PIC book

P1C microcontrollers for beginnerstoo!

Author: Nebojsa Matic

E
1

Paperback - 252 pages (May 15, 2000)

m

Dimensions (in inches): 0.62 x 9.13 x 7.28

l!

i

PIC microcontrollers; low-cost computers-in-a-chip; allows

Frr s electronics designers and hobbyists add intelligence and
P functions that mimic big computers for almost any electronic
... The = product or project.
P I c The purpose of this book is not to make a microcontroller expert
microcontroller out of you, but to make you equal to those who had someone to
S R go to for their answers.

In this book you can find:

Practical connection samples for

Relays, Optocouplers, LCD's, Keys, Digits, A to D Converters, Serial communication etc.
Introduction to microcontrollers

Learn what they are, how they work, and how they can be helpful in your work.
Assembler language programming

How to write your first program, use of macros, addressing modes....

Instruction Set

Description, sample and purpose for using each instruction........

MPLAB program package

How to install it, how to start the first program, following the program step by step in the simulator....

Contents

CHAPTER 1 INTRODUCTION TO MICROCONTROLLERS

Introduction

History
Microcontrollers versus microprocessors

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication
1.6 Timer unit

1.7 Watchdog

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (1 of 5) [4/2/2003 16:17:25]

PIC book

1.8 Analog to digital converter
1.9 Program

CHAPTER 11 MICROCONTROLLER PIC16F84

Introduction

CISC, RISC
Applications
Clock/instruction cycle
Pipelining

Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

CHAPTER 111 INSTRUCTION SET

Introduction

Instruction set in PIC16Cxx microcontroller family
Data Transfer

Arithmetic and logic

Bit operations

Directing the program flow

Instruction execution period

Word list

CHAPTER 1V ASSEMBLY LANGUAGE PROGRAMMING

Introduction

Sample of a written program

Control directives

. 4.1 define

« 4.2 include
« 4.3 constant
« 4.4 variable
« 4.5 set

« 4.6 equ

http://imww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (2 of 5) [4/2/2003 16:17:25]

PIC book

.« 4.7 org
« 4.8 end

Conditional instructions

. 49if

« 4.10 else
« 4.11 endif
« 4.12 while
« 4.13 endw
o« 4.14 ifdef
o« 4.15 ifndef

Data directives

o 4.16 cblock
« 4.17 endc
.« 4.18 db

« 4.19 de

.« 4.20 dt

Configurating a directive

« 4.21 CONFIG
« 4.22 Processor

Assembler arithmetic operators
Files created as a result of program translation
Macros

CHAPTER V MPLAB

Introduction

5.1 Installing the MPLAB program package
5.2 Introduction to MPLAB

5.3 Choosing the development mode

5.4 Designing a project

5.5 Designing new assembler file

5.6 Writing a program

5.7 MPSIM simulator

5.8 Toolbar

CHAPTER VI THE SAMPLES

Introduction

6.1 The microcontroller power supply
6.2 Macros used in programs

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (3 of 5) [4/2/2003 16:17:25]

PIC book

. Macros WAIT, WAITX
. Macro PRINT

6.3 Samples

« Light Emitting Diodes
. Keyboard

. Optocoupler
o Optocouplering the input lines

o Optocouplering the output lines
. Relays
. Generating a sound
. Shift registers
o Input shift reqgister
o Qutput shift register
. 7-segment Displays (multiplexing)
. LCD display
. 12-bit AD converter
« Serial communication

APPENDIX A INSTRUCTION SET

APPENDIX B NUMERIC SYSTEMS

Introduction

B.1 Decimal nhumeric system
B.2 Binary humeric system
B.3 Hexadecimal numeric system

APPENDIX C GLOSSARY

http://imww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (4 of 5) [4/2/2003 16:17:25]

PIC book

Subject :

Cooment about book PIC microcontrollers

Name :

State :

USA

E-mail :

Your message:

Submit

Reset

Send us a comment about a
book

©Copyright 2001. mikroElektronika.All Rights Reserved. For any comments contact webmaster.

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (5 of 5) [4/2/2003 16:17:25]

mailto:office@mikroelektronika.co.yu

Chapter 1 - Introduction to Microprocessors

Table of contents Chapter overview Next page

CHAPTER 1

Introduction to Microcontrollers

Introduction

History
Microcontrollers versus microprocessors

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication

1.6 Timer unit

1.7 Watchdog

1.8 Analog to digital converter

1.9 Program

Circumstances that we find ourselves in today in the field of microcontrollers had their
beginnings in the development of technology of integrated circuits. This development has made
it possible to store hundreds of thousands of transistors into one chip. That was a prerequisite
for production of microprocessors , and the first computers were made by adding external
peripherals such as memory, input-output lines, timers and other. Further increasing of the
volume of the package resulted in creation of integrated circuits. These integrated circuits
contained both processor and peripherals. That is how the first chip containing a microcomputer
, or what would later be known as a microcontroller came about.

It was year 1969, and a team of Japanese engineers from the BUSICOM company arrived to
United States with a request that a few integrated circuits for calculators be made using their
projects. The proposition was set to INTEL, and Marcian Hoff was responsible for the project.
Since he was the one who has had experience in working with a computer (PC) PDP8, it occured
to him to suggest a fundamentally different solution instead of the suggested construction. This
solution presumed that the function of the integrated circuit is determined by a program stored
in it. That meant that configuration would be more simple, but that it would require far more
memory than the project that was proposed by Japanese engineers would require. After a
while, though Japanese engineers tried finding an easier solution, Marcian's idea won, and the
first microprocessor was born. In transforming an idea into a ready made product , Frederico
Faggin was a major help to INTEL. He transferred to INTEL, and in only 9 months had
succeeded in making a product from its first conception. INTEL obtained the rights to sell this
integral block in 1971. First, they bought the license from the BUSICOM company who had no

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (1 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

idea what treasure they had. During that year, there appeared on the market a microprocessor
called 4004. That was the first 4-bit microprocessor with the speed of 6 000 operations per
second. Not long after that, American company CTC requested from INTEL and Texas
Instruments to make an 8-bit microprocessor for use in terminals. Even though CTC gave up
this idea in the end, Intel and Texas Instruments kept working on the microprocessor and in
April of 1972, first 8-bit microprocessor appeard on the market under a name 8008. It was able
to address 16Kb of memory, and it had 45 instructions and the speed of 300 000 operations per
second. That microprocessor was the predecessor of all today's microprocessors. Intel kept
their developments up in April of 1974, and they put on the market the 8-bit processor under a
name 8080 which was able to address 64Kb of memory, and which had 75 instructions, and the
price began at $360.

In another American company Motorola, they realized quickly what was happening, so they put
out on the market an 8-bit microprocessor 6800. Chief constructor was Chuck Peddle, and
along with the processor itself, Motorola was the first company to make other peripherals such
as 6820 and 6850. At that time many companies recognized greater importance of
microprocessors and began their own developments. Chuck Peddle leaved Motorola to join MOS
Technology and kept working intensively on developing microprocessors.

At the WESCON exhibit in United States in 1975, a critical event took place in the history of
microprocessors. The MOS Technology announced it was marketing microprocessors 6501 and
6502 at $25 each, which buyers could purchase immediately. This was so sensational that
many thought it was some kind of a scam, considering that competitors were selling 8080 and
6800 at $179 each. As an answer to its competitor, both Intel and Motorola lowered their prices
on the first day of the exhibit down to $69.95 per microprocessor. Motorola quickly brought suit
against MOS Technology and Chuck Peddle for copying the protected 6800. MOS Technology
stopped making 6501, but kept producing 6502. The 6502 was a 8-bit microprocessor with 56
instructions and a capability of directly addressing 64Kb of memory. Due to low cost , 6502
becomes very popular, so it was installed into computers such as: KIM-1, Apple I, Apple 11,
Atari, Comodore, Acorn, Oric, Galeb, Orao, Ultra, and many others. Soon appeared several
makers of 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, and Comodore takes over MOS
Technology) which was at the time of its prosperity sold at a rate of 15 million processors a
year!

Others were not giving up though. Frederico Faggin leaves Intel, and starts his own Zilog Inc.
In 1976 Zilog announced the Z80. During the making of this microprocessor, Faggin made a
pivotal decision. Knowing that a great deal of programs have been already developed for 8080,
Faggin realized that many would stay faithful to that microprocessor because of great
expenditure which redoing of all of the programs would result in. Thus he decided that a new
processor had to be compatible with 8080, or that it had to be capable of performing all of the
programs which had already been written for 8080. Beside these characteristics, many new
ones have been added, so that Z80 was a very powerful microprocessor in its time. It was able
to address directly 64 Kb of memory, it had 176 instructions, a large number of registers, a
built in option for refreshing the dynamic RAM memory, single-supply, greater speed of work
etc. Z80 was a great success and everybody converted from 8080 to Z80. It could be said that
Z80 was without a doubt commercially most successful 8-bit microprocessor of that time.
Besides Zilog, other new manufacturers like Mostek, NEC, SHARP, and SGS also appeared. Z80
was the heart of many computers like Spectrum, Partner, TRS703, Z-3 .

In 1976, Intel came up with an improved version of 8-bit microprocessor named 8085.
However, Z80 was so much better that Intel soon lost the battle. Altough a few more
processors appeared on the market (6809, 2650, SC/MP etc.), everything was actually already
decided. There weren't any more great improvements to make manufacturers convert to
something new, so 6502 and Z80 along with 6800 remained as main representatives of the 8-
bit microprocessors of that time.

Microcontroller differs from a microprocessor in many ways. First and the most important is its
functionality. In order for a microprocessor to be used, other components such as memory, or

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (2 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

components for receiving and sending data must be added to it. In short that means that
microprocessor is the very heart of the computer. On the other hand, microcontroller is
designed to be all of that in one. No other external components are needed for its application
because all necessary peripherals are already built into it. Thus, we save the time and space
needed to construct devices.

Memory is part of the microcontroller whose function is to store data.

The easiest way to explain it is to describe it as one big closet with lots of drawers. If we
suppose that we marked the drawers in such a way that they can not be confused, any of their
contents will then be easily accessible. It is enough to know the designation of the drawer and
so its contents will be known to us for sure.

mem location 0

mem location 1

Example of simplified model of a
merrm location 2 memaory unit. For a specific input we
get & carresponding output. Line AW
determines wheather we are reading
fram ar writing to memoary

I .
Addresses . Data

T

mem location 14

mem location 14

7 ¥

Memory components are exactly like that. For a certain input we get the contents of a certain
addressed memory location and that's all. Two new concepts are brought to us: addressing and
memory location. Memory consists of all memory locations, and addressing is nothing but
selecting one of them. This means that we need to select the desired memory location on one
hand, and on the other hand we need to wait for the contents of that location. Beside reading
from a memory location, memory must also provide for writing onto it. This is done by
supplying an additional line called control line. We will designhate this line as R/W (read/write).
Control line is used in the following way: if r/w=1, reading is done, and if opposite is true then
writing is done on the memory location. Memory is the first element, and we need a few
operation of our microcontroller .

Let add 3 more memory locations to a specific block that will have a built in capability to
multiply, divide, subtract, and move its contents from one memory location onto another. The
part we just added in is called "central processing unit" (CPU). Its memory locations are called
registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (3 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

register 1
reqgister 2
J Example of simplified central processing
register 3 unit with three registers
Addresses
— Data
Control lines CPU

Registers are therefore memory locations whose role is to help with performing various
mathematical operations or any other operations with data wherever data can be found. Look at
the current situation. We have two independent entities (memory and CPU) which are
interconnected, and thus any exchange of data is hindered, as well as its functionality. If, for
example, we wish to add the contents of two memory locations and return the result again back
to memory, we would need a connection between memory and CPU. Simply stated, we must
have some "way" through data goes from one block to another.

That "way" is called "bus". Physically, it represents a group of 8, 16, or more wires

There are two types of buses: address and data bus. The first one consists of as many lines as
the amount of memory we wish to address, and the other one is as wide as data, in our case 8
bits or the connection line. First one serves to transmit address from CPU memory, and the
second to connect all blocks inside the microcontroller.

mem location U Connecting memory and central unit

using busses in order to gain on
functionality

mem location 1

mem location 2

reqister 1

MEMORY 4 Data N register 2
' B L register 3
1
Addresses
mem.location 14 | [|
Control lines
mem location 15 | T4 ViR CPU

As far as functionality, the situation has improved, but a new problem has also appeared: we
have a unit that's capable of working by itself, but which does not have any contact with the
outside world, or with us! In order to remove this deficiency, let's add a block which contains
several memory locations whose one end is connected to the data bus, and the other has
connection with the output lines on the microcontroller which can be seen as pins on the
electronic component.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (4 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

Those locations we've just added are called "ports". There are several types of ports : input,
output or bidiectional ports. When working with ports, first of all it is necessary to choose which
port we need to work with, and then to send data to, or take it from the port.

Input —
H i Data
register — Example of a simplified
input-output unit that provides
— cammunication with external
DUt.DUt Data world
reqister —
Diata]
IO unit

When working with it the port acts like a memory location. Something is simply being written
into or read from it, and it could be noticed on the pins of the microcontroller.

Beside stated above we've added to the already existing unit the possibility of communication
with an outside world. However, this way of communicating has its drawbacks. One of the basic
drawbacks is the number of lines which need to be used in order to transfer data. What if it is
being transferred to a distance of several kilometers? The number of lines times number of
kilometers doesn't promise the economy of the project. It leaves us having to reduce the
number of lines in such a way that we don't lessen its functionality. Suppose we are working
with three lines only, and that one line is used for sending data, other for receiving, and the
third one is used as a reference line for both the input and the output side. In order for this to
work, we need to set the rules of exchange of data. These rules are called protocol. Protocol is
therefore defined in advance so there wouldn't be any misunderstanding between the sides that
are communicating with each other. For example, if one man is speaking in French, and the
other in English, it is highly unlikely that they will quickly and effectively understand each other.
Let's suppose we have the following protocol. The logical unit "1" is set up on the transmitting
line until transfer begins. Once the transfer starts, we lower the transmission line to logical "0"
for a period of time (which we will designate as T), so the receiving side will know that it is
receiving data, and so it will activate its mechanism for reception. Let's go back now to the
transmission side and start putting logic zeros and ones onto the transmitter line in the order
from a bit of the lowest value to a bit of the highest value. Let each bit stay on line for a time
period which is equal to T, and in the end, or after the 8th bit, let us bring the logical unit "1"
back on the line which will mark the end of the transmission of one data. The protocol we've
just described is called in professional literature NRZ (Non-Return to Zero).

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (5 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

Fecelyver a—t—— Feceiving line
transmitter | 1w Transmitting line
register .
—1— Reference line

Serial unit used to send
data, but only by three
Data Serial lines

unit

As we have separate lines for receiving and sending, it is possible to receive and send data
(info.) at the same time. So called full-duplex mode block which enables this way of
communication is called a serial communication block. Unlike the parallel transmission, data
moves here bit by bit, or in a series of bits what defines the term serial communication comes
from. After the reception of data we need to read it from the receiving location and store it in
memory as opposed to sending where the process is reversed. Data goes from memory through
the bus to the sending location, and then to the receiving unit according to the protocol.

Since we have the serial communication explained, we can receive, send and process data.

Free-run —— Signal
counter
Timer unit Timer unit generates signals in
regular time intervals

However, in order to utilize it in industry we need a few additionally blocks. One of those is the
timer block which is significant to us because it can give us information about time, duration,
protocol etc. The basic unit of the timer is a free-run counter which is in fact a register whose
numeric value increments by one in even intervals, so that by taking its value during periods T1
and T2 and on the basis of their difference we can determine how much time has elapsed. This
is a very important part of the microcontroller whose understnding requires most of our time.

