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Foreword

The theory of algebraic function fields has a long history. Its origins are in
number theory, and there are close interrelations with other branches of pure
mathematics such as algebraic geometry or compact Riemann surfaces. In fact,
the study of algebraic function fields is essentially equivalent to the study of
algebraic curves. These relations have been well-known for a long time.

Around 1980 V. D. Goppa came up with a brilliant idea of constructing error-
correcting codes by means of algebraic function fields over finite fields. These
codes are now known as geometric Goppa codes or algebraic geometry codes
(AG codes). The key point of Goppa’s construction is that one gets information
about the code parameters (length, dimension, minimum distance of the code)
in terms of geometric and arithmetic data of the function field (number of ratio-
nal places, genus). Goppa’s method can be seen as a “simple” generalization
of the construction of Reed-Solomon codes: one just replaces the evaluation of
polynomials in one variable at elements of a finite field (which is used for the
definition of Reed-Solomon codes) by evaluating functions of a function field
at some of its rational places. A basic role is then played by the Riemann-Roch
theorem.

Soon after Goppa’s discovery, M. A. Tsfasman, S. G. Vladut and T. Zink
constructed families of AG codes of increasing length whose asymptotic pa-
rameters are better than those of all previously known infinite sequences of
codes and which beat the Gilbert-Varshamov bound - a bound which is well-
known in coding theory and which is a classical measure for the performance
of long codes. The proof of the Tsfasman-Vladut-Zink result uses two main
tools: Goppa’s construction of AG codes and the existence of curves or func-
tion fields (more specifically: classical or Drinfeld modular curves) over a finite
field having large genus and many rational places.

vii



viii Foreword

Cyclic codes have a natural representation as trace codes, and one can asso-
ciate with each codeword of a trace code an Artin-Schreier function field. Prop-
erties of this function field (specifically the number of rational places) reflect
properties of the corresponding cyclic code (namely the weights of codewords
and subcodes). In this way one gets another link between codes and function
fields which is entirely different from Goppa’s.

In 1985, N. Koblitz invented cryptosystems which are based on elliptic curves
(or elliptic function fields) over a finite field. These cryptosystems are very pow-
erful and attracted much attention; they created a new and very lively area of
research (elliptic curve cryptography) and brought together researchers from
pure mathematics (number theory, arithmetic geometry) and applied mathemat-
ics and engineering (cryptography). Similar as in the case of coding theory, this
interaction proved fruitful for both sides, posing new problems and leading to
many interesting practical and theoretical results.

The above-mentioned applications of function fields in constructing good
long codes (due to Goppa and to Tsfasman-Vladut-Zink) and in constructing
powerful cryptosystems via elliptic or hyperelliptic curves are now well-known.
However, most mathematicians and engineers are not so familiar with many
other, entirely different applications of function fields. To mention some of
them: dense sphere packings in high-dimensional spaces; sequences with low
discrepancy; multiplication algorithms in finite fields; the construction of non-
linear codes whose asymptotic parameters are even better than the Tsfasman-
Vladut-Zink bound; the construction of good hash families. In all these cases
the use of function fields leads to better results than those of classical approaches.

In this book we present five survey articles on some of these new devel-
opments. Most of the material is directly related to the interactions between
function fields and their various applications; in particular the structure and the
number of rational places of function fields are always of great significance.
When choosing the topics, we also tried to focus on material which has not
yet been presented in books or review articles. So, for instance, we did not in-
clude chapters about elliptic curve cryptography or about AG codes. There are
numerous interconnections between the individual articles. Wherever applica-
tions are pointed out, a special effort has been made to present some background
concerning their use. For the convenience of the reader, we have included an
appendix which summarizes the basic definitions and results from the theory
of algebraic function fields.



Foreword ix

We give now a brief summary of the five chapters. More detailed descrip-
tions are given in the introduction of each chapter.

Chapter 1. Towers of Algebraic Function Fields over Finite Fields, by Ar-
naldo Garcia and Henning Stichtenoth. In this chapter, the authors give a com-
prehensive survey of their work on explicit towers of algebraic function fields
having many rational places. This concept provides a more elementary and ex-
plicit approach than class field towers and towers from modular curves. Towers
with many rational places play a crucial role in many “asymptotic” construc-
tions, such as error-correcting codes (Tsfasman-Vladut-Zink), low-discrepancy
sequences (Niederreiter-Xing), and other applications of function fields in cryp-
tography (see Chapter 2). Several examples of asymptotically good recursive
towers are presented in detail. The proofs for the behaviour of the genus in
wild towers are considerably simplified, compared to the proofs in the original
papers.

Chapter 2. Function Fields over Finite Fields and Their Applications to
Cryptography, by Harald Niederreiter, Huaxiong Wang and Chaoping Xing.
This survey article focuses on several recent, less well-known applications of
function fields – specifically, function fields with many rational places – in cryp-
tography and combinatorics. Many of these applications are due to the authors.
Among the topics are constructions of authentication codes, frameproof codes,
perfect hash families, cover-free families and pseudorandom sequences of high
linear complexity.

Chapter 3. Artin-Schreier Extensions and Their Applications, by Cem Güneri
and Ferruh Özbudak. Extensions of function fields of Artin-Schreier type pro-
vide many examples of function fields having many rational places; this makes
them very interesting for coding theory. In this chapter, several other appli-
cations of Artin-Schreier extensions are discussed, among them to the famous
Weil bound for character sums, to weights of trace codes and to generalizations
of cyclic codes.

Chapter 4. Pseudorandom Sequences, by Alev Topuzoğlu and Arne Winter-
hof. Various constructions of pseudorandom sequences are based on function
fields, see Chapters 2 and 5. Therefore, some background material on the the-
ory of pseudorandom sequences is presented in Chapter 4. In particular, the
important concept of linear complexity and some related measures for the per-
formance of pseudorandom sequences are discussed in this chapter.

Chapter 5. Group Structure of Elliptic Curves over Finite Fields and Ap-
plications, by Ram Murty and Igor Shparlinski. Motivated by applications of
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elliptic curves to cryptography, the structure of the group of Fq-rational points
of an elliptic curve has attracted much attention. In particular it is an important
feature for cryptographic applications if this group is cyclic or if it contains a
large cyclic subgroup. The authors give a survey of recent results on this topic.
Techniques from many branches of number theory and algebraic geometry are
used in this chapter.

Each chapter begins with a detailed introduction, giving an overview of its
contents and also giving some applications and motivation. It is clear that we do
not want to present all proofs here. However, whenever possible, some typical
proofs are provided. Our aim is to stimulate further research on some promising
topics at the border line between pure and applied mathematics; therefore each
chapter contains also an extensive list of references of recent research papers.

Some of the authors (A. Garcia, H. Niederreiter, I. Shparlinski, H. Stichtenoth,
A. Winterhof and C. Xing) visited Sabancı University in Istanbul (Turkey) dur-
ing the years 2002-2005, where they presented part of the material of this
volume. It is our pleasure to thank our hosts at Sabancı University for their
support and hospitality.

January 2006

Arnaldo Garcia, Henning Stichtenoth



Chapter 1

EXPLICIT TOWERS OF FUNCTION FIELDS
OVER FINITE FIELDS

Arnaldo Garcia and Henning Stichtenoth

1. Introduction
The purpose of this review article is to serve as an introduction and at the same

time, as an invitation to the theory of towers of function fields over finite fields.
More specifically, we treat here the case of explicit towers; i.e., towers where
the function fields are given by explicit equations. The asymptotic behaviour of
the genus and of the number of rational places in towers are important features
for applications to coding theory and to cryptography (cf. Chapter 2).

The interest in solutions of algebraic equations over finite fields has a long
history in mathematics, especially when the equations define a one-dimensional
object (a curve or, equivalently, a function field). The major result of this
theory is the Hasse-Weil theorem which gives in particular an upper bound for
the number of rational points in terms of the genus of the curve and of the
cardinality of the finite field.

The Hasse-Weil theorem is equivalent to the validity of Riemann’s Hypoth-
esis for the Zeta function associated to the curve by E. Artin, in analogy with
the classical situation in Number Theory. This upper bound of Hasse-Weil is
sharp, and the curves attaining this bound are called maximal curves. Y. Ihara
was the first to notice that the Hasse-Weil bound can be improved for curves of
high genus, and he gave in particular an upper bound for the genus of maximal
curves in terms of the cardinality of the finite field.

We will use here the language of function fields; i.e., we will be closer to
Number Theory than to Algebraic Geometry. Hence the concepts we will deal
with are function fields, field extensions, traces, norms, valuations, places, ratio-
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2 Towers of Function Fields

nal places, ramification indices and inertia degrees, tame and wild ramification,
etc.

Denote by Fq the finite field of cardinality q. For a function field F over Fq

we denote by N(F ) its number of Fq-rational places and by g(F ) its genus.
The upper bound of Hasse-Weil is

N(F ) ≤ 1 + q + 2
√
q · g(F ),

and Ihara showed that if the equality holds above then 2g(F ) ≤ q(q − 1).
The following real number

A(q) := lim sup
g(F )→∞

N(F )/g(F ),

where F runs over all function fields over the field Fq, was introduced by Ihara.
It is of fundamental importance for the theory of function fields over a finite
field, since it gives information about how many rational places a function field
F/Fq of large genus can have.

In order to investigate the quantity A(q), it is natural to study towers of
function fields over Fq; i.e., one considers sequences F = (F0, F1, F2, . . .)
of function fields Fi over Fq with F0 ⊆ F1 ⊆ F2 ⊆ . . . with the property
g(Fi) →∞. It can be seen easily that the limit of the tower

λ(F) := lim
n→∞

N(Fn)/g(Fn)

always exists (see Section 3), and it is clear that the estimate below holds:

0 ≤ λ(F) ≤ A(q).

As follows from the Hasse-Weil bound, we have that A(q) ≤ 2
√
q. Based on

Ihara’s ideas, this bound was improved by Drinfeld-Vladut who showed that

A(q) ≤ √q − 1.

But even before this bound of Drinfeld-Vladut was obtained, Ihara (and indepen-
dently Tsfasman-Vladut-Zink) proved that if q is a square thenA(q) ≥ √q−1.
We thus have the equality

A(q) =
√
q − 1, if q is a square.

The proofs given by Ihara and Tsfasman-Vladut-Zink use the fact that certain
modular curves have many rational points. However these curves are in general
not easy to describe by explicit equations. Another approach due to J.-P. Serre
uses class field theory in order to prove the existence of curves of arbitrary
high genus with sufficiently many rational points. Also this construction is not



A. Garcia and H. Stichtenoth 3

explicit. Our purpose here is to stimulate the investigation of explicit towers
of function fields over finite fields; i.e., the function fields of the towers should
be given explicitly by algebraic equations. The concept of explicit towers was
first introduced in 1995 in the paper [20].

These notes are organized as follows:

Section 2 contains basic concepts such as towers of function fields and their
limits; recursive towers and the corresponding pyramids; tame and wild
ramification in towers; linear codes and their parameters. In Section 2 one
also finds:

- The statement of the fundamental Hasse-Weil theorem (Theorem 2.3).

- Serre’s “explicit formulae” for bounding the number of rational places
in a function field (Proposition 2.4).

- The Drinfeld-Vladut bound (Theorem 2.5).

- The Tsfasman-Vladut-Zink theorem connecting the asymptotics of func-
tion fields with the asymptotics of linear codes (Theorem 2.7).

- Abhyankar’s lemma which is an important tool to study the behaviour
of the genus in recursive towers (Theorem 2.11).

Section 3 is devoted to the investigation of the behaviour of the genus and
of the number of rational places in towers of function fields over finite
fields. It contains the following notions: the genus and the splitting rate of a
tower; subtowers; asymptotically good and asymptotically optimal towers;
ramification locus and splitting locus of a tower. In Section 2 one also finds:

- A proof that the limit of a tower exists (Definition 3.4).

- The limit of a subtower is at least as big as the limit of the tower (Propo-
sition 3.6).

- A sufficient condition which ensures that the genus of a tower is finite
(Theorem 3.8 and Corollary 3.9).

- A sufficient condition which ensures that a tower has finite ramification
locus (Proposition 3.10).

- A sufficient condition which ensures the existence of completely split-
ting places (Proposition 3.13).

- A sufficient condition which ensures that a polynomial f(X,Y ) does
define a recursive tower (Proposition 3.14).

In Section 4 we investigate some interesting recursive tame towers, in which
every step Fn+1/Fn is a Kummer extension. It contains the following
subsections:
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- Section 4.1: The optimal tower T1 over F4 which is given recursively
by the equation Y 3 = X3/(X2 +X + 1).

- Section 4.2: For r ≥ 2 and q = �r, the tower T2 over Fq which is
defined recursively by the equation

Y m = (X + 1)m − 1 with m = (q − 1)/(�− 1).

This tower gives a very simple proof that A(q) > 0 if q is not a prime
number.

- Section 4.3: For q = p2 and p an odd prime number, the optimal tower
T3 over Fq given recursively by the equation

Y 2 = (X2 + 1)/2X.

This tower corresponds to the modular curves X0(2n) and it reveals
some remarkable properties of Deuring’s polynomial.

We also mention in Section 4 some other interesting towers from the papers
[3, 14, 24, 33, 37].

Section 5 is devoted to recursive wild towers. Especially interesting are wild
towers where every stepFn+1/Fn is an Artin-Schreier extension, since some
of the best towers known in the literature are of this type. We present here a
simple method which allows a unified treatment of the genus behaviour of
several towers of Artin-Schreier type (Lemma 5.1). Section 5 contains the
following subsections:

- Section 5.1: The optimal tower W1 over Fq with q = �2, which is
defined recursively by the equation

Y � + Y = X�/(X�−1 + 1).

A complete proof for the optimality of the tower W1 is given and this
proof is much simpler than the original one in [21].

- Section 5.2: The optimal tower W2 over Fq with q = �2, which is
the first explicit example in the literature attaining the Drinfeld-Vladut
bound [20].

- Section 5.3: The optimal towerW3 over Fq with q = �2, which is given
recursively by the equation

(Y − 1)/Y � = (X� − 1)/X.

- Section 5.4: The towerW4 over the field with eight elements, which is
recursively given by

Y 2 + Y = X + 1 + 1/X.
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This tower was first introduced in [30], and we give here a much simpler
proof for its asymptotic behaviour.

- Section 5.5: The tower W5 over the cubic field Fq with q = �3 which
is defined recursively by the equation

Y � − Y �−1 = 1−X −X−(�−1).

The tower W5 generalizes the tower W4 of Section 5.4, and its limit
λ(W5) ≥ 2(�2 − 1)/(� + 2) gives the best known lower bound for
Ihara’s quantity A(�3).

Section 6 contains some miscellaneous results on towers, among them a
couple of conditions which easily show sometimes that a given tower is
asymptotically bad (Theorem 6.2, Theorem 6.3 and Theorem 6.6). This
section has the following subsections:

- Section 6.1: In a tower (F0, F1, F2, . . .) of function fields, the growth
of the genus g(Fn) depends on the behaviour of the different degrees of
the extensions Fn/Fn−1. This interrelation is explored in Theorem 6.1
and Theorem 6.2 where sufficient conditions are given for the tower to
have finite or infinite genus.

- Section 6.2: Skew towers are asymptotically bad. This means: if the
equation f(X,Y ) = 0 which defines a recursive tower has unequal
degrees in the variables X and Y , then the tower is asymptotically bad
(Theorem 6.3).

- Section 6.3: Here the concept of the dual tower of a recursive tower is
introduced; if the ramification loci of the tower and of its dual tower are
distinct, then the tower is bad (Theorem 6.6).

- Section 6.4: This subsection contains a classification result on recursive
towers defined by an Artin-Schreier equation of prime degree p of the
form

Y p + aY = ψ(X),

with a ∈ F
×
q and with a rational function ψ(X) ∈ Fq(X). If such a

tower is asymptotically good, then the function ψ(X) must have a very
specific form (Theorem 6.8).

2. Towers and Codes
Throughout this Chapter we denote by Fq the finite field with q elements and

by p = char(Fq) its characteristic. We are interested in function fields over
Fq (briefly, Fq-function fields) having many rational places with respect to the
genus. For basic concepts and facts about algebraic function fields (such as the
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definitions of function fields, places, divisors, rational places, genus, ramifica-
tion, and Riemann-Roch theorem, Hurwitz genus formula, etc.) we refer to the
Appendix or to [48]. For an Fq-function field F we always assume through-
out that Fq is the full constant field ofF ; i.e., that Fq is algebraically closed inF .

We denote by N(F ) the number of rational places and by g(F ) the genus
of an Fq-function field F , and we will be mainly interested in the behaviour
of the ratio N(F )/g(F ) for function fields of large genus. To investigate this
behaviour, Ihara [31] introduced the following quantity A(q):

A(q) = lim sup
g(F )→∞

N(F )/g(F ),

where F runs over all function fields over Fq. To deal with this quantity A(q)
one is naturally led to towers of function fields.

Definition 2.1. A tower F over Fq (or an Fq-tower) is an infinite sequence
F = (F0, F1, F2, ...) of function fields Fi/Fq such that

i) F0 � F1 � F2 � . . . � Fn � . . .;

ii) each extension Fn+1/Fn is finite and separable;

iii) the genera satisfy g(Fn) →∞ as n→∞.

For an Fq-tower F the following limit does exist (see Section 3):

λ(F) = lim
n→∞

N(Fn)/g(Fn).

It is clear from the definitions that one has

0 ≤ λ(F) ≤ A(q).

Definition 2.2. The real number λ(F) is called the limit of the Fq-tower F .
The tower F is called asymptotically good if it has a positive limit λ(F) > 0.
If λ(F) = 0 then F is said to be asymptotically bad.

It is not easy in general to construct asymptotically good towers, and it is an
even harder task to construct towers over finite fields with large limits. These
are the main concerns of this Chapter.

We start by deriving an upper bound forA(q), the so-called Drinfeld-Vladut
bound. It states that

A(q) ≤ √q − 1. (2.1)

This bound is then also an upper bound for the limit of towers; i.e., the following
inequality holds for all Fq-towers F :

λ(F) ≤ √q − 1.
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In order to prove the upper bound in (2.1) for A(q) we will need the following
theorem due to Hasse and Weil, which is the central result of the theory of
function fields over finite fields. It is equivalent to the validity of the Riemann
Hypothesis in this context, cf. [48, p.169]. Hasse [29] proved it for elliptic
function fields (i.e., for g(F ) = 1), and Weil [61] proved it in the general case.
For other proofs of the Hasse-Weil theorem we refer to [10] and [47].

We need some notation: for a function field F/Fq, let F (r) := F · Fqr be
the constant field extension of F of degree r, and let Nr(F ) := N(F (r)) be
the number of Fqr -rational places of the function field F (r) over Fqr . The
Hasse-Weil theorem can be stated in the following form:

Theorem 2.3. (Hasse-Weil) Let F be an Fq-function field of genus g(F ) = g.
Then there exist complex numbers α1, α2, . . . , α2g ∈ C with the following
properties:

i) They can be ordered in such a way that

αg+i = ᾱi for i = 1, . . . , g.

ii) The polynomial L(t) :=
∏2g

i=1(1− αit) has integer coefficients. It follows
in particular that each αi is an algebraic integer.

iii) For all r ≥ 1 we have

Nr(F ) = qr + 1−
2g∑

i=1

αr
i .

iv) The absolute value of αi is

|αi| =
√
q for i = 1, . . . , 2g.

The elements α−1
i ∈ C are the roots of the Zeta function associated to the

function field F/Fq. From item iv) and item iii) with r = 1, one gets the
so-called Hasse-Weil bound

N(F ) ≤ q + 1 + 2
√
q · g(F ).

This bound implies immediately that A(q) ≤ 2
√
q. For the proof of the

Drinfeld-Vladut bound (2.1) we make use of Serre’s “explicit formulae”:

Proposition 2.4. (Serre) (see [49]). Let 0 �= h(X) ∈ R[X] be a polynomial
with non-negative coefficients and with h(0) = 0. Suppose that the associated
rational function H(X), which is defined as

H(X) = 1 + h(X) + h(X−1),
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satisfies the condition

H(β) ≥ 0 for all β ∈ C with |β| = 1.

Then for any function field F/Fq we have

N(F ) ≤ 1 +
h(q1/2)
h(q−1/2)

+
g(F )

h(q−1/2)
.

Proof. LetF be a function field over Fq with g(F ) = g, and letα1, α2, . . . , α2g

be the associated complex numbers, ordered as in item i) of Theorem 2.3. For
simplicity we set Nr(F ) = Nr and in particular N(F ) = N1. Write

h(X) =
m∑

r=1

crX
r,

with cr ∈ R and cr ≥ 0 for all r. Then we have

Nr = 1 + qr −
g∑

i=1

(αr
i + ᾱr

i ),

by item iii) of Theorem 2.3; hence

Nr · q−r/2 = q−r/2 + qr/2 −
g∑

i=1

((αiq
−1/2)r + (ᾱiq

−1/2)r)

(2.2)

= q−r/2 + qr/2 −
g∑

i=1

(βr
i + β̄r

i ),

with βi = αiq
−1/2. By item iv) of Theorem 2.3, the complex numbers βi have

absolute value |βi| = 1, so β̄i = β−1
i . We now multiply Equation (2.2) by the

coefficient cr of h(X) and we sum up for r = 1, . . . ,m, to obtain

m∑

r=1

Nr · cr · q−r/2 = h(q−1/2) + h(q1/2) + g −
g∑

i=1

H(βi), (2.3)

as follows from the definition of the rational function H(X). We then rewrite
Equation (2.3) as follows

N1 · h(q−1/2) = h(q−1/2) + h(q1/2) + g −R,

with

R =
g∑

i=1

H(βi) +
m∑

r=1

(Nr −N1)crq−r/2.
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Since Nr ≥ N1, cr ≥ 0 and H(βi) ≥ 0, it follows that R ≥ 0 and hence

N1 · h(q−1/2) ≤ h(q−1/2) + h(q1/2) + g.

Now we can prove:

Theorem 2.5. (Drinfeld-Vladut bound) (see [12]). The following bound
holds:

A(q) ≤ √q − 1.

In particular we have for any tower F over Fq:

λ(F) ≤ √q − 1.

Proof. For each m ∈ N with m ≥ 2 we consider the polynomial hm(X) ∈
R[X] which is given by

hm(X) =
m∑

r=1

(
1− r

m

)
·Xr. (2.4)

The key point of the proof of Theorem 2.5 is the following equality

hm(X) =
X

(X − 1)2
·
(
Xm − 1
m

+ 1−X
)

, (2.5)

which we prove in Lemma 2.6 below. For the associated rational function
Hm(X) we then get

Hm(X) = 1 + hm(X) + hm(X−1)

= 1 +
X

(X − 1)2

(
Xm − 1
m

+ 1−X
)

+
X−1

(X−1 − 1)2

(
X−m − 1

m
+ 1−X−1

)

(2.6)

=
X

(X − 1)2
· X

m +X−m − 2
m

=
2− (Xm +X−m)
m(X − 1)(X−1 − 1)

.

For any complex number β �= 1 with |β| = 1, the numbers (β−1)(β−1−1)
and 2 − (βm + β−m) are positive real numbers. Hence the hypothesis in
Proposition 2.4 is satisfied; i.e., we have Hm(β) ≥ 0 for all β ∈ C with
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|β| = 1. It follows from Proposition 2.4 that for any function field F over Fq

with genus g(F ) > 0 the following inequality holds for all m ≥ 2

N(F )
g(F )

≤ 1
hm(q−1/2)

+
1

g(F )
·
(

1 +
hm(q1/2)
hm(q−1/2)

)

. (2.7)

Using again Equation (2.5) we see that

lim
m→∞

1
hm(q−1/2)

=
√
q − 1.

Let ε > 0 be a real number and choose n = n(ε) such that

1
hn(q−1/2)

≤ √q − 1 + ε/2.

Choose g0 = g0(ε, n) such that

1
g0
·
(

1 +
hn(q1/2)
hn(q−1/2)

)

< ε/2.

Then we conclude from (2.7) with m = n = n(ε) that for all function fields
F/Fq with g(F ) ≥ g0,

N(F )
g(F )

≤ (
√
q − 1 + ε/2) + ε/2 =

√
q − 1 + ε.

We still have to prove Equation (2.5):

Lemma 2.6. For all m ≥ 2 the following identity holds:

m∑

r=1

(
1− r

m

)
·Xr =

X

(X − 1)2
·
(
Xm − 1
m

+ 1−X
)

.

Proof. We set

f(X) :=
m∑

r=1

Xr =
Xm+1 −X
X − 1

;

then we have
X · f ′(X)

m
=

m∑

r=1

r

m
·Xr,
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and therefore
m∑

r=1

(
1− r

m

)
·Xr = f(X)− X · f ′(X)

m

=
X

X − 1
· (Xm − 1)− X

m
· (X − 1)((m+ 1)Xm − 1)− (Xm+1 −X)

(X − 1)2

=
X

(X − 1)2
·
(
Xm − 1
m

+ 1−X
)

.

The interest in the quantity A(q) also arose from applications of function
fields to coding theory, cf. [48, 54]. The Tsfasman-Vladut-Zink theorem
establishes a close connection between the asymptotics of Fq-function fields
(represented by the quantityA(q)) and the asymptotics of codes over Fq. Some
connections to cryptography are discussed in Chapter 2. For further connec-
tions to other areas we refer to [2, 40, 41, 44, 50, 52, 59].

Let us briefly recall the connection to coding theory. A linear code C over
Fq of length n = n(C) is a linear subspace of F

n
q . The dimension k = k(C)

of C is its dimension as a vector space over Fq. An important parameter of a
linear code C �= {0} is its minimum distance d = d(C), which is defined by

d = min {wt(c) | c ∈ C and c �= 0},

where for a nonzero vector c = (c1, . . . , cn) ∈ F
n
q its weight wt(c) is given by

wt(c) = #{i | 1 ≤ i ≤ n and ci �= 0}.

A linear code C over Fq of length n = n(C), dimension k = k(C) and
minimum distance d = d(C) is briefly called an [n, k, d]-code, and the integers
n, k and d are called the parameters of the code. In order to compare codes
of different lengths, one also introduces relative parameters of the code C as
follows:

- the transmission rate R(C), given by R(C) = k(C)/n(C).

- the relative minimum distance δ(C), given by δ(C) = d(C)/n(C).

We then get a map ϕ : {Fq-linear codes} → [0, 1]× [0, 1] by setting

C
ϕ−→ (δ(C), R(C)).

For a real number δ ∈ [0, 1] we consider the accumulation points of the image
of the map ϕ on the vertical line X = δ. The largest second coordinate of
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such accumulation points on the line X = δ is denoted by αq(δ). We can now
state the connection of the asymptotics of codes (represented by αq(δ)) with
the quantity A(q) that represents the asymptotics of Fq-function fields:

Theorem 2.7. (Tsfasman-Vladut-Zink) (see [54], [48, p.207] ). Let q be a
prime power such that A(q) > 1. Then

αq(δ) ≥ 1−A(q)−1 − δ.

This result ensures the existence of arbitrary long codes (i.e., codes of arbi-
trary large length) having good parameters. For many values of q, Theorem 2.7
improves on the so-called Gilbert-Varshamov bound, which is a bound known
from elementary coding theory, see [36].

Theorem 2.7 asks for good lower bounds forA(q). For arbitrary q one knows
that A(q) > c · log q > 0 with a real constant c > 0, see [47]. The actual value
of A(q) is only known when q = �2 is a square. In this case we have the
following result (see [31, 54] and Sections 4 and 5 below):

A(�2) = �− 1, for any prime power �.

This shows that the Drinfeld-Vladut bound given in Theorem 2.5 is sharp for
finite fields of square cardinality. If q = �3 is a cube, then we have the following
good lower bound (see [8, 61] and also Section 4):

A(�3) ≥ 2(�2 − 1)
�+ 2

, for any prime power �.

Much less is known about the quantity A(�r) for prime exponents r ≥ 5.

Usually one gets information about the quantity A(q) through the limits of
towers of function fields over Fq. The towers which appear in the literature are
of the following three types:

class field towers, cf. [43, 47];

modular towers, cf. [14, 16, 31, 54];

explicit towers, cf. [14, 21, 24].

By an explicit tower we mean a tower F = (F0, F1, F2, . . .) where each of the
function fields Fi is given by explicit polynomial equations. For practical ap-
plications in coding theory and cryptography one needs an explicit description
of the underlying function fields and of their Fq-rational places.
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Here we will mainly deal with explicit towers. Even more, the explicit
description of the function fields F0, F1, F2, . . . in the tower F will often have
the following very simple shape:

Definition 2.8. Let F = (F0, F1, F2, . . .) be a tower of function fields over
Fq, where F0 = Fq(x0) is the rational function field. We say that the tower
F is recursive if there exist a polynomial f(X,Y ) ∈ Fq[X,Y ] and functions
xn ∈ Fn such that:

i) f(X,Y ) is separable in both variables X and Y ;

ii) Fn+1 = Fn(xn+1) with f(xn, xn+1) = 0, for all n ≥ 0;

iii) [Fn+1 : Fn] = degY f(X,Y ), for all n ≥ 0.

We also say that the tower F is given by the equation f(X,Y ) = 0 or that
F is defined recursively by the polynomial f(X,Y ). Sometimes a tower is
recursively given by an equation of the form

g(X,Y ) = h(X,Y ) (2.8)

with rational functions g(X,Y ) and h(X,Y ) ∈ Fq(X,Y ). It is obvious that,
after clearing denominators, Equation (2.8) can be transformed into the form
f(X,Y ) = 0 with a polynomial f(X,Y ) ∈ Fq[X,Y ]. For example, the
defining equation

Y � − Y = X�/(X�−1 + 1)

can be transformed into the polynomial equation

f(X,Y ) = (X�−1 + 1) · (Y � − Y )−X� = 0,

cf. Section 5.1 below.

For a recursive tower F = (F0, F1, F2, . . .), much information about it is
already contained in the field F1 = Fq(x0, x1). So we define:

Definition 2.9. Let F be a recursive tower over Fq given by the polynomial
equation f(X,Y ) = 0. Then its basic function field is defined as

F = Fq(x, y), with the relation f(x, y) = 0.

It will be shown in Section 6.2 that for a recursive tower F with positive
limit λ(F) > 0 one has

degX f(X,Y ) = degY f(X,Y ).
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For the corresponding basic function field F = Fq(x, y) this condition means
that

[F : Fq(x)] = [F : Fq(y)] if λ(F) > 0.

We recall the concepts of tame and wild ramification (see [48, p. 94]).

Definition 2.10. Let E/F be a function field extension. A place Q of the field
E is tamely ramified (or tame) in the extensionE/F , if the characteristic p does
not divide the ramification index e(Q|P ), where P is the restriction ofQ to the
field F . Otherwise we say that Q is wild in the extension E/F . The extension
E/F is called tame if all places of E are tame in E/F .

For example, a Galois extension E/F whose degree is relatively prime to
the characteristic is a tame extension. This is the case for Kummer extensions
(see Section 4). On the contrary, in the case of Artin-Schreier extensions (see
Section 5) we have that all ramified places are wild.

The most convenient way to work with recursive towers is to think of them
as pyramids; i.e., one considers in the same picture the fields

Fq(xn, xn+1, . . . , xm), for all natural numbers n ≤ m.

We illustrate this way of thinking of a recursive tower with Figure 2.1 (see next
page) that reaches the 8th step of the tower. The tower itself appears on the left
edge of the pyramid.

For instance, the fields E and H in Figure 2.1 are E = Fq(x1, x2, x3, x4)
and H = Fq(x2, x3, x4, x5, x6). All fields on the same horizontal line are iso-
morphic to each other (for example, F3 	 E 	 E′ and F4 	 H).

Let Q be a place of the field F8, just for reasoning in the concrete situation
of Figure 2.1. For the determination of the genus g(F8) one is led, by Hurwitz
genus formula, to consider the ramification indices of (the restrictions of) Q in
the various field extensions in Figure 2.1; i.e., in the extensions F8/F7, F8/F0,
G/E,G/H , etc. One starts from the extensions at the base of the pyramid; i.e.,
from the extensions

Fq(xn, xn+1)/Fq(xn) and Fq(xn, xn+1)/Fq(xn+1),

with 0 ≤ n ≤ 7. Knowing ramification indices in the extensions F/Fq(x) and
F/Fq(y), where F = Fq(x, y) is the corresponding basic function field, one
gets the ramification indices of the place Q at the base of the pyramid from the
values x0(Q), x1(Q), . . . , x8(Q). Then one tries to climb up the pyramid to
the right and to the left by using repeatedly the following fundamental tool:
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Theorem 2.11. (Abhyankar’s lemma) (see [48, p.125]). Let E/F be a
function field extension and let E1, E2 be two intermediate fields with E =
E1 ·E2 (i.e., E is the composite field ofE1 andE2). LetQ be a place ofE and
denote by Q1, Q2 and P its restrictions to E1, E2 and F . If Q1|P or Q2|P is
tame, then

e(Q|P ) = lcm(e(Q1|P ), e(Q2|P )),

where lcm stands for the least common multiple.

Let us consider again the situation as in Figure 2.1. Suppose that all ramifica-
tions at the base of the pyramid are tame. It is then obvious that one gets easily
all ramification indices in the pyramid by using Abhyankar’s lemma repeatedly.

The situation is more difficult if wild ramification occurs at the base of the
pyramid. This is in fact one of the major problems in dealing with the so-called
wild towers (see Section 5): all known examples of explicit wild towersF with
λ(F) > 0 are such that the corresponding pyramids have infinitely many times
the phenomenon illustrated in the following picture, where � is a power of the
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characteristic and moreover e(Q1|P ) = e(Q2|P ) = � (with notations as in
Theorem 2.11).

Abhyankar’s lemma does not apply in this situation, and it is in general a
hard task to determine the ramification index e(Q|Q1) = ?. Even harder is in
general the determination of the different exponent d(Q|Q1) ofQ|Q1. We will
discuss some special cases of this situation in Section 5.

3. Genus and Splitting Rate of a Tower
As before letF = (F0, F1, F2, . . .) be a tower of function fields over Fq. We

want to investigate the limit λ(F) = limn→∞N(Fn)/g(Fn) of the tower (this
limit does exist, see Proposition 3.2 and Definition 3.4). It will be convenient
to treat the number of rational places and the genus separately.

Lemma 3.1. Let F0 ⊆ F ⊆ E be finite separable extensions of algebraic
function fields over Fq. Then we have

N(F )
[F : F0]

≥ N(E)
[E : F0]

and
g(F )− 1
[F : F0]

≤ g(E)− 1
[E : F0]

.

In particular, if g(F ) ≥ 2 then

N(F )
g(F )− 1

≥ N(E)
g(E)− 1

.

Proof. It is clear that N(E) ≤ [E : F ] ·N(F ). Dividing this inequality by the
degree [E : F0] = [E : F ] · [F : F0] we get

N(E)
[E : F0]

≤ N(F )
[F : F0]

.
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Since the extension E/F is separable, the Hurwitz genus formula gives that

2g(E)− 2 = [E : F ] · (2g(F )− 2) + deg Diff(E/F )

≥ [E : F ] · (2g(F )− 2).

We divide by 2[E : F0] to obtain the desired result.

Proposition 3.2. Given a tower F = (F0, F1, F2, . . .) over Fq, the following
limits do exist:

ν(F) := lim
n→∞

N(Fn)/[Fn : F0] and γ(F) := lim
n→∞

g(Fn)/[Fn : F0].

Proof. By Lemma 3.1, the sequence (N(Fn)/[Fn : F0])n≥0 is monotonously
decreasing, hence convergent in R. On the other hand, we have that the sequence
((g(Fn) − 1)/[Fn : F0]) is monotonously increasing, hence convergent in
R ∪ {∞}. Since

lim
n→∞

(g(Fn)− 1)/[Fn : F0] = lim
n→∞

g(Fn)/[Fn : F0],

Proposition 3.2 follows.

Definition 3.3. The quantities ν(F) and γ(F) in Proposition 3.2 are called the
splitting rate and the genus of the tower F , respectively.

One has that
0 ≤ ν(F) ≤ N(F0) and 0 < γ(F) ≤ ∞.

If γ(F) <∞, we say that the tower has finite genus.

It follows from Proposition 3.2 that the sequence N(Fn)/g(Fn) is conver-
gent, since we have

N(Fn)
g(Fn)

=
N(Fn)/[Fn : F0]
g(Fn)/[Fn : F0]

→ ν(F)
γ(F)

, as n→∞.

This leads us to the following definition which is crucial for the theory of towers.

Definition 3.4. For any tower F = (F0, F1, F2, . . .) over Fq, the limit

λ(F) := lim
n→∞

N(Fn)/g(Fn)

is called the limit of the tower.

We know from Section 2 that 0 ≤ λ(F) ≤ A(q) ≤ √
q − 1 (the last

inequality is the Drinfeld-Vladut bound). Recall that the tower F is said to be
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asymptotically good if λ(F) > 0; it is asymptotically optimal if λ(F) = A(q).
We clearly have:

Corollary 3.5. For a tower F over Fq one has that

λ(F) = ν(F)/γ(F).

Moreover, the following statements are equivalent:

i) The tower F is asymptotically good.

ii) The genus γ(F) is finite and the splitting rate ν(F) is strictly positive.

Let E = (E0, E1, E2, . . .) and F = (F0, F1, F2, . . .) be two towers over
Fq. We call E a subtower of F , if for any En there exists some Fm such that
En ⊆ Fm.

Proposition 3.6. If E is a subtower of F , then λ(E) ≥ λ(F). In particular, if
the tower F is asymptotically good (resp. optimal), then any subtower E of F
is also asymptotically good (resp. optimal).

Proof. LetEn ⊆ Fm, and suppose that g(En) ≥ 2 (which holds for sufficiently
large n, since E is a tower). By Lemma 3.1 we have

N(En)
g(En)− 1

≥ N(Fm)
g(Fm)− 1

,

and hence λ(E) ≥ λ(F).

In order to study the limit λ(F) of a towerF , it is often suitable to investigate
separately the genus and the splitting rate of F . We start with the investigation
of the genus.

Definition 3.7. Let F = (F0, F1, F2, . . .) be a tower over Fq, and let P be
a place of F0. We say that P is ramified in the tower F if for some n ≥ 1
there exists a place Q of Fn lying above P such that Q|P is ramified; i.e., the
ramification index satisfies e(Q|P ) > 1. If there exists an index n ≥ 1 and a
placeQ of Fn above P such thatQ|P is wildly ramified (i.e., the characteristic
of Fq divides the ramification index e(Q|P )), thenP is said to be wildly ramified
in the tower F . Otherwise, the place P is said to be tame in F . The set

V (F) := {P | P is a place of F0 which is ramified in F}

is called the ramification locus of F .

All asymptotically good towers which are known at present have a finite
ramification locus. However, there are examples of non-recursive towers F
over Fq such that the ramification locus V (F) is infinite and the genus γ(F)
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is finite, see [13]. A tower F with finite ramification locus V (F) may have
infinite genus γ(F) = ∞, but in many cases one can use the next theorem to
ensure the finiteness of γ(F).

Recall the following notations: Let E/F be a finite separable extension of
function fields, P a place of F and Q a place of E lying above P , then e(Q|P )
(resp. d(Q|P )) denotes the ramification index (resp. the different exponent) of
the place Q over P .

Theorem 3.8. Let F = (F0, F1, F2, . . .) be a tower with a finite ramification
locus V (F). Suppose that for each placeP ∈ V (F) there exists a real constant
cP > 0 such that, for all n ≥ 1 and for all places Q of Fn lying above P , we
have

d(Q|P ) ≤ cP · e(Q|P ).

Then the genus of the tower is finite and it satisfies

γ(F) ≤ g(F0)− 1 +
1
2
·
∑

P∈V (F)

cP · degP <∞.

Proof. The Hurwitz genus formula for the extension Fn/F0 gives

2g(Fn)− 2 = (2g(F0)− 2) · [Fn : F0] + deg Diff(Fn|F0)

= (2g(F0)− 2)[Fn : F0] +
∑

P∈V (F)

∑

Q|P
d(Q|P ) · degQ

≤ (2g(F0)− 2) · [Fn : F0] +
∑

P∈V (F)

cP ·
∑

Q|P
e(Q|P ) · degQ

= [Fn : F0] ·



2g(F0)− 2 +
∑

P∈V (F)

cP · degP



 ,

where the last equality follows from the “fundamental equality”
∑

Q|P
e(Q|P ) · f(Q|P ) = [Fn : F0],

see [48, p.64]. Dividing the inequality above by 2·[Fn : F0] and lettingn→∞,
we obtain the desired result.

An important special case of Theorem 3.8 is the case of tame towers:

Corollary 3.9. Let F = (F0, F1, F2, . . .) be a tower with a finite ramification
locus V (F), and suppose that all places P ∈ V (F) are tame in F . Then

γ(F) ≤ g(F0)− 1 +
1
2
·
∑

P∈V (F)

degP.
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Proof. By Dedekind’s different theorem, the different exponent of a tamely
ramified place Q|P satisfies d(Q|P ) = e(Q|P )− 1, and hence we can choose
cP := 1 for each place P ∈ V (F).

In Section 5 we will see that Theorem 3.8 can also be applied to some inter-
esting wild towers.

How can one check if the ramification locus V (F) is finite? We discuss this
problem in a particular case. Assume that the tower F = (F0, F1, F2, . . .) is
recursively defined by the equation

ϕ(Y ) = ψ(X), (3.1)

where ϕ(T ), ψ(T ) ∈ Fq(T ) are rational functions (see Definition 2.8). As
before, let F = Fq(x, y) be the corresponding basic function field which is
given by the equation ϕ(y) = ψ(x), and define

V0 := {P | P is a place of Fq(x) which ramifies in F/Fq(x)}.

The set V0 is finite, since the extension F/Fq(x) is separable. We also define

R0 := {x(P ) | P ∈ V0}. (3.2)

Clearly, this set R0 is a finite subset of Fq ∪ {∞}.

Proposition 3.10. Let F = (F0, F1, F2, . . .) be a tower over Fq which is
recursively defined by Equation (3.1). Assume that there exists a finite subset
R ⊆ Fq ∪ {∞} such that the following two conditions hold:

a) The set R contains R0, with R0 as in Equation (3.2).

b) If β ∈ R and α ∈ Fq∪{∞} satisfy the equationϕ(β) = ψ(α), then α ∈ R.

Then the ramification locus of the tower F satisfies

V (F) ⊆ {P | P is a place of F0 with x0(P ) ∈ R};

in particular , V (F) is finite and moreover

∑

P∈V (F)

degP ≤ #R. (3.3)

Proof. Let P ∈ V (F). There is some n ≥ 0 and a place Q of Fn lying above
P such that Q is ramified in the extension Fn+1/Fn. Let P ′ := Q ∩ Fq(xn)
denote the place of Fq(xn) lying belowQ, and consider the following diagram:
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Since Q is ramified in Fn+1/Fn, the place P ′ is ramified in the extension
Fq(xn, xn+1) over Fq(xn). Hence β := xn(P ′) ∈ R0. For i = 0, . . . , n we
set αi := xi(Q); then (by Condition a)) we have that αn = β ∈ R. Since

ϕ(αi) = ψ(αi−1) for each i = 1, . . . , n,

it follows from Condition b) that αn−1, αn−2, . . . , α0 ∈ R, and in particular
we have x0(P ) = x0(Q) = α0 ∈ R. We have thus shown that P ∈ V (F)
implies x0(P ) ∈ R. In order to prove Inequality (3.3) one just notes that∑

P∈V (F) degP is invariant under constant field extensions.

Now we start the investigation of the splitting rate. In particular we want
to establish a criterion analogous to Proposition 3.10 which implies a positive
splitting rate ν(F) > 0, for a particular class of recursive towers.

Definition 3.11. Let F = (F0, F1, F2, . . .) be a tower over Fq, and let P be a
rational place of F0 (i.e., degP = 1). We say that P splits completely in the
tower F if P splits completely in all extensions Fn/F0; i.e., there are exactly
[Fn : F0] places of Fn above the place P (and they are rational places of Fn).
The set

Z(F) := {P | P is a rational place of F0 which splits completely in F}

is called the splitting locus of the tower F . It is obvious thatZ(F)∩V (F) = ∅.

Lemma 3.12. Let F be a tower over Fq. Then we have

ν(F) ≥ #Z(F).

Proof. The assertion is trivial since for alln, any placeP ∈ Z(F) has [Fn : F0]
distinct extensions in the field Fn, all of them being rational places of Fn.

For a rational function field Fq(z) and an element α ∈ Fq, we denote by
(z = α) the place which is the zero of the function z − α in Fq(z). Similarly,
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(z = ∞) denotes the pole of the function z in Fq(z). We consider again a tower
F over Fq which is defined recursively by the equation

ϕ(Y ) = ψ(X). (3.4)

Proposition 3.13. Let F = (F0, F1, F2, . . .) be a tower over Fq defined re-
cursively by Equation (3.4), and let F = Fq(x, y) be the corresponding basic
function field with the relation ϕ(y) = ψ(x). Assume that there exists a non-
empty subset S of Fq ∪ {∞} which satisfies the following two conditions:

a) For all α ∈ S, the place (x = α) of Fq(x) splits completely in the extension
F/Fq(x).

b) If α ∈ S and if Q is a place of F lying above the place (x = α), then
y(Q) ∈ S.

