, the term �y3 has the opposite
effect, and this explains why then some of the trajectories are no longer closed but
extend to infinity in the phase plane.

For generalized van der Pol equations, see e.g., K. Klotter and E. Kreyszig, On a
class of self-sustained oscillations. J. Appl. Math. 27(1960), 568–574.

SECTION 4.6. Nonhomogeneous Linear Systems of ODEs, page 159

Purpose. We now turn from homogeneous linear systems considered so far to solution
methods for nonhomogeneous systems.

Main Content

Method of undetermined coefficients

Modification for special right sides

Method of variation of parameters

Short Courses. Select just one of the preceding methods.

Some Details on Content
In addition to understanding the solution methods as such, the student should observe the
conceptual and technical similarities to the handling of nonhomogeneous linear ODEs in
Secs. 2.7�2.10 and understand the reason for this, namely, that systems can be converted
to single equations and conversely. For instance, in connection with Example 1 in this
section, one may point to the Modification Rule in Sec. 2.7, or, if time permits, establish
an even more definite relation by differentiation and elimination of y2,

y�1 � �3y�1 � y�2 � 12e�2t

� �3y�1 � (y1 � 3y2 � 2e�2t) � 12e�2t

� �3y�1 � y1 � 3(y�1 � 3y1 � 6e�2t) � 14e�2t

� �6y�1 � 8y1 � 4e�2t,

solving this for y1 and then getting y2 from the solution.

SOLUTIONS TO PROBLEM SET 4.6, page 162

2. We determine y(h). The matrix is

[ ] .
1

0

0

1
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It has the eigenvalues 1 and �1 with eigenvectors [1 1]T and [1 �1]T, respectively.
Hence

y1
(h) � c1et � c2e�t

y2
(h) � c1et � c2e�t.

We determine y( p) by the method of undetermined coefficients, starting from

y1
( p) � a1t � b1

y2
( p) � a2t � b2.

By differentiation, y( p)� � [a1 a2]T. Substitution into

y( p)� � Ay( p) � g
with g � [t �3t]T gives

a1 � a2t � b2 � t

a2 � a1t � b1 � 3t.

From the first equation, a2 � �1, b2 � a1. From the second equation, a1 � 3, 
b1 � a2. This gives the answer

y1 � c1et � c2e�t � 3t � 1

y2 � c1et � c2e�t � t � 3.

4. The matrix of the system has the eigenvalues 2 and �2. Eigenvectors are [1 1]T and
[1 �3]T, respectively. Hence a general solution of the homogeneous system is

y(h) � c1 [ ] e2t � c2 [ ] e�2t.

We determine y( p) by the method of undetermined coefficients, starting from

y( p) � [ ] .

Substituting this and its derivative into the given nonhomogeneous system, we obtain,
in terms of components,

�a1 sin t � b1 cos t � (a1 � a2) cos t � (b1 � b2) sin t � 5 cos t

�a2 sin t � b2 cos t � (3a1 � a2) cos t � (3b1 � b2) sin t � 5 sin t.

By equating the coefficients of the cosine and of the sine in the first of these two
equations we obtain

b1 � a1 � a2 � 5, �a1 � b1 � b2.

Similarly from the second equation,

b2 � 3a1 � a2, �a2 � 3b1 � b2 � 5

The solution is a1 � �1, b1 � 2, a2 � �2, b2 � �1. This gives the answer

y1 � c1e2t � c2e�2t � cos t � 2 sin t

y2 � c1e2t � 3c2e�2t � 2 cos t � sin t.

a1 cos t � b1 sin t

a2 cos t � b2 sin t

1

�3

1

1
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6. y(h) can be obtained from Example 5 in Sec. 4.3 in the form

y(h) � c1 [ ] e(�1�i)t � c2 [ ] e(�1�i)t

� [ ]
where A � c1 � c2 and B � i(c1 � c2).

y( p) is obtained by the method of undetermined coefficients, starting from 
y( p) � [a1 a2]Te�2t. Differentiation and substitution into the given nonhomogeneous
system gives, in components,

�2a1e�2t � (�a1 � a2)e�2t � e�2t

�2a2e�2t � (�a1 � a2)e�2t � e�2t.

Dropping e�2t, we have
�2a1 � �a1 � a2 � 1

�2a2 � �a1 � a2 � 1.

The solution is a1 � �1, a2 � 0. We thus obtain the answer

y1 � e�t(A cos t � B sin t) � e�2t

y2 � e�t(B cos t � A sin t).

It is remarkable that y2 is the same as for the homogeneous system.
8. The matrix of the homogeneous system

[ ]
has the eigenvalues 8 and �8 with eigenvectors [3 1]T and [1 3]T, respectively.
Hence a general solution of the homogeneous system is

y(h) � c1 [ ] e8t � c2 [ ] e�8t.

We determine a particular solution y( p) of the nonhomogeneous system by the method
of undetermined coefficients. We start from

y( p) � [ ] t2 � [ ] t � [ ] .

Differentiation and substitution gives, in terms of components,

2a1t � b1 � (10a1 � 6a2)t2 � (10b1 � 6b2)t � 10k1 � 6k2 � 10t2 � 10t � 10

2a2t � b2 � (6a1 � 10a2)t2 � (6b1 � 10b2)t � 6k1 � 10k2 � 6t2 � 20t � 4.

By equating the sum of the coefficients of t2 in each equation to zero we get

10a1 � 6a2 � 10 � 0

6a1 � 10a2 � 6 � 0.

k1

k2

b1

b2

a1

a2

1

3

3

1

�6

�10

10

6

e�t(A cos t � B sin t)

e�t(B cos t � A sin t)

1

�i

1

i
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The solution is a1 � 1, a2 � 0. Similarly for the terms in t we obtain

2a1 � 10b1 � 6b2 � 10

2a2 � 6b1 � 10b2 � 20.

The solution is b1 � 0, b2 � �2. Finally, for the constant terms we obtain

b1 � 10k1 � 6k2 � 10

b2 � 6k1 � 10k2 � 4.

The solution is k1 � �1, k2 � 0. The answer is y � y(h) � y( p) with y(h) given above
and

y( p) � [ ] .

12. The matrix of the homogeneous system

[ ]
has the eigenvalues 2i and �2i and eigenvectors [2 i]T and [2 �i]T, respectively.
Hence a complex general solution is

y(h) � c1 [ ] e2it � c2 [ ] e�2it.

By Euler’s formula this becomes, in components,

y1
(h) � (2c1 � 2c2) cos 2t � i(2c1 � 2c2) sin 2t

y2
(h) � (ic1 � ic2) cos 2t � (�c1 � c2) sin 2t.

Setting A � c1 � c2 and B � i(c1 � c2), we can write

y1
(h) � 2A cos 2t � 2B sin 2t

y2
(h) � B cos 2t � A sin 2t.

Before we can consider the initial conditions, we must determine a particular
solution y( p) of the given system. We do this by the method of undetermined
coefficients, setting

y1
( p) � a1et � b1e�t

y2
( p) � a2et � b2e�t.

Differentiation and substitution gives

a1et � b1e�t � 4a2et � 4b2e�t � 5et

a2et � b2e�t � �a1et � b1e�t � 20e�t.

Equating the coefficients of et on both sides, we get

a1 � 4a2 � 5, a2 � �a1, hence a1 � 1, a2 � �1.

Equating the coefficients of e�t, we similarly obtain

�b1 � 4b2, �b2 � �b1 � 20, hence b1 � �16, b2 � 4.

2

�i

2

i

4

0

0

�1

t2 � 1

�2t
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Hence a general solution of the given nonhomogeneous system is

y1 � 2A cos 2t � 2B sin 2t � et � 16e�t

y2 � B cos 2t � A sin 2t � et � 4e�t.

From this and the initial conditions we obtain

y1(0) � 2A � 1 � 16 � 1, y2(0) � B � 1 � 4 � 0.

The solution is A � 8, B � �3. This gives the answer (the solution of the initial
value problem)

y1 � 16 cos 2t � 6 sin 2t � et � 16e�t

y2 � �3 cos 2t � 8 sin 2t � et � 4e�t.

14. The matrix of the homogeneous system

[ ]
has the eigenvalues �1 and 2, with eigenvectors [1 1]T and [4 1]T, respectively.
Hence a general solution of the homogeneous system is

y(h) � c1 [ ] e�t � c2 [ ] e2t.

We determine a particular solution y( p) of the nonhomogeneous system by the method
of undetermined coefficients, starting from

y( p) � [ ] cos t � [ ] sin t.

Differentiation and substitution gives, in terms of components,

(1) �A1 sin t � B1 cos t � 3A1 cos t � 3B1 sin t � 4A2 cos t � 4B2 sin t � 20 cos t

(2)�A2 sin t � B2 cos t � A1 cos t � B1 sin t � 2A2 cos t � 2B2 sin t.

The coefficients of the cosine terms in (1) give

B1 � 3A1 � 4A2 � 20

and for the sine terms we get

�A1 � 3B1 � 4B2.

The coefficients of the cosine terms in (2) give

B2 � A1 � 2A2

and for the sine terms we get
�A2 � B1 � 2B2.

Hence A1 � �14, A2 � �6, B1 � 2, B2 � �2. Consequently, a general solution of
the given system is, in terms of components,

y1 � c1e�t � 4c2e2t � 14 cos t � 2 sin t

y2 � c1e�t � c2e2t � 6 cos t � 2 sin t.

B1

B2

A1

A2

4

1

1

1

�4

�2

3

1
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From this and the initial condition we obtain

y1(0) � c1 � 4c2 � 14 � 0, y2(0) � c1 � c2 � 6 � 8.

Hence c1 � 14, c2 � 0. This gives the answer

y1 � 14e�t � 14 cos t � 2 sin t

y2 � 14e�t � 6 cos t � 2 sin t.

16. The matrix of the homogeneous system

[ ]
has the eigenvalues 10 and �4 with eigenvectors [4 3]T and [1 �1]T, respectively.
Hence a general solution of the homogeneous system is

y(h) � c1 [ ] e10t � c2 [ ] e�4t.

A particular solution of the nonhomogeneous system is obtained by the method of
undetermined coefficients. We start from

y( p) � [ ] cos t � [ ] sin t.

Differentiation and substitution gives, in components and sin t and cos t abbreviated
by s and c, respectively,

(1) �A1s � B1c � 4A1c � 4B1s � 8A2c � 8B2s � 2c � 16s

(2) �A2s � B2c � 6A1c � 6B1s � 2A2c � 2B2s � c � 14s.

Equating the coefficients of the cosine terms in (1), we obtain

B1 � 4A1 � 8A2 � 2.

Similarly, for the sine terms,

�A1 � 4B1 � 8B2 � 16.

From (2) we obtain the two equations

B2 � 6A1 � 2A2 � 1

�A2 � 6B1 � 2B2 � 14.

The solution is A1 � A2 � 0, B1 � 2, B2 � 1. Hence a general solution of the 
nonhomogeneous system is

y1 � 4c1e10t � c2e�4t � 2 sin t

y2 � 3c1e10t � c2e�4t � sin t.

From this and the initial conditions we obtain

y1(0) � 4c1 � c2 � 15, y2(0) � 3c1 � c2 � 13.

Hence c1 � 4, c2 � �1. This gives the answer (the solution of the initial value problem)

y1 � 16e10t � e�4t � 2 sin t

y2 � 12e10t � e�4t � sin t.

B1

B2

A1

A2

1

�1

4

3

8

2

4

6
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18. For the left circuit, Kirchhoff’s voltage law gives

10I�1 � I1 � I2 � 104.
For the right circuit,

I2 � I1 � 0.8 �I2 dt � 0.

The first equation gives

I�1 � �0.1I1 � 0.1I2 � 1000.

By differentiation of the second equation and substitution of the first one (in the form
just obtained) we obtain

I�2 � I�1 � 0.8I2

� �0.1I1 � 0.1I2 � 1000 � 0.8I2.

Hence the system of ODEs to be solved is

(A)
I�1 � �0.1I1 � 0.1I2 � 1000

I�2 � �0.1I1 � 0.7I2 � 1000.

The matrix of the homogeneous system is

[ ] .

It has the eigenvalues �0.4 
 0.2�2�. An eigenvector for �0.4 � 0.2�2� � �0.11716
is

x(1) � [1 �3 � 2�2�]T � [1 �0.17157].T

An eigenvector for �0.4 � 0.2�2� � �0.68284 is

x(2) � [1 �3 � 2�2�]T � [1 �5.8284]T.

A particular solution of the nonhomogeneous system is [10000 0]T. We thus
obtain as a general solution of the system (A)

I � c1x(1)e�0.11716t � c2x(2)e�0.68284t � [ ]
where x(1) and x(2) are those eigenvectors, and the initial conditions yield c1 � �10303
and c2 � 303.30. With these values those conditions are satisfied, except for a roundoff
error.

20. Writing Project. The problem set contains a number of special cases, and the student
should compare them systematically with our earlier application of the method to
single ODEs in Chap. 2 to fully understand how the method extends to systems of
ODEs.

SOLUTIONS TO CHAP. 4 REVIEW QUESTIONS AND PROBLEMS, page 163

12. The matrix

[ ]0

1

9

0

10000

0

0.1

�0.7

�0.1

�0.1
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has the eigenvalues 9 and 1 with eigenvectors [1 0]T and [0 1]T, respectively.
Hence a general solution is

y � c1 [ ] e9t � c2 [ ] et.

Since p � 10, q � 9, � � 100 � 36 
 0, the critical point is an unstable node.
14. The matrix

[ ]
has the eigenvalues 3 � 3i and 3 � 3i with eigenvectors [1 �i]T and [1 i]T,
respectively. Hence a complex general solution is

y � c1 [ ] e(3�3i)t � c2 [ ] e(3�3i)t.

By Euler’s formula, this becomes

y � e3t (c1 [ ] (cos 3t � i sin 3t) � c2 [ ] (cos 3t � i sin 3t)) .

Setting A � c1 � c2, B � i(c1 � c2), we can write this, in components,

y1 � e3t(c1 � c2) cos 3t � (ic1 � ic2) sin 3t)

� e3t(A cos 3t � B sin 3t)

y2 � e3t((�ic1 � ic2) cos 3t � (c1 � c2) sin 3t)

� e3t(�B cos 3t � A sin 3t).

Since p � 6, q � 18, � � 36 � 72 � 0, the critical point is an unstable spiral point.
16. The matrix

[ ]
has the eigenvalues �5 and �1 with eigenvectors [1 1]T and [1 �1]T, respectively.
Hence a general solution is

y � c1 [ ] e�5t � c2 [ ] e�t.

Since p � �6, q � 5, � � 36 � 20 
 0, the critical point is a stable and attractive
node.

18. The matrix

[ ]
has the eigenvalues 4i and �4i with eigenvectors [1 �0.6 � 0.8i]T and 
[1 �0.6 � 0.8i]T, respectively. Hence a complex general solution is

y � c1 [ ] e4it � c2 [ ] e�4it.
1

�0.6 � 0.8i

1

�0.6 � 0.8i

5

�3

3

�5

1

�1

1

1

�2

�3

�3

�2

1

i

1

�i

1

i

1

�i

�3

3

3

3

0

1

1

0
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Setting A � c1 � c2, B � i(c1 � c2) and using Euler’s formula, we obtain, in terms
of components,

y1 � (c1 � c2) cos 4t � i(c1 � c2) sin 4t

� A cos 4t � B sin 4t

y2 � (�0.6c1 � 0.8c1i � 0.6c2 � 0.8c2i) cos 4t

� (�i � 0.6c1 � i � 0.6c2 � 0.8c1 � 0.8c2) sin 4t

� (�0.6A � 0.8B) cos 4t � (�0.6B � 0.8A) sin 4t.

Since p � 0 and q � �9 � 25 
 0, the critical point is a center.
20. The matrix of the homogeneous system

[ ]
has the eigenvalues 6 and �6 with eigenvectors [1 2]T and [1 �2]T, respectively.
A particular solution of the nonhomogeneous system is obtained by the method of
undetermined coefficients. We set

y1
( p) � a1t � b1, y2

( p) � a2t � b2.

Differentiation and substitution gives

a1 � 3a2t � 3b2 � 6t, a2 � 12a1t � 12b1 � 1.

Hence a1 � 0, b1 � �1_
4, a2 � �2, b2 � 0. The answer is

y1 � c1e6t � c2e�6t � 1_
4

y2 � 2c1e6t � 2c2e�6t � 2t.

22. The matrix

[ ]
has the eigenvalues 3 and �1 with eigenvectors [1 2]T and [1 �2]T, respectively.
A particular solution of the nonhomogeneous system is obtained by the method of
undetermined coefficients. We set

y1
( p) � a1 cos t � b1 sin t, y2

( p) � a2 cos t � b2 sin t.

Differentiation and substitution gives the following two equations, where c � cos t
and s � sin t,

(1) �a1s � b1c � a1c � b1s � a2c � b2s � s

(2) �a2s � b2c � 4a1c � 4b1s � a2c � b2s.

From the cosine terms and the sine terms in (1) we obtain

b1 � a1 � a2, �a1 � b1 � b2 � 1.
Similarly from (2),

b2 � 4a1 � a2, �a2 � 4b1 � b2.

Hence a1 � �0.3, a2 � 0.4, b1 � 0.1, b2 � �0.8. This gives the answer

y1 � c1e3t � c2e�t � 0.3 cos t � 0.1 sin t

y2 � 2c1e3t � 2c2e�t � 0.4 cos t � 0.8 sin t.

1

1

1

4

3

0

0

12
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24. The matrix of the homogeneous system

[ ]
has the eigenvalues �2 and �1 with eigenvectors [1 1.5]T and [1 1]T, respectively.
A particular solution is obtained by the method of undetermined coefficients. The
answer is

y1 � c1e�2t � c2e�t � 1.3 cos t � 0.1 sin t

y2 � 1.5c1e�2t � c2e�t � 0.7 cos t � 0.1 sin t.

26. The balance equations are

y�1 � �_16
200y1 � _6

100y2

y�2 � _16
200y1 � _16

100y2.

Note that the denominators differ. Note further that the outflow to the right must be
included in the balance equation for T2. The matrix is

[ ] .

It has the eigenvalues �0.2 and �0.04 with eigenvectors [1 �2]T and [1.5 1]T,
respectively. The initial condition is y1(0) � 160, y2(0) � 0. This gives the answer

y1 � 40e�0.2t � 120e�0.04t

y2 � �80e�0.2t � 80e�0.04t.

28. From the figure we obtain by Kirchhoff’s voltage law for the left loop

0.4I�1 � 0.5(I1 � I2) � 0.7I1 � 1000

and for the right loop

0.5I�2 � 0.5(I2 � I1) � 0.

Written in the usual form, we obtain

I�1 � �3I1 � 1.25I2 � 2500

I�2 � I1 � I2.

The matrix of the homogeneous system is

[ ] .

It has the eigenvalues �3.5 and �0.5 with eigenvectors [5 �2]T and [1 2]T,
respectively. From this and the initial conditions we obtain the solution

I1 � �_125
21

00e�3.5t � _25
3
00e�0.5t �_100

7
00

I2 � _50
21
00e�3.5t � _50

3
00e�0.5t �_100

7
00 .

30. The second ODE may be written

y�1 � y�2 � y1(2 � y1)(2 � y1).

1.25

�1

�3

1

0.06

�0.16

�0.08

0.08

�2

�4

1

3
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Hence the critical points are (0, 0), (2, 0), (�2, 0).
Linearization at (0, 0) gives the system

y�1 � y2

y�2 � 4y1.

Since q � �4, this is a saddle point.
At (2, 0) the transformation is y1 � 2 � y�1. Hence the right side of the second

ODE becomes (2 � y�1)(�y�1)(4 � y�1), so that the linearized system is

y��1 � y�2

y��2 � �8y�1.

Since p� � 0 and q� � 8 
 0, this is a center.
Similarly at (�2, 0), the transformation is y1 � �2 � y��1, so that the right side

becomes (�2 � y��1)(4 � y��1)y��1, and the linearized system is the same and thus has a
center as its critical point.

32. cos y2 � 0 when y2 � (2n � 1)�/2, where n is any integer. This gives the location
of the critical points, which lie on the y2-axis y1 � 0 in the phase plane.

For (0, 1_
2�) the transformation is y2 � 1_

2� � y�2. Now

cos y2 � cos (1_
2� � y�2) � �sin y�2 � �y�2.

Hence the linearized system is
y��1 � �y�2

y��2 � 3y�1.
For its matrix

[ ]
we obtain p� � 0, q� � 3 
 0, so that this is a center. Similarly, by periodicity, the
critical points at (4n � 1)�/2 are centers.

For (0, �1_
2�) the transformation is y2 � �1_

2� � y��2. From

cos y2 � cos (�1_
2� � y��2) � sin y��2 � y��2

we obtain the linearized system
y���1 � y��2

y���2 � 3y��1

with matrix

[ ]
for which q�� � �3 � 0, so that this point and the points with y2 � (4n � 1)�/2 on
the y2-axis are saddle points.

1

0

0

3

�1

0

0

3
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CHAPTER 5 Series Solutions of ODEs. Special Functions

Changes of Text

Minor changes, streamlining the text to make it more teachable, retaining the general
structure of the chapter and the opportunity to familiarize the student with an overview
of some of the techniques used in connection with higher special functions, also in
connection with a CAS.

SECTION 5.1. Power Series Method, page 167

Purpose. A simple introduction to the technique of the power series method in terms of
simple examples whose solution the student knows very well.

SOLUTIONS TO PROBLEM SET 5.1, page 170

2. y � a0(1 � 1_
2x2 � 1_

8x4 � � • • •) � a0e�x2/2

4. A general solution is y � c1ex � c2e�x. Both functions of the basis contain every
power of x. The power series method automatically gives a general solution in which
one function of the basis is even and the other is odd,

y � a0(1 � 1_
2x2 � _1

24x4 � • • •) � a1(x � 1_
6x3 � _1

120x5 � • • •) � a0 cosh x � a1 sinh x.

6. y � a0(1 � 3x � 9_
2x2 � _11

2 x3 � _51
8 x4 � � • • •). Even if the solution turns out to be

a known function, as in the present case,

y � a0 exp (�3x � x3)

as obtained by separating variables, it is generally not easy to recognize this from a
power series obtained. Of course, this is generally not essential, because the method
is primarily designed for ODEs whose solutions define new functions. The task of
recognizing a power series as a known function does however occur in practice, for
instance, in proving that certain Bessel functions or hypergeometric functions reduce
to familiar known functions (see Secs. 5.4, 5.5).

8. Substitution of the power series for y and y� gives

(x5 � 4x3)(a1 � 2a2x �3a3x2 � • • •)

� 4a1x3 � 8a2x4 � (12a3 � a1)x5 � • • •)

� (5x4 �12x2)(a0 � a1x � a2x2 � • • •)

� 12a0x2 � 12a1x3 � (12a2 � 5a0)x4 � (12a3 � 5a1)x5 � • • •)

Comparing coefficients of each power of x, we obtain

x2: a0 � 0

x3: 4a1 � 12a1, a1 � 0

x4: 8a2 � 12a2 � 5a0, a2 � 0

x5: 12a3 � a1 � 12a3 � 5a1, a3 arbitrary

x6: 16a4 � 2a2 � 12a4 � 5a2, a4 � 0

x7: 3a3 � 20a5 � 5a3 � 12a5, a5 � 1_
4a3

x8: 4a4 � 24a6 � 5a4 � 12a6, 24a6 � 12a6, a6 � 0, etc.
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Here we see why a power series may terminate in some cases. The answer is

y � a3(x3 � 1_
4x5).

10. y � a0(1 � x2 � x4 � x6 � x8 � • • •) � a1x

12. s � x � 1_
3x3 � _2

15x5, s(1_
4�) � 0.98674, a good approximation of the exact value

1 � tan 1_
4�.

Through these calculations of values the student should realize that a series can be
used for numeric work just like a solution formula, with proper caution regarding
convergence and accuracy.

14. s � 4 � x2 � 1_
3x3 � _1

30x5, s(2) � �8_
5. This x is too large to give useful values. The

exact solution
y � (x � 2)2ex

shows that the value should be 0.
16. s � _15

8 x � _35
4 x3 � _63

8 x5. This is the Legendre polynomial P5, a solution of this Legendre
equation with parameter n � 5, to be discussed in Sec. 5.3. The initial conditions
were chosen accordingly, so that a second linearly independent solution (a Legendre
function) does not appear in the answer. s(0.5) � 0.089844.

18. This should encourage the student to use the library or to browse the Web, to learn
where to find relevant information, to see in passing that there are various other
expansions of functions (other series, products, continued fractions, etc.), and to take
a look into various standard books. The limited task at hand should beware the student
of getting lost in the flood of books. Lists such as the one required can be very helpful;
similarly in connection with Fourier series.

SECTION 5.2. Theory of the Power Series Method, page 170

Purpose. Review of power series and a statement of the basic existence theorem for power
series solutions (without proof, which would exceed the level of our presentation).

Main Content, Important Concepts

Radius of convergence (7)

Differentiation, multiplication of power series

Technique of index shift

Real analytic function (needed again in Sec. 5.4)

Comment
Depending on the preparation of the class, skip the section or discuss just a few less known
facts.

SOLUTIONS TO PROBLEM SET 5.2, page 176

2. j j � * . Hence the convergence radius of the series,

considered as a function of t � (x � 1)2, is 3. This gives the answer �3�. (In Probs.
3 and 6 the situation is similar.)

4. 1

1
�
3

1/(3m�1(m � 2)2)
��
1/(3m(m � 1)2)

am�1
�

am

3 � 5
�

8!

3
�
6!

1
�
4!

1
�
2!
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6. �, as is obvious from the occurrence of the factorial.

8. The quotient whose limit will give the reciprocal of the convergence radius is

� .

The limit as m * � is 44 � 256. Hence the convergence radius is fairly small, 1/256.
10. 0

12. �

14. m � 3 � s, m � s � 3, �
`

s�0

xs; R � 4. Of course, (�1)s�4 � (�1)s.

16. a0(1 � 1_
6x3 � _1

180x6 � 129
_1

60x9 � � • • •) � a1(x � _1
12x4 � _1

504x7 � � • • •). This
solution can be expressed in terms of Airy or Bessel functions, but in a somewhat
complicated fashion, so that in many cases for numeric and other purposes it will be
practical to use the power series (a partial sum with sufficiently many terms) directly.

18. We obtain

a0(1 � 1_
6x3 � _1

24x4 � _1
120x5 � • • •) � a1(x � 1_

2x2 � 1_
6x3 � _1

24x4 � _1
30x5 � • • •).

The solution has a (complicated) representation in terms of Airy functions, and the
remark in the solution of Prob. 16 applies equally well, even more. The students
should also be told that many ODEs can be reduced to the standard ones that we
discuss in the text, so that in this way they can save work in deriving formulas for
the various solutions.

20. We obtain

a0(1 � 1_
2x2 � _5

24x4 � _1
16x6 � � • • •) � a1(x � 1_

2x3 � _7
40x5 � _11

240x7 � � • • •).

This solution can be expressed in terms of Bessel and exponential functions.
22. We obtain

a0(1 � x2 � 1_
2x4 � 1_

6x6 � _1
24x8 � • • •) � a1(x � x3 � 1_

2x5 � 1_
6x7 � • • •).

This can be written as (a0 � a1x) times the same power series, which obviously
represents ex2

.
24. Team Project. The student should see that power series reveal many basic properties

of the functions they represent. Familiarity with the functions considered should help
students in understanding the basic idea without being irritated by unfamiliar notions
or notations and more involved formulas. (d) illustrates that not all properties become
visible directly from the series. For instance, the periodicity of cos x and sin x, the
boundedness, and the location of the zeros are properties of this kind.

SECTION 5.3. Legendre’s Equation. Legendre Polynomials Pn(x), page 177

Purpose. This section on Legendre’s equation, one of the most important ODEs, and its
solutions is more than just an exercise on the power series method. It should give the
student a feel for the usefulness of power series in exploring properties of special functions
and for the wealth of relations between functions of a one-parameter family (with
parameter n).

Legendre’s equation occurs again in Secs. 5.7 and 5.8.

Comment on Literature and History
For literature on Legendre’s equation and its solutions, see Refs. [GR1] and [GR10].

(�1)s�4

�
4s�3

(4m � 4)(4m � 3)(4m � 2)(4m � 1)
����

(m � 1)4

(4m � 4)!/(m � 1)!4

���
(4m)!/(m!)4
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Legendre’s work on the subject appeared in 1785 and Rodrigues’s contribution (see
Prob. 8), in 1816.

SOLUTIONS TO PROBLEM SET 5.3, page 180

4. This follows from (4), giving the limit 1 as s * � (note that n is fixed):

j j � * 1.

8. We have

(x2 � 1)n � �
n

m�0

(�1)m ( ) (x2)n�m.

Differentiating n times, we can express the product of occurring factors 
(2n � 2m)(2n � 2m � 1) • • • as a quotient of factorials and get

[(x2 � 1)n] � �
M

m�0

(�1)m xn�2m

with M as in (11). Divide by n!2n. Then the left side equals the right side in Rodrigues’s
formula, and the right side equals the right side of (11).

10. We know that at the endpoints of the interval �1 � x � 1 all the Legendre 
polynomials have the values 	1. It is interesting that in between they are strictly less
than 1 in absolute value (P0 excluded). Furthermore, absolute values between 1_

2 and
1 are taken only near the endpoints, so that in an interval, say �0.8 � x � 0.8, they
are less than 1_

2 in absolute value (P0, P1, P2 excluded).

14. Team Project. (a) Following the hint, we obtain

(A) (1 � 2xu � u2)�1/2 � 1 � (2xu � u2)

� • • • � (2xu � u2)n � • • •

and for the general term on the right,

(B) (2xu � u2)m � (2x)mum � m(2x)m�1um�1

� (2x)m�2um�2 � • • • .

Now un occurs in the first term of the expansion (B) of (2xu � u2)n, in the second
term of the expansion (B) of (2xu � u2)n�1, and so on. From (A) and (B) we see that
the coefficients of un in those terms are

(2x)n � anxn [see (8)],

� (n � 1)(2x)n�2 � � anxn�2 � an�2xn�2

and so on. This proves the assertion.

(b) Set u � r1/r2 and x � cos 
.

n � 1
�

4

2n
�
2n � 1

1 • 3 • • • (2n � 3)
���

2 • 4 • • • (2n � 2)

1 • 3 • • • (2n � 1)
���

2 • 4 • • • (2n)

m(m � 1)
��

2!

1 � 3 • • • (2n � 1)
���

2 � 4 • • • (2n)

1
�
2

(2n � 2m)!
��
(n � 2m)!

n!
��
m!(n � m)!

dn

�
dxn

n

m

�n � s�(n � s � 1)
���

(s � 2)(s � 1)

as�2
�

as
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(c) Use the formula for the sum of the geometric series and set x � 1 and x � �1.
Then set x � 0 and use

(1 � u2)�1/2 � � ( ) u2m.

(d) Abbreviate 1 � 2xu � u2 � U. Differentiation of (13) with respect to u gives

� U�3/2(�2x � 2u) � �
`

n�0

nPn(x)un�1.

Multiply this equation by U and represent U�1/2 by (13):

(x � u) �
`

n�0

Pn(x)un � (1 � 2xu � u2) �
`

n�0

nPn(x)un�1.

In this equation, un has the coefficients

xPn(x) � Pn�1(x) � (n � 1)Pn�1(x) � 2nxPn(x) � (n � 1)Pn�1(x).

Simplifying gives the asserted Bonnet recursion.

SECTION 5.4. Frobenius Method, page 182

Purpose. To introduce the student to the Frobenius method (an extension of the power
series method), which is important for ODEs with coefficients that have singularities,
notably Bessel’s equation, so that the power series method can no longer handle them.
This extended method requires more patience and care.

Main Content, Important Concepts

Regular and singular points

Indicial equation, three cases of roots (one unexpected)

Frobenius theorem, forms of bases in those cases

Short Courses. Take a quick look at those bases in Frobenius’s theorem, say how it fits
with the Euler–Cauchy equation, and omit everything else.

Comment on “Regular Singular” and “Irregular Singular”
These terms are used in some books and papers, but there is hardly any need for confusing
the student by using them, simply because we cannot do (and don’t do) anything about
“irregular singular points.” A simple use of “regular” and “singular” (as in complex
analysis, where holomorphic functions are also known as “regular analytic functions”)
may thus be the best terminology.

Comment on Footnote 5
Gauss was born in Braunschweig (Brunswick) in 1777. At the age of 16, in 1793 he
discovered the method of least squares (Secs. 20.5, 25.9). From 1795 to 1798 he studied
at Göttingen. In 1799 he obtained his doctor’s degree at Helmstedt. In 1801 he published
his first masterpiece, Disquisitiones arithmeticae (Arithmetical Investigations, begun in
1795), thereby initiating modern number theory. In 1801 he became generally known when
his calculations enabled astronomers (Zach, Olbers) to rediscover the planet Ceres, which
had been discovered in 1801 by Piazzi at Palermo but had been visible only very briefly.
He became the director of the Göttingen observatory in 1807 and remained there until his

1
�
2

�1/2

m
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death. In 1809 he published his famous Theoria motus corporum coelestium in sectionibus
conicis solem ambientium (Theory of the Heavenly Bodies Moving About the Sun in Conic
Sections; Dover Publications, 1963), resulting from his further work in astronomy. In 1814
he developed his method of numeric integration (Sec. 19.5). His Disquisitiones generales
circa superficies curvas (General Investigations Regarding Curved Surfaces, 1828)
represents the foundation of the differential geometry of surfaces and contributes to
conformal mapping (Sec. 17.1). His clear conception of the complex plane dates back to
his thesis, whereas his first publication on this topic was not before 1831. This is typical:
Gauss left many of his most outstanding results (non-Euclidean geometry, elliptic functions,
etc.) unpublished. His paper on the hypergeometric series published in 1812 is the first
systematic investigation into the convergence of a series. This series, generalizing the
geometric series, allows a study of many special functions from a common point of view.

SOLUTIONS TO PROBLEM SET 5.4, page 187

2. The indicial equation is r(r � 1) � 2 � (r � 2)(r � 1) � 0. The roots are r1 � 2,
r2 � �1. This is Case 3. y1 � (x � 2)2, y2 � 1/(x � 2). Check: Set x � 2 � t to get
an Euler–Cauchy equation, t2ÿ � 2y � 0.

4. To determine r1, r2 from (4), we write the ODE in the form (1�),

x2y� � (3_
2x � 2x2)y� � (x2 � 3_

2x)y � 0.

Then we see that b � 3_
2 � 2x, b0 � 3_

2, c0 � 0, hence

r(r � 1) � 3_
2r � r(r � 1_

2) � 0, r1 � 0, r2 � �1_
2.

We obtain the first solution by substituting (2) with r � 0 into the ODE (which we
can take in the given form):

�
�

m�0

[2m(m � 1)amxm�1 � 3mamxm�1 � 4mamxm � 2amxm�1 � 3amxm] � 0.

Hence equating the sum of the coefficients of the power xs to zero, we have

2(s � 1)sas�1 � 3(s � 1)as�1 � 4sas � 2as�1 � 3as � 0.

Combining terms, we can write this in the form

(2s2 � 5s � 3)as�1 � (4s � 3)as � 2as�1 � 0.

For s � 0, since there is no coefficient a�1, we obtain 3a1 � 3a0 � 0. Hence 
a1 � a0. For s � 1 we obtain

10a2 � 7a1 � 2a0 � 0, 10a2 � 5a0, a2 � 1_
2a0.

This already was a special case of the recurrence formula obtained by solving the
previous equation for as�1, namely,

as�1 � [(4s � 3)as � 2as�1].

For s � 2, taking a0 � 1 this gives after simplification a3 � 1/3! and in general 
as�1 � 1/(s � 1)!. Hence a first solution is y1(x) � ex.

Second Solution. Since r1 � 0, r2 � �1_
2, we are in Case 1 and have to substitute

y2(x) � x�1/2(A0 � A1x � • • •)

1
��
(s � 1)(2s � 3)
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and determine these coefficients. We first have, using m as the summation letter, as
before,

�
�

m�0

[2(m � 1_
2)(m � 3_

2)Amxm�3/2 � 3(m � 1_
2)Amxm�3/2 � 4(m � 1_

2)Amxm�1/2

� 2Amxm�1/2 � 3Amxm�1/2] � 0.

Hence equating the sum of the coefficients of the power xs�1/2 to zero, we obtain

2(s � 1_
2)(s � 1_

2)As�1 � 3(s � 1_
2)As�1 � 4(s � 1_

2)As � 2As�1 � 3As � 0.

Solving for As�1 in terms of As and As�1, we obtain

As�1 � [(4s � 1)As � 2As�1].

Noting that there is no A�1, we successively get, taking A0 � 1,

A1 � A0 � 1 (s � 0), A2 � [5A1 � 2A0] � (s � 1)

A3 � 1/3!, A4 � 1/4!

etc. This gives as a second linearly independent solution y2 � ex/�x�.
6. Substitution of (2) and the derivatives (2*) gives

(A) 4 �
�

m�0

(m � r)(m � r � 1)amxm�r�1 � 2 �
�

m�0

(m � r)amxm�r�1

� �
�

m�0

amxm�r � 0.

Writing this out, we have

By equating the sum of the coefficients of xr�1 to zero we obtain the indicial equation

4r(r � 1) � 2r � 0; thus r2 � 1_
2r � 0.

The roots are r1 � 1_
2 and r2 � 0. This is Case 1.

By equating the sum of the coefficients of xr�s in (A) to zero we obtain (take 
m � r � 1 � r � s, thus m � s � 1 in the first two series and m � s in the last
series)

4(s � r � 1)(s � r)as�1 � 2(s � r � 1)as�1 � as � 0.

By simplification we find that this can be written

4(s � r � 1)(s � r � 1_
2)as�1 � as � 0.

We solve this for as�1 in terms of as:

(B) as�1 � � (s � 0, 1, • • •).
as

���
(2s � 2r � 2)(2s � 2r � 1)

• • •

• • •

• • • � 0.

4(r � 2)(r � 1)a2xr�1 �

2(r � 2)a2xr�1 �

a1xr�1 �

4(r � 1)ra1xr �

2(r � 1) a1xr �

a0xr �

4r(r � 1)a0xr�1 �

� 2ra0xr�1 �

�

1
�
2!

1
�
2 � 3

1
��
(s � 1)(2s � 1)
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First solution. We determine a first solution y1(x) corresponding to r1 � 1_
2. For 

r � r1, formula (B) becomes

as�1 � � (s � 0, 1, • • •).

From this we get successively

a1 � � , a2 � � , a3 � � , etc.

In many practical situations an explicit formula for am will be rather complicated.
Here it is simple: by successive substitution we get

a1 � � , a2 � , a3 � � , • • •

and in general, taking a0 � 1,

am � (m � 0, 1, • • •).

Hence the first solution is

y1(x) � x1/2 �
�

m�0

xm � �x� (1 � x � x2 � � • • •) � sin �x�.

Second Solution. If you recognize y1 as a familiar function, apply reduction of order
(see Sec. 2.1). If not, start from (6) with r2 � 0. For r � r2 � 0, formula (B) [with
As�1 and As instead of as�1 and as] becomes

As�1 � � (s � 0, 1, • • •).

From this we get successively

A1 � � , A2 � � , A3 � � ,

and by successive substitution we have

A1 � � , A2 � , A3 � � , • • •

and in general, taking A0 � 1,

Am � .

Hence the second solution, of the form (6) with r2 � 0, is

y2(x) � �
�

m�0

xm � 1 � 1_
2x � _1

24x2 � � • • • � cos �x�.

8. y1 � x(1 � � � � • • •) . From this and (10) we obtain

y2 � y1 ln x � 1 � 3_
4x2 � _7

36x3 � _35
1728x4 � • • •.

In the present case, k and A1 in (10) are at first arbitrary, and our y2 corresponds to
the choice k � 1 and A1 � 0. Choosing A1 � 0, we obtain the above expression for
y2 plus A1y1.

x3

�
3!4!

x2

�
2!3!

x
�
1!2!

(�1)m

�
(2m)!

(�1)m

�
(2m)!

A0
�
6!

A0
�
4!

A0
�
2!

A2
�
6 • 5

A1
�
4 • 3

A0
�
2 • 1

As
��
(2s � 2)(2s � 1)

1
�
120

1
�
6

(�1)m

��
(2m � 1)!

(�1)m

��
(2m � 1)!

a0
�
7!

a0
�
5!

a0
�
3!

a2
�
7 • 6

a1
�
5 • 4

a0
�
3 • 2

as
��
(2s � 3)(2s � 2)
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10. b0 � 0, c0 � �2, r(r � 1) � 2 � (r � 2)(r � 1), r1 � 2, r2 � �1,

y1 � x2(1 � x2 � x4 � x6 � • • •)

y2 � (12 � 6x2 � x4 � x6 � • • •) .

12. b0 � 6, c0 � 6, r1 � �2, r2 � �3; the series are

y1 � � � x2 � x4 � � • • • �

y2 � � � x � x3 � � • • • � .

14. We obtain

y1 � 1 � � � � • • • ,

y2 � y1 ln x � � � � • • • .

16. We obtain

y1 � � � � � • • • �

y2 � � � � � • • • � .

18. Team Project. (b) In (7b) of Sec. 5.2,

� * 1,

hence R � 1.

(c) In the third and fourth lines,

arctan x � x � 1_
3x3 � 1_

5x5 � 1_
7x7 � � • • • (�x� 
 1)

arcsin x � x � x3 � x5 � x7 � • • • (�x� 
 1).

(d) The roots can be read off from (15), brought to the form (1�) by multiplying it
by x and dividing by 1 � x; then b0 � c in (4) and c0 � 0.

20. a � 1, b � 1, c � �1_
2, y � AF(1, 1, �1_

2; x) � Bx3/2F(5_
2, 5_

2, 5_
2; x)

22. y � c1F(�1, 1_
3, 1_

3; t � 1) � c2(t � 1)2/3F(�1_
3, 1, 5_

3; t � 1)

24. t2 � 3t � 2 � (t � 1)(t � 2) � 0. Hence the transformation is x � t � 1. It gives
the ODE

4(x2 � x)y� � 2y� � y � 0.

To obtain the standard form of the hypergeometric equation, multiply this ODE by
�1_

4. It is clear that the factor 4 must be absorbed, but don’t forget the factor �1;
otherwise your values for a, b, c will not be correct. The result is

x(1 � x)y� � 1_
2y� � 1_

4y � 0.

1 • 3 • 5
��
2 • 4 • 6 • 7

1 • 3
�
2 • 4 • 5

1
�
2 • 3

(a � n)(b � n)
��
(n � 1)(c � n)

an�1
�

an

cosh x
�

x2

x4

�
720

x2

�
24

1
�
2

1
�
x2

sinh x
�

x2

x5

�
5040

x3

�
120

x
�
6

1
�
x

11x6

��
64 � 6 � 36

3x4

�
8 � 16

x2

�
4

x6

��
(2 � 4 � 6)2

x4

�
(2 � 4)2

x2

�
22

cos 2x
�

x3

4
�
45

2
�
3

2
�
x

1
�
x3

sin 2x
�

x3

1
�
2

4
�
315

2
�
15

2
�
3

1
�
x2

7
�
4

9
�
2

1
�
x

13
�
336

9
�
56

1
�
2
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Hence ab � 1/4, b � , a � b � 1 � a � � 1 � 0, a � �1_
2, b � �1_

2, c � 1_
2.

This gives
y1 � F(�1_

2, �1_
2, 1_

2; t � 1).

In y2 we have a � c � 1 � �1_
2 � 1_

2 � 1 � 0; hence y2 terminates after the first term,
and, since 1 � c � 1_

2,
y2 � x1/2 � 1 � �t � 1�.

SECTION 5.5. Bessel’s Equation. Bessel Functions Jv (x), page 189

Purpose. To derive the Bessel functions of the first kind J� and J�� by the Frobenius
method. (This is a major application of that method.) To show that these functions
constitute a basis if � is not an integer but are linearly dependent for integer � � n (so
that we must look later, in Sec. 5.6, for a second linearly independent solution). To show
that various ODEs can be reduced to Bessel’s equation (see Problem Set 5.5).

Main Content, Important Concepts

Derivation just mentioned

Linear independence of J� and J�� if � is not an integer

Linear dependence of J� and J�� if � � n � 1, 2, • • •

Gamma function as a tool

Short Courses. No derivation of any of the series. Discussion of J0 and J1 (which are
similar to cosine and sine). Mention Theorem 2.

Comment on Special Functions
Since various institutions no longer find time to offer a course in special functions, Bessel
functions may give another opportunity (together with Sec. 5.3) for getting at least some
feel for the flavor of the theory of special functions, which will continue to be of
significance to the engineer and physicist. For this reason we have added some material
on basic relations for Bessel functions in this section.

SOLUTIONS TO PROBLEM SET 5.5, page 197

2. We obtain the following values. Note that the error of this very crude approximation
is rather small.

x Approximation Exact (4D) Relative Error

0 1.0000 1.0000 0
0.1 0.9975 0.9975 0
0.2 0.9900 0.9900 0
0.3 0.9775 0.9776 0.0001
0.4 0.9600 0.9604 0.0004
0.5 0.9375 0.9385 0.0010
0.6 0.9100 0.9120 0.0020
0.7 0.8775 0.8812 0.0042
0.8 0.8400 0.8463 0.0074
0.9 0.7975 0.8075 0.0124
1.0 0.7500 0.7652 0.0199

1
�
4a

1
�
4a
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4. Zeros of Bessel functions are important, as the student will see in connection with
vibrating membranes in Chap. 12, and there are other applications. These numeric
problems (2�4) should give the student a feel for the applicability and accuracy of
the formulas discussed in the text. In the present problem this refers to the asymptotic
formula (14). A corresponding formula for Y is included in the next problem set.

Zeros of J0(x)

Approximation (14) Exact Value Error

2.35619 2.40483 0.04864
5.49779 5.52008 0.02229
8.63938 8.65373 0.01435

11.78097 11.79153 0.01056

Zeros of J1(x)

Approximation (14) Exact Value Error

3.92699 3.83171 �0.09528
7.06858 7.01559 �0.05299

10.21018 10.17347 �0.03671
13.35177 13.32369 �0.02808

6. y � c1J1/4(x) � c2J�1/4(x)

8. y � c1J1(2x � 1); J1 and J�1 are linearly dependent by Theorem 2; actually, 
J�1(x) � �J1(x).

10. y � c1J1/2(1_
2x) � c2J�1/2(1_

2x) � x�1/2(c�1 sin 1_
2x � c�2 cos 1_

2x)

12. y � c1J�(x
2) � c2J��(x

2), � � 0, 	1, 	2, • • •

14. y � c1J1/3(ex) � c2J�1/3(ex)

16. y � x1/4(c1J1/4(x1/4) � c2J�1/4(x1/4))

18. y � c1J0(4x1/4). Second independent solution not yet available.

20. y � x�(c1J�(x
�) � c2J��(x

�)), � � 0, 	1, 	2, • • •

22. J�0 � 0 at least once between two consecutive zeros of J0, by Rolle’s theorem. Now
(24b) with � � 0 is

J�0 � �J1.

Together, J1 has at least one zero between two consecutive zeros of J0.
Furthermore, (xJ1)� � 0 at least once between two consecutive zeros of xJ1, hence

of J1 (also at x � 0 since J1(0) � 0), by Rolle’s theorem. Now (24a) with � � 1 is

(xJ1)� � xJ0.

Together, J0 has at least one zero between two consecutive zeros of J1.
24. (24b) with � � 1 instead of � is

(x���1J��1)� � �x���1J�.

Now use (24a) (x�J�)� � x�J��1; solve it for J��1 to obtain

J��1 � x��(x�J�)� � x��(�x��1J� � x�J��) � �x�1J� � J�� .
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Substitute this into the previous equation on the left. Then perform the indicated
differentiation:

(x���1(�x�1J� � J��))� � (�x��J� � x���1J��)�

� ��2x���1J� � �x��J�� � (�� � 1)x��J�� � x���1J�� .

Equating this to the right side of the first equation and dividing by x���1 gives

J�� � J�� � J� � �J�.

Taking the term on the right to the left (with a plus sign) and multiplying by x2

gives (1).
26. We obtain

�x�1J4(x) dx ��x2(x�3J4(x)) dx (trivial)

��x2(�x�3J3(x))� dx ((24b) with � � 3)

� �x2x�3J3(x) ��2xx�3J3(x) dx (by parts)

� �x�1J3(x) � 2�x�2J3(x) dx (simplify)

� �x�1J3(x) � 2�(�x�2J2)� dx ((24b) with � � 2)

� �x�1J3(x) � 2x�2J2(x) � c (trivial).

28. Use (24d) to get

�J5(x) dx � �2J4(x) ��J3(x) dx

� �2J4(x) � 2J2(x) ��J1(x) dx

� �2J4(x) � 2J2(x) � J0(x) � c.

30. For � � 	1_
2 the ODE (27) in Prob. 29 becomes

u� � u � 0.

Hence for y we obtain the general solution

y � x�1/2u � x�1/2(A cos x � B sin x).

We can now obtain A and B by comparing with the first term in (20). Using 
�(3_

2) � 1_
2�(1_

2) � 1_
2��� (see (26)) we obtain for � � 1_

2 the first term

x1/2/(21/2 � 1_
2�(1_

2)) � �2x/��.

This gives (25a) because the series of sin x starts with the power x.
For � � �1_

2 the first term is x�1/2/(21/2 � 1_
2�(1_

2)) � �2/�x�. This gives (25b).

32. Team Project. (a) Since � is assumed to be small, we can regard W(x) to be
approximately equal to the tension acting tangentially in the moving cable. The
restoring force is the horizontal component of the tension. For the difference in force
we use the mean value theorem of differential calculus. By Newton’s second law this
equals the mass � �x times the acceleration utt of this portion of the cable. The
substitution of u first gives

��2y cos (�t � �) � g[(L � x)y�]� cos (�t � �).

�2

�
x2

1
�
x
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Now drop the cosine factor, perform the differentiation, and order the terms.

(b) dx � �dz and by the chain rule,

z � � �2y � 0.

In the next transformation the chain rule gives

� �z�1/2, � �2z�1 � �z�3/2.

Substitution gives

�2 � (� �z�1/2 � �z�1/2) � �2y � 0.

Now divide by �2 and remember that s � 2�z1/2. This gives Bessel’s equation.

(c) This follows from the fact that the upper end (x � 0) is fixed. The second normal
mode looks similar to the portion of J0 between the second positive zero and the
origin. Similarly for the third normal mode. The first positive zero is about 2.405.
For the cable of length 2 m this gives the frequency

� � � 0.424 [sec�1] � 25.4 [cycles/min].

Similarly, we obtain 11.4 cycles/min for the long cable.

SECTION 5.6. Bessel Functions of the Second Kind Yv (x), page 198

Purpose. Derivation of a second independent solution, which is still missing in the case
of � � n � 0, 1, • • • .

Main Content

Detailed derivation of Y0(x)

Cursory derivation of Yn(x) for any n

General solution (9) valid for all �, integer or not

Short Courses. Omit this section.

Comment on Hankel Functions and Modified Bessel Functions
These are included for completeness, but will not be needed in our further work.

SOLUTIONS TO PROBLEM SET 5.6, page 202

2. y � c1J1/3(3x) � c2Y1/3(3x). J�1/3 could be used.

4. y � c1J0(12�x�) � c2Y0(12�x�)

6. y � c1J1/3(1_
3x3) � c2Y1/3(1_

3x3). J�1/3 could be used.

8. y � �x�(c1J1/4(x2) � c2Y1/4(x2)). J�1/4 could be used.

10. y � x�3(c1J3(2x) � c2Y3(2x))

12. CAS Experiment. (a) Y0 and Y1, similarly as for J0 and J1.

(b) Accuracy is best for Y0. xn increases with n; actual values will depend on the
scales used for graphing.

2.405
��
4��2.00/9�.80�

2.405
��
2 • 2��L/g�

�
�
2�

dy
�
ds

1
�
2

d2y
�
ds2

dy
�
ds

1
�
2

d2y
�
ds2

d2y
�
dz2

dy
�
ds

dy
�
dz

dy
�
dz

d2y
�
dz2
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(c), (d)
Y0 Y1 Y2m

By (11) Exact By (11) Exact By (11) Exact

1 0.785 0.894 2.356 2.197 3.927 3.384
2 3.9270 3.958 5.498 5.430 7.0686 6.794
3 7.0686 7.086 8.639 8.596 10.210 10.023
4 10.210 10.222 11.781 11.749 13.352 13.210
5 13.352 13.361 14.923 14.897 16.493 16.379
6 16.493 16.501 18.064 18.043 19.635 19.539
7 19.635 19.641 21.206 21.188 22.777 22.694
8 22.777 22.782 24.347 24.332 25.918 25.846
9 25.918 25.923 27.489 27.475 29.060 28.995

10 29.060 29.064 30.631 30.618 32.201 32.143

These values show that the accuracy increases with x (for fixed n), as expected. For
a fixed m (number of zero) it decreases with increasing n (order of Yn).

14. For x � 0 all the terms of the series are real and positive.

SECTION 5.7. Sturm–Liouville Problems. Orthogonal Functions, page 203

Purpose. Discussion of eigenvalue problems for ordinary second-order ODEs (1) under
boundary conditions (2).

Main Content, Important Concepts

Sturm–Liouville equations, Sturm–Liouville problem

Reality of eigenvalues

Orthogonality of eigenfunctions

Orthogonality of Legendre polynomials and Bessel functions

Short Courses. Omit this section.

Comment on Importance
This theory owes its significance to two factors. On the one hand, boundary value problems
involving practically important ODEs (Legendre’s, Bessel’s, etc.) can be cast into
Sturm–Liouville form, so that here we have a general theory with several important
particular cases. On the other hand, the theory gives important general results on the
spectral theory of those problems.

Comment on Existence of Eigenvalues
This theory is difficult. Quite generally, in problems where we can have infinitely many
eigenvalues, the existence problem becomes nontrivial, in contrast with matrix eigenvalue
problems (Chap. 8), where existence is trivial, a consequence of the fact that a polynomial
equation ƒ(x) � 0 (ƒ not constant) has at least one solution and at most n numerically
different ones (where n is the degree of the polynomial).

SOLUTIONS TO PROBLEM SET 5.7, page 209

2. If ym is a solution of (1), so is zm because (1) is linear and homogeneous; here, 
� � �m is the eigenvalue corresponding to ym. Also, multiplying (2) with y � ym by
c, we see that zm also satisfies the boundary conditions. This proves the assertion.
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4. a � ��, b � �, c � �, k � 0.

6. Perform the differentiations in (1), divide by p, and compare; that is,

py� � p�y� � (q � �r)y � 0, y� � y� � ( � � ) y � 0.

Hence ƒ � p�/p, p � exp (�ƒ dx, q/p � g, q � gp, r/p � h, r � hp. A reason for
performing this transformation may be the discovery of the weight function needed
for determining the orthogonality. We see that

r(x) � h(x)p(x) � h(x) exp (� ƒ(x) dx) .

8. We need
y � A cos kx � B sin kx

y� � �Ak sin kx � Bk cos kx

where k � ���. From the first boundary condition, y�(0) � Bk � 0. With B � 0 there
remains

y� � �Ak sin kx.

From this and the second boundary condition,

y�(�) � �Ak sin �k � 0, k� � m�, k � m � 0, 1, 2, • • • .

Hence

�m � m2, m � 0, 1, • • • ; y0 � 1, ym � cos mx (m � 1, 2, • • •).

10. y and y� as in Prob. 8. From the boundary conditions,

y(0) � A � y(1) � A cos k � B sin k

y�(0) � Bk � y�(1) � �Ak sin k � Bk cos k.

Ordering gives
(1 � cos k)A � (sin k)B � 0

(k sin k)A � k(1 � cos k)B � 0.

By eliminating A and then letting B � 0 (to have y � 0, an eigenfunction) or simply
by noting that for this homogeneous system to have a nontrivial solution A, B, the
determinant of its coefficients must be zero; that is,

k(1 � cos k)2 � k sin2 k � k(2 � 2 cos k) � 0;

hence cos k � 1, k � 2m�, so that the eigenvalues and eigenfunctions are

�m � (2m�)2, m � 0, 1, • • • ;

y0 � 1, ym(x) � cos (2m�x), sin (2m�x), m � 1, 2, • • • .

12. Use y and y� as given in Prob. 8. The first boundary condition gives

y(0) � y�(0) � A � Bk � 0; thus A � �Bk.

From this and the second boundary condition,

y(1) � y�(1) � A cos k � B sin k � Ak sin k � Bk cos k

� �Bk cos k � B sin k � Bk2 sin k � Bk cos k � 0.

r
�
p

q
�
p

p�
�
p
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Canceling two terms, dividing by cos k, and collecting the remaining terms, we obtain

(1 � k2) tan k � 0, k � km � m�,

and the eigenvalues and eigenfunctions are

�m � m2�2; y0 � 1, ym � cos m�x, sin m�x, m � 1, 2, • • • .

14. x � et, t � ln �x� transforms the given ODE into

e�t (ete�t ) � e�t�y� � 0

that is,

� k2y� � 0 (k2 � �).

For the new variable t, the boundary conditions are y�(0) � 0, y�
.
(1) � 0. A general

solution and its derivative are

y� � A cos kt � B sin kt, y�
.

� �Ak sin kt � Bk cos kt.

Hence y�(0) � A � 0 and then, with B � 1, y�
.
(1) � k cos k � 0. It follows that 

k � km � (2m � 1)�/2, m � 0, 1, • • • , �m � km
2, and

y�m � sin kmt � sin (km ln �x�), m � 0, 1, • • • .

16. A general solution y � ex(A cos kx � B sin kx), k � ���, of this ODE with constant
coefficients is obtained as usual. The Sturm–Liouville form of the ODE is obtained
by using the formulas in Prob. 6,

(e�2xy�)� � e�2x(k2 � 1)y � 0.

From this and the boundary conditions we expect the eigenfunctions to be orthogonal
on 0 � x � 1 with respect to the weight function e�2x. Now from that general solution
and y(0) � A � 0 we see that we are left with

y � ex sin kx.

From the second boundary condition y(1) � 0 we now obtain

y(1) � e sin k � 0, k � m�, m � 1, 2, • • • .

Hence the eigenvalues and eigenfunctions are

�m � (m�)2, ym � ex sin m�x.

The orthogonality is as expected (because ex cancels).
18. From Prob. 6 we obtain the Sturm–Liouville form

(x2y�)� � k2x2y � 0 k2 � �.

By the indicated transformation or by a CAS we obtain as a general solution

y � A � B .

From this and the boundary conditions we obtain

y(�) � A � B � 0

y(2�) � A � B � 0.
sin 2k�
�

2k�

cos 2k�
�

2k�

sin k�
�

k�

cos k�
�

k�

sin kx
�

x

cos kx
�

x

d2y�
�
dt2

dy�
�
dt

d
�
dt
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Eliminate A and divide the resulting equation by B (which must be different from
zero to have y � 0, as is needed for an eigenfunction). Or equate the determinant of
the coefficients of the two equations to zero, as a condition for obtaining a nontrivial
solution A, B, not both zero; here we can drop the denominators. We obtain

j j � cos k� sin 2k� � cos 2k� sin k�.

By the addition formula for the sine (see App. 3.1 in the book if necessary) the right
side equals sin (2k� � k�) � sin k�. This is zero for k� � m�, m � 0, 1, • • • .
Eigenvalues are �m � m2, m � 1, 2, • • • . Eigenfunctions are ym � x�1 sin mx,
m � 1, 2, • • • . These functions are orthogonal on � � x � 2� with respect to the
weight function r � x2.

20. Team Project. (a) We integrate over x from �1 to 1, hence over 
 defined by 
x � cos 
 from � to 0. Using (1 � x2)�1/2 dx � �d
, we thus obtain

�1

�1
cos (m arc cos x) cos (n arc cos x)(1 � x2)�1/2 dx

� ��

0

cos m
 cos n
 d
 � ��

0

(cos (m � n)
 � cos (m � n)
) d
,

which is zero for integer m � n.

(b) Following the hint, we calculate � e�xxkLn dx � 0 for k 
 n:

��

0

e �xxkLn(x) dx � ��

0

x k (xne�x) dx � � ��

0

xk�1 (xne�x) dx

� • • • � (�1)k ��

0

(xne�x) dx � 0.

SECTION 5.8. Orthogonal Eigenfunction Expansions, page 210

Purpose. To show how families (sequences) of orthogonal functions, as they arise in
eigenvalue problems and elsewhere, are used in series for representing other functions,
and to show how orthogonality becomes crucial in simplifying the determination of the
coefficients of such a series by integration.

Main Content, Important Concepts

Standard notation (ym, yn)

Orthogonal expansion (3), eigenfunction expansion

Fourier constants (4)

Fourier series (5), Euler formulas (6)

Short Courses. Omit this section.

Comment on Flexibility on Fourier Series
Since Sec. 5.8, with the definition of orthogonality taken from Sec. 5.7 and Examples 2
and 3 omitted, is independent of other sections in this chapter, it could also be used after
Chap. 11 on Fourier series. We did not put it there for reasons of time and because Chap.
11 is intimately related to the main applications of Fourier series (to partial differential
equations) in Chap. 12.

dn�k

�
dxn�k

k!
�
n!

dn�1

�
dxn�1

k
�
n!

dn

�
dxn

1
�
n!

1
�
2

sin k�

sin 2k�

cos k�

cos 2k�
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Comment on Notation
(ym, yn) is not a must, but has become standard; perhaps if it is written out a few times,
poorer students will no longer be irritated by it.

SOLUTIONS TO PROBLEM SET 5.8, page 216

2. 2_
3P2(x) � 2P1(x) � 4_

3P0(x). This is probably most simply obtained by the method of
undetermined coefficients, beginning with the highest power, x2 and P2(x). The point
of these problems is to make the student aware that these developments look totally
different from the usual expansions in terms of powers of x.

4. P0(x), P1(x), 2_
3P2(x) � 1_

3P0(x), 2_
5P3(x) � 3_

5P1(x)

6. m0 � 5. The size of m0, that is, the rapidity of convergence seems to depend on the
variability of ƒ(x). A discontinuous derivative (e.g., as for �sin x� occurring in
connection with rectifiers) makes it virtually impossible to reach the goal. Let alone
when ƒ(x) itself is discontinuous. In the present case the series is

ƒ(x) � 0.95493P1(x) � 1.15824P3(x) � 0.21429P5(x) � � • • • .

Rounding seems to have considerable influence in all of these problems.
8. ƒ(x) � �1.520P2(x) � 0.5825P4(x) � 0.0653P6(x) � • • • , m0 � 6

10. ƒ(x) � �0.1689P2(x) � 0.8933P4(x) � 1.190P6(x) � • • • , m0 � 12

12. ƒ(x) � 0.7470P0(x) � 0.4458P2(x) � 0.0765P4(x) � • • • , m0 � 4

14. ƒ(x) � 0.6116P0(x) � 0.7032P2(x) � 0.0999P4(x) � • • • , m0 � 4

16. ƒ(x) � 0.5385P1(x) � 0.6880P3(x) � 0.1644P5(x) � • • • , m0 � 5 or 7

18. Team Project. (b) A Maclaurin series ƒ(t) � �
`

n�0

antn has the coefficients 
an � ƒ(n)(0) /n!. We thus obtain

ƒ(n)(0) � (etx�t2/2) j
t�0

� ex2/2 (e�(x�t)2/2) j
t�0

.

If we set x � t � z, this becomes

ƒ(n)(0) � ex2/2(�1)n (e�z2/2) j
z�x

� (�1)n ex2/2 (e�x2/2) � Hen(x).

(c) Gx � � a �n(x) tn � � He�n(x) tn/n! � tG � � Hen�1(x)tn/(n � 1)!, etc.

(d) We write e�x2/2 � v, v(n) � dnv/dxn, etc., and use (21). By integrations by parts,
for n � m,

��

��
vHemHen dx � (�1)n ��

��
Hemv(n) dx � (�1)n�1 ��

��
He �mv(n�1) dx

� (�1)n�1m ��

��
Hem�1v(n�1) dx � • • •

� (�1)n�mm! ��

��
He0v(n�m) dx � 0.

(e) nHen � nxHen�1 � nHe�n�1 from (22) with n � 1 instead of n. In this equation,
the first term on the right equals xHe�n by (21). The last term equals �He�n, as follows
by differentiation of (21).

dn

�
dxn

dn

�
dzn

dn

�
dtn

dn

�
dtn
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We write y � Ew, where E � ex2/4. Then

y� � 1_
2xEw � Ew�

y� � 1_
2Ew � 1_

4x2Ew � xEw� � Ew�.

If we substitute this into the ODE (23) and divide by E, we obtain the result. The
point is that the new ODE does not contain a first derivative; hence our transformation
is precisely that for eliminating the first derivative from (23).

SOLUTIONS TO CHAP. 5 REVIEW QUESTIONS AND PROBLEMS, page 217

12. 1/(1 � x), (1 � x)3. An Euler–Cauchy equation in t � x � 1.

14. x2, x2 ln x. An Euler–Cauchy equation with a double root.

16. x2 cos x, x2 sin x

18. We take the term �1 � y� to the right and substitute the usual power series and its
derivatives into the ODE. The general term on the right is m(m � 1)amxm�2. To get
the same general power xm throughout, we replace in this term m � 2 with m; then
the right side has the general term (m � 2)(m � 1)am�2xm.

On the left we collect terms, obtaining

(m(m � 1) � 2m � 2)amxm � (m � 2)(m � 1)amxm.

This gives the recursion formula

am�2 � am (m � 0, 1, • • •)

a0 and a1 remain arbitrary. If we set a0 � 1, a1 � 0, we obtain a2 � a0 � 1, a3 � 0,
a4 � 0, etc., and y1 � 1 � x2. If we set a0 � 0, a1 � 1, we obtain y2 � x. This is a
basis of solutions.

To make sure that we did not make a mistake at the beginning, we could write the
first few terms explicitly, namely, the constant, linear, and quadratic terms of each
series and check our result. This gives

(2a2x2 � • • •) � 2a1x � 4a2x2 � 2a0 � 2a1x � 2a2x2 � • • •

� 2a2 � 6a3x � 12a4x2 � • • • .

We take a0 � 1, a1 � 1. We then get a2 � a0 � 1 from the constant terms, a3 � 0
from the linear terms, a4 � 0 from the quadratic terms, etc., as before.

20. Indicial equation r(r � 1) � r � 1 � 0. Hence r1 � 1, r2 � �1. These roots differ
by an integer; this is Case 3. It turns out that no logarithm will appear. A basis of
solutions is

y1 � x � � � � • • •

y2 � � � � � � • • • .

We see that y1 � x�1 sin x2 and y2 � x�1 cos x2. The coefficients a0, • • • , a3 and
A0, • • • , A3 were arbitrary, and the two solutions were obtained by the choices a0 � 1
and the others zero, and A0 � 1 and the other Aj ( j � 1, 2, 3) zero.

22. y � x�2[c1J4(x) � c2Y4(x)]

x15

�
8!

x11

�
6!

x7

�
4!

x3

�
2!

1
�
x

x13

�
7!

x9

�
5!

x5

�
3!

(m � 2)(m � 1)
��
(m � 2)(m � 1)
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24. y � x5/2(c1 cos x � c2 sin x). This is the case in which the Bessel functions reduce
to cosine and sine divided or multiplied by a power of x.

26. y � A cos kx � B sin kx, where k � ���. y(0) � A � 0 from the first boundary
condition. From this and the second boundary condition,

y � B sin kx, y� � Bk cos kx, cos k� � 0, k� � (2m � 1)�/2.

Hence km � (2m � 1)/2, � � km
2, ym � sin kmx, m � 0, 1, • • • .

28. x � et, t � ln �x�, y(x) � y�(t) , y� � y�
.
/x, y�̈ � �y� � 0. For t the boundary conditions

are y�(0) � 0, y�(1) � 0. A general solution is y� � A cos kt � B sin kt, k � ���. Now
A � 0 from the first boundary condition, and k � km � m� from the second. Hence the
eigenvalues are �m � (m�)2 and eigenfunctions are ym � sin m� t � sin (m� ln �x�),
m � 1, 2, • • • .

30. y � A cos kx � B sin kx, y� � �Ak sin kx � Bk cos kx. From the first boundary
condition, A � Bk � 0; hence A � �Bk. From the second boundary condition, with
A replaced by �Bk,

�Bk cos 2k� � B sin 2k� � 0, k � tan 2k�, �m � km
2

where the km’s are the infinitely many solutions of k � tan 2k�. Eigenfunctions:

ym � cos kmx, sin kmx.

32. 0.505P0(x) � 0.377P2(x) � 0.920P4(x) � • • •

34. 0.637P0(x) � 0.154P2(x) � 0.672P4(x) � 0.663P6(x) � • • • . The approximation by
partial sums is poor near the points of discontinuity of the derivative. This is typical.
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CHAPTER 6 Laplace Transform

Major Changes

This chapter underwent some major changes regarding the order of the material and the
emphasis placed on the various topics.

In particular, Dirac’s delta was placed in a separate section. Partial fractions are now
considered earlier. Their importance in this chapter has been diminished, and they are
explained in terms of practical problems when they are needed, rather than in terms of
impractical theoretical formulas. Convolution and nonhomogeneous linear ODEs are now
considered earlier, whereas differentiation and integration of transforms (not of functions!)
appears later and in a lesser role.

SECTION 6.1. Laplace Transform. Inverse Transform. Linearity. s-Shifting,
page 221

Purpose. To explain the basic concepts, to present a short list of basic transforms, and to
show how these are derived from the definition.

Main Content, Important Concepts

Transform, inverse transform, linearity

First shifting theorem

Table 6.1

Existence and its practical significance

Comment on Table 6.1
After working for a while in this chapter, the student should be able to memorize these
transforms. Further transforms in Sec. 6.9 are derived as we go along, many of them from
Table 6.1.

SOLUTIONS TO PROBLEM SET 6.1, page 226

2. (t2 � 3)2 � t4 � 6t2 � 9; transform � �

4. sin2 4t � � cos 8t; transform � �

6. e�t sinh 5t � (e4t � e�6t); transform ( � ) � .

This can be checked by the first shifting theorem.
8. sin (3t � 1_

2) � cos 1_
2 sin 3t � sin 1_

2 cos 3t; transform

10.

12. (t � 1)3 � t3 � 3t2 � 3t � 1; transform � � �
1
�
s

3
�
s2

6
�
s3

6
�
s4

�1.6
��
s2 � 0.04

3 cos 1_
2 � s sin 1_

2
��

s2 � 9

5
��
(s � 1)2 � 25

1
�
s � 6

1
�
s � 4

1
�
2

1
�
2

32
��
s(s2 � 64)

s
��
2(s2 � 64)

1
�
2s

1
�
2

1
�
2

9
�
s

12
�
s3

24
�
s5

117

im06.qxd  9/21/05  12:05 PM  Page 117



14. k �b

a
e�st dt � (e�as � e�bs)

16. k(1 � t/b); transform

k �b

0
e�st (1 � ) dt � � e�st (1 � ) jb

0

� �b

0
(� ) e�st dt

� (bs � e�bs � 1)

18. �b

0
e�st t dt � ( � )

20. �1

0
e�st t dt � �2

1
e�st(2 � t) dt. Integration by parts gives

� j1

0

� �1

0
e�st dt � j2

1

� �2

1
e�st dt

� � � (e�s � 1) � � (e�2s � e�s)

� (�e�s � 1 � e�2s � e�s) � .

22. Let st � �, t � �/s, dt � d�/s. Then

�(1/�t�) � ��

0

e�stt�1/ 2 dt

� ��

0

e��(� /s)�1/ 2 d�

� s�1/ 2 ��

0

e����1/ 2 d�

� s�1/ 2�(1_
2) � ��/s�.

24. No matter how large we choose M and k, we have et2
	 Mekt for all t greater than some

t0 because t2 	 ln M � kt for all sufficiently large t (and fixed positive M and k).

26. Use eat � cosh at � sinh at.

28. Let ƒ � ��1(F), g � ��1(G). Since the transform is linear, we obtain

aF � bG � a�(ƒ) � b�(g) � �(aƒ � bg).

Now apply ��1 on both sides to get the desired result,

��1(aF � bG) � ��1�(aƒ � bg) � aƒ � bg � a��1(F) � b��1(G).

Note that we have proved much more than just the claim, namely, the following.
Theorem. If a linear transformation has an inverse, the inverse is linear.

30. 2 cosh 4t � 4 sinh 4t � 3e4t � e�4t

32. � . Answer 5e�t/�2�5
��
s � 1/�2�

10
��
2s � �2�

1
�
s

(1 � e�s)2

��
s2

1
�
s2

1
�
s2

e�s

�
s

1
�
s2

e�s

�
s

1
�
s

e�st(2 � t)
��

s

1
�
s

e�stt
�

s

be�bs

�
s

1 � e�bs

�
s2

k
�
b

k
�
b

k
�
bs2

1
�
b

k
�
s

t
�
b

k
�
s

t
�
b

k
�
s
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34. � 4( � ) . Answer 4(et � e�4t)

36. 4e�t � 9e�4t � 16e�9t � 25e�16t

38. � . Answer 2 cosh 1_
3t � 4 sinh 1_

3t

40. If a 
 b, then (e�at � e�bt). If a � b, then te�bt by the shifting theorem (or

from the first result by l’Hôpital’s rule, taking derivatives with respect to a).

42.

44.

46. a0/(s � 1) � a1/(s � 1)2 � • • • � n!an/(s � 1)n�1

48. �te��t

50. et(cos 2t � 5_
2 sin 2t)

52. e3t(4 cos 3t � _10
3 sin 3t)

54. � . Answer

e2t(2 cosh 4t � 13 sinh 4t) � �_11
2 e6t � _15

2 e�2t

SECTION 6.2. Transforms of Derivatives and Integrals. ODEs, page 227

Purpose. To get a first impression of how the Laplace transform solves ODEs and initial
value problems, the task for which it is designed.

Main Content, Important Concepts

(1) �(ƒ�) � s�(ƒ) � ƒ(0)

Extension of (1) to higher derivatives [(2), (3)]

Solution of an ODE, subsidiary equation

Transform of the integral of a function (Theorem 3)

Transfer function (6)

Shifted data problems (Example 6)

Comment on ODEs
The last of the three steps of solution is the hardest, but we shall derive many general
properties of the Laplace transform (collected in Sec. 6.8) that will help, along with
formulas in Table 6.1 and those in Sec. 6.9, so that we can proceed to ODEs for which
the present method is superior to the classical one.

SOLUTIONS TO PROBLEM SET 6.2, page 232

Purpose of Probs. 1–8. 1. To familiarize students with (1) and (2) before they apply
these formulas to ODEs. 2. Students should become aware that transforms can often
be obtained by several methods.

2(s � 2) � 52
��
(s � 2)2 � 16

2s � 56
��
s2 � 4s � 12

s � 3
��
(s � 3)2 � �2

�72
��
(s � 0.5)5

1
�
b � a

2s � 4/3
�
s2 � 1/9

18s � 12
��
9s2 � 1

1
�
s � 4

1
�
s � 1

20
��
(s � 1)(s � 4)

Instructor’s Manual 119

im06.qxd  9/21/05  12:05 PM  Page 119



2. ƒ � t cos 5t, ƒ� � cos 5t � 5t sin 5t, ƒ� � �10 sin 5t � 25t cos 5t. Hence

�(ƒ�) � � 25�(ƒ) � s2�(ƒ) � s � 0 � 1

and thus

(s2 � 25)�(ƒ) � � 1 � .

Answer

�(ƒ) � .

4. ƒ � cos2 �t, ƒ� � �2� cos �t sin �t � �� sin 2�t. Hence

�(ƒ�) � � s�(ƒ) � 1, s�(ƒ) � .

This gives the answer

�(ƒ) � .

6. ƒ � cosh2 1_
2t, ƒ� � cosh 1_

2t sinh 1_
2t � 1_

2 sinh t. Hence

�(ƒ�) � s�(ƒ) � 1 � , s�(ƒ) � .

This gives the answer

�(ƒ) � .

8. ƒ � sin4 t, ƒ� � 4 sin3 t cos t, ƒ� � 12 sin2 t cos2 t � 4 sin4 t. From this and (2) it
follows that

�(ƒ�) � 12�(sin2 t cos2 t) � 4�(ƒ) � s2�(ƒ).

Collecting terms and using Prob. 3 with 
 � 2 and sin 2� � 2 sin � cos �, we obtain

(s2 � 4)�(ƒ) � 3�(sin2 2t) � .

Answer

�(ƒ) � .

10. sY � 2.8 � 4Y � 0, (s � 4)Y � 2.8, Y � 2.8/(s � 4), y � 2.8e�4t

12. (s2 � s � 6)Y � (s � 3)(s � 2)Y � 6s � 13 � 6 � 6s � 7. Hence

Y � � �

and
y � 5e3t � e�2t.

14. (s � 2)2Y � 2.1s � 3.9 � 4 � 2.1. Hence

Y � � .
2.1(s � 2) � 4.2 � 4.5
���

(s � 2)2

2.1s � 4.5
��

(s � 2)2

1
�
s � 2

5
�
s � 3

6s � 7
��
(s � 3)(s � 2)

24
���
s(s2 � 4)(s2 � 16)

3 � 8
��
s(s2 � 16)

s2 � 1_
2

��
s(s2 � 1)

1_
2 � s2 � 1
��

s2 � 1

1/2
�
s2 � 1

s2 � 2�2

��
s(s2 � 4�2)

s2 � 4�2 � 2�2

��
s2 � 4�2

�2�2

��
s2 � 4�2

s2 � 25
��
(s2 � 25)2

s2 � 25
�
s2 � 25

�50
�
s2 � 25

�50
�
s2 � 25
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This gives the solution
y � 2.1e2t � 0.3te2t

as expected in the case of a double root of the characteristic equation.

16. (s2 � ks � 2k2)Y � 2s � 2k � 2k, Y � (2s � 4k) /[(s � k)(s � 2k)] � 2/(s � k), 
y � 2ekt

18. We obtain

(s2 � 9)Y � .

The solution of this subsidiary equation is

Y � � � .

This gives the solution y � e�t � cos 3t � 1_
3 sin 3t.

20. The subsidiary equation is

(s2 � 6s � 5)Y � 3.2s � 6.2 � 6 � 3.2 � 29s/(s2 � 4).

The solution Y is

Y � .

In terms of partial fractions, this becomes

Y � � � .

The inverse transform of this gives the solution

y � et � 2e5t � 0.2 cos 2t � 2.4 sin 2t.

22. t � t� � 1, so that the “shifted problem” is

y�� � 2y�� � 3y� � 0, y�(0) � �3, y��(0) � �17.

Hence the corresponding subsidiary equation is

(s2 � 2s � 3)Y� � �3s � 17 � 6.
Its solution is

Y� � � � .

Inversion gives
y� � 2e�t� � 5e3t�.

This is the solution of the “shifted problem,” and the solution of the given problem is

y � 2e�(t�1) � 5e3(t�1).

24. t � t� � 3, so that the “shifted equation” is

y�� � 2y�� � 5y� � 50t�.

The corresponding subsidiary equation is

[(s � 1)2 � 4]Y� � �4s � 14 � 2 � 4 � 50/s2.

5
�
s� 3

2
�
s � 1

�3s � 11
��
(s � 1)(s � 3)

0.2s � 2.4 � 2
��

s2 � 4

2
�
s � 5

1
�
s � 1

(3.2s � 13)(s2 � 4) � 29s
���

(s � 1)(s � 5)(s2 � 4)

s � 1
�
s2 � 9

1
�
s � 1

10
��
(s � 1)(s2 � 9)

10
�
s � 1
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Its solution is

Y� � � � .

The inverse transform is

y� � 10 t� � 4 � 2e�t
�
sin 2t�.

Hence the given problem has the solution

y � 10(t � 3) � 4 � 2e�(t�3) sin 2(t � 3).

26. Project. We derive (a). We have ƒ(0) � 0 and

ƒ�(t) � cos 
t � 
t sin 
t, ƒ�(0) � 1

ƒ�(t) � �2
 sin 
t � 
2ƒ(t).
By (2),

�(ƒ�) � �2
 � 
2�(ƒ) � s2�(ƒ) � 1.

Collecting �(ƒ)-terms, we obtain

�(ƒ)(s2 � 
2) � � 1 � .

Division by s2 � 
2 on both sides gives (a).
In (b) on the right we get from (a)

�(sin 
t � 
t cos 
t) � � 
 .

Taking the common denominator and simplifying the numerator,


(s2 � 
2) � 
(s2 � 
2) � 2
3

we get (b).
(c) is shown in Example 1.
(d) is derived the same way as (b), with � instead of �, so that the numerator is


(s2 � 
2) � 
(s2 � 
2) � 2
s2,
which gives (d).

(e) is similar to (a). We have ƒ(0) � 0 and obtain

ƒ�(t) � cosh at � at sinh at, ƒ�(0) � 1

ƒ�(t) � 2a sinh at � a2ƒ(t).
By (2) we obtain

�(ƒ�) � � a2�(ƒ) � s2�(ƒ) � 1.

Hence

�(ƒ)(s2 � a2) � � 1 � .

Division by s2 � a2 gives (e).

s2 � a2

�
s2 � a2

2a2

�
s2 � a2

2a2

�
s2 � a2

s2 � 
2

��
(s2 � 
2)2



�
s2 � 
2

s2 � 
2

�
s2 � 
2

�2
2

�
s2 � 
2



�
s2 � 
2

4
��
(s � 1)2 � 4

4
�
s

10
�
s2
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(f) follows similarly. We have ƒ(0) � 0 and, furthermore,

ƒ�(t) � sinh at � at cosh at, ƒ�(0) � 0

ƒ�(t) � 2a cosh at � a2ƒ(t)

�(ƒ�(t)) � 2a � a2�(ƒ) � s2�(ƒ)

�(ƒ)(s2 � a2) � .

Division by s2 � a2 gives formula (f).

28. We start from

��1 ( ) � e�t

and integrate twice. The first integration gives

(e�t � 1).

Multiplication by 10 and another integration from 0 to t gives the answer

(e�t � 1) � .

30. The inverse of 1/(s2 � 1) is sin t. A first integration from 0 to t gives 1 � cos t, and
another integration yields t � sin t.

32. The inverse of 2/(s2 � 9) is 2_
3 sin 3t. Integration from 0 to t gives the answer

2_
9(1 � cos 3t) � 4_

9 sin2 3_
2t.

34. The inverse of 1/(s2 � �2) is sin �t. A first integration from 0 to t gives

(1 � cos �t).

Another integration gives the answer

(t � sin �t) .

