database applications for any pl‘c:tform

ild Web :
P tabase experience require

Fully updated for

— no programming or da

Companion Web site
features code examples
and valuable links

2nd Edition

A Reference
for the

Rest of Us!

FREE eTips at dummies.com*

Janet Valade
Author of PHP 5 For Dummies

PHP & MySQL"

JO)

DUMMIED

2ND EDITION

by Janet Valade

WILEY
Wiley Publishing, Inc.

PHP & MySQL"
FOR

DUMMIED

2ND EDITION

PHP & MySQL"

JO)

DUMMIED

2ND EDITION

by Janet Valade

WILEY
Wiley Publishing, Inc.

PHP & MySQL°® For Dummies®, 2nd Edition
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, e-mail:
permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004101961
ISBN: 0-7645-5589-8

Manufactured in the United States of America
109 87654321

2B/SU/QT/QU/IN

WILEY

About the Author

Janet Valade is the author of PHP 5 For Dummies as well as the first edition

of this book. In addition, Janet has authored and revised chapters for Linux

books, written chapters for a Certified Internet Webmaster (CIW) book, and

written the Apache section for a book on LAMP (Linux, Apache, MySQL, and
PHP).

Janet has 20 years of experience in the computing field. Most recently, she
worked as a Web designer and programmer in a Unix/Linux environment for
four years. Prior to that, Janet worked for 13 years in a university environ-
ment, where she was a systems analyst. During her tenure, she supervised
the installation and operation of computing resources, designed and devel-
oped a data archive, supported faculty and students in their computer usage,
wrote numerous technical papers, and developed and presented seminars on
a variety of technology topics.

To keep in touch, see janet.valade.com.

Author’s Acknowledgments

First, | wish to express my appreciation to the entire open source community.
Without those who give their time and talent, there would be no cool PHP
and MySQL for me to write about. Furthermore, [never would have learned
this software without the lists where people generously spend their time
answering foolish questions from beginners.

[want to thank my mother for passing on a writing gene, along with many
other things. And my children always for everything. My thanks to my friends
Art, Dick, and Marge for responding to my last-minute call for help. I particu-
larly want to thank Sammy, Dude, Spike, Lucky, Upanishad, Sadie, and E.B. for
their important contributions.

And, of course, [want to thank the professionals who make it all possible.
Without my agent and the people at Wiley Publishing, Inc., this book would
not exist. Because they all do their jobs so well, I can contribute my part to
this joint project.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, Production

and Media Development Project Coordinator: Maridee Ennis

Senior Project Editor: Pat O’Brien Layout and Graphics: Andrea Dahl,

Acquisitions Editor: Terri Varveris Joyce Haughey, Stephanie D. Jumper,
Kristin McMullan, Lynsey Osborn

Proofreaders: Andy Hollandbeck,
Carl William Pierce, Brian H. Walls,
Editorial Manager: Kevin Kirschner TECHBOOKS Publishing Services

Permissions Editor: Laura Moss Indexer: TECHBOOKS Publishing Services
Media Development Specialist: Kit Malone

Senior Copy Editor: Teresa Artman
Technical Editor: Craig Lukasik

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.the5thwave.com

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director
Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JHEPOAUCTIONaeeeeeeaeeeeeeeaeeeeeennnaneeeeennasseesannsaeeennnnsaees]

Part I: Developing a Web Database Application
Using PHP and MySOLcueeeeeeeaaaaaaccccccaaannnnnnnnae ©

Chapter 1: Introduction to PHP and MySQLc.ccccovviiriiiniiniiieeciecieseseeeeeseesieens 9
Chapter 2: Setting Up Your Work Environmentccccocceevievienenienceniesieseesieene 21
Chapter 3: Developing a Web Database Applicationccccecvverviriienenenenenenen. 37
Part II: MySOL Databasecccccueeaceeeiceeeiaeeeanenes03
Chapter 4: Building the Databaseccccueeeeviieiieieeieeeeeeeeeee e 65
Chapter 5: Protecting YOUT Dataccccceeeeieierienieniececeeeeeeieieee e eseee e eseenees 93
Part III: PHPcoueceeaccviaceniccvicieeccnascneesnncesneeneee 113
Chapter 6: General PHPcooovoiiiiiiiececeeeeeeee et 115
Chapter 7: PHP Building Blocks for Programscccceveveiniiienieneneneneeceiene 145
Chapter 8: Data In, Data QULcccooiiiiieiiieiiciccee et ae e ens 189
Chapter 9: Moving Information from One Web Page to the Nextccccccecveuinnenns 257

Part [U: Applicationscccoececeecaceeeicreccieceaeea 279

Chapter 10: Putting It All TOZETREYcc.covvieiieiieiecieteeeeeeetee e 281
Chapter 11: Building an Online Catalogcccceceevierierinenineeeeeees e 293
Chapter 12: Building a Members Only Web Sitecccccevieiieiieeiieciecieceeseeieeiens 331
Part U: The Part of Tentsceuueeeeeeeeeeeecccccccceaaaanaaaa 301
Chapter 13: Ten Things You Might Want to Do Using PHP Functions 363
Chapter 14: Ten PHP GOtChasccccceiiiiiieiiiiiiiiecieteeeeeeetee et 371

Part UL: Appendixesccccuecceeaceecauneaenacnncanaaacns 377

Appendix A: Installing MYSQLcc.ooiiiiiiieeeeee ettt 379
Appendix B: Installing PHPccoooviriiieeeeeeee e 395
Appendix C: Installing and Configuring Apachecccoccovvierviiniiniininnennenieneee 409

JRACK «..nnnennnnneeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaasannnnnnneeesD2]

Table of Contents

JOEPOAUCTION «..aaeeeeaeeeeeeeaeeeeeennaaaeeeennasseeesnnnseeeennnseeeeens]

ADout ThisS BOOKc.eoiiiiiiiiiieceeeee et ae e 1

Conventions Used in This BOOKccccccoecuieieiiinienieeeeeieeeeeeseeeeiens 2

What You're Not to Readccceeieeieiiiiiiciececececteeee e 3

Foolish ASSUMPIONScooviiiiiiiiiiiieieeieceeece sttt san e 3

How This BOOk Is Organizedccocceevvirviiniienienieniieneeieeieeieseeseeseeeeeens 4
Part I: Developing a Web Database Application

Using PHP and MySQLoooiiiiiieeeceeeee et 4

Part II: MySQL Databaseccoceevieierienieniereeeeeeeene e 4

Part Il PHP ...ooeiiiececeeeeetet ettt ettt 4

Part IV: APPlICAtioNsSccoocvieiiriiiieieeieciee ettt 4

Part V: The Part of TENSc.cccveeeeirieiiieieeieeeeceeeeerecre e 5

Part VI: ADPENdiXESc.cccveiieieeiieirieniieeieeie ettt eveeeve e 5

Icons Used in This BOOKccceviiiiiiiiieiiiciieieeeee ettt ens 5

Where to GO from HEYec.ocvieieeieieeieeceeeee et 5

Part I: Developing a Web Database Application
Using PHP and MySOLuuueeeeeeeaaaaacaecccacaaaannnnnnnnc §

Chapter 1: Introductionto PHPand MySQL 9
What Is a Web Database Application?ccccoceeviirvienveeneecieeieeiecreeeenne 10

The databaseccccoeeiiiiiiiiiiiee e 11

The application: Moving data in and out of the database 12

MySQL, My Databaseccceceviiriiniiiiniinienientesteseeieeie st 12
Advantages of MySQLcooviiiiieeeeeeeeeeeee e 13

HOW MyYSQL WOTKS ...oviiiiiieieieieeeeceetetete ettt 14
Communicating with the MySQL servercccocceeveeveeviievieeceenenns 14

PHP, @ DAta MOVETveeiieeeeeeeeeeeeeeeeeee ettt eeeeaeeeseeaeeseseeeesesseeeseesaneesnas 15
Advantages Of PHPcccociviiiiiiiiiceeeetceeeee e 16

HOW PHP WOTKS ..ottt 16

MySQL and PHP, the Perfect Paircccccoevveeieiiciieecececeeceeeeee, 17
Advantages of the relationshipccccoceveneniniiniiiiee 18

How MySQL and PHP work togethercccocoevieeiiceeiiieiecieeeene 18

Keeping Up with PHP and MySQL Changescccccceveevieevierrienceeneenieenne. 19
Chapter 2: Setting Up Your Work Environment 21
The Required TOOIScceeciieiiiiiieieeieeeeeereet ettt 21
Finding a Place to WOTKccccoociiriiniiiiiiiniietctcececeee e 22

A company WeD Sitecccoeviriiiiiniinieicieneceetee e 22

A Web hosting cOompanyccccceeeceeeiiieiieeiieeieees e 24

Setting up and running your own Web Siteccceceevenienenenennen. 27

Xii PHP & MySQL For Dummies, 2nd Edition

Testing, Testing, 1, 2, 3 ..ottt 32
Testing PHPooviiiieee e 32
Testing MYSQL ..ottt e 34

Chapter 3: Developing a Web Database Application 37

Planning Your Web Database Applicationcccoceveeveevienciencieneenneenne. 37
Identifying what you want from the applicationc.cccccceeuenennn. 38
Taking the user into considerationcccceevevcieneivenninnienieennenne 40
Making the site €asy t0 US€cccooeevirvieriieniiniineceeeeeeeeeeseene 41
Leaving room for eXpansioncccccceevervieniienieenennenniennieneeneene 42
WIHHING it AOWIL .ot 42

Presenting the Two Running Examples in This Bookcccc.c........ 42
STUE fOF SALE ...t 43
MeMDETrS OMNLYoooveiiiiiiiiiiieeiertee ettt see et aesaesane e 43

Designing the Databasecccccoiiviiiiniiiniiinientccececeee e 44
Choosing the dataccoccevierieniiiiieee e 44
Organizing the datacccooerieirineeeee e 46

Designing the Sample Databasesc.ccocecevereneniniinieeeeeeeeeeee 51
Pet Catalog design PrOCESSccceevveviierieeieeieeieseeseeie e e eae e 51
Members Only design PrOCESScccceevveevierienieniierieeieeieeieeeeseenne 53

TYPES Of DALA ..oovieeieiieieceeeeeeeeee sttt 56
Character datac.coeevevrineeeceeeeereteeeeee et 56
Numerical datac.cocoevevrinirninceeeece e 57
Date and time datacoccooeririniniiieeeeeee e 57
Enumeration datac..ocooeeveieineiiee e 57
MySQL data type NAMESccceeeeieieieieieereereeeeeeeessesaesressesseennas 58
WIHING it dOWIL .o e 59

Taking a Look at the Sample Database Designsc...ccceveervieriencenennee. 59
Stuff for Sale database tablesc..ccccccoeveininrineninneneceene 59
Members Only database tablesccccceceeciinienieeneeneeceeieceeeeeae 60

Developing the AppliCationccccocveeviieciiriieniecieneeeeeeee e 61
Building the databasecccocevierieniiniincieciceeeeeeeeee e 62
Writing the Programscccocevienieneenenienieneeteseeseese e 62

Part II: MySOL Databaseccccceeeaeeaceecaeeeaceeeaeea 03

Chapter 4: Building the Database 65
Communicating with MySQLccocvoiiieieeeeeeeeeeeee e 65
Building SQL QUETIESccceevierieriiiieieeieeieeieeteseeee et sae s 66

Sending SQL QUETIESccccevvierieriiriienieeieeiestestestesie e et saesee e 67

Building a Databaseccocoviiriiniininieeeteee e 72
Creating a new databasecccovevieiecienienerieeeee e 73

Deleting a databasecccccueeieiieiiienieieciecie et 73

Adding tables to a databasecccceeveeviieiiiiciieiicieee e 73

Changing the database structureccccocevviiniienencieniiniienieneene 76

Table of Contents

Moving Data In and Out of the Databasecccccoovirvirvenviniiniinieenee, 77
Adding informationccocceveririninnee e 77
Retrieving informationcccocevienieniececciecieceeeeeeeee e 81
Combining information from tablescccecevviirvinnieenieneeieneens 86
Updating informationceccevviirienieninienienieseceeeeeeesee e 90
Removing informationcccecevieniininieniiinienccceceeeeeeeee 91

Chapter 5: Protecting YourDatacoovnntn. 93

Controlling Access to Your Datacccoccevvevvieniinieniinienieniecieseenceeenen 93
Understanding account names and hostnamesccccoceeceennenne 94
Finding out about passwordsccccecevieverinienicenieiereeseee e 96
Taking a look at account permissionscceccceeceeerceernieeeeennnnenn. 97

Setting Up MySQL ACCOUNLScceevvieviieiieiieiecteseeseesteesie e see e 98
Identifying what accounts currently existcccccoevvvverviercrennnnne. 100
Adding new accounts and changing permissionsccccce....... 100
Adding and changing passwordsc.cccccevevvienieininnennenreeneenne 102
Removing permissionscccceveeverveniienieniienceeeeeieeeeeee e 102
RemMOVING aCCOUNLScoovieiieiieieeieciece ettt 103

Backing Up YOUY Datacccoeeeviiriiiiiieiecieeeestese ettt eaestesve e seeeseees 104

Restoring YOUr Datacccceeveevieriiniinieniecctce et 106
Repairing tables ..ot 107
Restoring from a backup COPY ...ccocveviiriiniiniiiieceeieeieeeeeee e 108

Part II1: PHPceeeeeaaaaaaaaaeeeeeeecacecacceneeeecaceeeee 1 14

Chapter6:General PHPt 115
Adding a PHP Section to an HTML Pagecccccoovevevievievenineeeeieene, 115
Writing PHP Statementsccccoocveviviiniinniinieeteeceeesese e 118
Using PHP Variablescccooeoiiiiiiiiniiieecteececieeeee et 121

Naming a variableccccoooiieriiiiiieeeeeeeeee e 121
Creating and assigning values to variablescccccocovverininnnnnn. 122
Dealing with NOtICESccceeviirviiiiieiieiececeeeeeeee e 123
Using PHP CONSTANSocceeviiviiiiiiiieniectesece ettt see e es 124
Working with NUMDETSc.cceceriiriieieieicieee et 125
Working with Character Stringsccccoccvveviiiniiiniinirreeeee, 127
Single-quoted strings versus double-quoted strings 128
JOINING STFINGS ..conviiiiiiiei e 130
Working with Dates and Timescccccoceevieecieniiiniiineeeecece e 130
Formatting @ dateccooceevieviriieiieniececeeeccce e 131
Storing a timestamp in a variableccccocevviiniiniiniinnienieneee, 132
Using dates with MySQLcocooviiriiniiiiieeeeeeeeeeee e 133
ComPparing VAUEScccocoieviieiiieieciecieeeeseesteesieesteereeaeeaeeaeesaesseesseeseas 134
Making simple COMPAriSONScccceevverierienienieeneesieee e eae e e 135
Matching character strings to patternscccceeveeveeveevieecvennnenne. 137
Joining Comparisons with and/or/Xorcccceceevieneeneenenieriienieneeenn 141

Adding Comments to Your Programcccccoeveevirninnenneniiensieneeneenens 143

X

xi(/ PHP & MySQL For Dummies, 2nd Edition

Chapter 7: PHP Building Blocks for Programs 145
Useful Simple Statementsccccoeceevieeienienieniceeiecie e 146
Using echo statementscccocevvieniieniienienienecececeeeesee e 147
Using assignment statementscccccoceevieniienennennennennenieneene 150
Using increment statementscccceeevieviieeiciieeceecceeeeeeee e 151
USING €XIt .eeeeiiiriiiiieeteteeee ettt s 152
Using function Callscccocieviiiiiieiieeiecieceeceeeee e 153
USING PHP AITAYS ...ocveovieeieeieieciecteceeteeeetet ettt a s sveeseesseaesaens 153
Creating Arrayscccccccevererieeeeeeietesiesresesseeeesessessessessessssssessessens 154
VIEWING AITAYS ..ovvevieiieeieiieeieeeiesiesieeeseeeeeeeessessessessssssessessensensensens 155
Removing values from arrayscccccceeeeeveieeeciienceesceeeseeecee e 156
SOTHING AYTAYS ..eovieveevieiieierierteeie ettt ettt st sae st eesaens 156
Getting values from arraysccccccceceevieevienieeneeneeneeneeseeee e 158
Walking through an arrayc.ccccceceveevieiiininceceeeeeeeee e 160
Multidimensional arraysccccceeceeceevieniieniienieeneeneeseeseeseeeae e e 162
Useful Conditional Statementscc.ccceceverenenineeneniencneneneeceeenens 165
Using if statementsccccceeeoiiiciiecieeeeeee e 166
Using switch statementscccocevviniinieniiniineeeeeeeeeeee 169
USING LOOPS o.evvieetiiieiiestteseeteete ettt ettt et saeebeeteetesstassaessaessnensean 170
USING fOF IOOPS ...veeiiiiiieieeieeeetee ettt e e 171
Using While IoOPS ...cc.eovuiiriiiiiiiieiecieetecesteeee e 174
Using do..While loOPScccoviriiriiniiniirieteteeeeeeee e 176
INiNIt€ IOOPS .oovvieeiieeie et 177
Breaking out of 2 100Dcccooiririiieieeee e 179
USING FUNCHIONS ...cvviiieiieiieieceee ettt et s as 181
Using variables in functionscccceceevienieniieneeneesieeeeeeeeeeenes 183
Passing values between a function and the main program 184
Using built-in functionsccccecevvenvieniinieniieccececeeeeeeeeee e 188
Chapter8:Dataln,DataQutcccvininn... 189
PHP/MySQL FUNCLIONS ...coviiiiiiiiiiiiinieteectcteeeeee sttt 189
Making a CONNECHIONccceeevieiieiiciecieceeeeese et 191
Connecting to the MySQL SErverccccoceeceeveneneneneneeceeeens 191
Selecting the right databaseccccccveieiencieniecieeeeeece 194
Sending SQL UETIEScocevvieriieeeeieieieeceeeeeeee et neseesnens 195
Getting Information from a Databasecccccoovveveenenvinviinienienieneee, 197
Sending a SELECT QUETYccoveriierieniinienienteeeieeieee e 197
Getting and using the datacccccceeveeviicieneeneeeeeeeeee e 198
Using functions to get datacccocceeevenininieneneereeececeeene 204
Getting Information from the USercccccoevievienieciiecieeciecieeeceeceeen 208
Using HTML fOIMSccveviiiiiiiiieieeieeiecieeteeeese et ae e 209
Making forms dynamiccoceeveeveriiiniiiniienieneeeeeeeee e 214
Using the information from the formcccooceviniinninncnnennne 227
Checking the informationccccccceevveeiieienciecieceeeee e 230
Giving users a choice with multiple submit buttons 238
Putting Information into a Databaseccccccovvvevieciiecieececiecieceeee, 240
Preparing the datacccceeviieiiieiiieciieiececeeeeeeeee e 241
Adding new informationc..ccoccoeveereeiiniiniinieneeeee 243

Updating existing informationc..ccoccevvieniiininninninnennenieeeee 248

Table of Contents

Getting Information in Filesccocovirieiinininieeeeeeeeee e 251
Using a form to upload the filecccoooieviiieiiiniiiieeeeeee, 251
Processing the uploaded filec.ccccoevvieiinienienieieeeeeee 252
Putting it all togethercoooveieieieieeeeeeee e 253

Chapter 9: Moving Information from One Web Page
tothe Next ... e i aas 257

Moving Your User from One Page to Anotherc..cccoocovininininnnnnns 257

Moving Information from Page to Pageccccccoveeeinciniincieniccieeee, 261
Adding information to the URLcccccooeviiiiiiiniiiniiniinieieeieee 262
Storing information via COOKIESccccevvviriiniiniinieniineeieeieeeee 267
Passing information with HTML formsc.cccccoevininninnnnennns 269

Using PHP SESSIONSooueeiiiiieieniieieceeieeestce ettt sttt 270
How PHP s€SSi0Nns WOTKccooiriiiiiiiiiiieieeeeetee e 270
OPENING SESSIONS ...eovuiiiiiiieiieieeieeieete e ete e e e e sreesbeesaeesaesaeesaeenes 271
Using PHP session variablesccccoccvvivviiniieninniinninieeiceieeeee 271
Sessions without COOKIeSccccocerieviineneniniiieccrcncreceeene 274
Making sessions Privatec..ccceceeveniienienieenennenseeeeeeee e 276
Closing PHP SESSIONSccceceeuiririiieieierieeeece e 277

Part IU: Applicationsccccceeecaceeciaceeciicneeeaaesc 209

Chapter 10: Putting It All Together 281
Organizing the Applicationcccocevviivieniiniiceeee e 281
Organizing at the application levelccoccoociiiiiinninniniine 282
Organizing at the program levelccccoocivvirieienineneeeceeene 283
Keeping It Private ..ottt 288
Ensure the security of the computercccccoevveviriinviecienceennnne, 289
Don’t let the Web server display filenamesccccocevvvervennnnnne. 289

Hide thingS ..cccooiiiiiiiieeeeeeee e s 290
Don’t trust information from USerscc.coceeververviinvieniienceeneenne 290

Use a secure Web SEIverc.cccococeveninininienenicneneneeceeenns 291
Completing Your Documentationcccccoceveveninceenierieneneneneeceeens 291
Chapter 11: Building an Online Catalog 293
Designing the ApPlicationcccceevieeiieniiiieneceeeee e 293
Showing pets to the customersccccccoevvevvieniniieninceciecieeee 294
Adding pets to the catalogcccceeevevievinenieiceeeeee e 295
Building the Databasecccocevivirieeeieieneceseeeeeeeeste e 295
Building the Pet tableccccoviiiiniiniieeee e 296
Building the PetType tableccccoovoiiviiinieeeeereeeeeee 299
Building the Color tableccocoiiiiiiiniiiieeeee e, 300
Adding data to the databaseccccoeeevieciieciincienieececeeee 301
Designing the Look and Feelccocueviiniiniiniiiceciececieceeeeeeen 303
Showing pets to the customersccoccoevievviiniiniininninienienee, 303

Adding pets to the catalogccccoveeveriiiriiiieicceeee 307

xv

X(/i PHP & MySQL For Dummies, 2nd Edition

Writing the Programs ...ttt 310
Showing pets to the customersc.ccccoevvevieveecieceeceecieeeee 310
Adding pets to the catalogcccceevevieciieciieieeeeeeeeee e 316

Chapter 12: Building a Members Only Web Site 331

Designing the Applicationccccocevviinieniinieniceccceee e 332

Building the Databaseccccocivviiiiiiniiiniictececeee e 333
Building the Member tablec.cccocevviiniiniiniiiieeeeeieee 333
Building the Login tableccocooiiiiiniiieeeeee e, 336
Adding data to the databaseccccoceeciieiieciiccienieeeeeeee 337

Designing the Look and Feelccoceeieviiniiniinieeciececeeeeeeee e 337
StOrefront PAgEcoceeeieriieiiieieeieeieee e 338
LOZIN PAZE ..ottt sttt s e 338
New Member Welcome Pagecccceevevieniinienennieeienieeieeee e 341
Members Only SECtionc.cccceeeiieieeieiiecieseeeee e 342

Writing the Programsccccoooveeieiieiieiieieceeceeceese et 342
Writing PetShopFrontccccoccviiiiiienieiiceceeeeeceeee e 343
WIHING LOZIN ..ot 344
Writing NEW_MEMDETcccoviviieirieieieiecccceeeeeeeee e 356
Writing the Members Only sectionccccocevvieniinennennenseeneenne. 358

Planning for Growthcccocoriiiiiiirieeeeee e 358

Part U: The Part of Tenscccacceeeeeeecceaaacneeeeeeeeaaaa 301
Chapter 13: Ten Things You Might Want to Do Using

PHPFunctionst nnnneens 363
Communicate with MySQLcccoooiiriiiieieeeeree et 363
Send E-Mailco.ooiiiiiiieiieee ettt 364
Use PHP SESSIONS ...ccuoouiiiiiiiieieieniinicneeteteeenesee ettt 366
StOP YOUY PYOZIraImcocuiiiiiiiiiiiiiiienieteccteit ettt st 366
HAaNAIE ATTAYS ..eoverieniiiitiiteieeieete ettt ettt ettt sttt sae s 366
Check for Variablescccooovieiirinieieeeeece et 367
Format ValUesc.oooviiiiiiiiieeeee ettt 367
Compare Strings to Patternsccceceeieveenienieneeecieeeee e 369
Find Out about STriNGSsccoeeviiviiiiiiriieieectet e 369
Change the Case of Stringsccccocevveviieniienieniieeceeee e 370
Chapter 14: Ten PHP Gotchascc..t. n
MisSing SEMICOIONSccueivvieiiiiiiiirierteetee ettt st ae e es 371
Not Enough EqQual Signsccccoeviriiiniiiniiniiieiceceeeee et 372
Misspelled Variable NamMeScccecevirieiienienenieieceeieseese e 372
Missing DOIIAr SINSccecieviieiiieiieiecieeeeseese ettt ereeteebesaesseesseeseeas 372
Troubling QUOTEScc.eevviiiieiieiecie ettt et et e ae e te st sae e ee s 373
INVISIDIE OULPUL ...ovvviiieiieiieieeieee ettt es 373

NUMDbEred AITaYSccceviiriiiriiiieiiereeteetest ettt sttt s e saeesaees 374

Table of Contents X(/ii

Including PHP Statementsccecvveeriienienenenieeeeeteeeee e 375
MISSING MALES ...cuveiiiieiirieieieie ettt ettt ste s sae et eaeeans 375
Confusing Parentheses and Bracketscococvviviiiiiiieninencnenceieens 376

Part UL: Appendixesccccueeaeeacuncauncacnecannaannaacns 377

Appendix A: Installing MySQLl 379
ON WINAOWS ..ottt ree e sae s nnens 379
Downloading and installing MySQLcccccovvieiieienenenenceceeeene 380
Starting the MySQL SEIrVercccceceiieneninieieiesienene e 381
Setting up the server to start when the computer starts 383

ON LINUX/UDEX coovvieiiiiee ettt et eesaave s eenaareeessreeeeennneas 384
Using RPM (LINUX ONLY) ceoiviiiiiiiiinieniinienteteecece e 384
From binary filesccocoviiiiiiiiieteeeeee e 386
From source filescoccooeriviniiieeeeceee e 389

ON MAC .ttt b bttt et et bbbt et e e aens 391
Configuring MySQLoovoiiiieieieceeeeere ettt es 393
Appendix B: InstallingPHP 395
Installing PHP on Unix/Linux/Mac with Apacheccccccovvvnienveeneenen. 395
(0] 5T 8} o35:¢4 1 o 115 SRR 395

ON MAC OS X ottt sttt 398
Installation OPHiONSccceeviiieiieieeeeeeee e e 401
Configuring Apache for PHPccccooiiiiiiiieeeeeeeeeeene 403
ON WINAOWS ..ottt ettt ettt ettt sbe b bt e e aens 403
Configuring Your Web Server for PHPcccccooviiiiniiniieeeceeeee, 405
Configuring APACKHEc.coeviieiieieieieeereeee e 405
Configuring IIScccooriiiieee e 407
Configuring PHPoociiiiiittee ettt 407
Appendix C: Installing and Configuring Apache 409
Selecting a Version of Apachecccccooveviiiiiniininniieeeeeeeee 409
Installing APACREcoooieiiieee e 410
ON LINUX/UNIX covviiieeieeeeieeieeieeieeieeee et e e see e esveesaeesaessaesseeens 410

ON WINAOWS ..ottt ettt st 414

ON MAC ettt ettt st 418
Configuring APAChEcooiiiiiiiiiiicee et 419
Changing Settingsccccooveeviriirienieeeeteteee e 419
Changing the location of your Web spacec.cccccvevvveieerennnnne. 420
Changing the port nNUMDEYccccociiiiiiiinieeeeeeee 420

JOACK ceeeeeeeeaaeeeeeneeeenneeeeeeeeeessasaeaaeaeaaassaannnnnnnens D2]

X(/”i PHP & MySQL For Dummies, 2nd Edition

Introduction

Welcome to the exciting world of Web database applications. This book
provides the basic techniques to build any Web database application,
but I certainly recommend that you start with a fairly simple one. In this
book, I develop two sample applications, both chosen to represent two types
of applications frequently encountered on the Web: product catalogs and
customer/member-only sites that require the user to register and log in with
a password. The sample applications are complicated enough to require
more than one program and to use a variety of data and data manipulation
techniques, yet simple enough to be easily understood and adapted to a vari-
ety of Web sites. After you master the simple applications, you can expand
the basic design to include all the functionality that you can think of.

About This Book

Think of this book as your friendly guide to building a Web database applica-
tion. This book is designed as a reference, not as a tutorial, so you don’t have
to read this book from cover to cover, unless you want to. You can start read-
ing at any point in the book — in Chapter 1, Chapter 9, wherever. I divide the
task of building a Web database application into manageable chunks of infor-
mation, so check out the table of contents and locate the topic that you're
interested in. If you need to know information from another chapter to under-
stand the chapter you're reading, I reference that chapter number.

Here’s a sample of the topics that I discuss in this book:

v Building and using a MySQL database

v Adding PHP to HTML files

v Using the features of the PHP language

v Using HTML forms to collect information from users
v Showing information from a database in a Web page

v Storing information in a database

2 PHP & MySQL For Dummies, 2nd Edition

Conventions Used in This Book

This book includes many examples of PHP programming statements, MySQL
statements, or HTML. Such statements in this book are shown in a different
typeface that looks like the following line:

A PHP program statement

In addition, snippets or key terms of PHP, MySQL, and HTML are sometimes
shown in the text of a paragraph. When they are, the special text in the para-
graph is also shown in the example typeface, different than the paragraph
typeface. For instance, this text is an example of a PHP statement, showing
the exact text, within the paragraph text.

In examples, you will often see some words in italic. Italicized words are gen-
eral types that need to be replaced with the specific name appropriate for
your data. For instance, when you see an example like the following

SELECT fieldl,field2 FROM tablename

you know that fieldl, field?, and tablename need to be replaced with real
names because they are in italic. When you use this statement in your pro-
gram, you might use it in the following form:

SELECT name,age FROM Customer

In addition, you might see three dots (...) following a list in an example line.
You don’t need to type the three dots. The three dots just mean that you can
have as many items in the list as you want. For instance, when you see the
following line

SELECT fieldl,field?,... FROM tablename

you don’t need to include the three dots in the statement. The three dots just
mean that your list of fields can be longer than two. It means you can go on
with field3, field4, and so forth. For example, your statement might be

SELECT name,age,height,shoesize FROM Customer
From time to time, you'll also see some things in bold type. Pay attention to

these; they either indicate something I want you to see or something that you
need to type in.

Introduction 3

What You're Not to Read

Some information in this book is flagged as Technical Stuff with an icon off to
the left side. Sometimes you’ll see this technical stuff is in a sidebar: Consider
it information that you don’t need to read in order to create a Web database
application. This extra info might contain a further look under the hood or
perhaps describe a technique that requires more technical knowledge to exe-
cute. Some readers may be interested in the extra technical information or
techniques, but feel free to ignore them if you don’t find them interesting or
useful.

Foolish Assumptions

To write a focused book rather than an encyclopedia, [need to assume some
background for you, the reader. I am assuming that you know HTML and have
created Web sites with HTML. Consequently, although [use HTML in many
examples, I do not explain the HTML. If you don’t have an HTML background,
this book will be more difficult for you to use. I suggest that you read an
HTML book — such as HTML 4 For Dummies, 4th Edition, by Ed Tittel and
Natanya Pitts, or HTML 4 For Dummies Quick Reference, 2nd Edition, by
Deborah S. Ray and Eric J. Ray (Wiley) — and build some practice Web pages
before you start this book. In particular, some background in HTML forms
and tables is useful. However, if you're the impatient type, I won’t tell you it’s
impossible to proceed without knowing HTML. You may be able to glean
enough HTML from this book to build your particular Web site. If you choose
to proceed without knowing HTML, I would suggest that you have an HTML
book by your side to assist you when you need to figure out some HTML that
isn’t explained in this book.

If you are proceeding without any experience with Web pages, you might not
know some basics that are required. You must know how to create and save
plain text files with an editor such as Notepad or save the file as plain text
from your word processor (not in the word processor format). You also must
know where to put the text files containing the code (HTML or PHP) for your
Web pages so that the Web pages are available to all users with access to
your Web site, and you must know how to move the files to the appropriate
location.

You do not need to know how to design or create databases or how to
program. All the information that you need to know about databases and
programming is included in this book.

4

PHP & MySOL For Dummies, 2nd Edition

How This Book Is Organized

This book is divided into six parts, with several chapters in each part. The
content ranges from an introduction to PHP and MySQL to installation to cre-
ating and using databases to writing PHP programs.

Part I: Developing a Web Database
Application Using PHP and MySQOL

This part provides an overview of using PHP and MySQL to create a Web
database application. It describes and gives the advantages of PHP, of MySQL,
and of their use together. You find out how to get started, including what you
need, how to get access to PHP and MySQL, and how to test your software.
You then find out about the process of developing the application.

Part II: MySQL Database

This part provides the details of working with MySQL databases. You find out
how to create a database, change a database, and move data in and out of a
database.

Part 111: PHP

This part provides the details of writing PHP programs that enable your Web
pages to insert new information, update existing information, or remove
information from a MySQL database. You find out how to use the PHP fea-
tures that are used for database interaction and forms processing.

Part IU: Applications

Part IV describes the Web database application as a whole. You find out how
to organize the PHP programs into a functioning application that interacts
with the database. Two complete sample applications are provided,
described, and explained.

Introduction

Part U: The Part of Tens

This part provides some useful lists of important things to do and not to do
when developing a Web database application.

Part Vl: Appendixes

This part provides instructions for installing PHP and MySQL for those who
need to install the software themselves. Appendix C discusses the installation
and use of Web servers, such as Apache and IIS, for those who need to install
and administer the Web server themselves.

Icons Used in This Book

Tips provide extra information for a specific purpose. Tips can save you time
and effort, so they’re worth checking out.

You should always read warnings. Warnings emphasize actions that you must
take or must avoid to prevent dire consequences.

This icon flags information and techniques that are more technical than other
sections of the book. The information here can be interesting and helpful, but
you don’t need to understand it to use the information in the book.

This icon is a sticky note of sorts, highlighting information that’s worth
committing to memory.

Where to Go from Here

This book is organized in the order in which things need to be done. If you're
a total newbie, you probably need to start with Part I, which describes how
to get started, including how to design the pieces of your application and

6 PHP & MySOL For Dummies, 2nd Edition

how the pieces will interact. When implementing your application, you need
to create the MySQL database first, so I discuss MySQL before PHP. After you
understand the details of MySQL and PHP, you need to put them together
into a complete application, which I describe in Part IV. If you're already
familiar with any part of the book, you can go directly to the part that you
need. For instance, if you're familiar with database design, you can go
directly to Part I, which describes how to implement the design in MySQL.
Or if you know MySQL well, you can just read about PHP in Part III.

=
c 253
LYY,
S35 =
T SE 5=
c © O =1
o= © =
>0 O ©
m.v emP
= 5x

<L

ich Tennant

R

5th Wave

The

s

o
3

Sa
4
S
3
1] <O
3
!
=
3
o

o

" teammated. babe cadaveys’ thyee times
and nothiye Game up!”

In this part . . .

n this part, I provide an overview. I describe PHP and

MySQL, how each one works, and how they work
together to make your Web database application possible.
After describing your tools, [show you how to set up your
working environment. [present your options for accessing
PHP and MySQL and point out what to look for in each
environment.

After describing your tools and your options for your
development environment, [provide an overview of the
development process. I discuss planning, design, and
building your application.

Chapter 1

Introduction to PHP and MySQL

In This Chapter
Finding out what a Web database application is
Taking a look at PHP
Discovering how MySQL works
Finding out how PHP and MySQL work together

S) you need to develop an interactive Web site. Perhaps your boss just
put you in charge of the company’s online product catalog. Or you want
to develop your own Web business. Or your sister wants to sell her paintings
online. Or you volunteered to put up a Web site open only to members of
your circus acrobats’ association. Whatever your motivation might be, you
can see that the application needs to store information (for instance, informa-
tion about products, information about paintings, member passwords), thus
requiring a database. You can also see that the application needs to interact
dynamically with the user; for instance, the user selects a product to view,

or the user enters membership information. This type of Web site is a Web
database application.

[assume that you’ve created static Web pages before, using HTML
(HyperText Markup Language), but creating an interactive Web site is a new
challenge, as is designing a database. You asked three computer gurus you
know what you should do. They said a lot of things you didn’t understand,
but among the technical jargon, you heard “quick” and “easy” and “free” men-
tioned in the same sentence as PHP and MySQL. Now you want to know more
about using PHP and MySQL to develop the Web site that you need.

PHP and MySQL work together very well; it’s a dynamic partnership. In this
chapter, you find out the advantages of each, how each one works, and how
they work together to produce a dynamic Web database application.

’ 0 Part I: Developing a Web Database Application Using PHP and MySQL

What Is a Web Database Application?

An application is a program or a group of programs designed for use by an
end user (for example, customers, members, circus acrobats, and so on). If
the end user interacts with the application via a Web browser, the application
is a Web-based or Web application. If the Web application requires the long-
term storage of information, using a database, it is a Web database applica-
tion. This book provides you with the information that you need to develop a
Web database application that can be accessed with Web browsers such as
Internet Explorer and Netscape.

A Web database application is designed to help a user accomplish a task. It
can be a simple application that displays information in a browser window
(for example, it displays current job openings when the user selects a job
title) or a complicated program with extended functionality (for example, the
book-ordering application at Amazon.com or the bidding application at eBay).

Not surprisingly, a Web database application consists of a database and an
application — just two pieces:

v Database: The database is the long-term memory of your Web database
application. The application can’t fulfill its purpose without the data-
base. However, the database alone is not enough.

v~ Application: The application piece is the program or group of programs
that performs the tasks. Programs create the display that the user sees
in the browser window; they make your application interactive by
accepting and processing information that the user types in the browser
window and they store information in the database and get information
out of the database. (The database is useless unless you can move data
in and out.)

The Web pages that you've previously created with HTML alone are static,
meaning the user can’t interact with the Web page. All users see the same
Web page. Dynamic Web pages, on the other hand, allow the user to interact
with the Web page. Different users might see different Web pages. For instance,
one user looking at a furniture store’s online product catalog might choose to
view information about the sofas, whereas another user might choose to view
information about coffee tables. To create dynamic Web pages, you must use
another language in addition to HTML.

One language widely used to make Web pages dynamic is JavaScript.
JavaScript is useful for several purposes, such as mouse-overs (for example,
to highlight a navigation button when the user moves the mouse pointer over
it) or accepting and validating information that users type into a Web form.
However, it’s not useful for interacting with a database. You wouldn’t use
JavaScript to move the information from the Web form into a database. PHP,
however, is a language that is particularly well suited to interacting with data-
bases. PHP can accept and validate the information that users type into a

Chapter 1: Introduction to PHP and MySQL

Web form and can also move the information into a database. The programs
in this book are written with PHP.

The database

The core of a Web database application is the database, which is the long-
term memory (hopefully more efficient than my long-term memory) that

stores information for the application. A database is an electronic file cabinet
that stores information in an organized manner so that you can find it when

you need it. After all, storing information is pointless if you can’t find it. A
database can be small, with a simple structure — for example, a database
containing the titles and authors’ names of all the books that you own. Or a
database can be huge, with an extremely complex structure — such as the
database that Amazon.com must have to hold all its information.

E-mail discussion lists

Good technical support is available from e-mail
discussion lists. E-mail discussion lists are
groups of people discussing specific topics via
e-mail. E-mail lists are available for pretty much
any subject you can think of: Powerball, ancient
philosophy, cooking, the Beatles, Scottish terri-
ers, politics, and so on. The discussion takes
place via e-mail. The /ist manager maintains a
distribution list of e-mail addresses for anyone
who wants to join the discussion. When you
send a message to the discussion list, your mes-
sage is sent to the entire list so that everyone
can see it. Thus, the discussion is a group effort,
and anyone can respond to any message that
interests him or her.

E-mail discussion lists are supported by various
sponsors. Any individual or organization can run
a list. Most software vendors run one or more
lists devoted to their software. Universities run
many lists for educational subjects. In addition,
some Web sites manage discussion lists, such
as Yahoo! Groups and Topica. Users can create
a new list or join an existing list via the Web
application.

Software-related e-mail lists are a treasure
trove of technical support. Anywhere from a

hundred to several thousand users of the soft-
ware subscribe to the list. Many have extensive
experience with the software. Often the devel-
opers, programmers, and technical support
staff for the software vendor are on the list.
Whatever your question or problem, someone
on the list probably knows the answer or the
solution. You are unlikely to be the first person
to ever experience your problem. When you
post a question to an e-mail list, the answer usu-
ally appears in your inbox within minutes. In
addition, most lists maintain an archive of pre-
vious discussions so that you can search for
answers to your specific problem. When you're
new to any software, you can find out a great
deal simply by joining the discussion lists for the
software and reading the messages for a few
days.

Of course, PHP and MySQL have e-mail discus-
sion lists. Actually, each has several discussion
lists for special topics, such as databases and
PHP You can find the names of the mailing lists
and instructions for joining them on the PHP and
MySQL Web sites.

11

’ 2 Part I: Developing a Web Database Application Using PHP and MySQL

The information that you store in the database comes in many varieties. A
company’s online catalog requires a database to store information about all
the company’s products. A membership Web site requires a database to store
information about members. An employment Web site requires a database
(or perhaps two databases) to store information about job openings and
information from résumés. The information that you plan to store could be
similar to information that’s stored by Web sites all over the Internet — or
information that’s unique to your application.

Technically, the term database refers to the file or group of files that holds the
actual data. The data is accessed by using a set of programs called a DBMS
(Database Management System). Almost all DBMSs these days are RDBMSs
(Relational Database Management Systems), in which data is organized and
stored in a set of related tables.

In this book, MySQL is the RDBMS used because it is particularly well suited
for Web sites. MySQL and its advantages are discussed in the section,
“MySQL, My Database,” later in this chapter. You can find out about how to
organize and design a MySQL database in Chapter 3.

The application: Moving data in
and out of the database

For the database to be useful, you need to be able to move data into and out
of it. Programs are your tools for this because they interact with the database
to store and retrieve data. A program connects to the database and makes a
request: “Take this data and store it in the specified location.” Another pro-
gram makes the request: “Find the specified data and give it to me.” The
application programs that interact with the database run when the user inter-
acts with the Web page. For instance, when the user clicks the submit button
after filling in a Web form, a program processes the information in the form
and stores it in a database.

MySOL, My Database

MySQL is a fast, easy-to-use RDBMS used for databases on many Web sites.
Speed was the developers’ main focus from the beginning. In the interest of
speed, they made the decision to offer fewer features than their major com-
petitors (for instance, Oracle and Sybase). However, even though MySQL is
less full featured than its commercial competitors, it has all the features
needed by the large majority of database developers. It’s easier to install and
use than its commercial competitors, and the difference in price is strongly in
MySQL'’s favor.

Chapter 1: Introduction to PHP and MySQL

MySQL is developed, marketed, and supported by MySQL AB, which is a
Swedish company. The company licenses it two ways:

* Open source software: MySQL is available via the GNU GPL (General
Public License) for no charge. Anyone who can meet the requirements of
the GPL can use the software for free. If you're using MySQL as a data-
base on a Web site (the subject of this book), you can use MySQL for
free, even if you'’re making money with your Web site.

v Commercial license: MySQL is available with a commercial license for
those who prefer it to the GPL. If a developer wants to use MySQL as
part of a new software product and wants to sell the new product, rather
than release it under the GPL, the developer needs to purchase a com-
mercial license. The fee is very reasonable.

Finding technical support for MySQL is not a problem. You can join one of
several e-mail discussion lists offered on the MySQL Web site at www.mysqT.
com. You can even search the e-mail list archives, which contain a large
knowledge base of MySQL questions and answers. If you're more comfortable
getting commercial support, MySQL AB offers technical support contracts —
five support levels, ranging from direct e-mail support to phone support, at
five price levels.

Advantages of MySOL

MySQL is a popular database with Web developers. Its speed and small size

make it ideal for a Web site. Add to that the fact that it’s open source, which
means free, and you have the foundation of its popularity. Here is a rundown
of some of its advantages:

v~ It’s fast. The main goal of the folks who developed MySQL was speed.
Consequently, the software was designed from the beginning with speed
in mind.

v It’s inexpensive. MySQL is free under the open source GPL license, and
the fee for a commercial license is very reasonable.

v~ It’s easy to use. You can build and interact with a MySQL database by
using a few simple statements in the SQL language, which is the stan-
dard language for communicating with RDBMSs. Check out Chapter 4 for
the lowdown on the SQL language.

v It can run on many operating systems. MySQL runs on a wide variety of
operating systems — Windows, Linux, Mac OS, most varieties of Unix
(including Solaris, AIX, and DEC Unix), FreeBSD, 0S/2, Irix, and others.

v Technical support is widely available. A large base of users provides
free support via mailing lists. The MySQL developers also participate in
the e-mail lists. You can also purchase technical support from MySQL AB
for a very small fee.

13

’4 Part I: Developing a Web Database Application Using PHP and MySQL

v It’s secure. MySQL's flexible system of authorization allows some or all
database privileges (for example, the privilege to create a database or
delete data) to specific users or groups of users. Passwords are
encrypted.

1 It supports large databases. MySQL handles databases up to 50 million
rows or more. The default file size limit for a table is 4GB, but you can
increase this (if your operating system can handle it) to a theoretical
limit of 8 million terabytes (TB).

v It’s customizable. The open source GPL license allows programmers to
modify the MySQL software to fit their own specific environments.

How MySQOL works

The MySQL software consists of the MySQL server, several utility programs
that assist in the administration of MySQL databases, and some supporting
software that the MySQL server needs (but you don’t need to know about).
The heart of the system is the MySQL server.

The MySQL server is the manager of the database system. It handles all your
database instructions. For instance, if you want to create a new database, you
send a message to the MySQL server that says “create a new database and
call it newdata.” The MySQL server then creates a subdirectory in its data
directory, names the new subdirectory newdata, and puts the necessary files
with the required format into the newdata subdirectory. In the same manner,
to add data to that database, you send a message to the MySQL server, giving
it the data and telling it where you want the data to be added. You find out
how to write and send messages to MySQL in Part II of this book.

Before you can pass instructions to the MySQL server, it must be running and
waiting for requests. The MySQL server is usually set up so that it starts
when the computer starts and continues running all the time. This is the
usual setup for a Web site. However, it’s not necessary to set it up to start
when the computer starts. If you need to, you can start it manually whenever
you want to access a database. When it’s running, the MySQL server listens
continuously for messages that are directed to it.

Communicating with the MySQL server

All your interaction with the database is done by passing messages to the
MySQL server. You can send messages to the MySQL server several ways, but
this book focuses on sending messages by using PHP. The PHP software has
specific statements that you use to send instructions to the MySQL server.