Then for all α ∈ S, the place (x0 = α) of F0 = Fq(x0) splits completely in
the tower F; i.e., we have (x0 = α) ∈ Z(F). In particular, the splitting rate
satisfies

ν(F) ≥ #S.

Proof. By induction: Letα ∈ S and letQ be a place ofFn lying above the place
(x0 = α). Then xn(Q) =: β ∈ S, by Condition b). The place (xn = β) splits
completely in the extension Fq(xn, xn+1)/Fq(xn), by Condition a). Therefore
the placeQ splits completely in the extension Fn+1/Fn. The inequality for the
splitting rate follows from Lemma 3.12.

Note that both conditions a) and b) in Proposition 3.13 follow from the
stronger condition below:

Condition c) For all α ∈ S, the equation ϕ(T ) = ψ(α) has m = degϕ
distinct roots in the set S.

For an absolutely irreducible polynomial f(X,Y ) ∈ Fq[X,Y ], it is in
general not true that the equation f(X,Y ) = 0 defines a recursive tower
F = (F0, F1, F2, . . .); i.e., F0 = Fq(x0) is a rational function field and
Fn+1 = Fn(xn+1) with the relation f(xn, xn+1) = 0. It may happen, for
instance, that the fields defined in this way satisfy Fr = Fr+1 = Fr+2 = . . .,
for some index r ≥ 1. However in many cases, the following proposition shows
that the equation f(X,Y ) = 0 defines indeed a recursive tower.

Proposition 3.14. Let f(X,Y ) ∈ Fq[X,Y ] be a polynomial which satisfies
the condition degY f(X,Y ) = m ≥ 2, and let F0 ⊆ F1 ⊆ F2 ⊆ . . . be a
sequence of function fields over Fq, recursively defined by F0 = Fq(x0) and
Fn+1 = Fn(xn+1) with f(xn, xn+1) = 0. Suppose that for each n ≥ 0 there
exists a placeQn of Fn such that the following two conditions hold (see Figure
3.2 below):
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a) There is a placeRn of the function field Fq(xn, xn+1) lying above the place
Pn := Qn ∩ Fq(xn), such that the ramification index of Rn|Pn satisfies
e(Rn|Pn) = m.

b) The ramification index e(Qn|Pn) is relatively prime to m.

Then [Fn+1 : Fn] = m for all n ≥ 0, and the equation f(X,Y ) = 0 defines a
recursive tower F over Fq.

Proof. We proceed by induction: Suppose that the field Fq is algebraically
closed inFn and consider the field extensionFn+1/Fn, withFn+1 = Fn(xn+1)
and f(xn, xn+1) = 0. We have the following situation, where Pn is the re-
striction of the placeQn to Fq(xn) andRn is the unique place of Fq(xn, xn+1)
above Pn:

It follows from Abhyankar’s lemma, that the placeQn is ramified inFn+1/Fn

with ramification indexm. In particular we have that [Fn+1 : Fn] ≥ m. On the
other hand, the element xn+1 satisfies the equation f(xn, xn+1) = 0 over Fn

and therefore [Fn+1 : Fn] = [Fn(xn+1) : Fn] ≤ m. Hence [Fn+1 : Fn] = m,
the place Qn is totally ramified in Fn+1/Fn and Fq is also algebraically closed
in Fn+1.

Remark 3.15. In many interesting cases (see Section 4 and Section 5), the
polynomial f(X,Y ) guarantees a very special ramification behaviour at the
base of the pyramid, which implies immediately that the equation f(X,Y ) = 0
indeed defines a recursive tower. As before we set m := degY f(X,Y ) ≥ 2,
and we assume that there exists a place P0 of Fq(x0) = F0 which leads to the
ramification picture in Figure 3.3.
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This picture means: the place P0 of Fq(x0) is ramified in the extension
Fq(x0, x1) over Fq(x0) with ramification index e = m. Hence there is just one
placeQ1 of Fq(x0, x1) lying aboveP0, and this placeQ1 is totally ramified over
P0. The place P1 := Q1∩Fq(x1) of Fq(x1) also has ramification index e = m
in the extension Fq(x1, x2)/Fq(x1), and we denote by Q2 the unique place of
Fq(x1, x2) lying above P1, etc. Moreover we make the crucial assumption that
the ramification indices e1 := e(Q1|P1), e2 := e(Q2|P2), e3 := e(Q3|P3), . . .
are all relatively prime to m. Using Abhyankar’s lemma repeatedly as in the
proof of Proposition 3.14 one concludes that [Fn : F0] = mn, that P0 is totally
ramified inFn/F0 and that the equation f(X,Y ) = 0 indeed defines a recursive
tower over Fq.

Remark 3.16. There are recursive towers which do not satisfy the assumptions
of Proposition 3.14. In such a case it seems to be more difficult to decide if the
corresponding equation f(X,Y ) = 0 defines indeed a tower (see [57, 58]).

4. Explicit Tame Towers
Before presenting some explicit asymptotically good tame towers of function

fields, we make the following general remark: Let F = (F0, F1, F2, . . .) be a
recursive Fq-tower, given by a polynomial f(X,Y ) ∈ Fq[X,Y ]. Let h(Z) ∈
Fq(Z) be a fractional linear transformation; i.e., h(Z) = (aZ + b)/(cZ + d)
with a, b, c, d ∈ Fq and ad �= bc. Then the tower F can also be defined by the
equation

g(X,Y ) := f(h(X), h(Y )) = 0.
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Performing such a fractional linear transformation can sometimes transform
the defining equation to a nicer form, or it can make it easier to describe the
ramification locus or the splitting locus of the tower.

All towers T that we consider in this section are recursive tame towers,
which satisfy the hypothesis of Proposition 3.10 and hence they have a finite
ramification locus. Moreover they have a non-empty splitting locus Z(T ).
Then we get from Section 3 the following lower bound for the limit λ(T ) of
the tower T :

Lemma 4.1. Assume that T is a recursive tame tower defined by Equation (3.4)
and satisfying the hypothesis of Proposition 3.10. Then its limit λ(T ) satisfies
the estimate

λ(T ) ≥ 2 ·#Z(T )
#R− 2

,

whereR is the finite set whose existence is the main assumption made in Propo-
sition 3.10.

Proof. We have the inequalities ν(T ) ≥ #Z(T ) (see Lemma 3.12) and also
γ(T ) ≤ (−2+#R)/2 (see Corollary 3.9 and Proposition 3.10). The assertion
follows then immediately since λ(T ) = ν(T )/γ(T ) (see Corollary 3.5).

The defining equations that we will consider in this section do give rise to
towers of function fields T = (F0, F1, F2, . . .), since it will always be the case
that in all extensions Fn+1/Fn arising from our equations, there exist places of
the field Fn that are totally ramified in Fn+1 (see Proposition 3.14 and Remark
3.15).

4.1 The Tower T1

Consider the tower T1 over the field F4 with four elements, which is given
recursively by the equation

Y 3 = X3/(X2 +X + 1). (4.1)

Let P = (x0 = ∞) denote the place at infinity of the rational function field
F0 = F4(x0) and let Q denote a place of the field F1 = F0(x1) above P .
The place P is a simple pole of the right hand side of the defining equation
x3

1 = x3
0/(x

2
0 + x0 + 1), and we get

vQ(x3
1) = −e(Q|P ); hence e(Q|P ) = 3 and vQ(x1) = −1.
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Here vQ denotes the valuation corresponding to the placeQ, and e(Q|P ) is the
ramification index of Q|P . This shows that the place P is totally ramified in
the field F1, and in particular that Q is the unique place of F1 above P . Also,
since vQ(x1) = −1, the place Q is a simple pole for the right hand side of the
defining equation x3

2 = x3
1/(x

2
1 + x1 + 1), and we conclude as before that the

place Q is totally ramified in the field extension F2/F1, and so on. In this way
we see that the defining equation (4.1) really leads to a tower, since the place
P is totally ramified in all extensions.

Now we show that the place P0 = (x0 = 0) of F0 splits completely in
the tower. Let Q0 be a place of F1 above P0. From the defining equation
x3

1 = x3
0/(x

2
0 + x0 + 1), we see that x1(Q0) = 0. We have that

F1 = F0(x1/x0), with (x1/x0)3 = 1/(x2
0 + x0 + 1).

Since x0(P0) = 0, it follows from the last equation above that P0 splits com-
pletely in the extension F1/F0. Again we have that

F2 = F1(x2/x1), with (x2/x1)3 = 1/(x2
1 + x1 + 1).

Since x1(Q0) = 0, it follows from the last equation above that each of the three
places Q0 of F1 above P0 splits completely in the extension F2/F1, and so on.
Thus the splitting locus of the tower T1 has cardinality #Z(T1) ≥ 1.

>From the theory of Kummer extensions (see [48, p.110 ff.]), or with argu-
ments similar to the ones used above for the place P , one obtains that the setR0

in Proposition 3.10 (see Equation (3.2)) is given byR0 = (F4 \F2)∪{∞}; i.e.,
the elements of R0 are the poles of the function X3/(X2 +X + 1), and they
are simple poles. We show now that the setR = F

×
4 ∪{∞} satisfies Condition

b) in Proposition 3.10. In fact if β = ∞ and α3/(α2 + α + 1) = β3, then
α =∞ or α2 + α+ 1 = 0, hence α ∈ R0. If β ∈ F

×
4 then

α3/(α2 + α+ 1) = β3 = 1,

and hence α3 = α2 + α + 1. Since the characteristic is p = 2, we get
(α+ 1)3 = α3 + α2 + α+ 1 = 0, therefore α = 1 ∈ R. From Lemma 4.1 we
conclude now that the limit λ(T1) satisfies

λ(T1) ≥
2 · 1
4− 2

= 1 =
√

4− 1.

So the tower T1 over the field F4 attains the Drinfeld-Vladut bound; i.e., it is
asymptotically optimal over F4.
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Performing the fractional linear transformation h(Z) = 1/Z, we see that the
tower T1 can also be defined by the nicer equation Y 3 = (X + 1)3 − 1. The
tower T1 is therefore the very particular case � = r = 2 of the following tower
T2.

4.2 The Tower T2

Let � be any prime power and let q = �r , where r ∈ N and r ≥ 2. Consider
the tower T2 over Fq which is given recursively by the equation

Y m = (X + 1)m − 1, with m = (q − 1)/(�− 1). (4.2)

Similarly as for the tower T1 one shows that the place P0 = (x0 = 0) of the
function field F0 = Fq(x0) is totally ramified in all extensions Fn/F0, so that
Equation (4.2) does define a recursive tower T2 = (F0, F1, F2, . . .). One can
also argue as in Remark 3.15 as follows: In the ramification picture of Figure
3.3 for the place P0 = (x0 = 0) one has that Pi is the zero of the function xi in
Fq(xi) for all i ≥ 0, and the ramification indices ei in Figure 3.3 are all equal
to ei = 1 (as follows from the equation xm

i = (xi−1 + 1)m − 1). Therefore
Equation (4.2) does define a tower, and the place P0 is totally ramified in all
extensions Fn/F0.

Let F = Fq(x, y) with ym = (x + 1)m − 1 be the basic function field
corresponding to the tower T2 and let V0 be the set of places of Fq(x) which
ramify in F/Fq(x). The setR0 = {x(P ) | P ∈ V0} (as defined in (3.2)) is here
given by

R0 = {β ∈ Fq | (β + 1)m = 1},
as follows from the theory of Kummer extensions of function fields. We claim
that the set R := Fq satisfies the conditions in Proposition 3.10. In fact, we
haveR0 ⊆ Fq (sincem = (q−1)/(�−1) is the norm exponent of the extension
Fq/F�), and for β ∈ Fq and α ∈ Fq with βm = (α + 1)m − 1 it follows that
(α+1)m = 1+βm ∈ F�, hence α ∈ Fq. By Proposition 3.10, the ramification
locus V (T2) is finite and it satisfies

V (T2) ⊆ {P | P is a place of F0 with x0(P ) ∈ Fq}.

Next we show that the place P∞ = (x0 = ∞) of the rational function field
F0 = Fq(x0) splits completely in the tower T2. We have

F1 = F0

(
x1

x0 + 1

)

and

(
x1

x0 + 1

)m

= 1−
(

1
x0 + 1

)m

.

The right hand side of the last equality above takes the value 1 at the place P∞,
and since the exponent m = (q − 1)/(� − 1) is the norm exponent of Fq/F�
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we conclude that P∞ splits completely in the extension F1/F0. Let Q∞ be a
place of F1 above P∞. Then we have from the equation xm

1 = (x0 + 1)m − 1
that vQ∞(x1) = vQ∞(x0) = −1. Since

F2 = F1

(
x2

x1 + 1

)

and

(
x2

x1 + 1

)m

= 1−
(

1
x1 + 1

)m

,

it follows as above that the placeQ∞ splits completely in the extension F2/F1.
Repeating this argument we find that P∞ splits completely in the tower T2, thus
#Z(T2) ≥ 1. From Lemma 3.1, we then get a positive limit

λ(T2) ≥ 2/(q − 2) > 0;

i.e., the tower T2 over Fq is asymptotically good.

Using class field theory, J.-P. Serre [49] proved in particular thatA(q) > 0 for
all prime powers q. The tower T2 above gives a very simple proof of this result
of Serre, when q is not a prime number. No asymptotically good explicit tower
over a finite field of prime order is known at present, and it is one of the main
challenges to construct an explicit asymptotically good tower over a prime field.

The tower T2 above is a special case of the so-called towers of Fermat type;
these are defined as follows: Let a, b, c ∈ F

×
q and letm ≥ 2 be a natural number

which is not divisible by p = char Fq. Then the equation

Y m = a(X + b)m + c

does define a tower over Fq, see [58]. Some of these towers of Fermat type can
be shown to be asymptotically good, with similar arguments as in Section 4.2
above (see [24, 28]). For example, let � be any prime power with � ≥ 3 and let
q = �2. Take m = �− 1, choose any b ∈ F

×
� and consider the tower T over Fq

which is given recursively by the equation

Y �−1 = −(X + b)�−1 + 1.

Its limit satisfies λ(T ) ≥ 2/(�− 2). In particular for � = 3, we obtain a tower
over the field F9 attaining the Drinfeld-Vladut bound. Using the transformation
h(Z) = b · Z, we see that all these towers (for distinct values of b ∈ F

×
� ) are

equal to each other.

4.3 The Tower T3

In this subsection we discuss another interesting tame tower that was intro-
duced in [24]. Let p be an odd prime number and let q = p2. Consider the
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equation

Y 2 =
X2 + 1

2X
(4.3)

over the field Fq. Similarly to the case of the tower T1 in Section 4.1, one sees
that Equation 4.3 does define recursively a tower T3 = (F0, F1, F2, . . .) over Fq,
and that the place P∞ = (x0 = ∞) of the rational function field F0 = Fq(x0)
is totally ramified in all extensions Fn/F0.

Let a ∈ Fq be such that a2 = −1 (note that such an element exists in Fq since
q = p2). The set R0 in Proposition 3.10 is here given by R0 = {0,∞,±a}.
We claim that the set

R = {0,∞,±a,±1}
satisfies Condition b) in Proposition 3.10. This follows from the following
assertions, which are all easily verified:

- if β = 0 and β2 = (α2 + 1)/2α, then α = ±a.

- if β =∞ and β2 = (α2 + 1)/2α, then α ∈ {0,∞}.

- if β = ±a and β2 = (α2 + 1)/2α, then α = −1.

- if β = ±1 and β2 = (α2 + 1)/2α, then α = 1.

Much harder is here the determination of a single rational place of F0 that
splits completely over Fp2 in this tower T3. In fact, there are at least 2(p − 1)
such places; i.e., #Z(T3) ≥ 2(p− 1). From this and from Lemma 4.1 we then
get

λ(T3) ≥
2 · 2(p− 1)

6− 2
= p− 1;

i.e., the tower T3 over Fp2 attains the Drinfeld-Vladut bound. In particular, one
concludes that #Z(T3) = 2(p− 1).

For the description of the completely splitting places in the tower T3 the
following polynomial H(X) ∈ Fp[X] plays a crucial role:

H(X) =
(p−1)/2∑

m=0

(
(p− 1)/2

m

)2

·Xm,

where
(
(p−1)/2

m

)
denotes the binomial coefficient. The polynomial H(X) is

the so-called Deuring polynomial; its roots parametrize supersingular elliptic
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curves in Legendre normal form (see [5]). It is well-known (but non-trivial)
that H(X) is a separable polynomial having all roots in the field Fp2 . The key
point here is to prove the following polynomial identity (see [24]):

H(X4) = Xp−1 ·H
((

X2 + 1
2X

)2
)

. (4.4)

A nice remark by M. Zieve is that it follows from Equation (4.4) that the roots
of H(X) are in fact 4-th powers in the field Fp2 ; i.e., we have the following
inclusion

S := {α ∈ Fp|H(α4) = 0} ⊆ Fp2 . (4.5)

Zieve’s argument is as follows: If H(α4) = 0 then H(((α2 + 1)/2α)2) = 0
by Equation (4.4). Since all roots of H(X) are in Fp2 , it follows that α4 ∈ Fp2

and that ((α2 + 1)/2α)2 ∈ Fp2 , and then α2 ∈ Fp2 . We have thus shown

H(β2) = 0 ⇒ β ∈ Fp2 .

In particular, sinceH(((α2+1)/2α)2) = 0, we obtain that (α2+1)/2α ∈ Fp2 .
Since also α2 ∈ Fp2 we see that the element α itself is in Fp2 . This proves
that the set S in (4.5) is contained in Fp2 (for another proof see H. G. Rück’s
appendix to [24]). The cardinality of S is #S = 2(p− 1), sinceH(0) �= 0 and
H(X) is a separable polynomial.

It is now a simple matter to check (using Equation (4.4)) that the set S in
(4.5) above satisfies Condition c) just after Proposition 3.13, and hence it fol-
lows from Proposition 3.13 that #Z(T3) ≥ #S = 2(p− 1).

It follows from the work of N. Elkies [14] that the tower T3 is in fact the
modular tower X0(2n), see also [24, p.75 ff.].

The key identity Equation (4.4) satisfied by Deuring’s polynomial is proved
by using Gauss’ hypergeometric differential equation. This idea of using certain
differential equations to control rational places in tame towers was taken again
by Beelen-Bouw, providing a more systematic technique for the search for
asymptotically good tame towers. We just illustrate an application of their
technique: If p is a prime number and p ≡ ±1 mod 8, then the tower T over
Fp2 which is defined recursively by the equation

Y 2 =
X(1−X)
X + 1

attains the Drinfeld-Vladut bound, see Proposition 4.6 in [3] and Example 4.5
in [24].
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All tame towers considered here so far have "separated variables"; i.e., they
are all defined recursively by an equation ϕ(Y ) = ψ(X) with two rational
functions ϕ(Y ) ∈ Fq(Y ) and ψ(X) ∈ Fq(X). There are also very interesting
tame towers with non-separated variables (see [33, 37]). For example, the
four recursive towers over Fp2 (for p = 2, 3, 5 and 7) given by the following
polynomials f(X,Y ) are asymptotically optimal:

- Case p = 2 and f(X,Y ) = X2Y 3 + (X3 +X2 +X)Y 2 + (X + 1)Y +
X3 +X .

- Case p = 3 and f(X,Y ) = 2XY 2 + (X2 +X + 1)Y +X2 +X + 2.

- Case p = 5 and f(X,Y ) = (4X + 1)Y 2 + (X2 +X + 2)Y +X + 3.

- Case p = 7 and f(X,Y ) = (X2 + 6)Y 2 +XY +X2 + 4.

All four towers above were shown to be elliptic modular by Elkies (see the
appendix in [33]).

We finish this section with the remark that all optimal recursive towers pre-
sented here support the “modularity conjecture” for such towers; a conjecture
which was proposed by N. Elkies in [14].

5. Explicit Wild Towers

In this section we discuss wild towers F over Fq; i.e., towers such that there
exist places which are wildly ramified inF . As was pointed out at the end of Sec-
tion 2, the calculation of the genus γ(F) for wild towers is more difficult than in
the case of tame towers, since Abhyankar’s lemma does not apply in general (see
Figure 2.2). Typical examples of wild towers are the so-called Artin-Schreier
towers F = (F0, F1, F2, . . .). Here F0 is the rational function field over Fq,
and all extensions Fn+1/Fn are Galois of degree [Fn+1 : Fn] = p = char(Fq).
As follows from Galois theory, there then exist elements xn+1 ∈ Fn+1 and
zn ∈ Fn such that Fn+1 = Fn(xn+1) and xp

n+1 − xn+1 = zn, for all n ≥ 0.

In some cases of wild ramification, Lemma 5.1 below replaces Abhyankar’s
lemma. It will be very useful in order to estimate the genus γ(F) of some
specific wild towers (see Theorem 5.7 and Theorem 5.17 below). First we
recall some notations and facts: Let E/F be a finite separable extension of
function fields, let P be a place of F and Q a place of E lying above P . Then
e(Q|P ) and d(Q|P ) denote the ramification index and the different exponent
of Q|P , respectively. If the extensions E/F is Galois of degree p = char(Fq),
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it is well-known that d(Q|P ) = s · (e(Q|P ) − 1) for some s ≥ 2 (see [48, p.
124]). The next result deals with the case when s = 2.

Lemma 5.1. Let F/Fq be a function field and let E1/F and E2/F be distinct
Galois extensions ofF such that [E1 : F ] = [E2 : F ] = p = char(Fq). Denote
by E = E1 · E2 the composite field of E1 and E2. Let Q be a place of E and
denote byQ1, Q2 and P its restrictions to the subfieldsE1, E2 and F . Suppose
that we have d(Qi|P ) = 2 · (e(Qi|P )− 1) for i = 1, 2. Then we also have

d(Q|Qi) = 2 · (e(Q|Qi)− 1) for i = 1, 2.

Proof. Denote by vP the discrete valuation of F corresponding to the place P
(and by vQ, vQi the valuations ofE,Ei accordingly). The only non-trivial case
of Lemma 5.1 is when d(Q1|P ) = d(Q2|P ) = 2 · (p − 1). By the theory of
Artin-Schreier extensions (see [48, p. 115]) we can find elements x1 ∈ E1 and
x2 ∈ E2 such that E1 = F (x1), E2 = F (x2) and moreover

xp
1 − x1 = z1 and xp

2 − x2 = z2,

where z1 and z2 are functions in F with vP (z1) = vP (z2) = −1. It follows
from the equation xp

1 − x1 = z1 that vQ1(x1) = −1. Since the residue class
field of F at the place P is perfect, there are elements u and w in F satisfying

z2
z1

= up + w, vP (u) = 0 and vP (w) ≥ 1.

It follows that

xp
2−x2 = z1u

p+z1w = (xp
1−x1)up+z1w = ((x1u)p−x1u)+x1(u−up)+z1w.

Setting x3 := x2 − x1u, we obtain that E = E1(x3) and

xp
3 − x3 = ũx1 + w̃ =: z3,

with vQ1(ũ) ≥ 0, vQ1(w̃) ≥ 0 and vQ1(x1) = −1. Hence we have vQ1(z3) =
−1 or vQ1(z3) ≥ 0. If vQ1(z3) = −1, then e(Q|Q1) = p and d(Q|Q1) =
2(p − 1); if vQ1(z3) ≥ 0, then e(Q|Q1) = 1 and d(Q|Q1) = 0. This shows
that we have d(Q|Q1) = 2(e(Q|Q1)− 1).

In the subsequent subsections 5.1 - 5.5 we shall investigate wild towers
that were introduced in the papers [8, 9, 20, 21, 30]. Using Theorem 3.8
and Lemma 5.1, we will give simpler and less computational proofs of the
asymptotic behaviour of the genus of the towers in [20, 21, 30].
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5.1 The Tower W1

This is an asymptotically optimal wild tower over a finite field with square
cardinality (see [21]). Let q = �2 where � is a power of a prime number p. We
consider the towerW1 over Fq which is recursively given by the equation

Y � + Y =
X�

X�−1 + 1
. (5.1)

First we have to show that Equation (5.1) actually defines a tower.

Lemma 5.2. Let W1 = (F0, F1, F2, . . .) where F0 = Fq(x0) is the ratio-
nal function field and Fn+1 = Fn(xn+1) with the relation x�

n+1 + xn+1 =
x�

n/(x
�−1
n + 1), for each n ≥ 0. Then the following holds:

i) For each n ≥ 0, the extension Fn+1/Fn has degree [Fn+1 : Fn] = �, and
the field Fq is algebraically closed in Fn+1.

ii) The pole P∞ of x0 in F0 is totally ramified in all extensions Fn+1/F0. If
Qn+1 denotes the unique place of Fn+1 above P∞, then Qn+1 is a simple
pole of the function xn+1.

Proof. We proceed by induction. LetQn be the unique place of Fn above P∞,
and let vQn denote the corresponding valuation ofFn. By induction hypothesis,
we have vQn(xn) = −1. Let Qn+1 be a place of Fn+1 above Qn. It follows
from Equation (5.1) that

vQn+1(x
�
n+1 +xn+1) = e(Qn+1|Qn) ·vQn(x�

n/(x
�−1
n +1)) = −e(Qn+1|Qn).

Therefore the place Qn+1 is a pole of the function xn+1, and

−e(Qn+1|Qn) = vQn+1(x
�
n+1 + xn+1) = � · vQn+1(xn+1).

We then conclude that e(Qn+1|Qn) = � and that vQn+1(xn+1) = −1. All
assertions of Lemma 5.2 follow now immediately.

Next we determine the ramification locus V (W1) of the tower W1. Recall
that (x0 = α) denotes the place of the rational function field F0 which is the
zero of the function x0 − α.

Lemma 5.3. The ramification locus V (W1) of the towerW1 is given by

V (W1) = {P∞} ∪ {(x0 = α) | α� + α = 0}.

Proof. LetF = Fq(x, y) with y�+y = x�/(x�−1+1) be the basic function field
of the tower W1. It is clear from the theory of Artin-Schreier extensions (see
[48, p.115]) that exactly the places (x = α), with α�−1 + 1 = 0, and the pole
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of x are ramified in the extension F/Fq(x). With notations as in Proposition
3.10, we thus have

R0 = {∞} ∪ {α | α�−1 + 1 = 0}.

Consider now the set

R := {∞} ∪ {α | α� + α = 0}.

We want to apply Proposition 3.10 and therefore we have to show: if β ∈ R
and α ∈ Fq ∪ {∞} satisfy the equation

β� + β = α�/(α�−1 + 1), (5.2)

then α ∈ R. First consider the case β = ∞. It follows from Equation (5.2)
that α = ∞ or α�−1 + 1 = 0, hence α ∈ R. In case β ∈ R \ {∞}, Equation
(5.2) gives

α�/(α�−1 + 1) = β� + β = 0,

and it follows thatα = 0 ∈ R. So the hypothesis of Proposition 3.10 is satisfied,
and we conclude that

V (W1) ⊆ {P | P is a place of F0 with x0(P ) ∈ R}
= {P∞} ∪ {(x0 = α) | α� + α = 0}.

The places P∞ and (x0 = α) with α�−1 + 1 = 0 are ramified in the extension
F1/F0, and it is easily verified that the place (x0 = 0) ramifies in the extension
F2/F0. This finishes the proof of Lemma 5.3.

The splitting locus Z(W1) of the tower W1 can be easily determined by
using Proposition 3.13.

Lemma 5.4. The splitting locus Z(W1) of the towerW1 is given by

Z(W1) = {(x0 = α) | α ∈ Fq and α� + α �= 0}.

In particular, the splitting rate ν(W1) satisfies the inequality ν(W1) ≥ �2 − �.

Proof. Observe that the map γ �→ γ� +γ (resp. the map γ �→ γ�+1) is the trace
(resp. the norm) map from Fq = F�2 to the subfield F�. Using notations as in
Proposition 3.13 we consider the set

S := {α ∈ Fq | α� + α �= 0}.

For α ∈ S, the equation

β� + β = α�/(α�−1 + 1) = α�+1/(α� + α) ∈ F� \ {0}
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has � distinct roots β in S. Thus Condition c) (just after the proof of Proposition
3.13) is satisfied, and it follows from Proposition 3.13 that

Z(W1) ⊇ {(x0 = α) | α ∈ Fq and α� + α �= 0}. (5.3)

As V (W1) = {P∞}∪ {(x0 = α) | α� +α = 0} (by Lemma 5.3) and since we
have V (W1) ∩ Z(W1) = ∅, we conclude that equality holds in (5.3).

The previous lemmas show that the towerW1 has a finite ramification locus
and a positive splitting rate, so it is a promising candidate for being asymptot-
ically good. In the next lemmas we determine the different exponents of the
ramified places in the tower.

Lemma 5.5. Let F = Fq(x, y) with y� + y = x�/(x�−1 + 1) be the basic
function field of the towerW1. Then the following holds:

i) Both extensions F/Fq(x) and F/Fq(y) are abelian extensions with degrees
[F : Fq(x)] = [F : Fq(y)] = �.

ii) Let P be a place of Fq(x) (or of Fq(y)) which is ramified in F . Then P
is totally ramified in F . If Q is the place of F above P , then the different
exponent of Q|P is d(Q|P ) = 2(�− 1) = 2(e(Q|P )− 1).

iii) Let � = pa where p = char(Fq) and a ≥ 1. Then there exist intermediate
fields in the extensions F/Fq(x) and F/Fq(y)

Fq(x) = M0 ⊆ . . . ⊆Ma = F and Fq(y) = L0 ⊆ . . . ⊆ La = F

with the following properties:

a) All extensions Mi+1/Mi and Li+1/Li are Galois of degree p.

b) If Pi is any place of the field Mi (resp. of Li) and Pi+1 is a place of
Mi+1 (resp. of Li+1) above Pi, then the different exponent of Pi+1|Pi

is given by d(Pi+1|Pi) = 2 · (e(Pi+1|Pi)− 1).

Proof. i) All solutions of the equation γ� + γ = 0 are in Fq, and the maps
y �→ y+γ yield � distinct automorphisms ofF over Fq(x). Hence the extension
F/Fq(x) is Galois of degree �, and the Galois group is abelian. The irreducible
equation between x and y can be rewritten as

(
1
x

)�

+
1
x

=
1

y� + y
(5.4)

and the same argument as above shows that the extension F/Fq(y) is also
abelian of degree �.
ii) For the extension F/Fq(x), the assertion follows from the theory of Artin-
Schreier extensions [48] and from the defining equation y�+y = x�/(x�−1+1);
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for the extension F/Fq(y) one considers Equation (5.4).
iii) The existence of intermediate fields Mi (resp. Li) with Property a) is clear,
from Galois theory. Property b) follows by induction from item ii) and from
the following claim:
Claim: LetN/L be an abelian extension of function fields over Fq with degree
satisfying [N : L] = pc, where p = char(Fq) and c ≥ 1, and let Q be a place
of N . Let M be an intermediate field and set P := Q ∩ L and R := Q ∩M .
Suppose that d(Q|P ) = 2 · (e(Q|P )− 1). Then it follows that

d(Q|R) = 2 · (e(Q|R)− 1) and d(R|P ) = 2 · (e(R|P )− 1).

Proof of the Claim: Hilbert’s different formula (see [48, p. 124]) implies that

d(Q|R) ≥ 2 · (e(Q|R)− 1) and d(R|P ) ≥ 2 · (e(R|P )− 1).

The transitivity of different exponents then yields

d(Q|P ) = e(Q|R) · d(R|P ) + d(Q|R)
≥ e(Q|R) · 2 · (e(R|P )− 1) + 2 · (e(Q|R)− 1) (5.5)

= 2 · (e(Q|P )− 1) = d(Q|P ).

Hence the inequality in (5.5) must be an equality, and the claim is proved. This
finishes also the proof of Lemma 5.5.

Lemma 5.6. Let W1 = (F0, F1, F2, . . .) be the tower over Fq which is recur-
sively defined by Equation (5.1). For n ≥ 1, let Q be a place of Fn and set
P = Q ∩ F0. Then

d(Q|P ) = 2 · (e(Q|P )− 1).

Proof. We refine the pyramid associated to the tower W1 with intermediate
fields of degree p, according to Lemma 5.5 iii). Figure 5.1 below illustrates this
refinement process:

For each extension of degree p on the bottom edges Fq(xn, xn+1)/Fq(xn)
or Fq(xn, xn+1)/Fq(xn+1) of this pyramid, the different exponents are either
2p − 2 or 0, as follows from Lemma 5.5. Climbing up the refined pyramid
(using Lemma 5.1 repeatedly) it follows that for any subextension of degree p
in the refined pyramid, the different exponents are either 2p−2 or 0. This holds
in particular along the left edge of the pyramid which represents the towerW1.
By the transitivity of different exponents, Lemma 5.6 now follows.
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Theorem 5.7. Let q = �2 be a square, and let W1 = (F0, F1, F2, . . .) be
the tower over Fq which is recursively defined by the equation Y � + Y =
X�/(X�−1 + 1). Then we have:

γ(W1) = �, ν(W1) = �2 − � and λ(W1) = �− 1.

In particular, the towerW1 attains the Drinfeld-Vladut bound and it is therefore
asymptotically optimal over Fq.

Proof. By Lemma 5.3, the ramification locus of the tower W1 has cardinality
#V (W1) = �+1. From Lemma 5.6 we have that for all placesP ∈ V (W1), all
n ≥ 1 and all places Q of Fn above P , the different exponent of Q|P satisfies
d(Q|P ) ≤ 2e(Q|P ). Now Theorem 3.8 gives the following upper bound for
the genus γ(W1) of the towerW1:

γ(W1) ≤ −1 +
1
2
· 2 · (�+ 1) = �.

The splitting rate ν(W1) satisfies ν(W1) ≥ �2 − �, by Lemma 4.4. Therefore

λ(W1) = ν(W1)/γ(W1) ≥ (�2 − �)/� = �− 1.

On the other hand, we have λ(W1) ≤ �− 1 by the Drinfeld-Vladut bound (see
Theorem 2.5). Hence λ(W1) = �− 1, γ(W1) = � and ν(W1) = �2 − �.

Remark 5.8. i) It follows from the Drinfeld-Vladut bound and from Theorem
5.7 that A(q) =

√
q − 1 if q is a square.
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ii) A detailed analysis of the ramification behaviour of the places P ∈ V (W1)
in the towerW1 yields a precise formula for the genus g(Fn) as follows:

g(Fn) =
{

(q(n+1)/2 − 1)2 for n ≡ 1 mod 2;
(qn/2 − 1)(q(n+2)/2 − 1) for n ≡ 0 mod 2.

(5.6)

The proof of Equation (5.6) is very technical and it requires subtle “pole order
reductions”, see [21]. If one just settles for the asymptotic result (i.e., for
the genus γ(W1) = � of the tower W1), the proof of Theorem 5.7 given here
(following the paper [26]) is much easier and shorter than the original one given
in [21].

5.2 The Tower W2

As in Section 5.1 let q = �2 be a square. For each divisor m ≥ 1 of (�+ 1),
we will construct here an asymptotically optimal tower W2 over Fq. In the
special case m = �+ 1, the towerW2 coincides with the first explicit example
in the literature attaining the Drinfeld-Vladut bound, which is the content of
the paper [20].

We start with the tower E = (E0, E1, E2, . . .) over Fq which is defined as
follows:

E0 = Fq(z0) is the rational function field,

E1 = E0(z1) = Fq(z1) with z�
1 + z1 = z0, and (5.7)

En+1 = En(zn+1) with z�
n+1 + zn+1 = z�

n/(z
�−1
n + 1), for all n ≥ 1.

It is clear that the tower (E1, E2, E3, . . .) is just the towerW1 that was discussed
in Section 5.1, and thatE0 ⊆ E1 is the subfieldE0 = Fq(z�

1 + z1) ⊆ Fq(z1) =
E1. The place (z0 = 0) of E0 splits completely in E1/E0 into the places
(z1 = α) of E1 with α� + α = 0. The place (z0 = ∞) is the only ramified
place in the extension E1/E0; its extension to E1 is the pole (z1 = ∞) of
z1, and the different exponent d of (z1 = ∞) over (z0 = ∞) is given by
d = 2(� − 1). Therefore the ramification locus of the tower E is (see Lemma
5.3)

V (E) = {(z0 = 0), (z0 =∞)}.

For a place P0 ∈ V (E), an integer n ≥ 1 and a place Q0 of the field En lying
above P0, we have

d(Q0|P0) = 2(e(Q0|P0)− 1). (5.8)

Equation (5.8) follows from Lemma 5.6 and the transitivity of different expo-
nents applied to the extensions E0 ⊆ E1 ⊆ En. Now we fix an integer m ≥ 1
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which is a divisor of (�+ 1) and we consider the fields

F0 := Fq(x0) with xm
0 = z0, and

(5.9)

Fn := F0 · En for all n ≥ 1.

It is obvious that we thus obtain a tower

W2 := (F0, F1, F2, . . .) over Fq.

Figure 5.2 illustrates the towers E andW2:

For all i ≥ 0, the degrees of the field extensions in Figure 5.2 are

[Fi+1 : Fi] = [Ei+1 : Ei] = � and [Fi : Ei] = m.

Theorem 5.9. Let q = �2 be a square and let m ≥ 1 be a divisor of (� + 1).
Then the towerW2 over Fq which is defined by (5.7) and (5.9) is asymptotically
optimal; i.e., its limit is λ(W2) = � − 1, and it attains therefore the Drinfeld-
Vladut bound.

Proof. We consider the two towers E andW2 as illustrated in Figure 5.2. From
the equation xm

0 = z0 it follows that in the extension F0/E0 just the two places
(z0 = 0) and (z0 = ∞) are (totally and tamely) ramified; the places of F0
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above them are the places (x0 = 0) and (x0 = ∞), respectively. All other
places of E0 are unramified in F0/E0. Since the tower E has the ramification
locus V (E) = {(z0 = 0), (z0 = ∞)}, we conclude that the tower W2 has
ramification locus

V (W2) = {(x0 = 0), (x0 = ∞)}.

Let P ∈ V (W2) and let Q be a place of Fn lying above P . Set P0 = P ∩ E0,
Q0 = Q ∩ En and e = e(Q0|P0). Since the ramification index e(Q0|P0) is a
power of the characteristic p and sincem is a divisor of (�+1), it follows from
Abhyankar’s lemma that we have the following situation:

We now calculate the different exponent d(Q|P0) in two different ways,
using the transitivity of different exponents:

d(Q|P0) = e · d(P |P0) + d(Q|P ) = e · (m− 1) + d(Q|P ),

d(Q|P0) = m · d(Q0|P0) + d(Q|Q0) = m · (2e− 2) + (m− 1).

In the last equality above we have used Equation (5.8). Hence

d(Q|P ) = m · (2e− 2) + (m− 1)− e(m− 1) = (m+ 1)(e− 1). (5.10)

Now using Theorem 3.8 with cP = m + 1 (see Equation (5.10)) one gets an
upper bound for the genus of the towerW2 as follows:

γ(W2) ≤ −1 +
1
2
· 2 · (m+ 1) = m. (5.11)

Next we determine the splitting locus Z(W2) of the tower W2. From Lemma
5.4 and from the equation z�

1 + z1 = z0, it is obvious that the splitting locus of
the tower E is

Z(E) = {(z0 = α) | α ∈ F� and α �= 0} = {(z0 = α) | α�−1 = 1}.
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For α ∈ F� \ {0}, the equation βm = α has m distinct roots β ∈ Fq, since m
is a divisor of (�+ 1). Therefore all places in Z(E) split completely in F0/E0

and hence we have

Z(W2) ⊇ {(x0 = β) | βm(�−1) = 1}.

This implies that the splitting rate ν(W2) satisfies the inequality

ν(W2) ≥ m · (�− 1). (5.12)

We conclude from (5.11) and (5.12) that

λ(W2) = ν(W2)/γ(W2) ≥ m · (�− 1)/m = �− 1,

hence λ(W2) = �− 1 and the towerW2 is asymptotically optimal.

Remark 5.10. We consider the special casem = �+1 and we define for n ≥ 1
the elements xn ∈ Fn recursively by

xn := zn/xn−1. (5.13)

It follows from the defining equations (5.7) and (5.9) of the tower W2 that the
following relation holds:

z�
n+1 + zn+1 = x�+1

n , for all n ≥ 0. (5.14)

Equations (5.13) and (5.14) are just the defining equations of the asymp-
totically optimal tower in the paper [20]. We have thus obtained a new (and
much simpler) proof of the main result of [20], which states that γ(W2) =
�+ 1 in the case m = �+ 1.

5.3 The Tower W3

We describe now another wild tower which was investigated in detail in the
paper [9]. As before, let q = �2 be a square. Our starting point is the tower
W1 from Section 5.1 which is given recursively by Y � +Y = X�/(X�−1 +1).
So W1 = (L0, L1, L2, . . .) where L0 = Fq(t0) and for each n ≥ 0, Ln+1 =
Ln(tn+1) with the relation

t�n+1 + tn+1 = t�n/(t
�−1
n + 1). (5.15)

Defining the function xn ∈ Ln by xn := (t�−1
n + 1)−1, a straightforward

calculation shows that the equation below holds (for all n ≥ 0):

xn+1 − 1
x�

n+1

=
x�

n − 1
xn

. (5.16)
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We setFn := Fq(x0, x1, . . . , xn) and thus obtain a subtowerW3 = (F0, F1, . . .)
of the towerW1. As follows from Proposition 3.6, the towerW3 is also an as-
ymptotically optimal tower over Fq. We summarize these results in the next
theorem:

Theorem 5.11. Let q = �2 be a square. Then the equation

Y − 1
Y �

=
X� − 1
X

(5.17)

defines recursively a towerW3 = (F0, F1, F2, . . .) over Fq withλ(W3) = �−1;
i.e., the towerW3 attains the Drinfeld-Vladut bound.

Remark 5.12. i) The tower W3 has some interesting features. While in the
towers W1 and W2 all steps Fi+1/Fi are Galois, this is not true for the tower
W3 (if � �= 2). Also, if � �= 2 there occurs both wild and tame ramification in
the tower W3. As before (see Remark 5.8) an explicit formula for the genus
g(Fn) requires subtle “pole order reductions” (see [9] for details).
ii) One can show that the tower W3 is the same as the tower in [16, Equation
(25)], where it is proved that the towers W1,W2 and W3 above are Drinfeld
modular.

5.4 The Tower W4

It seems to be more difficult to exhibit asymptotically good wild towers over
finite fields with non-square cardinalities. The first explicit example was found
by van der Geer - van der Vlugt [30]; it is a tower over the field with eight
elements. We present now their example, giving a simplified proof for the limit
of the tower. The van der Geer - van der Vlugt tower W4 = (F0, F1, F2, . . .)
over the field F8 is recursively defined by the equation

Y 2 + Y = X + 1 + 1/X. (5.18)

Lemma 5.13. Equation (5.18) defines a tower W4 over the field F8. We have
[Fn : F0] = 2n for all n ≥ 0, and the pole P∞ of the function x0 is totally
ramified in all extensions Fn/F0.

Proof. Similar to the proof of Lemma 5.2.

We want to apply Proposition 3.13 to determine the splitting locus Z(W4)
of the towerW4.

Lemma 5.14. We have Z(W4) ⊇ {(x0 = α) | α ∈ F8 \ F2}. Hence the
splitting rate satisfies ν(W4) ≥ 6.

Proof. Consider the basic function fieldF = F8(x, y) with y2+y = x+1+1/x
and the set

S := F8 \ F2 = {α ∈ F8 | α6 + α5 + α4 + α3 + α2 + α+ 1 = 0}.



A. Garcia and H. Stichtenoth 43

Let α ∈ S and consider the solutions β ∈ F8 of the equation β2 + β =
α+ 1 + α−1. Then one has

β2 +β = α+1+α−1, β4 +β2 = α2 +1+α−2 and β8 +β4 = α4 +1+α−4.

Adding these equations we obtain

β8 + β = α4 + α2 + α+ 1 + α−1 + α−2 + α−4

= α−4(α8 + α6 + α5 + α4 + α3 + α2 + 1)
= α−4(α6 + α5 + α4 + α3 + α2 + α+ 1) = 0.

Hence β ∈ F8, so Condition a) of Proposition 3.13 is satisfied. It is also clear
that β �= 0, 1, since otherwise α + 1 + α−1 = 0 and then α �∈ F8. So we
have β ∈ S and also Condition b) of Proposition 3.13 holds. Now Lemma 5.14
follows from Proposition 3.13.

Next we determine the ramification locus V (W4) of the towerW4.

Lemma 5.15. We have V (W4) ⊆ {(x0 = α) | α ∈ F4 or α =∞}.

Proof. We use here Proposition 3.10. Let F = F8(x, y) be the basic function
field of the tower W4 with y2 + y = x + 1 + 1/x. Only the places (x = 0)
and (x = ∞) are ramified in the extension F/F8(x), so the set R0 as defined
in (3.2) is R0 = {0,∞}. Let β ∈ R := F4 ∪ {∞}, and let α ∈ F8 ∪ {∞} be a
solution of the equation

β2 + β = α+ 1 + α−1.

If β = ∞, then α = 0 or α = ∞. If β ∈ F4, then β2 + β ∈ F2 and α satisfies
an equation of degree 2 over F2, hence α ∈ F4. In all cases we have proved that
α ∈ R. Now the assertion of Lemma 5.15 follows from Proposition 3.10.