SECTION 6.3. Unit Step Function. t-Shifting, page 233

Purpose

1. To introduce the unit step function u(t � a), which together with Dirac’s delta
(Sec. 6.4) greatly increases the usefulness of the Laplace transform.

2. To find the transform of

0 (t � a), ƒ(t � a) (t 	 a)

if that of ƒ(t) is known (“t-shifting”). (“s-shifting” was considered in Sec. 6.1.)

1
�
�

1
�
�2

1
�
�2

1
�
�

10t
�
�

10
�
�2

1
�
�

1
�
s � �

2as
�
s2 � a2

s
�
s2 � a2
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Main Content, Important Concepts

Unit step function (1), its transform (2)

Second shifting theorem (Theorem 1)

Comment on the Unit Step Function
Problem Set 6.3 shows that u(t � a) is the basic function for representing discontinuous
functions.

SOLUTIONS TO PROBLEM SET 6.3, page 240

2. t(1 � u(t � 1)) � t � [(t � 1) � 1]u(t � 1). Hence the transform is

� � .

4. (sin 3t)(1 � u(t � �)) � sin 3t � u(t � �) sin 3(t � �). Hence the transform is

(1 � e��s).

6. We obtain
t2u(t � 3) � [(t � 3)2 � 6(t � 3) � 9]u(t � 3).

Hence the transform is

( � � ) e�3s.

8. (1 � e�t)(1 � u(t � �)) � 1 � e�t � (1 � e�(t��)��)u(t � �). Hence the 
transform is

� � � e�� e��s.

10. u(t � 6�/
) sin 
t � u(t � 6�/
) sin (
 t � 6�). Hence the transform is

e�6�s/
.

12. 1_
2(et � e�t)(1 � u(t � 2)) � 1_

2(et � e�t) � 1_
2(e(t�2)�2 � e(�t�2)�2)u(t � 2). Hence

the transform is

� � � � ( � ) e�2s.

Alternatively, by using the addition formula (22) in App. 3.1 we obtain the transform
in the form

� ( � ) e�2s.

14. s/(s2 � 
2) has the inverse cos 
t. Hence ƒ(t) � 0 if t � 1 and cos 
(t � 1) if t 	 1.

16. t � [(t � 1) � 1]u(t � 1) � t � t u(t � 1); hence ƒ(t) � t if 0 � t � 1 and 0 if t 	 1.

18. 1/(s2 � 2s � 2) � 1/[(s � 1)2 � 1] has the inverse e�t sin t. Hence the given transform
has the inverse

e�(t��) sin (t � �)u(t � �) � �e��t sin t u(t � �)

which is 0 if t � � and �e��t sin t if t 	 �.

s sinh 2
�
s2 � 1

cosh 2
�
s2 � 1

1
�
s2 � 1

e�2

�
s � 1

e2

�
s � 1

1
�
2

1
�
s � 1

1
�
2

1
�
s � 1

1
�
2



�
s2 � 
2

1
�
s � 1

e��s

�
s

1
�
s � 1

1
�
s

9
�
s

6
�
s2

2
�
s3

3
�
s2 � 9

e�s

�
s

e�s

�
s2

1
�
s2
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20. The inverse transform is

ekt � ek(t�1)eku(t � 1) � {
22. The inverse transform is 2.5(u(t � 2.6) � u(t � 3.8)), that is, 2.5 if 2.6 � t � 3.8

and 0 elsewhere.

24. (9s2 � 6s � 1)Y � 27s � 9 � 18 � 27s � 9. Hence

Y � � � .

Hence the answer is y � 3et/3.

26. (s2 � 10s � 24)Y � (s � 4)(s � 6)Y � � s � 5 � . Division by

s2� 10s � 24 and expansion in terms of partial fractions gives

Y � � � .

Hence the answer is y � 6t2 � 5t � _19
12. Note that it does not contain a contribution

from the general solution of the homogeneous ODE.

28. The subsidiary equation is

(s2 � 3s � 2)Y � � .

It has the solution

Y � � ( � � ) (1 � e�s).

This gives the answer

y � 1_
2 � 1_

2e�2t � e�t � (1_
2 � 1_

2e�2(t�1) � e�(t�1))u(t � 1);

that is,

y � {
30. The subsidiary equation is

(s2 � 16)Y � (1 � e�45 � 8) � 3s � 4.

Now

� � �

has the inverse transform y1 � 3e�4t � 4e4t � 4e2t. This is the solution for 
0 � t � 4. The solution for t 	 4 is

y � y2 � e�4t(3 � e24) � e4t(4 � 3e�8).

4
�
s � 2

4
�
s � 4

3
�
s � 4

�
s

4

�

8

2
� � 3s � 4

��
s2 � 16

48
�
s � 2

t � 1

t 	 1.

if 0 �

if

1_
2 � 1_

2e�2t � e�t

1_
2e�2t(1 � e2) � e�t(1 � e)

1
�
s � 1

1
�
2(s � 2)

1
�
2s

1 � e�s

��
s(s2 � 3s � 2)

e�s

�
s

1
�
s

19/12
�

s

5
�
s2

12
�
s3

190
�
12

19
�
12

288
�
s3

3
�
s � 1_

3

3s � 1
�
(s � 1_

3)2

27s � 9
��
9s2 � 6s � 1

t � 1.

t 	 1.

if 0 �

if

ekt

0
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In y2 the e2t-term has dropped out. The result can be confirmed classically by noting
that we must have

y2(4) � y1(4) � 3e�16 � 4e16 � 4e8

y�2(4) � y�1(4) � �12e�16 � 16e16 � 8e8.

32. r � 35e2t(1 � u(t � 2)). The subsidiary equation is

(s2 � 8s � 15)Y � (1 � e�2(s�2)) � 3s � 8 � 24.

Its solution is

Y � .

The inverse transform of Y is

y � e2t � 2e�5t � u(t � 2)(�e2t � 5_
2e�5t�14 � 7_

2e�3t�10).
Thus,

y � {
34. t � � � t�, y�� � 2y�� � 5y� � r�, r� � 10[�1 � u( t� � �)] sin t�, y�(0) � 1, 

y��(0) � �2 � 2e��. The solution in terms of t� is

y�(t�) � e�t�� sin 2t� � cos t� � 2 sin t�

� u(t� � �)[e�t
�
��(�cos 2t� � 1_

2 sin 2t�) � cos t� � 2 sin t�].

In terms of t,

y(t) � e�t sin 2t � cos t � 2 sin t

� u(t � 2�)[e�t�2�(�cos 2t � 1_
2 sin 2t) � cos t � 2 sin t].

36. 10i � 100 �t

0
i(�) d� � 100(u(t � 0.5) � u(t � 0.6)). Divide by 10 and take the

transform, using Theorem 3 in Sec. 6.2,

I � I � (e�0.5s � e�0.6s).

Solving for I � �(i) gives

I � (e�0.5s � e�0.6s).

The inverse transform is

i(t) � 10(e�10(t�0.5) u(t � 0.5) � e�10(t�0.6) u(t � 0.6)).
Hence

t � 0.5

t � 0.6

t 	 0.6.

if

if 0.5 �

if

� 0

� 10e�10(t�0.5)

� 10(e�10(t�0.5) � e�10(t�0.6))

� 10e�10t(e5 � e6)

� �2550e�10t

i(t)

i(t)

i(t)

10
�
s � 10

10
�
s

10
�
s

t � 2

t 	 2.

if 0 �

if

e2t � 2e�5t

e�5t(2 � 5_
2e14) � 7_

2e�3t�10

3s2 � 10s � 3 � 35e�2s�4

���
s3 � 6s2 � s � 30

35
�
s � 2
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Jumps occur at t � 0.5 (upward) and at t � 0.6 (downward) because the right side
has those jumps and the term involving the integral (representing the charge on the
capacitor) cannot change abruptly; hence the first term, Ri(t), must jump by the
amounts of the jumps on the right, which have size 100, and since R � 10, the current
has jumps of size 10.

38. We obtain

I � 14 � 105 � ( � ) e�4s�12

hence

i � u(t � 4) [2 � 106e�10(t�4)�12 � 6 � 105e�3(t�4)�12].

40. i� � 1000i � 40 sin t u(t � �). The subsidiary equation is

sI � 1000I � �40 .

Its solution is

I � � ( � ) .

The inverse transform is

i � u(t � �) [� (cos t � e�1000(t��)) � sin t] ;

hence i � 0 if t � �, and i � 0.04 sin t if t 	 �.

42. i� � 4i � 200(1 � t2)(1 � u(t � 1)). Observing that

t2 � (t � 1)2 � 2(t � 1) � 1,

we obtain the subsidiary equation

(s2 � 4)I � 200( � ) � 200e�s ( � ) .

Its solution is

I � 200 � 25 ( � � )
� 25e�s (� � � � ) .

Its inverse transform is

i � 75 � 50t2 � 75 cos 2t

� u(t � 1)[�75 � 50t2 � 25 cos (2t � 2) � 50 sin (2t � 2)].

44. 0.5i� � 20i � 78 cos t (1 � u(t � �)). The subsidiary equation is

(0.5s2 � 20)I � (1 � e��s).

Its solution is

I � � 4s ( � ) (1 � e��s).
1

�
s2 � 40

1
�
s2 � 1

156s(1 � e��s)
��
(s2 � 1)(s2 � 40)

78s
�
s2 � 1

s � 4
�
s2 � 4

4
�
s3

4
�
s2

1
�
s

3s
�
s2 � 4

4
�
s3

3
�
s

s2 � 2 � e�s(2s � 2)
���

s3(s2 � 4)

2
�
s3

2
�
s2

2
�
s3

1
�
s

40 000
��
1 000 001

40
��
1 000 001

s � 1000
��

s2 � 1

1
��
s � 1000

�40e��s

��
1 000 001

�40e��s

���
(s2 � 1) (s � 1000)

e��s

�
s2 � 1

6 � 105

�
s � 3

2 � 106

�
s � 10

se�4s�12

��
(s � 10)(s � 3)
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Its inverse transform is

i � 4 cos t � 4 cos �40�t � 4u(t � �) [cos t � cos (�40� (t � �))].

46. i� � 4i � 20 �t

0
i(�) d� � 34e�t(1 � u(t � 4)). The subsidiary equation is

(s � 4 � ) I � (1 � e�4s�4).

Its solution is

I � (1 � e�4s�4).

The inverse transform is

i � �2e�t � e�2t(2 cos 4t � 9 sin 4t)

� u(t � 4) [2e�t�4 � e�2(t�2)(2e�t�2 cos 4(t � 4) �9 sin 4(t � 4)].

SECTION 6.4. Short Impulses. Dirac’s Delta Function. Partial Fractions,
page 241

Purpose. Modeling of short impulses by Dirac’s delta function (also known as unit
impulse function). The text includes a remark that this is not a function in the usual sense
of calculus but a “generalized function” or “distribution.” Details cannot be discussed on
the level of this book; they can be found in books on functional analysis or on PDEs. See,
e.g., L. Schwartz, Mathematics for the Physical Sciences, Paris: Hermann, 1966. The
French mathematician LAURENT SCHWARTZ (1915–2002) created and popularized the
theory of distributions. See also footnote 2.

Main Content

Definition of Dirac’s delta (3)

Sifting property (4)

Transform of delta (5)

Application to mass–spring systems and electric networks

More on partial fractions (Example 4)

For the beginning of the discussion of partial fractions in the present context, see Sec. 6.2.

SOLUTIONS TO PROBLEM SET 6.4, page 247

2. The subsidiary equation is

(s2 � 2s � 2)Y � 1 � � 5e�2s

where the 1 comes from y�(0). The solution in terms of partial fractions is

Y � � � � .

Hence the inverse transform (the solution of the problem) is

y � e�t sin t � e�t � e�t cos t � 5e�(t�2) sin (t � 2) u(t � 2).

4. The subsidiary equation is

(s2 � 3s � 2)Y � s � 1 � 3 � � 10e�s.
10

�
s2 � 1

5e�2s

��
(s � 1)2 � 1

s � 1
��
(s � 1)2 � 1

1
�
1 � s

1
��
(s � 1)2 � 1

1
�
1 � s

34s
���
(s � 1)(s2 � 4s � 20)

34
�
s � 1

20
�
s

128 Instructor’s Manual

im06.qxd  9/21/05  12:05 PM  Page 128



In terms of partial fractions, its solution is

Y � � � � 10 ( � ) e�s.

Its inverse transform is

y � �2e�2t � 6e�t � 3 cos t � sin t � 10u(t � 1) [e�t�1 � e�2(t�1)].

Without the �-term, the solution is �3 cos t � sin t � 2e�2t � 6e�t and approaches
a harmonic oscillation fairly soon. With the �-term the first half-wave has a maximum
amplitude of about 5, but from about t � 8 or 10 on its graph coincides practically
with the graph of that harmonic oscillation (whose maximum amplitude is �10�). This
is physically understandable, since the system has damping that eventually consumes
the additional energy due to the �-term.

6. The subsidiary equation is

(s2 � 2s � 3)Y � s � 2 � 100(e�2s � e�3s).
The solution is

Y � .

Its inverse transform gives the solution of the problem,

y � 1_
4(e�3t � 3et) � 25u(t � 2) (e�3t�6 � et�2)

� 25u(t � 3) (�e�3t�9 � et�3).

Without the factor 100 the cusps of the curve at t � 2 and t � 3 caused by the delta
functions would hardly be visible in the graph, because the solution increases
exponentially. Solve the problem without the factor 100.

8. The subsidiary equation is

(s2 � 5s � 6)Y � e��s/2 � e��s.

Its solution is

Y � ( � ) e��s/2 � (� � � ) e��s.

The inverse transform of Y is

y � u(t � 1_
2�) [e�2t�� � e�3t�3�/2]

� 0.1u(t � �) [�4e�2t�2� � 3e�3t�3� � cos t � sin t].

This solution is zero from 0 to 1_
2� and then increases rapidly. Its first negative

half-wave has a smaller maximum amplitude (about 0.1) than the continuation as a
harmonic oscillation with maximum amplitude of about 0.15.

10. This is Prob. 9 without the damping term. The subsidiary equation is

(s2 � 5)Y � �2s � 5 � � 100e��s.

Its solution is

Y � � � e��s.
100

�
s2 � 5

25
��
s2(s2 � 5)

�2s � 5
�

s2 � 5

25
�
s2

0.1(s � 1)
��

s2 � 1

0.3
�
s � 3

0.4
�
s � 2

1
�
s � 3

1
�
s � 2

s
�
s2 � 1

s � 2 � 100(e�2s � e�3s)
���

(s � 1)(s � 3)

1
�
s � 2

1
�
s � 1

3s � 1
�
s2 � 1

6
�
s � 1

�2
�
s � 2
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The partial fraction reduction of the second term on the right is

5 ( � ) .

The inverse transform of Y is (note that the sine terms cancel)

y � �2 cos t�5� � 5t � 20�5� u(t � �) sin (�5�(t � �)).

The graph begins at t � 0 according to 5t � 2 cos t�5� (the solution without the
�-term) and then starts oscillating with maximum amplitude of about 40 about 
the straight line given by 5t. Since there is no damping, the energy corresponding
to the �-term imposed at t � � will not disappear from the system; hence we obtain
the indicated oscillations. See the figure.

Section 6.4. Problem 10

12. The subsidiary equation is

(s2 � 1)Y � 1 � � 10e��s.

Its solution is

Y � � � e��s.

The inverse transform of Y is

y � sin t � (sin t � t cos t) � 10u(t � �) sin t

� t cos t � 10u(t � �) sin t.

We see that we have a resonance term, t cos t. At t � � the graph has a sharp cusp
and then shows the oscillations with increasing maximum amplitude to be expected
in the case of resonance. See the figure.

14. CAS Project. Students should become aware that careful observation of graphs may
lead to discoveries or to more information about conjectures that they may want to
prove or disprove. The curves branch from the solution of the homogeneous ODE at
the instant at which the impulse is applied, which by choosing, say, a � 1, 2, 3, • • • ,
gives an interesting joint graph.

16. Team Project. (a) If ƒ(t) is piecewise continuous on an interval of length p, then its
Laplace transform exists, and we can write the integral from zero to infinity as the
series of integrals over successive periods:

�(ƒ) � ��

0
e�stƒ(t) dt � �p

0
e�stƒ dt � �2p

p
e�stƒ dt � �3p

2p
e�stƒ dt � • • • .

10
�
s2 � 1

2
��
(s2 � 1)2

1
�
s2 � 1

2
�
s2 � 1

80

60

40

20

–20

2 4 6 8 10
0 t

1
�
s2 � 5

1
�
s2
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Section 6.4. Problem 12

If we substitute t � � � p in the second integral, t � � � 2p in the third integral,
• • • , t � � � (n � 1)p in the nth integral, • • • , then the new limits in every integral
are 0 and p. Since

ƒ(� � p) � ƒ(�), ƒ(� � 2p) � ƒ(�),
etc., we thus obtain

�(ƒ) � �p

0
e�s�ƒ(�) d� � �p

0
e�s(��p)ƒ(�) d� � �p

0
e�s(��2p)ƒ(�) d� � • • • .

The factors that do not depend on � can be taken out from under the integral signs;
this gives

�(ƒ) � [1 � e�sp � e�2sp � • • •] �p

0
e�s�ƒ(�) d�.

The series in brackets [• • •] is a geometric series whose sum is 1/(1 � e�ps). The
theorem now follows.

(b) From (11) we obtain

�(ƒ) � ��/


0

e�st sin 
t dt.

Using 1 � e�2�s/
 � (1 � e��s/
)(1 � e��s/
) and integrating by parts or noting that
the integral is the imaginary part of the integral

��/


0

e(�s�i
)t dt � e(�s�i
)t j�/


0

� (�e�s�/
 � 1)

we obtain the result.

(c) From (11) we obtain the following equation by using sin 
t from 0 to �/
 and
�sin 
t from �/
 to 2�/
:

�

� .

This gives the result.

(d) The sawtooth wave has the representation

ƒ(t) � t if 0 � t � p, ƒ(t � p) � ƒ(t).
k
�
p

cosh (�s/2
)
��
sinh (�s/2
)



�
s2 � 
2

e��s/2
 � e�s/2


��
e�s/2
 � e��s/2




�
s2 � 
2

1 � e�s/


��
e�s/
 � 1



�
s2 � 
2

�s � i

�
s2 � 
2

1
�
�s � i


1
��
1 � e�2�s/


2 4 6 8 10 12 14 16 18 20

10

20

0

–10

–20

t
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Integration by parts gives

�p

0
e�stt dt � � e�st jp

0

� �p

0
e�st dt

� � e�sp � (e�sp � 1)

and thus from (11) we obtain the result

�(ƒ) � � (s 	 0).

(e) Since kt/p has the transform k/ps2, from (d) we have the result

(s 	 0).

SECTION 6.5. Convolution. Integral Equations, page 248

Purpose. To find the inverse h(t) of a product H(s) � F(s)G(s) of transforms whose
inverses are known.

Main Content, Important Concepts

Convolution ƒ � g, its properties

Convolution theorem

Application to ODEs and integral equations

Comment on Occurrence
In an ODE the transform R(s) of the right side r(t) is known from Step 1. Solving the
subsidiary equation algebraically for Y(s) causes the transform R(s) to be multiplied by
the reciprocal of the factor of Y(s) on the left (the transfer function Q(s); see Sec. 6.2).
This calls for the convolution theorem, unless one sees some other way or shortcut.

Very Short Courses. This section can be omitted.

SOLUTIONS TO PROBLEM SET 6.5, page 253

2. t � t � �t

0
�(t � �) d� � � �

4. �t

0
ea�eb(t��) d� � ebt�t

0
e(a�b)� d� � (e(a�b)t � 1) � (eat � ebt)

6. 1 � ƒ(t) � �t

0
ƒ(�) d�

8. By the definition and by (11) in App. 3.1 we obtain

�t

0
sin � cos (t � �) d� � 1_

2 �
t

0
sin t d� � 1_

2 �
t

0
sin (2� � t) d�.

Integration of this gives

1_
2 t sin t � [1_

4 (�cos (2� � t))]jt

0

� 1_
2 t sin t � 1_

4 [cos t � cos (�t)].

Hence the answer is 1_
2 t sin t.

1
�
a � b

ebt

�
a � b

t3

�
6

t3

�
3

t3

�
2

ke�ps

��
s(1 � e�ps)

ke�ps

��
s(1 � e�ps)

k
�
ps2

1
�
s2

p
�
s

1
�
s

t
�
s
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10. �(1)�(et), 1 � et � �t

0
e� d� � et � 1

12. t � e2t � �t

0
e2�(t � �) d� � (e2t � 1) � e2t � e2t �

� � � e2t �

14. 1_
4(cos 4t) � (sin 4t) � 1_

4 �
t

0
cos 4� sin 4(t � �) d�. Use (11) in App. 3.1 to convert the

product in the integrand to a sum and integrate. This gives

�t

0
(sin 4t � sin (4t � 8�)) d� � sin 4t � (cos 4t � cos (�4t)).

Hence the answer is sin 4t, in agreement with formula 22 in Sec. 6.9.

16. (sin t) � (sin 5t) � �t

0
sin � sin 5(t � �) d�. Using formula (11) in App. 3.1, convert

the product in the integrand to a sum and integrate, obtaining

1_
2 �

t

0
[�cos (5t � 4�) � cos (� � 5t � 5�)] d�

� 1_
2[�1_

4 sin (�5t � 4�) � 1_
6 sin (6� � 5t)]jt

0

� 1_
8(sin t � sin 5t) � _1

12(sin t � sin 5t)

� _5
24 sin t � _1

24 sin 5t.

18. The subsidiary equation is

(s2 � 1)Y �

and has the solution

Y � .

Since the inverse of 1/(s2 � 1) is sin t, the convolution theorem gives the answer

y � (sin t) � (sin t) � �t

0
sin � sin (t � �) d�

� �1_
2t cos t � 1_

2 sin t.

20. The subsidiary equation is

(s � 1)(s � 4)Y � .

Its solution is

Y � .
2

���
(s � 1)(s � 2)(s � 4)

2
�
s � 2

1
��
(s2 � 1)2

1
�
s2 � 1

t
�
8

1
�
64

t
�
8

1
�
2

1
�
4

1
�
4

1
�
4

t
�
2

1
�
4

1
�
4

t
�
2

t
�
2
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Two applications of the convolution theorem thus give

(2e�t � e�2t) � e�4t � �t

0
(2 �p

0
e��e�2p�2� d�)e�4t�4p dp

� �t

0
(2e�p � 2e�2p)e�4t�4p dp

� e�t � e�2t � e�4t.

22. The subsidiary equation is

(s2 � 3s � 2)Y � .

Now

� � � .

The inverse transform of this is e�t � e�2t. Hence, since r(t) � 1 if t � a and 0
thereafter, this gives

r(t) � (e�t � e�2t) ��(e�(t��) � e�2(t��)) d�

� e�(t��) � 1_
2e�2(t��).

If t � a, the limits of integration are 0 and t; this gives

y(t) � 1 � e�t � 1_
2 � 1_

2e�2t � 1_
2 � e�t � 1_

2e�2t.

If t 	 a, we integrate from 0 to a, obtaining

y(t) � e�(t�a) � e�t � 1_
2e�2(t�a) � 1_

2e�2t.

Using the subsidiary equation (above) and a partial fraction expansion, we obtain

Y � (1 � e�as) ( � � )
and the same expressions for y(t).

24. The subsidiary equation is

(s2 � 5s � 6)Y � s � 5 � e�3s.
Its solution is

Y � � � � ( � ) e�3s.

The inverse transform of the first two terms on the right is

3e�2t � 2e�3t.

The inverse transform of the last two terms can be obtained by the second shifting
theorem or by convolution. By convolution we use the sifting property, formula (4)
in Sec. 6.4. We obtain

�(t � 3) � (e�2t � e�3t) � �t

0

[e�2(t��) � e�3(t��)]�(� � 3) d�.

For t � 3 this gives 0. For t 	 3 we obtain

e�2(t�3) � e�3(t�3).

1
�
s � 3

1
�
s � 2

2
�
s � 3

3
�
s � 2

s � 5 � e�3s

��
(s � 2)(s � 3)

1
�
s � 1

1
�
2(s � 2)

1
�
2s

1
�
s � 2

1
�
s � 1

1
��
(s � 1)(s � 2)

1
��
s2 � 3s � 2

1 � e�as

�
s

1
�
3

2
�
3
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26. Team Project. (a) Setting t � � � p, we have � � t � p, d� � �dp, and p runs
from t to 0; thus

ƒ � g � �t

0
ƒ(�)g(t � �) d� � �0

t
g(p)ƒ(t � p) (�dp)

� �t

0
g(p)ƒ(t � p) dp � g � ƒ.

(b) Interchanging the order of integration and noting that we integrate over the shaded
triangle in the figure, we obtain

(ƒ � g) � v � v � (ƒ � g)

� �t

0
v(p) �t�p

0
ƒ(�)g(t � p � �) d� dp

� �t

0
ƒ(�) �t��

0
g(t � � � p)v(p) dp d�

� ƒ � (g � v).

Section 6.5. Team Project 26(b)

(c) This is a simple consequence of the additivity of the integral.

(d) Let t 	 k. Then (ƒk � ƒ)(t) � �k

0
ƒ(t � �) d� � ƒ(t � t�) for some t� between 0 

and k. Now let k * 0. Then t� * 0 and ƒk(t � t�) * �(t), so that the formula 
follows.

(e) s2Y � sy(0) � y�(0) � 
2Y � �(r) has the solution

Y � ( ) �(r) � y(0) �

etc.

28. The integral equation can be written

y(t) � y(t) � cosh t � t � et.

This implies by the convolution theorem that its transform is

Y � Y � � .

The solution is

Y � ( � ) � � .
1
�
s

1
�
s2

1
�
s � 1

1
�
s2

s2 � 1
��
s2 � s � 1

1
�
s � 1

1
�
s2

s
�
s2 � 1



�
s2 � 
2

y�(0)
�




s
�
s2 � 
2



�
s2 � 
2

1
�



1
�
k

t0

p = t – �
� = t – p

t

0
p

�
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Hence its inverse transform gives the answer y(t) � t � 1. This result can easily be
checked by substitution into the given equation and integration.

30. Y � Y � Y � , hence

Y � � .

This gives the answer y � (1 � t)e�t.

32. Y (1 � ) � � , hence

Y � � � .

The answer is y � 1 � cosh t.

34. Y (1 � ) � � � � , Y � , y � 2t2

SECTION 6.6. Differentiation and Integration of Transforms. ODEs with
Variable Coefficients, page 254

Purpose. To show that, roughly, differentiation and integration of transforms (not of
functions, as before!) corresponds to multiplication and division, respectively, of functions
by t, with application to the derivation of further transforms and to the solution of
Laguerre’s differential equation.

Comment on Application to Variable-Coefficient Equations
This possibility is rather limited; our Example 3 is perhaps the best elementary example
of practical interest.

Very Short Courses. This section can be omitted.

SOLUTIONS TO PROBLEM SET 6.6, page 257

2. ( )� � � �

4. By the addition formula for the cosine we have

cos (t � k) � cos t cos k � sin t sin k.

The transform of this function is

.

The derivative times �1 is

� .
cos k (s2 � 1) � (s cos k � sin k)2s
����

(s2 � 1)2

s cos k � sin k
��

s2 � 1

s2 � 4
��
(s2 � 4)2

s2 � 4 � 2s2

��
(s2 � 4)2

s
�
s2 � 4

4
�
s3

1
�
2(s � 2)

1
�
2s

1
�
s2

2
�
s3

1
�
s � 2

s
�
s2 � 1

1
�
s

2s2 � 1
��
s(s2 � 1)

1
�
s3

2
�
s

1
�
s2

1
�
(s � 1)2

1
�
s � 1

s
�
s2 � 1

s2 � 2s � 1
��

s2 � 1

2s
�
s2 � 1
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Simplification gives the answer

.

6. We need two differentiations. We can drop the two minus signs. Starting from the
transform of sin 3t, we obtain

( )� � ( )�

�

�

� .

8. �(tnekt) � can be obtained from �(ekt) � by n subsequent

differentiations,

( )(n)

� ( )(n�1)

� • • • �

and multiplication by (�1)n (to take care of the minus sign in (1) in each of the n steps),
or much more simply, by the first shifting theorem, starting from �(tn) � n!/sn�1.

10. �( )� � � �

12. �( )� �

14. By differentiation we have

( )� � .

Hence the answer is 1_
8t sin 4t. By integration we see that

��

s
ds� �

has the inverse transform 1_
8 sin 4t and gives the same answer. By convolution,

(cos 4t) � (1_
4 sin 4t) � �t

0
cos 4� sin (4t � 4�) d�

and gives the same answer.

16. By differentiation

( )� � .

This shows that the answer is 1_
2t sinh t.

�2s
��
(s2 � 1)2

1
�
s2 � 1

1_
2

�
s2 � 16

s�
��
(s�2 � 16)2

�8s
��
(s2 � 16)2

4
�
s2 � 16

2(s � k)
��
((s � k)2 � 1)2

1
��
(s � k)2 � 1

s2 � 
2

��
(s2 � 
2)2

s2 � 
2 � 2s2

��
(s2 � 
2)2

s
�
s2 � 
2

(�1)nn!
��
(s � k)n�1

�1
�
(s � k)2

1
�
s � k

1
�
s � k

n!
��
(s � k)n�1

18(s2 � 3)
��
(s2 � 9)3

�6s2 � 54 � 24s2

���
(s2 � 9)3

�6(s2 � 9)2 � 6s � 2(s2 � 9) � 2s
����

(s2 � 9)4

�6s
��
(s2 � 9)2

3
�
s2 � 9

(s2 � 1) cos k � 2s sin k
���

(s2 � 1)2
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18. ln � ln (s � a) � ln (s � b) � ���

s
� ��

s
. This shows that

the answer is (�e�at � e�bt) /t.

20. (arccot )� � � � shows that the answer is (sin 
t) /t.

22. CAS Project. Students should become aware that usually there are several
possibilities for calculations, and they should not rush into numerical work before
carefully selecting formulas.

(b) Use the usual rule for differentiating a product n times. Some of the polynomials
are

l2 � 1 � 2t � 1_
2t2

l3 � 1 � 3t � 3_
2t2 � 1_

6t3

l4 � 1 � 4t � 3t2 � 2_
3t3 � _1

24t4

l5 � 1 � 5t � 5t2 � 5_
3t3 � _5

24t4 � _1
120t5.

SECTION 6.7. Systems of ODEs, page 258

Purpose. This section explains the application of the Laplace transform to systems of
ODEs in terms of three typical examples: a mixing problem, an electrical network, and a
system of several (two) masses on elastic springs.

SOLUTIONS TO PROBLEM SET 6.7, page 262

2. The subsidiary equations are

sY1 � 1 � 5Y1 � Y2

sY2 � 3 � Y1 � 5Y2.
The solution is

Y1 � �

Y2 � � .

The inverse transform is

y1 � e5t cosh t � 3e5t sinh t � 2e4t � e6t

y2 � �3e5t cosh t � e5t sinh t � �2e4t � e6t.

4. The subsidiary equations are
sY1 � Y2 � 1

Y1 � sY2 � .

The solution is

Y1 � , Y2 � .

The inverse transform is y1 � cos t, y2 � sin t.

1
�
s2 � 1

s
�
s2 � 1

2s
�
s2 � 1

�3(s � 5) � 1
��

(s � 5)2 � 1

�3s � 16
��
(s � 5)2 � 1

(s � 5) � 3
��
(s � 5)2 � 1

s � 8
��
(s � 5)2 � 1

�

�
s2 � 
2

1/

��

1 � (�



s
�)2

s
�



d�
�
� � b

d�
�
� � a

s � a
�
s � b
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6. The subsidiary equations are

sY1 � 4Y2 �

sY2 � 3 � 3Y1 � .

The solution is

Y1 � , Y2 � .

The inverse transform is y1 � sin 4t, y2 � 3 cos 4t.
8. The subsidiary equations are

sY1 � �3 � 6Y1 � Y2

sY2 � �3 � 9Y1 � 6Y2.

The solution is

Y1 � � � �

Y2 � � � � .

The inverse transform is

y1 � �2e9t � e3t, y2 � �6e9t � 3e3t.

10. The subsidiary equations are

sY1 � 4 � 2Y1 � 3Y2

sY2 � 3 � 4Y1 � Y2.

The solution is

Y1 � � �

Y2 � � � .

The inverse transform is

y1 � 3e2t � e�5t, y2 � 4e2t � e�5t.

12. The subsidiary equations are

sY1 � 2 � 2Y1 � Y2

sY2 � 4Y1 � 2Y2 � 64e�s ( � ) .

The solution is

Y1 � 2[ � � ( � )]
Y2 � 8[ � ( � � )] .

2
�
s3

1
�
s2

1
�
s

8e�s

�
s � 4

1
�
s(s � 4)

1
�
s3

1
�
s2

32e�s

�
s � 4

2
�
s(s � 4)

1
�
s � 4

1
�
s

1
�
s2

1
�
s � 5

4
�
s � 2

3s � 22
��
s2 � 3s � 10

1
�
s � 5

3
�
s � 2

4s � 13
��
s2 � 3s � 10

3
�
s � 3

6
�
s � 9

�3s � 9
��
s2 � 12s � 27

1
�
s � 3

2
�
s � 9

�3s � 15
��
s2 � 12s � 27

3s
�
s2 � 16

4
�
s2 � 16

36
�
s2 � 16

8s
�
s2 � 16
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Using partial fraction expansions

� � �

and

64 ( � ) � � � � �

which because of e�s gives the inverse transform

�5 � 20(t � 1) � 8(t � 1)2 � 5e4(t�1)

and similarly for the expressions in Y2, we obtain the inverse transforms of Y1 and
Y2 in the form

y1 � 1 � e4t � u(t � 1) [�8t2 � 4t � 7 � 5e4t�4]
y2 � �2 � 2e4t � u(t � 1) [16 t2 � 8t � 18 � 10e4t�4].

14. The subsidiary equations are

sY1 � 1 � Y2

sY2 � �Y1 � � .

The solution is

Y1 �

� �

� � e�2�s ( � � )
Y2 �

� � e�2�s ( ( � ) � ).

The inverse transform is

y1 � cos t � u(t � 2�) [�cos t � 1_
2(e�t�2� � et�2�)]

y2 � sin t � u(t � 2�) [�sin t � 1_
2(e�t�2� � et�2�)].

Thus y1 � cos t and y2 � sin t if 0 � t � 2�; y1 � cosh (t � 2�), and 
y2 � �sinh (t � 2�) if t 	 2�.

16. The subsidiary equations are

s2Y1 � s � 2Y1 � 2Y2

s2Y2 � 3s � 2Y1 � 5Y2.
The solution is

Y1 � � �

Y2 � � � .
2s

�
s2 � 6

s
�
s2 � 1

s(3s2 � 8)
��
s4 � 7s2 � 6

s
�
s2 � 6

2s
�
s2 � 1

s(s2 � 11)
��
s4 � 7s2 � 6

1
�
s2 � 1

1
�
s � 1

1
�
s � 1

1
�
2

1
�
s2 � 1

s2 � 1 � 2s2e�2�s

��
s4 � 1

s
�
s2 � 1

1/2
�
s � 1

1/2
�
s � 1

s
�
s2 � 1

2se�2�s

�
s4 � 1

s
�
s2 � 1

s(s2 � 1 � 2e�2�s)
���

s4 � 1

2e�2�ss
�
s2 � 1

2s
�
s2 � 1

5
�
s � 4

16
�
s3

20
�
s2

5
�
s

1
��
s3(s � 4)

1
��
s2(s � 4)

1
�
2s

1
�
2(s � 4)

2
�
s(s � 4)

1
�
s � 4
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Hence the inverse transform is

y1 � 2 cos t � cos t�6�, y2 � cos t � 2 cos t�6�.

18. The subsidiary equations are

s2Y1 � 6 � Y2 �

s2Y2 � 8s � 6 � Y1 � .

The solution is, in terms of partial fractions,

Y1 � � �

Y2 � � � .

The inverse transform is

y1 � �4et � sin 10 t � 4 cos t

y2 � 4et � sin 10 t � 4 cos t.

20. The subsidiary equations are

The solution is

Y1 � 2 ( � ) , Y2 � , Y3 � � .

The inverse transform is

y1 � 2 � t2, y2 � 2t, y3 � t � 2t2.

22. The subsidiary equations are

s2Y1 � s � 1 � �8Y1 � 4Y2 �

s2Y2 � s � 1 � �8Y2 � 4Y1 � .

The solution, in terms of partial fractions, is

Y1 � �

Y2 � � .
1

�
s2 � 1

s
�
s2 � 4

1
�
s2 � 1

s
�
s2 � 4

11
�
s2 � 1

11
�
s2 � 1

4
�
s3

1
�
s2

2
�
s2

1
�
s3

1
�
s

� 0

� �
1

s
�

� ��
1

s2

6
� .

2sY3

sY3

4sY3

� sY2 �

�

2sY2 �

4sY1 � 8

�2sY1 � 4

4s
�
s2 � 1

10
��
s2 � 100

4
�
s � 1

4s
�
s2 � 1

10
��
s2 � 100

�4
�
s � 1

1010
��
s2 � 100

1010
��
s2 � 100
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The inverse transform is
y1 � cos 2t � sin t

y2 � cos 2t � sin t.

24. The new salt contents are

y1 � 100 � 62.5e�0.24t � 37.5e�0.08t

y2 � 100 � 125e�0.24t � 75e�0.08t.

Setting 2t � � gives the old solution, except for notation.

26. For 0 � t � 2� the solution is as in Prob. 25; for i1 we have

i1 � �26e�2t � 16e�8t � 42 cos t � 15 sin t.

For t 	 2� we have to add to this further terms whose form is determined by this
solution and the second shifting theorem,

u(t � 2�) [26e�2t�4� � 16e�8t�16� � 42 cos t � 15 sin t].

The cosine and sine terms cancel, so that

i1 � �26(1 � e4�)e�2t � 16(1 � e16�)e�8t if t 	 2�.

Similarly, for i2 we obtain

i2 � {

SOLUTIONS TO CHAP. 6 REVIEW QUESTIONS AND PROBLEMS, page 267

12. , one of the transforms in Table 6.1

14. cos2 4t � 1_
2 � 1_

2 cos 8t. The transform is

� � .

16. u(t � 2�) sin t � u(t � 2�) sin (t � 2�). Hence the transform is e�2�s/(s2 � 1).

18. sin 
t has the transform 
 /(s2 � 
2), and cos 
t has the transform s/(s2 � 
2). Hence,
by convolution, the given function

(sin 
t) � (cos 
t) � 1_
2 t sin 
t

has the transform

.

20. . Problems 17–22 illustrate that sums of expressions can often be combined 

to an expression of a new form. This motivates that, conversely, partial fraction
expansions are helpful in finding inverse transforms.

22. � �

24. 7.5 sinh 2t

3s
��
(s2 � 4)(s2 � 1)

s
�
s2 � 1

s
�
s2 � 4

2s
�
s4 � 1


s
��
(s2 � 
2)2

s2 � 32
��
s(s2 � 64)

s/2
�
s2 � 64

1/2
�

s

2
��
(s � 1)2 � 4

�26e�2t � 8e�8t � 18 cos t � 12 sin t

�26(1 � e4�)e�2t � 8(1 � e16�)e�8t.
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26. � . Hence the inverse transform is

3et(cos t � sin t).

28. � � . This shows that the inverse transform is

u(t � 5) [2(t � 5) � 5(t � 5)2]
� u(t � 5) [�5t2 � 52t � 135].

30. The given transform suggests the differentiation

( )� � � �

and shows that the answer is t cos 4t.

32. 1_
4(t6 � 3t4 � 6t2)

34. � . Hence 2e�t/ 2 sin 1_
2 t.

36. y � �cos 4t � u(t � �) sin 4t. To see the impact of 4�(t � �), graph both the solution
and the term �cos 4t, perhaps in a short t-interval with midpoint �.

38. y � 0 if 0 � t � 2 and 1 � cos (t � 2) if t 	 2

40. y � e�2t(13 cos t � 11 sin t) � 10 t � 8

42. Y � e�s/(s � 1)2, y � et�1(t � 1)u(t � 1)

44. y � cos 2t � 1_
2[u(t � �) � u(t � 2�)] sin 2t. The curve has cusps at t � � and 2�

(abrupt changes of the tangent direction).

46. y1 � 8et � 5e�2t � 18t � 3, y2 � 32et � 5e�2t � 42t � 27

48. y1 � 1_
2u(t � �) sin 2t, y2 � u(t � �) cos 2t. Hence y1 is continuous at �, whereas

y2 has an upward jump of 1 at that point.

50. y1 � 3e4t � e�4t � 2 cos 4t � sin 4t, y2 � 3e4t � e�4t � 2 cos 4t � sin 4t

52. 0.5q� � 50q � 1425(1 � u(t � �)) sin 5t. The subsidiary equation is

1_
2s2Q � 50Q � 1425 � 5 .

The solution is

Q � 14250 � (1 � e��s) ( � ) .

The inverse transform is

q � �19 sin 10t � 38 sin 5t � u(t � �) (�19 sin 10t � 38 sin 5t).

Thus the superposition of two sines terminates at t � �, and �38 sin 10t continues
thereafter.

54. The system is

2i�1 � i1 � i2 � 90e�t/4

i�2 � i�1 � 2i2 � 0.

1
�
s2 � 100

1
�
s2 � 25

14250
�

75

1 � e��s

���
(s2 � 25)(s2 � 100)

1 � e��s

�
s2 � 25

1/2
��
(s � 1/2)2 � 1/4

1
��
2s2 � 2s � 1

s2 � 16
��
(s2 � 16)2

s2 � 16 � s � 2s
��

(s2 � 16)2

s
�
s2 � 16

10
�
s3

2
�
s2

2s � 10
�

s3

3(s � 1) � 3
��
(s � 1)2 � 1

3s
��
s2 � 2s � 2
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The subsidiary equations are

2sI1 � I1 � I2 �

sI2 � 2 � sI1 � 2I2 � 0.
The solution is

I1 � � � � �

I2 � � � � .

The inverse transform is

i1 � �(59t � 140)e�t � 140e�t/4

i2 � (59t � 22)e�t � 20e�t/4.

20
�
s � 1/4

22
�
s � 1

59
�
(s � 1)2

8s2 � 186s � 1
���
4s3 � 9s2 � 6s � 1

140
�
s � 1/4

140
�
s � 1

59
�
(s � 1)2

184s � 361
���
4s3 � 9s2 � 6s � 1

90
�
s � 1/4
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Part B LINEAR ALGEBRA. 
VECTOR CALCULUS

Part B consists of

Chap. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Chap. 8 Linear Algebra: Matrix Eigenvalue Problems

Chap. 9 Vector Differential Calculus. Grad, Div, Curl

Chap. 10 Vector Integral Calculus. Integral Theorems.

Hence we have retained the previous subdivision of Part B into four chapters.
Chapter 9 is self-contained and completely independent of Chaps. 7 and 8. Thus, Part B

consists of two large independent units, namely, Linear Algebra (Chaps. 7, 8) and Vector
Calculus (Chaps. 9, 10). Chapter 10 depends on Chap. 9, mainly because of the occurrence
of div and curl (defined in Chap. 9) in the Gauss and Stokes theorems in Chap. 10.

CHAPTER 7 Linear Algebra: Matrices, Vectors,
Determinants. Linear Systems

Changes

The order of the material in this chapter and its subdivision into sections has been retained,
but various local changes have been made to increase the usefulness of this chapter for
applications, in particular:

1. The beginning, which was somewhat slow by modern standards, has been
streamlined, so that the student will see applications to linear systems of equations
much earlier.

2. A reference section (Sec. 7.6) on second- and third-order determinants has been
included for easier access from other parts of the book.

SECTION 7.1. Matrices, Vectors: Addition and Scalar Multiplication, 
page 272

Purpose. Explanation of the basic concepts. Explanation of the two basic matrix
operations. The latter derive their importance from their use in defining vector spaces, a
fact that should perhaps not be mentioned at this early stage. Its systematic discussion
follows in Sec. 7.4, where it will fit nicely into the flow of thoughts and ideas.

Main Content, Important Concepts

Matrix, square matrix, main diagonal

Double subscript notation

Row vector, column vector, transposition

Equality of matrices

Matrix addition

Scalar multiplication (multiplication of a matrix by a scalar)
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Comments on Important Facts
One should emphasize that vectors are always included as special cases of matrices and
that those two operations have properties [formulas (3), (4)] similar to those of operations
for numbers, which is a great practical advantage.

SOLUTIONS TO PROBLEM SET 7.1, page 277

2. Y Z , Y Z , Y Z , Y Z

4. Y Z , same, Y Z , undefined

6. Undefined, undefined, Y Z , same

8. Undefined, Y Z , undefined, undefined

10. 1_
5A, _110A. Similar (and more important) instances are the scaling of equations in linear
systems, the formation of linear combinations, and the like, as will be shown later.

12. 3, 2, �4 and 0, 2, 0. The concept of a main diagonal is restricted to square matrices.

14. No, no, no. Transposition, which relates row and column vectors, will be discussed
in the next section.

16. (b). The incidence matrices are as follows, with nodes corresponding to rows and
branches to columns, as in Fig. 152.

Y Z ,

W X , W X

From a figure we may more easily grasp the kind of network. However, in the present
context, matrices have two advantages over figures, namely, the computer can handle

�1

0

1

0

1

0

�1

0

�1

0

0

1

0

0

1

�1

0

1

�1

0

�1

1

0

0

0

0

1

�1

0

0

�1

1

1

0

0

�1

0

1

0

�1

1

�1

0

0

1

�1

0

�1

1

0

0

1

�1

1

0

�1

�21

8

0

�108

�32

96

�20

�40

�104

�72

4

�156

21.5

8

�20

2.5

9

23

15

�2.5

31.5

2

12

�8

�10

8

18

6

�12

6

16

32

24

0

16

8

10

30

18

12

0

�12

2

14

6

12

�8

�16

8

16

12

0

8

4
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them without great difficulties, and a matrix determines a network uniquely, whereas
a given network can be drawn as a figure in various ways, so that one does not
immediately see that two different figures represent the same network. A nice example
is given in Sec. 23.1.

(c) The networks corresponding to the given matrices may be drawn as follows:

(e) The nodal incidence matrix is

A � W X .

SECTION 7.2. Matrix Multiplication, page 278

Purpose. Matrix multiplication, the third and last algebraic operation, is defined and
discussed, with emphasis on its “unusual” properties; this also includes its representation
by inner products of row and column vectors.

Main Content, Important Facts

Definition of matrix multiplication (“rows times columns”)

Properties of matrix multiplication

Matrix products in terms of inner products of vectors

Linear transformations motivating the definition of matrix multiplication

AB � BA in general, so the order of factors is important.

AB � 0 does not imply A � 0 or B � 0 or BA � 0.

(AB)T � BTAT

Short Courses. Products in terms of row and column vectors and the discussion of linear
transformations could be omitted.

Comment on Notation
For transposition, T seems preferable over a prime, which is often used in the literature
but will be needed to indicate differentiation in Chap. 9.

Comments on Content
Most important for the next sections on systems of equations are the multiplication of a
matrix times a vector.

Examples 1, 2, and 4 emphasize that matrix multiplication is not commutative and make
the student aware of the restrictions of matrix multiplication.

Formula (10d) for the transposition of a product should be memorized.
In motivating matrix multiplication by linear transformations, one may also illustrate

the geometric significance of noncommutativity by combining a rotation with a stretch in

0

0

�1

1

0

1

�1

0

0

1

0

�1

�1

0

1

0

�1

1

0

0

1

0

0

�1

1

3

2

1

4

3

2

4

1
23

1
2

3

4

41

3 52
6
1

3

2
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x-direction in both orders and show that a circle transforms into an ellipse with main axes
in the direction of the coordinate axes or rotated, respectively.

SOLUTIONS TO PROBLEM SET 7.2, page 286

2. Y Z , same, [�62 34 2], 0 (the 3 � 3 zero matrix)

4. Y Z , Y Z , Y Z , same

6. Undefined, undefined, Y Z , [�22 �63 �25]

8. Undefined, �868, 868, Y Z

10. Y Z , same, Y Z

12. Y Z , Y Z , undefined, Y Z
14. 538, undefined, undefined, 1690

16. M � AB � BA must be the 2 � 2 zero matrix. It has the form

M � [ ][ ] � [ ][ ]
� [ ] .

a21 � a12 from m11 � 0 (also from m22 � 0). a22 � a11 � 2_
3a12 from m12 � 0 (also

from m21 � 0). Answer:

A � [ ] .
a12

a11 � 2_
3a12

a11

a12

3a11 � 4a12 � 2a12 � 3a22

3a21 � 4a22 � 3a12 � 4a22

2a11 � 3a12 � 2a11 � 3a21

2a21 � 3a22 � 3a11 � 4a21

a12

a22

a11

a21

3

4

2

3

3

4

2

3

a12

a22

a11

a21

348

424

1040

122

244

424

122

122

348

1

�10

�4

11

12

32

�1332

�432

1827

900

711

�432

1593

900

�1332

64

�6

�111

�80

�71

26

�77

�44

60

92

22

�143

�140

�119

94

3

�24

0

1900

380

760

300

60

120

�125

�25

�50

�22

�63

�25

�20

10

26

20

�6

�22

36

�16

�16

�80

�16

137

64

65

�16

113

64

�80

�16

�22

26

�16

�6

10

36

20

�20

�3

50

54
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18. The calculation for the first column is

Y ZY Z � Y Z ,

and similarly for the other two columns; see the answer to Prob. 1, last matrix given.

20. Idempotent are [ ] , [ ] , etc.; nilpotent are [ ] , [ ] , 

etc., and A2 � I is true for

[ ] , [ ] , [ ] , [ ] , [ ]
where a, b, and c � 0 are arbitrary.

22. The entry ckj of (AB)T is cjk of AB, which is Row j of A times Column k of B. On
the right, ckj is Row k of BT, hence Column k of B, times Column j of AT, hence
Row j of A.

24. An annual increase of about 4�5% because the matrix of this Markov process is

A � [ ]
and the initial state is [2000 298000]T, so that multiplication by A gives the further
states (rounded) [2098 297902]T, [2186 297814]T, [2265 297735]T.

26. The transition probabilities can be given in a matrix

From N From T

A � [ ]
and multiplication of [1 0]T by A, A2, A3 gives [0.9 0.1]T, [0.86 0.14]T, 
[0.844 0.156]T. Answer: 0.86, 0.844.

28. Team Project. (b) Use induction on n. True if n � 1. Take the formula in the problem
as the induction hypothesis, multiply by A, and simplify the entries in the product by
the addition formulas for the cosine and sine to get An�1.

(c) These formulas follow directly from the definition of matrix multiplication.

(d) A scalar matrix would correspond to a stretch or contraction by the same factor
in all directions.

(e) Rotations about the x1-, x2-, x3-axes through �, �, �, respectively.

SECTION 7.3. Linear Systems of Equations. Gauss Elimination, page 287

Purpose. This simple section centers around the Gauss elimination for solving linear
systems of m equations in n unknowns x1, • • • , xn, its practical use as well as its
mathematical justification (leaving the—more demanding—general existence theory to
the next sections).

To N

To T

0.5

0.5

0.9

0.1

0.001

0.999

0.9

0.1

c

0

0

1/c

b

1

�1

0

0

�1

1

a

0

�1

�1

0

0

1

1

0

0

0

0

b

a

0

0

0

1

0

1

0

0

0

1

0

54

74

�74

9

4

�4

�2

1

1

�2

�3

5

6

10

�10
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Main Content, Important Concepts

Nonhomogeneous, homogeneous, coefficient matrix, augmented matrix

Gauss elimination in the case of the existence of

I. a unique solution (Example 2)

II. infinitely many solutions (Example 3)

III. no solutions (Example 4).

Pivoting

Elementary row operations, echelon form

Background Material. All one needs here is the multiplication of a matrix and a vector.

Comments on Content
The student should become aware of the following facts:

1. Linear systems of equations provide a major application of matrix algebra and
justification of the definitions of its concepts.

2. The Gauss elimination (with pivoting) gives meaningful results in each of the Cases
I�III.

3. This method is a systematic elimination that does not look for unsystematic
“shortcuts” (depending on the size of the numbers involved and still advocated in some
older precomputer-age books).

Algorithms for programs of Gauss’s and related methods are discussed in Sec. 20.1,
which is independent of the rest of Chap. 20 and can thus be taken up along with the
present section in case of time and interest.

SOLUTIONS TO PROBLEM SET 7.3, page 295

2. x � �2, y � 1

4. x � 5, y arbitrary, z � 2y � 1. Unknowns that remain arbitrary are sometimes denoted
by other letters, such as t1, t2, etc. In the present case we could thus write the solutions
as x � 5, y � t1, z � 2t1 � 1.

6. x � t1 arbitrary, y � 3x � 3t1, z � 2x � 2t1
8. No solution

10. x � t1 arbitrary, y � 2x � 5 � 2t1 � 5, z � 3x � 1 � 3t1 � 1

12. x � 3z � 1 � 3t1 � 1, y � �z � 4 � �t1 � 4, z � t1 arbitrary

14. w � 2x � 1 � 2t1 � 1, x � t1 arbitrary, y � 1, z � 2

16. w � 1, x � t1 arbitrary, y � 2x � 1 � 2t1 � 1, z � 3x � 2 � 3t1 � 2

18. Currents at the lower node:

�I1 � I2 � I3 � 0

(minus because I1 flows out). Voltage in the left circuit:

R1I1 � R2I2 � E1 � E2

and in the right circuit:

R2I2 � R3I3 � E2
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(minus because I3 flows against the arrow of E2). Answer:

I1 � [(R2 � R3)E1 � R3E2]

I2 � [R3E1 � (R3 � R1)E2]

I3 � [R2E1 � R1E2]

where D � R1R2 � R2R3 � R3R1.

22. P1 � 9, P2 � 8, D1 � S1 � 34, D2 � S2 � 38

24. Project. (a) B and C are different. For instance, it makes a difference whether we
first multiply a row and then interchange, and then do these operations in reverse order.

B � W X , C � W X

(b) Premultiplying A by E (that is, multiplying A by E from the left) makes E operate
on rows of A. The assertions then follow almost immediately from the definition of
matrix multiplication.

SECTION 7.4. Linear Independence. Rank of a Matrix. Vector Space, 
page 296

Purpose. This section introduces some theory centered around linear independence and
rank, in preparation for the discussion of the existence and uniqueness problem for linear
systems of equations (Sec. 7.7).

Main Content, Important Concepts

Linear independence

Real vector space Rn, dimension, basis

Rank defined in terms of row vectors

Rank in terms of column vectors

Invariance of rank under elementary row operations

Short Courses. For the further discussion in the next sections, it suffices to define linear
independence and rank.

Comments on Rank and Vector Spaces
Of the three possible equivalent definitions of rank,

(i) By row vectors (our definition),

(ii) By column vectors (our Theorem 3),

(iii) By submatrices with nonzero determinant (Sec. 7.7),

the first seems to be most practical in our context.

a12

a32 � 5a12

a22

8a42

a11

a31 � 5a11

a21

8a41

a12

a32

a22 � 5a12

8a42

a11

a31

a21 � 5a11

8a41

1
	
D

1
	
D

1
	
D
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Introducing vector spaces here, rather than in Sec. 7.1, we have the advantage that the
student immediately sees an application (row and column spaces). Vector spaces in full
generality follow in Sec. 7.9.

SOLUTIONS TO PROBLEM SET 7.4, page 301

2. Row reduction of the matrix and of its transpose gives

Y Z and Y Z .

Hence the rank is 2, and bases are [8 2 5], [0 2 19] and [8 16 4]T, 
[0 2 �1]T.

4. Row reduction as in Prob. 2 gives the matrices

Y Z and W X .

Hence for general a, b, c the rank is 2. Bases are [a b c],
[0 a2 � b2 c(a � b)] and [a b]T, [0 c(a � b)]T.

6. The matrix is symmetric. The reduction gives

Y Z .

Hence a basis is [1 1 a], [0 a � 1 1 � a], [0 0 2 � a2 � a]
and the transposed vectors (column vectors) for the column space. Hence the rank is
1 (if a � 1), 2 (if a � �2), and 3 if a � 1, �2.

8. The row reductions as in Prob. 2 give

W X and W X .

The rank is 4, and bases are

[1 0 0 0], [0 1 0 0], [0 0 1 0], [0 0 0 1]

and the same vectors written as column vectors.

4

7

4

�40

3

2

�4

0

2

1

0

0

1

0

0

0

�4

7

�4

�40

3

�2

�4

0

�2

1

0

0

1

0

0

0

a

1 � a

2 � a2 � a

1

a � 1

0

1

0

0

b

	
c(a

a

� b)
	

0

a

0

0

c

	
c(a

a

� b)
	

b

	
a2 �

a

b2

	

a

0

4

�1

0

16

2

0

8

0

0

5

19

0

2

2

0

8

0

0

152 Instructor’s Manual

im07.qxd  9/21/05  12:09 PM  Page 152



10. The matrix is symmetric. Row reduction gives

W X .

Hence the rank is 2, and bases are [1 2 3 4], [0 1 2 3] and
the same vectors transposed (as column vectors).

12. The matrix is symmetric. Row reduction gives

W X .

Hence the ranks is 4, and bases are

[1 0 0 0], [0 1 0 0], [0 0 1 0], [0 0 0 1]

and the same vectors written as column vectors.

14. Yes

16. No, by Theorem 4

18. No. Quite generally, if one of the vectors v(1), • • • , v(m) is 0, say, v(1) � 0, then (1)
holds with any c1 � 0 and c2, • • • , cm all zero.

20. No. It is remarkable that A � [ajk] with ajk � j � k � 1 has rank 2 for any size n
of the matrix.

22. AB and its transpose (AB)T � BTAT have the same rank.

24. This follows directly from Theorem 3.

26. A proof is given in Ref. [B3], Vol. 1, p. 12.

28. Yes if and only if k � 0. Then the dimension is 3, and a basis is [1 0 0 0], 
[0 3 0 2], [0 0 1 0].

30. No. If v � [v1 v2] satisfies the inequality, �v does not. Draw a sketch to see the
geometric meaning of the inequality characterizing the “half-plane” above the sloping
straight line v2 � v1.

32. Yes, dimension 1, basis [1 1 5 0]

34. No, because of the positivity assumption

36. Yes, dimension 2. The two given equations form a homogeneous linear system with the
augmented matrix

[ ] .

The solution is

v1 � �3_
2v2 � 2v4, v2 arbitrary, v3 � �9_

2v2 � 6v4, v4 arbitrary.

0

0

0

�4

�1

0

0

3

3

2

2

2/7

1

5/7

0

2

�7

0

5

5/7

0

0

�7

0

0

0

4

�3

0

0

3

�2

0

0

2

�1

0

0

1

0

0

0
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Taking v2 � �2_
3 and v4 � 0, we obtain the basis vector

[1 �2_
3 3 0].

Taking v2 � 0 and v4 � 1, we get

[2 0 6 1].

Instead of the second vector we could also use

[0 4_
3 0 1]

obtained by taking the second vector minus twice the first.

SECTION 7.5. Solutions of Linear Systems: Existence, Uniqueness, 
page 302

Purpose. The student should see that the totality of solutions (including the existence and
uniqueness) can be characterized in terms of the ranks of the coefficient matrix and the
augmented matrix.

Main Content, Important Concepts

Augmented matrix

Necessary and sufficient conditions for the existence of solutions

Implications for homogeneous systems

rank A � nullity A � n

Background Material. Rank (Sec. 7.4)
Short Courses. Brief discussion of the first two theorems, illustrated by some simple
examples.

Comments on Content
This section should make the student aware of the great importance of rank. It may be
good to have students memorize the condition

rank A � rank A�

for the existence of solutions.
Students familiar with ODEs may be reminded of the analog of Theorem 4 (see 

Sec. 2.7).
This section may also provide a good opportunity to point to the roles of existence and

uniqueness problems throughout mathematics (and to the distinction between the two).

SECTION 7.7. Determinants. Cramer’s Rule, page 308

Second- and third-order determinants see in the reference Sec. 7.6.

Main Content of This Section

nth-order determinants

General properties of determinants

Rank in terms of determinants (Theorem 3)

Cramer’s rule for solving linear systems by determinants (Theorem 4)
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General Comments on Determinants
Our definition of a determinant seems more practical than that in terms of permutations
(because it immediately gives those general properties), at the expense of the proof that
our definition is unambiguous (see the proof in App. 4).

General properties are given for order n, from which they can be easily seen for n � 3
when needed.

The importance of determinants has decreased with time, but determinants will remain
in eigenvalue problems (characteristic determinants), ODEs (Wronskians!), integration
and transformations (Jacobians!), and other areas of practical interest.

SOLUTIONS TO PROBLEM SET 7.7, page 314

6. 1 8. �728 10. �27

12. 0. Together with Prob. 11 this illustrates the theorem that for odd n the determinant
of an n � n skew-symmetric matrix has the value 0. This is not generally true for
even n, as Prob. 16 proves.

14. 158

16. 36

18. x � 4, y � �3

20. w � 2, x � 5, y � �1, z � �6

22. 2

24. Team Project. (a) Use row operation (subtraction of rows) on D to transform the
last column of D into the form [0 0 1]T and then develop D � 0 by this column.

(b) For a plane the equation is ax � by � cz � d • 1 � 0, so that we get the
determinantal equation

l l � 0.

The plane is 3x � 4y � 2z � 5.

(c) For a circle the equation is

a(x2 � y2) � bx � cy � d • 1 � 0,
so that we get

l l � 0.

The circle is x2 � y2 � 4x � 2y � 20.

(d) For a sphere the equation is

a(x2 � y2 � z2) � bx � cy � dz � e • 1 � 0,

1

1

1

1

y

y1

y2

y3

x

x1

x2

x3

x2 � y2

x1
2 � y1

2

x2
2 � y2

2

x3
2 � y3

2

1

1

1

1

z

z1

z2

z3

y

y1

y2

y3

x

x1

x2

x3
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so that we obtain

l l � 0.

The sphere through the given points is x2 � y2 � (z � 1)2 � 16.

(e) For a general conic section the equation is

ax2 � bxy � cy2 � dx � ey � ƒ • 1 � 0,
so that we get

l l � 0.

26. det An � (�1)n�1(n � 1). True for n � 2, a 2-simplex on R1, that is, a segment (an
interval), because

det A2 � (�1)2�1(2 � 1) � �1.

Assume true for n as just given. Consider An�1. To get the first row with all entries
0, except for the first entry, subtract from Row 1 the expression

(Row 2 � • • • � Row (n � 1)).

The first component of the new row is �n/(n � 1), whereas the other components
are all 0. Develop det An�1 by this new first row and notice that you can then apply
the above induction hypothesis,

det An�1 � � (�1)n�1(n � 1) � (�1)nn,

as had to be shown.

SECTION 7.8. Inverse of a Matrix. Gauss–Jordan Elimination, page 315

Purpose. To familiarize the student with the concept of the inverse A�1 of a square matrix
A, its conditions for existence, and its computation.

Main Content, Important Concepts

AA�1 � A�1A � I

Nonsingular and singular matrices

Existence of A�1 and rank

n
	
n � 1

1
	
n � 1

1

1

1

1

1

1

y

y1

y2

y3

y4

y5

x

x1

x2

x3

x4

x5

y2

y1
2

y2
2

y3
2

y4
2

y5
2

xy

x1y1

x2y2

x3y3

x4y4

x5y5

x2

x1
2

x2
2

x3
2

x4
2

x5
2

1

1

1

1

1

z

z1

z2

z3

z4

y

y1

y2

y3

y4

x

x1

x2

x3

x4

x2 � y2 � z2

x1
2 � y1

2 � z1
2

x2
2 � y2

2 � z2
2

x3
2 � y3

2 � z3
2

x4
2 � y4

2 � z4
2
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Gauss–Jordan elimination

(AC)�1 � C�1A�1

Cancellation laws (Theorem 3)

det (AB) � det (BA) � det A det B

Short Courses. Theorem 1 without proof, Gauss–Jordan elimination, formulas (4*) and (7).

Comments on Content
Although in this chapter we are not concerned with operations count (Chap. 20), it would
make no sense to first blindfold the student by using Gauss–Jordan for solving Ax � b
and then later in numerics correct the false impression by explaining why Gauss
elimination is better because back substitution needs fewer operations than the
diagonalization of a triangular matrix. Thus Gauss–Jordan should be applied only when
A�1 is wanted.

The “unusual” properties of matrix multiplication, briefly mentioned in Sec. 7.2 can
now be explored systematically by the use of rank and inverse.

Formula (4*) is worth memorizing.

SOLUTIONS TO PROBLEM SET 7.8, page 322

2. [ ] . This is a symmetric orthogonal matrix. Orthogonal matrices will be 

discussed in Sec. 8.3, where they will fit much better into the material.

4. The inverse equals the transpose. This is the defining property of orthogonal matrices
to be discussed in Sec. 8.3.

6. Y Z

8. Y Z

10. Y Z

12. Y Z
14. Rotation through 2�. The inverse represents the rotation through �2�. Replacement

of 2� by �2� in the matrix gives the inverse.

16. I � (A2)�1A2. Multiply this by A�1 from the right on both sides of the equation. This
gives A�1 � (A2)�1A. Do the same operation once more to get the formula to be proved.

2

�1

0

5

2

1

11

4

2

1_
2

0

0

0

0

1_
4

0

1_
8

0

�9

2

1

2

�1

0

19

�4

�2

�5

�5

9

�1

1

4

4

15

5

0.8

�0.6

0.6

0.8
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18. I � IT � (A�1A)T � AT(A�1)T. Now multiply the first and the last expression by
(AT)�1 from the left, obtaining (AT)�1 � (A�1)T.

20. Multiplication by A from the right interchanges Row 1 and Row 2 of A, and the
inverse of this interchange is the interchange that gives the original matrix back. Hence
the inverse of the given matrix should equal the matrix itself, as is the case.

22. For such a matrix (see the solution to Prob. 4) the determinant has either the value 1
or �1. In the present case it equals �1. The values of the cofactors (determinants of
2 � 2 matrices times 1 or �1) are obtained by straightforward calculation.

SECTION 7.9. Vector Spaces, Inner Product Spaces, Linear
Transformations, Optional, page 323

Purpose. In this optional section we extend our earlier discussion of vector spaces Rn

and Cn, define inner product spaces, and explain the role of matrices in linear
transformations of Rn into Rm.

Main Content, Important Concepts

Real vector space, complex vector space

Linear independence, dimension, basis

Inner product space

Linear transformation of Rn into Rm

Background Material. Vector spaces Rn (Sec. 7.4)

Comments on Content
The student is supposed to see and comprehend how concrete models (Rn and Cn, the
inner product for vectors) lead to abstract concepts, defined by axioms resulting from
basic properties of those models. Because of the level and general objective of this chapter,
we have to restrict our discussion to the illustration and explanation of the abstract concepts
in terms of some simple typical examples.

Most essential from the viewpoint of matrices is our discussion of linear
transformations, which in a more theoretically oriented course of a higher level would
occupy a more prominent position.

Comment on Footnote 4
Hilbert’s work was fundamental to various areas in mathematics; roughly speaking, he
worked on number theory 1893–1898, foundations of geometry 1898–1902, integral
equations 1902–1912, physics 1910–1922, and logic and foundations of mathematics
1922–1930. Closest to our interests here is the development in integral equations, as
follows. In 1870 Carl Neumann (Sec. 5.6) had the idea of solving the Dirichlet problem
for the Laplace equation by converting it to an integral equation. This created general
interest in integral equations. In 1896 Vito Volterra (1860–1940) developed a general
theory of these equations, followed by Ivar Fredholm (1866–1927) in 1900–1903 (whose
papers caused great excitement), and Hilbert since 1902. This gave the impetus to the
development of inner product and Hilbert spaces and operators defined on them. These
spaces and operators and their spectral theory have found basic applications in quantum
mechanics since 1927. Hilbert’s great interest in mathematical physics is documented by
Ref. [GR3], a classic full of ideas that are of importance to the mathematical work of the
engineer. For more details, see G. Birkhoff and E. Kreyszig. The establishment of
functional analysis. Historia Mathematica 11 (1984), pp. 258�321.
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SOLUTIONS TO PROBLEM SET 7.9, page 329

2. Yes, dimension 1. A basis vector is obtained by solving the given linear system
consisting of the two given conditions. The solution is [v1 3v1 11v1], v1 arbitrary.
v1 � 1 gives the basis vector [1 3 11]T.

4. Yes, dimension 6, basis

Y Z , Y Z , Y Z ,

Y Z , Y Z , Y Z .

6. No, because of the second condition

8. No because det (A � B) � det A � det B in general

10. Yes, dimension 2, basis cos x, sin x

12. Yes, dimension 4, basis

[ ] , [ ] , [ ] , [ ] .

14. If another such representation with coefficients kj would also hold, subtraction would
give �(cj � kj)aj � 0; hence cj � kj � 0 because of the linear independence of the
basis vectors. This proves the uniqueness.

16.

18.

20.

22. �44� 24. 1_
8�285� � 2.110 243 26. 1

28. 2v1 � v3 � 0, v3 � �2v1; hence [v1 v2 �2v1]T with arbitrary v1 and v2.
These vectors lie in a plane through the origin whose normal vector is the given
vector.

30. a � [4 2 �6]T, b � [16 �32 0]T, a � b � [20 �30 �6]T. For the norms
we thus obtain

éa � bé � �1336� � 36.55 
 éaé � ébé � �56� � 16�5� � 43.26.

� 0.25y3

� 0.25y3

0.50y2

0.25y2

0.50y1

�0.25y1 �

x1 �

x2 �

x3 �

� 2y3

y2 � 4y3

5y3

x1 � 4y1

x2 �

x3 �

x1 � 0.5y1 � 0.5y2

x2 � 1.5y1 � 2.5y2

0

�9

0

0

0

4

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0
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SOLUTIONS TO CHAP. 7 REVIEW QUESTIONS AND PROBLEMS, page 330

12. x � 3 � 2y, y arbitrary, z � 0

14. No solution

16. x � 1, y � �3, z � 5

18. x � �2z, y � 1_
4, z arbitrary

20. AB � Y Z , BA � Y Z � �(AB)T

22. A2 � B2 � Y Z � Y Z � Y Z

24. AAT � ATA � Y Z

26. Aa � Y Z , aTA � [49 142 109], aTAa � 1250

28. 0

30. Y Z
32. 2, 2. Hence one unknown remains arbitrary.

34. 2, 3. Hence the system has no solution, by Theorem 1 in Sec. 7.5.

36. 2, 2. Hence one unknown remains arbitrary.

38. Y Z
40. Singular, rank 2

42. diag (1_
3, �1, 1_

5)

44. The equations obtained by Kirchhoff’s laws are

This gives the solution I1 � 20 A, I2 � 15 A, I3 � 35 A.

(Left node)

(Upper loop)

(Lower loop).

0

3800

3400

I3 �

80I3 �

80I3 �

� I2 �

�

40I2 �

�I1

50I1

3

�8

12

�1

6

�4

2

�12

18

1
	
20

19.2

�16.8

7.2

16.8

13.6

24.4

�20.8

�38.4

�44.0

49

142

109

212

346

389

134

428

346

149

134

212

206

334

344

152

415

334

109

152

206

�6

�12

�45

18

�13

�12

�40

18

�6

212

346

389

134

428

346

149

134

212

110

�61

�18

96

�34

42

52

�42

�48

48

�42

18

42

34

61

�52

�96

�110
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CHAPTER 8 Linear Algebra: Matrix Eigenvalue Problems

Prerequisite for this chapter is some familiarity with the notion of a matrix and with the
two algebraic operations for matrices. Otherwise the chapter is independent of Chap. 7,
so that it can be used for teaching eigenvalue problems and their applications, without
first going through the material in Chap. 7.

SECTION 8.1. Eigenvalues, Eigenvectors, page 334

Purpose. To familiarize the student with the determination of eigenvalues and eigenvectors
of real matrices and to give a first impression of what one can expect (multiple eigenvalues,
complex eigenvalues, etc.).

Main Content, Important Concepts

Eigenvalue, eigenvector

Determination of eigenvalues from the characteristic equation

Determination of eigenvectors

Algebraic and geometric multiplicity, defect

Comments on Content
To maintain undivided attention on the basic concepts and techniques, all the examples in
this section are formal, and typical applications are put into a separate section (Sec. 8.2).

The distinction between the algebraic and geometric multiplicity is mentioned in this
early section, and the idea of a basis of eigenvectors (“eigenbasis”) could perhaps be
mentioned briefly in class, whereas a thorough discussion of this in a later section 
(Sec. 8.4) will profit from the increased experience with eigenvalue problems, which the
student will have gained at that later time.

The possibility of normalizing any eigenvector is mentioned in connection with Theorem
2, but this will be of greater interest to us only in connection with orthonormal or unitary
systems (Secs. 8.4 and 8.5).

In our present work we find eigenvalues first and are then left with the much simpler task
of determining corresponding eigenvectors. Numeric work (Secs. 20.6�20.9) may proceed
in the opposite order, but to mention this here would perhaps just confuse the student.

SOLUTIONS TO PROBLEM SET 8.1, page 338

2. The characteristic equation is

D(�) � (a � �)(c � �) � 0.

Hence �1 � a, �2 � c. Components of eigenvectors can now be determined for 
�1 � a from

0x1 � bx2 � 0, say, x1 � 1, x2 � 0

so that an eigenvector is [1 0]T, and for �2 � c from

(a � c)x1 � bx2 � 0, say, x1 � 1, x2 � (c � a) /b,

so that an eigenvector is

[1 ]
T

.
c � a
�

b
161
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Here we must assume that b � 0. If b � 0, we have a diagonal matrix with the same
eigenvalues as before and eigenvectors [1 0]T and [0 1]T.

4. This zero matrix, like any square zero matrix, has the eigenvalue 0, whose algebraic
multiplicity and geometric multiplicity are both equal to 2, and we can choose any
basis, for instance [1 0]T and [0 1]T.

6. The characteristic equation is

(a � �)2 � b2 � 0. Solutions are � � a � ib.

Eigenvectors are obtained from

(a � �)x1 � bx2 � �ibx1 � bx2 � 0.

Hence we can take x1 � 1 and x2 � �i. Note that b has dropped out, and the
eigenvectors are the same as in Example 4 of the text.

8. (� � 1)2 � 0, � � 1, any vector is an eigenvector, and [1 0]T, [0 1]T is a basis
of the eigenspace (the x1x2-plane).

10. The characteristic equation is

(cos 	 � �)2 � sin2 	 � 0.

Solutions (eigenvalues) are � � cos 	 � i sin 	. Eigenvectors are obtained from

(� � cos 	)x1 � (sin 	)x2 � (sin 	)(�ix1 � x2) � 0,

say, x1 � 1, x2 � �i.
Note that this matrix represents a rotation through an angle 	, and this linear

transformation preserves no real direction in the x1x2-plane, as would be the case if
the eigenvectors were positive real. This explains why these vectors must be complex.

12. �(�2 � 72� � 2673)� � 0; 0, [0 1 �1]T; �27, [1 2 2]T; 99, [�22 1 10]T

14. �(�3 � 3�2 � 6� � 8)/(� � 1) � �(�2 � 2� � 8); 4, [2 1 �2]T; 1, 
[2 �2 1]T; �2, [1 2 2]T

16. 0.5, [1 0 0]T; 1.0, [0.4 1.0 0]T; 3.5, [0.22 1.80 3.00]T

18. �(�3 � 9�2 � 81� � 729)/(� � 9) � ��2 � 81; 9, [2 �2 1]T, defect 1; �9, 
[2 1 �2]T

20. The characteristic equation is

�2(�2 � 38� � 360) � 0.

Eigenvalues and eigenvectors are

�1 � 0, [0 1 0 0]T, [1 0 0 0]T

�2 � 18, [1 1 9 9]T

�3 � 20, [�3 3 5 �5]T.

22. The indicated division of the characteristic polynomial gives

(�4 � 22�2 � 24� � 45)/(� � 3)2 � �2 � 6� � 5.

The eigenvalues and eigenvectors are

�1 � 3, [1 1 1 1]T with a defect of 1

�2 � �1 [3 �1 1 1]T

�3 � �5, [�11 1 5 1]T.
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24. Using the given eigenvectors, we obtain

(�4 � 118�2 � 168� � 1485)/[(� � 3)(� � 5)] � �2 � 2� � 99.

The eigenvalues and eigenvectors are

30. By Theorem 1 in Sec. 7.8 the inverse exists if and only if det A � 0. On the other
hand, from the product representation

D(�) � det (A � �I) � (�1)n(� � �1)(� � �2) • • • (� � �n)

of the characteristic polynomial we obtain

det A � (�1)n(��1)(��2) • • • (��n) � �1�2 • • • �n.

Hence A�1 exists if and only if 0 is not an eigenvalue of A.
Furthermore, let � � 0 be an eigenvalue of A. Then

Ax � �x.

Multiply this by A�1 from the left:

A�1Ax � �A�1x.
Now divide by �:

x � A�1x.

SECTION 8.2. Some Applications of Eigenvalue Problems, page 340

Purpose. Matrix eigenvalue problems are of greatest importance in physics, engineering,
geometry, etc., and the applications in this section and in the problem set are supposed to
give the student at least some impression of this fact.

Main Content
Applications of eigenvalue problems in

Elasticity theory (Example 1),

Probability theory (Example 2),

Biology (Example 3),

Mechanical vibrations (Example 4).

Short Courses. Of course, this section can be omitted, for reasons of time, or one or two
of the examples can be considered quite briefly.

Comments on Content
The examples in this section have been selected from the viewpoint of modest
prerequisites, so that not too much time will be needed to set the scene.

Example 4 illustrates why real matrices can have complex eigenvalues (as mentioned
before, in Sec. 8.1), and why these eigenvalues are physically meaningful. (For students
familiar with systems of ODEs, one can easily pick further examples from Chap. 4.)

1
�
�

[�9 7 11 �13]T

[1 1 1 1]T

[�7 �7 13 5]T

[2 �1 2 �1]T

11,

3,

�5,

�9,

�1 �

�2 �

�3 �

�4 �
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SOLUTIONS TO PROBLEM SET 8.2, page 343

2. (x, y, z) is mapped onto (x, y, �z). Hence [0 0 1]T is an eigenvector corresponding
to the eigenvalue �1 of the matrix

A � Y Z .

Furthermore, � � 1 is an eigenvalue of A of algebraic and geometric multiplicity 2.
Two linearly independent eigenvectors are

Y Z and Y Z .

4. Sketch the line y � x in the xy-plane to see that

(1, 0, 0) maps onto (1_
2, 1_

2, 0),

(0, 1, 0) maps onto (1_
2, 1_

2, 0)

and (0, 0, 1) maps onto itself. Hence the matrix is

Y Z .

To the eigenvalue 1 there correspond the eigenvectors

Y Z and Y Z
which span the plane y � x. This indicates that every point of this plane is mapped
onto itself. For the eigenvalue 0 an eigenvector is [1 �1 0]T. This shows that any
point on the line y � �x, z � 0 (which is perpendicular to the plane y � x) is mapped
onto the origin.

6. (1, 0) maps onto (0, 1). Also, (0, 1) maps onto (�1, 0). Hence the matrix is

[ ] .

This is the “rotation matrix” in Prob. 10 of Problem Set 8.1 with 	 � 
/2. The
eigenvalues are i and �i. Corresponding eigenvectors are complex, in agreement with
the fact that under this rotation, no direction is preserved.

8. Extension by a factor 1.2 (the eigenvalue) in the direction of the eigenvector [1 1]T

(45°). Contraction by �0.4, direction given by [1 �1]T (�45°). It is typical of a
symmetric matrix that the principal directions are orthogonal.

10. Extension by a factor 13 in the direction given by [1 2]T (63.4°); extension by a
factor 3 in the direction given by [2 �1]T (�26.6°).

�1

0

0

1

1

1

0

0

0

1

0

0

1

1_
2

1_
2

0

1_
2

1_
2

0

0

1

0

1

0

0

0

0

�1

0

1

0

1

0

0
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12. Extension factors 9 � 2�5� � 13.47 and 9 � 2�5� � 4.53 in the directions given
by [1 2 � �5�]T and [1 2 � �5�]T (76.7° and �13.3°, respectively).

14. Extension factors 11 and 9.5, corresponding to the principal directions [1 1/�2�]T

(35.26°) and [�1/�2� 1]T (144.74°), respectively.

16. A has the same eigenvalues as AT, and AT has row sums 1, so that it has the eigenvalue
1 with eigenvector x � [1 • • • 1]T.

Leontief was a leader in the development and application of quantitative methods
in empirical economical research, using genuine data from the economy of the United
States to provide, in addition to the “closed model” of Prob. 15 (where the producers
consume the whole production), “open models” of various situations of production
and consumption, including import, export, taxes, capital gains and losses, etc. See
W. W. Leontief, The Structure of the American Economy 1919–1939 (Oxford: Oxford
University Press, 1951); H. B. Cheney and P. G. Clark, Interindustry Economics
(New York: Wiley, 1959).

18. [4 9]T. Since eigenvectors are determined only up to a nonzero multiplicative
constant, this limit vector must be multiplied by a constant such that the sum of its
two components equals the sum of the components of the vector representing the
initial state.

20. An eigenvector corresponding to the eigenvalue 1 is

[121 132 176]T.

The other eigenvalues are �0.3 with eigenvector [1 7 �8]T and 0.4 with
eigenvector [1 0 �1]T. These are not needed here.

22. The growth rate is 3. A corresponding eigenvector is [40 10 1]T, but is not needed.
Neither are the other two eigenvalues 0 with eigenvector [0 0 1]T and �3 with
eigenvector [40 �10 1]T.

24. Team Project. (a) This follows by comparing the coefficient of �n�1 in the
expansion of D(�) with that obtained from the product representation.

(b) Axj � �jxj (xj � 0), (A � kI)xj � �jxj � kxj � (�j � k)xj

(c) The first statement follows from

Ax � �x, (kA)x � k(Ax) � k(�x) � (k�)x,

the second by induction and multiplication of Akxj � �j
kxj by A from the left.

(d) From Axj � �jxj (xj � 0) and (e) follows kpApxj � kp�j
pxj and kqAqxj � kq�j

qxj

(p � 0, q � 0, integer). Adding on both sides, we see that kpAp � kqAq has the
eigenvalue kp�j

p � kq�j
q. From this the statement follows.

(e) det (L � �I) � ��3 � l12l21� � l13l21l32 � 0. Hence � � 0. If all three
eigenvalues are real, at least one is positive since trace L � 0. The only other
possibility is �1 � a � ib, �2 � a � ib, �3 real (except for the numbering of the
eigenvalues). Then �3 � 0 because

�1�2�3 � (a2 � b2)�3 � det L � l13l21l32 � 0.