Chapter 1: Introduction to PHP and MySQL

The MySQL server must be able to understand the instructions that you send
it. You communicate by using SQL (Structured Query Language), which is a
standard language understood by many RDBMSs. The MySQL server under-
stands SQL. PHP doesn’t understand SQL, but it doesn’t need to: PHP just
establishes a connection with the MySQL server and sends the SQL message
over the connection. The MySQL server interprets the SQL message and fol-
lows the instructions. The MySQL server sends a return message, stating its
status and what it did (or reporting an error if it was unable to understand or
follow the instructions). For the lowdown on how to write and send SQL mes-
sages to MySQL, check out Part II of this book.

PHP, a Data Mover

PHP, a scripting language designed specifically for use on the Web, is your
tool for creating dynamic Web pages. Rich in features that make Web design
and programming easier, PHP is in use on over 13 million domains (according
to the Netcraft survey at www.php.net/usage.php). Its popularity continues
to grow, meaning that it must be fulfilling its function pretty well.

PHP stands for PHP: HyperText Preprocessor. In its early development by a guy
named Rasmus Lerdorf, it was called Personal Home Page tools. When it
developed into a full-blown language, the name was changed to be more in
line with its expanded functionality.

The PHP language’s syntax is similar to the syntax of C, so if you have experi-
ence with C, you’ll be comfortable with PHP. PHP is actually simpler than C
because it doesn’t use some of the more difficult concepts of C. PHP also
doesn’t include the low-level programming capabilities of C because PHP is
designed to program Web sites and doesn’t require those capabilities.

PHP is particularly strong in its ability to interact with databases. PHP sup-
ports pretty much every database you've ever heard of (and some you
haven’t). PHP handles connecting to the database and communicating with it.
You don’t need to know the technical details for connecting to a database or
for exchanging messages with it. You tell PHP the name of the database and
where it is, and PHP handles the details. It connects to the database, passes
your instructions to the database, and returns the database response to you.

Technical support is available for PHP. You can join one of several e-mail dis-
cussion lists offered on the PHP Web site (www . php.net), including a list for
databases and PHP. In addition, a Web interface to the discussion lists is avail-
able at news.php.net, where you can browse or search the messages.

15

’ 6 Part I: Developing a Web Database Application Using PHP and MySQL

Advantages of PHP

The popularity of PHP is growing rapidly because of its many advantages:

v~ It’s fast. Because it is embedded in HTML code, the response time is
short.

v It’s inexpensive — free, in fact. PHP is proof that free lunches do exist
and that you can get more than you paid for.

v~ It’s easy to use. PHP contains many special features and functions
needed to create dynamic Web pages. The PHP language is designed to
be included easily in an HTML file.

v~ It can run on many operating systems. It runs on a wide variety of oper-
ating systems — Windows, Linux, Mac OS, and most varieties of Unix.

v Technical support is widely available. A large base of users provides
free support via e-mail discussion lists.

v It’s secure. The user does not see the PHP code.

1 It’s designed to support databases. PHP includes functionality designed
to interact with specific databases. It relieves you of the need to know
the technical details required to communicate with a database.

v It’s customizable. The open source license allows programmers to
modify the PHP software, adding or modifying features as needed to fit
their own specific environments.

How PHP works

PHP is an embedded scripting language when used in Web pages. This means
that PHP code is embedded in HTML code. You use HTML tags to enclose the
PHP language that you embed in your HTML file — the same way that you
would use other HTML tags. You create and edit Web pages containing PHP
the same way that you create and edit regular HTML pages.

The PHP software works in conjunction with the Web server. The Web server
is the software that delivers Web pages to the world. When you type a URL
into your Web browser, you're sending a message to the Web server at that
URL, asking it to send you an HTML file. The Web server responds by sending
the requested file. Your browser reads the HTML file and displays the Web
page. You also request the Web server to send you a file when you click a link
in a Web page. In addition, the Web server processes a file when you click a
Web page button that submits a form.

Chapter 1: Introduction to PHP and MySQL ’ 7

When PHP is installed, the Web server is configured to expect certain file
extensions to contain PHP language statements. Often the extension is . php
or .phtml, but any extension can be used. When the Web server gets a
request for a file with the designated extension, it sends the HTML state-
ments as-is, but PHP statements are processed by the PHP software before
they’re sent to the requester.

When PHP language statements are processed, only the output is sent by the
Web server to the Web browser. The PHP language statements are not
included in the output sent to the browser, so the PHP code is secure and
transparent to the user. For instance, in this simple PHP statement:

<?php echo "<p>Hello World"; ?>

<?php is the PHP opening tag, and ?> is the closing tag. echo is a PHP instruc-
tion that tells PHP to output the upcoming text. The PHP software processes
the PHP statement and outputs this:

<p>Hello World

which is a regular HTML statement. This HTML statement is delivered to the
user’s browser. The browser interprets the statement as HTML code and dis-
plays a Web page with one paragraph — Hello World. The PHP statement is
not delivered to the browser, so the user never sees any PHP statements.

PHP and the Web server must work closely together. PHP is not integrated
with all Web servers, but it does work with many of the most popular Web
servers. PHP is developed as a project of the Apache Software Foundation —
consequently, it works best with Apache. PHP also works with Microsoft IIS/
PWS, iPlanet (formerly Netscape Enterprise Server), and others.

Although PHP works with several Web servers, it works best with Apache. If
you can select or influence the selection of the Web server used in your orga-
nization, select Apache. By itself, Apache is a good choice. It is free, open
source, stable, and popular. It currently powers over 60 percent of all Web
sites, according to the Web server survey at wow.netcraft.com. It runs on
Windows, Linux, Mac OS, and most flavors of Unix.

\\J

MySOL and PHP, the Perfect Pair

MySQL and PHP are frequently used together. They are often called the
dynamic duo. MySQL provides the database part, and PHP provides the appli-
cation part of your Web database application.

’8 Part I: Developing a Web Database Application Using PHP and MySQL

Advantages of the relationship

MySQL and PHP as a pair have several advantages:

v~ They're free. It’s hard to beat free for cost-effectiveness.

v They’re Web-oriented. Both were designed specifically for use on Web
sites. Both have a set of features that are focused on building dynamic
Web sites.

v They’re easy to use. Both were designed to get a Web site up quickly.

v They’re fast. Both were designed with speed as a major goal. Together
they provide one of the fastest ways to deliver dynamic Web pages to
users.

v They communicate well with one another. PHP has built-in features for
communicating with MySQL. You don’t need to know the technical
details; just leave it to PHP.

v A wide base of support is available for both. Both have large user
bases. Because they are often used as a pair, they often have the same
user base. Many people are available to help, including those on e-mail
discussion lists who have experience using MySQL and PHP together.

v They’re customizable. Both are open source, thus allowing program-
mers to modify the PHP and MySQL software to fit their own specific
environments.

How MySOL and PHP work together

PHP provides the application part, and MySQL provides the database part of
a Web database application. You use the PHP language to write the programs
that perform the application tasks. PHP is flexible enough to perform all the
tasks that your application requires. It can be used for simple tasks (such as
displaying a Web page) or for complicated tasks (such as accepting and veri-
fying data that a user typed into an HTML form). One of the tasks that your
application must do is move data into and out of the database — and PHP
has built-in features to use when writing programs that move data into and
out of a MySQL database.

PHP statements are embedded in your HTML files with PHP tags. When the
task to be performed by the application requires storing or retrieving data,
you use specific PHP statements designed to interact with a MySQL database.
You use one PHP statement to connect to the correct database, telling PHP
where the database is located, its name, and the password needed to connect
to it. The database doesn’t need to be on the same machine as your Web site;

Chapter 1: Introduction to PHP and MySQL ’ 9

PHP can communicate with a database across a network. You use another
PHP statement to send instructions to MySQL. You send an SQL message
across the connection, giving MySQL instructions for the task that you want
done. MySQL returns a status message that shows whether it successfully
performed the task. If there was a problem, it returns an error message. If
your SQL message asked to retrieve some data, MySQL sends the data that
you asked for, and PHP stores it in a temporary location where it is available
to you.

You then use one or more PHP statements to complete the application task.
For instance, you can use PHP statements to display data that you retrieved.
Or you might use PHP statements to display a status message in the browser,
informing the user that the data was saved.

As an RDBMS, MySQL can store very complex information. As a scripting lan-
guage, PHP can perform very complicated manipulation of data, either data
that you need to modify before saving it in the database or data that you
retrieved from the database and need to modify before displaying or using it
for another task. Together, PHP and MySQL can be used to build a Web data-
base application that has a very sophisticated and complicated purpose.

Keeping Up with PHP and
MySOL Changes

PHP and MySQL are open source software. If you’ve only used software from
major software publishers — such as Microsoft, Macromedia, or Adobe —
you’ll find that open source software is an entirely different species. It’s
developed by a group of programmers who write the code in their spare time,
for fun and for free. There’s no corporate office.

Open source software changes frequently, rather than once every year or two
like commercial software does. It changes when the developers feel that it’s
ready. It also changes quickly in response to problems. When a serious prob-
lem is found — such as a security hole — a new version that fixes the prob-
lem can be released in days. You don’t receive glossy brochures or see
splashy magazine ads for a year before a new version is released. Thus, if you
don’t make the effort to stay informed, you could miss the release of a new
version or be unaware of a serious problem with your current version.

Visit the PHP and MySQL Web sites often. You need to know the information
that’s published there. Join the mailing lists, which often are very high in traf-
fic. When you first get acquainted with PHP and MySQL, the large number of
mail messages on the discussion lists bring valuable information into your

20

Part I: Developing a Web Database Application Using PHP and MySQL

e-mail box; you can pick up a lot by reading those messages. And soon, you
might be able to help others based on your own experience. At the very least,
subscribe to the announcement mailing list, which only delivers e-mail occa-
sionally. Any important problems or new versions are announced here. The
e-mail that you receive from the announcement list contains information

that you need to know. So, right now, before you forget, hop over to the PHP
and MySQL Web sites and sign up for a list or two at www.php.net/
mailing-Tists.phpand lists.mysqgl.com.

QNING/ You should be aware of some significant changes in previous PHP versions
& because existing scripts that work fine on earlier versions could have prob-
lems when they’re run on a later version and vice versa. The following are
some changes that you should be aware of:

v Version 5.0.0: Added support for MySQL 4.1. Support for MySQL 4.0 is
not included automatically; it must be included with an option when
PHP is installed. Changed the filename of the PHP interpreter used with
a Web server from .php to .php-cgi.

v Version 4.3.1: Fixed a security problem in 4.3.0. It’s not wise to continue
to run a Web site using versions 4.3.0 or earlier.

v Version 4.2.0: Changed the default setting for register_globals
to Off. Scripts running under previous versions might depend on
register_globals being set to On and could stop running with the
new setting. It’s best to change the coding of the script so that it runs
with register_globals set to Off.

v Version 4.1.0: Introduced the superglobal arrays. Scripts written with
the superglobals (as I describe in Chapter 6) won’t run in earlier ver-
sions. Prior to 4.1.0, you must use the old style arrays, such as
$HTTP_POST_VARS.

Chapter 2
Setting Up Your Work Environment

In This Chapter

Getting access to PHP and MySQL through company Web sites
and Web hosting companies

Building your own Web site from scratch
Testing PHP and MySQL

A fter you decide to use PHP and MySQL, your first task is to get access to
them. A work setting already set up for Web application development
might be ready and waiting for you with all the tools that you need. On the
other hand, it might be part of your job to set up this work setting yourself.
Perhaps your job is to create a whole new Web site. In this chapter, I describe
the tools that you need and how to get access to them.

The Required Tools

To put up your dynamic Web site, you need to have access to the following
three software tools:

v A Web server: The software that delivers your Web pages to the world

v MySQL: The RDBMS (Relational Database Management System) that will
store information for your Web database application

v PHP: The scripting language that you’ll use to write the programs that

< provide the dynamic functionality for your Web site

[describe these three tools in detail in Chapter 1.

22 Part I: Developing a Web Database Application Using PHP and MySQL

Finding a Place to Work

To create your dynamic Web pages, you need access to a Web site that pro-
vides your three software tools (see the preceding section). All Web sites
include a Web server, but not all Web sites provide MySQL and PHP. These
are the most common environments in which you can develop your Web site:

v A Web site put up by a company on its own computer: The company —
usually the company’s IT (Information Technology) department —
installs and administers the Web site software. Your job, for the pur-
poses of this book, is to program the Web site, either as an employee of
the company or as a contractor.

v A Web site that’s hosted by a Web hosting company: The Web site is
located on the Web hosting company’s computer. The Web hosting com-
pany installs and maintains the Web site software and provides space on
its computer where you can install the HTML (HyperText Markup
Language) files for a Web site.

1 A Web site that doesn’t yet exist: You plan to install and maintain the
Web site software yourself. It could be a Web site of your own that
you’re building on your own computer, or it might be a Web site that
you're installing for a client on the client’s computer.

How much you need to understand about the administration and operation
of the Web site software depends on the type of Web site access that you
have. In the next few sections, I describe these environments in more detail
and explain how you gain access to PHP and MySQL.

A company Web site

When the Web site is run by the company, you don’t need to understand the
installation and administration of the Web site software at all. The company
is responsible for the operation of the Web site. In most cases, the Web site
already exists, and your job is to add to, modify, or redesign the existing Web
site. In a few cases, the company might be installing its first Web site, and
your job is to design the Web site. In either case, your responsibility is to
write and install the HTML files for the Web site. You are not responsible for
the operation of the Web site.

You access the Web site software through the company’s IT department. The
name of this department can vary in different companies, but its function is
the same: It keeps the company’s computers running and up-to-date.

Chapter 2: Setting Up Your Work Environment 23

If PHP and/or MySQL aren’t available on the company’s Web site, IT needs to
install them and make them available to you. PHP and MySQL have many
options, but IT might not understand the best options — and might have
options set in ways that aren’t well suited for your purposes. If you need PHP
or MySQL options changed, you need to request that IT make the change; you
won’t be able to make the change yourself. For instance, PHP must be
installed with MySQL support enabled, so if PHP isn’t communicating cor-
rectly with MySQL, IT might have to reinstall PHP with MySQL support
enabled.

In order for the world to see the company’s Web pages, the HTML files must
be in a specific location on the computer. The Web server that delivers the
Web pages to the world expects to find the HTML files in a specific directory.
The IT department should provide you with access to the directory where
the HTML files need to be installed. In most cases, you develop and test your
Web pages in a test location and then transfer the completed files to their
permanent home. Depending on the access that IT gives you, you might copy
the files from the test location to the permanent location, or you might trans-
fer the files via FTP (File Transfer Protocol), which is a method of copying a
file from one computer to another on a network). In some cases, for security
reasons, the IT folks won’t give you access to the permanent location, prefer-
ring to install the files in their permanent location themselves.

In order to use the Web software tools and build your dynamic Web site, you
need the following information from IT:

v The location of Web pages: You need to know where to put the files for
the Web pages. IT needs to provide you with the name and location of
the directory where the files should be installed. Also, you need to know
how to install the files — copy them, FTP them, or use other methods.
You might need a user ID and password in order to install the files.

v The default file name: When users point their browsers at a URL, a file
is sent to them. The Web server is set up to send a file with a specific
name when the URL points to a directory. The file that is automatically
sent is the default file. Very often the default file is named index.htm or
index.html, but sometimes other names are used, such as default.htm.
Ask IT what you should name your default file.

v A MySQL account: Access to MySQL databases is controlled through a
system of account names and passwords. IT sets up a MySQL account
for you that has the appropriate permissions and also gives you the
MySQL account name and password. (I explain MySQL accounts in detail
in Chapter 5.)

24 Part I: Developing a Web Database Application Using PHP and MySQL

WMBER
@&
&

v The location of the MySQL databases: MySQL databases need not be
located on the same computer as the Web site. If the MySQL databases
are located on a computer other than that of the Web site, you need to
know the hostname (for example, thor.companyname.com) where the
databases can be found.

1+ The PHP file extension: When PHP is installed, the Web server is
instructed to expect PHP statements in files with specific extensions.
Frequently, the extensions used are .php or .phtm1, but other exten-
sions can be used. PHP statements in files that don’t have the correct
extension won’t be processed. Ask IT what extension to use for your
PHP programs.

You will interact with the IT folks frequently as needs arise. For example, you
might need options changed, you might need information to help you inter-
pret an error message, or you might need to report a problem with the Web
site software. So a good relationship with the IT folks will make your life
much easier. Bring them tasty cookies and doughnuts often.

A Web hosting company

A Web hosting company provides everything that you need to put up a Web
site, including the computer space and all the Web site software. You just
create the files for your Web pages and move them to a location specified by
the Web hosting company.

About a gazillion companies offer Web hosting services. Most charge a
monthly fee (often quite small), and some are even free. (Most, but not all, of
the free ones require you to display advertising.) Usually, the monthly fee
varies depending on the resources provided for your Web site. For instance, a
Web site with 2MB of disk space for your Web page files would cost less than
a Web site with 10MB of disk space.

When looking for a place to host your Web site, make sure that the Web host-
ing company offers the following:

v PHP and MySQL: Not all companies provide these tools. You might have
to pay more for a site with access to PHP and MySQL; sometimes you
have to pay an additional fee for MySQL databases.

v A recent version of PHP: Sometimes the PHP versions offered aren’t the
most recent versions. You certainly shouldn’t even consider a Web site
that has access only to PHP 3. You want PHP 4 at least. Preferably, you
want access to PHP 5.

Other considerations when choosing a Web hosting company are

Chapter 2: Setting Up Your Work Environment

v Reliability: You need a Web hosting company that you can depend on —
one that won'’t go broke and disappear tomorrow, and one that isn’t run-
ning on old computers, held together by chewing gum and baling wire,
with more downtime than uptime.

1 Speed: Web pages that download slowly are a problem because users
will get impatient and go elsewhere. Slow pages could be a result of a
Web hosting company that started its business on a shoestring and has
a shortage of good equipment — or the Web hosting company might be
so successful that its equipment is overwhelmed by new customers.
Either way, Web hosting companies that deliver Web pages too slowly
are unacceptable.

v+ Technical support: Some Web hosting companies have no one available
to answer questions or troubleshoot problems. Technical support is
often provided through e-mail only, which can be acceptable if the
response time is short. Sometimes you can test the quality of the com-
pany’s support by calling the tech support number, or test the e-mail
response time by sending an e-mail.

v The domain name: Each Web site has a domain name that Web
browsers use to find the site on the Web. Each domain name is regis-
tered for a small yearly fee so that only one Web site can use it. Some
Web hosting companies allow you to use a domain name that you have
registered independently of the Web hosting company, some assist you
in registering and using a new domain name, and some require that you
use their domain name. For instance, suppose that your name is Lola
Designer and you want your Web site to be named LolaDesigner. Some
Web hosting companies will allow your Web site to be LolaDesigner.
com, but some will require that your Web site be named LolaDesigner.
webhostingcompanyname.com, or webhostingcompanyname.com/~
LoTaDesigner, or something similar. In general, your Web site will look
more professional if you use your own domain name.

v Backups: Backups are copies of your Web page files and your database
that are stored in case your files or database are lost or damaged. You
want to be sure that the company makes regular, frequent backup copies
of your application. You also want to know how long it would take for
backups to be put in place to restore your Web site to working order
after a problem.

v~ Features: Select features based on the purpose of your Web site.
Usually a hosting company bundles features together into plans —
more features = higher cost. Some features to consider are

¢ Disk space: How many MB/GB of disk space will your Web site
require? Media files, such as graphics or music files, can be quite
large.

¢ Data transfer: Some hosting companies charge you for sending
Web pages to users. If you expect to have a lot of traffic on your
Web site, this cost should be a consideration.

26

Part I: Developing a Web Database Application Using PHP and MySQL

¢ E-mail addresses: Many hosting companies provide you with a
number of e-mail addresses for your Web site. For instance, if your
Web site is LolaDesigner.com, you could allow users to send you
e-mail at me@LolaDesigner.com.

¢ Software: Hosting companies offer access to a variety of software
for Web development. PHP and MySQL are the software that I dis-
cuss in this book. Some hosting companies might offer other data-

bases, and some might offer other development tools such as
FrontPage extensions, shopping cart software, and credit card

validation.

e Statistics: Often you can get statistics regarding your Web traffic,
such as the number of users, time of access, access by Web page,

and so on.

Domain names

Every Web site needs a unique address on the
Web. The unique address used by computers to
locate a Web site is the /P address, which is a
series of four numbers between 0 and 255, sep-
arated by dots — for example, 172.17.204.2
or192.163.2.33.

Because IP addresses are made up of numbers
and dots, they’re not easy to remember.
Fortunately, most IP addresses have an associ-
ated name that's much easier to remember,
such as amazon.com, www.irs.gov, or
mycompany .com. A name that is an address
for a Web site is a domain name. A domain can
be one computer or many connected comput-
ers. When a domain refers to several comput-
ers, each computer in the domain can have its
own name. A name that includes an individual
computer name, such as thor.mycompany .
com, identifies a subdomain.

Each domain name must be unique in order to
serve as an address. Consequently, a system of
registering domain names ensures that no two
locations use the same domain name. Anyone
can register any domain name as long as the

name isn't already taken. You can register a
domain name on the Web. First, you test your
potential domain name to find out whether it's
available. If it's available, you register it in your
name or a company name and pay the fee. The
name is then yours to use, and no one else can
use it. The standard fee for domain name regis-
tration is $35 per year. You should never pay
more, but bargains are often available.

Many Web sites provide the ability to register
a domain name, including the Web sites of
many Web hosting companies. A search at
Google (www.google.com) for domain name
register results in over 3 million hits. Shop
around to be sure that you find the lowest price.
Also, many Web sites allow you to enter a
domain name and see whom it is registered to.
These Web sites do a domain name database
search using a tool called whois. A search at
Google for domain name whois results in
770,000 hits. A couple of places where you can
do a whois search are Allwhois.com (www.
allwhois.com)and BetterWhois.com (www .
betterwhois.com).

Chapter 2: Setting Up Your Work Environment 2 7

One disadvantage of hosting your site with a commercial Web hosting com-
pany is that you have no control over your development environment. The
Web hosting company provides the environment that works best for it —
probably setting up the environment for ease of maintenance, low cost, and
minimal customer defections. Most of your environment is set by the com-
pany, and you can’t change it. You can only beg the company to change it.
The company will be reluctant to change a working setup, fearing that a
change could cause problems for the company’s system or for other
customers.

Access to MySQL databases is controlled via a system of accounts and pass-
words that must be maintained manually, thus causing extra work for the
hosting company. For this reason, many hosting companies either don’t offer
MySQL or charge extra for it. Also, PHP has a myriad of options that can be
set, unset, or given various values. The hosting company decides the option
settings based on its needs, which might or might not be ideal for your
purposes.

It’s pretty difficult to research Web hosting companies from a standing start —
a search at Google.com for Web hosting results in almost 6 million hits. The
best way to research Web hosting companies is to ask for recommendations
from people who have experience with those companies. People who have
used a hosting company can warn you if the service is slow or the computers
are down often. After you gather a few names of Web hosting companies from
satisfied customers, you can narrow the list to the one that is best suited to
your purposes and is the most cost-effective.

Setting up and running your own Web site

If you're starting a Web site from scratch, you need to understand the Web
site software fairly well. You have to make several decisions regarding hard-
ware and software. You have to install a Web server, PHP, and MySQL — as
well as maintain, administer, and update the system yourself. Taking this
route requires more work and more knowledge. The advantage is that you
have total control over the Web development environment.

Here are the general steps that lead to your dynamic Web site (I explain these
steps in more detail in the next few sections):

1. Set up the computer.

2. Install the Web server.

3. Install MySQL.

4. Install PHP.

28 Part I: Developing a Web Database Application Using PHP and MySQL

S

If you're starting from scratch, with nothing but an empty space where the
computer will go, start at Step 1. If you already have a running computer but
no Web software, start at Step 2. Or if you have an existing Web site that does
not have PHP and MySQL installed, start with Step 3.

Setting up the computer

Your first decision is to choose which hardware platform and operating
system to use. In most cases, you’ll choose a PC with either Linux or
Windows as the operating system. Here are some advantages and disadvan-
tages of these two operating systems:

v Linux: Linux is open source, so it’s free. It also has advantages for use as
a Web server: It runs for long periods without needing to be rebooted;
and Apache, the most popular Web server, runs better on Linux than
Windows. Running Linux on a PC is the lowest cost option. The disad-
vantage of running Linux is that many people find Linux more difficult to
install, configure, administer, and install software on than Windows.

v Windows: Unlike Linux, Windows is not free. However, the advantages
are that most people feel that Windows is easier to use, and because it’s
widely used, many people can help you if you have problems.

[assume that you’re buying a computer with the operating system and soft-
ware installed, ready to use. It’s easier to find a computer that comes with
Windows installed on it than with Linux, but Linux computers are available.
For instance, at this time, Dell, IBM, and Hewlett-Packard offer computers
with Linux installed.

If you're building your own hardware, you need more information than I have
room to provide in this book. If you have the hardware and plan to install an
operating system, Windows is easier to install, but Linux is getting easier all
the time. You can install Linux from a CD, like Windows, but you often must
provide information or make decisions that require more knowledge about
your system. If you already know how to perform system administration
tasks (such as installing software and making backups) in Windows or in
Linux, the fastest solution is to use the operating system that you already
know.

For using PHP and MySQL, you should seriously consider Linux. PHP is a pro-
ject of the Apache Software Foundation, so it runs best with the Apache
server. And Apache runs better on Linux than on Windows. Therefore, if all
other things are equal and the computer is mainly for running a Web site with
a Web database application, Linux is well suited for your purposes.

Other solutions besides a PC with Windows or Linux are available, but
they’re less popular:

Chapter 2: Setting Up Your Work Environment 2 9

gMBER
S

v Unix-based: Other free, Unix-based operating systems are available for
PCs, such as FreeBSD (which some people prefer to Linux) or a version
of Solaris provided by Sun for free download.

v Mac: Mac computers can be used as Web servers. Most newer Macs
come with PHP installed. Installing PHP and MySQL on Mac OS X is fairly
simple. There are fewer Mac users, however, so it can be difficult to find
help when you need it. One good site is www.phpmac. com.

Installing the Web server

After you set up the computer, you need to decide which Web server to
install. The answer is almost always Apache. Apache offers the following
advantages:

v It’s free. What else do | need to say?

v It runs on a wide variety of operating systems. Apache runs on
Windows, Linux, Mac OS, FreeBSD, and most varieties of Unix.

v It’s popular. Approximately 60 percent of Web sites on the Internet use
Apache, according to surveys at www.netcraft.com/survey and at
www.securityspace.com/s_survey/data/. This wouldn’t be true if it
didn’t work well. Also, this means that a large group of users can provide
help.

v It’s reliable. After Apache is up and running, it should run as long as
your computer runs. Emergency problems with Apache are extremely
rare.

v It’s customizable. The open source license allows programmers to
modify the Apache software, adding or modifying modules as needed to
fit their own specific environment.

v It’s secure. Free software is available that runs with Apache to make it
into an SSL (Secure Sockets Layer) server. Security is an essential issue if
you’re using the site for e-commerce.

Apache is automatically installed when you install most Linux distributions.
Most recent Macs come with Apache installed. For most other Unix flavors,
you have to download the Apache source code and compile it yourself,
although some binaries (programs that are already compiled for specific
operating systems) are available. For Windows, you need to install a binary
file — preferably on Windows NT/2000/XP, although Apache also runs on
Windows 95/98/Me. As of this writing, Apache 1.3.28 and 2.0.47 are the cur-
rent stable releases. (Information on Apache versions is available in
Appendix C.) See the Apache Web site (httpd.apache.org) for information,
software downloads, documentation, and installation instructions for various
operating systems. The Web site provides extensive documentation that is
improving all the time.

30 Part I: Developing a Web Database Application Using PHP and MySQL

\\J

Other Web servers are available. Microsoft offers IIS (Internet Information
Server), which is the second most-popular Web server on the Internet with
approximately 27 percent of Web sites. Sun offers iPlanet (formerly Netscape
Enterprise Server), which serves less than 5 percent of the Internet. Other
Web servers are available, but they have even smaller user bases.

Installing MySOL

After setting up the computer and installing the Web server, you're ready to
install MySQL. You need to install MySQL before installing PHP because you
need to provide the path to the MySQL software when you install PHP.

But before installing MySQL, be sure that you actually need to install it. It
might already be running on your computer, or it might be installed but not
running. For instance, many Linux distributions automatically install MySQL.
Here’s how to check whether MySQL is currently running:

v Linux/Unix/Mac: At the command line, type the following:
ps -ax

The output should be a list of programs. Some operating systems (usu-
ally flavors of Unix) have different options for the ps command. If the
above comment does not produce a list of the programs that are run-
ning, type man ps to see which options you need to use.

In the list of programs that appears, look for one called mysqld.

v Windows: If MySQL is running, you should see it in your system tray at
the bottom of your screen, possibly as a traffic signal with a green light.
If you cannot find an icon for it, it’s probably not running.

Even if MySQL isn’t currently running, it might be installed, just not started.
Here’s how to check to see whether MySQL is installed on your computer:
v Linux/Unix/Mac: Type the following:
find / -name "mysql*"
If a directory named mysq]1 is found, MySQL has been installed.

v Windows: Look for a program called WinMySQLadmin, which starts and
stops MySQL, among other functions. You might be able to find it on the
Start menu (choose Start=>Programs). If not, look for it in a MySQL direc-
tory, which is probably at c:\mysqgl\bin.

If MySQL is installed but not started, here’s how to start it:

Chapter 2: Setting Up Your Work Environment 3 ’

\\3

A\

v Linux/Unix/Mac:
1. Change to the directory mysql/bin.

This is the directory that you should have found when you were
checking whether MySQL was installed.

2. Type safe_mysqld &.
When this command finishes, the prompt is displayed.
3. Check that the MySQL server started by typing ps -ax.
In the list of programs that appears, look for one called mysqld.
1+ Windows:
1. Start the WinMySQLadmin program.

If you can’t find it on the menu, navigate to the program, which is
probably at c:\mysgl\bin\winmysgladmin.exe, and then
double-click it.

2. Right-click in the WinMySQLadmin window.
A submenu appears.

3. Select the menu item for your operating system — Win 9x or Win
NT (which includes Win 2000 and XP).

4. Click Start the Server.

If MySQL isn’t installed on your computer, you need to download it and
install it from www.mysq1.com. The Web site provides all the information and
software that you need. (You can find detailed installation instructions in
Appendix A.)

Installing PHP

After you install MySQL, you're ready to install PHP. As [mention earlier, you
must install MySQL before you install PHP because you need to provide the
path to the MySQL software when you install PHP. If PHP isn’t compiled with
MySQL support when it is installed, it won’t communicate with MySQL.

Before you install PHP, check whether it’s already installed. For instance,
some Linux and Mac distributions automatically install PHP. To see whether
PHP is installed, search your disk for any PHP files:

v Linux/Unix/Mac: Type the following:
find / -name "php*"

1 Windows: Use the Find feature (choose Start=’Find) to search for php*.

32 Part I: Developing a Web Database Application Using PHP and MySQL

If you find PHP files, PHP is already installed, and you might not need to rein-
stall it. For instance, even if you installed MySQL yourself after the PHP was
installed, you might have installed it in the location where PHP is expecting
it. Better safe than sorry, however: Perform the testing that I describe in the
next section to see whether MySQL and PHP are working correctly together.

If you don’t find any PHP files, PHP is not installed. In order to install PHP,
you need access to the Web server for your site. For instance, when you
install PHP with Apache, you need to edit the Apache configuration file. All
the information and software that you need is provided on the PHP Web site
(www.php.net). I provide detailed installation instructions in Appendix B.

Testing, Testing, 1, 2, 3

Suppose you believe that PHP and MySQL are available for you to use, for
one of the following reasons:

v The IT department at your company or your client company gave you all
the information that you asked for and told you that you're good to go.

v The Web hosting company gave you all the information that you need
and told you that you're good to go.

v You followed all the instructions and installed PHP and MySQL yourself.

Now you need to test to make sure that PHP and MySQL are working correctly.

Testing PHP

To test whether PHP is installed and working, follow these steps:

1. Find the directory in which your PHP programs need to be saved.

This directory and the subdirectories under it are your Web space.
Apache calls this directory the Document Root. The default Web space
for Apache is htdocs in the directory where Apache is installed. For IIS,
it’s Inetpub\wwwroot. In Linux, it might be /var/www/htm1. The Web
space can be set to a different directory by configuring the Web server
(see Appendix C). If you're using a Web hosting company, the staff will
supply the directory name.

Chapter 2: Setting Up Your Work Environment

WING/
g‘?‘

\NG/
&VQ‘“

2. Create the following file somewhere in your Web space with the name

test.php.

<html1>
<head>
<title>PHP Test</title>
</head>
<body>
<p>This is an HTML line
<p>
<?php
echo "This is a PHP Tine";
phpinfo();
7>
</body></html>

The file must be saved in your Web space for the Web server to find it.

. Point your browser at the file test.php created in Step 1. That is,

type the name of your Web server (www.myfinecompany.com) into the
browser address window.

If your Web server, PHP, and the test.php file are on the same com-
puter that you're testing from, you can type localhost/test.php.

In order for the file to be processed by PHP, you need to access the file
through the Web server — not by choosing Filec>Open from your Web
browser menu.

You should see the following in the Web browser:

This is an HTML Tine
This is a PHP Tine

Below these lines, you should see a large table, which shows all the
information associated with PHP on your system. It shows PHP informa-
tion, path and filenames, variable values, and the status of various
options. The table is produced by the line phpinfo() in the test script.
Anytime that you have a question about the settings for PHP, you can
use the statement phpinfo() to display this table and check a setting.

. Check the PHP values for the values that you need.

For instance, you need MySQL support enabled. Looking through the
listing, find the section for MySQL and make sure that MySQL support
is On.

. Change values if necessary.

If you don’t have administrative access to PHP, you have to ask the
administrator to change any values that need changing. If you installed
PHP yourself and/or have administrative access to PHP, you can change
the values yourself. (Changing PHP settings is discussed in Appendix B.)

33

34 Part I: Developing a Web Database Application Using PHP and MySQL

Testing MySOL

After you know that PHP is running okay, you can test whether you can
access MySQL by using PHP. Just follow these steps:

1. Create the following file somewhere in your Web space with the name
N3 mysql_up.php.

You can download the file from my Web site at janet.valade.com.

<htm1>

<head><title>Test MySQL<L/title></head>
<body>

<I-- mysql_up.php -->

<?php

$host="hostname" ;
$user="mysqlaccount";
$password="mysqglpassword";

mysql_connect($host, $user,$password);
$sql="show status";
$result = mysql_query($sql);
if ($result == 0)
echo "Error " . mysql_errno() . ": "
. mysql_error() . "";
else
{
?>
<!-- Table that displays the results -->
<{table border="1">
<tr><td>Variable_name</td><td>Value
</td></tr>
<?php
for ($i = 0; $i < mysql_num_rows($result); $i++) {
echo "<TR>";
$row_array = mysql_fetch_row($result);
for ($j = 0; $j < mysql_num_fields($result); $j++)
{
echo "<TD>" . $row_array[$j] . "</td>";
}
echo "</tr>";
?>}
</table>
<?php } 2>
</body></html>

Chapter 2: Setting Up Your Work Environment

2. Lines 6, 7, and 8 of the program need to be changed. These lines are

$host="host";
$user="mysqglaccount";
$password="mysqglpassword";

Change host to the name of the computer where MySQL is installed —
for example, databasehost.mycompany.com. If the MySQL database is
on the same computer as your Web site, you can use Tocalhost as the
hostname.

Change mysqlaccountname and mysqlpassword to the appropriate
values. (I discuss MySQL accounts and passwords in Chapter 5.) If your
MySQL account doesn’t require a password, type nothing between the
quotes, as follows:

$password="";
3. Point your browser at mysql_up.php.

You should see a table with a long list of variable names and values. You
don’t want to see an error message or a warning message. Don’t worry
about the contents of the table. It’s only important that the table is dis-
played so that you know your connection to MySQL is working correctly.

If no error or warning messages are displayed, MySQL is working fine. If
you see an error or a warning message, you need to fix the problem
that’s causing the message.

Error and warning messages are usually fairly clear. The following is a
common error message.

MySQL Connection Failed: Access denied for user:
'user73@localhost' (Using password: YES)

This message means that MySQL did not accept your MySQL account number
or your MySQL password. Notice that the message reads YES for Using
password but doesn’t show the actual password that you tried for security
reasons. If you tried with a blank password, the message would read NO.

If you receive an error message, double-check your account number and
password. Remember that this is your MySQL account number — not your
account number to log on to the computer. If you can’t connect with the
account number and password that you have, you might need to contact the
IT department or the Web hosting company that gave you the account
number. (For a further discussion of MySQL accounts and passwords, see
Chapter 5.)

35

36 Part I: Developing a Web Database Application Using PHP and MySQL

Chapter 3

Developing a Web Database
Application

In This Chapter
Planning your application
Selecting and organizing your data
Designing your database
Overview of building your database

Overview of writing your application programs

Developing a Web database application involves more than just storing
data in MySQL databases and typing in PHP programs. Development
has to start with planning. Building the application pieces comes after plan-
ning. The development steps are

1. Develop a plan, listing the tasks that your application will perform.

2. Design the database needed to support your application tasks.

3. Build the MySQL database, based on the database design.

4. Write the PHP programs that perform the application tasks.

I discuss these steps in detail in this chapter.

Planning Your Web Database
Application

Before you ever put finger to keyboard to write a PHP program, you need to
plan your Web database application. This is possibly the most important step
in developing your application. It’s painful to discover, especially just after
you finish the last program for your application, that you left something out

38 Part I: Developing a Web Database Application Using PHP and MySQL

\\J

and have to start over from the beginning. It’s also hard on your computer
(and your foot) when you take out your frustrations by drop-kicking it across
the room.

Good planning prevents such painful backtracking. In addition, it keeps you
focused on the functionality of your application, thus preventing you from
writing pieces for the application that do really cool things but turn out to
have no real purpose in the finished application. And if more than one person
is working on your application, planning ensures that all the pieces will fit
together in the end.

Identifying what you want
from the application

The first step in the planning phase is to identify exactly why you’re develop-
ing your application and what you want from it. For example, your main pur-
pose might be to

v Collect names and addresses from users so that you can develop a
customer list.

v Deliver information about your products to users, as in a customer
catalog.

v Sell products online.

v Provide technical support to people who already own your product.
After you clearly identify the general purpose of your application, make a list
of exactly what you want that application to do. For instance, if your goal is
to develop a database of customer names and addresses for marketing pur-
poses, the application’s list of required tasks is fairly short:

v Provide a form for customers to fill out.

v Store the customer information in a database.
If your goal is to sell products online, the list is a little longer:

v Provide information about your products to the customer.

v Motivate the customer to buy the product.

v Provide a way for the customer to order the product online.

v Provide a method for the customer to pay for the product online.

v Validate the payment so you know that you’ll actually get the money.

v Send the order to whomever is responsible for filling it and sending the
product to the customer.

Chapter 3: Developing a Web Database Application

At this point in the planning process, the tasks that you want your application
to perform are still pretty general. You can accomplish each of these tasks in
many different ways. So now you need to examine the tasks closely and detail
exactly how the application will accomplish them. For instance, if your goal is
to sell products online, you might expand the previous list like this:
v Provide information about products to the customer.
¢ Display a list of product categories. Each category is a link.

e When the customer clicks a category link, the list of products in
that category is displayed. Each product name is a link.

e When a customer clicks a product link, the description of the prod-
uct is displayed.

v Motivate the customer to buy the product.

¢ Provide well-written descriptions of the products that communi-
cate their obviously superior qualities.

e Use flattering pictures of the products.
e Make color product brochures available online.
¢ Offer quantity discounts.
v Provide a way for customers to order the product online.

¢ Provide a button that customers can click to indicate their inten-
tion to buy the product.

¢ Provide a form that collects necessary information about the prod-
uct the customer is ordering, such as size, color, and so on.

e Compute and display the total cost for all items in the order.
e Compute and display the shipping costs.
e Compute and display the sales tax.

¢ Provide forms for customers to enter shipping and billing
addresses.

v Provide a method for customers to pay for the product online.

¢ Provide a button that customers can click to pay with a credit
card.

¢ Display a form that collects customers’ credit card information.
v~ Validate the payment so you know that you’ll actually get the money.

The usual method is to send the customer’s credit card information to a
credit card processing service.

1 Send the order to whoever is responsible for filling it and sending the
product to the customer.

E-mailing order information to the shipping department should do it.

39

40 Part I: Developing a Web Database Application Using PHP and MySQL

WMBER
‘x&
&

At this point, you should have a pretty clear idea of what you want from your
Web database application. However, this doesn’t mean that your goals can’t
change. (In fact, your goals are very likely to change as you develop your
Web database application and discover new possibilities.) At the onset of the
project, start with as comprehensive of a plan as possible to keep you
focused so that you avoid running into a dead end or getting sidetracked.

Taking the user into consideration

Identifying what you want your Web database application to do is only one
aspect of planning. You must also consider what your users will want from
it. For example, say your goal is to gather a list of customer names and
addresses for marketing purposes. Will customers be willing to give up that
information?

Your application needs to fulfill a purpose for the users as well as for your-
self. Otherwise, they’ll just ignore it. Before users will be willing to give you
their names and addresses, for example, they need to perceive that they will
benefit in some way from giving you this information. Here are a few exam-
ples of why users might be willing to register their names and addresses at
your site:

v To receive a newsletter: To be perceived as valuable, the newsletter
should cover an industry related to your products. It should offer news
and spot trends — and not just serve as marketing material about your
products.

+ To enter a sweepstakes for a nice prize: Who can turn down a chance
to win an all-expense-paid vacation to Hawaii or a brand-new SUV?

v To receive special discounts: For example, you can periodically e-mail
special discount opportunities to customers.

+ To be notified about new products or product upgrades when they
become available: For example, customers might be interested in being
notified when a software update is available for downloading.

1 To get access to valuable information: For instance, you must register
at The New York Times Web site in order to gain access to its articles
online.

Now add the customer tasks to your list of tasks that you want the applica-
tion to perform. For example, consider this list of tasks that you identified for
setting up an online retailer:

v Provide a form for customers to fill out.

v Store the customer information in a database.

\\J

Chapter 3: Developing a Web Database Application 4 ’

If you take the customer’s viewpoint into account, the list expands a bit:

v Present a description of the advantages customers receive by registering
with the site.

v Provide a form for customers to fill out.
v Add customers’ e-mail addresses to the newsletter distribution list.

v Store the customer information in a database.

After you have a list of tasks that you want and tasks that your users want,
you have a plan for a Web application that is worth your time to develop and
worth your users’ time to use.

Making the site easy to use

In addition to planning what your Web application is going to do, you need to
consider how it is going to do it. Making your application easy to use is
important: If customers can’t find your products, they aren’t going to buy
them. And if customers can’t find the information that they need in a pretty
short time, they will go look elsewhere. On the Web, customers can always
easily go elsewhere.

Making your application easy to use is usability engineering. Web usability
includes such issues as

v~ Navigation: What is on your site and where it is located should be imme-
diately obvious to a user.

v Graphics: Graphics make your site attractive, but graphic files can be
slow to display.

v Access: Some design decisions can make your application accessible or
not accessible to users who have disabilities such as impaired vision.

v Browsers: Different browsers (even different versions of the same
browser) can display the same HTML (HyperText Markup Language) file
differently.

Web usability is a large and important subject, and delving into the topic
more deeply is beyond the scope of this book. But fear not, you can find lots
of helpful information on Web usability on — you guessed it — the Web. Be
sure to check out the Web sites of usability experts Jakob Nielsen (www.useit.
com) and Jarod Spool (http://world.std.com/~uieweb/). Vincent
Flanders also has a fun site full of helpful information about Web design at
WebPagesThatSuck.com. And books on the subject can be very helpful, such
as Web Design For Dummies by Lisa Lopuck (Wiley).

42 Part I: Developing a Web Database Application Using PHP and MySQL

WMBER
Q"c
&

Leaving room for expansion

One certainty about your Web application is that it will change over time.
Down the line, you might think of new functions for it or just simply want to
change something about it. Or maybe Web site software improves so that
your Web application can do things that it couldn’t do when you first put it
up. Whatever the reason, your Web site will change. When you plan your
application, you need to keep future changes in mind.

You can design your application in steps, taking planned change into
account. You can develop a plan in which you build an application today that
meets your most immediate needs and make it available as soon as it’s ready.
Your plan can include adding functions to the application as quickly as you
can develop them. For example, you can build a product catalog and publish
it on your Web site as soon as it’s ready. You can then begin work on an
online ordering function for the Web site, which you will add when it’s ready.

You can’t necessarily foresee all the functions that you might want in your
application in the future. For instance, you might design your travel Web site
with sections for all possible destinations today, but the future could surprise
you. Trips to Mars? Alpha Centauri? An alternate universe? Plan your applica-
tion with the flexibility needed to add functionality in the future.

Writing it down

Write your plan down. You will hear this often from me. [speak from the
painful experience of not writing it down. When you develop your plan, it’s
foremost in your mind and perfectly clear. But in a few short weeks, you will
be astonished to discover that it has gone absolutely hazy while your atten-
tion was on other pressing issues. Or you want to make some changes in the
application a year from now and won’t remember exactly how the application
was designed. Or you're working with a partner to develop an application
and you discover that your partner misunderstood your verbal explanation
and developed functions for the application that don’t fit in your plan. You
can avoid these types of problems by writing everything down.

Presenting the Two Running
Examples in This Book

In the next two sections, I introduce the two example Web database applica-
tions that [created for this book. I refer to these examples throughout the
book to demonstrate aspects of application design and development.

Chapter 3: Developing a Web Database Application

Stuff for Sale

The first example is an online product catalog. You're the owner of a pet
store, and you want your catalog to provide customers with information
about the pets that are for sale. Selling the pets online is not feasible
although you’re toying with the idea of allowing customers to “reserve” pets
online — that is, before they come into the store to purchase them. Currently,
the application is simply an online catalog. Customers can look through the
catalog online and then come into the store to buy the pet. The information
about all the pets is stored in a database, and customers can search the data-
base for information on specific pets or types of pets.

Here is your plan for this application:

v Allow customers to select which pet they want to see information
about.

Offer two selection methods:

¢ Selecting from a list of links: Display a list of links that are pet cat-
egories (for example, dog, cat, dinosaur, and so on). When the cus-
tomer clicks a category link, a list of pets is displayed. Each pet in
the list is a link to a description of the pet.

¢ Typing in search terms: Display a search form in which customers
can type words that describe the type of pet they're looking for.
The application searches the database for matching words and
displays the pet information for any pets that match the search
words. For example, a customer can type cat to see a list of all avail-
able cats. Each cat in the list is a link to a description of that cat.

v~ Display a description of the pet when the customer clicks the link.

The description is stored in a database.

Members Only

The second example Web database application is related to the preceding pet
store example. In addition to the online catalog, you also want to put up a
section on your pet store Web site for members only. In order to access this
area of the site, customers have to register — providing their names and
addresses. In this Members Only section, customers can order pet food at a
discount, find out about pets that are on order but haven’t arrived yet, and
also gain access to articles with news and information about pets and pet
care.