In fact it is an easy exercise to prove that the ramification locus V (W4) is
equal to the set {(x0 = α) | α ∈ F4 or α = ∞}: for example, there is a place
P of F2 such that x0(P ) = 1, x1(P ) ∈ F4 \ F2 and x2(P ) = 0; this place is
then ramified in the extension F3/F2.

We also have an analogue to Lemma 5.5 for the basic function field associated
to the towerW4:

Lemma 5.16. Let F = F8(x, y) with y2 + y = x + 1 + 1/x be the basic
function field of the tower W4. Then both extensions F/F8(x) and F/F8(y)
are Galois of degree 2. If P is a place of F8(x) (or of F8(y)) which is ramified
in F , and if Q is the place of F lying above P , then the different exponent of
Q|P is d(Q|P ) = 2.



44 Towers of Function Fields

Proof. This follows immediately from the two equations below (see [48, p.115]):

y2 + y = x+ 1 + 1/x and

(
x

x+ 1

)2

+
(

x

x+ 1

)

=
1

y2 + y + 1
.

Theorem 5.17. The tower W4 over F8, which is recursively defined by the
equation Y 2 + Y = X + 1 + 1/X , is asymptotically good. Its limit λ(W4)
satisfies

λ(W4) ≥ 3/2.

It follows in particular that Ihara’s quantity A(q) for q = 8 satisfies the in-
equality A(8) ≥ 3/2.

Proof. LetW4 = (F0, F1, F2, . . .), let Q be a place of Fn and let P = Q∩F0

be the place of F0 belowQ. As in Lemma 5.6, it follows from Lemma 5.16 that
the different exponent ofQ|P is d(Q|P ) = 2(e(Q|P )− 1). Now Theorem 3.8
with cP = 2 and Lemma 5.15 yield

γ(W4) ≤ −1 +
1
2
· 5 · 2 = 4.

By Lemma 4.14 we have ν(W4) ≥ 6 and hence

λ(W4) = ν(W4)/γ(W4) ≥ 6/4 = 3/2.

Remark 5.18. i) One can calculate precisely the genus of all fields Fn in
the tower W4. These calculations are long and very technical, see [30]. For
instance, one obtains the formula

g(Fn) = 2n+1 + 1− (n+ 2 · [n/4] + 15) · 2(n−3)/2

for n ≡ 1 mod 2.
ii) For p a prime number, one has the following lower bound for the quantity
A(p3) which is due to Zink (see [61]):

A(p3) ≥ 2(p2 − 1)/(p+ 2).

So the towerW4 gives a proof of this bound in the particular case p = 2.
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5.5 The Tower W5

Our last example of an asymptotically good wild tower is a generalization of
the van der Geer - van der Vlugt tower presented in Section 5.4. It was studied
in detail in [8]. The constant field Fq has now cubic cardinality; i.e.,

q = �3 for some prime power �.

We define the towerW5 over Fq recursively by the equation

Y � − Y �−1 = 1−X +X−(�−1). (5.19)

For � = 2 this equation is the same as the defining equation (see Equation
(5.18)) of the towerW4. The tower in [8] is given recursively by

1− V
V �

=
U � + U − 1

U
. (5.20)

The change of variables X = U−1 and Y = V −1 shows that Equation (5.19)
and Equation (5.20) define in fact the same tower.

It is easily seen that Equation (5.19) defines a tower; the proof is similar to
the proof of Lemma 5.2. In order to determine the splitting locus Z(W5) we
rewrite Equation (5.19) as follows:

f(Y ) = 1− 1

f

(
X

X − 1

) with f(T ) := T � − T �−1. (5.21)

One verifies easily that the polynomial f(T ) satisfies the equation

T · (f(T )�+1 − f(T ) + 1) = (T − 1)�2+�+1 + 1. (5.22)

We are going to use Proposition 3.13 and therefore we consider the set

S := {α ∈ Fq | (α− 1)�2+�+1 = −1} \ {0}. (5.23)

Since q = �3, it is clear that S ⊆ Fq. From Equation (5.22) it follows that

S = {α ∈ Fq | f(α)�+1 − f(α) + 1 = 0}. (5.24)

Using (5.23) one checks that

α ∈ S =⇒ α

α− 1
∈ S. (5.25)

Take now an element α ∈ S and let β ∈ Fq be such that

β� − β�−1 = 1− α+ α−(�−1).
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Setting δ := α/(α− 1) we then have

f(β) = 1− 1
f(δ)

with δ ∈ S,

by (5.21) and (5.25). Therefore from Equation (5.24) we have

f(β)�+1 − f(β) + 1 =
(

1− 1
f(δ)

)�+1

+
1

f(δ)

=
1

f(δ)�+1
(f(δ)�+1 − f(δ) + 1) = 0.

It follows that β ∈ S, and we conclude from Proposition 3.13:

Lemma 5.19. All places (x0 = α) with (α − 1)�2+�+1 = −1 and α �= 0
split completely in the tower W5. In particular we have that the splitting rate
satisfies

ν(W5) ≥ �2 + �.

It is much more difficult to determine the genus γ(W5) of the towerW5. For
the proof of the following result we refer to [8].

Theorem 5.20. Let q = �3 where � is any prime power, and letW5 be the tower
over Fq which is recursively defined by the equation

Y � − Y �−1 = 1−X +X−(�−1).

Then we have

γ(W5) =
�2 + 2�
2(�− 1)

, ν(W5) ≥ �2 + � and λ(W5) ≥
2(�2 − 1)
�+ 2

.

Corollary 5.21. For any cubic prime power q = �3 one has

A(�3) ≥ 2(�2 − 1)
�+ 2

.

Remark 5.22. i) If � = p is a prime number, Corollary 5.21 is Zink’s lower
bound for A(p3) which was first obtained by considering degenerations of cer-
tain modular surfaces, see [61].

ii) The ramification behaviour of the towerW5 is rather complicated, see [8] and
[30]. For the case � �= 2, all stepsFn+1/Fn in the towerW5 = (F0, F1, F2, . . .)
are non-Galois. In this case, some places are wildly ramified and some others
are tamely ramified. Again here the detailed analysis of the different exponents
of the ramified places gives an exact formula for the genus g(Fn) of all function
fields Fn in the towerW5.
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6. Miscellaneous Results
In this section we discuss some specific aspects of towers, and in particular

6.1 Genus and Different Degree

Let F = (F0, F1, F2, . . .) be a tower of function fields over Fq. Then the
field extensions Fn+1/Fn are separable of degree [Fn+1 : Fn] > 1, for all

n) is related to the degree of the different Diff(Fn/F0)
by the Hurwitz genus formula. We want to explore this relation in detail. For all

n the degree of the different of the extension Fn/Fn−1:

Dn := deg Diff(Fn/Fn−1).

Theorem 6.1. Let F = (F0, F1, F2, . . .) be a tower of function fields over
Fq. Suppose that there exists a constant ε ∈ R with 0 ≤ ε < 1 such that the
following inequality holds:

Dn ≤ ε · [Fn : Fn−1] ·Dn−1 , for all n ≥ 2. (6.1)

Then the genus γ(F) of the tower F is finite and the estimate below holds:

γ(F) ≤ g(F0)− 1 +
D1

2(1− ε) · [F1 : F0]
.

Proof. It follows immediately from (6.1) and from the transitivity of the dif-
ferent that the following inequality

deg Diff(Fn/F0) ≤




n−1∑

j=0

ε j



 ·D1 · [Fn : F1]

holds, for all n ≥ 1. Using Hurwitz genus formula, we then have:

2g(Fn)− 2 = [Fn : F0](2g(F0)− 2) + deg Diff(Fn/F0)

≤ [Fn : F0] ·



2g(F0)− 2 +
D1

[F1 : F0]
·

n−1∑

j=0

ε j





≤ [Fn : F0] ·
(

2g(F0)− 2 +
D1

(1− ε)[F1 : F0]

)

.

the asymptotic behaviour of the genus of a tower. The results of Sections 6.1-

n ≥ 0. The genus g(F

Section 6.4 we present some classification results for Artin-Schreier towers.

n ≥ 1, we denote by D

6.3 often lead to a quick decision about asymptotical badness of a tower. In



48 Towers of Function Fields

Hence we obtain the desired estimate:

γ(F) = lim
n→∞

g(Fn)
[Fn : F0]

≤ g(F0)− 1 +
D1

2(1− ε) · [F1 : F0]
.

A counterpart to Theorem 6.1 is the following result.

Theorem 6.2. Let F = (F0, F1, F2, . . .) be a tower over Fq. Suppose that
there exist positive real numbers ρ1, ρ2, . . . with the following properties:

a) ρn ≤ Dn = deg Diff(Fn/Fn−1), for all n ≥ 1.

b) ρn ≥ [Fn : Fn−1] · ρn−1 , for all n ≥ 2.

Then the genus of the tower is infinite. In particular the tower is asymptotically
bad; i.e., its limit satisfies λ(F) = 0.

Proof. Using again the transitivity of the different, one shows by induction that

deg Diff(Fn/F0) ≥ [Fn : F1] · n · ρ1, for all n ≥ 1.

Therefore from Hurwitz genus formula, we have that

2g(Fn)− 2 ≥ [Fn : F0](2g(F0)− 2) + [Fn : F1] · n · ρ1.

Dividing this inequality by [Fn : F0] and letting n→∞, we see that the genus
of the tower satisfies γ(F) = limn→∞ g(Fn)/[Fn : F0] = ∞.

6.2 Skew Towers are Bad

LetF be a recursive tower with defining equation f(X,Y ) = 0. Considering
the examples of asymptotically good towers in Section 4 and Section 5 one notes
in all cases that degX f(X,Y ) = degY f(X,Y ). This is in fact a necessary
condition for the tower to be asymptotically good:

Theorem 6.3. (see [23]). Let F = (F0, F1, F2, . . .) be a recursive tower over
Fq defined by the equation f(X,Y ) = 0. If degX f(X,Y ) �= degY f(X,Y ),
then λ(F) = 0; i.e., the tower F is asymptotically bad.

Proof. We set a := degY f and b := degX f . It follows from the definition of
a recursive tower (see Definition 2.8) that [Fn+1 : Fn] = a and hence we have
(for all n ≥ 1):

[Fn : F0] = an and [Fn : Fq(xn)] = bn. (6.2)

This means that the pyramid (see Figure 2.1) attached to the towerF is “skew”.
Now we distinguish the cases a > b and a < b.
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Case 1: a > b. Considering the extension Fn/Fq(xn), we see from (6.2) that
N(Fn) ≤ bn(q + 1). Therefore the splitting rate ν(F) satisfies

ν(F) = lim
n→∞

N(Fn)/[Fn : F0] ≤ lim
n→∞

(q + 1) · (b/a)n = 0.

By Corollary 3.5, the tower is then asymptotically bad.

Case 2: a < b. Fix an index r ≥ 0 such that g(Fr) ≥ 2. For n ≥ r we
consider the fieldEr := Fq(xn, xn−1, . . . , xn−r) ⊆ Fn which is isomorphic to
Fr. The Hurwitz genus formula for the extension Fn/Er gives

2g(Fn)− 2 ≥ (2g(Er)− 2) · [Fn : Er] ≥ 2bn−r,

hence g(Fn) ≥ bn−r. It follows that the genus γ(F) satisfies

γ(F) = lim
n→∞

g(Fn)/[Fn : F0] ≥ lim
n→∞

bn−r/an =∞.

By Corollary 3.5, the tower F is asymptotically bad.

Example 6.4. As an application of Theorem 6.3 we investigate a generalization
of the tower W1 which was discussed in Section 5.1. Let q = �s where � is a
prime power and s ≥ 2. Let

τ(T ) := T + T � + . . .+ T �s−1
and µ(T ) := T 1+�+...+�s−1

.

The polynomial τ(T ) (resp. µ(T )) represents the trace map (resp. the norm
map) from Fq to its subfield F�. We then consider the tower F over Fq which
is defined recursively by the equation

τ(Y ) =
µ(X)
τ(X)

. (6.3)

Observe that Equation (6.3) coincides with Equation (5.1) in the particular case
q = �2. As in Section 5.1 one can easily show that Equation (6.3) indeed defines
a recursive tower F = (F0, F1, F2, . . .) over the field Fq with the following
properties:

i) For all n ≥ 0, the extension Fn+1/Fn is Galois of degree [Fn+1 : Fn] =
�s−1 (cf. Lemma 5.2).

ii) All places (x0 = α) with α ∈ Fq and τ(α) �= 0 are completely splitting in
the tower F (cf. Lemma 5.4).

For s = 2, the tower is asymptotically optimal over Fq (see Theorem 5.7). For
s ≥ 3 however, the tower is asymptotically bad. This follows from Theorem
6.3, since the degree of the left hand side of Equation (6.3) is deg τ(Y ) = �s−1,
and the right hand side ψ(X) = µ(X)/τ(X) of Equation (6.3) has degree

degψ(X) = �s−1 + �s−2 + . . .+ � �= deg τ(Y ).

The last inequality above follows since s ≥ 3.
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6.3 The Dual Tower

In this section we consider recursive towers. To such a tower F we shall
associate another tower G (called the dual tower of F), and we shall study
relationships between F and G. The results of this section are from [6].

Definition 6.5. Let F be a recursive tower over Fq which is defined by the
polynomial f(X,Y ) ∈ Fq[X,Y ]. Then its dual tower G is the tower which is
defined recursively by the polynomial f(Y,X).

Definition 6.5 means that F = (F0, F1, F2, . . .) and G = (G0, G1, G2, . . .)
where

Fn = Fq(x0, x1, . . . , xn) with f(xi, xi+1) = 0,

Gn = Fq(y0, y1, . . . , yn) with f(yi+1, yi) = 0,

for all n ≥ 1 and all indices i with 0 ≤ i ≤ n − 1. We identify the rational
function fields F0 = Fq(x0) and G0 = Fq(y0) by setting x0 = y0, and then we
have the following picture:

It is clear that the function fields Fn and Gn are isomorphic, for all n ≥ 0 ;
henceN(Fn) = N(Gn) and g(Fn) = g(Gn). It follows that the towersF andG
have the same limit λ(F) = λ(G). Moreover, assuming that degX f(X,Y ) =
degY f(X,Y ), which is a natural assumption (see Theorem 6.3), then one also
has

γ(F) = γ(G) and ν(F) = ν(G).
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Recall that the ramification locus of the tower F is defined as (see Definition
3.7)

V (F) = {P | P is a place of F0 which ramifies in F}.

We also define the wild ramification locus Vw(F) as follows:

Vw(F) := {P | P is a place of F0 which is wildly ramified in F}.

So a place P of F0 belongs to Vw(F) if and only if there is some n ≥ 1 and
some place Q of Fn lying above P such that the ramification index e(Q|P ) is
divisible by the characteristic of Fq.

Theorem 6.6. (see [6, 57]). Suppose that F is a recursive tower, given recur-
sively by the polynomial f(X,Y ). LetG be the dual tower ofF and assume that
degX f(X,Y ) = degY f(X,Y ). If the tower F has finite genus γ(F) < ∞,
then it follows that

V (F) = V (G) and Vw(F) = Vw(G).

Proof. We will prove here only the equality of the ramification loci V (F) =
V (G); the assertion about the wild ramification loci is proved similarly (see
[6]). We use all notations introduced above, cf. Figure 6.1. Suppose that
V (F) �= V (G); then we must show that the genus of the tower F satisfies
γ(F) = ∞. By symmetry, we can assume that there exists a place P of the
function field F0 = G0 which is ramified in the tower F , but it is unramified
in the dual tower G. Since the genera g(Fn), g(Gn) and the extension degrees
[Fn+1 : Fn] do not change under constant field extensions (see [48, p. 101 ff.]),
we can replace the constant field Fq by its algebraic closure Fq and we then
assume that the fields Fn andGn in the towers F and G are function fields over
Fq.

The place P above is now a rational place of the function field F0. We fix
k ≥ 1 and a place Q of Fk lying above P such that e(Q|P ) ≥ 2 (this exists
since P is ramified in the tower F). Let m ≥ 1 and set Hm := Gm · Fk. We
have the following picture:
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Setting a := [F1 : F0] = [G1 : F0] (note that degXf = degY f ) we then have
[Gm : F0] = [Hm : Fk] = am and [Fk : F0] = [Hm : Gm] = ak. The place
Q of Fk splits completely in the extension Hm/Fk, since P splits completely
in the extension Gm/F0 (here we used that P is unramified in the tower G,
and that the constant field is algebraically closed). Denote by Ri the places
of Hm above Q (for i = 1, . . . , am), and by Si := Ri ∩ Gm the restriction
of Ri to the field Gm. Note that the places Si for i = 1, 2, . . . , am are not
necessarily distinct. Since Si/P is unramified, it follows that the ramification
index ẽ ofRi|Si is ẽ = e(Ri|Si) = e(Q|P ) ≥ 2 (see Figure 6.2). In particular,
the different degree of the extension Hm/Gm satisfies

deg Diff(Hm/Gm) ≥
am
∑

i=1

d(Ri|Si) ≥ am.

Observe now that we have field isomorphisms Hm 	 Fm+k and Gm 	 Fm;
together with the above inequality, this implies for all m ≥ 0 the inequality

deg Diff(Fm+k/Fm) ≥ am. (6.4)

Now we consider the tower E = (E0, E1, E2, . . .) where Ei := Fk·i for all
i ≥ 0. It is clear that γ(F) = γ(E) and that [Ei+1 : Ei] = ak for all i ≥ 0. By
(6.4) we have for all n ≥ 1 the inequality

deg Diff(En/En−1) ≥ ak(n−1).

Taking ρn := ak(n−1), it follows immediately from Theorem 6.2 that γ(E) =
∞, and we then conclude that γ(F) = ∞.
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We illustrate the use of Theorem 6.6 with the following example.

Example 6.7. Let q = p3 and consider the tower F = (F0, F1, F2, . . .) over
Fq which is defined recursively by the equation

Y p+1 − Y + 1 =
Xp+1 −X + 1

Xp
. (6.5)

One can easily show that Equation (6.5) defines indeed a recursive tower. Let
G denote the dual tower of F . The following properties of the towers F and G
are easily checked:

a) V (F) = V (G) = {(x0 = 0), (x0 = 1), (x0 = ∞)}.

b) All places (x0 = α) of F0 with αp+1 − α + 1 = 0 split completely in the
tower F (note here that all roots of Xp+1 −X + 1 = 0 are in Fq).

By Property b), the splitting rate ν(F) is at least p + 1, and by Property a)
the ramification locus of the tower F is finite. So the tower F is a promising
candidate for being asymptotically good over the cubic field Fq with q = p3.
However, the place (x0 = ∞) of F0 = G0 is tame in F and it is wild in the
dual tower G. Now it follows from Theorem 6.6 that the genus of F satisfies
γ(F) = ∞, and hence the tower F is asymptotically bad.

6.4 Classification of Recursive Artin-Schreier Towers

Let p = char(Fq). A polynomial ϕ(T ) = T pk
+ ak−1T

pk−1
+ . . .+ a0T ∈

Fq[T ] is called an additive polynomial; it is separable if and only if a0 �= 0.
We say that a tower F = (F0, F1, F2, . . .) over Fq is a recursive Artin-Schreier
tower of degree pk if F is defined recursively by an equation ϕ(Y ) = ψ(X),
with ϕ(Y ) ∈ Fq[Y ] a separable monic additive polynomial of degree pk and
with ψ(X) ∈ Fq(X). Assuming that all roots of the polynomial ϕ(T ) belong
to Fq, then all steps Fn/Fn−1 of the above tower are Galois extensions of
degree pk, each step having an elementary abelian Galois group of exponent p.
Note that some of the asymptotically good wild towers which were presented
in Section 5 are recursive Artin-Schreier towers.

Here we restrict our attention to recursive Artin-Schreier towers F over Fq

of prime degree p. So F is defined recursively by an equation of the form

ϕ(Y ) = Y p + aY = ψ(X), (6.6)

with 0 �= a ∈ Fq and with a rational function ψ(X) ∈ Fq(X). The following
theorem shows that ifF is asymptotically good, then the rational functionψ(X)
must be of a very special form.
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Theorem 6.8. Suppose that F is an asymptotically good Artin-Schreier tower
over Fq which is recursively defined by Equation (6.6). Then the rational
function ψ(X) is of one of the following three types:

i) ψ(X) = (X−b)p/ψ1(X)+c, with elements b, c ∈ Fq and with a polynomial
ψ1(X) ∈ Fq[X] \ Fq[Xp] of degree degψ1(X) ≤ p satisfying ψ1(b) �= 0.

ii) ψ(X) = ψ0(X)/(X − b)p, with an element b ∈ Fq and with a polynomial
ψ0(X) ∈ Fq[X] \ Fq[Xp] of degree degψ0(X) ≤ p satisfying ψ0(b) �= 0.

iii) ψ(X) = 1/ψ1(X) + c, with an element c ∈ Fq and with a polynomial
ψ1(X) ∈ Fq[X] \ Fq[Xp] of degree degψ1(X) = p.

For the proof of Theorem 6.8 we refer to [4]. Note that the examples in
Section 5 of asymptotically good recursive Artin-Schreier towers are all of
Type i). We do not know any example of an asymptotically good tower of Type
ii) or Type iii).

6.5 h-Towers

We finish this review on towers of algebraic function fields over finite fields
with another observation about recursive towers: many of the asymptotically
good recursive towers known in the literature are so-called h-towers. This
means that there exist a rational function h(T ) and two fractional linear trans-
formations A and B in Fq(T ) such that the tower is defined recursively by the
equation

h(Y ) = Ah(BX). (6.7)

For instance, the towers T1, T2 and T3 in Section 3 and the towersW1,W3,W4

andW5 in Section 5 are h-towers for an appropriate choice of functions h(T ) ∈
Fq(T ).

In [7] some conditions for a tower to be anh-tower are investigated, especially
for towers of Kummer or Artin-Schreier type. The transformation of a recursive
tower (whenever possible) to a form as in Equation (6.7) is often desirable since
it may facilitate both the consideration of the genus and of the splitting rate of
the tower.
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[40] H. Niederreiter and F. Özbudak, “Constructive asymptotic codes with an improvement
on the Tsfasman-Vladut-Zink and Xing bound”, Coding, Cryptography and Combina-
torics (eds. K. Q. Feng et al.), Progress in Computer Science and Applied Logic, Vol. 23,
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Chapter 2

FUNCTION FIELDS OVER FINITE FIELDS
AND THEIR APPLICATIONS TO CRYPTOGRAPHY

Harald Niederreiter, Huaxiong Wang and Chaoping Xing

1. Introduction

It is well known that algebraic function fields over finite fields have many
applications in coding theory, and the latter is closely related to cryptography.
This has led researchers in a natural way to consider methods based on some
specified function fields in order to construct cryptographic schemes, such as
schemes for unconditionally secure authentication, traitor tracing, secret shar-
ing, broadcast encryption and secure multicast, just to mention a few.

There is no doubt that the sophisticated techniques of function fields and their
cryptographic applications have become a new, promising research direction.
Over the past few years, a lot of research in this new direction has been carried
out and the results are fruitful.

This paper surveys some initial efforts in this new emerging direction. We
describe several interesting links among function fields, cryptography and com-
binatorics. As examples we show that constructions based on function fields for
authentication codes, frameproof codes, perfect hash families, cover-free fami-
lies and sequences with high linear complexity outperform the previously exist-
ing results, thus yielding in turn, directly or indirectly, cryptographic schemes
with better performance.

It should be noted that this paper is far from exhaustive, as it presents only
a portion of results that appeared in the literature. We hope that the paper will
nevertheless stimulate further research in this new and promising direction of
applying function fields to cryptography.
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2. Applications to Combinatorial Cryptography
In this section, we will present several interesting applications of function

fields over finite fields to the construction of unconditionally secure authenti-
cation codes, frameproof codes, perfect hash families and cover-free families.

2.1 Constructions of Authentication Codes
One fundamental goal in cryptography is to ensure integrity of sensitive data,

which simply means providing assurance about the content and origin of the
communicated and/or stored data. Data integrity is accomplished by means
such as digital signature schemes and message authentication codes. In a digi-
tal signature scheme the signature is generated using the secret key of the signer,
and the authenticity is verified by a public verification algorithm. The secu-
rity of signature schemes relies on some assumed computational complexity of
problems such as the discrete logarithm and factorisation problems. A message
authentication code (or MAC), on the other hand, is a private-key based cryp-
tosystem, requiring to share a secret key between a sender and a receiver ahead
of the communication. A typical example of a MAC is constructed by using
block ciphers (e.g., DES or AES) in the cipher block chaining (CBC) mode. The
MACs based on block ciphers are generally much faster than digital signature
schemes, but there is no known proof of security, not even one based on a plau-
sible computational assumption. However, it is possible to construct MACs that
can be proved secure, without any computational assumptions. Such MACs are
usually called unconditionally secure authentication codes, or authentication
codes, or simply A-codes for short.

Unconditionally secure A-codes were invented by Gilbert, MacWilliams and
Sloane [27]. The general theory of unconditional authentication was developed
by Simmons ([59, 60]) and has been extensively studied in the past 25 years.

In the model for unconditional authentication, there are three participants: a
transmitter, a receiver and an opponent. The transmitter wants to communicate
some information to the receiver using a public channel which is subject to
active attack. That is, the opponent can create a forged message and insert it
into the channel. To protect against this threat, the transmitter and the receiver
share a secret key which is then used in an authentication code.

A systematic A-code (or A-code without secrecy) is a code where the source
state (i.e. plaintext) is concatenated with an authenticator (or a tag) to obtain a
message which is sent through the channel. Such a code is a triple (S, E , T ) of
nonempty finite sets together with an authentication mapping f : S × E → T .
Here S is the set of source states, E is the set of keys and T is the set of
authenticators. When the transmitter wants to send the information s ∈ S
using a key e ∈ E , which is secretly shared with the receiver, he transmits the
message m = (s, t), where s ∈ S and t = f(s, e) ∈ T . When the receiver
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gets a message m = (s, t), she checks the authenticity by verifying whether
t = f(s, e) or not, using the secret key e ∈ E .

The security of an A-code is measured by an opponent’s deception probabil-
ity. Suppose an opponent sees a sequence of i ≥ 0 authenticated messages, all
of which are authenticated using the same key. Then the opponent creates a new
forged message, which he hopes is accepted by the receiver as authentic. For
simplicity we only consider two typical attacks in the unconditionally secure
authentication model. Suppose the opponent has the ability to insert messages
into the channel and/or to modify existing messages. When the opponent in-
serts a new message m′ = (s′, t′) into the channel, this is called impersonation
attack. When the opponent sees a message m = (s, t) and changes it to a
message m′ = (s′, t′) where s �= s′, this is called substitution attack. We say
a message (s, t) is valid if there exists a key e ∈ E such that t = f(s, e).

We assume that there is a probability distribution on the source states which
is known to all the participants. Given the probability distribution on the source
states, the receiver and the transmitter will choose a probability distribution
for E . Denote the probability of success for the opponent when trying imper-
sonation attack and substitution attack by PI and PS , respectively, and P (·)
and P (·|·) specify probability and conditional probability distribution on the
message spaceM. Then we have

PI = max
s,t

P (m = (s, t) valid ),

PS = max
s,t

max
s′ �=s

t′
P (m′ = (s′, t′) valid |m = (s, t) observed ).

If we further assume that the keys and the source states are uniformly dis-
tributed, then the deception probabilities can be expressed as

PI = max
s,t

|{e ∈ E : t = f(s, e)}|
|E| ,

PS = max
s,t

max
s′ �=s

t′

|{e ∈ E : t = f(s, e), t′ = f(s′, e)}|
|{e ∈ E : t = f(s, e)}| .

For the sake of simplicity, we will always assume that the keys and the source
states are uniformly distributed.

For an A-code (S, E , T ), where S is a set of k source states and T is a set
of � authenticators, it is known [63] that PI ≥ 1/� and PS ≥ 1/�. Codes with
PI = PS = 1/� have been known to be equivalent to orthogonal arrays. That
is, we have the following result.

Lemma 2.1 ([63]). Suppose we have an A-code (S, E , T ) without secrecy for
k source states and having � authenticators in which PI = PS = 1/�. Then
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|E| ≥ k(�− 1)+1 and equality occurs if and only if there exists an orthogonal
array OA(�, k, λ), where λ = (k(�− 1) + 1)/�2.

The goal of authentication theory is to derive bounds for various parameters
in A-codes and to construct A-codes with desired properties. For reviews of
different bounds and constructions for A-codes, we refer to [31, 32, 63].

One of the most powerful tools to construct A-codes is universal hash fami-
lies introduced by Carter and Wegman [12] in 1979. It is worth mentioning that
universal hash families have also found numerous applications in computer sci-
ence, such as in complexity theory, search algorithms and information retrieval,
to mention a few. We refer to [65] for a good account of the development in
this field.

Consider a hash familyH, which is a set ofN functions such that h : A→ B
for each h ∈ H, where |A| = k and |B| = �. There will be no loss in generality
in assuming k ≥ � and we callH an (N ; k, �) hash family. We first review the
relevant definitions and results as follows.

Definition 2.2. An (N ; k, �) hash familyH is called ε-almost universal (ε-AU
for short) if for any two distinct elements a1, a2 ∈ A, there are at most εN
functions h ∈ H such that h(a1) = h(a2).

The following lemma, due to Bierbrauer, Johansson, Kabatianskii and Smeets
[4], establishes the equivalence between ε-AU hash families and error-correcting
codes.

Lemma 2.3. If there exists a q-ary code with codeword length N , cardinality
M , and minimum Hamming distance d, then there exists an ε-AU (N ;M, q)
hash family, where ε = 1−d/N . Conversely, if there exists an ε-AU (N ;M, q)
hash family, then there exists a code with parameters as above.

Definition 2.4. An (N ; k, �) hash familyH is called ε-almost strongly universal
(ε-ASU for short) if:

1 for any element a ∈ A and any element b ∈ B, there exist exactly N/�
functions h ∈ H such that h(a) = b;

2 for any two distinct elements a1, a2 ∈ A and for any two (not necessarily
distinct) elements b1, b2 ∈ B, there exist at most εN/� functions h ∈ H
such that h(ai) = bi, i = 1, 2.

There is a strong relationship between ε-ASU hash families and A-codes.
Given an A-code (S, E , T ) with authentication mapping f : S × E → T and
with PI = 1/|T | and PS , each key e ∈ E corresponds to a unique function
he from S to T defined by he(s) = f(s, e). It is straightforward to verify that
H = {he : e ∈ E} is an ε-ASU hash family from S to T , where ε = PS .
Conversely, given an ε-ASU (N ; k, �) hash family H from A to B, we can
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associate an A-code (S, E , T ), where S = A, T = B and |E| = |H|, and each
key e ∈ E corresponds to a unique hash function he ∈ H indexed by e. The
authentication mapping f : S × E → T is defined by f(s, e) = he(s). Then
the resulting A-code has PI = 1/� and PS ≤ ε. In summary, we have the
following result.

Lemma 2.5 ([4, 64]). If there exists an A-code (S, E , T ) with PI = 1/|T |
and PS , then there exists an ε-ASU (N ; k, �) hash family, where ε = PS ,
N = |E|, k = |S| and � = |T |. Conversely, if there exists an ε-ASU (N ; k, �)
hash family, then there exists an A-code with the above parameters such that
PI = 1/|T | and PS ≤ ε.

Earlier research on A-codes had generally been devoted to constructions
which ensure that the opponent’s deception probabilities are bounded by 1/�.
In terms of ε-ASU hash families, this amounts to ε = 1/�. Such codes were
shown to be equivalent to an orthogonal array, and from Lemma 2.1 we know
that |E| ≥ k(�− 1) + 1. This means that for a fixed security (i.e. 1/�), the key
size increases linearly as a function of the size of possible source states — a
similar situation as for the “one-time pad”. Thus, for a large size of the set of
source states, it requires many bits of keys to store and “secretly” exchange.

The significance of ε-ASU hash families in the construction of A-codes, as
observed by Wegman and Carter [76], is that by not requiring the deception
probability to be the theoretical minimum, that is ε > 1/�, we can expect
to reduce the key size significantly. As shown in [4, 65, 76], by allowing
PS > PI (i.e. ε > 1/�), it is possible that the size of the set of source states
grows exponentially in the key size. This observation is very important from the
viewpoint of practice, as we may deal with scenarios where we are satisfied with
deception probabilities slightly larger than 1/�, but where we have a limitation
on the key storage.

A very useful method of constructing an ε-ASU hash family is to compose
an AU hash family and an ASU hash family with appropriate parameters. The
following lemma is due to Stinson [64] and independently to Bierbrauer, Jo-
hansson, Kabatianskii and Smeets [4].

Lemma 2.6 (Composition). Let H1 be an ε1-AU hash family from A1 to B1

and letH2 be an ε2-ASU hash family from B1 to B2. ThenH = {h2h1 : h1 ∈
H1, h2 ∈ H2} is an ε-ASU hash family from A1 to B2 with ε = ε1 + ε2.

It turns out that many constructions of ε-ASU hash families with large |A|
are based on the above composition principle. The constructions giving good
performance use Reed-Solomon codes [4, 64], or more general geometric codes
[3], as the ε-AU hash family in the above composition construction. Helleseth
and Johansson [29] gave a direct construction of ε-ASU hash families without
using the above composition principle, rather by using exponential sums. For
large |A|, it results in ε-ASU hash families with better performance.
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In [88], Xing, Wang and Lam gave another direct construction (without using
composition) of ε-ASU hash families from function fields over finite fields. The
construction results in new classes of A-codes with better performance than
those previously known. In the following, we describe the construction given
in [88].

Let F/Fq be a global function field of genus g with N(F ) ≥ 1 and let T be
a nonempty set of rational places of F . Let D be a positive divisor of F with
T ∩ Supp(D) = ∅. Choose a rational place R in T and put G = D−R. Then
deg(G) = deg(D) − 1, L(G) ⊆ L(D) and Fq ∩ L(G) = {0}. Let each pair
(P, α) ∈ T × Fq be associated with a map h(P,α) from L(G) to Fq defined by
h(P,α)(f) = f(P ) + α.

Lemma 2.7. LetH = {h(P,α) : (P, α) ∈ T × Fq}. If deg(D) ≥ 2g + 1, then
the cardinality ofH is equal to q|T |.

Proof. It is sufficient to prove that {h(P,α)}(P,α)∈T×Fq
are pairwise distinct.

Assume that h(P,α) = h(Q,β) for (P, α) and (Q, β) in T × Fq, i.e.,

h(P,α)(f) = h(Q,β)(f) (2.1)

for all f ∈ L(G). In particular,

α = h(P,α)(0) = h(Q,β)(0) = β. (2.2)

It follows from (2.1) and (2.2) that

f(P ) = f(Q)

for all f ∈ L(G). This implies that

e(P ) = e(Q) (2.3)

for all e ∈ L(D) since L(D) = Fq ⊕ L(G).
Suppose that P is different fromQ. As deg(D−P ) > deg(D−P −Q) ≥

2g − 1, we obtain by the Riemann-Roch theorem

�(D − P ) = deg(D)− g, �(D − P −Q) = deg(D)− g − 1,

where �(G) = dim(L(G)) for a divisor G.
By the above results on dimensions, we can choose a function u from the set

L(D − P ) \ L(D − P − Q). Then it is clear that u(P ) = 0 and u(Q) �= 0.
This contradicts (2.3). Hence P = Q. The proof is complete.

Theorem 2.8 ([88]). Let F/Fq be a global function field of genus g with
N(F ) ≥ 1 and let T be a nonempty set of rational places of F . Suppose
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thatD is a positive divisor of F with deg(D) ≥ 2g+1 and T ∩Supp(D) = ∅.
Then there exists an ε-ASU (N ; k, q) hash family with

N = q|T |, k = qdeg(D)−g, ε =
deg(D)
|T | .

Proof. Let R ∈ T be a rational place of F and put G = D −R. Define

A := L(G), B := Fq

and
H := {h(P,α) : (P, α) ∈ T × Fq}.

Then |H| = q|T | by Lemma 2.7. It is easy to verify that for any element
a ∈ A = L(G) and b ∈ B = Fq, there exist exactly |T | = N/q pairs
(P, α) ∈ T × Fq such that

h(P,α)(a) = a(P ) + α = b,

i.e., there exist exactly N/q functions h(P,α) ∈ H such that h(P,α)(a) = b.
Now let a1, a2 be two distinct elements of A and b1, b2 two elements of B.

We consider

m := max
a1 �= a2 ∈ A

b1, b2 ∈ B

|
{
h(P,α) ∈ H : h(P,α)(a1) = b1;h(P,α)(a2) = b2

}
|

= max
a1 �= a2 ∈ A

b1, b2 ∈ B

| {(P, α) ∈ T × Fq : a1(P ) + α = b1; a2(P ) + α = b2} |

= max
a1 �= a2 ∈ A

b1, b2 ∈ B

∣
∣
∣
∣

{

(P, α) ∈ T × Fq : (a1 − a2 − b1 + b2)(P ) = 0;
a2(P ) + α = b2

}∣
∣
∣
∣ .

As a1−a2 ∈ L(G)\{0} and b1−b2 ∈ Fq, we know that 0 �= a1−a2−b1+b2 ∈
L(D). Thus, there are at most deg(D) distinct zeros of a1 − a2 − b1 + b2 in
T . Since α is uniquely determined by P from the equality a2(P )+α = b2, we
have that at most deg(D) pairs (P, α) ∈ T × Fq satisfy

(a1 − a2 − b1 + b2)(P ) = 0 and a2(P ) + α = b2,

i.e.,

m ≤ deg(D) =
deg(D)
|T | · N

q
.

Hence we can take ε = deg(D)/|T |. This completes the proof.

Example 2.9. Consider the rational function field F/Fq. Then g = g(F ) = 0.

(a) Let d be an integer between 1 and q and P a rational place of F . Put
D = dP and let T be the set of all rational places of F except P . Then
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deg(D) = d ≥ 2g + 1, |T | = q and T ∩ Supp(D) = ∅. By Theorem 2.8,
we obtain an ε-ASU (N ; k, q) hash family with

N = q2, k = qd, ε =
d

q
.

The ε-ASU hash family with the above parameters can also be found in [4].

(b) Let d be an integer between 2 and q and let T be the set of all rational
places of F . As there always exists an irreducible polynomial of degree
d over Fq, we can find a positive divisor D such that deg(D) = d and
T ∩ Supp(D) = ∅. Then deg(D) = d ≥ 2g + 1 and |T | = q + 1. By
Theorem 2.8, we obtain an ε-ASU (N ; k, q) hash family with

N = q(q + 1), k = qd, ε =
d

q + 1
.

Example 2.10. Let the prime power q be a square and put r =
√
q. Consider

a sequence of function fields Fm/Fq given in [24] as follows (see also Chapter
1, Section 5.1). Let F1 be the rational function field F1 = Fq(x1). For m ≥ 2
let Fm = Fm−1(xm) with

xr
m + xm =

xr
m−1

xr−1
m−1 + 1

.

Then the number of rational places of Fm is more than (r − 1)rm and the
genus gm of Fm is less than rm for all m ≥ 1. Choose an integer c between
2 and

√
q − 1 (c is independent of m) and a rational place Pm of Fm and put

Dm = cqm/2Pm. Let Tm be a subset of Fm(Fq) \ {Pm} with

|Tm| = (r − 1)rm = qm/2(
√
q − 1),

where Fm(Fq) denotes the set of rational places of Fm. By Theorem 2.8, we
obtain a sequence of ε-ASU (Nm; km, q) hash families with

Nm = qm/2(q
√
q − q), km = qcqm/2−gm > q(c−1)qm/2

, ε =
c

√
q − 1

.

By phrasing the construction in the above example in terms of A-codes, we
obtain the following result.

Corollary 2.11. The construction in Example 2.10 results in an A-code C =
(S, E , T ) with the parameters

|S| = q(c−1)qm/2
, |E| = qm/2(q

√
q − q), |T | = q,
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and with deception probabilities

PI =
1
q
, PS ≤

c
√
q − 1

,

where q is a prime power and a square, whereas c andm are integers satisfying
2 ≤ c ≤ √q − 1 and m ≥ 1.

It has been shown in [88] that the above A-codes outperform some best
known A-codes for several parameter sets.

2.2 Constructions of Frameproof Codes
In order to protect copyrighted material (such as digital data, computer soft-

ware, etc.), a distributor endows each copy with some codeword that allows
him/her to detect any unauthorised copy and trace it back to the user who cre-
ated it. Such codes can offer protection by providing some form of traceability
for pirated data. Frameproof codes are such codes first introduced by Boneh
and Shaw [10] in the context of digital fingerprinting.

We begin with an example to motivate the topic. In the broadcast encryption
scheme suggested by Chor, Fiat and Naor in [13], a sender (such as a distribution
centre or a company) wishes to broadcast an encrypted message to a set of users
who use their individual decoder to decrypt the broadcast message. A decoder
box consists of N keys, where each key takes on one of q possible values.
A decoder box a can typically be represented as an N -tuple (a1, . . . , aN ),
where 1 ≤ ai ≤ q for 1 ≤ i ≤ N . A user can redistribute the key of his
decoder box without altering it. If an unauthorised copy of the decoder box
is found containing the keys of user u’s decoder box, we can accuse u of
producing a pirate decoder box. However, u could claim that he was framed by
a coalition which created a decoder box containing his keys. Thus, it is desirable
to construct decoder boxes that satisfy the following property: no coalition can
collude to frame a user not in the coalition. Codes that satisfy this property are
then called frameproof codes, or c-frameproof codes if the condition is relaxed
by limiting the size of the coalition to at most c users.

We will use a slightly different definition from the one in the literature, by
using the restriction that the keys are chosen from a finite field.

Let Fq denote again the finite field with q elements and let N be a positive
integer. Define the i-th projection

πi : F
N
q → Fq, (a1, . . . , aN ) �→ ai.

For a subset A ⊆ F
N
q , we define the descendants of A, desc(A), to be the set

of all x ∈ F
N
q such that for each 1 ≤ i ≤ N there exists a ∈ A satisfying

πi(x− a) = 0.
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Definition 2.12. Let c ≥ 2 be an integer. A q-ary c-frameproof code of length
N is a subset C ⊆ F

N
q such that for all A ⊆ C with |A| ≤ c we have

desc(A) ∩ C = A.

From this definition it is clear that a q-ary c-frameproof code C is a q-ary
c1-frameproof code for any 2 ≤ c1 ≤ c.

We denote a q-ary c-frameproof code in F
N
q of size M by c-FPC(N,M).

Since each codeword can be “fingerprinted” into a copy of the distributed doc-
uments, we would like the value of M as large as possible. This leads to the
following definition.

Definition 2.13. For a fixed prime power q and integers c ≥ 2 and N ≥ 2, let
Mq(N, c) denote the maximal size of q-ary c-frameproof codes of length N ,
i.e.,

Mq(N, c) := max{M : there exists a q-ary c-FPC(N,M) }.

In [61] Staddon, Stinson and Wei proved that Mq(N, c) ≤ c
(
q�N/c� − 1

)
,

which was improved by Blackburn in [7] where the following was shown.

Theorem 2.14. Let c ≥ 2 and N ≥ 2 be integers and q a prime power. Then

Mq(N, c) ≤ max
{
q�N/c�, r

(
q�N/c� − 1

)
+ (c− r)

(
q�N/c	 − 1

)}
,

where r is the unique integer in {0, 1, . . . , c− 1} such that r ≡ N (mod c).

Consider the following construction in [7]. LetC be the set of all codewords
of lengthN and weight exactly 1. ThenC is a c-frameproof code of cardinality
N(q − 1). Indeed, let a ∈ C with its ith component nonzero. Now, any set
A ⊆ C such that a ∈ desc(A) must contain a codeword b such that ai = bi.
Since a codeword of weight 1 is uniquely determined by its nonzero component,
it follows that a = b. Hence C is a c-frameproof code. Combining Theorem
2.14 and this construction, we obtain that for any integers 2 ≤ N ≤ c and for
any prime power q we haveMq(N, c) = N(q−1). Thus, we shall be interested
only in the case where N > c.

We consider now the asymptotic behaviour of Mq(N, c). From Theorem
2.14, we have Mq(N, c) = θ(q�N/c�), and the hidden constants in the approx-
imation notation may depend on N, c and q. This suggests the ratio Dq(c)
defined as follows. For fixed q and c, define the asymptotic quantity

Dq(c) = lim sup
N→∞

logq Mq(N, c)
N

.

The following upper bound on Dq(c) can be derived from [7].
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Theorem 2.15. We always have

Dq(c) ≤
1
c
.

It has been suggested by many authors that frameproof codes can be con-
structed from error-correcting codes. We review the construction based on
linear error-correcting codes proposed by Cohen and Encheva [14], as the
constructions from function fields can be viewed as a generalisation of this
construction.

Proposition 2.16. Let q be a prime power. Then a q-ary [N, k, d]-linear code
C is a q-ary c-FPC(N, qk) with c = �(N − 1)/(N − d)�.

Proof. Let A be a subset of C with |A| ≤ c. Suppose that desc(A) ∩ C �= A.
Choose x ∈ (desc(A) ∩ C) \ A. Since there are at most c elements in A, it
follows from x ∈ desc(A) that there is a codeword y ∈ A such that y agrees
with x in at least �N/c� positions, i.e., the Hamming weight of y− x satisfies

wt(y − x) ≤ N − �N
c
� ≤ N − N

c
.