SECTION 8.3. Symmetric, Skew-Symmetric, and Orthogonal Matrices,
page 345

Purpose. To introduce the student to the three most important classes of real square
matrices and their general properties and eigenvalue theory.
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Main Content, Important Concepts

The eigenvalues of a symmetric matrix are real.

The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

The eigenvalues of an orthogonal matrix have absolute value 1.

Further properties of orthogonal matrices

Comments on Content
The student should memorize the preceding three statements on the locations of
eigenvalues as well as the basic properties of orthogonal matrices (orthonormality of row
vectors and of column vectors, invariance of inner product, determinant equal to 1 or �1).

Furthermore, it may be good to emphasize that, since the eigenvalues of an orthogonal
matrix may be complex, so may be the eigenvectors. Similarly for skew-symmetric
matrices. Both cases are simultaneously illustrated by

A � [ ] with eigenvectors [ ] and [ ]
corresponding to the eigenvalues i and �i, respectively.

SOLUTIONS TO PROBLEM SET 8.3, page 348

4. Let Ax � �x (x � 0), Ay � 
y (y � 0). Then

�xT � (Ax)T � xTAT � xTA.
Thus

�xTy � xTAy � xT
y � 
xTy.

Hence if � � 
, then xTy � 0, which proves orthogonality.

6. det A � det (AT) � det (�A) � (�1)n det A � �det A � 0 if n is odd. Hence the
answer is no. For even n � 2, 4, • • • we have

[ ] , W X , etc.

8. Yes, for instance,

Y Z .

10. Symmetric when b � 0, skew-symmetric when a � 0, orthogonal when a2 � b2 � 1.
Eigenvalues a � ib and a � ib. Note that this section concerns real matrices.

12. Orthogonal, rotation about the z-axis through an angle 	. Eigenvalues 1 and 
cos 	 � i sin 	

14. Skew-symmetric, eigenvalues 0 and �18i

0

0

1

�3�/2

�1/2

0

1/2

�3�/2

0

0

0

1

0

0

0

0

�1

1

0

0

0

0

�1

0

0

1

0

0

�1

1

�i

1

i

1

0

0

�1
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16. Orthogonal, eigenvalues 1 and

� i

all three of absolute value 1

18. See the answer to Prob. 12, above.

20. CAS Experiment.
(a) AT � A�1, BT � B�1, (AB)T � BTAT � B�1A�1 � (AB)�1. Also 
(A�1)T � (AT)�1 � (A�1)�1. In terms of rotations it means that the composite of
rotations and the inverse of a rotation are rotations.

(b) The inverse is

[ ] .

(c) To a rotation of about 16.26°. No limit. For a student unfamiliar with complex
numbers this may require some thought.

(d) Limit 0, approach along some spiral.

(e) The matrix is obtained by using familiar values of cosine and sine,

A � [ ] .

SECTION 8.4. Eigenbases. Diagonalization. Quadratic Forms, page 349

Purpose. This section exhibits the role of bases of eigenvectors (“eigenbases”) in
connection with linear transformations and contains theorems of great practical importance
in connection with eigenvalue problems.

Main Content, Important Concepts

Bases of eigenvectors (Theorems 1, 2)

Similar matrices have the same spectrum (Theorem 3)

Diagonalization of matrices (Theorem 4)

Principal axes transformation of forms (Theorem 5)

Short Courses. Complete omission of this section or restriction to a short look at
Theorems 1 and 5.

Comments on Content
Theorem 1 on similar matrices has various applications in the design of numeric methods
(Chap. 20), which often use subsequent similarity transformations to tridiagonalize or
(nearly) diagonalize matrices on the way to approximations of eigenvalues and
eigenvectors. The matrix X of eigenvectors [see (5)] also occurs quite frequently in that
context.

Theorem 2 is another result of fundamental importance in many applications, for
instance, in those methods for numerically determining eigenvalues and eigenvectors. Its
proof is substantially more difficult than the proofs given in this chapter.

�1/2

�3�/2

�3�/2

1/2

sin 	

cos 	

cos 	

�sin 	

5�11�
�

18

7
�
18
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SOLUTIONS TO PROBLEM SET 8.4, page 355

2. The eigenvalues are �8 and 8. Corresponding eigenvectors are [2 �1]T and [2 1]T,
respectively. Thus,

X � [ ] .

This gives the diagonal matrix D � diag (�8, 8).

4. The eigenvalues are �2 and 1. Corresponding eigenvectors are [2 �5]T and [1 �1]T,
respectively. Hence

X � [ ] .

This gives the diagonal matrix D � diag (�2, 1).

6. The eigenvalues are �12 and 5. Corresponding eigenvectors are [1 �2]T and [7 3]T,
respectively. The diagonal matrix is D � diag (�12, 5).

8. The eigenvalues are 4, 0, �2. Eigenvectors are [1 0 1]T, [1 �1 0]T, [0 5 3]T,
respectively. Hence

X � Y Z .

The diagonal matrix is diag (4, 0 �2).

12. Project. (a) This follows immediately from the product representation of the
characteristic polynomial of A.

(b) C � AB, c11 � �
n

l�1

a1lbl1, c22 � �
n

l�1

a2lbl2, etc. Now take the sum of these n

sums. Furthermore, trace BA is the sum of

c�11 � �
n

m�1

b1mam1, • • • , c�nn � �
n

m�1

bnmamn,

involving the same n2 terms as those in the double sum of trace AB.
(c) By multiplications from the right and from the left we readily obtain

A� � P2ÂP�2.

(d) Interchange the corresponding eigenvectors (columns) in the matrix X in (5).

14. We obtain

Â � [ ] .

The eigenvalues of Â are 5 and �5. Corresponding eigenvectors are [0 1]T and
[5 �12]T, respectively. From this we obtain the eigenvectors [2 1]T and [1 �2]T,
respectively, of A.

16. We obtain

Â � [ ] .

2_
5

7_
5

�2_
5

_68
5

0

5

�5

24

0

5

3

1

�1

0

1

0

1

1

�1

2

�5

2

1

2

�1
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The eigenvalues of Â are �2 and 3. Corresponding eigenvectors are [1 �4]T and
[2 17]T, respectively. From this we obtain the eigenvectors [0 �15]T and [50 70]T,
respectively, of A.

18. We obtain

Â � Y Z .

The eigenvalues are 0, 4, 10. Corresponding eigenvectors of Â are [0 3 1]T,
[1 0 0]T, [1 �1 �1]T, respectively. From these we obtain the eigenvectors
[3 0 1]T, [0 1 0]T, [�1 1 �1]T, respectively, of A. These differ from those
of Â by an interchange of the first two components. Indeed, this is the effect of P
under multiplication from the left.

20. The symmetric coefficient matrix is

C � [ ] .

It has the eigenvalues 9 and 1. Hence the transformed form is

9y1
2 � y2

2 � 9.

This is an ellipse with semiaxes 1 and 3.
The matrix X whose columns are normalized eigenvectors of C gives the relation

between y and x in the form

x � [ ] y.

22. The symmetric coefficient matrix is

C � [ ] .

It has the eigenvalues 10 and �10. Hence the transformed form is

10y1
2 � 10y2

2 � 20; thus, y1
2 � y2

2 � 2.

This is a hyperbola. The matrix X whose columns are normalized eigenvectors of C
gives the relation between y and x in the form

x � [ ] y.

24. The symmetric coefficient matrix of the form is

C � [ ] .

It has the eigenvalues 16 and �9. Hence the transformed form is

16y1
2 � 9y2

2 � 144; thus, y1
2/9 � y2

2/16 � 1.

�12

0

7

�12

1/�5�

�2/�5�

2/�5�

1/�5�

8

�6

6

8

��3�/2

1/2

1/2

�3�/2

2�3�

7

3

2�3�

�9

15

15

3

�5

�5

4

0

0
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This is a hyperbola. The matrix X whose columns are normalized eigenvectors of C
gives the relation between y and x in the form

x � [ ] y.

26. The symmetric coefficient matrix is

C � [ ] .

It has the eigenvalues 14 and �8. Hence the transformed form is

14y1
2 � 8y2

2 � 0; thus, y2 � �(�7�/2)y1.

This is a pair of straight lines through the origin. The matrix X whose columns are
normalized eigenvectors of C gives the relation between y and x in the form

x � [ ] y.

28. The symmetric coefficient matrix is

C � [ ] .

It has the eigenvalues 9 and 4. Hence the transformed form is

9y1
2 � 4y2

2 � 36; thus, y1
2/4 � y2

2/9 � 1.

This is an ellipse with semiaxes 2 and 3. The matrix X whose columns are normalized
eigenvectors of C gives the relation between y and x in the form

x � [ ] y.

30. Transform Q(x) by (9) to the canonical form (10). Since the inverse transform 
y � X�1x of (9) exists, there is a one-to-one correspondence between all x � 0 and 
y � 0. Hence the values of Q(x) for x � 0 concide with the values of (10) on the
right. But the latter are obviously controlled by the signs of the eigenvalues in the
three ways stated in the theorem. This completes the proof.

SECTION 8.5. Complex Matrices and Forms. Optional, page 356

Purpose. This section is devoted to the three most important classes of complex matrices
and corresponding forms and eigenvalue theory.

Main Content, Important Concepts

Hermitian and skew-Hermitian matrices

Unitary matrices, unitary systems

Location of eigenvalues (Fig. 161)

Quadratic forms, their symmetric coefficient matrix

Hermitian and skew-Hermitian forms

1/�2�

�1/�2�

1/�2�

1/�2�

2.5

6.5

6.5

2.5

1/�2�

�1/�2�

1/�2�

1/�2�

11

3

3

11

0.6

0.8

0.8

�0.6
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Background Material. Section 8.3, which the present section generalizes. The
prerequisites on complex numbers are very modest, so that students will need hardly any
extra help in that respect.
Short Courses. This section can be omitted.

The importance of these matrices results from quantum mechanics as well as from
mathematics itself (e.g., from unitary transformations, product representations of
nonsingular matrices A � UH, U unitary, H Hermitian, etc.).

The determinant of a unitary matrix (see Theorem 4) may be complex. For example,
the matrix

A � [ ]
is unitary and has

det A � i.

SOLUTIONS TO PROBLEM SET 8.5, page 361

2. (B�A�)
T

� (B�A�)
T

� A�
T
B�

T
� A(�B) � �AB. For the matrices in Example 2,

AB � [ ] .

4. Eigenvectors are as follows. (Multiplication by a complex constant may change them
drastically!)

6. Skew-Hermitian, eigenvalue �2i with eigenvector [1 �1]T; eigenvalue 2i with
eigenvector [1 1]T.

8. Skew-Hermitian, unitary, eigenvalues i and �i; corresponding eigenvectors [1 1]T

and [1 �1]T, respectively.

10. Hermitian. The eigenvalues and eigenvectors are

12. Project. (a) A � H � S, H � 1_
2(A � A�

T
), S � 1_

2(A � A�
T
) (H Hermitian, 

S skew-Hermitian)

(b) A�
T
A � A2 � AA�

T
if A is Hermitian, A�

T
A � �A2 � A(�A) � AA�

T
if A is

skew-Hermitian, A�
T
A � A�1A � I � AA�1 � AA�

T
if A is unitary.

(c) We have A � H � S, A�
T

� H�
T

� S�
T

� H � S; hence

AAA�
T

� (H � S)(H � S) � H2 � HS � SH � S2

and
A�

T
A � (H � S)(H � S) � H2 � HS � SH � S2.

These two expressions are equal if and only if

�HS � SH � HS � SH; thus, 2SH � 2HS,

and HS � SH, as claimed.

[i �1 � i 1]T

[�i 0 1]T

[i 1 � i 1]T.

�2,

0,

2,

[1 � 3i 5]T, [1 � 3i �2]T

[2 � i i]T, [2 � i �5i]T

[1 1]T, [1 �1]T.

For A

For B

For C

5 � 3i

�1

1 � 19i

�23 � 10i

0

1

1

0

1 � i
�
�2�
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(d) For instance,

[ ]
is not normal. A normal matrix that is not Hermitian, skew-Hermitian, or unitary is
obtained if we take a unitary matrix and multiply it by 2 or some other real factor
different from �1.

(e) The inverse of a product UV of unitary matrices is

(UV)�1 � V�1U�1 � V�
T
U�

T
� (U�V�)

T
.

This proves that UV is unitary.
We show that the inverse A�1 � B of a unitary matrix A is unitary. We obtain

B�1 � (A�1)�1 � (A�
T
)�1 � (A����1)

T
� B�

T
,

as had to be shown.

14. This form is Hermitian. Its value can be obtained directly by looking at the matrix,
namely,

x�
TAx � ax�1x1 � (b � ic)x�1x2 � (b � ic)x�2x1 � kx�2x2

� a�x1�2 � 2Re [b � ic)x�1x2] � k�x2�2.

Here we have used that Re z � 1_
2(z � z�). Indeed, the two middle terms in the first

line on the right are complex conjugates of each other. We also note that the value
of the form is real, as it should be for a Hermitian form.

16. Eigenvalues and eigenvectors are

Sx : �1, [ ] ; 1, [ ]

Sy : �1, [ ] ; 1, [ ]

Sz : �1, [ ] ; 1, [ ] .

SOLUTIONS TO CHAP. 8 REVIEW QUESTIONS AND PROBLEMS, page 362

10. X�1AX � [ ] A [ ] � [ ]

12. X�1AX � Y Z A Y Z � Y Z

14. X�1AX � Y Z A Y Z � Y Z
0

0

�10

0

11

0

2

0

0

2

�1

1

1

1

2

1

1

�1

�1

1

0

1

1

�1

1

0

1

1
�
3

0

0

�9

0

9

0

18

0

0

1

�2

4

2

�4

�1

4

1

�2

0

�1

2

1

�2

0

2

0

1

1
�
9

0

104

13

0

1

�8

8

1

1/65

�8/65

8/65

1/65

1

0

0

1

1

i

1

�i

1

1

1

�1

0

0

0

i
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16. P�1 � Y Z , Â � Y Z , � � 18, 36, �27

From the form of Â it can be seen that one of the eigenvalues is 18, so that the
determination of the other two eigenvalues amounts to solving a quadratic equation.

18. The symmetric coefficient matrix is

A � [ ] .

It has the eigenvalues 25 and 4. Hence the form represents the ellipse

25y1
2 � 4y2

2 � 100; thus, y1
2/4 � y2

2/25 � 1

with semiaxes 2 and 5.

20. The symmetric coefficient matrix is

A � [ ] .

It has the eigenvalues 20 and �10. Hence the form represents the hyperbola

20y1
2 � 10y2

2 � 20; thus, y1
2 � 1_

2y2
2 � 1.

12

�4

14

12

10.08

17.44

11.56

10.08

0

0

18

126

�6

�3

15

7

�8.5

2

2

�1

�8

2

4

16

�4

2

1
�
20
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CHAPTER 9 Vector Differential Calculus. Grad, Div, Curl

This chapter is independent of the previous two chapters (7 and 8).

Changes

The differential–geometric theory of curves in space and in the plane, which in the previous
edition was distributed over three consecutive sections, along with its application in
mechanics, is now streamlined and shortened and presented in a single section, with a
discussion of tangential and normal acceleration in a more concrete fashion.

Formulas for grad, div, and curl in curvilinear coordinates are placed for reference in
App. A3.4.

SECTION 9.1. Vector in 2-Space and 3-Space, page 364

Purpose. We introduce vectors in 3-space given geometrically by (families of parallel)
directed segments or algebraically by ordered triples of real numbers, and we define
addition of vectors and scalar multiplication (multiplication of vectors by numbers).

Main Content, Important Concepts

Vector, norm (length), unit vector, components

Addition of vectors, scalar multiplication

Vector space R3, linear independence, basis

Comments on Content
Our discussions in the whole chapter will be independent of Chaps. 7 and 8, and there
will be no more need for writing vectors as columns and for distinguishing between row
and column vectors. Our notation a � [a1, a2, a3] is compatible with that in Chap. 7.
Engineers seem to like both notations

a � [a1, a2, a3] � a1i � a2j � a3k,

preferring the first for “short” components and the second in the case of longer expressions.
The student is supposed to understand that the whole vector algebra (and vector calculus)

has resulted from applications, with concepts that are practical, that is, they are “made to
measure” for standard needs and situations; thus, in this section, the two algebraic
operations resulted from forces (forming resultants and changing magnitudes of forces);
similarly in the next sections. The restriction to three dimensions (as opposed to n
dimensions in the previous two chapters) allows us to “visualize” concepts, relations, and
results and to give geometrical explanations and interpretations.

On a higher level, the equivalence of the geometric and the algebraic approach
(Theorem 1) would require a consideration of how the various triples of numbers for
the various choices of coordinate systems must be related (in terms of coordinate
transformations) for a vector to have a norm and direction independent of the choice of
coordinate systems.

Teaching experience makes it advisable to cover the material in this first section rather
slowly and to assign relatively many problems, so that the student gets a feel for vectors
in R3 (and R2) and the interrelation between algebraic and geometric aspects.
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SOLUTION TO PROBLEM SET 9.1, page 370

2. The components are �5, �5, �5. The length is 5�3�. Hence the unit vector in the
direction of v is [�1/�3�, �1/�3�, �1/�3� ].

4. v1 � �2, v2 � 6, v3 � 6; �v� � �76�. Hence the unit vector in the direction of v is
[�1/�19�, 3/�19�, 3/�19�].

6. Components 6, 8, 10; length 10�2�. Unit vector [0.6/�2�, 0.8/�2�, 1/�2�].
8. Q: (0, 0, 0); �v� � �84�

10. Q: (3, 2, 6), �v� � 7. Note that the given vector is the position vector of Q.
12. Q: (4, 0, 0); �v� � 3�3�
14. [�6, 3, 10]. This illustrates (4a).
16. [26, �13, �19]. This illustrates (4b).
18. [2/�5�, �1/�5�, 0], [0, 0, 1]. These are unit vectors.
20. 5.48 � �30� � �5� � �45� � 8.94
24. [11, 8, 0] is the resultant, �185� � 13.6 its magnitude
26. The resultant is 0. The forces are in equilibrium.
28. Resultant [13, 25, 3], magnitude �803� � 28.3
30. The z-component of the resultant is 0 for c � �12.
32. 1 � �p � q� � 3, nothing about the direction. If this were the arm of some machine

or robot, it could not reach the origin but could reach every point of the annulus (ring)
indicated. In the next problem the origin can be reached.

34. vB � vA � [�400/�2�, 400/�2� ] � [�500/�2�, �500/�2� ] � [100/�2�, 900/�2� ]
36. Choose a coordinate system whose axes contain the mirrors. Let u � [u1, u2] be

incident. Then the first reflection gives, say, v � [u1, �u2], and the second 
w � [�u1, �u2] � �u. The reflected ray is parallel to the incoming ray, with the
direction reversed.

38. Team Project. (a) The idea is to write the position vector of the point of intersection
P in two ways and then to compare them, using that a and b are linearly independent
vectors. Thus

�(a � b) � a � �(b � a).

� � 1 � � are the coefficients of a and � � � those of b. Together, � � � � 1_
2,

expressing bisection.
(b) The idea is similar to that in part (a). It gives

�(a � b) � 1_
2a � � 1_

2(b � a).

� � 1_
2 � 1_

2� from a and � � 1_
2� from b, resulting in � � 1_

4, thus giving a ratio
(3/4)�(1/4) � 3:1.
(c) Partition the parallelogram into four congruent parallelograms. Part (a) gives 1�1
for a small parallelogram, hence 1�(1 � 2) for the large parallelogram.
(d) v(P) � 1_

2a � �(b � 1_
2a) � 1_

2b � �(a � 1_
2b) has the solution � � � � 1_

3, which
gives by substitution v(P) � 1_

3(a � b) and shows that the third median OQ passes
through P and OP equals 2_

3 of �v(Q)� � 1_
2�a � b�, dividing OQ in the ratio 2�1, too.

(e) In the figure in the problem set, a � b � c � d � 0; hence c � d � �(a � b).
Also, AB � 1_

2(a � b), CD � 1_
2(c � d) � �1_

2(a � b), and for DC we get �1_
2(a � b),

which shows that one pair of sides is parallel and of the same length. Similarly for
the other pair.
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(f) Let a, b, c be edge vectors with a common initial point (see the figure). Then the
four (space) diagonals have the midpoints

AG: 1_
2(a � b � c)

BH: a � 1_
2(b � c � a)

EC: c � 1_
2(a � b � c)

DF: b � 1_
2(a � c � b),

and these four position vectors are equal.

Section 9.1. Parallelepiped in Team Project 38(f)

(g) Let v1, • • • , vn be the vectors. Their angle is � � 2	/n. The interior angle at
each vertex is 
 � 	 � (2	/n). Put v2 at the terminal point of v1, then v3 at the
terminal point of v2, etc. Then the figure thus obtained is an n-sided regular polygon,
because the angle between two sides equals 	 � � � 
. Hence

v1 � v2 � • • • � vn � 0.

(Of course, for even n the truth of the statement is immediately obvious.)

SECTION 9.2. Inner Product (Dot Product), page 371

Purpose. We define, explain, and apply a first kind of product of vectors, the dot product
a • b, whose value is a scalar.

Main Content, Important Concepts

Definition (1)

Dot product in terms of components

Orthogonality

Length and angle between vectors in terms of dot products

Cauchy–Schwarz and triangle inequalities

Comment on Dot Product
This product is motivated by work done by a force (Example 2), by the calculation of
components of forces (Example 3), and by geometric applications such as those given in
Examples 5 and 6.

“Inner product” is more modern than “dot product” and is also used in more general
settings (see Sec. 7.9).

E

b

c

a

A

H

G
D

F

B

C
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SOLUTIONS TO PROBLEM SET 9.2, page 376

2. �21�, 5, �14� 4. 12 6. 3 8. 96 10. �21� � 5 � �14�
12. 8 � �21��14� � 7�6� � 17.15

14. u • (v � w) � 0; that is, v � w is orthogonal to u. So it does not imply that v � w
� 0, that is, v � w.

16. a • b � 4 � 5�21�, �54� � 7.35 � �21� � 5 � 9.58, 54 � 38 � 2(21 � 25) � 92

18. �a � b�2 � (a � b) • (a � b) � �a�2 � 2�a��b� � �b�2 � (�a� � �b�)2

20. [2, 7, �4] • [�3, 1, 0] � 1

22. [4, 3, 6] • [�4, 1, �9] � �67

24. Let AB�� � a. Then W � (p � q) • a � p • a � q • a.
26. 6/�42� � 0.9258 � cos �, � � 22.2°

28. 7/�70� � 0.837 � cos �, � � 33.2°

30. 6/�54� � 0.6165 � cos �, � � 35.26°

32. �c�2 � �a � b�2 � (a � b) • (a � b) � �a�2 � �b�2 � 2�a��b� cos �

34. 
 � � is the angle between the unit vectors a and b. Hence (2) gives the result.

36. Hesse’s normal form gives 10/�[5, 2, 1]� � 10/�30� � �10/3�.

38. 0. The vectors are orthogonal.

40. ��5�
42. Team Project. (b) a1 � �8/3

(c) [4, 2] • [5, �10] � 0

(d) �[0.6, �0.8]

(e) v • a � 2v1 � v2 � 0; hence v � [v1, �2v1, v3]. Yes, of dimension 2.

(f) c � �11.5

(g) (a � b) • (a � b) � �a�2 � �b�2 � 0, �a� � �b�. A square

(h) Let the mirrors correspond to the coordinate planes. If the ray [v1, v2, v3]
first hits the yz-plane, then the xz-plane, and then the xy-plane, it will be reflected to
[�v1, v2, v3], [�v1, �v2, v3], [�v1, �v2, �v3]; hence the angle is 180°, the reflected
ray will be parallel to the incident ray but will have the opposite direction.

Corner reflectors have been used in connection with missiles; their aperture
changes if the axis of the missile deviates from the tangent direction of the path. See
E. Kreyszig, On the theory of corner reflectors with unequal faces. Ohio State
University: Antenna Lab Report 601/19, 1957.

SECTION 9.3. Vector Product (Cross Product), page 377

Purpose. We define and explain a second kind of product of vectors, the cross product
a � b, which is a vector perpendicular to both given vectors (or the zero vector in some
cases).

Main Content, Important Concepts

Definition of cross product, its components (2), (2**)

Right- and left-handed coordinate systems

Properties (anticommutative, not associative)

Scalar triple product
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Prerequisites. Elementary use of second- and third-order determinants (see Sec. 7.6)

Comment on Motivations
Cross products were suggested by the observation that in certain applications, one
associates with two given vectors a third vector perpendicular to the given vectors
(illustrations in Examples 4–6). Scalar triple products can be motivated by volumes and
linear independence (Theorem 2 and Example 6).

SOLUTIONS TO PROBLEM SET 9.3, page 383

2. [4, �2, �1], �21�, 13

4. [�19, 21, �24], since d � d � 0, [�19, 21, �24]

6. 0 because of anticommutativity

8. 0 because the two factors are parallel, even equal.

10. [50, �30, 0] 
 [54, �27, 10], illustrating nonassociativity

12. [2, 4, 46]

14. 1, �1

16. �141

18. �108

20. �480, �480

22. Straightforward calculation. In the first formula, each of the three components is
multiplied by �.

24. Team Project. (12) is obtained by noting that

�a � b�2 � �a�2�b�2 sin2 � � �a�2�b�2(1 � cos2 �) � (a • a)(b • b) � (a • b)2.

To prove (13), we choose a right-handed Cartesian coordinate system such that the
x-axis has the direction of d and the xy-plane contains c. Then the vectors in (13) are
of the form

b � [b1, b2, b3], c � [c1, c2, 0], d � [d1, 0, 0].

Hence by (2**),

c � d � k k � �c2d1k, b � (c � d) � k k .

The “determinant” on the right equals [�b2c2d1, b1c2d1, 0]. Also,

(b • d)c � (b • c)d � b1d1[c1, c2, 0] � (b1c1 � b2c2)[d1, 0, 0]
� [�b2c2d1, b1d1c2, 0].

This proves (13) for our special coordinate system. Now the length and direction of
a vector and a vector product, and the value of an inner product, are independent of
the choice of the coordinates. Furthermore, the representation of b � (c � d) in terms
of i, j, k will be the same for right-handed and left-handed systems, because of the
double cross multiplication. Hence, (13) holds in any Cartesian coordinate system,
and the proof is complete.

(14) follows from (13) with b replaced by a � b.

k

b3

�c2d1

j

b2

0

i

b1

0

k

0

0

j

c2

0

i

c1

d1
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To prove (15), we note that a • [b � (c � d)] equals

(a b [c � d]) � (a � b) • (c � d)

by the definition of the triple product, as well as (a • c)(b • d) � (a • d)(b • c) by (13)
(take the dot product by a).

The last formula, (16), follows from familiar rules of interchanging the rows of a
determinant.

26. [�3, �3, 0] � [0, 0, 5] � [�15, 15, 0]; 15�2�
28. 0, 0. Q lies on the line of action of p.

30. w � r � [5/�2�, 5/�2�, 0] � [4, 2, �2] � [�5�2�, 5�2�, �5�2�], �v� � �150�
32. �[�3, �4, �7] � [�1, �8, �4]� � �[�40, �5, 20]� � 45

34. 1_
2 �[0, 3, 0] � [4, 0, 2]� � 1_

2 �[6, 0, �12]� � �45�
36. [2, 3, 2] � [�1, 5, �3] � [�19, 4, 13],

hence

�19x � 4y � 13z � c � �19 � 2 � 4 � 1 � 13 � 3 � 5.

38. From the given points we get three edge vectors whose scalar triple product is

k k � �8.

Hence the answer is 8/6 � 4/3.

SECTION 9.4. Vector and Scalar Functions and Fields. Derivatives, 
page 384

Purpose. To get started on vector differential calculus, we discuss vector functions and
their continuity and differentiability.

Main Content, Important Concepts

Vector and scalar functions and fields

Continuity, derivative of vector functions (9), (10)

Differentiation of dot, cross, and triple products, (11)–(13)

Partial derivatives

Comment on Content
This parallels calculus of functions of one variable and can be surveyed quickly.

SOLUTIONS TO PROBLEM SET 9.4, page 389

2. Parallel straight lines

4. Circles (x � )2

� y2 � passing through the origin

6. Hyperbolas x2 � (y � 4)2 � const

1
�
4c2

1
�
2c

�1

4

7

1

4

5

4

6

4
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8. CAS Project. A CAS can graphically handle these more complicated functions,
whereas the paper-and-pencil method is relatively limited. This is the point of the
project.

Note that all these functions occur in connection with Laplace’s equation, so they
are real or imaginary parts of complex analytic functions.

10. Elliptic cylinders with vertical generating straight lines

12. Cylinders with cross section z � 4y2 � c and generating straight lines parallel to the
x-axis

14. Elliptic paraboloids z � x2 � 4y2 � c

16. On horizontal lines y � const the i-component of v is constant, and on vertical lines
x � const the j-component of v is constant.

18. At each point the vector v equals the corresponding position vector, so that sketching
is easy.

20. On y � x the vector v is vertical and on y � �x it is horizontal.

22. As a curve this is a helix. The first derivative [�4 sin t, 4 cos t, 2] is tangent to this
curve, as we shall discuss in the next section, and the second derivative 
[�4 cos t, �4 sin t, 0] is parallel to the xy-plane and perpendicular to that tangent.

24. [cos x cosh y, �sin x sinh y], [sin x sinh y, cos x cosh y]; [ex cos y, ex sin y],
[�ex sin y, ex cos y]

SECTION 9.5. Curves. Arc Length. Curvature. Torsion, page 389

Purpose. Discussion of space curves as an application of vector functions of one variable,
the use of curves as paths in mechanics (and as paths of integration of line integrals in
Chapter 10). Role of parametric representations, interpretation of derivatives in
mechanics, completion of the discussion of the foundations of differential–geometric
curve theory.

Main Content, Important Concepts

Parametric representation (1)

Orientation of a curve

Circle, ellipse, straight line, helix

Tangent vector (7), unit tangent vector (8), tangent (9)

Length (10), arc length (11)

Arc length as parameter [cf. (14)]

Velocity, acceleration (16)–(19)

Centripetal acceleration, Coriolis acceleration

Curvature, torsion, Frenet formulas (Prob. 50)

Short Courses. This section can be omitted.

Comment on Problems 26–28
These involve only integrals that are simple (which is generally not the case in connection
with lengths of curves).
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SOLUTIONS TO PROBLEM SET 9.5, page 398

2. r(t) � [5 � 3t, 1 � t, 2 � t]

4. r(t) � [t, 3 � 2t, 7t]

6. r(t) � [cos t, sin t, sin t]

8. Direction of the line of intersection [1, 1, �1] � [2, �5, 1] � [�4, �3, �7]. Point
of intersection with the xy-plane z � 0 from x � y � 2, 2x � 5y � 3; thus x � 13/7,
y � 1/7. Hence a parametric representation is

r(t) � [_13
7 � 4t, 1_

7 � 3t, �7t].

10. Helix [3 cos t, 3 sin t, 4t]

12. Straight line through (4, 0, �3) in the direction of [�2, 8, 5]

14. Space curve with projections y � x2, z � x3 into the xy- and xz-coordinate planes,
similar to the curve in Fig. 210.

16. Hyperbola x2 � y2 � 1, z � 0

18. x � 1, (y � 5)(z � 5) � 1; hyperbola

20. No, because the exponential function et
�
is nonnegative.

22. r� � [1, 2t, 0], u � (1 � 4t2)�1/ 2[1, 2t, 0], q � [2 � w, 4 � 4w, 0]

24. r�(t) � [�3 sin t, 3 cos t, 4], u � [�0.6 sin t, 0.6 cos t, 0.8], 
q � [3, 3w, 8	 � 4w]

26. t � 4	, r� � [�2 sin t, 2 cos t, 6], �r�• r�� � �40�, � � 4	�40�
28. r� � [�3a cos2 t sin t, 3a sin2 t cos t]. Taking the dot product and applying

trigonometric simplification gives

r�• r� � 9a2 cos4 t sin2 t � 9a2 sin4 t cos2 t

� 9a2 cos2 t sin2 t

� sin2 2t.

From this we obtain as the length in the first quadrant

� � a �	/2

0
sin 2t dt � � (cos 	 � cos 0) � . Answer: 6a

30. We obtain

ds2 � dx2 � dy2

� (d� cos � � � sin � d�)2 � (d� sin � � � cos � d�)2

� d�2 � �2 d�2

� (��2 � �2) d�2.
For the cardioid,

�2 � ��2 � a2(1 � cos �)2 � a2 sin2 �

� 2a2(1 � cos �)

� 4a2 sin2 1_
2�

so that

� � 2a �2	

0

sin 1_
2� d� � 8a.

3a
�
2

3a
�
4

3
�
2

9a2

�
4
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32. v � r� � [4, �3, 0], �v� � 5, a � 0
34. v � r� � [�sin t, 2 cos t, 0], �v� � (sin2 t � 4 cos2 t)1/2, 

a � [�cos t, �2 sin t, 0]. Hence the tangential acceleration is

atan � [�sin t, 2 cos t, 0]

and has the magnitude �atan�, where

�atan�2 � .

36. CAS Project. (a) v � [�2 sin t � 2 sin 2t, 2 cos t � 2 cos 2t]. From this we obtain
�v�2 � v • v � (�2 sin t � 2 sin 2t)2 � (2 cos t � 2 cos 2t)2. Performing the squares
and simplifying gives

�v�2 � 8(1 � sin t sin 2t � cos t cos 2t)

� 8(1 � cos 3t)

� 16 sin2 .

Hence

�v� � 4 sin .

a � [�2 cos t � 4 cos 2t, �2 sin t � 4 sin 2t].

We use (18*). By straightforward simplification (four terms cancel),

a • v � 12(cos t sin 2t � sin t cos 2t)

� 12 sin 3t.
Hence (18*) gives

atan � v

anorm � a � atan.

(b) v � [�sin t � 2 sin 2t, cos t � 2 cos 2t]

�v�2 � 5 � 4 cos 3t

a � [�cos t � 4 cos 2t, �sin t � 4 sin 2t]

atan � [�sin t � 2 sin 2t, cos t � 2 cos 2t]

anorm � a � atan

(c) v � [�sin t, 2 cos 2t, �2 sin 2t]

�v�2 � 4 � sin2 t

a � [�cos t, �4 sin 2t, �4 cos 2t]

atan � [�sin t, 2 cos 2t, �2 sin 2t]

anorm � a � atan

1_
2 sin 2t

��
4 � sin2 t

6 sin 3t
��
5 � 4 cos 3t

12 sin 3t
��
16 sin2 (3t/2)

3t
�
2

3t
�
2

9 sin2 t cos2 t
��
sin2 t � 4 cos2 t

�3 sin t cos t
��
sin2 t � 4 cos2 t
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(d) v � [c cos t � ct sin t, c sin t � ct cos t, c]

�v�2 � c2(t2 � 2)

a � [�2c sin t � ct cos t, 2c cos t � ct sin t, 0]

atan � [cos t � t sin t, sin t � t cos t, 1]

anorm � a � atan

This is a spiral on a cone.

38. R � 3.85 � 108 m, �v� � 2	R/(2.36 � 106) � 1025 [m/sec], �v� � �R, 
�a� � �2R � �v�2/R � 0.0027 [m/sec2], which is only 2.8 • 10�4 g, where g is the
acceleration due to gravity at the earth’s surface.

40. R � 3960 � 450 � 4410 [mi], 2	R � 100�v�, �v� � 277.1 mi/min,

g � �a� � �2R � �v�2/R � 17.41 [mi/min2] � 25.53 [ft/sec2] � 7.78 [m/sec2].

Here we used �v� � �R.

42. We denote derivatives with respect to t by primes. In (22),

u � � r� , � � (r�• r�)�1/2. [See (12).]

Thus in (22),

� r� ( )2

� r� � r�(r�• r�)�1 � r�

where

� ( ) � �1_
2(r�• r�)�3/2 2(r�• r�)(r�• r�)�1/2

� �(r�• r�)(r�• r�)�2.
Hence

� r�(r�• r�)�1 � r�(r�• r�)(r�• r�)�2

• � (r�• r�)(r�• r�)�2 � 2(r�• r�)2(r�• r�)�3 � (r�• r�)�3(r�• r�)2

� (r�• r�)(r�• r�)�2 � (r�• r�)2(r�• r�)�3.

Taking square roots, we get (22*).

44. � � �p • (u � p)� � �p • (u� � p � u � p�) � 0 � (p u p�) � �(u p p�).
Now u � r�, p � (1/�)r�; hence p� � (1/�)r� � (1/�)�r�. Inserting this into the
triple product (the determinant), we can simplify the determinant by familiar rules
and let the last term in p� disappear. Pulling out 1/� from both p and p�, we obtain
the second formula in (23**).

46. � � , � �( )2

� • • • ,

� �( )3

� • • •
ds
�
dt

d3r
�
dt3

d3r
�
ds3

ds
�
dt

d2r
�
dt2

d2r
�
ds2

ds
�
dt

dr
�
dt

dr
�
ds

du
�
ds

du
�
ds

du
�
ds

dt
�
ds

dt
�
ds

d
�
dt

d2t
�
ds2

d2t
�
ds2

d2t
�
ds2

dt
�
ds

du
�
ds

1
�
s�

dt
�
ds

dt
�
ds

dr
�
ds

ct
�
t2 � 2
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where the dots denote terms that vanish by applying familiar rules for simplifying
determinants; thus

� � ( ) � ( ) .

Now use (22*) and (12).

48. From r(t) � [a cos t, a sin t, ct] we obtain

r� � [�a sin t, a cos t, c], r�• r� � a2 � c2 � K2.

Hence by integration, s � Kt. Consequently, t � s/K. This gives the indicated
representation of the helix with arc length s as parameter. Denoting derivatives with
respect to s also by primes, we obtain

r(s) � [a cos , a sin , ] , K2 � a2 � c2

u(s) � r�(s) � [� sin , cos , ]
r�(s) � [� cos , � sin , 0]

�(s) � �r�� � �r�• r�� � �

p(s) � r�(s) � [�cos , �sin , 0]
b(s) � u(s) � p(s) � [ sin , � cos , ]

b�(s) � [ cos , sin , 0]
�(s) � �p(s) • b�(s) � � .

Positive c gives a right-handed helix and positive torsion; negative c gives a 
left-handed helix and negative torsion.

50. p� � (1/�)u� implies the first formula, u� � �p. The third Frenet formula was given
in the text before (23). To obtain the second Frenet formula, use

p� � (b � u)� � b� � u � b � u� � �� p � u � b � �p � ��b � �u.

In differential geometry (see Ref. [GR8] in App. 1) it is shown that the whole
differential–geometric theory of curves can be obtained from the Frenet formulas,
whose solution shows that the “natural equations” � � �(s), � � �(s) determine a
curve uniquely, except for its position in space.

SECTION 9.6. Calculus Review: Functions of Several Variables. Optional,
page 400

Purpose. To give students a handy reference and some help on material known from
calculus that they will need in their further work.

c
�
a2 � c2

c
�
K2

s
�
K

c
�
K2

s
�
K

c
�
K2

a
�
K

s
�
K

c
�
K

s
�
K

c
�
K

s
�
K

s
�
K

1
�
�(s)

a
�
a2 � c2

a
�
K2

s
�
K

a
�
K2

s
�
K

a
�
K2

c
�
K

s
�
K

a
�
K

s
�
K

a
�
K

cs
�
K

s
�
K

s
�
K

d3r
�
dt3

d2r
�
dt2

dr
�
dt

1
��
�2(ds/dt)6

d3r
�
ds3

d2r
�
ds2

dr
�
ds

1
�
�2
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SOLUTIONS TO PROBLEM SET 9.6, page 403

2. w� � (h/g)� � (h�g � g�h) /g2

4. x� � �2 sin t, y� � 2 cos t, z� � 5, so that by the chain rule

w� � (y � z)(�2 sin t) � (z � x) 2 cos t � (x � y) � 5

� (2 sin t � 5t)(�2 sin t) � (2 cos t � 5t) 2 cos t

� (2 cos t � 2 sin t) � 5

� 4 cos 2t � 10[(t � 1) cos t � (�t � 1) sin t].

6. �w/�u � �24u � 32v, �w/�v � 32u � 24v
8. �w/�u � 4u3(v4 � 4 � v�4), �w/�v � 4u4(v3 � v�5)

10. This follows from (1). Answer:

�w�/�x � 3x2 � 2(x2 � y2)2x, �w�/�y � 3y2 � 2(x2 � y2)2y.

SECTION 9.7. Gradient of a Scalar Field. Directional Derivative, page 403

Purpose. To discuss gradients and their role in connection with directional derivatives,
surface normals, and the generation of vector fields from scalar fields (potentials).

Main Content, Important Concepts

Gradient, nabla operator

Directional derivative, maximum increase, surface normal

Vector fields as gradients of potentials

Laplace’s equation

Comments on Content
This is probably the first section in which one should no longer rely on knowledge from
calculus, although relatively elementary calculus books usually include a passage on
gradients.

Potentials are important; they will occur at a number of places in our further work.

SOLUTIONS TO PROBLEM SET 9.7, page 409

2. �ƒ � [2x, 2_
9y]

4. �ƒ � [4x3, 4y3]
6. �ƒ � [2x � 6, 2y � 2]

8. v � �ƒ � (x2 � y2)�1[2x, 2y], v(P) � [0.32, 0.24]

10. v � �ƒ � [2x, 8y, 18z], v(P) � [6, 16, 18]

12. v � �ƒ � (x2 � y2 � z2)�3/2[�x, �y, �z], v(P) � [�2/27, �1/27, �2/27]

14. �T � (x2 � y2)�1[�y, x], ��T(P) � [0.25, �0.25]

16. �T � (x2 � y2)�2[y2 � x2, �2xy], ��T(P) � [1/16, 0]

18. �T � [cos x cosh y, sin x sinh y], ��T(P) � [�2.6/�2�, �2.4/�2�]
20. �ƒ � (x2 � y2)�2[�2xy, x2 � y2], �ƒ(P) � [�15/578, 4/289]

22. �ƒ � (x2 � y2)�1[2x, 2y], �ƒ(P) � [1/3, 1/3]

24. �ƒ � [2xy, x2 � y2], �ƒ(P) � [12, �5]

26. �z � [�8x, �2y], �z(P) � [�24, 12]. Hence a vector in the direction of steepest
ascent is [�2, 1], for instance.
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28. A normal vector is [2x, 6y, 2z]. Its value at P is [8, 6, 6].

30. A normal vector is [2x, �2y, 8z]. Its value at P is [�4, �2, 32].

32. A normal vector is [�2x, �2y, 1]. Its value at P is [�6, �8, 1].

34. �ƒ � [2x, 2y, 2z], �ƒ(P) � [4, �4, 2], �ƒ(P) • a � 0. This shows that a is
tangent to the level surface ƒ(x, y, z) � 9 through P.

36. �ƒ � �(x2 � y2 � z2)�3/2[x, y, z], �ƒ(P) � �(1/216)[4, 2, �4]. Hence the
directional derivative is

�(1/216)[1, 2, �2] • [4, 2, �4]/3 � �2/81 � �0.02469.

38. �ƒ � [8x, 2y, 18z], �ƒ(P) � [16, 8, 0]. Hence the directional derivative is

[16, 8, 0] • [�2, �4, 3] /�29� � �64/�29� � �11.88.

40. ƒ � yex � z2

42. Project. The first formula follows from

[(ƒg)x, (ƒg)y, (ƒg)z] � [ƒxg, ƒyg, ƒzg] � [ƒgx, ƒgy, ƒgz].

The second formula follows by the chain rule, and the third follows by applying the
quotient rule to each of the components (ƒ/g)x, (ƒ/g)y, (ƒ/g)z and suitably collecting
terms. The last formula follows by two applications of the product rule to each of the
three terms of �2.

SECTION 9.8. Divergence of a Vector Field, page 410

Purpose. To explain the divergence (the second of the three concepts grad, div, curl) and
its physical meaning in fluid flows.

Main Content, Important Concepts

Divergence of a vector field

Continuity equations (5), (6)

Incompressibility condition (7)

Comment on Content
The interpretation of the divergence in Example 2 depends essentially on our assumption
that there are no sources or sinks in the box. From our calculations it becomes plausible
that in the case of sources or sinks the divergence may be related to the net flow across
the boundary surfaces of the box. To confirm this and to make it precise we need integrals;
we shall do this in Sec. 10.8 (in connection with Gauss’s divergence theorem).

Moving div and curl to Chap. 10?
Experimentation has shown that this would perhaps not be a good idea, simply because
it would combine two substantial difficulties, that of understanding div and curl
themselves, and that of understanding the nature and role of the two basic integral theorems
by Gauss and Stokes, in which div and curl play the key role.

SOLUTIONS TO PROBLEM SET 9.8, page 413

2. div v � 4e2x cos 2y � 10e2z

4. div v � 0

6. div v � 0. This follows immediately by noting that v1, v2, v3 does not depend on x,
y, z, respectively.

186 Instructor’s Manual

im09.qxd  9/21/05  12:15 PM  Page 186



8. div v � 2 � . Of course, there are many ways of satisfying the conditions. For

instance, (a) v3 � 0, (b) v3 � �z � 1_
3z3. The point of the problem is that the student

gets used to the definition of the divergence and recognizes that div v can have
different values and also the sign can differ in different regions of space.

10. v � v1i � v2j � v3k � i � j � k � xi. Hence div v � 1, and

� x, � 0, � 0.

By integration, x � c1et, y � c2, z � c3, and r � x i � yj � zk. Hence

r(0) � c1i � c2j � c3k and r(1) � c1ei � c2 j � c3k.

This shows that the cube in Prob. 9 is now transformed into the rectangular
parallelepiped bounded by x � 0, x � e, y � 0, y � 1, z � 0, z � 1, whose volume
is e.

12. (a) Parallel flow

(b) Outflow on the left and right, no flow across the other sides; hence div v � 0.

(c) Outflow left and right, inflow from above and below, balance perhaps zero; by
calculation, div v � 0. Etc.

14. 6xy/z4

16. �4/�x2 � y�2� by straightforward simplification

18. 0

20. 2(sin2 x � cos2 x � cos2 y � sin2 y) � �2(cos 2x � cos 2y)

SECTION 9.9. Curl of Vector Field, page 414

Purpose
We introduce the curl of a vector field (the last of the three concepts grad, div, curl) and
interpret it in connection with rotations (Example 2 and Theorem 1). A main application
of the curl follows in Sec. 10.9 in Stokes’s integral theorem.

Experience has shown that it is generally didactically preferable to defer Stokes’s
theorem to a later section and first to give the student a feel for the curl independent of
an integral theorem.

Main Content

Definition of the curl (1)

Curl and rotations (Theorem 1)

Gradient fields are irrotational (Theorem 2)

Irrotational fields, conservative fields

SOLUTIONS TO PROBLEM SET 9.9, page 416

2. �n [zn�1, xn�1, yn�1]
4. curl v � 0. Recall from Theorem 3 in Sec. 9.7 with r0 � 0 and x2 � y2 � z2 � r2

that the present vector field is a gradient field, so that we must have curl v � 0.

dz
�
dt

dy
�
dt

dx
�
dt

dz
�
dt

dy
�
dt

dx
�
dt

�v3
�
�z
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6. curl v � [sin z, tan2 x � 1, �cos y]

8. A proof follows by calculation directly from the definitions.

10. curl v � [0, 0, 2y], div v � 0, incompressible; paths are obtained as follows. We have

v � r� � [x�, y�, z�] � [�y2, 4, 0].

Equating components gives

z� � 0, z � c3, y� � 4, y � 4t � c2, x� � �y2

and by substitution of y

x� � �(4t � c2)2; hence x � �_1
12(4t � c2)3 � c1.

12. curl v � [0, 0, sec x tan x], div v � �csc x cot x. The paths are obtained from

v � [x�, y�, z�] � [csc x, sec x, 0].

Equating the first components gives

x� � csc x, sin x dx � dt, �cos x � t � c1;

hence x � �arccos (t � c1).
By comparing the second components we obtain

y� � sec x � � , y � �ln (c1 � t) � c2.

Finally, for the third components we have z� � 0, z � c3. Our solution contains enough
arbitrary constants to accommodate individual particles with a corresponding path.

14. curl v � [0, 0, �3x2 � 3y2], div v � 0, incompressible. The paths are obtained
by the following calculation.

x� � y3, y� � �x3, x3 dx � y3 dy � 0,

x4 � y4 � c, z � c3.

Each of these closed curves lies in the plane z � c3 between the square of side 2c1/4

symmetrically located with respect to the origin and the circle of radius c1/4 and center
[0, 0, c3].

16. Project. Parts (b) and (d) are basic. They follow from the definitions by direct
calculation. Part (a) follows by decomposing each component accordingly.

(c) In the first component in (1) we now have ƒv3 instead of v3, etc. Product
differentiation gives (ƒv3)y � ƒyv3 � ƒ � (v3)y. Similarly for the other five terms in
the components. ƒyv3 and the corresponding five terms give (grad ƒ) � v and the
other six terms ƒ � (v3)y, etc. give ƒ curl v.
(d) For twice continuously differentiable ƒ the mixed second derivatives are equal,
so that the result follows from �ƒ � ƒx i � ƒy j � ƒzk and (1), which gives

curl (�ƒ) � [(ƒz)y � (ƒy)z]i � [(ƒx)z � (ƒz)x]j � [(ƒy)x � (ƒx)y]k.

(e) Write out and compare the twelve terms on either side.

18. curl (ƒu) � [x3z � 3xyz2, xy3 � 3x2yz, yz3 � 3xy2z]
curl (gu) � [x2 � 3z2 � 2zx � 2yz, y2 � 3x2 � 2xy � 2zx,

z2 � 3y2 � 2xy � 2yz]
20. curl (u � v) � [2xyz � z3 � x2y, 2xyz � x3 � y2z, 2xyz � y3 � z2x]. Furthermore,

curl (v � u) � �curl (u � v).

1
�
c1 � t

1
�
cos x
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SOLUTIONS TO CHAP. 9 REVIEW QUESTIONS AND PROBLEMS, page 416

12. 0 (orthogonal), 19, [�56, 7, 22]

14. 744, 744, 744, 77

16. 389, 389, 389. Of course, the third expression is just the usual notation for the scalar
triple product, and the first two expressions justify such a notation that does not
indicate where the dot and the cross is being used because it does not matter.

18. Unit vectors (1/�62�)[3, 2, 7], (1/�65�)[1, 8, 0]

20. 0.90 � ��62� � �77�� � 11.79 � �139� � 16.65 � �62� � �77�. This illustrates
the triangle inequality (Sec. 9.2) and consequences of it.

22. cos � � [4, 3, �1] • [1, 1, 1] /�26 � 3� � 6/�26 � 3� � 0.6794, � � 47.2°

24. [�19, �13, �3], the negative of the sum of those vectors

26. q • [2, �5, 0] � 5

28. See Prob. 41 in Problem Set 9.2.

30. m � r � p � [�4, 3, 0] � [4, 2, 0] � [0, 0, �20]. The moment has the tendency
to produce a clockwise rotation.

32. v � r� � [�5 sin t, cos t, 2], where t � 1_
4	, so that

v(P) � r�(P) � [�5/�2�, 1/�2�, 2], �v(P)� � �17�,

and for the acceleration we obtain

a � v� � [�5 cos t, �sin t, 0]

a(P) � [�5/�2�, �1/�2�, 0].

The curve is a helix on an elliptic cylinder.

34. Vectors in the plane are

[2 � 1, 3 � 0, 5 � 2] � [1, 3, 3]
and

[3 � 1, 5 � 0, 7 � 2] � [2, 5, 5].

Their vector product is [0, 1, �1]. This is a normal vector of the plane. Hence an
equation of the plane is y � z � c, and by substituting the coordinates of any of the
three points we see that c � �2. Answer: z � y � 2

36. grad ƒ � [y, z � x, y]. At P it has the value [4, 3, 4]. Hence ƒ grad ƒ has at P the
value [48, 36, 48].

38. 4, 0

40. 0, 0

42. We obtain

[y2, z2, x2] • [y, z � x, y]

� (y3 � z3 � z2x � x2y).

At (1, 2, 0) this gives the value 10/�17�.

44. We obtain

div (v � w) � div ([zx2 � (4z � x)z2, (4z � x)y2 � yx2, yz2 � zy2])
� 2zx � z2 � 8yz � 2zy � 2xy � x2 � y2.

1
��
�x4 � y�4 � z4�

1
��
�x4 � y�4 � z4�
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CHAPTER 10 Vector Integral Calculus. Integral Theorems

SECTION 10.1. Line Integrals, page 420

Purpose. To explain line integrals in space and in the plane conceptually and technically
with regard to their evaluation by using the representation of the path of integration.

Main Content, Important Concepts

Line integral (3), (3�), its evaluation

Its motivation by work done by a force (“work integral”)

General properties (5)

Dependence on path (Theorem 2)

Background Material. Parametric representation of curves (Sec. 9.5); a couple of review
problems may be useful.

Comments on Content
The integral (3) is more practical than (8) (more direct in view of subsequent material),
and work done by a force motivates it sufficiently well.

Independence of path is settled in the next section.

SOLUTIONS TO PROBLEM SET 10.1, page 425

2. r(t) � [t, 10t, 0], 0 � t � 2, r� � [1, 10, 0], F(r(t)) � [1000t3, t3, 0].
Hence the integral is

�2

0
1010 t3 dt � 4040.

The path of integration is shorter than that in Prob. 1, but the value of the integral is
greater. This is not unusual.

4. r � [2 cos t, 2 sin t, 0], 0 � t � �, r� � [�2 sin t, 2 cos t]. Hence 
F(r(t)) � [4 cos2 t, 4 sin2 t, 0]. This gives the integral

��

0
(�8 cos2 t sin t � 8 sin2 t cos t) dt � �_16

3 � 0.

6. Clockwise integration is requested, so that we take, say, r � [cos t, �sin t], 
0 � t � 1_

2�. By differentiation, r� � [�sin t, �cos t]. Hence

F(r(t)) � [ecos t, e�sin t] ,
and the integral is

��/2

0
(�ecos t sin t � e�sin t cos t) dt � [ecos t � e�sin t]0

�/2
.

This gives the answer �2 sinh 1.

8. r � [t, t2, t3] , 0 � t � 1_
2, r� � [1, 2t, 3t2] . Hence

F(r(t)) � [cosh t, sinh t2, et3] .
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This gives the integral

�1/2

0
(cosh t � 2t sinh t2 � 3t2et3

) dt � sinh 1_
2 � cosh 1_

4 � e1/8 � 2 � 0.6857.

10. Here we integrate around a triangle in space. For the three sides and corresponding
integrals we obtain

r1 � [t, t, 0], r�1 � [1, 1, 0], F(r1(t)) � [t, 0, 2t], �1

0
t dt � 1_

2

r2 � [1, 1, t], r�2 � [0, 0, 1], F(r2(t)) � [1, �t, 2], �1

0
2 dt � 2

r3 � [1 � t, 1 � t, 1 � t], r�3 � [�1, �1, �1],

F(r3(t)) � [1 � t, �1 � t, 2 � 2t], �1

0
(�2 � 2t) dt � �2 � 1.

Hence the answer is 3/2.

12. r � [cos t, sin t, t], r� � [�sin t, cos t, 1]. From F � [y2, x2, cos2 z]
we obtain F(r(t)) � [sin2 t, cos2 t, cos2 t]. Hence the integral is

�4�

0
(�sin3 t � cos3 t � cos2 t) dt � 0 � 0 � 2� � 2�.

14. Project. (a) r � [cos t, sin t], r� � [�sin t, cos t]. From F � [xy, �y2]
we obtain F(r(t)) � [cos t sin t, �sin2 t]. Hence the integral is

�2 ��/2

0
cos t sin2 t dt � � .

Setting t � p2, we have r � [cos p2, sin p2] and

F(r(p)) � [cos p2 sin p2, �sin2 p2].

Now r� � [�2p sin p2, 2p cos p2], so that the integral is

���/2�

0
(�2p cos p2 sin2 p2 � 2p cos p2 sin2 p2) dp � �2_

3.

(b) r � [t, tn], F(r(t)) � [tn�1, �t2n], r� � [1, ntn�1]. The integral is

�1

0
(tn�1 � nt3n�1) dt � � .

(c) The limit is �1/3. The first portion of the path gives 0, since y � 0. The second
portion is r2 � [1, t], so that F(r2(t)) � [t, �t2], r� � [0, 1]. Hence the integrand
is �t2, which upon integration gives �1/3.

16. By integration,

�2

0
(1 � sinh2 t) dt � 2 � �2

0

1_
2(cosh 2t � 1) dt � 3 � 1_

4 sinh 4.

18. F(r(t)) � [cos t sin t, tan t, 0]. Integration from 0 to �/4 gives the vector

[�1_
2 cos2 t, �ln cos t, 0]�/4

0 � [1_
4, 1_

2 ln 2, 0].

1
�
3

1
�
n � 2

2
�
3
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20. r � [t, 4_
3t], 0 � t � 3, L � 5, �F� � �t4 � _1�6

9 t2�. The derivative is

1_
2[t4 � _16

9 t2]�1/2(4t3 � _32
9 t).

The expression in parentheses (• • •) has the root t � 0, but no further real roots.
Hence the maximum of �F� is taken at (3, 4), so that we obtain the bound

L �F� � 5�81 � 1�6� � 5�97� � 50.

Calculation gives r� � [1, 4_
3], F(r(t)) � [t2, 4_

3t]. The integral is

�3

0
(t2 � _16

9 t) dt � 9 � 8 � 17.

SECTION 10.2. Path Independence of Line Integrals, page 426

Purpose. Independence of path is a basic issue on line integrals, and we discuss it here
in full.

Main Content, Important Concepts

Definition of independence of path

Relation to gradient (Theorem 1), potential theory

Integration around closed curves

Work, conservative systems

Relation to exactness of differential forms

Comment on Content
We see that our text pursues three ideas by relating path independence to (i) gradients
(potentials), (ii) closed paths, and (iii) exactness of the form under the integral sign. The
complete proof of the latter needs Stokes’s theorem, so here we leave a small gap to be
easily filled in Sec. 10.9.

It would not be a good idea to delay introducing the important concept of path
independence until Stokes’s theorem is available.

SOLUTIONS TO PROBLEM SET 10.2, page 432

2. The exactness test for path independence gives 2ye2x � 2ye2x. ƒ(x, y) � 1_
2y2e2x and

ƒ(0, 5) � ƒ(5, 0) � 12.5 � 0.

4. The exactness test for path independence gives �2 cos y sin y � �2 cos y sin y.
ƒ � x cos2 y, ƒ(6, �) � ƒ(2, 0) � 6 � 1 � 2 � 1 � 4.

6. For the dx-term and the dy-term the exactness test gives

2xyex2
�y2�2z � 2xyex2

�y2�2z.

Etc. ƒ � 1_
2ex2

�y2�2z. Evaluation at the limits gives 1_
2e2 � 1_

2.

8. For the dx-term and the dy-term the exactness test for path independence gives 
�6xy2 � �6xy2, etc. ƒ � x2(y3 � z3). Evaluation at the limits of integration gives 
16 � 64 � 4 � (�1) � 1028.

10. Project. (a) 2y2 	 x2 from (6
).

(b) r � [t, bt], 0 � t � 1, represents the first part of the path. By integration,
b/4 � b3/2. On the second part, r � [1, t], b � t � 1. Integration gives 2(1 � b3) /3.
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Equating the derivative of the sum of the two expressions to zero gives b � 1/�2� �
0.70711. The corresponding maximum value of I is 1/(6�2�) � 2/3 � 0.78452.

(c) The first part is y � x/c or r � [t, t/c], 0 � t � c. The integral over this portion
is c3/4 � c/2. For the second portion r � [t, 1], c � t � 1, the integral is (1 � c3) /3.
For c � 1 we get I � 0.75, the same as in (b) for b � 1. This is the maximum value
of I for the present paths through (c, 1) because the derivative of I with respect to c
is positive for 0 � c � 1.

12. Path independent. The test gives 6x2e2y � 6x2e2y, etc. We find

ƒ � x3e2y � 1_
2x2.

The integral has the value a3e2b � 1_
2a2.

14. Path dependent. The test for path independence is

16. Path dependent. The test is

and we can terminate here.

18. Path independent. ƒ � yz sinh x. The value of the integral is bc sinh a.

SECTION 10.3. Calculus Review: Double Integrals. Optional, page 433

Purpose. We need double integrals (and line integrals) in the next section and review
them here for completeness, suggesting that the student go on to the next section.

Content

Definition, evaluation, and properties of double integrals

Some standard applications

Change of variables, Jacobians (6), (7)

Polar coordinates (8)

Historical Comment
The two ways of evaluating double integrals explained in the text give the same result.
For continuous functions this was known at least to Cauchy. Some calculus books call
this Fubini’s theorem, after the Italian mathematician GUIDO FUBINI (1879–1943;
1939–1943 professor at New York University), who in 1907 proved the result for
arbitrary Lebesgue-integrable functions (published in Atti Accad. Naz. Lincei, Rend.,
161, 608–614).

SOLUTIONS TO PROBLEM SET 10.3, page 438

2. �1

0
[x2y � xy2 � 1_

3y3]j2x

y�x

dx � �1

0
[2x3 � 4x3 � 8_

3x3 � (x3 � x3 � 1_
3x3)] dx � _19

12

(for x, y)

(for x, z)

� �2ex sin 2y

	 �z

�2ex sin 2y

0

(for x, y)

(for z, x)

(for z, y).

� 2x cos y

� 0

	 2y

2x cos y

0

0
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4. �1

0
��y�

y
(1 � 2xy) dx dy � �1

0
[x � x2y]j

y

�y�

dy

� �1

0
[�y� � y2 � (y � y3)] dy � _1

12

6. �3

0
�3

x
cosh (x � y) dy dx � �3

0
[sinh (x � y)]j

x

3

dx

� �3

0
(sinh (x � 3) � sinh 2x) dx

� [cosh (x � 3) � 1_
2 cosh 2x]j3

x�0

� 1_
2 cosh 6 � cosh 3 � 1_

2

8. �1

0

1_
2x2y2j

1�x

1�x2

dx � �1

0

1_
2x2 [(1 � x2)2 � (1 � x)2] dx

� �1

0

1_
2x2(x4 � 3x2 � 2x) dx � _3

140

10. Integrating first over y and then over x is simpler than integrating in the opposite
order, because of the form of the region of integration, which is the same triangle as
in Prob. 2. We obtain

�1

0
�2x

x
xyex2�y2

dy dx � �1

0
[x(�1_

2)ex2�y2]j2x

x

dx

� �1

0
(�1_

2x)(x�3x2

� 1) dx � _1
12e�3 � 1_

6.

12. For z � 0 we have 3x � 4y � 12, thus y � 3 � 3_
4x; this is the upper limit of the 

y-integration. We then integrate over x from 0 to 4. The main point of the problem
is to see how one can determine limits of integration from the given data. The integral
of z � 6 � 3_

2x � 2y is now as follows.

�4

0
�3�3x/4

0
(6 � 3_

2x � 2y) dy dx � �4

0
[6y � 3_

2xy � y2]j
0

3�3x/4

dx

� �4

0
[(6 � 3_

2x)(3 � 3_
4x) � (3 � 3_

4x)2] dx

� �4

0
(9 � 9_

2x � _9
16x2) dx

� 36 � 36 � 12

� 12.

We confirm this by the scalar triple product of the edge vectors,

1_
6 k k � 12.

0

0

6

0

3

0

4

0

0
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14. x� � 0 because of symmetry. M � 1_
2�a2. For y�, using polar coordinates defined by 

x � r cos �, y � r sin �, we obtain

y� � ��

0
�a

0
(r sin � ) r dr d� � ��

0
sin � d�

� � � 2

�

� 0.4244a.

For a � 1 we get 4/(3�), as in Example 2. It is obvious that the present semidisk and
the quarterdisk in the example have the same y�.

16. x� � b/2 for reasons of symmetry. Since the given R and its left half (the triangle with
vertices (0, 0), (b/2, 0), (b/2, h)) have the same y�, we can consider that half, for which
M � 1_

4bh. We obtain

y� � �b/2

0
�2hx/b

0
y dy dx � �b/2

0
( )2

dx

� � ( )2

� ( )3

� .

This is the same value as in Prob. 15. This equality of the y�-values seems obvious.

18. We obtain

Ix � �b/2

0
�2hx/b

0
y2 dy dx � �b

b/2
�2h�2hx/b

0
y2 dy dx

� �b/2

0
( )3

dx � �b

b/2
[2h(1 � )]3

dx

� bh3 � bh3 � bh3.

Each of those two halves of R contributes half to the moment Ix about the x-axis.
Hence we could have simplified our calculation and saved half the work. Of course,
this does not hold for Iy. We obtain

Iy � �b/2

0
�2hx/b

0
x2 dy dx � �b

b/2
�2h�2hx/b

0
x2 dy dx

� �b/2

0
x2 ( ) dx � �b

b/2
x2 (2h � ) dx

� b3h � b3h � b3h.

20. We denote the right half of R by R1 � R2, where R1 is the rectangular part and R2

the triangular. The moment of inertia Ix1 of R1 with respect to the x-axis is

Ix1 � �b/2

0
�h

0
y2 dy dx � �b/2

0
dx � bh3.

1
�
6

h3

�
3

7
�
48

11
�
96

1
�
32

2hx
�

b

2hx
�

b

1
�
12

1
�
24

1
�
24

x
�
b

1
�
3

2hx
�

b

1
�
3

h
�
3

b
�
2

1
�
3

2h
�
b

1
�
2

4
�
bh

2hx
�

b

1
�
2

4
�
bh

4
�
bh

4a
�
3�

a3

�
3

2
�
�a2

a3

�
3

1
�
M

1
�
M
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Similarly for the triangle R2 we obtain

Ix2 � �a/2

b/2
�h(2x�a) /(b�a)

0
y2 dy dx

� �a/2

b/2
dx

� h3(a � b).

Together,

Ix � (3b � a) and Ix � h3(3b � a).

Iy is the same as in Prob. 19; that is,

Iy � .

This can be derived as follows, where we integrate first over x and then over y, which
is simpler than integrating in the opposite order, where we would have to add the two
contributions, one over the square and the other over the triangle, which would be
somewhat cumbersome. Solving the equation for the right boundary

y � (a � 2x)

for x, we have

x � (ah � (a � b)y)

and thus

Iy � �h

0
�(ah�(a�b)y) /2h

0
x2 dx dy

� �h

0
(ah � (a � b)y)3 dy

� (a3 � a2b � ab2 � b3) � .

Now we multiply by 2, because we considered only the right half of the profile.

SECTION 10.4. Green’s Theorem in the Plane, page 439

Purpose. To state, prove, and apply Green’s theorem in the plane, relating line and double
integrals.

Comment on the Role of Green’s Theorem in the Plane
This theorem is a special case of each of the two “big” integral theorems in this chapter,
Gauss’s and Stokes’s theorems (Secs. 10.7, 10.9), but we need it as the essential tool in
the proof of Stokes’s theorem.

The present theorem must not be confused with Green’s first and second theorems in
Sec. 10.8.

h(a4 � b4)
��
96(a � b)

h
�
96

1
�
24h3

1
�
2

1
�
2h

h
�
a � b

h(a4 � b4)
��
48(a � b)

1
�
12

h3

�
24

1
�
2

1
�
24

h3(2x � a)3

��
(b � a)3

1
�
3
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SOLUTIONS TO PROBLEM SET 10.4, page 444

2. ��/2

0
��/2

0
(2 cos y� sin x) dx dy � 2 � 1_

2 � � � 1 � 1_
2� � 1 � 1_

2�

4. �2

0
�x/2

0
(ex � ey) dy dx � �2

0
(1_
2xex � ex/2 � 1) dx � �7_

2 � 2e � 1_
2e2

6. �1

0
�x

x2
x sinh y dy dx � �1

0
[x cosh y]jx

x2

dx � �1

0

(x cosh x � x cosh x2) dx.

Integration over x now gives 1_
2 sinh 1 � cosh 1 � 1.

8. F � grad (ex cos y), so that the integral around a closed curve is zero. Also the
integrand in (1) on the left is identically zero.

10. �3

0
�2

1
(yex � ) dy dx � �3

0
[ y2ex � x ln y]2

1

dx � �3

0
( ex � x ln 2) dx.

Integration over x gives

[3_
2ex � 1_

2x2 ln 2]0
3 � 3_

2e3 � 3_
2 � 9_

2 ln 2 � 25.51.

12. This is a portion of a circular ring (annulus) bounded by the circles of radii 1 and 2
centered at the origin, in the first quadrant bounded by y � x and the y-axis. The
integrand is �1/y2 � 2x2y. We use polar coordinates, obtaining

��/2

�/4
�2

1
(� � 2r3 cos2 � sin �) r dr d�

� ��/2

�/4
[� � (32 � 1) cos2 � sin �] d�

� (ln 2) (cot � cot ) � (cos3 � cos2 )
� �ln 2 �

� �2.155.

14. �2w � 2 � 2 � 4. Answer: 4�. Confirmation. r � [cos s, sin s],

r� � [�sin s, cos s]. Outer unit normal vector n � [cos s, sin s],

grad w � [2x, 2y] � [2 cos s, 2 sin s], (grad w) • n � 2 cos s cos s � 2 sin s sin s.

Integration gives 2� � 2 � 4�.

16. �2w � 30(x4y � xy4) � 30r5(cos4 � sin � � cos � sin4 �). Integration gives

��

0
�2

0
�2w r dr d� � 30 j2

0

��

0
(cos4 � sin � � cos � sin4 �) d�

� 30 � [� cos5 � � sin5 �]�

0

� 6 � � 2 � � 219.43.
1536
�

7

128
�

7

1
�
5

1
�
5

128
�

7

r7

�
7

31
�
15�2�

�
�
4

�
�
2

62
�
15

�
�
4

�
�
2

2
�
5

ln 2
�
sin2 �

1
�
r2 sin2 �

3
�
2

1
�
2

x
�
y
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18. Set F1 � �wwy and F2 � wwx in Green’s theorem, where subscripts x and y denote
partial derivatives. Then (F2)x � (F1)y � wx

2 � wy
2 because �2w � 0, and

F1 dx � F2 dy � (�wwyx� � wwxy�) ds

� w (grad w) • (y�i � x�j) ds

� w (grad w) • n ds � w ds

where primes denote derivatives with respect to s.

20. Project. We obtain div F in (11) from (1) if we take F � [F2, �F1]. Taking n �
[y�, �x�] as in Example 4, we get from (1) the right side in (11),

(F • n) ds � (F2 � F1 ) ds � F2 dy � F1 dx.

Formula (12) follows from the explanation of (1�).
Furthermore, div F � 7 � 3 � 4 times the area of the disk of radius 2 gives 16�.
For the line integral in (11) we need

r � [2 cos , 2 sin ] , r� � [�sin , cos ] , n � [y�, �x�]

where s varies from 0 to 4�. This gives

�
C

F • n ds � �
C

(7xy� � 3yx�) ds � �4�

0

(14 cos2 � 6 sin2 ) ds � 16�.

In (12) we have curl F � 0 and

F • r� � �14 cos sin � 6 cos sin � �10 sin s

which gives zero upon integration from 0 to 4�.

SECTION 10.5. Surfaces for Surface Integrals, page 445

Purpose. The section heading indicates that we are dealing with a tool in surface integrals,
and we concentrate our discussion accordingly.

Main Content, Important Concepts

Parametric surface representation (2) (see also Fig. 239)

Tangent plane

Surface normal vector N, unit surface normal vector n

Short Courses. Discuss (2) and (4) and a simple example.

Comments on Text and Problems
The student should realize and understand that the present parametric representations are
the two-dimensional analog of parametric curve representations.

Examples 1–3 and Probs. 1–10 concern some standard surfaces of interest in
applications. We shall need only a few of these surfaces, but these problems should help
students grasp the idea of a parametric representation and see the relation to representations
(1). Moreover, it may be good to collect surfaces of practical interest in one place for
possible reference.

s
�
2

s
�
2

s
�
2

s
�
2

s
�
2

s
�
2

s
�
2

s
�
2

s
�
2

s
�
2

dx
�
ds

dy
�
ds


w
�

n
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SOLUTIONS TO PROBLEM SET 10.5, page 448

2. Circles, straight lines through the origin. A normal vector is

N � k k � [0, 0, u] � uk.

At the origin this normal vector is the zero vector, so that (4) is violated at (0, 0).
This can also be seen from the fact that all the lines v � const pass through the origin,
and the curves u � const (the circles) shrink to a point at the origin. This is a
consequence of the choice of the representation, not of the geometric shape of the
present surface (in contrast with the cone, where the apex has a similar property, but
for geometric reasons).

4. x2 � y2 � z, circles, parabolas with the z-axis as axis; a normal vector is

[�2u2 cos v, �2u2 sin v, u].

6. 1_
4x2 � y2 � z, hyperbolas, parabolas. A normal vector is

[�2u2 cosh v, 8u2 sinh v, 4u].

8. z � arctan (y/x), helices (hence the name!), horizontal straight lines. This surface is
similar to a spiral staircase, without steps (as in the Guggenheim Museum in New
York). A normal vector is

[sin v, �cos v, u].

10. x2/a2 � y2/b2 � z2/c2 � 1. Both families of parameter curves consist of ellipses.
A normal vector is

[bc cos2 v cos u, ac cos2 v sin u, ab sin v cos v].

12. z � 5_
3x � 1_

3y � 10; hence [u, v, 5_
3u � 1_

3v � 10], or if we multiply by 3,

r(u, v) � [3u, 3v, 5u � v � 30].
A normal vector is

N � k k � [�15, �3, 9].

More simply, [5, 1, �3] by applying grad to the given representation. The two
vectors are proportional, as expected.

14. In (3) the center is (0, 0, 0). Here it is (1, �2, 0). Hence we obtain

r(u, v) � [1 � 5 cos v cos u, �2 � 5 cos v sin u, 5 sin v].

From this and (4) we obtain the normal vector

N � [25 cos2 v cos u, 25 cos2 v sin u, 25 cos v sin v].

16. A parametric representation is

r(u, v) � [u cos v, 2u sin v, 4u2].
A normal vector is

N � [�16u2 cos v, �8u2 sin v, 2u].

k

5

1

j

0

3

i

3

0

k

0

0

j

sin v

u cos v

i

cos v

�u sin v
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Another one is
grad (z � 4x2 � y2) � [�8x, �2y, 1]

� [�8u cos v, �4u sin v, 1].

Multiplication by 2u gives the previous normal vector.

18. A representation is
r(u, v) � [2 cosh u, 3 sinh u, v].

A normal vector is
N � [3 cosh u, �2 sinh u, 0].

Note that N is parallel to the xy-plane. Another normal vector is

grad (9x2 � 4y2) � [18x, �8y, 0] � [36 cosh u, �24 sinh u, 0].

Division by 12 gives the previous normal vector.

20. Set x � u and y � v.

22. N(0, 0) � 0 in Prob. 2 (polar coordinates); see the answer to Prob. 2. In Probs. 4 and
7 (paraboloids) the situation is similar to that of the polar coordinates. In Prob. 6 the
origin is a saddle point. In each of these cases one can find a representation for which
N(0, 0) 	 0; see Prob. 23 for the paraboloid. In Prob. 5 the reason is the form of the
surface (the apex of the cone, where no tangent plane and hence no normal exists).

24. Project. (a) ru(P) and rv(P) span T(P). r* varies over T(P). The vanishing of the
scalar triple product implies that r* � r(P) lies in the tangent plane T(P).

(b) Geometrically, the vanishing of the dot product means that r* � r(P) must be
perpendicular to �g, which is a normal vector of S at P.

(c) Geometrically, ƒx(P) and ƒy(P) span T(P), so that for any choice of x*, y* the
point (x*, y*, z*) lies in T(P). Also, x* � x, y* � y gives z* � z, so that T(P)
passes through P, as it should.

SECTION 10.6. Surface Integrals, page 449

Purpose. We define and discuss surface integrals with and without taking into account
surface orientations.

Main Content

Surface integrals (3) � (4) � (5)

Change of orientation (Theorem 1)

Integrals (6) without regard to orientation; also (11)

Comments on Content
The right side of (3) shows that we need only N but not the corresponding unit vector n.

An orientation results automatically from the choice of a surface representation, which
determines ru and rv and thus N.

The existence of nonorientable surfaces is interesting but is not needed in our further work.

SOLUTIONS TO PROBLEM SET 10.6, page 456

2. r � [u, v, 4 � u � v], 0 � u � 4 � v, 0 � v � 4,
F � [u2, v2, (4 � u � v)2], N � [1, 1, 1]. From this we obtain

�4

0
�4�v

0
F • N du dv � �4

0
[1_
3u3 � v2u � 1_

3(4 � u � v)3]j
0

4�v

dv � 64.
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4. Quarter of a circular cylinder of radius 3 and height 2 in the first octant with the
z-axis as axis. A parametric representation is

r � [3 cos u, 3 sin u, v], 0 � u � 1_
2�, 0 � v � 2.

From this we obtain
N � [3 cos u, 3 sin u, 0]

F • N � 3e3 sin u cos u � 3ev sin u.

Integration over u from 0 to 1_
2� gives e3 � 1 � 3ev. Integration of this over v from

0 to 2 gives the answer

2(e3 � 1) � 3(e2 � 1) � 2e3 � 3e2 � 1 � 19.0039.

6. r � [u, cos v, sin v], 0 � u � 20, 0 � v � �, N � [0, �cos v, �sin v]; 
hence

F • N � �cos4 v sin v.

Integration over v from 0 to � gives �2/5. Integration of this over u from 0 to 20
gives the answer �8.

8. r � [u, cos v, 3 sin v], N � [0, �3 cos v, �sin v]; hence

F � [tan(u cos v), u2 cos v, �3 sin v].
This gives

F • n � �3u2 cos2 v � 3 sin2 v.

Integration over u from 1 to 4 gives

�63 cos2 v � 9 sin2 v.

Integration of this over v from 0 to 2� gives the answer

�63� � 9� � �54�.

10. Portion of a circular cone with the z-axis as axis. A parametric representation is

r � [u cos v, u sin v, 4u] (0 � u � 2, 0 � v � �).

From this,

N � [�4u cos v, �4u sin v, u], F � [u2 sin2 v, u2 cos2 v, 256u4].

The integrand is

F • n � �4u3 sin2 v cos v � 4u3 cos2 v sin v � 256u5.

Integration over u from 0 to 2 gives

�16 sin2 v cos v � 16 cos2 v sin v � .

Integration of this over v from 0 to � gives

[� sin3 v � cos3 v � v]�

0

� � � � � 8568.

12. r � [u, v, u � v2], N � [�1, �2v, 1], F � [cosh v, 0, sinh u]. Hence
the integrand is

F • N � �cosh v � sinh u.

8192
�

3

32
�
3

8192
�

3

16
�
3

16
�
3

8192
�

3
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Integration over v from 0 to u gives �sinh u � u sinh u. Integration of this over u
from 0 to 1 gives

[�cosh u � u cosh u � sinh u]j
0

1

� 1 � sinh 1.

14. r � [u, v, 2 � u � v], 0 � u � 2, 0 � v � 2 � u, N � [1, 1, 1],
�N� � �3�, G � cos v � sin u; hence

�2�u

0
G�N� dv � �3�[sin v � v sin u]j

0

2�u

� �3�[sin (2 � u) � (2 � u) sin u].

Integration over u from 0 to 2 gives

�3�[cos (2 � u) � 2 cos u � sin u � u cos u] j
0

2

� �3�[3 � cos 2 � sin 2] � 4.342.

16. r � [4 cos u, 4 sin u, v], N � [4 cos u, 4 sin u, 0], �N� � 4. Furthermore,

G � 4 sin u e4 cos u � 4 cos u e4 sin u � ev.

Also, G�N� is the same times 4. Integration over u from 0 to � gives

4[�e4 cos u � e4 sin u � uev]j
0

�

� 4(�e�4 � e4 � e0 � e0 � �ev).

Integration of this over v from 0 to 4 gives

16(�e�4 � e4) � 4�(e4 � 1) � 1547.

18. r � [cos v cos u, cos v sin u, sin v], 0 � u � �, 0 � v � �/2. A normal
vector is

N � [cos2 v cos u, cos2 v sin u, cos v sin v] and �N� � cos v.

On S,
G � a cos v cos u � b cos v sin u � c sin v.

The integrand is this expression times cos v. Integration over u from 0 to � gives

0 � 2b cos2 v � �c sin v cos v.

Integration of this over v from 0 to �/2 gives the answer

1_
2� (b � c).

20. r � [u, v, uv], 0 � u � 1, 0 � v � 1, N � [�v, �u, 1], so that

�N� � �u2 � v�2 � 1�.

On S we have

G � 3uv, G�N� � 3uv�u2 � v�2 � 1�.

Integration over u from 0 to 1 gives

[v(v2 � u2 � 1)3/2]j
0

1

� v(v2 � 2)3/2 � v(v2 � 1)3/2.

Integration of this over v from 0 to 1 gives

1_
5[(v2 � 2)5/2 � (v2 � 1)5/2]j

0

1

� 1_
5(35/2 � 25/2 � (25/2 � 1)) � 1.055.
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24. Ix�y � �
S

� [ (x � y)2 � z2] � dA

26. h� (1 � h2/6)

28. Proof for a lamina S of density �. Choose coordinates so that A is the z-axis and B
is the line x � k in the xz-plane. Then

IB � �
S

�[(x � k)2 � y2]� dA � �
S

�(x2 � 2kx � k2 � y2)� dA

� �
S

�(x2 � y2)� dA � 2k �
S

�x� dA � k2 �
S

�� dA

� IA � 2k � 0 � k2M,

the second integral being zero because it is the first moment of the mass about an
axis through the center of gravity.

For a mass distributed in a region in space the idea of proof is the same.
30. Team Project. (a) Use dr � ru du � rv dv. This gives (13) and (14) because

dr • dr � ru • ru du2 � 2ru • rv du dv � rv • rv dv2.

(b) E, F, G appear if you express everything in terms of dot products. In the numerator,

a • b � (rug� � rvh�) • (rup� � rvq�) � Eg�p� � F(g�q� � h�p�) � Gh�q�

and similarly in the denominator.

(c) This follows by Lagrange’s identity (Problem Set 9.3),

�ru � rv�2 � (ru � rv) • (ru � rv) � (ru • ru)(rv • rv) � (ru • rv)2

� EG � F2.

(d) r � [u cos v, u sin v], ru � [cos v, sin v], ru •ru � cos2 v � sin2 v � 1, etc.