43

44 Part I: Developing a Web Database Application Using PHP and MySQL

This is your plan for this application:
v~ Display a description of what special features and information are
available in the Members Only section.

v Provide an area where customers can register for the Members Only
section.

¢ Provide a link to the registration area.

¢ Display a form in the registration area where customers can type
their registration information.

The form should include space for a user login name and password
as well as the information that you want to collect.

¢ Validate the information that the user entered.

For example, verify that the ZIP code is the correct length, the
e-mail address is in the correct format, and so on.

¢ Store the information in the database.

v Provide a login section for customers who are already registered for
the Members Only section.

¢ Display a login form that asks for the customer’s user name and
password.

¢ Compare the user name and password that are entered with the
user names and passwords in the database.

If no match is found, display an error message.

v~ Display the Members Only Web page after the customer has success-
fully logged in.

Designing the Database

After you determine exactly what the Web database application is going to do
(see the beginning part of this chapter if you haven’t done this yet), you're
ready to design the database that holds the information needed by the appli-
cation. Designing the database includes identifying the data that you need
and organizing the data in the way required by the database software.

Choosing the data

First, you must identify what information belongs in your database. Look at
the list of tasks that you want the application to perform and determine what
information you need to complete each of those tasks.

Chapter 3: Developing a Web Database Application 45

Here are a few examples:

v An online catalog needs a database containing product information.

v An online order application needs a database that can hold customer
information and order information.

v A travel Web site needs a database with information on destinations,
reservations, fares, schedules, and so on.

In many cases, your application might include a task that collects information
from the user. You'll have to balance your urge to collect all the potentially
useful information that you can think of against your users’ reluctance to give
out personal information — as well as their avoidance of forms that look too
time-consuming. One compromise is to ask for some optional information.
The users who don’t mind can enter it, but users who object can leave it
blank. Another possibility is to offer an incentive: The longer the form is, the
stronger the incentive that you’ll need to motivate the user to fill out the
form. A user might be willing to fill out a very short form to enter a sweep-
stakes that offers two sneak-preview movie tickets for a prize. But if the form
is long and complicated, the prize needs to be more valuable, such as a free
trip to California and a tour of a Hollywood movie studio.

In the first example application, your customers search the online catalog for
information on pets that they might want to buy. You want customers to see
information that will motivate them to buy a pet. The information that you
want to have available in the database for the customer to see is

v The name of the pet

For example, poodle, unicorn, and so on

v A description of the pet

v A picture of the pet

1 The cost of the pet
In the second example application, the Members Only section, you want to
store information about registered members. The information that you want
to store in the database is

v Member name

v Member address

v Member phone number

v Member fax number

1 Member e-mail address

456

Part I: Developing a Web Database Application Using PHP and MySQL

P Take the time to develop a comprehensive list of the information that you
need to store in your database. Although you can change and add informa-
tion to your database after it’s developed, including the information from the
beginning is easier. Also, if you add information to the database later — after
it’s in use — the first users in the database will have incomplete information.
For example, if you change your form so that it now asks for the user’s age,
you won'’t have the age for the people who have already filled out the form
and are already in the database.

Organizing the data

MySQL is a RDBMS (Relational Database Management System), which means
that the data is organized into tables. (See Chapter 1 for more on MySQL.)
You can establish relationships between the tables in the database.

Organizing data in tables

RDBMS tables are organized like other tables that you're used to — in rows
and columns, as shown in Figure 3-1. The place where a particular row and
column intersect, the individual cell, is a field.

Column 1 Column 2 Column 3 Column 4
Row 1
Row 2
Row 3 Field
Row 4
Figure 3-1: ow
MySQL data
is organized Row 5
into tables.
|

The focus of each table is an object (a thing) that you want to store informa-
tion about. Here are some examples of objects:

v Customers
v Products

v Companies

Chapter 3: Developing a Web Database Application

v Animals

v~ Cities

v Rooms

v Books

v Computers
v Shapes

v Documents
v Projects
v Weeks

You create a table for each object. The table name should clearly identify the
objects that it contains with a descriptive word or term. The name must be a
character string with no spaces in it. The table name can contain letters,
numbers, underscores (), or dollar signs ($). It’s customary to name the
table in the singular. Thus, a name for a table of customers might be
Customer, and a table containing customer orders might be named
CustomerOrder. Upper- and lowercase is significant on Linux/Unix but not

on Windows: CustomerOrder and Customerorder are the same to Windows —
but not to Linux or Unix.

In database talk, an object is an entity, and an entity has attributes. In the
table, each row represents an entity, and the columns contain the attributes
of each entity. For example, in a table of customers, each row contains infor-
mation for a single customer. Some of the attributes contained in the columns
might be first name, last name, phone number, age, and so on.

Here are the steps for organizing your data into tables:

1. Name your database.

Assign a name to the database for your application. For instance, a data-
base containing information about households in a neighborhood might
be named HouseholdDirectory.

2. Identify the objects.

Look at the list of information that you want to store in the database.

(If you haven’t done this yet, check out the section, “Choosing the data,”
earlier in this chapter.) Analyze your list and identify the objects. For
instance, the HouseholdDirectory database might need to store the
following:

e Name of each family member
e Address of the house

¢ Phone number

b7

48 Part I: Developing a Web Database Application Using PHP and MySQL

<MBER

¢ Age of each household member
¢ Favorite breakfast cereal of each household member

When you analyze this list carefully, you realize that you're storing infor-
mation about two objects: the household and the household members.
That is, the address and phone number are for the household in general,
but the name, age, and favorite cereal are for a particular household
member.

. Define and name a table for each object.

For instance, the HouseholdDirectory database needs a table called
Household and a table called HouseholdMember.

. Identify the attributes for each object.

Analyze your information list and identify the attributes that you need to
store for each object. Break the information to be stored into its smallest
reasonable pieces. For example, when storing the name of a person in a
table, you can break down the name into first name and last name. Doing
this enables you to sort by the last name, which would be more difficult
if the first and last name were stored together. In fact, you can even
break down the name into first name, middle name, and last name,
although not many applications need to use the middle name separately.

. Define and name columns for each separate attribute that you identi-

fied in Step 4.

Give each column a name that clearly identifies the information in that
column. The column names should be one word, with no spaces. For
example, you might have columns named firstName and 1astName or
first_name and Tast_name.

Some words are reserved by MySQL or SQL for its own use and can’t be
used as column names. The words are currently used in SQL statements
or are reserved for future use. For example, ADD, ALL, AND, CREATE, DROP,
GROUP, ORDER, RETURN, SELECT, SET, TABLE, USE, WHERE, and many, many
more can’t be used as column names. For a complete list of reserved
words, see the online MySQL manual at www.mysql.com/doc/en/
Reserved_words.html.

. Identify the primary key.

Each row in a table needs a unique identifier. No two rows in a table
should be exactly the same. When you design your table, you decide
which column holds the unique identifier, called the primary key. The
primary key can be more than one column combined. In many cases,
your object attributes will not have a unique identifier. For example, a
customer table might not have a unique identifier because two cus-
tomers can have the same name. When there is no unique identifier
column, you need to add a column specifically to be the primary key.
Frequently, a column with a sequence number is used for this purpose.
For example, in Figure 3-2, the primary key is the cust_id field because
each customer has a unique ID number.

Chapter 3: Developing a Web Database Application 4 9

|
Figure 3-2:
A sample
from the
Customer
table.
|

A\

cust_id first_name last_name phone

27895 John Smith 555-5555
44555 Joe Lopez 555-5553
23695 Judy Chang 555-5552
27822 Jubal Tudor 555-5556
29844 Joan Smythe 555-5559

7. Define the defaults.

You can define a default that MySQL will assign to a field when no data is
entered into the field. A default is not required but is often useful. For
example, if your application stores an address that includes a country,
you can specify US as the default. If the user does not type a country, US
will be entered.

8. Identify columns with required data.

You can specify that certain columns are not allowed to be empty (also
called NULL). For instance, the column containing your primary key can’t
be empty. That means that MySQL will not create the row if no value is
stored in the column. The value can be a blank space or an empty string
(for example, ""), but some value must be stored in the column. You can
set other columns, as well as the primary key, to be in error if they are
empty.

Well-designed databases store each piece of information in only one place.
Storing it in more than one place is inefficient and creates problems if infor-
mation needs to be changed. If you change information in one place but
forget to change it in another place, your database can have serious problems.

If you find that you're storing the same data in several rows, you probably
need to reorganize your tables. For example, suppose you're storing data
about books, including the publisher’s address. When you enter the data,
you realize that you're entering the same publisher’s address in many rows.
A more efficient way to store this data would be to store the book informa-
tion in one table and the book publisher information in a separate table.
You can define two tables: Book and BookPublisher. In the Book table,
you would have the columns title, author, pub_date, and price.

In the BookPub1isher table, you would have columns such as name,
streetAddress, city, and so on.

50

Part I: Developing a Web Database Application Using PHP and MySQL

|
Figure 3-3:
A sample
from the
Order
table.
|

Creating relationships between tables

Some tables in a database are related to one another. Most often, a row in one
table is related to several rows in another table. A column is needed to con-
nect the related rows in different tables. In many cases, you include a column
in one table to hold data that matches data in the primary key column of
another table.

A common application that needs a database with two related tables is a cus-
tomer order application. For example, one table contains the customer infor-
mation, such as name, address, phone, and so on. Each customer can have
from zero to many orders. You could store the order information in the table
with the customer information, but a completely new row would be created
each time that the customer placed an order, and each new row would con-
tain all the customer’s information. It would be much more efficient to store
the orders in a separate table. The Order table would have a column that
contains the primary key from a row in the Customer table so that the order
is related to the correct row of the Customer table. The relationship is shown
in the tables in Figures 3-2 and 3-3.

The Customer table in this example looks like Figure 3-2 (see the preceding
section). Notice the unique cust_id for each customer.

The related Order table is shown in Figure 3-3. Notice that it has the same
cust_id column that appears in the Customer table. In this way, the order
information in the Order table is connected to the related customer’s name
and phone number in the Customer table.

Order_no cust_id item_num cost
87-222 27895 cat-3 200.00
87-223 27895 cat-4 225.00
87-224 44555 horse-1 550.00
87-225 44555 dog-27 210.00
87-226 27895 bird-1 50.00

Chapter 3: Developing a Web Database Application 5 ’

In this example, the columns that relate the Customer table and the Order
table have the same name. They could have different names as long as the
data in the columns is the same.

Designing the Sample Databases

In the following two sections, I design the two databases for the two example
applications used in this book.

Pet Catalog design process

You want to display the following list of information when customers search
your pet catalog:

v The name of the pet

For example, poodle, unicorn, and so on

1 A description of the pet

1 A picture of the pet

v The cost of the pet
In the Pet Catalog plan, a list of pet categories is displayed. This requires that

each pet be classified into a pet category and that the pet category be stored
in the database.

You design the PetCatalog database by following the steps presented in the
“Organizing data in tables” section, earlier in this chapter:
1. Name your database.
The database for the Pet Catalog is named PetCatalog.
2. Identify the objects.
The information list is
¢ The name of the pet (for example, poodle, unicorn, and so on)
e A description of the pet
¢ A picture of the pet
e The cost of the pet
¢ The category for the pet

All this information is about pets, so the only object for this list is Pet.

52 Part I: Developing a Web Database Application Using PHP and MySQL

3. Define and name a table for each object.

The Pet Catalog application needs a table called Pet.
4. Identify the attributes for each object.

Now you look at the information in detail:

e Name of the pet: A single attribute — for example, poodle, uni-
corn, and so on. However, it seems likely that your pet shop might
have more than one poodle for sale at a time. Therefore, your table
needs a unique identifier to serve as the primary key.

¢ Pet identification number: A sequence number assigned to each
pet when it’s added to the table. This number is the primary key.

¢ Description of the pet: Two attributes: the written description of
the pet as it would appear in a printed catalog and the color of
the pet.

¢ Picture of the pet: A path name to a graphic file containing a beau-
tiful picture of the pet.

¢ Cost of the pet: The dollar amount that the store is asking for
the pet.

¢ Category for the pet: Two attributes: a category name that
includes the pet — for example, dog, horse, dragon — and a
description of the category.

It would be inefficient to include two types of information in the Pet
table:

¢ The category information includes a description of the category.
Because each category can include several pets, including the
category description in the Pet table would result in the same
description appearing in several rows. It is more efficient to define
Pet Category as an object with its own table.

e [f the pet comes in several colors, all the pet information will be
repeated in a separate row for each color. It is more efficient to
define Pet Color as an object with its own table.

The added tables are named PetType and PetColor.
5. Define and name columns.

The Pet table has one row for each pet. The columns for the Pet
table are

e petID: Unique sequence number assigned to each pet.
e petName: Name of the pet.

e petType: The category name. This is the column that connects the
pet to the correct row in the PetType table.

e petDescription: The description of the pet.

Chapter 3: Developing a Web Database Application 53

¢ price: The price of the pet.

¢ pix: The filename of a graphics file that contains a picture of
the pet.

The PetType table has one row for each pet category. It has the follow-
ing columns:

e petType: The category name of a type of pet. This is the primary
key for this table. Notice that the Pet table has a column with the
same name. These columns link this table with the Pet table.

e typeDescription: The description of the pet type.

The PetColor table has one row for each pet color. It has the following
columns:

e petName: The name of the pet. This is the column that connects
the color row to the correct row in the Pet table.

e petColor: The color of the pet.
6. Identify the primary key.
e The primary key of the Pet table is petID.
e The primary key of the PetType table is petType.

¢ The primary key of the PetColor table is petName and petColor
together.

7. Define the defaults.
No defaults are defined for either table.
8. Identify columns with required data.
The following columns should never be allowed to be empty:
® petlID
e petName
e petColor
® petType

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

Members Only design process

You create the following list of information that you want to store when cus-
tomers register for the Members Only section of your Web site:

v Member name

v Member address

54 Part I: Developing a Web Database Application Using PHP and MySQL

v Member phone number
v Member fax number
v Member e-mail address
In addition, you also would like to collect the date when the member regis-

tered and track how often the member actually goes into the Members Only
section.

You design the Members Only database by following the steps presented in
the “Organizing data in tables” section, earlier in this chapter:
1. Name your database.

The database for the Members Only section is named
MemberDirectory.

2. Identify the objects.
The information list is

e Member name
¢ Member address
¢ Member phone number
¢ Member fax number
e Member e-mail address
* Member registration date
¢ Member logins

All this information pertains to members, so the only object for this list
is member.

3. Define and name a table for each object.
The MemberDirectory database needs a table called Member.
4. Identify the attributes for each object.
Look at the information list in detail:
e Member name: Two attributes: first name and last name.

e Member address: Four attributes: street address, city, state, and
ZIP code. Currently, you only have pet stores in the United States,
so you can assume the member address is an address in the U.S.
mailing address format.

¢ Member phone number: One attribute.
¢ Member fax number: One attribute.
¢ Member e-mail address: One attribute.

¢ Member registration date: One attribute.

Chapter 3: Developing a Web Database Application

<MBER
S

Several pieces of information are related to member logins:

¢ Logging into the Members Only section requires a login name and
a password. These two items need to be stored in the database.

¢ The easiest way to keep track of member logins is to store the
date/time when the user logged into the Members Only section.

Because each member can have many logins, many date/times for logins
need to be stored. Therefore, rather than defining the login time as an
attribute of the member, define login as an object, related to the
member, but requiring its own table.

The added table is named Login. The attribute of a login object is its
login time (time includes date).

. Define and name columns.

The Member table has one row for each member. The columns for the
Member table are

e JoginName

Each login name must be unique. The programs in the application make
sure that no two members ever have the same login name.

e password
e createDate
e firstName
* lastName
® street

e City

e state
®zip

e email

e phone

e fax

The Login table has one row for each login: that is, each time a member
logs into the Members Only section. It has the following columns:

e 1oginName: The login name of the member who logged in. This is
the column that links this table to the Member table. This is a
unique value in the Member table but not a unique value in this
table.

e 1oginTime: The date and time of login.

55

56 Part I: Developing a Web Database Application Using PHP and MySQL

6. Identify the primary key.
e The primary key for the Member table is ToginName.

¢ The primary key for the Login tableis ToginName and ToginTime
together.

7. Define the defaults.
No defaults are defined for either table.
8. Identify columns with required data.
The following columns should never be allowed to be empty:
e JoginName
® password
e JoginTime

These columns are the primary key columns. A row without these values
should never be allowed in the tables.

Types of Data

MySQL stores information in different formats based on the type of informa-
tion that you tell MySQL to expect. MySQL allows different types of data to be
used in different ways. The main types of data are character, numerical, and
date/time data.

Character data

The most common type of data is character data — data that is stored as
strings of characters and can only be manipulated in strings. Most of the
information that you store will be character data, such as customer name,
address, phone number, pet description, and so on. Character data can be
moved and printed. Two character strings can be put together (concate-
nated), a substring can be selected from a longer string, and one string can
be substituted for another.

Character data can be stored in a fixed-length format or a variable-length
format.

v Fixed-length format: In this format, MySQL reserves a fixed space for
the data. If the data is longer than the fixed length, only the characters
that fit are stored — the remaining characters on the end are not stored.
If the string is shorter than the fixed length, the extra spaces are left
empty and wasted.

Chapter 3: Developing a Web Database Application 5 7

v~ Variable-length format: In this format, MySQL stores the string in a field
that is the same length as the string. You still specify a length for the
string, but if the string is shorter than the specified length, MySQL only
uses the space required rather than leaving the extra space empty. If the
string is longer than the space specified, the extra characters are not
stored.

If a character string length varies only a little, use the fixed-length format. For
example, a length of 10 works for all ZIP codes, including those with the ZIP+4
number. If the ZIP code does not include the ZIP+4 number, only five spaces
are left empty. However, if your character string can vary more than a few
characters, use a variable-length format to save space. For example, your pet
description might be Small bat or it might run to several lines of description.
So it would be better to store this description in a variable-length format.

Numerical data

Another common type of data is numerical data — data that is stored as a
number. Decimal numbers (for example, 10.5, 2.34567, 23456.7) can be stored
as well as integers (for example, 1, 2, 248). When data is stored as a number,
it can be used in numerical operations, such as adding, subtracting, squaring,
and so on. If data isn’t used for numerical operations, however, storing it as a
character string is better because the programmer will be using it as a char-
acter string. No conversion is required. For example, you probably won’t
want to add the digits in the users’ phone numbers, so phone numbers
should be stored as character strings.

MySQL stores positive and negative numbers, but you can tell MySQL to
store only positive numbers. If your data will not be negative, store the data
as unsigned (without using a + or — sign before the number). For example, a
city population or the number of pages in a document can never be negative.

Date and time data

A third common type of data is date and time data. Data stored as a date can
be displayed in a variety of date formats. It can also be used to determine the
length of time between two dates or two times — or between a specific date
or time and some arbitrary date or time.

Enumeration data

Sometimes data can have only a limited number of values. For example, the
only possible values for a column might be yes or no. MySQL provides a data
type called enumeration for use with this type of data. You tell MySQL what

58 Part I: Developing a Web Database Application Using PHP and MySQL

values can be stored in the column (for example, yes, no), and MySQL will
not store any other values in the column.

MySOL data type names

When you create a database, you tell MySQL what kind of data to expect in a
particular column by using the MySQL names for data types. Table 3-1 shows
the MySQL data types used most often in Web database applications.

Table 3-1 MySQL Data Types

MySQL Data Type Description

CHAR(T7ength) Fixed-length character string.
VARCHAR(Tength) Variable-length character string. The longest

string that can be stored is 7ength, which
must be between 1 and 255.

TEXT Variable-length character string with a maxi-
mum length of 64KB of text.

INT(Tength) Integer with a range from —2147483648 to
+2147483647. The number that can be displayed
is limited by 7ength. For example, if Tength is
4, only numbers from =999 to 9999 can be dis-
played, even though higher numbers are stored.

INT(Tength) UNSIGNED Integer with a range from 0 to 4294967295.
length is the size of the number that can be
displayed. For example, if Tength is 4, only
numbers up to 9999 can be displayed, even
though higher numbers are stored.

DECIMAL(7ength,dec) Decimal number where 7ength is the number
of characters that can be used to display the
number, including decimal points, signs, and
exponents, and dec is the maximum number of
decimal places allowed. For example, 12.34 has
length of 5and dec of 2.

DATE Date value with year, month, and date. Displays
the value as YYYY-MM-DD (for example,
2001-04-03).

TIME Time value with hour, minute, and second.

Displays as HH:MM:SS.

Chapter 3: Developing a Web Database Application 59

MySQOL Data Type Description

DATETIME Date and time are stored together. Displays as
YYYY-MM-DD HH:MM:SS.

ENUM ("vall","val2"...) Onlythe values listed can be stored. A maximum
of 65535 values can be listed.

MySQL allows many other data types, but they're less frequently needed. For
a description of all the available data types, see the documentation on the
MySQL documentation at www.mysql.com/doc/C/o/Column_types.html.

Writing it down

Here’s my usual nagging: Write it down. You probably spent considerable time
making the design decisions for your database. At this point, the decisions
are firmly fixed in your mind. You don’t believe that you can forget them.
However, suppose that a crisis intervenes, and you don’t get back to this pro-
ject for two months. You will have to analyze your data and make all the
design decisions again. You can avoid this by writing down the decisions now.

Document the organization of the tables, the column names, and all other
design decisions. A good format is a document that describes each table in
table format, with a row for each column and a column for each design deci-
sion. For example, your columns would be column name, data type, and
description.

Taking a Look at the Sample
Database Designs

This section contains the database designs for the two example Web data-
base applications.

Stuff for Sale database tables

The database design for the Pet Catalog application includes three tables:
Pet, PetType, and PetColor. Tables 3-2 through 3-4 show the organization of
these tables. The table definition is not set in concrete; MySQL allows you to
change tables pretty easily. For example, if you set the data type for a vari-
able to CHAR(20) and find that isn’t long enough, you can easily change the
data type.

60

Part I: Developing a Web Database Application Using PHP and MySQL

The database design is as follows:

Database name: PetCatalog

Table 3-2 Database Table 1: Pet

Variable Name Type Description

petlID INT(5) Sequence number for pet (primary key)

petName CHAR(25) Name of pet

petType CHAR(15) Category of pet

petDescription VARCHAR(255) Description of pet

price DECIMAL(9,2) Price of pet

pix CHAR(15) Path name to graphic file that contains
picture of pet

Table 3-3 Database Table 2: PetType

Variable Name Type Description

petType CHAR(15) Name of pet category (primary key)

typeDescription VARCHAR(255) Description of category

Table 3-4 Database Table 3: PetColor
Variable Name Type Description

petName CHAR(25) Name of pet (primary key 1)
petColor CHAR(15) Color name (primary key 2)

Members Only database tables

The database design for the Members Only application includes two tables
named Member and Login. Tables 3-5 and 3-6 document the organization of

these tables. The table definition is not set in concrete; MySQL allows you to
change tables pretty easily. If you set the data type for a variable to CHAR(25)
and find that it isn’t long enough, it’s easy to change the data type.

The database design is as follows:

Database name: MemberDirectory

Chapter 3: Developing a Web Database Application 6 ’

Table 3-5 Database Table 1: Member

Variable Name Type Description

loginName VARCHAR(20) User-specified login name (primary key)

password CHAR(255) User-specified password

createDate DATE Date member registered and created login
account

lastName VARCHAR(50) Member's last name

firstName VARCHAR(40) Member's first name

street VARCHAR(50) Member's street address

city VARCHAR(50) Member's city

state CHAR(2) Member's state

zip CHAR(10) Member's ZIP code

email VARCHAR(50) Member's e-mail address

phone CHAR(15) Member's phone number

fax CHAR(15) Member's fax number

Table 3-6 Database Table 2: Login

Variable Name Type Description

loginName CHAR(20) Login name specified by user (primary key 1)

loginTime DATETIME Date and time of login (primary key 2)

Developing the Application

After you develop a plan listing the tasks that your application is going to
perform and you develop a database design, you're ready to create your

62 Part I: Developing a Web Database Application Using PHP and MySQL

application. First, you build the database; then, you write your PHP pro-
grams. You are moments away from a working Web database application.
Well, perhaps that’s an exaggeration. But you are making progress.

Building the database

Building the database means turning the paper database design into a work-
ing database. Building the database is independent of the PHP programs that
your application uses to interact with the database. The database can be
accessed using programming languages other than PHP, such as Perl, C, or
Java. The database stands on its own to hold the data.

You should build the database before writing the PHP programs. The PHP
programs are written to move data in and out of the database, so you can’t
develop and test them until the database is available.

The database design names the database and defines the tables that make
up the database. To build the database, you communicate with MySQL by
using the SQL language. You tell MySQL to create the database and to add
tables to the database. You tell MySQL how to organize the data tables
and what format to use to store the data. Detailed instructions for building
the database are provided in Chapter 4.

Writing the programs

Your programs perform the tasks for your Web database application. They
create the display that the user sees in the browser window. They make your
application interactive by accepting and processing information typed in the
browser window by the user. They store information in the database and get
information out of the database. The database is useless unless you can
move data in and out of it.

The plan that you develop (as I discuss in the earlier sections in this chapter)
outlines the programs that you need to write. In general, each task in your
plan calls for a program. If your plan says that your application will display a
form, you need a program that displays a form. If your plan says that your
application will store the data from a form, you need a program that gets the
data from the form and puts it in the database.

The PHP language was developed specifically to write interactive Web appli-
cations. It has the built-in functionality needed to make writing application
programs as painless as possible. It has methods that were included in the
language specifically to access data from forms. It has methods to put data
into a MySQL database, and it has methods to get data from a MySQL data-
base. Detailed instructions for writing PHP programs are provided in Part I
of this book.

Part i
MySQL Database

The 5th Wave By Rich Tennant
CRILTTENNANT

“Our avtomated vesponse policy to a lawge
company-wide data cvash is to notify

manzgement, back up existing data and
sell G0 of my shaves in the company.’

In this part . . .

Flis part provides the details of working with a MySQL
database. You find out how to use SQL to communi-
cate with MySQL. In addition, you discover how to create
a database, change a database, and move data in and out
of a database.

Chapter 4
Building the Database

In This Chapter
Using SQL to make requests to MySQL
Creating a new database

Adding information to an existing database
Looking at information in an existing database

Removing information from an existing database

A fter completing your database design (see Chapter 3 if you haven’t done
this yet), you're ready to turn it into a working database. In this chapter,
you find out how to build a database based on your design — and how to
move data in and out of it.

The database design names the database and defines the tables that make up
the database. In order to build the database, you must communicate with
MySQL, providing the database name and the table structure. Later on, you
must communicate with MySQL to add data to (or request information from)
the database. The language that you use to communicate with MySQL is SQL.
In this chapter, I explain how to create SQL queries and use them to build
new databases and interact with existing databases.

Communicating with MySOL

The MySQL server is the manager of your database:

v It creates new databases.
v It knows where the databases are stored.
v~ It stores and retrieves information, guided by the requests (queries) that

it receives.

To make a request that MySQL can understand, you build an SQL query and
send it to the MySQL server. (For a more complete description of the MySQL
server, see Chapter 1.) The next two sections detail how to do this.

66

Part Il: MySQL Database

<MBER

Building SOL queries

SOL (Structured Query Language) is the computer language that you use to
communicate with MySQL. SQL is almost English; it is made up largely of
English words, put together into strings of words that sound similar to
English sentences. In general (fortunately), you don’t need to understand any
arcane technical language to write SQL queries that work.

The first word of each query is its name, which is an action word (a verb)
that tells MySQL what you want to do. The queries that I discuss in this chap-
ter are CREATE, DROP, ALTER, SHOW, INSERT, LOAD, SELECT, UPDATE, and
DELETE. This basic vocabulary is sufficient to create — and interact with —
databases on Web sites.

The query name is followed by words and phrases — some required and
some optional — that tell MySQL how to perform the action. For instance,
you always need to tell MySQL what to create, and you always need to tell it
which table to insert data into or to select data from.

The following is a typical SQL query. As you can see, it uses English words:

SELECT TastName FROM Member

This query retrieves all the last names stored in the table named Member.
Of course, more complicated queries (such as the following) are less
English-like:

SELECT TastName,firstName FROM Member WHERE state="CA" AND
city="Fresno" ORDER BY lastName

This query retrieves all the last names and first names of members who live
in Fresno and then puts them in alphabetical order by last name. This query
is less English-like but still pretty clear.

Here are some general points to keep in mind when constructing an SQL
query, as illustrated in the preceding sample query:

v~ Capitalization: In this book, I put the SQL language words in all caps;
items of variable information (such as column names) are usually given
labels that are all or mostly lowercase letters. I did this to make it easier
for you to read — not because MySQL needs this format. The case of the
SQL words doesn’t matter; select is the same as SELECT, and from is the
same as FROM, as far as MySQL is concerned. On the other hand, the
case of the table names, column names, and other variable information
does matter if your operating system is Unix and Linux. When using Unix
or Linux, MySQL needs to match the column names exactly, so the case
for the column names has to be correct — lastname is not the same as
lastName. Windows, however, isn’t as picky as Unix and Linux; from its
point of view, lastname and lastName are the same.

Chapter 4: Building the Database 6 7

v Spacing: SQL words need to be separated by one or more spaces. It
doesn’t matter how many spaces you use; you could just as well use 20
spaces or just 1 space. SQL also doesn’t pay any attention to the end of
the line. You can start a new line at any point in the SQL statement or
write the entire statement on one line.

1 Quotes: Notice that CA and Fresno are enclosed in double quotes (") in
the preceding query. CA and Fresno are series of characters called text
strings or character strings. (I explain strings in detail later in this chap-
ter.) You are asking MySQL to compare the text strings in the SQL query
with the text strings already stored in the database. Text strings are
enclosed in quotes. When you compare numbers (such as integers)
stored in numeric columns, you don’t enclose the numbers in quotes.
(In Chapter 3, I explain the types of data that can be stored in a MySQL
database.)

Sending SOL queries

This book is about PHP and MySQL as a pair. Consequently, [don’t describe
the multitude of ways in which you can send SQL queries to MySQL — many
of which have nothing to do with PHP. Rather, I provide a simple PHP pro-
gram that you can use to execute SQL queries. (For the lowdown on PHP and
how to write PHP programs, check out Part III of this book.)

The program mysql_send.php has one simple function: to execute queries
and display the results. Enter the program into the directory where you're
developing your Web application (or download it from my Web site at
Jjanet.valade.com), change the information in lines 9-19, and then point
your browser at the program. Listing 4-1 shows the program.

Listing 4-1: PHP Program for Sending SQL Queries to MySQL

{!-- Program: mysql_send.php
Desc: PHP program that sends an SQL query to the
MySQL server and displays the results.

-=>

<html>

<head><title>SQL Query Sender</title></head>
<body>

<?php

$host="hostname" ;
$user=" mysqglaccountname
$password="mysqlpassword";

/* Section that executes query */
if(@$_GET['form'] == "yes")
{

(continued)

68

Part Il: MySQL Database

Listing 4-1 (continued)

}

mysql_connect($host,$user,$password) ;

mysql_select_db($ _POST['database']);

$query = stripSlashes($_POST['query']1);

$result = mysql_query($query);

echo "Database Selected: {$ POST['database']}

Query: $query<h3>Results</h3><hr>";

if($result == 0)

echo "Error ".mysql_errno().": ".mysqgl_error().
"";
elseif (@mysqgl_num_rows($result) == 0)
echo("Query completed. No results returned.

");
else

echo "<table border="1"'>

<thead>

<tr>"s
for($i = 0;%7 < mysql_num_fields($result);$i++)
{
echo "<th>".mysql_field_name($result,$i).

"</th>"s

}

echo " </tr>
</thead>
<{tbody>";
for ($1 = 0; $i < mysql_num_rows($result); $i++)
{
echo "<tr>";
$row = mysql_fetch_row($result);
for($j = 0;$j<mysql_num_fields($result);$j++)
{

}
echo "</tr>";
}
echo "</tbhody>
</table>";
} //end else
echo "
<hr>

<form action=\"{$_SERVER['PHP_SELF'J}\" method=\"POST\">
<input type="hidden' name='query' value='$query'>
<input type='hidden' name='database'
value={$_POST['database']}>
<input type='submit' name=\"queryButton\"
value=\"New Query\">
<input type='submit' name=\"queryButton\"
value=\"Edit Query\">
</form>";
unset($form);
exit();
// endif form=yes

echo("<td>" . $rowl[$j] . "</td>");

Chapter 4: Building the Database 69

/* Section that requests user input of query */
@$query=stripSlashes($_POST['query'1);
if (@$_POST['queryButton']l != "Edit Query")
{

$query =
}
?>

<form action="<?php echo $_SERVER['PHP_SELF'] ?>?form=yes”
method="P0OST">
{table>
<tr>
<td align=right>Type in database name</td>
<td><input type="text" name="database"
value=<?php echo @$_POST['database'] ?> ></td>
</tr>
<tr>
<td align="right" valign="top">
Type in SQL query</td>
<td><textarea name="query" cols="60"
rows="10"><?php echo $query ?></textarea>
</td>
</tr>
<tr>
<td colspan="2" align="center"><input type="submit"
value="Submit Query"></td>
</tr>
</table>
</form>
</body></htm1>

You need to change lines 9, 10, and 11 of the program before you can use it.
These lines are

$host="hostname" ;
$user="mysqlaccountname" ;
$password="mysqlpassword";

Change hostname to the name of the computer where MySQL is installed:
for example, databasehost.mycompany.com. If the MySQL database is
installed on the same computer as your Web site, you can use 1ocalhost
as the hostname.

Change mysqlaccountname and mysqlpassword to the account name and
password that you were given by the MySQL administrator to use to access
your MySQL database. If you installed MySQL yourself, an account named
root with no password is automatically installed. Sometimes an account with
a blank account name and password is installed. You can use either the root
or the blank account, but it’s much better if you install an account specifi-
cally for use with your Web database application. (I discuss MySQL accounts
and passwords in detail in Chapter 5.)

70

\NG/
&VQ‘“

|
Figure 4-1:
An SQL
query Web
page pro-
duced by
mysql_
send.php.
|

Part Il: MySQL Database

An account named root with no password is not secure. You should give it a
password right away. An account with a blank account name and password is
even less secure. Anyone can access your database without needing to know
an account name or password. You should delete this account if it exists

(see Chapter 5).

If your MySQL account doesn’t require a password, type nothing between the
double quotes, as follows:

$password="";

After you enter the correct hostname, account name, and password in
mysqlsend.php, these are the general steps that you follow to execute an
SQL query:
1. Point your browser at mysql_send.php.
You see the Web page shown in Figure 4-1.
2. Type the SQL query in the large text box.

3. Enter a database name in the first text box if the SQL query
requires one.

I explain the details of writing specific SQL queries in the following sec-
tions of this chapter.

A SOL Query Sender - Microsoft Internet Explorer

Eile Edit WYiew Favorites Tools Help | =

@ .2 .0 [A @ & I B a9 .9
Back' Fomwasd Stop HRefresh Home Sesch Favontes Historpy | Mail Fiink Edit Realeam)
Address |€| Fitp:/ fjanetval zan . com/PHPEMyS D LfoiDummies /mypsgl_send php j @ 0Go || Links »i ‘w »»
=
Type indxtalmscmml—
Type in SQL query ;I
E
Subrnit Query:
e mene i_- I_Iﬂ Intermet

Chapter 4: Building the Database 7 ’

4. Click the Submit Query button.

The query is executed, and a page is displayed, showing the results of
the query. If your query had an error, the error message is displayed.

You can test the mysql_send.php program by entering this test query in
Step 2 of the preceding steps:

SHOW DATABASES

This query does not require you to enter a database name, so you can skip
Step 3. When you click the Submit Query button in Step 4, a listing of the
existing databases is displayed. In most cases, you see a database called
Test, which is installed automatically when MySQL is installed. Also, you’ll
probably see a database called mysq1, which MySQL uses to store informa-
tion that it needs, such as account names, passwords, and permissions. Even
if there are no existing databases, your SQL query will execute correctly. If a
problem occurs, an error message is displayed. MySQL error messages are
usually pretty helpful in finding the problem.

A quicker way to send SQL queries
to the MySQL server

When MySQL is installed, a simple, text-based program called mysq1 (or sometimes the terminal
monitor or the monitor) is also installed. Programs that communicate with servers are client soft-
ware; because this program communicates with the MySQL server, it's a client. When you enter
SQL queries in this client, the response is returned to the client and displayed onscreen. The mon-
itor program can send queries across a network; it doesn’t have to be running on the machine
where the database is stored.

To send SQAL queries to MySQL by using the mysq1 client, follow these steps:
1. Locate the mysq]1 client.

By default, the mysq1 client program is installed in the subdirectory bin, under the directory
where MySQL was installed. In Unix/Linux, the default is /usr/local/mysql/bin or
/usr/local/bin. In Windows, the defaultis c: \mysql\bin. However, the client might
have been installed in a different directory. Or, if you're not the MySQL administrator, you might
not have access to the mysq]l client. If you don’t know where MySQL is installed or can’t run
the client, ask the MySQL administrator to put the client somewhere where you can runit or to
give you a copy that you can put on your own computer.

2. Start the client.

In Unix/Linux, type the path/filename (for example, /usr/local/mysql/bin/mysql).In
Windows, open a command prompt window and then type the path/filename (for example,
c:\mysql\bin\mysql.exe). Press Enter after typing the path/filename unless you're using
the parameters shown in Step 3.

(continued)

72 Part Il: MySQOL Database

(continued)

3. If you're starting the mysq1 client to access a database across the network, use the follow-
ing parameters after the mysq1 command:

-h host: host is the name of the machine where MySQL is located.
-u user:user isyour MySQL account name.
-p: This parameter prompts you for the password for your MySQL account.

For instance, if you're in the directory where the mysq1 client is located, the command might
look like this:

mysql -h mysglhost.mycompany.com -u root -p
Press Enter after typing the command.
4. Enter your password when prompted for it.
The mysq] client starts, and you see something similar to this:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 459 to server version: 4.0.13
Type 'help;' or "\h' for help. Type '\c' to clear the buffer.
mysql>

5. Select the database that you want to use.
Atthe mysql prompt, type the following:
use databasename
Use the name of the database that you want to query.

6. Atthe mysql prompt, type your SQL query, followed by a semicolon (;), and then press the
Enter key.

Themysql client continues to prompt for input and does not execute the query until you enter
a semicolon. The response to the query is displayed onscreen.

1. To leave the mysq1 client, type quit at the prompt and then press the Enter key.

Building a Database

A database has two parts: a structure to hold the data and the data itself. In
the following few sections, I explain how to create the database structure.
First you create an empty database with no structure at all, and then you add
tables to it.

The SQL queries that you use to work with the database structure are
CREATE, ALTER, DROP, and SHOW. To use these queries, you must have a
MySQL account that has permission to create, alter, and drop databases and
tables. See Chapter 5 for more on MySQL accounts.

Chapter 4: Building the Database

A\

\NG/
&‘3‘“

Creating a new database

To create a new, empty database, use the following SQL query:
CREATE DATABASE databasename

where databasename is the name that you give the database. For instance,
these two SQL queries create the sample databases used in this book:

CREATE DATABASE PetCatalog
CREATE DATABASE MemberDirectory

Some Web hosting companies don’t allow you to create a new database. You
are given one database to use with MySQL, and you can only create tables in
this one database. You can try requesting another database, but you need a
good reason. MySQL and PHP don’t care that all your tables are in one data-
base instead of organized into databases with meaningful names. It’s just
easier for humans to keep track of projects when they’re organized.

To see for yourself that a database was in fact created, use this SQL query:

SHOW DATABASES

After you create an empty database, you can add tables to it. (Adding tables
to a database is described later in this chapter.)

Deleting a database

You can delete any database with this SQL query:

DROP DATABASE databasename

Use DROP carefully because it is irreversible. After a database is dropped, it is
gone forever. And any data that was in it is gone as well.

Adding tables to a database

You can add tables to any database, whether it’s a new, empty database that
you just created or an existing database that already has tables and data in
it. You use the CREATE query to add tables to a database.

In the sample database designs that I introduce in Chapter 3, the PetCatalog
database is designed with three tables: Pet, PetType, and PetColor. The
MemberDirectory database is designed with two tables: Member and Login.
Because a table is created in a database, you must indicate the database
name where you want the table created. That is, when using the form shown

/3

74

Part Il: MySQL Database

in Figure 4-1, you must type a database name into the top field. If you don't,
you see the error message No Database Selected.

The query to add a table begins with

CREATE TABLE tablename

Next comes a list of column names with definitions. The information for each
column is separated from the information for the next column by a comma.
The entire list is enclosed in parentheses. Each column name is followed by
its data type (I explain data types in detail in Chapter 3) and any other defini-
tions required. Here are some definitions that you can use:

v NOT NULL: This column must have a value; it cannot be empty.

v DEFAULT value: This value is stored in the column when the row is cre-
ated if no other value is given for this column.

v AUTO_INCREMENT: You use this definition to create a sequence number.
As each row is added, the value of this column increases by one integer
from the last row entered. You can override the auto number by assign-
ing a specific value to the column.

v UNSIGNED: You use this definition to indicate that the values for this
numeric field will never be negative numbers.

The last item in a CREATE TABLE query indicates which column or combina-
tion of columns is the unique identifier for the row — the primary key. Each
row of a table must have a field or a combination of fields that is different for
each row. No two rows can have the same primary key. If you attempt to add
a row with the same primary key as a row that’s already in the table, you get
an error message, and the row is not added. The database design identifies
the primary key (as I describe in Chapter 3). You specify the primary key by
using the following format:

CREATE TABLE Member (
loginName VARCHAR(20) NOT NULL PRIMARY KEY,
createDate DATE NOT NULL);

PRIMARY KEY (columnname)

The columnname is enclosed in parentheses. If you’re using a combination of
columns as the primary key, include all the column names, separated by
commas. For instance, you would designate the primary key for the Login
table in the MemberDirectory database by using this query:

PRIMARY KEY (ToginName,loginTime)

Listing 4-2 shows the CREATE TABLE query used to create the Member table
of the MemberDirectory database. You could enter this query on a single
line if you wanted to. MySQL doesn’t care how many lines you use. However,
the format shown in Listing 4-2 makes it easier to read. This human-friendly
format also helps you spot typos.

Chapter 4: Building the Database

\!
V?\“

W
g‘?‘

NG/

NG/

Listing 4-2: An SQL Query for Creating a Table

CREATE TABLE Member (

lToginName VARCHAR(20) NOT NULL,
createDate DATE NOT NULL,
password CHAR(255) NOT NULL,
TastName VARCHAR(50),
firstName VARCHAR(40),
street VARCHAR(50),
city VARCHAR(50),
state CHAR(2),
zip CHAR(10),
email VARCHAR(50),
phone CHAR(15),
fax CHAR(15),

PRIMARY KEY(TloginName))

Notice that the list of column names in Listing 4-2 is enclosed in parentheses
(one on the first line and one on the last line), and a comma follows each
column definition.

Remember not to use any MySQL reserved words for column names, as
[discuss in Chapter 3. If you do, MySQL gives you an error message that
looks like this:

You have an error in your SQL syntax near 'order var(20))' at Tine 1

Notice this message shows the column definition that it didn’t like and the
line where it found the offending definition. However, the message doesn’t tell
you much about what the problem is. The error in your SQL syntax that
it refers to is using the MySQL reserved word order as a column name.

After a table has been created, you can query to see it, review its structure,
or remove it.

v To see the tables that have been added to a database, use this SQL
query:

SHOW TABLES

+ You can also see the structure of a table with this query:
SHOW COLUMNS FROM tablename

+ You can remove any table with this query:
DROP TABLE tablename

Use DROP carefully because it is irreversible. After a table is dropped, it
is gone forever. And any data that was in it is gone as well.

75

76

Part Il: MySQL Database

Changing the database structure

Your database isn’t written in stone. By using the ALTER query, you can
change the name of the table; add, drop, or rename a column; or change the
data type or other attributes of the column.

The basic format for this query is ALTER TABLE tablename, followed by the
specific changes that you're requesting. Table 4-1 shows the changes that you
can make.

Table 4-1 Changes You Can Make with the ALTER Query

Change Description

ADD columnname Adds a column; definitionincludes the data

definition

type and optional definitions.

ALTER columnname
SET DEFAULT value

Changes the default value for a column.

ALTER columnname
DROP DEFAULT

Removes the default value for a column.

CHANGE columnname
newcolumnname
definition

Changes the definition of a column and
renames the column; definitionincludes
the data type and optional definitions.

DROP columnname

Deletes a column, including all the data in the

column. The data cannot be recovered.

MODIFY columnname Changes the definition of a column;
definition definitionincludes the data type and
optional definitions.

RENAME newtablename Renames a table.

Changing a database is not a rare occurrence. You might want to change
your database for many reasons. For example, suppose that you defined

the column TastName with VARCHAR(20) in the Member table of the
MemberDirectory database. At the time, 20 characters seemed sufficient for
a last name. But now you just received a memo announcing the new CEO,
John Schwartzheimer-Losertman. Oops. MySQL will truncate his name to the
first 20 letters, a less-than-desirable new name for the boss. So you need to
make the column wider — pronto. Send this query to change the column in a
second:

ALTER TABLE Member MODIFY TastName VARCHAR(50)

Chapter 4: Building the Database

Moving Data In and Out of the Database

An empty database is like an empty cookie jar — it’s not much fun. And,
searching an empty database is no more interesting or fruitful than searching
an empty cookie jar. A database is only useful with respect to the information
that it holds.

A database needs to be able to receive information for storage and to deliver
information on request. For instance, the MemberDirectory database needs
to be able to receive the member information, and it also needs to be able to
deliver its stored information when you request it. For instance, if you want
to know the address of a particular member, the database needs to deliver
that information when you request it.

Your MySQL database responds to four types of requests:

v Adding information: Adding a row to a table.

v~ Updating information: Changing information in an existing row. This
includes adding data to a blank field in an existing row.

1 Retrieving information: Looking at the data. This request does not
remove data from the database.

+ Removing information: Deleting data from the database.

Sometimes your question requires information from more than one table. For
instance, the question, “How much does a green dragon cost?” requires infor-
mation from the Pet table and from the CoTor table. You can ask this ques-
tion easily in a single SELECT query by combining the tables.

In the following sections, I discuss how to receive and deliver information as
well as how to combine tables.

Adding information

Every database needs data. For example, you might want to add data to your
database so that your users can look at it — an example of this is the Pet
Catalog that I introduce in Chapter 3. Or you might want to create an empty
database for users to put data into, making the data available for your eyes
only — an example of this is the Member Directory. In either scenario, data
will be added to the database.

If your data is still on paper, you can enter it directly into a MySQL database,
one row at a time, by using an SQL query. However, if you have a lot of data,
this process could be tedious and involve a lot of typing. Suppose that you

/7

/8

Part Il: MySQL Database

have information on 1,000 products that needs to be added to your database.
Assuming that you're greased lightening on a keyboard and can enter a row
per minute, that’s 16 hours of rapid typing — well, rapid editing, anyway.
Doable, but not fun. On the other hand, suppose that you need to enter 5,000
members of an organization into a database and that it takes five minutes to
enter each member. Now you're looking at over 400 hours of typing — who
has time for that?