One more thing is requiring our attention is a flawless functioning of the microcontroller
during its run-time. Suppose that as a result of some interference (which often does occur in
industry) our microcontroller stops executing the program, or worse, it starts working

incorrectly.
Free-run
counter
reset
- Watchdog

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (6 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

Of course, when this happens with a computer, we simply reset it and it will keep working.
However, there is no reset button we can push on the microcontroller and thus solve our
problem. To overcome this obstacle, we need to introduce one more block called watchdog. This
block is in fact another free-run counter where our program needs to write a zero in every time
it executes correctly. In case that program gets "stuck", zero will not be written in, and counter
alone will reset the microcontroller upon achieving its maximum value. This will result in
executing the program again, and correctly this time around. That is an important element of
every program to be reliable without man's supervision.

As the peripheral signals usually are substantially different from the ones that microcontroller
can understand (zero and one), they have to be converted into a pattern which can be
comprehended by a microcontroller. This task is performed by a block for analog to digital
conversion or by an ADC. This block is responsible for converting an information about some
analog value to a binary number and for follow it through to a CPU block so that CPU block can
further process it.

ADC register . Block for converting an
Analog input analogue to a digital form

Data

— AD converter

Finnaly, the microcontroller is now completed, and all we need to do now is to assemble it into
an electronic component where it will access inner blocks through the outside pins. The picture
below shows what a microcontroller looks like inside.

Physical configuration of the interior of a microcontroller

Thin lines which lead from the center towards the sides of the microcontroller represent wires
connecting inner blocks with the pins on the housing of the microcontroller so called bonding
lines. Chart on the following page represents the center section of a microcontroller.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (7 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

nput 1= | peceiving register AD input
Output — ™ | Transmitting —
Reference —— recister AD
g converter
|
Input |
Serial N~ register Data
unit Cutput _
reqister _Data
mem location 0 o
mem location 1 E — 1 WO unit
mem.location 2
: reqister 1
MEMORIJA 1 A reqister 2
' } 1] register 3
Addresses
location 14 | [
e e fun - IR Control
mem.location 15 '., lines CPU
Free-trun ' Independent
courter . counter
Tim_er Watchdog
unit timer

Microcontroller outline with its basic elements and internal connections

For a real application, a microcontroller alone is not enough. Beside a microcontroller, we need
a program that would be executed, and a few more elements which make up a interface logic
towards the elements of regulation (which will be discussed in later chapters).

Program writing is a special field of work with microcontrollers and is called "programming". Try
to write a small program in a language that we will make up ourselves first and then would be
understood by anyone.

START

REGISTER1=MEMORY LOCATION_A
REGISTER2=MEMORY LOCATION_B
PORTA=REGISTER1 + REGISTER2

END

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (8 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

The program adds the contents of two memory locations, and views their sum on port A. The
first line of the program stands for moving the contents of memory location "A" into one of the
registers of central processing unit. As we need the other data as well, we will also move it into
the other register of the central processing unit. The next instruction instructs the central
processing unit to add the contents of those two registers and send a result to port A, so that
sum of that addition would be visible to the outside world. For a more complex problem,
program that works on its solution will be bigger.

Programming can be done in several languages such as Assembler, C and Basic which are most
commonly used languages. Assembler belongs to lower level languages that are programmed
slowly, but take up the least amount of space in memory and gives the best results where the
speed of program execution is concerned. As it is the most commonly used language in
programming microcontrollers it will be discussed in a later chapter. Programs in C language
are easier to be written, easier to be understood, but are slower in executing from assembler
programs. Basic is the easiest one to learn, and its instructions are nearest a man's way of
reasoning, but like C programming language it is also slower than assembler. In any case,
before you make up your mind about one of these languages you need to consider carefully the
demands for execution speed, for the size of memory and for the amount of time available for
its assembly.

After the program is written, we would install the microcontroller into a device and run it. In
order to do this we need to add a few more external components necessary for its work. First
we must give life to a microcontroller by connecting it to a power supply (power needed for
operation of all electronic instruments) and oscillator whose role is similar to the role that heart
plays in a human body. Based on its clocks microcontroller executes instructions of a program.
As it receives supply microcontroller will perform a small check up on itself, look up the
beginning of the program and start executing it. How the device will work depends on many
parameters, the most important of which is the skillfulness of the developer of hardware, and
on programmer's expertise in getting the maximum out of the device with his program.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (9 of 9) [4/2/2003 16:17:33]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

CHAPTER 2
Microcontroller PIC16F84

Introduction

CISC, RISC

Applications
Clock/instruction cycle
Pipelining

Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Its general structure
is shown on the following map representing basic blocks.

Program memory (FLASH)- for storing a written program.
Since memory made in FLASH technology can be programmed and cleared more than once, it
makes this microcontroller suitable for device development.

EEPROM - data memory that needs to be saved when there is no supply.

It is usually used for storing important data that must not be lost if power supply suddenly stops.
For instance, one such data is an assigned temperature in temperature regulators. If during a loss
of power supply this data was lost, we would have to make the adjustment once again upon
return of supply. Thus our device looses on self-reliance.

RAM - data memory used by a program during its execution.

In RAM are stored all inter-results or temporary data during run-time.

PORTA and PORTB are physical connections between the microcontroller and the outside world.
Port A has five, and port B eight pins.

FREE-RUN TIMER is an 8-bit register inside a microcontroller that works independently of the
program. On every fourth clock of the oscillator it increments its value until it reaches the
maximum (255), and then it starts counting over again from zero. As we know the exact timing
between each two increments of the timer contents, timer can be used for measuring time which
is very useful with some devices.

CENTRAL PROCESSING UNIT has a role of connective element between other blocks in the

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (1 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

microcontroller. It coordinates the work of other blocks and executes the user program.

Free-run
counter
Diata
MEemary
R ",
Data Program
MEMmOry . CPLU - MEmary
EEPF.OM FLASH
FORTA FORETEB
FICT16F 84 microcontroller outline
Harvard von-Neumann
1w}
. g z
['B a“'
B2 A CPU e E CPU w 52
1]
T G 14 E 5 E T
o o
& a

Harvard ws_von Meuman Elock Architectures

It has already been said that PIC16F84 has a RISC architecture. This term is often found in
computer literature, and it needs to be explained here in more detail. Harvard architecture is a
newer concept than von-Neumann's. It rose out of the need to speed up the work of a
microcontroller. In Harvard architecture, data bus and address bus are separate. Thus a greater
flow of data is possible through the central processing unit, and of course, a greater speed of
work. Separating a program from data memory makes it further possible for instructions not to
have to be 8-bit words. PIC16F84 uses 14 bits for instructions which allows for all instructions to
be one word instructions. It is also typical for Harvard architecture to have fewer instructions than
von-Neumann's, and to have instructions usually executed in one cycle.

Microcontrollers with Harvard architecture are also called "RISC microcontrollers". RISC stands for
Reduced Instruction Set Computer. Microcontrollers with von-Neumann's architecture are called
'CISC microcontrollers'. Title CISC stands for Complex Instruction Set Computer.

Since PIC16F84 is a RISC microcontroller, that means that it has a reduced set of instructions,

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (2 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

more precisely 35 instructions . (ex. Intel's and Motorola's microcontrollers have over hundred
instructions) All of these instructions are executed in one cycle except for jump and branch
instructions. According to what its maker says, PIC16F84 usually reaches results of 2:1 in code
compression and 4:1 in speed in relation to other 8-bit microcontrollers in its class.

PIC16F84 perfectly fits many uses, from automotive industries and controlling home appliances to
industrial instruments, remote sensors, electrical doorlocks and safety devices. It is also ideal for
smart cards as well as for battery supplied devices because of its low consumption.

EEPROM memory makes it easier to apply microcontrollers to devices where permanent storage of
various parameters is needed (codes for transmitters, motor speed, receiver frequencies, etc.).
Low cost, low consumption, easy handling and flexibility make PIC16F84 applicable even in areas
where microcontrollers had not previously been considered (example: timer functions, interface
replacement in larger systems, coprocessor applications, etc.).

In System Programmability of this chip (along with using only two pins in data transfer) makes
possible the flexibility of a product, after assembling and testing have been completed. This
capability can be used to create assembly-line production, to store calibration data available only
after final testing, or it can be used to improve programs on finished products.

Clock is microcontroller's main starter, and is obtained from an external component called an
"oscillator"”. If we want to compare a microcontroller with a time clock, our "clock" would then be a
ticking sound we hear from the time clock. In that case, oscillator could be compared to a spring
that is wound so time clock can run. Also, force used to wind the time clock can be compared to
an electrical supply.

Clock from the oscillator enters a microcontroller via OSC1 pin where internal circuit of a
microcontroller divides the clock into four even clocks Q1, Q2, Q3, and Q4 which do not overlap.
These four clocks make up one instruction cycle (also called machine cycle) during which one
instruction is executed.

Execution of instruction starts by calling an instruction that is next in string. Instruction is called
from program memory on every Q1 and is written in instruction register on Q4. Decoding and
execution of instruction are done between the next Q1 and Q4 cycles. On the following diagram
we can see the relationship between instruction cycle and clock of the oscillator (OSC1) as well as
that of internal clocks Q1-Q4. Program counter (PC) holds information about the address of the
next instruction.

F2t P2 '3 tad 1 'a2 1as Tad 1en 12 1a31ad |
M LIl ririririrreriri|

Evcd INET LPC- 1]

Tach ST TP T]

I Eeocda ST (T

| | Tacn ST P]
Eiecde INST (FCA 1]

o=C

@ | | | :
GE L [l 1 [l 1 !
@z | | | |
| | | |

@4]] I
pe b T i Sy) e |
| | | I
T ST TR | I
I
|

Clockfinsruction Cycle

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (3 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

Instruction cycle consists of cycles Q1, Q2, Q3 and Q4. Cycles of calling and executing instructions
are connected in such a way that in order to make a call, one instruction cycle is needed, and one
more is needed for decoding and execution. However, due to pipelining, each instruction is
effectively executed in one cycle. If instruction causes a change on program counter, and PC
doesn't point to the following but to some other address (which can be the case with jumps or
with calling subprograms), two cycles are needed for executing an instruction. This is so because
instruction must be processed again, but this time from the right address. Cycle of calling begins
with Q1 clock, by writing into instruction register (IR). Decoding and executing begins with Q2, Q3
and Q4 clocks.

TCEYD TCY TEYZ TCY3 TG4 TCYS
1. MOVLY 550 Fetchi Execute
2. MOvWF FORTE Fetch Execute’
3. CALL SUB_1 Fetchs Executes
4. B5F PORTA, BIT2 [Forced MOF] Fetchd Fluzh
5. Instruction @@ addre=s= SUE_1 Fetch SUB_1 [[Execute=UB_1

Fetch=UB_1 +1

Al instructions are single cycle exept for any program branches. These take two cycles since the fetch
instructions iz "flushed" from the pipeline while the newy instruction is being fetched and then executed.

Instruction Pipeline Flow

TCYO reads in instruction MOVLW 55h (it doesn't matter to us what instruction was executed,
because there is no rectangle pictured on the bottom).

TCY1 executes instruction MOVLW 55h and reads in MOVWF PORTB.

TCY2 executes MOVWF PORTB and reads in CALL SUB_1.

TCY3 executes a call of a subprogram CALL SUB_1, and reads in instruction BSF PORTA, BIT3. As
this instruction is not the one we need, or is not the first instruction of a subprogram SUB_1
whose execution is next in order, instruction must be read in again. This is a good example of an
instruction needing more than one cycle.

TCY4 instruction cycle is totally used up for reading in the first instruction from a subprogram at
address SUB_1.

TCY5 executes the first instruction from a subprogram SUB_1 and reads in the next one.

PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of case but can also
be found in SMD case which is smaller from a DIP. DIP is an abbreviation for Dual In Package.
SMD is an abbreviation for Surface Mount Devices suggesting that holes for pins to go through
when mounting, aren't necessary in soldering this type of a component.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (4 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

1 L 1a
[raz rad []
2 17
[res roo (]
a 16
[IreHTOCE a5 []
d 13
WCLR ECE
% pic =<l
E|;'u';; 16F84 wdd ;I:.
[JREOANT RET]
T 12
[re1 REG |]
a 11
[Jre2 RES
Q 10
[Jre= RE4[]

Pins on PIC16F84 microcontroller have the following meaning:

Pin no.1 RA2 Second pin on port A. Has no additional function

Pin no.2 RA3 Third pin on port A. Has no additional function.

Pin no.3 RA4 Fourth pin on port A. TOCK1 which functions as a timer is also found on this pin
Pin no.4 MCLR Reset input and Vpp programming voltage of a microcontroller
Pin no.5 Vss Ground of power supply.

Pin no.6 RBO Zero pin on port B. Interrupt input is an additional function.

Pin no.7 RB1 First pin on port B. No additional function.

Pin n0.8 RB2 Second pin on port B. No additional function.

Pin n0.9 RB3 Third pin on port B. No additional function.

Pin no.10 RB4 Fourth pin on port B. No additional function.

Pin no.11 RB5 Fifth pin on port B. No additional function.

Pin no.12 RB6 Sixth pin on port B. 'Clock’ line in program mode.

Pin no.13 RB7 Seventh pin on port B. 'Data’ line in program mode.

Pin no.14 Vdd Positive power supply pole.

Pin no.15 OSC2 Pin assigned for connecting with an oscillator

Pin no.16 OSC1 Pin assigned for connecting with an oscillator

Pin no.17 RA2 Second pin on port A. No additional function

Pin no.18 RA1 First pin on port A. No additional function.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (5 of 5) [4/2/2003 16:17:37]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

Oscillator circuit is used for providing a microcontroller with a clock. Clock is needed so that
microcontroller could execute a program or program instructions.

Types of oscillators

PIC16F84 can work with four different configurations of an oscillator. Since configurations with
crystal oscillator and resistor-capacitor (RC) are the ones that are used most frequently, these are
the only ones we will mention here. Microcontroller type with a crystal oscillator has in its
designation XT, and a microcontroller with resistor-capacitor pair has a designation RC. This is
important because you need to mention the type of oscillator when buying a microcontroller.

XT Oscillator

Yo 13
FAz Rad [
7
i3 R [

8 0sc c2

R okl 5

s e L
13
MCLE R
pic ¢H;
v 16F84 wiaf] e 1
0502 L)

Connecting the quanz oscillator to give

Oscillator and capacitors can be packed in clock to a microcontroller
joint case with three pins. Such element is

called ceramic resonator and is represented
in charts like the one below. Center pins of
the element is the ground, while end pins are
connected with OSC1 and OSC2 pins on the
microcontroller. When designing a device,
the rule is to place an oscillator nearer a
microcontroller, so as to avoid any
interference on lines on which microcontroller
is receiving a clock. —

Crystal oscillator is kept in metal housing
with two pins where you have written down
the frequency at which crystal oscillates. One
ceramic capacitor of 30pF whose other end is
connected to the ground needs to be
connected with each pin.

o oo Jka—]—

onnecting a resonator onto a
microcontroller

RC Oscillator

In applications where great time precision is not necessary, RC oscillator offers additional savings
during purchase. Resonant frequency of RC oscillator depends on supply voltage rate, resistance
R, capacity C and working temperature. It should be mentioned here that resonant frequency is
also influenced by normal variations in process parameters, by tolerance of external R and C
components, etc.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (1 of 3) [4/2/2003 16:17:41]

Chapter 2 - Microcontroller PIC16F84

oo
F
J_ g Clock
CI FIC1EF24
WS —
r OSC2/CLEaUT
Claded

Mate: This pin can be configured as inputfoutput pin

Above diagram shows how RC oscillator is connected with PIC16F84. With value of resistor R being
below 2.2k, oscillator can become unstable, or it can even stop the oscillation. With very high
value of R (ex.1M) oscillator becomes very sensitive to noise and humidity. It is recommended
that value of resistor R should be between 3 and 100k. Even though oscillator will work without an
external capacitor(C=0pF), capacitor above 20pF should still be used for noise and stability. No
matter which oscillator is being used, in order to get a clock that microcontroller works upon, a
clock of the oscillator must be divided by 4. Oscillator clock divided by 4 can also be obtained on
OSC2/CLKOUT pin, and can be used for testing or synchronizing other logical circuits.