(e) By straightforward calculation, E � (a � b cos v)2, and F � 0 (the coordinate
curves on the torus are orthogonal!), and G � b2. Hence, as expected,

�EG ��F2� � b(a � b cos v).

SECTION 10.7. Triple Integrals. Divergence Theorem of Gauss, page 458

Purpose, Content
Proof and application of the first “big” integral theorem in this chapter, Gauss’s theorem,
preceded by a short discussion of triple integrals (probably known to most students from
calculus).

Comment on Proof
The proof is simple:

1. Cut (2) into three components. Take the third, (5).

2. On the left, integrate ��� dz dx dy over z to get

(8) ��[F3(upper surface) � F3(lower surface)] dx dy

integrated over the projection R of the region in the xy-plane (Fig. 250).


F3

�

z

1
�
2
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3. Show that the right side of (5) equals (8). Since the third component of n is cos �,
the right side is

��F3 cos � dA � ��F3 dx dy

� ��F3(upper) dx dy � ��F3(lower) dx dy,

where minus comes from cos � � 0 in Fig. 250, lower surface. This is the proof. Everything
else is (necessary) accessory.

SOLUTIONS TO PROBLEM SET 10.7, page 463

2. Integration over x from 0 to 4 gives _64
3 � 4y2 � 4z2. Integration of this over y from

0 to 9 gives 1164 � 36z2. Integration of this over z from 0 to 1 gives 1176.
Alternatively, integration of x2, y2, z2 over T gives

� 9 � 1 � 192, � 4 � 1 � 972, � 4 � 9 � 12

respectively. The sum is 1176.

4. Limits of integration 0 � x � 2 � y � z, 0 � y � 2 � z, 0 � z � 2. Integration
over x gives �e�2 � e�y�z. Integration of this over y gives �3e�2 � ze�2 � e�z.
Integration of this over z gives the answer �5e�2 � 1.

6. Integration over y from 0 to 1 � x2 gives 30z(1 � x2). Integration of this over z from
0 to x gives 15(x2 � x4). Integration of this over x from 0 to 1 gives the answer 2.

8. From (3) in Sec. 10.5 with variable r instead of constant a we have

x � r cos v cos u, y � r cos v sin u, z � r sin v.

Hence x2 � y2 � r2 cos2 v. The volume element is dV � r2 cos v dr du dv. The
limits of integration are 0 � r � a, 0 � u � 2�, �1_

2� � v � 1_
2�. The integrand

is r4 cos3 v. Integration over r, u, and v gives a5/5, 2�, and 4/3, respectively. The
product of these is the answer 8�a5/15.

10. Integration over x, y, and z gives successively

a(y2 � z2), _1
12ab3 � z2ab, _1

12abc(b2 � c2).

12. 8�a5/15, as follows from Prob. 8.

14. r2 � y2 � z2. Integration over r from 0 to �x� gives x2/4. Integration of this over x
from 0 to h gives h3/12. Answer: h3�/6.

16. �h5/10 � �h3/6 gives h � �5/3�. For h � �5/3� the moment Ix is larger for the cone
because the mass of the cone is spread out farther than that of the paraboloid when
x � 1.

18. div F � 4. Answer: 4 times the volume �r2h/3 of a cone of base radius r � 2 and
height h � 2. Answer: 4� � 4 � 2/3 � 32�/3.

20. div F � 4x2. Set x � r cos u, y � r sin u. The integrand times the volume element
is

(4r2 cos2 u)r dr du dz.

Integration over r from 0 to 5 gives 54 cos2 u, integration over u from 0 to 2� then
gives 625�, and integration over z finally gives 1250�.

13

�
3

93

�
3

43

�
3
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22. div F � 3x2 � 3y2 � 3z2 � 3r2, dV � r2 cos v dr du dv. Intervals of integration 
0 � r � 5, 0 � u � 2�, 0 � v � 1_

2�. The integrand is 3r4 cos v. Integration over
r, v, and u gives successively

1875 cos v, 1875, 3750�.

24. div F � 8x � 2y � 2� sin �z. Integration over z from 0 to 1 � x � y gives

2 � (1 � x � y)(8x � 2y) � 2 cos [� (1 � x � y)].

Integration of this over y from 0 to 1 � x gives

� x � 7x2 � x3 � sin [� (1 � x)].

Integration of this over x from 0 to 1 now gives the answer 17/12 � 4/�2.

SECTION 10.8. Further Applications of the Divergence Theorem, page 463

Purpose. To represent the divergence free of coordinates and to show that it measures
the source intensity (Example 1); to use Gauss’s theorem for deriving the heat equation
governing heat flow in a region (Example 2); to obtain basic properties of harmonic
functions.

Main Content, Important Concepts

Total flow (1) out of a region

Divergence as the limit of a surface integral; see (2)

Heat equation (5) (to be discussed further in Chap. 12)

Properties of harmonic functions (Theorems 1–3)

Green’s formulas (8), (9)

Short Courses. This section can be omitted.

Comments on (2)
Equation (2) is sometimes used as a definition of the divergence, giving independence of
the choice of coordinates immediately. Also, Gauss’s theorem follows more readily from
this definition, but since its proof is simple (see Sec. 10.7. in this Manual), that savings
is marginal. Also, it seems that to the student our Example 2 in Sec. 9.8 motivates the
divergence at least as well (and without integrals) as (2) in the present section does for a
beginner.

SOLUTIONS TO PROBLEM SET 10.8, page 468

2. r � [cos �, sin �] � N � n, ƒ � sin2 � � cos2 � � �2 cos 2� gives the integral
0. The integrals over the disks (z � 0 and z � 5) are 0, too, because �ƒ has no
component in the z-direction (the normal direction of those disks).

4. �2g � 4, grad ƒ • grad g � [1, 0, 0] • [0, 2y, 2z] � 0. Integration of 4x over the
box gives 12. Also, ƒ
g/
n for the six surfaces gives

(x � 0) 0[�1, 0, 0] • [0, 2y, 2z], integral 0

(x � 1) 1[1, 0, 0] • [0, 2y, 2z], integral 0

(y � 0) x[0, �1, 0] • [0, 0, 2z], integral 0

2
�
�

11
�
3

7
�
3

Instructor’s Manual 205

im10.qxd  9/21/05  12:49 PM  Page 205



(y � 2) x[0, 1, 0] • [0, 4, 2z], integral of 4x gives 2 � 3 � 6

(z � 0) x[0, 0, �1] • [0, 2y, 0] integral 0

(z � 3) x[0, 0, 1] • [0, 2y, 6] integral of 6x gives 3 � 2 � 6.

6. The volume integral of 2x4 � 12x2y2 is 2/5 � 4/3. The surface integral of

x4n • [0, 2y, 0] � y2n • [4x3, 0, 0] � n • [�4y2x3, 2yx4, 0]
is �4/3 (x � 1) and 2/5 (y � 1) and 0 for the other faces.

8. r � a, cos � � 1, V � 1_
3a(4�a2)

10. Team Project. (a) Put ƒ � g in (8).

(b) Use (a).

(c) Use (9).

(d) h � ƒ � g is harmonic and 
h/
n � 0 on S. Thus h � const in T by (b).

(e) Use div (grad ƒ) � �2ƒ and (2).

SECTION 10.9. Stokes’s Theorem, page 468

Purpose. To prove, explain, and apply Stokes’s theorem, relating line integrals over closed
curves and surface integrals.

Main Content

Formula (2) � (2*)

Further interpretation of the curl (see also Sec. 9.9)

Path independence of line integrals (leftover from Sec. 10.2)

Comment on Orientation
Since the choice of right-handed or left-handed coordinates is essential to the curl 
(Sec. 9.9), surface orientation becomes essential here (Fig. 251).

Comment on Proof
The proof is simple:

1. Cut (2*) into components. Take the first, (3).

2. Using N1 and N3, cast the left side of (3) into the form (7).

3. Transform the right side of (3) by Green’s theorem in the plane into a double integral
and show equality with the integral obtained on the left.

SOLUTIONS TO PROBLEM SET 10.9, page 473

2. r � [2 cos u, 2 sin u, v], curl F � [0, �5 cos z, 0] � [0, �5 cos v, 0]. Also

N � [2 cos u, 2 sin u, 0].
Hence

(curl F) • N � �5(cos v) 2 sin u.

Integretion over u from 0 to � gives �20 cos v. Integration of this over v from 0 to
1_
2� gives �20. Answer: �20.

4. curl F � [�sinh z, �1, 3 sin y], N � [0, 0, 1]. Hence

(curl F) • N � 3 sin y.
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Integration over y from 0 to 2 and then over x from 0 to 2 gives

�3(cos 2 � 1) � 2 � �6(cos 2 � 1).

The answer is �6(cos 2 � 1) � �8.497.

6. r � [u cos v, u sin v, u], curl F � [2y, 2z, 2x] � [2u sin v, 2u, 2u cos v].
Furthermore,

n dA � N du dv � [�u cos v, �u sin v, u] du dv.

Hence the integrand is

�2u2 cos v sin v � 2u2 sin v � 2u2 cos v.

Integration over u from 0 to 2 gives

_16
3 (�cos v sin v � sin v � cos v).

Integration of this from 0 to � gives _16
3 (�2) � �32/3. The answer is �32/3.

8. (curl F) • N � [0, 0, �3x2 � 3y2] • [0, 0, 1] � �3x2 � 3y2 � �3r2. The
integral is

�3 �
S

�(x2 � y2) dx dy � �3 �
S

�r3 dr d� � �3_
4r4 � 2�j1

0

� �3_
2�.

The answer is �3� /2.

10. r � [cos �, sin �], F • r� � [sin3 �, �cos3 �] • [�sin �, cos �]. Integration over
� from 0 to 2� gives �3�/2.

12. r � [u, v, v � 1], N � [0, �1, 1], curl F � [0, 2, �2]. Hence 
(curl F) • N � 0 � 2 � 2 � �4. The area of the projection x2 � y2 � 1 is �. This
gives the answer �4�.

14. F � [y, xy3, �zy3], curl F � [�3zy2, 0, y3 � 1], r � [u cos v, u sin v, b],
N � [0, 0, u]; hence

(curl F) • N � (u3 sin3 v � 1)u.

Integration over u from 0 to a gives

1_
5a5 sin3 v � 1_

2a2.

Integration of this over v from 0 to 2� gives the answer

0 � �a2.

To check this directly, we can take

r � [a cos , a sin , b]
r� � [�sin , cos , 0]

F � [a sin , a4 cos sin3 , �a3 sin3 ]
F • r� � �a sin2 � a4 cos2 sin3 .

Integration of this over s from 0 to 2�a gives ��a2, as before.

s
�
a

s
�
a

s
�
a

s
�
a

s
�
a

s
�
a

s
�
a

s
�
a

s
�
a

s
�
a

s
�
a
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16. curl F � 0 gives the answer 0.

18. curl F � [1, 1, 1], N � [0, 0, 1] (curl F) • N � 1. The area of the projection
of the given triangle into the xy-plane is 1/2. This gives the answer 1/2.

SOLUTIONS TO CHAP. 10 REVIEW QUESTIONS AND PROBLEMS, page 473

12. Exact, F � grad ƒ(x, y, z), ƒ(x, y, z) � x cos z � y sin z. Hence the integral has the
value

ƒ(4, 3, 0) � ƒ(�2, 0, 1_
2�) � 4 � 0 � 4.

14. Not exact. r � [3 cos t, 3 sin t, 1]. Hence

F(r) • r� � [3 sin t, 6 cos t, 9 cos t sin t] • [�3 sin t, 3 cos t, 0]

� �9 sin2 t � 18 cos2 t.

Integration over t from 0 to 2� gives �9� � 18� � 9�.

16. By Stokes’s theorem. r � [u, v, 2u], N � [�2, 0, 1]. Furthermore,

curl F � [0, �� cos �x, �� (sin �x � cos �y)]

� [0, �� cos �u, �� (sin �u � cos �v)].

The inner product is

(curl F(r)) • N � �� (sin �u � cos �v).

Integration over u from 0 to 1/2 gives �1_
2� cos �v�1. Integration of this over v from

0 to 2 gives �2. Answer: �2.

18. By Stokes’s theorem. curl F � 0. Hence the answer is 0.

20. Not exact. We obtain

r� � [�2 sin t, 2 cos t, 6]

and

F(r) � [4 cos2 t, 4 sin2 t, 8 sin2 t cos t].

The inner product is

F • r� � �8 cos2 t sin t � 56 sin2 t cos t.

Integration gives

cos3 t � sin3 tj
0

�/2

� 16.

22. x� � 0 by symmetry. The total mass is

M � �1

�1
(1 � x2) dx � .

Hence

y� � �1

�1
�1�x2

0
y dy dx � �1

�1
(1 � x2)2 dx � .

24. x2 � y2 � r2. The total mass is

M � ��/2

0
�1

0
r2 � r dr d� � .

�
�
8

2
�
5

3
�
8

1
�
M

4
�
3

56
�
3

8
�
3
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This gives

x� � ��/2

0
�1

0
(r cos �)r2 � r dr d� �

and y� � x� by symmetry.

26. N � [1, 1, 1], F • N � 2x2 � 4y. Integration over y from 0 to 1 � x gives

2x2(1 � x) � 2(1 � x)2.

Integration of this over x from 0 to 1 gives 5/6.

28. By Gauss’s theorem. div F � 3. The volume of the sphere is 4_
3 � 53�. This gives the

answer 500�.

30. By direct integration. We can represent the paraboloid in the form

r � [u cos v, u sin v, u2].
A normal vector is

N � ru � rv � [�2u2 cos v, �2u2 sin v, u].

On the paraboloid,
F � [u3 sin3 v, u3 cos3 v, 3u4].

The inner product is

F • N � �2u5 cos v sin3 v � 2u5 cos3 v sin v � 3u5

� �2u5 cos v sin v (sin2 v � cos2 v) � 3u5.

Integration of this over v from 0 to 2� gives 0 � 6�u5. Integration of this over u
from 0 to 2 (note that z � u2 varies from 0 to 4) gives 6�26/6 � 64�.

32. Direct integration. We have

r � [2 cos u cos v, 2 cos u sin v, sin u] (0 � u � 1_
2�, 0 � v � 2�).

From this,

ru � [�2 sin u cos v, �2 sin u sin v, cos u]

rv � [�2 cos u sin v, 2 cos u cos v, 0]

N � [�2 cos2 u cos v, �2 cos2 u sin v, �4 cos u sin u].

The inner product is

F • N � (�2 cos2 u)(cos v � sin v) � 4a cos u sin u.

Integration of cos v � sin v over v from 0 to 2� gives 0. Integration of 
�4a cos u sin u over u from 0 to �/2 gives �2a. Integration of this constant over v
from 0 to 2� gives �4�a (or �4�a if we change the orientation by interchanging
u and v).

34. By Gauss’s theorem. T can be represented by

r � [r cos u, r sin u, v], where 0 � r � 1, 0 � u � 2�, 0 � v � h.

The divergence of F is

div F � 1 � x � 1 � 2 � x � 2 � r cos u.

The integrand is (2 � r cos u)r. Integration over r from 0 to 1 gives 1 � 1_
3 cos u.

Integration of this over u from 0 to 2� gives 2�. Integration of this over v from 0 to 
h gives the answer 2�h. Note that this is the integral of the term 2 in div F, whereas 
r cos u gives 0.

8
�
5�

1
�
M
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To check this against Prob. 33, add to the answer �h of Prob. 33 the contributions
of the disks Dh: x2 � y2 � 1, z � h, and D0: x2 � y2 � 1, z � 0.

For Dh we have

r � [r cos u, r sin u, h], N � [0, 0, 1]

and furthermore,

F � [r cos u, r2 cos u sin u, h].

Hence F • N � h. Integration of this constant over x2 � y2 � 1 gives �h. For D0 we
obtain

r � [r cos u, r sin u, 0], N � [0, 0, �1].
Hence

F • N � [r cos u, r2 cos u sin u, 0] • [0, 0, �1] � 0

and we obtain the contribution 0. Together, �h � �h � 2�h, in agreement with the
answer to Prob. 34.
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Part C. FOURIER ANALYSIS. PARTIAL
DIFFERENTIAL EQUATIONS (PDEs)

CHAPTER 11 Fourier Series, Integrals, and Transforms

Change

The first two sections are now combined into a single section, giving a better and somewhat
faster start, with more emphasis on the essential ideas and facts.

SECTION 11.1. Fourier Series, page 478

Purpose. To derive the Euler formulas (6) for the coefficients of a Fourier series (5) of
a given function of period 2�, using as the key property the orthogonality of the
trigonometric system.

Main Content, Important Concepts

Periodic function

Trigonometric system, its orthogonality (Theorem 1)

Fourier series (5) with Fourier coefficients (6)

Representation by a Fourier series (Theorem 2)

Comment on Notation
If we write a0/2 instead of a0 in (1), we must do the same in (6a) and see that (6a) then
becomes (6b) with n � 0. This is merely a small notational convenience (but may be a
source of confusion to poorer students).

Comment on Fourier Series
Whereas their theory is quite involved, practical applications are simple, once the student
has become used to evaluating integrals in (6) that depend on n.

Figure 257 should help students understand why and how a series of continuous terms
can have a discontinuous sum.

Comment on the History of Fourier Series
Fourier series were already used in special problems by Daniel Bernoulli (1700–1782) in
1748 (vibrating string, Sec. 12.3) and Euler (Sec. 2.5) in 1754. Fourier’s book of 1822
became the source of many mathematical methods in classical mathematical physics.
Furthermore, the surprising fact that Fourier series, whose terms are continuous functions,
may represent discontinuous functions led to a reflection on, and generalization of, the
concept of a function in general. Hence the book is a landmark in both pure and applied
mathematics. [That surprising fact also led to a controversy between Euler and D. Bernoulli
over the question of whether the two types of solution of the vibrating string problem
(Secs. 12.3 and 12.4) are identical; for details, see E. T. Bell, The Development of
Mathematics, New York: McGraw-Hill, 1940, p. 482.] A mathematical theory of Fourier
series was started by Peter Gustav Lejeune Dirichlet (1805–1859) of Berlin in 1829. The
concept of the Riemann integral also resulted from work on Fourier series. Later on, these
series became the model case in the theory of orthogonal functions (Sec. 5.7). An English
translation of Fourier’s book was published by Dover Publications in 1955.
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SOLUTIONS TO PROBLEM SET 11.1, page 485

2. 2�, 2�, �, �, 2, 2, 1, 1

4. There is no smallest p � 0.

6. ƒ(x � p) � ƒ(x) implies

ƒ(ax � p) � ƒ(a[x � (p/a)]) � ƒ(ax) or g[x � (p/a)] � g(x),

where
g(x) � ƒ(ax).

Thus g(x) has the period p/a. This proves the first statement. The other statement
follows by setting a � 1/b.

8.–12. These problems should familiarize the student with the kind of periodic functions,
some of them discontinuous, that occur in applications as driving forces in mechanics,
as boundary potentials in electrostatics or heat conduction, in high-frequency problems
in connection with filters, and so on. Functions of this type will occur throughout this
chapter and the next one.

14. 1_
2 � (sin x � 1_

3 sin 3x � 1_
5 sin 5x � • • •). ƒ(x) � 1_

2 is odd.

16. (sin x � 1_
9 sin 3x � _1

25 sin 5x � � • • •) � 1_
2 sin 2x � 1_

4 sin 4x � 1_
6 sin 6x � � • • •

18. � (cos x � 1_
9 cos 3x � _1

25 cos 5x � • • •). See also Prob. 15.

20. [(2 � �) sin x � 1_
9 (�2 � 3�) sin 3x � _1

25 (2 � 5�) sin 5x � • • •]

� 1_
2 sin 2x � 1_

4 sin 4x � 1_
6 sin 6x � • • •

22. 4_
3�2 � 4(cos x � 1_

4 cos 2x � 1_
9 cos 3x � • • •)

� 4� (sin x � 1_
2 sin 2x � 1_

3 sin 3x � • • •)

24. 2� � (cos x � 1_
9 cos 3x � _1

25 cos 5x � • • •)

26. CAS Experiment. Experimental approach to Fourier series. This should help the
student obtain a feel for the kind of series to expect in practice, and for the kind and
quality of convergence, depending on continuity properties of the sum of the series.

(a) ƒ(x) � x has discontinuities at ��. The instructor will notice the beginning of
the Gibbs phenomenon (to be discussed in Problem Set 11.2) at the points of
discontinuity.

(b) ƒ(x) � 1 � x /� if �� � x � 0 and 1 � x /� if 0 � x � �, is continuous
throughout, and the accuracy is much better than in (a).

(c) ƒ(x) � �2 � x2 has about the same continuity as (b), and the approximation is
good.

The coefficients in (a) involve 1/n, whereas those in (b) and (c) involve 1/n2. This
is typical. See also CAS Experiment 27.

28. Project. Integrate by parts. a0 is obtained as before. The formulas extend to any
function for which the derivatives are identically zero from some derivative on. Jumps
may occur at points where the representation of ƒ(x) changes, and at the ends �� of
the interval. Accordingly, we write the integral in the Euler formula for an as a sum
of integrals,

�an � ��

��

ƒ cos nx dx � �x1

x0

� �x2

x1

� • • • � �xm

xm�1

� �
m

s�1

�xs

xs�1

ƒ cos nx dx

16
�
�

1
�
�

4
�
�

�
�
2

2
�
�

2
�
�
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where x0 � �� and xm � �. Integration by parts gives

�xs

xs�1

ƒ cos nx dx � sin nxjxs

xs�1

� �xs

xs�1

ƒ	 sin nx dx.

Now comes an important point: the evaluation of the first expression on the right.
ƒ(x) may be discontinuous at xs and we have to take the left-hand limit ƒ(xs � 0) of
ƒ at xs. Similarly, at xs�1 we have to take the right-hand limit ƒ(xs�1 � 0). Hence the
first expression on the right equals

[ƒ(xs � 0) sin nxs � ƒ(xs�1 � 0) sin nxs�1].

Consequently, by inserting this into am and using the short notations S0 � sin nx0,
S1 � sin nx1, etc., we obtain

�an � [ƒ(x1 � 0)S1 � ƒ(x0 � 0)S0 � ƒ(x2 � 0)S2 � ƒ(x1 � 0)S1

� • • • � ƒ(xm � 0)Sm � ƒ(xm�1 � 0)Sm�1]

� �
m

s�1

�xs

xs�1

ƒ	 sin nx dx.

Collecting terms with the same S the expression in brackets becomes

�ƒ(x0 � 0)S0 � [ƒ(x1 � 0) � ƒ(x1 � 0)]S1

� [ƒ(x2 � 0) � ƒ(x2 � 0)]S2 � • • • � ƒ(xm � 0)Sm.

The expressions in the brackets are the jumps of ƒ, multiplied by �1. Furthermore,
because of periodicity, S0 � Sm and ƒ(x0) � ƒ(xm), so that we may combine the first
and the last term,

�j1S1 � j2S2 � • • • � jmSm,

and we therefore have the intermediate result

�an � � �
m

s�1

js sin nxs � �
m

s�1

�xs

xs�1

ƒ	 sin nx dx.

By applying the same procedure to the integrals on the right we find

�
m

s�1

�xs

xs�1

ƒ	 sin nx dx � �
m

s�1

j	s cos nxs � �
m

s�1

�xs

xs�1

ƒ
 cos nx dx.

By applying the procedure once more, namely, to the integral on the right, we obtain
the “jump formula” for an. For the bn the process is the same. If a derivative of ƒ
higher than the second is not identically zero, we have to do additional steps. The
number of steps is finite as long as ƒ(x) is piecewise polynomial. For other functions,
since partial integration brings in increasingly higher powers of 1/n, it may be
worthwhile to investigate what happens if one terminates the process prematurely,
after finitely many steps.

30. CAS Experiment. The student should recognize the importance of the interval in
connection with orthogonality, which is the basic concept in the derivation of the
Euler formulas.

For instance, for sin 3x sin 4x the integral equals sin a � 1_
7 sin 7a, and the graph

suggests orthogonality for a � �, as expected.

1
�
n

1
�
n

1
�
n

1
�
n

1
�
n

1
�
n

1
�
n

1
�
n

ƒ
�
n
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SECTION 11.2. Functions of Any Period p � 2L, page 487

Purpose. It is practical to start with functions of period 2�, as we have done, because in
this case the Euler formulas and Fourier series look much simpler. And this is practically
no detour because the general case of p � 2L is obtained simply by a linear transformation
on the x-axis, giving the Fourier series (5) with coefficients (6).

The notation p � 2L is suggested by the fact that we shall later use half-range
expansions, with the series used “physically” only on an interval from x � 0 to L (the
extension of a vibrating string or a beam in heat conduction problems, etc.).

SOLUTIONS TO PROBLEM SET 11.2, page 490

2. 2 � (sin � sin � sin � • • •)
4. (1 � ) sin �x � ( � ) sin 2�x � ( � ) sin 3�x � � • • •

6. Full-wave rectification of a cosine current,

� ( cos 2�x � cos 4�x � cos 6�x � � • • •)
8. � (cos �x � cos 3�x � cos 5�x � • • •)

10. � (cos � cos � cos � • • •)
� (sin � sin � sin � sin � � • • •)

12. bn � 0, a0 � ,

an � 100V0 �
1/200

�1/200
cos 100�t cos 100n�t dt

� 50V0 �
1/200

�1/200
cos 100(n � 1)�t dt � 50V0 �

1/200

�1/200
cos 100(n � 1)�t dt,

V0
�
�

4�x
�

2

1
�
4

3�x
�

2

1
�
3

2�x
�

2

1
�
2

�x
�
2

2
�
�

5�x
�

2

1
�
25

3�x
�

2

1
�
9

�x
�
2

4
�
�2

1
�
2

1
�
25

1
�
9

4
�
�2

1
�
2

1
�
5 � 7

1
�
3 � 5

1
�
1 � 3

4
�
�

2
�
�

6
�
33�2

1
�
3

6
�
23�2

1
�
2

6
�
�2

5�x
�

2

1
�
5

3�x
�

2

1
�
3

�x
�
2

8
�
�

a

–1

–0.5

0.5

2�–2� �–�

1

Section 11.1. Integral in Problem 30 as a function of a
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� cos 100�t

� ( cos 200�t � cos 400�t � cos 600�t � � • • •)
14. Multiply by �1 and add 1.

16. In Prob. 21 of Sec. 11.1, write t for x; then

ƒ�(t) � t2 � � 4 (cos t � cos 2t � � • • •) .

Now set t � �x to get ƒ�(t) � �2x2, which shows that the series should be multiplied
by 1/�2 to get that of

ƒ(x) � x2 � � (cos �x � cos 2�x � � • • •) .

18. Set x � 1 in Prob. 3 to get 1 � � (�1 � � � • • •) , etc.

20. CAS Experiment. The figure shows s50 in Prob. 10.

Section 11.2. Gibbs phenomenon in CAS Experiment 20

SECTION 11.3. Even and Odd Functions. Half-Range Expansions, 
page 490

Purpose. 1. To show that a Fourier series of an even function (an odd function) has only
cosine terms (only sine terms), so that unnecesary work and sources of errors are avoided.

2. To represent a function ƒ(x) by a Fourier cosine series or by a Fourier sine series (of
period 2L) if ƒ(x) is given on an interval 0 � x � L only, which is half the interval of
periodicity—hence the name “half-range.”

Comment
Such half-range expansions occur in vibrational problems, heat problems, etc., as will be
shown in Chap. 12.

SOLUTIONS TO PROBLEM SET 11.3, page 496

2. Even, even, even, even, neither even nor odd, neither even nor odd, odd, odd

4. Neither even nor odd

6. Even

10 2–1–2

2

1.5

1

0.5

a

1
�
9

1
�
4

4
�
�2

1
�
3

1
�
4

4
�
�2

1
�
3

1
�
4

�2

�
3

1
�
5 � 7

1
�
3 � 5

1
�
1 � 3

2V0
�

�

V0
�
2

V0
�
�
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8. Neither even nor odd

10. Project. (a) Sums and products of even functions are even. Sums of odd functions
are odd. Products of odd functions are odd (even) if the number of their factors is odd
(even). Products of an even times an odd function are odd. This is important in
connection with the integrands in the Euler formulas for the Fourier coefficients.
Absolute values of odd functions are even. ƒ(x) � ƒ(�x) is even, ƒ(x) � ƒ(�x) is odd.

(b) ekx � cosh kx � sinh kx, � � ; furthermore,

sin (x � k) � sin k cos x � cos k sin x,

cosh (x � k) � cosh k cosh x � sinh k sinh x.

(c) ƒ(�x) � �ƒ(x) and ƒ(�x) � ƒ(x) together imply ƒ � 0.

(d) cos3 x is even, sin3 x is odd. The Fourier series are the familiar identities

cos3 x � 3_
4 cos x � 1_

4 cos 3x and sin3 x � 3_
4 sin x � 1_

4 sin 3x.

See also Prob. 13 in Sec. 11.2.

12. ((�2 � 4) sin �x � (9�2 � 4) sin 3�x � (25�2 � 4) sin 5�x � • • •)

� (sin 2�x � sin 4�x � sin 6�x � • • •)

14. e� � 1 � (e� � 1) cos x � (e� � 1) cos 2x � (e� � 1) cos 3x

� (e� � 1) cos 4x � � • • •

16. � (cos � cos � cos � cos

� cos � cos � • • •)
18. (a) � (cos 2�x � cos 6�x � cos 10�x � cos 14�x � • • •)

(b) (sin 2�x � sin 4�x � sin 6�x � sin 8�x � � • • •)
20. (a) � (cos � cos � cos � � • • •)

(b) (sin � sin � sin � sin � sin

� sin � sin � sin � sin � • • •)
22. (a) � (cos x � cos 2x � cos 3x � cos 5x � cos 6x

� cos 7x � cos 9x � cos 10x � cos 11x � • • •)1
�
121

1
�
50

1
�
81

1
�
49

1
�
18

1
�
25

1
�
9

1
�
2

2
�
�

3�
�
8

11�x
�

4

1
�
11

5�x
�

2

1
�
5

9�x
�

4

1
�
9

7�x
�

4

1
�
7

3�x
�

2

1
�
3

5�x
�

4

1
�
5

3�x
�

4

1
�
3

�x
�
2

�x
�
4

2
�
�

5�x
�

4

1
�
5

3�x
�

4

1
�
3

�x
�
4

2
�
�

1
�
2

1
�
4

1
�
3

1
�
2

1
�
�

1
�
49

1
�
25

1
�
9

2
�
�2

1
�
4

7�x
�

4

1
�
49

6�x
�

4

1
�
18

5�x
�

4

1
�
25

3�x
�

4

1
�
9

2�x
�

4

1
�
2

�x
�
4

4
�
�2

1
�
4

2
�
17

1
�
5

2
�
5

1
�
3

1
�
2

2
�
�

1
�
125

1
�
27

4
�
�3

x
�
1 � x2

1
�
1 � x2

1
�
1 � x
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(b) (1 � ) sin x � sin 2x � ( � ) sin 3x � sin 4x

� ( � ) sin 5x � sin 6x � ( � ) sin 7x � • • •

The student should be invited to find the two functions that the sum of the series
represents. This can be done by graphing sin x � 1_

2 sin 2x � 1_
3 sin 3x � � • • • � x /2

and then (2/�)(sin x � 3�2 sin 3x � � • • •) � ƒ2, where

ƒ2(x) � {
The first of these functions is discontinuous, the coefficients being proportional to
1/n, whereas ƒ2 is continuous, its Fourier coefficients being proportional to 1/n2, so
that they go to zero much faster than the others.

24. (a) � (cos � cos � cos

� cos � � • • •) .

(b) [(1 � ) sin � sin � ( � ) sin

� sin � • • •]
The coefficients of the cosine series are proportional to n�2, reflecting the fact that the
sum is continuous. The coefficients of the sine series are proportional to n�1, so that
they go to zero more slowly, reflecting the fact that the sum of the series is discontinuous.

26. �L

�L
g(x) dx � �0

�L
g(t) dt � �L

0
g(x) dx � � �0

L
g(�x) dx � �L

0
g(x) dx. Here t � �x.

Using that g(x) is even, we obtain

�L

0
g(�x) dx � �L

0
g(x) dx � 2 �L

0
g(x) dx.

SECTION 11.4. Complex Fourier Series. Optional, page 496

Purpose. To show that the formula for ei� or direct derivation leads to the complex Fourier
series in which complex exponential functions (instead of cosine and sine) appear. This
is interesting, but will not be needed in our further work, so that we can leave it optional.
Short Courses. Sections 11.4–11.9 can be omitted.

SOLUTIONS TO PROBLEM SET 11.4, page 499

2. Direct consequence of (5).

8. Combine the terms pairwise (n � 0, n � �1), (n � 1, n � �2), etc. to obtain

� (2i sin x � sin 3x � • • •) � (sin x � sin 3x � • • •)
as in Sec. 11.1, Example 1, with k � 1.

1
�
3

4
�
�

2i
�
3

2i
�
�

4�x
�

L

1
�
4

3�x
�

L

4
�
33�2

1
�
3

2�x
�

L

1
�
2

�x
�
L

4
�
�2

2L2

�
�

4�x
�

L

1
�
16

3�x
�

L

1
�
9

2�x
�

L

1
�
4

�x
�
L

4L2

�
�2

L2

�
3

�/2

3�/2.

x �

x �

��/2 �

�/2 �

if

if

x/2

�/2 � x/2

2
�
49�

1
�
7

1
�
6

2
�
25�

1
�
5

1
�
4

2
�
9�

1
�
3

1
�
2

2
�
�
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10. i(einx � e�inx) � �2 sin nx, and (�1)n gives the signs as expected,

2(sin x � 1_
2 sin 2x � 1_

3 sin 3x � � • • •).

12. einx � e�inx � 2 cos nx, and 2 • 2 gives the factor 4 in

� 4(cos x � cos 2x � cos 3x � cos 4x � � • • •) .

14. Project. When n � m, the integrand of the integral on the right is e0 � 1, so that
the integral equals 2�. This gives

��

��

ƒ(x)e�imx dx � 2�cm

provided the other integrals are zero, which is true by (3b),

��

��

ei(n�m)x dx � (ei(n�m)� � e�(n�m)�)

� 2i sin (n � m)� � 0.

Now writing n for m in (A) gives the coefficient formula in (6).

SECTION 11.5. Forced Oscillations, page 499

Purpose. To show that mechanical or electrical systems with periodic but nonsinusoidal
input may respond predominantly to one of the infinitely many terms in the Fourier series
of the input, giving an unexpected output; see Fig. 274, where the output frequency is
essentially five times that of the input.
Short Courses. Sections 11.4–11.9 can be omitted.

SOLUTIONS TO PROBLEM SET 11.5, page 501

2. For k � 9 the amplitude C3 � 0.943 is largest, larger than C1 by a factor 6. For 
k � 81 the amplitude C9 � 0.0349 is largest; second is C1 � 0.0159.

4. r	(t) is given by the sine series in Example 1 of Sec. 11.1 with k � �1. The new Cn

is n times the old one, so that C5 is so large that the output is practically a cosine
vibration having five times the input frequency.

6. y � c1 cos 
t � c2 sin 
t � cos 
1t � cos 
2t

8. y � c1 cos 
t � c2 sin 
t � sin t � sin 3t � sin 5t

� sin 7t

10. y � c1 cos 
t � c2 sin 
t � ( sin t � sin 3t

� sin 5t � � • • •)1/25
�

2 � 25

1/9
�

2 � 9

1
�

2 � 1

4
�
�

1/7
�

2 � 49

1/5
�

2 � 25

1/3
�

2 � 9

1
�

2 � 1

1
��

2 � 
2

2

1
��

2 � 
1

2

1
�
i(n � m)

1
�
i(n � m)

1
�
16

1
�
9

1
�
4

�2

�
3
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14. y � an cos nt � an sin nt, Dn � (1 � n2)2 � n2c2

16. y � A1 cos t � B1 sin t � A3 cos 3t � B3 sin 3t � • • • , where

An � �4ncbn /Dn, Bn � 4(1 � n2)bn /Dn, Dn � (1 � n2)2 � n2c2

b1 � 1, b2 � 0, b3 � �1/9, b4 � 0, b5 � 1/25, • • • . The damping constant c appears
in the cosine terms, causing a phase shift, which is 0 if c � 0. Also, c increases Dn;
hence it decreases the amplitudes, which is physically understandable.

18. Cn � �An
2 �� Bn

2� � 4/(n2��Dn�), Dn � (n2 � k)2 � n2c2 with An and Bn obtained
as solutions of

20. I � �
`

n�1

(An cos nt � Bn sin nt),

An � , Bn � (n odd),

An � 0, Bn � 0 (n even), Dn � (10 � n2)2 � 100 n2; hence

I � 1.266 cos t � 1.406 sin t � 0.003 cos 3t � 0.094 sin 3t

� 0.006 cos 5t � 0.019 sin 5t � 0.003 cos 7t � 0.006 sin 7t

� 0.002 cos 9t � 0.002 sin 9t � 0.001 cos 11t � 0.001 sin 11t � • • •

SECTION 11.6. Approximation by Trigonometric Polynomials, page 502

Purpose. We show how to find “best” approximations of a given function by trigonometric
polynomials of a given degree N.

Important Concepts

Trigonometric polynomial

Square error, its minimum (6)

Bessel’s inequality, Parseval’s identity

Short Courses. Sections 11.4–11.9 can be omitted.

Comment on Quality of Approximation
This quality can be measured in many ways. Particularly important are (i) the absolute
value of the maximum deviation over a given interval, and (ii) the mean square error
considered here. See Ref. [GR7] in App. 1.

SOLUTIONS TO PROBLEM SET 11.6, page 505

2. F � � 4 (cos x � cos 2x � cos 3x � � • • • � cos Nx) ; 

E* � 4.14, 1.00, 0.38, 0.18, 0.10

4. F � 2[(�2 � 6) sin x � 1_
8(4�2 � 6) sin 2x � _1

27(9�2 � 6) sin 3x � � • • •]; E* � 674.8,
454.7, 336.4, 265.6, 219.0. The coefficients are proportional to 1/n. Accordingly, E*
decreases slowly; it is 59.64 (N � 20), 30.22 (N � 40), etc.

(�1)N�1

�
N2

1
�
9

1
�
4

�2

�
3

800
�
n�Dn

80(10 � n2)
��

�n2Dn

� 4/n2�

� 0.

ncBn

(k � n2)Bn

(k � n2)An �

�ncAn �

nc
�
Dn

1 � n2

�
Dn
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6. F � A � B cos x � 2_
5A cos 2x � 1_

5B cos 3x � _2
17A cos 4x � • • • , where A � (1 � e��)/�,

B � (1 � e��) /�, E* � 0.06893, 0.02231, 0.00845, 0.00442, 0.00237. For N � 20
we have 4.9 • 10�5.

8. We obtain

F � sin x � sin 2x � sin 3x � sin 4x � sin 5x � sin 6x � • • • .

The values of E* are

1.3106, 0.5252, 0.5095, 0.3132, 0.3111, 0.2238, 0.2233, 0.1742, 0.1740, • • • .

Their interesting way of decreasing reflects that some of the Fourier coefficients
involve 1/n2 and others involve 1/n.

10. CAS Experiment. Factors are the continuity or discontinuity and the speed with
which the coefficients go to zero, 1/n, 1/n2.

For ƒ(x) given on �� � x � � some data are as follows (ƒ, decrease of the
coefficients, continuity or not, smallest N such that E* � 0.1).

ƒ � x, 1/n, discontinuous, N � 126

ƒ � x2, 1/n2, continuous, N � 5

ƒ � x3, 1/n2, discontinuous. E* � 6.105 for N � 200

ƒ � x4, 1/n, continuous, N � 40

ƒ � x6, 1/n, continuous. For N � 200 we still have E* � 0.1769.

For ƒ in Prob. 5 we have 1/n2, continuity, N � 2. In Prob. 9 we have 1/n3, continuity,
and N � 1.

The functions

ƒ(x) � {
with k � 1, 2, 3, 4 have coefficients proportional to 1/n2 and E* � 0.1 when N � 1
(k � 1), 5 (k � 2), 11 (k � 3), 21 (k � 4).

These data indicate that the whole situation is more complex than one would at
first assume. So the student may need your help and guidance.

SECTION 11.7. Fourier Integral, page 506

Purpose. Beginning in this section, we show how ideas from Fourier series can be
extended to nonperiodic functions defined on the real line, leading to integrals instead of
series.

Main Content, Important Concepts

Fourier integral (5)

Existence Theorem 1

Fourier cosine integral, Fourier sine integral, (10)–(13)

Application to integration

Short Courses. Sections 11.4–11.9 can be omitted.

�� � x � 0

0 � x � �

if

if

(x � 1_
2�)2k � (1_

2�)2k

�(�x � 1_
2�)2k � (1_

2�)2k

1
�
6

2
�
25�

1
�
4

2
�
9�

1
�
2

2
�
�
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SOLUTIONS TO PROBLEM SET 11.7, page 512

2. The integral suggests to use (13). Its value suggests to consider ƒ(x) � �x/2 
(0 � x � 1). Thus A(w) � 0, and by integration by parts, (2/� cancels),

B(w) � �1

0
v sin wv dv � .

At the jump x � 1 the mean of the limits is �/4.

4. The result suggests to consider ƒ(x) � �/2 (0 � x � 1) and to use (11). Then (10) gives

A(w) � �1

0
cos wv dv � .

Note that for x � 0 the integral gives (8*).

6. Use (13) and ƒ(x) � (�/2) sin x (0 � x � �) to get from (12) with the help of (11)
in App. 3.1

B(w) � ��

0
sin v sin wv dv � .

8. A � �a

0
v2 cos wv dv � (a2 sin aw � sin aw � cos aw) , so that

the answer is

��

0
[(a2 � ) sin aw � cos aw] dw.

Although many students will do the actual integration by their CAS, problems of
the present type have the merit of illustrating the ideas of integral representations and
transforms, a rather deep and versatile creation, and the techniques involved, such as
the proper choice of integration variables and integration limits. Moreover, graphics
will help in understanding the transformation process and its properties, for instance,
with the help of Prob. 18 or similar experiments.

10. A � (�1

0
cos wv dv � �2

1
(1 � ) cos wv dv) � (cos w � cos2 w),

so that the answer is

��

0
cos xw dw.

12. A � �a

0
e�v cos wv dv � ( ) , so that the

integral representation is

��

0
cos xw dw.

14. B � �a

0
sin wv dv � ( ) . Hence the integral representation is

��

0
sin xw dw.

1 � cos aw
��

w

2
�
�

1 � cos aw
��

w

2
�
�

2
�
�

1 � e�a(cos wa � w sin wa)
����

1 � w2

2
�
�

1 � e�a (cos wa � w sin wa)
����

1 � w2

2
�
�

2
�
�

cos w � cos2 w
��

w2

2
�
�

2
�
�w2

v
�
2

v
�
2

2
�
�

cos xw
�

w

2a
�
w

2
�
w2

2
�
�

2a
�
w

2
�
w2

2
�
�w

2
�
�

sin �w
�
1 � w2

sin w
�

w

sin w � w cos w
��

w2
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16. B � �1

0
(1 � v2) sin wv dv � • gives the

integral representation

��

0
sin xw dw.

18. B � ��

0

cos v sin wv dv � gives the integral representation

��

0
sin xw dw.

Note that the Fourier sine series of the odd periodic extension of ƒ(x) of period 2� has
the Fourier coefficients bn � (2/�)n(1 � cos n�) /(n2 � 1). Compare this with B.

20. Project. (a) Formula (a1): Setting wa � p, we have from (11)

ƒ(ax) � ��

0
A(w) cos axw dw � ��

0
A( ) cos xp .

If we again write w instead of p, we obtain (a1).
Formula (a2): From (12) with ƒ(v) replaced by vƒ(v) we have

B*(w) � ��

0
vƒ(v) sin wv dv � �

where the last equality follows from (10).
Formula (a3) follows by differentiating (10) twice with respect to w,

� � ��

0
ƒ*(v) cos wv dv, ƒ*(v) � v2ƒ(v).

(b) In Prob. 7 we have

A � w�1 sin aw.

Hence by differentiating twice we obtain

A
 � (2w�3 sin aw � 2aw�2 cos aw � a2w�1 sin aw).

By (a3) we now get the result, as before,

x2ƒ(x) � ��

0
[(� � ) sin aw � cos aw] cos xw dw.

(c) A(w) � (2 sin aw) /(�w); see Prob. 7. By differentiation,

B*(w) � � � � ( � ) .

This agrees with the result obtained by using (12). Note well that here we are dealing
with a relation between the two Fourier transforms under consideration.

(d) The derivation of the following formulas is similar to that of (a1)–(a3).

(d1) ƒ(bx) � ��

0
B ( ) sin xw dw (b � 0)

w
�
b

1
�
b

sin aw
�

w2

a cos aw
�

w

2
�
�

dA
�
dw

2a
�
w2

a2

�
w

2
�
w3

2
�
�

2
�
�

2
�
�

2
�
�

d2A
�
dw2

dA
�
dw

2
�
�

dp
�
a

p
�
a

w(1 � cos �w)
��

w2 � 1

2
�
�

w(1 � cos �w)
��

w2 � 1

2
�
�

2
�
�

w2 � 2w sin w � 2 cos w � 2
����

w3

2
�
�

w2 � 2w sin w � 2 cos w � 2
����

w3

2
�
�

2
�
�
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(d2) xƒ(x) � ��

0
C*(w) cos xw dw, C*(w) � , B as in (12)

(d3) x2ƒ(x) � ��

0
D*(w) sin xw dw, D*(w) � � .

SECTION 11.8. Fourier Cosine and Sine Transforms, page 513

Purpose. Fourier cosine and sine transforms are obtained immediately from Fourier cosine
and sine integrals, respectively, and we investigate some of their properties.

Content

Fourier cosine and sine transforms

Transforms of derivatives (8), (9)

Comment on Purpose of Transforms
Just as the Laplace transform (Chap. 6), these transforms are designed for solving
differential equations. We show this for PDEs in Sec. 12.6.
Short Courses. Sections 11.4–11.9 can be omitted.

SOLUTIONS TO PROBLEM SET 11.8, page 517

2. Integration by parts gives

ƒ̂c(w) � �� �k

0
x cos wx dx � �� .

4. From (3) and the answer to Prob. 1 we obtain

ƒ(x) � �� �� (��

0
cos wx dw � 2 ��

0
cos wx dw) .

In the first term set 2w � v to get (a factor 2 cancels and (2/�)(�/2) � 1)

��

0
cos ( ) dv � {

The second term gives

�2 • ��

0
cos wx dw � {

Adding the two results, we have �1 if 0 � x � 1, 1 if 1 � x � 2, 0 if x � 2.

6. By integration by parts we obtain

ƒ(x) � �� ��

0
e�w cos wx dw � �� • .

8. Integration by parts gives the answer

�� .

10. The defining integrals (2) and (5) have no limit as x * �.

2w cos w � (w2 � 2) sin w
���

w3

2
�
�

1
�
1 � x2

2
�
�

2
�
�

x � 1

x � 1.

if

if

�2

0

sin w
�

w

2
�
�

x � 2

x � 2.

thus

thus

x/2 � 1,

x/2 � 1,

if

if

1

0

vx
�
2

sin v
�

v
2
�
�

sin w
�

w

sin 2w
�

w

2
�
�

2
�
�

cos kw � kw sin kw � 1
���

w2

2
�
�

2
�
�

d2B
�
dw2

dB
�
dw
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12. ƒ(x) � e��x, ƒ
(x) � �2ƒ, ƒ(0) � 1. Hence (9b) gives

�s(ƒ
) � �2�s(ƒ) � �w2�s(ƒ) � �� w.

Ordering terms and solving for �s(ƒ) gives

(w2 � �2)�s(ƒ) � �� w, �s(ƒ) � �� • .

14. �� ��

0

sin x sin wx dx � ��
16. The integrals in this problem and the next one can be reduced to Fresnel integrals.

This suggests the transformation wx � t2. Of course, if one does not see this, one
would start with, say, wx � v and then perhaps remember that the integral of v�1/2

sin v can be reduced to a Fresnel integral (38) in App. 3.1 by setting v � t2. The
present calculation is

�� ��

0
x�1/2 sin wx dx � �� ��

0
w1/2t�1(sin t2)2t dt w�1

� w�1/2 �� ��

0
sin t2 dt � w�1/2.

18. The calculation is similar to that in Prob. 16 but requires an additional integration by
parts,

�� ��

0
x�3/2 sin wx dx � �� ��

0
w3/2t�3(sin t2)w�12t dt

� �� w1/2 ��

0
t�2 sin t2 dt

� �� w1/2 (�t�1 sin t2j�

0

� ��

0
t�1(cos t2)2t dt)

� �� w1/22 �� � 2w1/2.

SECTION 11.9. Fourier Transform. Discrete and Fast Fourier Transforms,
page 518

Purpose. Derivation of the Fourier transform from the complex form of the Fourier
integral; explanation of its physical meaning and its basic properties.

Main Content, Important Concepts

Complex Fourier integral (4)

Fourier transform (6), its inverse (7)

Spectral representation, spectral density

Transforms of derivatives (9), (10)

Convolution ƒ � g

Comments on Content
The complex Fourier integral is relatively easily obtained from the real Fourier integral
in Sec. 11.7, and the definition of the Fourier transform is then immediate.

�
�
8

8
�
�

8
�
�

8
�
�

2
�
�

2
�
�

8
�
�

2
�
�

2
�
�

sin �w
�
1 � w2

2
�
�

2
�
�

w
�
w2 � �2

2
�
�

2
�
�

2
�
�
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Note that convolution ƒ � g differs from that in Chapter 6, and so does the formula
(12) in the convolution theorem (we now have a factor �2��).
Short Courses. Sections 11.4–11.9 can be omitted.

SOLUTIONS TO PROBLEM SET 11.9, page 528

2. By integration of the defining integral we obtain

�0

��
e(k�iw)x dx � • j0

��

� • .

4. Integration of the defining integral gives

�1

�1
e(2�w)ix dx � (e(2�w)i � e�(2�w)i)

� 2i sin (2 � w)

� �� .

6. By integration by parts,

�1

�1
xe�iwx dx � ( j1

�1

� �1

�1
e�iwx dx)

� ( � � e�iwxj1

�1

)
� ( � (e�iw � eiw))
� �� ( � )
� �� • (w cos w � sin w).

8. By integration by parts we obtain

�0

�1
xe�x�iwx dx � ( j0

�1

� �0

�1
e�(1�iw)x dx)

� (�(�1) � j0

�1

)
� ( � )
� (1 � e1�iw(�1 � i(�w � i)))

� (1 � iwe1�iw).
1

��
�2�� (�w � i)2

1
��
�2�� (�w � i)2

1 � e1�iw

��
(1 � iw)2

�e1�iw

�
1 � iw

1
�
�2��

e�(1�iw)x

���
�(1 � iw)(1 � iw)

e1�iw

��
�(1 � iw)

1
�
�2��

1
�
1 � iw

xe�(1�iw)x

��
�(1 � iw)

1
�
�2��

1
�
�2��

i
�
w2

2
�
�

i sin w
�

w2

i cos w
�

w

2
�
�

1
�
w2

2 cos w
�

�iw

1
�
�2��

1
�
(�iw)2

eiw

�
�iw

e�iw

�
�iw

1
�
�2��

1
�
�iw

xe�iwx

�
�iw

1
�
�2��

1
�
�2��

sin (w � 2)
��

w � 2

2
�
�

�i
��
�2�� (2 � w)

�i
��
�2�� (2 � w)

1
�
�2��

1
�
k � iw

1
�
�2��

e(k�iw)x

�
k � iw

1
�
�2��

1
�
�2��
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Problems 1 to 9 should help the student get a feel for integrating complex
exponential functions and for their transformation into cosine and sine, as needed in
this context. Here, it is taken for granted that complex exponential functions can be
handled in the same fashion as real ones, which will be justified in Part D on complex
analysis. The problems show that the technicalities are rather formidable for someone
who faces these exponential functions for the first time. This is so for relatively simple
ƒ(x), and since a CAS will give all the results without difficulty, it would make little
sense to deal with more complicated ƒ(x), which would involve increased technical
difficulties but no new ideas.

10. ƒ(x) � xe�x (x � 0), g(x) � e�x (x � 0). Then ƒ	 � e�x � xe�x � g � ƒ, 
and by (9),

iw�(ƒ) � �(ƒ	) � �(g) � �(ƒ)
hence

(iw � 1)�(ƒ) � �(g) � , �(ƒ) � .

12. We obtain

• � •

� �� • .

14. Team Project. (a) Use t � x � a as a new variable of integration.

(b) Use c � 3b. Then (a) gives

e2ibw�(ƒ(x)) � � � �� • .

(c) Replace w with w � a. This gives a new factor eiax.

(d) We see that ƒ̂(w) in formula 7 is obtained from ƒ̂(w) in formula 1 by replacing
w with w � a. Hence by (c), ƒ(x) in formula 1 times eiax should give ƒ(x) in formula
7, which is true. Similarly for formulas 2 and 8.

SOLUTIONS TO CHAP. 11 REVIEW QUESTIONS AND PROBLEMS, page 532

12. � (cos x � cos 3x � cos 5x � � • • •)
14. 1 � (cos � cos � cos � • • •)
16. (sin �x � sin 2�x � sin 3�x � • • •)
18. (1 � cos x � sin x � cos 2x � sin 2x � • • •)
20. � � 2(sin x � 1_

2 sin 2x � 1_
3 sin 3x � 1_

4 sin 4x � • • •)

22. 1/2 by Prob. 17. Convergence is slow.

4
�
5

2
�
5

sinh �
�

�

1
�
3

1
�
2

2
�
�

5�x
�

2

1
�
25

3�x
�

2

1
�
9

�x
�
2

8
�
�2

1
�
5

1
�
3

2
�
�

1
�
2

sin bw
�

w

2
�
�

2i sin bw
�
iw�2��

eibw � e�ibw

��
iw�2��

sin b(w � a)
��

w � a

2
�
�

�2i sin b(a � w)
��

a � w

i
�
�2��

e�ib(a�w) � eib(a�w)

���
a � w

i
�
�2��

1
��
�2�� (1 � iw)2

1
��
�2�� (1 � iw)
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24. From the solution to Prob. 12 we obtain

� (1 � � � • • •) � ��/2

��/2
dx � 1.

Hence the answer is �2/8.

26. (sin x � sin 2x � sin 3x � sin 5x � sin 6x � sin 7x

� sin 9x � sin 10x � • • •) .

The sum of

� (sin 2x � sin 6x � sin 10x � • • •)
is �1/2 if 0 � x � �/2 and 1/2 if �/2 � x � � and periodic with �. The sum of the
other terms is the rectangular wave discussed in Sec. 11.1. A sketch of the two
functions will explain the connection.

28. 0.2976, 0.2976, 0.1561, 0.1561, 0.1052, 0.1052, 0.0792, 0.0792

30. y � 12 • � • � • � • � � • • •

� C1 cos 
t � C2 sin 
t

32. ��

0
dw

34. ��

0
cos wx dw

36. ��

0
sin wx dw

38. �b

a
e�iwx dx � • jb

x�a

� •

40. �c(ƒ
) � 4�c(ƒ) � �w2�c(ƒ) � �� ƒ	(0), ƒ	(0) � �2. Hence

�c(ƒ)(w2 � 4) � �� .

Now solve for �c(ƒ).
Similarly, again by two differentiations,

�s(ƒ
) � 4�s(ƒ) � �w2�s(ƒ) � �� wƒ(0), ƒ(0) � 1.

Hence

�s(ƒ)(w2 � 4) � �� w and �s(ƒ) � �� • .
w

�
w2 � 4

2
�
�

2
�
�

2
�
�

8
�
�

2
�
�

e�ibw � e�iaw

��
w

ik
�
�2��

e�iwx

�
�iw

k
�
�2��

k
�
�2��

2w2 � 1 � cos 2w � 2w sin 2w
����

w3

4
�
�

1 � cos 2w
��

w2

1
�
�

(sin 2w � sin w) cos wx � (cos w � cos 2w) sin wx
������

w

1
�
�

sin 4t
�

2 � 16

3
�
16

sin 3t
�

2 � 9

4
�
9

sin 2t
�

2 � 4

3
�
2

sin t
�

2 � 1

1
�
5

1
�
3

2
�
�

1
�
5

1
�
9

1
�
7

1
�
3

1
�
5

1
�
3

2
�
�

1
�
�

1
�
25

1
�
9

4
�
�2

1
�
2
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CHAPTER 12 Partial Differential Equations (PDEs)

SECTION 12.1 Basic Concepts, page 535

Purpose. To familiarize the student with the following:

Concept of solution, verification of solutions

Superposition principle for homogeneous linear PDEs

PDEs solvable by methods for ODEs

SOLUTIONS TO PROBLEM SET 12.1, page 537

2. u � c1(y)ex � c2(y)e�x.
Problems 1–12 will help the student get used to the notations in this chapter; in

particular, y will now occur as an independent variable. Second-order PDEs in this
set will also help review the solution methods in Chap. 2, which will play a role in
separating variables.

4. u � c(x)e�y2

6. u � c1(y)e�2xy � c2(y)e2xy

8. ln u � 2x � y dy � xy2 � c�(x), u � c(x)exy2

10. Set uy � v. Then vy � 4xv, v � c�1(x)e4xy; hence

u � � v dy � c1(x)e4xy � c2(x).

12. u � (c1(x) � c2(x)y)e�5y � 1_
2y2e�5y. The function on the right is a solution of the

homogeneous ODE, corresponding to a double root, so that the last term in the solution
involves the factor y2.

14. c � 1/2.
Problems 14–25 should give the student a first impression of what kind of solutions

to expect, and of the great variety of solutions compared with those of ODEs. It should
be emphasized that although the wave and the heat equations look so similar, their
solutions are basically different. It could be mentioned that the boundary and initial
conditions are basically different, too. Of course, this will be seen in great detail in
later sections, so one should perhaps be cautious not to overload students with such
details before they have seen a problem being solved.

16. c � 6

18. c � �k /32�
20. c � 2, � arbitrary

22. Solutions of the Laplace equation in two dimensions will be derived systematically
in complex analysis. Nevertheless, it may be useful to see an unsystematic selection
of typical solutions, as given in (7) and in Probs. 23–25.

26. Team Project. (a) Denoting derivatives with respect to the entire argument x � ct
and x � ct, respectively, by a prime, we obtain by differentiating twice

uxx � v� � w�, utt � v�c2 � w�c2

and from this the desired result.
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(c) The student should realize that u � 1/�x2 � y�2� is not a solution of Laplace’s
equation in two variables. It satisfies the Poisson equation with ƒ � (x2 � y2)�3/2,
which seems remarkable.

28. A function whose first partial derivatives are zero is a constant, u(x, y) � c � const.
Integrate the first PDE and then use the second.

30. Integrating the first PDE and the second PDE gives

u � c1(y)x � c2(y) and u � c3(x)y � c4(x),

respectively. Equating these two functions gives

u � axy � bx � cy � k.

Alternatively, uxx � 0 gives u � c1(y)x � c2(y). Then from uyy � 0 we get 
uyy � c�1x � c�2 � 0; hence c�1 � 0, c�2 � 0, and by integration

c1 � �y � �, c2 � �y � 	

and by substitution in the previous expression

u � c1x � c2 � �yx � �x � �y � 	.

SECTION 12.2. Modeling: Vibrating String, Wave Equation, page 538

Purpose. A careful derivation of the one-dimensional wave equation (more careful than in
most other texts, where some of the essential physical assumptions are usually missing).
Short Courses. One may perhaps omit the derivation and just state the wave equation
and mention of what c2 is composed.

SECTION 12.3. Solution by Separating Variables. Use of Fourier Series,
page 540

Purpose. This first section in which we solve a “big” problem has several purposes:

1. To familiarize the student with the wave equation and with the typical initial and
boundary conditions that physically meaningful solutions must satisfy.

2. To explain and apply the important method of separation of variables, by which the
PDE is reduced to two ODEs.

3. To show how Fourier series help to get the final answer, thus seeing the reward of
our great and long effort in Chap. 11.

4. To discuss the eigenfunctions of the problem, the basic building blocks of the
solution, which lead to a deeper understanding of the whole problem.

Steps of Solution

1. Setting u � F(x)G(t) gives two ODEs for F and G.

2. The boundary conditions lead to sine and cosine solutions of the ODEs.

3. A series of those solutions with coefficients determined from the Fourier series of
the initial conditions gives the final answer.
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SOLUTIONS TO PROBLEM SET 12.3, page 546

2. k(cos 
t sin 
x � 1_
3 cos 3
t sin 3
x)

4. (cos 
t sin 
x � cos 2
t sin 2
x � cos 3
t sin 3
x � � • • •)

6. (cos 
t sin 
x � cos 3
t sin 3
x � cos 5
t sin 5
x � � • • •)
8. ( cos 2
t sin 2
x � cos 6
t sin 6
x � cos 10
t sin 10
x � • • •)

There are more graphically posed problems (Probs. 5–10) than in previous editions,
so that CAS-using students will have to make at least some additional effort in solving
these problems.

10. (sin cos 
t sin 
x � sin cos 2
t sin 2
x

� sin cos 3
t sin 3
x � sin cos 4
t sin 4
x � � • • •)
12. u � �

�

n�1

Bn* sin nt sin nx, Bn* � sin

14. Team Project. (c) From the given initial conditions we obtain

Gn(0) � Bn � �L

0
ƒ(x) sin dx,

G
.
n(0) � �nBn* � � 0.

(e) u(0, t) � 0, w(0, t) � 0, u(L, t) � h(t), w(L, t) � h(t). The simplest w satisfying
these conditions is w(x, t) � xh(t) /L. Then

v(x, 0) � ƒ(x) � xh(0) /L � ƒ1(x)

vt(x, 0) � g(x) � xh
(0) /L � g1(x)

vtt � c2vxx � �xh�/L.

16. Fn � sin (n
x/L), Gn � an cos (cn2
2t/L2)

18. For the string the frequency of the nth mode is proportional to n, whereas for the
beam it is proportional to n2.

20. F(0) � A � C � 0, C � �A, F
(0) � �(B � D) � 0, D � �B. Then

F(x) � A(cos �x � cosh �x) � B(sin �x � sinh �x)

F�(L) � �2[�A(cos �L � cosh �L) � B(sin �L � sinh �L)] � 0

F�(L) � �3[A(sin �L � sinh �L) � B(cos �L � cosh �L)] � 0.

The determinant (cos �L � cosh �L)2 � sin2 �L � sinh2 �L of this system in the
unknowns A and B must be zero, and from this the result follows.

From (23) we have

cos �L � � 0
�1

�
cosh �L

2A�(1 � cos �
)
��

n
 (�n
2 � �2)

n
x
�

L

2
�
L

n

�
2

0.04
�

n3



�
5

1
�
16

2

�
5

1
�
9

2

�
5

1
�
4



�
5

25
�
2
2

1
�
100

1
�
36

1
�
4

8
�

2

1
�
25

1
�
9

�8�
�

2

1
�
27

1
�
8

12k
�

3
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because cosh �L is very large. This gives the approximate solutions

�L � 1_
2
, 3_

2
, 5_
2
, • • • (more exactly, 1.875, 4.694, 7.855, • • •).

SECTION 12.4. D’Alembert’s Solution of the Wave Equation.
Characteristics, page 548

Purpose. To show a simpler method of solving the wave equation, which, unfortunately,
is not so universal as separation of variables.

Comment on Order of Sections
Section 12.11 on the solution of the wave equation by the Laplace transform may be
studied directly after this section. We have placed that material at the end of this chapter
because some students may not have studied Chap. 6 on the Laplace transform, which is
not a prerequisite for Chap. 12.

Comment on Footnote 1
D’Alembert’s Traité de dynamique appeared in 1743 and his solution of the vibrating
string problem in 1747; the latter makes him, together with Daniel Bernoulli (1700–1782),
the founder of the theory of PDEs. In 1754 d’Alembert became Secretary of the French
Academy of Science and as such the most influential man of science in France.

SOLUTIONS TO PROBLEM SET 12.4, page 552

2. u(0, t) � 1_
2[ƒ(ct) � ƒ(�ct)] � 0, ƒ(�ct) � �ƒ(ct), so that ƒ is odd. Also

u(L, t) � 1_
2[ƒ(ct � L) � ƒ(�ct � L)] � 0

hence
ƒ(ct � L) � �ƒ(�ct � L) � ƒ(ct � L).

This proves the periodicity.

4. (1/2
)(n
/2) • 80.83 � 20.21n

10. The Tricomi equation is elliptic in the upper half-plane and hyperbolic in the lower,
because of the coefficient y.

u � F(x)G(y) gives

yF�G � �FG�, � � � �k

and k � 1 gives Airy’s equation.

12. Parabolic. Characteristic equation

y
2 � 2y
 � 1 � (y
 � 1)2 � 0.

New variables v � � � x, w � � � x � y. By the chain rule,

ux � uv � uw

uxx � uvv � 2uvw � uww

uxy � uvw � uww

uyy � uww.

Substitution of this into the PDE gives the expected normal form

uvv � 0.

G�
�
yG

F�
�
F
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By integration,

uv � c�(w), u � c�(w)v � c(w).

In the original variables this becomes

u � xƒ1(x � y) � ƒ2(x � y).

14. Hyperbolic. Characteristic equation

y
2 � y
 � 2 � (y
 � 1)(y
 � 2) � 0.

Hence new variables are v � y � x, w � y � 2x. Solution:

u � ƒ1(x � y) � ƒ2(2x � y).

16. Hyperbolic. New variables x � v and xy � w. The latter is obtained from

�xy
 � y � 0, � � , ln �y� � �ln �x� � c.

By the chain rule we obtain in these new variables from the given PDE by cancellation
of �yuyy against a term in xuxy and division of the remaining PDE by x the PDE

uw � xuvw � 0.

(The normal form is uvw � �uw/x � �uw/v.) We set uw � z and obtain

zv � � z, z � .

By integration with respect to w we obtain the solution

u � ƒ1(w) � ƒ2(v) � ƒ1(xy) � ƒ2(x).

18. Elliptic. The characteristic equation is

y
2 � 2y
 � 5 � [y
 � (1 � 2i)][y
 � (1 � 2i)] � 0.

Complex solutions are

� � y � (1 � 2i)x � const, � � y � (1 � 2i)x � const.

This gives the solutions of the PDE:

u � ƒ1(y � (1 � 2i)x) � ƒ2(y � (1 � 2i)x).

Since the PDE is linear and homogeneous, real solutions are the real and the imaginary
parts of u.

20. Hyperbolic. Characteristic equation

y
2 � 4y
 � 3 � (y
 � 1)(y
 � 3) � 0.

The solution of the given PDE is

u � ƒ1(x � y) � ƒ2(3x � y).

1
�
x

1
�
v

c(w)
�

v
1
�
v

1
�
x

y

�
y
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SECTION 12.5. Heat Equation: Solution by Fourier Series, page 552

Purpose. This section has two purposes:

1. To solve a typical heat problem by steps similar to those for the wave equation,
pointing to the two main differences: only one initial condition (instead of two) and
ut (instead of utt), resulting in exponential functions in t (instead of cosine and sine
in the wave equation).

2. Solution of Laplace’s equation (which can be interpreted as a time-independent heat
equation in two dimensions).

Comments on Content
Additional points to emphasize are

More rapid decay with increasing n,

Difference in time evolution in Figs. 292 and 288,

Zero can be an eigenvalue (see Example 4),

Three standard types of boundary value problems,

Analogy of electrostatic and (steady-state) heat problems.

Problem Set 12.5 includes additional heat problems and types of boundary conditions.

SOLUTIONS TO PROBLEM SET 12.5, page 560

2. u1 � sin x e�t, u2 � sin 2x e�4t, u3 � sin 3x e�9t. A main difference is the rapidity
of decay, so that series solutions (9) will be well approximated by partial sums of
few terms.

4. (c2
2/L2)10 � ln 2, c2 � 0.00702L2

6. u � sin 0.1
x e�1.752
 2t/100 � 1_
2 sin 0.2
x e�1.752•4
2t/100

8. u � (sin 0.1
x e�0.01752
2t � sin 0.3
x e�0.01752(3
)2t

� sin 0.5
x e�0.01752(5
)2t � � • • •)
10. uI � U1 � (U2 � U1)x/L; this is the solution of (1) with �u/�t � 0 satisfying the

boundary conditions.

12. u(x, 0) � ƒ(x) � 100, U1 � 100, U2 � 0, uI � 100 � 10x. Hence

Bn � �10

0
[100 � (100 � 10x)] sin dx

� �10

0
10x sin dx

� � cos n


� • 63.66.
(�1)n�1

�
n

200
�
n


n
x
�
10

2
�
10

n
x
�
10

2
�
10

1
�
25

1
�
9

8
�

2
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This gives the solution

u(x, t) � 100 � 10x � 63.66 �
�

n�1

sin e�1.752(n
/10)2t.

For x � 5 this becomes

u(5, t) � 50 � 63.66[e�0.1729t � 1_
3e�1.556t � 1_

5e�4.323t � � • • •].

Obviously, the sum of the first few terms is a good approximation of the true value
at any t � 0. We find:

.

14. u � � (cos x e�t � cos 3x e�9t � cos 5x e�25t � • • •)
16. u � 0.5 cos 4x e�16t

18. u � � (cos 2x e�4t � cos 6x e�36t � cos 10x e�100t � • • •)
20. F � A cos px � B sin px, F(0) � A � 0, F
(L) � Bp cos pL � 0, pL � (2n � 1)
/2;

hence

u � �
�

n�1

B2n�1 sin exp {�[ ]2

t}
where

B2n�1 � �L

0
U0 sin dx � .

22. u � �
�

n�1

sin2 sin nx e�c2n2t

� ( sin x e�c2t � sin 2x e�4c2t � • • •)
24. c2vxx � vt, v(0, t) � 0, v(
, t) � 0, v(x, 0) � ƒ(x) � Hx(x � 
) /(2c2), so that, as

in (9) and (10),

u(x, t) � � � �
�

n�1

Bn sin nx e�c2n2t

where

Bn � �


0
(ƒ(x) � ) sin nx dx.

26. v(x, t) � u(x, t)w(t). Substitution into the given PDE gives

utw � uw
 � c2uxxw � uw.

Division by w gives

ut � uw
/w � c2uxx � u.

This reduces to ut � c2uxx if w
/w � �1, hence w � e�t. Also, u(0, t) � 0, u(L, t) � 0,
u(x, 0) � ƒ(x), so that the solution is v � e�tu with u given by (9) and (10).

Hx(x � 
)
��

2c2

2
�



Hx(x � 
)
��

2c2

1
�
2

1
�
2

4U0
�




n

�
4

1
�
n

4U0
�




4U0
��

 (2n � 1)

(2n � 1)
x
��

2L

2
�
L

(2n � 1)
c
��

2L

(2n � 1)
x
��

2L

1
�
25

1
�
9

2
�





�
4

1
�
25

1
�
9

4
�





�
2

t 1     2 3 10 50
����
u(5, t) 99 94 88 61 50

n
x
�
10

(�1)n�1

�
n
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28. u � �
�

n�1

sin sinh

30. CAS Project. (a) u � (sin 
x sinh 
y) /sinh 2


(b) uy(x, 0, t) � 0, uy(x, 2, t) � 0, u � sin m
x cos n
y

32. u � uI � uII, where

uI � �
�

n�1

sin

uII � �
�

n�1

sin .

34. u � F(x)G(y), F � A cos px � B sin px, ux(0, y) � F
(0)G(y) � 0, B � 0,
G � C cosh py � D sinh py, uy(x, b) � F(x)G
(b) � 0, C � cosh pb,
D � �sinh pb, G � cosh (pb � py). For u � cos px cosh p(b � y) we get

ux(a, y) � hu(a, y) � (�p sin pa � h cosh pa) cosh p(b � y) � 0.

Hence p must satisfy tan ap � h/p, which has infintely many positive real solutions
p � �1, �2, • • • , as you can illustrate by a simple sketch. Answer:

un � cos �nx cosh �n(b � y),

where � � �n satisfies � tan �a � h.
To determine coefficients of series of un’s from a boundary condition at the lower

side is difficult because that would not be a Fourier series, the �n’s being only
approximately regularly spaced. See [C3], pp. 114–119, 167.

SECTION 12.6. Heat Equation: Solution by Fourier Integrals and
Transforms, page 562

Purpose. Whereas we solved the problem of a finite bar in the last section by using Fourier
series, we show that for an infinite bar (practically, a long insulated wire) we can use the
Fourier integral for the same purpose. Figure 296 shows the time evolution for a
“rectangular” initial temperature (100°C between x � �1 and �1, zero elsewhere), giving
bell-shaped curves as for the density of the normal distribution.

We also show typical applications of the Fourier transform and the Fourier sine
transform to the heat equation.
Short Courses. This section can be omitted.

SOLUTIONS TO PROBLEM SET 12.6, page 568

2. A � , B � 0, u � ��

0
e�c2p2t dp

4. A � ��

0
cos pv dv � • � 1 if 0 � p � 1 and 0 if p � 1. Hence

u � �1

0
cos px e�c2p2t dp.



�
2

2
�



sin v
�

v
2
�



cos px
�
p2 � k2

2k
�



2k
��

 (p2 � k2)

sinh [(2n � 1)
(1 � y/24)]
���

sinh (2n � 1)


(2n � 1)
x
��

24

1
�
2n � 1

4U0
�




sinh [(2n � 1)
y/24]
���

sinh (2n � 1)


(2n � 1)
x
��

24

1
�
2n � 1

4U1
�




(2n � 1)
y
��

20

(2n � 1)
x
��

20

1
���
(2n � 1) sinh (2n � 1)


880
�
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6. A � 0, B � �1

�1
v sin pv dv � ; hence

u � ��

0
sin px e�c2p2t dp.

8. By integration, �


0
cos px dp � .

10. CAS Project. (a) Set w � �v in (21) to get erf (�x) � �erf x.

(b) See (36) in App. 3.1.

(e) In (12) the argument x � 2cz�t� is 0 (the point where ƒ jumps) when
z � �x/(2c�t�). This gives the lower limit of integration.

(f) u(x, t) � [erf � erf ] , where t � 0.

(g) Set w � s/�2� in (21).

SECTION 12.7. Modeling: Membrane, Two-Dimensional Wave Equation,
page 569

Purpose. A careful derivation of the two-dimensional wave equation governing the
motions of a drumhead, from physical assumptions (the analog of the modeling in
Sec. 12.2).

SECTION 12.8. Rectangular Membrane. Double Fourier Series, page 571

Purpose. To solve the two-dimensional wave equation in a rectangle 0 � x � a, 
0 � y � b (“rectangular membrane”) by separation of variables and double Fourier series.

Comment on Content
New features as compared with the one-dimensional case (Sec. 12.3) are as follows:

1. We have to separate twice, first by u � F(x, y)G(t), then the Helmholtz equation for
F by F � H(x)Q(y).

2. We get a double sequence of infinitely many eigenvalues �mn and eigenfunctions
umn; see (9), (10).

3. We need double Fourier series (easily obtainable from the usual Fourier series) to
get a solution that also satisfies the initial conditions.

SOLUTIONS TO PROBLEM SET 12.8, page 578

4. Bmn � (�1)m�18/(mn
2) if n odd, Bmn � 0 if n even. Thus

ƒ(x, y) � (sin 
x sin 
y � sin 
x sin 3
y

� sin 2
x sin 
y � sin 2
x sin 3
y

� sin 3
x sin 
y � sin 3
x sin 3
y � • • •) .
1
�
9

1
�
3

1
�
6

1
�
2

1
�
3

8
�

2

1 � x
�
2c�t�

1 � x
�
2c�t�

U0
�
2

sin 
x
�

x

sin p � p cos p
��

p2

2
�



sin p � p cos p
��

p2

2
�



1
�
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6. Bmn � (�1)m�nKmn/(mn
2), where

Kmn � y
8. Bmn � 64/(m3n3
6) if m, n odd, 0 otherwise

10. The program will give you

85 � 5 • 17 � 22 � 92 � 62 � 72

145 � 5 • 29 � 11 � 122 � 82 � 92

185 � 5 • 37 � 42 � 132 � 82 � 112

221 � 13 • 17 � 52 � 142 � 102 � 112

377 � 13 • 29 � 42 � 192 � 112 � 162

493 � 17 • 29 � 32 � 222 � 132 � 182

etc.

12. 0.1 sin �2�t sin x sin y

18. A � ab, b � A/a, so that from (9) with m � n � 1 by differentiating with respect to
a and equating the derivative to zero, we obtain

( )
 � ( � )
 � ( � )
 � � � 0;

hence a4 � A2, a2 � A, b � A/a � a.

20. Bmn � (�1)m�nab/(mn
2)

22. Bmn � 0 (m or n even), Bmn � (m, n odd)

24. �
`

m�1

�
`

n�1

cos (
t �� ���) sin sin

m, n odd

SECTION 12.9. Laplacian in Polar Coordinates. Circular Membrane
Fourier–Bessel Series, page 579

Purpose. Detailed derivation of the transformation of the Laplacian into polar coordinates.
Derivation of the function that models vibrations of a circular membrane.

Comment on Content
The transformation is a typical case of a task often required in applications. It is done by
two applications of the chain rule.

In solving the wave equation we concentrate on the simpler case of radially symmetric
vibrations, that is, vibrations independent of the angle. (For eigenfunctions depending on
the angle, see Probs. 27–30.). We do three steps:

1. u � W(r)G(t) gives for W Bessel’s equation with � � 0, hence solutions 
W(r) � J0(kr).

2. We satisfy the boundary condition W(R) � 0 by choosing suitable values of k.

3. A Fourier–Bessel series (18) helps to get the solution (17) of the entire problem.

Short Courses. This section can be omitted.

n
y
�

b

m
x
�

a

n2

�
b2

m2

�
a2

1
�
m3n3

64a2b2

�

6

64a2b2

�

6m3n3

2a
�
A2

�2
�
a3

a2

�
A2

1
�
a2

1
�
b2

1
�
a2

�11
2

�
c2
2

if m, n even

if m, n odd

otherwise

0

16

8
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SOLUTIONS TO PROBLEMS SET 12.9, page 585

6. Team Project. (a) r2 cos 2� � r2(cos2 � � sin2 �) � x2 � y2, r2 sin 2� � 2xy, etc.

(c) u � (r sin � � r3 sin 3� � r5 sin 5� � • • •)
(d) The form of the series results as in (b), and the formulas for the coefficients follow
from

ur (R, �) � �
`

n�1

nRn�1(An cos n� � Bn sin n�) � ƒ(�).

(f ) u � �(r � 9/r)(sin �) /8 by separating variables

8. 600 r sin � � 200r3 sin 3�

10. r sin � � r2 sin 2� � r3 sin 3� � r4 sin 4� � • • •

Except for the presence of the variable r, this is just another important application of
Fourier series, and we concentrate on a few simple practically important types of
boundary values. Of course, earlier problems on Fourier series can now be modified
by introducing the powers of r and considered from the present point of view.

12. � 4(r cos � � r2 cos 2� � r3 cos 3� � r4 cos 4� � � • • •)
14. To get u � 0 on the x-axis, the idea is to extend the given potential from 0 � � � 


skew-symmetrically to the whole boundary circle r � 1; that is,

u(1, �) � {
Then you obtain (valid in the whole disk and thus in the semidisk)

u(r, �) � (r sin � � r3 sin 3� � r5 sin 5� � • • •) .

16. �2u � ux*x* � uy*y* follows by the chain rule with simplifications similar to those
in the text in the derivation of �2u in polar coordinates.

18. �m/2
 � c�m /(2
R) increases with decreasing R.

20. CAS Project. (b) Error 0.04864 (m � 1), 0.02229, 0.01435, 0.01056, 0.00835,
0.00691, 0.00589, 0.00513, 0.00454, 0.00408 (m � 10)

(c) The approximation of the partial sums is poorest for r � 0.

(d) The radii of the nodal circles are

u2: �1/�2 � 0.43565 Comparison 0.435/0.500 � 0.87

u3: �1/�3 � 0.27789 0.278/0.333 � 0.83

�2 /�3 � 0.63788 0.638/0.667 � 0.96

u4: �1/�4 � 0.2039 0.204/0.250 � 0.82

�2 /�4 � 0.4681 0.468/0.500 � 0.94

�3 /�4 � 0.7339 0.734/0.750 � 0.98.

1
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�
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We see that the larger radii are better approximations of the values of the nodes of
the string than the smaller ones. The smallest quotient does not seem to improve (to
get closer to 1); on the contrary, e.g., for u6 it is 0.80. The other ratios seem to approach
1 and so does the sum of all of them divided by m � 1.

22. The reason is that ƒ(0) � 1. The partial sums equal

1.10801 0.96823 1.01371 0.99272 1.00436 • • •

the last value having 3-digit accuracy. Musically the values indicate substantial
contributions of overtones to the overall sound.

30. �11/2
 � 0.6098 (see Table A1 in App. 5)

SECTION 12.10. Laplace’s Equation in Cylindrical and Spherical
Coordinates. Potential, page 587

Purpose. 1. Transformation of the Laplacian into cylindrical coordinates (which is trivial
because of Sec. 12.9) and spherical coordinates; some remarks on areas in which Laplace’s
equation is basic.

2. Separation of the Laplace equation in spherical coordinates and application to a typical
boundary value problem. For simplicity we consider a boundary value problem for a sphere
with boundary values depending only on �. We do three steps:

1. u � G(r)H(�) and separation gives for H Legendre’s equation.

2. Continuity requirements restrict H to Legendre polynomials.

3. A Fourier–Legendre series (18) helps to get the solution (17) of the interior problem.
Similarly for the exterior problem, whose solution is (20).

Short Courses. Omit the derivation of the Laplacian in cylindrical and spherical
coordinates.

SOLUTIONS TO PROBLEM SET 12.10, page 593

2. By (11
) in Sec. 5.3 we have

u1 � A1r cos � � 0 if � � 1_
2
.

This is the xy-plane. Similarly,

u2 � A2 (3 cos2 � � 1) � 0 if cos � �

and

u3 � A3 (5 cos3 � � 3 cos �) � 0 if cos � � 0 and �� .

6. Substituting u � u(r) into (7) gives

�2u � u� � u
 � 0, � � , ln �u
� � �2 ln �r� � c1

so that u
 � c�/r2 and u � c/r � k.

8. u � 3000/r � 40

10. u � 758.3 � 216.4 ln r. The curve in Prob. 8 lies below the present one. This is
physically plausible.

2
�
r

u�
�
u


2
�
r

3
�
5

r3

�
2

1
�
�3�

r2

�
2
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14. ƒ�(w) � w, An � �1

�1
wPn(w) dw. Since w � P1(w) and the Pn(w) are

orthogonal on the interval �1 � w � 1, we obtain A1 � 1, An � 0 (n � 0, 2, 3,
• • •). Answer: u � r cos �. Of course, this is at once seen by integration.