If you have a large amount of data to enter, consider some alternatives.
Sometimes scanning in the data is an option. Or perhaps you need to beg,
borrow, or hire some help. In many cases, it could be faster to enter the data
into a big text file than to enter each row in a separate SQL query.

The SQL query LOAD can read data from a big text file (or even a small text
file). So, if your data is already in a computer file, you can work with that file;
you don’t need to type all the data again. Even if the data is in a format other
than a text file (for example, in an Excel, Access, or Oracle file), you can usu-
ally convert the file to a big text file, which can then be read into your MySQL
database. If the data isn’t yet in a computer file and there’s a lot of it, it might
be faster to enter that data into the computer in a big text file and transfer it
into MySQL as a second step.

Most text files can be read into MySQL, but some formats are easier than
others. If you're planning to enter the data into a big text file, read the sec-
tion, “Adding a bunch of data,” to find the best format for your text file. Of
course, if the data is already on the computer, you have to work with the file
as it is.

Adding one row at a time

You use the INSERT query to add a row to a database. This query tells MySQL
which table to add the row to and what the values are for the fields in the
row. The general form of the query is

INSERT INTO tablename (columnname, columnname,...., columnname)
VALUES (value, value,...., value)

The following rules apply to the INSERT query:

v Values must be listed in the same order in which the column names
are listed. The first value in the value list is inserted into the column
that’s named first in the column list; the second value in the value list
is inserted into the column that’s named second in the column list; and
SO on.

v~ A partial column list is allowed. You don’t need to list all the columns.
Columns that are not listed are given their default value or left blank if
no default value is defined.

Chapter 4: Building the Database

v A column list is not required. If you're entering values for all the
columns, you don’t need to list the columns at all. If no columns are
listed, MySQL will look for values for all the columns, in the order in
which they appear in the table.

1 The column list and value list must be the same length. If the list of
columns is longer or shorter than the list of values, you get an error
message like this: Column count doesn't match value count.

The following INSERT query adds a row to the Member table:

INSERT INTO Member (loginName,createDate,password,lastName,
street,city,state,zip,email,phone,fax)
VALUES ("bigguy","2001-Dec-2","secret","Smith",
"1234 Happy St","Las Vegas","NV","88888",
"gsmith@GSmithCompany.com","(555) 555-5555","")

Notice that firstName is not listed in the column name list. No value is
entered into the firstName field. If firstName were defined as NOT NULL,
MySQL would not allow this, but because firstName is not defined as NOT
NULL, this is okay. Also, if the definition for firstName included a default, the
default value would be entered, but because it doesn’t, the field is left empty:.
Notice that the value stored for fax is an empty string; MySQL has no prob-
lem with empty strings.

To look at the data that you entered and ensure that you entered it correctly,
use an SQL query that retrieves data from the database. I describe these SQL
queries in detail in “Retrieving information,” later in this chapter. In brief, the
following query retrieves all the data in the Member table:

SELECT * FROM Member

Adding a bunch of data

If you have a large amount of data to enter and it’s already in a computer file,
you can transfer the data from the existing computer file to your MySQL data-
base. The SQL query that reads data from a text file is LOAD. The LOAD query
requires you to specify a database.

Because data in a database is organized in rows and columns, the text file
being read must indicate where the data for each column begins and ends
and where the end of a row is. To indicate columns, a specific character sepa-
rates the data for each column. By default, MySQL looks for a tab character
to separate the fields. However, if a tab doesn’t work for your data file, you
can choose a different character to separate the fields and tell MySQL in the
query that a different character than the tab separates the fields. Also by
default, the end of a line is expected to be the end of a row — although you
can choose a character to indicate the end of a line if you need to. A data file
for the Pet table might look like this:

79

80

Part Il: MySQL Database

\\3

WING/
&

Unicorn<TAB>horse<TAB>Spiral horn<Tab>5000.00<Tab>/pix/unicorn.jpg
Pegasus<TAB>horse<TAB>Winged<Tab>8000.00<Tab>/pix/pegasus.jpg
Lion<TAB>cat<TAB>Large; Mane on neck<Tab>2000.00<Tab>/pix/Tion.jpg

A data file with tabs between the fields is a tab-delimited file. Another common
format is a comma-delimited file, where commas separate the fields. If your
data is in another file format, you need to convert it into a delimited file.

To convert data in another file format into a delimited file, check the manual
for that software or talk to your local expert who understands the data’s cur-
rent format. Many programs, such as Excel, Access, or Oracle, allow you to
output the data into a delimited file. For a text file, you might be able to con-
vert it to delimited format by using the search-and-replace function of an
editor or word processor. For a truly troublesome file, you might need to seek
the help of an expert or a programmetr.

The basic form of the LOAD query is
LOAD DATA INFILE "datafilename" INTO TABLE tablename

This basic form can be followed by optional phrases if you want to change a
default delimiter. The options are

FIELDS TERMINATED BY 'character'
FIELDS ENCLOSED BY 'character'
LINES TERMINATED BY 'character'

Suppose that you have the data file for the Pet table, shown earlier in this
section, except that the fields are separated by a comma rather than a tab.
The name of the data file is pets.dat, and it’s located in the same directory
as the database. The SQL query to read the data into the table is

LOAD DATA INFILE "pets.dat" INTO TABLE Pet
FIELDS TERMINATED BY ",

In order to use the LOAD DATA INFILE query, the MySQL account must have
the FILE privilege on the server host. I discuss MySQL account privileges in
Chapter 5.

To look at the data that you loaded — to be sure that it’s correct — use an
SQL query that retrieves data from the database. I describe these types of
SQL queries in detail in the next section. In brief, use the following query to
look at all the data in the table so that you can check it:

SELECT * FROM Pet

Chapter 4: Building the Database 8 ’

Retrieving information

The only purpose in storing information is to have it available when you need
it. A database lives to answer questions. What pets are for sale? Who are the
members? How many members live in Arkansas? Do you have an alligator for
sale? How much does a dragon cost? What is Goliath Smith’s phone number?
And on and on. You use the SELECT query to ask the database questions.

The simplest, basic SELECT query is

SELECT * FROM tablename

This query retrieves all the information from the table. The asterisk (*) is a
wildcard meaning all the columns.

The SELECT query can be much more selective. SQL words and phrases in
the SELECT query can pinpoint exactly the information needed to answer
your question. You can specify what information you want, how you want it
organized, and what the source of the information is:

+* You can request only the information (the columns) that you need to
answer your question. For instance, you can request only the first and
last names to create a list of members.

+ You can request information in a particular order. For instance, you
can request that the information be sorted in alphabetical order.

+* You can request information from selected objects (the rows) in your
table. (See Chapter 3 for an explanation of database objects.) For
instance, you can request the first and last names for only those mem-
bers whose addresses are in Florida.

Retrieving specific information

To retrieve specific information, list the columns containing the information
you want. For example:

SELECT columnname,columnname,columnname, ... FROM tablename

This query retrieves the values from all the rows for the indicated column(s).
For instance, the following query retrieves all the last names and first names
stored in the Member table:

SELECT TastName,firstName FROM Member

You can perform mathematical operations on columns when you select them.
For example, you can use the following SELECT query to add two columns
together:

SELECT coll+col2 FROM tablename

82

Part Il: MySQL Database

Or you could use the following query:

SELECT price,price*1.08 FROM Pet

The result is the price and the price with the sales tax of 8 percent added on.
You can change the name of a column when selecting it, as follows:

SELECT price,price*1.08 AS priceWithTax FROM Pet

The AS clause tells MySQL to give the name priceWithTax to the second
column retrieved. Thus, the query retrieves two columns of data: price and
priceWithTax.

In some cases, you don’t want to see the values in a column, but you want to

know something about the column. For instance, you might want to know the
lowest value in the column or the highest value in the column. Table 4-2 lists

some of the information that is available about a column.

Table 4-2 Information That Can Be Selected

SOL Format Description of Information

AVG(columnname) Returns the average of all the values in columnname

COUNT(columnname) Returns the number of rows in which columnname is
not blank

MAX (columnname) Returns the largest value in columnname

MIN(CcoTlumnname) Returns the smallest value in co7umnname

SUM(columnname) Returns the sum of all the values in columnname

For example, the query to find out the highest price in the Pet table is
SELECT MAX(price) FROM Pet

SQL words like MAX () and SUM() are functions. SQL provides many functions
in addition to those in Table 4-2. Some functions, like those in Table 4-2,
provide information about a column. Other functions change each value
selected. For example, SQRT () returns the square root of each value in the
column, and DAYNAME () returns the name of the day of the week for each
value in a date column, rather than the actual date stored in the column.
Over 100 functions are available for use in a SELECT query. For descriptions
of all the functions, see the MySQL documentation at www.mysq1.com/
documentation.

Chapter 4: Building the Database 83

Retrieving data in a specific order

You might want to retrieve data in a particular order. For instance, in the
Member table, you might want members organized in alphabetical order by
last name. Or, in the Pet table, you might want the pets grouped by type
of pet.

Ina SELECT query, ORDER BY and GROUP BY affect the order in which the
data is delivered to you:

v ORDER BY: To sort information, use the phrase
ORDER BY columnname
The data is sorted by columnname in ascending order. For instance, if

columnname is 1astName, the data is delivered to you in alphabetical
order by the last name.

a\\s
You can sort in descending order by adding the word DESC before the
column name. For example:
SELECT * FROM Member ORDER BY DESC TastName
v GROUP BY: To group information, use the following phrase:
GROUP BY columnname
The rows that have the same value of columnname are grouped together.
For example, use this query to group the rows that have the same value
as petType:
“&N\BER SELECT * FROM Pet GROUP BY petType
Y

You can use GROUP BY and ORDER BY in the same query.

Retrieving data from a specific source

Very frequently, you don’t want all the information from a table. You only
want information from selected database objects: that is, rows. Three SQL
words are frequently used to specify the source of the information:

v WHERE: Allows you to request information from database objects with
certain characteristics. For instance, you can request the names of mem-
bers who live in California, or you can list only the pets that are cats.

v LIMIT: Allows you to limit the number of rows from which information is
retrieved. For instance, you can request all the information from the first
three rows in the table.

v DISTINCT: Allows you to request information from only one row of
identical rows. For instance, in the Login table, you can request the
lToginName but specify no duplicate names, thus limiting the response

84

Part Il: MySQL Database

to one record for each member. This would answer the question, “Has
the member ever logged in?” rather than the question “How many times
has the member logged in?”

The WHERE clause of the SELECT query enables you to make very complicated
selections. For instance, suppose your boss asks for a list of all the members
whose last names begin with B, who live in Santa Barbara, and who have an 8
in either their phone or fax number. I'm sure there are many uses for such a
list. You can get this list for your boss with a SELECT query by using a WHERE
clause.

The basic format of the WHERE clause is
WHERE expression AND|OR expression AND|OR expression ...

expression specifies a value to compare with the values stored in the data-
base. Only the rows containing a match for the expression are selected. You
can use as many expressions as needed, each one separated by AND or OR.
When you use AND, both of the expressions connected by the AND (that is,
both the expression before the AND and the expression after the AND) must be
true in order for the row to be selected. When you use OR, only one of the
expressions connected by the OR must be true for the row to be selected.

Some common expressions are shown in Table 4-3.

Table 4-3 Expressions for the WHERE Clause
Expression Example Result
column = value zip="12345" Selects only the rows

where 12345 is stored in
the column named zip

column > value zip > "50000" Selects only the rows
where the ZIP code is
50001 or higher

column >= value zip >= "50000" Selects only the rows
where the ZIP code is
50000 or higher

column < value zip < "50000" Selects only the rows

where the ZIP code is
49999 or lower

column <= value zip <= "50000" Selects only the rows
where the ZIP code is
50000 or lower

Chapter 4: Building the Database

Expression

Result

column BETWEEN

valuel AND value?

Example
zip BETWEEN
"20000" AND
"30000"

Selects only the rows
where the ZIP code is
greater than 19999 but
less than 30001

column IN (valuel,

zip IN ("90001",

Selects only the rows

valueZ,...) "30044") where the ZIP code is
90001 or 30044
column NOT 1IN zip NOT 1IN Selects only the rows
(valuel,valueZ,...) ("90001", where the ZIP code is
"30044") any ZIP code except

90001 or 30044

column LIKE value —

value can contain the

zip LIKE "9%"

Selects all rows where
the ZIP code begins

85

wildcards % (which matches with 9
any string) and _ (which
matches any character)

column NOT LIKE zip NOT LIKE
value —value can contain "9%"

the wildcards % (which matches

any string) and _ (which

matches any character)

Selects all rows where
the ZIP code does not
begin with 9

You can combine any of the expressions in Table 4-3 with ANDs and ORs. In
some cases, you need to use parentheses to clarify the selection criteria. For
instance, you can use the following query to answer your boss’s urgent need
to find all the people in the Member Directory whose names begin with B,
who live in Santa Barbara, and who have an 8 in either their phone or fax
number:

SELECT TastName,firstName FROM Member
WHERE TastName LIKE "B%"
AND city = "Santa Barbara"
AND (phone LIKE "%8%" OR fax LIKE "%8%")

Notice the parentheses in the last line. You would not get the results that
your boss asked for without the parentheses. Without the parentheses, each
connector would be processed in order from the first to the last, resulting in
a list that includes all members whose names begin with B and who live in
Santa Barbara and whose phone numbers have an 8 in them and all members
whose fax numbers have an 8 in them, whether they live in Santa Barbara or
not and whether their name begins with a B or not. When the last OR is
processed, members are selected whose characteristics match the expres-
sion before the OR or the expression after the OR. The expression before the

86

Part Il: MySQL Database

\\J

OR is connected to previous expressions by the previous ANDs and so does
not stand alone, but the expression after the OR does stand alone, resulting in
the selection of all members with an 8 in their fax number.

LIMIT specifies how many rows can be returned. The form for LIMIT is
LIMIT startnumber,numberofrows

The first row that you want to retrieve is startnumber, and the number of
rows that you want to retrieve is numberofrows. If startnumber is not speci-
fied, 1 is assumed. To select only the first three members who live in Texas,
use this query:

SELECT * FROM Member WHERE state="TX" LIMIT 3

Some SELECT queries will find identical records, but in this example, you only
want to see one — not all — of the identical records. To prevent the query
from returning all the identical records, add the word DISTINCT immediately
after SELECT.

Combining information from tables

In the earlier sections of this chapter, I assume that all the information you
want is in a single table. However, you might want to combine information
from different tables. You can do this easily in a single query.

Two words can be used in a SELECT query to combine information from two
or more tables:

v UNION: Rows are retrieved from one or more tables and stored together,
one after the other, in a single result. For example, if your query selected
6 rows from one table and 5 rows from another table, the result would
contain 11 rows.

v JOIN: The tables are combined side by side, and the information is
retrieved from both tables.

union

UNION is used to combine the results from two or more select queries. The
results from each query are added to the result set following the results of
the previous query. The format of the UNION query is as follows:

SELECT query UNION ALL SELECT query

You can combine as many SELECT queries as you need to. A SELECT query
can include any valid SELECT format, including WHERE clauses, LIMIT clauses,
and so on. The rules for the queries are

Chapter 4: Building the Database 8 7

\NG/
Vg‘\\

v~ All the select queries must select the same number of columns.

v The columns selected in the queries must contain the same type of data.

The results set will contain all the rows from the first query followed by all
the rows from the second query and so on. The column names used in the
results set are the column names from the first SELECT query.

The series of SELECT queries can select different columns from the same
table, but situations in which you want a new table with one column in a
table followed by another column from the same table are unusual. It’s much
more likely that you want to combine columns from different tables. For
example, you might have a table of members who have resigned from the
club and a separate table of current members. You can get a list of all mem-
bers, both current and resigned, with the following query:

SELECT lastName,firstName FROM Member UNION ALL
SELECT TastName,firstName FROM O7TdMember

The result of this query is the last name and first name of all current mem-
bers, followed by the last name and first name of all the members who have
resigned.

Depending on how you organized your data, you might have duplicate names.
For instance, perhaps a member resigned, and his name is in the 01dMember
table — but he joined again, so his name is added to the Member table. If you
don’t want duplicates, don’t include the word ALL. If ALL is not included,
duplicate lines are not added to the result.

You can use ORDER BY with each SELECT query, as I discuss in the previous
section, or you can use ORDER BY with a UNION query to sort all the rows in
the result set. If you want ORDER BY to apply to the entire the result set,
rather than just to the query that it follows, use parentheses as follows:

(SELECT TastName FROM Member UNION ALL
SELECT TastName FROM OldMember) ORDER BY TastName

The UNTON statement was introduced in MySQL 4.0. It is not available in
MySQL 3.

Join

Combining tables side by side is a join. Tables are combined by matching
data in a column — the column that they have in common. The combined
results table produced by a join contains all the columns from both tables.
For instance, if one table has two columns (memberID and height), and the
second table has two columns (memberID and weight), a join results in a
table with four columns: memberID (from the first table), height, memberID
(from the second table), and weight.

88 Part Il: MySQL Database

There are two common types of joins: an inner join and an outer join. The dif-
ference between an inner join and an outer join is in the number of rows
included in the results table. The results table produced by an inner join con-
tains only rows that existed in both tables. The combined table produced by
an outer join contains all rows that existed in one table with blanks in the
columns for the rows that did not exist in the second table. For instance, if
tablel contains a row for Joe and a row for Sally, and tab1e2 contains only a
row for Sally, an inner join would contain only one row: the row for Sally.
However, an outer join would contain two rows — a row for Joe and a row for
Sally — even though the row for Joe would have a blank field for weight.

The results table for the outer join contains all the rows for one table. If any
of the rows for that table don’t exist in the second table, the columns for the
second table are empty. Clearly, the contents of the results table are deter-
mined by which table contributes all its rows, requiring the second table to
match it. Two kinds of outer joins control which table sets the rows and
which match: a LEFT JOIN and a RIGHT JOIN.

You use different SELECT queries for an inner and the two types of outer
joins. The following query is an inner join:

SELECT columnnamelist FROM tablel,table2
WHERE tablel.col? = tableZ.col’?

And these queries are outer joins:

SELECT columnnamelist FROM tablel LEFT JOIN table’
ON tablel.coll=tableZ.col?

SELECT columnnamelist FROM tablel RIGHT JOIN table?
ON tablel.coll=tableZ.col?2

In all three queries, tablel and table? are the tables to be joined. You can
join more than two tables. In both queries, col1l and co12 are the names of
the columns that are being matched to join the tables. The tables are
matched based on the data in these columns. These two columns can have
the same name or different names. The two columns must contain the same
type of data.

As an example of inner and outer joins, consider a short form of the Pet
Catalog. One table is Pet, with the two columns petName and petType hold-
ing the following data:

petName petType
Unicorn Horse

Pegasus Horse
Lion Cat

Chapter 4: Building the Database 89

The second table is Color, with two columns petName and petColor holding
the following data:

petName petColor

Unicorn white
Unicorn silver
Fish Gold

You need to ask a question that requires information from both tables. If you
do an inner join with the following query:

SELECT * FROM Pet,Color WHERE Pet.petName = Color.petName

you get the following results table with four columns: petName (from Pet),
petType, petName (from Color), and petColor.

petName petType petName petColor

Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver

Notice that only Unicorn appears in the results table — because only
Unicorn was in both of the original tables, before the join. On the other
hand, suppose you do a left outer join with the following query:

SELECT * FROM Pet LEFT JOIN Color
ON Pet.petName=Color.petName

You get the following results table, with the same four columns — petName
(from Pet), petType, petName (from Color), and petColor — but with dif-
ferent rows:

petName petType petName petColor
Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver
Pegasus Horse <NULL> <NULL>
Lion Cat <NULL> <NULL>

This table has four rows. It has the same first two rows as the inner join, but
it has two additional rows — rows that are in the PetType table on the left
but not in the Color table. Notice that the columns from the table Color are
blank for the last two rows.

And, on the third hand, suppose that you do a right outer join with the fol-
lowing query:

SELECT * FROM Pet RIGHT JOIN Color
ON Pet.petName=Color.petName

90

Part Il: MySQL Database

You get the following results table, with the same four columns, but with still
different rows:

petName petType petName petColor

Unicorn Horse Unicorn white
Unicorn Horse Unicorn silver
<KNULL> <NULL> Fish Gold

Notice that these results contain all the rows for the Color table on the right
but not for the Pet table. Notice the blanks in the columns for the Pet table,
which doesn’t have a row for Fish.

The joins that I've talked about so far find matching entries in tables.
Sometimes it’s useful to find out which rows in a table have no matching
entries in another table. For example, suppose that you want to know who
has never logged into your Members Only section. Because you have one
table with the member’s login name and another table with the dates when
the user logged in, you can ask this question by using the two tables. Doing
a join and looking at all the matches to try to see who is missing might be
impossible with a large number of user names in the table. However, you can
find out which login names do not have an entry in the login table with the
following query:

SELECT ToginName from Member LEFT JOIN Login
ON Member.loginName=Login.loginName
WHERE Login.loginName IS NULL

This query will give you a list of all the login names in Member that are not in
the Login table.

Updating information

Changing information in an existing row is updating the information. For
instance, you might need to change the address of a member because she
has moved, or you might need to add a fax number that a member left blank
when he originally entered his information.

The UPDATE query is very straightforward:

UPDATE tablename SET column=value,column=value, ...
WHERE clause

In the SET clause, you list the columns to be updated and the new values

to be inserted. List all the columns that you want to change in one query.
Without a WHERE clause, the values of the column(s) would be changed in all
the rows. But with the WHERE clause, you can specify which rows to update.
For instance, to update an address in the Member table, use this query:

Chapter 4: Building the Database

Q\“\NG!

UPDATE Member SET street="3333 Giant St",
phone="555-555-5555"
WHERE ToginName="bigguy"

Removing information

Keep the information in your database up to date by deleting obsolete infor-
mation. You can remove a row from a table with the DELETE query:

DELETE FROM tablename WHERE clause
Be extremely careful when using DELETE. If you use a DELETE query without a
WHERE clause, it will delete all the data in the table. | mean all the data. 1 repeat,
all the data. The data cannot be recovered. This function of the DELETE query
is right at the top of my don’t-try-this-at-home list.
You can delete a column from a table by using the ALTER query:
ALTER TABLE tablename DROP columnname
Or, of course, you could remove the whole thing and start over again with:
DROP TABLE tablename

or

DROP DATABASE databasename

91

92 Part Il: MySQOL Database

Chapter 5
Protecting Your Data

In This Chapter

Understanding MySQL data security
Adding new MySQL accounts
Modifying existing accounts
Changing passwords

Making backups

Repairing data

Restoring data

our data is essential to your Web database application. Storing and/or

presenting data are major activities of your Web database application.
You have spent valuable time developing your database, and it contains
important information entered by you or by your users. You need to protect
it. In this chapter, I show you how.

Controlling Access to Vour Data

You need to control access to the information in your database. You need to
decide who can see the data and who can change it. Imagine what would
happen if your competitors could change the information in your online
product catalog or copy your list of customers — you’d be out of business
in no time flat. Clearly, you need to guard your data.

MySQL provides a security system for protecting your data. No one can
access the data in your database without an account. Each MySQL account
has the following attributes:

» A name

v A hostname — the machine from which the account can access the
MySQL server

94

Part Il: MySQL Database

v A password

v A set of permissions

To access your data, someone must use a valid account name and know the
password associated with that account. In addition, that person must be con-
necting from a computer that is permitted to connect to your database via
that specific account.

After the user is granted access to the database, what he or she can do to

the data depends on what permissions have been set for the account. Each
account is either allowed or not allowed to perform an operation in your data-
base, such as SELECT, DELETE, INSERT, CREATE, DROP, and so on. The settings
that specify what an account can do are privileges or permissions. You can set
up an account with all permissions, no permissions, or anything in between.
For instance, for an online product catalog, you want the customer to be able
to see the information in the catalog but not be able to change it.

When a user attempts to connect to MySQL and execute a query, MySQL con-
trols access to the data in two stages:

1. Connection verification: MySQL checks the validity of the account name
and password and checks whether the connection is coming from a host
that is allowed to connect to the MySQL server by using the specified
account. If everything checks out, MySQL accepts the connection.

2. Request verification: After MySQL accepts the connection, it checks
whether the account has the necessary permissions to execute the spec-
ified query. If it does, MySQL executes the query.

Any query that you send to MySQL can fail either because the connection is
rejected in the first step or because the query is not permitted in the second
step. An error message is returned to help you identify the source of the
problem.

In the following few sections, I describe accounts and permissions in more
detail.

Understanding account
names and hostnames

Together, the account name and hostname (the name of the computer that is
authorized to connect to the database) identify a unique account. Two
accounts with the same name but different hostnames can exist and can have
different passwords and permissions. However, you cannot have two
accounts with the same name and the same hostname.

Chapter 5: Protecting Your Data

WMBER
@&
&

The MySQL server will accept connections from a MySQL account only when
it is connecting from hostname. When you build the GRANT or REVOKE query
(which I describe later in this chapter), you identify the MySQL account by
using both the account name and the hostname in the following format:
accountname@hostname (for instance, root@localhost).

The MySQL account name is completely unrelated in any way to the
Unix/Linux or Windows user name (also sometimes called the login name). I
you're using an administrative MySQL account named root, it is not related
to the Unix/Linux root login name. Changing the MySQL login name does not
in any way affect the Unix/Linux or Windows login name — and vice versa.

MySQL account names and hostnames are defined as follows:

v An account name can be up to 16 characters long. You can use special
characters in account names, such as a space or hyphen (-). However,
you cannot use wildcards in the account name.

v An account name can be blank. If an account exists in MySQL with
a blank account name, any account name will be valid for that account.
A user could use any account name to connect to your database, given
that the user is connecting from a hostname that is allowed to connect
to the blank account name and uses the correct password, if required.
You can use an account with a blank name to allow anonymous users to
connect to your database.

v The hostname can be a name or an IP address. For example, it can be a
name such as thor.mycompany.com or an IP (Internet protocol) address
such as 192.163.2.33. The machine on which the MySQL server is
installed is Tocalhost.

v Wildcards can be used in the hostname. You can use a percent sign (%)
as a wildcard; % matches any hostname. If you add an account for
george@j%, someone using the account named george can connect to
the MySQL server from any computer.

v The hostname can be blank. A blank hostname is the same as using %
for the hostname.

An account with a blank account name and a blank hostname is possible.
Such an account would allow anyone to connect to the MySQL server by
using any account name from any computer. An account with a blank name
and a percent sign (%) for the hostname is the same thing. It is very unlikely
that you would want such an account. Such an account is sometimes
installed when MySQL is installed, but it’s given no privileges, so it can’t do
anything.

95

96 Part Il: MySQL Database

QNING/ When MySQL is installed, it automatically installs an account with all privi-
& leges: root@localhost. This account is installed without a password. Anyone
who is logged in to the computer on which MySQL is installed can access
MySQL and do anything to it by using the account named root. (Of course,
root is a well-known account name, so this account is not very secure. If
you're the MySQL administrator, you should add a password to this account

immediately.)
@‘“\NG! On some operating systems, additional accounts besides root@localhost
S are automatically installed. For instance, on Windows, an account called

root@% might be installed with no password protection. This root account
with all privileges can be used by anyone from any machine. You should
remove this account immediately or, at the very least, give it a password.

Finding out about passwords

A password is set up for every account. If no password is provided for the
account, the password is blank, which means that no password is required.
MySQL doesn’t have any limit for the length of a password, but sometimes
other software on your system limits the length to eight characters. If so, any
characters after eight are dropped.

For extra security, MySQL encrypts passwords before it stores them. That
means passwords are not stored in the recognizable characters that you
entered. This security measure ensures that no one can look at the stored
passwords and see what they are.

Unfortunately, some bad people out there might try to access your data by
guessing your password. They use software that tries to connect rapidly in
succession using different passwords — a practice called cracking. The fol-
lowing are some recommendations for choosing a password that is as diffi-
cult to crack as possible:

v Use six to eight characters.

v Include one or more of each of the following — uppercase letter, lower-
case letter, number, and punctuation mark.

v+ Do not use your account name or any variation of your account name.
v Do not include any word that’s in a dictionary.
v Do not include a name.
v Do not use a phone number or a date.
A good password is hard to guess, does not include any word in any dictio-

nary (including foreign language dictionaries), and is easy to remember. If it’s
too hard to remember, you might need to write it down, which defeats the

Chapter 5: Protecting Your Data

purpose of having a password. One way to create a good password is to use
the first characters of a favorite phrase. For instance, you could use the
phrase “All for one! One for all!” to make this password:

Afo!Ofa!

This password doesn’t include any numbers, but you can fix that by using the
numeral 4 instead of the letter £ Then your password is

Ad4o!04a!

Or you could use the number I instead of the letter o to represent one. Then
the password is

A41!14a!

This password is definitely hard to guess. Other ways to incorporate num-
bers into your passwords include substituting / (one) for [(ell) or substitut-
ing 0 (zero) for the letter o.

Taking a look at account permissions

Account permissions are used by MySQL to specify who can do what. Anyone
using a valid account can connect to the MySQL server, but he or she can
only do those things that are allowed by the permissions for the account. For
example, an account might be set up so that users can select data but cannot
insert data nor update data.

Permissions can be granted for particular databases, tables, or columns. For
instance, an account can be set up that allows the user to select data from all
the tables in the database but insert data into only one table and update on
only a single column in a specific table.

Permissions are added by using the GRANT query and removed by using the
REVOKE query. The GRANT or REVOKE query must be sent using an account
that has permission to execute GRANT or REVOKE statements in the database.
If you attempt to send a GRANT query or a REVOKE query by using an account
without grant permission, you get an error message. For instance, if you try
to grant permission to use a select command, and you send the query using
an account that does not have permission to grant permissions, you might
see the following error message:

grant command denied

Permissions can be granted or removed individually or all at once. Table 5-1
lists some permissions that you might want to assign or remove.

97

98 Part Il: MySQL Database

WING/
&

Table 5-1 MySQL Account Permissions
Permission Description

ALL All permissions

ALTER Can alter the structure of tables

CREATE Can create new databases or tables
DELETE Can delete rows in tables

DROP Can drop databases or tables

FILE Can read and write files on the server
GRANT Can change the permissions on a MySQL account
INSERT Can insert new rows into tables

SELECT Can read data from tables

SHUTDOWN Can shut down the MySQL server

UPDATE Can change data in a table

USAGE No permissions at all

Granting ALL is not a good idea because it includes permissions for adminis-
trative operations, such as shutting down the MySQL server. You are unlikely
to want anyone other than yourself to have such sweeping privileges.

Setting Up MySOL Accounts

When creating a new account, you specify the password, the name(s) of the
computer(s) allowed to access the database using this account, and the per-
missions; however, you can change these at any time. All the account infor-
mation is stored in a database named mysq1 that is automatically created
when MySQL is installed. To add a new account or change any account infor-
mation, you must use an account that has the proper permissions on the
mysql database.

You need at least one account in order to access the MySQL server. When
MySQL is installed, it automatically sets up some accounts, including an
account called root that has all permissions. If you have MySQL access
through a company Web site or a Web hosting company, the MySQL adminis-
trator for the company should give you the account; the account is probably
not named root, and it might or might not have all permissions.

Chapter 5: Protecting Your Data

The MySQL security database

When MySQL is installed, it automatically cre-
ates a database called mysq1. All the informa-
tion used to protect your data is stored in this
database, including account names, host-
names, passwords, and permissions.

Permissions are stored in columns. The format
of each column name is permission_priv
where permission is one of the permissions
shown in Table 5-1. For instance, the column
containing ALTER permissions is named
alter_priv. The value in each permission
column is Y or N, meaning yes or no. So, for
instance, in the user table (described in the fol-
lowing list), there would be a row for an account
and a column for alter_priv. If the account
field for alter_priv contains Y, the account
can be used to execute an ALTER query. If
alter_priv contains N, the account doesn’t
have permission to execute an ALTER query.

The mysq1 database contains the following five
tables that store permissions:

v user table: This table stores permissions
that apply to all the databases and tables. It
contains a row for each valid account with
user name, hostname, and password. The
MySQL server will reject a connection for
an account that does not exist in this table.

v~ db table: This table stores permissions that
apply to a particular database. It contains a
row for the database, which gives permis-
sions to an account name and hostname. The
account must exist in the user table for the
permissions to be granted. Permissions that
are given in the user table overrule permis-
sions in this table. For instance, if the user
table has a row for the account designerthat
gives INSERT privileges, designercan insert

into all the databases. If a row in the db table
shows N for INSERT for the designer
account in the PetCatalog database, the
user table overrules it, and designer can
insertinthe PetCatalog database.

v host table: This table controls access to a
database depending on the host. The host
table works with the db table. If a row in the
db table has an empty field for the host,
MySQL checks the host table to see
whether the db has a row there. In this way,
you can allow access to a db from some
hosts but not from others. For instance, say
you have two databases: db1 and db2. The
db1 database has information that is very
sensitive, so you only want certain people
to see it. The db2 database has information
that you want everyone to see. If you have
a row in the db table for db1 with a blank
host field, you can have two rows for db1
inthe host table. One row can give all per-
missions to users connecting from a spe-
cific host, whereas another row can deny
privileges to users connecting from any
other host.

v tables_privtable: Thistable stores per-
missions that apply to specific tables.

v columns_priv table: This table stores
permissions that apply to specific columns.

You can see and change the tables in mysq]
directly if you're using an account that has the
necessary permissions. You can use SQL
queries such as SELECT, INSERT, UPDATE,
and others. If you're accessing MySQL through
your employer, a client, or a Web hosting com-
pany, it is unlikely that you will be given an
account that has the necessary permissions.

99

1 00 Part ll: MySQL Database

In the rest of this section, I describe how to add and delete accounts and
change passwords and permissions for accounts. If you have an account that
you received from your company IT department or from a Web hosting com-
pany, you might receive an error when you try to send any or some of the
GRANT or REVOKE queries described. If your account is restricted from per-
forming any of the necessary queries, you need to request an account with
more permissions or ask the MySQL administrator to add a new account or
make the changes that you need.

Identifying what accounts currently exist

To see what accounts currently exist for your database, you need an account
that has the necessary permissions. Try to execute the following query on a
database named mysql:

SELECT * FROM user

You should get a list of all the accounts. However, if you're accessing MySQL
through your company or a Web hosting company, you probably don’t have
the necessary permissions. In that case, you might get an error message
like this:

No Database Selected

This message means that your account is not allowed to select the mysq1
database. Or you might get an error message saying that you don’t have
SELECT permission. Even though this message is annoying, it’s good in the
sense that it’s a sign the company has good security measures in place.
However, it’s bad in the sense that you can’t see what privileges your account
has. You must ask your MySQL administrator or try to figure it out yourself
by trying queries and seeing whether you’re allowed to execute them.

Adding new accounts and
changing permissions

The preferred way to access MySQL from PHP is to set up an account specifi-
cally for this purpose with only the permissions that are needed. In this sec-
tion, I describe how to add new accounts and change permissions. If you're
using an account given to you by a company IT department or a Web hosting
company, it might or might not have all the permissions needed to create a
new account. If it doesn’t, you won’t be able to successfully execute the
GRANT query to add an account, and you'll have to request a second account
to use with PHP.

Chapter 5: Protecting Your Data , 0 1

A\

If you need to request a second account, get an account with restricted per-
mission (if at all possible) because your Web database application will be
more secure if the account used in your PHP programs doesn’t have more
privileges than are necessary.

You use the same GRANT query to set up a new account or to change the
password or add permissions for an existing account. If the account already
exists, the GRANT query changes the password or adds permissions. If the
account doesn’t yet exist, the GRANT query adds a new account.

Here is the general format for a GRANT query:

GRANT permission (columns) ON tablename
TO accountname@hostname IDENTIFIED BY 'password'

You can use this GRANT query to create a new account or change an existing
account. You need to fill in the following information:

v permission (columns):You must list at least one permission. You can
limit each permission to one or more columns by listing the column
name in parentheses following the permission. If no column name is
listed, the permission is granted on all columns in the table(s). You can
list as many permission/columns as needed, separated by commas. The
possible permissions are listed in Table 5-1. For instance, a GRANT query
might start with this:

GRANT select (firstName,lastName), update,
insert (birthdate)

v tablename: This indicates which tables the permission is granted on. At
least one table is required. You can list several tables, separated by
commas. The possible values for tablename are

e tablename: The entire table named tab/ename in the current data-
base. You can use an asterisk (*) to mean all tables in the current
database. If you use an asterisk and no current database is
selected, the privilege will be granted to all tables on all databases.

e databasename.tablename: The entire table named tablename in
databasename. You can use an asterisk (*) for either the database
name or the table name to mean all. Using * . * grants the permis-
sion on all tables in all databases.

v accountname@hostname: If the account already exists, it is given the
indicated permissions. If the account doesn’t exist, it’s added. The
account is identified by the accountname and hostname as a pair. If an
account exists with the specified account name but a different host-
name, the existing account is not changed; a new one is created.

v password: This is the password that you're adding or changing. A pass-
word is not required. If you don’t want to add or change a password for
this account, leave out the entire phrase IDENTIFIED BY 'password'.

1 02 Part ll: MySQL Database

The GRANT query to add a new account for use in the PHP programs for the
PetCatalog database might be

GRANT select ON PetCatalog.* TO phpuser@localhost
IDENTIFIED BY 'A41!14al’

Adding and changing passwords

You can add or change passwords by using the GRANT query. You can include
a password requirement when you add a new account, as [describe in the
preceding section. If an account already exists, you can change its password
by using the following GRANT query:

GRANT permission ON * TQ accountname@hostname
IDENTIFIED BY 'password'

You need to fill in the following information:

v permission: You must list at least one permission in a GRANT query. If
the permission has already been granted, it is not changed.

v accountname@hostname: It the account already exists, it’s given the indi-
cated permission and password. If the account doesn’t exist, the account
is added. The account is identified by the accountname and hostname as
a pair. If an account exists with the specified account name but a different
hostname, the account is not changed; a new one is created.

v password: The password in the GRANT query replaces the existing pass-
word. If you supply an empty password using

IDENTIFIED BY "'

the existing password is replaced with a blank, leaving the account with
no password. For tips on choosing a good password, check out the
“Finding out about passwords” section, earlier in the chapter.

Removing permissions

To remove permissions, use the REVOKE query. The general format is

REVOKE permission (columns) ON tablename
FROM accountname@hostname

Chapter 5: Protecting Your Data , 03

You need to fill in the following information:

v permission (columns):You must list at least one permission. You can
remove each permission from one or more columns by listing the
column name in parentheses following the permission. If no column
name is listed, the permission is removed from all columns in the
table(s). You can list as many permission/columns as needed, separated
by commas. The possible permissions are listed in Table 5-1. For
instance, a REVOKE query might start like this:

REVOKE select (firstName,lastName), update, insert (birthdate) ...

v tablename: Indicate which tables the permission is being removed from.
At least one table is required. You can list several tables, separated by
commas. The possible values for tablename are

e tablename: The entire table named tab’ename in the current data-
base. You can use an asterisk (*) to mean all tables. If you use an
asterisk when no current database is selected, the privilege will be
revoked on all tables on all databases.

e databasename.tablename: The entire table named tab7ename in
databasename. You can use an asterisk (*) for either the database
name or the table name to mean all. Using * . * revokes the permis-
sion on all tables in all databases.

v accountname@hostname: The account is identified by the accountname
and hostname as a pair. If an account exists with the specified account
name but a different hostname, the REVOKE query will fail, and you will
receive an error message.

Removing accounts

Removing an account is usually not necessary. If you created an account with
permissions that you don’t want, just change the permissions. If you don’t
want to use an account, remove all the permissions so that the account can’t
do anything. To remove all the permissions for an account, use a REVOKE
query with the following syntax:

REVOKE all ON *.* FROM accountname@hostname

To actually be able to remove an account, you need an account with the nec-
essary permissions on the mysql database. You need to use a DELETE query
on the user table in the mysq1 database. For more information on the struc-
ture of the mysq1 security database, see “The MySQL security database” side-
bar, elsewhere in this chapter. Be careful using a DELETE query because with
incorrect format, it can remove the wrong account or even all the accounts.
See the discussion of the DELETE command at the end of Chapter 4.

1 04 Part ll: MySQL Database

Backing Up Your Data

\\J

You need to have at least one copy of your valuable database. Disasters
occur rarely, but they do occur. The computer where your database is stored
can break down and lose your data, the computer file can become corrupted,
the building can burn down, and so on. Backup copies of your database
guard against data loss from such disasters.

You should have at least one backup copy of your database, stored in a loca-
tion that is separate from the copy that is currently in use. More than one
copy — perhaps as many as three — is usually a good idea.

v~ Store one copy in a handy location, perhaps even on the same computer,
to quickly replace a working database that has been damaged.

v Store a second copy on another computer in case the computer breaks
down, and the first backup copy isn’t available.

v Store a third copy in a completely different physical location, for that
remote chance that the building burns down. If the second backup copy
is stored via network on a computer at another physical location, this
third copy isn’t needed.

If you don’t have access to a computer offsite where you can back up
your database, you can copy your backup to a portable medium, such
as a tape or a CD, and store it offsite. Certain companies will store your
computer media at their location for a fee, or you can just put the media
in your pocket and take it home.

If you use MySQL on someone else’s computer, such as the computer of your
employer or a Web hosting company, the people who provide your access are
responsible for backups. They should have automated procedures in place
that make backups of your database. A good question to ask when evaluating
a Web hosting company is what its backup procedures are. You want to know
how often backup copies are made and where they are stored. If you aren’t
confident that your data is safe, you can discuss changes or additions to the
backup procedures.

If you are the MySQL administrator, you are responsible for making backups.
MySQL provides a program called mysq1dump that you can use to make backup
copies; mysqldump creates a text file that contains all the SQL statements
needed to re-create your entire database. The file contains the CREATE state-
ments for each table and INSERT statements for each row of data in the tables.
You can restore your database by executing the set of MySQL statements. You
can restore it in its current location, or you can restore it on another computer
if necessary.

Chapter 5: Protecting Your Data ’ 0 5

\\J

Follow these steps to make a backup copy of your database in
Linux/Unix/Mac:

1. Change to the bin subdirectory in the directory where MySQL is

installed.

For instance, type cd /usr/local/mysql/bin.

. Type the following:

mysqldump --user=accountname --password=password
databasename >path/backupfilename

where

e accountname is the name of the MySQL account that you're using
to back up the database.

e password is the password for the account.
e databasename is the name of the database that you want to back up.

e path/backupfilename is the path to the directory where you
want to store the backups and the name of the file that the SQL
output will be stored in.

The account that you use needs to have select permission. If the
account doesn’t require a password, you can leave out the entire pass-
word option.

You can type the command on one line, without pressing Enter. Or you
can type a backslash (\), press Enter, and then continue the command
on another line.

For example, to back up the PetCatalog database, the command might be

mysqldump --user=root --password=bigsecret PetCatalog \
>/usr/Tocal/mysql/backups/PetCatalogBackup

Note: The Linux/Unix account that you are logged into must have per-
mission to write a file into the backup directory.

To make a backup copy of your database in Windows, follow these steps:

1. Open a command prompt window.

For instance, choose Start=>Programs=>MS-DOS prompt.

2. Change to the bin subdirectory in the directory where MySQL is

installed.

For instance, type cd c:\mysql\bin.

1 06 Part ll: MySQL Database

3. Type the following:

mysqldump.exe --user=accountname --password=password
databasename >path\backupfilename

where

e accountname is the name of the MySQL account that you're using
to back up the database.

e password is the password for the account.

e databasename is the name of the database that you want to
back up.

e path\backupfilename is the path to the directory where you
want to store the backups and the name of the file that the SQL
output will be stored in.

The account that you use needs to have select permission. If the
account does not require a password, you can leave out the entire pass-

QgN\BEIi word option.
& You must type the mysqldump command on one line without pressing
Enter.

For example, to back up the PetCatalog database, the command
might be

mysqldump.exe --user=root PetCatalog >PetCatalogBackup

Backups should be made at certain times — at least once per day. If your
database changes frequently, you might want to back up more often. For
example, you might want to back up to the backup directory hourly but back
up to another computer once a day.

Restoring Your Data

At some point, one of your database tables might become damaged and unus-
able. It’s unusual, but it happens. For instance, a hardware problem or an unex-
pected shutdown of the computer can cause corrupted tables. Sometimes an
anomaly in the data that confuses MySQL can cause corrupt tables. In some
cases, a corrupt table can cause your MySQL server to shut down.

Here is a typical error message that signals a corrupted table:

Incorrect key file for table: 'tablename'.

Chapter 5: Protecting Your Data

WMBER
@&
&

In some cases, you can repair the corrupted data table(s) by using a repair
utility provided with MySQL. If the repair utility doesn’t restore the corrupted
table(s) to working order, all is not lost — you can replace the corrupted
table(s) with the data stored in a backup copy. In some cases, the database
might be lost completely. For instance, if the computer where your database
resides breaks down and can’t be fixed, your current database is lost, but
your data isn’t gone forever. You can replace the broken computer with a new
computer and restore your database from a backup copy.

Repairing tables

Often a damaged database can be fixed. MySQL provides a utility called
myisamchk that repairs tables. If you're accessing MySQL on your employer’s
or client’s computer or through a Web hosting company, you need to contact
the MySQL administrator to run myisamchk for you.

If you are the MySQL administrator, you can run myisamchk yourself. To use
myisamchk on Linux/Unix/Mac, follow these steps:

1. Change to the bin subdirectory in the directory where MySQL is
installed.

For instance, type cd /usr/local/mysql/bin.
2. Stop the MySQL server by typing this query:
mysqladmin -u accountname -p shutdown

where -u accountname specifies the name of an account to be used to
connect to MySQL.

The account must have shutdown permission. If the account does not
require a password, leave out the -p. If you include -p, you will be asked
for your password.

3. Type the following:
myisamchk -r path/databasename/tablename.MYI

Include the complete path to your data directory, followed by the data-
base name, the table name, and .MYI. You can use an asterisk (*) as a
wildcard. For instance, to repair all the tables in the PetCatalog data-
base, you might type

myisamchk -r ../data/PetCatalog/*.MYI

The -r option is the recover option. After you type the statement, you
see output on the screen showing which tables are being checked.

4. Start the MySQL server by typing the following:
mysqladmin -u accountname -p start

107

1 08 Part ll: MySQL Database

To use myisamchk on Windows, follow these steps:

1. Open a command prompt window.
For instance, choose Start=>Programs=>MS-DOS prompt.

2. Change to the bin subdirectory in the directory where MySQL is
installed.

For instance, type cd c:\mysql\bin.
3. Stop the MySQL server by typing
mysqladmin -u accountname -p shutdown

where accountname is the name of an account with shutdown permis-
sion. If the account does not require a password, leave out the -p. If you
include -p, you will be prompted for your password.

4. Type the following:
myisamchk -r path/databasename/tablename.MY I

Include the complete path to your data directory, followed by the data-
base name, the table name, and .MYI. You can use an asterisk (*) as a
wildcard. The -r option is the recover option. For instance, to repair all
the tables in the PetCatalog database, you might type

myisamchk -r ..\data\PetCatalog*.MYI

After you enter this statement, you see output on the screen showing
which tables are being checked. Wait for myisamchk to finish running.