PoQEy Q401 P03 D4 (nR D3 Qe
Tosc | | | | | | | | | | | | | | | | |
i . Tr:‘\r 1 . | . chE . | . chS . |

Felationship between a clock and a number of instruction cycles

Following a supply, oscillator starts oscillating. Oscillation at first has an unstable period and
amplitude, but after some period of time it becomes stabilized.

+5 7

Yoltage

|

Tirme

o

Crystal start up time

Signal of an oscillator clock after receiving the supply of a microcontroller

To prevent such inaccurate clock from influencing microcontroller's performance, we need to keep
the microcontroller in reset state during stabilization of oscillator's clock. Above diagram shows a
typical shape of a signal which microcontroller gets from the quartz oscillator following a supply.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (2 of 3) [4/2/2003 16:17:41]

Chapter 2 - Microcontroller PIC16F84

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (3 of 3) [4/2/2003 16:17:41]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

Reset is used for putting the microcontroller into a ‘known' condition. That practically means that
microcontroller can behave rather inaccurately under certain undesirable conditions. In order to
continue its proper functioning it has to be reset, meaning all registers would be placed in a
starting position. Reset is not only used when microcontroller doesn't behave the way we want it
to, but can also be used when trying out a device as an interrupt in program execution, or to get a
microcontroller ready when reading in a program.

In order to prevent from bringing a oo Ra2 et RAd T
logical zero to MCLR pin accidentally 1
(line above it means that reset is RA3 R 6
activated by a logical zero), MCLR has RaHT K

to be connected via resistor to the

positive supply pole. Resistor should be "R pIc
between 5 and 10K. This kind of wss JRFRd
resistor whose function is to keep a 'HBMNT

certain line on a logical one as a

preventive, is called a pull up. REH

o
T o 2. o 0 N e = e 0 e

LIsing the internal reset circuit

Microcontroller PIC16F84 knows several sources of resets:

a) Reset during power on, POR (Power-On Reset)

b) Reset during regular work by bringing logical zero to MCLR microcontroller's pin.
c) Reset during SLEEP regime

d) Reset at watchdog timer (WDT) overflow

e) Reset during at WDT overflow during SLEEP work regime.

The most important reset sources are a) and b). The first one occurs each time a power supply is
brought to the microcontroller and serves to bring all registers to a starting position initial state.
The second one is a product of purposeful bringing in of a logical zero to MCLR pin during normal
operation of the microcontroller. This second one is often used in program development.

During a reset, RAM memory locations are not being reset. They are unknown during a power up
and are not changed at any reset. Unlike these, SFR registers are reset to a starting position initial
state. One of the most important effects of a reset is setting a program counter (PC) to zero
(0000h) , which enables the program to start executing from the first written instruction.

Reset at supply voltage drop below the permissible (Brown-out
Reset)

Impulse for resetting during voltage voltage-up is generated by microcontroller itself when it
detects an increase in supply Vdd (in a range from 1.2V to 1.8V). That impulse lasts 72ms which
is enough time for an oscillator to get stabilized. These 72ms are provided by an internal PWRT
timer which has its own RC oscillator. Microcontroller is in a reset mode as long as PWRT is active.
However, as device is working, problem arises when supply doesn't drop to zero but falls below
the limit that guarantees microcontroller's proper functioning. This is a likely case in practice,

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_03Poglavlje.htm (1 of 2) [4/2/2003 16:17:42]

Chapter 2 - Microcontroller PIC16F84

especially in industrial environment where disturbances and instability of supply are an everyday
occurrence. To solve this problem we need to make sure that microcontroller is in a reset state
each time supply falls below the approved limit.

wWoo -\b[
Reszet zignal Yo ¥2 ms]
AW,
- "E'IJE EUE NE R m e S AmEmE R EE R SmEmE A mEE -
Feszet zsignal | <72 ms "ﬁ"l—
oo /‘(
Reset signal ¢t ”ﬁ"l—

Example= of voltage supply drop below the proper level

If, according to electrical specification, internal reset circuit of a microcontroller can not satisfy the
needs, special electronic components can be used which are capable of generating the desired
reset signal. Beside this function, they can also function in watching over supply voltage. If
voltage drops below specified level, a logical zero would appear on MCLR pin which holds the
microcontroller in reset state until voltage is not within limits that guarantee correct functioning.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_03Poglavlje.htm (2 of 2) [4/2/2003 16:17:42]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Table of contents Chapter overview Next page

Central processing unit (CPU) is the brain of a microcontroller. That part is responsible for finding
and fetching the right instruction which needs to be executed, for decoding that instruction, and
finally for its execution.

Dats Busz a

EATM

File Registers (f)

Fan Address Bus I‘

Instruction reg. | L Addr b
| Direct Adressing TT it Indirect
Adressing

| FSR reg. |<::
| WWreg. |<::

Outline of the central processing unit-CRLU

Central processing unit connects all parts of the microcontroller into one whole. Surely, its most
important function is to decode program instructions. When programmer writes a program,
instructions have a clear form like MOVLW 0x20. However, in order for a microcontroller to
understand that, this 'letter' form of an instruction must be translated into a series of zeros and
ones which is called an 'opcode'. This transition from a letter to binary form is done by translators
such as assembler translator (also known as an assembler). Instruction thus fetched from
program memory must be decoded by a central processing unit. We can then select from the table
of all the instructions a set of actions which execute a assigned task defined by instruction. As
instructions may within themselves contain assignments which require different transfers of data
from one memory into another, from memory onto ports, or some other calculations, CPU must be
connected with all parts of the microcontroller. This is made possible through a data bus and an
address bus.

Arithmetic Logic Unit (ALU)

Arithmetic logic unit is responsible for performing operations of adding, subtracting, moving (left
or right within a register) and logic operations. Moving data inside a register is also known as
'shifting’. PIC16F84 contains an 8-bit arithmetic logic unit and 8-bit work registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (1 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

| e — | ::z| STATUS reg. |c: 5
|| a :
m
L

3 WL

ﬁ E
AL
| W‘reg |

Arithmetic-logic unit and how it wiorks

In instructions with two operands, ordinarily one operand is in work register (W register), and the
other is one of the registers or a constant. By operand we mean the contents on which some
operation is being done, and a register is any one of the GPR or SFR registers. GPR is an
abreviation for '‘General Purposes Registers', and SFR for 'Special Function Registers'. In
instructions with one operand, an operand is either W register or one of the registers. As an
addition in doing operations in arithmetic and logic, ALU controls status bits (bits found in STATUS
register). Execution of some instructions affects status bits, which depends on the result itself.
Depending on which instruction is being executed, ALU can affect values of Carry (C), Digit Carry
(DC), and Zero (Z) bits in STATUS register.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (2 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

Data Bus &
- 13 Program Counter
RO
Program 4 =
MmEtmary g level stack REAIM

(13-hit)

File Registers ()
14 Program Bus [

Fak Acddress Bus]

Instruction reg | Acdddr M

| Direct Adressing ﬁ Indirect
Adrezsing
| FZR req.
::{ STATUS reg. |<::
g
I L [
PALLA
Powver-up
4L Timer ﬂ
[a8
|n§t;§$2n — Dscillat!:ur 4
&Cortral Start-up timer AL
Power-an |
Feset
Timing PR Wigtchdog : L
generator [T " Timer | W reg |
COSC2CLEOUT RICLE: YWid vss
CSCTACLKIM

More detailed block outlineg of PICTEFS4 microcontroller

STATUS Register

AN RAN-O A0 RAY-1T RANV-T RAN-n RO RANW-x

IRF FF1 PO T FD £ b i

hit¥

Legend:
R = Readable hit W ='"ritahle hit

L = Unimplemented bit, read a= '00 - n = Yalue at power-on reset

bit O C (Carry) Transfer

Bit that is affected by operations of addition, subtraction and shifting.
1= transfer occured from the highest resulting bit

O=transfer did not occur

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (3 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84
C bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit 1 DC (Digit Carry) DC Transfer

Bit affected by operations of addition, subtraction and shifting. Unlike C bit, this bit represents
transfer from the fourth resulting place. It is set by addition when occurs carry from bit3 to bit4,
or by subtraction when occurs borrow from bit4 to bit3, or by shifting in both direction.
1=transfer occured on the fourth bit according to the order of the result

O=transfer did not occur

DC bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit 2 Z (Zero bit) Indication of a zero result

This bit is set when the result of an executed arithmetic or logic operation is zero.
1=result equals zero

O=result does not equal zero

bit 3 PD (Power-down bit)

Bit which is set whenever power supply is brought to a microcontroller as it starts running, after
each regular reset and after execution of instruction CLRWDT. Instruction SLEEP resets it when
microcontroller falls into low consumption/usage regime. Its repeated setting is possible via reset
or by turning the supply on, or off . Setting can be triggered also by a signal on RBO/INT pin,
change on RB port, completion of writing in internal DATA EEPROM, and by a watchdog, too.
1=after supply has been turned on

0= executing SLEEP instruction

bit 4 TO Time-out ; Watchdog overflow.

Bit is set after turning on the supply and execution of CLRWDT and SLEEP instructions. Bit is reset
when watchdog gets to the end signaling that something is not right.

1=overflow did not occur

O=overflow did occur

bit6:5 RP1:RPO (Register Bank Select bits)

These two bits are upper part of the address for direct addressing. Since instructions which
address the memory directly have only seven bits, they need one more bit in order to address all
256 bytes which is how many bytes PIC16F84 has. RP1 bit is not used, but is left for some future
expansions of this microcontroller.

01=first bank

00=zero bank

bit 7 IRP (Register Bank Select bit)

Bit whose role is to be an eighth bit for indirect addressing of internal RAM.
1=bank 2 and 3

O=bank 0 and 1 (from 0Oh to FFh)

STATUS register contains arithmetic status ALU (C, DC, Z), RESET status (TO, PD) and bits for
selecting of memory bank (IRP, RP1, RP0). Considering that selection of memory bank is
controlled through this register, it has to be present in each bank. Memory bank will be discussed
in more detail in Memory organization chapter. STATUS register can be a destination for any
instruction, with any other register. If STATUS register is a destination for instructions which affect
Z, DC or C bits, then writing to these three bits is not possible.

OPTION register

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (4 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

R EAM-T ST RAN-T BAV-T RANV-T RAN-T RAW-1
REPL | INTEDG |TOCS | TOSE | PSA | PS2 | P31 | PEO
hit?

Legend:
R =Readable bit W =Witakle bit
U = Unimplemerted bit, read az '"00 - n = ‘Yalue at power-on reset

bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit)
These three bits define prescaler rate select bit. What a prescaler is and how these bits can affect
the work of a microcontroller will be explained in section on TMRO.

Bits TMRD WDT
b |

ooo 1: 1
ool 1:9 1.2
0in 1:8 1:4
0ii 116 1:8
100 1:32 1:16
101 1:64 1:32
iin 1:128 1 64
111 1256 1:128

bit 3 PSA (Prescaler Assignment bit)

Bit which assigns prescaler between TMRO and watchdog.
1=prescaler is assigned to watchdog

O=prescaler is assigned to a free-run timer TMRO

bit 4 TOSE (TMRO Source Edge Select bit)

If it is allowed to trigger TMRO by impulses from the pin RA4/TOCKI, this bit determines whether
this will be to the falling or rising edge of a signal.

1=falling edge

O=rising edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables free-run timer to increment its state either from internal oscillator on every ¥4 of
oscillator clock, or through external impulses on RA4/TOCKI pin.

1=external impulses

0=1/4 internal clock

bit 6 INTEDG (Interrupt Edge Select bit)

If interrupt is enabled possible this bit will determine the edge at which an interrupt will be
activated on pin RBO/INT.

1=rising edge

O=falling edge

bit 7 RBPU (PORTB Pull-up Enable bit)

This bit turns on and off internal "pull-up' resistors on port B.
1= "pull-up" resistors turned off

0= "pull-up” resistors turned on

Table of contents Chapter overview Next page

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (5 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (6 of 6) [4/2/2003 16:17:45]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

Port refers to a group of pins on a microcontroller which can be accessed simultaneously, or on
which we can set the desired combination of zeros and ones, or read from them an existing status.
Physically, port is a register inside a microcontroller which is connected by wires to the pins of a
microcontroller. Ports represent physical connection of Central Processing Unit with an outside
world. Microcontroller uses them in order to monitor or control other components or devices. Due
to functionality, some pins have twofold roles like PA4/TOCKI for instance, which is simultaneously
the fourth bit of port A and an external input for free-run counter. Selection of one of these two
pin functions is done in one of the configurational registers. An illustration of this is the fifth bit
TOCS in OPTION register. By selecting one of the functions the other one is disabled.

PORTA

1 Vgl

2 }

=)
—>| 1

DEOEOO®EOOOD

TRISA

CICICICICICICIE

Felationship between TRISA and PORTA redgister

All port pins can be defined as input or output, according to the needs of a device that's being
developed. In order to define a pin as input or output pin, the right combination of zeros and ones
must be written in TRIS register. If at the appropriate place in TRIS register a logical "1" is
written, then that pin is an input pin, and if the opposite is true, it's an output pin. Every port has
its proper TRIS register. Thus, port A has TRISA at address 85h, and port B has TRISB at address
86h.

PORTB

PORTB has 8 pins joined to it. The appropriate register for direction of data is TRISB at address
86h. Setting a bit in TRISB register defines the corresponding port pin as an input pin, and
resetting a bit in TRISB register defines the corresponding port pin as the output pin. Each pin on
PORTB has a weak internal pull-up resistor (resistor which defines a line to logic one) which can be
activated by resetting the seventh bit RBPU in OPTION register. These 'pull-up' resistors are
automatically being turned off when port pin is configured as an output. When a microcontroller is
started, pull-up's are disabled.

Four pins PORTB, RB7:RB4 can cause an interrupt which occurs when their status changes from

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_05Poglavlje.htm (1 of 2) [4/2/2003 16:17:47]

Chapter 2 - Microcontroller PIC16F84

logical one into logical zero and opposite. Only pins configured as input can cause this interrupt to
occur (if any RB7:RB4 pin is configured as an output, an interrupt won't be generated at the
change of status.) This interrupt option along with internal pull-up resistors makes it easier to
solve common problems we find in practice like for instance that of matrix keyboard. If rows on
the keyboard are connected to these pins, each push on a key will then cause an interrupt. A
microcontroller will determine which key is at hand while processing an interrupt It is not
recommended to refer to port B at the same time that interrupt is being processed.

clrf 3TATUS ;s BankO

clrf PORTE s PORTE=0

hsf STALTUS,RPO ;Bankl

mowvlw OxOF : Defining nput and output pins
movwE TRISE FWinting to TEISE register

The above example shows how pins 0, 1, 2, and 3 are declared for input, and pins 4, 5, 6, and 7
for output.

PORTA

PORTA has 5 pins joined to it. The corresponding register for data direction is TRISA at address
85h. Like with port B, setting a bit in TRISA register defines also the corresponding port pin as an
input pin, and clearing a bit in TRISA register defines the corresponding port pin as an output pin.
The fifth pin of port A has dual function. On that pin is also situated an external input for timer
TMRO. One of these two options is chosen by setting or resetting the TOCS bit (TMRO Clock Source
Select bit). This pin enables the timer TMRO to increase its status either from internal oscillator or
via external impulses on RA4/TOCKI pin.

hof 3TATUI, RPO :BankO

clrf PORTA :PORTL=0

bsf STATUS,RPO ;EBankl

movlw Ox1F : Defining input and output ping pinova
movwf TRIZA : Wiiting to TRISA regster

Example shows how pins O, 1, 2, 3, and 4 are declared to be input, and pins 5, 6, and 7 to be
output pins.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_05Poglavlje.htm (2 of 2) [4/2/2003 16:17:47]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Table of contents Chapter overview Next page

PIC16F84 has two separate memory blocks, one for data and the other for program. EEPROM
memory and GPR registers in RAM memory make up a data block, and FLASH memory makes up a
program block.

Program memory

Program memory has been realized in FLASH technology which makes it possible to program a
microcontroller many times before it's installed into a device, and even after its installment if
eventual changes in program or process parameters should occur. The size of program memory is
1024 locations with 14 bits width where locations zero and four are reserved for reset and
interrupt vector.