As x �= y, we get

d ≤ wt(y − x) ≤ N − N

c
,

which implies c ≥ N/(N − d). This contradicts c = �(N − 1)/(N − d)�.

We remark that in this construction, as well as other constructions from
error-correcting codes, the crucial parameter c is determined by the minimum
distance of C if the length is given. Xing [82] showed that this feature can
be relaxed based on global function fields, and consequently the results from
error-correcting codes can be improved.

From the above relationship between linear codes and frameproof codes,
we immediately obtain a lower bound on Dq(c) using the Gilbert-Varshamov
bound.

Theorem 2.17. Let q be a prime power and c ≥ 2 an integer. Then

Dq(c) ≥ 1−Hq(1−
1
c
),

where

Hq(δ) = δ logq(q − 1)− δ logq δ − (1− δ) logq(1− δ)

is the q-ary entropy function.



70 Applications to Cryptography

Note that the bound in Theorem 2.17 is only an existence result as the Gilbert-
Varshamov bound is not constructive.

Xing [82] gave two new lower bounds on Dq(c) from algebraic-geometry
codes. One bound can be obtained by directly applying Proposition 2.16 and
the Tsfasman-Vlăduţ-Zink bound, while the other bound relies on the Jacobian
group structure of global function fields.

From the theory of algebraic-geometry codes, we have the following lemma
(see Chapter 1 and [46, Theorem 6.2.6]).

Lemma 2.18. For any prime power q and any 0 ≤ δ < 1, there exists a
sequence of q-ary (Ni,Mi, di)-codes such that Ni →∞ as i→∞ and

lim
i→∞

di

Ni
= δ, lim

i→∞

logq Mi

Ni
≥ 1− δ − 1

A(q)
.

Here and in the following, A(q) is the well-known quantity

A(q) := lim sup
g→∞

1
g

max
F/Fq

g(F/Fq)=g

N(F/Fq) (2.4)

from the asymptotic theory of rational places of global function fields (see
Chapter 1 and [46, Chapter 5]).

A direct consequence of the above lemma leads to an improved new lower
bound on Dq(c).

Theorem 2.19. For any prime power q and any integer c ≥ 2, we have

Dq(c) ≥
1
c
− 1
A(q)

.

Note that (i) the bound in Theorem 2.19 is constructive since the algebraic-
geometry codes in Lemma 2.18 are constructive as long as the sequences of
global function fields are explicit (see Chapter 1, Sections 4 and 5); (ii) com-
paring with the upper bound in Theorem 2.15, we find that

1
c
− 1
A(q)

≤ Dq(c) ≤
1
c
.

As we can see from the following corollary, 1/A(q) → 0 as q →∞, i.e.,Dq(c)
is getting closer to 1/c as q →∞.

Corollary 2.20. (i) If q is a prime power square, then for any c ≥ 2,

Dq(c) ≥
1
c
− 1
√
q − 1

.
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(ii) If q is a prime power cube, then for any c ≥ 2,

Dq(c) ≥
1
c
− q1/3 + 2

2(q2/3 − 1)
.

(iii) If q is any prime power, then for any c ≥ 2,

Dq(c) ≥
1
c
− 96

log2 q
.

Another improved lower bound onDq(c) is obtained by applying algebraic-
geometry codes based on the Jacobian group structure of global function fields.

Let P1, P2, . . . , PN beN distinct rational places of F/Fq. Choose a positive
divisor D of F such that L(D −

∑N
i=1 Pi) = {0}. Let νPi(D) = vi ≥ 0 and

ti be a local parameter at Pi for each i = 1, 2, . . . , N .
Consider the map

φ : L(D) −→ F
N
q , f �→ ((tv1

1 f)(P1), (tv2
2 f)(P2), . . . , (t

vN
N f)(PN )).

Then the image of φ forms a subspace of F
N
q that is defined as an algebraic-

geometry code. The image of φ is denoted by C(P1, P2, . . . , PN ;D)L, or
simplyC(

∑N
i=1 Pi, D)L. The mapφ is an embedding sinceL(D−

∑N
i=1 Pi) =

{0}. Thus, the dimension of C(P1, P2, . . . , PN ;D)L is equal to �(D) :=
dim(L(D)).

Note that the above construction is a modified version of algebraic-geometry
codes defined by Goppa. The advantage of this construction is to make it pos-
sible to get rid of the condition Supp(D)∩{P1, P2, . . . , PN} = ∅. This is cru-
cial for this construction of frameproof codes. When the condition Supp(D)∩
{P1, P2, . . . , PN} = ∅ is satisfied, i.e., vi = 0 for all i = 1, 2, . . . , N , then the
above construction of algebraic-geometry codes agrees with Goppa’s construc-
tion.

Proposition 2.21. LetF/Fq be a function field and letP1, P2, . . . , PN beN dis-
tinct rational places of F . LetD be a positive divisor of F such that deg(D) <
N . Let c ≥ 2 satisfy L(cD −

∑N
i=1 Pi) = {0}. Then C(

∑N
i=1 Pi, D)L is a

c-FPC(N, q�(D)).

Proof. Denote by cf the codeword

φ(f) = ((tv1
1 f)(P1), (tv2

2 f)(P2), . . . , (t
vN
N f)(PN )) for all f ∈ L(D).

Let A = {cf1 , . . . , cfr} be a subset of C := C(P1, P2, . . . , PN ;D)L with
|A| = r ≤ c. Let ch ∈ desc(A) ∩ C for some h ∈ L(D). Then by the
definition of descendant, for each 1 ≤ i ≤ N we have

r∏

j=1

πi(cfj − ch) = 0,
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where πi(cfj − ch) stands for ith coordinate of cfj − ch. This implies that

r∏

j=1

(tvi
i fj − tvi

i h)(Pi) = 0,

i.e.,

νPi(
r∏

j=1

(tvi
i fj − tvi

i h)) ≥ 1.

This is equivalent to

νPi(
r∏

j=1

(fj − h)) ≥ −rvi + 1.

Hence

r∏

j=1

(fj − h) ∈ L(rD −
N∑

i=1

Pi) ⊆ L(cD −
N∑

i=1

Pi) = {0}.

Thus, the function
∏r

j=1(fj −h) is the zero function. So, fj −h = 0 for some
1 ≤ j ≤ r. Hence ch = cfj ∈ A.

We remark that in the above proposition the minimum distance of the algebraic-
geometry code does not play an important role, in contrast to the general con-
struction based on error-correcting codes. However, the result in Proposition
2.21 is not constructive.

From Proposition 2.21, we see that it is crucial to find a positive divisor D
such that L(cD −

∑n
i=1 Pi) = {0}. We will show some sufficient conditions

for the existence of such divisors D. But first let us introduce some notation.
For a function field F/Fq of genus g, let Ai(F ) (or simply denoted by Ai in

the case of no confusion) be the number of all positive divisors of F of fixed
degree i ≥ 0. It is clear that A0 = 1 and A1 is the number of rational places of
F/Fq. The zeta-function of F/Fq is defined as the power series

Z(T ) :=
∞∑

i=0

AiT
i.

The zeta-function can be written as a rational function

Z(T ) =
L(T )

(1− T )(1− qT )
,

where L(T ) is a polynomial of degree 2g with integral coefficients. All roots
of T 2gL(1/T ) have absolute value

√
q. The polynomial L(T ) is called the

L-polynomial of F/Fq.
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Let J(F/Fq) denote the zero divisor class group of F/Fq. It is a finite
abelian group. The order of J(F/Fq) is L(1), where L(T ) is the L-polynomial
of F/Fq. Suppose that F/Fq has a rational place P0. For a divisor D of F ,
we denote by [D − deg(D)P0] the class of the zero divisor D − deg(D)P0 in
J(F/Fq).

Lemma 2.22. Let F/Fq be a function field of genus g with a rational place
P0. Then for an integer c ≥ 2 and any fixed integer m ≥ g, the subgroup of
J(F/Fq) given by

{c[D − deg(D)P0] : D ≥ 0,deg(D) = m}

has order at least h/c2g, where h denotes the zero divisor class number
|J(F/Fq)| = L(1).

Proof. It is a well-known fact that the set

{[D − deg(D)P0] : D ≥ 0,deg(D) = m}

is the whole group J(F/Fq) for m ≥ g (e.g. see [80, proof of Lemma 2.2]).
Therefore,

{c[D − deg(D)P0] : D ≥ 0,deg(D) = m} = cJ(F/Fq).

Since the p-rank of J(F/Fq) is at most 2g for any prime p (see [41, p. 39]), the
desired result follows.

Lemma 2.23. Let F/Fq be a function field of genus g with at least one rational
place P0. Let c,m, n be three integers satisfying c ≥ 2 and g ≤ m ≤ n < cm
and G a fixed positive divisor of F of degree n. Then there exists a positive
divisorD ofF of degreem such thatL(cD−G) = {0} provided thatAcm−n <
h/c2g.

Proof. By Lemma 2.22, we have

|{[cH − cdeg(H)P0] : H ≥ 0,deg(H) = m}| = |cJ(F/Fq)| ≥
h

c2g
.

Moreover,

|{[K +G− deg(K +G)P0] : K ≥ 0,deg(K) = cm− n}| ≤ Acm−n.

Thus, {[cH − cdeg(H)P0] : H ≥ 0,deg(H) = m} \ {[K +G − deg(K +
G)P0] : K ≥ 0,deg(K) = cm− n} is not empty. Choose an element [cD −
c deg(D)P0] from the above nonempty set for some positive divisor D of F .
We claim thatL(cD−G) = {0}. Otherwise, there would be a nonzero function
f ∈ L(cD−G). Therefore, the divisor div(f) + cD−G is a positive divisor.
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Put K = div(f) + cD − G. Then deg(K) = cm − n and cD is equivalent
to K +G, i.e., [cD − cdeg(D)P0] is the same as [K +G− deg(K +G)P0].
This contradicts the choice of [cD − cdeg(D)P0].

Lemma 2.24. Let F/Fq be a function field of genus g ≥ 2 with zero divisor
class number h. Then the number Ar of positive divisors of F/Fq of degree r
satisfies

Ar <
(3
√
q − 1)qr+1−ggh

(q − 1)(
√
q − 1)

for 0 ≤ r ≤ g − 1.

Proof. It was shown in [44, Lemma 3(ii)] that in the field C(z) of rational
functions over the complex numbers we have the identity

g−2∑

n=0

Anz
n +

g−1∑

n=0

qg−1−nAnz
2g−2−n =

L(z)− hzg

(1− z)(1− qz) ,

where L(z) is the L-polynomial of F/Fq. Letting z → 1 we get

g−2∑

n=0

An +
g−1∑

n=0

qg−1−nAn = lim
z→1

L(z)− hzg

(1− z)(1− qz)

= lim
z→1

L′(z)− ghzg−1

−(1− qz)− q(1− z)

=
L′(1)− gh
q − 1

.

Now L(z) =
∏2g

i=1(1 − ωiz) with |ωi| =
√
q for 1 ≤ i ≤ 2g by Weil’s

proof of the Riemann hypothesis for global function fields. By logarithmic
differentiation,

L′(z)
L(z)

=
2g∑

i=1

−ωi

1− ωiz
.

Putting z = 1 and using L(1) = h, we obtain

|L′(1)| ≤ h

2g∑

i=1

|ωi|
|1− ωi|

≤ 2gh
√
q

√
q − 1

,

and so ∣
∣
∣
∣
L′(1)− gh
q − 1

∣
∣
∣
∣ ≤

(3
√
q − 1)gh

(q − 1)(
√
q − 1)

.

Thus, by noting that

qg−1−rAr <

g−2∑

n=0

An +
g−1∑

n=0

qg−1−nAn ≤
(3
√
q − 1)gh

(q − 1)(
√
q − 1)
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for 0 ≤ r ≤ g − 1, we complete the proof.

Lemma 2.25. Let F/Fq be a function field of genus g ≥ q with at least one
rational place. Let c,m, n be three integers satisfying c ≥ 2 and g ≤ m ≤
n < cm and

cm− n ≤ g(1− 2 logq c)− 1− logq

(3
√
q − 1)g

(q − 1)(
√
q − 1)

. (2.5)

Let G be a fixed positive divisor of F of degree n. Then there exists a positive
divisor D of F of degree m such that L(cD −G) = {0}.

Proof. By rewriting the inequality (2.5), we have

(3
√
q − 1)gq(cm−n)+1−gh

(q − 1)(
√
q − 1)

≤ h

c2g
.

The desired result follows now from Lemmas 2.23 and 2.24.

Theorem 2.26. For any prime power q and any integer 2 ≤ c <
√
q, we have

Dq(c) ≥
1
c
− 1
A(q)

+
(1− 2 logq c)

c
· 1
A(q)

.

Proof. Choose a family of function fields Fi/Fq with growing genus such that
limi→∞N(Fi)/g(Fi) = A(q). Put ni = N(Fi) and gi = g(Fi). Let Pi be the
set of all rational places of Fi and put

Gi =
∑

P∈Pi

P.

For any fixed ε > 0, put

mi =
⌊
ni

c
+

(1− 2 logq c)gi

c
− εgi

c

⌋

.

Then

lim
i→∞

cmi − ni − (1− 2 logq c)gi

gi
= −ε < 0.

Therefore, for all sufficiently large i we have

cmi − ni ≤ gi(1− 2 logq c)− 1− logq

(3
√
q − 1)gi

(q − 1)(
√
q − 1)

.
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By Lemma 2.25, there exists a positive divisor Di of Fi of degree mi such that
L(cDi−Gi) = {0} for each sufficiently large i. Thus, by Proposition 2.21 the
code C(Gi, Di)L is a c-FPC(ni, q

�(Di)). Hence

Dq(c) ≥ lim sup
i→∞

logq q
�(Di)

ni

≥ lim
i→∞

mi − gi + 1
ni

=
1
c
− 1
A(q)

+
(1− 2 logq c)

c
· 1
A(q)

− ε

cA(q)
.

Since the above inequality holds for any ε > 0, we get

Dq(c) ≥
1
c
− 1
A(q)

+
(1− 2 logq c)

c
· 1
A(q)

by letting ε tend to 0. This completes the proof.

Note that for c <
√
q the above theorem improves the lower bound in The-

orem 2.19 by the term
(1− 2 logq c)

c
· 1
A(q)

.

We remark that codes providing various forms of traceability such as trace-
ability codes, c-secure frameproof codes and identifiable parent property codes,
etc., have been studied by numerous authors (see, for example, [7, 10, 13, 14,
21, 61, 68]).

2.3 Constructions of Perfect Hash Families
Let n and m be integers such that 2 ≤ m ≤ n. Let A be a set of size n

and let B be a set of size m. A hash function is a function h from A to B.
We say a hash function h : A → B is perfect on a subset X ⊆ A if h is
injective when restricted to X . Let w be an integer such that 2 ≤ w ≤ m and
letH ⊆ {h : A→ B}.

Definition 2.27. We sayH is an (n,m,w)-perfect hash family if for anyX ⊆ A
with |X| = w there exists at least one function h ∈ H such that h is perfect
on X . We use PHF (N ;n,m,w) to denote an (n,m,w)-perfect hash family
with |H| = N

The terminology of “perfect hash family” is motivated by the fact that we
have a family of hash functions with the property that if at most w elements are
to be hashed, then at least one function in the family yields no collisions when
applied to the given w inputs.
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Obviously, one can take all functions from A to B which yields a perfect
hash family with |H| = mn. What makes perfect hash families interesting and
challenging are the following questions: (i) how can we construct perfect hash
families for which |H| is as small as possible (constructions)?; and (ii) how
small can we have |H| (bounds)?

There have been different definitions and representations of perfect hash
families in the literature. For example, a PHF (N ;n,m,w) can be depicted as
an N × n array of m symbols, where each row of the array corresponds to one
of the functions in the family. This array has the property that, for any subset
of w columns, there exists at least one row such that the entries in the w given
columns of that row are distinct. A PHF (N ;n,m,w) can also be treated as a
family of N partitions of an n-set A such that each partition π has at most m
parts and such that for all X ⊆ A with |X| = w, there exists a partition π for
which the elements in X are in distinct parts of π.

Example 2.28 ([2]). The following array gives rise to a PHF (4; 9, 3, 3) which
is constructed from a resolvable (9, 12, 4, 3, 1)-BIBD (balanced incomplete
block design).

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 3 1 2 2 3 1
1 2 3 2 3 1 3 1 2

Example 2.29 ([6]). Let R be a set of size r ≥ 2. Set A = R3 and B = R2.
We define functions φ1, φ2, φ3 : A −→ B by

φ1((a, b, c)) = (a, b)
φ2((a, b, c)) = (b, c) and

φ3((a, b, c)) = (a, c),

for all a, b, c ∈ R. Then {φ1, φ2, φ3} forms a PHF (3; r3, r2, 3).

Perfect hash families originally arose as part of compiler design; see Mehl-
horn [39] for a summary of the early results in this area. They have applications
to operating systems, language translation systems, hypertext, hypermedia, file
managers and information retrieval systems; see the survey article of Czech,
Havas and Majewski [15]. More recently, they have found numerous applica-
tions to cryptography.

Consider the following example of an application of perfect hash families in
threshold cryptography. The main goal of threshold cryptography is to replace
a system entity, such as a signer in a classical digital signature scheme, with a
group of entities sharing the same power. In a (w, n) threshold signature scheme
[16], signature generation requires collaboration of at leastwmembers of a set of
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n signers. Although construction of threshold signature schemes generally uses
a combination of secret sharing schemes and signature schemes, a simplistic
combination of the two primitives could result in a completely insecure system
that allows the members of an authorised group to recover the secret key of
the signature scheme. In a secure threshold signature scheme, the power of
signature generation must be shared among n signers in such a way that w
participants can collaborate to produce a valid signature for any given message,
whilst no subset of fewer than w signers can forge a signature even if many
signatures on different messages are known.

For example, a major problem in the construction of threshold RSA signature
schemes is that the secret exponent (key) of RSA, which must be shared among
the participants, is an element of Zφ(P ), which is an abelian group and not a
field, where P is the public modulus of RSA and φ is Euler’s function. This
means that the majority of classical secret sharing schemes, such as Shamir’s
scheme [58], cannot be used directly. A simple and early solution to threshold
RSA signature is as follows: a trusted dealer shares the signature key d (the RSA
exponent) amongn signersu1, . . . , un such thatui holdsdi andd = d1+· · ·+dn

(mod φ(P )). To sign a message s, each signer ui produces a partial signature
sdi (mod P ). The resulting desired signature is then obtained by multiplication
of n partial signatures, as sd = sd1 · · · · · sdn (mod P ) for the normal RSA
signature on s. This is an (n, n) signature scheme and requires collaboration of
every single member of the group for generating a signature. To implement a
system with a thresholdw, w < n, one can generalise the above (n, n) scheme,
adopting a protocol such as the one below. The dealer generates the shares of(

n
w

)
independent runs of a (w,w) additive secret sharing scheme for the same

secret, the signing key d in this case, that is for each run i, 1 ≤ i ≤
(

n
w

)
, we

have

d = d
(i)
1 + · · ·+ d(i)

n (mod φ(P )).

Then the dealer gives appropriate shares to each signer. Now any w-subset of
the group has the complete set of shares for one run of the secret sharing scheme
and can sign a message. The main drawback of schemes such as this is their
inefficiency, in the sense that each signer has to store shares which are in total(

n−1
w−1

)
times the size of the RSA signing key. In the following, we show how

to apply perfect hash families to improve the above threshold RSA signature
scheme.

Let H = {h1, h2, . . . , hN} be a PHF (N ;n,w,w) from {1, 2, . . . , n} to
{1, 2, . . . , w}. Let d be the RSA secret key which is chosen by the dealer and
kept secret. The dealer generates shares ofN independent runs of (w,w) secret
sharing to share the same secret d, that is,

d(i) =
(
d

(i)
1 , . . . , d(i)

w

)
,
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where d = d
(i)
1 + · · · + d

(i)
w (mod φ(P )) for all 1 ≤ i ≤ N . The dealer then

distributes the secret keys to the n signers u1, . . . , un in such a way that u�,
1 ≤ � ≤ n, holds the keys

d̂� =
(
d

(1)
h1(�), d

(2)
h2(�), . . . , d

(N)
hN (�)

)
.

Next, generation of the signature is by using the perfect hash family and
is reduced to the underlying (w,w) threshold signature scheme. Assume w
signers {ui : i ∈ X}, whereX ⊆ {1, 2, . . . , n} and |X| = w, wish to generate
a signature for a message s. From the property of the perfect hash family it
follows that there exists a function hk from H such that hk restricted to X
is one-to-one. That means, the signers {ui : i ∈ X} know all the w shares

(d(k)
1 , . . . , d

(k)
w ) of the kth runs and so can generate a valid signature using the

(w,w) RSA signature as we already explained. On the other hand, each signer
holds exactly one share from each run of secret sharing and so for any up tow−1
signers, they will have at mostw−1 shares for each run and so cannot generate
a valid signature, and hence it results in a (w, n) threshold RSA signature.

Now each signer has to store N shares of the RSA signing key, which is
N times the size of the underlying RSA secret key. Thus, the complexity of
the key storage is dependent on the value of N , the number of functions in
H. As we will show, in its optimal form we have perfect hash families with
|H| = O(logn), which yields a significant improvement on

(
n−1
w−1

)
times the

size of the underlying RSA secret key from the trivial solution.
Let N(n,m,w) denote the minimum N for which a PHF (N ;n,m,w)

exists. We are interested in determining these values. In particular, we are
interested in the asymptotic behaviour of N(n,m,w) as a function of n when
m and w are fixed.

We first review some bounds for N(n,m,w). All logarithms throughout
this subsection are to the base 2. The first result is due to Fredman and Komlós
[22].

Theorem 2.30. We have

N(n,m,w) ≥
(

n−1
w−2

)
mw−2 log(n− w + 2)

(
m−1
w−2

)
nw−2 log(m− w + 2)

.

As noted in [5], this lower bound is approximately equal to

mw−2

m(m− 1)(m− 2) · · · (m− (w − 1))
· logn
log(m− w + 2)

as n→∞ with w and m fixed.
A weaker bound, due to Mehlhorn [39], is as follows.
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Theorem 2.31. N(n,m,w) ≥ log n
log m .

This bound can be met when w = 2. Indeed, we know that an N × n array
of m symbols is a PHF (N ;n,m, 2) if and only if no columns of the array
are identical. It follows that there exists an PHF (N ;n,m, 2) if and only if
n ≤ mN . Therefore we obtain explicit constructions such that N(n,m, 2) =
� log n

log m� for any integers n ≥ m ≥ 2.
Using an elementary probabilistic argument, the following non-constructive

upper bound for N(n,m,w) was proved by Mehlhorn [39].

Theorem 2.32. We have

N(n,m,w) ≤
⌈

log
(

n
w

)

log(mw)− log(mw − w!
(
m
w

)
)

⌉

.

Straightforward approximations using Theorem 2.32 yield the following
corollary.

Corollary 2.33 ([39]). N(n,m,w) ≤ �wew2/m log n�.

From Theorem 2.31 and Corollary 2.33, it follows that for fixed m and
w, N(n,m,w) as a function of n is Θ(logn). However, the above existence
results are non-constructive, and it was believed that it is difficult to give explicit
constructions that are asymptotically as good as Corollary 2.33.

Efforts have been made to provide explicit constructions which are much
more efficient compared to the trivial solutions or quite reasonable compared to
the asymptotically optimal bounds. Most known explicit perfect hash families
are constructed from error-correcting codes by Alon [1], resolvable balanced
incomplete block designs by Brickell [11] and various inductive techniques by
Atici, Magliveras, Stinson and Wei [2]. For a good survey of this subject we
refer readers to Blackburn [5].

In [74], Wang and Xing gave a construction of perfect hash families based
on function fields over finite fields. The construction proceeds as follows.

Let T be a nonempty set of rational places of F/Fq. Let G be a divisor of F
with T ∩ Supp(G) = ∅. As usual, let L(G) be the vector space formed by

L(G) = {f ∈ F \ {0} : div(f) +G ≥ 0} ∪ {0}.

Let each place P ∈ T be associated with a map hP from L(G) to Fq defined
by hP (f) = f(P ). Put H = {hP : P ∈ T}. It is shown as in the proof of
Lemma 2.7 that if deg(G) ≥ 2g(F ) + 1, then the cardinality of H is equal to
|T |.

Theorem 2.34 ([74]). Let F/Fq be a global function field and T a nonempty
set of rational places of F . Suppose that G is a divisor of F with deg(G) ≥
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2g(F )+1 andT∩Supp(G) = ∅. ThenH is aPHF (|T |; qdeg(G)−g(F )+1, q, w)
provided that 2 ≤ w ≤ q and |T | > deg(G) ·

(
w
2

)
.

Proof. Let H be as the above. For a subset X of L(G) with w elements,
consider the set

SX := {(u− v)2 : u, v ∈ X,u �= v}.

Then SX has at most
(
w
2

)
elements and the number of zeros of an element

(u − v)2 is equal to the number of zeros of u − v. The number of zeros of
u− v from the set T is at most deg(G) since u− v is an element of L(G) and
T ∩ Supp(G) = ∅. Therefore, the number of zeros from T of all functions in
SX is at most

deg(G) · |SX | ≤ deg(G) ·
(
w

2

)

.

By the condition |T | > deg(G) ·
(
w
2

)
, we can find a place R ∈ T such that R

is not a zero for any element of SX .
We claim that the functionhR is one-to-one on the subsetX . Indeed, suppose

u and v are two different elements of X . Then (u − v)2 ∈ SX , thus R is not
a zero of (u − v)2, i.e., u(R) �= v(R). This is equivalent to hR(u) �= hR(v).
The proof is complete.

Theorem 2.34 gives a construction of perfect hash families based on general
global function fields. Applying Theorem 2.34 to the function fields due to
Garcia and Stichenoth (see Chapter 1), we obtain perfect hash families with
nice parameters:

Let q be a square and put r =
√
q. Consider a sequence of function fields

Fi/Fq as follows (see Chapter 1, Section 5.1). Let F1 be the rational function
field F1 = Fq(x1). For i ≥ 2 let Fi = Fi−1(xi) with

xr
i + xi =

xr
i−1

xr−1
i−1 + 1

.

Then the number of rational places of Fi is more than (r − 1)ri and the genus
gi of Fi is less than ri for all i ≥ 1.

Put

Ni = (
√
q − 1)qi/2, ti = �(c+ 1)qi/2�, w = �

√
2

c+ 1
q1/4�,

where 1 ≤ c ≤ (
√
q − 2)/2 is a real constant independent of i. Then

Ni > ti

(
w

2

)

for all i ≥ 1,
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and there exist a subsetTi of rational places ofFi with |Ti| = Ni and a divisorGi

ofFi of degree ti such that Ti∩Supp(Gi) = ∅. Applying Theorem 2.34 gives a
PHF (Ni; qti+1−gi , q, w) for all i ≥ 1. Since ti+1−gi > �(c+1)ri�+1−ri >
�cqi/2�, we obtain the following result.

Theorem 2.35. Let the prime power q ≥ 16 be a square and let c be a real
number with 1 ≤ c ≤ (

√
q − 2)/2. Then there exists a

PHF

(

(
√
q − 1)qi/2; q�cq

i/2	, q,

⌊√
2

c+ 1
q1/4

⌋)

for each i ≥ 1. In particular, taking c = 1, we obtain a

PHF
(
(
√
q − 1)qi/2; qqi/2

, q, �q1/4�
)

for each i ≥ 1.

Before describing the next result, we first recall a simple composition con-
struction of perfect hash families, due to Blackburn, Burmester, Desmedt and
Wild [8, 5]. Assume that H1 is a PHF (N ;n, n0, w) from A1 to B1 and
H2 is a PHF (N0;n0,m,w) from A2 to B2 such that B1 = A2. Then it is
fairly straightforward to verify that H = {h2h1 : h1 ∈ H1, h2 ∈ H2} is a
PHF (NN0;n,m,w) from A1 to B2. That is, we have the following result.

Lemma 2.36 ([5]). Suppose there exist explicit hash familiesPHF (N ;n, n0, w)
and PHF (N0; n0, m, w). Then there exists an explicit PHF (NN0;n,m,w).

Combining the above composition method with Theorem 2.35, we arrive at
the following result from [74].

Theorem 2.37 ([74]). For any integers m ≥ w ≥ 2, there exist explicit con-
structions of PHF (N ; n, m,w) such thatN ≤ C log n, whereC is a constant
independent of n and n can go to∞.

Proof. Let q be the least square prime power such that q ≥ m and q1/4 ≥ w.

Since g(x) =
√

2
x+1q

1/4 is continuous on [1,∞), it follows that we may choose

a c0 ∈ [1,∞) such that
√

2
c0+1q

1/4 = w. Then 1 ≤ c0 ≤ (
√
q − 2)/2 as

required in Theorem 2.35. By Theorem 2.35, we know that there is an explicit
PHF ((

√
q − 1)qi/2; q�c0qi/2	, q, w) for all i ≥ 1. Since q ≥ m, there exists

an explicit PHF (N0; q,m,w), where the parameter N0 can be effectively
determined by m because of the previous choice of q. From Lemma 2.36, it
follows that there exist constructions for

PHF (N0(
√
q − 1)qi/2; q�c0qi/2	,m,w)
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for all i ≥ 1. We thus obtain PHF (N ;n,m,w) with N ≤ C logn, where

C ≈ N0(
√
q − 1)

c0 log q

in which all the parameters on the right-hand side depend only on m and w,
but n can go to ∞ as n = q�c0qi/2	 for all i = 1, 2, . . . . The desired result
follows.

Finally we remark that in recent years perfect hash families have found nu-
merous applications to cryptography, for example, to broadcast encryption [20],
secret sharing [8], key distribution patterns [67], anti-jamming radio networks
[17], distributing the encryption and decryption of block ciphers [38], secure
multicasting [53] and frameproof codes [61, 68].

On the other hand, a great deal of research efforts on constructing perfect
hash families with good parameters and deriving bounds on N(n,m,w) have
been carried out. In [2], Atici, Magliveras, Stinson and Wei provided various
recursive methods resulting in explicit constructions of PHF (N ;n,m,w) in
whichN is a polynomial function of logn for fixedm andw. Stinson, Wei and
Zhu [69] employed some combinatorial techniques to generalise and improve
results from [2]. For given m and w, they constructed PHF (N ;n,m,w) in
which N is O(C log∗(n) log n), where C is a constant depending only on w and
log∗ is the function from Z

+ to Z
+ recursively defined as follows:

log∗(1) = 1, log∗(n) = log∗(�log n�) + 1 for n > 1.

Blackburn and Wild [9] introduced and studied linear perfect hash families and
showed that there exist explicit constructions for PHF (N ;n,m,w) in which
N = (w− 1)(log n)/ logm, wherem is a prime power and n is a power ofm.

2.4 Constructions of Cover-Free Families
Definition 2.38. A set system (X,B) with X = {x1, . . . , xt} and B = {Bi ⊆
X : i = 1, . . . , n} is called an (n, t, r)-cover-free family (or (n, t, r)-CFF for
short) if for any subset ∆ ⊆ {1, . . . , n}with |∆| = r and any i ∈ {1, . . . , n}\∆
we have ∣

∣
∣
∣
∣
∣
Bi \
⋃

j∈∆

Bj

∣
∣
∣
∣
∣
∣
≥ 1.

We say (X,B) is k-uniform if |Bi| = k for all 1 ≤ i ≤ n.

Note that an (n, t, 1)-CFF is exactly a Sperner system. Another trivial cover-
free family is the family consisting of single-element subsets, in which n = t.
We will be interested in (n, t, r)-CFF for which n > t, in particular, for given
t and r, we want the value of n to be as large as possible.
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Cover-free families were first studied in terms of superimposed binary codes
by Kautz and Singleton [33] in 1964. These codes are related to files re-
trieval, data communication and magnetic memories. In 1985 Erdös, Frankl
and Füredi [19] studied cover-free families as combinatorial objects, general-
ising the Sperner systems. Since then, they have been discussed by numerous
researchers in the subjects of information theory, combinatorics, communica-
tion and cryptography.

Let us start with an example of an application of cover-free families in multi-
receiver authentication systems. Conventional authentication systems, as dis-
cussed in Section 2.1, deal with point-to-point message authentication in which
the sender and the receiver share a secret key and are both assumed honest.
Multi-receiver authentication systems are an extension of the point-to-point
authentication model in which there are multiple receivers who cannot all be
trusted. The sender broadcasts a message to all the receivers who can individu-
ally verify authenticity of the message using their secret key information. There
are malicious groups of receivers who use their secret keys and all the previous
communications in the system to construct fraudulent messages. They succeed
in their attack as soon as a single receiver accepts the message as being authen-
tic. In an (r, n) multi-receiver authentication system there are n receivers such
that the coalition of any r receivers cannot cheat other receivers.

Obviously, a multi-receiver authentication system can be constructed from a
conventional authentication code by allowing the sender to use n authentication
keys for the n receivers and broadcast a codeword that is simply a concatenation
of the codewords for each receiver. The length of the combined authentication
tag is n times the length of the individual receivers’ authentication tags, and the
sender’s key is n times the size of a receiver’s key. This is a very uneconomical
method of authenticating a message as such a system can prevent attacks by
even n−1 colluding receivers, while it is reasonably realistic to assume that an
(r, n) multi-receiver authentication system is sufficient to satisfy the security
requirements and r is a system parameter independent of n. That is, we assume
that in every group of r + 1 receivers there is at least one honest receiver. In
the following we show that cover-free families can play a role to improve the
above trivial construction.

Assume that (X,B) is an (n, t, r)-CFF and (S, E , T ), together with the au-
thentication mapping f : S×E → T , is an authentication code 1. We construct
an (r, n) multi-receiver authentication system with n receivers R1, . . . , Rn as
follows. The sender randomly chooses a t-tuple of keys (e1, . . . , et) ∈ E t and
privately sends ei to every receiver Rj for all j with xi ∈ Bj , 1 ≤ i ≤ t.
To authenticate a source message s ∈ S, the sender computes ai = f(s, ei)

1(S, E, T ) can be either an unconditionally secure A-code or a computationally secure MAC.
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for all 1 ≤ i ≤ t and broadcasts (s, a1, . . . , at) to all the receivers. Since the
receiverRj holds the keys ei for all i with xi ∈ Bj , Rj accepts (s, a1, . . . , am)
as authentic if ai = f(s, ei) for all i satisfying xi ∈ Bj .

It has been proved in [51] that this construction gives rise to an (r, n) multi-
receiver authentication system where both the sizes of key for the sender and
of the broadcasting message are t times increased from the underlying point-
to-point authentication codes, in contrast to the n times increase in the trivial
construction.

It is clear from the above example that we want to maximise the value of n
when t and r are fixed, or equivalently, to minimise the value of t while n and
r are given. It is also easy to see that there is a trade-off between the values of
n and t in a cover-free family.

As we mentioned before, a Sperner system is an (n, t, 1)-CFF in which from
Sperner’s Theorem we know that n ≤

(
t

� t
2
	
)

and the bound is tight.

In [19], Erdös, Frankl and Füredi gave an upper bound on n for uniform
cover-free families.

Theorem 2.39 ([19]). In a k-uniform (n, t, r)-CFF we have

n ≤
(

t

�k
r �

)/(
k

�k
r − 1�

)

.

As pointed out by Wei [77], the above bound can be reached for some special
cases. For example, there exists a probabilistic construction in [19] for a 2r-
uniform (n, t, r)-CFF with n = (t2/(4r)) − o(t2). However, it remains open
whether or not the bound in Theorem 2.39 is the best possible bound for the
uniform case.

In the general case, the best lower bound on t is given in [70]. Proofs of
variants of the following theorem can be found in [18, 23, 50].

Theorem 2.40. For any (n, t, r)-CFF with r ≥ 2, we have

t ≥ c
r2

log r
log n

for some constant c ≈ 1/2.

On the other hand, using a probabilistic method, Erdös, Frankl and Füredi
[19] proved the existence of (n, t, r)-CFF with t = O(r2 log n) and |Bi| =
O(r logn) for any r ≥ 2. Explicit constructions to achieve this bound asymp-
totically are of high interest.

We first give two constructions of cover-free families from perfect hash fam-
ilies.
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Construction from PHF I: This gives a direct construction of cover-free families
from perfect hash families. Assume that H is a PHF (N ;n,m,w) from A to
B. Let A = {1, 2, . . . , n} and B = {1, 2, . . . ,m}. We define

X = H×B = {(h, j) : h ∈ H, j ∈ B}.

For each 1 ≤ i ≤ n, we define a subset (block) Bi of X by

Bi = {(h, h(i)) : h ∈ H},

and B = {Bi : 1 ≤ i ≤ n}. Then (X,B) is an (n,Nm,w − 1)-CFF.
Clearly, |X| = Nm and |B| = n. For any w blocks Bi1 , . . . , Biw , since H is
a PHF (N ;n,m,w), there exists a perfect hash function h ∈ H such that h
restricted to {i1, . . . , iw} is one-to-one. It follows that h(i1), . . . , h(iw) are w
distinct elements inB, which also implies that (h, h(i1)), . . . , (h, h(iw)) are w
distinct elements inBi1 , . . . , Biw , respectively. So the union of anyw−1 blocks
in B cannot cover any remaining block. Thus, we have shown the following
result.

Theorem 2.41. If there exists aPHF (N ;n,m,w), then there exists an (n,Nm,
w − 1)-CFF.

Applying Theorem 2.37 and its proof, we immediately obtain the following
result.

Corollary 2.42. For any integer r ≥ 2, there exists an explicit construction for
(n, t, r)-CFF in which t is O(r4 logn).

Construction from PHF II: This construction provides a method of building
new cover-free families from old ones, using perfect hash families. The con-
struction works as follows. Let (X0,B0) be an (n0, t0, w − 1)-CFF and let
H = {h1, . . . , hN} be a PHF (N ;n, n0, w). Consider N copies of (X0,B0),
denoted by (X1,B1), . . . , (XN ,BN ), where Xi and Xj are disjoint sets, i.e.

Xi∩Xj = ∅, for all i �= j. For each 1 ≤ j ≤ N , letXj = {x(j)
1 , . . . , x

(j)
t0
} and

Bj = {B(j)
1 , . . . , B

(j)
n0 }. Then (Xj ,Bj) is an (n0, t0, w−1)-CFF. We construct

a pair (X,B) with

X = X1 ∪ · · · ∪XN and B = {B1, . . . , Bn},

where Bi = B
(1)
h1(i) ∪ · · · ∪ B

(N)
hN (i) = ∪N

j=1B
(j)
hj(i)

for 1 ≤ i ≤ n. That is, an
element of B is a union of elements of Bj , 1 ≤ j ≤ N , chosen through the
application of a perfect hash family. We show that (X,B) is an (n,Nt0, w −
1)-CFF. Clearly, |X| = Nt0 and |B| = n. Now for any given w blocks
{Bi, Bj1 , . . . , Bjw−1} ⊆ B, there exists at least one hash function hk ∈ H
which is one-to-one on {i, j1, . . . , jw−1}. For each 1 ≤ j ≤ N , consider the
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set system (Xj ,Bj), which may be regarded as a subsystem of (X,B). Since
(Xk,Bk) is an (n0, t0, w − 1)-CFF, we have

|Bi \ (Bj1 ∪ · · · ∪Bjw−1)| ≥ |B(k)
hk(i) \ (B(k)

hk(j1) ∪ · · · ∪B
(k)
hk(jw−1))|

≥ 1,

which proves the desired result. Thus, we have shown the following theorem.

Theorem 2.43. Suppose that there exists an (n0, t0, w−1)-CFF and aPHF (N ;
n, n0, w). Then there exists an (n,Nt0, w − 1)-CFF.

Construction from error-correcting codes: Another nice construction of cover-
free families is through error-correcting codes. Let Y be an alphabet of q
elements. Recall that an (N,M, d, q) code is a set C of M vectors in Y N such
that the Hamming distance between any two distinct vectors in C is at least d.

Consider an (N,M, d, q) code C. We write each codeword as ci = (ci1, . . . ,
ciN ) with cij ∈ Y , where 1 ≤ i ≤ M, 1 ≤ j ≤ N . Set X = {1, . . . , N} × Y
and B = {Bi : 1 ≤ i ≤ M}, where for each 1 ≤ i ≤ M we define Bi =
{(j, cij) : 1 ≤ j ≤ N}. It is easy to see that |X| = Nq, |B| = M and
|Bi| = N . For each choice of i �= k, we have |Bi ∩Bk| = |{(j, cij) : 1 ≤ j ≤
N} ∩ {(j, ckj) : 1 ≤ j ≤ N}| = |{j : cij = ckj}| ≤ N − d.

It is straightforward to show that (X,B) is an (M,Nq, r)-CFF if the condition
r < N

N−d holds. We thus obtain the following theorem.

Theorem 2.44. If there is an (N,M, d, q) code, then there exists an (M,Nq, r)-
CFF provided that r < N

N−d .

Now if we apply the above code construction to algebraic-geometry codes,
we immediately obtain the following corollary.

Corollary 2.45 ([48]). Let F/Fq be a global function field of genus g with
N +1 rational places. Then for any integer � ≥ 1 with g ≤ � < N , there exists
a (q�−g+1, Nq, �(N − 1)/��)-CFF.

We are interested in the asymptotic behaviour of cover-free families in Corol-
lary 2.45. We use the quantity A(q) introduced in (2.4). By Ihara [30] and
Vlăduţ and Drinfeld [73], we know that A(q) =

√
q − 1 if q is a square prime

power (see also Chapter 1). Thus, we have the following asymptotic result.

Corollary 2.46. For a fixed r ≥ 1 and a square prime power q with r <
√
q−1,

there exists a sequence of CFFs with parameters

(q�i−g+1, Niq, r)

such that

lim
i→∞

log q�i−g+1

Niq
=

log q
q
· (1
r
− 1
√
q − 1

). (2.6)
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Corollary 2.46 shows that for any fixed r there are infinite families of (n, t, r)-
CFFs in which t = O(logn) and the constructions are explicit.

Next, we improve the asymptotic result in Corollary 2.46 by applying the
function field construction directly.

LetF/Fq be a global function field of genus g with at leastm+g+1 rational
places. By using an argument similar to that in the proof of [62, Proposition
I.6.10], we can show that there exist m+ 1 rational places P∞, P1, . . . , Pm of
F such that

L(r�P∞ −
m∑

i=1

Pi) = {0},

provided that r�−m ≤ g − 1.
For each f ∈ L(�P∞), we denote Bf = {(Pi, f(Pi)) : i = 1, 2, . . . ,m}.

For any r + 1 distinct f1, f2, . . . , fr, f ∈ L(�P∞), we have
∏r

i=1(f − fi) ∈
L(�P∞) as f �= fi for any i = 1, . . . , r. On the other hand, since

∏r
i=1(f −

fi) �= 0, we have
∏r

i=1(f−fi) �∈ L(r�P∞−
∑m

i=1 Pi). Therefore, there exists
a Pj such that

∏r
i=1(f − fi)(Pj) �= 0, i.e., f(Pj) �= fi(Pj), ∀i = 1, 2, . . . , r.

We then conclude (Pj , f(Pj)) ∈ Bf and (Pj , f(Pj)) �∈ ∪r
i=1Bfi . That is,

|Bf \ ∪r
i=1Bfi | ≥ 1.

This shows that there exists a (ql−g+1,mq, r)-CFF. Moreover, if we let r =
�g − 1 +m/��, then we obtain a

(q�−g+1,mq, �g − 1 +m/l�)-CFF.

Thus, we obtain the following result.

Corollary 2.47 ([48]). If q is a square prime power, then for a fixed r ≥ 1 we
obtain a sequence of CFFs with parameters

(q�i−g+1, Niq, r)

such that

lim
i→∞

log q�i−g+1

Niq
=

log q
q
·
(

1
r
− (1− 1

r
)

1
√
q − 2

)

. (2.7)

Obviously, the bound (2.7) improves the bound (2.6) for r <
√
q − 1. We

note that Corollaries 2.46 and 2.47 show that the existence bounds for CFFs in
[19, 70] can be asymptotically met by the explicit constructions.

We conclude this section by mentioning a generalisation of cover-free fam-
ilies, called (s, r)-cover-free families, defined below.
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Definition 2.48. Let X be a set of t elements (points) and let B be a set of
n subsets (blocks) of X . Then (X,B) is called an (s, r)-cover-free family
provided that, for any s blocks B1, . . . , Bs in B and r other blocks B′

1, . . . , B
′
r

in B, one has
∩s

i=1Bi �⊆ ∪r
j=1B

′
j .

In words, no intersection of up to s blocks is contained in the union of
r other blocks. For s = 1, a (1, r)-cover-free family is exactly the one we
studied earlier in this subsection. For s = 2, a (2, w)-cover-free family was
introduced, under the name of key distribution pattern, by Mitchell and Piper
[40] to provide a mechanism for distributing a secret key to each pair of users
in a network. For general s, they are relevant to conference key distribution and
broadcast encryption [20, 66].

Cover-free families and their generalisations have been used for many other
cryptographic problems such as frameproof codes and traceability schemes
[21, 61, 68], authentication for group communication [51, 53], broadcast anti-
jamming systems [17], multiple time signature schemes [48] and blacklisting
problems [35], to just mention a few.