16. An � �


0
(sin2 �)Pn(cos �) sin � d�, {An} � {2_

3, 0, �2_
3, 0, • • •}. Hence the

potential in the interior of S is

u � � ( r2P2(cos �) � ) � � r2P2(cos �).

20. P2(cos �) � , P3(cos �) � P1(cos �)

22. Set � � and consider u(�, �, �) � rv(r , �, �). By differentiation,

u� � (v � rvr) (� ) , u�� � (2vr � rvrr) � (v � rvr).

Thus

u�� � u� � (2vr � rvrr) � r5 (vrr � vr) .

By substituting this and u�� � rv��, etc., into (7) [written in terms of �] and dividing
by r5 we obtain the result.

24. Team Project (a) The two drops over a portion of the cable of length �x are �Ri�x
and �L(�i/�t)�x, respectively. Their sum equals the difference ux�� x � ux. Divide
by �x and let �x * 0.

(c) To get the first PDE, differentiate the first transmission line equation with respect
to x and use the second equation to replace ix and ixt:

�uxx � Rix � Lixt

� R(�Gu � Cut) � L(�Gut � Cutt).

Now collect terms. Similarly for the second PDE.

(d) Set �
R

1

C
� � c2. Then ut � c2uxx, the heat equation. By (9), (10), Sec. 12.5,

u � (sin e
��1

2
t � sin e

��3
2
t � • • •) , �n

2 � .

(e) u � U0 cos (
t / (l �LC�)) sin (
x / l)

SECTION 12.11. Solutions of PDEs by Laplace Transforms, page 594

Purpose. For students familiar with Chap. 6 we show that the Laplace transform also
applies to certain PDEs. In such an application the subsidiary equation will generally be
an ODE.
Short Courses. This section can be omitted.

n2
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l2RC

3
x
�

l

1
�
3


x
�

l

4U0
�




2
�
r

1
�
�4

2
�
�

2
�
�3

1
�
�4

1
�
�2

1
�
r

3
�
5r2

8
�
5r4

1
�
3r

4
�
3r3

2
�
3

2
�
3

1
�
3

4
�
3

1
�
2

1
�
2

2n � 1
�

2

2n � 1
�

2

240 Instructor’s Manual

im12.qxd  9/21/05  5:16 PM  Page 240



SOLUTIONS TO PROBLEM SET 12.11, page 596

4. w � w(x, t), W � �{w(x, t)} � W(x, s). The subsidiary equation is

� x�{wt(x, t)} � � x(sW � w (x, 0)) � x�(1) � and w (x, 0) � 1.

By simplification,

� xsW � x � .

By integration of this first-order ODE with respect to x we obtain

W � c(s)e�sx2/2 � � .

For x � 0 we have w(0, t) � 1 and

W(0, s) � �{w(0, t)} � �{1} � � c(s) � � .

Hence c(s) � �1/s2, so that

W � � e�sx2/2 � � .

The inverse Laplace transform of this solution of the subsidiary equation is

w (x, t) � �(t � 1_
2x2) u(t � 1_

2x2) � t � 1 � {
6. W � �{w}, Wxx � (100s2 � 100s � 25)W � (10s � 5)2W. The solution of this

ODE is
W � c1(s)e�(10s�5)x � c2(s)e(10s�5)x

with c2(s) � 0, so that the solution is bounded. c1(s) follows from

W(0, s) � �{w(0, t)} � �{sin t} � � c1(s).

Hence

W � e�(10s�5)x.

The inverse Laplace transform (the solution of our problem) is

w � ��1{W} � e�5xu(t � 10x) sin (t � 10x),

a traveling wave decaying with x. Here u is the unit step function (the Heaviside
function).

8. From W � F(s)e�(x/c)�s� and the convolution theorem we have

w � ƒ∗��1{e�k�s�}, k � .
x
�
c

1
�
s2 � 1

1
�
s2 � 1

t � 1_
2x2

t � 1_
2x2.

if

if

t � 1

1_
2x2 � 1

1
�
s

1
�
s2

1
�
s2

1
�
s

1
�
s2

1
�
s

1
�
s

1
�
s2

x
�
s

�W
�
�x

x
�
s

�W
�
�x

�W
�
�x
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From this and formula 39 in Sec. 6.9 we get, as asserted,

w � �t

0
ƒ(t � �) e�k2/(4�) d�.

10. W0(x, s) � s�1e��s�x/c, �{u(t)} � 1/s, and since w(x, 0) � 0,

W(x, s) � F(s)sW0(x, s)

� F(s)[sW0(x, s) � w(x, 0)]

� F(s) � { } .

Now apply the convolution theorem.

SOLUTIONS TO CHAP. 12 REVIEW QUESTIONS AND PROBLEMS,
page 597

16. k � �6, m � �1

18. u � A(x) cos 4y � B(x) sin 4y

20. uy � v, vx � v � x � y � 1 � 0, v � c(y)e�x � x � y. By integration,

u � �v dy � c1(y)e�x � xy � 1_
2y2 � c2(x).

22. Depending on the sign of the separation constant, we obtain

u � (Aekx � Be�kx)(C cos ky � D sin ky)

u � (ax � b)(cy � d )

u � (A cos kx � B sin kx)(Ceky � De�ky).

24. u � (cos t sin x � cos 3t sin 3x � cos 5t sin 5x � � • • •)
26. u � (cos t sin x � cos 3t sin 3x � cos 5t sin 5x � • • •)
28. u � (sin e�0.004572t � sin e�0.04115t

� sin e�0.1143t � • • •)
30. u � 3 sin e�0.1143t � sin e�1.029t

32. u � 
2 � 12[(cos x)e�t � 1_
4(cos 2x)e�4t � 1_

9(cos 3x)e�9t � � • • •]

36. u � �
�

m�1

�
�

n�1

sin mx sin ny e�c2(m2�n2)t

m, n odd

38. Parabolic, y
2 � 4y
 � (y
 � 2)2 � 0, v � x, w � y � 2x; hence

u � xƒ1(y � 2x) � ƒ2(y � 2x).

1
�
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40. uxx � 5_
2uxy � uyy � 0, hyperbolic. The characteristic equation is

y
2 � 5_
2y
 � 1 � (y
 � 1_

2)(y
 � 2) � 0.

Hence the solution is

u � ƒ1(y � 1_
2x) � ƒ2(y � 2x).

42. uxx � 1_
2uxy � 1_

2uyy � 0, hyperbolic. The characteristic equation is

y
2 � 1_
2 y
 � 1_

2 � (y
 � 1_
2)(y
 � 1) � 0.

Hence the solution is

u � ƒ1(y � 1_
2x) � ƒ2(y � x).

44. �11/2
 � c
 (�1 � 1�) /2
 � 1/�2�
46. Area 
R2/2 � 1, R � �2/
�, and

ck11/(2
) � k11/(2
) � �11/(2
R) � 3.832/(2
�2/
� ) � 3.832/�8
�.

48. u � � , where r is the distance from the center of the

spheres

50. ƒ(�) � 4 cos3 �. Now, by (11
), Sec. 5.3,

cos3 � � 2_
5P3(cos �) � 3_

5P1(cos �).
Answer:

u � 8_
5r3P3(cos �) � _12

5 rP1(cos �).

u1r1 � u0r0
��

r1 � r0

(u0 � u1)r0r1
��

(r1 � r0)r
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Part D. COMPLEX ANALYSIS
Major Changes

In the previous edition, conformal mapping was distributed over several sections in the
first chapter on complex analysis. It has now been given greater emphasis by consolidation
of that material in a separate chapter (Chap. 17), which can be used independently of a
CAS (just as any other chapter) or in part supported by the graphic capabilities of a CAS.
Thus in this respect one has complete freedom.

Recent teaching experience has shown that the present arrangement seems to be
preferable over that of the 8th edition.

CHAPTER 13 Complex Numbers and Functions

SECTION 13.1. Complex Numbers. Complex Plane, page 602

Purpose. To discuss the algebraic operations for complex numbers and the representation
of complex numbers as points in the plane.

Main Content, Important Concepts

Complex number, real part, imaginary part, imaginary unit

The four algebraic operations in complex

Complex plane, real axis, imaginary axis

Complex conjugates

Two Suggestions on Content
1. Of course, at the expense of a small conceptual concession, one can also start

immediately from (4), (5),

z � x � iy, i2 � �1

and go on from there.
2. If students have some knowledge of complex numbers, the practical division rule

(7) and perhaps (8) and (9) may be the only items to be recalled in this section. (But I
personally would do more in any case.)

SOLUTIONS TO PROBLEM SET 13.1, page 606

2. Note that z � 2 � 2 i and iz � �2 � 2 i lie on the bisecting lines of the first and
second quadrants.

4. z1z2 � 0 if and only if

Re (z1z2) � x2x1 � y2y1 � 0 and Im (z1z2) � y2x1 � x2y1 � 0.

Let z2 � 0, so that x2
2 � y2

2 � 0. Now x2
2 � y2

2 is the coefficient determinant of
our homogeneous system of equations in the “unknowns” x1 and y1, so that this system
has only the trivial solution; hence z1 � 0.

8. 23 � 2i

10. �9, 16
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12. z1/z2 � �7/41 � (22/41)i, z�1/z�2 � (�z�1�/�z�2�)� � �7/41 � (22/41)i

14. �5/13 � (12/13)i, �5/13 � (12/13)i

16. 3x2y � y3, y3

18. Im [(1 � i)8z2] � Im [(2i)4z2] � Im [24z2] � 32xy

SECTION 13.2. Polar Form of Complex Numbers. Powers and Roots, 
page 607

Purpose. To give the student a firm grasp of the polar form, including the principal value
Arg z, and its application in multiplication and division.

Main Content, Important Concepts

Absolute value �z�, argument �, principal value Arg �

Triangle inequality (6)

Multiplication and division in polar form

nth root, nth roots of unity (16)

SOLUTIONS TO PROBLEM SET 13.2, page 611

2. 2(cos 1_
2� � i sin 1_

2�), 2(cos (�1_
2�) � i sin (�1_

2�))

4. �1_
4 � _1

16�� 2� (cos arctan 1_
2� � i sin arctan 1_

2�)

6. Simplification shows that the quotient equals �3. Answer: 3(cos � � i sin �).

8. Division shows that the given quotient equals

_22
41 � _7

41i.

Hence the polar form is

_1
41�222 �� 72� (cos arctan _7

22 � i sin arctan _7
22).

10. 3.09163, �3.09163. Of course, the problem should be a reminder that the principal
value of the argument is discontinuous along the negative real axis, where it jumps
by 2�.

12. � since the given value is negative real.

14. (1 � i)12 � (2i)6 � 26i6 � 26i2 � �26. Hence the principal value of the argument
is �.

Alternatively, Arg (1 � i) � 1_
4�. Times 12 gives 3�, so that the principal value of

the argument is �, as before.

16. �i

18. 2 � 2�3� i

20. �12i

22. �1, �i, �(1 � i) /�2�
24. The three values are

�3 5� (cos � � i sin �)

�3 5� (cos (� � 2_
3�) � i sin (� � 2_

3�))

�3 5� (cos (� � 4_
3�) � i sin (� � 4_

3�))

where � � 1_
3 arctan 4_

3.
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26. Team Project. (a) Use (15).

(b) Use (10) in App. 3.1 in the form

cos 1_
2� � �1_

2(1 ��cos �)�, sin 1_
2� � �1_

2(1 ��cos �)�,

multiply them by �r�,

�r� cos 1_
2� � �1_

2(r ��r cos ��)�, �r� sin 1_
2� � �1_

2(r ��r cos ��)�,

use r cos � � x, and finally choose the sign of Im �z� in such a way that 
sign [(Re �z�)(Im �z�)] � sign y.

(c) ��2�(1 � i), �(5 � 3i), �(4 � �7� i)

28. z2 � 2i, �5 � 12i, z � �(1 � i), �(2 � 3i) by (19)

30. z2 � �4i, z � �(1 � i)�2�. One of the two factors is

(z � (1 � i)�2�)(z � (1 � i)�2�) � z2 � 2�2� z � 4

and the other is

(z � (�1 � i)�2�)(z � (�1 � i)�2�) � z2 � 2�2�z � 4.

The product equals z4 � 16.

32. �z� � �x2 � y�2� � �x�, etc.

SECTION 13.3. Derivative. Analytic Function, page 612

Purpose. To define (complex) analytic functions—the class of functions complex analysis
is concerned with—and the concepts needed for that definition, in particular, derivatives.

This is preceded by a collection of a few standard concepts on sets in the complex plane
that we shall need from time to time in the chapters on complex analysis.

Main Content, Important Concepts

Unit circle, unit disk, open and closed disks

Domain, region

Complex function

Limit, continuity

Derivative

Analytic function

Comment on Content
The most important concept in this section is that of an analytic function. The other
concepts resemble those of real calculus. The most important new idea is connected with
the limit: the approach in infinitely many possible directions. This yields the negative
result in Example 4 and—much more importantly—the Cauchy–Riemann equations in
the next section.

SOLUTIONS TO PROBLEM SET 13.3, page 617

2. Closed annulus bounded by circles of radii 1 and 5 centered at 1 � 4i

4. Open vertical strip of width 2�

6. Open half-plane extending from the vertical line x � �1 to the right
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8. Angular region of angle �/2 symmetric to the positive x-axis

10. We obtain

Re � 	 1, x 	 x2 � y2, 	 (x � )2

� y2.

This is the exterior of the circle of radius 1_
2 centered at 1_

2.

12. 3x2 � 3y2 � 6x � i(6xy � 6y � 3); the value is �3 � 9i.

14. The given function is (multiply by 1 � z�)

ƒ �

which shows Re ƒ and Im ƒ. The value at the given z is 1.6 � 0.8i.

16. No, since r2(cos 2�) /r2 � cos 2�

18. Yes, since (r2/r) cos � * 0 as r * 0.

20. (1 � )
 �

22. 0. This is the case in which a linear fractional transformation (Möbius transformation)
has derivative identically zero. We shall discuss this in Sec. 17.2. The given function
equals �2i.

24. � �

26. Team Project. (a) Use Re ƒ(z) � [ƒ(z) � ƒ�(�z�)�]/2, Im ƒ(z) � [ƒ(z) � ƒ�(�z�)�]/2i.

(b) Assume that lim z*z0
ƒ(z) � l1, lim z*z0

ƒ(z) � l2, l1 � l2. For every � � 0 there
are 
1 � 0 and 
2 � 0 such that

�ƒ(z) � lj� 	 � when 0 	 �z � z0� 	 
j, j � 1, 2.

Hence for � � �l1 � l2�/2 and 0 	 �z � z0� 	 
, where 
 � 
1, 
 � 
2, we have

�l1 � l2� � �[ƒ(z) � l2] � [ƒ(z) � l1]�
� �ƒ(z) � l2� � �ƒ(z) � l1� 	 2� � �l1 � l2�.

(c) By continuity, for any � � 0 there is a 
 � 0 such that �ƒ(z) � ƒ(a)� 	 � when
�z � a� 	 
. Now �zn � a� 	 
 for all sufficiently large n since lim zn � a. Thus
�ƒ(zn) � ƒ(a)� 	 � for these n.

(d) The proof is as in calculus. We write

� ƒ
(z0) � �.

Then from the definition of a limit it follows that for any given � � 0 there is a 
 � 0
such that ��� 	 � when �z � z0� 	 
. From this and the triangle inequality,

�ƒ(z) � ƒ(z0)� � �z � z0��ƒ
(z0) � �� � �z � z0� �ƒ
(z0)� � �z � z0��,

which approaches 0 as �z � z0� * 0.

(e) The quotient in (4) is �x/�z, which is 0 if �x � 0 but 1 if �y � 0, so that it has
no limit as �z * 0.

(f) � � z � z� � ��z�.
��z�
�
�z

(z � �z)(z� � ��z�) � zz�
���

�z

ƒ(z � �z) � ƒ(z)
��

�z

ƒ(z) � ƒ(z0)
��

z � z0

2iz
�
(z � i)3

2z2

�
(z � i)3

2z
�
(z � i)2

20z
��
(z2 � 1)2

10
�
z2 � 1

1 � x � iy
��
(1 � x)2 � y2

1
�
2

1
�
4

x
�
x2 � y2

1
�
z
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When z � 0 the expression on the right approaches zero as �z * 0. When z � 0 and

�z � �x, then ��z� � �x and that expression approaches z � z�. When z � 0 and
�z � i�y, then ��z� � �i�y and that expression approaches �z � z�. This proves the
statement.

SECTION 13.4. Cauchy–Riemann Equations. Laplace’s Equation, page 618

Purpose. To derive and explain the most important equations in this chapter, the
Cauchy–Riemann equations, a system of two PDEs, which constitute the basic criterion
for analyticity.

Main Content, Important Concepts

Cauchy–Riemann equations (1)

These equations as a criterion for analyticity (Theorems 1 and 2)

Derivative in terms of partial derivatives, (4), (5)

Relation of analytic functions to Laplace’s equation

Harmonic function, harmonic conjugate

Comment on Content
(4), (5), and Example 3 will be needed occasionally.

The relation to Laplace’s equation is basic, as mentioned in the text.

SOLUTIONS TO PROBLEM SET 13.4, page 623

2. No

4. Yes when z � �1, �i

6. No

8. Yes

10. Yes when z � 0

12. ƒ(z) � �iz2/2

14. ƒ(z) � 1/z

16. ƒ(z) � �Arg z � i ln �z�
18. No

20. ƒ(z) � cos x cosh y � i sin x sinh y � cos z (to be introduced in Sec. 13.6)

22. a � 3, e3x sin 3y

24. a � b � 0, v � const

26. Team Project. (a) u � const, ux � uy � 0, vx � vy � 0 by (1), v � const, and 
ƒ � u � iv � const.

(b) Same idea as in (a).

(c) ƒ
 � ux � ivx � 0 by (4). Hence vy � 0, uy � 0 by (1), ƒ � u � iv � const.

SECTION 13.5. Exponential Function, page 623

Purpose. Sections 13.5�13.7 are devoted to the most important elementary functions in
complex, which generalize the corresponding real functions, and we emphasize properties
that are not apparent in real.
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Basic Properties of the Exponential Function

Derivative and functional relation as in real

Euler formula, polar form of z

Periodicity with 2�i, fundamental region

ez � 0 for all z

SOLUTIONS TO PROBLEM SET 13.5, page 626

2. �20.086, 20.086

4. �ie�2� � �4.11325 i, 4.11325

6. �e� � �23.1407, 23.1407

8. i, 1

10. exp (x3 � 3xy2)(cos (3x2y � y3) � i(sin (3x2y � y3))

12. e1/ z � exp ( )(cos � i sin )
14. �2� e�i/4

16. 5 exp (i arctan 4_
3)

18. z � 1_
3(ln 4 � 2n� i), n � 0, 1, • • •

20. No solutions

22. Team Project. (a) e1/z is analytic for all z � 0. ez� is not analytic for any z. The last
function is analytic if and only if k � 1.

(b) (i) ex sin y � 0, sin y � 0. Answer: On the horizontal lines y � �n�, 
n � 0, 1, • • • . (ii) e�x 	 1, x � 0 (the right half-plane).

(iii) ez� � ex�iy � ex(cos y � i sin y) � e�x�(�c�o�s��y�����i��s�i�n��y�)� � e�z�. Answer: All z.

(d) ƒ
 � ux � ivx � ƒ � u � iv, hence ux � u, vx � v. By integration,

u � c1(y)ex, v � c2(y)ex.

By the first Cauchy–Riemann equation,

ux � vy � c
2ex, thus c1 � c
2 (
 � d/dy).

By the second Cauchy–Riemann equation,

uy � c
1ex � �vx � �c2ex, thus c
1 � �c2.

Differentiating the last equation with respect to y, we get

c�1 � �c
2 � �c1, hence c1 � a cos y � b sin y.

Now for y � 0 we must have

u(x, 0) � c1(0)ex � ex, c1(0) � 1, a � 1,

v(x, 0) � c2(0)ex � 0, c2(0) � 0.

Also, b � c
1(0) � �c2(0) � 0. Together c1(y) � cos y. From this,

c2(y) � �c
1(y) � sin y.

This gives ƒ(z) � ex(cos y � i sin y).

y
�
x2 � y2

y
�
x2 � y2

x
�
x2 � y2
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SECTION 13.6. Trigonometric and Hyperbolic Functions, page 626

Purpose. Discussion of basic properties of trigonometric and hyperbolic functions, with
emphasis on the relations between these two classes of functions as well as between them
and the exponential function; here we see on an elementary level that investigation of
special functions in complex can add substantially to their understanding.

Main Content

Definitions of cos z and sin z (1)

Euler’s formula in complex (5)

Definitions of cosh z and sinh z (11)

Relations between trigonometric and hyperbolic functions

Real and imaginary parts (6) and Prob. 3

SOLUTIONS TO PROBLEM SET 13.6, page 629

4. The right side is

cosh z1 cosh z2 � sinh z1 sinh z2

� (ez1 � e�z1)(ez2 � e�z2) � (ez1 � e�z1)(ez2 � e�z2).

If we multiply out, then because of the minus signs the products ez1e�z2 and e�z1ez2

cancel in pairs. There remains, as asserted,

2 • 1_
4(ez1�z2 � e�z1�z2) � cosh (z1 � z2).

Similarly for the other formula.

6. Special case of the first formula in Prob. 4.

8. sin 1 cosh 1 � i cos 1 sinh 1 � 1.2985 � 0.63496 i

10. cosh 3� � 6195.8

12. The two expressions are equal because of (14) or (15). We thus obtain, for instance,

sin (2 � �i) � sin 2 cosh � � i cos 2 sinh � � 10.541 � 4.8060 i.

14. sinh 4 cos 3 � i cosh 4 sin 3 � �27.017 � 3.8537i

16. We obtain

tan z � � .

Hence the denominator is (use cosh2 y � sinh2 y � 1 to simplify)

cos2 x cosh2 y � sin2 x sinh2 y � cos2 x � sinh2 y.

Insert sin z and cos z into the numerator and multiply out. Then for the real part of
the product you get

sin x cos x cosh2 y � cos x sin x sinh2 y � sin x cos x

and for the imaginary part, using sin2 x � cos2 x � 1, you get

sin2 x cosh y sinh y � cos2 x cosh y sinh y � cosh y sinh y.

sin z c�o�s��z�
��

�cos z�2
sin z
�
cos z

1
�
4

1
�
4
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18. cos x sinh y � 0, x � 1_
2� � 2n�, cosh y � 100, cosh y � 1_

2ey for large y, ey � 200,
y � 5.29832 (agrees to 4D with the solution of cosh y � 100).

Answer: z � 1_
2� � 2n� � 5.29832i.

20. (a) cosh x cos y � �1, (b) sinh x sin y � 0. From (b) we have x � 0 or y � �n�.
Then y � (2n � 1)� and x � 0 from (a). Answer: z � (2n � 1)�i.

22. (a) sin x sinh y � 0, y � 0 or x � n� (parallels to the y-axis)

(b) cos x sinh y � 0, y � 0 or x � 1_
2(2n � 1)�, where n � 0, �1, �2, • • •

24. From (7a) we obtain

�cos z�2 � cos2 x � sinh2 y � cos2 x � cosh2 y � 1.

Hence �cos z�2 � sinh2 y from the first equality, and �cos z�2 � cosh2 y from the second
equality. Now take the square root.

The inequality for �sin z� is obtained similarly.

SECTION 13.7. Logarithm. General Power, page 630

Purpose. Discussion of the complex logarithm, which extends the real logarithm ln x
(defined for positive x) to an infinitely many-valued relation (3) defined for all z � 0;
definition of general powers zc.

Comment on Notation
ln z is also denoted by log z, but for the engineer, who also needs logarithms log x of base
10, the notation ln is more practical; this notation is widely used in mathematics.

Important Formulas

Real and imaginary parts (1)

Relation of the principal value to the other values (3)

Relations between ln and the exponential function (4)

Functional relation in complex (5)

Derivative (6)

General power (8)

SOLUTIONS TO PROBLEM SET 13.7, page 633

2. 1_
2 ln 8 � 1_

4�i

4. ln 5.001 � 0.02i (approximately)

6. ln 100 � �i � 4.605 � 3.142i

8. 1 � 1_
2�i

10. �2n�i, n � 0, 1, • • •

12. 1 � 2n�i, n � 0, 1, • • •

14. ln 5 � (arctan 3_
4 � 2n�)i, n � 0, 1, • • •

16. ln �e3i� � i arctan ( ) � 2n�i � 0 � 3i � 2n�i; see also (4b).

18. �e2�i

20. ee�� i � �ee � �15.154

sin 3
�
cos 3
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22. i2 i � e2 i Ln i � e2 i•i�/2 � e��,

(2i)i � ei Ln 2i � ei(ln 2�� i/2) � e��/2[cos (ln 2) � i sin (ln 2)]

24. e(1�i)Ln(1�i) � e(1�i)(ln�2��� i/4)

� exp (ln �2� � �i/4 � i ln �2� � �/4)

� �2�e�/4(cos (�1_
4� � ln �2�) � i sin (�1_

4� � ln �2�))

� 2.8079 � 1.3179i.

Note that this is the complex conjugate of the answer to Prob. 25.

26. e(1�2i)Ln (�1) � e(1�2i)� i � e� i�2� � �e2�

28. We obtain

exp (1_
3 Ln (3 � 4i)) � exp (1_

3(ln 5 � i arctan 4_
3))

� �3 5� [cos (1_
3 arctan 4_

3) � i sin (1_
3 arctan 4_

3)]
� 1.6289 � 0.5202i.

30. Team Project. (a) w � arccos z, z � cos w � 1_
2(eiw � e�iw). Multiply by 2eiw to

get a quadratic equation in eiw,

e2iw � 2zeiw � 1 � 0.

A solution is eiw � z � �z2 � 1�, and by taking logarithms we get the given formula

arccos z � w � �i ln (z � �z2 � 1�).

(b) Similarly,

z � sin w � (eiw � e�iw),

2izeiw � e2iw � 1,

e2iw � 2izeiw � 1 � 0,

eiw � iz � ��z2 �� 1�.

Now take logarithms, etc.

(c) cosh w � 1_
2(ew � e�w) � z, (ew)2 � 2zew � 1 � 0, ew � z � �z2 � 1�. Take

logarithms.

(d) z � sinh w � 1_
2(ew � e�w), 2zew � e2w � 1, ew � z � �z2 � 1�. Take logarithms.

(e) z � tan w � � �i � �i ,

e2iw � , w � ln � ln

(f) This is similar to (e).

SOLUTIONS TO CHAP. 13 REVIEW QUESTIONS AND PROBLEMS,
page 634

2. 5�29� e�0.2630i, 5e0.9273i

16. (2i)6 � �64

18. 3/58 � (7/58)i

i � z
�
i � z

i
�
2

i � z
�
i � z

1
�
2i

i � z
�
i � z

e2iw � 1
�
e2iw � 1

eiw � e�iw

��
eiw � e�iw

sin w
�
cos w

1
�
2i
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20. �(2 � 3i)

22. �10� e�i arctan 3 � 3.1623 e�1.2490i

24. e�i arctan (1/2)

26. �8� e� i/4

28. �4, �4i

30. �(6 � 2i)

32. ƒ(z) � �e�3z

34. ƒ(z) � cos 2z

36. No

38. �e�x/2 sin 1_
2y. Problems 36–39 are in principle of the same kind as Probs. 31–35. We

have included them here as a reminder that in using real or imaginary parts of an
analytic function we are dealing with harmonic functions (to whose applications a
whole chapter (Chap. 18) will be devoted, perhaps as the most important aspect of
complex analysis from the viewpoint of the engineer and physicist).

40. sin 3 cosh 4� � i cos 3 sinh 4� � 20233 � 141941i. This is a reminder of the growth
of the complex sine, as opposed to the sine in calculus whose absolute value never
gets greater than 1 for all real x.

42. �cosh 2 � �3.7622

44. We obtain

� 0.2718 � 1.0839i.
sin 1 cos 1 � i sinh 1 cosh 1
���

cos2 1 � sinh2 1
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CHAPTER 14 Complex Integration

Change

We now discuss the two main integration methods (indefinite integration and integration
by the use of the representation of the path) directly after the definition of the integral,
postponing the proof of the first of these methods until Cauchy’s integral formula is
available in Sec. 14.2. This order of the material seems desirable from a practical point
of view.

Comment
The introduction to the chapter mentions two reasons for the importance of complex
integration. Another practical reason is the extensive use of complex integral
representations in the higher theory of special functions; see for instance, Ref. [GR10]
listed in App. 1.

SECTION 14.1. Line Integral in the Complex Plane, page 637

Purpose. To discuss the definition, existence, and general properties of complex line
integrals. Complex integration is rich in methods, some of them very elegant. In this
section we discuss the first two methods, integration by the use of path and (under suitable
assumptions given in Theorem 1!) by indefinite integration.

Main Content, Important Concepts

Definition of the complex line integral

Existence

Basic properties

Indefinite integration (Theorem 1)

Integration by the use of path (Theorem 2)

Integral of 1/z around the unit circle (basic!)

ML-inequality (13) (needed often in our work)

Comment on Content
Indefinite integration will be justified in Sec. 14.2, after we have obtained Cauchy’s
integral theorem. We discuss this method here for two reasons: (i) to get going a little
faster and, more importantly, (ii) to answer the students’ natural question suggested by
calculus, that is, whether the method works and under what condition—that it does not
work unconditionally can be seen from Example 7!

SOLUTIONS TO PROBLEM SET 14.1, page 645

2. Vertical straight segment from 5 � 6i to 5 � 6i

4. Circle, center 1 � i, radius 1, oriented clockwise, touching the axes

6. Semicircle, center 3 � 4i, radius 5, passing through the origin

8. Portion of the parabola y � 2(x � 1)2 from �1 � 8i to 3 � 8i, apex at x � 1

10. z(t) � 1 � i � (3 � 3i)t (0 � t � 1)

12. z(t) � a � ib � [c � a � i(d � b)]t (0 � t � 1)
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14. z(t) � a cos t � ib sin t (0 � t � �)

16. z(t) � 2 � 3i � 4eit (0 � t � 2�) counterclockwise. For clockwise orientation the
exponent is �it.

18. Ellipse, z(t) � 1 � 3 cos t � (�2 � 2 sin t) i (0 � t � 2�)

20. z(t) � t � it2 (0 � t � 1), dz � (1 � 2it) dt, Re z(t) � t, so that

�1

0
t(1 � 2it) dt � 1_

2 � 2_
3i.

This differs from Prob. 19. The integrand is not analytic!

22. �cos z �02i � 1 � cosh 2 by the first method

24. By linearity we can integrate the two terms separately. The integral of z is 0 by
Theorem 1. The integral of 1/z is 2�i; see Example 5.

26. z(t) � t � it2 (�1 � t � 1), z
.
(t) � 1 � 2it, z� � t � it2, so that

�1

�1
(t � it2)(1 � 2it) dt � �1

�1
(2t3 � it2 � t) dt � 1_

3it3 j1

�1

� 2_
3i.

28. Im z2 � 2xy is 0 on the axes. Thus the only contribution to the integral comes from
the segment from 1 to i, represented by, say,

z(t) � 1 � t � it (0 � t � 1).

Hence z
.
(t) � �1 � i, and the integral is

�1

0
2(1 � t) t(�1 � i) dt � 2(�1 � i) �1

0
(t � t2) dt � 1_

3(�1 � i).

30. 1_
3z3�1�i

�1�i � �4_
3 � 4_

3i, etc.

32. �Re z� � �x� � 1 � M on C, L � �2�. The absolute value of the integral is 1/�2� (see
the answer to Prob. 19).

Applications will show that the point of the ML-inequality is to have an upper
bound, regardless of how accurate it is. In a typical application the bound is used to
show that a quantity remains bounded, in particular in some limit process, or
sometimes may go to 0 in the limit. This point should be emphasized and explained
to the student when applications arise in further work.

34. Team Project. (b) (i) 12.8i, (ii) 1_
2(e2�4i � 1)

(c) The integral of Re z equals 1_2�2 � 2ai. The integral of z equals 1_2�2. The integral
of Re (z2) equals �3/3 � �a2/2 � 2a�i. The integral of z2 equals �3/3.

(d) The integrals of the four functions in (c) have for the present paths the values
1_
2a�i, 0, (4a2 � 2)i/3, and �2i/3, respectively.

Parts (c) and (d) may also help in motivating further discussions on path
independence and the principle of deformation of path.

SECTION 14.2. Cauchy’s Integral Theorem, page 646

Purpose. To discuss and prove the most important theorem in this chapter, Cauchy’s
integral theorem, which is basic by itself and has various basic consequences to be
discussed in the remaining sections of the chapter.
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Main Content, Important Concepts

Simply connected domain

Cauchy’s integral theorem, Cauchy’s proof

(Goursat’s proof in App. 4)

Independence of path

Principle of deformation of path

Existence of indefinite integral

Extension of Cauchy’s theorem to multiply connected domains

SOLUTIONS TO PROBLEM SET 14.2, page 653

2. 0, yes, since 3z � �i, z � �i/3 lies outside the unit circle.

4. 1/z� � 1/e�it � eit; hence dz/z� � eitieit dt. Answer: 0, no

6. 0, yes, because cos (z/2) � 0 for z � �� etc., and these points lie outside the unit
circle.

8. 1/(4z � 3) � , so that the integral equals 1_
4 � 2�i � 1_

2�i by the principle of

deformation of path. The theorem does not apply.

10. 0, no; here z�
2 dz � e�2itieit dt.

12. (a) Yes. (b) No, since we would have to move the contour across �2i, where 
1/(z2 � 4) is not analytic.

14. (a) z � 0 outside C, (b) z � 0, �1, �i outside C, (c) 0, �3i outside C.

16. No, because of the principle of deformation of path.

18. Team Project. (b) (i) � � . From this, the principle

of deformation of path, and (3) we obtain the answer

4 • 2�i � 2 • 2�i � 4�i.

(ii) Similarly,

� � .

Now z � �2 lies outside the unit circle. Hence the answer is 1_
2 • 2�i � �i.

(c) The integral of z, Im z, z2, Re z2, Im z2 equals 1/2, a/6, 1/3, 1/3 � a2/30 � ia/6,
a/6 � ia2/30, respectively. Note that the integral of Re z2 plus i times the integral of
Im z2 must equal 1/3. Of course, the student should feel free to experiment with any
functions whatsoever.

20. cosh z � 0 at ��i/2, �3�i/2, • • • , which all lie outside C. Answer: 0.

22. The partial fraction reduction is

� .

Answer: 2�i(3 � 4) � 14�i.

24. 0

26. 0, because the branch cut extends from �2 to the left, outside C.

4
�
z � 2

3
�
z

1/2
�
z � 2

1/2
�

z

z � 1
�
z2 � 2z

2
�
z � i/2

4
�
z � i/2

2z � 3i
�
z2 � 1/4

1/4
�
z � 3/4
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28. The partial fraction reduction is

( � ) .

Answer: (a) 2�i(�1/2i) � ��, (b) �

30. 0, because z � ��, �3�, • • • as well as �2 and �2i lie outside the contour C.

SECTION 14.3. Cauchy’s Integral Formula, page 654

Purpose. To prove, discuss, and apply Cauchy’s integral formula, the second major
consequence of Cauchy’s integral theorem (the first being the justification of indefinite
integration).

Comment on Examples
The student has to find out how to write the integrand as a product ƒ(z) times 1/(z � z0), and
the examples (particularly Example 3) and problems are designed to give help in that technique.

SOLUTIONS TO PROBLEM SET 14.3, page 657

2. 0 by Cauchy’s integral theorem; �2i lie outside C.

4. 0 by Cauchy’s integral theorem

6. ƒ(z) � e3z/3. Answer: 1_
3 � 2�iei � 2_

3�i(cos 1 � i sin 1) � �1.7624 � 1.1316i

8. z0 � 1. Answer: 2�i/2 � �i

10. z0 � 2i. Answer: 2�ie2i � �2� sin 2 � 2�i cos 2 � �5.7133 � 2.6147i

12. 2�i tan i � �2� tanh 1 � �4.7852

14. z0 � i lies inside �z � 2i� � 2, and the corresponding integral equals

2�i(Ln (1 � i))/(2i) � � Ln (1 � i)

� � (ln �2� � 1_
4�i) � 1.089 � 2.467i.

The integral over the other circle is 0 because z0 � �i lies outside.

16. z � 2i lies in the annulus bounded by the two given circles of C, but z � 0 does not.
We thus obtain

2�i j
z�2i

� �i sinh 2 � 11.394i.

18. For z1 � z2 use Example 6 in Sec. 14.1 with m � �2. For z1 � z2 use partial fractions

� � .

20. Team Project. (a) Eq. (2) is

�
C

dz � [( )3

� 6] �
C

� �
C

dz

� (� � 6)2�i � �
C
(z2 � iz � ) dz � � � 12�i

because the last integral is zero by Cauchy’s integral theorem. The result agrees with
that in Example 2, except for a factor 2.

1
�
4

1
�
4

1
�
2

i
�
8

z3 � (1_
2i)3

��
z � 1_

2i

dz
�
z � 1_

2i

i
�
2

z3 � 6
�
z � 1_

2i

1
��
(z1 � z2)(z � z2)

1
��
(z1 � z2)(z � z1)

1
��
(z � z1)(z � z2)

sin z
�

z

1
�
z � i

1
�
z � i

1
�
2i
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(b) Using (12) in App. A3.1, we obtain (2) in the form

�
C

dz � (sin 1_
2�) �

C
� �

C
dz

� 2�i � �
C

dz.

As 	 in Fig. 354 approaches 0, the integrand approaches 0.

SECTION 14.4. Derivatives of Analytic Functions, page 658

Purpose. To discuss and apply the most important consequence of Cauchy’s integral
formula, the theorem on the existence and form of the derivatives of an analytic function.

Main Content

Formulas for the derivatives of an analytic function (1)

Cauchy’s inequality

Liouville’s theorem

Morera’s theorem (inverse of Cauchy’s theorem)

Comments on Content
Technically the application of the formulas for derivatives in integration is practically the
same as that in the last section.

The basic importance of (1) in giving the existence of all derivatives of an analytic
function is emphasized in the text.

SOLUTIONS TO PROBLEM SET 14.4, page 661

2. (2�i/3!)(�cos (�i/2)) � �(�i/3) cosh 1_
2�

4. (2�i/(2n)!)(�1)ncos 0 � (�1)n � 2�i/(2n)!

6. z0 � �1 lies inside C. Hence the integral equals

2�i ( � sin z) j
z��1

� 2�i(1_
2 � sin 1) � 8.429i.

8. 2�iea/(n � 1)! if �a� 
 2 and 0 if �a� � 2.

10. 0 by Cauchy’s integral theorem for a doubly connected domain; see (6) in Sec. 14.2.

12. z � 0 lies outside the “annulus” bounded by the two circles of C. The point z � 2i
lies inside the larger circle but outside the smaller. Hence the integral equals
(differentiate once)

2�i ( � ) j
z�2i

� 2�i ( � ) � �e4i(2 � 1_
2 i).

14. Team Project. (a) If no such z existed, we would have �ƒ(z)� � M for every �z�,
which means that the entire function ƒ(z) would be bounded, hence a constant by
Liouville’s theorem.

e4i

�
�4

2e4i

�
2i

e2z

�
z2

2e2z

�
z

1
�
z � 3

2 sin (1_
2z � 1_

4�) cos (1_
2z � 1_

4�)
����

z � 1_
2�

sin z � sin 1_
2�

��
z � 1_

2�

dz
�
z � 1_

2�

sin z
�
z � 1_

2�
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(b) Let ƒ(z) � c0 � c1z � • • • � cnzn � zn(cn � � • • • � ) , cn � 0,
n � 0. Set �z� � r. Then

�ƒ(z)� � rn (�cn� � � • • • � )
and �ƒ(z)� � 1_

2rn�cn� for sufficiently large r. From this the result follows.

(c) �ez� � M for real z � x with x � R � ln M. On the other hand, �ez� � 1 for any
pure imaginary z � iy because �eiy� � 1 for any real y (Sec. 13.5).

(d) If ƒ(z) � 0 for all z, then g � 1/ƒ would be analytic for all z. Hence by (a) there
would be values of z exterior to every circle �z� � R at which, say, �g(z)� � 1 and thus
�ƒ(z)� 
 1. This contradicts (b). Hence ƒ(z) � 0 for all z cannot hold.

SOLUTIONS TO CHAP. 14 REVIEW QUESTIONS AND PROBLEMS,
page 662

16. (2 � i)4 � (2 � i)2 � ((�i)4 � (�i)2) � �4 � 28i

18. 0

20. 2�i(ez2
)� j

z�1

� 4�ie

22. z1(t) � t (0 � t � 4), z2(t) � 4 � it (0 � t � 3). Answer: 8 � 12i

24. 0

26. z(t) � reit. Hence

�2�

0
(r sin t)ireit dt � ir2 �2�

0
(sin t cos t � i sin2 t) dt � ��r2.

28. 2�i�/(cos2 �z) j
z�1

� 2�2i

30. (6z � sin z) j
z�i

� �i(6i � i sinh 1) � �(sinh 1 � 6) � �15.158
2�i
�
2!

�c0�
�
rn

�cn�1�
�

r

c0
�
zn

cn�1
�

z
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CHAPTER 15 Power Series, Taylor Series

Power series and, in particular, Taylor series, play a much more fundamental role in
complex analysis than they do in calculus. The student may do well to review what has
been presented about power series in calculus but should become aware that many new
ideas appear in complex, mainly owing to the use of complex integration.

SECTION 15.1. Sequences, Series, Convergence Tests, page 664

Purpose. The beginnings on sequences and series in complex is similar to that in calculus
(differences between real and complex appear only later). Hence this section can almost be
regarded as a review from calculus plus a presentation of convergence tests for later use.

Main Content, Important Concepts

Sequences, series, convergence, divergence

Comparison test (Theorem 5)

Ratio test (Theorem 8)

Root test (Theorem 10)

SOLUTIONS TO PROBLEM SET 15.1, page 672

2. Bounded, divergent, 8 limit points (the values of �8 1�)

4. Unbounded, divergent

6. Bounded, convergent to 0 (the terms of the Maclaurin series of e3�4i)

8. Divergent. All terms have absolute value 1.

10. Convergent to 0

12. Let �1 and �2 be two limits, d � ��1 � �2� and � � d/3. Then there is an N(�) such
that

�zn � �1� � �, �zn � �2� � � for all n � N.

This is impossible because the disks �z � �1� � � and �z � �2� � � are disjoint.

14. The sequences are bounded, �zn� � K, �zn*� � K. Since they converge, for an � � 0
there is an N such that �zn � �� � �/(3K), �zn* � �*� � �/(3���) (� � 0; the case � � 0
is rather trivial), hence

�znzn* � ��*� � �(zn � �)zn* � (zn* � �*)��

� �zn � �� �zn*� � �zn* � �*� ���

� �/3 � �/3 � � (n � N).

16. Convergent. Sum e10�15i

18. Convergent because � and �
	

n�1

converges.

20. Divergent because 1/ln n � 1/n and the harmonic series diverges.

22. By the ratio test it converges because after simplification

j j � * .
�2�


27

(n � 1)3�1 � i�




(3n � 3)(3n � 2)(3n � 1)

zn�1



zn

1


n2

1


n2

1


�n2 � 2i�
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24. Convergent by the ratio test because j j *

30. Team Project. (a) By the generalized triangle inequality (6*), Sec. 13.2, we have

�zn�1 � • • • � zn�p� � �zn�1� � �zn�2� � • • • � �zn�p�.

Since �z1� � �z2� � • • • converges by assumption, the sum on the right becomes
less than any given � � 0 for every n greater than a sufficiently large N and 
p � 1, 2, • • • , by Cauchy’s convergence principle. Hence the same is true for the
left side, which proves convergence of z1 � z2 � • • • by the same theorem.

(c) The form of the estimate of Rn suggests we use the fact that the ratio test is a
comparison test based on the geometric series. This gives

Rn � zn�1 � zn�2 � • • • � zn�1 (1 � � � • • •) ,

j j � q, j j � j j � q2, etc.,

�Rn� � �zn�1� (1 � q � q2 � • • •) � .

(d) For this series we obtain the test ratio

j • j � ��
� ��� � ;

from this with q � 1/2 we have

�Rn� � � � � 0.05.

Hence n � 5 (by computation), and

s � � i � 0.96875 � 0.688542i.

Exact to 6 digits is 1 � 0.693147i.

SECTION 15.2. Power Series, page 673

Purpose. To discuss the convergence behavior of power series, which will be basic to
our further work (and which is simpler than that of series having arbitrary complex
functions as terms).
Comment. Most complex power series appearing in practical work and applications have
real coefficients because most of the complex functions of practical interest are obtained
from calculus by replacing the real variable x with the complex variable z � x � iy,
retaining the real coefficients. Accordingly, in the problem set we consider primarily power
series with real coefficients, also because complex coefficients would neither provide
additional difficulties nor contribute new ideas.

661


960

31


32

�(n � 1�)2 � 1�




2n(n � 1)

�n � 1 � i�



2n(n � 1)

�zn�1�


1 � q

1


2

n4 � 2n3 � 2n2





n4 � 2n3 � 2n2 � 2n � 1

1


2

(n � 1)2 � 1




n2 � 1

n


2(n � 1)

n


n � i

n � 1 � i




n � 1

1


2

�zn�1�


1 � q

zn�2


zn�1

zn�3


zn�2

zn�3


zn�1

zn�2


zn�1

zn�3


zn�1

zn�2


zn�1

1


3

(i/3)n�1



(i/3)n

(n � 1)2



n2
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Proof of the Assertions in Example 6
R � 1/L� follows from R � 1/ l�by noting that in the case of convergence, L� � l�(the only
limit point). l� exists by the Bolzano–Weierstrass theorem, assuming boundedness of

{�n �an��}. Otherwise, �n �an�� � K for infinitely many n and any given K. Fix z � z0 and
take K � 1/�z � z0� to get

�n �an(z �� z0)n�� � K�z � z0� � 1

and divergence for every z � z0 by Theorem 9, Sec. 15.1.
Now, by the definition of a limit point, for a given � � 0 we have for infinitely many n

l�� � � �n �an�� � l�� �;

hence for all z � z0 and those n,

(*) (l�� �)�z � z0� � �n �an(z �� z0)n�� � (l�� �)�z � z0�.

The right inequality holds even for all n � N (N sufficiently large), by the definition of
a greatest limit point.

Let l�� 0. Since �n �an�� � 0, we then have convergence to 0. Fix any z � z1 � z0. Then
for � � 1/(2�z1 � z0�) � 0 there is an N such that �n �an�� � � for all n � N; hence

�an(z1 � z0)n� � �n�z1 � z0�n � ,

and convergence for all z1 follows by the comparison test.
Let l�� 0. We establish 1/ l�as the radius of convergence of (1) by proving

convergence of the series (1) if �z � z0� � 1/ l�,

divergence of the series (1) if �z � z0� � 1/ l�.

Let �z � z0� � 1/ l�. Then, say, �z � z0� l�� 1 � b � 1. With this and
� � b/(2�z � z0�) � 0 in (*), for all n � N,

�n �an(z �� z0)n�� � l��z � z0� � ��z � z0� � 1 � b � 1_
2b � 1.

Convergence now follows from Theorem 9, Sec. 15.1.
Let �z � z0� � 1/ l�. Then �z � z0� l�� 1 � c � 1. With this and � � c/(2�z � z0�) � 0

in (*), for infinitely many n,

�n �an(z �� z0)n�� � l��z � z0� � ��z � z0� � 1 � c � 1_
2c � 1,

and divergence follows.

SOLUTIONS TO PROBLEM SET 15.2, page 677

4. Center �2 i. In (6) we have

� � *

as is shown in calculus.

6. 0, 	 because by (6)

• � * 	.
n � 1



2100

(n � 1)!


2100(n�1)

2100n



n!

1


e

1



(1 � 1/n)n

nn



(n � 1)n

nn(n � 1)!



n!(n � 1)n�1

1


2n
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8. 0, 	. The sum is the Bessel function J0(z).

10. 0, 	. The sum is cosh 2z.

12. 5, �2�/4, where �2� � �1 � i�.
14. 0, 	. The sum is cos z.

16. �, �(5 � i) /(2 � 3i)� � �2�
18. ��i. In (6),

* � .

20. Team Project. (a) The faster the coefficients go to zero, the larger �an/an�1�
becomes.

(b) (i) Nothing. (ii) R is multiplied by 1/k. (iii) The new series has radius of
convergence 1/R.

(c) In Example 6 we took the first term of one series, then the first term of the other,
and so on alternately. We could have taken, for instance, the first three terms of one
series, then the first five terms of the other, then again three terms and five terms,
and so on; or we could have mixed three or more series term by term.

(d) No because �30 � 10i� � �31 � 6i�.

SECTION 15.3. Functions Given by Power Series, page 678

Purpose. To show what operations on power series are mathematically justified and to
prove the basic fact that power series represent analytic functions.

Main Content

Termwise addition, subtraction, and multiplication of power series

Termwise differentiation and integration (Theorems 3, 4)

Analytic functions and derivatives (Theorem 5)

Comment on Content
That a power series is the Taylor series of its sum will be shown in the next section.

SOLUTIONS TO PROBLEM SET 15.3, page 682

2. 1/4, where 1/(n(n � 1)) can be produced by two integrations of the geometric series.

4. �z/��2 � 1 by integrating a geometric series. Thus �z� � R � �.

6. ( ) � consists of the fixed k!, which has no effect on

R, and factors n(n � 1) • • • (n � k � 1), as

obtained by differentiation. Since 

 (z/4)n has R � 4, the answer is 4.

8. 	, because 2n(2n � 1) results from differentiation, and for the coefficients without
these factors we have in the Cauchy–Hadamard formula

� ( )n (n � 1) * 	 as n * 	
n � 1



n

1/nn




1/(n � 1)n�1

n(n � 1) • • • (n � k � 1)





k!
n
k

1


128

2n4



(4n)4

(4n)! • 2n�1 (n � 1)4(n!)4







2n(n!)4(4n � 4)(4n � 3)(4n � 2)(4n � 1)(4n)!
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10. 1, by applying Theorem 3 to zn�m

14. Set ƒ � �n n� and apply l’Hôpital’s rule to ln ƒ,

lim
n*	

ln ƒ � lim
n*	

� lim
n*	

� 0. Hence lim
n*	

ƒ � 1.

16. This is a useful formula for binomial coefficients. It follows from

(1 � z)p(1 � z)q � �
p

n�0

( )zn �
q

m�0

( )zm

� (1 � z)p�q � �
p�q

r�0

( )zr

by equating the coefficients of zr on both sides. To get znzm � zr on the left, we
must have n � m � r; thus m � r � n, and this gives the formula in the problem.

18. The odd-numbered coefficients are zero because ƒ(�z) � ƒ(z) implies

a2m�1 (�z)2m�1 � �a2m�1z2m�1 � a2m�1z2m�1.

20. Team Project. (a) Division of the recursion relation by an gives

� l � .

Take the limit on both sides, denoting it by L:

L � 1 � .

Thus L2 � L � 1 � 0, L � (1 � �5�) /2 � 1.618, an approximate value reached after
just ten terms.

(b) The list is
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233.

In the recursion, an is the number of pairs of rabbits present and an�1 is the number
of pairs of offsprings from the pairs of rabbits present at the end of the preceding
month.

(c) Using the hint, we calculate

(1 � z � z2) �
	

n�0

anzn � �
	

n�0

(an � an�1 � an�2)zn � 1

where a�1 � a�2 � 0, and Theorem 2 gives a0 � 1, a1 � a0 � 0,
an � an�1 � an�2 � 0 for n � 2, 3, • • • . The converse follows from the uniqueness
of a power series representation (see Theorem 2).

SECTION 15.4. Taylor and Maclaurin Series, page 683

Purpose. To derive and explain Taylor series, which include those for real functions
known from calculus as special cases.

Main Content

Taylor series (1), integral formula (2) for the coefficients

Singularity, radius of convergence

1


L

an�1



an

an�1



an

p � q

r

q

m

p

n

1/n



1

ln n



n
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Maclaurin series for ez, cos z, sin z, cosh z, sinh z, Ln (1 � z)

Theorem 2 connecting Taylor series to the last section

Comment
The series just mentioned, with z � x, are familiar from calculus.

SOLUTIONS TO PROBLEM SET 15.4, page 690

2. 1 � z3 � z6 � z9 � • • • , R � 1, geometric series

4. cos2 z � 1_
2 � 1_

2 cos 2z � 1 � z2 � 1_
3z4 � _2

45z6 � _1
315 z8 � � • • • , R � 	

6. 1 � (z � 1) � (z � 1)2 � (z � 1)3 � � • • • , R � 1

8. Ln (1 � i) � (1_
2 � 1_

2 i)(z � i) � 1_
4i(z � i)2 � (_112 � _1

12i)(z � i)3 � • • • , R � �2�.
This series is similar to that mentioned in the text preceding Theorem 2.

10. The series is

ƒ � z � z3 � z5 � z7 � • • • , R � 	.

It can be obtained in several ways. (a) Integrate the Maclaurin series of the integrand
termwise and form the Cauchy product with the series of ez2

. (b) ƒ satisfies 
the differential equation ƒ� � 2zƒ � 1. Use this, its derivatives ƒ� � 2(ƒ � zƒ�), 
etc., ƒ(0) � 0, ƒ�(0) � 1, etc., and the coefficient formulas in (1). (c) Substitute

ƒ � �
	

n�0

anzn and ƒ� � �
	

n�0

nanzn�1 into the differential equation and compare

coefficients; that is, apply the power series method (Sec. 5.1).

12. (z � 2i) � (z � 2i)3 � (z � 2i)5 � • • • , R � 	

14. z � � � � � • • • ; R � 	

16. z � � � � � • • • ; R � 	

18. First of all, since sin (w � 2�) � sin w and sin (� � w) � sin w, we obtain all values
of sin w by letting w vary in a suitable vertical strip of width �, for example, in the
strip ��/2 � u � �/2. Now since

sin ( � iy) � sin ( � iy) � cosh y

and

sin (� � iy) � sin (� � iy) � �cosh y,

we have to exclude a part of the boundary of that strip, so we exclude the boundary
in the lower half-plane. To solve our problem we have to show that the value of the
series lies in that strip. This follows from �z� � 1 and

jRe (z � � • • •)j � jz � � • • •j � �z� � � • • •

� arcsin �z� � .
�


2

�z�3


3

1


2

z3



3

1


2

z3



3

1


2

�


2

�


2

�


2

�


2

z13



6!13

z9



4!9

z5



2!5

z7



7!7

z5



5!5

z3



3!3

1


5!

1


3!

23




1 • 3 • 5 • 7

22



1 • 3 • 5

2


1 • 3
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20. Team Project. (a) (Ln (1 � z))� � 1 � z � z2 � z3 � � • • • � .

(c) For y � 0 the series

� �
	

n�0

(iy)2n � �
	

n�0

y2n

has positive terms; hence its sum cannot be 0.

SECTION 15.5. Uniform Convergence. Optional, page 691

Purpose. To explain the concept of uniform convergence. To show that power series have
the advantage that they converge uniformly (exact formulation in Theorem 1). To discuss
properties of general uniformly convergent series.

Main Content

Uniform convergence of power series (Theorem 1)

Continuous sum (Theorem 2)

Termwise integration (Theorem 3) and differentiation (Theorem 4)

Weierstrass test for uniform convergence (Theorem 5)

The test in Theorem 5 is very simple, conceptually and technically in its application.

SOLUTIONS TO PROBLEM SET 15.5, page 697

2. This Maclaurin series of sinh z converges uniformly on every bounded set.

4. �sinn ��z�� � 1, 1/(n(n � 1)) � 1/n2, and 
 1/n2 converges. Use the Weierstrass 
M-test.

6. �zn� � 1, 1/(n2 cosh n�z�) � 1/n2, and 
 1/n2 converges.

8. �cos n�z�� � 1 and 
 1/n2 converges.

10. This Taylor series of cosh z with center i converges uniformly on every bounded set.

12. �z � 1_
2i� � 1_

2 � � (� � 0)

14. �z� � 1/�3� � � (� � 0)

16. This Maclaurin series of cos z converges uniformly on every bounded set.

18. Team Project. (a) Convergence follows from the comparison test (Sec. 15.1). Let
Rn(z) and Rn* be the remainders of (1) and (5), respectively. Since (5) converges, for
given � � 0 we can find an N(�) such that Rn* � � for all n � N(�). Since �ƒm(z)� � Mm

for all z in the region G, we also have �Rn(z)� � Rn* and therefore �Rn(z)� � � for all
n � N(�) and all z in the region G. This proves that the convergence of (1) in G is
uniform.

(b) Since ƒ�0 � ƒ�1 � • • • converges uniformly, we may integrate term by term, and
the resulting series has the sum F(z), the integral of the sum of that series. Therefore,
the latter sum must be F�(z).

(c) The converse is not true.

(d) Noting that this is a geometric series in powers of q � (1 � z2)�1, we have 
q � �1 � z2��1 � 1, 1 � �1 � z2�2 � (1 � x2 � y2)2 � 4x2y2, the exterior of a
lemniscate. The series converges also at z � 0.

1



(2n � 1)!

(�1)n




(2n � 1)!

sin iy



iy

1


1 � z
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(e) We obtain (add and subtract 1)

x2 �
	

m�1

� x2(�1 � �
	

m�0

)

� �x2 � � �x2 � 1 � x2 � 1.

20. We obtain

�Bn� � j�L

0
ƒ(x) sin dxj � ML

where M is such that �ƒ(x)� � M on the interval of integration. Thus

�Bn� � K (� 2M).

Now when t � t0 � 0,

�un� � jBn sin e
��n

2tj � Ke
��n

2t0

because jsin j � 1 and the exponential function decreases in a monotone fashion

as t increases. From this,

j j � ���n
2un� � �n

2�un� � �n
2Ke

��n
2t

0 when t � t0.

Consider

�
	

n�1

�n
2Ke��n

2t0.

Since �n � , for the test ratio we have

� ( )2

exp [�(2n � 1)( )2

t0] * 0

as n * 	, and the series converges. From this and the Weierstrass test it follows that

� converges uniformly and, by Theorem 4, has the sum , etc.

SOLUTIONS TO CHAP. 15 REVIEW QUESTIONS AND PROBLEMS, page 698

12. 1_
2, Ln (1 � 2z)

14. 	, cos �z�
16. 	, sin (z � 2)

18. 	, cosh 2z

20. 5, (1 � )�1

22. Ln 2 � � � � � • • • , R � 2
(z � 2)3



8 • 3

(z � 2)2



4 • 2

z � 2


2 • 1

z � i


3 � 4i

�u


�t

�un


�t

c�


L

n � 1



n

�2
n�1K exp (��2

n�1t0)





�n
2K exp (��n

2t0)

cn�



L

�un


�t

n�x



L

n�x



L

2


L

n�x



L

2


L

x2




1 � 


1 �

1

x2


1



(1 � x2)m

1



(1 � x2)m
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24. k � 3k2(z � 1 � i) � 32k3(z � 1 � i)2 � • • • , k � (1 � 3i) /10, R � 1_
3�10�

26. �1 � 2i(z � i) � 3(z � i)2 � 4i(z � i)3 � 5(z � i)4 � • • • , R � 1

28. The Maclaurin series of the integrand is

1 � t � t2 � t3 � • • • , R � 	.

Termwise integration from 0 to z gives

z � 1_
4z2 � _1

18z3 � _1
96z4 � _1

600z5 � • • • , R � 	.

30. � cos 2z � z2 � � � � • • • , R � 	
25z6



6!

23z4



4!

1


2

1


2

1


4!

1


3!

1


2!
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CHAPTER 16 Laurent Series. Residue Integration

This is another powerful and elegant integration method that has no analog in calculus.
It uses Laurent series (roughly, series of positive and negative powers of z), more precisely,
it uses just a single term of such a series (the term in 1/(z � z0), whose coefficient is
called the residue of the sum of the series that converges near z0).

SECTION 16.1. Laurent Series, page 701

Purpose. To define Laurent series, to investigate their convergence in an annulus (a ring,
in contrast to Taylor series, which converge in a disk), to discuss examples.

Major Content, Important Concepts

Laurent series

Convergence (Theorem 1)

Principal part of a Laurent series

Techniques of development (Examples 1–5)

SOLUTIONS TO PROBLEM SET 16.1, page 707

2. z � � � � • • • , 0 � �z� � R � �

4. (1 � � � � • • •) � � 2 � z2 � z4 � • • • ,

0 � �z� � R � �
6. We obtain

e z � �
�

m�0

�
�

n�0

zn

� �
�

n�0

( �
n

m�0

) zn

� � � � z � z2 � • • • , 0 � �z� � R � 1.

8. Successive differentiation and use of cos 1_
4� � sin 1_

4� � 1/�2� gives

Y � � � � � • • •Z ,

R � �.

This can also be obtained from

sin z � sin [(z � ) � ] � [sin (z � ) � cos (z � )]
and substitution of the usual series on the right.

�
�
4

�
�
4

1
�
�2�

�
�
4

�
�
4

z � �
�

4
�

�
4!

1
�
3!

1
��

2!(z � �
�

4
�)

1
��

(z � �
�

4
�)2

1
��

(z � �
�

4
�)3

1
�
�2�

65
�
24

8
�
3

5
�
2

2
�
z

1
�
z2

1
�
m!

1
�
z2

zm

�
m!

1
�
z2

1
�
1 � z

1
�
z2

4
�
45

2
�
3

1
�
z2

(2z)6

�
6!

(2z)4

�
4!

(2z)2

�
2!

1
�
z2

1
�
24z3

1
�
2z
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10. �
�

n�0

(z � �)2n�4 � � � � � (z � �)2

� � • • • , 0 � �z� � R � �

12. � � 3i � (z � i)

14. �
�

n�0

� z � � � • • • , 0 � �z� � R � �

16. We obtain

�
`

n�0

(z � 1)n�1, 0 � �z � 1� � 2,

� �

� � �
`

n�0

, �z � 1� � 2

18. �
�

n�0

(�1)n(z � 1)n, 0 � �z � 1� � 1, �
�

n�0

, �z � 1� � 1

20. �
�

n�0

(z � 1)n�4, an � sinh 1 (n even), an � cosh 1 (n odd), �z � 1� � 0

22. � � �
`

n�0

( ) , �z � i� � 1,

� � �
�

n�0

( ) , �z � i� � 1

24. Team Project. (a) Let �
�

��

an(z � z0)n and �
�

��

cn(z � z0)n be two Laurent series of

the same function ƒ(z) in the same annulus. We multiply both series by (z � z0)�k�1

and integrate along a circle with center at z0 in the interior of the annulus. Since the
series converge uniformly, we may integrate term by term. This yields 2�iak � 2�ick.
Thus, ak � ck for all k � 0, 	1, • • • .

(b) No, because tan (1/z) is singular at 1/z � 	�/2, 	3�/2, • • • , hence at z � 	2/�,
	2/3�, • • • , which accumulate at 0.

(c) These series are obtained by termwise integration of the integrand. The second
function is Si(z) /z3, where Si(z) is the sine integral [see (40) in App. A.31]. Answer:

� � � � • • • ,

� � � � • • • .
z2

�
5!5

1
�
3!3

1
�
z2

z2

�
4!4

z
�
3!3

1
�
2!2

1
�
z

in

��
(z � i)n�2

�2

n

1
���

(z � i)2 (1 � �
z �

i

i
�)2

1
�
z2

(z � i)n

�
in�2

�2

n

1
��
[i � (z � i)]2

1
�
z2

an
�
n!

(�1)n

��
(z � 1)n�1

(�1)n�12n

��
(z � 1)n�2

�1
���
(z � 1)2(1 � �

z �

2

1
�)

�1
���
(z � 1)2 � 2(z � 1)

1
��
1 � (z � 1 � 1)2

1
�
1 � z2

(�1)n�1

�
2n�1

1
�
120z3

1
�
6z

1
��
(2n � 1)!z2n�1

3
�
z � i

i
�
(z � i)2

1
�
6!

1
�
4!

1
��
2!(z � �)2

1
�
(z � �)4

(�1)n�1

�
(2n)!
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SECTION 16.2. Singularities and Zeros. Infinity, page 707

Purpose. Singularities just appeared in connection with the convergence of Taylor and
Laurent series in the last sections, and since we now have the instrument for their
classification and discussion (i.e., Laurent series), this seems the right time for doing so.
We also consider zeros, whose discussion is somewhat related.

Main Content, Important Concepts

Principal part of a Laurent series convergent near a singularity

Pole, behavior (Theorem 1)

Isolated essential singularity, behavior (Theorem 2)

Zeros are isolated (Theorem 3)

Relation between poles and zeros (Theorem 4)

Point �, extended complex plane, behavior at �

Riemann sphere

SOLUTIONS TO PROBLEM SET 16.2, page 711

2. 0 (pole of second order), � (simple pole)

4. 1 (essential singularity), � (pole of third order)

6. �/4 	 n� (simple poles). These are the points where the sine and cosine curves
intersect. They have a different tangent there, hence their difference cos z � sin z
cannot have a zero derivative at those points; accordingly, those zeros are simple and
give simple poles of the given function. To make sure that no further zeros of cos z
� sin z exist, one must calculate

cos z � sin z � ( � )eiz � ( � )e�iz � 0,

and by simplification,

e2iz � i, z � 	 n�, n � 0, 1, • • • ,

so that we get no further solutions beyond those found by inspecting those two curves.

8. 0 (third-order pole). This problem emphasizes that the order of a pole is determined
by the highest negative power, regardless of other terms (which may or may not be
present).

10. 1, � (essential singularities), 	2n�i (n � 0, 1, • • • , simple poles)

12. For �z� small enough we have �1 � z� � 1/�2�, �1 � z� � 1/�2�; hence

�1 � z2� � �1 � z� �1 � z� � 1/2
and

j � j � j1 � z2j � * � as �z� * 0.

This motivates the proof.

1
�
2�z�3

1
�
�z�3

1
�
z

1
�
z3

�
�
4

1
�
2i

1
�
2

1
�
2i

1
�
2
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To prove the theorem, let ƒ(z) have a pole of mth order at some point z � z0.
Then

ƒ(z) � � � • • •

� [1 � (z � z0) � • • •] , bm 
 0.

For given M � 0, no matter how large, we can find a � � 0 so small that

� 2M and j[1 � (z � z0) � • • •]j �

for all �z � z0� � �. Then

�ƒ(z)� � � M.

Hence �ƒ(z)� * � as z * z0.

14. z4 � 16 has the solutions 	2 and 	2i. Because of the other exponent 4 this gives
zeros of fourth order.

16. (1_
2 	 n)�i (second order) because

cosh z � 1_
2(ez � e�z) � 0; hence e2z � �1

and this implies
2z � Ln (�1) 	 2n�i � (1 	 2n)�i

so that z has the values given at the beginning.

18. 	1 (second order), (	1 	 i)�n�� (simple) because

ez2
� 1, z2 � Ln 1 	 2n�i � 	2n�i;

hence

z � �	2n��i� � 	 �2n��.

20. 1_
2� 	 2n� (n � 0, 1, • • •), sixth order, since

(sin z � 1)� � cos z � 0
at those points.

22. ez � e2z � ez(1 � ez) � 0, ez � 1, z � Ln 1 	 2n�i � 	2n�i. These zeros are
simple because (ez � 1)� � ez 
 0 for all z.

24. Team Project. (a) ƒ(z) � (z � z0)ng(z) gives

ƒ�(z) � n(z � z0)n�1g(z) � (z � z0)ng�(z)

which implies the assertion because g(z0) 
 0.

(b) ƒ(z) as in (a) implies 1/ƒ(z) � (z � z0)�nh(z), where h(z) � 1/g(z) is analytic at
z0 because g(z0) 
 0.

(c) ƒ(z) � k � 0 at those points. Apply Theorem 3.

(d) ƒ1(z) � ƒ2(z) is analytic in D and zero at each zn. Hence its zeros are not isolated
because that sequence converges. Thus it must be constant, since otherwise it would
contradict Theorem 3. And that constant must be zero because it is zero at those
points. Thus ƒ1(z) and ƒ2(z) are identical in D.

1 	 i
�
�2�

1
�
2

�bm�
�
�m

1
�
2

bm�1
�

bm

�bm�
�
�m

bm�1
�

bm

bm
��
(z � z0)m

bm�1
��
(z � z0)m�1

bm
��
(z � z0)m
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SECTION 16.3. Residue Integration Method, page 712

Purpose. To explain and apply this most elegant integration method.

Main Content, Important Concepts

Formulas for the residues at poles (3)–(5)

Residue theorem (several singularities inside the contour)

Comment
The extension from the case of a single singularity to several singularities (residue theorem)
is immediate.

SOLUTIONS TO PROBLEM SET 16.3, page 717

2. �8

4. The residue at z � 0 is 0 because (cos z) /z6 contains only even powers.

6. z2 � z � z(z � 1), simple poles at 0 and 1, and (4) gives

Res
z�0

� j
z�0

� �1, Res
z�1

� j
z�1

� 2.

8. (�1)n�1 (at z � (2n � 1)�/2) because the simple zeros of cos z at the points
z � zn � (2n � 1)�/2 give simple poles of sec z, and (4) yields

j
zn

� j
zn

� (�1)n�1.

10. Simple poles at 	1 and 	i. In (4) we have p(z) /q�(z) � 1/12z3. Hence the values of
the residues are 	1/12 and 	i/12, respectively.

12. Simple poles at 	1 and 	i, residues 	1_
4 and 
1_

4 i, respectively.

14. Third-order pole at z � 0. No further singularities in the finite plane. Multiplying the
Maclaurin series of sin �z by 1/z4 gives the Laurent series

(�z � (�z)3 � � • • •) � � �3 � � • • • .

Hence the residue is ��3/6. Answer: ��4i/3.

16. sinh z � 0 at 0, 	�i, 	2�i, • • • . Hence sinh 1_
2�z � 0 at 0 (inside C ),

	2i, 	4i, • • • (all outside C ). These are simple poles, and (4) gives the residue

Res
z�0

� � .

Hence the answer is 2�i • (2/�) � 4i.

18. Simple poles at z0 � 	1_
2 and 	3_

2 inside C and infinitely many others outside C.
Formula (4) gives the residues (sin z0) /(�� sin z0) � �1/�. Hence the answer is
2�i • 4 • (�1/�) � �8i.

20. Simple pole at 0, residue [by (4)]

� 1.

Answer: 2�i.

cosh z
�
(sinh z)�

2
�
�

1
��1_
2� cosh 0

1
�
sinh 1_

2�z

1
�
6z

�
�
z3

1
�
3!

1
�
z4

�1
�
sin z

1
�
(cos z)�

z2 � 1
�
2z � 1

z2 � 1
�
z2 � z

z2 � 1
�
2z � 1

z2 � 1
�
z2 � z
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22. Simple poles at 0 (inside C) and 3i (outside C), and (3) gives

Res
z�0

� j
z�0

� .

Answer: �2�/3.

24. Simple poles at z0 � �i/2, i/2 (inside C) and 2 (outside C), and (4) gives the residues

Res
z�z0

� j
z0

� � �1, �1.

Answer: 2�i(�1 � 1) � �4�i.

SECTION 16.4. Residue Integration of Real Integrals, page 718

Purpose 1. To show that certain classes of real integrals over finite or infinite intervals
of integration can also be evaluated by residue integration.

Comment on Content
Since residue integration requires a closed path, one must have methods for producing
such a path. We see that for the finite intervals in the text, this is done by (2), perhaps
preceded by a translation and change of scale if another interval is given. (This is not
shown in the text.) In the case of an infinite interval, we start from a finite one, close it
by some curve in complex (here, a semicircle; Fig. 371), blow it up, and make assumptions
on the integrand such that we can prove (once and for all) that the value of the integral
over the complex curve added goes to zero.
Purpose 2. Extension of the second of the two methods just mentioned to integrals of
practical interest in connection with Fourier integral representations (Sec. 11.7) and to
discuss the case of singularities on the real axis.

Main Content

Integrals involving cos and sin (1), their transformation (2)

Improper integral (4), Cauchy principal value

Fourier integrals

Poles on the real axis (Theorem 1), Cauchy principal value

SOLUTIONS TO PROBLEM SET 16.4, page 725

2. This integral is of the form

��

0
� �2�

0

� �
C

� �
C

(a � b � 0).
dz

��
z2 � 2az /b � 1

1
�
ib

dz
���
iz[a � 1_

2b(z � 1/z)]
1
�
2

d�
��
a � b cos �

1
�
2

d�
��
a � b cos �

1 � 4z0 � 6z0
2

��
�3z0

2 � 4z0 � 1_
4

1 � 4z � 6z2

��
[(z2 � 1_

4)(2 � z)]�
1 � 4z � 6z2

��
(z2 � 1_

4)(2 � z)

i
�
3

cosh z
�
z � 3i

cosh z
�
z2 � 3iz
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The zeros of the denominator,

z1 � � � K, z2 � � � K, K2 � � 1

give poles at z1 (inside the unit circle C because a � b � 0) and z2 (outside C) with
the residue

Res
z�z1

� j
z1

�

and the integral from 0 to � equals

2�i • � �

and 2�/bK if we integrate from 0 to 2�. In our case a � 2, b � 1 and the answer is
�/�3�.

4. This integral is of the form (similar to Prob. 2)

�2�

0
� �

C

� �
C

� �
C

(a � b � 0)

where the zeros of the denominator (the poles of the integrand) are

z1 � � iK, z2 � � iK, K2 � � 1

and from (3), Sec. 16.3, we obtain the residue of the pole inside the unit circle

Res
z�z2

� � � .

Hence the integral equals

2�i(�2/b)(�1/(2Ki)) � 2�/(bK ) � 2� /�a2 � b�2�.

In our case, a � 8, b � 2 gives the answer 2�/�60� � �/�15�.
All this also follows directly from Prob. 2 by using �sin � � cos �*, where 

�* � � � 1_
2�, and noting that the integrand is periodic with 2�.

6. The integral equals

�
C

dz � �
C

dz.

From (5*), Sec. 16.3, we obtain for the integrand of the last integral (without the
factor in front of it) at z � 0 (second-order pole) the residue

[ ]�

z�0

�
5
�
2

(z2 � 1)2

��
z2 � 5z /2 � 1

(z2 � 1)2

��
z2[z2 � 5z /2 � 1]

�1/4
�
�2i

�1_
4(z � 1/z)2

��
i[5z � 2(z2 � 1)]

1
�
2iK

1
�
z2 � z1

1
��
(z � z1)(z � z2)

a2

�
b2

ai
�
b

ai
�
b

dz
��
(z � z1)(z � z2)

�2
�

b

dz
��
z2 � (2ai/b)z � 1

2
�
�b

dz
���
iz[a � (b/2i)(z � 1/z)]

d�
��
a � b sin �

�
��
�a2 � b�2�

�
�
bK

1
�
2ibK

1
�
2K

1
�
z � z2

1
��
z2 � 2az /b � 1

a2

�
b2

a
�
b

a
�
b
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by straightforward differentiation. Also,

z2 � 5z/2 � 1 � (z � 2)(z � 1_
2)

and for the simple pole at z � 1/2 (inside the unit circle) we get the residue

j
z�1/2

� � � .

In front of the integral, (�1/4)/(�2i) � �i/8. Together,

2�i(�i/8)(5/2 � 3/2) � �/4.

8. The integral equals

�
C

dz � �
C

dz

where z1 � 1/4 (inside the unit circle) and z2 � 4 (outside) give simple poles. The
residue for the last integrand (without the factor 1/(� 4i)) at z � 0 is 2/(z1z2) � 2,
and at z � 1/4 it is

� � .

This gives the answer

(2 � ) � �
4

1

�

5
� .

10. Answer 0, because the integrand is an odd function. Or by calculating the residues

i/4 at the two simple poles at (1 � i) /�2� and (�1 � i) /�2�, respectively, in the
upper half-plane.

12. Second-order pole at z1 � 1 � 2i in the upper half-plane (and at z2 � 1 � 2i in the
lower) with residue

[ ]�

z�z1

� � � .

Answer: 2�i(1/(32i)) � �/16.

14. Simple poles at z1 � (2 � 2i) /�2� and z2 � (�2 � 2i) /�2� in the upper half-plane
(and at (	2 � 2i) /�2� in the lower half-plane). From (4) in Sec. 16.3 we obtain the
residues

1/(4z1
3) � (�1 � i) /(32�2� ), 1/4z2

3 � (1 � i) /(32�2� ).

Answer: �/(8�2�).

16. Simple poles at i and 3i with residues �i/16 and i/48, respectively. Answer: �/12.

18. Denote the integrand by ƒ(x). The complex function ƒ(z) has simple poles at z1 � e�i/4

and z2 � e3�i/4 in the upper half-plane (and two further ones in the lower half-plane)
with residues

� � and � �

respectively, as obtained from (4) in Sec. 16.3. Hence the answer is 
(�i/�2�)2�i � ��2�.

i
�
�8�

1 � i
��
2�2�(1 � i)

i
�
�8�

1 � i
��
2�2�(�1 � i)

1
�
32i

�2
�
(4i)3

�2
��
(z1 � z2)3

1
��
(z � 1 � 2i)2

38
�
15

2�i
�
�4i

38
�
15

2/16 � 1/4 � 2
��
(1/4)(1/4 � 4)

2z2 � z � 2
��
z(z � z1)(z � z2)

1
�
�4i

1 � 2(z � z�1)
���
z[17 � 4(z � z�1)]

1
�
i

3
�
2

9/16
��
(1/4)(�3/2)

(z2 � 1)2

��
z2(z � 2)
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20. From z4 � 1 � 0 we see that we have four simple poles, at z1 � (1 � i) /�2� and
z2 � (�1 � i) /�2� in the upper half-plane (and at (	1 � i) /�2� in the lower). From
(4), Sec. 16.3, we find that the residues of eiz/(z4 � 1), as presently needed, are

� � (�2 � 2i)(c � is),

where c � is � cos (1/�2�) � i sin (1/�2�), and

� � (2 � 2i)(c � is).

We now take the sum of the imaginary parts of these two residues and multiply it by
�2�, as indicated in the first formula in (10); this then gives the answer

� (cos � sin ) � 1.544.

22. z4 � 5z2 � 4 � (z2 � 1)(z2 � 4) shows that we have two simple poles at z1 � i and
z2 � 2i in the upper half-plane (and two at �i and �2i in the lower). By (4), 
Sec. 16.3, the sum of the residues of e4iz/(z4 � 5z2 � 4) at z1 and z2 is

� � � e�4 � e�8.

From the first formula in (10) we thus obtain the answer

�(2e�4 � e�8) /6.

24. Simple poles at z0 � 	1, i (and �i outside, in the lower half-plane), with residue
z0

2/(4z0
3) � 1/(4z0), as obtained from (4) in Sec. 16.3. Hence the answer is

2�i(� ) � �i(� 1_
4 � 1_

4) � 1_
2 �.

26. The integrand is p/q, where p � 1 and q(x) � x4 � 3x2 � 4; hence

q(z) � z4 � 3z2 � 4.

In (4) in Sec. 16.3 we need the derivative q�(z) � 4z3 � 6z. Simple poles are at 2i,
�1, and 1 (and �2i, not needed), with residues i/20, �1/10, and 1/10, respectively.
Hence the value of the integral is

2�i � � �i(� � ) � � .

A graph of the integrand makes it plausible that the integral should have a negative
value.

28. Team Project. (b) The integral of e�z2
around C is zero. Writing it as the sum of

four integrals over the four segments of C, we have

�a

�a
e�x2

dx � ie�a2 �b

0
ey2�2ayi dy � eb2 ��a

a
e�x2�2ibx dx � ie�a2 �0

b
ey2�2ayi dy � 0.

�
�
10

1
�
10

1
�
10

i
�
20

i
�
4

i
�
12

i
�
6

e�8

��
4(2i)3 � 20i

e�4

��
4i3 � 10i

1
�
�2�

1
�
�2�

e�1/�2�
�

�2�

e�1/�2�
�
8�2�

e�1/�2�(c � is)
��
4(2 � 2i) /2�2�

e
iz2

�
4z2

3

e�1/�2�
�
8�2�

e�1/�2�(c � is)
��
4(�2 � 2i)/2�2�

e
iz1

�
4z1

3
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Let a * �. Then the terms having the factor e�a2
approach zero. Taking the real part

of the third integral, we thus obtain

� ���

�
e�x2

cos 2bx dx � 2 ��

0
e�x2

cos 2bx dx � e�b2 ��

��
e�x2

dx � e�b2���.

Answer: 1_
2e�b2���.

(c) Use the fact that the integrands are odd.

30. Let q(z) � (z � a1)(z � a2) • • • (z � ak). Use (4) in Sec. 16.3 to form the sum of
the residues 1/q�(a1) � • • • � 1/q�(ak) and show that this sum is 0; here k � 1.

SOLUTIONS TO CHAP. 16 REVIEW QUESTIONS AND PROBLEMS, page 726

18. Third-order pole at z � 0 with residue best obtained from the series

� �
`

n�0

z2n�3

namely, 1/z has the coefficient

Res
z�0

z�4 sin 2z � � .

Answer: 2�i(�8/6) � �8�i/3.

20. Simple poles at �i and 2i, both inside C, with residues 2i/3 and i/3, respectively, as
obtained from (4), Sec. 16.3, or from the partial fraction representation

�

of the integrand. Answer: 2�i(2i/3 � i/3) � �2�.

22. Simple poles at ��/2 inside C and others outside C, and (4), Sec. 16.3, gives the
residue

Res
z���/2

� � � � �3 � �.

Answer: �i(�3 � 7�) � ��2(�2 � 7)i � �166.5i.

24. Simple poles at z0 � �1_
2, 1_

2 with residues (by (4) in Sec. 16.3)

� 1_
8z0 sin z0 � _1

16 sin 1_
2.

Answer: 2�i • 2 • _116 sin 1_
2 � 1_

4�i sin 1_
2 � 0.3765i.

26. Simple poles at 0 (inside C) and 2 (outside C), and (3), Sec. 16.3, gives the residue

Res
z�0

� j
z�0

� � .

Answer: 2�i(�1/2) � ��i.

28. z3 � 9z � z(z � 3)(z � 3) � 0 at z � �3, 0, 3 gives simple poles, all three inside
C: �z� � 4. From (4), Sec. 16.3, we get the residue

Res
z��3

� j
z��3

� � �2
�36
�

18

15z � 9
�
3z2 � 9

15z � 9
�
z3 � 9z

1
�
2

z2 � 1
�
z � 2

z2 � 1
�
z2 � 2z

z0
2 sin z0
�

8z0

7
�
2

1
�
2

4(��/2)3 � 7(��/2)
���

sin (��/2)

4z3 � 7z
�

cos z

i/3
�
z � 2i

2i/3
�
z � i

23

�
3!