Data memory

Data memory consists of EEPROM and RAM memories. EEPROM memory consists of 64 eight bit
locations whose contents is not lost during loosing of power supply. EEPROM is not directly
addressible, but is accessed indirectly through EEADR and EEDATA registers. As EEPROM memory
usually serves for storing important parameters (for example, of a given temperature in
temperature regulators) , there is a strict procedure for writing in EEPROM which must be followed
in order to avoid accidental writing. RAM memory for data occupies space on a memory map from
location Ox0OC to Ox4F which comes to 68 locations. Locations of RAM memory are also called GPR
registers which is an abbreviation for General Purpose Registers. GPR registers can be accessed
regardless of which bank is selected at the moment.

SFR registers

Registers which take up first 12 locations in banks O and 1 are registers of specialized function
assigned with certain blocks of the microcontroller. These are called Special Function Registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (1 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

—+| EEDATA |
& Add
res FFPROM for
Stack lewvel 1 00k data Gl
Stack level 2 N I'Iih///
, O .
= . -
LLl A
L N I I [=
Stackdevel 8 Program —T —T— 2Fh
Adetrass o counter Zz
Bus J |: Data Bus
PC=12:0 FJ"’A
=12:0=
B
Z
4 |: Address d Address
Razaladdras 0000h 00k INOF INOF *1 a0k
01k THMRG TFTHOH alh
0zh PCL PGL azh
03h ETATUS ETATUS a3k
Inbzrrupl wadar addrass. 0004k 04h F&R F&R a4k
05h PORTA TRIEA ok Accessing
0&h PORTH TRIZE g6h Hhege
Urh &7h locations
Program memary e 0Sh EEDATA EECOHT 8ok s the
1024%14 — 03h EEADR EECOHZ * | B9h "
0k FCLATH FCLATH Bah same fesd
0Bh INTEOH INTCON 8Bh regardiess
CTCH ER of the bahk
: frarn which
i : We are
! B8 bytes RAM memary 41 ; making an
' GPR ! ACCess
: registers 5
P Arh LFh
=t Db Unimpiemen
ted
-+ e RNy
focatiohs, by
reading
them
We always
1FFFh 7Fh FFh et 0
Bankl Bank1
0.0 4 T
I
- FP1 RPO - - - - -

STATUS register

Mermory organization of microcontroller PICT16FE4

Memory Banks
Beside this 'length’ division to SFR and GPR registers, memory map is also divided in 'width' (see

preceding map) to two areas called 'banks'. Selecting one of the banks is done via RPO and RP1
bits in STATUS register.

Example:
bcf STATUS, RPO

Instruction BCF clears bit RPO (RPO=0) in STATUS register and thus sets up bank O.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (2 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

bsf STATUS, RPO

Instruction BSF sets the bit RPO (RPO=1) in STATUS register and thus sets up bank1.

Usually, groups of instructions that are often in use, are connected into one unit which can easily
be recalled in a program, and whose name has a clear meaning, so called Macros. With their use,
selection between two banks becomes more clear and the program itself more legible.

BANKO nacro
Bcf STATUS, RPO ; Sel ect nenory bank O
Endm

BANK1 macro
Bsf STATUS, RPO ; Sel ect nenory bank 1
Endm

Locations OCh - 4Fh are general purpose registers (GPR) which are used as RAM memory.
When locations 8Ch - CFh in Bank 1 are accessed, we actually access the exact same
locations in Bank 0. In other words , whenever you wish to access one of the GPR
registers, there is no need to worry about which bank we are in!

Program Counter

Program counter (PC) is a 13 bit register that contains the address of the instruction being
executed. By its incrementing or change (ex. in case of jumps) microcontroller executes program
instructions step-by-step.

Stack

PIC16F84 has a 13-bit stack with 8 levels, or in other words, a group of 8 memory locations of 13 -
bits width with special function. Its basic role is to keep the value of program counter after a jump
from the main program to an address of a subprogram . In order for a program to know how to go
back to the point where it started from, it has to return the value of a program counter from a
stack. When moving from a program to a subprogram, program counter is being pushed onto a
stack (example of this is CALL instruction). When executing instructions such as RETURN, RETLW
or RETFIE which were executed at the end of a subprogram, program counter was taken from a
stack so that program could continue where was stopped before it was interrupted. These
operations of placing on and taking off from a program counter stack are called PUSH and POP,
and are named according similar instructions on some bigger microcontrollers.

In System Programming
In order to program a program memory, microcontroller must be set to special working mode by
bringing up MCLR pin to 13.5V, and supply voltage Vdd has to be stabilized between 4.5V to 5.5V.

Program memory can be programmed serially using two 'data/clock’ pins which must previously
be separated from device lines, so that errors wouldn't come up during programming.

Addressing modes

RAM memory locations can be accessed directly or indirectly.

Direct Addressing
Direct Addressing is done through a 9-bit address. This address is obtained by connecting 7th bit

of direct address of an instruction with two bits (RP1, RPO) from STATUS register as is shown on
the following picture. Any access to SFR registers can be an example of direct addressing.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (3 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

Bsf STATUS, RPO ; Bankl

nmovl w OxFF ; Ww=OxFF

movwf TRI SA ;address of TRISA register is taken from
;instruction nmovwf

Sth ahd Btk
Dita of
STATLS
reqister Sevieh Bits fromm inastructions
FP1 RPZ2 j
P I I
Pl *
Selectad 00 01
bank a0
/'—h
] 0B
Selected location
ac
4F
TF

Bankn Bank1

Direct addressing

Indirect Addressing

Indirect unlike direct addressing does not take an address from an instruction but makes it with
the help of IRP bit of STATUS and FSR registers. Addressed location is accessed via INDF register
which in fact holds the address indicated by a FSR. In other words, any instruction which uses
INDF as its register in reality accesses data indicated by a FSR register. Let's say, for instance,
that one general purpose register (GPR) at address OFh contains a value of 20. By writing a value
of OFh in FSR register we will get a register indicator at address OFh, and by reading from INDF
register, we will get a value of 20, which means that we have read from the first register its value
without accessing it directly (but via FSR and INDF). It appears that this type of addressing does
not have any advantages over direct addressing, but certain needs do exist during programming

which can be solved smoothly only through indirect addressing.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (4 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

Seventh bt of
STATUS
redister
IRF 7 1]
+ FSR
Selgctecs
an 01
hani 00
/" —p
) o
Selectad location e ekt

ac

4F

TF

Bankl Bank1

Indirect addressing
An of such example can be sending a set of data via serial communication, working with buffers

and indicators (which will be discussed further in a chapter with examples), or erasing a part of
RAM memory (16 locations) as in the following instance.

Mowlw Ox0OC ;initialization of starting address
Mowvwf F3IR ;F2E indicates address 0x0C

LooP clef INDF INDF = 0O
inct F3R ;address = initial address + 1
btf=s=s F3E,4 ;are all locations erased
goto loop ;no, go through a loop again

CONTINUE
: !} ves, continue with program

Reading data from INDF register when the contents of FSR register is equal to zero returns the
value of zero, and writing to it results in NOP operation (no operation).

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (5 of 5) [4/2/2003 16:17:50]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

| Previous page | Table of contents | Chapter overview | Nextpage

Interrupts are a mechanism of a microcontroller which enables it to respond to some events at the
moment when they occur, regardless of what microcontroller is doing at the time. This is a very
important part, because it provides connection between a microcontroller and environment which
surrounds it. Generally, each interrupt changes the program flow, interrupts it and after executing an
interrupt subprogram (interrupt routine) it continues from that same point on.

FIC1EFE4
1
|: RAZ —_— Point at which
2 an interrpot
[RAZ . occured
Program execution
d flawe
[] resTock) ’ .
45 4 A — L
[MCLR subpragram
5 where interrupt is
E[] [] v processed
REBOMNT [
T1u—|; --------------------------- +
2 g R Continuation of
] re2 the normal Return from
prograrm subprograrm
= o execution
[fre: L __

One of the possible sources of an interrupt and how it affects the main program
One of the possible sources of an interrupt and how it affects the main program

Control register of an interrupt is called INTCON and is found at OBh address. Its role is to allow or
disallowed interrupts, and in case they are not allowed, it registers single interrupt requests through
its own bits.

INTCON Register

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (1 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

RAW-0 RAM-O RAN-O RAV-D RANV-D RAMN-OD RAN-O RAMNO

GIE | EEIE | TQIE | INTE | RBIE | TOIF | INTF | REIF

hit ¥

Legend:
R = Readable bit W ='Writable bit
L = Unitmplemented bit, read as'0' - n = Value st poveer-on reset

bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit which informs about changes on pins 4, 5, 6 and 7
of port B.

1=at least one pin has changed its status

O=no change occured on any of the pins

bit 1 INTF (INT External Interrupt Flag bit) External interrupt occured.

1=interrupt occured

O=interrupt did not occur

If a rising or falling edge was detected on pin RBO/INT, (which is defined with bit INTEDG in OPTION
register), bit INTF is set. Bit must be cleared in interrupt subprogram in order to detect the next
interrupt.

bit 2 TOIF (TMRO Overflow Interrupt Flag bit) Overflow of counter TMRO.
1= counter changed its status from FFh to 00h

O=overflow did not occur

Bit must be cleared in program in order for an interrupt to be detected.

bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the change of status
of pins 4, 5, 6, and 7 of port B.

1= enables interrupts at the change of status

O=interrupts disabled at the change of status

If RBIE and RBIF were simultaneously set, an interrupt would occur.

bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external interrupt from pin RBO/INT.
l1=external interrupt enabled

O=external interrupt disabled

If INTE and INTF were set simultaneously, an interrupt would occur.

bit 5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables interrupts during counter TMRO
overflow.

1=interrupt enabled

O=interrupt disabled

If TOIE and TOIF were set simultaneously, interrupt would occur.

Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an interrupt at the end
of a writing routine to EEPROM

1=interrupt enabled

O=interrupt disabled

If EEIE and EEIF (which is in EECONL1 register) were set simultaneously , an interrupt would occur.

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1=all interrupts are enabled
O=all interrupts are disabled

PIC16F84 has four interrupt sources:

1. Termination of writing data to EEPROM

2. TMRO interrupt caused by timer overflow

3. Interrupt during alteration on RB4, RB5, RB6 and RB7 pins of port B.
4. External interrupt from RBO/INT pin of microcontroller

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (2 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

Generally speaking, each interrupt source has two bits joined to it. One enables interrupts, and the
other detects when interrupts occur. There is one common bit called GIE which can be used to
disallow or enable all interrupts simultaneously. This bit is very useful when writing a program
because it allows for all interrupts to be disabled for a period of time, so that execution of some
important part of a program would not be interrupted. When instruction which resets GIE bit was
executed (GIE=O0, all interrupts disallowed), any interrupt that remained unsolved should be ignored.

EE|EQ/D®:/D

EEIF

REIE
2 ¢

AP ROP
@/GHBF |

INTE{g'““l‘m“‘,..{}(:){g‘wﬂ“‘..l3

INTF

INTERRUPT

Simplified outline of PIC16F34 microcontroller interrupt

Interrupts which remained unsolved and were ignored, are processed when GIE bit (GIE=1, all
interrupts allowed) would be cleared. When interrupt was answered, GIE bit was cleared so that any
additional interrupts would be disabled, return address was pushed onto stack and address 0004h
was written in program counter - only after this does replying to an interrupt begin! After interrupt is
processed, bit whose setting caused an interrupt must be cleared, or interrupt routine would
automatically be processed over again during a return to the main program.

Keeping the contents of important registers

Only return value of program counter is stored on a stack during an interrupt (by return value of
program counter we mean the address of the instruction which was to be executed, but wasn't
because interrupt occured). Keeping only the value of program counter is often not enough. Some
registers which are already in use in the main program can also be in use in interrupt routine. If they
were not retained, main program would during a return from an interrupt routine get completely
different values in those registers, which would cause an error in the program. One example for such
a case is contents of the work register W. If we suppose that main program was using work register
W for some of its operations, and if it had stored in it some value that's important for the following
instruction, then an interrupt which occurs before that instruction would change the value of work

register W which would directly be influenced the main program.

Procedure of recording important registers before going to an interrupt routine is called PUSH, while
the procedure which brings recorded values back, is called POP. PUSH and POP are instructions with
some other microcontrollers (Intel), but are so widely accepted that a whole operation is named after
them. PIC16F84 does not have instructions like PUSH and POP, and they have to be programmed.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (3 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

Before the interrupt
occured, woarking
register W had the

valug ' "

Interrpt [
R - Interrupt
* subprogram
where interrupt
pracessing has

changed work
register VW to

Instructionno | ——»

Fallowing
instruction after an

interrupt checks
out the value of

weark register Wy *
Retun o |
"
Instructionno. N+ 1 ——» |5 W= 7 program

NE(_[_}DA

One of the possible cases of errors if saving was not done when going
to a subprogram of an interrupt

One of the possible cases of errors if saving was not done when going to a subprogram of
an interrupt

Due to simplicity and frequent usage, these parts of the program can be made as macros. The
concept of a Macro is explained in "Program assembly language". In the following example, contents
of W and STATUS registers are stored in W_TEMP and STATUS_TEMP variables prior to interrupt
routine. At the beginning of PUSH routine we need to check presently selected bank because
W_TEMP and STATUS_TEMP are found in bank 0. For exchange of data between these registers,
SWAPF instruction is used instead of MOVF because it does not affect the status of STATUS register
bits.

Example is a program assembler for following steps:

. Testing the current bank

. Storing W register regardless of the current bank

. Storing STATUS register in bank O.

. Executing interrupt routine for interrupt processing (ISR)
. Restores STATUS register

. Restores W register

OO WNE

If there are some more variables or registers that need to be stored, then they need to be kept after
storing STATUS register (step 3), and brought back before STATUS register is restored (step 5).

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (4 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

Push
BTF5S STATUS, RPO
GOTS RPOCLEAR
BCF STATUS, RPO
rCAE W TEMP
SWWAPF STATUS, W
MOVAAE STATLIS_TEMP
BSF STATUS_TEMPE 1
SOTD ISE_Code
FEPOCLEAR
rMIOWE WY TEMP
SWWAPF STATLIS, W
MOVAAE STATLIS TEMP

ISR_Code

¢ [Interrupt subprogram)

Pop
SVUARF STATLUIS_TEMP, W
mMOYE STATLIS
BTFSS STATUS, RPO
GOTO Return_WREG
BCF STATUS, RPO
SVWARF W TEMP F
SWAPE W TEMP W
BSF STATUS, RPO
FETFIE

Feturn \WREG
SVUAPF W TEMP F
SVUAFF W TEMP W
FETFIE

mm ma e tma ma e = ma

e e e me ma e ma ma =

BankO

Yes

MO, go to BankO
Save W register

W - STATIIS
STATUS_TEMP «<- W
RPO(STATUS TEMPF)
Push completed

1

Save W register
Wil - STATLIS
STATUS _TEMP - W

Wl - STATLIS _TEMP

STATLUS <=\

Bank 17

M,

YES, go to BankO

Return contents of W register

Return to Bank 1
POP complete

Return contents of W register

POP cormpleted

The same example can be realized by using macros, thus getting a more legible program. Macros
that are already defined can be used for writing new macros. Macros BANK1 and BANKO which are
explained in "Memory organization" chapter are used with macros ‘push' and 'pop".

push macro
movwt W Ternp WY Temp < - W
swapf W _Temp,F 1 Swap themn
BAME1L sMacro for switching to Bank1
swapf COFTION_REG,W W = - OFTIOMN_REG
movwt Opton_Temp Ophon_Temp = - W
BANED rmacro for switching to BankO
swapf STATUS,\W S - STATUS
movwf Stat Temp 1Stat Temp <-4
endm sEnd aof push macro
pop M acro
swapf Stat_Temp, W DW= - Stat_Temp
movwt STATUS JETATLIS - W
BAME 1 sMacro for switching to Bank1
swapf Option_Temp, W DY - Qption_Temp
movwt OPTION _REG JOPTION _REG =-'W
BARED sMacro for switching o BankO
swapf W Temnp,\W i - WY Temp
endm 1End of a pop macro

External interrupt on RBO/INT pin of microcontroller

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (5 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

External interrupt on RBO/INT pin is triggered by rising signal edge (if bit INTEDG=1 in OPTION<6>
register), or falling edge (if INTEDG=0). When correct signal appears on INT pin, INTF bit is set in
INTCON register. INTF bit (INTCON<1>) must be reset in interrupt routine, so that interrupt wouldn't
occur again while going back to the main program. This is an important part of the program which
programmer must not forget, or program will constantly go into interrupt routine. Interrupt can be
turned off by resetting INTE control bit (INTCON<4>).