5. Start your MySQL server by typing the following;
mysqladmin -u accountname -p start

If your table still isn’t working after you run this command, try running
the myisamchk utility again by using the -0 option instead of the -r
option. The -0 option is an older repair process that is much slower
than the - r option, but it handles some cases that the -r option can’t
handle.

Restoring from a backup copy

If repairing your data doesn’t return the database to working condition or if
your database is completely unavailable, such as in the case of a computer fail-
ure, you can replace your current database table(s) with the database stored
in a backup copy. The backup copy contains a snapshot of the data as it was
when the copy was made. Any changes to the database since the backup copy
was made are not included; you have to re-create those changes manually.

Chapter 5: Protecting Your Data ’ 0 9

Again, if you access MySQL through an IT department or through a Web hosting
company, you need to ask the MySQL administrator to restore your database
from a backup. If you’re the MySQL administrator, you can restore it yourself.

As I describe in Chapter 4, you build a database by creating the database and
then adding tables to the database. The backup that you create with the
mysqldump utility is a file that contains all the SQL statements necessary to
rebuild all the tables, but it does not contain the statements needed to create
the database.

Your database might not exist at all, or it could exist with one or more cor-
rupted tables. You can restore the entire database or any single table. Follow
these steps to restore a single table:

1. If the table currently exists, delete the table with the following SQL
query:
DROP TABLE tablename
where tablename is the table that you want to delete.
2. Point your browser at mysql_send.php.
For a description of mysql_send.php, see Chapter 4.

3. Copy the CREATE query for the table from the backup file into the
form in the browser window.

For instance, choose Edit=>Copy and Edit=>Paste.

4. Type the name of the database in which you are restoring the table.
The form shows where to type the database name.

5. Click Submit.
A new Web page shows the results of the query.

6. Click New Query.

7. Copy an INSERT query for the table from the backup file into the form
in the browser window.

For instance, choose Edit=>Copy and Edit=>Paste.
8. Type the name of the database in which you are restoring the table.
The form shows where to type the database name.
9. Click Submit.
A new Web page shows the results of the query.
10. Click New Query.

11. Repeat Steps 7-10 until all the INSERT queries from the backup file
have been sent.

1 ’0 Part ll: MySQL Database

If you have so many INSERT queries for the table that sending them one by
one would take forever — or if there are just a lot of tables — you can send
all the queries in the backup file at once by following these steps:

1. If any of the tables in the backup file currently exist, delete them with
the following SQL query:
DROP TABLE tablename
where tablename is the table that you want to delete.

2. Change to the bin subdirectory in the directory where MySQL is
installed.

On Linux/Unix/Mac:

Type a cd command to change to the correct directory (for
instance, type cd /usr/local/mysql/bin).

On Windows:
a. Open a command prompt window.

For instance, choose Start=>Programs=>Accessories>Command
Prompt.

b. Type a cd command to change to the correct directory (for
instance, type cd c:\mysql\bin).

3. Type the command that sends the SQL queries in the backup file.
On Linux/Unix/Mac:

Type

mysql -u accountname -p databasename < path/backupfilename
where accountname is an account that has create permission. If
the account doesn’t require a password, leave out the -p. If you
use the -p, you will be asked for the password. databasename is
the existing database in which you want to build all the tables. Use
the entire path and filename for the backup file. For instance, a
command to restore the PetCatalog database might be

mysql -u root -p PetCatalog < /usr/backupfiles/PetCatalog.bak
On Windows:
Type
mysql -u accountname -p databasename < path\backupname

where accountname is an account that has create permission. If
the account doesn’t require a password, leave out the -p. If you
use the -p, you will be asked for the password. databasename is

Chapter 5: Protecting Your Data

the existing database in which you want to build all the tables. Use
the entire path and filename for the backup file. For instance, a
command to restore the PetCatalog database might be

mysql -u root -p PetCatalog < c:\mysql\bak\PetCatalog.bak

The tables might take a short time to restore. Wait for the command to
finish. If a problem occurs, an error message is displayed. If no problems
occur, you see no output. When the command is finished, the prompt
appears.

To restore only selected tables from the backup file, make a file that contains
only the queries for the selected tables that you want to restore. Then follow
Steps 1-3 in the preceding list. In Step 3, type the path name or filename for
the file with the subset of queries that you want instead of the full backup file.

If the database is not there at all, you need to create it before you can use the
queries in the backup file to rebuild all the tables. To restore the database
when nothing exists, use the following steps:

1. Add the following two lines to the top of the backup file:

CREATE DATABASE databasename;
use databasename;

where databasename is the name of the database that you want to
restore. For instance, the commands for the PetCatalog database are

CREATE DATABASE PetCatalog;
use PetCatalog;

Note: Make sure that you add a semicolon (;) at the end of each line.

2. Change to the bin subdirectory in the directory where MySQL is
installed.

On Linux/Unix/Mac:

Type a cd command to change to the correct directory (for
instance, type cd /usr/local/mysql/bin).

On Windows:
a. Open a command prompt window.

For instance, choose Start>Programs=>Accessoriesc>Command
Prompt.

b. Type a cd command to change to the correct directory (for
instance, type cd c:\mysql\bin).

111

1 ’2 Part ll: MySQL Database

3. Type the command that sends the SQL queries in the backup file.
On Linux/Unix/Mac:
Type this:
mysql -u accountname -p < path/backupfilename

where accountname is an account that has create permission. If
the account doesn’t require a password, leave out the -p. If you
use the -p, you will be asked for the password. Use the entire path
and filename for the backup file. For instance, a command to
restore the database might be

mysql -u root -p < /usr/backupfiles/PetCatalog.bak
On Windows:

Type this:

mysql -u accountname -p < path\backupfilename

where accountname is an account that has create permission. If
the account doesn’t require a password, leave out the -p. If you
use the -p, you will be asked for the password. Use the entire path
and filename for the backup file. For instance, a command to
restore the PetCatalog database might be

mysql -u root -p < c:\mysgl\bak\PetCatalog.bak

The tables might take a short time to restore. Wait for the command to
finish. If a problem occurs, an error message is displayed. If no problems
occur, you see no output. When the command is finished, the prompt
appears.

Your database is now restored with all the data that was in it at the time the
copy was made. If the data has changed since the copy was made, the changes
are lost. For instance, if more data was added after the backup copy was made,
the new data is not restored. If you know the changes that were made, you can
make them manually in the restored database.

Part i

PHP

The 5th Wave

By Rich Tennant

e | e
—
[% qeAW & JAZE
b JRASATAC
o STRATIUSHOD

{
=3
—

A ——

_ n
4”) \\\\;M 5
nm@‘? AN

e ————
J

“Your databace 15 beyond. vepaty, but,

ore 1 tell you

our backup vecommendation, let we 28K you a
question. How many index carde do you think will §it
on the walls of gour computer room?*

In this part . . .

In this part, you find out how to use PHP for your Web
database application. Here are some of the topics
described:

v How to add PHP to HTML files

»* What features PHP has that are useful for building
a Web database application

v How to use the PHP features
v How to use forms to collect information from users

»* How to show information from a database in a Web
page
»* How to store data in a database

» How to move information from one Web page to
the next

You find out everything you need to know to write the
PHP programs you need.

Chapter 6
General PHP

In This Chapter
Adding PHP sections to HTML files
Writing PHP statements
Using PHP variables
Comparing values in PHP variables

Documenting your programs

programs are the application part of your Web database application.
Programs perform the tasks. They create and display Web pages, accept
and process information from users, store information in the database, get
information out of the database, and perform any other necessary tasks.

PHP, the language that you use to write your programs, is a scripting lan-
guage designed specifically for use on the Web. It is your tool for creating
dynamic Web pages. It has features designed to aid you in programming the
tasks needed by dynamic Web applications.

In this chapter, I describe the general rules for writing PHP programs — the
rules that apply to all PHP statements. Consider these rules similar to general
grammar and punctuation rules. In the remaining chapters in Part III, you find
out about specific PHP statements and features and how to write PHP pro-
grams to perform specific tasks.

Adding a PHP Section to an HTML Page

PHP is a partner to HTML (HyperText Markup Language) that extends its abil-
ities. It enables an HTML program to do things it can’t do on its own. For
example, HTML programs can display Web pages, and HTML has features
that allow you to format those Web pages. HTML also allows you to display
graphics in your Web pages and to play music files. But HTML alone does not
allow you to interact with the person viewing the Web page.

116 rartuipup

How the Web server processes PHP files

When a browser is pointed to a regular HTML
file with an . htm1 or . htm extension, the Web
server sends the file, as-is, to the browser. The
browser processes the file and displays the
Web page thatis described by the HTML tags in
the file. When a browser is pointed to a PHP file
(with a . php extension), the Web server looks
for PHP sections in the file and processes them
instead of just sending them as-is to the
browser. The steps that the Web server uses to
process a PHP file are as follows:

1. The Web server starts scanning the file in
HTML mode. It assumes that the statements
are HTML and sends them to the browser
without any processing.

2. The Web server continues in HTML mode
until it encounters a PHP opening tag
(<Zphp).

3. When it encounters a PHP opening tag, the
Web server switches into PHP mode. This
is sometimes called escaping from HTML.
The Web server then assumes that all state-
ments are PHP statements and executes
the PHP statements. If there is output, the
output is sent by the server to the browser.

4. The Web server continues in PHP mode
until it encounters a PHP closing tag (?>).

5. When the Web server encounters a PHP
closing tag, it returns to HTML mode. It
resumes scanning, and the cycle continues
from Step 1.

\\J

HTML is almost interactive. That is, HTML forms allow users to type informa-
tion that the Web page is designed to collect; however, you can’t access that
information without using a language other than HTML. PHP processes form
information, without requiring a separate program, and allows other interac-

tive tasks as well.

HTML tags are used to make PHP language statements part of HTML programs.
The program file is named with a . php extension. Other extension(s) can be
defined by the PHP administrator, such as .phtm1, .php4, or .phpb5, but .php
is the most common. So for this book, I will assume that . php is the extension
for PHP programs. The PHP language statements are enclosed in PHP tags

with the following form:

<?php 7>

Sometimes you can use a shorter version of the PHP tags. You can try using
<? and ?> without the php. If short tags are enabled, you can save a little

typing.

Chapter 6: General PHP

WBER
s&
&

PHP processes all statements between the two PHP tags. After the PHP sec-
tion is processed, it’s discarded. Or, if the PHP statements produce output,
the PHP section is replaced by the output. The browser does not see the PHP
section — only its output if there is any output. For more on this process,
check out the sidebar, “How the Web server processes PHP files.”

As an example, I'll start with a program that displays He11o World! in the
browser window. (It’s sort of a tradition that the first program you write in
any language is the Hello World program. You might have written a Hello
World program when you first learned HTML.) Listing 6-1 shows an HTML
program that displays Hel1o World! in a browser window.

Listing 6-1: The Hello World HTML Program

<html>

<head><title>Hello World Program</title></head>
<body>

<p>Hello World!

</body>

</html1>

If you point your browser at this HTML program, you see a Web page that
displays

Hello World!
in the browser window.

Listing 6-2 shows a PHP program that does exactly the same thing — it dis-
plays Hello World! in a browser window.

Listing 6-2: The Hello World PHP Program

<html>
<head><title>Hello World Program</title></head>
<body>
<?php
echo "<p>Hello World!"
?>
</body>
</html>

If you point your browser at this program, it displays exactly the same Web
page as the HTML program in Listing 6-1.

Don’t look at the file directly with your browser. That is, don’t choose
File>Open=>Browse from your browser menu to navigate to the file and click
it. You must point at the file by typing its URL, as I discuss in Chapter 2. If you
see the PHP code displayed in the browser window instead of the output that
you expect, you might not have pointed to the file by using its URL.

117

118 Partin:pup

In this PHP program, the PHP section is

<?php
echo "<p>Hello World!"
?>

The PHP tags enclose only one statement — an echo statement. The echo
statement is a PHP statement that you will use frequently. It simply outputs
the text between the double quotes.

There is no rule that says you must enter the PHP on separate lines. You
could just as well include the PHP in the file on a single line, like this:

<?php echo "<p>Hello World!" ?>

When the PHP section is processed, it is replaced with the output. In this
case, the output is

<p>Hello World!

If you replace the PHP section in Listing 6-2 with the preceding output, the
program now looks exactly like the HTML program in Listing 6-1. If you point
your browser at either program, you see the same Web page. If you look at the
source code that the browser sees (in the browser, choose Viewr>Source), you
see the same source code listing for both programs.

Writing PHP Statements

WMBER
‘x&
&

The PHP section that you add to your HTML file consists of a series of PHP
statements. Each PHP statement is an instruction to PHP to do something. In
the Hello World program shown in Listing 6-2, the PHP section contains only
one simple PHP statement. The echo statement instructs PHP to output the
text between the double quotes.

PHP statements end with a semicolon (;). PHP does not notice white space
or the end of lines. It continues reading a statement until it encounters a
semicolon or the PHP closing tag, no matter how many lines the statement
spans. Leaving out the semicolon is a common error, resulting in an error
message that looks something like this:

S (] S
s

Parse error: expecting or in /hello.php on line 6
Notice that the error message gives you the line number where it encoun-
tered problems. This information helps you locate the error in your program.
This error message probably means that the semicolon was omitted at the

end of line 5.

Chapter 6: General PHP

A\

\\3

[recommend writing your PHP programs with an editor that uses line num-
bers. If your editor doesn’t let you specify which line you want to go to, you
have to count the lines manually from the top of the file every time that you
receive an error message. Many editors that are good for editing PHP are
listed at phpeditors.Tinuxbackup.co.uk.

Sometimes groups of statements are combined together into a block. A block
is enclosed by curly braces ({ }). A block of statements execute together. A
common use of a block is in a conditional block, in which statements are exe-
cuted only when certain conditions are true. For instance, you might want
your program to do the following:

if (the sky is blue)
{

put leash on dragon;

take dragon for a walk in the park;
}

These statements are enclosed in curly braces to ensure that they execute as
a block. If the sky is blue, both put Teash on dragonand take dragon
for a walk in the park are executed. If the sky is not blue, neither state-
ment is executed (no leash; no walk).

PHP statements that use blocks, such as if statements (which I explain in
Chapter 7), are complex statements. PHP reads the entire complex statement,
not stopping at the first semicolon that it encounters. PHP knows to expect
one or more blocks and looks for the ending curly brace of the last block in
complex statements. Notice that there is a semicolon before the ending
brace. This semicolon is required, but no semicolon is required after the
ending curly brace.

If you wanted to, you could write the entire PHP section in one long line, as
long as you separated statements with semicolons and enclosed blocks with
curly braces. However, a program written this way would be impossible for
people to read. Therefore, you should put statements on separate lines,
except for occasional, really short statements.

Notice that the statements inside the block are indented. Indenting is not nec-
essary for PHP. Indenting is strictly for readability. You should indent the
statements in a block so that people reading the script can tell more easily
where a block begins and ends.

In general, PHP doesn’t care whether the statement keywords are in upper- or
lowercase. Echo, echo, ECHO, and eCHo are all the same to PHP.

119

120 Partin:pup

Error messages and warnings

PHP tries to be helpful when problems arise.
It provides error messages and warnings as
follows:

v~ Error message: You receive this message
when the program has a problem that pre-
vents it from running. The message con-
tains as much information as possible to
help you identify the problem. A common
error message is

Parse error: parse error in
c:\catalog\test.php on
line 6

Often, you receive this error message
because you've forgotten a semicolon, a
parenthesis, or a curly brace.

v+ Warning message: You receive this mes-
sage when the program sees a problem but
the problem is not serious enough to pre-
vent the program from running. Warning
messages do not mean that the program
can’trun; the program does continue to run.
Rather, warning messages tell you that PHP
believes that something is probably wrong.
You should identify the source of the warn-
ing and then decide whether it needs to be
fixed. It usually does.

+* Notice: You receive a notice when PHP
sees a condition that might be an error or
might be perfectly okay. Notices, like warn-
ings, do not cause the script to stop running.
Notices are much less likely to indicate
serious problems than warnings. Notices
just tell you that you are doing something
unusual and to take a second look at what
you're doing to be sure that you really want
todoit.

One common reason why you might receive
a notice is if you're echoing variables that
don't exist. Here's an example of what you
might see in that instance:

Notice: Undefined variable:
in testing.php on Tine 9

age

Notice that all types of messages indicate the
filename causing the problem and the line
number where the problem was encountered.

PHP has several kinds of error and warning mes-
sages. Which kinds are sent depends on the
error message level that PHP is set to. You do
want to see all the error messages, but you might
not want to see all the warnings and notices.
Often the only problem with a notice is the
unsightly message; the code does exactly what
you want it to do. Or, you might want notices dis-
played during development but not after the
application is being used by customers.

To change the error message level for your Web
site to show more or fewer messages, you must
be the PHP administrator. Editthe php . in1 file
on your system. It contains a section that
explains the error message levels and how to
set them. Change the line that sets your error
message level and then save the edited
php.ini file. Note: You might need to restart
your Web server before the changes in the PHP
configuration file take effect.

If you are not the PHP administrator for your
system and don’t have accessto php.ini,you
can add a statement to any program that sets
the error reporting level for that program only.
To set the error level, add the following state-
ment at the beginning of the program:

Chapter 6: General PHP ’21

error_reporting(OPTIONS) ; To see all errors except notices, use the
OPTIONS is a code that tells PHP what error following:
reporting level to use. To see all errors, use the error_reporting(E_ALL &
following: ~E NOTICE);
error_reporting(E_ALL); OPTIONS can be any of the codes described in
the php.ini file.

Using PHP Variables

\\3

Variables are containers used to hold information. A variable has a name, and
information is stored in the variable. For instance, you might name a variable
$age and store the number 12 in it. After information is stored in a variable, it
can be used later in the program. One of the most common uses for variables
is to hold the information that a user types into a form.

Naming a variable
When you’re naming a variable, keep the following rules in mind:

v~ All variable names have a dollar sign (%) in front of them. This tells PHP
that it is a variable name.

»” Variable names can be any length.
v Variable names can include letters, numbers, and underscores only.

v~ Variable names must begin with a letter or an underscore. They cannot
begin with a number.

v Uppercase and lowercase letters are not the same. For example,
$firstname and $Firstname are not the same variable. If you store
information in $firstname, you can’t access that information by using
the variable name $firstName.

When you name variables, use names that make it clear what information is
in the variable. Using variable names like $varl, $vare, $A, or $B does not
contribute to the clarity of the program. Although PHP doesn’t care what you
name the variable and won’t get mixed up, people trying to follow the pro-
gram will have a hard time keeping track of which variable holds what infor-
mation. Variable names like $firstName, $age, and $orderTotal are much
more descriptive and helpful.

122 Ppati:pup

Creating and assigning values to variables

Variables can hold either numbers or strings of characters. You store infor-
mation in variables by using a single equal sign (=). For instance, the follow-
ing four PHP statements assign information to variables:

$age = 12;
$price = 2.55;
$number=-2;

$name = "Goliath Smith";

Notice that the character string is enclosed in quotes but the numbers are
not. Details about using numbers and characters are described later in this
chapter. (See “Working with Numbers” and “Working with Character Strings.”)

You can now use any of these variable names in an echo statement to see the
value in that variable. For instance, if you use the following PHP statement in
a PHP section:

echo $age;
the output is 12. If you include the following line in an HTML file:

<p>Your age is <?php echo $age ?>.
the output on the Web page is

Your age is 12.
Whenever you put information into a variable that did not exist before,
you create that variable. For instance, suppose you use the following PHP
statement:

$firstname = "George";
If this statement is the first time that you've mentioned the variable
$firstname, this statement creates the variable and sets it to "George". If
you have a previous statement setting $firstname to "Mary", this statement

changes the value of $firstname to "George".

You can also remove information from a variable. For example, the following
statement takes information out of the variable $age:

$age = ;

The variable $age exists but does not contain a value. It does not mean that
$age is set to 0 because zero is a value. It means that $age does not store
any information at all.

Chapter 6: General PHP ’ 23

You can go even further and uncreate the variable by using this statement:
unset($age);

After this statement is executed, the variable $age no longer exists.

A variable keeps its information for the whole program, not just for a single

PHP section. If a variable is set to "yes" at the beginning of a file, it will still

hold "yes" at the end of the page. For instance, suppose your file has the fol-

lowing statements:

<p>Hello World!

<?php
$age = 15;
$name = "Harry";
72>

Hello World again!

<?php
echo $name;
?>

The echo statement in the second PHP section will display Harry. The Web
page resulting from these statements is

Hello World!
Hello World again!
Harry

Dealing with notices

If you use a statement that includes a variable that does not exist, you might get
a notice. It depends on the error message level that PHP is set to. Remember
that notices aren’t the same as error messages; notices don’t mean the program
can’t run — the program does continues to run. Notices just tell you that you're
doing something unusual and to take a second look at what you're doing to be
sure that you really want to do it. (See the sidebar, “Error messages and warn-
ings.”) For instance, suppose you use the following statements:

unset($age);
echo $age;
$age2 = %$age;

You might see two notices: one for the second statement and one for the
third statement. The notices will look something like this:

Notice: Undefined variable: age in testing.php on Tine 9

124 Ppartur:prp

\\3

Suppose that you definitely want to use these statements. The program
works exactly the way you want it to. The only problems are the unsightly
notices. You can prevent notices within a program by inserting an at sign (@)
at the point where the notice would be issued. For instance, you can prevent
the notices generated by the preceding statements if you change the state-
ments to this:

unset($age);
echo @%$age;
$age?2 = @%age;

If you are the PHP administrator, you can change the error message level so
that notices are not displayed. For details on how to do this, check out the
sidebar, “Error messages and warnings,” elsewhere in this chapter.

Using PHP Constants

PHP constants are very similar to variables. Constants are given a name, and
a value is stored in them. However, constants are constant; that is, they can’t
be changed by the program. After you set the value for a constant, it stays
the same. If you used a constant for age and set it to 29, it can’t be changed.
Wouldn’t that be nice — 29 forever?

Constants are used when information is used several places in the program
and doesn’t change during the program. It’s useful to set a constant for the
value at the beginning of the program and use it throughout the program. By
making it a constant instead of a variable, you make sure that it won’t get
changed accidentally. By giving it a name, you know what the information is
instantly. And by setting a constant once at the start of the program (instead
of using the value throughout the program), you can change the value in one
place if it needs changing instead of hunting for it in many places in the pro-
gram to change it.

For instance, you might set a constant that’s the company name and a constant
that’s the company address and use them wherever needed. Then, if the com-
pany moved, you could just change the value in the company address at the
start of the program instead of having to find every place in your program that
echoed the company name to change it.

Constants are set by using the define statement. The format is

define("constantname","constantvalue");

Chapter 6: General PHP ’25

For instance, to set a constant with the company name, use the following
statement:

define("COMPANY","ABC Pet Store");

Now use the constant in your program wherever you need your company
name:

echo COMPANY;

When you echo a constant, you can’t enclose it in quotes. If you do, it will
echo the constant name, instead of the value. You can echo it without any-
thing, as shown in the preceding example, or enclosed with parentheses.

You can use any name for a constant that you can use for a variable, but con-
stant names do not begin with a dollar sign ($). By convention, constants are
given names that are all uppercase, so you can see easily that they're con-
stants. However, PHP itself doesn’t care what you name a constant. You can
store either a string or a number in it. The following statement is perfectly
okay with PHP:

define ("AGE",29);

Just don’t expect Mother Nature to believe it.

Working with Numbers

PHP allows you to do arithmetic operations on numbers. You indicate arith-
metic operations with two numbers and an arithmetic operator. For instance,
one operator is the plus (+) sign, so you can indicate an arithmetic operation
like this:

1 +2

You can also perform arithmetic operations with variables that contain num-
bers, as follows:

$nl = 1;
$n2 = 2;
$sum = $nl + $n2;

Table 6-1 shows the arithmetic operators that you can use.

126 partur:pup

<MBER

\\J

Table 6-1 Arithmetic Operators
Operator Description
+ Add two numbers together.

- Subtract the second number from the first number.

* Multiply two numbers together.
/ Divide the first number by the second number.
% Find the remainder when the first number is divided by

the second number. This is called modulus. For instance,
in$a = 13 % 4, %$aissetto 1.

You can do several arithmetic operations at once. For instance, the following
statement performs three operations:

$result =1 +2 * 4 + 1;

The order in which the arithmetic is performed is important. You can get dif-
ferent results depending on which operation is performed first. PHP does
multiplication and division first, followed by addition and subtraction. If
other considerations are equal, PHP goes from left to right. Consequently, the
preceding statement sets $result to 10, in the following order:

$result =1 +2*4+1 (first, it does the multiplication)
$result =1 +8 + 1 (next, it does the Teftmost addition)
$result = 9 + 1 (next, it does the remaining addition)
$result = 10

You can change the order in which the arithmetic is performed by using
parentheses. The arithmetic inside the parentheses is performed first. For
instance, you can write the previous statement with parentheses like this:

$result = (1 + 2) * 4 + 1;

This statement sets $result to 13, in the following order:

$result = (1 +2) * 4 +1 (first, it does the math in the parentheses)
$result =3 * 4 + 1 (next, it does the multiplication)

$result = 12 + 1 (next, it does the addition)

$result = 13

On the better-safe-than-sorry principle, it’s best to use parentheses whenever
more than one answer is possible.

Often, the numbers that you work with are dollar amounts, such as product
prices. You want your customers to see prices in the proper format on Web
pages. In other words, dollar amounts should always have two decimal

Chapter 6: General PHP ’2 7

places. However, PHP stores and displays numbers in the most efficient
format. If the number is 10.00, it is displayed as 10. To put numbers into the
proper format for dollars, you can use sprintf. The following statement for-
mats a number into a dollar amount:

$newvariablename = sprintf("%01.2f", $oldvariablename);

This statement reformats the number in $o7dvariablename and stores it in
the new format in $newvariablename. For example, the following statements
display money in the correct format:

$price = 25;
$f_price = sprintf("%01.2f",$price);
echo "$f price
";

You see the following on the Web page:

25.00

sprintf can do more than format decimal places. For more information on
using sprintf to format values, see Chapter 13.

If you want commas to separate thousands in your number, you can use
number_format. The following statement creates a dollar format with
commas:

$price = 25000;
$f_price = number_format($price,2);
echo "$f_price
";

You see the following on the Web page:
25,000.00

The 2 in the number_format statement sets the format to two decimal
places. You can use any number to get any number of decimal places.

Working with Character Strings

A character string is a series of characters. Characters are letters, numbers,
and punctuation. When a number is used as a character, it is just a stored
character, the same as a letter. It can’t be used in arithmetic. For instance, a
phone number is stored as a character string because it only needs to be
stored — not added or multiplied.

When you store a character string in a variable, you tell PHP where the string
begins and ends by using double quotes or single quotes. For instance, the
following two statements are the same.

128 Partin:pup

<MBER
S

"Hello World!";
"Hello World!";

$string
$string

Suppose that you wanted to store a string as follows:

$string = 'It is Tom's house';
echo $string;

These statements won’t work because when PHP sees the ' (single quote)
after Tom, it thinks that this is the end of the string and displays the following:

It is Tom

You need to tell PHP to interpret the single quote (') as an apostrophe
instead of the end of the string. You can do this by using a backslash () in
front of the single quote. The backslash tells PHP that the single quote does
not have any special meaning; it’s just an apostrophe. This is escaping the
character. Use the following statements to display the entire string:

$string = 'It is Tom\'s house';
echo $string;

Similarly, when you enclose a string in double quotes, you must also use a
backslash in front of any double quotes in the string.

Single-quoted strings versus
double-quoted strings

Single-quoted and double-quoted strings are handled differently. Single-
quoted strings are stored literally, with the exception of \ ', which is stored
as an apostrophe. In double-quoted strings, variables and some special char-
acters are evaluated before the string is stored. Here are the most important
differences in the use of double or single quotes when writing programs:

v Handling variables: If you enclose a variable in double quotes, PHP uses
the value of the variable. However, if you enclose a variable in single
quotes, PHP uses the literal variable name. For example, if you use the
following statements:

$age = 12;
$resultl = "$age";
$result?2 = '$age';
echo $resultl;
echo "
";

echo $result?;

Chapter 6: General PHP , 29

the output is

12
$age

1~ Starting a new line: The special characters \n tell PHP to start a new
line. When you use double quotes, PHP starts a new line at \n, but with
single quotes, \n is a literal string. For instance, when using the follow-
ing statements:

$stringl = "String in \ndouble quotes";
$string2 = 'String in \nsingle quotes';

stringl outputs as

String in
double quotes

and string?2 outputs as
String in \nsingle quotes

1~ Inserting a tab: The special characters \t tell PHP to insert a tab. When
you use double quotes, PHP inserts a tab at \t, but with single quotes,
\t is a literal string. For instance, when using the following statements:

$stringl = "String in \tdouble quotes";
$string2 = 'String in \tsingle quotes';

stringl outputs as
String in double quotes
and string2 outputs as
String in \tsingle quotes
The quotes that enclose the entire string determine the treatment of variables

and special characters, even if there are other sets of quotes inside the string.
For example, look at the following statements:

$number = 10;

$stringl = "There are '$number' people in line.";
$string2 = 'There are "$number" people waiting.';
echo $stringl,"
\n";

echo $string2;

The output is as follows:

There are "10"' people in Tine.
There are "$number" people waiting.

130 Ppartui:prp

Joining strings

You can join strings, a process called concatenation, by using a dot (.). For
instance, you can join strings with the following statements:

$stringl = 'Hello';

$string2 = 'World!";

$stringall = $stringl.$string?2;
echo $stringall;

The echo statement outputs
HelloWorld!

Notice that no space appears between Hel10 and Wor1d. That’s because no
spaces are included in the two strings that are joined. You can add a space
between the words by using the following concatenation statement rather
than the earlier statement:

$stringall = $stringl." ".$string2;

You can use .= to add characters to an existing string. For example, you can
use the following statements in place of the preceding statements:

$stringall = "Hello";
$stringall .= " World!";
echo $stringall;

The echo statement outputs this:
Hello World!

You can also take strings apart. You can separate them at a given character
or look for a substring in a string. You use functions to perform these and
other operations on a string. [explain functions in Chapter 7.

Working with Dates and Times

Dates and times can be important elements in a Web database application. PHP
has the ability to recognize dates and times and handle them differently than
plain character strings. Dates and times are stored by the computer in a format
called a timestamp. However, this is not a format in which you or [would want
to see the date. PHP converts dates from your notation into a timestamp that
the computer understands and from a timestamp into a format that is familiar
to people. PHP handles dates and times by using built-in functions.

Chapter 6: General PHP

The timestamp format is a Unix Timestamp, which is an integer that is the
number of seconds from January 1, 1970 00:00:00 GMT (Greenwich Mean Time)
to the time represented by the timestamp. This format makes it easy to calcu-
late the time between two dates — just subtract one timestamp from the other.

Formatting a date

The function that you will use most often is date. date converts a date or
time from the timestamp format into a format that you specify. The general
format is

$mydate = date("format",$timestamp);

$timestamp is a variable with a timestamp stored in it. You previously stored
the timestamp in the variable, using a PHP function as I describe later in this
section. If $timestamp is not included, the current time is obtained from the
operating system and used. Thus, you can get today’s date with the following
statement:

$today = date("Y/m/d");
If today is August 10, 2003, this statements returns

2003/08/10

The format is a string that specifies the date format that you want stored in the
variable. For instance, the format "yy-m-d" returns 03-8-10, and "M.d.yyyy"
returns Aug.10.2003. Table 6-2 lists some of the symbols that you can use in
the format string. (For a complete list of symbols, see the documentation at
www.php.net.) The parts of the date can be separated by hyphens (-), dots
(.), forward slashes (/), or spaces.

Table 6-2 Date Format Symbols

Symbol Meaning Example
M Month in text, abbreviated Jan

F Month in text not abbreviated January
m Month in numbers with leading zeros 02,12

n Month in numbers without leading zeros 1,12

d Day of the month; two digits with leading zeros 01,14

(continued)

131

132 Partii-pup

Table 6-2 (continued)

Symbol Meaning Example

J Day of the month without leading zeros 3,30

1 Day of the week in text not abbreviated Friday

D Day of the week in text as an abbreviation Fri

w Day of the week in numbers From0
(Sunday) to 6
(Saturday)

Y Year in four digits 2002

y Year in two digits 02

g Hour between 0 and 12 without leading zeros 2,10

G Hour between 0 and 24 without leading zeros 2,15

h Hour between 0 and 12 with leading zeros 01,10

H Hour between 0 and 24 with leading zeros 00, 23

i Minutes 00, 59

S Seconds 00, 59

a am or pmin lowercase am, pm

A AM or PM in uppercase AM, PM

Storing a timestamp in a variable

You can assign a timestamp with the current date and time to a variable with

the following statements:

$today

time();

Another way to store a current timestamp is with the statement

$today

strtotime("today");

You can store specific timestamps by using strtotime with various key-
words and abbreviations that are very much like English. For instance, you
can create a timestamp for January 15, 2003, as follows:

$importantDate = strtotime("January 15 2003");

strtotime recognizes the following words and abbreviations:

Chapter 6: General PHP

v Month names: Twelve month names and abbreviations
~ Days of the week: Seven days and some abbreviations

v Time units: Year, month, fortnight, week, day, hour, minute, second,
am, pm

+* Some useful English words: ago, now, last, next, this, tomorrow, yesterday
v+ Plus and minus: + or -

+ All numbers

v Time zones: For example, gmt (Greenwich Mean Time), pdt (Pacific

Daylight Time), and akst (Alaska Standard Time)

You can combine the words and abbreviations in a wide variety of ways. The
following statements are all valid:

$importantDate = strtotime("tomorrow"); #24 hours from now
$importantDate = strtotime("now + 24 hours");

$importantDate = strtotime("last saturday");

$importantDate = strtotime("8pm + 3 days");

$importantDate = strtotime("2 weeks ago"); # at current time
$importantDate = strtotime("next year gmt"); #1 year from now
$importantDate = strtotime("this 4am"); ## 4 AM today

If you wanted to know how long ago $importantDate was, you could sub-
tract it from $today. For instance:

$timeSpan = $today - $importantDate;

This gives you the number of seconds between the important date and today.
Or use the statement

$timeSpan =(($today - $importantDate)/60)/60

to find out the number of hours since the important date.

Using dates with MySOL

Often you want to store a date in your MySQL database. For instance, you
might want to store the date when a customer made an order or the time
when a member logged in. MySQL also recognizes dates and times and han-
dles them differently than plain character strings. However, MySQL handles
them differently than PHP. In order to use dates and times in your applica-
tion, you need to understand both how PHP handles dates (which I describe
in the previous few sections) and how MySQL handles dates.

I discuss the DATE and DATETIME data types for MySQL in detail in Chapter 3.
The following is a summary.

133

134 Partur:prp

v DATE: MySQL date columns expect dates with the year first, the month
second, and the day last. The year can be yyyy or yy. The month can be
mm or m. The day can be dd or d. The parts of the date can be separated
by a hyphen (-), a forward slash (/), a dot (.), or a space.

v DATETIME: MySQL datetime columns expect both the date and the time.
The date is formatted as I describe in the preceding bullet. The date is
followed by the time in the format hh:mm:ss.

Dates and times must be formatted in the correct MySQL format to store
them in your database. PHP functions can be used for formatting. For
instance, you can format today’s date into a MySQL format with this
statement:

$today = date("Y-m-d");
You can format a specific date by using the statement
$importantDate = date("Y.m.d",strtotime("Jdan 15 2003"));
You can then store the formatted date in a database with an SQL query like this:

UPDATE Member SET createDate="$today"

Comparing Values

In programs, you often use conditional statements. That is, if something is
true, your program does one thing, but if something is not true, your program
does something different. Here are two examples of conditional statements:

if user is a child
show toy catalog
if user is not a child
show electronics catalog

In order to know which conditions exist, the program must ask questions.
Your program then performs tasks based on the answers. Some questions
(conditions) that you might want to ask — and the actions that you might
want taken — are

v s the customer a child? If so, display a toy catalog.

v Which product has more sales? Display the most popular one first.

v Did the customer enter the correct password? If so, display the
Members Only Web page.

v Does the customer live in Ohio? If so, display the map to the Ohio store
location.

Chapter 6: General PHP ’35

To ask a question in a program, you form a statement that compares values.
The program tests the statement and determines whether the statement is
true or false. For instance, you can state the preceding questions as

v The customer is less than 13 years of age. True or false? If true, display
the toy catalog.

v Product 1 sales are higher than Product 2 sales. True or false? If true,
display Product 1 first; if false, display Product 2 first.

v The customer’s password is secret. True or false? If true, show the
Members Only Web page.

v The customer lives in Ohio. True or false? If true, display a map to the
Ohio store location.

Comparisons can be quite simple. For instance, is the first value larger than
the second value? Or smaller? Or equal to? But sometimes you need to look at
character strings to see whether they have certain characteristics instead of
looking at their exact values. For instance, you might want to identify strings
that begin with S or strings that look like phone numbers. For this type of com-
parison, you compare a string to a pattern, which I describe in the section
“Matching character strings to patterns,” later in this chapter.

Making simple comparisons

Simple comparisons compare one value to another value. PHP offers several
ways to compare values. Table 6-3 shows the comparisons that are available.

Table 6-3 Comparing Values

Comparison Description

== Are the two values equal?

> Is the first value larger than the second value?

>= Is the first value larger than or equal to the second value?
< Is the first value smaller than the second value?

<= Is the first value smaller than or equal to the second value?

1= Are the two values not equal to each other?

< Are the two values not equal to each other?

136 rartm:pup

WING/
&

You can compare both numbers and strings. Strings are compared alphabeti-
cally, with all uppercase characters coming before any lowercase characters.
For instance, SS comes before Sa. Characters that are punctuation also have

an order, and one character can be found to be larger than another character.
However, comparing a comma to a period doesn’t have much practical value.

Strings are compared based on their ASCII (American Standard Code for
Information Interchange) code. In the ASCII character set, each character

is assigned an ASCII code that corresponds to a decimal number between 0
and 127. When strings are compared, they are compared based on this code.
For instance, the number that represents the comma is 44. The period corre-
sponds to 46. Therefore, if a period and a comma are compared, the period is
seen as larger.

Comparisons are often used to execute statements only under certain condi-
tions. For instance, in the following example, the block of statements is only
executed when the comparison $weather == "raining" is true:

if ($weather == "raining")
{

put up umbrella;

cancel picnic;

}

PHP checks the variable $weather to see whether it is equal to "raining". If
it is, PHP executes the two statements. If $weather is not equalto "raining",
PHP does not execute the two statements.

The comparison sign is two equal signs (==). One of the most common mis-
takes is to use a single equal sign for a comparison. A single equal sign puts the
value into the variable. Thus, a statement like if ($weather = "raining")
would set $weather to raining rather than check whether it already equaled
raining and would thus always be true.

For example, here’s a solution to the programming problem presented at the
beginning of this section. The problem is

if user is a child
show toy catalog
if user is not a child
show electronics catalog

To determine whether a customer is an adult, you compare the customer’s
age with the age when the customer is considered to be an adult. You need to
decide at what age a customer would stop being interested in toy catalogs and
start being more interested in electronic catalogs. Suppose you decide that 13
seems like the right age. You then ask whether the customer is younger than
13 by comparing the customer’s age to 13. If the age is less than 13, show the
toy catalog; if the age is 13 or over, show the electronics catalog. These com-
parisons would have the following format:

Chapter 6: General PHP ’3 7

$age < 13 (is the customer's age less than 137)
$age >= 13 (is the customer's age greater than or equal to 13?)

One way to program the conditional actions is to use the following statements:

if ($age < 13)

$status = "child";
if ($age >= 13)

$status = "adult";

These statements instruct PHP to compare the customer’s age to 13. In the
first statement, if the customer’s age is less than 13, the customer’s status is
setto "child". In the second statement, if the customer’s age is equal to 13
or greater than 13, the customer’s status is set to "adult". You then show
the toy catalog to customers whose status is chi1d and show the electronic
catalog to those whose status is adult. Although you can write these i f
statements in a more efficient way, the statements shown will work. A full
description of conditional statements is provided in Chapter 7.

Matching character strings to patterns

Sometimes you need to compare character strings to see whether they fit
certain characteristics rather than whether they match exact values. For
instance, you might want to identify strings that begin with S or strings that
have numbers in them. For this type of comparison, you compare the string
to a pattern. These patterns are regular expressions.

You've probably used some form of pattern matching in the past. For
instance, when you use an asterisk (*) as a wildcard when searching for files
(dir s*.docor 1s s*.txt), you are pattern matching. For instance, c*.txt
is a pattern. Any string that begins with a ¢ and ends with the string . txt,
with any characters in between the c and the . txt, matches the pattern. The
strings cow.txt, c3333.txt, and c3c4.txt all match the pattern. Using reg-
ular expressions is just a more complicated variation of using wildcards.

The most common use for pattern matching on Web pages is to check the
input from a form. If the information doesn’t make sense, it’s probably not
something that you want to store in your database. For instance, if the user
types a name into a form, you can check whether it seems like a real name
by matching patterns. You know that a name consists mainly of letters and
spaces. Other valid characters might be a hyphen (-) — for example, in the
name Smith-Kline — and a single quote (') — for example, O’Hara. You can
check the name by setting up a pattern that’s a string containing only letters,
spaces, hyphens, and single quotes and then matching the name to the pat-
tern. If the name doesn’t match — that is, if it contains characters not in the
pattern, such as numerals or a question mark (?) — it’s not a real name.

138 Partui-pup

Patterns consist of literal characters and special characters. Literal characters
are normal characters, with no other special meaning. A c is a ¢ with no
meaning other than it’s one of the 26 letters in the English alphabet. Special
characters have special meaning in the pattern, such as the asterisk (*) when
used as a wildcard. Table 6-4 shows the special characters used in patterns.

Table 6-4 Special Characters Used in Patterns
Character Meaning Example Match Not a
Match
A Beginning e cat my cat
of line.
$ End of line. c$ tic stick
Any single .. Any string a, |
character. that contains
at least two
characters
? Preceding mea?n mean, men moan
characteris
optional.
() Groups literal m(ea)n mean men, mn

characters into
a string that must
be matched exactly.

[] Encloses a set mlealn men, man mean, mn
of optional literal
characters.

- Represents all mla-c]n man, mbn, mdn, mun,
the characters men maan
between two
characters.

+ One or more of door[1-3]1+ doorll1, door,
the preceding door131 door55
items.

* Zero or more of door[1-31* door, door4,
the preceding door311 door44b

items.

Chapter 6: General PHP ’ 3 9

Character Meaning Example Match Not a
Match
{ ., } Thestarting and af2,5} aa, aaaaa a, xx3

ending number
of a range of

repetitions.

\ The following m*n m*n men, mean
character is
literal.

(]]) Asetofalter- (Tom|Tommy) Tom, Tommy Thomas, To

nate strings.

Literal and special characters are combined to make patterns, which are
sometimes long, complicated patterns. A string is compared to the pattern,
and if it matches, the comparison is true. Some example patterns follow with
a breakdown of the pattern and some sample matching and nonmatching
strings:
v "[A-7].* — Strings that begin with an uppercase letter
e "[A-7] — Uppercase letter at the beginning of the string
e . * — A string of characters that is one or more characters long
Strings that match:
¢ Play it again, Sam
ol
Strings that do not match:
e play it again, Sam
o
v Dear (son|daughter) — Two alternate strings
¢ Dear — Literal characters
e (son|daughter) — Either son or daughter
Strings that match:
¢ Dear son
e My Dear daughter
Strings that do not match:
¢ Dear Goliath

® son

140 Partur:prp

v ~[0-91{5}(\-[0-91{4})?$ — Any ZIP code
e "[0-9]1{5} — Any string of five numbers
e \- — Alijteral
e [0-9]1{4} — A string of numbers that is four characters long

e ()? — Groups the last two parts of the pattern and makes them
optional

Strings that match:
* 90001
* 90002-4323

Strings that do not match:
* 9001
* 12-4321

V¥~ .+@.+\.com$ — Any string with @ embedded that ends in . com

e * .+ — Any string of one or more characters at the beginning.
e @ — A literal @ (at sign). @ is not a special character.
e .+ — Any string of one or more characters.
e \. — Aliteral dot.
e com$ — A literal string com at the end of the string.

Strings that match:
* mary@hercompany.com

Strings that do not match:
¢ mary@hercompany.net

* @mary.com
You can compare a string to a pattern by using ereg. The general format is
ereg("pattern”,string);
Either pattern or string can be a literal as follows:
ereg("[0-9]*","1234");
or can be stored in variables, as follows:

ereg($pattern,$string);

Chapter 6: General PHP ’4 1

To use ereg to check the name that a user typed in a form, compare the
name to a pattern as follows:

ereg("~[A-Za-z' -1+$",%$name)
The pattern in this statement does the following:
v Uses " and $ to signify the beginning and end of the string. That means

that all the characters in the string must match the pattern.

v Encloses all the literal characters that are allowed in the stringin [1. No
other characters are allowed. The allowed characters are uppercase and
lowercase letters, an apostrophe ('), a blank space, and a hyphen (-).

You can specify a range of characters using a hyphen within the [].
When you do that, as in A-7 above, the hyphen does not represent a lit-
eral character. Because you want the hyphen included as a literal char-
acter that is allowed in your string, you need to add a hyphen that is not
between any two other characters. In this case, the hyphen is included
at the end of the list of literal characters.

v Follows the list of literal characters in the [] with a +. The plus sign
means that the string can contain any number of the characters inside
the [] but must contain at least one character.

Joining Comparisons with and/or/xor

Sometimes one comparison is sufficient to check for a condition, but often,
you need to ask more than one question. For instance, suppose that your com-
pany offers catalogs for different products in different languages. You need to
know which product the customer wants to see and which language he or she
needs to see it in. This is the general format for a series of comparisons:

comparison and|or|xor comparison and|or|xor comparison and|or|xor ...
Comparisons are connected by one of the three following words:

v and: Both comparisons are true.
v or: One of the comparisons or both of the comparisons are true.

v xor: One of the comparisons is true but not both of the comparisons.

Table 6-5 shows some examples of multiple comparisons.

142 Partur:prp

Table 6-5 Multiple Comparisons

Condition Is True If

$customer == "Smith" The customer is named either Smith or
or $customer == "Jones" Jones.

$customer == "Smith" and The customer is named Smith, andthe
$custState =="0R" customer lives in Oregon.

$customer == "Smith" or The customer is named Smith, orthe
$custState == "OR" customer lives in Oregon or both.
$customer == "Smith" xor The customer is named Smith, or the
$custState == "OR" customer lives in Oregon — but not both.
$customer != "Smith" The customer is named anything except
and $custAge < 13 Smith and is under 13 years of age.