(�1)n22n�1

��
(2n � 1)!

sin 2z
�

z4
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and similarly, at 0 the residue 9/(�9) � �1 and at 3 the residue 54/18 � 3. Since
all three poles lie inside C, by the residue theorem we have to take the sum of all
three residues, which is zero. Answer: 0.

30. �/�k2 � 1�, a special case of the class of integrals in the answer to Prob. 2 of 
Problem Set 16.4 with a � k and b � 1.

32. The integral equals

�
C

dz � ��
C

dz.

At the simple pole at z � 0 the residue is �1. At the simple pole at �3 � �8� (inside
the unit circle) the residue is

� 1.

Answer: 0. Simpler: integrate from �� to � and note that the integrand is odd.

34. Second-order poles at z � i in the upper half-plane (and at �i in the lower half-plane)
with residue [by (5), Sec. 16.3]

[(z � i)�2]�z�i � �i/4.

Answer: 1_
2 • 2�i(�i/4) � �/4.

36. Set x � t/�2�. Then dx � dt/�2� and

� ��

0
dx � ��

0
dt � ��

��
dt.

Multiply by 2�2� to get ��2� as the value of the integral on the right.

1 � t2

�
1 � t4

1
�
2�2�

1 � t2

�
1 � t4

1
�
�2�

1 � 2x2

�
1 � 4x4

�
�
2

(�3 � �8�)2 � 1
����
3(�3 � �8�)2 � 12(�3 � �8�) � 1

z2 � 1
��
z[z2 � 6z � 1]

(z � 1/z) /(2i)
��
iz[3 � 1_

2(z � 1/z)]
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CHAPTER 17 Conformal Mapping

This is a new chapter. It collects and extends the material on conformal mapping contained
in Chap. 12 of the previous edition.

SECTION 17.1. Geometry of Analytic Functions: Conformal Mapping, 
page 729

Purpose. To show conformality (preservation of angles in size and sense) of the mapping
by an analytic function w � ƒ(z); exceptional are points with ƒ�(z) � 0.

Main Content, Important Concepts

Concept of mapping. Surjective, injective, bijective

Conformal mapping (Theorem 1)

Magnification, Jacobian

Examples. Joukowski airfoil

Comment on the Proof of Theorem 1
The crucial point is to show that w � ƒ(z) rotates all straight lines (hence all tangents)
passing through a point z0 through the same angle � � arg ƒ�(z0), but this follows from
(3). This in a nutshell is the proof, once the stage has been set.

SOLUTIONS TO PROBLEM SET 17.1, page 733

2. By conformality

4. u � x2 � y2, v � 2xy, y2 � v2/(4x2), x2 � v2/(4y2); hence for x � 1, 2, 3, 4 we obtain

u � x2 � v2/(4x2) � 1 � v2/4, 4 � v2/16, 9 � v2/36, 16 � v2/64

and for y � 1, 2, 3, 4,

u � v2/(4y2) � y2 � v2/4 � 1, v2/16 � 4, v2/36 � 9, v2/64 � 16.

6. w � 1/z is called reflection in the unit circle. The answer is

�w� � 3, 2, 1, 1/2, 1/3
and

Arg w � 0, ��/4, ��/2, �3�/4, ��.

We see that the unit circle is mapped onto itself, but only 1 and �1 are mapped onto
themselves. e�i� is mapped onto e�i�, the complex conjugate, for example, i onto �i.

8. On the line x � 1 we have z � 1 � iy, w � u � iv � 1/z � (1 � iy) /(1 � y2),
so that v � �y/(1 � y2) and, furthermore,

u � , u(1 � u) � (1 � ) � � v2.

Having obtained a relation between u and v, we have solved the problem. We now
have u2 � u � v2 � 0, (u � 1_

2)2 � v2 � 1_
4 and by taking roots �w � 1_

2� � 1_
2, a circle

through 0 and 1 whose interior is the image of x 	 1.

10. The lower half-plane

y2




(1 � y2)2

1


1 � y2

1


1 � y2

1


1 � y2
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12. Annulus 1/e � �w� � e cut along the negative real axis

14. Whole w-plane except w � 0

16. CAS Experiment. Orthogonality is a consequence of conformality because in the
w-plane, u � const and v � const are orthogonal. We obtain

(a) u � x4 � 6x2y2 � y4, v � 4x3y � 4xy3

(b) u � x/(x2 � y2), v � �y/(x2 � y2)

(c) u � (x2 � y2) /(x2 � y2)2, v � �2xy/(x2 � y2)2

(d) u � 2x/((1 � y)2 � x2), v � (1 � x2 � y2) /((1 � y2)2 � x2)

18. 2z � 2z�3 � 0, z4 � 1, hence �1, �i.

20. (cosh 2z)� � 2 sinh 2z � 0 at z � 0, ��i/2, ��i, • • •

22. (5z4 � 80) exp (z5 � 80z) � 0, z4 � 16, z � �2, �2i

24. M � �z� � 1 on the unit circle, J � �z�2

26. M � 3�z�2 � 1 on the circle �z� � 1/�3�, J � 9�z�4

28. w� � �1/z2, M � �w�� � 1/�z�2 � 1 on the unit circle, J � 1/�z�4

30. By the Taylor series, since the first few derivatives vanish at z0,

ƒ(z) � ƒ(z0) � (z � z0)kg(z), g(z0) 
 0, since ƒ(k)(z0) 
 0.

Hence

arg [ƒ(z) � ƒ(z0)] � k arg (z � z0) � arg g(z).

Now the angle � from the x-axis to the tangent of a smooth curve C at z0 is

� � lim arg (z � z0) (z * z0 along C).

Similarly for the angle � of the tangent to the image at ƒ(z0):

� � lim arg [ƒ(z) � ƒ(z0)] � k� � lim arg g(z) � k� � arg g(z0).

Note that � � arg g(z0) is defined since g(z0) 
 0. Hence the angle �2 � �1 between
the tangents of the images of two curves at ƒ(z0) is

�2 � �1 � k�2 � � � (k�1 � �) � k(�2 � �1),

as asserted.

SECTION 17.2. Linear Fractional Transformations, page 734

Purpose. Systematic discussion of linear fractional transformations (Möbius transformations),
which owe their importance to a number of interesting properties shown in this section
and the next one.

Main Content

Definition (1)

Special cases (3), Example 1

Images of circles and straight lines (Theorem 1)

One-to-one mapping of the extended complex plane

Inverse mapping (4)

Fixed points
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SOLUTIONS TO PROBLEM SET 17.2, page 737

2. This follows by direct calculation and simplification.

4. z �

6. z �

8. z � 0, �1/3, �i/3

10. None. Translations have no fixed points.

12. �i

14. z(z � 1) � 3z � 2, z2 � 4z � 2 � 0, z � 2 � �4 � 2�
16. The equation with solutions 0 and 1 (the desired fixed points) is z(z � 1) � 0, thus

z2 � z � 0. Comparing this with the fixed-point equation (5),

cz2 � (a � d )z � b � 0,

we see that we must have c 
 0; so we can choose c � 1. Also, a � d � 1 and
b � 0. This gives a � 1 � d and the answer

w � ,

where the student now may choose some d, except for d � 0, which would give the
identity mapping; so it is quite interesting that d may be as close to zero as we please,
but not zero.

18. By comparing z � 0 with the fixed-point equation (5), as in Prob. 16, we get b � 0,
a � d. and

w � .

20. We get a fixed-point equation (5) without solutions if and only if we choose c � 0,
a � d � 0, and b 
 0. This gives a translation

w � (az � b) /a � z � b/a (a 
 0),
as expected.

SECTION 17.3. Special Linear Fractional Transformations, page 737

Purpose. Continued discussion to show that linear fractional transformations map
“standard domains” conformally onto each other.

Main Content

Determination by three points and their images

Mappings of standard domains (disks, half-planes)

Angular regions

SOLUTIONS TO PROBLEM SET 17.3, page 741

2. The inverse is

z � � � .
(u � iv � i)(1 � v � iu)





(1 � v)2 � u2

u � iv � i



1 � v � iu

w � i


iw � 1

az


cz � a

(1 � d )z



z � d

�iw � i


�w � 1

w � i


3iz � 4
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Multiplying out the numerator, a number of terms drop out, and the real part of the
numerator is 2u. This gives Re z � x in the form

x � .

This yields the circles

(v � 1)2 � (u � )2

�

as claimed.

4. The inverse is

z � .

The fixed points z � �3_
4 � 1_

4�17� are obtained as solutions of

2z2 � (1 � 4)z � 1 � 0.

8. w � 1/(z � 1), almost without calculation

10. w � iz, a rotation, as a sketch of the points and their images shows.

12. Formula (2) gives

• � • � .

Replacing infinity on the left as indicated in the text, we get w � 1 on the left, so
that the answer is

w � � 1 � .

Caution! In setting up further problems by starting from the result, which is quite
easy, one should check how complicated the solution, starting from (2), will be; this
may often involve substantial work until one reaches the final form.

14. By (2),

• � • ;

hence, after getting rid of infinity,

w � 1 � , w � � 1 � .

Second solution. 0 maps onto �1, hence d � �b. Next, 2i maps onto 0, hence
2ia � b � 0. Finally, �2i maps onto �, hence �2ic � d � 0. Choosing a � 1 gives
b � �2i, d � 2i, c � 1 and confirms our previous result.

16. The requirement is that

w � u �

must come out real for all real x. Hence the four coefficients must be real, except
possibly for a common complex factor.

18. w � �(z2 � i) /(iz2 � 1)

20. Substitute one LFT into the other and simplify.

ax � b


cx � d

z � 2i


z � 2i

2z


z � 2i

2z


z � 2i

4i


2i

z


z � 2i

��



1

w � 1


w � �

z � i


z � i

2z


z � i

2z


z � i

�2i


�i

z


z � i

��



1

w � 1


w � �

4w � 1



�2w � 1

1


c2

1


c

2u



(1 � v)2 � u2
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SECTION 17.4. Conformal Mapping by Other Functions, page 742

Purpose. So far we have discussed mapping properties of zn, ez, and linear fractional
transformations. We now add to this a discussion of trigonometric and hyperbolic functions.

SOLUTIONS TO PROBLEM SET 17.4, page 745

2. Quarter-annulus 1/e � �w� � 1 in the first quadrant 0 � arg w � �/2

4. e�3 � �w� � e3, �/4 � arg w � 3�/4

6. Right half of the interior of the unit circle �w� � 1, ��/2 � arg w � �/2, without the
segment on the v-axis

10. The region in the right half-plane bounded by the v-axis and the hyperbola 
4u2 � 4_

3v2 � 1 because

sin z � u � iv � sin x cosh y � i cos x sinh y
reduces to

sin iy � i sinh y

when x � 0; thus u � 0 (the v-axis) is the left boundary of that region. For x � �/6
we obtain

sin (�/6 � iy) � sin (�/6) cosh y � i cos (�/6) sinh y;
thus

u � 1_
2 cosh y, v � 1_

2�3� sinh y

and we obtain the right boundary curve of that region from

1 � cosh2 y � sinh2 y � 4u2 � 4_
3v2,

as asserted.
12. The region in the upper half-plane bounded by portions of the u-axis, the ellipse

u2/cosh2 3 � v2/sinh2 3 � 1 and the hyperbola u2 � v2 � 1_
2.

Indeed, for x � ��/4 we get (see the formula for sin z in the solution to Prob. 10)

sin (�1_
4� � iy) � sin (�1_

4�) cosh y � i cos (�1_
4�) sinh y

� �(1/�2�) cosh y � i(1/�2�) sinh y
and from this

1 � cosh2 y � sinh2 y � 2u2 � 2v2, thus u2 � v2 � 1_
2.

For y � 0 we get v � 0 (the u-axis).
For y � 3 we get

u � sin x cosh 3, v � cos x sinh 3;
hence

1 � sin2 x � cos2 x � � .

14. If x � c, then (see the formula for sin z in the solution to Prob. 10)

u � sin c cosh y, v � cos c sinh y.

Hence if c � 0, then u � 0, so that the y-axis maps onto the v-axis.
If c � 1_

2�, then v � 0, u � 1. If c � �1_
2�, then v � 0, u � �1.

If c 
 0, �1_
2�, ��, • • • , then we obtain hyperbolas

� � 1.
v2



cos2 c

u2



sin2 c

v2



sinh2 3

u2



cosh2 3
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16. cosh z � cos (iz) � sin (iz � 1_
2�)

18. Interior of the ellipse u2/cosh2 2 � v2/sinh2 2 � 1 in the fourth quadrant (which looks
almost like a quarter of a circular disk because the curves of the cosh and the sinh
eventually come close together).

20. The lower boundary segment maps onto cos 1 � u � 1 (v � 0). The left and right
boundary segments map onto portions of the hyperbola

� � 1.

The upper boundary segment maps onto a portion of the ellipse

� � 1.

22. The upper boundary maps onto the ellipse

� � 1

and the lower boundary onto the ellipse

� � 1.

Since 0 � x � 2�, we get the entire ellipses as boundaries of the image of the given
domain, which therefore is an elliptical ring.

Now the vertical boundaries x � 0 and x � 2� map onto the same segment

sinh 1_
2 � u � sinh 1

of the u-axis because for x � 0 and x � 2� we have

u � cosh y, v � 0.

Answer: Elliptical annulus between those two ellipses and cut along that segment.
See the figure.

Section 17.4. Problem 22

24. The images of the five points in the figure in the text can be obtained directly from
the given function w.

v2



sinh2 1_

2

u2



cosh2 1_

2

v2



sinh2 1

u2



cosh2 1

v2



sinh2 1

u2



cosh2 1

v2



sin2 1

u2



cos2 1
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SECTION 17.5. Riemann Surfaces. Optional, page 746

Purpose. To introduce the idea and some of the simplest examples of Riemann surfaces,
on which multivalued relations become single-valued, that is, functions in the usual sense.
Short Courses. This section may be omitted.

SOLUTIONS TO PROBLEM SET 17.5, page 747

4. By the hint we have

w � �r1�e
i�1/2�r2�e

i�2/2
� �r1r2� e

i(�1��2) /2
.

If we move from A in the first sheet (see the figure), we get into the second sheet at
B (dashed curve) and get back to A after two loops around the branch point 1 (of first
order).

Similarly for a loop around z � 2 (without encircling z � 1); this curve is not
shown in the figure.

If we move from C and back to C as shown, we do not cross the cut, we stay in
the same sheet, and we increase �1 and �2 by 2� each. Hence (�1 � �2) /2 is increased
by 2�, and we have completed one loop in the w-plane. This makes it plausible that
two sheets will be sufficient for the present w and that the cut along which the two
sheets are joined crosswise is properly chosen.

Section 17.5. Problem 4

6. Branch points at �1 and �2, as shown in the figure, together with the cuts. If we
pass a single cut, we get into the other sheet. If we cross two cuts, we are back in the
sheet in which it started. The figure shows one path (A) that encircles two branch
points and stays entirely in one sheet. The path from B and back to B also encloses
two branch points, and since it crosses two cuts, part of it is in one sheet and part of
it is in the other.

A discussion in terms of coordinates as in Prob. 4 would be similar to the previous
one. Various other paths can be drawn and discussed in the figure.

Section 17.5. Problem 6

x

A B

21–1 0–2

x

C

A

B1 2

�2�1
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8. 4i/3, infinitely many sheets

10. No branch points because ez is never zero; thus the two sheets are nowhere connected
with each other. Thus �ez� represents two different functions, namely ez/2 and �ez/2.

SOLUTIONS TO CHAP. 17 REVIEW QUESTIONS AND PROBLEMS, 
page 747

12. v � 2xy � �8

14. y � 0 maps onto the nonnegative real axis u � x2, v � 0. The other boundary y � 2
gives u � x2 � 4, v � 4x. Elimination of x gives the parabola

u � v2/16 � 4,

with apex at u � �4 and opening to the right.
Answer: The domain to the right of that parabola except for the nonnegative 

u-axis.

16. The w-plane except for the positive real axis, as follows from the fact that angles are
doubled at the origin.

18. The image of the straight line y � 1 must lie inside the unit circle; hence it must be
a circle. The latter must pass through the image �i of i and through the image 0 of
�. Hence the image must be the circle

�w � 1_
2i� � 1_

2.

By calculation this can be shown as follows. On the line y � 1 we have z � x � i,
hence

� , thus, u � , v � � .

From this we obtain

(v � )2

� ( � )2

� .

It follows that

(v � )2

� u2 � � ,

in agreement with (1).

20. �w� 	 2, v 	 0 because the lower half-plane (y � 0) maps onto the upper half-plane
(v 	 0).

22. u � 0, v � 0, �w� 	 1 because the interior of the unit circle maps onto the exterior,
the left half-plane onto the left half-plane, and the upper half-plane onto the lower
half-plane.

24. ƒ�(z) � 2 sinh 2z � �2i sin 2iz � 0 if 2iz � �n�, hence the answer is z � �n�i/2,
n � 0, 1, 2, • • • .

26. z � ��n�, �i�n�, n � 0, 1, 2, • • •

28. ƒ�(z) � 1 � z�2 � 0 at z � �1. Applications of this function were considered in
Sec. 17.1, where z � �1 played a basic role in the construction of an airfoil.

30. w � (z � 1)/z

1


4

(x2 � 1)2




4(x2 � 1)2

1


2

(x2 � 1)2




4(x2 � 1)2

1


x2 � 1

1


2

1


2

1


x2 � 1

x


x2 � 1

x � i


x2 � 1

1


x � i
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32. w � 1 � iz, a translation combined with a rotation

34. w � iz /(z � i)

36. �i

38. �1

40. �3, �3i

42. w � 5/z maps �z� � 1 onto �w� � 5 and the interior onto the exterior. Hence 
w � 1 � 5/z will give the answer

w � �1 � � .

44. To map a semidisk onto a disk, we have to double angles; thus w � z2 maps the given
semidisk onto the unit disk �w� � 1, and the exterior is obtained by taking the
reciprocal.

Answer: w � 1/z2.

5 � z



z

5


z
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CHAPTER 18 Complex Analysis and Potential Theory

This is perhaps the most important justification for teaching complex analysis to engineers,
and it also provides for nice applications of conformal mapping.

SECTION 18.1. Electrostatic Fields, page 750

Purpose. To show how complex analysis can be used to discuss and solve two-dimensional
electrostatic problems and to demonstrate the usefulness of complex potential, a major
concept in this chapter.

Main Content, Important Concepts

Equipotential lines

Complex potential (2)

Combination of potentials by superposition

The main reason for using complex methods in two-dimensional potential problems is the
possibility of using the complex potential, whose real and imaginary parts both have a
physical meaning, as explained in the text. This fact should be emphasized in teaching
from this chapter.

SOLUTIONS TO PROBLEM SET 18.1, page 753

2. � � 0.4x � 6.0 kV, F � 0.4z � 6.0

4. � is expected to be linear because of the boundary (two parallel straight lines). From
the boundary conditions and by inspection,

�(x, y) � 100(y � x) /k.

This is the real part of the complex potential

F(z) � �100(1 � i)z /k.

The real potential can also be obtained systematically, starting from

�(x, y) � ax � by � c.

By the first boundary condition, for y � x this is zero:

(1) ax � bx � c � 0.

By the second boundary condition, for y � x � k this equals 100:

(2) ax � b(x � k) � c � 100.

Subtract (1) from (2) to get

bk � 100, b � 100/k.

Substitute this into (1) to get

ax � x � c � (a � ) x � c � 0.
100
�

k

100
�

k
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Since this is an identity in x, the coefficients must vanish, a � �100/k and c � 0.
This gives the above result.

6. We have
�(r) � a ln r � b

and get from this and the two boundary conditions

�(1) � b � 100

�(10) � a ln 10 � b � a ln 10 � 100 � 1000.

Hence a � 900/ln 10, so that the answer is

�(r) � (900 ln r) /ln 10 � 100.

8. �(r) � 100 � (50/ln 10) ln r, F(z) � 100 � (50/ln 10) Ln z

10. w � . w � 0 gives z � z0 � �1 � i, Arg z0 � 3�/4. Hence at z0 the

potential is (1/�)3�/4 � 3/4.
By considering the three given points and their images we see that the potential on

the unit circle in the w-plane is 0 for the quarter-circle in the first quadrant and 1 for
the other portion of the circle. This corresponds to a conductor consisting of two
portions of a cylinder separated by small slits of insulation at w � 1 and w � i, where
the potential jumps.

12. CAS Experiment. (a) x2 � y2 � c, xy � k

(b) xy � c, x2 � y2 � k; the rotation caused by the multiplication by i leads to the
interchange of the roles of the two families of curves.

(c) x/(x2 � y2) � c gives (x � 1/(2c))2 � y2 � 1/(4c2). Also, �y/(x2 � y2) � k
gives the circles x2 � (y � 1/(2k))2 � 1/(4k2). All circles of both families pass through
the origin.

(d) Another interchange of the families, compared to (c), (y � 1/(2c))2 � x2 � 1/(4c2),
(x � 1/(2k))2 � y2 � 1/(4k2).

14. � � 110(x3 � 3xy2) � Re (110z3)

SECTION 18.2. Use of Conformal Mapping, page 754

Purpose. To show how conformal mapping helps in solving potential problems by
mapping given domains onto simpler ones or onto domains for which the solution of the
problem (subject to the transformed boundary conditions) is known.

The theoretical basis of this application of conformal mapping is given by Theorem 1,
characterizing the behavior of harmonic functions under conformal mapping.

Problem 10 gives a hint on possibilities of generalizing potential problems for which the
solution is known or can be easily obtained. The idea extends to more sophisticated situations.

SOLUTIONS TO PROBLEM SET 18.2, page 757

2. Figure 383 in Sec. 17.1 shows D (a semi-infinite horizontal strip) and D* (the upper
half of the unit circular disk); and � � ex cos y ex sin y � 1_

2e2x sin 2y � 0 on y � 0
and y � �, and 1_

2 sin 2y on the vertical boundary x � 0 of D.

iz � 1 � i
��
z � 1 � i
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6. � � 2 sin x cos x cosh y sinh y � 1_
2 sin 2x sinh 2y � 0 if x � 0 or x � 1_

2� or y � 0,
and 1_

2 sin 2x sinh 2 if y � 1.

8. Team Project. We map 0 � r0, 2c � �r0, obtaining from (2) with b � z0 the
conditions

r0 � � � z0, �r0 � � ,

hence

r0 � (1 � �1 � 4c�2�).

r0 is real for positive c � 1_
2. Note that with increasing c the image (an annulus) becomes

slimmer and slimmer.

10. z � (2Z � i) /(�iZ � 2) by (3) in Sec. 17.3

12. �i are fixed points, and straight lines are mapped onto circles (or straight lines). From
this the assertion follows. (Alternatively, it also follows very simply by setting x � 0
and calculating �w�.)

14. Apply w � z2.

SECTION 18.3. Heat Problems, page 757

Purpose. To show that previous examples and new ones can be interpreted as potential
problems in time-independent heat flow.

Comment on Interpretation Change
Boundary conditions of importance in one interpretation may be of no interest in another;
this is about the only handicap in a change of interpretation. Hence one should emphasize
that, in other words, whereas the unifying underlying theory remains the same, problems
of interest will change from field to field of application. This can be seen most distinctly
by comparing the problem sets in this chapter.

SOLUTIONS TO PROBLEM SET 18.3, page 760

2. By inspection,
T(x, y) � 5 � 7.5(y � x).

This is the real part of the complex potential

F(z) � 5 � 7.5(1 � i)z.

A systematic derivation is as follows. The boundary and boundary values suggest that
T(x, y) is linear in x and y,

T(x, y) � ax � by � c.

From the boundary conditions,

(1) T(x, x � 2) � ax � b(x � 2) � c � �10

(2) T(x, x � 2) � ax � b(x � 2) � c � 20.

By addition,
2ax � 2bx � 2c � 10.

1
�
2c

2c � r0
��
2r0c � 1

2c � z0
��
2z0c � 1

�z0
�
�1
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Since this is an identity in x, we must have a � �b and c � 5. From this and (1),

�bx � bx � 2b � 5 � �10.

Hence b � 7.5. This agrees with our result obtained by inspection.

4. T(x, y) � 20 � (90/�) Arg z. This is quite similar to Example 3.

6. The lines of heat flow are perpendicular to the isotherms, and heat flows from higher
to lower temperatures. Accordingly, heat flows from the portion of higher temperature
of the unit circle �Z� � 1 to that kept at a lower temperature, along the circular arcs
that intersect the isotherms at right angles.

Of course, as temperatures on the boundary we must choose values that are
physically possible, for example, 20°C and 300°C.

8. Team Project. (a) Arg z or Arg w is a basic building block when we have jumps in
the boundary values. To obtain Arg z or Arg w as the real part of an analytic function
(a logarithm), we have to multiply the logarithm by �i. Otherwise we just incorporate
the real constants that appear in T(x, y). Answer:

F*(w) � T1 � i Ln (w � a),

T*(u, v) � Re F*(w) � T1 � Arg (w � a).

(b) w � a � z2. Hence Arg (w � a) � Arg z2 � 2 Arg z. Thus (a) gives

T1 � (T2 � T1) Arg z

and we see that T � T1 on the x-axis and T � T2 on the y-axis are the boundary
data.

Geometrically, the a in w � a � z2 is a translation, and z2 opens the quadrant up
onto the upper half-plane, so that the result of (a) becomes applicable and gives the
potential in the quadrant.

(c) T* � Arg (w � 1) � Arg (w � 1). This is the real part of

F*(w) � �i [Ln (w � 1) � Ln (w � 1)].

On the u-axis both arguments are 0 for u 	 1, one equals � if �1 
 u 
 1, and both
equal �, giving � � � � 0 if u 
 �1.

(d) The temperature is

T(x, y) � Arg .

The boundary in Fig. 409 is mapped onto the u-axis; cosh x, 0 � x 
 �, gives
u � 1; cosh (x � �i) � �cosh x, 0 � x 
 �, gives u 
 �1; the vertical segment
(x � 0) is mapped onto �1 
 u 
 1.

10. (200/�) Arg z. This is similar to Example 3.

12. T(x, y) satisfying the boundary conditions is obtained by adding 1 to the answer to
Team Project 8(d) and choosing T0 � �1; thus

cosh z � 1
��
cosh z � 1

T0
�
�

T0
�
�

T0
�
�

T0
�
�

2
�
�

T2 � T1
�

�

T2 � T1
�

�

292 Instructor’s Manual

im18.qxd  9/21/05  1:09 PM  Page 292



T(x, y) � 100 � Arg 

� 100 � Arg 

� 100 � Arg (tanh )
� 100 � arctan .

In calculating these real and imaginary parts we use the abbreviations

Cx � cosh (x/2), Sx � sinh (x/2)
and

cy � cos (y/2), sy � sin (y/2).
Then

tanh � .

We now multiply both numerator and denominator by the conjugate of the
denominator. The numerator of the resulting expression is

N � (Sx cy � i Cx sy)(Cx cy � i Sx sy).
Its real part is

Re N � Sx cy Cx cy � Cx Sx sy2 � Cx Sx � 1_
2 sinh x.

Its imaginary part is

Im N � �Sx2 cy sy � Cx2 sy cy � cy sy � 1_
2 sin y.

Hence the answer in its simplest form is

T(x, y) � 100 � arctan .

14. The answer is

[Arg (z2 � 1) � Arg (z2 � 1)]

because w � z2 maps the first quadrant onto the upper half-plane with 1 � 1 and
i � �1. The figure shows the transformed boundary conditions. The temperature is

[Arg (w � 1) � Arg (w � 1)] � [Arg (z2 � 1) � Arg (z2 � 1)],

in agreement with Team Project 8(c) with T0 � 100.

Section 18.3. Problem 14

–1 1 T = 0°CT = 0°C T = 100°C

100
�

�

100
�

�

100
�

�

sin y
�
sinh x

200
�

�

Sx cy � i Cx sy
��
Cx cy � i Sx sy

z
�
2

Im tanh (z/2)
��
Re tanh (z/2)

200
�

�

z
�
2

200
�

�

(ez/2 � e�z/2)2

��
(ez/2 � e�z/2)2

100
�

�

cosh z � 1
��
cosh z � 1

100
�

�
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SECTION 18.4. Fluid Flow, page 761

Purpose. To give an introduction to complex analysis in potential problems of fluid flow.
These two-dimensional flows are given by their velocity vector field, and our presentation
in the text begins with an explanation of handling this field by complex methods.

It is interesting that we use complex potentials as before, but whereas in electrostatics
the real part (the real potential) is of central interest, here it is the imaginary part of the
complex potential which gives the streamlines of the flow.

Important Concepts

Stream function 
, streamlines 
 � const

Velocity potential �, equipotential lines � � const

Complex potential F � � � i


Velocity V � F���(�z�)� 

Circulation (6), vorticity, rotation (9)

Irrotational, incompressible

Flow around a cylinder (Example 2, Team Project 16)

SOLUTIONS TO PROBLEM SET 18.4, page 766

2. w � ƒ(z) � iz2/K, F*(w) � �iKw, F(z) � F*(w) � �iKiz2/K � z2

4. Rotation of the whole flow pattern about the origin through the angle �

8. F(z) � iz3 � i(x3 � 3ix2y � 3xy2 � iy3) � �3x2y � y3 � i(x3 � 3xy2) gives the
streamlines

x(x2 � 3y2) � const.

This includes the three straight-line asymptotes x � 0 and y � �x/�3� (which make
60° angles with one another, dividing the plane into six angular regions of angle 60°
each), and we could interpret the flow as a flow in such a region. This is similar to
the case F(z) � z2, where we had four angular regions of 90° opening each (the four
quadrants of the plane) and the streamlines were hyperbolas. In the present case the
streamlines look similar but they are “squeezed” a little so that each stays within its
region, whose two boundary lines it has for asymptotes.

The velocity vector is
V � �6xy � 3i(y2 � x2)

so that V2 � 0 on y � x and y � �x. See the figure.

10. F(z) � iz2 � i(x2 � y2) � 2xy gives the streamlines

x2 � y2 � const
The equipotential lines are

xy � const.
The velocity vector is

V � F�� � �2iz� � �2y � 2ix.
See the figure.

12. F(z) � z2 � 1/z2, 
 � (r2 � 1/r2) sin 2� � 0 if r � 1 (the cylinder wall) or � � 0,
��/2, �. The unit circle and the axes are streamlines. For large �z� the flow is “parallel”
to the x-axis and also to the y-axis. For smaller �z� it is a flow in the first quadrant
around a quarter of �z� � 1. Similarly in the other quadrants.
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14. w � arccosh z implies

z � x � iy � cosh w � cos iw � sin (iw � 1_
2�).

Along with an interchange of the roles of the z- and w-planes, this reduces the present
problem to the consideration of the sine function in Sec. 17.4 (compare with Fig.
388). We now have the hyperbolas

� � 1

where c is different from the zeros of sine and cosine, and as limiting cases the 
y-axis and the two portions of the aperture.

16. Team Project. (b) We have

F(z) � � ln z � � ln �z� � arg z.
K

�
2�

iK
�
2�

iK
�
2�

y2

�
cos2 c

x2

�
sin2 c
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Hence the streamlines are circles

ln �z� � const, thus �z� � const.

The formula also shows the increase of the potential

�(x, y) � arg z

under an increase of arg z by 2�, as asserted in (b).

(d) F1(z) � ln (z � a) (source). F2(z) � � ln (z � a) (sink). The

minus sign has the consequence that the flow is directed radially inward toward the
sink because the velocity vector V is

V � F��(z) � � • � � •

� � • .

For instance, at z � a � i (above the sink),

V � � ,

which is directed vertically downward, that is, in the direction of the sink at a.

(e) The addition gives

F(z) � z � � ln z

� x � � arg z

� i(y � � ln �x2 � y�2�) .

Hence the streamlines are


(x, y) � Im F(z) � y � � ln �x2 � y�2� � const.

In both flows that we have added, �z� � 1 is a streamline; hence the same is true for
the flow obtained by the addition.

Depending on the magnitude of K, we may distinguish among three types of flow
having either two or one or no stagnation points on the cylinder wall. The speed is

�V� � �FF���(�z�)�� � �F�(z)� � j(1 � ) � j .

We first note that �V� * 1 as �z� * �; actually, V * 1, that is, for points at a great
distance from the cylinder the flow is nearly parallel and uniform. The stagnation
points are the solutions of the equation V � 0, that is,

(A) z2 � z � 1 � 0.
iK
�
2�

iK
�
2�z

1
�
z2

K
�
2�

y
�
x2 � y2

K
�
2�

y
�
x2 � y2

K
�
2�

x
�
x2 � y2

iK
�
2�

1
�
z

i
�
2�

x � a � iy
��
(x � a)2 � y2

1
�
2�

1
��
x � iy � a

1
�
2�

1
�
z� � a

1
�
2�

1
�
2�

1
�
2�

K
�
2�

K
�
2�
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We obtain

z � � ��� 1.�
If K � 0 (no circulation), then z � �1, as in Example 2. As K increases from 0 to
4�, the stagnation points move from z � �1 up on the unit circle until they unite at
z � i. The value K � 4� corresponds to a double root of the equation (A). If K 	 4�,
the roots of (A) become imaginary, so that one of the stagnation points lies on the
imaginary axis in the field of flow while the other one lies inside the cylinder, thus
losing its physical meaning.

SECTION 18.5. Poisson’s Integral Formula for Potentials, page 768

Purpose. To represent the potential in a standard region (a disk �z� � R) as an integral
(5) over the boundary values; to derive from (5) a series (7) that gives the potential and
for �z� � R is the Fourier series of the boundary values. So here we see another important
application of Fourier series, much less obvious than that of vibrational problems, where
one can “see” the cosine and sine terms of the series.

Comment on Footnote 2
Poisson’s discovery (1812) that Laplace’s equation holds only outside the masses (or
charges) resulted in the Poisson equation (Sec. 12.1). The publication on the Poisson
distribution (Sec. 24.7) appeared in 1837.

SOLUTIONS TO PROBLEM SET 18.5, page 771

4. r2 sin 2�

6. cos2 5� � 1_
2 � 1_

2 cos 10� gives the answer 1_
2 � 1_

2r10 cos 10�.

8. � � 2 (r sin � � sin 2� � sin 3� � • • •) .

Note that �(1, �) is neither even nor odd, but �(1, �) � � is odd, so that we get
a sine series plus the constant term �.

10. cos4 � � 3_
8 � 1_

2 cos 2� � 1_
8 cos 4� gives the answer

3_
8 � 1_

2r2 cos 2� � 1_
8r4 cos 4�.

12. � (r cos � � r3 cos 3� � r5 cos 5� � � • • •)
14. Team Project. (a) r � 0 in (5) gives �(0) � �2�

0
�(R, �) d�. Note that the

interval of integration has length 2�, not 2�R.

(b) �2u � 0, u � g(r)h(�), g�h � g�h � gh� � 0; hence by separating
variables

r2 � r � n2, � �n2, h � an cos n� � bn sin n�.

Also,
r2g� � rg� � n2g � 0.

A solution is rn/Rn.

h�
�
h

g�
�
g

g�
�
g

1
�
r2

1
�
r

1
�
2�

1
�
5

1
�
3

2
�
�

1
�
2

r3

�
3

r2

�
2

�K2

�
16�2

iK
�
4�
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(c) By the Cauchy–Riemann equations,


r � � �� � ��
`

n�1

(�an sin n� � bn cos n�)n,


 � 
(0) � �
`

n�1

( )n

(�bn cos n� � an sin n�).

(d) From the series for � and 
 we obtain by addition

F(z) � a0 � i
(0) � �
`

n�1

( )n

[(an � ibn) cos n� � i(an � ibn) sin n�]

� a0 � i
(0) � �
`

n�1

( )n

(an � ibn)ein�,

an � ibn � �2�

0
�(R, �)e�in� d�.

Using z � rei�, we have the power series

F(z) � a0 � i
(0) � �
`

n�1

zn.

SECTION 18.6. General Properties of Harmonic Functions, page 771

Purpose. We derive general properties of analytic functions and from them corresponding
properties of harmonic functions.

Main Content, Important Properties

Mean value of analytic functions over circles (Theorem 1)

Mean value of harmonic functions over circles, over disks (Theorem 2)

Maximum modulus theorem for analytic functions (Theorem 3)

Maximum principle for harmonic functions (Theorem 4)

Uniqueness theorem for the Dirichlet problem (Theorem 5)

Comment on Notation
Recall that we introduced F to reserve ƒ for conformal mappings (beginning in Sec. 18.2),
and we continue to use F also in this last section of Chap. 18.

SOLUTIONS TO PROBLEM SET 18.6, page 774

2. Use (2). We obtain

F(2) � 27 � �2�

0
(3 � ei�)3 d� � (2� � 27 � 0).

4. Use (2). F(0) � 0

6. By (3) with r0 � 1,

1
�
2�

1
�
2�

an � ibn
�

Rn

1
�
�

r
�
R

r
�
R

r
�
R

rn�1

�
Rn

1
�
r
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�1

0
�2�

0
[(3 � cos �)2 � (8 � sin �)2]r dr d�

� �2�

0 [(3 � cos �)2 � (8 � sin �)2] d�

� [(9 � 0 � ) � (64 � 0 � )] � 2� � �55.

8. Set r � 0.

10. Team Project. (a) (i) Polar coordinates show that �F(z)� � �z�2 assumes its maximum
52 and its minimum 20 at the boundary points 6 � 4i and 4 � 2i, respectively, and
at no interior point.

(ii) Use the fact that �e3z� � e3x is monotone.

(iii) At z � �i we obtain the maximum

�F(z)� � [sin2 x � sinh2 y]1/2 � sinh 1 � 1.1752

and at z � 0 the minimum 0.

(b) �cos z�2 � cos2 x � sinh2 y (Sec. 13.6) shows that, for instance, in the unit disk

the maximum �1 � si�nh2 1� � 1.5431 is taken at z � �i.

(c) F(z) is not analytic.

(d) The extension is simple. Since the interior R of C is simply connected, Theorem
3 applies. The maximum of �F(z)� is assumed on C, by Theorem 3, and if F(z) had
no zeros inside C, then, by Theorem 3, it would follow that �F(z)� would also have
its minimum on C, so that F(z) would be constant, contrary to our assumption. This
proves the assertion.

The fact that �F(z)� � const implies F(z) � const for any analytic function F(z) was
shown in Example 3, Sec. 13.4.

12. Since �z� � 1, the triangle inequality yields �az � b� � �a� � �b�. The maximum lies
on �z� � 1. Write a � �a�ei�, z � ei�, b � �b�ei�. Choose � � � � �. Then

�az � b� � j�a�ei��i(���) � �b�ei�j � (�a� � �b�)�ei�� � �a� � �b�.

Answer: �a� � �b�, taken at z � ei(���).

14. ex � eb with equality only at b. Also, cos y � 1 with equality only at 0 and 2�, and
(b, 0) and (b, 2�) lie on the boundary.

16. � � exp (x2 � y2) cos 2xy, R: �z� � 1, x � 0, y � 0. Yes, (u1, v1) � (1, 0) is the
image of (x1, y1) � (1, 0); this is typical. (u1, v1) is found by noting that on the

boundary (semicircle), �* � eu cos (�1 � u2�) increases monotone with u. Similarly
for R.

SOLUTIONS TO CHAP. 18 REVIEW QUESTIONS AND PROBLEMS, page 775

12. � � (20/ln 10) ln r

14. � � (220 ln r) /ln 4; � � 0 if r � 1, the unit circle, which is closer to the inner circle
than to the outer, reflecting the convexity of the curve of the logarithm.

16. � � 10 � (12/�) Arg z

1
�
2

1
�
2

1
�
2�

1
�
2�

1
�
�
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18. � � � , (x � c)2 � (y � c)2 � 2c2, circles through the origin with

center on y � x.

20. � � 600[1 � (2/�) Arg z], so that the answer is 900 V and 600 V.

22. T(x, y) � 50[1 � Arg (z � 2)]
24. 43.22°C, which is obtained as follows. We have

T(r) � a ln r � b
and at the outer cylinder,

(1) T(10) � a ln 10 � b � 20

and from the condition to be achieved

(2) T(5) � a ln 5 � b � 30.

(1) subtracted from (2) gives

a(ln 5 � ln 10) � 10, a � 10/ln 1_
2 � �14.43.

From this and (1)
b � 20 � a ln 10 � 53.22.

Hence on the inner cylinder we should have

T(2) � a ln 2 � b � 43.22.

26. z/4 � 4/z

28. 25 � (r cos � � r3 cos 3� � r5 cos 5� � � • • •)
30. 1_

3�2 � 4(r cos � � 1_
4r2 cos 2� � 1_

9r3 cos 3� � _1
16r4 cos 4� � � • • • )

1
�
5

1
�
3

100
�

�

1
�
�

1
�
2c

x � y
�
x2 � y2
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PART E. Numeric Analysis
The subdivision into three chapters has been retained. All three chapters have been updated
in the light of computer requirements and developments. A list of suppliers of software
(with addresses etc.) can be found at the beginning of Part E of the book and another list
at the beginning of Part G.

CHAPTER 19 Numerics in General

Major Changes

Updating of this chapter consists of the inclusion of ideas, such as error estimation by
halving, changes in Sec. 19.4 on splines, the presentation of adaptive integration and
Romberg integration, and further error estimation techniques in integration.

SECTION 19.1. Introduction, page 780

Purpose. To familiarize the student with some facts of numerical work in general,
regardless of the kind of problem or the choice of method.

Main Content, Important Concepts

Floating-point representation of numbers, overflow, underflow,

Roundoff

Concept of algorithm

Stability

Errors in numerics, their propagation, error estimates

Loss of significant digits

Short Courses. Mention the roundoff rule and the definitions of error and relative error.

SOLUTIONS TO PROBLEM SET 19.1, page 786

2. �0.286403 • 10�1, 0.112584 • 102, �0.316816 • 105

6. 19.9499, 0.0501; 19.9499, 0.0501256

8. �99.980, �0.020; �99.980, �0.020004

10. Small terms first. (0.0004 � 0.0004) � 1.000 � 1.001, but

(1.000 � 0.0004) � 0.0004 � 1 (4S)

14. The proof is practically the same as that in the text. With the same notation we get

��� � �x � y � (x� � y�)�

� �(x � x�) � (y � y�)�

� ��1 � �2� � ��1� � ��2� � �1 � �2.

16. Since x2 � 2/x1 and 2 is exact, ��r(x2)� � ��r(x1)� by Theorem 1b. Since x1 is rounded
to 4S, we have ��(x1)� � 0.005, hence

��r(x1)� � 0.005/39.95.
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This implies
��(x2)� � ��r(x2)x2� � ��r(x1)x2�

� (0.005/39.95) • 0.0506

� 0.00001.

18. 61.2 � 7.5 • 15.5 � 11.2 • 3.94 � 2.80 � 61.2 � 116 � 44.1 � 2.80 � �7.90

((x � 7.5)x � 11.2)x � 2.80 � (�3.56 • 3.94 � 11.2)3.94 � 2.80

� (�14.0 � 11.2)3.94 � 2.80

� �11.0 � 2.80 � �8.20
Exact: �8.336016

SECTION 19.2. Solution of Equations by Iteration, page 787

Purpose. Discussion of the most important methods for solving equations ƒ(x) � 0, 
a very important task in practice.

Main Content, Important Concepts

Solution of ƒ(x) � 0 by iteration (3) xn�1 � g(xn)

Condition sufficient for convergence (Theorem 1)

Newton (–Raphson) method (5)

Speed of convergence, order

Secant, bisection, false position methods

Comments on Content
Fixed-point iteration gives the opportunity to discuss the idea of a fixed point, which is
also of basic significance in modern theoretical work (existence and uniqueness of
solutions of differential, integral, and other functional equations).

The less important method of bisection and method of false position are included in the
problem set.

SOLUTIONS TO PROBLEM SET 19.2, page 796

2. x0 � 1, x1 � 0, x2 � 1, x3 � 0, • • •

x0 � 0.5, x1 � 0.875, x2 � 0.330, • • •

x0 � 2, x1 � �7, x2 � 344, x3 � �40 707 583, • • •

4. g � �4 x � 0.�2�, 1, 0.9457, 0.9293, 0.9241, 0.9225, 0.9220, 0.9218, 0.9217, 0.9217

6. x � x/(e0.5x sin x), 1, 0.7208, 0.7617, 0.7541, 0.7555, 0.7553, 0.7553, 0.7553

8. CAS Project. (a) This follows from the intermediate value theorem of calculus.

(b) Roots r1 � 1.56155 (6S-value), r2 � �1 (exact), r3 � �2.56155 (6S-value). 
(1) r1, about 12 steps, (2) r1, about 25 steps, (3) convergent to r2, divergent, (4)
convergent to 0, divergent, (5) r3, about 7 steps, (6) r2, divergent, (7) r1, 4 steps; this
is Newton.

10. 0.750364, 0.739113, 0.739085, 0.739085

12. 1.537902, 1.557099, 1.557146, 1.557146

14. 2, 2.452, 2.473; temperature 39.02°C
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16. (a) 0.906180 (6S exact, 4 steps, x0 � 1). (b) 1_
3�5 � 2_

7��70�� � 0.906179846

18. ƒ(x) � xk � c, xn�1 � xn � (xn � c/xn
k�1) /k

� (1 � )xn � .

In each case, x4 is the first value that gives the desired accuracy, 1.414 214, 
1.259 921, 1.189 207, 1.148 698.

20. Team Project. (a)
ALGORITHM REGULA FALSI (ƒ, a0, b0, �, N). Method of False Position
This algorithm computes an interval [an, bn] containing a solution of ƒ(x) � 0 
(ƒ continuous) or a solution cn.

INPUT: Continuous function ƒ, initial interval [a0, b0], tolerance �, 
maximum number of iterations N.

OUTPUT: Interval [an, bn] containing a solution, or a solution cn, or message of
failure.

For n � 0, 1, • • • , N � 1 do:

 Compute cn � .


If ƒ(cn) � 0 then OUTPUT cn. Stop. [Successful completion] Else continue. If ƒ(an)ƒ(cn) � 0 then set an�1 � an and bn�1 � cn.

 Else set an�1 � cn and bn�1 � bn.
 If bn�1 � an�1 � � then OUTPUT [an�1, bn�1]. Stop.
 [Successful completion]
 Else continue.

End

OUTPUT [aN, bN] and message “Failure”. Stop.

[Unsuccessful completion; N iterations did not give an interval of length not
exceeding the tolerance.]

End REGULA FALSI

(b) 2.68910, (c) 1.18921, 0.64171, 1.55715

22. 1, 0.7, 0.577094, 0.534162, 0.531426, 0.531391, 531391

24. 0.5, 1, 0.725482, 0.738399, 0.739087, 0.739085, 0.739085

SECTION 19.3. Interpolation, page 797

Purpose. To discuss methods for interpolating (or extrapolating) given data 
(x0, ƒ0), • • • , (xn, ƒn), all xj different, arbitrarily or equally spaced, by polynomials of
degree not exceeding n.

Main Content, Important Concepts

Lagrange interpolation (4) (arbitrary spacing)

Error estimate (5)

Newton’s divided difference formula (10) (arbitrary spacing)

Newton’s difference formulas (14), (18) (equal spacing)

anƒ(bn) � bnƒ(an)
��

ƒ(bn) � ƒ(an)

c
�
kxn

k�1

1
�
k
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Short Courses. Lagrange’s formula briefly, Newton’s forward difference formula (14).

Comment on Content
For given data, the interpolation polynomial pn(x) is unique, regardless of the method by
which it is derived. Hence the error estimate (5) is generally valid (provided ƒ is n � 1
times continuously differentiable).

SOLUTIONS TO PROBLEM SET 19.3, page 808

2. This parallels Example 3. From (5) we get

�1(9.4) � (x � 9)(x � 9.5) j
x�9.4

� ,

where 9 � t � 9.5. Now the right side is a monotone function of t, hence its extrema
occur at 9.0 and 9.5. We thus obtain

0.00022 � a � a� � 0.00025.
This gives the answer

2.2407 � a � 2.2408.
2.2407 is exact to 4D.

4. From (5) we obtain

�2(9.2) � (x � 9)(x � 9.5)(x � 11) j
x�9.2

� .

The right side is monotone in t, hence its extreme values occur at the ends of the
interval 9 � t � 11. This gives

0.000027 � �2(9.4) � a � a� � 0.000049

and by adding a� � 2.2192 (and rounding)
2.2192 � a � 2.2193.

6. From (5) we obtain

�2(0.75) � (x � 0.25)(x � 0.5)(x � 1) j
x�0.75

� �0.005 208ƒ	(t)

where, by differentiation,

ƒ	(t) � (1 � 2t2)e�t2
.

Another differentiation shows that ƒ	 is monotone on the interval 0.25 � t � 1
because

ƒiv � � (�3 � 2t2)e�t2

 0

on that interval. Hence the extrema of ƒ	 occur at the ends of the interval, so that we
obtain

�0.00432 � a � a� � 0.00967

and by adding a� � 0.70929

0.70497 � a � 0.71896.
Exact: 0.71116 (5D).

8t
�
���

�4
�
���

ƒ	(t)
�

6

0.036
�

t3

(ln t)	
�

6

0.02
�

t2

ƒ�(t)
�

2
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8. 0.8032 (� � �0.0244), 0.4872 (� � �0.0148); the quadratic interpolation polynomial
is

p2(x) � 0.3096x2 � 0.9418x � 1

and gives the values 0.7839 (� � �0.0051) and 0.4678 (� � 0.0046).

10. From
L0(x) � x2 � 20.5x � 104.5

L1(x) � (�x2 � 20x � 99)

L2(x) � (x2 � 18.5x � 85.5)

(see Example 2) and the 5S-values of the logarithm in the text we obtain

p2(x) � �0.005 233x2 � 0.205 017x � 0.775 950.

This gives the values and errors

2.2407, error 0

2.3028, error �0.0002

2.3516, error �0.0002

2.4415, error 0.0008

2.4826, error 0.0024.

It illustrates that in extrapolation one may usually get less accurate values than one
does in interpolation. p2(x) would change if we took more accurate values of the
logarithm.

12. 4x2 � 6x � 5

14. p2(x) � 1.0000 � 0.0112r � 0.0008r(r � 1)/2 � x2 � 2.580x � 2.580, 
r � (x � 1)/0.02; 0.9943, 0.9835, 0.9735

16. The divided difference table is

xj ƒ(xj) ƒ[xj, xj�1] ƒ[xj, xj�1, xj�2] ƒ[xj, • • • , xj�3]

6.0 0.1506
0.1495

7.0 0.3001 �0.1447
�0.0676 0.0088

7.5 0.2663 �0.1299
�0.1585

7.7 0.2346

From it and (10) we obtain

p3(6.5) � 0.1506 � (6.5 � 6.0) • 0.1495

� (6.5 � 6.0)(6.5 � 7.0) • (�0.1447)

� (6.5 � 6.0)(6.5 � 7.0)(6.5 � 7.5) • 0.0088

� 0.2637.

1
�
3

1
�
0.75
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18. The difference table is

xj J1(xj) 
 
2 
3 
4 
5

0.0 0.00000
9950

0.2 0.09950 �297
9653 �289

0.4 0.19603 �586 22
9067 �267 5

0.6 0.28670 �853 27
8214 �240

0.8 0.36884 �1093
7121

1.0 0.44005

From this and (14) we get by straightforward calculation

p5(x) � 0.00130x5 � 0.00312x4 � 0.06526x3 � 0.00100x2 � 0.49988x.

This gives as the values of J1(x), x � 0.1, 0.3, 0.5, 0.7, 0.9,

0.04993, 0.14832, 0.24227, 0.32899, 0.40595,

the errors being 1, 0, 0, 1, 0 unit of the last given digit.
22. Team Project. (a) For p1(x) we need

L0 � � 19 � 2x, L1 � � �18 � 2x

p1(x) � 2.19722(19 � 2x) � 2.25129(�18 � 2x)

� 1.22396 � 0.10814x,

p1(9.2) � 2.21885.

Exact, 2.21920, error 0.00035.
For p2 we need

L0 � 104.5 � _41
2 x � x2

L1 � �132 � _80
3 x � 4_

3x2

L2 � 28.5 � _37
6 x � 1_

3x2

This gives (with 10S-values for the logarithm)

p2(x) � 0.779466 � 0.204323x � 0.0051994x2,

hence p2(9.2) � 2.21916, error 0.00004. The error estimate is

p2(9.2) � p1(9.2) � 0.00031.

(b) Extrapolation gives a much larger error. The difference table is

0.2 0.9980
�0.0294

0.4 0.9686 �0.0949
�0.1243

0.6 0.8443 �0.1842
�0.3085

0.8 0.5358 �0.2273
�0.5358

1.0 0.0000

x � x0
�
x1 � x0

x � x1
�
x0 � x1
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The differences not shown are not needed. Taking x � 0.6, 0.8, 1.0 gives the best
result. Newton’s formula (14) with r � 0.1/0.2 � 0.5 gives

0.8443 � 0.5 • (�0.3085) � • (�0.2273) � 0.7185, � � �0.0004.

Similarly, by taking x � 0.4, 0.6, 0.8 we obtain

0.9686 � 1.5 • (�0.1243) � • (�0.1842) � 0.7131, � � 0.0050.

Taking x � 0.2, 0.4, 0.6, we extrapolate and get a much poorer result:

0.9980 � 2.5 • (�0.0294) � • (�0.0949) � 0.7466, � � �0.0285.

(e) 0.386 4185, exact to 7S.

SECTION 19.4. Splines, page 810

Purpose. Interpolation of data (x0, ƒ0), • • • , (xn, ƒn) by a (cubic) spline, that is, a twice
continuously differentiable function

g(x)

which in each of the intervals between adjacent nodes is given by a polynomial of third
degree at most,

on [x0, x1] by q0(x), on [x1, x2] by q1(x), • • • , on [xn�1, xn] by qn�1(x).

Short Courses. This section may be omitted.

Comments on Content
Higher order polynomials tend to oscillate between nodes—the polynomial P10(x) in Fig.
431 is typical—and splines were introduced to avoid that phenomenon. This motivates
their application.

It is stated in the text that splines also help lay the foundation of CAD (computer-
aided design).

If we impose the additional condition (3) with given k0 and kn (tangent direction of the
spline at the beginning and at the end of the total interval considered), then for given data
the cubic spline is unique.

SOLUTIONS TO PROBLEM SET 19.4, page 815

2. Writing ƒ(xj) � ƒj, ƒ(xj�1) � ƒj�1, x � xj � F, x � xj�1 � G, we get (6) in
the form

qj(x) � ƒjcj
2G2(1 � 2cjF)

� ƒj�1cj
2F2(1 � 2cjG)

� kjcj
2FG2

� kj�1cj
2F2G.

If x � xj, then F � 0, so that because cj � 1/(xj�1 � xj),

qj(xj) � ƒjcj
2(xj � xj�1)2 � ƒj.

2.5 • 1.5
�

2

1.5 • 0.5
�

2

0.5 • (�0.5)
��

2
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Similarly, if x � xj�1, then G � 0 and

qj(xj�1) � ƒj�1cj
2(xj�1 � xj)

2 � ƒj�1.

This verifies (4).
By differenting (6) we obtain

q�j(x) � ƒjcj
2[2G(1 � 2cjF) � 2cjG

2]

� ƒj�1cj
2[2F(1 � 2cjG) � 2cjF

2]

� kjcj
2[G2 � 2FG]

� kj�1cj
2[2FG � F2].

If x � xj, then F � 0, and in the first line the expression in the brackets [• • •]
reduces to

2G(1 � cjG) � 2(xj � xj�1)(1 � ) � 0.

In the second and fourth lines we obtain zero. There remains

q�j(xj) � kjcj
2(xj�1 � xj)

2 � kj.

Similarly, if x � xj�1, then G � 0 and

q�j(xj�1) � ƒj�1cj
2[2(xj�1 � xj) � 2cj(xj�1 � xj)

2]
� kj�1cj

2(xj�1 � xj)
2

� 0 � kj�1 • 1 � kj�1.
This verifies (5).

4. This derivation is simple and straightforward.

8. p2(x) � x2. [ƒ(x) � p2(x)]� � 4x3 � 2x � 0 gives the points of maximum deviation
x � �1/�2� and by inserting this, the maximum deviation itself,

�ƒ(1/�2�) � p2(1/�2�)� � �1_4 � 1_
2� � 1_

4.

For the spline g(x) we get, taking x � 0,

[ƒ(x) � g(x)]� � 4x3 � 2x � 6x2 � 0.

A solution is x � 1/2. The corresponding maximum deviation is

ƒ(1_
2) � g(1_

2) � _1
16 � (�1_

4 � 2 • 1_
8) � _1

16,

which is merely 25% of the previous value.

10. We obtain

q0 � �3_
4(x � 2)2 � 3_

4(x � 2)3

� 3 � 6x � _15
4 x2 � 3_

4x3

q1 � 3_
4(x � 1) � 3_

2(x � 1)2 � 5_
4(x � 1)3

� 1 � 9_
4x2 � 5_

4x3

q2 � 1 � 9_
4x2 � 5_

4x3

q3 � �3_
4(x � 1) � 3_

2(x � 1)2 � 3_
4(x � 1)3

� 3 � 6x � _15
4 x2 � 3_

4x3.

xj � xj�1
�
xj�1 � xj
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12. n � 3, h � 2, so that (14) is

Since k0 � 0 and k3 � �12, the solution is k1 � 12, k2 � 12.
In (13) with j � 0 we have a00 � ƒ0 � 1, a01 � k0 � 0,

a02 � 3_
4(9 � 1) � 1_

2(12 � 0) � 0

a03 � 2_
8(1 � 9) � 1_

4(12 � 0) � 1.

From this and, similarly, from (13) with j � 1 and j � 2 we get the spline g(x)
consisting of the three polynomials (see the figure)

q0(x) � 1 � x3 (0 � x� 2)

q1(x) � 9 � 12(x � 2) � 6(x � 2)2 � 2(x � 2)3 � 25 � 36x � 18x2 � 2x3

(2 � x � 4)

q2(x) � 41 � 12(x � 4) � 6(x � 4)2 � �103 � 60x � 6x2 (4 � x � 6).

Section 19.4. Spline in Problem 12

14. q0(x) � x3,
q1(x) � 1 � 3(x � 1) � 3(x � 1)2 � (x � 1)3, 
q2(x) � 6 � 6(x � 2) � 2(x � 2)3

16. 3x/� � 4x3/�3

18. The purpose of the experiment is to see that the advantage of the spline over the
polynomial increases drastically with m. The greatest deviation of pm occurs at the
ends. Formulas for the pm as a CAS will give them are

p4(x) � 1 � 5_
4x2 � 1_

4x4

p6(x) � 1 � _49
36x2 � _7

18x4 � _1
36x6

p8(x) � 1 � _205
144x2 � _91

192x4 � _5
96x6 � _1

576x8

and so on.

20. Team Project.
(b) x(t) � 1_

2t � 5_
2t2 � 2t3, y(t) � 1_

2t � (1_
4�3� � 1)t2 � (1_

2 � 1_
4�3�)t3

(c) x(t) � t � 2t2 � 2t3, y(t) � t � (1_
2�3� � 2)t2 � (1 � 1_

2�3�)t3

Note that the tangents in (b) and (c) are not parallel.

SECTION 19.5. Numeric Integration and Differentiation, page 817

Purpose. Evaluation of integrals of empirical functions, functions not integrable by
elementary methods, etc.

50
40

30
20
10

0
0 2 4 6 x

y

� 3_
2(ƒ2 � ƒ0) � 60

� 3_
2(ƒ3 � ƒ1) � 48.

k2

4k2 � k3

k0 � 4k1 �

k1 �
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Main Content, Important Concepts

Simpson’s rule (7) (most important), error (8), (10)

Trapezoidal rule (2), error (4), (5)

Gaussian integration

Degree of precision of an integration formula

Adaptive integration with Simpson’s rule (Example 6)

Numerical differentiation

Short Courses. Discuss and apply Simpson’s rule.

Comments on Content
The range of numerical integration includes empirical functions, as measured or recorded
in experiments, functions that cannot be integrated by the usual methods, or functions that
can be integrated by those methods but lead to expressions whose computational evaluation
would be more complicated than direct numerical integration of the integral itself.

Simpson’s rule approximates the integrand by quadratic parabolas. Approximations by
higher order polynomials are possible, but lead to formulas that are generally less practical.

Numerical differentiation can sometimes be avoided by changing the mathematical
model of the problem.

SOLUTIONS TO PROBLEM SET 19.5, page 828

2. Let Aj and Bj be lower and upper bounds for ƒ in the jth subinterval. Then 
A � J � B, where A � h�Aj and B � h�Bj. In Example 1 the maximum and minimum
of the integrand in a subinterval occur at the ends. Hence we obtain A and B by
choosing the left and right endpoints, respectively, of each subinterval instead of the
midpoints as in (1). Answer: 0.714 � J � 0.778, rounded to 3S.

4. The first term, 1/20, results from (1 � 1_
2) • 0.1/3. We obtain

� �
5

j�1

� �
4

j�1

� 0.6931502.

The 7S-exact value is 0.6931472.

6. 1.5576070 (8S-exact value 1.5574077)

8. 0.9080057 (8S-exact 0.9084218)

10. Jh/2 � �h/2 � 1.5574211 � 0.0000124 � 1.5574087 (8S-exact 1.5574077)

12. Jh/2 � �h/2 � 0.9083952 � 0.0000260 � 0.9084212

14. From (5) and the values in Prob. 13 we obtain

0.94583 � 1_
3(0.94583 � 0.94508) � 0.94608

which is exact to 5S.

16. From (10) and Prob. 15 we obtain

0.94608693 � _1
15(0.94608693 � 0.94614588) � 0.94608300

which is exact to 6S, the error being 7 units of the 8th decimal.

18. We obtain

_1
24(4 �

5

j�1

sin (1_
4 j � 1_

8)2 � 2 �
4

k�1

sin _1
16k2 � sin _25

16) � 0.545941.

The exact 6S-value is 0.545962.

1
�
1 � 0.2j

1
�
15

1
��
0.9 � 0.2j

2
�
15

1
�
20
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20. h�1_2�0 � �1 � • • • � �n�1 � 1_
2�n� � [(b � a) /n]nu � (b � a)u. This is similar to the

corresponding proof for Simpson’s rule given in the text.

22. Since the cosine is even, we can take terms together,

��/2

0

cos x dx � 1_
2 �

�/2

��/2

cos x dx � �1

�1
cos 1_

2�t dt

� [2A1 cos 1_
2�t1 � 2A2 cos 1_

2�t2 � A3 • 1] � 1.00000 00552.

24. x � (t � 1)/1.6 gives x � 0 when t � �1 and x � 1.25 when t � 1. Also dx � dt/1.6.
The computation gives 0.5459627. The 7S-exact value is 0.5459623. This is the value
of the Fresnel integral S(x) at x � 1.25.

26. Team Project. The factor 24 � 16 comes in because we have replaced h by 1_
4h,

giving for h2 now (1_
4h)2 � _1

16h2. In the next step (with h/8) the error �43 has the
factor 1/(26 � 1) � _1

63, etc.
For ƒ(x) � e�x the table of J and � values is

J11 � 1.135335
�21 � �0.066596

J21 � 0.935547 J22 � 0.868951
�31 � �0.017648 �32 � �0.000266

J31 � 0.882604 J32 � 0.864956 J33 � 0.864690

Note that J33 is exact to 4D.

For ƒ(x) � 1_
4�x4 cos 1_

4�x the table is
J11 � 0

�21 � 0.185120
J21 � 0.555360 J22 � 0.74048

�31 � 0.168597 �32 � 0.03262
J31 � 1.06115 J32 � 1.22975 J33 � 1.26236

�41 � 0.049142 �42 � 0.001864 �43 � �0.00004
J41 � 1.20857 J42 � 1.25771 J43 � 1.25958 J44 � 1.25953

Note that J44 is exact to 5D.

28. 0.240, which is not exact. It can be shown that the error term of the present formula
is h3ƒ(4)(�) /12, whereas that of (15) is h4ƒ(5)(�) /30, where x2 � h � � � x2 � h. In
our case this gives the exact value 0.240 � 0.016 � 0.256 and 0.256 � 0 � 0.256,
respectively.

30. Differentiating (14) in Sec. 19.3 with respect to r and using dr � dx/h we get

� hƒ�(x) � 
ƒ0 � 
2ƒ0 � 
3ƒ0 � • • • .

Now x � x0 gives r � (x � x0) /h � 0 and the desired formula follows.

SOLUTIONS TO CHAP. 19 REVIEW QUESTIONS AND PROBLEMS, page 830

16. �0.35287 • 100, 0.12748 • 104, �0.61400 • 10�2, 0.24948 • 102, 0.33333 • 100,
0.12143 • 102

18. 8.2586, 8.258, 9.9, impossible

20. 199.98, 0.02; 199.98, 0.020002

22. �7.9475 � d � �7.9365

3r2 � 6r � 2
��

3!

2r � 1
�

2!

dƒ(x)
�

dr

�
�
4

�
�
4
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24. �r(a�2) � � • � • � 2�r(a�)

26. Because �g�(x)� is small (0.038) near the solution 0.739085.

28. 0.739. As mentioned before, this method is good for starting but should not be used
once one is close to the solution.

30. 2 � 3x � 2x3 if �1 � x � 1, 1 � 3(x � 1) � 6(x � 1)2 � (x � 1)3

if 1 � x � 3, 23 � 15(x � 3) � (x � 3)3 if 3 � x � 5

32. J0.5 � 0.90266, J0.25 � 0.90450, �0.25 � 0.00012

a � a�
�

a

2a
�
a

a � a�
�

a

a � a�
�

a

a2 � a�2

�
a2
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CHAPTER 20 Numeric Linear Algebra

SECTION 20.1. Linear Systems: Gauss Elimination, page 833

Purpose. To explain the Gauss elimination, which is a solution method for linear systems
of equations by systematic elimination (reduction to triangular form).

Main Content, Important Concepts

Gauss elimination, back substitution

Pivot equation, pivot, choice of pivot

Operations count, order [e.g., O(n3)]

Comments on Content
This section is independent of Chap. 7 on matrices (in particular, independent of Sec. 7.3,
where the Gauss elimination is also considered).

Gauss’s method and its variants (Sec. 20.2) are the most important solution methods
for those systems (with matrices that do not have too many zeros).

The Gauss–Jordan method (Sec. 20.2) is less practical because it requires more
operations than the Gauss elimination.

Cramer’s rule (Sec. 7.7) would be totally impractical in numeric work, even for systems
of modest size.

SOLUTIONS TO PROBLEM SET 20.1, page 839

2. x1 � 0.65x2, x2 arbitrary. Both equations represent the same straight line.

4. x1 � 0, x2 � �3

6. x1 � (30.6 � 15.48x2) /25.38, x2 arbitrary

8. No solution; the matrix obtained at the end is

Y Z .

10. x1 � 0.5, x2 � �0.5, x3 � 3.5

12. x1 � 0.142857, x2 � 0.692308, x3 � �0.173913

14. x1 � 1.05, x2 � 0, x3 � �0.45, x4 � 0.5

16. Team Project. (a) (i) a � 1 to make D � a � 1 � 0; (ii) a � 1, b � 3; 
(iii) a � 1, b � 3.

(b) x1 � 1_
2(3x3 � 1), x2 � 1_

2(�5x3 � 7), x3 arbitrary is the solution of the first system.
The second system has no solution.

(c) det A � 0 can change to det A � 0 because of roundoff.

(d) (1 � 1/�)x2 � 2 � 1/� eventually becomes x2/� � 1/�, x2 � 1, 
x1 � (1 � x2) /� � 0. The exact solution is x1 � 1/(1 � �), x2 � (1 � 2�) /(1 � �).
We obtain it if we take x1 � x2 � 2 as the pivot equation.

(e) The exact solution is x1 � 1, x2 � �4. The 3-digit calculation gives x2 � �4.5,
x1 � 1.27 without pivoting and x2 � �6, x1 � 2.08 with pivoting. This shows that

2

�3

5

1

8

0

3

�4

0

5

0

0

313
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3S is simply not enough. The 4-digit calculations give x2 � �4.095, x1 � 1.051
without pivoting and the exact result x2 � �4, x1 � 1 with pivoting.

SECTION 20.2. Linear Systems: LU-Factorization, Matrix Inversion, 
page 840

Purpose. To discuss Doolittle’s, Crout’s, and Cholesky’s methods, three methods for
solving linear systems that are based on the idea of writing the coefficient matrix as a
product of two triangular matrices (“LU-factorization”). Furthermore, we discuss matrix
inversion by the Gauss–Jordan elimination.

Main Content, Important Concepts

Doolittle’s and Crout’s methods for arbitrary square matrices

Cholesky’s method for positive definite symmetric matrices

Numerical matrix inversion

Short Courses. Doolittle’s method and the Gauss–Jordan elimination.

Comment on Content
L suggests “lower triangular” and U “upper triangular.” For Doolittle’s method, these are
the same as the matrix of the multipliers and of the triangular system in the Gauss
elimination.

The point is that in the present methods, one solves one equation at a time, no systems.

SOLUTIONS TO PROBLEM SET 20.2, page 844

2. [ ] [ ] , 

4. Y Z Y Z , 

6. Y Z Y Z , 

8. Team Project. (a) The formulas for the entries of L � [ljk] and U � [ujk] are

lj1 � aj1 j � 1, • • • , n

u1k � k � 2, • • • , n

ljk � ajk � �
k�1

s�1

ljsusk j � k, • • • , n; k � 2

ujk � (ajk � �
j�1

s�1

ljsusk) k � j � 1, • • • , n; j � 2.
1
�
ljj

a1k
�
l11

x1 � �0.2

x2 � �2.4

x3 � �2.8

�52/5

�1/6

�21/5

�7/2

�25/6

0

�3/2

0

0

0

0

1

0

1

4/5

1

�1/3

�2/3

x1 � �4

x2 � �8

x3 � �8

2

3

�9_
2

1

3

0

2

0

0

0

0

1

0

1

1_
2

1

�1

1_
2

x1 � �2

x2 � �5

9

�18.5

2

0

0

1

1

1.5
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(b) The factorizations and solutions are

[ ] [ ] , y � [ ] , x � [ ]
and for Prob. 7

Y Z Y Z , y � Y Z , x � Y Z .

(c) The three factorizations are

Y Z Y Z (Doolittle)

Y Z Y Z (Crout)

Y Z Y Z (Cholesky).

(d) For fixing the notation, for n � 4 we have

A � LU � W X � W X W X
where

(e) If A is symmetric

10. Y Z Y Z , 

12. W X W X , 

4

�6

8

�2

x1 �

x2 �

x3 �

x4 �

2

0

�1

4

3

�1

3

0

�1

2

0

0

1

0

0

0

0

0

0

4

0

0

3

�1

0

2

�1

0

1

�1

3

2

x1 � �5

x2 � �2.5

x3 � �10

0.6

0.4

0.2

0

0.8

0

0.2

0

0

0

0

0.2

0

0.8

0.4

0.2

0

0.6

j � 2, • • • , n

j � 2, • • • , n � 1

� aj � bj�j�l,

� cj/	j,

	j

�j

� a1,

� c1/	1,

	1

�1

0

0

�3

1

0

�2

1

0

�1

1

0

0

1

0

0

0

0

0

0

	4

0

0

	3

b4

0

	2

b3

0

	1

b2

0

0

0

0

c3

a4

0

c2

a3

b4

c1

a2

b3

0

a1

b2

0

0

2

4

2

�4

3

0

1

0

0

0

0

2

0

3

4

1

�4

2

2

4/3

1

�4

1

0

1

0

0

0

0

4

0

9

12

1

�4

2

2

12

4

�4

9

0

1

0

0

0

0

1

0

1

4/3

1

�4

2

�1/30

2/15

1/5

23/30

1/30

1/5

2

�1_
2

1

3

1

0

1

0

0

0

0

�3

0

�6

�54

3

18

9

4.2

1.3

76/15

13/10

2/3

1

1

0

0

1

3

15
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16. The inverse is

1_
9 Y Z � 1_

9AT.

Hence 1_
3A is orthogonal.

18. The inverse is

Y Z .

20. det A � 0 as given, but rounding makes det A � 0 and may completely change the
situation with respect to existence of solutions of linear systems, a point to be watched
for when using a CAS. In the present case we get (a) �0.00000035, (b) �0.00001998,
(c) �0.00028189, (d) 0.002012, (e) 0.00020000.

SECTION 20.3. Linear Systems: Solution by Iteration, page 845

Purpose. To familiarize the student with the idea of solving linear systems by iteration,
to explain in what situations that is practical, and to discuss the most important method
(Gauss–Seidel iteration) and its convergence.

Main Content, Important Concepts

Distinction between direct and indirect methods

Gauss–Seidel iteration, its convergence, its range of applicability

Matrix norms

Jacobi iteration

Short Courses. Gauss–Seidel iteration only.

Comments on Content
The Jacobi iteration appeals by its simplicity but is of limited practical value.

A word on the frequently occurring sparse matrices may be good. For instance, we have
about 99.5% zeros in solving the Laplace equation in two dimensions by using a 
1000 
 1000 grid and the usual five-point pattern (Sec. 21.4).

SOLUTIONS TO PROBLEM SET 20.3, page 850

2. The eigenvalues of I � A are 0.5, 0.5, �1. Here A is 1_
2 times the coefficient matrix

of the given system; thus,

I � A � Y Z .

�1_
2

�1_
2

�0

�1_
2

�0

�1_
2

�0

�1_
2

�1_
2

�_6
35

�_8
105

�_2
21

�_26
35

�_26
105

�_4
21

�_57
35

�_1
105

�_5
21

1

2

�2

�2

2

1

2

1

2
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4. Row 1 becomes Row 3, Row 2 becomes Row 1, and Row 3 becomes Row 2. The
exact solution is x1 � 0.5, x2 � �2.5, x3 � 4.0. The choice of x0 is of much less
influence than one would expect. We obtain for x0 � [0 0 0]T

1, [0, �1.75000, 3.89286]

2, [0.350000, �2.45715, 3.99388]

3, [0.491430, �2.49755, 3.99966]

4, [0.499510, �2.49987, 3.99998]

5, [0.499974, �2.50000, 4.00000]

6, [0.500000, �2.50000, 4.00000]

for x0 � [1 1 1]T

1, [�0.200000, �1.88333, 3.91190]

2, [0.376666, �2.46477, 3.99497]

3, [0.492954, �2.49798, 3.99971]

4, [0.499596, �2.49988, 3.99998]

5, [0.499976, �2.50000, 4.00000]

6, [0.500000, �2.50000, 4.00000]

for x0 � [10 10 10]T

1, [�2, �3.08333, 4.08333]

2, [0.616666, �2.53333, 4.00476]

3, [0.506666, �2.50190, 4.00027]

4, [0.500380, �2.50010, 4.00001]

5, [0.500020, �2.50000, 4.00000]

6, [0.500000, �2.50000, 4.00000]

and for x0 � [100 100 100]T

1, [�20, �15.0833, 5.79761]

2, [3.01666, �3.21905, 4.10271]

3, [0.643810, �2.54108, 4.00587]

4, [0.508216, �2.50235, 4.00034]

5, [0.500470, �2.50013, 4.00001]

6, [0.500026, �2.50000, 4.00000]

The spectral radius of C (and its only nonzero eigenvalue) is 2/35 � 0.057.

6. The exact solution x � [3 �9 6]T is reached at Step 8 rather quickly owing
to the fact that the spectral radius of C is 0.125, hence rather small; here

C � Y Z .

0

1/4

1/16

1/4

1/16

1/64

0

0

0

Instructor’s Manual 317

im20.qxd  9/21/05  1:21 PM  Page 317



8. Interchange the first equation and the last equation. Then the exact solution 
�2.5, 2, 4.5 is reached at Step 11, the spectral radius of

C� Y Z
being 1/�15� � 0.258199. (The eigenvalues are complex conjugates, and the third
eigenvalue is 0, as always for the present C.)

10. In (a) we obtain

C � �(I � L)�1U

� �Y Z Y Z

� Y Z
and éCé � 0.2 � 1 by (11), which implies convergence by (8).

In (b) we have

Y Z � (I � L) � U

� Y Z � Y Z .

From this we compute

C � �(I � L)�1U � �Y Z Y Z

� �Y Z

� Y Z .

�10

99

�980

�1

10

�99

0

0

0

10

�99

980

1

�10

99

0

0

0

10

1

0

1

0

0

0

0

0

0

0

1

0

1

�10

1

�10

99

10

1

0

1

0

0

0

0

0

0

0

1

0

1

10

1

10

1

10

1

1

1

1

10

1

10

1

�0.100

�0.090

0.019

�0.100

0.010

0.009

0

0

0

0.1

0.1

0

0.1

0

0

0

0

0

0

0

1

0

1

�0.1

1

�0.1

�0.09

�1_
8

�_5
16

�_1
10

�1_
4

�_1
24

�1_
5

0

0

0
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Developing the characteristic determinant of c by its first column, we obtain

�� j j � ��(�2 � 970� � 1)

which shows that one of the eigenvalues is greater than 1 in absolute value, so that
we have divergence. In fact, � � �0, 0.001 and �970, approximately.

12. Y Z , Y Z , Y Z , Y Z , Y Z , Y Z .

Step 5 of the Gauss–Seidel iteration gives the better result

[2.99969 �9.00015 5.99996]T. Exact: [3 �9 6]T.

14. Y Z , Y Z , Y Z , Y Z , Y Z , Y Z
Step 5 of the Gauss–Seidel iteration gives the more accurate result

[�2.49475 1.99981 4.49580]T. Exact: [�2.5 2 4.5]T.

16. �193� � 13.89, 12, 12

18. �151� � 12.29, 13 (column sum norm), 11 (row sum norm)

20. �537� � 23.17, 28 (column sum norm), 31 (row sum norm)

SECTION 20.4. Linear Systems: Ill-Conditioning, Norms, page 851

Purpose. To discuss ill-conditioning quantitatively in terms of norms, leading to the
condition number and its role in judging the effect of inaccuracies on solutions.

Main Content, Important Concepts

Ill-conditioning, well-conditioning

Symptoms of ill-conditioning

Residual

Vector norms

Matrix norms

Condition number

Bounds for effect of inaccuracies of coefficients on solutions

Comment on Content
Reference [E9] in App. 1 gives some help when A�1, needed in 
(A), is unknown (as is
the case in practice).

SOLUTIONS TO PROBLEM SET 20.4, page 858

2. 9.6, �65.6� � 8.099, 8, [0.05 �0.15 0 1]T

4. 1, 1, 1, the given vector is a unit vector.

�2.53287

1.96657

4.51353

�2.51691

2.07710

4.60875

�2.63594

2.14931

4.33667

�2.29583

�2.81875

�3.95

�1.8125

�2.58333

�1.7

1

1

1

3.03906

�9.02734

6.03906

2.94531

�8.84375

5.94531

3.3125

�9.21875

6.3125

2.5625

�7.75

5.5625

5.5

�10.75

8.5

1

1

1

99

�� � 980

�� � 10

�99
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6. 210, �17774� � 133.3, 119, [16/119 21/119 54/119 �1]T

8. 6, �18�, 3, [1 0 0 �1 0]T

10. A�1 � [ ] , éAé1 � 6, éA�1
é1 � 0.7, 
 � 4.2. The matrix is 

well-conditioned.

12. A�1 � [ ] , 
 � (3 � �3�)(1 � 1/�3�) � 4 � 2�3�

Well-conditioned.

14. A is the 4 
 4 Hilbert matrix times 21. Its inverse is

A�1 � _1
21 W X .

This gives the condition number (in both norms, since A and A�1 are symmetric)


 � 43.75 • � 28375.000

showing that A is very ill-conditioned.

16.éAxé� � 4.4 � 1.2 • 5 � 6

20. [1 1]T, [1.7 1.5]T, 
 � 289

22. By (12), 1 � éIé � éAA�1
é � éAé éA�1

é � 
(A). For the Frobenius norm,
�n� � éIé � 
(A).

24. Team Project. (a) Formula (18a) is obtained from

max �xj� � � �xk� �éxé1 � n max �xj� � néxé�.

Equation (18b) follows from (18a) by division by n.

(b) To get the first inequality in (19a), consider the square of both sides and then
take square roots on both sides. The second inequality in (19a) follows by means of
the Cauchy–Schwarz inequality and a little trick worth remembering,

� �xj� � � 1 • �xj� � �� 12� �� �xj��2� � �n�éxé2.

To get (19b), divide (19a) by �n�.

(c) Let x � 0. Set x �éxéy. Then éyé�éxé/éxé� 1. Also, 

Ax � A(éxéy) � éxéAy

sinceéxé is a number. HenceéAxé/éxé�éAyé, and in (9), instead of taking the
maximum over all x � 0, sinceéyé� 1 we only take the maximum over all y of
norm 1. Write x for y to get (10) from this.

(d) These “axioms of a norm” follow from (3), which are the axioms of a vector
norm.

13620
�

21

�140

1680

�4200

2800

240

�2700

6480

�4200

�120

1200

�2700

1680

16

�120

240

�140

1

�1/�3�

1/�3�

0

0.4

0.3

�0.2

0.1
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SECTION 20.5. Least Squares Method, page 859

Purpose. To explain Gauss’s least squares method of “best fit” of straight lines to given
data (x0, y0), • • • , (xn, yn) and its extension to best fit of quadratic polynomials, etc.

Main Content, Important Concepts

Least squares method

Normal equations (4) for straight lines

Normal equations (8) for quadratic polynomials

Short Courses. Discuss the linear case only.
Comment. Normal equations are often ill-conditioned, so that results may be sensitive
to round-off. For another (theoretically much more complicated) method, see Ref. [E5],
p. 201.

SOLUTIONS TO PROBLEM SET 20.5, page 862

2. The line shifts upward; its slope decreases slightly. If you added, say, (5, 20), the
slope would increase slightly.

4. U � �5.20 � 53.4i. Estimate: R � 53. 4 �. Note that the line does not pass through
the origin, as it should. This is typical.

6. F � �0.00206 � 0.50098s; hence k � 0.50098

8. y � 0.15 � 0.55x � 2.25x2

10. y � 1.790 � 0.433x � 0.105x2

12.

16. Team Project. (a) We substitute Fm(x) into the integral and perform the square. This
gives

éƒ � Fmé
2 � �b

a
ƒ2 dx � 2 �

m

j�0

aj �
b

a
ƒyj dx � �

m

j�0

�
m

k�0

ajak �
b

a
yjyk dx.

This is a quadratic function in the coefficients. We take the partial derivative with
respect to any one of them, call it al, and equate this derivative to zero. This gives

0 � 2 �b

a
ƒyl dx � 2 �

m

j�0

aj �
b

a
yjyl dx � 0.