Interrupt during a TMRO counter overflow

Overflow of TMRO counter (from FFh to O0h) will set TOIF (INTCON<2>) bit. This is very important
interrupt because many real problems can be solved using this interrupt. One of the examples is time
measurement. If we know how much time counter needs in order to complete one cycle from 00h to
FFh, then a number of interrupts multiplied by that amount of time will yield the total of elapsed
time. In interrupt routine some variable would be incremented in RAM memory, value of that variable
multiplied by the amount of time the counter needs to count through a whole cycle, would yield total
elapsed time. Interrupt can be turned on/off by setting/resetting TOIE (INTCON<5>) bit.

Interrupt during a change on pins 4, 5, 6 and 7 of port B

Change of input signal on PORTB <7:4> sets RBIF (INTCON<O>) bit. Four pins RB7, RB6, RB5 and
RB4 of port B, can trigger an interrupt which occurs when status on them changes from logic one to
logic zero, or vice versa. For pins to be sensitive to this change, they must be defined as input. If any
one of them is defined as output, interrupt will not be generated at the change of status. If they are
defined as input, their current state is compared to the old value which was stored at the last reading
from port B. Interrupt can be turned on/off by setting/resetting RBIE bit in INTCON register.

Interrupt upon finishing write-subroutine to EEPROM

This interrupt is of practical nature only. Since writing to one EEPROM location takes about 10ms
(which is a long time in the notion of a microcontroller), it doesn't pay off to a microcontroller to wait
for writing to end. Thus interrupt mechanism is added which allows the microcontroller to continue
executing the main program, while writing in EEPROM is being done in the background. When writing
is completed, interrupt informs the microcontroller that writing has ended. EEIF bit, through which
this informing is done, is found in EECONL1 register. Occurrence of an interrupt can be disabled by
resetting the EEIE bit in INTCON register.

Interrupt initialization

In order to use an interrupt mechanism of a microcontroller, some preparatory tasks need to be
performed. These procedures are in short called "initialization". By initialization we define to what
interrupts the microcontroller will respond, and which ones it will ignore. If we do not set the bit that
allows a certain interrupt, program will not execute an interrupt subprogram. Through this we can
obtain control over interrupt occurrence, which is very useful.

clrf INTCON ; all interrupts disabled
mowlw B'O0010000° ; external interrupt only is enabled
b=af INTCCON, GIE ; occurrence of interrupts allowed

The above example shows initialization of external interrupt on RBO pin of a microcontroller. Where
we see one being set, that means that interrupt is enabled. Occurrence of other interrupts is not
allowed, and all interrupts together are disallowed until GIE bit is keeping to one.

The following example shows a typical way of handling interrupts. PIC16F84 has only one location
where the address of an interrupt subprogram is stored. This means that first we need to detect
which interrupt is at hand (if more than one interrupt source is available), and then we can execute
that part of a program which refers to that interrupt.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (6 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

ory ISE_LDDR ISR _ADDE is interrupt routine address
btfsc INTCCON, GIE ;ZIE bit turned off?

goto ISR ADR sno, go bhack to the bheginning

FUSH ;keep the contents of important registers
bhtfsc INTCOMN, EREIF schange on pins 4, 5, 6 and 7 of portc EB?
goto ISR PORTE :jump to that section

bhtfsc INTCON, INTF sexternal interrupt occured?

goto ISE_REOD jump to that part

btfse INTCON, TOIF soverflow of timer THEREO?

goto ISR THRO Jjump to that section

BEANE] ;Bankl because of EECON]

Etf=sc EECCOHN1, EEIF ;writing to EEPEOM completed?

goto ISR _EEPROM :jump to that section

BANED ;BankO

ISR PORTE
: ;section of code which i=s processed by an
Jinterrupt 7

goto END IZR PJup to the exit of an interrupt
ISR _RED
: ;Zection of code processing an interrupt?

goto END T3R sjump to exit of an interrupt.
ISR _THEO
: ;eection of code processing an interrupt

goto END I35R ;jump to the exit of an interrupt
ISE_EEPROM

;gection of code which processes an interrupt

goto END ISR PJump to an exit from an interrupt.
END ISR ;
Pap sbringing back the contents of important
;registers
RETFIE sreturn and setting of GIE hit

Return from interrupt routine can be accomplished with instructions RETURN, RETLW and
RETFIE. It is recommended that instruction RETFIE be used because that instruction is the
only one which automatically sets the GIE bit which allows new interrupts to occur.

..

}

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (7 of 7) [4/2/2003 16:17:55]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

| Prévious page | Table of contents | Chapteroverview | Nextpage |

Timers are usually most complicated parts of a microcontroller, so it is necessary to set aside more
time for their explaining. With their application it is possible to create relations between a real
dimension such as "time" and a variable which represents status of a timer within a microcontroller.
Physically, timer is a register whose value is continually increasing to 255, and then it starts all over
again: 0, 1, 2, 3, 4...255....0,1, 2, 3...... etc.

Data Bus
hit 7 TMRO
OO0 @O OO)T -
INTCON ToF LA23.255.0.1.2.255.0..1 ...

4 | |

Dscillator clock

PS? PS1 PSO e
a O0— Prescater .2 — _| |1 L1 L[1

0 1——= Prescaler1:4 —> |
1 U—= Prescaler 1.8 — _ |

o
0
0
-

—1 |
OOOOOmO T

OPTION F=2 P31 PO

Felation between the timer TMREO and prescaler

This incrementing is done in the background of everything a microcontroller does. It is up to
programmer to "think up a way" how he will take advantage of this characteristic for his needs. One of
the ways is increasing some variable on each timer overflow. If we know how much time a timer
needs to make one complete round, then multiplying the value of a variable by that time will yield the
total amount of elapsed time.

PIC16F84 has an 8-bit timer. Number of bits determines what value timer counts to before starting to
count from zero again. In the case of an 8-bit timer, that number is 256. A simplified scheme of
relation between a timer and a prescaler is represented on the previous diagram. Prescaler is a name
for the part of a microcontroller which divides oscillator clock before it will reach logic that increases
timer status. Number which divides a clock is defined through first three bits in OPTION register. The
highest divisor is 256. This actually means that only at every 256th clock, timer value would increase

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (1 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84

by one. This provides us with the ability to measure longer timer periods.

A @2 @slad o Q2ladiad ol Q2 ladlad el Q2 e iad (A [Qa2la3iad |
e AV AV VAt oUW WAl oW e Na Wl aWaWalal oWaWaWat
clkouteny L . T A %

Timerd L T S 137 0 T ;i
TOIF bit i ' :
GIE bit \

Mate: 1 Interrupt flag bit TOIF iz examined at the nevy place &t each @1 cycle
CLEOUT exists only in RC oscillatar mode

Time diagram of interrupt occurence with TMRO timer

After each count up to 255, timer resets its value to zero and starts with a new cycle of counting to
255. During each transition from 255 to zero, TOIF bit in INTCOM register is set. If interrupts are
allowed to occur, this can be taken advantage of in generating interrupts and in processing interrupt
routine. It is up to programmer to reset TOIF bit in interrupt routine, so that new interrupt, or new
overflow could be detected. Beside the internal oscillator clock, timer status can also be increased by
the external clock on RA4/TOCKI pin. Choosing one of these two options is done in OPTION register
through TOCS bit. If this option of external clock was selected, it would be possible to define the edge
of a signal (rising or falling), on which timer would increase its value.

hetal bugles
Inductive sensor
FIC16FE4
+12 +5
T Az
g Rt 1:4
RANTOCKI 1]
E : AR prescaler Intermpt
% —‘

255 —»(]

DOOOOTOT

TMRO

REMINT

FEB1

1
¥
O [o [b= JaJrJ]
=
(]
—
A

Motor axis of the

working machine RE>

REZ Data Bus

Determining a number of full axis turns of the motor

In practice, one of the typical example that is solved via external clock and a timer is counting full
turns of an axis of some production machine, like transformer winder for instance. Let's wind four
metal screws on the axis of a winder. These four screws will represent metal convexity. Let's place

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (2 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84

now the inductive sensor at a distance of 5mm from the head of a screw. Inductive sensor will
generate the falling signal every time the head of the screw is parallel with sensor head. Each signal
will represent one fourth of a full turn, and the sum of all full turns will be found in TMRO timer.
Program can easily read this data from the timer through a data bus.

The following example illustrates how to initialize timer to signal falling edges from external clock
source with a prescaler 1:4. Timer works in "polig" mode.

clrf THEO ; TMRO=0
clrf IMNTCON sInterrupts and TOIF=0 disallowed
h=sf STATUS,RERO ;Bankl because of OFPTICH REG

mowly B'00110001' ;prescaler 1:4, falling edge selected external
selock source and pull up fselected resistors
;son port B activated

wovwt OPTICW REG :OPTICN BEEG <- W

TO OWFL
brtfss INTCON, TOIF stesting overflow bit
goto TO OWFL ;interrupt has not occured yet, wait

;! [FPart of the program which processes data regarding a nuber of turns)

goto TO OVFL swaiting for new overflow

The same example can be realized through an interrupt in the following way:

push macro

moywt W Temp WY Temp <- W

swapf W _Temp,F 1 Swap them

BAME1 tMacro for switching o Bank1
swapf OPTIOMN_REG W Jw - OFTION_REG

movwf Ophon_Temp Ophon_Temp <- W

BAMKD smacro for switching to Bank0
swapf STATUS, W J - STATUS

movwf Stat Temp ;5tat Temp = -W

endm sEnd aof push macro

pap M acro

swapf Stat_Termp,\W WY - Stat Temp

moywf STATUS JSTATLS = - W

BAME1 tMacro for switching o Bank1
swapf Option_Termnp, W WY - Option_Temp

movwf OFTICM REG JOFTION _REG < -\

BAMED tMacro for switching o Bank0O
swapf W _Temp,\W WY - WY Temp

endm 1Bnd of a pop macro

Prescaler can be assigned either timer TMRO or a watchdog. Watchdog is a mechanism which
microcontroller uses to defend itself against programs getting stuck. As with any other electrical
circuit, so with a microcontroller too can occur failure, or some work impairment. Unfortunately,
microcontroller also has program where problems can occur as well. When this happens,
microcontroller will stop working and will remain in that state until someone resets it. Because of this,
watchdog mechanism has been introduced. After a certain period of time, watchdog resets the
microcontroller (microcontroller in fact resets itself). Watchdog works on a simple principle: if timer
overflow occurs, microcontroller is reset, and it starts executing a program all over again. In this way,
reset will occur in case of both correct and incorrect functioning. Next step is preventing reset in case
of correct functioning, which is done by writing zero in WDT register (instruction CLRWDT) every time
it nears its overflow. Thus program will prevent a reset as long as it's executing correctly. Once it gets
stuck, zero will not be written, overflow of WDT timer and a reset will occur which will bring the
microcontroller back to correct functioning again.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (3 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84

Prescaler is accorded to timer TMRO, or to watchdog timer trough PSA bit in OPTION register. By
clearing PSA bit, prescaler will be accorded to timer TMRO. When prescaler is accorded to timer TMRO,
all instructions of writing to TMRO register (CLRF TMRO, MOVWF TMRO, BSF TMRO,...) will clear
prescaler. When prescaler is assigned to a watchdog timer, only CLRWDT instruction will clear a
prescaler and watchdog timer at the same time . Prescaler change is completely under programmer's
control, and can be changed while program is running.

..

There is only one prescaler and one timer. Depending on the needs, they are assigned
either to timer TMRO or to a watchdog.

OPTION Control Register

RN RN RN RN R A= A= A=
[FEPU U'F| wtED: | Tocs | TosE PSa Ps2 = P50
hit 7 hit 0
Legend:

R = Readable bit W = writable bit
= Unimplemented bit, read as '0° -n=Yalue at POR reset

Bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit)
The subject of a prescaler, and how these bits affect the work of a microcontroller will be covered in
section on TMRO.

Bits TMREO WDT

ano 1:2 1:1
ool 1:4 1:2
0410 1:8 1:4
01l 1:16 1:8
100 1:32 1:16
101 1: G4 1:32
iin 1128 1 64
111 1256 1:128

bit 3 PSA (Prescaler Assignment bit)

Bit which assigns prescaler between TMRO and watchdog timer.
1=prescaler is assigned to watchdog timer.

O=prescaler is assighed to free timer TMRO

bit 4 TOSE (TMRO Source Edge Select bit)

If trigger TMRO was enabled with impulses from a RA4/TOCKI pin, this bit would determine whether it
would be on the rising or falling edge of a signal.

1=falling edge

O=rising edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables a free-run timer to increment its value either from an internal oscillator, i.e. every
1/4 of oscillator clock, or via external impulses on RA4/TOCKI pin.

1=external impulses

0=1/4 internal clock

bit 6 INTEDG (Interrupt Edge Select bit)

If occurrence of interrupts was enabled, this bit would determine at what edge interrupt on RBO/INT
pin would occur.

1= rising edge

0= falling edge

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (4 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84
bit 7 RBPU (PORTB Pull-up Enable bit)
This bit turns internal pull-up resistors on port B on or off.

1="pull-up' resistors turned on
O="pull-up' resistors turned off

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://mww.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (5 of 5) [4/2/2003 16:17:58]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

PIC16F84 has 64 bytes of EEPROM memory locations on addresses from 00h to 63h those can be

written to or read from. The most important characteristic of this memory is that it does not loose
its contents during power supply turned off. That practically means that what was written to it will
be remaining even if microcontroller is turned off. Data can be retained in EEPROM without power
supply for up to 40 years (as manufacturer of PIC16F84 microcontroller states), and up to 10000

cycles of writing can be executed.

In practice, EEPROM memory is used for storing important data or some process parameters.
One such parameter is a given temperature, assigned when setting up a temperature regulator to
some process. If that data wasn't retained, it would be necessary to adjust a given temperature
after each loss of supply. Since this is very impractical (and even dangerous), manufacturers of
microcontrollers have began installing one smaller type of EEPROM memory.

EEPROM memory is placed in a special memory space and can be accessed through special
registers. These registers are:

e EEDATA at address 08h, which holds read data or that to be written.

e EEADR at address 09h, which contains an address of EEPROM location being accessed.

e EECONL1 at address 88h, which contains control bits.

e EECON2 at address 89h. This register does not exist physically and serves to protect EEPROM
from accidental writing.

EECONL1 register at address 88h is a control register with five implemented bits.
Bits 5, 6 and 7 are not used, and by reading always are zero. Interpretation of EECON1 register
bits follows.

EECON1 Register

-0 -0 -0 R RN Rz Rr=-0 RS-
| — | — | — | EeF | wrERR | WREN VR rD |
hit ¥ kit 0
Legend:
R =Readable bit W= writable bit
= Unimplemented bit, read as '0° -n=Malue at POR reset

bit 0 RD (Read Control bit)

Setting this bit initializes transfer of data from address defined in EEADR to EEDATA register. Since
time is not as essential in reading data as in writing, data from EEDATA can already be used
further in the next instruction.

1=initializes reading

0O=does not initialize reading

bit 1 WR (Write Control bit)

Setting of this bit initializes writing data from EEDATA register to the address specified trough
EEADR register.