3. Applications to Stream Ciphers and Linear Complexity
3.1 Background

A cryptosystem protects sensitive data by transforming the original data (i.e.,
the plaintext) into encrypted data (i.e., the ciphertext) and allowing unique
recovery of the plaintext from the ciphertext by decryption. The encryption
and decryption algorithms depend on the choice of parameters called keys,
with the provision that the number of possible keys is so large that it inhibits
exhaustive key search by an attacker.

A stream cipher is a symmetric (or private-key) cryptosystem since it uses the
same key for encryption and decryption. This common key has to be kept secret.
In practical implementations, a stream cipher will be a bit-based cryptosystem.
The plaintext, the ciphertext and the key are all bit strings of the same length, but
this length can be arbitrary (as opposed to a block cipher where the lengths are
fixed). Encryption proceeds by taking the plaintext string and bitwise XORing
it with the key string (or, in other words, adding the two strings bit by bit in
the finite field F2). It is clear that the plaintext is recovered by bitwise XORing
the ciphertext string and the key string. Thus, in a bit-based stream cipher
the encryption and decryption algorithms are identical, which has the practical
advantage that the same hardware can be used for both operations.

From the theoretical point of view, it does not make any difference whether
we consider stream ciphers over F2 or over an arbitrary finite field Fq. Therefore
we consider the general case where plaintext and ciphertext are strings (or, in
other words, finite sequences) of elements of Fq and encryption and decryption
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proceed by termwise addition, respectively subtraction, of the same key string
of elements of Fq. The key string is commonly called the keystream and known
only to authorised users. It is convenient from now on to speak of strings,
respectively sequences, over Fq when we mean strings, respectively sequences,
of elements of Fq.

In an ideal situation, the keystream would be a “truly random” string over Fq.
In this case, the stream cipher would be perfectly secure since the ciphertexts
will carry absolutely no information, and so there will be no basis for an attack
on the cryptosystem. In practice, sources of true randomness are hard to come
by, and so keystreams are taken to be pseudorandom strings that are obtained
from certain secret seed data by a (perhaps even publicly available) algorithm.
A central issue in the security analysis of stream ciphers is then the quality
assessment of these pseudorandom keystreams. In other words, we need to
know how close a given keystream is to true randomness. We focus here on
the complexity-theoretic aspects of this assessment where global function fields
have played some methodological role. There are also statistical techniques for
this assessment which will not concern us here. For general background on
stream ciphers we refer to Chapter 4 and to the survey article of Rueppel [49].

3.2 Linear Complexity
Most practical keystreams are built up from linear recurring sequences, that

is, sequences generated by linear recurrence relations. Hence it is a natural
idea to look for the linear recurrence relation of lowest order that can generate
the keystream. Clearly, if a keystream can be generated by a low-order linear
recurrence relation, then it is easily predictable, hence distinctly nonrandom,
and thus has to be discarded as unsuitable. This viewpoint leads to the following
notions of complexity.

Definition 3.1. Let n be a positive integer and let S be a sequence over Fq.
Then the nth linear complexity Ln(S) of S is the least k such that the first n
terms of S can be generated by a linear recurrence relation over Fq of order k.
The linear complexity L(S) of the sequence S is defined by

L(S) = sup
n≥1

Ln(S).

It is clear that we always have 0 ≤ Ln(S) ≤ n and Ln(S) ≤ Ln+1(S).
The extreme values of Ln(S) correspond to highly nonrandom behaviour, for
if s1, . . . , sn are the first n terms of S, then Ln(S) = 0 if and only if si = 0 for
1 ≤ i ≤ n, whereas Ln(S) = n if and only if si = 0 for 1 ≤ i ≤ n − 1 and
sn �= 0. Note also that if S is ultimately periodic, then we have L(S) < ∞.
For arbitrary sequences over Fq we have the following concept.
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Definition 3.2. For a sequence S over Fq, letLn(S) denote again the nth linear
complexity of S. Then the sequence L1(S), L2(S), . . . is called the linear
complexity profile of S.

The linear complexity profile of S is a nondecreasing sequence of nonnega-
tive integers. Thus, the linear complexity profile is fully determined if we know
where and how large its jumps are. These data can be conveniently described
in terms of the continued fraction expansion of the generating function of S. If
s1, s2, . . . are the terms of S, then the generating function of S is given by

G :=
∞∑

i=1

six
−i ∈ Fq((x−1)).

Here Fq((x−1)) is the field of formal Laurent series over Fq in the variable x−1,
or equivalently Fq((x−1)) is the completion of the rational function field Fq(x)
with respect to its infinite place. The continued fraction expansion ofG has the
form

G = 1/(A1 + 1/(A2 + · · · )),
where the partial quotients A1, A2, . . . are polynomials over Fq of positive
degree. This expansion is finite if G is rational, i.e., if G ∈ Fq(x), and infinite
if G is irrational, i.e., if G /∈ Fq(x). It can be shown that the jumps in the
linear complexity profile of S are exactly the degrees deg(A1),deg(A2), . . .
of the partial quotients and that the locations of the jumps are also uniquely
determined by these degrees (see [46, Section 7.1]).

Let µq be the uniform probability measure on Fq which assigns the measure
1/q to each element of Fq. Let F

∞
q denote the sequence space over Fq and let

µ∞q be the complete product probability measure on F
∞
q induced by µq. Then,

except on a set of sequences S with µ∞q -measure 0, we have

lim
n→∞

Ln(S)
n

=
1
2
. (3.1)

We refer to [46, Section 7.1] for an elementary proof of this fact. This result
suggests to study the deviations of Ln(S) from n/2. There has been a strong
interest in sequences S for which these deviations are bounded.

Definition 3.3. Let d be a positive integer. Then a sequence S over Fq is called
d-perfect if

|2Ln(S)− n| ≤ d for all n ≥ 1.

A 1-perfect sequence is also called perfect. A sequence is called almost perfect
if it is d-perfect for some d.

An alternative characterisation of d-perfect sequences can be based on con-
tinued fractions (see [46, Theorem 7.2.2]).
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Proposition 3.4. A sequence S over Fq is d-perfect if and only if the generating
function G of S is irrational and the partial quotients Aj in the continued
fraction expansion of G satisfy deg(Aj) ≤ d for all j ≥ 1.

Example 3.5. Let q = 2 and let S be the sequence s1, s2, . . . over F2 defined
by si = 1 if i = 2h− 1 for some integer h ≥ 1 and si = 0 otherwise. Then the
generating function G of S satisfies the identity G2 = xG + 1 in F2((x−1)),
hence G = x + G−1. This leads to a continued fraction expansion of G with
partial quotients Aj = x for all j ≥ 1. Therefore the sequence S is perfect by
Proposition 3.4.

The following convenient sufficient condition for a sequence to be d-perfect
can be obtained from [46, Remark 7.2.3].

Proposition 3.6. Let S be a sequence over Fq and let d be a positive integer. If

Ln(S) ≥ n+ 1− d
2

for all n ≥ 1,

then S is d-perfect.

3.3 Constructions of Almost Perfect Sequences
The idea of using global function fields for the construction of almost perfect

sequences is due to Xing and Lam [84]. Throughout this subsection, we let
F/Fq be a global function field, P a rational place of F , and t a local parameter
at P with deg((t)∞) = 2.

We first describe the construction of Xing and Lam [84]. Let f ∈ F with
f /∈ Fq(t) and νP (f) ≥ 0. Then the local expansion of f at P has the form

f =
∞∑

i=0

sit
i

with all si ∈ Fq. From this expansion we read off the sequenceS1 of coefficients
s1, s2, . . . .

Theorem 3.7. If the integer d is such that d ≥ deg((f)∞), then the sequence
S1 constructed above is d-perfect.

Proof. We proceed by Proposition 3.6. Fix n ≥ 1, put k = Ln(S1) and write a
linear recurrence relation over Fq of order k satisfied by s1, . . . , sn in the form

k∑

h=0

ahsi+h = 0 for 1 ≤ i ≤ n− k, (3.2)
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where ah ∈ Fq for 0 ≤ h ≤ k and ak = 1. Consider

b := f

k∑

h=0

ak−ht
h −

k∑

j=0

(
j∑

i=0

ak−j+isi

)

tj .

Note that b is a nonzero element of F since ak �= 0 and f /∈ Fq(t). By applying
the linear recurrence relation (3.2) and considering the local expansion of b at
P , we obtain νP (b) ≥ n+ 1. On the other hand, the pole divisor of b satisfies

(b)∞ ≤ (f)∞ + (tk)∞.

Therefore

n+ 1 ≤ νP (b) ≤ deg((b)0) = deg((b)∞) ≤ d+ 2k,

and so

k ≥ n+ 1− d
2

.

Thus, S1 is d-perfect by Proposition 3.6.

Example 3.8. Let q = 2, let F be the rational function field F2(x), and let P
be the zero of x. We choose t = x2 + x and f = x/(x + 1). Then at P we
have the local expansion

f =
x2

t
=

∞∑

h=1

t2
h−1.

The sequence S1 of coefficients 1, 0, 1, 0, 0, 0, 1, . . . is perfect by Theorem 3.7.
Note that this is the same sequence as in Example 3.5.

The case where f ∈ F with f /∈ Fq(t) and νP (f) < 0 can be reduced to
that in Theorem 3.7, as was pointed out by Xing et al. [87]. Indeed, if we put
w = −νP (f) > 0, then νP (twf) = 0 and we have a local expansion at P of
the form

twf =
∞∑

i=0

sit
i

with all si ∈ Fq. From this expansion we read off the sequenceS′
1 of coefficients

s1, s2, . . . .

Corollary 3.9. If νP (f) = −w < 0 and the integer d is such that d ≥
deg((f)∞), then the sequence S′

1 constructed above is (d+ w)-perfect.

Proof. We have

deg((twf)∞) ≤ deg((f)∞) + deg((tw)∞)− deg(wP ) ≤ d+ w,
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and so Theorem 3.7 yields the desired result.

Two variants of this construction of almost perfect sequences were introduced
by Xing et al. [87]. For the first variant, let again f ∈ F with f /∈ Fq(t) and
let v = νP (f) be arbitrary. Then the local expansion of f at P has the form

f = tv
∞∑

i=0

sit
i

with all si ∈ Fq. From this expansion we read off the sequenceS2 of coefficients
s0, s1, . . . .

Theorem 3.10. If v = νP (f) and the integer d is such that d ≥ deg((f)∞),
then the sequence S2 constructed above is (d + v − 1)-perfect if v > 0 and
(d− v + 1)-perfect if v ≤ 0.

Proof. First let v > 0. Then

t1−vf =
∞∑

i=1

si−1t
i.

Furthermore, by using νP (t) = 1 and deg((t)∞) = 2, we obtain

deg((t1−vf)∞) ≤ deg((f)∞) + v − 1 ≤ d+ v − 1.

Thus, by applying Theorem 3.7 with f replaced by t1−vf , we get the first part
of the theorem. The second part follows by adapting the argument in the proof
of Theorem 3.7.

Example 3.11. Let q = 3, let F be the rational function field F3(x), and let P
be the zero of x. We choose t = x2 − x and f = x. Then at P we have the
local expansion

f = −t+ t2 + t3 − t4 + t5 + 0 · t6 + · · · .

The sequence S2 of coefficients −1, 1, 1,−1, 1, 0, . . . is perfect by Theorem
3.10.

The second construction variant from [87] is obtained as follows. Let f ∈ F
with f /∈ Fq(t) and νP (f) ≤ 0. Put w = −νP (f) ≥ 0. Then the local
expansion of f at P can be written in the form

f =
w∑

j=1

rjt
j−w−1 +

∞∑

i=0

sit
i
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with all rj ∈ Fq and si ∈ Fq. From this expansion we read off the sequence S3

of coefficients s1, s2, . . . . The following result is shown by the same method
as Theorem 3.7.

Theorem 3.12. If νP (f) ≤ 0 and the integer d is such that d ≥ deg((f)∞),
then the sequence S3 constructed above is d-perfect.

Further examples of almost perfect sequences that are obtained from the three
theorems in this subsection can be found in Kohel, Ling and Xing [34], Xing
[79], [81], and Xing and Niederreiter [86]. The paper of Kohel, Ling and Xing
[34] also discusses the efficient computation of local expansions by means of
an effective form of Hensel’s lemma.

3.4 Generalisation to Multisequences
A multisequence is a parallel stream of finitely many sequences. We will

denote an m-fold multisequence consisting of m parallel streams of sequences
S1, . . . , Sm over Fq by S = (S1, . . . , Sm). In the framework of linear complex-
ity theory, the appropriate complexity measure for multisequences is obtained
by looking at the linear recurrence relations that initial segments of S1, . . . , Sm

satisfy simultaneously.

Definition 3.13. Let n be a positive integer and let S = (S1, . . . , Sm) be an

m-fold multisequence over Fq. Then the nth joint linear complexity L(m)
n (S)

of S is the least order of a linear recurrence relation over Fq that simultaneously
generates the first n terms of each sequence Sj , 1 ≤ j ≤ m. The sequence

L
(m)
1 (S), L(m)

2 (S), . . . is called the joint linear complexity profile of S.

As in the case of single sequences, we again have 0 ≤ L
(m)
n (S) ≤ n and

L
(m)
n (S) ≤ L

(m)
n+1(S). The analysis of the joint linear complexity profile is

considerably more complicated than for the linear complexity profile. Note
that for single sequences we have the limit relation (3.1) outside of a set of
sequences S with µ∞q -measure 0. Let µ∞q,m be the corresponding probability
measure on the space of m-fold multisequences over Fq. Then, according to a
folklore conjecture (see e.g. [75] and [78]), we have

lim
n→∞

L
(m)
n (S)
n

=
m

m+ 1
(3.3)

except on a set ofm-fold multisequences S with µ∞q,m-measure 0. This conjec-
ture was shown in [75] for m = 2. Recently, the conjecture was proved for all
m by Niederreiter and Wang [42].

The limit relation (3.3) and Proposition 3.6 suggest the following extension
of the definition of a d-perfect sequence.
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Definition 3.14. Let d be a positive integer. Then an m-fold multisequence S
over Fq is called d-perfect if

L(m)
n (S) ≥ m(n+ 1)− d

m+ 1
for all n ≥ 1.

A multisequence is called almost perfect if it is d-perfect for some d.

Xing [78] showed that if an m-fold multisequence over Fq is d-perfect, then
d must be at least m. In the same paper, the following construction of almost
perfect m-fold multisequences over Fq based on global function fields was
introduced.

Let F/Fq be a global function field and let Q be a place of F of degree m.
Let t be a local parameter at Q with deg((t)∞) = m + 1. Since the residue
class field FQ of Q satisfies [FQ : Fq] = m, we can choose x1, . . . , xm ∈ F
with νQ(xj) ≥ 0 for 1 ≤ j ≤ m such that the residues x1(Q), . . . , xm(Q)
form an Fq-basis of FQ. Finally, we choose y ∈ F with νQ(y) ≥ 0 such that
y /∈ ⊕m

i=1Fq(t)xi. The local expansion of y at Q has the form

y =
∞∑

i=0




m∑

j=1

si,jxj



 ti

with all si,j ∈ Fq. Then for 1 ≤ j ≤ m, let Sj be the sequence over Fq with
terms s1,j , s2,j , s3,j , . . . .

Theorem 3.15. Let S = (S1, . . . , Sm) be the m-fold multisequence over Fq

obtained from the above construction. Then S is d-perfect with

d = deg((y)∞ ∨ (x1)∞ ∨ · · · ∨ (xm)∞).

Here∨denotes the maximum operation for divisors, i.e., ifD1, D2, . . . , Dm+1

are arbitrary divisors of F with

Dk =
∑

P

n
(k)
P P for 1 ≤ k ≤ m+ 1,

then

D1 ∨D2 ∨ · · · ∨Dm+1 =
∑

P

max(n(1)
P , n

(2)
P , . . . , n

(m+1)
P )P.

The proof of Theorem 3.15 proceeds by generalising the argument in the proof
of Theorem 3.7.

Xing [78] gave several examples for this construction. Further examples
in which the m-fold multisequence is d-perfect with the least possible value
d = m were presented by Xing, Lam and Wei [85].
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3.5 Sequences with Low Correlation and Large Linear
Complexity

Global function fields can also be used for the construction of periodic se-
quences with low correlation and large linear complexity. A construction of
this type was given by Xing, Kumar and Ding [83] for the binary case. We
recall the definition of correlation for binary sequences.

Definition 3.16. Let S = {si}∞i=1 and T = {ti}∞i=1 be two binary sequences
of period r (it is allowed that S and T are the same). Then their correlation at
shift w ∈ Z is given by

cS,T (w) =
r∑

i=1

(−1)si+ti+w .

The construction in [83] proceeds as follows. Let q be a power of 2 and
let F/Fq be a global function field. Choose a rational place P of F and an
Fq-automorphism σ of F . Note that σ(P ) is again a rational place of F . Put
Pi = σi(P ) for all integers i ≥ 1. For an element z ∈ F with νPi(z) ≥ 0 for
all i ≥ 1, define the binary sequence

Sz = {Tr(z(Pi))}∞i=1. (3.4)

Here Tr denotes the trace function from Fq to F2 and z(Pi) is, as usual, the
residue of z in the residue class field of Pi.

If r is the least positive integer satisfying σr(P ) = P , then it is clear that the
sequence Sz in (3.4) is periodic with period r. As shown in [83], the following
is a sufficient condition for r to be the least period of Sz: suppose that there
exists a unique poleQ of z with νQ(z) odd, thatQ, σ(Q), σ2(Q), . . . , σr−1(Q)
are distinct, and that d = deg((z)∞) satisfies

q + 1 + 2(2g(F ) + 2d− 1)
√
q < 2r.

Under these conditions we also have the following lower bound on the linear
complexity.

Theorem 3.17. With the above notation and conditions, the linear complexity
of the sequence Sz satisfies

L(Sz) ≥
2r − q − 1− 2(2g(F ) + d− 1)

√
q

2d
√
q

.

Theorem 3.17 indicates that the linear complexity of Sz is large if the least
period r is relatively large compared with q and 2g(F )

√
q.

We recall that in the case of characteristic 2, an element z ∈ F is called
nondegenerate if it cannot be written in the form a+ h2 + h for some a ∈ Fq
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and h ∈ F . A sufficient condition for z to be nondegenerate is that there exists a
poleQ of z with νQ(z) odd. The following is an upper bound on the correlation
of two sequences of the type (3.4).

Theorem 3.18. Let z1, z2 ∈ F with νPi(zj) ≥ 0 for j = 1, 2 and all i ≥ 1.
Suppose that z1 + σ−w(z2) is nondegenerate for some w ∈ Z. Then we have

|cSz1 ,Sz2
(w)| ≤ 2(2g(F ) + b− 1)

√
q + |q + 1− r|+ 2(N(F )− r),

where b is the degree of the pole divisor of z1 + σ−w(z2).

Examples for this construction of sequences with low correlation and large
linear complexity are given in the papers of Xing [79], [81] and Xing, Kumar
and Ding [83].
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Chapter 3

ARTIN-SCHREIER EXTENSIONS AND
THEIR APPLICATIONS

Cem Güneri and Ferruh Özbudak

1. Introduction
A Galois extension E/F of fields is called a cyclic extension if the Galois

group is cyclic. Assume that p > 0 is the characteristic of our fields and n is
the degree of the field extension E/F . If n is relatively prime to p, and there
is a primitive nth root of unity in F , then E/F is a Kummer extension, i.e.
E = F (y) with yn ∈ F . If n = p, then E/F is an Artin-Schreier extension,
i.e. E = F (y) with yp − y ∈ F . Finally, if n = pa for a > 1, then the
extension E/F can be described in terms of Witt vectors. For these facts, see
[34, Section VI.7].

In this survey, we are interested in Artin-Schreier extensions of function
fields and their generalizations. Namely, we will have a Galois extension E/F
of function fields of degree q = pe (e ≥ 1) whose Galois group is isomorphic
to the direct sum of e copies of Z/pZ. When e = 1 this is an Artin-Schreier
extension as mentioned above. When e > 1 such an extension is called an
elementary abelian p-extension due to the structure of its Galois group. We
will in general refer to all such extensions as Artin-Schreier type extensions.

Besides introducing some basic properties of Artin-Schreier type extensions,
the second purpose of this chapter is to explain some applications of such
function field extensions to coding theory. We remind the reader that since the
introduction of algebraic geometry codes by Goppa in [23], interaction between
coding theory and algebraic function fields (curves) over finite fields has been
explored by many researchers, both mathematicians and engineers. Our focus
will be on another well-established relation between these two topics, which
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arises via the trace map between finite fields. By Hilbert’s Theorem 90 and
Delsarte’s theorem, weights (and higher weights) of the so-called trace codes
are intimately related to Artin-Schreier function fields.

Let us give a short summary. In Section 2, we introduce Artin-Schreier type
extensions and specifically address the genus and irreducibility issues. In the
same section, a relation between the number of solutions of defining equations
of Artin-Schreier type extensions and certain character sums is established. It
is shown that the Hasse-Weil bound for Artin-Schreier function fields can be
used to obtain the Weil bound for character sums.

Section 3 is devoted to applications of Artin-Schreier type extensions to
weight analysis of cyclic codes. After reviewing basic material on cyclic codes,
we prove their trace representation and state Wolfmann’s bound on the weights
of cyclic codes using the Hasse-Weil theorem. We also illustrate an extension
of Wolfmann’s bound to a larger class of cyclic codes and describe how similar
methods can be adapted to multidimensional cyclic codes.

In general, a code over Fq which can be described as the image under the
trace map of another code over an extension of Fq is called a trace code. In this
sense, cyclic codes are also trace codes. Section 4 deals with trace codes and the
application of Artin-Schreier type extensions to their “ordinary” weights and
higher weights. We explore this relation when q = p is a prime and mention
the complications in the case q = pe with e > 1.

In the last section we summarize some of the developments in the explicit
construction of function fields over finite fields with many rational places. Artin-
Schreier type extensions yield many “good” examples in this respect. We note
that although the topic addressed in this section is purely mathematical, the
interest in recent times on this topic was motivated by applications to coding
theory. We finish by recalling a theorem of Frey-Perret-Stichtenoth which states
that although one can find a lot of examples of Artin-Schreier type function fields
with many rational places, this class is “asymptotically bad”.

As is the case with most publications in this area, one has to make a choice
between the language of curves and function fields. We will mostly use ter-
minology and notation from function fields, for which a reader can consult the
appendix of this volume or [50]. Yet, we remind the fact that the two approaches
are equivalent and we will feel free to use the geometric language as well.

Unless otherwise stated the following notation will be valid throughout this
chapter.

Fq is a finite field with q = pe elements, where p is a prime number.

F is a function field over Fq.

m ≥ 2 is an integer.

TrFqm/Fq
and TrFqm/Fp

are the trace maps from Fqm onto Fq and Fp.
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2. Artin-Schreier Extensions
In this section we introduce a class of abelian extensions of algebraic function

fields in positive characteristic. Namely, given a function field F of character-
istic p > 0, we are interested in Galois extensions E of F such that the Galois
groupGal(E/F ) is either Z/pZ or a direct sum of a finite number of copies of
Z/pZ. Although we will refer to this kind of extensions as Artin-Schreier (or
Artin-Schreier type), due to the structure of Galois group, they are also called
elementary abelian p-extensions. The rest of the chapter will be mainly based
on the results stated in this section. At the end of the section, we discuss a
relation between the number of rational places of Artin-Schreier function fields
and certain character sums.

We start with the simplest case:

Definition 2.1. For f ∈ F , assume that T p−T − f ∈ F [T ] is irreducible. Let
E = F (y) with yp − y = f . Then E/F is called an Artin-Schreier extension.

An Artin-Schreier extension E/F is a Galois extension with Galois group
Gal(E/F ) = {σi : y �→ y+i, i ∈ Fp}, which is isomorphic to Z/pZ. A place
P of F is either unramified or totally ramified inE/F . In particular if vP (f) ≥
0, then P is unramified. If there exists a ramified place in the extension, thenE
and F have the same constant field (see [50, Proposition III.7.8] for the proofs
of these assertions). Let us also remark that in characteristic p > 0, any Galois
extension of degree p is an Artin-Schreier extension ([34, Theorem 6.4]).

The genus ofE can be computed using the genus ofF and Riemann-Hurwitz
formula ([50, Proposition III.4.12]). In particular if F = Fq(x) is the rational
function field and f is a polynomial in Fq[x] with gcd(deg f, p) = 1, then
T p − T − f defines an Artin-Schreier extension over F . In this extension the
place at infinity is the only ramified place and the genus g(E) of E is

g(E) =
(p− 1)(deg f − 1)

2
. (2.1)

Next, we introduce a class of elementary abelian extensions, which includes
the class of Artin-Schreier extensions.

Definition 2.2. Let F be a function field with Fq ⊂ F . Assume that the
polynomial T q−T −f ∈ F [T ] is irreducible. LetE = F (y) with yq−y = f .
We call E/F an Artin-Schreier type extension.

The following result, and more on Artin-Schreier type extensions, can be
found in [11].

Theorem 2.3. Let F be a function field with Fq ⊂ F .
(i) If E/F is an elementary abelian extension of degree q, then there exists

an element y ∈ E with E = F (y) whose minimal polynomial over F has the
form T q − T − f for some f ∈ F .
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(ii) Conversely, ifT q−T−f ∈ F [T ] is irreducible overF , then the extension
F (y)/F with yq−y = f is an elementary abelian extension of degree q. There
are (q − 1)/(p − 1) intermediate fields F ⊂ Ea ⊂ F (y) with [Ea : F ] = p.
These are defined by Ea = F (ya), where a ∈ F

∗
q and

ya = (ay)pe−1
+ (ay)pe−2

+ · · ·+ (ay)p + (ay).

The element ya satisfies the equation yp
a − ya = az.

(iii) T q − T − z ∈ F [T ] is irreducible over F if and only if T p − T − az is
irreducible over F for all a ∈ F

∗
q .

(iv) Assume that F is the rational function field whose constant field is finite
and contains Fq. If E is an elementary abelian extension of F of degree q
with the same constant field, and E1, . . . , Ev denote the intermediate fields
F ⊂ Ei ⊂ E with [Ei : F ] = p for all i = 1, . . . , v = (q − 1)/(p − 1), then
the genus g(E) of E is

g(E) =
v∑

i=1

g(Ei).

Example 2.4. Assume that F = Fqm(x), f ∈ Fqm [x] and gcd(deg f, p) = 1.
Then T q − T − f ∈ F [T ] is irreducible. Let E = F (y) with yq − y = f .
Using Theorem 2.3 (iv) and Equation (2.1), for the genus g(E) of E we obtain
that

g(E) =
(q − 1)(deg f − 1)

2
. (2.2)

For applications and also due to its theoretical appeal, the number of rational
places of Artin-Schreier extensions is of great interest. Although we have a
separate section (Section 5) on this issue, we start the discussion of the topic
here. This will also enable us to explain a relation with character sums.

Recall that Hilbert’s Theorem 90 states that for m ≥ 1 and α ∈ Fqm ,

TrFqm/Fq
(α) = 0⇐⇒ α = βq − β for some β ∈ Fqm . (2.3)

Note that if there exists an element β ∈ Fqm with βq − β = α, then for any
c ∈ Fq, the element β + c also satisfies the same equation. Combining this
observation with the ramification structure of Artin-Schreier type extensions
and Kummer’s theorem ([50, Theorem III.3.7]), we obtain the following:

Proposition 2.5. Let F be a function field whose constant field is Fqm . Assume
that T q − T − f ∈ F [T ] is irreducible and E = F (y) with yq − y = f . For
any rational place P of F with vP (f) ≥ 0 we have:

i) if TrFqm/Fq
(f(P )) = 0, then there are q rational places of E over P ,

ii) if TrFqm/Fq
(f(P )) �= 0, then there is no rational place of E over P ,
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where f(P ) ∈ Fqm denotes the evaluation (residue class) of f at P .

Another consequence of Hilbert’s Theorem 90 is the following.

Proposition 2.6. Let f(x) ∈ Fqm [x] be a polynomial. Then, the number of
solutions of the equation yq − y = f(x) in Fqm × Fqm is divisible by q and it
is bounded by qm+1.

We refer the reader to [24, Theorem 2.5] for a characterization of the poly-
nomials f(x) that yield the maximum possible number of solutions in this
Proposition.

Assume that f(x) ∈ Fqm [x] and gcd(deg f, p) = 1. Let Nf denote the
number solutions of the equation

yq − y = f(x),

where (x, y) ∈ Fqm × Fqm . Let E = Fqm(x, y) be the function field defined
by this equation and N(E) denote the number of rational places of E. Then E
has just one rational place at infinity and Nf affine rational places, i.e.

N(E) = 1 +Nf . (2.4)

By the Hasse-Weil bound ([50, Theorem V.2.3]) and (2.2) we obtain that

|N(E)− (qm + 1)| ≤ 2g(E)qm/2 = (q − 1)(deg f − 1)qm/2. (2.5)

In the rest of this section we want to show that the bound (2.5) for the rational
places of certain Artin-Schreier type function fields can be used to prove Weil’s
Theorem on additive character sums. Before stating this theorem we need some
preparation.

Definition 2.7. An additive character ψ of Fqm is a homomorphism from the
additive group of Fqm into the multiplicative group of C, i.e.

ψ(x+ y) = ψ(x)ψ(y) for x, y ∈ Fqm .

For a ∈ Fqm , the map ψa : Fqm → C
∗ defined by

ψa(x) = e
2πi
p

TrFqm/Fp (ax)
,

where Fp is identified with the set {0, 1, . . . , p − 1}, is an additive character.
Moreover any additive character of Fqm is of this form for some a ∈ Fqm (cf.
[86, Theorem 5.7]). The character ψ0 is called the trivial additive character of
Fqm . Note that the image of an additive character lies in the unit circle |z| = 1
in C.

We recall Weil’s Theorem on additive character sums (cf. [86, Theorem
5.38]).
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Theorem 2.8. If f(x) ∈ Fqm [x] is a polynomial with gcd(deg f, p) = 1 and ψ
is a nontrivial additive character of Fqm , then we have

∣
∣
∣
∑

x∈Fqm

ψ(f(x))
∣
∣
∣≤ (deg f − 1)qm/2.

Remark 2.9. It is possible to prove Theorem 2.8 using only “elementary meth-
ods”, the so-called Stepanov-Schmidt method instead of the Hasse-Weil bound.
We refer the reader to [86, Chapter 6] for details.

For a nontrivial additive characterψ of Fqm and s ≥ 1, letψ(s) be the additive
character of Fqms defined by

ψ(s)(x) = ψ
(
TrFqms/Fqm (x)

)
.

We will need the following results for the proof of Theorem 2.8. For their
proofs, we refer to [86, Theorem 5.36, Lemma 6.55].

Theorem 2.10. For f ∈ Fqm [x] with deg f ≥ 2, gcd(deg f, p) = 1 and a
nontrivial additive character ψ of Fqm , there exist nonzero complex numbers
w1, . . . , wdeg f−1 such that for each s ≥ 1 we have

∑

x∈Fqms

ψ(s)(f(x)) = −ws
1 − · · · − ws

deg f−1.

Lemma 2.11. Letw1, . . . , wn be nonzero complex numbers andB > 0,C > 0
be constants. Assume that for each s ≥ 1 we have

|ws
1 + · · ·+ ws

n| ≤ CBs.

Then |wi| ≤ B for each 1 ≤ i ≤ n.

We are ready to prove Theorem 2.8. For s ≥ 1 and a ∈ Fqm , letNs(a) denote
the number of x ∈ Fqms such that TrFqms/Fqm (f(x)) = a. Using Proposition
2.5 we note that the number of rational places of the function field Fqms(x, y),
where

yqm − y = f(x)− a, (2.6)

is qmNs(a) + 1. Using the Hasse-Weil bound (2.5), we have

|Ns(a)− qm(s−1)| ≤ qm − 1
qm

(deg f − 1)qms/2. (2.7)
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Let Rs(a) = Ns(a)− qm(s−1). For s ≥ 1 we have
∑

x∈Fqms

ψ(s)(f(x)) =
∑

a∈Fqm

ψ(Ns(a)a)

=
∑

a∈Fqm

Ns(a)ψ(a)

=
∑

a∈Fqm

(
Rs(a) + qm(s−1)

)
ψ(a).

Since ψ is a nontrivial caharacter of Fqm , there exists b ∈ Fqm with ψ(b) �= 0.
Then

ψ(b)
∑

a∈Fqm

ψ(a) =
∑

a∈Fqm

ψ(a+ b) =
∑

a∈Fqm

ψ(a),

and hence
∑

a∈Fqm
ψ(a) = 0. Then for s ≥ 1,

∑

x∈Fqms

ψ(s)(f(x)) =
∑

a∈Fqm

Rs(a)ψ(a),

and using (2.7) we get
∣
∣
∣
∑

x∈Fqms

ψ(s)(f(x))
∣
∣
∣≤
∑

a∈Fqm

|Rs(a)| ≤ (qm − 1)(deg f − 1)qms/2. (2.8)

Assume that w1, . . . , wdeg f−1 are nonzero complex numbers such that
∣
∣
∣
∑

x∈Fqms

ψ(s)(f(x))
∣
∣
∣=
∣
∣ws

1 + · · ·ws
deg f−1

∣
∣

for all s ≥ 1 (cf. Theorem 2.10). Then by (2.8) and Lemma 2.11 we have
|wi| ≤ qm/2 for each i = 1, . . . ,deg f − 1. Hence we have

∣
∣
∣
∑

x∈Fqm

ψ(f(x))
∣
∣
∣=

∣
∣
∣
∣
∣

deg f−1∑

i=1

wi

∣
∣
∣
∣
∣
≤

deg f−1∑

i=1

|wi| ≤ (deg f − 1)qm/2,

which proves Theorem 2.8.

3. Cyclic Codes and Their Weights
Determining the minimum distance of a code is one of the most fundamental

problems in coding theory. This is a difficult problem in general. Therefore,
finding effective bounds for the minimum distance of a code is of great interest.
The main goal in this section is to obtain a general bound on the minimum
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distance of a large class of cyclic codes (due to J. Wolfmann, see [61]), which
is, in particular, valid for any p-ary cyclic code (cf. Remark 3.6). Our tools will
be Artin-Schreier type extensions of algebraic function fields and the Hasse-
Weil bound.

For more information on cyclic codes, and algebraic coding theory in general,
we refer to [36, 40, 43]. A good survey of cyclic codes and some open problems
on the subject are provided in [2].

We start with defining basic notions about codes. A q-ary code of length
n is simply a subset C of F

n
q . If C is a linear subspace of F

n
q , then we call it

a linear code. In this Chapter, the term “code” is only used for linear codes.
If C is a k-dimensional subspace of F

n
q , then it is called a code of length n

and dimension k. An element of a code is called a codeword. The minimum
distance of a code is defined as the minimum nonzero codeword weight, where
the weight of a codeword is the number of nonzero coordinates in it. A linear
code with length n, dimension k, and minimum distance d is called an [n, k, d]
code. These three parameters of a code are related via the Singleton bound ([36,
page 67]), which states that k + d ≤ n + 1. If the parameters of a code yield
equality in the Singleton bound, then such a code is called maximum distance
separable (MDS).

Definition 3.1. A linear code C with the property that if (c0, c1, . . . , cn−1) is
in C, then (cn−1, c0, . . . , cn−2) is also in C is called a cyclic code.

The set of n-tuples that are orthogonal to all members of the code C, with
respect to the usual inner product on F

n
q , is called the dual code and is denoted

by C⊥. Observe that the dual of a cyclic code is also cyclic.
One of the most important features of cyclic codes is that they can be repre-

sented as ideals in certain rings. For this, observe the Fq-isomorphism between
F

n
q and Fq[t]/(tn − 1):

(a0, a1, . . . , an−1) ∈ F
n
q ←→ a(t) =

n−1∑

i=0

ait
i ∈ Fq[t]/(tn − 1) (3.1)

Under this identification a codeword c ∈ C can now be viewed as a polynomial
c(t) and in this way we can think of a cyclic code as a subset of Fq[t]/(tn− 1).
It is easy to see that a linear code C in F

n
q is cyclic if and only if C is an ideal

in Fq[t]/(tn − 1).
Since a cyclic code is an ideal in the principal ideal ring Fq[t]/(tn − 1),

it is generated by a unique monic polynomial g(t) of lowest degree in Fq[t]
which divides tn − 1. This polynomial is called the generator polynomial
of the cyclic code. Besides other uses, the generator polynomial gives us
a simple way to compute the dimension of a cyclic code. Namely, the set
{g(t), tg(t), . . . , tn−k−1g(t)} forms a basis for C, where k = deg g. Hence,
dimC = n− deg g.
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We will assume throughout that (n, p) = 1. The roots of g(t) in an algebraic
closure Fq of Fq are called zeros of the cyclic code C. Obviously the zeros of a
cyclic code are the common roots of all the codewords in C. Since g(t) divides
tn − 1 and the latter polynomial does not have multiple roots, the number of
zeros of C is equal to the degree of g(t). Hence the dimension of a cyclic code
C of length n is n− k, where k is the number of zeros of C.

Assume that tn − 1 = g1(t) · · · gs(t) is the factorization into irreducible
polynomials over Fq. Since the generator polynomial g(t) ∈ Fq[t] of a cyclic
code C divides tn − 1, it is a product of some combination of the factors
g1, . . . , gs. In particular, zeros of C are roots of the irreducible factors of g(t).
If αi is a root of the irreducible polynomial gi in some extension of Fq, then
the other roots of gi are obtained by consecutive qth powers of αi, i.e. Fq-
conjugates. In order to describe a cyclic code over Fq, it is enough to tell the
irreducible factors of its generating polynomial. An irreducible polynomial is
uniquely determined by its roots, or just one of its roots, as explained above.
Hence, a q-ary cyclic code C is uniquely described by a subset of its zeros;
namely a subset consisting of exactly one root of each irreducible factor of the
generator polynomial g(t). We call such a subset a basic zero set of C. Note
that the choice of a basic zero set is in general not unique.

Example 3.2. Let C be a cyclic code of length n over Fq, m be the order of
q mod n, and α be a primitive nth root of unity in Fqm . We call C a BCH
code of designed distance d if the generator polynomial of C is the product
of all distinct minimal polynomials over Fq of the d − 1 consecutive powers
αl, αl+1, . . . , αl+d−2. When l = 1, we call such a code a narrow-sense BCH
code and if n = qm − 1, i.e. α is a primitive element of Fqm , then the BCH
code is called primitive.

An important example of a BCH code is obtained in the simplest case when
n = q − 1. Then all zeros of the code lie in Fq or equivalently, all irreducible
factors of the generating polynomial are linear. Namely, a Reed-Solomon (RS)
code is a primitive BCH code of length n = q − 1. In this case, the generating
polynomial has the form

∏d−1
i=1 (t− αi), where α is a primitive element of Fq.

RS codes are commonly used in practice.

A well-known bound on the minimum distance of a cyclic code is the so-
called BCH bound ([43, page 116]). It states that if the zero set of a cyclic
code contains β, β2, . . . , βd−1, where β is in some extension of Fq (e.g. a BCH
code), then d(C) ≥ d. This bound is valid for any cyclic code but it is in general
weak. Still, it enables us to compute the minimum distance of RS codes and to
prove that these codes are MDS as follows: Let CRS be a RS code of length n
with d− 1 consecutive zeros. Then, from the discussion above, we have

d(CRS) ≥ d and k(CRS) = n− (d− 1).
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Hence, d(CRS)+k(CRS) ≥ n+1 which implies, by the Singleton bound, that
d(CRS) = d.

In the following, we denote by Tr the trace mapping from Fqm to Fq. We
also use the same symbol to denote the Fq-linear map from (Fqm)n to F

n
q , which

is defined by applying Tr componentwise.
Our aim is to state a minimum distance bound for cyclic codes which is much

more effective than the BCH bound in general. One of the main ingredients in
obtaining this result will be the following coding theoretic fact.

Theorem 3.3 (Delsarte). For any code C over Fqm , we have

(C|Fq)
⊥ = Tr(C⊥),

where C|Fq denotes the restriction of C to Fq, i.e. C|Fq = C ∩ F
n
q .

Proof. See [5] or [50, Theorem VIII.1.2].

Let g(x) ∈ Fqm [x] be a polynomial, α be a primitive element of Fqm and
n = qm − 1. We will use the following notation:
(
Tr
(
g(x)
))

x∈F
∗
qm

=
(
Tr
(
g(α)),Tr

(
g(α2)

)
, . . . ,Tr

(
g(αn)

))
. (3.2)

For polynomials f1(x), . . . , ft(x) ∈ Fqm [x], the Fqm-linear space spanned by
the set {f1, . . . , ft} will be denoted by 〈f1, . . . , ft〉Fqm

.
The following is the key result which relates cyclic codes to Artin-Schreier

type equations.

Theorem 3.4 (Wolfmann [61]). Let m > 1 and C be a q-ary cyclic code of
length n = qm−1. Letα be a primitive element of Fqm and {αi1 , αi2 , . . . , αis}
be a basic zero set of the dual code C⊥. Then

C =
{(

Tr
(
f(x)
))

x∈F
∗
qm

; f(x) ∈
〈
xi1 , . . . , xis

〉
Fqm

}

. (3.3)

Proof. Viewing C⊥ as an ideal in Fq[t]/(tn − 1), note that

C⊥ =
(
fαi1 (t)fαi2 (t) · · · fαis (t)

)
,

where f
αij (t) is the minimal polynomial of αij over Fq, for all j. Let C̃ be the

code over Fqm of the same length whose dual has the zero set{αi1 , αi2 , . . . , αis},
i.e.

C̃⊥ =
(
(t− αi1)(t− αi2) · · · (t− αis)

)
⊂ Fqm [t]/(tn − 1).

Then C⊥ is the restriction of C̃⊥ to Fq and hence we have C = Tr(C̃) by
Delsarte’s theorem.
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Observe that for any codeword b(t) =
∑n−1

i=0 bit
i in C̃⊥, we have b(αij ) = 0,

for all j = 1, 2, . . . , s. These equalities can also be written using the usual inner
product in n-space as follows:

(b0, b1, . . . , bn−1) · (1, (αi1)1, . . . , (αi1)n−1) = 0,
(b0, b1, . . . , bn−1) · (1, (αi2)1, . . . , (αi2)n−1) = 0,

...
(b0, b1, . . . , bn−1) · (1, (αis)1, . . . , (αis)n−1) = 0.

Remembering the vector representation of cyclic codes, the above equalities
mean that the following vectors are codewords in C̃:

v1 = (1, (α1)i1 , . . . , (αn−1)i1) = (xi1)x∈F
∗
qm

v2 = (1, (α1)i2 , . . . , (αn−1)i2) = (xi2)x∈F
∗
qm

...
vs = (1, (α1)is , . . . , (αn−1)is) = (xis)x∈F

∗
qm






∈ C̃.

The generator polynomial of C̃⊥ reveals that the Fqm-dimension of C̃ is s.
It is not difficult to show that {v1, . . . , vs} is a linearly independent set over
Fqm . Hence, it forms an Fqm-basis for C̃. This implies that any codeword in
C = Tr(C̃) can be written as Tr(λ1v1 + · · ·+ λsvs) for some λj in Fqm .

Corollary 3.5 (Wolfmann [61]). Let m > 1 and C be a q-ary cyclic code of
length n = qm−1. Letα be a primitive element of Fqm and {αi1 , αi2 , . . . , αis}
be a basic zero set of the dual code C⊥, where 0 < i1 < · · · < is. If

gcd(ij , p) = 1, for all j = 1, . . . , s (3.4)

then the nonzero weights w of C satisfy
∣
∣w − (qm − qm−1)

∣
∣ ≤ (q − 1)(is − 1)q

m
2
−1. (3.5)

Proof. Let c be a nonzero codeword in C with a trace representation as in
Theorem 3.4 with some (λ1, . . . , λs) ∈ F

s
qm . By Hilbert’s Theorem 90 (cf.

(2.3)), the weight of c is

w(c) = qm − N

q
, (3.6)

where N is the number of solutions of the following equation in Fqm × Fqm :

yq − y = λ1x
i1 + λ2x

i2 + · · ·+ λsx
is (3.7)

By assumption (3.4) and Example 2.4, this equation is irreducible over the
rational function field Fqm(x). Hence it defines a degree q extension of Fqm(x)
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with genus g = (q−1)(deg f −1)/2 (cf. Equation (2.2)), where f denotes the
polynomial on the right hand side of Equation (3.7). Using Hasse-Weil bound
for the largest possible genus, i.e. deg f = is, the result follows.

Remark 3.6. Assumption (3.4), which is required to guarantee irreducibility of
Equation (3.7) over Fqm(x), need not hold for every q-ary cyclic code. However
if q = p, then there is a choice of a basic zero set for C⊥ which necessarily
satisfies this condition. Note that if a and b are in the same p-cyclotomic coset
modulo n = pm−1, i.e. a ≡ bpu (mod n) for some u, then αa and αb are roots
of the same irreducible polynomial in Fp[t]. If each ij is chosen as the minimal
element of its cyclotomic coset, then it is necessarily relatively prime to p.

Note that in any case one should choose a basic zero set consisting of smallest
possible numbers, satisfying (3.4), in order to lower the genus term in the bound
and hence obtain the strongest result.