Dividing by 2 and taking the first integral to the right gives the system of normal
equations, with l � 0, • • • , m.

(b) In the case of a polynomial we have

�b

a
yjyl dx � �b

a
x j�l dx

which can be readily integrated. In particular, if a � 0 and b � 1, integration from
0 to 1 gives 1/( j � l � 1), and we obtain the Hilbert matrix as the coefficient
matrix.

� �yj

� �xjyj

� �xj
2yj

� �xj
3yj

� b2�xj
2 � b3�xj

3

� b2�xj
3 � b3�xj

4

� b2�xj
4 � b3�xj

5

� b2�xj
5 � b3�xj

6

� b1�xj

� b1�xj
2

� b1�xj
3

� b1�xj
4

b0n

b0�xj

b0�xj
2

b0�xj
3
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(c) In the case of an orthogonal system we see from (4), Sec. 5.8, with r(x) � 1 (as
for the Legendre polynomials, or with any weight function r(x) corresponding to the
given system) and l instead of m that al � bl /éylé

2.

SECTION 20.6. Matrix Eigenvalue Problems: Introduction, page 863

Purpose. This section is a collection of concepts and a handful of theorems on matrix
eigenvalues and eigenvectors that are frequently needed in numerics; some of them will
be discussed in the remaining sections of the chapter and others can be found in more
advanced or more specialized books listed in Part E of App. 1.

The section frees both the instructor and the student from the task of locating these
matters in Chaps. 7 and 8, which contain much more material and should be consulted
only if problems on one or another matter are wanted (depending on the background of
the student) or if a proof might be of interest.

SECTION 20.7. Inclusion of Matrix Eigenvalues, page 866

Purpose. To discuss theorems that give approximate values and error bounds of
eigenvalues of general (square) matrices (Theorems 1, 2, 4, Example 2) and of special
matrices (Theorem 6).

Main Content, Important Concepts

Gerschgorin’s theorem (Theorem 1)

Sharpened Gerschgorin’s theorem (Theorem 2)

Gerschgorin’s theorem improved by similarity (Example 2)

Strict diagonal dominance (Theorem 3)

Schur’s inequality (Theorem 4), normal matrices

Perron’s theorem (Theorem 5)

Collatz’s theorem (Theorem 6)

Short Courses. Discuss Theorems 1 and 6.

Comments on Content
It is important to emphasize that one must always make sure whether or not a thoerem
applies to a given matrix. Some theorems apply to any real or complex square matrices
whatsoever, whereas others are restricted to certain classes of matrices.

The exciting Gerschgorin’s theorem was one of the early theorems on numerics for
eigenvalues; it appeared in the Bull. Acad. Sciences de l’URSS (Classe mathém, 7-e série,
Leningrad, 1931, p. 749), and shortly thereafter in the German Zeitschrift für angewandte
Mathematik und Mechanik.

SOLUTIONS TO PROBLEM SET 20.7, page 871

2. 5, 8, 9, radii 2 • 10�2. Estimates of this kind can be useful when a matrix has been
diagonalized numerically and some very small nonzero entries are left.

4. 1 � i, �3 � 2i, 4 � i, radii 0.8, 0.4, 0.3

6. 10, 6, 3, radii 0.3, 0.1, 0.2
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8. T with t11 � t22 � 1, t � 34 gives

T�1AT � Y Z Y Z Y Z

� Y Z .

Note that the disk with center 3 is still disjoint from that with center 10.
10. This is a “continuity proof.” Let S � D1 � D2 � • • • � Dp without restriction, where

Dj is the Gerschgorin disk with center ajj. We write A � B � C, where 
B � diag (ajj) is the diagonal matrix with the main diagonal of A as its diagonal. We
now consider

At � B � tC for 0 � t � 1.

Then A0 � B and A1 � A. Now by algebra, the roots of the characteristic polynomial
ƒt(�) of At (that is, the eigenvalues of At) depend continuously on the coefficients
of ƒt(�), which in turn depend continuously on t. For t � 0 the eigenvalues are 
a11, • • • , ann. If we let t increase continuously from 0 to 1, the eigenvalues move
continuously and, by Theorem 1, for each t lie in the Gerschgorin disks with centers
ajj and radii

trj where rj � �
k�j

�ajk�.

Since at the end, S is disjoint from the other disks, the assertion follows.

12. Proofs follow readily from the definitions of these classes of matrices. This normality
is of interest, since normal matrices have important properties; in particular, they have
an orthonormal set of n eigenvectors, where n is the size of the matrix. See [B3], vol.
I, pp. 268–274.

14. An example is

A � [ ] .

The eigenvalues are �1 and 1, so that the entire spectrum lies on the circle. A similar-
looking 3 
 3 matrix or 4 
 4 matrix, etc., can be constructed with some or all of
its eigenvalues on the circle.

16. �145.1� � 12.0457

18. y � [12 13 15]T, [13 22 18]T, [25 35 33]T. This gives the inclusion
intervals for the eigenvalue of maximum absolute value

12 � � � 15, 11 � � � 18, 35/3 � � � 33/2.

The eigenvalue is (4S) 13.69. The other eigenvalues are 9.489 and 6.820.

20. CAS Experiment. (a) The midpoint is an approximation for which the endpoints
give error bounds.

(b) Nonmonotone behavior may occur if by chance you pick an initial vector close to
an eigenvector corresponding to an eigenvalue that is not the greatest in absolute value.

1

0

0

1

�6.8

0

3

0.1

6

0

10

0.1

�_0.2
34

0

0

34

0

1

0

1

0

0

�0.2

0

3

0.1

6

0

10.

0.1

�0.2

0

0

_1
34

0

1

0

1

0

0
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SECTION 20.8. Power Method for Eigenvalues, page 872

Purpose. Explanation of the power method for determining approximations and error
bounds for eigenvalues of real symmetric matrices.

Main Content, Important Concepts

Iteration process of the power method

Rayleigh quotient (the approximate value)

Improvement of convergence by a spectral shift

Scaling (for eigenvectors)

Short Courses. Omit spectral shift.

Comments on Content
The method is simple but converges slowly, in general.

Symmetry of the matrix is essential to the validity of the error bound (2). The method
as such can be applied to more general matrices.

SOLUTIONS TO PROBLEM SET 20.8, page 875

2. q � 0.8, 0.8, 0.8; ��� � 0.6, 0.6, 0.6. Eigenvalues �1, 1.

4. q � 6.333, 6.871, 6.976; ��� � 2.5, 1.3, 0.49. Spectrum {�7, �3, 7}.

6. We obtain the following values:

Step 1 2 3 • • • 10 20 50 100

q � 8.5 8.9938 8.9750 • • • 8.5117 6.3511 �8.8546 �9.9558

��� � 2.9580 2.0876 2.2048 • • • 3.6473 6.8543 4.4640 0.1085

This illustrates how the iteration begins near an eigenvector not corresponding to an
eigenvalue of maximum absolute value but eventually moves away to an eigenvector
of the latter. Note also that the bounds become smaller only near the end of the iteration
given here. Eigenvalues (4S) �9.956, �1.558, 2.283, 9.232.

8. The eigenvalues are � � �1. Corresponding eigenvectors are

z1 � [ ] , z2 � [ ]
and we have chosen x0 as

x0 � [ ] � z1 � z2,

so that

x1 � z1 � z2 � [1 3]T

x2 � z1 � z2 � [3 �1]T

etc. From this,

x0
Tx1 � 0

and for the error bound we get

� � �� � q2� � �� � 0� � 1,
10
�
10

x1
Tx1

�
x0

Tx0

3

�1

1

�2

2

1
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and similarly in all the further steps. This shows that our error bound is the best
possible in general.

10. Let z1, • • • , zn be orthonormal eigenvectors corresponding to the eigenvalues 
�1, • • • , �n, respectively. Then for any initial vector x0 we have (summations from
1 to n)

x0 � � cjzj

x1 � � cj�jzj

xs � � cj�j
szj

xs�1 � � cj�j
s�1zj

and, using the last step, for the Rayleigh quotient

q � � � �m

where �m is of maximum absolute value, and the quality of the approximation
increases with increasing number of steps s. Here we have to assume that cm � 0,
that is, that not just by chance we picked an x0 orthogonal to the eigenvector zm of
�m. The chance that this happens is practically zero, but should it occur, then rounding
will bring in a component in the direction of zm and one should eventually expect
good approximations, although perhaps only after a great number of steps.

12. CAS Experiment. (a) We obtain

16, 41.2, 34.64, 32.888, 32.317, 32.116, 32.043, 32.0158, 32.0059, 32.0022,

etc. The spectrum is {32, 12, 8}. Eigenvectors are [3 6 �7]T, [1 0 �1]T, 
[3 �2 1]T.

(b) For instance, for A � 10 I we get

q � 6, 22.5, 22.166, 22.007, 22.00137,

etc. Whereas for A the ratio of eigenvalues is 32/12, for A � 10I we have the spectrum
{22, 2, �2}, hence the ratio 22/2. This explains the improvement of convergence.

(d) A in (a) provides an example,

q 16 41.2 34.64 32.888 32.317

� 59 5.5 1.45 0.557 0.225

etc. Also A � 10I does,

q 6 22.5 22.166 22.007 22.00137

� 59 3.0 0.072 0.023 0.00055

Further examples can easily be found. For instance, the matrix

[ ]
has the spectrum {�5, 2}, but we obtain, with x0 � [1 1]T,

q 5 �7 �4.3208 �5.2969

� 5 2 0.37736 0.2006

etc.

12

�1

�2

1

� cj
2�j

2s�1

��
� cj

2�j
2s

xT
s�1xs
�
xs

Txs
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SECTION 20.9. Tridiagonalization and QR-Factorization, page 875

Purpose. Explanation of an optimal method for determining the whole spectrum of a real
symmetric matrix by first reducing the matrix to a tridiagonal matrix with the same
spectrum and then applying the QR-method, an iteration in which each step consists of a
factorization (5) and a multiplication.

Comment on Content
The n � 2 Householder steps (n 
 n the size of the matrix) correspond to similarity
transformations; hence the spectrum is preserved. The same holds for QR. But we can
perform any number of QR steps, depending on the desired accuracy.

SOLUTIONS TO PROBLEM SET 20.9, page 882

2. Householder gives

Y Z .

Hence �1 is an eigenvalue. The other eigenvalues, �1 and 2, are now obtained by
solving the remaining quadratic characteristic equation.

4. By Householder’s method we obtain

W X

We see that 2 is an eigenvalue. The others are 0, 8, 18, unknown in practice, and
approximations can be obtained by the QR-method applied to the left upper 3 
 3
principal submatrix.

6. The matrices B in the first three steps are

Y Z

Y Z

Y Z
0

0.00743888

0.18010200

�0.0886236

0.730977

0.00743888

1.42892

�0.0886236

0

0

0.030349

0.181653

�0.169658

0.760770

0.030349

�1.397577

�0.169658

0

0

0.125969

0.207245

�0.294200

0.840232

0.125969

1.292520

�0.294200

0

0

0

0

2

0

�2.82843

0

0

�8.48528

10

�2.82843

0

8

�8.48528

0

0

0

0

�1

��2�

1

0

0

��2�

0
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The eigenvalues are 1.44, 0.72, 0.18 (exactly). The present calculations were done
with 10S and then rounded in the result to 6S, and similarly for the other odd- and
even-numbered problems because rounding errors tended to accumulate.

8. QR gives the matrices B as follows.

Y Z

Y Z

Y Z
6S-values of the eigenvalues are 16.2005, �4.30525, and 4.10476. Hence the diagonal
entries are more accurate than one would expect by looking at the size of the off-
diagonal entries.

SOLUTIONS TO CHAP. 20 REVIEW QUESTIONS AND PROBLEMS, page 883

16. [3.9 4.3 1.8]T

18. [3 3x3 � 2 x3]T, x3 arbitrary, or [3 t 1_
3(t � 2)], t arbitrary

20. All nonzero entries of the triangular matrices are 1.

22. The inverse matrix is

Y Z .

24. The inverse matrix is (5S)

Y Z .

26. Exact solution 1.6, 0.9, 3.2. The iteration gives the vectors

Y Z , Y Z , Y Z .

28. 22, �194�, 11

30. 1, 1, 1

1.60039

0.89141

3.20010

1.4625

0.90156

3.16562

1.625

0.35

3.20625

�0.026549

0.0044248

0.12832

�0.035398

0.17257

0.0044248

0.212399

�0.035398

�0.026549

2

�1

0

�4

1

4

0

1

�2

0

0.173362

4.101181

�0.00187668

�4.30167

0.173362

16.2005

�0.00187668

0

0

0.181822

4.100830

�0.00706202

�4.30131

0.181822

16.2005

�0.00706202

0

0

0.190694

4.10043

�0.0265747

�4.30089

0.190694

16.2005

�0.0265747

0
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32. 2.5, �2.45�, 1.4

34. This is the row “sum” norm, equal to 20.

36. 4.5 • 6 � 27, which is rather large

38. 9 • 0.274336 � 2.46902

40. �xj � 15, �xj
2 � 55, �xj

3 � 225, �xj
4 � 979, �yj � 30, �xjyj � 86, �xj

2yj � 320;
hence the normal equations are

Solving by Gauss, we get b0 � 14.2, b1 � �6.4, b2 � 1. Hence the answer is

y � 14.2 � 6.4x � x2.

42. By Gerschgorin’s theorem, the disks have

The eigenvalues are (4D)

0.2635, 4.0768, 9.6597.

44. q1 � 23/3, ��1� � 0.95; q2 � 7.88, ��2� � 0.82, q3 � 8.04, ��3� � 0.70, q4 � 8.15,
��4� � 0.58 (2D)

The eigenvalues of the matrix are (5S)

8.3429, 6.4707, 4.1864.

radius 3

radius 3.5

radius 2.5.

center 1.5,

center 3.5

center 9.0

30

86

320.

55b2 �

225b2 �

979b2 �

15b1 �

55b1 �

225b1 �

5b0 �

15b0 �

55b0 �
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CHAPTER 21 Numerics for ODEs and PDEs

Major Changes

These include automatic variable step size selection in modern codes, the discussion of the
Runge–Kutta–Fehlberg method, backward Euler’s method and its application to stiff ODEs,
and the extension of Euler and Runge–Kutta methods to systems and higher order equations.

SECTION 21.1. Methods for First-Order ODEs, page 886

Purpose. To explain three numerical methods for solving initial value problems 
y� � ƒ(x, y), y(x0) � y0 by stepwise computing approximations to the solution at 
x1 � x0 � h, x2 � x0 � 2h, etc.

Main Content, Important Concepts

Euler’s method (3)

Automatic variable step size selection

Improved Euler method (8), Table 21.2

Classical Runge–Kutta method (Table 21.4)

Error and step size control

Runge–Kutta–Fehlberg method

Backward Euler’s method

Stiff ODEs

Comments on Content
Euler’s method is good for explaining the principle but is too crude to be of practical value.

The improved Euler method is a simple case of a predictor–corrector method.

The classical Runge–Kutta method is of order h4 and is of great practical importance.

Principles for a good choice of h are important in any method.

ƒ in the equation must be such that the problem has a unique solution (see Sec. 1.7).

SOLUTIONS TO PROBLEM SET 21.1, page 897

2. y � ex. Computed values are

xn yn y(xn) Error Error in Prob. 1

0.01 1.010000 1.010050 0.000050
0.02 1.020100 1.020201 0.000101
0.03 1.030301 1.030455 0.000154
0.04 1.040604 1.040811 0.000207
0.05 1.051010 1.051271 0.000261
0.06 1.061520 1.061837 0.000317
0.07 1.072135 1.072508 0.000373
0.08 1.082857 1.083287 0.000430
0.09 1.093685 1.094174 0.000489
0.10 1.104622 1.105171 0.000549 0.005171
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We see that the error of the last value has decreased by a factor 10, owing to the
smaller step.

In most cases the method will be too inaccurate.

4. This is a special Riccati equation. Set y � x � u, then u� � u2 � 1 and

u�/(u2 � 1) � 1.

By integration, arctan u � x � c and

u � tan (x � c) � y � x
so that

y � tan (x � c) � x

and c � 0 from the initial condition. Hence y � tan x � x. The calculation is

xn yn y(xn) Error

0.1 0.000000 0.000335 0.000335
0.2 0.001000 0.002710 0.001710
0.3 0.005040 0.009336 0.004296
0.4 0.014345 0.022793 0.008448
0.5 0.031513 0.046302 0.014789
0.6 0.059764 0.084137 0.024373
0.7 0.103292 0.142288 0.038996
0.8 0.167820 0.289639 0.061818
0.9 0.261488 0.360158 0.098670
1.0 0.396393 0.557408 0.161014

Although the ODE is similar to that in Prob. 3, the error is greater by about a factor
10. This is understandable because tan x becomes infinite as x *

1_
2�.

6. The solution is y � 1/(1 � 4e�x). The 10S-computation, rounded to 6D, gives

xn yn y(xn) Error y(xn) � yn

0.1 0.216467 0.216481 0.000014
0.2 0.233895 0.233922 0.000027
0.3 0.252274 0.252317 0.000043
0.4 0.271587 0.271645 0.000058
0.5 0.291802 0.291875 0.000073
0.6 0.312876 0.312965 0.000089
0.7 0.334754 0.334858 0.000104
0.8 0.357366 0.357485 0.000119
0.9 0.380633 0.380767 0.000134
1.0 0.404462 0.404609 0.000147

8. The solution is y � 3 cos x � 2 cos2 x. The 10S-computation rounded to 6D gives

xn yn y(xn) Error y(xn) � yn

0.1 1.00492 1.00494 0.00002
0.2 1.01900 1.01914 0.00014
0.3 1.04033 1.04068 0.00035
0.4 1.06583 1.06647 0.00064
0.5 1.09140 1.09245 0.00105

(continued)
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xn yn y(xn) Error y(xn) � yn

0.6 1.11209 1.11365 0.00156
0.7 1.12237 1.12456 0.00219
0.8 1.11636 1.11932 0.00296
0.9 1.08817 1.09203 0.00386
1.0 1.03212 1.03706 0.00494

10. The solution is y � 2 tanh 1_
2x. The 10S-computation rounded to 6D gives

xn yn y(xn) Error y(xn) � yn

0.1 0.099875 0.099917 0.000042
0.2 0.199252 0.199336 0.000084
0.3 0.297644 0.297770 0.000126
0.4 0.394582 0.394750 0.000168
0.5 0.489626 0.489838 0.000212
0.6 0.582372 0.582626 0.000254
0.7 0.672455 0.672752 0.000297
0.8 0.759561 0.759898 0.000337
0.9 0.843421 0.843798 0.000377
1.0 0.923819 0.924234 0.000415

The error is growing relatively slowly, because the solution itself remains less than 2.

12. The solution is y � 1/(1 � 4e�x). The computation is

xn yn Error y(xn) � yn

0.1 0.2164806848 0.043 � 10�7

0.2 0.2339223328 0.085 � 10�7

0.3 0.2523167036 0.128 � 10�7

0.4 0.2716446148 0.170 � 10�7

0.5 0.2918751118 0.209 � 10�7

0.6 0.3129648704 0.249 � 10�7

0.7 0.3348578890 0.284 � 10�7

0.8 0.3574855192 0.318 � 10�7

0.9 0.3807668746 0.346 � 10�7

1.0 0.4046096381 0.370 � 10�7

To apply (10), we need the calculation of five steps with h � 0.2. We obtain (the
third column would not be needed)

xn yn Error y(xn) � yn

0.2 0.2339222103 1.310 � 10�7

0.4 0.2716443697 2.621 � 10�7

0.6 0.3129645099 3.854 � 10�7

0.8 0.3574850569 4.941 � 10�7

1.0 0.4046090919 5.832 � 10�7

Hence the required error estimate is

(0.4046096381 � 0.4046090919)/15 � 0.364 � 10�7.

The actual error is 0.370 � 10�7; the estimate is closer than one can expect in general.
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14. The solution is y � �4x � x�2�; thus (x � 2)2 � y2 � 4 (see Example 6 in Sec. 1.3
with c � 4). The computation with RK gives

xn yn Error y(xn) � yn

2.0 2.000000000 0
2.2 1.989975031 �0.157 � 10�6

2.4 1.959592041 �0.247 � 10�6

2.6 1.907878667 �0.264 � 10�6

2.8 1.833030447 �0.169 � 10�6

3.0 1.732050655 �0.153 � 10�6

3.2 1.599998963 0.1037 � 10�5

3.4 1.428281966 0.3720 � 10�5

3.6 1.199985280 0.000014720
3.8 0.8716743295 �0.0001054592
4.0 0.0977998883 �0.0977998883

A graph shows that these values lie on the corresponding quarter-circle within the
accuracy of graphing and that they are irregularly spaced as the x-values suggest.

16. The solution is y � 3 cos x � 2 cos2 x. The computation gives

xn yn Error y(xn) � yn Error in Prob. 15

0.2 1.019137566 0.1173 � 10�5 0.74 � 10�7

0.4 1.066471079 0.5194 � 10�5 0.328 � 10�6

0.6 1.113634713 0.14378 � 10�4 0.904 � 10�6

0.8 1.119282901 0.36749 � 10�4 0.2277 � 10�5

1.0 1.036951866 0.101888 � 10�3 0.6142 � 10�5

Note that the ratio of the errors is about the same for all xn, about 24.

18. From y� � x � y and the given formula we get, with h � 0.2,

k1 � 0.2(xn � yn)

k2 � 0.2[xn � 0.1 � yn � 0.1(xn � yn)]

� 0.2[1.1(xn � yn) � 0.1]

k*3 � 0.2[xn � 0.2 � yn � 0.2(xn � yn) � 0.4[1.1(xn � yn) � 0.1]]

� 0.2[1.24(xn � yn) � 0.24]

and from this
yn�1 � yn � 1_

6[1.328(xn � yn) � 0.128].

The computed values are

xn yn Error

0.0 0.000 000 0.000 000
0.2 0.021 333 0.000 067
0.4 0.091 655 0.000 165
0.6 0.221 808 0.000 312
0.8 0.425 035 0.000 505
1.0 0.717 509 0.000 771
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20. CAS Experiment. (b) The computation is

xn yn Error Estimate (10) � 109 Error � 109

0.1 1.2003346725 3.0 �0.4
0.2 1.4027100374 3.7 �1.9
0.3 1.6093362546 5.9 �5.0
0.4 1.8227932298 9.4 �11.0
0.5 2.0463025124 13.1 �22.5
0.6 2.2841368531 14.4 �44.7
0.7 2.5422884689 �5.0 �88.4
0.8 2.8296387346 �38.8 �177.6
0.9 3.1601585865 �191.1 �369.0
1.0 3.5574085377 �699.9 �813.0

SECTION 21.2. Multistep Methods, page 898

Purpose. To explain the idea of a multistep method in terms of the practically important
Adams–Moulton method, a predictor–corrector method that in each computation uses four
preceding values.

Main Content, Important Concepts

Adams–Bashforth method (5)

Adams–Moulton method (7)

Self-starting and not self-starting

Numerical stability, fair comparison

Short Courses. This section may be omitted.

SOLUTIONS TO PROBLEM SET 21.2, page 901

2. The computation with the use of the given starting values is as follows. The exact
solution is y � ex.

Starting Predicted Corrected
n xn yn y*n yn Exact

0 0.0 1.000 000
1 0.1 1.105 171
2 0.2 1.221 403
3 0.3 1.349 859
4 0.4 1.491 821 1.491 825 1.491 825
5 0.5 1.648 717 1.648 722 1.648 721
6 0.6 1.822 114 1.822 120 1.822 119
7 0.7 2.013 748 2.013 754 2.013 753
8 0.8 2.225 536 2.225 543 2.225 541
9 0.9 2.459 598 2.459 605 2.459 603

10 1.0 2.718 277 2.718 285 2.718 282
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4. The solution is y � ex2
. The computation gives

xn yn Error � 106

0.4 1.173518 �7
0.5 1.284044 �19
0.6 1.433364 �35
0.7 1.632374 �59
0.8 1.896572 �92
0.9 2.248046 �139
1.0 2.718486 �205

6. The comparison shows that in the present case, RK is better. The comparison is fair
since we have four evaluations per step for RK, but only two for AM. The  errors are:

x 0.4 0.6 0.8 1.0

AM �0.7 � 10�5 �3.5 � 10�5 �9.2 � 10�5 �20.5 � 10�5

RK 0.1 � 10�5 0.8 � 10�5 4.0 � 10�5 17.5 � 10�5

8. The solution is y2 � x2 � 8. Computation gives:

xn yn Error � 106

1.2 3.07246 �0.02
1.4 3.15595 �0.04
1.6 3.24962 �0.06
1.8 3.35261 �0.8
2.0 3.46410 �1.3
2.2 3.58330 �1.6
2.4 3.70945 �1.7
2.6 3.84188 �1.7
2.8 3.97995 �1.6
3.0 4.12311 �1.5

10. The solution is y � 1_
2 tanh 2x. Computation gives:

xn yn Exact Error � 106

0.1 0.98686 0.098688 1
0.2 0.189971 0.189974 3
0.3 0.268519 0.268525 6
0.4 0.332007 0.332018 11
0.5 0.380726 0.380797 71
0.6 0.416701 0.416828 127
0.7 0.442532 0.442676 144
0.8 0.460706 0.460834 128
0.9 0.473306 0.473403 97
1.0 0.481949 0.482014 65

334 Instructor’s Manual

im21.qxd  9/21/05  1:41 PM  Page 334



14. y � ex2
. Some of the values and errors are:

xn yn (h � 0.05) Error � 106 yn (h � 0.1) Error � 106

0.1 1.010050 1.01005
0.2 1.040817 �6 1.040811
0.3 1.094188 �14 1.094224 �50
0.4 1.173535 �24 1.173623 �112
0.5 1.284064 �38 1.284219 �194
0.6 1.433388 �58 1.433636 �307
0.7 1.632404 �87 1.632782 �466
0.8 1.896612 �131 1.897175 �694
0.9 2.248105 �197 2.248931 �1023
1.0 2.718579 �297 2.719785 �1503

The errors differ by a factor 4 to 5, approximately.

SECTION 21.3. Methods for Systems and Higher Order ODEs, page 902

Purpose. Extension of the methods in Sec. 21.1 to first-order systems and to higher order
ODEs.

Content

Euler’s method for systems (5)

Classical Runge–Kutta method extended to systems (6)

Runge–Kutta–Nyström method (7)

Short Courses. Discuss merely Runge–Kutta (6), which shows that this “vectorial
extension” of the method is conceptually quite simple.

SOLUTIONS TO PROBLEM SET 21.3, page 908

2. The solution is y1 � e�2x � e�4x, y2 � e�2x � e�4x. The computation is

xn y1,n Error y2,n Error

0.1 1.4 0.0890 0.2 �0.0516
0.2 1.00 0.1196 0.28 �0.0590
0.3 0.728 0.1220 0.296 �0.0484
0.4 0.5392 0.1120 0.2800 �0.0326
0.5 0.4054 0.0978 0.2499 �0.0174

The figure shows (for x � 0, • • • , 1) that these values give a qualitatively correct
impression, although they are rather inaccurate. Note that the error of y1 is not
monotone.
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4. Solution y1 � 2ex, y2 � 2e�x (see also Example 3 in Sec. 4.3). The computation is

xn y1,n Error y2,n Error

0.1 2.2 0.0104 1.8 0.0097
0.2 2.42 0.0228 1.62 0.0175
0.3 2.662 0.0378 1.458 0.0236
0.4 2.9282 0.0554 1.3122 0.0284
0.5 3.2210 0.0764 1.1810 0.0321
0.6 3.5431 0.1011 1.0629 0.0347
0.7 3.8974 0.1302 0.95659 0.03659
0.8 4.2872 0.1638 0.86093 0.03773
0.9 4.7159 0.2033 0.77484 0.03830
1.0 5.1875 0.2491 0.69736 0.03840

The figure illustrates that the error of y1 is monotone increasing and is positive (the
points lie below that curve), and similarly for y2.

Section 21.3. Solution curves and computed values (the dots) in Problem 4

6. The system is y�1 � y2, y�2 � y1 � x, y1(0) � 1, y2(0) � �2. The exact solution is
y � y1 � e�x � x; hence y� � y2 � �e�x � 1. The computation is

0.2 0.4 0.6 0.8 10

5

4

3

2

1

y1

y2
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xn y1,n Error y2,n Error

0.1 0.8 0.0048 �1.9 �0.0048
0.2 0.61 0.0087 �1.81 �0.0087
0.3 0.429 0.0118 �1.729 �0.0118
0.4 0.2561 0.0142 �1.6561 �0.0142
0.5 0.0905 0.0160 �1.5905 �0.0160

Section 21.3. Solution curves in Problem 6.
Computed values lie practically on the curves.

10. The error has decreased by about a factor 105. The computation is:

xn y1,n Error � 106 y2,n Error � 106

0.1 0.804837500 �0.082 �1.90483750 0.08
0.2 0.618730902 �0.15 �1.81873090 0.15
0.3 0.440818422 �0.20 �1.74081842 0.20
0.4 0.270320289 �0.24 �1.67032029 0.24
0.5 0.106530935 �0.27 �1.60653093 0.27

12. Division by x gives y� � y�/x � y � 0. The system is y�1 � y2, y�2 � y� � �y2 /x � y1.
Because of the factor 1/x we have to choose x0 � 0. The computation gives, with the
initial values taken from Ref. [GR1] in App. 1:

xn J0(xn) J�0(xn) 106 � Error of J0(xn)

1 0.765198 �0.440051 0
1.5 0.511903 �0.558002 �76
2 0.224008 �0.576897 �117
2.5 �0.048289 �0.497386 �95
3 �0.260055 �0.339446 �3
3.5 �0.380298 �0.137795 170

Section 21.3. Solution curves in Problem 12.
Computed values lie practically on the curves.

J

J0

0.8

0.6

0.4

0.2

0

–0.2
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x

y2

y1

x

1

0

0.5

–1

–0.5

–1.5

–2

0.1 0.2 0.3 0.4 0.5
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14. The error is reduced very substantially, by about a factor 1000. The computation is:

xn y1,n Error � 104 y2,n Error � 104

0.1 1.489133 �0.82 0.148333 0.78
0.2 1.119760 �1.11 0.220888 1.03
0.3 0.850119 �1.13 0.247515 1.03
0.4 0.651327 �1.02 0.247342 0.90
0.5 0.503301 �0.87 0.232469 0.75

16. 106 � Error
xn yn k1 k2 k3 k4 of yn

1.0 0.765 198 �0.081 287 �0.056 989 �0.061 848 �0.034 604 0
1.5 0.511 819 �0.034 970 �0.007 296 �0.011 250 �0.015 740 �9
2.0 �0.223 946 �0.016 098 �0.041 840 �0.038 979 0.061 098 �55
2.5 �0.048 241 0.061 767 0.080 770 0.079 042 0.092 562 �143
3.0 �0.259 845 0.093 218 0.102 154 0.101 466 0.104 389 �207
3.5 �0.379 914 �214

In the present case the errors of the two methods are of the same order of magnitude.
An exact comparison is not possible, since the errors change sign in a different fashion
in each method.

18. This gives the second solution (y � x ln x � 1) in Example 3 of Sec. 5.4, which has
a logarithmic term. (The first solution is y � x.) For RKN we write the ODE as

y� � (x2 � x)�1(xy� � y).

We choose x0 � 1/2, between the critical points 0 and 1, and restrict the computation
to four steps, to avoid reaching x � 1. The computation is:

xn yn y�n 105 � Error of yn

0.5 0.653426 0.306853 0
0.6 0.693512 0.489173 �0.8
0.7 0.750337 0.643313 �0.9
0.8 0.821492 0.776823 �0.7
0.9 0.905188 0.894503 �1.3

20. CAS Experiment. (b) A general answer seems difficult to give, since the form of
the coefficients, their variability, and other general properties are essential.

(c) Elimination of the first derivative tends to complicate the ODE, so that one may
lose more than gain in using the simpler algorithm.

SECTION 21.4. Methods for Elliptic PDEs, page 909

Purpose. To explain numerical methods for the Dirichlet problem involving the Laplace
equation, the typical representative of elliptic PDEs.

Main Content, Important Concepts

Elliptic, parabolic, hyperbolic equations

Dirichlet, Neumann, mixed problems

Difference analogs (7), (8) of Poisson’s and Laplace’s equations
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Coefficient scheme (9)

Liebmann’s method of solution (identical with Gauss–Seidel, Sec. 20.3)

Peaceman–Rachford’s ADI method (15)

Short Courses. Omit the ADI method.

Comments on Content
Neumann’s problem and the mixed problem follow in the next section, including the
modification in the case of irregular boundaries.

The distinction between the three kinds of PDEs (elliptic, parabolic, hyperbolic) is not
merely a formal matter because the solutions of the three types behave differently in
principle, and the boundary and initial conditions are different; this necessitates different
numerical methods, as we shall see.

SOLUTIONS TO PROBLEM SET 21.4, page 916

2. Gauss gives the values of the exact solution u(x, y) � x3 � 3xy2. Gauss–Seidel needs
about 10 steps for producing 5S-values:

n u11 u21 u12 u22

1 50.25 44.062 31.062 5.031
2 19.031 12.516 �0.4845 �10.742
3 3.2579 4.6290 �8.3710 �14.686
4 �0.6855 2.6571 �10.343 �15.672
5 �1.6715 2.1641 �10.836 �15.918
6 �1.9180 2.0410 �10.959 �15.980
7 �1.9795 2.0101 �10.990 �15.995
8 �1.9950 2.0025 �10.998 �15.999
9 �1.9989 2.0005 �11.000 �16.000

10 �1.9999 2.0000 �11.000 �16.000

It is interesting that it takes only 4 or 5 steps to turn the values away from the starting
values to values that are already relatively close to the respective limits.

4. The values of the exact solution of the Laplace equation are

u(1, 1) � �4, u(2, 1) � u(1, 2) � �7, u(2, 2) � �64.

Gauss gives �2, �5, �5, �62. Corresponding errors are �2, �2, �2, �2.
Gauss–Seidel needs about 10 steps for producing 5S-values:

n u11 u21 u12 u22

1 50.50 48.625 48.625 �35.188
2 24.812 8.4060 8.4060 �55.297
3 4.7030 �1.648 �1.648 �60.324
4 �0.32400 �4.162 �4.162 �61.581
5 �1.5810 �4.790 �4.790 �61.895
6 �1.8950 �4.948 �4.948 �61.974
7 �1.9740 �4.987 �4.987 �61.994
8 �1.9935 �4.997 �4.997 �61.998
9 �1.9985 �4.999 �4.999 �62.000

10 �1.9995 �5.000 �5.000 �62.000
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6. 165, 165, 165, 165 by Gauss. The Gauss–Seidel computation gives

n u11 u21 u12 u22

1 132.50 140.62 140.62 152.81
2 152.81 158.90 158.90 161.95
3 161.95 163.48 163.48 164.24
4 164.24 164.62 164.62 164.81
5 164.81 164.90 164.90 164.95
6 164.95 164.98 164.98 164.99
7 164.99 165.00 165.00 165.00
8 165.00 165.00 165.00 165.00

8. 6 steps. Some results are

10. u11 � 92.86, u21 � 90.18, u12 � 81.25, u22 � 75.00, u13 � 57.14,

u23 � 47.32, u31 � u11, etc., by symmetry.

12. All the isotherms must begin and end at a corner. The diagonals are isotherms 
u � 25, because of the data obtained and for reasons of symmetry. Hence we obtain
a qualitative picture as the figure shows.

In Prob. 7 the situation is similar.

Section 21.4. Problem 12

14. This shows the importance of good starting values; it then does not take long until
the approximations come close to the solution. A rule of thumb is to take a rough
estimate of the average of the boundary values at the points that enter the linear
system. By starting from 0 we obtain

[0.09472 0.10148 0.31798 0.32136] (Step 3)

[0.10740 0.10782 0.32432 0.32454] (Step 5).

16. Step 1. First come rows j � 1, j � 2; for these, (14a) is

37.5°

25°

12.5°

(Step 2)

(Step 4)

(Step 6)

(Step 10)

[93.75 90.625 65.625 64.0625]

[87.8906 87.6953 62.6953 62.5976]

[87.5244 87.5122 62.5122 62.5061]

[87.5001 87.5000 62.5000 62.5000]
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Six of the boundary values are zero, and the two on the upper edge are

u13 � u23 � �3�/2 � 0.866 025.

Also, on the right we substitute the starting values 0. With this, our four equations
become

From the first two equations,

u11 � 0, u21 � 0

and from the other two equations,

u12 � 0.288 675, u22 � 0.288 675.

Step 1. Now come columns; for these, (14b) is

With the boundary values and the previous solution on the right, this becomes

The solution is
u11 � 0.076 98

u21 � 0.076 98

u12 � 0.307 92

u22 � 0.307 92.

Step 2. Rows. We can use the previous equations, changing only the right sides:

�0.307 92

�0.307 92

�0.866 025 � 0.076 98

�0.866 025 � 0.076 98

u21 �

4u21 �

u22 �

4u22 �

�4u11 �

u11 �

�4u12 �

u12 �

0

�0.866 025 � 0.288 675

0

�0.866 025 � 0.288 675.

u12 �

4u12 �

u22 �

4u22 �

�4u11 �

u11 �

�4u21 �

u21 �

u10 � 4u11 � u12 � �u01 � u21

u11 � 4u12 � u13 � �u02 � u22

u20 � 4u21 � u22 � �u11 � u31

u21 � 4u22 � u23 � �u12 � u32.

i � 1, j � 1.

j � 2.

i � 2, j � 1.

j � 2.

0

0

�0.866 025

�0.866 025.

u21 �

4u21 �

u22 �

4u22 �

�4u11 �

u11 �

�4u12 �

u12 �

u01 � 4u11 � u21 � �u10 � u12

u11 � 4u21 � u31 � �u20 � u22

u02 � 4u12 � u22 � �u11 � u13

u12 � 4u22 � u32 � �u21 � u23.

j � 1, i � 1.

i � 2.

j � 2, i � 1.

i � 2.
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Solution:
u11 � u21 � 0.102 640, u12 � u22 � 0.314 335.

Step 2. Columns. The equations with the new right sides are

Final result (solution of these equations):

u11 � 0.106 061

u21 � 0.106 061

u12 � 0.321 605

u22 � 0.321 605.
Exact 3D values:

u11 � u21 � 0.108, u12 � u22 � 0.325.

18. CAS Project. (b) The solution of the linear system (rounded to integers), with the
values arranged as the points in the xy-plane, is

Twenty steps gave accuracies of 3S–5S, with slight variations between the components
of the output vector.

SECTION 21.5. Neumann and Mixed Problems. Irregular Boundary, 
page 917

Purpose. Continuing our discussion of elliptic PDEs, we explain the ideas needed for
handling Neumann and mixed problems and the modifications required when the domain
is no longer a rectangle.

Main Content, Important Concepts

Mixed problem for a Poisson equation (Example 1)

Modified stencil (6) (notation in Fig. 459)

Comments on Content
Neumann’s problem can be handled as explained in Example 1 on the mixed problem.

In all the cases of an elliptic PDE we need only one boundary condition at each point
(given u or given un).

SOLUTIONS TO PROBLEM SET 21.5, page 921

6. 0 � u01,x � (u11 � u�1,1) gives u�1,1 � u11. Similarly, u41 � u21 � 3 from the

condition on the right edge, so that the equations are

1
�
2h

110

75

75

110

157

125

125

157

170

145

145

170

160

138

138

160

�0.102 640

�0.866 025 � 0.314 335

�0.102 640

�0.866 025 � 0.314 335.

u12 �

4u12 �

u22 �

4u22 �

�4u11 �

u11 �

�4u21 �

u21 �
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u01 � �0.25, u11 � 0, u21 � 0.75, u31 � 2; this agrees with the values of the exact
solution u(x, y) � x2 � y2 of the problem.

8. The exact solution of the Poisson equation is u � x2y2. The approximate solution
results from Au � b, where

A � S T , b � S T

where the six equations correspond to P11, P21, P31, P12, P22, P32, in our usual order.
The components of b are of the form a � c with a resulting from 2(x2 � y2) and c
from the boundary values; thus, 4 � 0 � 4, 10 � 0 � 10, 20 � 12 � 8, 
10 � 9 � 1, 16 � 36 � �20, 26 � 81 � 48 � �103. The solution of this system
agrees with the values obtained at the Pjk from the exact solution, u11 � 1, 
u21 � u12 � 4, u22 � 16, and u31 � 9, u32 � 36 on the boundary. u41 � u21 � 12
and u42 � u22 � 48 produced entries 2 in A and �12 and �48 in b.

10. Exact solution u � 9y sin 1_
3�x. Linear system Au � b, where

A � S T , b � S T

a � �8.54733, c � ��243� � �15.5885. The solution of this system is (exact values
of u in parentheses)

u11 � u21 � 8.46365 (exact 9_
2�3� � 7.79423)

u12 � u22 � 16.8436 (exact 9�3� � 15.5885)

u13 � u23 � 24.9726 (exact _27
2 �3� � 23.3827).

12. Let v denote the unknown boundary potential. Then v occurs in Au � b, where

A � W X , b � W X .

0

�v

�v

�8_
3v

0

1

1

�4

1

0

�4

2_
3

1

�4

0

2_
3

�4

1

1

0

a

a

2a

2a

3a � c

3a � c

0

0

0

1

1

�4

0

0

1

0

�4

1

0

1

1

�4

0

2

1

0

�4

1

2

0

1

�4

0

1

0

0

�4

1

1

0

0

0

4

10

8

1

�20

�103

0

0

1

0

1

�4

0

1

0

1

�4

2

1

0

0

�4

1

0

0

1

�4

0

0

1

1

�4

2

0

1

0

�4

1

0

1

0

0

� 0.75 � 0.5

�1.25 � 3 � �6.5.

�1

�0.25

�1

�2.25

�

�

u31 �

4u31 �

�

�

u21

4u21

2u21

�

�

2u11

4u11

u11

�4u01 �

u01 �
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The solution of this linear system is u � [5 10 10 16]T. From this and 5v/19

� 100 (the potential at P11) we have v � 380 V as the constant boundary potential 
on the indicated portion of the boundary.

14. Two equations are as usual:

where the right side is due to the fact that we are dealing with the Poisson equation.
The third equation results from (6) with a � p � q � 1 and b � 1/2. We get

2 [ � � � � u12] � 2.

The first two terms are zero and u02 � �2; these are given boundary values. There
remains

2_
3u11 � 3u12 � 1 � 1 � 2.

Our three equations for the three unknowns have the solution

u11 � �1.5, u21 � �1, u12 � �1.

SECTION 21.6. Methods for Parabolic PDEs, page 922

Purpose. To show the numerical solution of the heat equation, the prototype of a parabolic
equation, on the region given by 0 	 x 	 1, t 
 0, subject to one initial condition (initial
temperature) and one boundary condition on each of the two vertical boundaries.

Content

Direct method based on (5), convergence condition (6)

Crank–Nicolson method based on (8)

Special case (9) of (8)

Comment on Content
Condition (6) restricts the size of time steps too much, a disadvantage that the 
Crank–Nicolson method avoids.

SOLUTIONS TO PROBLEM SET 21.6, page 927

4. 0, 0.6625, 1.25, 1.7125, 2, 2.1, 2, 1.7125, 1.25, 0.6625, 0

6. Note that h � 0.2 and k � 0.01 gives r � 0.25. The computation gives

t x � 0.2 x � 0.4 x � 0.6 x � 0.8

0.00 0.2 0.4 0.4 0.2
0.01 0.2 0.35 0.35 0.2
0.02 0.1875 0.3125 0.3125 0.185
0.03 0.171875 0.281250 0.281250 0.171875
0.04 0.156250 0.253906 0.253906 0.156250
0.05 0.141602 0.229492 0.229492 0.141602
0.06 0.128174 0.207520 0.207520 0.128174
0.07 0.115967 0.187684 0.187684 0.115967
0.08 0.104905 0.169755 0.169755 0.104905

3/2
�
1/2

u11
�
3/2

u02
�

2

u1,5/2
�

3/4

u22
�

2

2 � 2

0.5 � 2

� u12 �

�

u21

4u21

�4u11 �

u11 �

v
�
19

344 Instructor’s Manual

im21.qxd  9/21/05  1:41 PM  Page 344



8. We have k � 0.01. The boundary condition on the left is that the normal derivative
is zero. Now if we were at an inner point, we would have, by (5),

u0, j�1 � 1_
4u�1, j � 1_

2u0 j � 1_
4u1 j.

Here, by the central difference formula for the normal derivative (partial derivative
with respect to x) we get

0 � � (u1j � u�1, j)

so that the previous formula gives what we need,

u0, j�1 � 1_
2(u0 j � u1j).

The underlying idea is quite similar to that in Sec. 21.5. The computation gives

t x � 0 x � 0.2 x � 0.4 x � 0.6 x � 0.8 x � 1

0 0 0 0 0 0 0
0.01 0 0 0 0 0 0.5
0.02 0 0 0 0 0.125 0.866 025
0.03 0 0 0 0.031 0.279 1
0.04 0 0 0.008 0.085 0.397 0.866 025
0.05 0 0.002 0.025 0.144 0.437 0.5
0.06 0.001 0.007 0.049 0.187 0.379 0
0.07 0.004 0.016 0.073 0.201 0.236 �0.5
0.08 0.010 0.027 0.091 0.178 0.043 �0.866 025
0.09 0.019 0.039 0.097 0.122 �0.150 �1
0.10 0.029 0.048 0.089 0.048 �0.295 �0.866 025
0.11 0.039 0.054 0.068 �0.028 �0.352 �0.5
0.12 0.046 0.054 0.041 �0.085 �0.308 0

10. u(x, 0) � u(1 � x, 0) and the boundary conditions imply u(x, t) � u(1 � x, t) for all
t. The calculation gives

(0, 0.2, 0.35, 0.35, 0.2, 0)

(0, 0.1875, 0.3125, 0.3125, 0.1875, 0)

(0, 0.171875, 0.28125, 0.28125, 0.171875, 0)

(0, 0.15625, 0.253906, 0.253906, 0.15625, 0)

(0, 0.141602, 0.229492, 0.229492, 0.141602, 0)

12. CAS Experiment. u(0, t) � u(1, t) � 0, u(0.2, t) � u(0.8, t), u(0.4, t) � u(0.6, t),
where

x � 0.2 x � 0.4

t � 0 0.587785 0.951057

0.393432 0.636586 Explicit
t � 0.04 0.399274 0.646039 CN

0.396065 0.640846 Exact (6D)

0.263342 0.426096
t � 0.08 0.271221 0.438844

0.266878 0.431818

1
�
2h

�u0 j
�
�x
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x � 0.2 x � 0.4

0.176267 0.285206
t � 0.12 0.184236 0.298100

0.179829 0.290970

0.117983 0.190901
t � 0.16 0.125149 0.202495

0.121174 0.196063

0.078972 0.127779
t � 0.2 0.085012 0.137552

0.081650 0.132112

14. We need the matrix

A � .

3S-values computed by Crank–Nicolson for x � 0.1 (and 0.9), 0.2 (and 0.8), 0.3
(and 0.7), 0.4 (and 0.6), 0.5 and t � 0.01, 0.02, • • • , 0.05 are

0.0754 0.141 0.190 0.220 0.230

0.0669 0.126 0.172 0.201 0.210

0.0600 0.114 0.156 0.183 0.192

0.0541 0.103 0.141 0.166 0.174

0.0490 0.093 0.128 0.150 0.158

5S-values for t � 0.04 are

0.054120 0.10277 0.14117 0.16568 0.17409.

The corresponding values in Prob. 13 are

0.10182 0.16727.

Exact 5S-values computed by (9) and (10) in Sec. 12.5 (two nonzero terms suffice)
are

0.053947 0.10245 0.14074 0.16519 0.17359.

We see that the present values are better than those in Prob. 13.

0

0

0

0

0

0

0

�1

4

0

0

0

0

0

0

�1

4

�1

0

0

0

0

0

�1

4

�1

0

0

0

0

0

�1

4

�1

0

0

0

0

0

�1

4

�1

0

0

0

0

0

�1

4

�1

0

0

0

0

0

�1

4

�1

0

0

0

0

0

�1

4

�1

0

0

0

0

0

0

4

�1

0

0

0

0

0

0

0
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Section 21.6. u(x, t) for constant t � 0.01, • • • , 0.05 as polygons
with the Crank–Nicolson values as vertices in Problem 14

SECTION 21.7. Method for Hyperbolic PDEs, page 928

Purpose. Explanation of the numerical solution of the wave equation, the prototype of a
hyperbolic PDE, on a region of the same type as in the last section, subject to initial and
boundary conditions that guarantee the uniqueness of the solution.

Comments on Content
We now have two initial conditions (given initial displacement and given initial velocity),
in contrast to the heat equation in the last section, where we had only one initial condition.

The computation by (6) is simple. Formula (8) gives the values of the first time-step
in terms of the initial data.

SOLUTIONS TO PROBLEM SET 21.7, page 930

2. Note that the curve of ƒ(x) is no longer symmetric with respect to x � 0.5. The solution
was required for 0 	 t 	 1. We present it here for a full cycle 0 	 t 	 2:

t x � 0.2 x � 0.4 x � 0.6 x � 0.8

0 0.032 0.096 0.144 0.128
0.2 0.048 0.088 0.112 0.072
0.4 0.056 0.064 0.016 �0.016
0.6 0.016 �0.016 �0.064 �0.056
0.8 �0.072 �0.112 �0.088 �0.048
1.0 �0.128 �0.144 �0.096 �0.032
1.2 �0.072 �0.112 �0.088 �0.048
1.4 0.016 �0.016 �0.064 �0.056
1.6 0.056 0.064 0.016 �0.016
1.8 0.048 0.088 0.112 0.072
2.0 0.032 0.096 0.144 0.128

4. By (13), Sec. 12.4, with c � 1 the left side of (6) is

(A) ui, j�1 � u(ih, ( j � 1)h) � 1_
2[ƒ(ih � ( j � 1)h) � ƒ(ih � ( j � 1)h)]

and the right side is the sum of the six terms

ui�1, j � 1_
2[ƒ((i � 1)h � jh) � ƒ((i � 1)h � jh)],

ui�1, j � 1_
2[ƒ(i � 1)h � jh) � ƒ((i � 1)h � jh)],

�ui, j�1 � �1_
2[ƒ(ih � ( j � 1)h) � ƒ(ih � ( j � 1)h].

Four of these six terms cancel in pairs, and the remaining expression equals the right
side of (A).

0.25

0.2 0.4 0.6 0.8 1

0.15
0.2

0.1
0.05

0 x

u
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6. From (12), Sec. 12.4, with c � 1 we get the exact solution

u(x, t) � �x�ct

x�ct
sin �s ds � [cos �(x � ct) � cos �(x � ct)].

From (8) we have kgi � 0.1gi � 0.1 sin 0.1�i. Because of the symmetry with respect
to x � 0.5 we need to list only the following values (with the exact values in
parentheses):

t x � 0.1 x � 0.2 x � 0.3 x � 0.4 x � 0.5

0.0 0 0 0 0 0
0.1 0.030902 0.058779 0.080902 0.095106 0.100000

(0.030396) (0.057816) (0.079577) (0.093549) (0.098363)
0.2 0.058779 0.111804 0.153885 0.180902 0.190212

(0.057816) (0.109973) (0.151365) (0.177941) (0.187098)
0.3 0.080902 0.153884 0.211803 0.248990 0.261803

(0.079577) (0.151365) (0.208337) (0.244914) (0.257518)
0.4 0.095106 0.180902 0.248990 0.292705 0.307768

(0.093549) (0.177941) (0.244914) (0.287914) (0.302731)

8. Since u(x, 0) � ƒ(x), the derivation is immediate. Formula (8) results if the integral
equals 2kgi.

10. Exact solution: u(x, t) � (x � t)2. The values obtained in the computation are those
of the exact solution. u11, u21, u31, u41 are obtained from (8) and the initial conditions
ui0 � (0.2i)2, gi � 0.2i. In connection with the left boundary condition we can use
the central difference formula

(u1, j � u�1, j) � ux(0, jk) � 2jk

to obtain u�1, j and then (8) to compute u01 and (6) to compute u0, j�1.

SOLUTIONS TO CHAP. 21 REVIEW QUESTIONS AND PROBLEMS, 
page 930

16. y � ex2
. The computation is:

xn yn Error

0.1 1 0.0101
0.2 1.02 0.0208
0.3 1.0608 0.0334
0.4 1.1244 0.0491
0.5 1.2144 0.0696
0.6 1.3358 0.0975
0.7 1.4961 0.1362
0.8 1.7056 0.1909
0.9 1.9785 0.2694
1.0 2.3346 0.3837

This illustrates again that the method is too inaccurate for most practical purposes.

1
�
2h

1
�
2�

1
�
2
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18. y � tan x � x � 4; y � 4, 4.002707, 4.022789, 4.084133, 4.229637, 4.557352,
5.370923, 8.341089. For x 	 1.0 the error is of the order 10�5, but then �(1.2) � 10�3,
�(1.4) � 0.06 since we are getting close to �/2.

20. (a) 0.1, 0.2034, 0.3109, 0,4217, 0.5348, 0.6494, 0.7649, 0.8806, error 0.0044, 0.0122,
• • • , 0.0527. (b) 0.2055, 0.4276, 0.6587, 0.8924, error 0.0101, 0.0221, 0.0322,
0.0409. (c) 0.4352, 0.9074, error 0.0145, 0.0258

22. y � tan x � x. The computation is:

xn yn Error � 105

0.2 0.00270741 0.26
0.4 0.0227890 0.40
0.6 0.0841334 0.34
0.8 0.229637 0.24
1.0 0.557352 5.6

24. y1 � 0.021400 (starting value), y2 � 0.092322, y3 � 0.223342, y4 � 0.427788,
y5 � 0.721945. This shows that the method is rather inaccurate, the error of y5 being
0.003663. Exact: y � ex � x � 1.

26. y � sin x. The computation is:

xn yn Error � 105

0.2 0.198667 0.2
0.4 0.389413 0.5
0.6 0.564635 0.7
0.8 0.717347 0.9
1.0 0.841461 1.0

28. The solution is y1 � 3e�2x � e�8x, y2 � 3e�2x � e�8x. The computation gives:

xn y1,n Error y2,n Error

0.1 2.00447 0.00239 2.90793 �0.00241
0.2 1.80691 0.00215 2.21504 �0.00218
0.3 1.55427 0.00145 1.73863 �0.00147
0.4 1.30636 0.00087 1.38965 �0.00090
0.5 1.08484 0.00048 1.12247 �0.00051

30. u(P11) � u(P22) � u(P33) � 35, u(P21) � u(P32) � 20, u(P31) � 10,
u(P12) � u(P23) � 50, u(P13) � 60

32. u(P21) � 500, u(P22) � 200, u � 100 at all other gridpoints

36. From the 3D-values given below we see that at each point x 
 0 the temperature
oscillates with a phase lag and a maximum amplitude that decreases with
decreasing x.
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t x � 0 x � 0.2 x � 0.4 x � 0.6 x � 0.8 x � 1.0

0 0 0 0 0 0 0
0.02 0 0 0 0 0 0.5
0.04 0 0 0 0 0.250 0.866025
0.06 0 0 0 0.125 0.433 1
0.08 0 0 0.062 0.217 0.562 0.866025
0.10 0 0.031 0.108 0.312 0.541 0.5
0.12 0 0.054 0.172 0.325 0.406 0
0.14 0 0.086 0.189 0.289 0.162 �0.5
0.16 0 0.095 0.188 0.176 �0.105 �0.866025
0.18 0 0.094 0.135 0.041 �0.345 �1
0.20 0 0.068 0.067 �0.105 �0.479 �0.866025
0.22 0 0.034 �0.019 �0.206 �0.485 �0.5
0.24 0 �0.009 �0.086 �0.252 �0.353 0

38. u(x, t) in Prob. 37 equals u(x, t) � u(1 � x, t) in Prob. 36, as follows from the boundary
values.

40. We have to calculate values for three time-steps. The result is as follows, where
u(x, t) � u(1 � x, t).

t x � 0 x � 0.1 x � 0.2 x � 0.3 x � 0.4 x � 0.5

0 0 0.09 0.16 0.21 0.24 0.25
0.1 0 0.08 0.15 0.20 0.23 0.24
0.2 0 0.06 0.12 0.17 0.20 0.21
0.3 0 0.04 0.08 0.12 0.15 0.16
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Part F. Optimization. Graphs
CHAPTER 22 Unconstrained Optimization. 

Linear Programming

SECTION 22.1. Basic Concepts. Unconstrained Optimization, page 936

Purpose. To explain the concepts needed throughout this chapter. To discuss Cauchy’s method
of steepest descent or gradient method, a popular method of unconstrained optimization.

Main Content, Important Concepts

Objective function

Control variables

Constraints, unconstrained optimization

Cauchy’s method

SOLUTIONS TO PROBLEM SET 22.1, page 939

2. The line of approach is tangent to a particular curve C: ƒ(x) � const, the point of contact
P giving the minimum, whereas the next gradient of C at P is perpendicular to C.

4. ƒ(x) � (x1 � 0.5)2 � 2(x2 � 1.5)2 � 4.75. The computation gives:

Step x1 x2 ƒ(x)

1 0.25342 1.5206 �4.6884
2 0.49351 1.4805 �4.7492
3 0.49680 1.5003 �4.7500

6. ƒ(x) � (x1 � 4)2 � 0.1(x2 � 5)2 � 4. The computation gives:

Step x1 x2 ƒ(x)

1 �4.0240 �1.4016 5.2958
2 �3.7933 �4.8622 4.0449
3 �4.0008 �4.8760 4.0015
4 �3.9929 �4.9952 4.0000
5 �4.0000 �4.9957 4.0000
6 �3.9997 �5.0000 4.0000
7 �4.0000 �5.0000 4.0000

8. The calculation gives for Steps 1�5:

x1 x2 ƒ(x)

�1.33333 2.66667 �5.3334
�3.55556 �1.77778 9.4815

2.37037 �4.74074 �16.8560
6.32099 3.16049 29.9662

�4.21399 8.42798 �53.2731
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This is the beginning of a broken line of segments spiraling away from the origin. At
the corner points, ƒ is alternatingly positive and negative and increases monotone in
absolute value.

10. ƒ(x) � x1
2 � x2 gives

z(t) � x � t[2x1, �1] � [(1 � 2t)x1, x2 � t],
hence

g(t) � (1 � 2t)2x1
2 � x2 � t,

g�(t) � �4(1 � 2t)x1
2 � 1 � 0.

From this,

1 � 2t � � , t � � .

For this t,

z(t) � [� , x2 � � ] .

From this, with x1 � 1, x2 � 1, we get successively

z(1) � [�1_
4, 1 � 1_

2 � 1_
8]T

z(2) � [1, 1 � 2 • 1_
2 � 1_

8 � 2]T

z(3) � [�1_
4, 1 � 3 • 1_

2 � 2 • 1_
8 � 2]T

etc.

The student should sketch this, to see that it is reasonable. The process continues
indefinitely, as had to be expected.

12. CAS Experiment. (c) For ƒ(x) � x1
2 � x2

4 the values converge relatively rapidly
to [0 0]T, and similarly for ƒ(x) � x1

4 � x2
4.

SECTION 22.2. Linear Programming, page 939

Purpose. To discuss the basic ideas of linear programming in terms of very simple
examples involving two variables, so that the situation can be handled graphically and the
solution can be found geometrically. To prepare conceptually for the case of three or more
variables x1, • • • , xn.

Main Content, Important Concepts

Linear programming problem

Its normal form. Slack variables

Feasible solution, basic feasible solution

Optimal solution

Comments on Content
Whereas the function to be maximized (or minimized) by Cauchy’s method was arbitrary
(differentiable), but we had no constraints, we now simply have a linear objective function,
but constraints, so that calculus no longer helps.

No systematic method of solution is discussed in this section; these follow in the next
sections.

1
�
8x1

2

1
�
2

1
�
4x1

1
�
8x1

2

1
�
2

1
�
4x1

2
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SOLUTIONS TO PROBLEM SET 22.2, page 943

2. No. For instance, ƒ � 5x1 � 2x2 gives maximum profit ƒ � 12 for every point on
the segment AB because AB has the same slope as ƒ � const does.

4. Nonnegativity is an immediate consequence of the definition of a slack variable. We
need as many slack variables as we have inequalities that we want to convert into
equations, with each one giving one of the constraints.

8. Ordinarily a vertex of a region is the intersection of only two straight lines given by
inequalities taken with the equality sign. Here, (5, 4) is the intersection of three such
lines. This may merit special attention in some cases, as we discuss in Sec. 22.4.

10. The first inequality could be dropped from the problem because it does not restrict
the region determined by the other inequalities. Note that that region is unbounded
(stretches to infinity). This would cause a problem in maximizing an objective function
with positive coefficients.

12. ƒmax � �18 at every point of the segment with endpoints (2/9, 28/9) and (4, 5)

14. ƒmin � ƒ(3/7, 24/7) � 78/7 � 11.14

16. ƒ � x1 � x2, 2x1 � 3x2 � 1200, 4x1 � 2x2 � 1600, x1 � 300, x2 � 200, 
ƒmax � ƒ(300, 200) � 500

18. x1 � Number of days of operation of Kiln I, x2 � Number of days of operation of
Kiln II. Objective function ƒ � 400x1 � 600x2. Constraints:

ƒmin � ƒ(2, 6) � 4400, as can be seen from a sketch of the region in the x1x2-plane
resulting from the constraints in the first quadrant. Operate Kiln I two days and Kiln
II six days in filling that order. Note that the region determined by the constraints in
the first quadrant of the x1x2-plane is unbounded, which causes no difficulty because
we minimize (not maximize) the objective function.

20. x1 units of A and x2 units of B cost ƒ � 1.8x1 � 2.1x2. Constraints are

From a sketch of the region we see that ƒmin � ƒ(4, 3) � 13.50. Hence the minimum-
cost diet consists of 4 units A and 3 units B.

SECTION 22.3. Simplex Method, page 944

Purpose. To discuss the standard method of linear programming for systematically finding
an optimal solution by a finite sequence of transformations of matrices.

Main Content, Important Concepts

Normal form of the problem

Initial simplex table (initial augmented matrix)

Pivoting, further simplex tables (augmented matrices)

(Protein)

(Calories).

150

3900

15x1 � 30x2 �

600x1 � 500x2 �

(Gray bricks)

(Red bricks)

(Glazed bricks).

18000

34000

9000

3000x1 � 2000x2 �

2000x1 � 5000x2 �

300x1 � 1500x2 �
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Comment on Concepts and Method
The given form of the problem involves inequalities. By introducing slack variables we
convert the problem to the normal form. This is a linear system of equations. The initial
simplex table is its augmented matrix. It is transformed by first selecting the column of
a pivot and then the row of that pivot. The rules for this are entirely different from those
for pivoting in connection with solving a linear system of equations. The selection of a
pivot is followed by a process of elimination by row operations similar to that in the
Gauss–Jordan method (Sec. 7.8). This is the first step, leading to another simplex table
(another augmented matrix). The next step is done by the same rules, and so on. The
process comes to an end when the first row of the simplex table obtained contains no
more negative entries. From this final simplex table one can read the optimal solution of
the problem because the first row corresponds to the objective function ƒ(x) to be
maximized (or minimized).

SOLUTIONS TO PROBLEM SET 22.3, page 946

2. From the given data we have the augmented matrix (the initial simplex table)

T0 � Y Z .

The pivot is 4 since 1600/4 � 1200/2. The indicated calculations give

T1 � Y Z
The pivot is 2 in Row 2. The indicated calculations give

T2 � Y Z
This shows that the solution is

ƒ ( , ) � 500.

4. From the given data we obtain the augmented matrix

T0 � W X .

0

4.8

9.9

0.2

0

0

0

1

0

0

1

0

0

1

0

0

�1

1

1

�1

�3

1

0

1

�2

1

10

0

1

0

0

0

400
�

2

1200
�

4

Row 1 � 1_
4 Row 2

Row 2

Row 3 � 2_
2 Row 2.

500

400

1200

1_
8

�1_
2

3_
2

1_
4

1

�1

0

2

0

0

0

4

1

0

0

Row 1 � 1_
4 Row 3

Row 2 � 2_
4 Row 3

Row 3.

400

400

1600

1_
4

�1_
2

1

0

1

0

�1_
2

2

2

0

0

4

1

0

0

0

1200

1600

0

0

1

0

1

0

�1

3

2

�1

2

4

1

0

0
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The pivot is 10. The indicated calculations give

T1 � W X

The next pivot is 1 in Row 4 and Column 3. The indicated calculations give

T2 � W X

The last pivot needed is 19/10 in Row 2 and Column 4. We obtain

T3 � W X

Hence a solution of our problem is

ƒ ( , , ) � ƒ(0.8, 2.1, 1.9) � 9.8.

Actually, all solutions are

(x1, 2.5 � 0.5x1, 2.3 � 0.5x1)

where x1 is arbitrary, satisfying 0 � x1 � 0.8, thus giving a straight segment with
endpoints (0, 2.5, 2.3) and (0.8, 2.1, 1.9), where x1 � 0.8 results from solving the
system of three equations of the constraints taken with equality signs. The reason for
the nonuniqueness is that the plane ƒ(x1, x2, x3) � 9.8 contains an edge of the region
to which x1, x2, x3 are restricted, whereas in general it will have just a single point
(a vertex) in common with that region.

6. The matrices and pivot selections are

T0 � W X

60/4 � 15 � 20/1 � 20, pivot 4

0

60

20

30

0

0

0

1

0

0

1

0

0

1

0

0

20

5

0

3

10

4

1

0

�4

3

2

2

1

0

0

0

3.61
�
19/10

2.1
�
1

8
�
10

Row 1 � 2 Row 2

Row 2

Row 3 � _10
19 Row 2

Row 4 � _10
19 Row 2

9.8

3.61

8

2.1

1

�1

_10
19

_9
19

0

�_1
10

_20
19

�_1
19

2

1

�_10
19

_10
19

0

_19
10

0

0

0

0

0

1

0

0

10

0

1

0

0

0

Row 1 � 3 Row 4

Row 2 � Row 4

Row 3

Row 4

2.58

3.61

9.9

0.2

3

�1

0

1

1_
5

�_1
10

1

0

0

1

0

0

�_19
5

_19
10

1

�1

0

0

0

1

0

0

10

0

1

0

0

0

Row 1 � _2
10 Row 3

Row 2 � _1
10 Row 3

Row 3

Row 4

1.98

3.81

9.9

0.2

0

0

0

1

1_
5

�_1
10

1

0

0

1

0

0

�4_
5

_9
10

1

�1

�3

1

0

1

0

0

10

0

1

0

0

0
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T1 � W X

60/5 	 30/3, pivot 3

T2 � W X

ƒmin � �225 at x1 � 0, x2 � 10/4 � 2.5, x3 � 30/3 � 10.

8. We minimize! The augmented matrix is

T0 � Y Z .

The pivot is 600. The calculation gives

T1 � Y Z
The next pivot is 35/2. The calculation gives

T2 � Y Z
Hence �ƒ has the maximum value �13.5, so that ƒ has the minimum value 13.5, at
the point

(x1, x2) � ( , ) � (4, 3).

SECTION 22.4. Simplex Method: Difficulties, page 947

Purpose. To explain ways of overcoming difficulties that may arise in applying the
simplex method.

Main Content, Important Concepts

Degenerate feasible solution

Artificial variable (for overcoming difficulties in starting)

Short Courses. Omit this section because these difficulties occur only quite infrequently
in practice.

105/2
�
35/2

2400
�
600

Row 1 � _1.2
35 Row 2

Row 2

Row 3 � _10
35
00 Row 2

�_27
2

_105
2

2400

�_3
1400

�_1
40

_12
7

�_6
175

1

�_200
7

0

_35
2

0

0

0

600

1

0

0

Row 1 � _1.8
600 Row 3

Row 2 � _15
600 Row 3

Row 3

�_117
10 

_105
2

3900

�_3
1000

�_1
40

1

0

1

0

_6
10

_35
2

500

0

0

600

1

0

0

0

150

3900

0

0

1

0

1

0

2.1

30

500

1.8

15

600

1

0

0

Row 1 � _15
6 Row 4

Row 2 � 5_
3 Row 4

Row 3 � _5
12 Row 4

Row 4

�225

10

_35
2

30

�5_
2

�5_
3

_5
12

1

0

0

1

0

�5_
2

1

�1_
4

0

0

0

0

3

0

4

0

0

�_33
2

�1_
3

_25
12

2

1

0

0

0

Row 1 � _10
4 Row 2

Row 2

Row 3 � 1_
4 Row 2

Row 4

�150

60

5

30

0

0

0

1

0

0

1

0

�5_
2

1

�1_
4

0

_15
2

5

�5_
4

3

0

4

0

0

�_23
2

3

5_
4

2

1

0

0

0
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SOLUTIONS TO PROBLEM SET 22.4, page 952

2. In the second step in Prob. 1 we had a choice of the pivot, and in the present problem,
owing to our rule of choice, we took the other pivot. The result remained the same.
Of course, the problem can be solved by inspection. The calculation is as follows.

T0 � W X

T1 � W X

T2 � W X

This gives x1 � 4, x2 � 48/12 � 4, x3 � 0, x4 � 0, x5 � 0, ƒ(4, 4) � 72.

4. The calculation is as follows.

T0 � W X

T1 � W X

T2 � W X
R1 � 175 R4

R2 � 7_
2 R4

R3 � 1_
2 R4

R4

4500

30

30

0

175

�7_
2

�1_
2

1

�200

6

2

�2

0

1

0

0

0

0

0

2

0

0

2

0

1

0

0

0

R1 � 150 R3

R2 � R3

R3

R4 � 2 R3

4500

30

30

0

0

0

0

1

150

�1

1

�2

0

1

0

0

�350

7

1

2

0

0

2

0

1

0

0

0

0

60

30

60

0

0

0

1

0

0

1

0

0

1

0

0

�500

8

1

4

�300

2

2

4

1

0

0

0

R1 � R3

R2

R3

R4 � _1
12 R3

72

4

48

0

1

0

1

�_1
12

0

0

0

1

0

1

�6

1_
2

0

0

12

0

0

1

0

0

1

0

0

0

R1 � 6 R2

R2

R3 � 6 R2

R4

24

4

48

4

0

0

1

0

0

0

0

1

6

1

�6

0

�12

0

12

1

0

1

0

0

1

0

0

0

0

4

72

4

0

0

1

0

0

0

0

1

0

1

0

0

�12

0

12

1

�6

1

6

0

1

0

0

0
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z � 4500 is the same as in the step before. But we shall now be able to reach the
maximum ƒ(10, 5) � 5500 in the final step.

T3 � W X

We see that x1 � 20/2 � 10, x2 � 10/2 � 5, x3 � 0, x4 � 30/6 � 5, x5 � 0, 
z � 5500.

Problem 5 shows that the extra step (which gave no increase of z � ƒ(x)) could
have been avoided if we had chosen 4 (instead of 2) as the first pivot.

6. The maximum ƒ(0, 2.4, 0) � 2.4 is obtained as follows.

T0 � Y Z

T1 � Y Z

T2 � Y Z

From T2 we see that x1 � 0/8 � 0, x2 � 6/5_2 � 12/5, x3 � 0, x4 � 0, x5 � 0, 
z � 12/5.

8. Maximize ƒ� � �2x1 � x2. The result is �ƒ�min � ƒ�max � ƒ�(2, 3) � �1, hence 
ƒmin � 1. The calculation is as follows. An artificial variable x6 is defined by

x3 � �5 � x1 � x2 � x6.

A corresponding objective function is
��ƒ � ƒ� � Mx6 � (�2 � M)x1 � (1 � M)x2 � Mx3 � 5M.

The corresponding matrix is

T0 � W X .

�5M

5

1

40

0

0

0

1

0

0

1

0

M

�1

0

0

�1 � M

1

1

4

2 � M

1

�1�

5

1

0

0

0

R1 � _3
20 R2

R2

R3 � 2 R2

_12
5

6

0

_1
20

�1_
2

2

_3
20

1

�2

2_
5

6

�8

0

5_
2

0

0

0

8

1

0

0

R1 � 1_
8 R3

R2 � 1_
2 R3

R3

3_
2

6

12

1_
8

�1_
2

1

0

1

0

�1_
2

6

4

�3_
8

5_
2

5

0

0

8

1

0

0

0

12

12

0

0

1

0

1

0

�1

8

4

�1

5

5

�1

4

8

1

0

0

R1 � _100
3 R2

R2

R3 � 1_
3 R2

R4 � 1_
3 R2

5500

30

20

10

_175
3

�7_
2

2_
3

�1_
6

0

6

0

0

_100
3

1

�1_
3

1_
3

0

0

0

2

0

0

2

0

1

0

0

0
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From this we obtain

T1 � W X

and

T2 � W X

We see that x1 � 2/1 � 2, x2 � 6/2 � 3, x3 � 0, x4 � 0, x5 � 18, ��ƒ � �1.
10. An artificial variable x6 is defined by

x4 � x1 � 2x2 � 6 � x6

and a corresponding objective function by

ƒ̂ � 2x1 � x2 � Mx6 � 2x1 � x2 � M(x4 � x1 � 2x2 � 6)

� (2 � M)x1 � (1 � 2M)x2 � Mx4 � 6M.

This gives the matrix

T0 � W X

and from it

�6M

2

6

4

0

0

0

1

M

0

�1

0

0

1

0

0

�1 � 2M

1

2

1

�2 � M

2

1

1

1

0

0

0

R1 � 3_
2 R3

R2 � 1_
2 R3

R3

R4 � 1_
2 R3

�1

2

6

18

0

0

0

1

3_
2

�1_
2

1

1_
2

1_
2

�1_
2

�1

9_
2

0

0

2

0

0

1

0

0

1

0

0

0

R1 � (M � 2)R2

R2

R3 � R2

R4 � 5 R2

�10

5

6

15

0

0

0

1

0

0

1

0

2

�1

�1

5

�3

1

2

�1

0

1

0

0

1

0

0

0

T1 � W X

and from this

T2 � W X

which still contains M.

R1 � 3_
2M R2

R2

R3 � 3_
2 R2

R4 � 1_
2 R2

2 � 2M

2

2

2

0

0

0

1

M

0

�1

0

1 � 2M

�1

�2

�1

0

1

0

0

3M

2

�3

�1

1

0

0

0

R1 � (1 � 1_
2M) R2

R2

R3 � 1_
2 R2

R4 � 1_
2 R2

2 � 5M

2

5

3

0

0

0

1

M

0

�1

0

1 � 1_
2M

1

�1_
2

�1_
2

�3_
2M

1

3_
2

1_
2

0

2

0

0

1

0

0

0
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SOLUTIONS TO CHAP. 22 REVIEW QUESTIONS AND PROBLEMS, 
page 952

4. Replace �
ƒ by �
ƒ.

8. [6 3]T, [0.9153 �0.8136]T, [0.2219 0.1109]T, [0.0338 �0.0301]T. Slimmer
ellipses give slower convergence, as can be seen from Fig. 472 in Sec. 22.1.

10. ƒ(x) � x1
2 � 1.5x2

2 implies

z(t) � [(1 � 2t)x1 (1 � 3t)x2]T,

g(t) � ƒ(z(t)) � (1 � 2t)2x1
2 � 1.5(1 � 3t)2x2

2

and by differentiation,

g�(t) � �4(1 � 2t)x1
2 � 9(1 � 3t)x2

2 � 0.

The solution is

t1 �

so that

1 � 2t1 � , 1 � 3t1 � .

For x1 � 1.5, x2 � 1 this gives

x1 � z(t1) � 0.2[1.5 �1]T,

and, furthermore, x2 � 0.04[1.5 �1]T, etc.

12. Nine steps give the solution [�1 2] to 6S. Steps 1�5 give

x1 x2

�1.01462 3.77669
�0.888521 2.07432
�1.00054 2.06602
�0.995857 2.00276
�1.00002 2.00245

14. The values obtained are

x1 x2

�1.04366 0.231924
�0.758212 1.51642
�1.01056 1.57250
�0.941538 1.88308
�1.00255 1.89664

Gradients (times a scalar) are obtained by calculating differences of subsequent values.
Orthogonality follows from the fact that we change direction when we are tangent to
a level curve and then proceed perpendicular to it.

�4x1
2

��
8x1

2 � 27x2
2

9x2
2

��
8x1

2 � 27x2
2

4x1
2 � 9x2

2

��
8x1

2 � 27x2
2
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22. The augmented matrix of the given data is

T0 � W X .

The pivot is 2 in Row 3 and Column 2. The calculation gives

T1 � W X

The next pivot is 3/2 in Row 2. The calculation gives

T2 � W X

We see from the last matrix that for the maximum we have

ƒ ( , ) � ƒ ( , ) � .

24. The matrix of the given data is

T0 � Y Z
The pivot is 200. The calculation gives

T1 � Y Z
The next pivot is 36. The calculation gives

T2 � Y Z
Hence the solution is

ƒ ( , ) � ƒ(30, 15) � 2250.
540
�
36

6000
�
200

Row 1 � _24
36 Row 2

Row 2

Row 3 � _20
36 Row 2

2250

540

6000

�1_
6

�1_
5

�_10
9

2_
3

1

�5_
9

0

36

0

0

0

200

1

0

0

Row 1 � _60
200 Row 3

Row 2 � 1_
5 Row 3

Row 3

1890

540

6300

_3
10

�1_
5

1

0

1

0

�24

36

20

0

0

200

1

0

0

0

1800

6300

0

0

1

0

1

0

�30

40

20

�60

40

200

1

0

0

20
�
3

10
�
3

10
�
3

5
�
3/2

20/3
�

2

Row 1 � 1_
3 Row 2

Row 2

Row 3 � 2_
3 Row 2

Row 4 � 2_
3 Row 2.

_20
3

5

_20
3

2_
3

0

0

0

1

1_
3

�1_
2

4_
3

1_
3

1_
3

1

�2_
3

�2_
3

0

3_
2

0

0

0

0

2

0

1

0

0

0

Row 1 � 1_
2 Row 3

Row 2 � 1_
2 Row 3

Row 3

Row 4.

5

5

10

4

0

0

0

1

1_
2

�1_
2

1

0

0

1

0

0

�1_
2

3_
2

1

1

0

0

2

0

1

0

0

0

0

10

10

4

0

0

0

1

0

0

1

0

0

1

0

0

�1

2

1

1

�1

1

2

0

1

0

0

0
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CHAPTER 23 Graphs. Combinatorial Optimization

SECTION 23.1. Graphs and Digraphs, page 954

Purpose. To explain the concepts of a graph and a digraph (directed graph) and related
concepts, as well as their computer representations.

Main Content, Important Concepts

Graph, vertices, edges

Incidence of a vertex v with an edge, degree of v

Digraph

Adjacency matrix

Incidence matrix

Vertex incidence list, edge incidence list

Comment on Content
Graphs and digraphs have become more and more important, due to an increase of supply
and demand—a supply of more and more powerful methods of handling graphs and
digraphs, and a demand for those methods in more and more problems and fields of
application. Our chapter, devoted to the modern central area of combinatorial optimization,
will give us a chance to get a feel for the usefulness of graphs and digraphs in general.

SOLUTIONS TO PROBLEM SET 23.1, page 958

6. The adjacency matrix is

W X .

Adding the edge between 3 and 4, we would have a complete graph. The only zeros
of the matrix outside the main diagonal correspond to that edge.

8. S T

0

0

0

1

0

0

0

0

0

1

0

0

1

1

1

0

1

1

0

1

0

1

0

0

1

0

1

1

0

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

1

0

1

1

0

1

1

1

J3J2J1

W3W2W1

J4

2.
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10. S T

12. U V

20. If and only if G is complete.
In this case the adjacency matrix of G has n2 � n � n(n � 1) ones, and since every

edge contributes two ones, the number of edges is n(n � 1)/2. This gives another
proof of Prob. 19.

22. The matrix is
Edge

e1 e2 e3 e4 e5 e6 e7

1 1 0 1 0 0 0 0

2 1 1 0 1 0 0 0

3 0 1 0 0 1 0 0

4 0 0 1 1 1 1 1

5 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1

1 4

2 3

18.

1 4

2 3

16.

1 2

3 4

14.

1

1

0

0

0

1

1

0

0

0

1

1

0

0

0

1

0

1

1

1

0

1

1

1

1

0

1

0

0

0

0

0

1

0

1

0

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

0
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24. The matrix is
Edge

e1 e2 e3 e4

1 �1 �1 1 �1

2 1 0 0 0

3 0 1 �1 0

4 0 0 0 1

SECTION 23.2. Shortest Path Problems. Complexity, page 959

Purpose. To explain a method (by Moore) of determining a shortest path from a given
vertex s to a given vertex t in a graph, all of whose edges have length 1.

Main Content, Important Concepts

Moore’s algorithm (Table 23.1)

BFS (Breadth First Search), DFS (Depth First Search)

Complexity of an algorithm

Efficient, polynomially bounded

Comment on Content
The basic idea of Moore’s algorithm is quite simple. A few related ideas and problems
are illustrated in the problem set.

SOLUTIONS TO PROBLEM SET 23.2, page 962

2. There are three shortest paths, of length 4 each:

Which one we obtain in backtracking depends on the numbering (not labeling!) of
the vertices and on the backtracking rule. For the rule in Example 1 and the numbering
shown in the following figure we get (B).

If we change the rule and let the computer look for largest (instead of smallest)
numbers, we get (A).

4

8

4

3
1

0
s

t

1

3

3

4

2 3

3

2

6

2
1

5

10

11

3

7
9

12

t

s

t t

s s

(a) (b) (c)
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4. The length of a shortest path is 5. No uniqueness.

6. The length of the unique shortest path is 4.

8. n � 1. If it had more, a vertex would appear more than once and the corresponding
cycle could be omitted. One edge.

10. This is true for l � 0 since then v � s. Let it be true for an l � 1. Then 
�(vl�1) � l � 1 for the predecessor vl�1 of v on a shortest path s * v. We claim
that when vl�1 gets labeled, v is still unlabeled (so that we shall have �(v) � l as
wanted). Indeed, if v were labeled, it would have a label less than l, hence distance
less than l by Prob. 9, contradicting that v has distance l.

14. Delete the edge (2, 4).

16. 1 � 2 � 3 � 4 � 5 � 3 � 1, 1 � 3 � 4 � 5 � 3 � 2 � 1, and these two trails
traversed in the opposite sense

18. Let T: s * s be a shortest postman trail and v any vertex. Since T includes each edge,
T visits v. Let T1: s * v be the portion of T from s to the first visit of v and 
T2: v * s the other portion of T. Then the trail v * v consisting of T2 followed by
T1 has the same length as T and solves the postman problem.