1=initializes writing

0O=does not initialize writing

bit 2 WREN (EEPROM Write Enable bit) Enables writing to EEPROM
If this bit was not set, microcontroller would not allow writing to EEPROM.
1=writing allowed

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (1 of 3) [4/2/2003 16:18:00]

Chapter 2 - Microcontroller PIC16F84
O=writing disallowed

bit 3 WRERR (Write EEPROM Error Flag) Error during writing to EEPROM

This bit was set only in cases when writing to EEPROM had been interrupted by a reset signal or
by running out of time in watchdog timer (if it's activated).

1=error occured

O=error did not occur

bit 4 EEIF (EEPROM Write Operation Interrupt Flag bit) Bit used to inform that writing data to
EEPROM has ended.

When writing has terminated, this bit would be set automatically. Programmer must clear EEIF bit
in his program in order to detect new termination of writing.

1=writing terminated

O=writing not terminated yet, or has not started

Reading from EEPROM Memory

Setting the RD bit initializes transfer of data from address found in EEADR register to EEDATA
register. As in reading data we don't need so much time as in writing, data taken over from
EEDATA register can already be used further in the next instruction.

Sample of the part of a program which reads data in EEPROM, could look something like the

following:
hot STATUOZ, EPO rbhank0, bhecguse EELDE is at 09h
wowlw 0x00 saddress of location being read
movwt EEALADE raddress transferred to EELDR
h=t STATUOZ, EPO sbhankl bhecause EECON1 i= at 885h
h=t EECON1, RD ;reading from EEPROHM
bhet ITATUZ, EREPO ;Bank0 bhecause EEDATLZ is at 0&8h
mwowEt EEDATA, W ;W «<—— EEDATAL

After the last program instruction, contents from an EEPROM address zero can be found in working
register w.

Writing to EEPROM Memory

In order to write data to EEPROM location, programmer must first write address to EEADR register
and data to EEDATA register. Only then is it useful to set WR bit which sets the whole action in
motion. WR bit will be reset, and EEIF bit set following a writing what may be used in processing
interrupts. Values 55h and AAh are the first and the second key whose disallow for accidental
writing to EEPROM to occur. These two values are written to EECON2 which serves only that
purpose, to receive these two values and thus prevent any accidental writing to EEPROM memory.
Program lines marked as 1, 2, 3, and 4 must be executed in that order in even time intervals.
Therefore, it is very important to turn off interrupts which could change the timing needed for
executing instructions. After writing, interrupts can be enabled again .

Example of the part of a program which writes data OxXEE to first location in EEPROM memory
could look something like the following:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (2 of 3) [4/2/2003 16:18:00]

Chapter 2 - Microcontroller PIC16F84

et ITATUOZ, ERPO ;hankl, khecause EEADR is at 08h
mowlw Ox00 raddresz of location being
JWritten to
movwEf EELDE ;address being transferred to
;EELDR
mowlw OxEE ;write the walue 0OxEE
mowwt EEDATA rdata goe=s to EEDATLA register
bsf 3TATUZ, EREPO sBankl hecause EEADE i=s at 02h
beof INTCON, IE ;all interrupts are disabled
bhsf EECON1, WREN ;Writing enabled
mowlw 55h
1) mowvwt EECONZ ;first key 55h —-> EECONZ
21 mowlw Lih
3] mowvwE EECONZ ;second key LAk —-> EECON:Z
4] hsf EECONL1,WR ;sinitializes writing
bhef INTCON, GIE ;interrupts are enabled

It is recommended that WREN be turned off the whole time except when writing data to
EEPROM, so that possibility of accidental writing would be minimal.
All writing to EEPROM will automatically clear a location prior to writing a new!

}
Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (3 of 3) [4/2/2003 16:18:00]

mailto:office@mikroelektronika.co.yu

Chapter 3 - Instruction Set

CHAPTER 3

Instruction Set

Introduction

Instruction set in PIC16Cxx microcontroller family
Data Transfer

Arithmetic and logic

Bit operations

Directing the program flow

Instruction execution period

Word list

We have already mentioned that microcontroller is not like any other integrated circuit. When they
come out of production most integrated circuits are ready to be built into devices which is not the
case with microcontrollers. In order to "make" microcontroller perform a task, we have to tell it
exactly what to do, or in other words we must write the program microcontroller will execute. We
will describe in this chapter instructions which make up the assembler, or lower-level program
language for PIC microcontrollers.

Complete set which includes 35 instructions is given in the following table. A reason for such a small
number of instructions lies primarily in the fact that we are talking about a RISC microcontroller
whose instructions are well optimized considering the speed of work, architectural simplicity and
code compactness. The only drawback is that programmer is expected to master "uncomfortable"
technique of using a reducedt set of 35 instructions.

Transfer of data in a microcontroller is done between work (W) register and an 'f' register that
represents any location in internal RAM (regardless whether those are special or general purpose
registers).

First three instructions (look at the following table) provide for a constant being written in W register
(MOVLW is short for MOVe Literal to W), and for data to be copied from W register onto RAM and
data from RAM to be copied onto W register (or on the same RAM location, at which point only the
status of Z flag changes). Instruction CLRF writes constant O in 'f ' register, and CLRW writes
constant O in register W. SWAPF instruction exchanges places of the 4-bit nibbles field inside a
register.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (1 of 4) [4/2/2003 16:18:03]

Chapter 3 - Instruction Set

Of all arithmetic operations, PIC like most microcontrollers supports only subtraction and addition.
Flags C, DC and Z are set depending on a result of addition or subtraction, but with one exception:
since subtraction is performed like addition of a negative value, C flag is inverse following a
subtraction. In other words, it is set if operation is possible, and reset if larger number was
subtracted from a smaller one.

Logic unit of PIC has capability of performing operations AND, OR, EX-OR, complementing (COMF)
and rotation (RLF and RRF).

Instructions which rotate the register contents move bits inside a register through flag C by one
space to the left (toward bit 7), or to the right (toward bit 0). Bit which "comes out" of a register is
written in flag C, and value of C flag is written in a bit on the "opposite side" of the register.

Instructions BCF and BSF do setting or cleaning of one bit anywhere in the memory. Even though
this seems like a simple operation, it is executed so that CPU first reads the whole byte, changes
one bit in it and then writes in the entire byte at the same place.

Instructions GOTO, CALL and RETURN are executed the same way as on all other microcontrollers,
only stack is independent of internal RAM and limited to eight levels.

'RETLW k' instruction is identical with RETURN instruction, except that before coming back from a
subprogram a constant defined by instruction operand is written in W register. This instruction
enables us to design easily the Look-up tables (lists). Mostly we use them by determining data
position on our table adding it to the address at which the table begins, and then we read data from
that location (which is usually found in program memory).

Table can be formed as a subprogram which consists of a series of 'RETLW k' instructions, where 'k’
constants are members of the table.

M ain molow 2
call Lookup
Lookup addwf PCL, T
retlw k
reth k1
retlhw k2

retlw ko

We write the position of a member of our table in W register, and using CALL instruction we call a
subprogram which creates the table. First subprogram line ADDWF PCL, f adds the position of a W
register member to the starting address of our table, found in PCL register, and so we get the real
data address in program memory. When returning from a subprogram we will have in W register the
contents of an addressed table member. In a previous example, constant 'k2' will be in W register
following a return from a subprogram.

RETFIE (RETurn From Interrupt - Interrupt Enable) is a return from interrupt routine and differs from
a RETURN only in that it automatically sets GIE (Global Interrupt Enable) bit. Upon an interrupt, this
bit is automatically cleared. As interrupt begins, only the value of program counter is put at the top
of a stack. No automatic storing of register values and status is provided.

Conditional jumps are synthesized into two instructions: BTFSC and BTFSS. Depending on a bit
status in 'f' register that is being tested, instructions skip or don't skip over the next program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (2 of 4) [4/2/2003 16:18:03]

Chapter 3 - Instruction Set

instruction.

All instructions are executed in one cycle except for conditional branch instructions if condition was
true, or if the contents of program counter was changed by some instruction. In that case, execution
requires two instruction cycles, and the second cycle is executed as NOP (No Operation). Four
oscillator clocks make up one instruction cycle. If we are using an oscillator with 4MHz frequency,
the normal time for executing an instruction is 1 ps, and in case of conditional branching, execution
period is 2 ps.

any memory location in a microcontroller

work register

bit position in 'f' register

destination bit

label group of eight characters which marks the beginning of a part of the program
TOS top of stack

1 option

<> bit position inside register

Q.CTE""

MAne moric Dezcrption Operation Fleg | Cyclke | Motes

Data transfer

MOk Move constant 1o k=W 1

MOWVE f Mowve Wi W=t 1

M F f,d Mowe f f—=+d £ 1 1,2

CLRW - Clear W 0= T 1

CLRF f Clear f 0-—=f z 1 2

SWAPRF f d Sweap nikbles in f 7747, (300 -+ 300,074 1 1,2
Arritmetic and logic

ADDLW Kk Add constant and WY Wl W CDCE 1

ADCVWYF f d Ao W and f W+ = d CDCE 1 1,2

SUBLW k Subtract W from constant Wl =W CDc T 1

SLBEWF f.d Zubtract W from f W+ d C Dz 7 1 1.2

ARDLWY k AMD constant with W WAND k=W z 1

AMOAF f, d ARD Y weith WAND =4 il 1 1,2

DR f d DR wvith 1 WORLS+d z 1 1,2

MORLW k Exclusive OR constant with W WXORLE—= W a 1 1.2

N ORYE fd Exclusive OR W with WEORS>4 z 1

IMCF f.d IRcrement T frl =t Zz 1 1,2

DECF f, d Decrement f fi1=f i 1 1,2

RLF f,d FRotate Left f trough carry T EEEOEI T C 1 1.2

RRF f.d | Raotate Right f trough carry T EEERE LD C 1 12

COMF f, d Complement f f—=d Z 1 1,2
Bit operations

BCF f b Bit Clear f 0= 1k) 1.2

BSF f. b Bit Set f 1 =iy 1 1.2
Directing a program flow

BTF=C f. b Bit Test f, Skip if Clear jurngz it fib)=0 121 3

BTF== f. b Bit Test f, Skip if Set jurng it fik)=1 121 3

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (3 of 4) [4/2/2003 16:18:03]

Chapter 3 - Instruction Set

Directing a program flow
BTFSC f b Bit Test f, Skip if Clear jurng it fk)=0 1021 3
BTF== f. b Bit Test f, Skip if Set jurng it fh0=1 1021 3
DECF=Z 1, d Decrement 1, Skip it 0 f-1 =+ 4, jump if £=1 1(2) 123
IMCFSE f,d |Increment £, Skipif 0 f+1 = 4, ump #E=0 102 123
0T k Goto address WOAND k=W o
CALL k Call subrouting WAND f—d 2
RETURM - Return fram Subroutine WORk =W 2
RETLWY k Feturn with constart in W WORS=+d 2
RETFIE - Feturn fram interrupt WEOR k=W 2

Other instructions
MR - Mo Operation 1
CLEWDT - Clear Watchdog Timer 0=WDT,=»Tol-=+PD TGO FD 1
SLEEP - Gointo standby mode 0—=+WLT, I=TOo0—=+PD TO ,PD 1

*1 If 1/0 port is source operand, status on microcontroller pins is read

*2 If this instruction is executed on TMR register and if d=1, prescaler assigned to that timer will
automatically be cleared
*3 If PC was modified, or test result =1, instruction was executed in two cycles.

Previous page Table of contents “hapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (4 of 4) [4/2/2003 16:18:03]

mailto:office@mikroelektronika.co.yu

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

CHAPTER 4

Assembly Language Programming

Introduction

An example writting program

Control directives

« 4.1 define

« 4.2 include
« 4.3 constant
« 4.4 variable
« 4.5 set

« 4.6 equ

. 4.7 org
« 4.8 end

Conditional instructions

« 4.9if

« 4.10 else
« 4.11 endif
o 4.12 while
« 4.13 endw
o 4.14 ifdef
o 4.15 ifndef

Data directives

o 4.16 cblock
« 4.17 endc
. 4.18 db

« 4.19 de

« 4.20 dt

Configurating a directive

« 4.21 CONFIG
« 4.22 Processor

Assembler arithmetic operators

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (1 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Files created as a result of program translation
Macros

The ability to communicate is of great importance in any field. However, it is only possible if both
communication partners know the same language, i.e follow the same rules during
communication. Using these principles as a starting point, we can also define communication that
occurs between microcontrollers and man . Language that microcontroller and man use to
communicate is called "assembly language". The title itself has no deeper meaning, and is
analogue to names of other languages , ex. English or French. More precisely, "assembly
language" is just a passing solution. Programs written in assembly language must be translated
into a "language of zeros and ones" in order for a microcontroller to understand it. "Assembly
language” and "assembler” are two different notions. The first represents a set of rules used in
writing a program for a microcontroller, and the other is a program on the personal computer
which translates assembly language into a language of zeros and ones. A program that is
translated into "zeros™ and "ones" is also called "machine language".

1 Srf 12
Roz Rad :I
L
RA2 R[]
1c
RhT ok Qs :l
1<
MCLR QECE
Program.asm| |[Translatory [Program.bes|| Pragrammer PIC :1|4
wss JRFHd vdd[]
1
N REOANT rer[]
1z
RE1 RE& :l
11
REZ RE3 :l
1c-
RE3 Re4[]

Man

The process of communication between a man and a microcontoller

Physically, "Program" represents a file on the computer disc (or in the memory if it is read in a
microcontroller), and is written according to the rules of assembler or some other language for
microcontroller programming. Man can understand assembler language as it consists of alphabet
signs and words. When writing a program, certain rules must be followed in order to reach a
desired effect. A Translator interprets each instruction written in assembly language as a series
of zeros and ones which have a meaning for the internal logic of the microcontroller.

Lets take for instance the instruction "RETURN" that a microcontroller uses to return from a sub-
program.

When the assembler translates it, we get a 14-bit series of zeros and ones which the
microcontroller knows how to interpret.

Example: RETURN 00 0000 0000 1000

Similar to the above instance, each assembler instruction is interpreted as corresponding to a
series of zeros and ones.

The place where this translation of assembly language is found, is called an "execution” file. We
will often meet the name "HEX" file. This name comes from a hexadecimal representation of that
file, as well as from the suffix "hex" in the title, ex. "test.hex". Once it is generated, the execution
file is read in a microcontroller through a programmer.

An Assembly Language program is written in a program for text processing (editor) and is

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (2 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

capable of producing an ASCII file on the computer disc or in specialized surroundings such as
MPLAB - to be explained in the next chapter.

Assembly language

Basic elements of assembly language are:

. Labels

. Instructions
. Operands
. Directives
. Comments

Labels

A Label is a textual designation (generally an easy-to-read word) for a line in a program, or
section of a program where the micro can jump to - or even the beginning of set of lines of a
program. It can also be used to execute program branching (such as Goto) and the program
can even have a condition that must be met for the Goto instruction to be executed. It is
important for a label to start with a letter of the alphabet or with an underline "_". The length of
the label can be up to 32 characters. It is also important that a label starts in the first clumn.

first column J f

Correctly written labels

Start
_end
P123
Is_it_bigger?

Incorrectly written labels

Start - does nat begin in first column
2_end - beginz with & numker!

Instructions

Instructions are already defined by the use of a specific microcontroller, so it only remains for us
to follow the instructions for their use in assembly language. The way we write an instruction is
also called instruction "syntax". In the following example, we can recognize a mistake in writing
because instructions movilp and gotto do not exist for the PIC16F84 microcontroller.

Correctly written instructions

oy | H'O1FF
goto Start

Incorrectly written instructions

mowlp H'O1FF
gotto Start

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (3 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Operands

Operands are the instruction elements for the instruction is being executed. They are usually
registers or variables or constants.

Typical operands

moviw HFF %
movwi LEVEL

Cperand as a

variable LEWEL in Operand as a
the memary of a hexadecimal
microcantraller number

Comments

Comment is a series of words that a programmer writes to make the program more clear and

legible. It is placed after an instruction, and must start with a semicolon ";".