Remark 3.7. Let n be a proper divisor of qm − 1, ω be a primitive nth root of
unity, and D be a cyclic code of length n whose dual D⊥ has {ωi1 , . . . , ωis}
as a basic zero set. Then the above proof also works forD and every codeword
can be represented as (Tr(f(ω0)),Tr(f(ω1)), . . . ,Tr(f(ωn−1))) with some
f(x) = λ1x

i1 + · · · + λsx
is in Fqm [x]. Here, we denote again the trace

map TrFqm/Fq
by Tr for simplicity. Now, let α be a primitive (qm − 1)th

root of unity and C be a cyclic code of length qm − 1 with the basic zero
set {αri1 , . . . , αris} for its dual C⊥, where r = (qm − 1)/n. In this case a
codeword in C has the form (Tr(f̄(α0)),Tr(f̄(α1)), . . . ,Tr(f̄(αqm−2))) with
some f̄(x) = λ1x

ri1 + · · · + λsx
ris in Fqm [x]. Then it is easy to see that

d(D) = n
qm−1d(C). This shows that one can, without loss of generality, study

only the weights of cyclic codes of “full length” qm − 1.

Let i1, . . . , is be nonnegative integers, r1, . . . , rs be positive integers which
are not divisible by p and λ1, . . . , λs ∈ Fqm . Consider the equation

yq − y = λ1x
r1pi1 + · · ·+ λsx

rspis
. (3.8)

By Theorem 2.3 (iii), this equation is reducible over Fqm(x) if and only if there
exists a ∈ F

∗
q such that

yp − y = aλ1x
r1pi1 + · · ·+ aλsx

rspis
(3.9)

is reducible over Fqm(x). Note that for any 1 ≤ j ≤ s, the change of variable

y ↔ (y− (aλj)p−1
xrjpij−1

) in (3.9) does not change the function field defined
by this equation. However, if it is applied for all j = 1, . . . , s as many times as
necessary, it reduces (3.9) to

yp − y = (aλ1)p−i1
xr1 + · · ·+ (aλs)p−is

xrs . (3.10)
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If there exists rj which is different than all the other rj′’s, then for any a ∈ F
∗
q

the term xrj in (3.10) will be isolated and it will have a nonzero coefficient.
Hence, by (2.1) and Theorem 2.3 (iii,iv), we have the following:

Proposition 3.8. Consider

yq − y = λ1x
r1pi1 + · · ·+ λsx

rspis
,

where λj ∈ Fqm and p � rj for all j = 1, 2, . . . , s. If there exists rj such
that rj �= rj′ for any j′ �= j, then the equation defines an Artin-Schreier
type extension of Fqm(x). In this case the genus of the extension satisfies
g ≤ (q − 1)(r − 1)/2, where r = max{r1, . . . , rs}. If r1, . . . , rs are pairwise
distinct, then g = (q − 1)(r − 1)/2.

Note that this proposition extends the conclusions in Example 2.4 to more
general Artin-Schreier type equations. Hence, we can relax the condition (3.4)
in Corollary 3.5 and obtain an immediate extension of Wolfmann’s result to a
class of cyclic codes for which the dual’s basic zero set is of the form

{αr1pi1
, . . . , αrspis}, (3.11)

where r1, . . . , rs are pairwise distinct.
In [27], the following Hasse-Weil type bound is obtained for the number of

solutions in Fqm × Fqm of a reducible Artin-Schreier type equation.

Theorem 3.9. Let q = pe and r1, . . . , rk be pairwise distinct positive integers
which are not divisible by p. Let 0 ≤ it,1 < it,2 and jt = it,2 − it,1 for
t = 1, . . . , k. Consider a reducible equation

yq−y =
(
λ1x

r1pi1,1 + β1x
r1pi1,2

)
+· · ·+

(
λkx

rkp
ik,1 + βkx

rkp
ik,2
)
, (3.12)

where λ1, . . . , λk, β1, . . . , βk ∈ Fqm . Assume that r = max{r1, . . . , rk},
l = gcd(e, j1, . . . , jk) and N denotes the number of solutions of (3.12) in
Fqm × Fqm . Then we have

|N − pem+l| ≤ (pe − pl)(r − 1)
√
pem.

The consequence of this theorem for cyclic codes is clear: it allows us to
extend Corollary 3.5 further. Namely, one can allow pairs of equal ri’s to appear
in the dual’s basic zero set in (3.11). Details and the bound for the weights of
cyclic codes can be found in [27]. Naturally, finding results similar to Theorem
3.9 for the number of solutions of more general reducible equations would
extend Wolfmann’s approach and his bound to even wider classes of cyclic
codes.
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Example 3.10. Let q = 2m for some m > 2, α be a primitive element in Fq,
and consider the binary BCH codeBm of length n = q− 1 with the generating
polynomial g(t) = fα(t)fα3(t) ∈ Fq[t], i.e. {α, α3} is a basic zero set. The
code Bm is also referred to as double-error-correcting binary BCH code and
denoted as BCH(2). For anym > 2, the zero set of Bm contains α, α2, α3, α4.
Hence, d(Bm) ≥ 5 by the BCH bound. In fact, this is the exact minimum
distance and we can say more about the weights of Bm.

Note that the dual code can be represented as

B⊥
m =
{(

Tr(f(x)
)
x∈F∗

q
; f(x) ∈

〈
x, x3
〉

Fq

}
.

Hence, weights inB⊥
m are related to the familyF = {y2−y = λx+µx3; λ, µ ∈

Fq}. If µ = 0, then the resulting function field is rational and the defining
equation has exactly q solutions in Fq × Fq. When µ �= 0, we have a genus
1 (elliptic) function field (cf. Example 2.4). In this case, the possible number
of Fq-rational points and their frequencies in F are known (see [45]). Hence,
we have the list of all the weights and their frequencies for the code B⊥

m, i.e.
the so-called weight enumerator of the code. Then the weight enumerator of
the BCH code Bm can be obtained using the MacWilliams identity in coding
theory ([36, Page 41]), which gives a relation between the weight enumerators
of dual codes (see [46] for details).

We have demonstrated two research directions related to the problem in hand.
Wolfmann’s work, together with Theorem 3.9, covers a large class of cyclic
codes whereas Example 3.10 studies a specific family of codes. Although
one naturally obtains stronger results in special cases, e.g. complete weight
enumerator as opposed to a minimum distance bound, this approach requires
a more in-depth study of the related family of curves. The problem becomes
particularly difficult when the genus is large. We will refer to some works in
the literature that utilize the method described here, i.e. algebraic curves via
trace representation.

Binary Melas codes and their duals are studied in [47]. The ternary case
for these codes is considered in [14, 21]. In both cases, complete weight
enumerators are obtained. Related families of curves for the dual Melas
codes are

binary : Fb = {y2 − y = ax+ b/x; a, b ∈ F2m}
ternary : Ft = {y3 − y = ax+ b/x; a, b ∈ F3m}

In other words, a basic zero set for the Melas code Mm of length 2m − 1
(resp. 3m − 1) is {α, α−1}, where α is a primitive element of F2m (resp.
F3m).
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In [37], the intersection of the binary Melas codeMm and the binary double-
error-correcting BCH code Bm (cf. Example 3.10) is studied for m > 2.
In other words, if α is a primitive element of F2m , then the generating
polynomial of the code C is fα(x)fα−1(x)fα3(x) and the related family of
curves for C⊥ is F = {y2 − y = ax+ b/x+ cx3; a, b, c ∈ F2m}. The set
of possible weights for C⊥ (not the weight enumerator) is obtained exactly
for the case m even. For m odd, a less complete but similar result is found.

LetC be the binary, narrow-sense, primitive BCH code of length 2m−1 with
designed distance d = 2t+1, i.e. the generating polynomial ofC is the least
common multiple of fα(x), fα2(x), . . . , fαd−1(x), where α is a primitive
element of F2m . Note that for any element αj , there is an odd number j̃
such thatαj andαj̃ share the same minimal polynomial over F2, i.e. they are
F2-conjugate. Hence, the generating polynomial of C is the least common
multiple of the minimal polynomials fα(x), fα3(x), . . . , fα2t−1(x) over F2.
This also shows that choosing d = 2t + 1 rather than d = 2t does not
cause a lack of generality since these codes coincide. Since a basic zero set
consisting only of odd powers of α can be chosen, Corollary 3.5 can be used
forC⊥. In fact, it yields |w−2m−1| ≤ (t−1)

√
2m for the nonzero weights

w of the dual BCH code C⊥ (q = 2 and is = 2t− 1 in (3.5)). Note that this
bound is nontrivial for t − 1 < 2m/2−1. In [59], the author improves the
Hasse-Weil bound on the related family of curves for C⊥ using a variant of
the method in [53]. This way, he obtains an effective bound for the weights
of C⊥ in an extended range of t values.

Remark 3.11. Let n1, . . . , nl be positive integers which are relatively prime
to p. By definition, an l − D cyclic code over Fq of volume n1 × · · · × nl

is an ideal of the ring R = Fq[x1, . . . , xl]/(xn1
1 − 1, . . . , xnl

l − 1). Analogy
with cyclic codes is clear but it can be made more transparent in the case of
l = 2. Denote the Fq-linear space of dimension n1n2 by F

n1×n2
q and represent

the vectors in this space as n1 × n2 arrays. As in the case of cyclic codes, we
have the following isomorphism:

F
n1×n2
q ←→ Fq[x, y]/(xn1 − 1, yn2 − 1)

(
ai,j

)
←→

n1−1∑

i=0

n2−1∑

j=0

ai,jx
iyj

Note that under this identification a 2 − D cyclic code is an Fq-subspace of
F

n1×n2
q which is closed under row and column shifts of codewords (arrays).
As in the case of cyclic codes, one can start with a “basic zero set” of the

dual l−D cyclic code C⊥ to obtain a trace representation for the code C. The
difference with cyclic codes is that the trace expressions involve polynomials
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in l indeterminates. Hence, the weight of a codeword is determined by the
number of rational points of a higher dimensional geometric object; namely an
Artin-Schreier hypersurface of the form yq − y = f(x1, . . . , xl). In this case,
one can again use the Hasse-Weil bound for curves or a bound on character
sums in several variables due to Deligne (see [4, Proposition 3.8]). The results
and further information can be found in [24, 26].

For an interesting application of the above-mentioned bound of Deligne to
minimum distance analysis of certain cyclic codes, we refer to [38].

4. Trace Codes
In this section we will introduce the general class of codes that can be repre-

sented by means of the trace map. These codes are called trace codes. We saw
in the previous section that any cyclic code has a trace representation (Theorem
3.4). Hence, cyclic codes will be a special case of the type of codes to be inves-
tigated in this section (cf. Remark 4.3). Our main interest will be the weights,
particularly the so-called higher weights (generalized Hamming weights), of a
class of trace codes obtained from function fields.

As in the previous section, Tr will denote the trace map from Fqm to Fq as
well as the induced Fq-linear map from (Fqm)n to (Fq)n. When q = p, we will
denote both maps by tr.

Definition 4.1. Let C be a code of length n over Fqm . The trace code Tr(C)
of C is defined by Tr(C) = {Tr(c) : c ∈ C}.

Note that Tr(C) is an Fq-linear code and it is dual to the restriction code
(or the subfield subcode) (C⊥)|Fq of C⊥, by Delsarte’s Theorem. For an Fqm-
linear code C of length n, the following estimates on the dimensions of its
subfield subcode and its trace code follow from the definitions and Delsarte’s
theorem (see [50, Lemma VIII.1.3]).

dimC−(m−1)(n−dimC) ≤ dimC|Fq ≤ dimC ≤ dim Tr(C) ≤ mdimC.
(4.1)

We note that the dimensions above represent dimensions over different fields,
depending on the alphabets of the codes considered, e.g. dimC is considered
over Fqm whereas dim Tr(C) is considered over Fq. We refer the interested
reader to [49, 56–58] for improvements on these general dimension bounds for
some special classes of codes.

Example 4.2. We are interested in trace codes obtained from algebraic function
fields. Namely, let F be a function field with full constant field Fqm and V ⊂ F
be a finite dimensional Fqm-subspace. For distinct rational places P1, . . . , Pn

of F , let D = P1 + · · ·+ Pn and assume that vPi(f) ≥ 0 for all f ∈ V . Then
we define

CD(V ) = {(f(P1), . . . , f(Pn)) : f ∈ V } ⊂ (Fqm)n (4.2)
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and

TrD(V ) = Tr(CD(V )) = {(Tr(f(P1)), . . . ,Tr(f(Pn))) : f ∈ V } ⊂ (Fq)n

(4.3)

Remark 4.3. Note that if F = Fqm(x) is the rational function field, the set
{P1, . . . , Pn} consists of the set of all rational places of F except the the zero
and the pole of x, and V is the Fqm-linear space spanned by the set of functions
xi1 , . . . , xis in F , then we obtain the cyclic code in Equation (3.3).

We also note that the codes in (4.2) are generalizations of algebraic geometry
(AG) codes. Namely, if V = L(G) is the Riemann-Roch space of a divisor
G whose support does not contain any of the Pi’s, then the resulting code
CD(L(G)) is an AG code. We refer to [50, Chapters 2,7] for background on
AG codes.

It is clear that as in the case of cyclic codes, the weights of codewords in
TrD(V ) are related to Artin-Schreier type equations via Hilbert’s Theorem 90
(see [50, Chapter 8]). Our aim is to extend this relation to the so-called higher
weights of the code. For this we need some definitions.

Definition 4.4. Let F be a finite field. For a subset S of F
n, we define the

support and weight of S by

Supp(S) = {i : ∃ (s1, . . . , sn) ∈ S with si �= 0}, w(S) = |Supp(S)|.

Definition 4.5. Let C be an [n, k] code over the finite field F. For 1 ≤ r ≤ k,
we define the rth generalized Hamming weight of C by

dr(C) = min{w(S) : S is an r-dimensional subcode of C}.

We call the set {d1(C), . . . , dk(C)} the (higher) weight hierarchy ofC. Note
that d1(C) is nothing but the minimum distance of C. It is also clear that the
weight hierarchy is a nondecreasing positive sequence. In fact more is true.

Proposition 4.6. For an [n, k] code C over F, we have
(i) 0 < d1(C) < d2(C) < · · · < dk(C) ≤ n.
(ii) (Generalized Singleton Bound) r ≤ dr(C) ≤ r + (n− k), for all r.

Proof. (i) We want to show that the strict inequality dr−1(C) < dr(C) holds for
any 2 ≤ r ≤ k. Let S ⊆ C be an r-dimensional subcode with w(S) = dr(C).
Let i be an element in Supp(S) and consider the projection pi : S → F sending
(s1, . . . , sn) to si. This is an F-linear map which is onto, since i ∈ Supp(S).
Therefore the kernel S̃ is an (r−1)-dimensional subcode ofC and i /∈ Supp(S̃).
This implies that dr−1(C) ≤ w(S̃) < w(S) = dr(C).

(ii) The monotonicity result obtained in part (i) immediately yields r ≤
dr(C). Again by part (i) we have (k−r) ≤ (dk(C)−dr(C)). Since dk(C) ≤ n
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the second inequality, which yields the Singleton bound for the case r = 1,
follows.

Generalized Hamming weights were introduced by Wei in [60]. Besides
proving the results in Proposition 4.6, he computed weight hierarchies of cer-
tain well-known codes and proved a “duality theorem” between the weight
hierarchies of C and C⊥:

{dr(C) : 1 ≤ r ≤ k} = {1, 2, . . . , n} \ {n+ 1− dr(C⊥) : 1 ≤ r ≤ n− k}.

Later, further relations between the generalized Hamming weights of dual codes
were obtained. For 1 ≤ i ≤ n and 1 ≤ r ≤ k, define

Ar
i (C) = |{S : S is a linear subspace of C with dimS = r and w(S) = i}| .

The set {Ar
i (C) : 1 ≤ i ≤ n, 1 ≤ r ≤ k} is called the support (effective

length) distribution of C. This set is also referred to as the higher weight
spectrum of C. Note that this is a generalization of the weight enumerator (cf.
Example 3.10). The MacWilliams identity states that the weight enumerators
of dual codes completely determine each other. The same is also true for
support weight distributions of dual codes. MacWilliams-type identitites for
generalized Hamming weights were found by Kløve in [32] and Simonis in
[48].

After Wei’s article, the subject developed in two directions: investigation of
general properties of higher weights and generalized weight studies of particular
families of codes. We tried to mention some of the general results above. For
more information, we refer to [30, 55]. At the end of this section we will
mention some of the works that use function field theoretic approach in the
higher weights study of specific classes of codes.

The main aim in this section is to find a relation between generalized weights
of trace codes obtained from function fields and the number of rational places
of certain algebraic function fields. This relation was established in [51] and
[16]. We will give a proof of this result for p-ary trace codes (see the comments
on the q-ary case in Remark 4.11). Therefore, we replace q by p in Example
4.2 and consider a function field F whose full constant field is Fpm . The rest of
the ingredients of Example 4.2, i.e. V and D, are also considered accordingly.
Hence, the trace code obtained in (4.3) is a p-ary code and, following our
notational convention, it is denoted as follows:

C = trD(V ) = tr(CD(V )) = {(tr(f(P1)), . . . , tr(f(Pn))) : f ∈ V } ⊂ (Fp)n

(4.4)

Definition 4.7. We call a subspace U of V an r-dimensional D-regular sub-
space of V if dimFp U = r and trD(f) is not equal to (0, . . . , 0) or (1, . . . , 1),
for any nonzero f ∈ U .
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Proposition 4.8. Let f ∈ F be an element such that trD(f) �= (0, . . . , 0).
Then ψf (T ) = T p − T − f is irreducible over F .

Proof. Let us start by observing a well-known fact which is true without the
assumptions we made on f . The polynomial ψf is either irreducible over F or
it splits into linear factors in F [T ]. Note that if α is a root of ψf , then the roots
of ψf are α + c, where c ∈ Fp. Hence, if one root lies in F , which contains
Fp, all the roots lie in F . Assume that ψf does not split into linear factors over
F and it is not irreducible over F . Write ψf (T ) = β(T )µ(T ) for β, µ ∈ F [T ]
with 0 < d = deg β < p. We know that ψf splits into linear factors, with roots
{α+ c : c ∈ Fp}, in some extension of F . Therefore the coefficient of T d−1 in
β is of the form dα+ k for some positive integer k. Since β has coefficients in
F and d �= 0, we conclude α ∈ F , which is a contradiction. Hence, ψf must
be irreducible over F .

Now, assume that ψf is reducible over F . Then, by the above fact, there
exists a root z ∈ F , i.e. zp − z = f . Since vPi(f) ≥ 0 for all 1 ≤ i ≤ n, we
also have vPi(z) ≥ 0 for all 1 ≤ i ≤ n (using the triangle inequality). Hence
z(Pi) makes sense and we have

trD(f) =
(
tr(f(P1)), . . . , tr(f(Pn))

)

=
(
tr(z(P1)p − z(P1)), . . . , tr(z(Pn)p − z(Pn)))

)

= (0, . . . , 0).

This contradicts the assumption.

For an r-dimensional D-regular subspace U of V , let EU be the splitting
field of all the irreducible polynomials ψf (as f runs through U ) over F . Note
that EU/F is a Galois extension since ψf is separable for all f ∈ U . In fact,
EU/F is an elementary abelian extension of degree pr (see [11, Section 1] or
[51, Proposition 1]). If {f1, . . . , fr} is an Fp-basis of U and ψfi(yi) = 0 for
1 ≤ i ≤ r, then it can be seen that EU = F (y1, . . . , yr). Furthermore, the
full constant field of the extension EU is also Fpm . We note that the validity of
these assertions rely on the regularity assumption on U .

Proposition 4.9. Let P
(1)
F denote the set of rational places of F/Fpm and R =

P
(1)
F \ {P1, . . . , Pn}. For an r-dimensional D-regular subspace U ⊂ V , let
EU be the extension of F as defined above and define the set

Supp(U) = {Pi : 1 ≤ i ≤ n and tr(f(Pi)) �= 0 for some f ∈ U},

whose cardinality is denoted by w(U). Let RU = {Q ∈ P
(1)
EU

: Q ∩ F ∈ R}.
Then the number of rational places N(EU ) of EU satisfies

N(EU ) = pr(n− w(U)) + |RU |. (4.5)
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Proof. A rational place of EU lies over a rational place of F . Since the set
RU collects those rational places lying overR, we need to check the extensions
of the places P1, . . . , Pn. If Pi ∈ Supp(U), then there exists f ∈ U with
tr(f(Pi)) �= 0. Consider the irreducible polynomial ψf (T ) = T p−T −f over
F and the Artin-Schreier intermediate field F ⊂ F (yf ) ⊂ EU that it defines
for some yf ∈ EU with ψf (yf ) = 0. Since tr(f(Pi)) �= 0, the reduction of
ψf mod Pi is irreducible over Fpm which implies, by Kummer’s Theorem (see
[50, Theorem III.3.7]), that Pi has a unique extension of degree p in F (yf ).
Therefore, for those Pi that lie in Supp(U), there is no rational extension in
EU . If Pi �∈ Supp(U), then tr(f(Pi)) = 0 for all f ∈ U . Hence, again by
Kummer’s Theorem, Pi has p rational extensions in each intermediate field
F (yf ) (as f runs through U ). Since EU is the splitting field of F (yf )’s, using
[50, Corollary III.8.4], Pi has pr rational extensions in EU . Hence, Equation
(4.5) follows.

LetS be an r-dimensional subcode of the codeC in (4.4) and (1, . . . , 1) /∈ S.
If {s1, . . . , sr} is an Fp-basis of S, let fi ∈ V such that trD(fi) = si, for
i = 1, . . . , r. Consider US = 〈f1, . . . , fr〉Fp

⊂ V . It is easy to see that US is
an r-dimensional D-regular subspace of V such that trD(US) = S. Also note
that, with the notation of Proposition 4.9, we have w(S) = w(US). Hence, we
get the following:

Theorem 4.10. With the notation as above assume that (1, . . . , 1) /∈ C =
trD(V ). Then for the rth generalized Hamming weight of C we have

dr(C) = n− 1
pr

max
(
N(EUS

)−
∣
∣RUS

∣
∣
)
, (4.6)

where the maximum is taken over all r-dimensional subcodes S of C.

Remark 4.11. A natural thing to do is to obtain estimates on dr by bounding
the term max

(
N(EUS

)−
∣
∣RUS

∣
∣
)
. If one attempts to use the Hasse-Weil bound

for this purpose, then the genus computation (or estimation) ofEUS
is required.

If F is the rational function field Fpm(x), then this can be done by Theorem
2.3(iv). Otherwise, one needs to use a more general genus formula which is
good for elementary abelian extensions of arbitrary function fields (see [11,
Theorem 2.1]).

We refer to [25] for the study of q-ary trace codes (q �= p). This case requires
a new notion, called strongly linearly independent subspace, that plays the role
of a regular subspace in the p-ary case.

Finally, both in the weight analysis in this section (Theorem 4.10) and in
Section 3 (Corollary 3.5 and Theorem 3.9), one could use an improvement
of the Hasse-Weil bound due to Serre ([50, Theorem V.3.1]) to estimate the
number of rational places of function fields. Serre’s improvement replaces the
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part 2g
√
q in the Hasse-Weil bound by �2√q�g. In [39], an improvement of

Serre’s bound for elementary abelian extensions of the rational function field is
employed to improve the generalized weight estimate on the dual of a p-ary BCH
code, which is obtained in [51] (see Example 4.12). In [25], the technique used
by Moreno et al in [39], called “p-divisibility”, is extended to “q-divisibility”,
and it is combined with other methods to obtain further improvements of Serre’s
bound for elementary abelian extensions. This is then applied to a large class of
q-ary trace codes. We do not include these estimates on the number of rational
places since they are rather technical.

Example 4.12. Let C = BCH(t) be the binary, narrow-sense, primitive BCH
code of length n = 2m − 1 with designed distance d = 2t + 1. We saw in
Section 3 that the generating polynomial of C is the least common multiple of
the minimal polynomials fα(x), fα3(x), . . . , fα2t−1(x) over F2, where α is a
primitive element of F2m . We want to analyze generalized weights of the dual
code C⊥. For an estimate on dr of cyclic codes, in general, we refer to [51,
Theorem 10].

Since (1, . . . , 1) ∈ C and n is odd, (1, . . . , 1) /∈ C⊥. Note that, with
the notation of Example 4.2 and Remark 4.3, C⊥ = trD(V ), where D =
P1 + · · · + Pn is the sum of all rational places of F = F2m(x) except the
zero P0 and the pole P∞ of x, and V =

〈
x, x3, . . . , x2t−1

〉
F2m

⊂ F . For

an r-dimensional subcode S of C⊥, consider the extension EUS
/F . Since an

element f ∈ US is of the form f = c1x + c2x
3 + · · · + ctx

2t−1 for some
ci ∈ F2m , the genus of the intermediate field Ef = F (yf ) of EUS

/F , defined
by yp

f − yf = f , is at most (t− 1) (see Equation (2.1)). Then, Theorem 2.3(iv)
gives g(EUS

) ≤ (t− 1)(2r − 1), which implies by Serre’s bound that

|N(EUS
)− (2m + 1)| ≤ �2(m+2)/2�(t− 1)(2r − 1). (4.7)

Since f(P0) = 0, P0 has 2 rational extensions in Ef (cf. Proposition 2.5).
The place P∞, on the other hand, is totally ramified in Ef/F and has a unique
rational extension in Ef . Since these observations are valid for any f ∈ US ⊂
V , and using [50, Theorem III.8.4], P0 has 2r rational extensions in EUS

and
P∞ has only one. Therefore,

∣
∣RUS

∣
∣ = 2r + 1. Hence we have

∣
∣w(S)− 2m(1− 2−r)

∣
∣ ≤ (t− 1)(1− 2−r)�2(m+2)/2�. (4.8)

Since the above discussion holds for any r-dimensional subcode, we also obtain

dr(C⊥) ≥ (1− 2−r)
(
2m − (t− 1)�2(m+2)/2�

)
. (4.9)

In [6, Theorem 4.2 and 4.3], the authors show that the above bounds are
tight in some cases by exhibiting function fields which are maximal/minimal
(cf. Section 5).
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G. van der Geer and M. van der Vlugt have extensively studied trace codes and
their generalized Hamming weights. Although there are also other contributions
to the subject, we will cite some of their works since the methods used are
parallel to the one described in this section.

In [17], the following exact result on d2 of the binary code BCH(2)⊥ of
length q − 1 = 2m − 1 is obtained for m ≥ 5.

d2(BCH(2)⊥) =
3
2
d1(BCH(2)⊥) =

{
3(q −

√
2q)/4, m odd

3(q − 2
√
q)/4, m even

Note that this result implies that the bound in Equation (4.9) is tight for
r = t = 2 and m even.

In [15], the authors compute the second and third generalized Hamming
weights of binary Melas codes using properties of elliptic curves. They also
obtain results on the second generalized weight of the dual code.

We have seen that low weight codewords and low weight subcodes in trace
codes correspond to Artin-Schreier and composita of Artin-Schreier func-
tion fields, respectively, with many rational places (cf. Equations (3.6) and
(4.5)). In Sections 3 and 4, we used our knowledge on the number of rational
places of function fields to estimate weights (higher weights) of trace codes.
However, constructing function fields with many rational places is also an
interesting problem (see the next section). In [20], the authors construct low
weight codewords and subcodes of the generalized Reed-Muller codes to
show the existence of function fields with many rational places. The same
idea for other classes of codes can also be found in [18, 19].

5. Maximal Function Fields
Let F/Fq2 be a function field with Fq2 as its full constant field. Using the

Hasse-Weil bound for the number N(F ) of degree one places of F , we have

N(F ) ≤ q2 + 1 + 2g(F )q,

where g(F ) is the genus of F . We call F/Fq2 maximal if

N(F ) = q2 + 1 + 2g(F )q.

There are many examples of maximal function fields of Artin-Schreier type.
The most famous is the Hermitian function fieldH = Fq2(x, y) which is defined
by yq +y = xq+1. We can turn the defining equation of the Hermitian function
field into the form in Definition 2.2. For this, letα ∈ Fq2 \{0}withαq +α = 0,
y1 = y/α and x1 = x/α. Then

H = Fq2(x1, y1) with yq
1 − y1 = αxq+1

1 . (5.1)
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Using the affine model of H in (5.1), it is easy to determine the number of
rational places of H . For each t ∈ Fq2 we have

TrFq2/Fq
(αtq+1) = αtq+1 + αqtq+1 = 0

and hence the number of rational places of H is q3 + 1. Using Equation (2.2)
we obtain that the genus of H is (q− 1)q/2, which implies that H is maximal.

For each m ≥ 2 with m|(q + 1), the function field F = Fq2(x, y) with
yq + y = xm is a subfield of H and hence is also maximal ([33]). For α ∈
Fq2 \ {0} with αq + α = 0, y1 = y/α and x1 = x/α we have

F = Fq2(x1, y1) with yq
1 − y1 = αm−qxm

1 .

Hence, F is also of Artin-Schreier type. Note that the genus of this function
field is (q − 1)(m− 1)/2.

It is interesting to determine possible genera of maximal function fields, their
explicit equations and to classify maximal function fields of a given genus [10].
We address these issues now.

A large class of maximum function fields are obtained using the Hermitian,
Suzuki and Ree function fields, whose definitions we recall below.

Hermitian function field: Fq2(x, y) with

yq + y = xq+1.

Suzuki function field: F22s+1(x, y) with s ≥ 1 and

y22s+1
+ y = x2s

(x22s+1
+ x).

Ree function field: F32s+1(x, y, z) with s ≥ 1 and

y32s+1 − y = x3s
(x32s+1 − x), z32s+1 − z = y2·3s

(y2s+1 − y).

All Hermitian function fields are maximal. For m ≥ 1, the constant field
extension FF2(2s+1)m of a Suzuki function field F is maximal if and only if
m ≡ 4 mod 8. Similarly for m ≥ 1, the constant field extension FF3(2s+1)·m
of a Ree function field F/F32s+1 is maximal if and only if m ≡ 6 mod 12
([28], [42, Section 3]). We also note that new maximal function fields are
obtained using subfields of maximal function fields [33], [12], [22], [3].

We have some restrictions on the genera of maximal function fields. It is
known that for the genus g of a maximal function field over Fq2 we have [31]

g ≤ q(q − 1)/2.
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Moreover there are also some gaps in the set {0, 1, . . . , q(q− 1)/2} of nonneg-
ative integers for the possible genera of maximal function fields over Fq2 . For
example it has been proved in [9, 52] that there is no maximal function field
over Fq2 with

⌊
(q − 1)2

2

⌋

+ 1 ≤ g ≤ q(q − 1)
2

− 1.

We would like to state one of the first results in the classification of maximal
function fields. In [44] it has been proved that the Hermitian function field over
Fq2 is the unique maximal function field, up to isomorphism, over Fq2 with
genus q(q − 1)/2. There are further results in the classification of maximal
function fields (cf. [8], [1])).

We denote the maximum number of degree one places among the function
fields with full constant field Fq of genus g by Nq(g). The Hasse-Weil bound
immediately implies that Nq(g) ≤ q + 1 + 2g

√
q. There are further improve-

ments on Nq(g) and we know the exact value of Nq(g) only in some special
cases, e.g. g = 1 [13]. We call that a function field of genus g with full con-
stant field Fq is optimal if its number of degree one places isNq(g). From both
theoretical and application point of view, it is of interest to construct function
fields with as many rational places as possible (cf. [54], [50], [41]). We refer
to [41] for various methods of such constructions. Applications also require
explicit equations of such function fields. Let us give an example of an explicit
function field which is constructed using Artin-Schreier extensions. We note
that this is Example 4.4.7 in [41]. Let F = F2(x, y1, y2) with

y2
1 + y1 =

x(x1)
x3 + x+ 1

, y2
2 + y2 =

x(x+ 1)
x3 + x2 + 1

.

The genus of F is 9 and its number of degree one places is 12. This function
field over F2 is optimal.

For applications of function fields in the asymptotic theory of codes, it is
important to find sequences of function fields {Ei}∞i=1 with full constant field

Fq such that g(Ei) → ∞ and
N(Ei)
g(Ei)

→ λ > 0 as i → ∞, where N(Ei) and

g(Ei) are the number of rational places and the genus of Ei respectively (see
also Chapter 1). The following result suggests that it may not be easy to find
such a sequence of function fields.

Theorem 5.1 (Frey-Perret-Stichtenoth [7]). Let F/Fq be an algebraic function
field with Fq as its full constant field. Assume that {Ei}∞i=1 is a sequence of
abelian extensions of F such that Fq is the full constant field of Ei for i ≥ 1.
If N(Ei) and g(Ei) are the number of degree one places and the genus of Ei,
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for all i, and limi→∞g(Ei) = ∞, then

lim
i→∞

N(Ei)
g(Ei)

= 0.

In particular Theorem 5.1 implies that if Ei is an Artin-Schreier type exten-

sion over F for each i ≥ 1 and g(Ei) →∞ as i→∞, then
N(Ei)
g(Ei)

→ 0.
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Chapter 4

PSEUDORANDOM SEQUENCES

Alev Topuzoğlu and Arne Winterhof

1. Introduction
Sequences, which are generated by deterministic algorithms so as to simulate

truly random sequences are said to be pseudorandom (PR). A pseudorandom
sequence in the unit interval [0, 1) is called a sequence of pseudorandom num-
bers (PRNs). In particular, for a prime p we represent the elements of the finite
field Fp of p elements by the set {0, 1, ..., p − 1}, and arrive at a sequence of
PRNs, say (yn), through a sequence (xn) over Fp satisfying yn = xn/p. The
sequence (xn) in this case is usually called a pseudorandom number generator.

Our main aim here is to elucidate the motivation for constructing PR se-
quences with some specific properties that foster their use in cryptography and
in quasi-Monte Carlo methods. Our exposition focuses on some particular
measures of “randomness” with respect to which “good” sequences have been
constructed recently by the use of geometric methods. Some of these construc-
tions are given in Chapter 2 of this book.

We also illustrate some typical methods that are used in the classical analysis
of randomness of PRNs and briefly describe some recent approaches in order to
familiarise the reader with basic notions and problems in this area of research.
An extensive list of references is provided for the interested reader.

Various quality measures for randomness of PR sequences are in use. One
should note here that the hierarchy among them varies according to the type
of problem where PR sequences are needed. For example, if one wishes to
employ a quasi-Monte Carlo method to approximate π by choosing N pairs
(xn, xn+1) ∈ [0, 1)2, n = 0, 1, . . . , N−1, of PRNs, counting the numberK of
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pairs (xn, xn+1) in the unit circle and taking π ≈ 4K/N , one should make sure
that the PRNs in use are “distributed uniformly” in the unit square. On the other
hand “unpredictability” is often the most desirable property for cryptographic
applications, as it is described in Chapter 2, Section 3.

This chapter is structured as follows. We start with an outline of some basic
facts regarding “linear complexity” and “linear complexity profile”, which are
potent measures of unpredictability (or, at least of predictability). Results on
lower bounds for linear complexity and linear complexity profile for various PR
sequences of wide interest are given in Section 2.1. We consider explicit and re-
cursive nonlinear generators, in particular a new class of PR sequences, defined
via Dickson polynomials and Rédei functions, and a generalisation of the well
known inversive generator. Section 2.1 also deals with Legendre sequences and
their variants, and the elliptic curve generators which have attracted consider-
able attention recently. In Section 2.2, we describe other measures related to
linear complexity, with particular emphasis on the lattice test. In Sections 3
and 4 we turn our attention to measures of distribution; in particular we fo-
cus on autocorrelation and related concepts for binary sequences in Section 3.
This may provide further background for Section 3 of Chapter 2. We conclude
with Section 4 where we concentrate on discrepancy as a measure for uni-
form distribution of PRNs. Some recent results are presented which illustrate
the well known relation of discrepancy to exponential sums. The significance
of recent geometric constructions of low-discrepancy point sets is described.
With the intention of keeping this chapter concise, we present primarily short
or elementary proofs which are sufficiently indicative of some standard tools.

In the sequel we shall be concerned with PR sequences over a finite field Fq

of q = pr elements with a positive integer r and a prime p. Note that a
sequence (yn) of PRNs in the unit interval can be obtained from a sequence
(ξn) over Fq by yn = (kr +kr−1p+ . . .+k1p

r−1)/q if ξn = k1β1 + . . .+krβr

for some fixed ordered basis {β1, . . . , βr} of Fq over Fp. A sequence over F2 is
called a bit sequence. We shall restrict ourselves to (purely) periodic sequences,
i.e., to those (ξn) satisfying ξn+t = ξn for some positive integer t, for all n ≥ 0.

We should note here that the term “pseudorandom number generator” is
commonly used in the literature on pseudorandom sequences. In particular for
sequences over Fp (identified with Zp = {0, 1, ..., p− 1}) or the ring Zm, one
refers to congruential generators. The “generator” here is sometimes used to
mean the “(recurrence) relation” producing the sequence over Fp (or Zm), which
in return gives rise to a PRN in the unit interval. In this Chapter we generally
use the expression PR sequences. However the term congruential generator (or
generator) will also appear when referring to some specific sequences over Fp

(or Fq), that are widely known as such.
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2. Linear Complexity and Linear Complexity Profile
Linear complexity and linear complexity profile are defined in Chapter 2.

We restate their definitions here for the convenience of the reader.
Let us first recall that a sequence (sn)n≥0 of elements of a ring R is called

a (homogeneous) linear recurring sequence of order k if there exist elements
a0, a1, . . . , ak−1 in R, satisfying the linear recurrence of order k over R;

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn, n = 0, 1, . . .

Now let (sn) be a sequence over a ring R. One can associate to it a non-
decreasing sequence L(sn, N) of non-negative integers as follows:

The linear complexity profile of a sequence (sn) over the ring R is the se-
quence L(sn, N), N ≥ 1, where its N th term is defined to be the smallest L
such that a linear recurrence of order L over R can generate the first N terms
of (sn).

We use the convention that L(sn, N) = 0 if the first N elements of (sn) are
all zero and L(sn, N) = N if the first N − 1 elements of (sn) are zero and
sN−1 �= 0.

The value
L(sn) = sup

N≥1
L(sn, N)

is called the linear complexity of the sequence (sn). For the linear complexity
of any periodic sequence of period t one easily verifies that

L(sn) = L(sn, 2t) ≤ t.

Linear complexity and linear complexity profile of a given sequence (as well
as the linear recurrence defining it) can be determined by using the well known
Berlekamp-Massey algorithm (see e.g. [35]). The algorithm is efficient for
sequences with low linear complexity and hence such sequences can easily be
predicted. One typical example is the so-called “linear generator”

sn+1 = asn + b, (2.1)

for a, b ∈ Fp, a �= 0, with L(sn) ≤ 2. Faster algorithms are known for
sequences of particular periods [26, 78, 79]. PR sequences with low linear
complexity are shown to be unsuitable also for some applications using quasi-
Monte Carlo methods (see [53, 55, 59]).

The expected values of linear complexity and linear complexity profile show
that a “random” sequence should have L(sn, N) to be close to min{N/2, t}
for all N ≥ 1, see Chapter 2.

Two types of problems concerning linear complexity and linear complexity
profile are of interest. One would like to construct sequences with high linear
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complexity (and possibly with other favourable properties). Chapter 2 illus-
trates such constructions. One would also like to find lower bounds for widely
used PR sequences in order to judge whether it is reasonable to use them for
cryptographic purposes. The present section focuses on this problem.

2.1 Lower Bounds for Linear Complexity and Linear
Complexity Profile

Explicit Nonlinear Pseudorandom Sequences

It is possible to express linear complexity in connection with various invari-
ants of the PR sequences at hand. The linear complexity profile of a sequence,
for instance, can be determined utilising its generating function as described in
Chapter 2.

In case of a q-periodic sequence (ξn) over Fq, linear complexity is related
to the degree of the polynomial g ∈ Fq[X] representing the sequence (ξn). We
recall that the polynomial g can be uniquely determined as follows: Consider a
fixed ordered basis {β1, . . . , βr} of Fq over Fp, and for n = n1 + n2p+ . . .+
nrp

r−1 with 0 ≤ nk < p, 1 ≤ k ≤ r, order the elements of Fq as

ζn = n1β1 + n2β2 + . . .+ nrβr.

Then g is the polynomial which satisfies deg g ≤ q − 1 and

ξn = g(ζn), 0 ≤ n ≤ q − 1. (2.2)

When deg g ≥ 2, q = p (and β1 = 1) these sequences are called explicit
nonlinear congruential generators and we have

L(ξn) = deg g + 1 (2.3)

(for a proof, see Blackburn et al [5, Theorem 8]). For a prime power q they
are named explicit nonlinear digital generators. In general (2.3) is not valid
for r ≥ 2. Meidl and Winterhof [47] showed however that the following
inequalities hold:

(deg(g) + 1 + p− q)q
p
≤ L(ξn) ≤ (deg(g) + 1)

p

q
+ q − p.

For lower bounds on the linear complexity profile of (ξn) see Meidl and Win-
terhof [48].

A similar relation is valid for t-periodic sequences over Fq where t divides
q − 1. For a t-periodic sequence (ωn) one considers the unique polynomial
f ∈ Fq[x] of degree at most t− 1, satisfying

ωn = f(γn), n ≥ 0,
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for an element γ ∈ Fq of order t. In this case, L(ωn) is equal to the number of
nonzero coefficients of f (see [35]). Lower bounds for the linear complexity
profile in some special cases are given by Meidl and Winterhof in [49]. For a
general study of sequences with arbitrary periods see Massey and Serconek [42].

The following sequences exhibit a particularly nice behaviour with respect to
the linear complexity profile. The explicit inversive congruential generator (zn)
was introduced by Eichenauer-Herrmann in [19]. The sequence (zn) in this case
is produced by the relation

zn = (an+ b)p−2, n = 0, . . . , p− 1, zn+p = zn, n ≥ 0, (2.4)

with a, b ∈ Fp, a �= 0, and p ≥ 5. It is shown in [48] that

L(zn, N) ≥






(N − 1)/3, 1 ≤ N ≤ (3p− 7)/2,
N − p+ 2, (3p− 5)/2 ≤ N ≤ 2p− 3,
p− 1, N ≥ 2p− 2.

(2.5)

We provide the proof of a slightly weaker result.

Theorem 2.1. Let (zn) be as in (2.4), then

L(zn, N) ≥ min
{
N − 1

3
,
p− 1

2

}

, N ≥ 1.

Proof. Suppose (zn) satisfies a linear recurrence relation of length L,

zn+L = cL−1zn+L−1 + . . .+ c0zn, 0 ≤ n ≤ N − L− 1, (2.6)

with c0, . . . , cL−1 ∈ Fp. We may assume L ≤ p− 1. Put

CL(N) = {n; 0 ≤ n ≤ min{N − L, p} − 1, a(n+ l) + b �= 0, 0 ≤ l ≤ L}

Note that #CL(N) ≥ min{p,N − L} − (L+ 1).

For n ∈ CL(N) the recurrence (2.6) is equivalent to

(a(n+ L) + b)−1 = cL−1(a(n+ L− 1) + b)−1 + . . .+ c0(an+ b)−1.

Multiplication with
L∏

j=0

(a(n+ j) + b)

yields
L−1∏

j=0

(a(n+ j) + b) =
L−1∑

l=0

cl

L∏

j=0
j �=l

(a(n+ j) + b)
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for all n ∈ CL(N). Hence the polynomial

F (X) = −
L−1∏

j=0

(a(X + j) + b) +
L−1∑

l=0

cl

L∏

j=0
j �=l

(a(X + j) + b)

is of degree at most L and has at least min{p,N −L}− (L+ 1) zeros. On the
other hand

F (−a−1b− L) = −aL
L−1∏

j=0

(j − L) �= 0,

hence F (X) is not the zero polynomial and we get

L ≥ deg(F ) ≥ min{p,N − L} − (L+ 1),

which implies the desired result.

Analogues of (2.5) for digital inversive generators, i.e., for r ≥ 2, are also
given in [48]. For t-periodic inversive generators, where t is a divisor of q− 1,
see [49].

We mention one more explicit nonlinear generator, namely the quadratic
exponential generator, introduced by Gutierrez et al [32]. Given an element
ϑ ∈ F

∗
q we consider the sequence (qn) where

qn = ϑn2
, n = 0, 1, . . . .

The lower bound

L(qn, N) ≥ min {N, t}
2

, N ≥ 1,

is obtained in [32]. Here t is at least τ/2 where τ is the multiplicative order
of ϑ.

Recursive Nonlinear Pseudorandom Sequences

Given a polynomial f(X) ∈ Fp[X] of degree d ≥ 2, the nonlinear con-
gruential pseudorandom number generator (un) is defined by the recurrence
relation

un+1 = f(un), n ≥ 0, (2.7)

with some initial value u0 ∈ Fp. Obviously, the sequence (un) is eventually
periodic with some period t ≤ p. As usual, we assume it to be purely periodic.

The following lower bound on the linear complexity profile of a nonlinear
congruential generator is given in [32].
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Theorem 2.2. Let (un) be as in (2.7), where f(X) ∈ Fp[X] is of degree d ≥ 2,
then

L(un, N) ≥ min {logd(N − �logdN�), logd t} , N ≥ 1.