You can string together as many comparisons as necessary. The comparisons
that use and are tested first, the comparisons that use xor are tested next, and
the comparisons that use or are tested last. For instance, the following is a
condition that includes three comparisons:

$age == 200 or $age == 300 and $name == "Goliath"

If the customer’s name is Goliath and he is 300 years old, this statement is
true. The statement is also true if the customer is 200 years old, regardless
of what his name is. This condition is not true if the customer is 300 years
old, but his name is not Goliath. You get these results because the program
checks the condition as follows:

1. The and is compared. The program checks $age to see whether it
equals 300, and it checks $name to see whether it equals Goliath.If
both match, the condition is true, and the program does not need to
check or. If only one or neither of the variables equal the designated
value, the testing continues.

2. The or is compared. The program checks $age to see whether it equals
200. If it does, the condition is true. If it does not, the condition is false.

You can change the order in which comparisons are made by using parenthe-
ses. The word inside the parentheses is evaluated first. For instance, you can
rewrite the previous statement with parentheses as follows:

($age == 200 or $age == 300) and $name == "Goliath"

Chapter 6: General PHP ’43

The parentheses change the order in which the conditions are checked. Now
the or is checked first. This condition is true if the customer’s name is
Goliath and he is either 200 or 300 years old. You get these results because
the program checks the condition as follows:

1. The or is compared. The program checks $age to see whether it equals
either 200 or 300. If it does, this part of the condition is true. However,
the comparison on the other side of the and must also be true, so the
testing continues.

2. The and is compared. The program checks $name to see whether it
equals Goliath. If it does, the condition is true. If it does not, the condi-
tion is false.

\\J

Use parentheses liberally, even when you believe that you know the order of
the comparisons. Unnecessary parentheses can’t hurt, but comparisons that
have unexpected results can.

If you are familiar with other languages, such as C, you may have used | |

(for or) and && (for and) in place of the words. The | | and && work in PHP as
well. The statement $a < $b && $c > $bisjust as valid as the statement
$a < $b and $c > $b.The || is checked before the word or, and the && is
checked before the word and.

Adding Comments to Your Program

Comments are notes that are embedded in the program itself. Adding comments
in your programs that describe their purpose and what they do is essential. It’s
important for the lottery factor; that is, if you win the lottery and run off to a
life of luxury on the French Riviera, someone else will have to finish the applica-
tion. The new person needs to know what your program is supposed to do and
how it does it. Actually, comments benefit you as well. You might need to revise
the program next year when the details are long buried in your mind under
more recent projects.

Use comments liberally. PHP ignores comments; comments are for humans.
You can embed comments in your program anywhere as long as you tell PHP
that they are comments. The format for comments is

/* comment text
more comment text */

Your comments can be as long or as short as you need. When PHP sees code
that indicates the start of a comment (/*), it ignores everything until it sees
the code that indicates the end of a comment (*/).

144 Ppartur:prp

The following is one possible format for comments at the beginning of each
program:

/* name: catalog.php
description: Program that displays descriptions of
products. The descriptions are stored
in a database. The product descriptions
are selected from the database based on
the category the user entered into a form.
written by: Lola Designer
created: 2/1/02
modified: 3/15/02
=

You should use comments throughout the program to describe what the pro-
gram does. Comments are particularly important when the program state-
ments are complicated. Use comments such as the following frequently:

/* Get the information from the database */
/* Check whether the customer is over 18 years old */
/* Add shipping charges to the order total */

PHP also has a short comment format. You can specify that a single line is a
comment by using the pound sign (#) or two forward slashes (//) in the fol-
lowing manner:

This is comment line 1
// This is comment line 2

You can also use # or // in the middle of a line to signal the beginning of a
comment. PHP will ignore everything from the # or // to the end of the line.
This is useful for commenting a particular statement, as in the following
example:

$average = $orderTotal/$nltems // compute average price

Sometimes you really want to emphasize a comment. The following format
makes a comment very noticeable:

THHHHHHHHEHAHHHHHHEHHHEHHHHEHEHEHRAREHE
jHt Double-Check This Section THE
THHHHHHHHHHHHHHHHHEHHHAHRHREHRHAHRHREHE

PHP comments are not included in the HTML code that is sent to the user’s
browser. The user does not see these comments.

Use comments as often as necessary in the script to make it clear. However,
using too many comments is a mistake. Don’t comment every line or everything
that you do in the script. If your script is too full of comments, the really impor-
tant comments can get lost in the maze. Only use comments to label sections
and to explain code that is unusual or complicated — not code that is obvious.

Chapter 7

PHP Building Blocks for Programs

In This Chapter
Echoing output to Web pages

Assigning values to variables

Incrementing variables

Stopping and breaking out of programs

Creating and using arrays

Using conditional statements

Building and using loops for repeated statements
Using functions

p HP programs are a series of instructions in a file named with an exten-
sion that tells the Web server to look for PHP sections in the file. (The
extension is usually .php or .phtml, but it can be anything that the Web
server is configured to expect.) PHP begins at the top of the file and executes
each instruction, in order, as it comes to it. Instructions are the building
blocks of PHP programs.

The basic building blocks are simple statements — a single instruction fol-
lowed by a semicolon. A simple program consists of a series of simple state-
ments. For example, the Hello World program that [discuss in Chapter 6 is a
simple program. However, the programs that make up a Web database appli-
cation are not that simple. They are dynamic and interact with both the user
and the database. Consequently, the programs require more complex build-
ing blocks.

Here are some common programming tasks that require complex building
blocks:

v~ Storing groups of related values together: You often have information
that is related, such as the description, picture, and price of a product or
a list of customers. Storing this information as a group that you can
access under one name is efficient and useful. This PHP feature is an
array.

146 Partnipup

v~ Setting up statements that execute only when certain conditions are
met: Programs frequently need to do this. For instance, you may want to
display a toy catalog to a child and an electronics catalog to an adult.
This type of statement is a conditional statement. The PHP conditional
statements are the i f statement and the case statement.

1~ Setting up a block of statements that is repeated: You frequently need

to repeat statements. For instance, you may want to create a list of all
your customers. To do that, you might use two statements: one that gets
the customer row from the database and a second one that stores the
customer name in a list. You would need to repeat these two statements
for every row in the customer database. The feature that enables you to
do this is a loop. Three types of loops are for loops, while loops, and
do..while loops.

v Writing blocks of statements that can be reused many times: Many
tasks are performed in more than one part of the application. For
instance, you might want to retrieve product information from the data-
base and display it numerous times in an application. Getting and dis-
playing the information might require several statements. Writing a
block of statements that displays the product information and using this
block repeatedly is much more efficient than writing the statements over
again every time that you need to display the product information. PHP
allows you to reuse statement blocks by creating a function.

In this chapter, you find out how to use the building blocks of PHP programs.
[describe the most frequently used simple statements and the most useful
complex statements and variables. You find out how to construct the building
blocks and what they are used for. Then in Chapter 8, you find out how to use
these building blocks to move data in and out of a database.

Useful Simple Statements

A simple statement is a single instruction followed by a semicolon (;). Here
are some useful simple statements used in PHP programs:

v echo statement: Produces output that browsers handle as HTML

v Assignment statement: Assigns values to variables

 Increment statement: Increases or decreases numbers in variables

v exit statement: Stops the execution of your program

v Function call: Uses stored blocks of statements at any location in

a program

[discuss these simple statements and when to use them in the following
sections.

Chapter 7: PHP Building Blocks for Programs 74 7

Using echo statements

You use echo statements to produce output. The output from an echo state-
ment is sent to the user’s browser, which handles the output as HTML
(HyperText Markup Language).

The general format of an echo statement is
echo outputitem,outputitem,outputitem. ..
where the following rules apply:

v An outputitem can be a number, a string, or a variable. A string must be
enclosed in quotes. The difference between double and single quotes is
explained in Chapter 6.

v List as many outputitems as you need.
v Separate each outputitem with a comma.
Table 7-1 shows some echo statements and their output. For the purposes

of the table, assume that $stringl is setto Hello and $string?2 is set to
World!.

Table 7-1 echo Statements

echo Statement Output

echo "Hello"; Hello

echo 123; 123

echo "Hello","World!"; HelloWorld!
echo Hello World!; Not valid; results in an error message
echo "Hello World!"; Hello World!
echo 'Hello World!"'; Hello World!
echo $stringl; Hello

echo $stringl,$string?; HelloWorld!
echo "$stringl $string2"; Hello World!
echo "Hello ",$string?; Hello World!
echo "Hello"," ",$string?; Hello World!

echo '"$stringl',"$stringe"; $stringlWorld!

148 rartur:prp

QWING/
& Double quotes and single quotes have different effects on variables. When
you use single quotes, variable names are echoed as-is. When you use double
quotes, variable names are replaced by the variable values.

You can separate variable names with curly braces ({ }). For instance, the
following statements

$pet = "bird";
echo "The $petcage has arrived.";

will not output bird as the $pet variable. In other words, the output will not
be The birdcage has arrived. Rather, PHP will look for the variable
$petcage and won’t be able to find it. You can echo the correct output by
using curly braces to separate the $pet variable:

$pet = "bird";
echo "The {$petlcage has arrived.";

The preceding statement will output
The birdcage has arrived.

echo statements output a line of text that is sent to a browser. The browser
considers the text to be HTML and handles it that way. Therefore, you need
to make sure that your output is valid HTML code that describes the Web
page that you want the user to see.

When you want to display a Web page (or part of a Web page) by using PHP,
you need to consider three stages in producing the Web page:

v The PHP program: PHP echo statements that you write.

v The HTML source code: The source code for the Web page that you see
when you choose Views>Source in your browser. The source code is the
output from the echo statements.

v The Web page: The Web page that your users see. The Web page results

from the HTML source code.
&Q,N\BEB
< The echo statements send exactly what you echo to the browser — no more,

no less. If you do not echo any HTML tags, none are sent.

PHP allows some special characters that format output, but they are not
HTML tags. The PHP special characters only affect the output from the echo
statement — not the display on the Web page. For instance, if you want to
start a new line in the PHP output, you must include a special character (\n)
that tells PHP to start a new line. However, this special character just starts a
new line in the output; it does not send an HTML tag to start a new line on the
Web page. Table 7-2 shows examples of the three stages.

Chapter 7: PHP Building Blocks for Programs ’ 4 9

Table 7-2 Stages of Web Page Delivery

echo Statement HTML Source Code Web Page Display

echo "Hello World!"; Hello World! Hello World!

echo "Hello World!"; Hello World! Hello World!Here I am!
echo "Here I am!"; Here I am!

echo "Hello World!\n"; Hello World! Hello World! Here I am!
echo "Here I am!"; Here I am!

echo "Hello World!
"; Hello World!
 Hello World!

echo "Here I am!"; Here 1 am!" Here I am!

echo "Hello World!
\n"; Hello World!
 Hello World!
echo "Here I am!"; Here I am!" Here I am!

Table 7-2 summarizes the differences between the stages in creating a Web
page with PHP. To look at these differences more closely, consider the follow-
ing two echo statements:

echo "Line 1";
echo "Line 2";

If you put these lines in a program, you might expect the Web page to display
the following:

Line 1
Line 2

However, this is not the output that you would get. The Web page would actu-
ally display this:

Line 1Line 2

If you look at the source code for the Web page, you see exactly what is sent
to the browser, which is this:

Line ILine 2

Notice that the line that is output and is sent to the browser contains exactly
the characters that you echoed — no more, no less. The character strings
that you echoed did not contain any spaces, so no spaces appear between
the lines.

150 Ppartui:pup

A\

Also, notice that the two lines are echoed on the same line. If you want a new
line to start, you have to send a signal indicating the start of a new line. To
signal that a new line starts here in PHP, echo the special character \n.
Change the echo statements to the following:

echo "Tine 1\n";
echo "line 2";

Now you get what you want, right? Well, actually no. Now you see the follow-
ing on the Web page:

line 1 line 2
If you look at the source code, you see this:

line 1
line 2

So, the \n did its job: It started a new line in the output. However, HTML dis-
plays the output on the Web page as one line. If you want HTML to display
two lines, you must use a tag, such as the
 tag. So, change the PHP end-
of-line special character to an HTML tag, as follows:

echo "Tine 1
";
echo "line 2";

Now you see what you want on the Web page:

line 1
line 2

If you look at the source code for this output, you see this:
line 1
line 2

Use \n liberally. Otherwise, your HTML source code will have some really
long lines. For instance, if you echo a long form, the whole thing might be one
long line in the source code, even though it looks fine in the Web page. Use \n
to break the HTML source code into reasonable lines. Taking the extra time to
add these breaks will pay off if you have to troubleshoot a Web page that
doesn’t look the way you expected. It’s much easier to examine the source
code if it’s not a mile-long line.

Using assignment statements

Assignment statements are statements that assign values to variables. The
variable name is listed to the left of the equal sign; the value to be assigned to
the variable is listed to the right of the equal sign. Here is the general format:

Chapter 7: PHP Building Blocks for Programs

$variablename = value;

The value can be a single value or a combination of values, including values
in variables. A variable can hold numbers or characters but not both at the
same time. Therefore, a value cannot be a combination of numbers and char-
acters. The following are valid assignment statements:

$number = 2;
$number = 2+1;
$number = (2 - 1) * (4 * 5) -17;

$number?2 = $number + 3;
$string = "Hello World";
$string2 = $string." again!";

If you combine numbers and strings in a value, you won’t get an error mes-
sage; you'll just get unexpected results. For instance, the following state-
ments combine numbers and strings:

$number = 2;

$string = "Hello";

$combined = $number + $string;
$combined?2 = $number.$string;
echo $combined;

echo
;

echo $combined?;
The output of these statements is

2 ($string is evaluated as 0)
2Hello ($number is evaluated as a character)

Using increment statements

Often a variable is used as a counter. For instance, suppose you want to be
sure that everyone sees your company logo, so you display it three times.
You set a variable to 0. Each time that you display the logo, you add 1 to the
variable. When the value of the variable reaches 3, you know that it’s time to
stop showing the logo. The following statements show the use of a counter:

$counter=0;
$counter = $counter + 1;
echo $counter;

These statements would output 1. Because counters are used so often, PHP
provides shortcuts. The following statements have the same effect as the pre-
ceding statements.

151

152 Partui:pup

$counter=0;
$counter++;
echo $counter;

This echo statement also outputs 1 because ++ adds 1 to the current value of
$counter. Or you can use the following statement:

$counter--;
This statement subtracts 1 from the current value of $counter.

Sometimes you may want to do a different arithmetic operation. You can use
any of the following shortcuts:

$counter+=2;
$counter-=3;
$counter*=2;
$counter/=3;

These statements add 2 to $counter, subtract 3 from $counter, multiply
$counter by 2, and divide $counter by 3, respectively.

a a
Using exit
Sometimes you want the program to stop executing — just stop at some
point in the middle of the program. For instance, if the program encounters
an error, often you want it to stop rather than continue with more state-
ments. The exit statement stops the program. No more statements are exe-
cuted after the exit statement. The format of an exit statement is

exit("message");

The message is a message that is output when the program exits. For
instance, you might use the statement

exit("The program is exiting");
You can also stop the program with the die statement, as follows:
die("The program is dying");

The die statement is the same as the exit statement. die is just another
name for exit. Sometimes it’s just more fun to say die.

Chapter 7: PHP Building Blocks for Programs ’53

Using function calls

Functions are blocks of statements that perform certain specified tasks. You
can think of functions as mini-programs or subprograms. The block of state-
ments is stored under a function name, and you can execute the block of
statements any place you want by calling the function by its name. (For
details on how to use functions, check out the section, “Using Functions,”
later in this chapter.)

You can call a function by listing its name followed by parentheses, like this:
functionname();

For instance, you might have a function that gets all the names of customers
that reside in a certain state from the database and displays the names in a
list in the format 7ast name, first name. You write the statements that do
these tasks and store them as a function under the name get_names. Then
when you call the function, you need to specify which state. You can use the
following statement at any location in your program to get the list of cus-
tomer names from the given state, which in this case is California:

get_names('CA");

The value in the parentheses is given to the function so it knows which state
you're specifying. This is passing the value. You can pass a list of values.

PHP provides many built-in functions. For example, in Chapter 6, I discuss a
built-in function called unset. You can uncreate a variable named $testvar
by using this function call:

unset($testvar);

Using PHP Arrays

Arrays are complex variables. An array stores a group of values under a
single variable name. An array is useful for storing related values. For
instance, you can store information about a shirt (such as size, color, and
cost) in a single array named $shirtinfo. Information in an array can be
handled, accessed, and modified easily. For instance, PHP has several meth-
ods for sorting an array.

The following few sections give you the lowdown on arrays.

154 rartur:prp

q\‘;\NG!

Creating arrays

The simplest way to create an array is to assign a value to a variable with
square brackets ([1) at the end of its name. For instance, assuming that you
have not referenced $pets at any earlier point in the program, the following
statement creates an array called $pets:

$pets[1l] = "dragon";

At this point, the array named $pets has been created and has only one
value — dragon. Next, you use the following statements:

$pets[2]
$pets[3]

"unicorn";
"tiger";

Now the array $pets contains three values: dragon, unicorn, and tiger.

An array can be viewed as a list of key/value pairs. To get a particular value,
you specify the key in the brackets. In the preceding array, the keys are
numbers — 1, 2, and 3. However, you can also use words for keys. For
instance, the following statements create an array of state capitals:

$capitals['CA'] = "Sacramento";
$capitals['TX'] = "Austin";
$capitals['OR'] = "Salem";

You can use shortcuts rather than write separate assignment statements for
each number. One shortcut uses the following statements:

$pets[] = "dragon";
$pets[] = "unicorn";
$pets[] = "tiger";

When you create an array using this shortcut, the values are automatically
assigned keys that are serial numbers, starting with the number 0. For
example, the following statement

echo "$pets[0]";
sends the following output:

dragon
The first value in an array with a numbered index is 0 unless you deliberately
set it to a different number. One common mistake when working with arrays

is to think of the first number as 1 rather than 0.

An even better shortcut is to use the following statement:

Chapter 7: PHP Building Blocks for Programs ’55

\\J

$pets = array("dragon","unicorn","tiger");

This statement creates the same array as the preceding shortcut. It assigns
numbers as keys, starting with 0. You can use a similar statement to create
arrays with words as keys. For example, the following statement creates the
array of state capitals:

$capitals = array("CA" => "Sacramento", "TX" => "Austin",
“OR" => “Sa‘lem“);

Viewing arrays
You can echo an array value like this:
echo $capitals['TX"'];

If you include the array value in a longer echo statement that’s enclosed by
double quotes, you may need to enclose the array value name in curly braces
like this:

echo "The capital of Texas is {$capitals['TX"']1}
";

You can see the structure and values of any array by using a print_r
statement. To display the $capitals array, use the following statement:

print_r($capitals);
This print_r statement provides the following output:

Array

(
[CA] => Sacramento
[TX] => Austin
[OR] => Salem

)

This output shows the key and the value for each element in the array.

The output will display on the Web page with HTML, which means that it will
display in one long line. To see the output on the Web in the useful format
that I describe here, send HTML tags that tell the browser to display the text
as received, without changing it, by using the following statements:

echo "<pre>";
print_r($capitals);
echo "</pre>";

156 Partin:pup

Removing values from arrays

Sometimes you need to completely remove a value from an array. For example,
suppose you have the following array:

$pets = array("dragon", "unicorn", "tiger",
"parrot", "scorpion");

This array has five values. Now you decide that you no longer want to carry
scorpions in your pet store, so you use the following statement to try to
remove scorpion from the array:

$pets[4] = "";

Although this statement sets $pets[4] to an empty string, it does not
remove it from the array. You still have an array with five values; one of the
values is beingempty1. To totally remove the item from the array, you need
to unset it with the following statement:

unset($petsl4]);

Now your array has only four values in it.

Sorting arrays

One of the most useful features of arrays is that PHP can sort them for you.
PHP originally stores array elements in the order in which you create them. If
you display the entire array without changing the order, the elements will be
displayed in the order in which they were created. Often, you want to change
this order. For example, you may want to display the array in alphabetical
order by value or by key.

PHP can sort arrays in a variety of ways. To sort an array that has numbers
as keys, use a sort statement as follows:

sort($pets);

This statement sorts by the values and assigns new keys that are the appro-
priate numbers. The values are sorted with numbers first, uppercase letters
next, and lowercase letters last. For instance, consider the $pets array cre-
ated in the preceding section:

$pets[0] = "dragon";
$pets[1] "unicorn";
$pets[2] "tiger";

Chapter 7: PHP Building Blocks for Programs ’57

After the following sort statement
sort($pets);

the array becomes

$pets[0] = "dragon";
$pets[1] = "tiger";
$pets[2] = "unicorn”;
Vg‘“\NG!
S If you use sort () to sort an array with words as keys, the keys will be

changed to numbers, and the word keys will be thrown away.

To sort arrays that have words for keys, use the asort statement as follows:
asort($capitals);

This statement sorts the capitals by value but keeps the original key for each

value instead of assigning a number key. For instance, consider the state capi-
tals array created in the preceding section:

$capitals['CA'] = "Sacramento";
$capitals['TX'] = "Austin";
$capitals['OR'] = "Salem";

After the following sort statement
asort($capitals);

the array becomes

$capitals['TX'] = "Austin";
$capitals['CA'] = "Sacramento";
$capitals['OR'] = "Salem";

Notice that the keys stayed with the value when the elements were
reordered. Now the elements are in alphabetical order, and the correct state
key is still with the appropriate state capital. If the keys had been numbers,
the numbers would now be in a different order. For example, if the original

array were
$capitals[1] = "Sacramento";
$capitals[2] = "Austin";
$capitals[3] = "Salem";

after an asort statement, the new array would be

$capitals[2] = Austin
$capitals[1l] = Sacramento
$capitals[3] = Salem

158 Partui:pup

It’s unlikely that you want to use asort on an array with numbers as a key.

There are several other sort statements that sort in other ways. Table 7-3
lists all the available sort statements.

Table 7-3 Ways You Can Sort Arrays

Sort Statement What It Does

sort($arrayname) Sorts by value; assigns new numbers
as the keys

asort($arrayname) Sorts by value; keeps the same key

rsort($arrayname) Sorts by value in reverse order;
assigns new numbers as the keys

arsort($arrayname) Sorts by value in reverse order; keeps
the same key

ksort($arrayname) Sorts by key

krsort($arrayname) Sorts by key in reverse order

usort($arrayname,functionname) Sorts by afunction (see “Using
Functions,” later in this chapter)

Getting values from arrays

You can retrieve any individual value in an array by accessing it directly. Here
is an example:

$CAcapital = $capitals['CA'];
echo $CAcapital

The output from these statements is

Sacramento
If you use an array element that doesn’t exist in a statement, a notice is dis-
played. (Read about notices in Chapter 6.) For example, suppose that you use
the following statement:

$CAcapital = $capitals['CAx'];

If the array $capitals exists but no element has the key CAx, you see the
following notice:

Notice: Undefined index: CAx in d:\testarray.php on Tine 9

Chapter 7: PHP Building Blocks for Programs ,59

Remember that a notice does not cause the script to stop. Statements after
the notice will continue to execute. But because no value has been put into
$CAcapital, any subsequent echo statements will echo a blank space. You
can prevent the notice from being displayed by using the @ symbol:

@$CAcapital = $capitals['CAx'];

You can get several values at once from an array using the list statement or
all the values from an array by using the extract statement.

The 11 st statement gets values from an array and puts them into variables.
The following statements include a 117 st statement:

$shirtInfo = array ("large", "blue", 12.00);
sort ($shirtInfo);
list($firstvalue,$secondvalue) = $shirtinfo;
echo $firstvalue,"
";

echo $secondvalue, "
";

The first line creates the $shirtInfo array. The second line sorts the array.

The third line sets up two variables named $firstvalue and $secondvalue
and copies the first two values in $shirtInfo into the two new variables, as
if you had used the two statements

$firstvalue=$shirtInfol0];
$secondvalue=$shirtInfoll]l;

The third value in $shirtInfo is not copied into a variable because there are
only two variables in the 11st statement. The output from the echo state-
ments is

blue
large

Notice that the output is in alphabetical order and not in the order in which
the values were entered. It’s in alphabetical order because the array is sorted
after it is created.

You can retrieve all the values from an array with words as keys using extract.
Each value is copied into a variable named for the key. For instance, the fol-
lowing statements get all the information from $shirtInfo and echo it:

extract($shirtInfo);
echo "size is $size; color is $color; cost is $cost";

The output for these statements is

size is large; color is blue; cost is 12.00;

160 Prartinpup

Walking through an array

You will often want to do something to every value in an array. You might
want to echo each value, store each value in the database, or add six to each
value in the array. In technical talk, walking through each and every value in
an array, in order, is iteration. It is also sometimes called fraversing. Here are
two ways to walk through an array:

v Manually: Move a pointer from one array value to another

v~ Using foreach: Automatically walk through the array, from beginning to
end, one value at a time

Manually walking through an array

You can walk through an array manually by using a pointer. To do this,
think of your array as a list. Imagine a pointer pointing to a value in the list.
The pointer stays on a value until you move it. After you move it, it stays
there until you move it again. You can move the pointer with the following
instructions:

v current($arrayname): Refers to the value currently under the pointer;
does not move the pointer

v next($arrayname): Moves the pointer to the value after the current
value

v previous($arrayname): Moves the pointer to the value before the
current pointer location

v end($arrayname): Moves the pointer to the last value in the array

v reset($arrayname): Moves the pointer to the first value in the array

The following statements manually walk through an array containing state
capitals:

$value = current ($capitals);
echo "$value
";

$value = next ($capitals);
echo "$value
";

$value = next ($capitals);
echo "$value
";

Unless you have moved the pointer previously, the pointer is located at the
first element when you start walking through the array. If you think that the
array pointer may have been moved earlier in the script or if your output
from the array seems to start somewhere in the middle, use the reset state-
ment before you start walking, as follows:

reset($capitals);

Chapter 7: PHP Building Blocks for Programs ’ 6 1

When using this method to walk through an array, you need an assignment
statement and an echo statement for every value in the array — for each of
the 50 states. The output is a list of all the state capitals.

This method gives you flexibility. You can move through the array in any
manner — not just one value at a time. You can move backwards, go directly
to the end, skip every other value by using two next statements in a row, or
whatever method is useful. However, if you want to go through the array from
beginning to end, one value at a time, PHP provides foreach, which does
exactly what you need much more efficiently. foreach is described in the
next section.

Using foreach to walk through an array

foreach walks through the array one value at a time and executes the block
of statements by using each value in the array. The general format is

foreach($arrayname as $keyname => $valuename)
{

}

block of statements;

Fill in the following information:

v arrayname: The name of the array that you're walking through.

v keyname: The name of the variable where you want to store the key.
keyname is optional. If you leave out $keyname =>, the value is put into
$valuename.

v valuename: The name of the variable where you want to store the value.

For instance, the following foreach statement walks through the sample
array of state capitals and echoes a list:

$capitals = array ("CA" => "Sacramento", "TX" => "Austin",
"OR" => "Salem");

ksort ($capitals);

foreach ($capitals as $state => $city)

{

}

echo "$city, $state
";

The preceding statements give the following Web page output:

Sacramento, CA
Salem, OR
Austin, TX

You can use the following line in place of the foreach line in the previous
statements.

162 Partur:pp

foreach ($capitals as $city)

When using this foreach statement, only the city is available for output. You
would then use the following echo statement:

echo "$city
";
The output with these changes is

Sacramento
Salem
Austin

When foreach starts walking through an array, it moves the pointer to the
beginning of the array. You don’t need to reset an array before walking
through it with foreach.

Multidimensional arrays

In the earlier sections of this chapter, I describe arrays that are a single list of
key/value pairs. However, on some occasions, you might want to store values
with more than one key. For instance, suppose you want to store these prod-
uct prices together in one variable:

v shirt, 20.00

v pants, 22.50

v blanket, 25.00

v bedspread, 50.00

v lamp, 44.00

v rug, 75.00
You can store these products in an array as follows:

$productPrices['shirt"'] 20.00;
$productPrices['pants'] 22.50;
$productPrices['blanket'] = 25.00;
$productPrices['bedspread'] = 50.00;
$productPrices['lamp'] = 44.00;
$productPrices['rug'] = 75.00;

Your program can easily look through this array whenever it needs to know
the price of an item. But suppose that you have 3,000 products. Your program
would need to look through 3,000 products to find the one with shirt or rug as
the key.

Chapter 7: PHP Building Blocks for Programs , 63

|
Figure 7-1:
An array

of arrays.
|

Notice that the list of products and prices includes a wide variety of products
that can be classified into groups: clothing, linens, and furniture. If you clas-
sify the products, the program would only need to look through one classifi-
cation to find the correct price. Classifying the products would be much
more efficient. You can classify the products by putting the costs in a multi-
dimensional array as follows:

$productPrices['clothing']1['shirt'] = 20.00

$productPrices['clothing']['pants'] = 22.50;
$productPrices['Tinens"]['blanket'] = 25.00;
$productPrices['linens']['bedspread'] = 50.00
$productPrices['furniture'J['Tamp'] = 44.00;

$productPrices['furniture'I['rug'] = 75.60;

This kind of array is a multidimensional array because it’s like an array of
arrays. Figure 7-1 shows the structure of $productPrices as an array of
arrays. The figure shows that $productPrices has three key/value pairs.
The keys are clothing, linens, and furniture. The value for each key is an array
with two key/value pairs. For instance, the value for the key clothing is an
array with the two key/value pairs: shirt/20.00 and pants/22.50.

$productPrices key value
key value
clothing shirt 20.00
pants 22.50
linens blanket 30.00
bedspread 50.00
furniture lamp 44.00
rug 75.00

$productPrices is a two-dimensional array. PHP can also understand multi-
dimensional arrays that are four, five, six, or more levels deep. However, my
head starts to hurt if [try to comprehend an array that is more than three
levels deep. The possibility of confusion increases when the number of
dimensions increases.

You can get values from a multidimensional array by using the same proce-
dures that you use with a one-dimensional array. For instance, you can
access a value directly with this statement:

$shirtPrice = $productPrices['clothing']['shirt'];

You can also echo the value:

echo $productPrices['clothing'I['shirt'];

164 partnipip

However, if you combine the value within double quotes, you need to use
curly braces to enclose the variable name. The $ that begins the variable
name must follow the { immediately, without a space, as follows:

echo "The price of a shirt is \${$productPrices['clothing'I["'shirt']}";

Notice the backslash (1) in front of the first dollar sign ($). The backslash
tells PHP that $ is a literal dollar sign and not the beginning of a variable
name. The output is

The price of a shirt is $20

You can walk through a multidimensional array by using foreach statements
(described in the preceding section). You need a foreach statement for each
array. One foreach statement is inside the other foreach statement. Putting
statements inside other statements is nesting.

Because a two-dimensional array, such as $productPrices, contains two
arrays, it takes two foreach statements to walk through it. The following
statements get the values from the multidimensional array and output them
in an HTML table:

echo "<table border=1>";
foreach($productPrices as $category)

{
foreach($category as $product => $price)

{
$f_price = sprintf("%01.2f", $price);
echo "<tr><td>$product:</td><td>\$$f price/td></tr>";

1
1
echo "</table>";

Figure 7-2 shows the Web page produced with these PHP statements.

3 Product Prices - Netscape
File Edit View Go Communicator Help

e 2 A D a W 3 & F
Back Fonvad Reload Home Search Netsca_pe Plint Secuity Stop

24 _“ T Bookmaks f Location: |hl|p':"r’ianewal san.m,com/PHPEMySOLceDurnmies/prices. php ;I @'Whi'?s FRelated

] B irteret (§ Lookup - MewtCoo [H RealPlayer
Figure 7-2: !]
shirt | X
The Web |pants: $22.50

Page || ke |[$25.00
outputfor || fpedspread [$50.00
the multi- || [amp: (44,00
dimensional || e §75.00
array.

== | t: Done = S = e R R

Chapter 7: PHP Building Blocks for Programs , 65

Here is how the program interprets these statements:

1. Outputs the table tag.

2. Gets the first key/value pair in the $productPrices array and stores the
value in the variable $category. The value is an array.

3. Gets the first key/value pair in the $category array. Stores the key in
$product and stores the value in $price.

. Formats the value in $price into the correct format for money.
. Echoes one table row for the product and its price.

. Goes to the next key/value pair in the $category array.

~N O O s

. Formats the price and echoes the next table row for the product and its
price.

8. Because there are no more key/value pairs in $category, the inner
foreach statement ends.

9. Goes to the next key/value pair in the outer foreach statement. Puts the
next value in $category, which is an array.

10. Repeats the procedure in Steps 2-9 until the last key/value pair in the
last $category array is reached. The inner foreach statement ends.
The outer foreach statement ends.

11. Outputs the /table tag to end the table.

In other words, the outer foreach starts with the first key/value pair in the
array. The key is clothing, and the value of this pair is an array that is put
into the variable $category. The inner foreach then walks through the
array in $category. When it reaches the last key/value pair in $category, it
ends. The program is then back in the outer loop, which goes on to the
second key/value pair . . . and so on until the outer foreach reaches the end
of the array.

Useful Conditional Statements

A conditional statement executes a block of statements only when certain con-
ditions are met. Here are two useful types of conditional statements:

v if statement: Sets up a condition and tests it. If the condition is true, a
block of statements is executed.

v switch statement: Sets up a list of alternative conditions. Tests for the
true condition and executes the appropriate block of statements.

I describe these statements in more detail in the following two sections.

166 Prartinpup

Using if statements

An if statement asks whether certain conditions exist. A block of statements
executes depending on which conditions are met. The general format of an
if conditional statement is

T

if (condition ...)
{

}
elseif (condition ...)

{
1
else
{

}

block of statements

block of statements

block of statements

he if statement consists of three sections:

v if: This section is required. It tests a condition.

¢ If condition is true: The block of statements is executed. After the
statements are executed, the program moves to the next instruc-
tion following the conditional statement; if the conditional state-
ment contains any elseif or else sections, the program skips
over them.

e If condition is not true: The block of statements is not executed.
The program skips to the next instruction, which can be an
elseif,an else, or the next instruction after the if conditional
statement.

v elseif: This section is optional. It tests a condition. You can use more
than one elseif section if you want.

e If condition is true: The block of statements is executed. After
executing the block of statements, the program goes to the next
instruction following the conditional statement; if the i f statement
contains any additional e1seif sections or an else section, the
program skips over them.

¢ If condition is not true: The block of statements is not executed.
The program skips to the next instruction, which can be an
elseif, an else, or the next instruction after the if conditional
statement.

v else: This section is optional. Only one e1se section is allowed. This
section does not test a condition; rather, it executes the block of state-
ments. If the program has entered this section, it means that the if sec-
tion and all the e1seif sections are not true.

Chapter 7: PHP Building Blocks for Programs ’ 6 7

Each section of the i f conditional statement tests a condition that consists
of one or more comparisons. A comparison asks a question that can be true
or false. Some conditions are

$a == 1;
$a < $b
$c = "Hello"

The first comparison asks whether $a is equal to 1; the second comparison
asks whether $a is smaller than $b; the third comparison asks whether $c is
not equal to "Hel10". You can use two or more comparisons in a condition
by connecting the comparisons with and, or, or xor. I discuss comparing
values and using more than one comparison in detail in Chapter 6.The follow-
ing example uses all three sections of the i f conditional statement. Suppose
that you have German, French, Italian, and English versions of your product
catalog. You want your program to display the correct language version,
based on where the customer lives. The following statements set a variable
to the correct catalog version (depending on the country where the customer
lives) and set a message in the correct language. You can then display a mes-
sage in the appropriate language.

if ($country == "Germany")
{
$version = "German";
$message = " Sie sehen unseren Katalog auf Deutsch";
}
elseif ($country == "France")
{
$version = "French";
$message = " Vous verrez notre catalogue en francais";
1
elseif ($country == "Italy")
{
$version = "Italian";
$message = " Vedrete il nostro catalogo in Italiano";
1
else
{
$version = "English";
$message = "You will see our catalog in English";

}

echo "$message
";
The if conditional statement proceeds as follows:

1. Compares the variable $country to "Germany". If they are the same,
$versionissetto "German", $message is set in German, and the pro-
gram skips to the echo statement. If $country does not equal Germany,
$version and $message are not set, and the program skips to the
elseif section.

168 Prartinpup

2. Compares the variable $country to "France". If they are the same,
$version and $message are set, and the program skips to the echo
statement. If $country does not equal France, $version and $message
are not set, and the program skips to the second elsei f section.

3. Compares the variable $country to "Italy". If they are the same,
$versionissetto "Italian", and the program skips to the echo state-
ment. If $country does notequal Italy, $version and $message are
not set, and the program skips to the else section.

4. $version is set to English, and $message is set in English. The pro-
gram continues to the echo statement.

Notice that only the message is echoed in this example. However, the vari-
able $version is stored because the version is useful information that can be
used later in the program.

P When the block to be executed by any section of the i f conditional state-
ment contains only one statement, the curly braces are not needed. For
instance, if the preceding example only had one statement in the blocks, as

follows:
if ($country == "France")
{

$version = "French";

}

You could write it as follows:

if ($country == "France")
$version = "French";

This shortcut can save some typing, but when several if statements are
used, it can lead to confusion.

You can have an i f conditional statement inside another i f conditional
statement. Putting one statement inside another is nesting. For instance, sup-
pose that you need to contact all your customers who live in Idaho. You plan
to send e-mail to those who have an e-mail address and send a letter to those
who do not have an e-mail address. You can identify the groups of customers
by using the following nested i f statements:

if ($custState == "ID")

{ if ($EmailAdd != "")
{ $contactMethod = "letter";
é]se
{

Chapter 7: PHP Building Blocks for Programs ’ 69

$contactMethod = "email";
}
1
else
{

}

$contactMethod = "none needed";

These statements first check to see whether the customer lives in Idaho. If
the customer does live in Idaho, the program tests for an e-mail address. If
the e-mail address is blank, the contact method is set to Tetter. If the e-mail
address is not blank, the contact method is emai 1. If the customer does not
live in Idaho, the e1se section sets the contact method to indicate that the
customer will not be contacted at all.

Using switch statements

For most situations, the if conditional statement works best. However,
sometimes you have a list of conditions and want to execute different state-
ments for each of the conditions. For instance, suppose that your program
computes sales tax. How do you handle the different state sales tax rates?
The switch statement was designed for such situations.

The switch statement tests the value of one variable and executes the block
of statements for the matching value of the variable. The general format is

switch ($variablename)
{
case value :
block of statements;
break;
case value :
block of statements;
break;
dé%au]t:
block of statements;

break;
1

The switch statement tests the value of $variablename. The program then
skips to the case section for that value and executes statements until it
reaches a break statement or the end of the switch statement. If there is no
case section for the value of $variablename, the program executes the
default section. You can use as many case sections as you need. The
default section is optional. If you use a default section, it’s customary to
put the default section at the end, but it can go anywhere.

170

Part Ill: PHP

The following statements set the sales tax rate for different states:

switch ($custState)
{
case "OR" :
$salestaxrate
break;
case "CA" :
$salestaxrate
break;
default:
$salestaxrate = .5;
break;

0;

1.0;

1
$salestax = $orderTotalCost * $salestaxrate;

In this case, the tax rate for Oregon is 0, the tax rate for California is 100 per-
cent, and the tax rate for all the other states is 50 percent. The switch state-
ment looks at the value of $custState and skips to the section that matches
the value. For instance, if $custState is TX, the program executes the
default section and sets $salestaxrate to .5. After the switch statement,
the program computes $salestax at .5 times the cost of the order.

q\\\\NG! The break statements are essential in the case section. If a case section

Y does not include a break statement, the program does not stop executing at

the end of the case section. The program continues executing statements
past the end of the case section, on to the next case section, and continues
until it reaches the end of the switch statement (or perhaps a break state-
ment in a later case section).
¥ The last case section in a switch statement doesn’t actually require a break
statement. You can leave it out. However, it’s a good idea to include it for
clarity.

Using Loops

Loops, which are used frequently in programs, set up a block of statements
that repeat. Sometimes, the loop repeats a specified number of times. For
instance, a loop to echo all the state capitals needs to repeat 50 times.
Sometimes, the loop repeats until a certain condition exists. For instance, a
loop that displays product information for all the products needs to repeat
until it has displayed all the products, regardless of how many products there
are. Here are three types of loops:

v Basic for loop: Sets up a counter; repeats a block of statements until the
counter reaches a specified number

v while loop: Sets up a condition; checks the condition; and if it is true,
repeats a block of statements

Chapter 7: PHP Building Blocks for Programs ’ 7 1

v do..while loop: Sets up a condition; executes a block of statements;
checks the condition; if the condition is true, repeats the block of
statements

I describe each of these loops in detail in the following few sections.

Using for loops

The most basic for loops are based on a counter. You set the beginning value
for the counter, set the ending value, and set how the counter is incremented.
The general format is

for (startingvalue;endingcondition;increment)

{
}

block of statements;

Fill in the following values:

v startingvalue: A statement that sets up a variable to be your counter
and sets it to your starting value. For instance, the statement $i=1; sets
$1 as the counter variable and sets it equal to 1. Frequently, the counter
variable is started at 0 or 1. The starting value can be a combination of
numbers (2 + 2) or a variable.

v endingcondition: A statement that sets your ending value. As long as
this statement is true, the block of statements keeps repeating. When
this statement is not true, the loop ends. For instance, the statement
$1<10; sets the ending value for the loop to 10. When $1i is equal to 10,
the statement is no longer true (because $1 is no longer less than 10),
and the loop stops repeating. The statement can include variables, such
as $i<$size;.

v increment: A statement that increments your counter. For instance, the
statement $1++; adds 1 to your counter at the end of each block of
statements. You can use other increment statements, such as $1+=1;
or$i--;.

The basic for loop sets up a variable — for example, a variable called $i, —
that is a counter. This variable has a value during each loop. The variable $i
can be used in the block of statements that is repeating. For instance, the
following simple loop displays Hel1o World! three times:

for ($i=1;%$i<=3;%i++)
{

echo "$i. Hello World!
";
1

172 Partin:pup

\\J

The statements in the block do not need to be indented. PHP doesn’t care
whether they’re indented. However, indenting the blocks makes it much
easier for you to understand the program.

The output from these statements is

1. Hello World!
2. Hello World!
3. Hello World!

for loops are particularly useful to loop through an array. Suppose that you
have an array of customer names and want to display them all. You can do
this easily with a loop:

for ($i=0;$1<100;$i++)
{

echo "$customerNames[$iI
";
1

The output displays a Web page with a list of all the customer names, one on
each line. In this case, you know that you have 100 customer names, but sup-
pose that you don’t know how many customers are in this list. You can ask
PHP how many values are in the array and use that value in your for loop.
For example, you can use the following statements:

for ($i=0;%$i<sizeof($customerNames);$i++)
{

echo "$customerNames[$iI
";

Where

v~ The beginning statements execute once at the start of the loop.

Advanced forloops

The structure of a for loop is quite flexible and allows you to build loops for almost any purpose.
A for loop has this general format:

for (beginning statements;

conditional statements;
ending statements)

block of statements;

v The conditional statements are tested for each iteration of the loop.

v The ending statements execute once at the end of the loop.

Each of the statement sections is separated by a semicolon (;). Each section can contain as many
statements as needed, separated by commas. Any section can be empty.

The following loop has statements in all three sections:

for ($1=0,$J=1;%$t<=4;$i++,$j++)
{

$t = $1 + $3;

echo "$t
";
}

The output of these statements is

1
3
5

The loop is executed in the following order:

1. The beginning section containing two statements is executed; $i is setto 0, and $J is set
to 1.

2. The conditional section containing one statement is evaluated. Is $t less than or equal to 4?
Yes, so the statement is true. The loop continues to execute.

3. The statements in the statement block are executed. $t becomes equal to $i plus $j, which
is 0 + 1, which equal 1. Then $t is echoed to give the output 1.

4. The ending section containing two statements is executed — $i++ and $ j++. One is added
to $1 soitequals 1, and 1is added to $j so that it now equals 2.

5. The conditional section is evaluated. Is $t less than or equal to 4? Because $t is equal to 1 at
this point, the statement is true. The loop continues to execute.

6. The statements in the statement block are executed. $t becomes equal to $1 plus $J, which
is 1+ 2, which equal 3. Then $t is echoed to give the output 3.

7. The ending section containing two statements is executed — $i++ and $ j++. One is added
to $1 soitequals 2, and 1is added to $j so thatit equals 3.

8. The conditional section is evaluated. Is $t less than or equal to 4? Because $t now equals 3,
the statement is true. The loop continues to execute.

9. The statements in the statement block are executed. $t becomes equal to $1 plus $j, which
is 2 + 3, which equal 5. Then $t is echoed to give the output 5.

10. The ending section containing two statements is executed — $i++ and $ j++. One is added
to $1 so it equals 3, and one is added to $ j so thatit equals 4.

11. The conditional section is evaluated. Is $ t less than or equal to 4? Because $t now equals 5,
the statement is not true. The loop does not continue to execute. The loop ends, and the pro-
gram continues to the next statement after the end of the loop.

Chapter 7: PHP Building Blocks for Programs ’ 73

174 Ppartur:prp

QUING!

Notice that the ending value is sizeof($customerNames). This statement
finds out the number of values in the array and uses that number. That way,
your loop repeats exactly the number of times that there are values in the
array.

The first value in an array with a numbered index is 0 unless you deliberately
set it to a different number. One common mistake when working with arrays
is to think of the first number as 1 rather than 0.

Using while loops

A while loop continues repeating as long as certain conditions are true. The
loop works as follows:

1. You set up a condition.

2. The condition is tested at the top of each loop.

3. If the condition is true, the loop repeats. If the condition is not true, the
loop stops.

The general format of a while loop is

while (condition)
{

block of statements
1

A condition is any expression that can be found to be true or false. Comparisons,
such as the following, are often used as conditions. (For detailed information
on using comparisons, see Chapter 6.)

$test <= 10

$testl == $test?

$a == "yes" and $b != "yes"
$name != "Smith"

As long as the condition is found to be true, the loop will repeat. When the
condition tests false, the loop will stop. The following statements set up a
while loop that looks through an array for a customer named Smi th:

$customers = array("Huang", "Smith", "Jones");
$testvar = "no";

$k = 0;

while ($testvar != "yes")

{
if ($customers[$k] == "Smith")
{

Chapter 7: PHP Building Blocks for Programs

}

$testvar = "yes";
echo "Smith
";
}
else
{
echo "$customers[$k], not Smith
";
}

$k++;

These statements display the following on a Web page:

Huang, not Smith
Smith

The program executes the previous statements as follows:

1.

o N o G

10.

11.

Sets the variables before starting the loop: $customers (an array with
three values), $testvar (a test variable set to "no"), and $k (a counter
variable set to 0).

. Starts the loop by testing whether $testvar != "yes" is true. Because
$testvar was set to "no", the statement is true, so the loop continues.
. Tests the i f statement. Is $customers[$k] == "Smith" true? At

this point, $k is 0, so the program checks $customers[0]. Because
$customers[0]is "Huang", the statement is not true. The statements
in the i f block are not executed, so the program skips to the else
statement.

. Executes the statement in the else block. The e1se block outputs the

line "Huang, not Smith". This is the first line of the output.

. Adds one to $k, which now becomes equal to 1.

. Reaches the bottom of the loop.

. Goes to the top of the loop.

. Tests the condition again. Is $testvar != "yes" true? Because

$testvar has not been changed and is still set to "no", it is true,
so the loop continues.