Directives

A directive is similar to an instruction, but unlike an instruction it is independent on the
microcontroller model, and represents a characteristic of the assembly language itself. Directives
are usually given purposeful meanings via variables or registers. For example, LEVEL can be a
designation for a variable in RAM memory at address ODh. In this way, the variable at that
address can be accessed via LEVEL designation. This is far easier for a programmer to understand
than for him to try to remember address ODh contains information about LEVEL.

Some frequently used directives:

PROCESSOR 16F84
#include "p16f@d.inc™

_CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_0O5C

The following example illustrates a simple program written in assembly language respecting the
basic rules.

When writing a program, beside mandatory rules, there are also some rules that are not written
down but need to be followed. One of them is to write the name of the program at the beginning,
what the program does, its version, date when it was written, type of microcontroller it was
written for, and the programmer’'s name.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (4 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

infnr?wi!aﬁ:in:un 1 Prograrm for initialization of port B and setting pins to status of logic one
on the W™ Wersion 1.0 Date: 10,10.1999, MCU:PIC16F34 Written by: John Smith
program
; Declaration and configuration of a processor
PROCESSOR 16F84
#include “p16f84.inc™ ; Processor title
Directive w» — CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_05C
; Start of program
org I]H[_Il] ; Reset wector
goto Main 1 Goto the beginning of Main
; Interrupt vector
Inclusion of org 0x04 ; Interrupt wector
& rmacro goto Main ; Interrupt routine doesn't exist
#include “bank.inc”
Comment ; Beqginning of the main program
Main
J BANMK1 ; Select memory bank 1
Label #———— moviw 0x00 _
Instruction & movwf TRISB ; Port B pins are output
BANKO v Select memory banlk 0
Operand e |
moviw 0=FF
mownf PORTB ; et all ones to port B
Loop goto Loop s Program remains in the loop
end ; Mecessary marking the end of a program

Since this data isn't important for the assembly translator, it is written as comments. It should be
noted that a comment always begins with a semicolon and it can be placed in a new row or it can
follow an instruction.

After the opening comment has been written, the directive must be included. This is shown in the
example above.

In order to function properly, we must define several microcontroller parameters such as: - type
of oscillator,

- whether watchdog timer is turned on, and

- whether internal reset circuit is enabled.

All this is defined by the following directive:

_CONFI G _CP_OFF& DT _OFF&PWRTE_ON&XT_OSC

When all the needed elements have been defined, we can start writing a program.

First, it is necessary to determine an address from which the microcontroller starts, following a
power supply start-up. This is (org 0x00).

The address from which the program starts if an interrupt occurs is (org 0x04).

Since this is a simple program, it will be enough to direct the microcontroller to the beginning of a
program with a "goto Main" instruction.

The instructions found in the Main select memory bankl (BANK1) in order to access TRISB
register, so that port B can be declared as an output (moviw 0x00, movwf TRISB).

The next step is to select memory bank 0 and place status of logic one on port B (moviw OxFF,
movwf PORTB), and thus the main program is finished.
We need to make another loop where the micro will be held so it doesn't "wander" if an error

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (5 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

occurs. For that purpose, one infinite loop is made where the micro is retained while power is
connected. The necessary "end" at the end of each program informs the assembly translator that
no more instructions are in the program.

4.1 #DEFINE Exchanges one part of text for another

Syntax:
#define<text> [<another text>]

Description:
Each time <text> appears in the program , it will be exchanged for <another text >.

Example:

#define turned_on 1
#define turned_of f 0

Similar directives: #UNDEFINE, IFDEF,IFNDEF

4.2 INCLUDE Include an additional file in a program

Syntax:
#include <file_name=>
#include "file_name"

Description:

An application of this directive has the effect as though the entire file was copied to a place where
the "include" directive was found. If the file name is in the square brackets, we are dealing with a
system file, and if it is inside quotation marks, we are dealing with a user file. The directive
"include" contributes to a better layout of the main program.

Example:

#i ncl ude <regs. h>
#i ncl ude "subprog. asnt

4.3 CONSTANT Gives a constant numeric value to the textual
designation

Syntax:
Constant <name>=<value>

Description:
Each time that <name> appears in program, it will be replaced with <value=>.

Example:

Const ant MAXI MUM=100
Const ant Lengt h=30

Similar directives: SET, VARIABLE

4.4 VARIABLE Gives a variable numeric value to textual
designation

Syntax:
Variable<name>=<value>

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (6 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Description:

By using this directive, textual designation changes with particular value.

It differs from CONSTANT directive in that after applying the directive, the value of textual
designation can be changed.

Example:
vari abl e | evel =20

vari abl e tinme=13

Similar directives: SET, CONSTANT

4.5 SET Defining assembler variable

Syntax:
<name_variable>set<value>

Description:
To the variable <name_variable> is added expression <value>. SET directive is similar to EQU,
but with SET directive name of the variable can be redefined following a definition.

Example:
| evel set O

I ength set 12
| evel set 45

Similar directives: EQU, VARIABLE

4.6 EQU Defining assembler constant

Syntax:
<name_constant> equ <value>

Description:
To the name of a constant <name_constant> is added value <value>

Example:
five equ 5

six equ 6
seven equ 7

Similar instructions: SET

4.7 ORG Defines an address from which the program is stored
in microcontroller memory

Syntax:
<label>org<value>

Description:
This is the most frequently used directive. With the help of this directive we define where some
part of a program will be start in the program memory.

Example:
Start org 0x00

movl w OxFF
nmovwf PORTB

The first two instructions following the first 'org" directive are stored from address 00, and the
other two from address 10.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (7 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

4.8 END End of program

Syntax:
end

Description:
At the end of each program it is necessary to place '‘end' directive so that assembly translator
would know that there are no more instructions in the program.

Example:

movl w OxFF
movwf PORTB
end

4.9 IF Conditional program branching

Syntax:
if<conditional_term=>

Description:
If condition in <conditional_term> was met, part of the program which follows IF directive would
be executed. And if it wasn't, then the part following ELSE or ENDIF directive would be executed.

Example:
if level =100

goto FILL

el se

got o DI SCHARGE
endi f

Similar directives: #ELSE, ENDIF

4.10 ELSE The alternative to 'IF' program block with
conditional terms

Syntax:
Else

Description:
Used with IF directive as an alternative if conditional term is incorrect.

Example:
If time< 50
goto SPEED UP

el se goto SLOW DOMN
endi f

Similar instructions: ENDIF, IF

4.11 ENDIF End of conditional program section

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (8 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Syntax:
endif

Description:
Directive is written at the end of a conditional block to inform the assembly translator that it is
the end of the conditional block

Example:
If [evel =100

got o LOADS
el se

got o UNLOADS
endi f

Similar directives: ELSE, IF

4.12 WHILE Execution of program section as long as
condition is met

Syntax:
while<condition>

endw

Description:

Program lines between WHILE and ENDW would be executed as long as condition was met. If a
condition stopped being valid, program would continue executing instructions following ENDW line.
Number of instructions between WHILE and ENDW can be 100 at the most, and number of
executions 256.

Example:
Wil e i <10

i=i+1
endw

4.13 ENDW End of conditional part of the program

Syntax:
endw

Description:
Instruction is written at the end of the conditional WHILE block, so that assembly translator would
know that it is the end of the conditional block

Example:
whil e i<10
i=i+1
endw

Similar directives: WHILE

4.14 |FDEF Execution of a part of the program if symbol
was defined

Syntax:
ifdef<designation>

Description:
If designation <designation> was previously defined (most commonly by #DEFINE instruction),
instructions which follow would be executed until ELSE or ENDIF directives are not would be

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (9 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

reached.

Example:
#defi ne test

i fdef test ;how the test was defined
...... instructions fromthese |lines woul d execute

Similar directives: #DEFINE, ELSE, ENDIF, IFNDEF, #UNDEFINE

4.15 IFNDEF Execution of a part of the program if symbol
was defined

Syntax:
ifndef<designation>

Description:

If designation <designation> was not previously defined, or if its definition was erased with
directive #UNDEFINE, instructions which follow would be executed until ELSE or ENDIF directives
would be reached.

Example:
#defi ne test

i fndef test ;how the test was undefined
..... .; instructions fromthese |lines woul d execute

Similar directives: #DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE

4.16 CBLOCK Defining a block for the named constants

Syntax:
Cblock [<term=>]

<label>[:<increment>], <label>[:<increment>]......
endc

Description:

Directive is used to give values to named constants. Each following term receives a value greater
by one than its precursor. If <increment> parameter is also given, then value given in
<increment> parameter is added to the following constant.

Value of <term> parameter is the starting value. If it is not given, it is considered to be zero.

Example:

Cbl ock 0x02

First, second, third ;first=0x02, second=0x03, third=0x04

endc

cbl ock 0x02

first : 4, second : 2, third ;first=0x06, second=0x08, third=0x09
endc

Similar directives: ENDC

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (10 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

4.17 ENDC End of constant block definition

Syntax:
endc

Description:
Directive was used at the end of a definition of a block of constants so assembly translator could
know that there are no more constants.

Similar directives: CBLOCK

4.18 DB Defining one byte data
Syntax:
[<label=]db <term> [, <term=>,..... ,<term>]

Description:
Directive reserves a byte in program memory. When there are more terms which need to be
assigned a byte each, they will be assigned one after another.

Example:
db 't*, OxOf, 'e', 's', 0x12

Similar instructions: DE, DT

4.19 DE Defining the EEPROM memory byte
Syntax:
[<term>] de <term> [, <term=>,..... , <term=]

Description:
Directive is used for defining EEPROM memory byte. Even though it was first intended only for
EEPROM memory, it could be used for any other location in any memory.

Example:

org H 2100
de "Version 1.0" , O

Similar instructions: DB, DT

4.20 DT Defining the data table
Syntax:
[<label>] dt <term> [, <term=>,......... , <term=>]

Description:
Directive generates RETLW series of instructions, one instruction per each term.

Example:
dt "Message", O
dt first, second, third

Similar directives: DB, DE

4.21 CONFIG Setting the configurational bits

Syntax:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (11 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm
___config<term> or_ _config<address>,<term=>

Description:
Oscillator, watchdog timer application and internal reset circuit are defined. Before using this
directive, the processor must be defined using PROCESSOR directive.

Example:
_CONFI G _CP_OFF& VWDT_OFF& PWRTE_ON&_XT_OSC

Similar directives: IDLOCS, PROCESSOR

4.22 PROCESSOR Defining microcontroller model

Syntax:
Processor <microcontroller_type=>

Description:
Instruction sets the type of microcontroller where programming is done.

Example:
processor 16F84

Operator Description Example

Operator Description Example

% Current status of pragram counter goto § +3

{ Left bracket 1+(d*4)

) Right bracket { Length + 1 3 * 256

! ME (logic complement) if!{a-b

- Complement flags = -flags

- Megation (second complement) -1 * Length

high Returns higher byte movlw high CTR_Table

low Feturns lower byte fmovlw low CTR_Table

* Multiplying a=hb*c

Fi subdividing a=hb/c

00 subdividing by module entry_len = tot_len % 16

+ Addition tot_len = entry_len * 8 + 1
- =ubtraction entry_len = { tot-13/8
< Moving to the left val = flags << 1

= Mowing to the right val = flags == 1

== Higher than, ar equal If entry_idx == num_entries
= Higher than iIf entry_idx = num_entries
< Lesser than if entry_ids < num_entries
<= Lesserthan, or equal If entry_idx <= num_entries
== Equal if entry_idx == num_entries
1= Mot equal if entry_id= = num_entries
(LY Cperation AMD on bits flags = flags & ERROFR_BIT
- Exclusive OR on hits flags = flags ~ ERROR_BIT
| Lagic OR an hits flags = flags | ERROR_BIT
AR I rontir AN if flen == B12% BR (h == m

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (12 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

~ Exclusive OR on hits flags = flags -~ ERROR_BIT
| Lagic OF an hits flags = flags | ERROR_BIT
B B Lagic AND if {len == 512} && (b ==)
1 Logic OR if (len == 512% || (b ==)
= Equal entry_index = 0
+ = Add and assign entry_index += 1
-= =ubtract and assign entry_index -= 1
= Multiply and assign entry_index *= entry_length
= Divide and assign entry_total /= entry_length
= Divide at module and assign entry_index %= 8
== Move to the left and assign flags <==13
=== fove to the right and assign flags ===13
&= Logic AMD and assign flags &=EERRCE_FLAG
= Logic OR on bits and assign flags = EEROR_FLAG
A= Exclusive OR on hits and assig flage"=EEREOE _FLAG
++ Incrernent by one 1+
- - Decrease by one 1 --

As a result of the process of translating a program written in assembler language we get files like:

. Executing file (Program_Name.HEX)
. Program errors file (Program_Name.ERR)
. List file (Program_Name.LST)

The first file contains translated program which was read in microcontroller by programming. Its
contents can not give any information to programmer, so it will not be considered any further.
The second file contains possible errors that were made in the process of writing, and which were
noticed by assembly translator during translation process. Errors can be discovered in a "list" file
as well. This file is more suitable though when program is big and viewing the ‘list' file takes
longer.

The third file is the most useful to programmer. Much information is contained in it, like
information about positioning instructions and variables in memory, or error signalization.

Example of 'list' file for the program in this chapter follows. At the top of each page is stated
information about the file name, date when it was translated, and page number. First column
contains an address in program memory where a instruction from that row is placed. Second
column contains a value of any variable defined by one of the directives : SET, EQU, VARIABLE,
CONSTANT or CBLOCK. Third column is reserved for the form of a translated instruction which PIC
is executing. The fourth column contains assembler instructions and programmer's comments.
Possible errors will appear between rows following a line in which the error occured.

||
H Makro: FProba.lst [
MPASH 0Z.40Released PROBA . ASM 4-zZo-z0o00 F-1e:-17 PALCE 1
LOC O0OBJECT CODE LINE S0URCE TEXT
WALITE

ooaol sProgram for initialization of port B and setbing its pins
ooaog ;£o the state of logic onhe

ooz ;Version: 1.0 Dace: 10,05 2000, MCUT: PIC1EFS4 Tritten
Qo004 ;by: Petar Petrowic
Qo005

ooaos ;Declaration and configquration of the processor

I talalaial TTAATAMAAT 1 ST S A

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (13 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

oooo4 ;by: Petar Petrowic

oooos

ooaoe ;sheclaration and configquration of the processor

Qoooo7? PROCESS0R 1eFSd

oooog #include "plefS4.irnc" ;Processor title

ooool LIST

aoang ;P1EFE4 THC Standard Header File, Wersion Z.00 Microchip
;Technology, Inc.

oo0l3e LIAT

oooos
Z007 3FFl ooolo CONFIG _EP OFF & WDT_OFF & _PWRTE ON & _=XT 02C
oooll
oaaoc Qo00lZ COMNSTAMT BASE = 0Ox0c
Qo013
oool4 ;Start of a program
aoan ooalLE org Ox00 ;sBeset wector
Qooo ze0k ooole goto Main ;G0 Lo the beginning of the main program
Qo017
oools ;sInterrapt wector
aoo4 oooars oro Ox04 sIntermnpt wecktor
aoo4 220k ooozo gqoto Main rInterrnpt roucine does not exist
Qoo 1
0OozZ ;Begimning of the main program
o002 #include "Barnlz. ine" ; File with macros
|:||:||:||:|l ;'.I.".t".l.'******t*t*1'1.'1".!.".!.".!.".!.'*t********1.'1.'1.".!.'1.".!.".!.'*t****t*********t***t**
ooooz Makros BAMNEO and BANKEL
|:||:||:||:|3 ;'.I.".!.".I.'1.".!.'*1‘*1‘****1.'1.'1.".!".!.'1.".!.'*t****t***1.'1.'1.".!.'1.'1".!.'*t****t*********t*******
Qoo
oooo 0010 ooooE T _Temp set EASE+4
oaao 0o0ll o0o0e Stat Temp Set BASE+E
oaao 00lz 00007 Option Temp Set BASE+S
oooos
oooos
o0old EBANEO macro
oooll ket ATATUE BPO ; Select memory hank 0O
o00lz: endm
Qo013
oool4 EBAMEL bITF=Tud afu]
ooolE bst STATOS BPO ; Select memory bank 1
ooole endm
Qo017
oaos oo00z4 Main
ooo0zE BAMEL ; Select memory bank 1
aook 1e83 bl b=t STATOS BPO ; Select memory bank 1

ooos& =000 O00zZ& mowlwr oz00
Message [30Z2]: PBegister in operand not in bank 0. Ensure that bank bits are

Correct.

oo O0ge 0o0z7 wovwf TRIBE JsPort B pins are output
ooozs
aoozs BANED ;Gelect memory bank 0O

ooos 1283 M bef STATUS, BPO ;Belact memory bank 0

ooos 30FF 00030 mwmovlw OxFF

Oo0a O0ge 00031l weovwf PORTE ;Bet all ones to port B
o003z

Oooe Z20E nln]peici Loop goto Loop ; Program stays in the loop
00034
Qo035 EMNL ;Meces=sary marking the end of a program

MEMOERY TSAGE MAP ('K' = Used, = = Trased)

0000 : X-——0000000K-—-= ——=———mm o mmmmm e e
2000 1 —-———m= e e e e

211 other memory blocks wpmsed.