Proof. Let us consider the following sequence of polynomials over Fp:

F0(X) = X, Fi(X) = Fi−1(f(X)), i = 1, 2, . . . .

It is clear that deg(Fi) = di for every i = 1, 2, . . . . Moreover un+j = Fj(un)
for any integers n, j ≥ 0. Put L = L(un, N) so that we have

un+L =
L−1∑

l=0

clun+l, 0 ≤ n ≤ N − L− 1,

for some c0, . . . , cL−1 ∈ Fp. Therefore the polynomial

F (X) = −FL(X) +
L−1∑

l=0

clFl(X)

has degree dL and at least min {N − L, t} zeros. Thus dL ≥ min {N − L, t}.
Since otherwise the result is trivial, we may suppose L ≤ �logdN� and get
dL ≥ min {N − �logdN�, t}, which yields the assertion.

For some special classes of polynomials much better results are available,
see [30, 32, 65]. For instance, in case of the largest possible period t = p we
have

L(un, N) ≥ min{N − p+ 1, p/d}, N ≥ 1.

The inversive (congruential) generator (yn) defined by

yn+1 = ayp−2
n + b =

{
ay−1

n + b if yn �= 0,
b otherwise,

n ≥ 0, (2.8)

with a, b, y0 ∈ Fp, a �= 0, has linear complexity profile

L(yn, N) ≥ min
{
N − 1

3
,
t− 1

2

}

, N ≥ 1. (2.9)

This sequence, introduced by Eichenauer and Lehn [18], has succeeded in
drawing significant attention due to some of its enchanting properties. In terms
of the linear complexity profile the lower bound (2.9) shows that the inversive
generator is almost optimal. This aspect will be reconsidered in Section 2.2.
The sequence (yn) attains the largest possible period t = p if, for instance,
X2−aX−b is a primitive polynomial over Fp. See Flahive and Niederreiter [21]
for a refinement of this result.
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The power generator (pn), defined as

pn+1 = pe
n, n ≥ 0,

with some integer e ≥ 2 and initial value 0 �= p0 ∈ Fp satisfies

L(pn, N) ≥ min
{

N2

4(p− 1)
,
t2

p− 1

}

, N ≥ 1.

Results about the period length of (pn) can be found in Friedlander et al [23, 24].
The family of Dickson polynomials De(X, a) ∈ Fp[X] is defined by the

recurrence relation

De(X, a) = XDe−1(X, a)− aDe−2(X, a), e = 2, 3, . . . ,

with initial values D0(X, a) = 2, D1(X, a) = X, where a ∈ Fp. Obviously,
the degree of De is e. It is easy to see that De(X, 0) = Xe, e ≥ 2, which
corresponds to the case of the power generator. In the special case that a = 1
the lower bound

L(un, N) ≥ min{N2, 4t2}
16(p+ 1)

− (p+ 1)1/2, N ≥ 1,

for a new class of nonlinear congruential generators where f(X) = De(X, 1)
is proven by Aly and Winterhof [1]. Here t is a divisor of p− 1 or p+ 1.

Another class of nonlinear congruential pseudorandom number generators,
where f(X) is a Rédei function, is analysed by Meidl and Winterhof [52].
Suppose that

r(X) = X2 − αX − β ∈ Fp[X]

is an irreducible quadratic polynomial with the two different roots ξ and ζ = ξp

in Fp2 . We consider the polynomials ge(X) and he(X) ∈ Fp[X], which are
uniquely defined by the equation

(X + ξ)e = ge(X) + he(X)ξ.

The Rédei function fe(X) of degree e is then given by

fe(X) =
ge(X)
he(X)

.

The function fe(X) is a permutation of Fp if and only if gcd(e, p+1) = 1, see
Nöbauer [63]. For further background on Rédei functions we refer to [41, 63].
We consider generators (rn) defined by

rn+1 = fe(rn), n ≥ 0,
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with a Rédei permutation fe(X) and some initial element u0 ∈ Fp. The se-
quence (rn) is periodic with period t, where t is a divisor of ϕ(p + 1) and ϕ
is the Euler ϕ-function. As any mapping over Fp, the Rédei permutation can
be uniquely represented by a polynomial of degree at most p− 1 and therefore
the sequence (rn) belongs to the class of nonlinear congruential pseudoran-
dom number generators (2.7). In [52] the following lower bound on the linear
complexity profile of the sequence (rn) is obtained:

L(rn, N) ≥ min{N2, 4t2}
20(p+ 1)3/2

, N ≥ 2,

provided that t ≥ 2.
The linear complexity profile of pseudorandom number generators over Fp,

defined by a recurrence relation of order m ≥ 1 is studied in Topuzoğlu and
Winterhof [71];

un+1 = f(un, un−1, . . . , un−m+1), n = m− 1,m, . . . . (2.10)

Here initial valuesu0, . . . , um−1 are in Fp andf ∈ Fp(X1, . . . , Xm) is a rational
function in m variables over Fp. The sequence (2.10) eventually becomes
periodic with least period t ≤ pm. The fact that t can actually attain the
value pm gains nonlinear generators of higher orders a particular interest. In
case of a polynomial f , lower bounds for the linear complexity and linear
complexity profile of higher order generators are given in [71].

A particular rational function f in (2.10) gives rise to a generalisation of the
inversive generator (2.8), as described below. Let (xn) be the sequence over
Fp, defined by the linear recurrence relation of order m+ 1;

xn+1 = a0xn + a1xn−1 + . . .+ amxn−m, n ≥ m,

with a0, a1, . . . , am ∈ Fp and initial values x0, . . . , xm ∈ Fp. An increasing
function N(n) is defined by

N(0) = min{n ≥ 0 : xn �= 0},
N(n) = min{l ≥ N(n− 1) + 1 : xl �= 0},

and the nonlinear generator (zn) is produced by

zn = xN(n)+1x
−1
N(n), n ≥ 0

(see Eichenauer et.al. [17]). It is easy to see that (zn) satisfies

zn+1 = f(zn, . . . , zn−m+1), n ≥ m− 1,

whenever zn · · · zn−m+1 �= 0 for the rational function

f(X1, . . . , Xm) = a0 + a1X
−1
1 + a2X

−1
1 X−1

2 + . . .+ amX
−1
1 X−1

2 · · ·X−1
m .
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A sufficient condition for (zn) to attain the maximal period length pm is
given in [17]. It is shown in [71] that the linear complexity profile L(zn, N) of
(zn) with the least period pm satisfies

L(zn, N) ≥ min
(⌈p−m

m+ 1

⌉
pm−1 + 1, N − pm + 1

)

, N ≥ 1.

This result is in accordance with (2.9), i.e., the case m = 1.

Legendre Sequence and Related Bit Sequences

Let p > 2 be a prime. The Legendre-sequence (ln) is defined by

ln =

{
1,
(

n
p

)
= −1,

0, otherwise,
n ≥ 0,

where
(

·
p

)
is the Legendre-symbol. Obviously, (ln) is p-periodic. Results on

the linear complexity of (ln) can be found in [13, 73]. We give the proof here
since the method is illustrative.

Theorem 2.3. The linear complexity of the Legendre sequence is

L(ln) =






(p− 1)/2, p ≡ 1 mod 8,
p, p ≡ 3 mod 8,

p− 1, p ≡ 5 mod 8,
(p+ 1)/2, p ≡ 7 mod 8.

Proof. We start with the well known relation

L(ln) = p− deg(gcd(S(X), Xp − 1))

where

S(X) =
p−1∑

n=0

lnX
n,

(see for example [66, Lemma 8.2.1]), i.e., in order to determine the linear
complexity it is sufficient to count the number of common zeros of S(X) and
Xp − 1 in the splitting field F of Xp − 1 over F2. Let 1 �= β ∈ F be a root of

Xp − 1. For q with
(

q
p

)
= 1 we have

S(βq) =
p−1∑

n=0

lnβ
nq =

∑

(
n
p

)
=−1

βnq =
∑

(
n
p

)
=−1

βn = S(β)
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and for m with
(

m
p

)
= −1,

S(βm) =
∑

(
n
p

)
=−1

βnm =
∑

(
n
p

)
=1

βn

=
p−1∑

n=1

(1 + ln)βn =
βp − β
β − 1

+ S(β) = 1 + S(β).

Moreover, we have S(β) ∈ F2 if and only if S(β)2 = S(β2) = S(β), i.e.,(
2
p

)
= 1 which is equivalent to p ≡ ±1 mod 8. Next we have

S(1) =
∑

(
n
p

)
=−1

1 =
p− 1

2
=
{

0 if p ≡ 1 mod 4,
1 if p ≡ 3 mod 4.

Let Q and N denote the sets of quadratic residues and nonresidues modulo
p, respectively. If p ≡ ±1 mod 8 then we have one of the following two
cases: Either S(βq) = S(βm) + 1 = 0 for all q ∈ Q and m ∈ N , or
S(βm) = S(βq) + 1 = 0 for all q ∈ Q and m ∈ N . Now the assertion is clear
since |Q| = |N | = (p− 1)/2.

The profile can be estimated by using bounds on incomplete sums of Legen-
dre symbols. The proof below essentially follows that of [66, Theorem 9.2].

Theorem 2.4. The linear complexity profile of the Legendre sequence satisfies

L(ln, N) >
min{N, p}

1 + p1/2(1 + log p)
− 1, N ≥ 1.

Proof. Since L(ln, N) ≥ L(ln, p) for N > p we may assume N ≤ p. As
usual, put L = L(ln, N) so that

ln+L = cL−1ln+L−1 + . . .+ c0ln, 0 ≤ n ≤ N − L− 1,

for some c0, . . . , cL−1 ∈ F2. Since (−1)ln =
(

n
p

)
, 1 ≤ n ≤ p−1, with cL = 1

we have

1 = (−1)
∑L

j=0 cj ln+j =

(∏L
j=0(n+ j)cj

p

)

, 1 ≤ n ≤ N − L− 1,

and thus

N − L− 1 =
N−L−1∑

n=1

(∏L
j=0(n+ j)cj

p

)

.
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The following bound for the right hand side of this equation
∣
∣
∣
∣
∣

N−L−1∑

n=1

(∏L
j=0(n+ j)cj

p

)∣
∣
∣
∣
∣
< (L+ 1)p1/2(1 + log p) (2.11)

yields
N − (L+ 1) < (L+ 1)p1/2(1 + log p)

from which the assertion follows. The bound (2.11) can be proved as follows:
For an integer k ≥ 2 put ek(x) = exp(2πix/k). The relations below can be
found in [74];

k−1∑

a=0

ek(au) =
{

0, u �≡ 0 mod k,
k, u ≡ 0 mod k, (2.12)

k−1∑

a=1

∣
∣
∣
∣
∣

K−1∑

x=0

ek(ax)

∣
∣
∣
∣
∣
≤ k log k, 1 ≤ K ≤ k. (2.13)

The Weil bound, which we present in the following form (see [64, Theorems 2C
and 2G]),

∣
∣
∣
∣
∣

p−1∑

a=0

χ(f(a))ep(ax)

∣
∣
∣
∣
∣
≤
{
p1/2 deg f, 1 ≤ x < p,

p1/2(deg f − 1), x = 0,
(2.14)

where χ denotes a nontrivial multiplicative character of Fp and f ∈ Fp[X],
enables us to handle the complete hybrid character sum below. Application of
Vinogradov’s method (see [70]) with (2.12) and

f(X) =
L∏

j=0

(X + j)cj

gives

∣
∣
∣
∣
∣

N−L−1∑

n=1

(
f(n)
p

)∣∣
∣
∣
∣

=
1
p

∣
∣
∣
∣
∣
∣

∑

x∈Fp

∑

m∈Fp

(
f(m)
p

)N−L−1∑

n=1

ep(x(n−m))

∣
∣
∣
∣
∣
∣

≤ 1
p

∑

x∈Fp

∣
∣
∣
∣
∣
∣

∑

m∈Fp

(
f(m)ep(−xm)

p

)
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N−L−1∑

n=1

ep(xn))

∣
∣
∣
∣
∣

< (L+ 1)p1/2(1 + log p),

where we used that f is not a square (since cL = 1) to apply (2.14) in the case
x = 0.
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For similar sequences, that are defined by the use of the quadratic character
of arbitrary finite fields and the study of their linear complexity profiles, see [39,
46, 76].

Let γ be a primitive element and η be the quadratic character of the finite
field Fq of odd characteristic. The Sidelnikov sequence (σn) is defined by

σn =
{

1, if η(γn + 1) = −1,
0, otherwise,

n ≥ 0.

In many cases one is able to determine the linear complexity L(σn) over F2

exactly, see Meidl and Winterhof [51]. For example, if (q − 1)/2 is an odd
prime such that 2 is a primitive root modulo (q − 1)/2, then (sn) attains the
largest possible linear complexity L(σn) = q−1. Moreover we have the lower
bound, see [51],

L(σn, N) = Ω
(

min{N, q}
q1/2 log q

)

, N ≥ 1.

The linear complexity over Fp of this sequence has been estimated in Garaev et
al [27] by using bounds of character sums with middle binomial coefficients.
For small values of p the linear complexity can be evaluated explicitly.

Let p and q be two distinct odd primes. Put

Q = {q, 2q, . . . , (p− 1)q}, Q0 = Q ∪ {0},

and

P = {p, 2p, . . . , (q − 1)p}.

The pq-periodic sequence (tn) over F2, defined by

tn =






0, if (n mod pq) ∈ Q0,
1, if (n mod pq) ∈ P,(
1−
(

n
p

)(
n
q

))
/2, otherwise

is called the two-prime generator (or generalised cyclotomic sequence of order
2) (see [10], and [13, Chapter 8.2]). Under the restriction gcd(p−1, q−1) = 2
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it satisfies

L(tn) =






pq − 1, p ≡ 1 mod 8 and q ≡ 3 mod 8
or p ≡ 5 mod 8 and q ≡ 7 mod 8,

(p− 1)q, p ≡ 7 mod 8 and q ≡ 3 mod 8
or p ≡ 3 mod 8 and q ≡ 7 mod 8,

pq − p− q + 1, p ≡ 7 mod 8 and q ≡ 5 mod 8
or p ≡ 3 mod 8 and q ≡ 1 mod 8,

(pq + p+ q − 3)/2, p ≡ 1 mod 8 and q ≡ 7 mod 8
or p ≡ 5 mod 8 and q ≡ 3 mod 8,

(p− 1)(q − 1)/2, p ≡ 7 mod 8 and q ≡ 1 mod 8
or p ≡ 3 mod 8 and q ≡ 5 mod 8,

(p− 1)(q + 1)/2, p ≡ 7 mod 8 and q ≡ 7 mod 8
or p ≡ 3 mod 8 and q ≡ 3 mod 8.

In the most important case when |p− q| is small we have a lower bound on the
linear complexity profile of order of magnitude

O(N1/2(pq)−1/4 log−1/2(pq))

for 2 ≤ N < pq.

Elliptic Curve Generators

We recall some definitions and basic facts about elliptic curves (see [37] or
Chapter 5).

Let p > 3 be a prime and E be an elliptic curve over Fp of the form

Y 2 = X3 + aX + b

where the coefficients a, b are in Fp and 4a3 + 27b2 �= 0. The set E(Fp) of all
Fp -rational points onE forms an abelian group where we denote addition by⊕.
The point O at infinity is the zero element of E(Fp). We recall the Hasse-Weil
bound

|#E(Fp)− p− 1| ≤ 2p1/2,

where #E(Fp) is the number of Fp-rational points, including O. For a given
initial value W0 ∈ E(Fp), a fixed point G ∈ E(Fp) of order t and a rational
function f ∈ Fp(E) the elliptic curve congruential generator (with respect
to f ) is defined by wn = f(Wn), n ≥ 0, where

Wn = G⊕Wn−1 = nG⊕W0, n ≥ 1.

Obviously, (wn) is t-periodic. See [3, 34] and references therein for results on
the properties of elliptic curve generators. For example, choosing the function
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f(x, y) = x, the work of Hess and Shparlinski [34] gives the following lower
bound for the linear complexity profile:

L(wn, N) ≥ min{N/3, t/2}, N ≥ 2.

Here we present an elementary proof of a slightly weaker result. Let x(Q)
denote the first coordinate x of the point Q = (x, y) ∈ E.
Theorem 2.5. Let (wn) be the t-periodic sequence defined by

wn = x(nG), 1 ≤ n ≤ t− 1, (2.15)

with some w0 ∈ Fp and G ∈ E of order t. Then we have

L(wn, N) ≥ min{N, t/2} − 3
4

, N ≥ 2.

Proof. We may assume N ≤ t/2 and L(wn, N) < t/2. Put nG = (xn, yn),
1 ≤ n ≤ t − 1. Note that xk = xm if and only if k = m or k = t − m,
1 ≤ k ≤ t− 1, and yk = 0 if and only if t is even and k = t/2. Put cL = −1
and assume that

L∑

l=0

clwn+l = 0, L+ 1 ≤ n ≤ N − L− 1,

or equivalently

L∑

l=0

clwt−n−l = 0, L+ 1 ≤ n ≤ N − L− 1.

Hence,

L∑

l=0

cl
wn+l + wt−n−l

2
= 0, L+ 1 ≤ n ≤ N − L− 1.

By the addition formulas for points on elliptic curves we have

xn+l =
(
yn − yl

xn − xl

)2

− (xn + xl)

=
xlx

2
n + (x2

l + a)xn + axl + 2b− 2ylyn

(xn − xl)2
, l + 1 ≤ n ≤ t− l − 1,

where we used y2
n = x3

n + axn + b. Similarly we get

xt−n−l =
xlx

2
n + (x2

l + a)xn + axl + 2b+ 2ylyn

(xn − xl)2
, l + 1 ≤ n ≤ t− l − 1,
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and hence

xn+l + xt−n−l

2
=
xlx

2
n + (x2

l + a)xn + axl + 2b
(xn − xl)2

, l + 1 ≤ n ≤ t− l − 1.

So we get

L∑

l=0

cl
xlx

2
n + (x2

l + a)xn + axl + 2b
(xn − xl)2

= 0, L+ 1 ≤ n ≤ N − L− 1.

Clearing denominators we get

L∑

l=0

cl(xlx
2
n+(x2

l +a)xn+axl+2b)
L∏

j=0
j �=l

(xn−xj)2 = 0, L+1 ≤ n ≤ N−L−1.

So the polynomial

F (X) =
L∑

l=0

cl(xlX
2 + (x2

l + a)X + axl + 2b)
L∏

j=0
j �=l

(X − xj)2

of degree at most 2(L+ 1) has at least N − 2L− 1 different zeros. Moreover,
we have

F (xL) = −2(x3
L + axL + b)

L−1∏

j=0

(xL − xj)2 = −2y2
L

L−1∏

j=0

(xL − xj)2 �= 0.

Hence we get 2(L+ 1) ≥ N − 2L− 1 and the result follows.

2.2 Related Measures

Lattice Test

In order to study the structural properties of a given periodic sequence (sn)
over Fq, it is natural to consider the subspacesL(sn, s) of F

s
q for s ≥ 1, spanned

by the vectors sn − s0, n = 1, 2, . . . where

sn = (sn, sn+1, . . . , sn+s−1), n = 0, 1, . . . .

We recall that (sn) is said to pass the s-dimensional lattice test for some
integer s ≥ 1, if L(sn, s) = F

s
q. It is obvious for example that the linear

generator (2.1) can pass the s-dimensional lattice test at most for s = 1. On
the other hand for q = p, the nonlinear generator (2.2) passes the test for all
s ≤ deg g (see [53]). However this test is well known to be unreliable since
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sequences, which pass the lattice test for large dimensions, yet having bad
statistical properties are known [53].

Accordingly the notion of lattice profile is introduced by Dorfer and Winter-
hof [16]. For given s ≥ 1 andN ≥ 2 we say that (sn) passes the s-dimensional
N -lattice test if the subspace spanned by the vectors sn − s0, 1 ≤ n ≤ N − s,
is F

s
q. The largest s for which (sn) passes the s-dimensional N -lattice test is

called the lattice profile at N , and is denoted by S(sn, N).
The lattice profile is closely related to the linear complexity profile, as the

following result in [16] shows:
We have either

S(sn, N) = min{L(sn, N), N + 1− L(sn, N)}

or

S(sn, N) = min{L(sn, N), N + 1− L(sn, N)} − 1.

The results of Dorfer et al [15] on the expected value of the lattice profile show
that a “random” sequence should have S(sn, N) to be close to min{N/2, t}.

k-Error Linear Complexity

We have remarked that a cryptographically strong sequence necessarily has
a high linear complexity. It is also clear that the linear complexity of such a
sequence should not decrease significantly when a small number of its terms
are altered. The error linear complexity is introduced in connection with this
observation [14, 69].

Let (sn) be a sequence over Fq, with period t. The k-error linear complex-
ity Lk(sn) of (sn) is defined as

Lk(sn) = min
(yn)

L(yn),

where the minimum is taken over all t-periodic sequences (yn) over Fq, for
which the Hamming distance of the vectors (s0, . . . , st−1) and (y0, . . . , yt−1)
is at most k.

One problem of interest here is to determine the minimum value k, for which
Lk(sn) < L(sn). This problem is tackled by Meidl [44], in case (sn) is a bit
sequence with period length pn, where p is an odd prime and 2 is a primitive
root modulo p2. Meidl [44] also describes an algorithm to determine the k-error
linear complexity that is based on an algorithm of [79]. Stronger results for
pn-periodic sequences over Fp have been recently obtained in Meidl [45].

Here we give the proof of the following recent result on the k-error linear
complexity over Fp of Legendre sequences, obtained by Aly and Winterhof
in [2].
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Theorem 2.6. Let Lk(ln) denote the k-error linear complexity over Fp of the
Legendre sequence (ln). Then,

Lk(ln) =






p, k = 0,
(p+ 1)/2, 1 ≤ k ≤ (p− 3)/2,

0, k ≥ (p− 1)/2.

Proof. Put

g1(X) =
1
2

(
Xp−1 −X(p−1)/2

)
and g2(X) =

1
2

(
1−X(p−1)/2

)
.

Since ln = g1(n) for n ≥ 0 we get that the Legendre sequence (ln) over Fp

has linear complexity L(ln) = p by (2.3).
Consider now the p-periodic sequence (l′n) defined by l′n = g2(n), n ≥ 0.

Note that
g1(n) = g2(n), 1 ≤ n ≤ p− 1,

and

Lk(ln) ≤ L(l′n) =
p+ 1

2
, k ≥ 1.

Assume now that 1 ≤ k ≤ (p − 3)/2. Let (sn) be any sequence obtained
from (ln) by changing at most (p − 3)/2 elements. Suppose that g is the
polynomial in Fp[x] of degree at most p−1, which represents the sequence (sn),
i.e., sn = g(n), n ≥ 0.

It is obvious that the sequences (sn) and (l′n) coincide for at least p − 1 −
k ≥ (p + 1)/2 elements in a period. Hence, the polynomial g(X) − g2(X)
has at least (p + 1)/2 zeros, which implies that either g(X) = g2(X) or
deg g ≥ (p+ 1)/2. Therefore Lk(ln) = L(l′n) = (p+ 1)/2.

Finally we remark that Lk(ln) = 0 for k ≥ (p − 1)/2, since we have
exactly (p − 1)/2 nonzero elements in a period of (ln) and the zero sequence
of linear complexity 0 can be obtained by (p− 1)/2 changes.

Aly and Winterhof also give a lower bound for the k-error linear complexity
over Fp of Sidelnikov sequences in the same paper ,

Lk(σn) ≥ min
((

p+ 1
2

)r

− 1,
q − 1
k + 1

−
(
p+ 1

2

)r

+ 1
)

.

For k ≥ (q−1)/2 we haveLk(σn) = 0. The 1-error linear complexity over Fp

L1(σn) =
(
p+ 1

2

)r

− 1, q > 3.

of Sidelnikov sequences has recently be determined by Eun et al. in [20] to be
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Other Measures Related to Linear Complexity

The Kolmogorov complexity of a binary sequence is, roughly speaking, the
length of the shortest computer program that generates the sequence. The re-
lationship between linear complexity and Kolmogorov complexity was studied
in [4, 75].

We recall that the nonlinear complexity profile NLm(sn, N) of an infinite
sequence (sn) over Fq is the function, which is defined for every integerN ≥ 2,
as the smallest k such that a polynomial recurrence relation

sn+k = Ψ(sn+k−1, . . . , sn), 0 ≤ n ≤ N − k − 1,

with a polynomial Ψ(λ1, . . . , λk) over Fq of total degree at most m can gen-
erate the first N terms of (sn). Note that generally speaking NL1(sn, N) �=
L(sn, N) because in the definition of L(sn, N) one can use only homogeneous
linear polynomials. Obviously, we have

L(sn, N) ≥ NL1(sn, N) ≥ NL2(sn, N) ≥ . . . .

See [32] for the presentation of results on the linear complexity profile of non-
linear, inversive and quadratic exponential generators in a more general form,
namely in terms of lower bounds on the nonlinear complexity profile.

Linear Complexity and Predictability

It is clear that sequences with low linear complexity have to be avoided
for cryptographic applications. One should note that sequences which show
favourable behaviour with respect to linear complexity and related quality mea-
sures should also be used with care. Rigorous results, demonstrating this fact,
have been recently obtained by Blackburn et al [6, 7], which we briefly describe
below.

As we have remarked earlier, the inversive generator (2.8) stands out as a
sequence with almost best possible linear complexity. Nevertheless it turns out
that it is polynomial time predictable if sufficiently many bits of its consecutive
terms are known, except for some very limited special cases.

Recall that the inversive generator (yn) is defined as

yn+1 = ayp−2
n + b =

{
ay−1

n + b if yn �= 0,
b otherwise,

n ≥ 0,

with a, b, y0 ∈ Fp (regarded as integers in {0, 1, . . . , p− 1}), a �= 0.
The elements a, b and y0 are assumed to be the secret key in the cryptographic

setting. Since it is easy to recover the secret key in case several consecutive terms
of the sequence are known, it is assumed that only the most significant bits of
them are revealed. When approximationsx0, x1, x2, x3 to yn, yn+1, yn+2, yn+3

are known for some n, [6] shows that a, b, yn, . . . , yn+3 can be recovered in
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polynomial (in log p) time, if the approximations are sufficiently good and a
small set of values of a, b is excluded.

It is shown in [7] that the knowledge of b, and approximations x0, x1, x2 to
yn, yn+1, yn+2 is sufficient to recovera and the consecutive termsyn, yn+1, yn+2,
in polynomial time, provided that the approximations are good enough and the
initial value y0 is not in a certain small set. Although the assumption that b
is public is not realistic in the cryptographic setting, it is not unlikely that the
result can be extended to the case when b is unknown (see [7]).

References to the earlier work on the predictability of linear congruential
generators can also be found in [6, 7]. A weaker attack is discussed in Klap-
per [36], where the idea is to decrease the linear complexity of a given sequence
by considering it over a ring which is different from the ring where the sequence
is naturally defined (and its high linear complexity is guaranteed). The result
in Shparlinski and Winterhof [67] shows that this approach has very limited
chance to succeed.

3. Autocorrelation and Related Distribution Measures for
Binary Sequences

3.1 Autocorrelation
One would expect that a periodic random sequence and a shift of it would

have a low correlation. Autocorrelation measures the similarity between a
sequence (sn) of period t and its shifts by k positions, for 1 ≤ k ≤ t− 1.

The (periodic) autocorrelation of a t-periodic binary sequence (sn) is the
function defined by

A(sn, k) =
t−1∑

n=0

(−1)sn+k+sn , 1 ≤ k ≤ t− 1.

Note that Section 3 of Chapter 2 is concerned with the correlation of two
sequences (sn) and (tn).

Obviously a low autocorrelation is a desirable feature for pseudorandom
sequences that are used in cryptographic systems. Local randomness of periodic
sequences is also of importance cryptographically, since only small parts of the
period are used for the generation of stream ciphers.

The aperiodic autocorrelation reflects local randomness and is defined by

AA(sn, k, u, v) =
v∑

n=u

(−1)sn+k+sn , 1 ≤ k ≤ t− 1, 0 ≤ u < v ≤ p− 1.
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For the Legendre sequences, for example, A(ln, k) can be immediately de-
rived from the well-known formula, see e.g. [35],

p−1∑

n=0

(
n

p

)(
n+ k

p

)

= −1, 1 ≤ k ≤ p− 1,

and the following bound on the aperiodic autocorrelation of Legendre sequences
follows immediately from (2.11).

Theorem 3.1. The (aperiodic) autocorrelation of the Legendre sequence sat-
isfies

A(ln, k) =
(
k

p

)(
1 + (−1)(p−1)/2

)
− 1, 1 ≤ k ≤ p− 1,

|AA(ln, k, u, v)| ≤ 2p1/2(1+ log p)+2, 1 ≤ k ≤ p− 1, 0 ≤ u ≤ v ≤ p− 1.

For bounds on the aperiodic autocorrelation of extended Legendre sequences
see [50]. For the aperiodic autocorrelation of Sidelnikov sequences and two-
prime generators see [68] and [10], respectively.

3.2 Related Distribution Measures

Higher Order Correlation

In Mauduit and Sárközy [43] the correlation measure of order k of a binary
sequence (sn) is introduced as

Ck(sn) = max
M,D

∣
∣
∣
∣
∣

M∑

n=1

(−1)sn+d1 · · · (−1)sn+dk

∣
∣
∣
∣
∣
, k ≥ 1,

where the maximum is taken over all D = (d1, d2, . . . , dk) with non-negative
integers d1 < d2 < . . . < dk and M such that M − 1 + dk ≤ T − 1.
C2(sn) is obviously bounded by the maximal absolute value of the aperiodic
autocorrelation of (sn). It is also shown in [43] that the Legendre sequence has
small correlation measure up to rather high orders.

The following family of pseudorandom binary sequences is introduced in
Gyarmati [33]: Let p be an odd prime and g be a primitive root modulo p.
Denote by ind n the discrete logarithm of n to the base g, i.e., ind n = j if
n = gj with 1 ≤ j ≤ p− 1. Let f(X) be a polynomial of degree k modulo p.
Then the finite sequence (en) is defined by

en =
{

1 if 1 ≤ ind f(n) ≤ (p− 1)/2,
−1 if (p+ 1)/2 ≤ ind f(n) ≤ p− 1 or p | f(n), 1 ≤ n ≤ p− 1.
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The correlation measure of the sequence (en) is also analysed in [33].
The sequence (kn) of signs of Kloosterman sums is defined as follows;

kn =

{
1 if

∑p−1
j=1 exp(2πi(j + nj−1)/p) > 0,

−1 if
∑p−1

j=1 exp(2πi(j + nj−1)/p) < 0,
1 ≤ n ≤ p− 1,

where j−1 is the inverse of j modulo p. Bounds on the correlation measure of
order k of (kn) are given in Fouvry et al [22].

Recently Brandstätter and Winterhof [12] have shown that the linear com-
plexity profile of a given t-periodic sequence can be estimated in terms of its
correlation measure;

L(sn, N) ≥ N − max
1≤k≤L(sn,N)+1

Ck(sn), 2 ≤ N ≤ t− 1.

Hence, a lower bound on L(sn, N) can be obtained whenever an appropriate
bound on maxCk(sn) is known. The proof is similar to that of Theorem 2.4.

Nonlinearity

Each binary sequence (sn) of period t over the field F2 can naturally be
associated with a Boolean function B. More precisely, we define an integer m
by 2m ≤ t < 2m+1 and denote by Bm the set of m-bit integers

Bm = {n ∈ Z : 0 ≤ n ≤ 2m − 1}.

We do not distinguish between m-bit integers n ∈ Bm and their binary ex-
pansion. So Bm can be considered as the m-dimensional Boolean cube Bm =
{0, 1}m. The Boolean function B : Bm → F2 associated to the sequence (sn)
is given by

B(n) = sn, n ∈ Bm. (3.1)

For n, r ∈ Bm, 〈n, r〉 denotes the inner product of n and r considered as
binary vectors. That is

〈n, r〉 = n1r1 + . . .+ nmrm,

where n = (n1, . . . , nm) and r = (r1, . . . , rm) are the binary representations
of n and r.

The Fourier coefficients of a Boolean functionB : Bm → {0, 1} are defined
as

B̂(r) = 2−m
∑

n∈Bm

(−1)B(n)+〈n,r〉, r ∈ Bm,

and the nonlinearity NL(B) is defined as

NL(B) = 2m−1 − 2m−1 max
r∈Bm

∣
∣
∣B̂(r)

∣
∣
∣ .



A. Topuzoğlu and A. Winterhof 157

The nonlinearity corresponds to the smallest possible Hamming distance be-
tween the vector of values ofB and the vector of values of a linear function inm
variables over F2. For the cryptographic significance of this notion see [11] and
references therein. In particular, a high nonlinearity is necessary for achieving
confusion and avoiding differential attacks.

In Brandstätter and Winterhof [11] the nonlinearity of the Boolean func-
tion B, defined by (3.1) is estimated in terms of the correlation measure of
order 2 of the sequence (sn). It is shown that

NL(B) > 2m−1(1− 81/42−m/4C2(sn)1/4).

This result can be applied to any binary sequence for which a bound on the
correlation measure of order 2 or the aperiodic autocorrelation is known. For
example, consider the Boolean function

B(n) =






0 if
(

n
p

)
= 1 or n = 0,

1 if
(

n
p

)
= −1,

0 ≤ n ≤ 2m − 1,

corresponding to the Legendre sequence, where 2m ≤ p < 2m+1. The bound

NL(B) = 2m−1(1 +O(2−m/8m1/4))

follows immediately from [66, Theorem 10.1] or [43].
Note that the Legendre sequence describes the least significant bit of the

discrete logarithm. An analogue result on the nonlinearity of the Boolean
function corresponding to the sequence of least significant bits of the discrete
logarithm in the finite field F2r ¨

4. Discrepancy and Uniform Distribution
A quantitative measure of uniformity of distribution of a sequence, the so-

called discrepancy has a long history. Originated from a classical problem in
Diophantine approximations, namely distribution of fractional parts of integer
multiples of an irrational in the unit interval, this concept has found applications
in various areas like combinatorics, probability theory, mathematical finance,
to name a few. It is apparent that it can be used in the analysis of PR sequences;
it also emerges as a valuable tool in quasi-Monte Carlo methods where the
so-called quasi-random sequences are often utilised.

LetP be a point set (finite sequence) x0,x1, . . . ,xN−1 ∈ [0, 1)s with s ≥ 1.

The discrepancy D(s)
N of P is defined as

D
(s)
N (P ) = D

(s)
N (x0,x1, . . . ,xN−1) = sup

J

∣
∣
∣
∣
AN (J)
N

− V (J)
∣
∣
∣
∣ ,

is given in Brandstatter et al. [9].
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where the supremum is taken over all subboxes J ⊆ [0, 1)s, AN (J) is the
number of points x0,x1, . . . ,xN−1 in J and V (J) is the volume of J . We put

DN (P ) = D
(1)
N (P ). For an infinite sequence (sn) ∈ [0, 1)s, the discrepancy

of (sn) is defined as

D
(s)
N (sn) = D

(s)
N (s0, s1, . . . , sN−1).

It is evident from the well-known Erdős-Turán inequality, (4.1) below, that
the main tool in estimating discrepancy is the use of bounds on exponential
sums. Let P be a point set x0, x1, . . . , xN−1 in [0, 1). There exists an absolute
constant C such that for any integer H ≥ 1,

DN (P ) < C

(
1
H

+
1
N

H∑

h=1

1
h
|SN (h)|

)

, (4.1)

where SN (h) =
∑N−1

n=0 exp (2πihxn).
For the case s ≥ 2 the generalised version of (4.1), namely the Erdős-Turán-

Koksma inequality is used.
The law of the iterated logarithm asserts that the order of magnitude of

discrepancy ofN points in [0, 1)s should be aroundN−1/2(log logN)1/2. Ac-
cordingly, as a measure of randomness of a PRN sequence, one investigates the
discrepancy of s-tuples of consecutive terms.

Consider, for example, the inversive congruential PRNs, produced by (2.5),
with least period p. For a fixed dimension s ≥ 1, put

xn = (yn/p, yn+1/p, . . . , yn+s−1/p) ∈ [0, 1)s, n = 0, . . . , p− 1.

Depending on the parameters a, b ∈ Fp, and in particular on the average,

D
(s)
p (x0, . . . ,xp−1)has an order of magnitude betweenp−1/2 andp−1/2(log p)s

for every s ≥ 2. Similar favourable results are available, for instance, for non-
linear, quadratic exponential and elliptic curve generators.

As we have remarked earlier, only parts of the period of a PR sequence are
used in applications. Therefore bounds on the discrepancy of sequences in parts
of the period are of great interest.

The following theorem of Niederreiter and Shparlinski [57] gives an upper
bound for the discrepancy of nonlinear congruential PRNs for parts of the
period. We present a slightly imroved version.

Theorem 4.1. Let (un) be a nonlinear congruential generator (2.7) with pe-
riod t. For any positive integer r we have

DN (un/p) = O(N−1/(2r)p1/(2r)(log p)−1/2 log log p), 1 ≤ N ≤ t,

where the implied constant depends on r and the degree of f .



A. Topuzoğlu and A. Winterhof 159

Proof. First we prove that, for gcd(h, p) = 1,

SN (h) = O(N1−1/(2r)p1/(2r)(log p)−1/2), 1 ≤ N ≤ t. (4.2)

Select any h ∈ Z with gcd(h, p) = 1. It is obvious that for any integer k ≥ 0
we have ∣

∣
∣
∣
∣
SN (h)−

N−1∑

n=0

ep(un+k)

∣
∣
∣
∣
∣
≤ 2k.

Therefore, for any integer K ≥ 1,

K|SN (H)| ≤W +K(K − 1),

where

W =
N−1∑

n=0

∣
∣
∣
∣
∣

K−1∑

k=0

ep(un+k)

∣
∣
∣
∣
∣
.

We consider again the sequence of polynomials Fk(X) defined in the proof of
Theorem 2.2. By the Hölder inequality and using un+k = Fk(un) we obtain

W 2r ≤ N2r−1
N−1∑

n=0

∣
∣
∣
∣
∣

K−1∑

k=0

ep(Fk(un))

∣
∣
∣
∣
∣

2r

≤ N2r−1
∑

x∈Fp

∣
∣
∣
∣
∣

K−1∑

k=0

ep(Fk(x))

∣
∣
∣
∣
∣

2r

≤ N2r−1
K−1∑

k1,...,k2r

∣
∣
∣
∣
∣
∣

∑

x∈Fp

ep(F (x))

∣
∣
∣
∣
∣
∣
,

where F (X) = Fk1(X) + . . . + Fkr(X) − Fkr+1(X) − . . . − Fk2r(X). If
{k1, . . . , kr} = {kr+1, . . . , k2r}, then F (X) is constant and the inner sum is
trivially equal to p. There are at most r!Kr such sums. Otherwise we can
apply Weil’s bound to the inner sum using degF ≤ dK−1, to get the upper
bound dK−1p1/2 for at most K2r sums. Hence,

W 2r ≤ r!KrN2r−1p+ dK−1K2rN2r−1p1/2.

Choose

K =
⌈

0.4
log p
log d

⌉

.

Then it is easy to see that the first term dominates the second one and we
get (4.2) after simple calculations. Choosing

H =
⌈
N1/(2r)p−1/(2r)(log p)1/2

⌉
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in (4.1), we obtain the discrepancy bound.

Note that the known upper bounds obtained for full period are often the best
possible, as the corresponding lower bounds demonstrate (see [53]). However
for parts of the period, the bound in Theorem 4.1 is rather weak and improve-
ments are sought for. One should note on the other hand that the method used
in [57] for estimating SN (h), is the first to give nontrivial bounds for parts of
the period. This method also applies in case s ≥ 2.

As to bounds on discrepancy of some special nonlinear generators for parts of
the period, much better results can be obtained. For the inversive congruential
generators (yn) of period t, Niederreiter and Shparlinski showed in [58] that

DN (yn/p) = O(N−1/2p1/4 log p), 1 ≤ N ≤ t.

For an average discrepancy bound over all initial values of a fixed inversive
congruential generator see Niederreiter and Shparlinski [60].

Results about the distribution of the power generator follow from the bounds
of exponential sums in Friedlander and Shparlinski [25] and in Bourgain [8].
Exponential sums of nonlinear generators with Dickson polynomials have been
estimated in Gomez-Perez et al [28]. Discrepancy bounds for nonlinear con-
gruential generators of higher order can be found in [29, 31, 72].

For the distribution of explicit nonlinear generators see the series of pa-
pers [61, 62, 77]. In particular for the explicit inversive generator (2.4) we
have the discrepancy bound

DN (zn/p) = O(min{N−1/2p1/4 log p,N−1p1/2(log p)2}), 1 ≤ N ≤ p.

The order of magnitude of discrepancy of the PRNs produced by the elliptic
curve generator of period t with f(x, y) = x or f(x, y) = y is t−1p1/2 log p,
by Hess and Shparlinski [34]. This result can be easily extended to parts of the
period. We present the proof of the following special version.

Theorem 4.2. The sequence (wn) defined by (2.15), having period t satisfies

DN (wn/p) = O(t−1p1/2 log p log t), 1 ≤ N < t.

Proof. First we estimate the exponential sums

SN =
N−1∑

n=1

ep(wn) =
N−1∑

n=1

ep(x(nG)), 1 ≤ N < t.

Using the Vinogradov method again we get by (2.12)

|SN | ≤
1
t

t−1∑

a=0

∣
∣
∣
∣
∣

t−1∑

n=1

ep(x(nG))et(an)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N−1∑

m=0

et(am)

∣
∣
∣
∣
∣
= O(p1/2 log t)
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by (2.13) and [38, Corollary 1]. The discrepancy bound follows from (4.1).

The distribution of an elliptic curve analogue of the power generator has been
analysed in Lange and Shparlinski [40].

We should remark that the linear congruential generator, unlike other gen-
erators we mentioned above, is distributed too evenly. In case a in (2.1) is a
primitive root mod p, b = 0 and s0 �= 0, the sequence has period length p− 1,
and for most choices of a,

D
(s)
p−1(sn/p) = O(p−1(log p)s(log log(p+ 1))).

Although such low-discrepancy sequences need to be avoided as PR se-
quences, they are needed for use in quasi-Monte Carlo methods (see [53]). The
study of irregularities of distribution suggests that for anyN -element point setP
and any sequence (sn) in [0, 1)s, s ≥ 1, the least order of magnitude ofD(s)

N (P )
and D(s)

N (sn) can be N−1(log n)s−1 and N−1(log n)s, respectively.
The construction of point sets and sequences with these least possible bounds

has been a challenging problem; both for theoretical interest and for applica-
tions. Recent results of Xing, Niederreiter and Özbudak show that geometric
methods are particularly fruitful for such constructions. We refer the reader to
the surveys by Niederreiter [54, 56] for an extensive description of this study,
illustrating yet another application of global function fields.
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Chapter 5

GROUP STRUCTURE OF ELLIPTIC CURVES
OVER FINITE FIELDS AND APPLICATIONS

Ram Murty and Igor Shparlinski

1. Introduction
1.1 Motivation and General Outline

Let E be an elliptic curve defined over Fq, the finite field of q elements. It
is known that the set of Fq-rational points of E has a structure of an abelian
group. This fact, since the works of Koblitz [68] and Miller [98], underlies all
known applications of elliptic curves to cryptography, see [3, 15, 16, 50, 73]
and references therein. We give a survey of recent results about the structure
of this group as well as techniques used.

In particular, we discuss how often this group is cyclic or has a massive
cyclic component. The famous Lang–Trotter conjecture [77], which in turn is
motivated by Artin’s conjecture, is a typical example of what kind of question
we consider. We recall, that Artin’s conjecture, in a quantitative form, claims
that for any integer g �= −1, which is not a perfect square, there is a constant
A(g) > 0 such that g is a primitive root for Ng(x) ∼ A(g)π(x) primes p ≤ x,
where as usual, π(x) is the total number of primes p ≤ x. Under the Extended
Riemann Hypothesis (ERH), this conjecture has been proved by Hooley [61].
There are also several unconditional results on Artin’s conjecture “on average”
over g, see Chapter 2 in [110] and a more recent survey [84]. There is also
a series of results, originated by the work of Murty [103], and then further
developed in [55, 59, 109], which show that the multiplicative structure of
possible exceptional values of g is very restrictive.

Nowadays a great variety of modifications, generalizations and applications
of Artin’s conjecture is known, see [65, 85, 104, 112], among which one can
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consider elliptic curve analogues of Artin’s conjecture, see [105]. In particular,
one can ask for how many primes p ≤ x, the reduction modulo p of a fixed
point G of infinite order on a given elliptic curve E defined over Q generates
the whole group of points on the reduction of E modulo p. The Lang–Trotter
conjecture predicts an asymptotic formula for this quantity. A related question
is the question of Serre [123] about counting for how many primes p ≤ x, this
reduction of E modulo p forms a cyclic group. We discuss these questions in
Section 2.1.

An associated question is the question about the largest cyclic component of
the group of points on an elliptic curve over a finite field. This and some other
related questions are addressed in Section 2.2.

We also describe several recent results about the arithmetic structure of the
cardinality of this group (which is ultimately related to the group structure), see
Section 2.3.