. Tests the if statement. Is $customers[$k] == "Smith" true? At

this point, $k is 1, so the program checks $customers[1]. Because
$customers[1]is "Smith", the statement is true. So the loop enters
the if block.

Executes the statements in the if block. Sets $testvar to "yes".
Outputs "Smith". This is the second line of the output.

Adds one to $k which now becomes equal to 2.

175

176 partuipup

12. Reaches the bottom of the loop.
13. Goes to the top of the loop.

14. Tests the condition again. Is $testvar != "yes" true? Because
$testvar has been changed and is now set to "yes", it is not true.
The loop stops.

It’s possible to write a while loop that is infinite — that is, a loop that loops
forever. You can easily, without intending to, write a loop in which the condi-
tion is always true. If the condition never becomes false, the loop never ends.
For a discussion of infinite loops, see the section “Infinite loops,” later in this
chapter.

Using do..while loops

do..while loops are very similar to while loops. A do. .whi1e loop contin-
ues repeating as long as certain conditions are true. You set up a condition.
The condition is tested at the bottom of each loop. If the condition is true,
the loop repeats. When the condition is not true, the loop stops.

The general format for a do. .while loop is

do

{
block of statements
} while (condition);

The following statements set up a loop that looks for the customer named
Smith. This program does the same thing as a program in the preceding sec-
tion using a while loop:

$customers = array("Huang", "Smith", "Jones");
$testvar = "no";
$k = 0;
do
{

if ($customers[$k] == "Smith")

{

$testvar = "yes";

echo "Smith
";
é]se
{ echo "$customers[$k], not Smith
";
%k++;
} while ($testvar != "yes");

Chapter 7: PHP Building Blocks for Programs

The output of these statements in a browser is

Huang, not Smith
Smith

This is the same output shown for the whi1e loop example. The difference
between a while loop and a do. .whi1e loop is where the condition is
checked. In a while loop, the condition is checked at the top of the loop.
Therefore, the loop will never execute if the condition is never true. In the
do..whiTle loop, the condition is checked at the bottom of the loop.
Therefore, the loop always executes at least once even if the condition is
never true.

For instance, in the preceding loop that checks for the name Smi th, suppose
the original condition is set to yes, instead of no, by using this statement:

$testvar = "yes";

The condition would test false from the beginning. It would never be true. In a
while loop, there would be no output. The statement block would never run.
However, in a do. .while loop, the statement block would run once before
the condition was tested. Thus, the while loop would produce no output, but
the do. .while loop would produce the following output:

Huang, not Smith

The do. .while loop produces one line of output before the condition is
tested. It does not produce the second line of output because the condition
tests false.

Infinite loops

You can easily set up loops so that they never stop. These are infinite loops.
They repeat forever. However, seldom does anyone create an infinite loop
intentionally. It is usually a mistake in the programming. For instance, a slight
change to the program that sets up a while loop can make it into an infinite
loop.

Here is the program shown in the section, “Using while loops,” earlier in this
chapter:

$customers = array ("Huang", "Smith", "Jones");
$testvar = "no";

$k = 0;

while ($testvar != "yes")

{
if ($customers[$k] == "Smith")
{

177

178 Partin:pup

$testvar = "yes";
echo "Smith
";
}
else

{
}

$k++;

}

echo "$customers[$k], not Smith
";

Here is the program with a slight change:

$customers = array ("Huang", "Smith", "Jones");
$testvar = "no";
while ($testvar != "yes")
{

$k = 0;

if ($customers[$k] == "Smith")

{

$testvar = "yes";

echo "Smith
";
}
else
{

}

$k++;

}

echo "$customers[$kl, not Smith
";

The small change is moving the statement $k = 0; from outside the loop to
inside the loop. This small change makes it into an endless loop. The output
of this changed program is

Huang, not Smith
Huang, not Smith
Huang, not Smith
Huang, not Smith

This will repeat forever. Every time the loop runs, it resets $k to 0. Then it
gets $customers[0] and echoes it. At the end of the loop, $k is incremented
to 1. However, when the loop starts again, $k is set back to 0. Consequently,
only the first value in the array, Huang, is ever read. The loop never gets to
the name Smith, and $testvar is never set to "yes". The loop is endless.

Don’t be embarrassed if you write an infinite loop. I guarantee that the best
programming guru in the world has written many infinite loops. It’s not a big
deal. If you are testing a program and get output in your Web page repeating
endlessly, it will stop by itself in a short time. The default time is 30 seconds,
but the timeout period may have been changed by the PHP administrator.

Chapter 7: PHP Building Blocks for Programs , 79

You can also click the Stop button on your browser to stop the display in
your browser. Then figure out why the loop is repeating endlessly and fix it.

A common mistake that can result in an infinite loop is using a single equal
sign (=) when you mean double equal signs (==). The single equal sign stores
avalue in a variable; the double equal signs test whether two values are
equal. If you write the following condition with a single equal sign:

while ($testvar = "yes")

it is always true. The condition simply sets $testvar equal to "yes". This is
not a question that can be false. What you probably meant to write is this:

while ($testvar == "yes")

This is a question asking whether $testvar is equal to "yes", which can be
answered either true or false.

You can bulletproof your programs against this particular error by changing
the condition to "yes" == $testvar.It’s less logical to read but protects
against the single-equals-sign problem. If you use a single equal sign instead
of a double equal sign in this condition, you get an error, and your program
fails to run.

Another common mistake is to leave out the statement that increments the
counter. For instance, in the program earlier in this section, if you leave out
the statement $k++;, $k is always 0, and the result is an infinite loop.

Breaking out of a loop

Sometimes you want your program to break out of a loop. PHP provides two
statements for this purpose:

v break: Breaks completely out of a loop and continues with the program
statements after the loop.

v continue: Skips to the end of the loop where the condition is tested. If
the condition tests positive, the program continues from the top of the
loop.

break and continue are usually used in a conditional statement. break, in
particular, is used most often in switch statements, as I discuss earlier in the
chapter.

The following two sets of statements show the difference between continue
and break. The first statements use the break statement.

180 Ppartm:pup

$counter = 0;
while ($counter < 5)
{
$counter++;
If ($counter == 3)
{
echo "break
";
break;
}
echo "End of while Toop: counter=$counter
";

}
echo "After the break Toop<p>";

The following statements use the continue statement:

$counter = 0;
while ($counter < 5)
{
$counter++;
If ($counter == 3)
{
echo "continue
";
continue;

}
echo "End of while Toop: counter=$counter
";

}
echo "After the continue Toop
";

These statements build two loops that are the same except that the first one
uses break, and the second one uses continue. The output from these first
statements that use the break statement displays in your browser as follows:

End of while Toop: counter=1
End of while Toop: counter=2
break

After the break Toop

The output from the second group of statements with the continue state-
ment is as follows:

End of while Toop: counter=1
End of while Toop: counter=2
continue

End of while Toop: counter=4
End of while Toop: counter=5
After the continue loop

The first loop ends at the break statement. It stops looping and jumps imme-
diately to the statement after the loop. The second loop does not end at the
continue statement. It just stops the third repeat of the loop and jumps back
up to the top of the loop. It then finishes the loop, with the fourth and fifth
repeats, before it goes to the statement after the loop.

Chapter 7: PHP Building Blocks for Programs

One use for break statements is insurance against infinite loops. The follow-
ing statements inside a loop can stop it at a reasonable point:

$testdinfinity++;
if ($testdinfinity > 100)
{
break;
1

If you're sure that your loop should never repeat more than 100 times, these
statements will stop the loop if it becomes endless. Use whatever number
seems reasonable for the loop that you’re building.

Using Functions

Applications often perform the same task at different points in the program
or in different programs. For instance, your application might display the
company logo on several different Web pages or in different parts of the pro-
gram. Suppose that you use the following statements to display the company
logo:

echo '<hr width="50" align="1left">"',"\n";

echo '<img src="/images/logo.jpg" width="50"
height="50">
"',"\n";

echo '<hr width="50" align="left">
"',"\n";

You can create a function that contains the preceding statements and name it
display_logo. Then whenever the program needs to display the logo, you
can just call the function that contains the statements with a simple function
call, as follows:

display_logo();

Notice the parentheses after the function name. These are required in a func-
tion call because they tell PHP that this is a function.

Using a function offers several advantages:

v Less typing: You only have to type the statements once — in the func-
tion. Forever after, you just use the function call and never have to type
the statements again.

v~ Easier to read: The line display_logo() is much easier for a person to
understand at a glance.

v Fewer errors: After you have written your function and fixed all its prob-
lems, it runs correctly wherever you use it.

181

182 Partin:pup

v~ Easier to change: If you decide to change how the task is performed,
you only need to change it in one place. You just change the function
instead of finding a hundred different places in your program where you
performed the task and changing the code a hundred times. For
instance, suppose that you changed the name of the graphics file that
holds the company logo. You just change the filename in one place, the
function, and it works correctly everywhere.

You can create a function by putting the code into a function block. The gen-
eral format is

function functionname()
{
block of statements;
return;

}

For instance, you create the function to display the company logo with the
following statements:

function display_logo()

{
echo '<hr width="50" align="left">"',"\n";
echo '<img src="/images/logo.jpg" width="50"

height="50">
"',"\n";

echo '<hr width="50" align="left">
"',"\n";
return;

1

The return statement stops the function and returns to the main program.
The return statement at the end of the function is not required, but it makes
the function easier to understand. The return statement is often used for a
conditional end to a function.

Suppose that your function displays an electronics catalog. You might use the
following statement at the beginning of the function:

if ($age < 13)
return;

If the customer’s age is less than 13, the function stops, and the electronics
catalog isn’t displayed.

You can put functions anywhere in the program, but the usual practice is to
put all the functions together at the beginning or the end of the program file.
Functions that you plan to use in more than one program can be in a separate
file. Each program accesses the functions from the external file. For more on
organizing applications into files and accessing separate files, check out
Chapter 10.

Chapter 7: PHP Building Blocks for Programs ’ 83

Notice that the sample function is quite simple. It doesn’t use variables, and
it doesn’t share any information with the main program. It just performs an
independent task when called. You can use variables in functions and pass
information between the function and the main program as long as you know
the rules and limitations. The remaining sections in this chapter explain how
to use variables and pass values.

Using variables in functions

You can create and use variables that are local to the function. That is, you
can create and use a variable inside your function. However, the variable is
not available outside of the function; it’s not available to the main program.
You can make the variable available by using a special statement called
global that makes a variable available at any location in the program. For
instance, the following function creates a variable:

function format_name()
{
$first_name = "Goliath";
$Tast_name = "Smith";
$name = $last_name.", ".$first_name;
}
format_name();
echo "$name";

These statements produce no output. In the echo statement, $name doesn’t
contain any value. The variable $name was created inside the function, so it
doesn’t exist outside the function.

You can create a variable inside a function that does exist outside the func-
tion by using the global statement. The following statements contain the
same function with a global statement added:

function format_name()
{
$first_name = "Goliath";
$last_name = "Smith";
global $name;
$name = $last_name.", ".$first_name;
}
format_name();
echo "$name";

The program now echoes this:

Smith, Goliath

184 Ppartur:prp

The global statement makes the variable available at any location in the pro-
gram. You must make the variable global before you can use it. If the global
statement follows the $name assignment statement, the program does not
produce any output.

The same rules apply when you’re using a variable that was created in the
main program. You can’t use a variable in a function that was created outside
the function unless the variable is global, as shown in the following statements:

$first_name = "Goliath";

$last_name = "Smith";

function format_name()

{
global $first_name, $last_name;
$name = $last_name.", ".$first_name;
echo "$name";

}

format_name();

If you don’t use the global statement, $1ast_name and $first_name inside
the function are different variables, created when you name them. They
have no values. The program would produce no output without the global
statement.

Passing values between a function
and the main program

You can pass values into the function and receive values from the function.
For instance, you might write a function to add the correct sales tax to an
order. The function would need to know the cost of the order and which state
the customer resides in. The function would need to send back the amount of
the sales tax.

Passing values to a function

You can pass values to a function by putting the values between the paren-
theses when you call the function, as follows:

functionname(value,value,...);

Of course, the variables can’t just show up. The function must be expecting
them. The function statement includes variable names for the values that
it’s expecting, as follows:

function functionname($varnamel,$varnamez,...)

{
statements

return;

Chapter 7: PHP Building Blocks for Programs ’ 85

For example, the following function computes the sales tax:

function compute_salestax($amount,$custState)
{
switch ($custState)
{
case "OR" :
$salestaxrate
break;
case "CA" :
$salestaxrate = 1.0;
break;
default:
$salestaxrate
break;

Il
(e)

Il
o

}
$salestax = $amount * $salestaxrate;
echo "$salestax
";
1
$cost = 2000.00;
$custState = "CA";
compute_salestax($cost,$custState);

The first line shows that the function expects two values, as follows:
function compute_salestax($amount,$custState)

The last line is the function call, which passes two values to the function
compute_salestax, as it expects. The amount of the order and the state in
which the customer resides are passed. The output from this program is
2000 because the tax rate for California is 100 percent.

You can pass as many values as you need to. Values can be variables or
values, including values that are computed. The following function calls are
valid:

compute_salestax(2000,"CA");

compute_salestax(2*1000,"");
compute_salestax(2000,"C"."A");

Values can be passed in an array. The function receives the variable as an
array. For instance, the following statements pass an array:

$arrayofnumbers = array(100, 200);
addnumbers($arrayofnumbers);

The function receives the entire array. For instance, suppose the function
starts with the following statement:

function addnumbers($numbers)

186 rartin:pup

The variable $numbers is an array. The function can include statements
such as

return $numbers[0] + $numbers[1];

The values passed are passed by position. That is, the first value in the list
that you pass is used as the first value in the list that the function expects,
the second is used for the second, and so forth. If your values aren’t in the
same order, the function uses the wrong value when performing the task. For
instance, for compute_salestax, you might call compute_salestax passing
values in the wrong order as follows:

compute_salestax($custState,$orderCost);

The function uses the state as the cost of the order, which it sets to 0
because the value passed is a string. It sets the state to the number in
$orderCost, which would not match any of its categories. The output would
be 0.

If you do not send enough values, the function sets the missing value to an
empty string for a string variable or to 0 for a number. If you send too many
values, the function ignores the extra values.

If you pass the wrong number of values to a function, you might get a warning
message, as follows, depending on the error message level that PHP is set to.

Warning: Missing argument 2 for compute_salestax() in /test7.php on line 5
For the lowdown on warning messages, check out Chapter 6.

You can set default values to be used when a value isn’t passed. The defaults
are set when you write the function by assigning a default value for the
value(s) that it is expecting, as follows:

function add_2_numbers($numl=1, $num2=1)
{

$total = $numl + $num2;

return $total;
}

If one or both values are not passed, the function uses the assigned defaults.
But if a value is passed, it is used instead of the default. For example, you
could use one of the following calls:

add_2_numbers(2,2);

add_2_numbers(2);
add_2_numbers();

The results are, in consecutive order:

Chapter 7: PHP Building Blocks for Programs ’8 7

$total
$total
$total

Il
N W

Getting a value from a function

When you call a function, you can pass values as described above. The func-
tion can also pass a value back to the program that called it. Use the return
statement. to pass a value back to the calling program. The program can
store the value in a variable or use the value directly, such as using it in a
conditional statement. The return statement also returns control to the
main program,; that is, it stops the function.

The general format of the return statement is
return value;

For instance, in the tax program from the preceding section, I echo the sales
tax by using the following statements:

$salestax = $amount * $salestaxrate;
echo "$salestax
";

I could return the sales tax to the main program, rather than echoing it, by
using the following statement:

$salestax = $amount * $salestaxrate;
return $salestax;

In fact, I could use a shortcut and send it back to the main program with one
statement:

return $amount * $salestaxrate;

The return statement sends the salestax back to the main program and
ends the function. The main program can use the value in any of the usual
ways. The following statements use the function call in valid ways:

$salestax = compute_salestax($cost,$custState);
$totalcost = $cost + compute_salestax($cost,$custState);

if (compute_salestax($cost,$custState) > 100000.00)
$echo "Thank you very, very, very much
";

foreach($customerOrder as $amount)

{
$total = $amount + compute_salestax($amount,$custState);
echo "Your total is $total
";

188 partm:pup

A return statement can return only one value. However, the value returned
can be an array, so you can actually return many values from a function.

You can use return statements in a conditional statement to return different
values for different conditions. For example, the following function returns
one of two different strings:

function compare_values($valuel,$value?)
{

if($valuel < $value2)

{

}

else

{

}
}

return "less than";

return "not less than";

Although the function contains two return statements, only one is going to be
executed, depending on the values in $valuel and $value?.

Using built-in functions

PHP’s many built-in functions are one reason why PHP is so powerful and
useful for Web pages. The functions included with PHP are normal functions.
They are no different than functions that you create yourself. It’s just that
PHP has already done all the work for you.

[discuss some of the built-in functions in this chapter and the earlier chap-
ters. For example, see Chapter 6 for more on the functions unset and
number_format. Some very useful functions for interacting with your MySQL
database are discussed in Chapter 8. Other useful functions are listed in

Part V of this book. And, of course, all the functions are listed and described
in the PHP documentation on the PHP Web site at www.php.net/docs.php.

Chapter 8
Data In, Data Qut

In This Chapter

Connecting to the database

Getting information from the database

Using HTML forms with PHP

Getting data from an HTML form

Processing the i nformation that users type into HTML forms
Storing data in the database

Using functions to move data in and out of the database

p HP and MySQL work very well together. This dynamic partnership is
what makes PHP and MySQL so attractive for Web database application
development. Whether you have a database full of information that you want
to make available to users (such as a product catalog) or a database waiting
to be filled up by users (for example, a membership database), PHP and
MySQL work together to implement your application.

One of PHP’s strongest features is its ability to interact with databases. It pro-
vides functions that make communicating with MySQL extremely simple. You
use PHP functions to send SQL queries to the database. You don’t need to
know the details of communicating with MySQL; PHP handles the details. You
only need to know the SQL queries and how to use the PHP functions.

In previous chapters of this book, I describe the tools that you use to build
your Web database application. You find out how to build SQL queries in
Chapter 4 and how to construct and use the building blocks of the PHP lan-
guage in Chapters 6 and 7. In this chapter, you find out how to use these tools
for the specific tasks that a Web database application needs to perform.

PHP/MySOL Functions

You use built-in PHP functions to interact with MySQL. These functions con-
nect to the MySQL server, select the correct database, send SQL queries, and
perform other communication with MySQL databases. You don’t need to

190 Ppartin:pup

know the details of interacting with the database because PHP handles all the
details. You only need to know how to use the functions.

At the present time, PHP (beginning with version 5) has two sets of functions
for interacting with MySQL. One set of functions is used to interact with
MySQL version 4.0 or earlier. The other set of functions is used to interact
with MySQL version 4.1 or later.

Throughout the book, my examples and programs show the functions that
work with MySQL version 4.0. At the time of this writing, the current stable
version of MySQL is version 4.0. In addition, the PHP functions for use with
MySQL version 4.1 are described in the documentation on the PHP Web site
as experimental, with a warning: Use this extension at your own risk. At the
present time, MySQL version 4.1 is available only as alpha software, defined
in the MySQL manual as follows: The release contains some large section of
new code that hasn’t been 100% tested. Therefore, | am writing this book based
on the use of MySQL 4.0 and the PHP functions that work with this version.

The PHP functions for use with MySQL 4.0 have the following general format:
mysql_function(value,value,...);

The second part of the function name is specific to the function, usually a
word that describes what the function does. In addition, the function requires
one or more values to be passed, specifying things such as the database con-
nection, the data location, and so on. The following are two of the functions
that are discussed in this chapter:

mysql_connect($connect);
mysql_query("SQL statement",$connect);

By the time you read this book, MySQL 4.1 might be the current stable ver-
sion of MySQL. If so, you can use MySQL 4.1 and the functions that work with
it. As of this writing, the functions discussed in this book are the same for
MySQL 4.0 and MySQL 4.1 except for a change in name. The names of the
functions for use with MySQL 4.1 begin with mysq1i_ rather than mysql_.
Thus, the functions shown above would have the following names if used
with MySQL 4.1:

mysqli_connect($connect);
mysqli_query($connect,"SQL statement");

The functionality and syntax of the functions are the same or very similar. For
instance, notice the difference between the two following functions:

mysql_query($sql,$connect)
mysqli_query($connect,$sql)

Notice that the order of the items passed is different. This is true for several
functions.

Chapter 8: Data In, Data Qut ’ 9 1

This discussion refers to the mysqli functions as they are now. The mysqli
functions can change, of course. If one of the mysq1i functions doesn’t seem
to work as it should, check the manual for any possible differences in usage.

The i added to the name stands for improved; this set of MySQL functions is
provided by the improved MySQL extension. At this time, support for mysqli
is not included with PHP by default. It must be enabled when PHP is installed.
However, by the time MySQL 4.1 is the stable release, it’s likely that mysqli
will be part of PHP without your needing to enable it specifically. To see the
current status of mysqli, check the documentation at www.php.net/manual/
en/ref.mysqli.php.

As of this writing, you can use this installation option to enable mysqli:
--with-mysqli=DIR

DIR is the path to the directory where a program called mysql_config,
which was installed when MySQL 4.1 was installed, is located.

Making a Connection

Before you can store or get any data, you must connect to the database. The
database might be on the same computer with your PHP programs or on a
different computer. You don’t need to know the details of connecting to the
database because PHP handles all the details. All you need to know is the
name and location of the database. Think of a database connection in the
same way that you’d think of a telephone connection. You don’t need to know
how your words move between telephones. You only need to know the area
code and phone number. The phone company handles the details.

After connecting to the database, you send SQL queries to the MySQL data-
base by using a PHP function designed specifically for this purpose. You can
send as many queries as you need. The connection remains open until you
specifically close it or the program ends. Similarly, in a telephone conversa-
tion, the connection stays open until you terminate it by hanging up.

Connecting to the MySQL server

The first step in communicating with your MySQL database is connecting to
the MySQL server. To connect to the server, you need to know the name of
the computer where the database is located, the name of your MySQL
account, and the password to your MySQL account. To open the connection,
use the mysql_connect function as follows:

non

$connection=mysql_connect("addr", "mysqlacctname", "password")
or die ("message");

192 Ppartin:pup

Handling MySQL errors

You use the mysq1 functions of the PHP language, suchasmysql_connect andmysql_query,
to interact with the MySQL database. If one of these functions fails to execute correctly, a MySQL
error message is returned with information about the problem. However, this error message isn't
sent to the browser unless the program deliberately sends it. Here are the three usual ways to call
the mysq1 functions:

v~ Calling the function without error handling. The function is called without any statements that
provide error messages. For instance, the mysql_connect function can be called as follows:

$connection = mysql_connect($host, $user, $password) ;

If this statement fails (for instance, the account is not valid), the connection is not made, but the
remaining statements in the program continue to execute. In most cases, this isn't useful
because some of the statements in the rest of the program might depend on having an open
connection, such as getting or storing data in the database.

v~ Calling the function with a di e statement. The function is called with a die statement that
sends a message to the browser. For instance, the mysql_connect function can be called
as follows:

$connection = mysql_connect($host,$user, $password)
or die ("Couldn't connect to server");

If this statement fails, the connection is not made, and the d i e statement is executed. The die
statement stops the program and sends the message to the browser. If the connection can't be
established, no more statements are executed. You can put any message that you want in the
die statement.

v~ Calling the function in an i f statement. The function is called by using an i f statement that
executes a block of statements if the connection fails. For instance, the mysql_connect
function can be called as follows:

if (!$connection = mysql_connect($host,$user,$password))
{

$message = mysql_error();

echo "$message
";

die();
}

If this statement fails, the statements in the i f block are executed. The mysql_error func-
tion returns the MySQL error message and saves it in the variable $message. The error mes-
sage is then echoed. The die statement ends the program so that no more statements are
executed. Notice the ! (exclamation point) in the if statement. ! means "not". In other
words, the i f statement is true if the assignment statement is not true.

What error handling you want to include in your program depends on what you expect to happen
inthe program. When you’re developing the program, you expect some errors to happen. Therefore,
during development, you probably want error handling that is more descriptive, such as the third

Chapter 8: Data In, Data Qut ’ 93

method in the preceding list. For instance, suppose that you're using an account called root to
access your database and that you make a typo as in the following statements:

$host = "localhost";
$user = "rot";
$password = "";
if (l$connection = mysql_connect($host, $user, $password))
{
$message = mysql_error();
echo "$message
";
die();
}

Because you typed "rot" instead of "root", you would see an error message similar to the
following one:

Access denied for user: 'rot@localhost' (Using password: NO)

This error message has the information that you need to figure out what the problem is; it shows
your account name with the typo. However, after your program is running and customers are using
it, you probably don’t want your users to see a technical error message like the preceding
one. Instead, you probably want to use the second method with a general statement in the
die message,suchas The Pet Catalog is not available at the moment. Please
try again Tater.

Fill in the following information:

v addr: The name of the computer where MySQL is installed — for example,
databasehost.mycompany.com. If the MySQL database is on the same
computer as your Web site, you can use 1ocalhost as the computer
name. If this information is blank (" "), PHP assumes localhost.

v mysqlacctname: The name of your MySQL account. (I discuss MySQL
accounts in detail in Chapter 5.) You can leave this information blank
("") — meaning that any account can connect — but this is usually a
bad idea for security reasons.

v password: The password for your MySQL account. If your MySQL
account does not require a password, don’t type anything between the

quotes: "".

v message: The message that is sent to the browser if the connection fails.
The connection fails if the computer or network is down or if the MySQL
server isn’t running. It also can fail if the information provided isn’t
correct — for example, if there’s a typo in the password.

® You might want to use a descriptive message during development, such
as Couldn't connect to server, but use a more general message suit-
able for customers after the application is in use, such as The Pet
Catalog is not available at the moment. Please try again
later.

194 rarcupup

\\J

The addr includes a port number that is needed for the connection. Almost
always, the port number is 3306. On rare occasions, the MySQL administrator
needs to set up MySQL to connect on a different port. In these cases, the port
number is required for the connection. The port number is specified as
hostname:portnumber. For instance, you might use Tocalhost:8808.

With these statements, mysql_connect attempts to open a connection to the
named computer, using the account name and password provided. If the con-
nection fails, the program stops running at this point and sends message to
the browser.

The following statement connects to the MySQL server on the local computer
by using a MySQL account named catalog that does not require a password:

$connection = mysqgl_connect("localhost”, "catalog”,"")
or die ("Couldn't connect to server.");

For security reasons, it’s a good idea to store the connection information in
variables and use the variables in the connection statement, as follows:

$host="Tlocalhost";

$user="catalog";

$password="";

$connection = mysql_connect($host, $user, $password)
or die ("Couldn't connect to server.");

In fact, for even more security, you can put the assignment statements for the
connection information in a separate file in a hidden location so that the
account name and password aren’t even in the program. [explain how to do
this in Chapter 10.

The variable $connection contains information that identifies the connec-
tion. You can have more than one connection open at a time by using more
than one variable name. A connection remains open until you close it or until
the program ends. You close a connection as follows:

mysql_close($connectionname) ;

For instance, to close the connection in the preceding example, use this
statement:

mysql_close($connection);

Selecting the right database

After the connection to the MySQL server is established and open, you
need to tell MySQL which database you want to interact with. Use the
mysql_select_db function as follows:

Chapter 8: Data In, Data Qut ’ 9 5

$db = mysql_select_db("databasename",$connectionname)
or die ("message");

Fill in the following information:

v databasename: The name of the database.

v connectionname: The variable that contains the connection informa-
tion. If you don’t enter a connection, PHP uses the last connection that
was opened.

v message: The message that is sent to the browser if the database can’t
be selected. The selection might fail because the database can’t be
found, which is usually the result of a typo in the database name.

For instance, you can select the database PetCatalog with the following
statement:

$db = mysql_select_db("PetCatalog”,$connection)
or die ("Couldn't select database.");

If mysql_select_db is unable to select the database, the program stops run-
ning at this point, and the message Couldn't select database. is sent to
the browser.

\\J
For security reasons, it’s a good idea to store the database name in a variable
and use the variable in the connection statement, as follows:

$database = "PetCatalog";
$db = mysql_select_db($database, $connection)
or die ("Couldn't select database.");

In fact, for even more security, you can put the assignment statement for the
database name in a separate file in a hidden location — as suggested for the
assignment statements for the connection information — so that the data-
base name isn’t even in the program. I explain how to do this in Chapter 10.

The database stays selected until you explicitly select a different database.
To select a different database, just use a new mysql_select_db function
statement.

Sending SOL queries

After you have an open connection to the MySQL server and PHP knows
which database you want to interact with, you send your SQL query. The
query is a request to the MySQL server to store some data, update some data,
or retrieve some data. (See Chapter 4 for more on the SQL language and how
to build SQL queries.)

196 rartupup

<MBER
é}“

QUING/

To interact with the database, put your SQL query into a variable and send it
to the MySQL server by using the function mysql_query, as in the following
example:

$query = "SELECT * FROM Pet";
$result = mysql_query($query)
or die ("Couldn't execute query.");

The query is executed on the currently selected database for the last connec-
tion that you opened. If you need to — if you have more than one connection
open, for instance — you can send the query to a specific database server
like this:

$result = mysql_query($query,$connection)
or die ("Couldn't execute query.");

The variable $result holds information on the result of executing the query.
The information depends on whether or not the query gets information
from the database:

v For queries that don’t get any data: The variable $result contains
information on whether the query executed successfully or not. If it’s
successful, $result is set to TRUE; if it’s not successful, $result is set
to FALSE. Some queries that don’t return data are INSERT and UPDATE.

v For queries that return data: The variable $result contains a result
identifier that identifies where the returned data is located and not the
returned data itself. Some queries that do return data are SELECT and
SHOW.

The use of single and double quotes can be a little confusing when assigning
the query string to $query. You are actually using quotes on two levels: the
quotes needed to assign the string to $query and the quotes that are part of
the SQL language query itself. The following rules will help you avoid any
problems with quotes:

v Use double quotes at the beginning and end of the string.
v Use single quotes before and after variable names.

v Use single quotes before and after any literal values.
The following are examples of assigning query strings:
$query = "SELECT firstName FROM Member";

$query = "SELECT firstName FROM Member WHERE TastName='Smith'";
$query = "UPDATE Member SET TlastName='$last_name'";

The query string itself does not include a semicolon (;), so don’t put a semi-
colon inside the final quote. The only semicolon is at the very end; this is the
PHP semicolon that ends the statement.

Chapter 8: Data In, Data Qut ’ 9 7

Getting Information from a Database

Getting information from a database is a common task for Web database
applications. Here are two common uses for information from the database:

v~ Use the information to conditionally execute statements. For instance,
you might get the state of residence from the Member Directory and
send different messages to members who live in different states.

v~ Display the information in a Web page. For instance, you might want to
display product information from your database.

In order to use the database information in a program, you need to put the
information in variables. Then you can use the variables in conditional state-
ments, echo statements, or other statements. Getting information from a
database is a two-step process:

1. You build a SELECT query and send the query to the database. When the
query is executed, the selected data is stored in a temporary location.

2. You move the data from the temporary location into variables and use it
in your program.

Sending a SELECT query

You use the SELECT query to get data from the database. SELECT queries
are written in the SQL language. (I discuss the SELECT query in detail in
Chapter 4.)

To get data from the database, build the SELECT query that you need, storing
it in a variable, and then send the query to the database. The following
statements select all the information from the Pet table in the PetCatalog
database:

$query = "SELECT * FROM Pet";
$result = mysql_query($query)
or die ("Couldn't execute query.");

The mysql_query function gets the data requested by the SELECT query and
stores it in a temporary location. You can think of this data as being stored in
a table, similar to a MySQL table, with the information in rows and columns.

The function returns a result identifier that contains the information needed
to find the temporary location where the data is stored. In the preceding
statements, the result identifier is put into the variable $result. The next
step after executing the function is to move the data from its temporary loca-
tion into variables that can be used in the program.

198

Part Ill: PHP

If the function fails — for instance, if the query is incorrect — $result
contains FALSE.

Getting and using the data

You use the mysql_fetch_array function to get the data from the temporary
location. The function gets one row of data from the temporary location. The
temporary data table might contain only one row of data or, more likely, your
select query resulted in more than one row of data in the temporary data
table. If you need to fetch more than one row of data from the temporary
location, you use the mysq1_fetch_array function in a loop.

Getting one row of data

To move the data from its temporary location and put it into variables that
you can use in your program, you use the PHP function mysql_fetch_array.
The general format for the mysql_fetch_array function is

$row = mysql_fetch_array($resultidentifier,typeofarray);

This statement gets one row from the data table in the temporary location
and puts it in an array variable called $row. Fill in the following information:

v resultidentifier: The variable that points to the temporary location
of the results.

v typeofarray: The type of array that the results are put into. It can be
one of two types of arrays or both types. Use one of the following values:

e MYSQL_NUM: An array with a key/value pair for each column in the
row using numbers as keys.

e MYSQL_ASSOC: An array with a key/value pair for each column in
the row using the column names as keys.

e MYSQL_BOTH: An array with both types of keys. In other words, the
array has two key/value pairs for each column: one with a number
as the key and one with the column name as the key. If no array
type is given in the function call, MYSQL_BOTH is assumed.

The mysql_fetch_array function gets one row of data from the temporary
location. In some cases, one row is all you selected. For instance, to check
the password entered by a user, you only need to get the user’s password
from the database and compare it with the password that the user entered.
The following statements check a password:

$userkEntry = "secret"; // password user entered in form
$query = "SELECT password FROM Member

WHERE ToginName='gsmith'";
$result = mysql_query($query)

Chapter 8: Data In, Data Qut ’ 99

a\\s

or die ("Couldn't execute query.");
$row = mysql_fetch_array($result,MYSQL_ASSOC);
if ($userEntry == $row['password'])

{

echo "Login accepted
";

statements that display Members Only Web pages
1
else

{

echo "Invalid password
";

statements that allow user to try another password
}

Note the following points about the preceding statements:

v The SELECT query requests only one field (password) from one row
(row for gsmith).

v Themysql_fetch_array function returns an array called $row with
column names as keys.

v The if statement compares the password that the user typed in
($userkntry) with the password obtained from the database
($row['password']) to see whether they are the same by using two
equal signs (==).

v~ If the comparison is true, the passwords match, and the i f block
(which displays the Members Only Web pages) is executed.

v~ If the comparison is not true, the user did not enter a password that
matches the password stored in the database, and the else block is exe-
cuted. The user sees an error message stating that the password is not
correct and is returned to the login Web page.

PHP provides a shortcut that is convenient for using the variables retrieved
with the mysql_fetch_array function. You can use the extract function,
which splits the array into variables that have the same name as the key. For
instance, you can use the extract function to rewrite the previous state-
ments that test the password. Here’s how:

$userEntry = "secret"; ffpassword user entered into HTML form
$query = "SELECT password FROM Member
WHERE loginName='gsmith'";

$result = mysql_query($query)

or die ("Couldn't execute query.");
$row = mysql_fetch_array($result,MyYSQL_ASSOC);
extract($row);
if ($userkEntry == $password)
{

echo "Login accepted
";

statements that display Members Only Web pages
}

else

200 Ppatm:pup

echo "Invalid password
";
statements that allow user to try another password
}

Using a loop to get all the rows of data

If you selected more than one row of data, use a loop to get all the rows from
the temporary location. The loop statements in the loop block get one row of
data and process it. The loop repeats until all rows have been retrieved. You

can use awhile loop or a for loop to retrieve this information. (For more on
while loops and for loops, check out Chapter 7.)

The most common way to process the information is to use a while loop as
follows:

while ($row = mysql_fetch_array($result))
{

}

block of statements

This loop repeats until it has fetched the last row. If you just want to echo all
the data, for example, you would use a loop similar to the following:

while ($row = mysql_fetch_array($result))
{

extract($row);

echo "$petType: $petName
";
1

Now, take a look at an example of how to get information for the Pet Catalog
application. Assume the Pet Catalog has a table called Pet with four columns:
petID, petType, petDescription, and price. Table 8-1 shows a sample set
of data in the Pet table.

Table 8-1 Sample Data in Pet Table

petName petType petDescription Price
Unicorn Horse Spiral horn centered in forehead 10000
Pegasus Horse Flying; wings sprouting from back 15000
Pony Horse Very small; half the size of standard horse 500
Asian dragon Dragon Serpentine body 30000
Medieval dragon Dragon Lizard-like body 30000
Lion Cat Large; maned 2000

Gryphon Cat Lion body; eagle head; wings 25000

Chapter 8: Data In, Data Qut 2 0 1

The petDisplay.php program in Listing 8-1 selects all the horses from the
Pet table and displays the information in an HTML table in the Web page.
The variable $pettype contains information that a user typed into a form.

Listing 8-1: Displays Items from the Pet Catalog

<?php
/* Program: petDisplay.php
* Desc: Displays all pets in selected category.
=)
7>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
$user="catalog";
$host="Tocalhost";
$password="";
$database = "PetCatalog";
$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");
$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");
$pettype = "horse"; //horse was typed in a form by user
$query = "SELECT * FROM Pet WHERE petType='$pettype'";
$result = mysql_query($query)
or die ("Couldn't execute query.");

/* Display results in a table */
$pettype = ucfirst($pettype)."s";
echo "<hl>$pettype</h1>";
echo "<table cellspacing="15"'>";
echo "<tr><td colspan='3'><hr></td></tr>";
while ($row = mysql_fetch_array($result))
{
extract($row);
$f_price = number_format($price,2);
echo "<tr>\n
<td>$petName</td>\n
<td>$petDescription</td>\n
<td align="right'>\$$f price</td>\n
</tr>\n";
echo "<tr><td colspan="3"><hr></td></tr>\n";
}
echo "</table>\n";
7>
</body></htm1>

Figure 8-1 shows the Web page displayed by the program in Listing 8-1. The
Web page shows the Pet items for the petType horse, with the display for-
matted in an HTML table.

202

Part Ill: PHP

|
Figure 8-1:
The Web
page
resulting
from pet
Display.
php.
|

ET Catalog - Microsoft Internet Explorer
Eile Edit WYiew Favorites Tools Help

@ =9 . [¢ Q@ M I B 8 v,

Back' Fomwasd Stop Refiesh Home Sesch Favontes Historpy | Mail Fiink Edit Realcam N)
Address |€| hitp:/ fanetval zan . com/PHPEMyS U LfoDummies/petDescip. php j @ Go || Links »i ‘w i
Horses

Unicorn spiral hotn centered in forehead $10,000.00

Pegasus flying, wings sprowting from back $15,00000

Pony ety small, half the size of standard horse $30000
&) Done | | | Iinternet

The program in Listing 8-1 uses a whi1e loop to get all the rows from the
temporary location. In some cases, you might need to use a for loop. For
instance, if you need to use a number in your loop, a for loop is more useful

than a while loop.

To use a for loop, you need to know how many rows of data were selected.
You can find out how many rows are in the temporary storage by using the

PHP function mysqgl_num_rows as follows:

$nrows = mysql_num_rows($result);

The variable $nrows contains the number of rows in the temporary storage
location. By using this number, you can build a for loop to get all the rows,

as follows:

for ($i=0;%$i<$nrows;$i++)

{
$row = mysql_fetch_array($result))
block of statements;

}

For instance, the program in Listing 8-1 displays the Pet items of the type
horse. Suppose that you want to number each item. Listing 8-2 shows a pro-
gram, petDescripFor.php, which displays a numbered list by using a for

loop.

Chapter 8: Data In, Data Qut 2 03

Listing 8-2: Displays Numbered List of Items from the Pet Catalog

<?php
/* Program: petDescripFor.php
* Desc: Displays a numbered Tist of all pets in
w5 selected category.
=)
7>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
$user="catalog";
$host="Tocalhost";
$password="";
$database = "PetCatalog";
$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");
$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");
$pettype = "horse"; //horse was typed in a form by user
$query = "SELECT * FROM Pet WHERE petType='$pettype'";
$result = mysql_query($query)
or die ("Couldn't execute query.");
$nrows = mysql_num_rows($result);

/* Display results in a table */
echo "<hl1>Horses</h1>";
echo "<table cellspacing="15"'>";
echo "<tr><td colspan="'4'><hr></td></tr>";
for ($i=0;$i<$nrows;$i++)
{
$n = $i + 1; {add 1 so that numbers don't start with 0
$row = mysql_fetch_array($result);
extract($row);
$f_price = number_format($price,?2);
echo "<tr>\n
<td>$n.</td>\n
<td>$petName</td>\n
<td>$petDescription</td>\n
<td align="right'>\$$f price</td>\n
</tr>\n";
echo "<tr><td colspan="4"'><hr></td></tr>\n";
}
echo "</table>\n";
?>
</body></html>

Figure 8-2 shows the Web page that results from using the for loop in this
program. Notice that a number appears before the listing for each Pet item
on this Web page.

204 Ppartur:prp

HPet Catalog - Netscape
File Edit View Go Communicator Help

< 5 3 N 2 @ S & @

Figoad Home Search Metseape Pl Seculy i

A Location: |h?.t0: {Aanetval sann. com/PHPEMYS D LIoDummisspetD escipFor. pho

=] @ Whats Relsted |

LﬁJ Intemet j].uukup |j’ NewtCaool _EJ FiealFlayer

Horses
1. Unicomn spiral horn centered in forehead $10,000.00
2. Pegasus flying; wings sproutmg from back $15,000.00

|
3. Pony wery small, half the size of standard horse $500.00

Figure 8-2:
The Web
page
resulting
from pet
Descrip
For.php.

e & - Document: Done

EE T)

Using functions to get data

In most applications, you get data from the database. Often you get the data
in more than one location in your program or more than one program in your
application. Functions — blocks of statements that perform certain specified
tasks — are designed for such situations. (I explain functions in detail in

Chapter 7.)

A function to get data from the database can be really useful. Whenever the
program needs to get data, you call the function. Not only do functions save
you a lot of typing, but they also make the program easier for you to follow.

For example, consider a product catalog, such as the Pet Catalog. You will
need to get information about a specific product many times. You can write
a function that gets the data and then use that function whenever you need

data.

Listing 8-3 for program getdata.php shows how to use a function to get
data. The function in Listing 8-3 will get the information for any single pet in
the Pet Catalog. The pet information is put into an array, and the array is
returned to the main program. The main program can then use the informa-
tion any way that it wants. In this case, it echoes the pet information to a

Web page.

Chapter 8: Data In, Data Qut 2 0 5

Listing 8-3: Gets Data from Database by Using a Function

<?php
/* Program: getdata.php
* Desc: Gets data from a database using a function
=Y
?>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
$user="catalog";
$host="Tocalhost";
$password="";
$connection = mysql_connect($host, $user,$password)
or die ("Couldn't connect to server");

$petinfo = getPetInfo("Unicorn"); //call function

$f _price = number_format($petinfol 'price'],2);
echo "<p>{$petinfol 'petName']}
\n
Description: {$petInfol 'petDescription']}
\n
Price: \${$petInfol'price'l}\n"
7>
</body></html>

<?php
function getPetInfo($petName)
{
$db = mysql_select_db("PetCatalog")
or die ("Couldn't select database");
$query = "SELECT * FROM Pet WHERE petName='$petName'";
$result = mysql_query($query)
or die ("Couldn't execute query.");
return mysqgl_fetch_array($result,MYSQL_ASSOC);
}
?>

The Web page displays

Unicorn
Description: spiral horn centered in forehead
Price: $10,000.00

Notice the following about the program in Listing 8-3:

v The program is easier to read with the function call than it would be if
all the function statements were in the main program.

v You can connect to the MySQL server once in the main program and
call the function many times to get data. If the connection were in the

2006 partui:prp

function rather than the main program, it would connect every time
that you called the function. It’s more efficient to connect only once,
if possible.

v If you only have one connection, mysql_select_db will use that con-
nection. If you have more than one connection, you can pass the
connection and use it in your mysql_select_db function call. If your
application only uses one database, you can select that database once
in the main program instead of selecting it in the function.

v The function call sends the string "Unicorn”. In most cases, the func-
tion call will use a variable name.

v The program creates the variable $petInfo to receive the data from the
function. $petInfo is an array because the information stored in it is an
array.

The preceding function is very simple — it returns one row of the results as
an array. But functions can be more complex. The preceding section provides
a program to get all the pets of a specified type. The program getPets.php
in Listing 8-4 uses a function for the same purpose. The function returns a
multidimensional array with the pet data for all the pets of the specified type.

Listing 8-4: Displays Numbered List of Pets by Using a Function

<?php
/* Program: getPets.php
* Desc: Displays numbered list of items from a database.
=)
7>
<html>
<head><title>Pet Catalog</title></head>
<body>
<?php
$user="catalog";
$host="Tocalhost";
$password="";
$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");

$petinfo = getPetsOfType("horse"); //call function

/* Display results in a table */
echo "<hl1>Horses</h1>";
echo "<table cellspacing="15"'>";
echo "<tr><td colspan="'4'><hr></td></tr>";
for ($i=1;%$i<=sizeof($petinfo);$i++)
{
$f_price = number_format($petinfol$ill'price'],2);
echo "<tr>\n
<td>$1.</td>\n
<td>{$petInfol$ill 'petName']}</td>\n

Chapter 8: Data In, Data Qut 2 0 7

<td>{$petinfol$il['petDescription']}</td>\n
<td align="right'>\$$f_price</td>\n
</tr>\n";
echo "<tr><td colspan="4"'><hr></td></tr>\n";
}

echo "</table>\n";

?>

</body></html1>

<?php
function getPetsOfType($petType)
{
$db = mysql_select_db("PetCatalog")
or die ("Couldn't select database");
$query = "SELECT * FROM Pet WHERE petType='$petType'";
$result = mysql_query($query)
or die ("Couldn't execute query.");

$3 = 1;
while ($row=mysql_fetch_array($result,MYSQL_ASSOC))
{

foreach ($row as $colname => $value)

$array[$jl[$colname] = $value;
1
$j++;
}
return $array;

The program in Listing 8-4 proceeds as follows:

1. It connects to the MySQL server in the main program.

2. It calls the function getPetsOfType. It passes "horse" as a character
string and also sets up $petInfo to receive the data returned by the
function.

3. The function selects the database PetCatalog.

4. The function sends a query to get all the rows with horse in the
petType column. The data is stored in a table in a temporary location.
The variable $result identifies the location of the temporary table.

5. It sets up a counter. $j is a counter that is incremented in each loop. It
starts at 1 before the loop.

6. It starts a while loop. The function attempts to get a row from the tem-
porary data table and is successful. If there were no rows to get in the
temporary location, the whi1e loop would end.

208

Part Ill: PHP

14.

. It starts a foreach loop. The loop walks through the row, processing

each field.

. It stores values in the array. $petInfo is a multidimensional array. Its

first key is a number, which is set by the counter. Because this is the first
time through the while loop, the counter — $ j — is now equal to 1.

All the fields in the row are stored in $petInfo with the column name

as the key. (I explain multidimensional arrays in detail in Chapter 7.)

. It increments the counter. $j is incremented by 1.
10.
11.
12.
13.

It reaches the end of the while loop.
It returns to the top of the while loop.
It repeats Steps 6-11 for every row in the results.