Program Mewory Words Used: 2
Program Mewory Words Free: 101k
Errors: 0

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (14 of 15) [4/2/2003 16:18:11]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

ILUHJ.ﬂ.I.I.I. J.J.:J.I.I.UJ._lll LLUL SN By S) [N 1§ N -

Program Mewmory Words Free: 101k

Errors: 0

Marnings: 0 reportced, 0 swppressed
Messages: 1 reported, 0 swppressed

At the end of the "list" file there is a table of symbols used in a program. Useful element of 'list’'
file is a graph of memory utilization. At the very end, there is an error statistic as well as the
amount of remaining program memory.

Macros are a very useful element in assembly language. They could briefly be described as "user
defined group of instructions which will enter assembler program where macro was called”. It is
possible to write a program even without using macros. But with their use written program is
much more readable, especially if more programmers are working on the same program together.
Macros have the same purpose as functions of higher program languages.

How to write them:

<label> macro [<argumentl>,<argument2>,...... <argumentN=>]

From the way they were written, we could be seen that macros can accept arguments, too which
is also very useful in programming. Whenever argument appears in the body of a macro, it will be
replaced with the <argumentN=> value.

Example:
MA FORTE macro ARGl
BAMKD iSelect memory bank O
movlw ARG1 Malue from ARGL argurent
s stored in working reqister
mowwf PORTE svalue from ARG1
; argurment placed on port B
endm imacro ended

The above example shows a macro whose purpose is to place on port B the ARG1 argument that
was defined while macro was called. Its use in the program would be limited to writing one line:
ON_PORTB OxFF , and thus we would place value OxFF on PORTB. In order to use a macro in the
program, it is necessary to include macro file in the main program with instruction include
"macro_name.inc". Contents of a macro is automatically copied onto a place where this instruction
was written. This can be best seen in a previous list file where file with macros "bank.inc" was
copied below the line #include"bank.inc"

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (15 of 15) [4/2/2003 16:18:11]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

CHAPTER 5
MPLAB

Introduction

5.1 Installing the MPLAB program package
5.2 Introduction to MPLAB

5.3 Choosing the development mode

5.4 Designing a project

5.5 Designing new assembler file

5.6 Writing a program

5.7 MPSIM simulator

5.8 Toolbar

MPLAB is a Windows program package that makes writing and developing a program easier. It
could best be described as developing environment for some standard program language that is
intended for programming a PC computer. Some operations which were done from the instruction
line with a large number of parameters until the discovery of IDE "Integrated Development
Environment"” are now made easier by using the MPLAB. Still, our tastes differ, so even today
some programmers prefer the standard editors and compilers from instruction line. In any case,
the written program is legible, and well documented help is also available.

g,

; : T -_ G Frizht Micrechip, ef'hwhzf'm;t.

— a. — - r=r

MPLAB consists of several parts:

- Grouping the projects files into one project (Project Manager)

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (1 of 10) [4/2/2003 16:18:18]

Chapter 5 - MPLAB

- Generating and processing a program (Text Editor)
- Simulator of the written program used for simulating program function on the microcontroller.

Besides these, there are support systems for Microchip products such as PICStart Plus and ICD (In
Circuit Debugger). As this book does not cover these , they will be mentioned only as options.

Minimal computer requirements for staring the MPLAB are:

- PC compatible computer 486 or higher

- Microsoft Windows 3.1x or Windows 95 and new versions of the Windows operating system
- VGA graphic card

- 8MB memory (32MB recommended)

- 20MB space on hard disc

- Mouse

In order to start the MPLAB we need to install it first. Installing is a process of copying MPLAB files
from the CD onto a hard disc of your computer. There is an option on each new window which
helps you return to a previous one, so errors should not present a problem or become a stressful
experience. Installment itself works much the same as installment of most Windows programs.
First you get the Welcome screen, then you can choose the options followed by installment itself,
and, at the end, you get the message which says your installed program is ready to start.

Steps for installing MPLAB:

. Start-up the Microsoft Windows

. Put the Microchip CD disc into CD ROM

. Click on START in the bottom left corner of the screen and choose the RUN option
. Click on BROWSE and select CD ROM drive of your computer.

. Find directory called MPLAB on your CD ROM

. Click on SETUP.EXE and then on OK .

. Click again on OK in your RUN window

NO O~ WNPR

Installing begins after these seven steps. The following pictures explain the meaning of certain
installment steps.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (2 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

2E MPLAT 500000 |nateflation

WMLAE w5.00. 00 Inslallslion

Belcome!

Thiz iet et prige amwill ivitall the HFLAR «S00000

Preas dhe Mest budion b shat B insdadsfon v'ou canpisrs
B CancllElin e F penn s ol wled [120l Do MPLAE
I A ot iy b

Welcome screen at the beginning of MPLAB installment

At the very beginning, it is necessary to select those MPLAB components we will be working with
Since we don't have any original Microchip hardware components such as programmers or
emulators, we will only install MPLAB environment, Assembler, Simulator and the instructions.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (3 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

MPLAE v5 00.00 Installation
Select Components
Choogze which components to install by checking the bores
belonwy.
W MPLAE IDE Files 2532 k
¥ tMPaSHMPLINEMPLIE Files 7321k
W MPLAB-SIM Simulator Support Files 4886 k
[~ MPLAE-ICE Emulator Support Files J623 k.
[~ PICMASTER Emulator Support Files 1198 k
[~ PRO MATE Support Files h0a k
[T PICSTART Pluz Suppoart Files 1657 k
[T #MPLAB-ICD Debugger Support Files 245k
W Help Files 5134 k
Dizgk Space Required: 19873 k
Dizgk Space Remaining: 2074447 k.
¢ Back Mewut > Cancel

Selecting components of MPLAB developing environment

As it is assumed you will work in Windows 95 (or a newer operating system), everything in
connection with DOS operating system has been taken out during selection of assembler
language. However, if you still wish to work in DOS, you need to deselect all options connected
with Windows, and choose the components appropriate for DOS.

MPLAE v5. 00.00 Installation

Select Language Components

Chooze which components ta inztall by checking the boxes
belowy.

W MPASK for Windows g4 k
[MP&5H for DOS 579 k
V¥ MP&5M Header Files, Samples, and Templates 1999 k

¥ MPLINEAMPLIE for wWindows35 1586 k
™ MPLIMEAMPLIE for \Windows 3.1/D05 2150 k.
W Processor Linker Scripts 173 k
Diizk Space Reguired: 17144 |k
Dizgk Space Remaining: 2077170 k

¢ Back Cancel

Selecting the assembler and the operating system

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (4 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

Like any other program, MPLAB should be installed into some directory. This option could be
moved into any directory on any hard disc of your computer. If you didn't have a more pressing

need, it should be left at selected place.

MPLAB v¥5_00.00 Installation Ed

Select Destination Directory

Fleaze zelect the directon where the MPLAB +5.00.00 files are
to be ingtalled.

C:%\Program Files\MFPLAR Browse |

< Back

Cancel |

Choosing the directory where MPLAB will be installed

Users who have already had MPLAB (older version than this one) need the following option.
The purpose of this option is to save copies of all files which will be modified during a changeover
to a new MPLAB version. In our case we should leave selected NO because of presumption that

this is your first installment of MPLAB on your computer.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (5 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

MPLAE v5 00.00 Installation

Backup Replaced Files?

T hiz inztallation program can create backup copies of all files
replaced during the installation. Do you want bo create
backups of the replaced files?

¢ Back Mewut > Cancel

Option for users who are installing a new version over an already installed MPLAB

Start menu is a group of program pointers, and is selected by clicking on START option in the

lower left corner of the screen. Since MPLAB will be started from here, we need to leave this
option as it is.

MPLAE v5. 00.00 Installation

Add to Start Menu?

Do pou want to create shortcuts to access the installed files?y

* es
Mo

¢ Back

Adding the MPLAB to the start menu

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (6 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

Location that will be mentioned from here on, has to do with a part of MPLAB whose explanation
we don't need to get into. By selecting a special directory , MPLAB will keep all files in connection
with the linker in a separate directory.

Linker Scripts Ed

Linker script Location

Due to the expanded number of linker zcripts you may
now intall them in their awin sub directary. Users with
previous projects may prefer to keep them in the MPLAR
directary for compatibility with exizting projects [default].
[f you are a new user you mag wish to keep these in the
YWLER zub directary.

™ |natall filez to MPLAE install directaory

* |nstall files to MPLAESLEr sub direchong

< Back Hest = Cancel

Determining a directory for linker files

Every Windows program has system files usually stored in a directory containing Windows
program. After a number of different installments, the Windows directory becomes overcrowded
and too big. Thus, some programs allow for their system files to be kept in same directories with
programs. MPLAB is an example of such program, and the bottom option should be selected.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (7 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

Select System Files

Select System Files

YWiould pau like to install spstern DLL files to your
WafindowshSye directomn? IF pou are running MPLAE
inztalled on a commaon network, you may not be
allovwed bo wrike files to this directony. |F you da not
inztall them in the SafindowshSes directary, they will
be put in the zame directary az MPLAB.

™ |nstall files to NwWindows\Sys

% |nstall files bo MPLAE install direchany

Mewut > Cancel

Selecting a directory for system files

After all of the above steps, installment begins by clicking on '‘Next'.

MPLAEB 5 00.00 Installation

Ready to Install!

'au are now ready o ingtall the MPLAE +5.00.00.

Frezs the Hext buttan to begin the inztallation ar the Back
buttar to reenter the installation infarmation.

< Back

Cancel |

Screen prior to installment

Installment doesn't take long, and the process of copying the files can be viewed on a small

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (8 of 10) [4/2/2003 16:18:18]

Chapter 5 - MPLAB

window in the right corner of the screen.

Debugging Options have bean Consofidalted!

[revelopmend Mode Condorare the ostun

_ﬂ: ST, Irfam B
Conhigurslicn 1 Powenr "l igak Dpticne | s ey
Tools 1 Paite ‘l M e i

| 1.} e e
Piscerzor | 160568, PLMIENAD o sbedtd proCREho
S HPLAR-S1KE Simul r [T troen o ool

S Smulatee | gy i el
4+ MWPMLAR:ICE Emulaioe {Canno! race oo hreak on dala

| | - .
Click Totails” dor sdditional £
 FICMASTER Emwdstor | lisiloimatize on PIC1 B8, gl

 ICEPIC melected dovice
 HPLAR-CD 1 ehingepes

Inguze | Relails... I

[ok | cacel | ppe |

|rick Lasd iy

Copynaiffe
C/\Paogran FaeMPLAEAPTECTAIND

Installment flow

After installment have been completed, there are two dialog screens, one for the last minute

information regarding program versions and corrections, and the other is a welcome screen. If
text files (Readme.txt) have opened, they would need to be closed.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (9 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

MPLAE +5_00.00 Installation

View README Files?

E ach inztalled component of MPLAB has an azsociated
RE&DME file that contains impartant information, such as
device support and knaown izsues.

YWhould vou like ta view theze files now?

o es
Mo

Please review these files before contacting
Customer Support.

Cancel |

Last minute information regarding program versions and corrections.

By clicking on Finish, installment of MPLAB is finished.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (10 of 10) [4/2/2003 16:18:18]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

5.2 MPLAB

Following the installment procedure, you will get a screen of the program itself. As you can see,
MPLAB looks like most of the Windows programs. Near working area there is a "menu” (upper blue
colored area with options File, Edit..etc.), "toolbar" (an area with illustrations the size of small
squares), and status line on the bottom of the window. There is a rule in Windows of taking some
of the most frequently used program options and placing them below the menu, too. Thus we can
access them easier and speed up the work. In other words, what you have in the toolbar you also
have in the menu.

=TMPLAD
Fie Promct Edt Debug Opiore Toch Windew Help

[=] (=)=] [£]%]@ @] [B el EFEEE) (1)

N N I |FCIEREE el w0 - zdsc 8k On[EO [MBz |Ussr

The screen after starting the MPLAB

The purpose of this chapter is for you to become familiar with MPLAB developing environment and
with basic elements of MPLAB such as:

Choosing a developing mode

Designing a project

Designing a file for the original program

Writing an elementary program in assembler program language
Translating a program into executive code

Starting the program

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_02Poglavlje.htm (1 of 2) [4/2/2003 16:18:20]

Chapter 5- MPLAB
Opening a new window for a simulator
Opening a new window for variables whose values we watch (Watch Window)
Saving a window with variables whose values we are watching
Setting the break points in a simulator (Break point)

Preparing a program to be read in a microcontroller can boil down to several basic steps:

Table of contents Chapter overview Next page

© Copyright 1999. mikroaektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_02Poglavlje.htm (2 of 2) [4/2/2003 16:18:20]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

Table of contents Chapter overview Next page

Setting a developing mode is necessary so that MPLAB can know what tools will be used to
execute the written program. In our case, we need to set up the simulator as a tool that's being
used. By clicking on OPTIONS---> DEVELOPMENT MODE, a new window will appear as in the
picture below:

Development Mode
Configuration] Power] Pins] Break Options 3
i Tools 'l Ports] Clock] Memory 3

“#+ Mone [Editor Only) Processor: | PIC16F34 hd
* MPLAB-SIM Simulator :I
o BEFH AR OE Babator

O ll
B MPLARADD Debusoes

Inguime [Metails. .

(1] 4 Cancel Apply | Help |

Setting a developing mode

We should select the 'MPLAB-SIM Simulator’ option because that is where the program will be
tried out. Beside this option, the 'Editor Only' option is also available. This option is used only if we
want to write a program and by programmer write' hex file' in a microcontroller. Selection of the
microcontroller model is done on the right hand side. Since this book is based on the PIC16F84,
this model should be selected.

Usually when we start working with microcontrollers, we use a simulator. As the level of
knowledge will have increased, program will be written in a microcontroller right after translation.
Our advice is that you always use the simulator. Though program will seem to develop slower, it
will pay off in the end.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_03Poglavlje.htm [4/2/2003 16:18:21]

mailto:office@mikroelektronika.co.yu

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/5_04Poglavlje.htm

Table of contents Chapter overview Next page

In order to start writing a program you need to create a project first. By clicking on PROJECT -->
NEW PROJECT you are able to name your project and store it in a directory of your choice. In the
picture below, a project named ‘'test.pjt’ is being created and stored in c:\PIC\PROJEKTS\
directory.

This directory is chosen because authors had such directory set up of on their computer. Generally
speaking, directory with files is usually placed in a larger directory whose name is unmistakably

associated with its contents.

Mew Project |
File Name: Directonies: oK
|test.pit | | c:\pic\projects
Cancel
ey e -
| pic Help

& projects

List Files of Type: Drives:
Project Files [~ pijt] j = o j

Opening a new project

After naming the project, click on OK. New window comes up as in the next picture.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (1 of 4) [4/2/2003 16:18:24]

http://www.mikroel ektronika.co.yu/english/pr