These questions are of intrinsic interest and also have very important appli-
cations to cryptography which we outline too. We do not discuss the discrete
logarithm problem on elliptic curves and various attacks on this problem but
rather refer to [3, 15, 16, 50, 73] where the reader can find exhaustive treat-
ments of this topic. Instead, we concentrate on less known questions about
relevance of the results on the group structure of the set of Fq-rational points
on an elliptic curve and the arithmetic properties of the cardinality of this set
for several recently emerged applications to cryptography and pose some open
questions for further research. For instance, we describe some recent results
characterising the probability of success of the so-called MOV attack on the
discrete logarithm problem on elliptic curves, see Section 3.1. Very often, such
questions are extremely hard. For example, the question about the primality of
the number of Fq-rational points on an elliptic curve is of great cryptographic
significance but appears to be out of reach at the present time.

The wealth of various techniques which have been used to treat these ques-
tions is truly remarkable. They use tools from essentially all areas of number
theory and include, but are not limited to:

ERH

Chebotarev Density Theorem

Bounds of character and exponential sums

L-functions

Subspace Theorem

Linear forms in p-adic logarithms

Distribution of prime numbers
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and many others.
Unfortunately, we are not able to provide complete or even abbreviated proofs

of the results we discuss, which are typically quite technically involved and
lengthy (and as we have mentioned require rather extensive background from
other areas of number theory). However sometimes we try to explain the main
ideas behind these proofs and refer the reader to the original publications for
further details.

Neither do we give a systematic introduction to elliptic curves, but rather
refer to some standard sources such as [127]. We however give a self-contained
outline of the basic facts on elliptic curves which are used here.

We would like to use this survey as an opportunity to attract more attention
of the cryptographic community to a great variety of readily available number
theoretic results and techniques which can be of great significance for cryptog-
raphy. On the other hand, we hope that more number theorists can be motivated
to use their skills for solving problems of cryptographic significance. There are
many problems which are important for cryptography and for which heuristic
approaches are not immediately clear and thus rigorous analysis is necessary
and appears to be rather feasible.

Throughout the paper, any implied constants in the symbols “O”, “ ! ”
and “ " ” may occasionally depend (where obvious) on the elliptic curve E
when it is fixed and some other parameters vary and are absolute otherwise. We
recall that the statements A! B and B " A are equivalent to A = O(B) for
positive functions A and B.

1.2 Background on Elliptic Curves
Let E be an elliptic curve defined over Fq, defined by an affine Weierstrass

equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with the discriminantDE �= 0 (an explicit, but rather lengthy, expression forDE

can be found in many standard texts on elliptic curves, for example, see [127]).
Sometimes it is more convenient to consider the projective model, but here

we prefer the affine representation.
Two elliptic curves E1 and E2 defined over Fq are called isomorphic if

there exist two morphisms (that is, two rational maps, regular at any point)
ϕ : E1 → E2 and ψ : E2 → E1 such that their compositions ψϕ and ϕψ are
the identity maps on E1 and E2, respectively.

Let NE(q) denote the number of Fq-rational points on an elliptic curve E
defined over Fq, including one more special point which is called the point at
infinityO (which cannot be described in affine coordinates, but has a projective
representation).



170 Group Structure of Elliptic Curves and Applications

Two elliptic curves E1 and E2 defined over Fq are called isogenous if
NE1(q) = NE2(q).

If the characteristic of Fq is p > 3 then each curve E has an isomorphic
version which can be described by a Weierstrass equation of the form

Y 2 = X3 +AX +B. (1.1)

In this case DE = −16(4A3 + 27B2).
In particular we see that the set of all possible elliptic curves E(q) defined

by all possible equations (1.1) over Fq contains

#E(q) = q2 +O(q)

curves (note that here we count the number of distinct Weierstrass equations
rather than the number of isomorphism classes of elliptic curves). However,
each curve has approximately the same number of isomorphic copies in this set
defined by the twists of the original equation

Y 2 = X3 +At4X +Bt6,

(the number of isomorphic twists depends on gcd(q−1, 12) and whetherAB =
0 or not).

We also consider extensions Fqn of Fq and, accordingly, we consider the sets
E(Fqn) of Fqn-rational points on E (including the point at infinity O).

On the other hand, given an elliptic curve E defined over Q we consider sets
of Fp-rational points on the reduction of this curve modulo p.

We recall that E(Fqn) forms an abelian group (with O as the identity ele-
ment). The cardinality NE(qn) = #E(Fqn) of this group satisfies the Hasse–
Weil inequality

|NE(qn)− qn − 1| ≤ 2qn/2 (1.2)

(see [15, 127, 128] for this, and other general properties of elliptic curves).
We remark that two isomorphic curves are also isomorphic as abelian groups,

but the converse statement is not true.
It is well-known that the group of Fqn-rational points E(Fqn) is of the form

E(Fqn) ∼= Z/LZ× Z/MZ, (1.3)

where the integersL andM are uniquely determined withM | L. In particular,
NE(qn) = LM . The number �E(qn) = L is called the exponent of E(Fqn),
and is the largest possible order of points P ∈ E(Fqn).

In this paper we give a survey of recent results on the group structure of
E(Fqn).

Trivially, from the definition (1.3), and from (1.2), we see that the inequality

�E(qn) ≥ (NE(qn))1/2 ≥ (qn + 1− 2qn/2)1/2 = qn/2 − 1
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holds for all q and n. It is not hard to show that this bound can be attained.
The difference

aE(qn) = NE(qn)− qn − 1

plays a prominent role in determining the properties of E. In particular, we
recall that an elliptic curve E ∈ E(q) is called supersingular if and only if
aE(q) ≡ 0 (mod p) (this is one of many alternative definitions, see [15, 127]).
Otherwise, E is called non-supersingular or ordinary.

If E is an elliptic curve over an algebraic number field K, the endomorphism
ring of E over K, denoted EndK(E), contains a copy of the integers corre-
sponding to the morphisms x �→ nx for each n ∈ Z. If this ring is strictly
bigger than Z, we say E has complex multiplication (CM) for in that case, it
is a classical theorem that the ring is isomorphic to an order in an imaginary
quadratic field. Otherwise, we say E is a non-CM curve. In the case K is a
finite field, the ring of endomorphisms is always larger than Z and two cases can
arise. Either the ring is isomorphic to an order in an imaginary quadratic field
or it is an order in a quaternion algebra. In the latter case, this is equivalent to
E having supersingular reduction. Many of the questions about elliptic curves
fall naturally into these two categories, the CM case and the non-CM case. In
many instances, the CM case is the easier one to deal with since we can then
exploit the presence of additional structure.

Although generally the group structure of elliptic curves over finite fields,
described by (1.3) is reasonably well understood, still there are many delicate
aspects and challenging open questions. For instance, we describe several
known results about the size and arithmetic structure of the integers M and L
which appear in (1.3). Here, we are mainly interested in a better lower bound
of the size of the exponent �E(qn) when at least one of the parameters E, q and
n varies. In particular, the case of cyclicity �E(qn) = NE(qn) is of primary
interest.

2. Group Structure
2.1 Cyclicity

Here we concentrate on the question of cyclicity, that is, whether �E(qn) =
NE(qn), which essentially dates back to work of Borosh, Moreno and Porta [20]
as well as Serre [123].

In the situation where E is defined over Q, the question about the cyclicity
of the reduction E(Fp) when p runs over the primes has been addressed in a
series of recent works [24, 25, 29, 30] due to Cojocaru, Fouvry and Murty, see
also a recent survey [26]. In particular, this problem is closely related to the
famous Lang–Trotter conjecture, see [77].

One can show that E(Fp) is cyclic if and only if p does not split completely
in each of the fields K� = Q(E[�]) obtained from Q by adjoining to it the
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co-ordinates of the �-division points of E, as � varies over the primes. Thus, an
application of the inclusion-exclusion principle along with the effective Cheb-
otarev Density Theorem with the error term implied by the ERH allows one to
easily derive an asymptotic formula for the number of such primes (see [103]).
Structurally, this problem is similar to Artin’s primitive root conjecture in that
the same method carries over. However, there are some major differences as
has been noted in [57]. The most notable is the observation that K� contains
the �-th cyclotomic field generated over Q by a primitive �-th root of unity
ζ� = exp(2πi/�). Thus, if p splits completely in K�, then it splits completely
in Q(ζ�). Primes that split completely in the latter field are necessarily con-
gruent to 1 modulo �. This implies that if we can restrict the number of prime
divisors of p− 1 then there are fewer cases to check in the inclusion-exclusion
procedure. Restricting the number of prime divisors of p−1 can be achieved by
an application of the lower bound sieve and this strategy has been successfully
carried out by Gupta and Murty in [57], where they have shown that if E has
an irrational 2-division point, then there are at least

πE(X) " x

(log x)2

primes p ≤ x for which E(Fp) is cyclic, where the implied constant depends
only on the curve E.

Another feature different from the setting of the Artin primitive root ques-
tion is highlighted in the paper of Cojocaru and Murty [30] where they prove,
assuming the ERH, that

πE(X) = cElix+O(x5/6 log2/3 x)

with cE > 0 whenever E has an irrational 2-division point. It is unclear if
such error terms can be derived in the Artin primitive root conjecture setting
assuming only the ERH.

The elliptic curve analog of the primitive root conjecture predicts in the
generic case an infinitude of primes for which E(Fp) is generated by the modulo
p reduction of a fixed global rational point. This is still unresolved even under
the assumption of the ERH. However, in the CM case, Gupta and Murty [56]
have been able to prove the conjecture under the ERH by exploiting the fact
that K� is abelian over the CM field of E in this situation.

For curves in extension fields, this question appears to be somewhat easier
and has been satisfactorily answered by Vlăduţ [134]. For example given a
curve E over Fq, and a large real x > 0 one can define the set

CE(x) = {n ≤ x | E(Fqn) is cyclic}.
Then we can define the upper and lower densities

D(E) = lim sup
x→∞

#CE(x)/x and d(E) = lim inf
x→∞

#CE(x)/x
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Clearly D(E) = d(E) = 0 unless E(Fq) is cyclic itself. We now put

∆(q) = max{D(E) | E ∈ E(q), E(Fq) is cyclic}
δ(q) = min{d(E) | E ∈ E(q), E(Fq) is cyclic}.

It is shown in [134] that ∆(q) ≤ 7/8 if q is even, and ∆(q) ∈ {1/2, 2/3} if q
is odd (in fact each case ∆(q) = 1/2 and ∆(q) = 2/3 is fully characterised).
Yet another result of [134] asserts that

lim inf
p→∞

δ(p) = 0

when p→∞ runs through the set of primes. Similar quantities are also studied
separately for the families of ordinary and supersingular curves.

Vlăduţ [133] has also considered the dual question when the field Fq is fixed
but the curveEvaries overE(q) (as well as over all ordinary and all supersingular
curves from E(q)). In particular, a complete characterisation of prime powers
q for which all curves from E(q) are cyclic is given in Theorem 4.1 of [133].
Such prime powers include, but are not limited to, all Mersenne primes. It
does not follow immediately from the characterisation given in [133] that there
are infinitely many such prime powers, but it looks quite promising that such
an unconditional result can be obtained for the prime powers described in the
cases (ii) and (iii) of Theorem 4.1 of [133].

Furthermore, Theorem 6.1 of [133] gives an asymptotic formula

c(q) =
∏

�|q−1

(

1− 1
�(�2 − 1)

)

+O
(
q−1/2+o(1)

)

for the proportion c(q) of the isomorphism classes of curves from E(q) which
contain cyclic curves.

2.2 The Size of the Exponent
For a fixed non-CM elliptic curve E which is defined over Q, it has been

shown by Schoof [121] that

the inequality

�E(p) " p1/2 log p
log log p

holds for all sufficiently large primes p;

under the ERH, for infinitely many primes,

�E(p) ! p7/8 log p.
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It is also remarked in [121] that for CM curves the exponent can apparently
be small infinitely often. For example, if E is given by Y 2 = X3 −X , thus E
has complex multiplication over Z[i], then �E(p) = k ∼ p1/2 for every prime
p of the form p = k2 + 1.

Duke [38] has recently shown, unconditionally for CM elliptic curves and
under the ERH for non-CM elliptic curves, that for any function f(x) →∞ for
x → ∞, the lower bound �E(p) ≥ p/f(p) holds for almost all primes p. For
non-CM elliptic curves, the only unconditional result available is also in [38],
and asserts that the weaker inequality �E(p) ≥ p3/4/ log p holds for almost all
primes p. Moreover, it follows from the proof of that result that in fact for almost
all primes p we have �E(p) ≥ p3/4/ log p for all elliptic curves E ∈ E(p). In
this form, the bound is tight. Indeed, using the Bombieri-Vinogradov theorem
one can show that for any fixed ε there is a positive proportion of primes p such
that p− 1 has a prime divisor r with p1/4−ε ≤ r ≤ p1/4−ε/2. Thus there is an
integer N ∈ [p− 2p1/2 + 1, p+ 2p1/2 + 1] with r2|N . Then by [62, 115, 131,
135] there exists an elliptic curve E ∈ E(p) with

E(Fp) ∼= Z/LZ× Z/MZ,

where M = r, L = N/r and thus

�E(p) = L! p3/4+ε,

see [45] for more details.
It is useful to note that many of the above results are analogues (albeit some-

what weaker) of the results of [42, 63, 108, 111] on the size of the multiplicative
order of a given integer a > 1 modulo p, when p varies.

It has also been shown in [121], that, under the ERH, for any curve E over
Q,

lim inf
p→∞

�E(p)
p7/8 log p

<∞ (2.1)

where p runs through all prime numbers. This bound rests on an explicit form
of the Chebotarev Density Theorem. Accordingly, unconditional results of [75]
lead to an unconditional, albeit much weaker, upper bound on �E(p).

In extension fields of Fq, with E defined over Fq, stronger lower bounds on
�E(qn) can be obtained. For example, it has recently been shown by Luca and
Shparlinski [93] that for any ε > 0, the inequality

�E(qn) ≥ qn(1−ε) (2.2)

holds for all but at most 2ϑε−6+O(ε−5) values of n, where ϑ = 372−10 =
2.135 . . .. It also implies that

�E(qn) > qn(1−η(log n)−1/6)
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for almost all positive integers n, for any fixed constant

η > (372−10 log 2)1/6 = 1.067 . . . .

The proof of the bound (2.2) is based on recently emerged applications of
the celebrated Subspace Theorem (see [43, 44] for most recent achievements)
as well as on an upper bound due to van der Poorten and Schlickewei [113], on
the number of zeros of linear recurrence sequences. It also uses several ideas
from [31]. Because the proof of (2.2) is based on the Subspace Theorem the set
of exceptional values cannot be effectively determined. Using very different
arguments, Luca and Shparlinski [93] have also derived a much weaker but
effective bound

�E(qn) ≥ qn/2+ϑ(q)n/ log n

which holds for all positive integers n, where ϑ(q) > 0 is an effectively com-
putable constant.

We note that the bound (2.2) means that no result of the same strength as (2.1)
is possible for elliptic curves in extension fields.

Accordingly, Luca, McKee and Shparlinski [91] give a more modest bound
which asserts that for some absolute constant η > 0

lim inf
n→∞

�E(qn)
qn exp

(
−nη/ log log n

) <∞.

The proof is based on studying the degree of the field extension of Fq containing
all k-torsion points, that is, the points P ∈ E(Fq) on E in the algebraic closure
Fq of Fq with kP = O. It is known that for gcd(k, q) = 1 these points form a
group

E[k] ∼= Z/kZ× Z/kZ

of cardinality k2. Let d(k) denote the degree of the field of definition of E[k]
(that is, the field generated by the coordinates of all the k-torsion points, over
Fq). It is shown in [91] that if r is a prime with

gcd
(
r, q
(
aE(qn)2 − 4qn

))
= 1

and such that aE(qn)2−4qn is a quadratic residue modulo r, then d(r) | (r−1).
Then a modification of a result of [1] is shown which asserts that infinitely many
integers n have exponentially many divisors of the form r − 1, where r is one
of the above primes. For each such n one can easily conclude that E(Fqn)
contains the corresponding torsion subgroups E[r] which forces �E(qn) to be
sufficiently small compared to qn.

Most of the proofs are based on the reduction of the original question to a
certain number theoretic question about the arithmetic structure of some integers
of special form. This reduction is based on one or both of the following two
facts:



176 Group Structure of Elliptic Curves and Applications

By a result of Lenstra [83], for any prime p and any integer N ,

#{E ∈ E(p) | NE(p) = N} = O(p3/2 log p(log log p)2). (2.3)

By the Weil pairing, for any prime power e and E ∈ E(q)

mE(q)|q − 1, (2.4)

where
mE(q) = NE(q)/�E(q) (2.5)

Finally, one can also study an apparently easier question about the distribu-
tion of �E(q) “on average” over various families of elliptic curves from E(q),
see [125, 133]. For example, it is shown in [125] that “on average” over the
curves E ∈ E(p), the value of mE(p), given by (2.5) is of order at most
log p(log log p)3. Indeed, using (2.3) and (2.4), we deduce
∑

E∈E(p)

mE(p) ≤
∑

m|p−1

m≤p1/2+1

m
∑

|N−p−1|≤2p1/2

N≡0 (mod m2)

p3/2 log p(log log p)2

≤ p3/2 log p(log log p)2
∑

m|p−1

m≤p1/2+1

m

(
4p1/2

m2
+ 1

)

! p2 log p(log log p)2
∑

m|p−1

1
m
! p2 log p(log log p)3.

A related question about the size of the Tate-Shafarevich group is considered
in [26, 28] which is closely related to the question on the distribution of the
largest integer square dividing aE(p)2 − 4p where E is defined over Q and the
prime p varies.

Luca and Shparlinski [94] have studied the dual case where p is fixed and
E runs through the set of all elliptic curves from E(p) and have shown that for
almost all curves the largest square factor of aE(p)2 − 4p is logarithmically
small.

2.3 Arithmetic Properties of NE(qn)

It is natural to ask whether NE(q) can take all values satisfying the inequal-
ity (1.2) when E runs through the set E(q). This question is fully answered by
the classical results of Deuring [36], see also [13, 120, 136]. Namely, for any
t with |t| ≤ 2q1/2, there is a curve E ∈ E(q) with NE(q) = q + 1 − t if and
only if one of the following conditions is satisfied

gcd(t, p) = 1;
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q = p2m+1 is an odd power of p and

◦ t = 0;

◦ t = ±(pq)1/2 for p = 2 and p = 3;

q = p2m is an even power of p and

◦ t = 0, for p = 2 and p ≡ 3 (mod 4);

◦ t = ±q1/2 for p = 3 and p ≡ 2 (mod 3);

◦ t = ±2q1/2.

Lenstra [83] has made it more precise and has shown that for a prime q = p
each integer a with |a| ≤ 2p1/2 is taken by aE(p) for E ∈ E(p) no more
than some logarithmic factor of the expected value, namely no more than
O(p3/2 log p(log log p)2) times, see (2.3). Moreover in the smaller interval
|a| ≤ p1/2, each integer is taken by aE(q) no less than some logarithmic frac-
tion of the expected value, namely no less than Cp3/2/ log p times, for some
absolute constant C > 0. Thus, all isogeny classes of elliptic curves contain
about the same number of classes of isomorphic curves. These results can also
be extended to arbitrary finite fields.

In particular, using the above results, one can immediately find the number
of isogeny classes of elliptic curves over Fq. The number I(q) of isomorphism
classes of curves from E(q) is also known:

if q is odd then

I(q) = 2q + 3 +
(
−1
q

)

+ 2
(
−3
q

)

,

where (a/b) is the Jacobi symbol,

if q is even then
I(q) = 2q + 1,

see [120].
Possible group structures which can be realised by E ∈ E(q) are also known,

for example, see [62, 115, 131, 135]. Roughly speaking, with only few fully
described exceptions, for any integers L and M with M | L and such that
ML can be realised as a cardinality of an elliptic curve over Fq, there is also
E ∈ E(q) for which

E(Fq) ∼= Z/LZ× Z/MZ.

The dual problem is to study πE(a, x), which is the number of primes for
which aE(p) = a for a given curve E defined over Q and a given integer a.
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In the case that E does not have CM or a �= 0, Lang and Trotter [76]
conjecture that

πE(a, x) ∼ cE,a

√
x

log x
for some constant cE,a. In [107], it is shown that

πE(a, x) ! x4/5(log x)−1/5

assuming the ERH for Dedekind zeta functions. For a = 0, in [107], one
can find a stronger estimate of O(x3/4), but this has also been established
unconditionally by Elkies [41] using a remark of Murty (see [40]).

Concerning lower bounds, Fouvry and Murty [46] have shown that

πE(0, x) " log log log x
(log log log log x)δ

for any δ > 0. Assuming the ERH for classical Dirichlet L-functions, Elkies
and Murty (see [40]) have shown that

πE(0, x) " log log x.

Fouvry and Murty [46] have also considered πE(a, x) on average over the
family of curves E(U, V ) described by all possible Weierstrass equations of the
form (1.1) with |A| ≤ U , |B| ≤ V . Theorem 6 of [46] gives the expected
average order of πE(a, x) whenever min{U, V } ≥ x1/2+ε and UV ≥ x3/2+ε

for some fixed ε > 0. This result is based, among other tools, on the Weil
bound for exponential sums, see Chapter 3 or [86, Chapter 5]. Average values
of higher powers of πE(a, x) are estimated by David and Pappalardi [34].

The joint distribution for several curves has been studied by Akbary, David
and Juricevic [2], see also [11, 35, 64]. Several more relevant results have
recently been obtained by Gekeler [51].

David, Kisilevsky and Pappalardi [33] give a certain characterisation of the
pairs (E, a) of elliptic curves E over Q and integers a such that there are no
primes p with ap(E) = a.

It is also relevant to recall that according to the famous Sato–Tate conjecture,
for every non-CM elliptic curve E over Q, the ratios aE(p)/p1/2, when p
runs through all sufficiently large primes, are distributed in the interval [−2, 2]
according to the Sato–Tate measure

dµST (x) =
1
π

√

1− x2

4
dx.

Studying how often NE(q) is prime is of great interest, although it appears
to be very hard. In both situations when E is a fixed curve over Q and p varies
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and when p is fixed prime and E runs through E(p), the question of primality
of NE(p) appears to be out of reach, even if heuristically the situation is well
understood (which is quite sufficient for cryptographic applications) thanks to
works of Galbraith and McKee [48], Koblitz [69, 72] and Weng [137]. In fact
studying primality of NE(qn)/NE(q) when E is a fixed curve over Fq and
n varies is probably even harder. Clearly, this question is no easier than the
question of primality of Mersenne numbers.

The only scenario in which rigorous results have been obtained is when
both p varies and E runs through E(p). In this case Koblitz [70] shows that
NE(p) is prime for the set of pairs (p,E) of the right order of magnitude. The
result of [70] follows from the prime number theorem and the aforementioned
result of Lenstra [83], which asserts that every integer value, in the interval
[p+ 1− 2p1/2, p+ 1 + 2p1/2], except maybe for at most two such integers, is
taken by NE(p) about the same number of times when E runs through E(p).
Moreover, under the ERH there are no exceptions.

We also remark that it follows immediately from the result of Liu and Wu [87]
that for a prime power q there is a positive proportion of integers n in the
middle part of the Hasse–Weil interval n ∈ [q + 1 − q1/2, q + 1 + q1/2] with
P (n) ≥ n0.738, where P (n) denotes the greatest prime factor of n. Clearly,
each prime number � ≥ n0.738 occurs at most once as � = P (n) for n ∈
[q+1−q1/2, q+1+q1/2] (provided q is large enough). In fact, the recent result
of Harman [58] allows to replace 0.738 with 0.74. LetK =

⌈
q1/4(log q)−1/2

⌉
.

Then removing

O

(
K∑

k=1

log(qk − 1)
log log(qk − 1)

)

= O

(

K2 log q
log log q

)

= o(q1/2)

such integers n with

P (n)

∣
∣
∣
∣
∣

K∏

k=1

(qk − 1)

we see that for the other n (which still form a set of positive density) the
cardinality of an elliptic curve E with NE(q) = n contains a very large prime
divisor and also the MOV attack [97] (see Section 3.1) has no chance to succeed
even if a polynomial time algorithm for the ordinary discrete logarithm problem
is discovered.

As a certain “approximation” to the primality question, one may study the
values of ω(NE(q)) and Ω(NE(q)), where as usual ω(m) and Ω(m) are the
number of distinct prime factors and the number of prime divisors counted with
multiplicity of a positive integer m > 1.
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Miri and Murty [100] have proved that under the ERH, for any non-CM
elliptic curve E over Q, one has an analogue of the Turán–Kubilius inequality:

∑

p≤x

(ω (NE(p))− log log p)2 = O(π(x) log log x)

where, as usual, π(x) is the number of primes p ≤ x (see also [27] where the
same result is obtained under a weaker hypothesis). For CM curves, a similar
result is obtained by Liu [88], see also [89, 90]. In a more general framework,
similar questions are considered in [106].

Steuding and Weng [130], improving some previous results of Miri and
Murty [100], have shown, under the ERH, that there are at leastC(E)x/(log x)2

primes p ≤ x such that Ω(NE(p)) ≤ 9, if E is a non-CM curve, Ω(NE(p)) ≤ 4,
if E is a CM curve, where the constant C(E) > 0 depends only on E. In the
non-CM case, they have also proved that ω(NE(p)) ≤ 6 for the same number
of primes p ≤ x. Note that the above results are actually quoted from the
Erratum to [130] rather than from the original version claiming slightly stronger
estimates. Finally, Cojocaru [27] has obtained an unconditional result, showing
that if E is a CM curve then ω(NE(p)) ≤ 5 for at leastC(E)x/(log x)2 primes
p ≤ x.

A number of other results about the arithmetic structure of NE(p) (such as
divisibility, primality, squarefreeness) and several others associated withNE(p)
quantities are conveniently summarised by Cojocaru [26].

Several more questions on the smoothness of the values ofNE(p), which are
also relevant to elliptic curve factorisation [83], have been raised by McKee [96].

3. Applications to Cryptography
3.1 Menezes-Okamoto-Vanstone Algorithm

The best known general discrete logarithm algorithms in the group E(Fq)
run in timeQ1/2(log q)1+o(1) whereQ is the largest prime divisor ofNE(q) (as
for any other abelian group of the same order).

A different algorithm that has been developed for the elliptic curve discrete
logarithm is the well-known Menezes-Okamoto-Vanstone algorithm, MOV,
see [97]. This algorithm constructs an embedding of a fixed cyclic subgroup of
order L of E(Fp) into the multiplicative group F

∗
pk of a suitable extension of

Fp, namely such that L | pk − 1.
Heuristically, discrete logarithms in F

∗
pk can be found in running time

Lpk

(
1/3, (64/9)1/3

)
by the number field sieve algorithm (see [32, 117, 118]),

where, as usual, Lm(α, β) denotes any quantity of the form

Lm(α, β) = exp
(
(β + o(1))(logm)α(log logm)1−α

)
.
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In particular, it follows that in order for the running time for MOV (combined
with the number field sieve) to be subexponential one needs k ≤ (log p)2.

Balasubramanian and Koblitz [4] give an upper bound on the probability
that a random pair (p,E) consisting of a prime number p in the interval [x/2, x]
and an elliptic curve E ∈ E(p) and having a prime number of points (thus,
NE(p) = Q), satisfies the condition that NE(p) | (pk − 1) for some k ≤
(log p)2. They show that for a sufficiently large x the above probability is
O
(
x−1(log x)9(log log x)2

)
. This means that for a random elliptic curve with

a prime number of points, MOV succeeds only with negligible probability.
Luca, Mireles and Shparlinski [92] obtain various extensions of this result.

In particular, they do not use the assumption of primality ofNE(p) and thus do
not need averaging over primes p in [x/2, x].

Given a curve E ∈ E(q), it would also be interesting to estimate for how
many n ≤ xMOV can be used for the discrete logarithm problem in the groups
E(Fqn). The arguments of [93] can be used to get some results in this direction
but they are rather weak.

3.2 Elliptic Curves with Low Embedding Degree
As we have seen in Section 3.1, it is very unlikely for random curve to have

a low embedding degree.
On the other hand, since the pioneering works [18, 19, 66, 67, 114, 116, 132]

which have introduced several other cryptographic applications of the Tate or
Weil pairing on elliptic curves (see, for example, [3, 16]), there has been active
interest in constructing such rare curves.

In particular, for these applications, the following problem is of primal in-
terest: Find an efficient algorithm to construct an elliptic curve E ∈ E(q), such
that #E(Fq) has a sufficiently large prime divisor � | NE(q) which also satis-
fies � | qk − 1 for a reasonably small value of the positive integer k, see [8–10,
22, 39, 49, 101, 122].

Let

Φk(X) =
k∏

j=0
gcd(j,k)=1

(X − exp(2πιj/k))

be the kth cyclotomic polynomial, where ι =
√
−1. Typically, the above

mentioned constructions work in two steps:

Step 1 Choose a prime �, integers k ≥ 2 and t, and a prime power q such that

|t| ≤ 2q1/2, t �= 0, 1, 2, � | q + 1− t, � | Φk(q). (3.1)

Step 2 Construct an elliptic curve E ∈ E(q) with NE(q) = q + 1 − t (thus
with aE(q) = t).



182 Group Structure of Elliptic Curves and Applications

In the above construction, k should be reasonably small (for example k =
2, 3, 4, 6 are typical values), while the ratio log �/ log q should be as large as
possible, preferably close to 1.

Unfortunately, there is no efficient algorithm for Step 2, except for the case
when t2 − 4q has a very small square-free part; that is, when

t2 − 4q = −r2s (3.2)

with some integers r and s, where s is a small square-free positive integer. In
this case either s or 4s is the fundamental discriminant of the CM field of the
corresponding elliptic curve. As we have mentioned in Section 2.2, the result
of [94] shows that for every finite field there are very few curves for which the
CM discriminant is small. However we now have an additional condition (3.1),
which further reduces the number of possible curves. In fact, it has been shown
in [95] that there are very few fields for which a suitable elliptic curve may
exist.

More precisely, for positive real numbers x, y and z, let us denote by
Qk(x, y, z) the number of prime powers q ≤ x for which there exist a prime
� ≥ y and an integer t satisfying (3.1) and (3.2) with a square-free positive
integer s ≤ z. For any fixed integer k, this quantity has been estimated in [95]
as

Qk(x, y, z) ≤ x3/2+o(1)y−1z, x→∞.
In particular, if z = xo(1), which is the only practically interesting case, we
conclude that unless y ≤ x1/2 there are very few finite fields suitable for
pairing based cryptography. In other words, unless the request of the primality
of NE(Fq) is relaxed to the request for NE(Fq) to have a large prime divisor
(that is, a prime divisor � with log �/ log q ≥ 1/2), the suitable fields are very
rare.

One can also find in [95] a heuristic analysis of one of the first constructions
of pairing friendly curves, known as MNT curves, see [101], which suggests
that this algorithm may produce only finitely many curves over all possible
finite fields. On the other hand, it is argued in [95] that the same algorithm may
produce infinitely many fields Fq and curves E ∈ E(q) for which NE(q) has a
prime divisor �|NE(q) of size � = q1+o(1).

3.3 Distribution of Points and Pseudorandom Number
Generators

Given a curve E ∈ E(p) it is natural to ask how (visually) the set of points
of E(Fp) looks like, that is, if one plots all finite points P ∈ E(Fp) inside of
the square [0, p− 1]× [0, p− 1], how does this picture look like?

We start with an observation that the traditional picture, which occurs in
almost all books on elliptic curves, illustrating an elliptic curve as an oval and a
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line has nothing to do with how elliptic curves over finite fields look like. In fact,
the bound of Bombieri [17] immediately implies that the points P ∈ E(Fp)
are uniformly distributed in [0, p − 1] × [0, p − 1], thus the picture is a rather
unexciting uniformly grey square.

Kohel and Shparlinski [74] have proved that this picture does not change
much even if one considers only points from an arbitrary sufficiently large
subgroup H of E(Fp), namely of any subgroup of size #H ≥ p1/2+ε, where
p is a sufficiently large prime. This result is based on the following estimate of
exponential sums

∑

P∈H

exp (2πif(P )/p) = O(p1/2), (3.3)

which holds for any subgroup H ∈ E(Fp) and any function f which is not
constant on E (and a similar bound for additive character sums in extension
fields). Beelen and Doumen [12] give some analogues of the results of [74],
including bounds of sums of multiplicative characters over points of elliptic
curves.

Hess and Shparlinski [60] have used (3.3) to study the uniformity of dis-
tribution properties of the elliptic curve analogue of the linear congruential
generator which is a sequence of points Qn ∈ E(Fq) satisfying the relation

Qn = Qn−1 +G = nG+Q0, n = 1, 2, . . . .

whereQ0 ∈ E(Fq) is initial value andG ∈ E(Fq) is a fixed point of sufficiently
large order.

Lange and Shparlinski [80] have estimated exponential sums along the se-
quence of points Pn ∈ E(Fq) satisfying the relation

Pn = ePn−1 = enG, n = 1, 2, . . . .

for some fixed integer e and the initial valueP0 = G (see also Chapter 4, Section
2.1). In fact this sequence gives an elliptic curve analogue of the so-called power
generator of pseudorandom numbers.

The bound (3.3) has also been applied in [124] to study the distribution of the
Naor-Reingold generator on elliptic curves, which for a given pointG ∈ E(Fp)
and a k-dimensional integer vector a = (a1, . . . ak), is defined as the sequence:

Fa(n) = aν1
1 . . . aνk

k G, n = 1, 2, . . . ,

where n = ν1 . . . νk is the bit representation of n, 0 ≤ n ≤ 2k − 1.
Hess and Shparlinski [60], Lange and Shparlinski [80], Shparlinski and Sil-

verman [126] study some structural properties of various sequences of points
on elliptic curves which are relevant to applications to pseudorandom numbers.
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In particular, establishing these properties is of independent interest and related
to the notion of linear complexity (see Chapter 4). However, they are also cru-
cial in order to be able to apply the bound of [74] and prove corresponding
uniformity of distribution results in [60, 80, 124].

Recently, Banks, Friedlander, Garaev and Shparlinski [6], have shown that
for any prime p and E ∈ E(p)

max
a∈F∗

p

∣
∣
∣
∣
∣

∑

u∈U

∑

v∈V
αuβv exp(2πiax(uvG)/p)

∣
∣
∣
∣
∣
! ABt5/6(#U#V)1/2p1/12+ε,

where G ∈ E(Fp) is of order t, x(Q) denotes the x-coordinate of Q =
(x(Q),y(Q)) ∈ E(Fp), U and V are arbitrary subsets of Z/tZ, αu and βv

are arbitrary real numbers with

A = max
u∈U

|αu|, B = max
v∈V

|βv|,

and the implied constant depends only on arbitrary ε > 0. Such bounds can
be used to study the distribution of the Diffie-Hellman triples (uG, vG, uvG)
over elliptic curves and also have many other applications. For example, they
can be applied to estimate the distribution of points rG, where r runs through a
sequence of prime numbers or a sequence of smooth numbers, see [6] for more
details.

3.4 Fast Generation of Points
Given a curve E ∈ E(q) and a point P = (x, y) ∈ E(Fqn) one can im-

mediately obtain n more (usually distinct) points by applying the Frobenius
endomorphism ϕ, which operates on the points by raising each coordinate to
the power of q:

ϕi(P ) = (xqi
, yqi

), i = 0, . . . , n− 1.

One can now consider linear combinations

n−1∑

i=0

miϕ
i(P ), (m0, . . . ,mn−1) ∈M, (3.4)

where the setM is such that the above linear combinations are easy to compute.
A natural example would be a set of binary vectors. However, a cryptograph-
ically more interesting example is given by the set M of non-adjacent 0,±1
vectors. That is, the set of vectors having only 0,±1 as components and not
having two consecutive nonzero components. It also follows from Proposition 4
of [21] that for n ≥ 2 we have #M = 2n+2/3 +O(1).
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Solinas [129] gives a detailed study of the above set of points in the case of
the Koblitz curves [71]

Y 2 +XY = X3 + aX2 + 1, a = 0, 1,

defined over F2. Various generalisations, including generalisations to hyper-
elliptic curves have been proposed by Günther, Lange and Stein [54] and
Lange [78, 79].

It is certainly not guaranteed that points (3.4) are pairwise distinct (and in
fact this is generally not true). However, Lange and Shparlinski [81] have
obtained a tight upper bound on the number of repetitions in some interesting
and practically important cases, such as the Koblitz curves with the above set
of non-adjacent vectors. Several results about the uniformity of distribution of
such and similar points have recently been obtained in [82].

3.5 Compact Weierstrass Equations
Assume that E is given by a Weierstrass equation (1.1) over Fp (with p ≥ 5).

It is certainly natural to ask what is the smallest valueHE(p) for which one can
find a possibly different pair of coefficients A and B with 0 ≤ A,B ≤ HE(p)
for which the corresponding equation defines an elliptic curve isomorphic to E.

The question has been introduced by Ciet, Quisquater and Sica in [23], where
the bound HE(p) = O(p3/4) is given. It has also been shown by Banks and
Shparlinski [7] that for almost all curves from E(p), one hasHE(p) = O(p2/3).
These results are based on using exponential sums to show that the residues of
At4 and Bt6 modulo p can be made simultaneously small for some integer
t ∈ F

∗
p. This is required for all pairs (A,B) ∈ F

2
p for the purposes of [23], and

for almost all pairs (A,B) ∈ F
2
p for the purposes of [7].

In fact the method of proof used in [23] is almost identical to that used in [46].
So it is natural to try to combine the arguments of [46] with those of [7] and
improve the result of [46]. However this, if possible at all, seems to require
bringing in some new ideas.

3.6 Computation of the Group Structure
The algorithm of R. Schoof [119] computes NE(q) in deterministic polyno-

mial time, see also [3, 15, 16, 50] for more recent improvements (both theoretic
and practical). However, computing the group structure (1.3) seems to be much
more complicated.

The deterministic algorithm of [74] computes the group structure of any
elliptic curve E ∈ E(q) in exponential time O(q1/2+o(1)) which is too slow for
practical applications.

A more efficient but probabilistic algorithm of Miller [99] runs in expected
polynomial time plus the time needed to factor gcd(NE(q), q−1), see also [14].
Friedlander, Pomerance and Shparlinski [47] have shown that for a sufficiently
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large p and for almost all elliptic curves E ∈ E(p), the factorisation part of the
algorithm is in fact less time consuming than the rest of the computation (since
gcd(NE(p), p− 1) tends to be rather small).

3.7 Primality Testing
It is well known that elliptic curves play an important role in modern factori-

sation and primality proving algorithms, see [32]. It is probably less known that
they can be used to design an analogue of the Fermat primality test. Namely
given a pointP on a CM curve E over Q, one can verify that for any sufficiently
large prime p ≡ 3 (mod 4) the point (p + 1)P is the point at infinity on the
reduction of E modulo p. Accordingly, a composite n ≡ 3 (mod 4) is called an
elliptic pseudoprime (with respect to the curve E and the point P ) if a similar
property holds modulo n. It has been shown in [5, 52, 53, 102] that elliptic
pseudoprimes form a sparse set, so this test may supplement other primality
tests.
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Algebraic Function Fields

In large parts of this book, the basic theory of algebraic function fields is
assumed. In this appendix we collect the main definitions, notations and results
of this theory. For a detailed exposition the reader is referred to the books “Al-
gebraic Function Fields and Codes” by H. Stichtenoth (Springer Universitext,
1993) and “Rational Points on Curves over Finite Fields” by H. Niederreiter
and C. P. Xing (London Math. Soc. Lecture Notes Ser. 285, 2001).

(1) An algebraic function field F/K is a finite field extension of the rational
function field K(x) where K is a perfect field. We always assume implicitely
that the field K is algebraically closed in F (i.e.; every element z ∈ F which
is algebraic over K is already in K). The field K is called the constant field
of F . We consider in this book mostly function fields F/Fq where Fq is the
finite field with q elements. Such function fields are also called global function
fields.

(2) A place of F is, by definition, the maximal ideal of some valuation ring
O of F/K. To every place P there corresponds a unique normalized discrete
valuation, denoted vP or νP , which is a surjective map from F to Z ∪ {∞}
satisfying the following properties:

(i) vP (x) = ∞ if and only if x = 0.
(ii) vP (xy) = vP (x) + vP (y) for all x, y ∈ F .
(iii) vP (x+ y) ≥ min(vP (x), vP (y)) for all x, y ∈ F .
(iv) vP (a) = 0 for all a ∈ K×.

In terms of the valuation vP , the corresponding valuation ring O = OP of the
place P is then given as OP = {x ∈ F | vP (x) ≥ 0}, and the place P is
given as P = {x ∈ F | vP (x) > 0}. The residue class field OP /P is a finite
extension of the constant field K, and the degree of the place P is defined as

degP = [OP /P : K].
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The place P is said to be a rational place if degP = 1. In this case we have
the residue class map at P as follows:

OP → K , f �→ f(P ) ,

where f(P ) ∈ K is the residue class of f in K = OP /P .

(3) A divisor D of F/K is a formal sum D =
∑

P aPP of places P with
integer coefficients aP , and aP �= 0 for only finitely many P . One aften writes
vP (D) for the coefficient aP , hence

D =
∑

P

vP (D)P.

The support of the divisor D is the finite set of places

Supp(D) = {P | vP (D) �= 0},

and the degree of D is defined as

deg(D) =
∑

P

vP (D) degP.

Let P be a place of F and x a nonzero element of F . The place P is called a
zero of x if vP (x) > 0 and a pole of x if vP (x) < 0. The zero divisor of the
element x is defined as

(x)0 =
∑

vP (x)>0

vP (x)P,

and the pole divisor of x is defined as

(x)∞ = (x−1)0 = −
∑

vP (x)<0

vP (x)P.

The principal divisor of x is given by

div(x) = (x)0 − (x)∞.

All principal divisors have degree zero.

(4) With a divisor D of F one associates its Riemann-Roch space

L(D) = {x ∈ F× | div(x) ≥ −D} ∪ {0}.

This is a finite-dimensional vector space over K, its dimension is denoted by
�(D). One of the main results in the theory of function fields is the following
theorem which gives a formula for the dimension of Riemann-Roch spaces:

Appendix: Algebraic Function Fields



197

(5) (Riemann-Roch theorem) Let F/K be a function field. Then there is a
non-negative integer g = g(F ) such that:

(i) �(D) ≥ deg(D) + 1− g for all divisors D of F/K.
(ii) For all divisorsDwith degD > 2g−2 we have �(D) = deg(D)+1−g.

The integer g is uniquely determined by the conditions in (i) and (ii), and it is
called the genus of the function field F . The rational function field K(x) has
genus g(K(x)) = 0.

(6) Let F/K and E/K be function fields with F ⊆ E. Then the extension
E/F is a finite field extension. Let P be a place of F and let Q be a place of
E. We say that Q lies above P (and write then Q|P ), if the valuation ring of
the place Q contains the valuation ring of P . We have the following facts:

(i) For all places P of F , the set of places Q of E which lie above P is finite
and non-empty.

(ii) Let Q be a place of E. Then there exists exactly one place P of F such
that Q|P , namely P = Q ∩ F .
Now letQ|P be places as above. Then there is a unique integer e = e(Q|P ) ≥ 1
such that vQ(z) = e · vP (z) for all elements z ∈ F . The number e is called
the ramification index of Q|P . The place Q is said to be ramified over P if
e(Q|P ) > 1, otherwise Q|P is unramified.
Also, there is an integer f = f(Q|P ) ≥ 1 such that deg(Q) = f(Q|P ) ·
deg(P ), and we call f(Q|P ) the relative degree ofQ|P . The following formula
(“fundamental equality”) holds for any place P of the function field F :

∑

Q|P
e(Q|P ) · f(Q|P ) = [E : F ].

(7) Let F/K and E/K be function fields such that E ⊇ F is a finite and
separable extension. Then almost all (i.e., all but finitely many) places of E
are unramified in E/F . Let P be a place of F and let Q be a place of E lying
aboveP . Then one defines the different exponent d(Q|P ); this is a non-negative
integer which has the following property :

d(Q|P ) ≥ e(Q|P )− 1 ,
with equality if and only if e(Q|P ) is not divisible by the characteristic of K.
The divisor

Diff(E/F ) =
∑

Q

d(Q|P )Q

is called the different ofE/F . Note that the different ofE/F is a divisor of the
function field E/K, and we have Diff(E/F ) ≥ 0. The support of Diff(E/F )
contains exactly the places of E which are ramified in E/F .
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(8) Consider again a separable extension E/F of function fields as in (7), and
let P and Q be places of F and E with Q|P . We say that Q|P is wildly
ramified if the ramification index e(Q|P ) is divisible by the characteristic of
K. Otherwise, Q|P is said to be tame. By (7) we have that

d(Q|P ) = e(Q|P )− 1, if Q|P is tame,

and
d(Q|P ) ≥ e(Q|P ), if Q|P is wild.

(9) LetE/F be a separable extension of function fields having the same constant
field K. Then one has the following “Hurwitz genus formula” which relates
the genera of F and E:

2g(E)− 2 = [E : F ](2g(F )− 2) + deg Diff(E/F ).

This formula is crucial in order to determine the genus of a function field, since
a function field F/K is often represented as a finite separable extension of a
rational subfield K(x). Then the Hurwitz genus formula becomes

2g(F )− 2 = −2[F : K(x)] + deg Diff(F/K(x)).
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