SECTION 23.3. Bellman’s Principle. Dijkstra’s Algorithm, page 963

Purpose. This section extends the previous one to graphs whose edges have any (positive)
length and explains a popular corresponding algorithm (by Dijkstra).

Main Content, Important Concepts

Bellman’s optimality principle, Bellman’s equations

Dijkstra’s algorithm (Table 23.2)

Comment on Content
Throughout this chapter, one should emphasize that algorithms are needed because most
practical problems are so large that solution by inspection would fail, even if one were
satisfied with approximately optimal solutions.

SOLUTIONS TO PROBLEM SET 23.3, page 966

2. Dijkstra’s algorithm gives

1. L1 � 0, L�2 � 4, L�3 � 12, L�4 � 16, L�5 � �

2. L2 � 4, k � 2

3. L�3 � min {12, 4 � l23} � 10

L�4 � min {16, 4 � l24} � 16

L�5 � min {�, 4 � �} � �

2. L3 � 10, k � 3

3. L�4 � min {16, 10 � l34} � 16

L�5 � min {�, 10 � �} � �

12.
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2. L4 � 16, k � 4

3. L�5 � min {�, 16 � l45} � 56

2. L5 � 56, k � 5,

so that the answer is

(1, 2), (1, 4), (2, 3), (4, 5); L2 � 4, L3 � 10, L4 � 16, L5 � 56.

4. Dijkstra’s algorithm gives

1. L1 � 0, L�2 � 8, L�3 � 10, L�4 � �, L�5 � 5, L�6 � �

2. L5 � 5

3. L�2 � min {8, 5 � l52} � 7

L�3 � min {10, 5 � l53} � 10

L�4 � min {�, 5 � l54} � 10

L�6 � min {�, 5 � l56} � 7

2. L2 � 7

3. L�3 � min {10, 7 � l23} � 9

L�4 � min {10, 7 � l24} � 10

L�6 � min {7, 7 � l26} � 7

2. L6 � 7

3. L�3 � min {9, 7 � l63} � min {9, 7 � �} � 9

L�4 � min {10, 7 � l64} � 8

2. L4 � 8

3. L�3 � min {9, 8 � l43} � min {9, 8 � �} � 9

2. L3 � 9.

The answer is (1, 5), (2, 3), (2, 5), (4, 6), (5, 6); L2 � 7, L3 � 9, L4 � 8,
L5 � 5, L6 � 7.

6. Dijkstra’s algorithm gives

1. L1 � 0, L�2 � 15, L�3 � 2, L�4 � 10, L�5 � 6

2. L3 � 2

3. L�2 � min {15, 2 � l32} � 15

L�4 � min {10, 2 � l34} � 10

L�5 � min {6, 2 � l35} � 5

2. L5 � 5

3. L�2 � min {15, 5 � l52} � min {15, 5 � �} � 15

L�4 � min {10, 5 � l54} � 9

2. L4 � 9

3. L�2 � min {15, 9 � l42} � 14

2. L2 � 14.

The answer is (1, 3), (2, 4), (3, 5), (4, 5); L2 � 14, L3 � 2, L4 � 9,
L5 � 5.

8. Let j be the vertex that gave k its present label Lk, namely, Lj � ljk. After this label
was assigned, j did not change its label, since it was then removed from ��. Next,
find the vertex which gave j its permanent label, etc. This backward search traces a
path from 1 to k, whose length is exactly Lk.
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SECTION 23.4. Shortest Spanning Trees: Greedy Algorithm, page 966

Purpose. After the discussion of shortest paths between two given vertices, this section
is devoted to the construction of a tree in a given graph that is spanning (contains all
vertices of the graph) and is of minimum length.

Main Content, Important Concepts

Tree

Cycle

Kruskal’s greedy algorithm (Table 23.3)

Comment on Content
Figure 490 illustrates that Kruskal’s algorithm does not necessarily give a tree during each
intermediate step, in contrast to another algorithm to be discussed in the next section.

SOLUTIONS TO PROBLEM SET 23.4, page 969

2.
2 w

ì

2 w 6
4 w 3 L � 30
2 w 1

ê

5 w 1

4.
2 w

ì

6 w 5
7 w 8

ì

1 L � 40
2 w 1

ê

2
2 w 1

ê

2
ê

4 w 3
Note that trees, just as general graphs, can be sketched in different ways.

6. We obtain the edges in the order (1, 6), (2, 6), (3, 5), (3, 6), (2, 4) and can sketch the
tree, for instance, in the form

2
ì

1
5 w 3 w 6

ê

2ï4
Its length is L � 17.

8. Order the edges in descending order of length and choose them in this order, rejecting
when a cycle would arise.

10. Order the edges in descending order of length and delete them in this order, retaining
an edge only if it would lead to the omission of a vertex or to a disconnected graph.

12. New York – Washington – Chicago – Dallas – Denver – Los Angeles

14. Let P1: u * v and P2: u * v be different. Let e � (w, x) be in P1 but not in P2.
Then P1 without e together with P2 is a connected graph. Hence it contains a path
P3: w * x. Hence P3 together with e is a cycle in T, a contradiction.

16. Extend an edge e into a path by adding edges to its ends if such edges exist. A new
edge attached at the end of the path introduces a new vertex, or closes a cycle, which
contradicts our assumption. This extension terminates on both sides of e, yielding two
vertices of degree 1.

18. True for n � 2. Assume truth for all trees with less than n vertices. Let T be a tree
with n � 2 vertices, and (u, v) an edge of T. Then T without (u, v) contains no path
u * v, by Prob. 14. Hence this graph is disconnected. Let G1, G2 be its connected
components, having n1 and n2 vertices, hence n1 � 1 and n2 � 1 edges, respectively,
by the induction hypothesis, so that G has n1 � 1 � n2 � 1 � 1 � n � 1 edges.
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20. If G is a tree, it has no cycles, and has n � 1 edges by Prob. 18. Conversely, let G
have no cycles and n � 1 edges. Then G has 2 vertices of degree 1 by Prob. 16. Now
prove connectedness by induction. True when n � 2. Assume true for n � k � 1.
Let G with k vertices have no cycles and k � 1 edges. Omit a vertex v and its incident
edge e, apply the induction hypothesis and add e and v back on.

SECTION 23.5. Shortest Spanning Trees: Prim’s Algorithm, page 970

Purpose. To explain another algorithm (by Prim) for constructing a shortest spanning tree
in a given graph whose edges have arbitrary (positive) lengths.

Comments on Content
In contrast to Kruskal’s greedy algorithm (Sec. 23.4), Prim’s algorithm gives a tree at
each intermediate step.

The problem set illustrates a few concepts that can be included into the present cycle
of ideas.

SOLUTIONS TO PROBLEM SET 23.5, page 972

2. The algorithm proceeds as follows:

Initial Relabeling
Vertex

Label (I) (II) (III) (IV)

2 l12 � 20 l12 � 20 l32 � 4 l32 � 4
3 � l53 � 6
4 � l54 � 12 l34 � 2
5 l15 � 8
6 l16 � 30 l16 � 30 l16 � 30 l16 � 30 l26 � 10

Hence we got successively

(1, 5), (3, 5), (3, 4), (2, 3), (2, 6), and L � 30.

In Prob. 1 of Sec. 23.4 we got the same edges, but in the order

(3, 4), (2, 3), (3, 5), (1, 5), (2, 6).

4. The algorithm gives

Initial Relabeling
Vertex

Label (I) (II) (III) (IV) (V) (VI)

2 l12 � 3
3 � l23 � 4
4 � � l34 � 3 l64 � 1
5 � � l35 � 5 l35 � 5 l35 � 5
6 � l26 � 10 l36 � 2
7 � l27 � 7 l37 � 6 l37 � 6 l37 � 6 l37 � 6
8 l18 � 8 l28 � 7 l28 � 7 l28 � 7 l28 � 7 l28 � 7 l28 � 7
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We see that we got

(1, 2), (2, 3), (3, 6), (4, 6), (3, 5), (3, 7) (2, 8).

The length is L � 28.

6. The algorithm gives

Initial Relabeling
Vertex

Label (I) (II) (III)

2 l12 � 6 l32 � 3
3 l13 � 1
4 � l34 � 10 l34 � 10 l54 � 2
5 l15 � 15 l15 � 15 l25 � 9

We see that we got
(1, 3), (2, 3), (2, 5), (4, 5).

The tree has the length L � 15.

8. In Step 2 we first select a smallest l1 j for the n � 1 vertices outside U; these are 
n � 2 comparisons. Step 3 then requires n � 2 updatings (pairwise comparisons). In
the next round we have n � 3 comparisons in Step 2 and n � 3 updatings in Step 3,
and so on, until we finally end up with 1 comparison and 1 updating. The sum of all
these numbers is (n � 2)(n � 1) � O(n2).

10. An algorithm for minimum spanning trees must examine each entry of the distance
matrix at least once, because an entry not looked upon might have been one that
should have been included in a shortest spanning tree. Hence, examining the relevant
given information is already O(n2) work.

12. Team Project. (a) � (1) � 16, � (2) � 22, � (3) � 12.

(b) d (G) � 24, r(G) � 12 � � (3), center {3}.

(c) 20, 14, center {3, 4}

(e) Let T* be obtained from T by deleting all endpoints (� vertices of degree 1) together
with the edges to which they belong. Since for fixed u, max d(u, v) occurs only when
v is an endpoint, �(u) is one less in T* than it is in T. Hence the vertices of minimum
eccentricity in T are the same as those in T*. Thus T has the same center as T*. Delete
the endpoints of T* to get a tree T** whose center is the same as that of T, etc. The
process terminates when only one vertex or two adjacent vertices are left.

(f) Choose a vertex u and find a farthest v1. From v1 find a farthest v2. Find w such
that d(w, v1) is as close as possible to being equal to 1_

2d(v1, v2).

SECTION 23.6. Flows in Networks, page 973

Purpose. After shortest paths and spanning trees we discuss in this section a third class
of practically important problems, the optimization of flows in networks.

Main Content, Important Concepts

Network, source, target (sink)

Edge condition, vertex condition

Path in a digraph, forward edge, backward edge

Flow augmenting path

Instructor’s Manual 369

im23.qxd  9/21/05  2:01 PM  Page 369



Cut set, Theorems 1 and 2

Augmenting path theorem for flows (Theorem 3)

Max-flow min-cut theorem

Comment on Content
An algorithm for determining flow augmenting paths follows in the next section.

SOLUTIONS TO PROBLEM SET 23.6, page 978

2. Flow augmenting paths are

P1: 1 � 2 � 4 � 6, �ƒ � 1

P2: 1 � 3 � 5 � 6, �ƒ � 1

P3: 1 � 2 � 3 � 5 � 6, �ƒ � 1

P4: 1 � 2 � 3 � 4 � 5 � 6, �ƒ � 1, etc.

4. Flow augmenting paths are

P1: 1 � 2 � 4 � 5, �ƒ � 2

P2: 1 � 2 � 5, �ƒ � 2

P3: 1 � 2 � 3 � 5, �ƒ � 3

P4: 1 � 3 � 5, �ƒ � 5, etc.

6. The maximum flow is ƒ � 4. It can be realized by

ƒ12 � 2, ƒ13 � 2, ƒ24 � 1, ƒ23 � 1, ƒ35 � 1, ƒ34 � 2, ƒ45 � 0, ƒ46 � 3, ƒ56 � 1.

ƒ is unique, but the way in which it is achieved is not, in general. In the present case
we can change ƒ45 from 0 to 1, ƒ46 from 3 to 2, ƒ56 from 1 to 2.

8. The maximum flow is ƒ � 17. It can be achieved by

ƒ12 � 8, ƒ13 � 9, ƒ23 � 0, ƒ24 � 4, ƒ25 � 4, ƒ35 � 10, ƒ43 � 1, ƒ45 � 3.

10. {3, 6}, 14

12. The cut set in Prob. 10

14. {3, 5, 6, 7}, 14

16. {6, 7}, 14

18. One is interested in flows from s to t, not in the opposite direction.

SECTION 23.7. Maximum Flow: Ford–Fulkerson Algorithm, page 979

Purpose. To discuss an algorithm (by Ford and Fulkerson) for systematically increasing
a flow in a network (e.g., the zero flow) by constructing flow augmenting paths until the
maximum flow is reached.

Main Content, Important Concepts

Forward edge, backward edge

Ford–Fulkerson algorithm (Table 23.8)

Scanning of a labeled vertex
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Comment on Content
Note that this is the first section in which we are dealing with digraphs.

SOLUTIONS TO PROBLEM SET 23.7, page 982

2. Not more work than in Example 1. Steps 1–7 are similar to those in the example and
give the flow augmenting path

P1: 1 � 2 � 3 � 6,

which augments the flow from 0 to 11.
In determining a second flow augmenting path we scan 1, labeling 2 and 4 and

getting �2 � 9, �4 � 10. In scanning 2, that is, trying to label 3 and 5, we cannot
label 3 because ci j � c23 � ƒi j � ƒ23 � 11, and we cannot label 5 because ƒ52 � 0.
In scanning 4 (i.e., labeling 5) we get �5 � 7. In scanning 5 we cannot label 3 because
ƒ35 � 0, and we further get �6 � 3. Hence a flow augmenting path is

P2: 1 � 4 � 5 � 6

and � t � 3. Together we get the maximum flow 11 � 3 � 14 because no further
flow augmenting paths can be found. The result agrees with that in Example 1.

4. Scanning the vertices in the order of their numbers, we get a flow augmenting path

P1: 1 � 2 � 4 � 6
with � t � 1 and then

P2: 1 � 3 � 4 � 6

with � t � 1, but no further flow augmenting path. Since the initial flow was 2, this
gives the total flow ƒ � 4.

6. The given flow equals 9. We first get the flow augmenting path

P1: 1 � 2 � 5 with � t � 2,

then the flow augmenting path

P2: 1 � 3 � 5 with � t � 5,

and finally the flow augmenting path

P3: 1 � 2 � 3 � 5 with � t � 1.

The maximum flow is 9 � 2 � 5 � 1 � 17.

8. At each vertex, the inflow and the outflow are increased by the same amount.

12. Start from the zero flow. If it is not maximum, there is an augmenting path by which
we can augment the flow by an amount that is an integer, since the capacities are
integers, etc.

14. The forward edges of the set are used to capacity; otherwise one would have been
able to label their other ends. Similarly for the backward edges of the set, which carry
no flow.

16. ƒ � 7

18. Let G have k edge-disjoint paths s * t, and let ƒ� be a maximum flow in G. Define
on those paths a flow ƒ by ƒ(e) � 1 on each of their edges. Then ƒ � k 	 ƒ� since ƒ�

is maximum. Now let G* be obtained from G by deleting edges that carry no portion
of ƒ�. Then, since each edge has capacity 1, there exist ƒ� edge-disjoint paths in G*,
hence also in G, and ƒ� 	 k. Together, ƒ� � k.
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20. Since (S, T ) is a cut set, there is no directed path s * t in G with the edges of (S, T )
deleted. Since all edges have capacity 1, we thus obtain

cap (S, T ) � q.

Now let E0 be a set of q edges whose deletion destroys all directed paths s * t, and
let G0 denote G without these q edges. Let V0 be the set of all those vertices v in G0

for which there is a directed path s * v. Let V1 be the set of the other vertices in G.
Then (V0, V1) is a cut set since s � V0 and t � V1. This cut set contains none of the
edges of G0, by the definition of V0. Hence all the edges of (V0, V1) are in E0, which
has q edges. Now (S, T) is a minimum cut set, and all the edges have capacity 1. Thus,

cap (S, T ) 	 cap (V0, V1) 	 q.

Together, cap (S, T ) � q.

SECTION 23.8. Bipartite Graphs. Assignment Problems, page 982

Purpose. As the last class of problems, in this section we explain assignment problems
(of workers to jobs, goods to storage spaces, etc.), so that the vertex set V of the graph
consists of two subsets S and T and vertices in S are assigned (related by edges) to vertices
in T.

Main Content, Important Concepts

Bipartite graph G � (V, E) � (S, T ; E)

Matching, maximum cardinality matching

Exposed vertex

Alternating path, augmenting path

Matching algorithm (Table 23.9)

Comment on Content
A few additional problems on graphs, related to the present circle of ideas as well as of
a more general nature, are contained in the problem set.

SOLUTIONS TO PROBLEM SET 23.8, page 986

2. Yes, S � {1, 4}, T � {2, 3}

4. Yes, S � {1, 3, 5}, T � {2, 4, 6}

6. Yes, S � {1, 3, 4}, T � {2, 5}

8. 7 � 8 � 3 � 4 � 5 � 6 � 1 � 2

10. 1 � 2 � 3 � 7 � 5 � 4

12. (1, 2), (3, 4), (5, 6), (7, 8), by inspection or by the use of the path in the answer to
Prob 8.

14.
Period

1 2 3 4

x1 y4 y3 y1 —
x2 y1 y4 y3 y2

x3 — y2 y4 y3
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16. 2

18. 4

20. n1n2

22. One might perhaps mention that the particular significance of K5 and K3,3 results from
Kuratowski’s theorem, stating that a graph is planar if and only if it contains no
subdivision of K5 or K3,3 (that is, it contains no subgraph obtained from K5 or K3,3

by subdividing the edges of these graphs by introducing new vertices on them).

24. max d(u) � n. Let u1, • • • , un and v1, • • • , vn denote the vertices of S and T,
respectively. Color edges (u1, v1), • • • , (u1, vn) by colors 1, • • • , n, respectively, then
edges (u2, v1), • • • , (u2, vn) by colors 2, • • • , n, 1, respectively, etc., cyclicly permuted.

SOLUTIONS TO CHAP. 23 REVIEW QUESTIONS AND PROBLEMS, page 987

12. W X 14. Y Z

16. W X

22.
Vertex Incident Edges

1 �e1, e2, e4, �e5

2 e3, �e4, e5

3 e1, �e2, �e3

24. L � 5

26. L2 � 16, L3 � 6, L4 � 2

28. L2 � 2, L3 � 4, L4 � 3, L5 � 6

30. 1 � 2 � 4 � 3, L � 15

34. ƒ � 9

36. (1, 6), (2, 4), (3, 5)

21

4 3

20.21

43

18.

0

1

0

1

0

0

1

0

0

1

0

1

0

0

0

1

0

0

1

1

0

0

0

0

0

1

0

0

1

0

1

0

1

1

1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1

Instructor’s Manual 373

im23.qxd  9/21/05  2:01 PM  Page 373



Part G. PROBABILITY, STATISTICS
CHAPTER 24 Data Analysis. Probability Theory

SECTION 24.1. Data Representation. Average. Spread, page 993

Purpose. To discuss standard graphical representations of data in statistics. To introduce
concepts that characterize the average size of the data values and their spread (their
variability).

Main Content, Important Concepts

Stem-and-leaf plot

Histogram

Boxplot

Absolute frequency, relative frequency

Cumulative relative frequency

Outliers

Mean

Variance, standard deviation

Median, quartiles, interquartile range

Comment on Content
The graphical representations of data to be discussed in this section have become standard
in connection with statistical methods. Average size and variability give the two most
important general characterizations of data. Relative frequency will motivate probability as
its theoretical counterpart. This is a main reason for presenting this material here before the
beginning of our discussion of probability in this chapter. Randomness is not mentioned in
this section because the introduction of samples (random samples) as a concept can wait until
Chap. 25 when we shall need them in connection with statistical methods. The connection
with this section will then be immediate and will provide no difficulty or duplication.

SOLUTIONS TO PROBLEM SET 24.1, page 996

2. qL � 2, qM � 5, qU � 6
4. qL � 10.0, qM � 11.6, qU � 12.4
6. qL � �0.52, qM � �0.19, qU � 0.24
8. qL � 85, qM � 87, qU � 89

10. qL � qM � 14, qU � 14.5
12. x� � 4.3, s � 2.541, IQR � 4
14. x� � �0.064, s � 0.542, IQR � 0.76
16. x� � 12.6 but qM � 7. The data are not sufficiently symmetric. s � 9.07, IQR � 17
18. xmin � xj � xmax. Now sum over j from 1 to n. Then divide by n to get 

xmin � x� � xmax.
20. Points to consider are the amounts of calculation, the size of the data (in using quartiles

we lose information—the larger the number of data points, the more more information
we lose), and the symmetry and asymmetry of the data. In the case of symmetry we
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have better agreement between quartiles on the one hand and mean and variance on
the other, as in the case of data with considerable deviation from symmetry.

SECTION 24.2. Experiments, Outcomes, Events, page 997

Purpose. To introduce basic concepts needed throughout Chaps. 24 and 25.

Main Content, Important Concepts

Experiment

Sample space S, outcomes, events

Union, intersection, complements of events

Mutually exclusive events

Representation of sets by Venn diagrams

Comment on Content
To make the chapter self-contained, we explain the modest amount of set-theoretical concepts
needed in the next sections, although most students will be familiar with these matters.

SOLUTIONS TO PROBLEM SET 24.2, page 999

2. 24 � 16 outcomes (R � Right-handed screw, L � Left-handed screw)

RRRR

RRRL RRLR RLRR LRRR

RRLL RLRL LRRL RLLR LRLR LLRR

RLLL LRLL LLRL LLLR

LLLL

4. This is an example of a “waiting time problem”: We wait for the first Head. The
sample space is infinite, the outcomes are (H � Head, T � Tail)

H TH TTH TTTH TTTTH • • • .

6. 20 outcomes

D ND NND • • • NNNNNNNNNNNNNNNNNNND

N � drawing any other bolt

8. 10 outcomes, by choosing persons

123
124
125
134
135
145
234
235
245
345.

Section 24.4 will help us to get the answer without listing cases.
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10. We obtain

A � {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5) (6, 6)}

B � {(4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6)}

C � {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.

12. (5, 5, 5) � A � B, hence the answer is no. Note that

A � B � {(3, 6, 6), (4, 5, 6), (4, 6, 5), (5, 4, 6), (5, 5, 5), (5, 6, 4), (6, 3, 6), 
(6, 4, 5), (6, 5, 4), (6, 6, 3)}.

14. The subsets are
�, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, S.

16. For instance, for the first formula we can proceed as follows (see the figure). On the
right,

A � B: All except 3

A � C: All except 5

and the intersection of these two is

Right side: All except 3 and 5.
On the left,

A � 1 � 2 � 6 � 7

B � C � 4 � 7

and the union of these two gives the same as on the right.
Similarly for the other formula.

Section 24.2. Problem 16

18. Obviously, A � B implies A � B � A. Conversely, if A � B � A, then every element
of A must also be in B, by the definition of intersection; hence A � B.

20. A � B � B implies A � B by the definition of union. Conversely, A � B implies
that A � B � B because always B � A � B, and if A � B, we must have equality
in the previous relation.

SECTION 24.3. Probability, page 1000

Purpose. To introduce

1. Laplace’s elementary probability concept based on equally likely outcomes,

2. The general probability concept defined axiomatically.

AB

C

15
6

7

3

24
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Main Content, Important Concepts

Definition 1 of probability

Definition 2 of probability

Motivation of the axioms of probability by relative frequency

Complementation rule, addition rules

Conditional probability

Multiplication rule, independent events

Sampling with and without replacement

Comments on Content
Whereas Laplace’s definition of probability takes care of some applications and some
statistical methods (for instance, nonparametric methods in Sec. 25.8), the major part of
applications and theory will be based on the axiomatic definition of probability, which
should thus receive the main emphasis in this section.

Sampling with and without replacement will be discussed in detail in Sec. 24.7.

SOLUTIONS TO PROBLEM SET 24.3, page 1005

2. (a) (i) 0.1 � 0.92 � 3 � 0.12 � 0.9 � 3 � 0.13 � 27.1%, as can be seen by noting that

E � {DNN, NDN, NND, DDN, DND, NDD, DDD}.

(ii) The complement of the answer in Prob.1 is 1 � 0.729 � 27.1%.

(b) (i) � � � 3 � � � � 3 � � � � 27.35%

(ii) 1 � 0.7265 � 27.35%

4. If the sample is small compared to the size of the population from which we sample
(this condition is rather obvious) and if the population contains many items in each
class we are interested in (e.g., many defective as well as many nondefective items,
etc.).

6. Increase from � 0.96 to � � � � � � 0.96667, as can

be seen from
E � {RR, RL, LR}.

8. We list the outcomes that favor the event whose probability we want to determine,
and after each outcome the corresponding probability (F � female, M � male):

FF 1/4

MFF 1/8

FMF 1/8

MMFF 1/16

MFMF 1/16

FMMF 1/16
This gives the answer 11/16.

Note that the result does not depend on the number n (� 6) of cards, but only on
the ratio F/M.

20
�
24

5
�
25

5
�
24

20
�
25

19
�
24

20
�
25

24
�
25

8
�
98

9
�
99

10
�
100

90
�
98

9
�
99

10
�
100

89
�
98

90
�
99

10
�
100
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10. 15/36. This is obtained by noting that

Sum 5 has 4 outcomes (1, 4), (2, 3), (3, 2), (4, 1),

Sum 6 has 5 outcomes, and Sum 7 has 6 outcomes.

12. The event “odd product” consists of 9 outcomes

(1, 1), (1, 3), (1, 5)

(3, 1), (3, 3), (3, 5)

(5, 1), (5, 3), (5, 5).

Three of them consist of equal numbers, so that the complement of the event in
Prob. 11 consists of 9 � 3 � 6 outcomes, and 1 � 6/36 � 30/36, in agreement
with Prob. 11.

14. P3 � 0.95 gives P � 0.983 as the probability that a single switch does not fail during
a given time interval, and the answer is the complement of this, namely, 1.7%.

16. By the complementation rule,

P � 1 � 0.954 � 18.5%.

18. We have

A � B � (A � Bc)

where B and A � Bc are disjoint because B and Bc are disjoint. Hence by Axiom 3,

P(A) � P(B) � P(A � Bc) � P(B)

because P(A � Bc) is a probability, hence nonnegative.
20. We have

P(A) � 2/4 � 1/2, P(B) � 1/2, P(C) � 1/2
and

P(A � B) � 1/4, P(B � C) � 1/4, P(C � A) � 1/4,

but P(A � B � C) � 0 because there is no chip numbered 111; hence

P(A � B � C) � P(A)P(B)P(C) � 1/8.

SECTION 24.4. Permutations and Combinations, page 1006

Purpose. To discuss permutations and combinations as tools necessary for systematic
counting in experiments with a large number of outcomes.

Main Content

Theorems 1–3 contain the main properties of permutations and combinations we must
know.

Formulas (5)–(14) contain the main properties of factorials and binomial coefficients
we need in practice.

Comment on Content
The student should become aware of the surprisingly large size of the numbers involved
in (1)–(4), even for relatively modest numbers n of given elements, a fact that would make
attempts to list cases a very impractical matter.
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SOLUTIONS TO PROBLEM SET 24.4, page 1010

2. The 5!/3! � 120/6 � 20 permutations are

The ( ) � 10 combination without repetition are obtained from the previous list by

regarding the two pairs consisting of the same two letters (in opposite orders) as equal.

The ( ) � ( ) � 15 combinations with repetitions consist of the 10

combinations just mentioned plus the 5 combinations

aa ee ii oo uu.

4. ( ) � 1581580

6. ( )( )( ) � 18000

8. There are ( ) samples of 12 from 100; hence the probability of picking a particular

one is 1�( ) . Now the number of samples containing the two male mice is ( )
because these are obtained by picking the two male mice and then 10 female mice

from 98, which can be done in ( ) ways. Hence the answer is

( )�( ) � � 1.3%.

10. By a factor 7293 because

� � � .

12. In 5!/5 � 4! � 24 ways, where the denominator n � 5 gives the number of cyclic
permutations that give the same order on a round table.

14. The complementary event (no two people have a common birthday) has probability

365 � 364 • • • 346 � 0.5886

(which can also be nicely computed by the Stirling formula). This gives the answer
41%, which is surprisingly large.

16. 9 possible choices for the first unknown digit (0 to 9, not 5) and then 8 for the second.
Answer: 72.

1
�
36520

1
�
7293

1
��
17 � 13 � 11 � 3

2!3!4!
�

9!

4!6!8!
�

18!

1
�
75

100

12

98

10

98

10

98

10

100

12

100

12

6

2

5

2

10

3

80

4

6

2

5 � 2 � 1

2

5

2

au

eu

iu

ou

�

ao

eo

io

�

uo

ai

ei

�

oi

ui

ae

�

ie

oe

ue

�

ea

ia

oa

ua
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18. Team Project. (a) There are n choices for the first thing and we terminate with the
k th thing, for which we have n � k � 1 choices.

(b) The theorem holds when k � 1. Assuming that it holds for any fixed positive

k, we show that the number of combinations of (k � 1)th order is ( ) . From

the assumption it follows that there are ( ) combinations of (k � 1)th

order of n elements whose first element is 1 (this is the number of combinations of

k th order of n elements with repetitions). Then there are ( ) combinations

of (k � 1)th order whose first element is 2 (this is the number of combinations of
k th order of the n � 1 elements 2, 3, • • • , n, the combinations no longer containing
1 because the combinations containing 1 have just been taken care of). Then

there are ( ) combinations of (k � 1)th order of the n � 2 elements

3, 4, • • • , n whose first element is 3, etc., and, by (13),

( ) � ( ) � • • • � ( ) � �
n�1

s�0

( ) � ( ) .

(d) akbn�k is obtained by picking k of the n factors

(a � b)(a � b) • • • (a � b) (n factors)

and choosing a from each of k factors (and b from the remaining n � k factors); by

Theorem 3, this can be done in ( ) ways.

(e) Apply the binomial theorem to

(1 � b)p(1 � b)q � (1 � b)p�q.

br has the coefficient ( ) on the right and �
r

k�0

( ) ( ) on the left.

SECTION 24.5. Random Variables. Probability Distributions, page 1010

Purpose. To introduce the concepts of discrete and continuous random variables and their
distributions (to be followed up by the most important special distributions in Secs. 24.7
and 24.8).

Main Content, Important Concepts

Random variable X, distribution function F(x)

Discrete random variable, its probability function

Continuous random variable, its density

Comments on Content
The definitions in this section are general, but the student should not be scared because
the number of distributions one needs in practice is small, as we shall see.

Discrete random variables occur in experiments in which we count, continuous random
variables in experiments in which we measure.

q

r � k

p

k

p � q

r

n

k

n � k

k � 1

k � s

k

k

k

n � k � 2

k

n � k � 1

k

n � k � 3

k

n � k � 2

k

n � k � 1

k

n � k

k � 1
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For both kinds of random variables X the definition of the distribution function F(x) is
the same, namely, F(x) � P(X � x), so that it permits a uniform treatment of all X. For
discrete X the function F(x) is piecewise constant; for continuous X it is continuous. For
obtaining an impression of the distribution of X the probability function or density is more
useful than F(x).

SOLUTIONS TO PROBLEM SET 24.5, page 1015

2. Using (10), we have

k �5

0
x2 dx � � 1, k � .

Hence F(x) � 0 (x � 0), F(x) � x3/125 (0 	 x � 5), F(x) � 1 (x 
 5).

4. P(0 � x � 4) � 1_
2; k � 1/8, so that

�c

�c
k dx � �c

�c
dx � � 0.95; hence c � 3.8.

6. ƒ(x) � F�(x) gives ƒ(x) � 0 if x 	 0, ƒ(x) � 3e�3x if x 
 0. This illustrates that a
density may have discontinuities, whereas the distribution function of a continuous
distribution must be continuous.

These first few problems should help the student to recognize the conceptual
distinction between probability and density as well as the fact that in many cases the
distribution function is given by different formulas over different intervals and that
the same holds for the density.

Furthermore, F(x) � 0.9 gives 0.1 � e�3x; hence x � 1_
3 ln 10 � 0.7675.

8. k is obtained from

k �
`

x�0

2�x � 2k � 1; hence k � 1_
2.

Furthermore,
P(X � 4) � 1 � P(X � 3)

where
P(X � 3) � 1_

2(1 � 1_
2 � 1_

4 � 1_
8) � 1_

2(2 � 1_
8) � 1 � _1

16

so that the answer is 1/16.

10. From the given distribution function and (9) we obtain

�c

�c
(1 � x2) dx � (2c � c3) � 0.95.

This gives the answer c � 0.8114.
12. Integrating the density, we obtain the distribution function

F(x) � 0 if x 	 �1, F(x) � 1_
2(x � 1)2 if �1 � x 	 0,

F(x) � 1 � 1_
2(x � 1)2 if 0 � x 	 1, F(x) � 1 if x � 1.

About 50 of the cans will contain 50 gallons or more because Y � 50 corresponds to
X � 0 and F(0) � 0.5. Similarly, Y � 49.5 corresponds to X � �0.5 and 
F(�0.5) � 0.125; this is the probability that a can will contain less than 49.5 gallons.
Finally, F(�1) � 0 is the answer to the last question.

2
�
3

3
�
4

3
�
4

c
�
4

1
�
8

3
�
125

53k
�

3
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14. By differentiation,

ƒ(x) � 0.4x if 2 	 x 	 3, ƒ(x) � 0 otherwise.
Furthermore,

P(2.5 	 X � 5) � F(5) � F(2.5) � 1 � 0.45 � 0.55,

that is, 55%.

16. To have the area under the density curve equal to 1, we must have k � 5. If A denotes
“Defective” and B � Ac, we have

P(B) � 5 �120.08

119.92
dx � 0.8, P(A) � 0.2,

so that about 100 of the 500 axles will be defective.

18. The point of the last two problems is to tell the student to be careful with respect to
	 and � as well as with 
 and �, where the distinction does not matter in the
continuous case but does matter for a discrete distribution. The answers are

131_
3%, 531_

3%, 331_
3%, 0, 662_

3%, 862_
3%, 331_

3%, 862_
3%.

SECTION 24.6. Mean and Variance of a Distribution, page 1016

Purpose. To introduce the two most important parameters of a distribution, the mean �
of X (also called expectation of X), which measures the central location of the values of
X, and the variance 
2 of X, which measures the spread of those values.

Main Content, Important Concepts

Mean � given by (1)

Variance 
2 given by (2), standard deviation 


Standardized random variable (6)

Short Courses. Mention definitions of mean and variance and go on to the special
distributions in the next two sections.

Comments on Content
Important practical applications follow in Secs. 24.7, 24.8, and later.

The transformation theorem (Theorem 2) will be basic in Sec. 24.8 and will have various
applications in Chap. 25.

Moments (8) and (9) will play no great role in our further work, but would be more
important in a more theoretical approach on a higher level. We shall use them in 
Sec. 25.2.

SOLUTIONS TO PROBLEM SET 24.6, page 1019

2. From the defining formulas we compute

� � 0 � 0.384 � 2 � 0.096 � 3 � 0.008 � 0.6
and


2 � 0.62 � 0.512 � 0.42 � 0.384 � 1.42 � 0.096 � 2.42 � 0.008 � 0.48.

This is a special case of the binomial distribution (n � 3, p � 0.2) to be considered
in the next section; the point of this and similar problems is that the student gets a
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feel for the concepts of mean and variance, before applying standard formulas for
those quantities in the case of special distributions.

4. Theorem 2 gives

�* � �8_
3 � 5 � 7_

3 and 
*2 � _16
18 � 8_

9.

6. We obtain

� � ��

0

2xe�2x dx � 1_
2, 
2 � ��

0

2(x � 1_
2)2e�2x dx � 1_

4.

8. Writing k � 0.001 (and in fact for any positive k) we obtain by integrating by parts

� � k ��

0

xe�kx dx � .

Hence in our case the answer is 1000 hours.

10. About 35

12. We are asking for the sale x such that F(x) � 0.95. Integration of ƒ(x) gives

F(x) � 3x2 � 2x3 if 0 � x 	 1.

From this we get the solution 0.865, meaning that with a probability of 95% the sale
will not exceed 8650 gallons (because we measure here in ten thousands of gallons).
Thus

P(X � 0.865) � 0.95

and the complementary event that the sale will exceed 8650 gallons thus has a 5%
chance,

P(X 
 0.865) � 0.05

and then the tank will be empty if it has a capacity of 8650 gallons.

14. 1.45%, because for nondefective bolts we obtain

k �1�0.09

1�0.09
ƒ(x) dx � 750 �1.09

0.91
(x � 0.9)(1.1 � x) dx

� 750 � 2 �0.09

0
(0.1 � z)(0.1 � z) dz

� 0.9855.

16. Team Project. (a) E(X � �) � E(X) � �E(1) � � � � � 0. Furthermore,


2 � E([X � �]2) � E(X2 � 2�X � �2)

� E(X2) � 2�E(X) � �2E(1)

where E(X) � � and E(1) � 1, so that the result follows. The formula obtained has
various practical and theoretical applications.

(b) g(X) � X and the definition of expectation gives the defining formula for the
mean. Similarly for (11). For E(1) we get the sum of all possible values or the integral
of the density taken over the x-axis, and in both cases the value is 1 because of (6)
and (10) in Sec. 24.5.

1
�
k

Instructor’s Manual 383

im24.qxd  9/21/05  5:14 PM  Page 383



(c) E(Xk) � (bk�1 � ak�1) /[(b � a)(k � 1)] by straightforward integration.

(d) Set x � � � t, write � instead of t, set � � �t, and use ƒ(� � t) � ƒ(� � t). Then

E([X � �]3) � ��

��
t3ƒ(� � t) dt � �0

��
�3(ƒ(� � �) dt � ��

0
t3ƒ(� � t) dt

� �0

�
(�t)3ƒ(� � t)(�dt) � ��

0
t3ƒ(� � t) dt � 0.

(e) � � 2, 
2 � 2, � � 4/23/2 � �2�
(g) ƒ(1) � 1_

2, ƒ(�4) � 1_
3, ƒ(5) � 1_

6. But for distributions of interest in applications,
the skewness will serve its purpose.

SECTION 24.7. Binomial, Poisson, and Hypergeometric Distributions, 
page 1020

Purpose. To introduce the three most important discrete distributions and to illustrate
them by typical applications.

Main Content, Important Concepts

Binomial distribution (2)–(4)

Poisson distribution (5), (6)

Hypergeometric distribution (8)–(10)

Short Courses. Discuss the binomial and hypergeometric distributions in terms of
Examples 1 and 4.

Comments on Content
The “symmetric case” p � q � 1/2 of the binomial distribution with probability function
(2*) is of particular practical interest. Formulas (3) and (4) will be needed from time to
time. The approximation of the binomial distribution by the normal distribution will be
discussed in the next section.

SOLUTIONS TO PROBLEM SET 24.7, page 1025

2. The complementary event of not hitting the target has the probability 0.910, so that
the answer is P � 1 � 0.910 � 65%.

4. The mean is � � np � 50 • 0.03, so that we get

ƒ(x) � ( )0.03x0.9750�x � 1.5xe�1.5/x!.

The numerical values are 0.223, 0.335, 0.251, 0.126, 0.047, 0.014. Note that their
sum is 0.996, leaving 0.4% for all the other remaining possibilities together (except
for a roundoff error).

6. Let X be the number of calls per minute. By assumption the average number of calls
per minute is 300/60 � 5. Hence X has a Poisson distribution with mean � � 5. By
assumption, the board is overtaxed if X 
 10. From Table A6, App. 5, we see that
the complementary event X � 10 has probability

P(X � 10) � 0.9863.

Hence the answer is 1.4%.

50

x
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8. Let X be the number of defective screws in a sample of size n. The process will be
halted if X � 1. The manufacturer wants n to be such that P(X � 1) � 0.95 when 
p � 0.1, thus P(X � 0) � qn � 0.9n � 0.05, and n ln 0.9 � ln 0.05, n � 28.4.
Answer: n � 28 or 29.

It is perhaps worthwhile to point to the fact that the situation is typical; in the case
of a discrete distribution, one will in general not be able to fulfill percentage
requirements exactly.

10. 0.9910 � 90.4%

12. (a) � � 6 defects per 300 m, ƒ(x) � 6xe�6/x!,

(b) ƒ(0) � e�6 � 0.00248 � 0.25%

14. For this problem, the hypergeometric distribution has the probability function

ƒ(x) � ( ) ( )�( ) .

The numeric values are

x 0 1 2 3

P(X � x) _455
1140

_525
1140

_150
1140

_10
1140

These values sum up to 1, as they should.

16. Team Project. (a) In each differentiation we get a factor xj by the chain rule, so that

G (k)(t) � �
j

xj
ketxjƒ(xj).

If we now set t � 0, the exponential function becomes 1 and we are left with the
definition of E(Xk ). Similarly for a continuous random variable.

(d) By differentiation,

G�(t) � n(pet � q)n�1pet,

G�(t) � n(n � 1)(pet � q)n�2(pet)2 � n(pet � q)n�1pet.

This gives, since p � q � 1,

E(X2) � G�(0) � n(n � 1)p2 � np.

From this we finally obtain the desired result,


2 � E(X2) � �2 � n(n � 1)p2 � np � n2p2 � npq.

(e) G(t) gives G(0) � 1 and furthermore,

G�(t) � e�� exp [�et] �et � �etG(t)

G�(t) � �et[G(t) � G�(t)]
E(X2) � G�(0) � � � �2


2 � E(X2) � �2 � �.

(f) By definition,

� � � xƒ(x) � � x( ) ( )N � M

n � x

M

x

1
�

(N

n
)

20

3

15

3 � x

5

x
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(summation over x from 0 to n). Now

x( ) �

�

� M( ) .

Thus

� � � ( ) ( ) .

Now (14), Sec. 24.4, is

� ( ) ( ) � ( )
(summation over k from 0 to r). With p � M � 1, k � x � 1, q � N � M, 
r � k � n � x we have p � q � N � 1, r � k � n � x � n � 1 and the formula
gives

� � ( ) � n .

SECTION 24.8. Normal Distribution, page 1026

Purpose. To discuss Gauss’s normal distribution, the practically and theoretically most
important distribution. Use of the normal tables in App. 5.

Main Content, Important Concepts

Normal distribution, its density (1) and distribution function (2)

Distribution function �(z), Tables A7, A8 in App. 5

De Moivre–Laplace limit theorem

Short Course. Emphasis on the use of Tables A7 and A8 in terms of some of the given
examples an problems.

Comments on Content
Although the normal tables become superfluous when a CAS (Maple, Mathematica, etc.)
is used, their discussion may be advisable for a better understanding of the distribution
and its numerical values.

Applications of the De Moivre–Laplace limit theorem follow in Chap. 25.
Bernoulli’s law of large numbers is included in the problem set.

SOLUTIONS TO PROBLEM SET 24.8, page 1031

2. � ( )� �(1.5) � 0.9332, 1 � � ( )� 1 � �(�1) � 0.8413.
116 � 120
��

4

126 � 120
��

4

M
�
N

N � 1

n � 1

M
�

(N

n
)

p � q

r

q

r � k

p

k

N � M

n � x
M � 1

x � 1

M
�

(N

n
)

M � 1

x � 1

M(M � 1) • • • (M � x � 1)
���

(x � 1)!

xM(M � 1) • • • (M � x � 1)
����

x!

M

x
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Similarly,

� ( ) � � ( ) � �(2.5) � �(1.25)

� 0.9938 � 0.8944 � 0.0994.

4. We obtain c � � � 4.2 and, furthermore,

� ( ) � 0.9, � 1.282, c � 4.4563

and

� ( ) � 0.995, � 2.576 c � 0.515.

6. Smaller. This should help the student in qualitative thinking and an understanding of
standard deviation and variance.

8. We get the maximum load c from the condition

P(X � c) � � ( ) � 5%.

By Table A8 in App. 5,

� �1.645, c � 1160 kg.

10. About 680 (Fig. 520a)

12. The complementary event has the probability

P(X � 15000) � � ( ) � �(1.5) � 0.9332.

Hence the answer is 6.7%.

14. Team Project. (c) Let e denote the exponential function in (1). Then

(
�2��ƒ)� � (� e)� � (� � ( )2)e � 0, (x � �)2 � 
2,

hence x � � � 
.

(d) Proceeding as suggested, we obtain

�2(�) � ��

��
e�u2/ 2 du ��

��
e�v2/ 2 dv

� ��

��
��

��
e�u2/ 2e�v2/ 2 du dv � �2�

0
��

0
e�r 2/ 2r dr d�.

The integral over � equals 2�, which cancels the factor in front, and the integral over
r equals 1, which proves the desired result.

1
�
2�

1
�
2�

1
�
�2��

1
�
�2��

x � �
�


2

1
�

2

x � �
�


2

15000 � 12000
��

2000

c � 1250
��

55

c � 1250
��

55

c
�
0.2

c
�
0.2

c � 4.2
�

0.2

c � 4.2
�

0.2

125 � 120
��

4

130 � 120
��

4
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(e) Writing � instead of 
 in (1) and using (x � �) /� � u and dx � � du, we obtain


2 � ��

��
(x � �)2 exp [� ( )2] dx

� ��

��
�2u2e�u2/2� du � ��

��
u2e�u2/ 2 du

� ��

��
(�u)(�ue�u2/2) du

� �2 [ (�u)e�u2/ 2j
�

��

� ��

��
e�u2/ 2 du] � �2(0 � 1) � �2.

(f) We have

P(j � pj 	 �) � P([p � �]n 	 X 	 [p � �]n)

and apply (11) with a � (p � �)n, b � (p � �)n. Then, since np cancels,

� � (�n � 0.5) /�npq�, � � ��,

and � * ��, � * � as n * �. Hence the above probability approaches 
�(�) � �(��) � 1 � 0 � 1.

(g) Set x* � c1x � c2. Then (x � �) /
 � (x* � �*)/
* and

F(x*) � P(X* � x*)

� P(X � x)

� �((x � �) /
)

� �((x* � �*)/
*).

SECTION 24.9. Distributions of Several Random Variables, page 1032

Purpose. To discuss distributions of two-dimensional random variables, with an extension
to n-dimensional random variables near the end of the section.

Main Content, Important Concepts

Discrete two-dimensional random variables and distributions

Continuous two-dimensional random variables and distributions

Marginal distributions

Independent random variables

Addition of means and variances

Short Courses. Omit this section. (Use the addition theorems for means and variances in
Chap. 25 without proof.)

Comments on Content
The addition theorems (Theorems 1 and 3) resulting from the present material will be
needed in Chap. 25; this is the main reason for the inclusion of this section.

Note well that the addition theorem for variances holds for independent random
variables only. In contrast, the addition of means is true without that condition.

X
�
n

1
�
�2��

1
�
�2��

�2

�
�2��

�2

�
�2��

1
�
�2�� �

x � �
�

�

1
�
2

1
�
�2�� �

388 Instructor’s Manual

im24.qxd  9/21/05  5:14 PM  Page 388



Instructor’s Manual 389

SOLUTIONS TO PROBLEM SET 24.9, page 1040

2. The answers are 0 and 1/8. Since the density is constant in that triangle, these results
can be read off from a sketch of the triangle and the regions determined by the
inequalities x 
 2, y 
 2 and x � 1, y � 1, respectively, without any integrations.

4. We have to integrate ƒ(x, y) � 1/8 over y from 0 to 4 � x, where this upper integration
limit follows from x � y � 4. This gives the density of the desired marginal distribution
in the form

ƒ1(x) � �4�x

0
dy � � x if 0 � x � 4 and 0 otherwise.

6. By Theorem 1 the mean is 10 000 � 10 � 100 kg. By Theorem 3, assuming
independence (which is reasonable), we find the variance 10 000 � (0.05)2 � 25, hence
the standard deviation 5 grams. Note that the mean is multiplied by n � 10 000,
whereas the standard deviation is multiplied only by �n� � 100.

8. By Theorem 1 the mean is 77 lb. By Theorem 3, assuming independence, we get the
variance 0.01 � 0.64, hence the standard deviation �0.65� � 0.806 lb.

10. The distributions in Prob. 17 and Example 1

12. (a) From the given distributions we obtain

ƒ1(x) � 50 if 0.99 	 x 	 1.01 and 0 otherwise,

ƒ2(y) � 50 if 1.00 	 y 	 1.02 and 0 otherwise.

(b) A pin fits that hole if X 	 1, and P(X 	 1) � 50%.

14. (X, Y) takes a value in A, B, C, or D (see the figure) with probability F(b1, b2), 
a value in A or C with probability F(a1, b2), a value in C or D with probability 
F(b1, a2), a value in C with probability F(a1, a2), hence a value in B with probability
given by the right side of (2).

16. x2 � y2 � 1 implies y � ��1 � x2�, x � ��1 � y2�; this gives the limits of integration
in the integrals for the marginal densities. k times the area � must equal 1, hence 
k � 1/�. The marginal distributions have the densities

ƒ1(x) � � ƒ(x, y) dy � ��1�x2�

��1�x2�
dy � �1 � x2� if �1 � x � 1

and

ƒ2(y) � � ƒ(x, y) dx � ��1�y2�

��1�y2�
dx � �1 � y2� if �1 � y � 1

2
�
�

1
�
�

2
�
�

1
�
�

B

D

A

C

Y = b2

Y = a2

X = a1 X = b1

1
�
8

1
�
2

1
�
8
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and 0 otherwise. Furthermore,

P � � � � 25%

(without integration).

18. No. Whereas for the mean it is not essential that the trials are not independent and
one still obtains from � � M/N (single trial) the result � � nM/N (n trials) via Theorem
1, one cannot use Theorem 3 here; indeed, the variance 
2 � M(N � M) /N2 (single
trial) does not lead to (10), Sec. 24.7.

20. In the continuous case, (18) is obtained from (17) by differentiation, and (17) is
obtained from (18) by integration. In the discrete case the proof results from the
following theorem. Two random variables X and Y are independent if and only if the
events of the form a1 	 X � b1 and a2 	 Y � b2 are independent. This theorem can
be proved as follows. From (2), Sec. 24.5, we have

P(a1 	 X � b1)P(a2 	 Y � b2) � [F1(b1) � F1(a1)][F2(b2) � F2(a2)].

In the case of independence of the variables X and Y we conclude from (17) that the
expression on the right equals

F(b1, b2) � F(a1, b2) � F(b1, a2) � F(a1, a2).
Hence, by (2),

P(a1 	 X � b1)P(a2 	 Y � b2) � P(a1 	 X � b1, a2 	 Y � b2).

This means independence of a1 	 X � b1 and a2 	 Y � b2; see (14), Sec. 24.3.
Conversely, suppose that the events are independent for any a1, b1, a2, b2. Then

P(a1 	 X � b1)P(a2 	 Y � b2) � P(a1 	 X � b1, a2 	 Y � b2).

Let a1 * ��, a2 * �� and set b1 � x, b2 � y. This yields (17), that is, X and Y
are independent.

SOLUTIONS TO CHAP. 24 REVIEW QUESTIONS AND PROBLEMS, 
page 1041

22. QL � 210, QM � 212, QU � 215

24. x� � 211.9, s � 4.0125, s2 � 16.1

26. HHH, HHT, HTH, THH, HTT, THT, TTH, TTT

28. F(x) � 0 if x 	 0, F(x) � 0.80816 if 0 � x 	 1,
F(x) � 0.99184 if 1 � x 	 2, F(x) � 1 if x � 2

30. Obviously, A � B implies A � B � A. Conversely, if A � B � A, then every element
of A must also be in B, by the definition of intersection; hence A � B.

32. ( ) � ( ) � 15

34. 42/90, 42/90, 6/90, 0, 48/90

36. We first need

� � 2 �1

0
x(1 � x) dx � 2( � ) � .

1
�
3

1
�
3

1
�
2

6

4

6

2

1
�
4

1
�
�
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In the further integrations we can use the defining integrals of E[X � �)2] and 
E[(X � �)3] or, more simply,


2 � E(X2) � �2 � 2 �1

0
x2(1 � x) dx � � 2( � ) � �

and similarly,

E[(X � �)3] � E(X3) � 3�E(X2) � 3�2E(X) � �3

� E(X3) � 3�E(X2) � 2�3

� 2 �1

0
x3(1 � x) dx � 3 � � �

� 2( � ) � � � .

This gives

� � � .

38. ƒ(x) � 0.2 if 0 	 x 	 5, ƒ(x) � 0 elsewhere

40. The 100 bags are normal with mean 100 � 50 � 5000 kg and, assuming independence
(which is reasonable), variance 100 � 1; hence standard deviation 10 kg. Thus 5030
is just one of the two three-sigma limits, so that the answer is about 0.13%.

2�2�
�

5

18�18�
�

5 � 27

1
�
135

2
�
27

1
�
6

1
�
5

1
�
4

2
�
27

1
�
6

1
�
3

1
�
18

1
�
9

1
�
4

1
�
3

1
�
9
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CHAPTER 25 Mathematical Statistics

Changes

Regression and a short introduction to correlation have been combined in the same section
(Sec. 25.9).

SECTION 25.1. Introduction. Random Sampling, page 1044

Purpose. To explain the role of (random) samples from populations.

Main Content, Important Concepts

Population

Sample

Random numbers, random number generator

Sample mean: x�; see (1)

Sample variance s2; see (2)

Comments on Content
Sample mean and sample variance are the two most important parameters of a sample. 
x� measures the central location of the sample values and s2 their spread (their variability).
Small s2 may indicate high quality of production, high accuracy of measurement, etc.

Note well that x� and s2 will generally vary from sample to sample taken from the same
population, whose mean � and variance �2 are unique, of course. This is an important
conceptual distinction that should be mentioned explicitly to the students.

SECTION 25.2. Point Estimation of Parameters, page 1046

Purpose. As a first statistical task we discuss methods for obtaining approximate values
of unknown population parameters from samples; this is called estimation of parameters.

Main Content, Important Concepts

Point estimate, interval estimate

Method of moments

Maximum likelihood method

SOLUTIONS TO PROBLEM SET 25.2, page 1048

2. Put � � 0 in Example 1 and proceed with the second equation in (8), as in the example,
to get the estimate

��2 � �
n

i�1

xi
2.

4. The likelihood function is (we can drop the binomial factors)

� � p
k1(1 � p)

n�k1 • • • p
km(1 � p)

n�km

� p
k1�•••�km(1 � p)

nm�(k1�•••�km).

1
�
n
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The logarithm is

ln � � (k1 � • • • � km) ln p � [nm � (k1 � • • • � km)] ln (1 � p).

Equating the derivative with respect to p to zero, we get, with a factor �1 from the
chain rule,

(k1 � • • • � km) � [nm � (k1 � • • • � km)] .

Multiplication by p(1 � p) gives

(k1 � • • � km )(1 � p) � [nm � (k1 � • • • � km)]p.

By simplification,

k1 � • • • km � nmp.
The result is

p̂ � �
m

i�1

ki.

6. We obtain
� � ƒ(x1)ƒ(x2) • • • ƒ(xn )

� p(1 � p)
x1�1

p(1 � p)
x

2
�1

• • • p(1 � p)
xn�1

� p
n
(1 � p)

x1�•••�xn�n.

The logarithm is

ln � � n ln p � ( �
n

m�1

xm � n) ln (1 � p).

Differentiation with respect to p gives, with a factor �1 from the chain rule,

� � �
n

m�1

.

Equating this derivative to zero gives

n(1 � p̂) � p̂( �
n

m�1

xm � n) .

Thus p̂ � 1/x�.

8. p̂ � 2/(7 � 6) � 2/13, by Prob. 6.

10. � � 1(b � a)n is maximum if b � a is as small as possible, that is, a equal to the
smallest sample value and b equal to the largest.

12. � � 1/�, �̂ � x�
14. �̂ � 1/x� � 2, F(x) � 1 � e�2x if x � 0 and 0 otherwise. A graph shows that the

step function F̃(x) (the sample distribution function) approximates F(x) reasonably
well. (For goodness of fit, see Sec. 25.7.)

SECTION 25.3. Confidence Intervals, page 1049

Purpose. To obtain interval estimates (“confidence intervals”) for unknown population
parameters for the normal distribution and other distributions.

xm � n
�
1 � p

n
�
p

	 ln �
�

	p

1
�
nm

1
�
1 � p

1
�
p
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Main Content, Important Concepts

Confidence interval for � if �2 is known

Confidence interval for � if �2 is unknown

t-distribution, its occurrence (Theorem 2)

Confidence interval for �2

Chi-square distribution, its occurrence (Theorem 3)

Distribution of a sum of independent normal random variables

Central limit theorem

Comments on Content
The present methods are designed for the normal distribution, but the central limit theorem
permits their extension to other distributions, provided we can use sufficiently large
samples.

The theorems giving the theory underlying the present methods also serve as the
theoretical basis of tests in the next section. Hence these theorems are of basic importance.

We see that, although our task is the development of methods for the normal distribution,
other distributions (t and chi-square) appear in the mathematical foundation of those
methods.

SOLUTIONS TO PROBLEM SET 25.3, page 1057

2. In Prob. 1 we have x� � 40.667, k � 3.201. Instead of c � 1.96 we now have c � 2.576
in Table 25.1. Hence k (and thus the length of the interval) is multiplied by
2.576/1.960, so that the new k is 4.207, giving the longer interval

CONF0.99{36.460 
 � 
 44.874}.

4. k � 1.645 • 0.5/�100� � 0.08225, CONF0.9{212.218 
 � 
 212.382}.
The large sample size and small population variance have given a short interval,

although the probability that it does not contain � is 10%, due to the choice of �. But
for larger � (�1) the interval is still rather short.

6. This is a fast way of limited accuracy. More importantly, it should help the student
get a better understanding of the whole idea of confidence intervals.

From the figure we obtain L /� � 2k /� � k � 0.27, approximately. Thus the
confidence interval is roughly CONF0.95{119.73 
 � 
 120.27}. Calculation gives
the more exact value k � 0.277.

8. n � 1 � 3 degrees of freedom; F(c) � 0.995 gives c � 5.84. From the sample we
compute

x� � 426.25, s2 � 39.58.

Hence k � 18.37 in Table 25.2, Step 4. This gives the confidence interval

CONF0.99{407 
 � 
 445}.

10. n � 1 � 5; F(c) � 0.995 gives c � 4.03. From the sample we compute

x� � 9533, s2 � 49667.

Hence k � 367 in Table 25.2, Step 4. This gives the confidence interval

CONF0.99{9166 
 � 
 9900}.
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12. n � 1 � 4; F(c) � 0.995 gives c � 4.60. From the sample we compute

x� � 661.2, s2 � 22.70.

Hence k � 9.8 in Table 25.2, Step 4. This gives the confidence interval

CONF0.99{651.3 
 � 
 671.1}.

14. n � 24 000, x� � 12 012, p̂ � x�/n � 0.5005. Now the random variable

X � Number of heads in 24 000 trials

is approximately normal with mean 24 000p and variance 24 000p (1 � p). Estimators
are

24 000 p̂ � 12 012 and 24 000 p̂(1 � p̂) � 5999.99.

For the standardized normal random variable we get from Table A8 in App. 5 (or
from a CAS) and 
(c) � 0.995 the value

c � 2.576 �
and

c* � 12 012 � 2.576�6000� � 199.5

so that

CONF0.99{11 812 
 � 
 12 212}

and by division by n,

CONF0.99{0.492 
 p 
 0.509}.

16. n � 1 � 19, c1 � 8.91, c2 � 32.85, 19 • 0.04 � 0.76, k1 � 0.76/8.91 � 0.086, 
k2 � 0.76/32.85 � 0.023. Hence

CONF0.95{0.023 
 �2 
 0.086}.

18. n � 1 � 7 degrees of freedom, F(c1) � 0.025, c1 � 1.69, F(c2) � 0.975, c2 � 16.01
from Table A10. From the sample,

x� � 17.7625, (n � 1)s2 � 7s2 � 0.73875.

Hence k1 � 0.437, k2 � 0.046. The answer is

CONF0.95 {0.046 
 �2 
 0.437}.

20. n � 1 � 9 degrees of freedom, F(c1) � 0.025, c1 � 2.70, F(c2) � 0.975, c2 � 19.02
from Table A10. From the sample,

x� � 253.5, 9s2 � 54.5.

Hence k1 � 54.5/2.70 � 20.19, k2 � 54.5/19.02 � 2.87. From Table 25.3 we thus
obtain the (rather long!) confidence interval

CONF0.95{2.8 
 �2 
 20.2}.

22. By Theorem 1 in this section and by the hint, the distribution of 4X1 � X2 is normal
with mean 4 • 23 � 4 � 88 and variance 16 • 3 � 1 � 49.

c* � 12 012
��

�6000�
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24. By Theorem 1, the load Z is normal with mean 40N and variance 4N, where N is the
number of bags. Now

P(Z 
 2000) � 
( ) � 0.95

gives the condition

� 1.645

by Table A8. The answer is N � 49 (since N must be an integer).

SECTION 25.4. Testing of Hypotheses. Decisions, page 1058

Purpose. Our third big task is testing of hypotheses. This section contains the basic ideas
and the corresponding mathematical formalism. Applications to further tasks of testing
follow in Secs. 25.5–25.7.

Main Content, Important Concepts

Hypothesis (null hypothesis)

Alternative (alternative hypothesis), one- and two-sided

Type I error (probability � � significance level)

Type II error (probability �; 1 � � � power of a test)

Test for � with known �2 (Example 2)

Test for � with unknown �2 (Example 3)

Test for �2 (Example 4)

Comparison of means (Example 5)

Comparison of variances (Example 6)

Comment on Content
Special testing procedures based on the present ideas have been developed for controlling
the quality of production processes (Sec. 25.5), for assessing the quality of produced goods
(Sec. 25.6), for determining whether some function F(x) is the unknown distribution
function of some population (Sec. 25.7), and for situations in which the distribution of a
population need not be known in order to perform a test (Sec. 25.8).

SOLUTIONS TO PROBLEM SET 25.4, page 1067

2. If the hypothesis p � 0.5 is true, X � Number of heads in 4040 trials is approximately
normal with � � 2020, �2 � 1010 (Sec. 24.8). Hence

P(X 
 c) � 
([c � 2020]/�1010�) � 0.95, c � 2072 � 2048,

do not reject the hypothesis.

4. Left-sided test, �2/n � 4/10 � 0.4. From Table A8 in App. 5 we obtain

P(X� 
 c)��30.0 � 
( ) � 0.05.

Hence
c � 30.0 � 1.645�0.4� � 28.96

and we reject the hypothesis.

c � 30.0
�

�0.4�

2000 � 40N
��

2�N�

2000 � 40N
��

2�N�
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(b) Right-sided test. We get

x� � c � 31.04

and do not reject the hypothesis.
6. We obtain

�(28.5) � P(X� � 28.96)��28.5 � 1 � P(X� 
 28.96)��28.5

� 1 � 
( )
� 1 � 
(0.73) � 1 � 0.7673 � 0.2327.

8. The test is two-sided. The variance is unknown, so we have to proceed as in the case
of Example 3. From the sample we compute

t � �10� (0.811 � 0.800)/�0.000 0�54� � 4.73.

Now from Table A9 in App. 5 with n � 1 � 9 degrees of freedom and the condition

P(�c 
 T 
 c) � 0.95 we get c � 2.26.

Since t � c, we reject the hypothesis.

10. Hypothesis �0 � 30 000, alternative � � 30 000. Using the given data and Table A9,
we obtain

t � �50� (32 000 � 30 000)/4000 � 3.54 � c � 1.68.

Hence we reject the hypothesis and assert that the manufacturer’s claim is justified.

12. Hypothesis H0: Not better. Alternative H1: Better. Under H0 the random variable

X � Number of cases cured in 200 cases

is approximately normal with mean � � np � 200 • 0.7 � 140 and variance 
�2 � npq � 42. From Table A8 and � � 5% we get

(c � 140)/�42� � 1.645, c � 140 � 1.645�42� � 150.7.

Since the observed value 148 is not greater than c, we do not reject the hypothesis.
This indicates that the results obtained so far do not establish the superiority.

14. We test the hypothesis �0
2 � 25 against the alternative that �2 � 25. As in Example

4, we now get

Y � (n � 1)S2/�0
2 � 27S2/25 � 1.08S2.

From Table A10 with 27 degrees of freedom and the condition

P(Y � c) � � � 5% we get c � 16.2.

As in Example 4 we compute the corresponding

c* � 16.2/1.08 � 15.00.

Now the observed value of S2 is s2 � 3.52 � 12.25. Since this is less than c* and
the test is left-sided, we reject the hypothesis and assert that it will be less expensive
to replace all batteries simultaneously.

16. We test the hypothesis �x
2 � �y

2 against the alternative �x
2 � �y

2. We proceed as
in Example 6. By computation,

v0 � sx
2/sy

2 � 350/61.9 � 5.65.

28.96 � 28.50
��

�0.4�

Instructor’s Manual 397

im25.qxd  9/21/05  2:06 PM  Page 397



For � � 5% and (5, 6) degrees of freedom. Table A11 in App. 5 gives 4.39. Since
5.65 is greater, we reject the hypothesis and assert that the variance of the first
population is greater than that of the second.

18. The test is two-sided. As in Example 5 we compute from (12)

t0 � �9� � �3.18.

Now Table A9 with 9 � 9 � 2 � 16 degrees of freedom gives from 
P(�c � T � c) � 0.95 the value c � 2.12. Since �3.18 � �2.12, we reject the
hypothesis.

SECTION 25.5. Quality Control, page 1068

Purpose. Quality control is a testing procedure performed every hour (or every half hour,
etc.) in an ongoing process of production in order to see whether the process is running
properly (“is under control,” is producing items satisfying the specifications) or not (“is
out of control”), in which case the process is being halted in order to search for the trouble
and remove it. These tests may concern the mean, variance, range, etc.

Main Content

Control chart for the mean

Control chart for the variance

Comment on Content
Control charts have also been developed for the range, the number of defectives, the
number of defects per unit, for attributes, etc. (see the problem set).

SOLUTIONS TO PROBLEM SET 25.5, page 1071

2. The assertion follows from (6c) in Sec. 24.8. As the numeric values we obtain

� � 3�/�n� � 1 � 0.09/�6� � 1 � 0.037,

so that LCL � 0.963 and UCL � 1.037.

4. LCL and UCL will correspond to a significance level �, which, in general, is not
equal to 1%.

6. LCL � n�0 � 2.58� �n�, UCL � n�0 � 2.58� �n�, as follows from Theorem 2 in
Sec. 24.6.

8. LCL � 5.00 � 2.58 • 1.55/�4� � 3, UCL � 7

10. Decrease by a factor �2� � 1.41. By a factor 2.58/1.96 � 1.32 (see Table 25.1 in
Sec. 25.3). Hence the two operations have almost the same effect.

12. The sample range tends to increase with increasing n, whereas � remains unchanged.

14. Trend of sample means to increase. Abrupt change of sample means.

16. The random variable Z � Number of defectives in a sample of size n has the variance
npq. Hence X� � Z/n has the variance �2 � npq/n2 � 0.05 • 0.95/100 � 0.000 475.
This gives

UCL � 0.05 � 3� � 0.115.

From the given values we see that the process is out of control.

12 � 15
�
�4 � 4�
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SECTION 25.6. Acceptance Sampling, page 1073

Purpose. This is a test for the quality of a produced lot designed to meet the interests of
both the producer and the consumer of the lot, as expressed in the terms listed below.

Main Content, Important Concepts

Sampling plan, acceptance number, fraction defective

Operating characteristic curve (OC curve)

Acceptable quality level (AQL)

Rejectable quality level (RQL)

Rectification

Average outgoing quality limit (AOQL)

Comments on Content
Basically, acceptance sampling first leads to the hypergeometric distribution, which,
however, can be approximated by the simpler Poisson distribution and simple formulas
resulting from it, or in other cases by the binomial distribution, which can in turn be
approximated by the normal distribution. Typical cases are included in the problem set.

SOLUTIONS TO PROBLEM SET 25.6, page 1076

2. We expect a decrease of values because of the exponential function in (3), which
involves n. The probabilities are 0.9098 (down from 0.9825), 0.7358, 0.0404.

4. P(A; � ) � e�20�(1 � 20� ) from (3). From Fig. 539 we find � and �. For � � 1.5%
we obtain P(A; 0.015) � 96.3%, hence � � 3.7%. Also � � P(A; 0.075) � 55.8%,
which is very poor.

6. AOQ(� ) � �e�30�(1 � 30�), AOQ� � 0, �max � 0.0539, AOQ(�max) � 0.0280

8. The approximation is �0(1 � �)2 and is fairly accurate, as the following values show:

� Exact (2D) Approximate

0.0 1.00 1.00
0.2 0.63 0.64
0.4 0.35 0.36
0.6 0.15 0.16
0.8 0.03 0.04
1.0 0.00 0.00

10. From the definition of the hypergeometric distribution we now obtain

P(A; � ) � ( ) ( ) � ( )

� .

This gives P(A; 0.1) � 0.72 (instead of 0.81 in Example 1) and P(A; 0.2) � 0.49
(instead of 0.63), a decrease in both cases, as had to be expected.

12. 1 � 0.995 � 0.05, 0.855 � 0.44

(20 � 20� )(19 � 20� )(18 � 20� )
����

6840

20

3
20 � 20�

3
20�

0
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14. For � � 0.05 we should get P(A; �) � 0.98. (Figure 539 illustrates this, for different
values.) Since n � 100, we get np � 5 and the variance npq � 5 • 0.95 � 4.75. Using
the normal approximation of the binomial distribution, we thus obtain, with c to be
determined,

�
c

x�0

( )0.05x0.95100�x � 
( ) � 
( ) � 0.9800.

The second 
-term equals 
(�5.5/�4.75�) � 
(�2.52) � 0.0059 (Table A7). From
this, 
((c � 4.5)/�4.75�) � 0.9859, so that Table A8 gives

c � 4.50 � 2.19�4.75� � 9.27.

Hence choose 9 or 10 as c.

16. By the binomial distribution,

P(A; � ) � �
1

x�0

( ) �x(1 � �)n�x

� (1 � �)n�1[1 � (n � 1)�],

which in those special cases gives

(1 � � )(1 � � ) � 1 � �2 (n � 2)

(1 � � )2(1 � 2� ) (n � 3)

(1 � � )3(1 � 3� ) (n � 4).

18. We have
P(A; � ) � (1 � � )5,

hence
AOQ(� ) � � (1 � � )5.

Now
[� (1 � � )5]� � 0

gives � � 1/6, and from this,

AOQL � AOQ(1_
6) � 0.067.

SECTION 25.7. Goodness of Fit. �2-Test, page 1076

Purpose. The �2-test is a test for a whole unknown distribution function, as opposed to
the previous tests for unknown parameters in known types of distributions.

Main Content

Chi-square (�2) test

Test of normality

Comments on Content
The present method includes many practical problems, some of which are illustrated in
the problem set.

Recall that the chi-square distribution also occurred in connection with confidence
intervals and in our basic section on testing (Sec. 25.4).

n

x

0 � 5 � 0.5
��

�4.75�
c � 5 � 0.5
��

�4.75�
100

x
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SOLUTIONS TO PROBLEM SET 25.7, page 1079

2. The hypothesis that the coin is fair is accepted, in contrast with Prob. 1, because we
now obtain

�
0
2 � � � 1.6 � 3.84.

4. From the sample and from Table A10 with n � 1 � 5 degrees of freedom we obtain

�
0
2 � (92 � 82 � 112 � 42 � 102 � 22) /30 � 12.87 � c � 11.07.

Accordingly, we reject the hypothesis that the die is fair.

6. K � 2 classes (dull, sharp). Expected values 10 dull, 390 sharp; 1 degree of freedom;
hence

�
0
2 � _49

10 � _49
390 � 5.03 � 3.84.

Reject the claim. Here, two things are interesting. First, 16 dull knives (an excess of
60% over the expected value!) would not have been sufficient to reject the claim at
the 5% level. Second, 49/10 contributes much more to �

0
2 than 49/390 does; in other

applications the situation will often be qualitatively similar.

8. The maximum likelihood estimates for the two parameters are x� � 59.87, ŝ � 1.504.
K � 1 � 2 � 2 degrees of freedom. From Table A10 we get the critical value 
9.21 � �

0
2 � 6.22. Accept the hypothesis that the population from which the sample

was taken is normally distributed. �
0
2 is obtained as follows.

x 
( ) Expected Observed Terms in (1)

58.5 �0.91 0.181 14.31 14 0.01
59.5 �0.25 0.402 17.51 17 0.01
60.5 0.42 0.662 20.50 27 2.06
61.5 1.08 0.860 15.68 8 3.78
� 1.000 11.00 13 0.36

�
0
2 � 6.22

Slightly different results due to rounding are possible.
10. Let 50 � b be that number. Then 2b2/50 � c, b � 5�c�, 50 � b � 60, 63, 64.

12. �̂ � x� � 23/50 � 0.46, 1 degree of freedom, since we estimated �. We thus obtain

�0
2 � � � � 3.04 � 3.84.

Hence we accept the hypothesis.

14. Expected 2480/3 � 827 cars per lane; accordingly,

�
0
2 � _1

827(832 � 232 � 1072) � 22.81 � 5.99

(2 degrees of freedom, � � 5%). Hence we reject the hypothesis. (Note that even 
� � 1% or 0.5% would lead to the same conclusion.)

16. We test the hypothesis H0 that the number of defective rivets is the same for all three
machines. Since

(7 � 8 � 12)/600 � 0.045

(6 � 3.34)2

��
3.34

(11 � 14.52)2

��
14.52

(33 � 31.56)2

��
31.56

x � x��
s

x � x��
s

(7 � 5)2

�
5

(3 � 5)2

�
5
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the expected number of defective rivets in 200 should be 9. Hence

�0
2 � [(7 � 9)2 � (8 � 9)2 � (12 � 9)2]/9 � 1.56.

Now from Table A10 with 2 degrees of freedom we get c � 5.99 and conclude that
the difference is not significant.

18. x� � 107, �
0
2 � _1

107(132 � 122 � 32 � 12 � 52) � 3.252 � 9.49 (4 degrees of
freedom), so that we accept the hypothesis of equal time-efficiency.

20. Team Project. n � 3 • 77 � 231.

(a) aj � 231/20 � 11.55, K � 20, �
0
2 � 24.32 � c � 30.14 (� � 5%, 19 degrees

of freedom). Accept the hypothesis.

(b) �
0
2 � 13.10 � c � 3.84 (� � 5%, 1 degree of freedom). Reject the hypothesis.

(c) �
0
2 � 14.7 � c � 3.84 (� � 5%, 1 degree of freedom). Reject the hypothesis.

SECTION 25.8. Nonparametric Tests, page 1080

Purpose. To introduce the student to the ideas of nonparametric tests in terms of two
typical examples selected from a wide variety of tests in that field.

Main Content

Median, a test for it

Trend, a test for it

Comment on Content
Both tasks have not yet been considered in the previous sections. Another approach to
trend follows in the next section.

SOLUTIONS TO PROBLEM SET 25.8, page 1082

2. Under the hypothesis that no adjustment is needed, shorter and longer pipes are equally
probable. We drop the 4 pipes of exact length from the sample. Then the probability
that under the hypothesis one gets 3 or fewer longer pipes among 18 pipes is, since
np � 9 and �2 � npq � 4.5,

�
3

x�0

( ) ( )18

� 
( ) � 
( )
� 
(�2.6) � 
(�4.5) � 0.0047

and we reject the hypothesis and assert that the process needs adjustment.

4. Let X � Number of positive values among 9 values. If the hypothesis is true, a value
greater than 20°C is as probable as a value less than 20°C, and thus has probability
1/2. Hence, under the hypothesis the probability of getting at most 1 positive value is

P � (1_
2)9 � 9 • (1_

2)9 � 2%.

Hence we reject the hypothesis and assert that the setting is too low.

6. We drop 0 from the sample. Let X � Number of positive values. Under the hypothesis
we get the probability

P(X � 9) � ( ) ( )9

� 0.2%.
1
�
2

9

9

0 � 9 � 1_
2

��
�4.5�

3 � 9 � 1_
2

��
�4.5�

1
�
2

18

x
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Accordingly, we reject the hypothesis that there is no difference between A and B
and assert that the observed difference is significant.

8. Under the hypothesis the probability of obtaining at most 3 negative differences 
(80 � 85, 90 � 95, 60 � 75) is

( )15 [1 � ( ) � ( ) � ( )] � 1.76%.

We reject the hypothesis and assert that B is better.

10. Hypothesis H0: q25 � 0. Alternative H1, say, q25 � 0. If H0 is true, a negative value
has probability p � 0.25. Reject H0 if fewer than c negative values are observed,
where c results from P(X 
 c)H0

� �.

14. n � 5 values, with 2 transpositions, namely,

101.1 before 100.4 and 100.8,

so that from Table A12 we obtain

P(T 
 2) � 0.117

and we do not reject the hypothesis.
16. We order by increasing x. Then we have 10 transpositions:

418 � 301, 352, 395, 375, 388

395 � 375, 388

465 � 455

521 � 455, 490.

Hypothesis no trend, alternative positive trend, P(T 
 10) � 1.4% by Table A12 in
App. 5. Reject the hypothesis.

18. n � 8 values, with 4 transpositions, namely,

41.4 before 39.6

43.3 before 39.6, 43.0

45.6 before 44.5.
Table A12 gives

P(T 
 4) � 0.007.

Reject the hypothesis that the amount of fertilizer has no effect and assert that the
yield increases with increasing amounts of fertilizer.

SECTION 25.9. Regression. Fitting Straight Lines. Correlation, page 1083

Purpose. This is a short introduction to regression analysis, restricted to linear regression,
and to correlation analysis; the latter is presented without proofs.

Main Content, Important Concepts

Distinction between regression and correlation

Gauss’s least squares method

Sample regression line, sample regression coefficient

Population regression coefficient, a confidence interval for it

15

3

15

2

15

1
1
�
2
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Sample covariance sxy

Sample correlation coefficient r

Population covariance �XY

Population correlation coefficient �

Independence of X and Y implies � � 0 (“uncorrelatedness”)

Two-dimensional normal distribution

If (X, Y) is normal, � � 0 implies independence of X and Y.

Test for � � 0

SOLUTIONS TO PROBLEM SET 25.9, page 1091

2. �xi � 24, �yi � 13, n � 4, �xiyi � 79, (n � 1)sx
2 � 20, by (9a). Hence we obtain

from (11)

k1 � � 0.05.

This gives the answer

y � 3.25 � 0.05(x � 6), hence y � 2.95 � 0.05x.

4. n � 5, �xi � 85, x� � 17, �yi � 75, y� � 15, �xiyi � 1184, hence

(n � 1)sx
2 � 4sx

2 � 74.

Hence (11) gives

k1 � � �1.230.

The answer is

y � 15 � �1.230(x � 17), hence y � 35.91 � 1.230x.

6. n � 9, �xi � 183, x� � 20.33, �yi � 440, y� � 48.89, �xiyi � 7701, 
(n � 1)sx

2 � 8sx
2 � 944. From (11) we thus obtain

k1 � � �1.32.

This gives the answer

y � 48.89 � �1.32(x � 20.33), hence y � 75.72 � 1.32x.

8. Equation (5) is

y � 1.875 � 0.067(x � 25); thus y � 0.2 � 0.067x.

10. Equation (5) is

y � 10 � 1.98(x � 5); thus y � 0.1 � 1.98x.

The spring modulus is 1/1.98.

12. c � �3.18 from Table A9 with n � 2 � 3 degrees of freedom (corresponding to
21_

2% and 971_
2%, by the symmetry of the t-distribution). From the sample we compute

4sx
2 � 82 000, 4sxy � 354 100, 4sy

2 � 1 530 080.

9 � 7701 � 183 � 440
���

9 � 944

5 � 1184 � 85 � 75
��

5 � 74

4 � 79 � 24 � 13
��

4 � 20
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From this and (7) we get

k1 � � 4.31829.

Also q0 � 993 and K � 0.2. The answer is

CONF0.95{4.1 
 �1 
 4.5}.

14. Multiplying out the square, we get three terms, hence three sums,

� (xj � x�)2 � � xj
2 � 2x�� xj � nx�

2

� � xj
2 � � xi � xj � n( � xj)

2

and the last of these three terms cancels half of the second term, giving the result.

SOLUTIONS TO CHAP. 25 REVIEW QUESTIONS AND PROBLEMS, 
page 1092

22. From Table 25.1 in Sec. 25.3 we obtain k � 1.96 • 4/�400� � 0.392 and

CONF0.95{52.6 
 � 
 53.4}.

24. x� � 26.4, k � 2.576 • 2.2/�5� � 2.534 by Table 25.1, Sec. 25.3. This gives the answer

CONF0.99{23.86 
 � 
 28.94}.

26. n � 1 � 3 degrees of freedom, F(c1) � 0.025, c1 � 0.22, F(c2) � 0.975, c2 � 9.35
from Table A10 in App. 5; hence k1 � 0.7/0.22 � 3.182, k2 � 0.7/9.35 � 0.075 by
Table 25.3 in Sec. 25.3. The answer is

CONF0.95{0.075 
 �2 
 3.182}.

28. k � 2.26 • 0.157/�10� � 0.112; CONF0.95{4.25 
 � 
 4.49}

30. n � 41 by trial and error, because F(c) � 0.975 gives c � 2.02 (Table A9 with 40
d.f.), so that L � 2k � 2sc/�n� � 0.099 by Table 25.2.

32. From Table A10 in App. 5 and Table 25.3 in Sec. 25.3 we obtain

c1 � 1_
2(�253� � 2.58)2 � 88.8,

c2 � 1_
2(�253� � 2.58)2 � 170.9,

so that k1 � 244/c1 � 2.76 and k2 � 244/c2 � 1.43. The answer is

CONF0.99{1.42 
 �2 
 2.75}.

34. The test is two-sided. We have �2/n � 0.025, as before. Table A8 gives

P(X� � c)15.0 � 
( ) � 0.975, c � 15.31

and 15.0 � 0.31 � 14.69 as the left endpoint of the acceptance region. Now 
x� � 14.5 � 14.70, and we reject the hypothesis.

36. The test is right-sided. From Table A9 with n � 1 � 14 degrees of freedom and

P(T � c)�
0

� 0.01, thus P(T 
 c)�
0

� 0.99

c � 15.0
�
�0.025�

1
�
n

2
�
n

354 100
�
82 000
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we get c � 2.62. From the sample we compute

t � �15� � 4.90 � c

and reject the hypothesis.

38. The hypothesis is �0 � 1000, the alternative � � 1000. Because of the symmetry of
the t-distribution, from Table A9 with 19 degrees of freedom we get for this 
two-sided test and the percentages 2.5% and 97.5% the critical values �2.09. From
the sample we compute

t � �20� (991 � 1000)/8 � �5.03 � c � �2.09

and reject the hypothesis.

40. 2.58 • �0.0002�4�/�2� � 0.028, LCL � 2.722, UCL � 2.778

42. 2.58�0.0004�/�2� � 0.036, UCL � 3.536, LCL � 3.464

44. P(T 
 3) � 6.8% (Table A12). No.

36.2 � 35.0
��

�0.9�
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