It returns $array to the main program. $array contains all the data for
all the selected rows.

$petInfo receives data from the function. All the data is passed.
Figure 8-3 shows the structure of $petInfo after the function has
finished executing.

—— petinfo [1] [petMame] = Unicom
) [petDescription] = spiral hom centerad in forehead
Figure 8-3: [price] = 10000
The [Z] [petMame] = Pegasus
structure [petDescription] = flying; wings sprouting from back
of the [price] = 15000
multidimen- 3 [petName] = Pony
sional array [petDescription] = very small; half the size of a standard harse
$petInfo. [price] = 500
|

15.

The main program sends Pet Descriptions to the browser in an HTML
table. The appropriate data is inserted from the $petInfo array.

The Web page that results from the program in Listing 8-4 is identical to the
Web page shown in Figure 8-2, which is produced by a program that does not
use a function. Functions do not produce different output. Any program that
you can write by using a function, you can also write without using a func-
tion. Functions just make programming easier.

Getting Information from the User

Many applications are designed to ask questions that users answer by typing
information. Sometimes the information is stored in a database; sometimes

Chapter 8: Data In, Data Qut 2 0 9

the information is used in conditional statements to deliver an individual Web
page. Some of the most common application tasks that require users to
answer questions are

v+ Online ordering: Customers need to select products and enter shipping
and payment information.

v Registering: Many sites require users to provide some information
before they receive certain benefits, such as access to special informa-
tion or downloadable software.

» Logging in: Many sites restrict access to their pages. Users must enter
an account name and password before they can see the Web pages.

v~ Viewing selected information: Many sites allow users to specify what
information they want to see. For instance, an online catalog might allow
users to type the name of the product or select a product category that
they want to see.

You ask questions by displaying HTML forms. The user answers the ques-
tions by typing information into the form or selecting items from a list. The
user then clicks a button to submit the form information. When the form is
submitted, the information in the form is passed to a second, separate pro-
gram, which processes the information.

In the next few sections, I don’t tell you about the HTML required to display
a form; I assume that you already know HTML. (If you don’t know HTML or
need a refresher, check out HTML 4 For Dummies, 4th Edition, by Ed Tittel
and Natanya Pitts; Wiley.) What I do tell you is how to use PHP to display
HTML forms and to process the information that users type into the form.

Using HTML forms

HTML forms are very important for interactive Web sites. If you are unfamil-
iar with HTML forms, you need to read the forms section of an HTML book.
To display a form by using PHP, you can do one of the following:

v Use echo statements to echo the HTML for a form. For example:

<?php
echo "<form action='processform.php'
method="POST"'>\n
<input type='text' name='name'>\n
<input type='submit' value='Submit Name'>\n
</form>\n";
7>

210 Ppartin:pup

|
Figure 8-4:
Aform
produced

by HTML
statements.
|

v Use plain HTML outside the PHP sections. For a plain static form, there
is no reason to include it in a PHP section. For example:

<?php
statements in PHP section
7>
<form action="processform.php" method="P0OST">
<input type="text" name="fullname">
<input type="submit" value="Submit Name">
</form>
<?php
statements in PHP section
7>

Either of these methods produces the form displayed in Figure 8-4.

-lest form - Microsoft Internet Explorer -0 =]
File Edit View Favorites Tools Help n
« .5 .0 B N@Q G 3| "
Back Fonard Stop Refresh Home Seach Favorkes Histoy |
| Address Eé__'i hitpe Ajanetval san.m com/PHPEMyS OLFarD ummi lJ o'Go |UI’\|(S | -Y? »
;I
] Submit Mame I
_ |
€] Dome | Intermet 4

Joe Customer fills in the HTML form. He clicks the submit button. You now
have the information that you wanted — his name. So where is it? How do
you get it?

You get the form information by running a program that receives the

form information. When the submit button is clicked, PHP automatically
runs a program. The action parameter in the form tag tells PHP which pro-
gram to run. For instance, in the preceding program, the parameter
action=processform.php tells PHP to run the program processform.php
when the user clicks the submit button. The program processform.php can
display, store, or otherwise use the form data that it receives when the form
is submitted.

When the user clicks the submit button, the program specified in the action
attribute runs, and statements in this program can get the form information
from PHP built-in arrays and use the information in PHP statements. Table 8-2
shows the built-in arrays that contain the form information.

Chapter 8: Data In, Data Qut 2 ’ 1

Table 8-2 Built-in Arrays Containing Form Information
Array Description
$ _POST Contains elements for all the fields contained in a form if the

form uses method="P0OST".

$HTTP_POST_VARS Sameas$ _POST.

$ _GET Contains all the variables passed from a previous page as
part of the URL. This includes fields passed in a form using
method="get".

$HTTP_GET_VARS Sameas$ _GET.

$_REQUEST Contains all the array elements together that are in
$_POST, $_GET,and $_COOKIE.

When the form is submitted, the program that runs can get the form informa-
tion from the appropriate built-in array, as shown in Table 8-2. In these built-
in arrays, each array index is the name of the input field in the form. For
instance, if the user typed Goliath Smith in the input field shown in Figure 8-4
and clicked the submit button, the program processform.php runs and can
use an array variable in the following format:

$_POSTL'fullname"]

Notice that the named typed into the form is available in the $_POST array
because the form tag specified method="'P0ST"'. Also, notice that the array
key is the name given the field in the HTML form with the name attribute
name="fullname".

A program that displays all the fields in a form is a useful program for testing
a form. You can see what values are passed from the form to be sure that
your form is formatted properly and sends the field names and values that
you expect. All the fields in a POST type form are displayed by the program in
Listing 8-5, named processform.php. When the form shown in Figure 84 is
submitted, the following program is run.

Listing 8-5: A Script That Displays All the Fields from a Form

<?php

/* Script name: processform.php

* Description: Script displays all the information passed

* from a form.

=/

echo "<html>

<head><title>Customer Address</title></head>
<body>";

(continued)

212 Ppatm:pup

Listing 8-5 (continued)

foreach ($_POST as $field => $value)

echo "$field = $value
";

}
>
</body></htm1>

If the user typed the name Goliath Smith into the form in Figure 8-4, the
following output is displayed:

fullname = Goliath Smith

The output displays only one line because there is only one field in the form
in Figure 8-4.

The program in Listing 8-5 is written to process the form information from
any form that uses the POST method. Suppose that you have a slightly more
complicated form, such as the program in Listing 8-6 that displays a form
with several fields.

Listing 8-6: A Program That Displays an Address Form

<?php
/* Program name: displayForm
* Description: Script displays a form that asks for the
2 customer address.
=)
echo "<html>
<head><title>Customer Address</title></head>
<body>";
$l1abels = array("firstName"=>"First Name:",
"midName"=>"Middle Name:",
"lastName"=>"Last Name:",
"street"=>"Street Address:",
"city"=>"City:",
"state"=>"State:",
"zip"=>"Zipcode:");
echo "<p align='center'>
Please enter your address below.<hr>";
echo "<form action="processform.php' method='POST"'>
<table width='95%"' border='0"' cellspacing='0"
cellpadding='2"'>\n";
foreach($labels as $field=>$label)
{
echo "<tr>
<td align='right'> {$1abels[$field]l} </br></td>
<td><input type='text' name='$field' size='65"
maxlength="65" ></td>
<Jtre>"

Chapter 8: Data In, Data Qut 2 ’3

A\

}
echo "</table>
<div align='center'><p><input type='submit'
value="Submit Address'> </p></div>
</form>";
?>
</body></html1>

Notice the following in displayForm.php, as shown in Listing 8-6:

v An array is created that contains the labels that are used in the form.
The keys are the field names.

v The script processform.php is named as the script that runs
when the form is submitted. The information in the form is sent to
processform.php, which processes the information.

v The form is formatted with an HTML table. Tables are an important
part of HTML. If you're not familiar with HTML tables, check out HTML 4
For Dummies, 4th Edition, by Ed Tittel and Natanya Pitts (Wiley).

+ The script loops through the $T1abels array with a foreach statement.
The HTML code for a table row is output in each loop. The appropriate
array values are used in the HTML code.

For security reasons, always include max1ength — which defines the number
of characters that users are allowed to type into the field — in your HTML
statement. Limiting the number of characters helps prevent the bad guys
from typing malicious code into your form fields. If the information will be
stored in a database, set max1ength to the same number as the width of the
column in the database table.

When Goliath Smith fills in the form shown in Figure 8-5 (created by the pro-
gram in Listing 8-6) and submits it, the program processform.php runs and
produces the following output:

firstName = Goliath
midName =

lastName = Smith
street = 1234 Tall St
city = Big City

state = TX

zip = 88888

In processform.php, all elements of the $_POST built-in array are displayed
because both of the forms shown in this section used the POST method, as do
most forms. There are other built-in arrays, as well as the $_P0ST array, as
shown in Table 8-2.

214 Partur:prp

|
Figure 8-5:
A form for
entering a
customer’s
address.
|

‘|.+‘ Back ¥ — - @ 4] 2| @ Seaich [i|Favoites - #Histoy | Ehw b D
| 1255 21 . iocalhostIPHPEMyS Lol ummies displyF orm oho BRI
|
Please enter your address below.
First Name: |
Middle IName: |
Last Name: |
Street Address: |
City: |
State: |
Zipcode: |
Submit Address |
s
&] Done ’_ ’_ |EE Local intranet 7

The same information is available in two sets of arrays. Use the newer arrays
(names begin with _) because they can be used anywhere, even inside a
function. (I explain functions and the use of variables inside functions in
Chapter 7.) These arrays, called superglobals or autoglobals, were introduced
in PHP 4.1.0. The older arrays, with long names such as $HTTP_POST_VARS,
must be made global before they can be used in a function, as I explain in
Chapter 7. The older arrays should only be used when you are forced to use
a version of PHP older than PHP 4.1.0.

Making forms dynamic

PHP brings new capabilities to HTML forms. Because you can use variables in
PHP forms, your forms can now be dynamic. Here are the major capabilities
that PHP brings to forms:

v Using variables to display information in input text fields

v Using variables to build dynamic lists for users to select from

v Using variables to build dynamic lists of radio buttons

v~ Using variables to build dynamic lists of check boxes

Displaying dynamic information in form fields

When you display a form on a Web page, you can put information into the
fields rather than just displaying a blank field. For example, if most of your
customers live in the United States, you might automatically enter US in the
country field when you ask customers for their address. If the customer does

215

Chapter 8: Data In, Data Qut

indeed live in the United States, you've saved the customer some typing. And
if the customer doesn’t live in the U.S., he or she can just replace US with the
appropriate country. Also, if the program automatically enters US as the value
in the field, you know that the information doesn’t have any errors in it.

To display a text field that contains information, you use the following format
for the input field HTML statements:

<input type="text" name="country" value="US">

By using PHP, you can use a variable to display this information with either of
the following statements:

<input type="text" name="country"
value="<?php echo $country ?>">
echo "<input type='text' name='country' value='$country'>";

The first example creates an input field in an HTML section, using a short PHP
section for the value only. The second example creates an input field by using
an echo statement inside a PHP section. If you're using a long form with only
an occasional variable, using the first format is more efficient. If your form
uses many variables, it’s more efficient to use the second format.

If you have user information stored in a database, you might want to display
the information from the database in the form fields. For instance, you might
show the information to the user so that he or she can make any needed
changes. Or you might display the shipping address for the customer’s last
online order so that he or she doesn’t need to retype the address. Listing 8-7
shows the program displayAddress.php, which displays a form with infor-
mation from the database. This form is very similar to the form shown in
Figure 8-5 except that this form has information in it (retrieved from the data-
base) and the fields in the form in Figure 8-5 are blank.

Registering long arrays

A new php.ini setting introduced in PHP 5
allows you to prevent the older, long arrays from
being created automatically by PHP. It's very

old arrays, you should change the setting to
0ff so that PHP doesn't do this extra work.

unlikely that you will need to use them unless
you're using some old scripts containing the
long variables. The following line in php.ini
controls this setting:

register_long_arrays = 0On

At the current time, this setting is On by default.
Unless you’re running old scripts that need the

Although the setting is currently On by default,
that could change. The default setting might
change to Off in a future version. If you're
using some old scripts and are getting errors on
lines containing the long arrays, such as
$HTTP_GET_VARS, checkyour php.ini set-
ting for long arrays. It might be Of f, and the
long arrays needed by the older script are not
being created at all.

216 ratu:pup

Listing 8-7: Program to Display HTML Form with Information

<?php
/* Program name: displayAddress
* Description: Script displays a form with address
w5 information obtained from the database.
)
echo "<html>
<head><title>Customer Address</title></head>
<body>";
$labels = array("firstName"=>"First Name:",
"lastName"=>"Last Name:",
"street"=>"Street Address:",
"city"=>"City:",
"state"=>"State:",
"zip"=>"Zipcode:");
$user="admin";
$host="1ocalhost";

$password="";
$database = "MemberDirectory";
$1oginName = "gsmith"; // user login name

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");
$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");
$query = "SELECT * FROM Member
WHERE ToginName='$loginName'";
$result = mysql_query($query)
or die ("Couldn't execute query.");
$row = mysql_fetch_array($result);

echo "<p align='center'>
<hl align='center'>Address for $loginName</h1>\n";
echo "
<p align='center'>
{font size='+1'>Please check the information below
and change any information that is incorrect.
<hr>";
echo "<form action='processAddress.php' method='POST"'>
<table width='95%" border="0"' cellspacing="'0"
cellpadding='2"'>\n";
foreach($labels as $field=>$1abel)
{

echo "<tr>
<td align="right'> {$Tabels[$field]l} </br></td>
<td><input type='text' name='$field’
value="$row[$field]"' size='65" maxlength="'65"'>
</td>
<Jtre>"
}
echo "</table>
<div align="center'><p><input type='submit'
value="Submit Address'> </p></div>
</form>";
7>
</body></html1>

\\J

A\

Chapter 8: Data In, Data Qut 2 ’ 7

Notice the following in the program in Listing 8-7:

v The form statement transfers the action to the program
processAddress.php. This program processes the information in the
form and updates the database with any information that the user
changed. This is a program that you write yourself. Checking data in a
form and saving information in the database are discussed later in this
chapter in the sections “Checking the information” and “Putting
Information into a Database”.

v Each input field in the form is given a name. The information in the
input field is stored in a variable that has the same name as the input
field.

+ The program gives the field names in the form the same names as the
columns in the database. This simplifies moving information between
the database and the form, requiring no transfer of information from one
variable to another.

v The values from the database are displayed in the form fields with the
value parameter in the input field statement. The value parameter
displays the appropriate value from the array $ row, which contains data
from the database.

For security reasons, always include max1ength in your HTML statement.
max1ength defines the number of characters that a user is allowed to type
into the field. If the information is going to be stored in a database, set
maxlength to the same number as the width of the column in the database
table.

Figure 8-6 shows the Web page resulting from the program in Listing 8-7. The
information in the form is the information that is stored in the database.

Building selection lists

One type of field that you can use in an HTML form is a selection list. Instead
of typing into a field, your users select from a list. For instance, in a product
catalog, you might provide a list of categories from which users select what
they want to view. Or the form for users’ addresses might include a list of
states that users can select. Or users might enter a date by selecting a month,
day, and year from a list.

Use selection lists whenever feasible. When the user selects an item from a
list, you can be sure that the item is accurate, with no misspelling, odd char-
acters, or other problems introduced by users’ typing errors.

An HTML selection list for the categories in the Pet Catalog is formatted as
follows:

218 Ppartin:pup

|
Figure 8-6:
Aform
showing

the user's
address.
|

|
Figure 8-7:
A selection
field for the
Pet Catalog.
|

<form action="processform.php" method="P0OST">
<select name="petType">

<option value="horse">horse

<option value="cat" selected>cat

<option value="dragon">dragon
<{/select>
<input type="submit" value="Select Type of Pet">
</form>;

Figure 8-7 shows the selection list that these HTML statements produce.
Notice that cat is the choice that is selected when the field is first displayed.
You determine this default selection by including selected in the option tag.

| File Edit View Favorites Taols Help | A |

| wBack » = ~ @ 2] 2| Q5earch [ilFavorites - BHistow | B\ o 2

| Address [£] hitp://localnost/PHPEMyS Lforummies /displayAddress. php =] @60
£

Address for gsmith

Please check the information helow and change any information that is incorrect.

First Wame: [Goliath
Last IName: |Smiﬂ1

Street Address: [1234 Giart St

City: |Big City
State: [AL
Zipcode: [97850

Submit Address |

&] Done ’_ |_ E& Local intranet y

| Fllu Edll View Favorites Tlmls Hnlp

| ¢ . % .0 [4 Q @
| Back _ Forard Stop Refresh Hon'e Search Favorites
Aﬁdress|§1 huwnanewalsanncom;PH_J 6o |Lmks’° | 'Y’ 5
g
cat - Select Type of Pet
|

&) Dome © Internet

o

|
Figure 8-8:
A selection
field for the
Pet Catalog
with a drop-
down list.
|

Chapter 8: Data In, Data Qut 2 ’ 9

When the user clicks the arrow on the select drop-down list box, the whole
list drops down, as shown in Figure 8-8, and the user can select any item in
the list. Notice that cat is selected until the user selects a different item.

When using PHP, your options can be variables. This capability allows you to
build dynamic selection lists. For instance, you must maintain the static list
of pet categories shown in the preceding example. If you add a new pet cate-
gory, you must add an option tag manually. However, with PHP variables, you
can build the list dynamically from the categories in the database. When you
add a new category to the database, the new category is automatically added
to your selection list without your having to change your PHP program.
Listing 8-8 for program buildSelect.php builds a selection list of pet cate-
gories from the database.

I Flie Edit View Favorites Tlmls Help -
¢ .2 .0 B A @ G
Back Forear Stop Refresh Home Search Favasites

Mdress|e_] htlpmanetvalsanrrcomﬂ-!_J o' Go |I.Jr|ks’° 'm S

|
]cat v] Select Type of Pet |
|
€] Dome © Internet 2

Listing 8-8: Program to Build a Selection List

<{?php
/* Program name: buildSelect.php
* Description: Program builds a selection Tist
w from the database.
R/
[
<htm1>
<head><titledPet Types</title></head>
<body>
<{?php
$user="catalog";
$host="Tocalhost";
$password="";
$database = "PetCatalog";

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");
$db = mysql_select db($database,$connection)

(continued)

22() rartii:pup

Listing 8-8 (continued)

or die ("Couldn't select database");
$query = "SELECT DISTINCT petType FROM Pet ORDER BY petType";
$result = mysql_query($query)

or die ("Couldn't execute query.");

/* create form containing selection list */
echo "<form action="'processform.php' method="'POST'>
<select name='petType'>\n";

while ($row = mysql_fetch_array($result))
{
extract($row);
echo "<option value="$petType'>$petType\n";
}
echo "</select>\n";
echo "<input type='submit' value='Select Type of Pet'>
</form>\n";
»
</body></htm1>

Notice the following in the program in Listing 8-8:

v Using DISTINCT in the query: DISTINCT causes the query to get each
pet type only once. Without DISTINCT, the query would return each pet
type several times if it appeared several times in the database.

v~ Using ORDER BY in the query: The pet types are sorted alphabetically.

v echo statements before the loop: The formand select tags are echoed
before the while loop starts because they are echoed only once.

v echo statements in the loop: The option tags are echoed in the loop —
one for each pet type in the database. No item is marked as selected, so
the first item in the list is selected automatically.

v echo statements after the loop: The end formand select tags are
echoed after the loop because they are echoed only once.

The selection list produced by this program is initially the same as the selec-
tion list shown in Figure 8-7, with cat selected. However, cat is selected in this
program because it is the first item in the list — not because it’s specifically
selected as it is in the HTML tags that produce Figure 8-7. The drop-down list
produced by this program is in alphabetical order, as shown in Figure 8-9.

You can also use PHP variables to set up which option is selected when the
selection box is displayed. For instance, suppose that you want the user to
select a date from month, day, and year selection lists. You believe that
most people will select today’s date, so you want today’s date to be selected
by default when the box is displayed. Listing 89 shows the program
dateSelect.php, which displays a form for selecting a date and selects
today’s date automatically.

Chapter 8: Data In, Data Qut 2 2 1

Figure 8-9:
A selection
field for the
Pet Catalog
produced by
the program
build
Select.
php.
|

il

7[5 irieret (f Lookup | MewtCool RealPlayer

ypes ape
e Edit View Go Communicator Help
- - - .
<« 2 A 4 2 w I SN
Back Fomwe=d Reload Home Seaich Metscape Print Securl
_qf'EDokmalks & Localim']hflp’ﬂianetvd.saﬂ r.com{PHP j @:jﬂ'\#hat's Related

cat vI Select Type of Pet
icat E

dragon

horse

o == [e Don=| ik % @ @ 2 s
Listing 8-9: Program to Build a Date Selection List
<?php
/* Program name: dateSelect.php
* Description: Program displays a selection Tist that
2 customers can use to select a date.
*/
echo "<html>
<head><title>Select a date</title></head>
<body>";

/* create an array of months*/

$monthName = array(l=> "January", "February", "March",
IIApr.\.i'lll’ "Ma\y", IlJune", llJu]yll,
"August", "September", "October",

"November", "December");
$today = time(); //stores today's date
$f_today = date("M-d-Y",$today); //formats today's date

echo "<div align='center'>\n";

/* display today's date */
echo "<p> <h3>Today is $f_today</h3><hr>\n";

/* create form containing date selection Tist */
echo "<form action='"processform.php' method='POST'>\n";

/* build selection 1ist for the month */
$todayM0 = date("m",$today); //get the month from $today
echo "<select name='dateMO'>\n";
for ($n=1;$n<=12;%$n++)
{
echo "<option value=$n\n";
if ($todayMO == $n)
{

(continued)

222 Partlil:PHP

Listing 8-9 (continued)

echo selected";

}

echo "> $monthName[$nI\n";
}

echo "</select>";

/* build selection list for the day */
$todayDay= date("d",$today); //get the day from $today
echo "<select name='dateDay'>\n";
for ($n=1;$n<=31;$n++)
{
echo " <option value=$n";
if ($todayDay == $n)
{
echo
}

echo "> $n\n";

selected";

}
echo "</select>\n";

/* build selection 1ist for the year */
$startYr = date("Y", $today); //get the year from $today
echo "<select name='dateYr'>\n";
for ($n=$startYr;$n<=$startYr+3;$n++)
{
echo " <option value=$n";
if ($startYr == $n)
{

echo

selected";

echo "> $n\n";
}
echo "</select>\n";
echo "</form>\n";
?>
</body></htm1>

The Web page produced by the program in Listing 8-9 is shown in Figure 8-10.
The date appears above the form so that you can see that the select list
shows the correct date. The selection list for the month shows all 12 months
when it drops down. The selection list for the day shows 31 days when it
drops down. The selection list for year shows four years.

The program in Listing 8-9 produces the Web page in Figure 8-10 by following
these steps:

1. Creates an array containing the names of the months. The keys for the
array are the numbers. The first month, January, starts with the key 1 so
that the keys of the array match the numbers of the months.

Chapter 8: Data In, Data Qut 2 2 3

|
Figure 8-10:
A selection
field for the
date with
today's date
selected.
|

[EEiREd e R view il Favantes i Tosis BhHelp ﬁ
« .5 .0 B Ala H I B 2 S

| Back Stop Refresh Home Search Favorites History Mail Prir
EMdrESSIﬁ:] hitp Ajanetval san mcom/PHPEMpS OLEorD ummies/dateSelect php __'_J o Go EUI’IkS” | .Y’ »
=

Today is Dec-22-2001
December »][22 =] [z001 =]

- |
£] Dome |6 Internet

2. Creates variables containing the current date. $today contains the

date in a system format and is used

in the form. $f-today is a formatted

date that is used to display the date in the Web page.

3. Displays the current date at the top of the Web page.

4. Builds the selection field for the month.

i. Creates a variable containing today’s month.
ii. Echoes the select tag, which should be echoed only once.

iii. Starts a for loop that repeats 12 times.

iv. Inside the loop, echoes the option tag by using the first value from

the $monthName array.

v. If the number of the month being processed is equal to the number
of the current month, adds the word "selected" to the option tag.

vi. Repeats the loop 11 more times.

vii. Echoes the closing select tag for the selection field, which should

be echoed only once.

5. Builds the selection field for the day. Uses the procedure described in
Step 4 for the month. However, only numbers are used for this selection

list. The loop repeats 31 times.

. Builds the selection field for the year.

i. Creates the variable $startYr, containing today’s year.

ii. Echoes the select tag, which should be echoed only once.

iii. Starts a for loop. The starting value for the loop is $startYr. The

ending value for the loop is $startYr+3.

224 Partur:prp

iv. Inside the loop, echoes the option tag, using the starting value of
the for loop, which is today’s year.

v. If the number of the year being processed is equal to the number
of the current month, adds the word "selected" to the option tag.

vi. Repeats the loop until the ending value equals $startYr+3.

vii. Echoes the closing select tag for the selection field, which should
be echoed only once.

7. Echoes the ending tag for the form.

Building lists of radio buttons

You might want to use radio buttons instead of selection lists. For instance,
you can display a list of radio buttons for your Pet Catalog and have users
select the button for the pet category that they’re interested in.

The format for radio buttons in forms is

<input type="radio" name="pets" value="Unicorn">
You can build a dynamic list of radio buttons representing all the pet types in
your database in the same manner that you build a dynamic selection list in

the preceding section. Listing 8-10 shows the program buildRadio.php,
which creates a list of radio buttons based on pet types.

Listing 8-10: Program to Build a List of Radio Buttons

<?php
/* Program name: buildRadio.php
* Description: Program displays a 1ist of radio
& buttons from database info.
)
echo "<html>
<head><title>Pet Types</title></head>
<body>";
$user="catalog";
$host="Tocalhost";
$password="";
$database = "PetCatalog";

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");
$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");
$query = "SELECT DISTINCT petType FROM Pet
ORDER BY petType";
$result = mysql_query($query)
or die ("Couldn't execute query.");

Figure 8-11:
List of radio
buttons
produced by
the program
in Listing
8-10.

Chapter 8: Data In, Data Qut 2 2 5

echo "<div style='margin-left: .5in'>
<p>
<p>Which type of pet are you interested in?
<p>Please choose one type of pet from the following
list:\n";
/* create form containing radio buttons */
echo "<form action="processform.php' method='POST'>\n";
while ($row = mysql_fetch_array($result))
{
extract($row);
echo "<input type='radio' name='interest'
value="$petType'>$petType\n";
echo "
\n";
}
echo "<p><input type='submit' value='Select Type of Pet'>
</form>\n";
?>
</div></body></html>

This program is very similar to the program in Listing 8-9. The Web page pro-
duced by this program is shown in Figure 8-11.

3t Pet Types - Netscape
File Edit View Go Communicator Help
" V . o 3 <
< 2 A X o wW 3 & G
| Back Fonvaid Reload Home Search Nstsc:a_ps Prirt Sacuiity Stap L
: ,"Sookmarks . Lwam:lhlfo:ﬁiar\elval Fan,m r:nm;"PHP&MySL:!LlolDummJen.’buildRaj @-}jl]v\?f"h&'s Related
T [Intemet [Lookup _f MewtCool [ReaFlayer

Which type of pet are you interested in?
Please choose one type of pet from the following list:

Coeat
 dragon
 horse

Select Type of Pet I

== Document: Done = R R - B A

Building lists of check boxes

You might want to use check boxes in your form. Check boxes are different
from selection lists and radio buttons because they allow users to select
more than one option. For instance, if you display a list of pet categories by
using check boxes, a user can check two or three or more pet categories. The
program buildCheckbox.php in Listing 8-11 creates a list of check boxes.

220 rartu:pHp

Listing 8-11: Program to Build a List of Check Boxes

<?php
/* Program name: buildCheckbox.php
* Description: Program displays a list of
u checkboxes from database info.
=)
echo "<html>
<head><title>Pet Types</title><{/head>
<body>";
$user="catalog";
$host="Tocalhost";
$password="";
$database = "PetCatalog";

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");
$db = mysql_select _db($database,$connection)
or die ("Couldn't select database");
$query = "SELECT DISTINCT petType FROM Pet
ORDER BY petType";
$result = mysql_query($query)
or die ("Couldn't execute query.");

echo "<div style='margin-left: .5in'>

<p>

<p>Which type of pet are you interested in?
<p>Choose as many types of pets as you want:\n";

/* create form containing checkboxes */
echo "<form action="processform.php' method='POST'>\n";

while ($row = mysql_fetch_array($result))
{
extract($row);
echo "<input type='checkbox' name='interest[$petType]’
value="$petType'>$petType\n";
echo "
\n";
}
echo "<p><input type='submit' value='Select Type of Pet'>
</form>\n";
?>
</div></body></html>

This program is very similar to the program in Listing 8-10 that builds a list of
radio buttons. However, notice that the input field uses an array $interest
as the name for the field. This is because more than one check box can be
selected. This program will create an element in the array with a key/value
pair for each check box that’s selected. For instance, if the user selects both
horse and dragon, the following array is created:

Chapter 8: Data In, Data Qut 2 2 7

|
Figure 8-12:
Alist of
check
boxes
produced

by the
programin
Listing 8-11.
|

$interestl[horse]=horse
$interest[dragon]=dragon

The program that processes the form has the selections available in the POST
array, as follows:

$_POST['"interest']['horse']
$_POST["interest']['dragon']

Figure 8-12 shows the Web page produced by buildCheckbox.php.

PeI Tﬂes - Microsoft Internet [.‘{|IIIIBI'
File Edit View Favorites Tools Help

B 3

Frint

Q @ 2

Search Favorites History |

. =, % f
Back Foriar Stop Refresh Home :
| Address Ié__] hittpr #fjanetyat san o com/PHPEMyS OLtc D urimies/buldCheckbox php lJ oGo ||Links * | .Y’ »

=

Which type of pet are you interesied in?
Choose as many ypes of pets as you want.

I cat
™ dragon
I hotse

Select Type of Pet |

£] Done D Internet

Using the information from the form

As 1 discuss earlier in this section, Joe Customer fills in an HTML form, selecting
from lists and typing information into text fields. He clicks the submit button.

In the form tag, you tell PHP which program to run when the submit

button is clicked. You do this by including action="programname"” in the
form tag. For instance, in most of the example listings in this chapter, I use
action="processform.php". When the user clicks the submit button,

the program runs and receives the information from the form. Handling form
information is one of PHP’s best features. You don’t need to worry about the
form data — just get it from one of the built-in arrays and use it.

The form data is available in the processing program in arrays, as shown in
Table 8-1. The key for the array element is the name of the input field in the
form. For instance, if you echo the following field in your form

echo "<input type='text' name='firstName'>";

228 Partii:pHp

the processing program can use the variable $_POST[firstName], which
contains the text that the user typed into the field. The information that the
user selects from selection drop-down lists or radio buttons is similarly avail-
able for use. For instance, if your form includes the following list of radio
buttons

echo "<input type='radio' name='interest' value='dog'>dog\n";
echo "<input type='radio' name='interest' value='cat'>cat\n";

you can access the variable $_P0ST[interest], which contains either dog or
cat, depending on what the user selected.

You handle check boxes in a slightly different way because the user can select
more than one check box. As shown in Listing 8-11, the data from a list of
check boxes can be stored in an array so that all the check boxes are avail-
able. For instance, if your form includes the following list of check boxes

echo "<input type='checkbox' name="interest[dog]"'
value="dog'>dog\n";

echo "<input type='checkbox' name="interest[cat]'
value="cat'>cat\n";

you can access the data by using the multidimensional variable
$_POST[interest], which contains the following:

$_POST[interest][dog] = dog
$_POST[interest][cat] cat

In some cases, you might want to access all the fields in the form. Perhaps you
want to check them all to make sure that the user didn’t leave any fields blank.
As shown in program processform.php, earlier in this chapter (see Listing
8-5), you can use foreach to walk through the $_POST or $_GET built-in array.
Most of the sample programs and statements in this book use the post
method. The keys are the field names. See the sidebar “Post versus get” for
more on the two methods.

For instance, suppose your program includes the following statements to dis-
play a form:

echo "<form action="processform.php' method='POST'>\n";

echo "<input type='text' name='lname' value='Smith'>
\n";

echo "<input type='radio' name='interest' value='dog'>dog\n";

echo "<input type='radio' name='interest' value='cat'>cat\n";

echo "<input type='hidden' name='hidvar' value='3'>\n";

echo "
<input type='submit' value='Select Type of Pet'>
</form>\n";

The program processform.php contains the following statements that will
list all the variables received from the form:

foreach ($_POST as $field => $value)

{

echo "$field,
1

$value
";

The output from the foreach loop would be

Iname, Smith
interest, dog
hidvar, 3

The output shows three variables with these three values for the following

reasons:

v The user didn’t change the text in the text field. The value "Smith"
that the program displayed is still the text in the text field.

v The user selected the radio button for dog. The user can select only

one radio button.

1 The program passed a hidden field named hidvar. The program sets
the value for hidden fields. The user can’t affect the hidden fields.

Post versus get

You use one of two methods to submit form
information. The methods pass the form data
differently and have different advantages and
disadvantages.

v get method: The form data is passed
by adding it to the URL that calls the form-
processing program. For instance, the URL
might look like this:

processform.php?Iname=Smith&
fname=Goliath

The advantages of this method are simplicity
and speed. The disadvantages are that less
data can be passed and that the information
is displayed in the browser, which can be a
security problem in some situations.

v post method: The form data is passed as a
package in a separate communication with

the processing program. The advantages of
this method are unlimited information pass-
ing and security of the data. The disadvan-
tages are the additional overhead and
slower speed.

For CGI programs that are not PHP, the program
that processes the form must find the informa-
tion and put the data into variables. In this case,
the get method is much simpler and easier to
use. Many programmers use the get method
for this reason. However, PHP does all this work
foryou. The get and post methods are equally
easy to use in PHP programs. Therefore, when
using PHP, it's almost always better to use the
post method because you have the advan-
tages of the post method (unlimited data pass-
ing, better security) without its main disadvan-
tage (more difficult to use).

Chapter 8: Data In, Data Qut 2 2 9

230 Ppartii:Php

Checking the information

Joe Customer fills in an HTML form, selecting from lists and typing informa-
tion into text fields. He clicks the submit button. You now have all the infor-
mation that you wanted. Well, maybe. Joe might have typed information that
has a typo in it. Or he might have typed nonsense. Or he might even have
typed in malicious information that can cause problems for you or for other
people using your Web site. Before you use Joe’s information or store it in
your database, you want to check it to see that it is the information that you
asked for. Checking the data is validating the data.

Validating the data includes the following:

1 Checking for empty fields: You can require users to enter information in
a field. If the field is blank, the user is told that the information is
required, and the form is displayed again so the user can type the miss-
ing information.

1 Checking the format of the information: You can check the information
to see that it is in the correct format. For instance, ab3& *xx is clearly
not a valid ZIP code.

Checking for empty fields

When you create a form, you can decide which fields are required and which
are optional. Your decision is implemented in the PHP program. You check
the fields that are required for information. If a required field is blank, you
send a message to the user, indicating the field is required, and you then
redisplay the form.

The general format to check for empty fields is

if ($last_name == "")
{
echo "You did not enter your last name.
Last name is required.
\n";
display the form;
exit();

1
echo " Welcome to the Members Only club.
You may select from the menu below.
\n";

display the menu;

Notice the exit statement. exit statements end the program. Without the

exit statement, the program would continue to the statements after the if
statement. In other words, without the exit statement, the program would
display the form and then continue to echo the welcome statement and the
menu as well.

Chapter 8: Data In, Data Qut 2 3 1

In many cases, you want to check all the fields in the form. You can do this by
looping through the array $ _POST. The following statements check the array
for any empty fields:

foreach ($_POST as $value)
{
if ($value == "")
{
echo "You have not filled in all the fields
\n";
display the form;
exit();
1
}
echo "Welcome";

\g
) When you redisplay the Web form, make sure that it contains the information
that the user already typed. If users have to retype information, they are
likely to get frustrated and leave your Web site.

In some cases, you might require the user to fill in most of the fields but not
all of them. For instance, you might request a fax number in the form or pro-
vide a field for a middle name, but you don’t really mean to restrict registra-
tion on your Web site to only users with middle names and faxes. In this case,
you can just make an exception for the fields that are not required, as follows:

foreach ($_POST as $field => $value)
{
if ($field != "fax" and $field != "middle_name")
{
if ($value == "")
{
echo "You have not filled in all the fields
\n":
display the form;
exit();
1

}
1
echo "Welcome";

Notice that the outside if conditional statement is true only if the field is not
the fax field and is not the middle name field. For those two fields, the pro-
gram does not reach the inside i f statement, which checks for blank fields.

In some cases, you might want to tell the user exactly which fields need to be
filled in. The checkBlank.php program in Listing 8-12 processes a form with
four fields: first_name, middle_name, 1ast_name, and phone. All the fields
are required except midd1e_name. In the example shown in Figure 8-13, the
user didn’t enter a first name: The resulting error message when the form is
processed tells the user which field was left blank.

232

Part Ill: PHP

Listing 8-12: Program That Checks for Blank Fields

<?php
/* Program name: checkBlank.php
* Description: Program checks all the form fields for
u blank fields.
=)
?>
<html>
<head><title>Empty fields</title></head>
<body>
<?php
/* set up array of field Tabels */
$l1abel_array = array ("first_name" => "First Name",
"middle_name" => "Middle Name",
"Tast_name" => "Last Name",
"phone" => "Phone");
/* check each field except middle name for blank fields */
foreach ($_POST as $field => $value)
{
if ($field != "middle_name")
{

if ($value == "")
{

}
1
} // end of foreach loop for $_POST
/* if any fields were blank, display error message and
form */
if (@sizeof($blank_array) > 0) //if blank fields are found
{

$blank_array[$field] = "blank";

echo "You didn't fill in one or more required fields.
You must enter:
";

/* display 1list of missing information */
foreach($blank_array as $field => $value)
{

echo " {$Tabel_array[$fieldl}
";
} //end of foreach loop for blanks
/* redisplay form */
$first_name=trim(strip_tags($_POST['first_name']l));
$middle_name=trim(strip_tags($_POST['middle_name']l));
$last_name=trim(strip_tags($_POST['last_name']));
$phone=trim(strip_tags($_POST['phone']));
echo "<p><hr>

<form action='checkBlank.php' method='POST'>

<center>

{table width="'95%"' border="'0"' cellspacing="0"

cellpadding="2">
<tr><td align='right'>{$label_array['first_name']}:
</br></td>
<td><input type='text' name='first _name' size='65"
maxlength="65"
value='{$first_name}' ></td>

Chapter 8: Data In, Data Qut 2 33

>

</tr>
<tr><td align='right'>{$1label_array['middle_name']}:
</hr></td>
<td><input type='text' name='middle_name' size='65"
maxlength="65" value='$middle_name' > </td>
</tr>
<tr><td align='right'>{$1abel_arrayl['last_name']}:
</td>
<td> <input type='text' name='last_name' size='65"
maxlength="65" value='$last_name'> </td>
</tr>
<tr><td align="right'>{$1abel_array['phone']}:
</td>
<td> <input type='text' name='phone' size='65"
maxlength="65" value='$phone'> </td>
</tr>
</table>
<p><input type='submit'
value="Submit name and phone number'>
</form>
<{/center>";
exit();
}
echo "Welcome";

</body></html1>

To check for blanks, the program does the following:

1.

Sets up an array of field labels. These labels are used as labels in the
form and are also used to display the list of missing information.

. Loops through all the variables passed from the form, checking for

blanks. The variables are in the array $ _POST. Any blank fields that are
found are added to an array of blank fields $blank_array.

. Checks whether any blank fields were found. Checks the number of

items in $blank_array.

4. If zero blank fields were found, jumps to welcome message.

5. If one or more blank fields were found:

i. Displays an error message. This message explains to the user that
some required information is missing.

ii. Displays a list of missing information. Loops through
$blank_array and displays the label(s).

iii. Displays the form. Because the form includes variable names in the
value attribute, the information that the user previously entered is
retrieved from $_POST and displayed.

iv. Exits. Stops after the form displays. The user must click the submit
button to continue.

234 Partur:pHp

\NG/
&“Q‘“

|
Figure 8-13:
The result of
processing
a form with
missing
information.
|

Remember, programs that process forms use the information from the form.
If you run them by themselves, they don’t have any information passed from
the form and will not run correctly. These programs are intended to run when
the user presses the submit button for a form.

Don’t forget the exit statement. Without the exit statement, the program
would continue and would display the welcome message after displaying the
form.

Figure 8-13 shows the Web page that results if the user didn’t enter his or

her first or middle name. Notice that the list of missing information doesn’t
include Middle Name because Middle Name is not required. Also, notice that
the information the user originally typed into the form is still displayed in the
form fields.

Checking the format of the information

Whenever users must type information in a form, you can expect a certain
number of typos. You can detect some of these errors when the form is submit-
ted, point out the error(s) to the user, and then request that he or she retype
the information. For instance, if the user types 8899776 in the ZIP code field,
you know this is not correct. This information is too long to be a ZIP code and
too short to be a ZIP+4 code.

2 Empty fields - Microsoft Internet Explorer

Eile Edit WYiew Favorites Tools Help
.2 .0 [& @ @ I D 9 v . @
Back' Fomwasd Stop Refiesh Home Sesch Favontes Historpy | Mail Fiink Eii Realcam N)
Address [@] hitp://janetval.sann. com/PHPEMy S OLfoDummies/checkBlank php =] @Bo ||Links *|| "R »
=
You didn"t fill in one or more required fields. You must enter:
First Hame
ﬂ.rstNm:l
Middle Narme: |
Last Name: [Smith
Phone: [555-555-5555
Submitname and address
&] Done i_- |_Iﬂ Intermnet

\NG/
&VQ‘“

Chapter 8: Data In, Data Qut 2 3 5

You also need to protect yourself from malicious users — users who might
want to damage your Web site or your database or steal information from you
or your users. You don’t want users to enter HTML tags into a form field —
something that might have unexpected results when sent to a browser. A par-
ticularly dangerous tag would be a script tag that allows a user to enter a
program into a form field.

If you check each field for its expected format, you can catch typo s and pre-
vent most malicious content. However, checking information is a balancing
act. You want to catch as much incorrect data as possible, but you don’t want
to block any legitimate information. For instance, when you check a phone
number, you might limit it to numbers. The problem with this check is that

it would screen out legitimate phone numbers in the form 555-5555 or (888)
555-5555. So you also need to allow hyphens (-), parentheses (), and spaces.
You might limit the field to a length of 14 characters, including parentheses,
spaces, and hyphens, but this screens out overseas numbers or numbers that
include an extension. The bottom line: You need to think carefully about what
information you want to accept or screen out for any field.

You can check field information by using regular expressions, which are pat-
terns. You compare the information in the field against the pattern to see
whether it matches. If it doesn’t match, the information in the field is incorrect,
and the user must type it over. (See Chapter 6 for more on regular expressions.)

In general, these are the statements that you use to check fields:

if (lereg("pattern",$variablename))

echo error message;
redisplay form;
exit();

1

echo "Welcome";

Notice that the condition in the if statement is negative. That is, the ! (excla-
mation mark) means "not". So, the i f statement actually says: If the variable
does not match the pattern, execute the i f block.

For example, suppose that you want to check an input field that contains the
user’s last name. You can expect names to contain letters, not numbers, and
possibly apostrophe and hyphen characters (as in O’Hara and Smith-Jones,
respectively) and also spaces (as in Van Dyke). Also, it’s difficult to imagine a
name longer than 50 characters. Thus, you can use the following statements
to check a name.

236

Part Ill: PHP

NNG/
&

if (lereg("[A-Za-z' -1{1,50}",%$1last_name)

{
echo error message;
redisplay form;
exit();

}

echo "Welcome";

If you want to list a hyphen (-) as part of a set of allowable characters sur-
rounded by square brackets ([]), you must list the hyphen at the beginning
or at the end of the list. Otherwise, if you put it between two characters, the
program will interpret it as the range between the two characters, such as A-Z.

In the preceding section, you find out how to check every form field to ensure
that it isn’t blank. In addition to that, you will probably also want to check all
the fields that have data to be sure the data is in an acceptable format. You
can check the format by making a few simple changes to the program in
Listing 8-12. Listing 8-13 shows the modified program, called checkA11.php.

Listing 8-13: Program That Checks All the Data in Form Fields

{?php

/* Program name: checkAll.php

* Description: Program checks all the form fields for
i blank fields and incorrect format.

)

»

<html>

<head><titledEmp.ty fields</title></head>
<body>
<{?php
/* set up array of field labels */
$1abel_array = array ("first_name" => "First Name",
"middle_name" => "Middle Name",
"last_name" => "lLast Name",
"phone" => "Phone");
foreach ($_POST as $field => $value)
{
/* check each field except middle name for blank fields */
if ($value == "")
{
if ($field != "middle_name")
{
$blank_array[$field] = "blank";
}
}
elseif ($field == "first_name" or $field == "middle_name"
or $field == "lTast_name")
{
if (lereg("~[A-Za-z' -]{1,50}%",$_POST[$field]))
{

Chapter 8: Data In, Data Qut 2 3 7

$bad_format[$field] = "bad";
}
}
elseif ($field == "phone")
{
if(lereg("~[0-9)(-1{7,20} (([xX]|(ext)|(ex))?[-1200-91{1,7})?$", $value))
{
$bad_format[$field] = "bad";
}
}
}
/* if any fields were not okay, display error message and form */
if (@sizeof($blank_array) > 0 or @sizeof($bad_format) > 0)
{
if (@sizeof($blank_array) > 0)
{
/* display message for missing information */
echo "You didn't fill in one or more required fields. You must
enter:
";
/* display list of missing information */
foreach($blank_array as $field => $value)
{
echo " {$Tabel_array[$field]}
";
}
}
if (@sizeof($bad_format) > 0)
{
/* display message for bad information */
echo "One or more fields have information that appears to be
incorrect. Correct the format for:
";
/* display 1ist of bad information */
foreach($bad_format as $field => $value)
{
echo " {$1abel_array[$field]}
";
}
}
/* redisplay form */
$first_name = $_POST['first_name'];
$middle_name = $_POST['middle_name'];
$1ast _name = $ POST['Tast name'];
$phone = $_POST['phone'1;
echo "<p><hr>
<{form action="'checkAl1.php"' method="POST'>
{center>
<table width="95%" border='0" cellspacing="0"' cellpadding="2">
<tr><td align="right'>{$1abel_array['first_name']}:<{/br></td>
<td><input type='text' name='first_name' size='65' maxlength='65"
value="$first_name' > </td>
</t
<tr><td align="'right'>{$1abel_array['middle_name']}:</br></td>
{td><input type='text' name='middle_name' size='65"' maxlength='65"
value="$middle_name' > </td>

(continued)

238 Partii:Pp

Listing 8-13 (continued)

</t
<tr><td align="'right'>{$1abel_array['last_name']}:</td>
<td> <input type='text' name='last_name' size='65"' maxlength="'65"
value="$1last_name'> </td>

</tr>
<tr><td align="right'>{$1abel_array['phone']}:</td>
<{td> <input type='text' name='phone' size='65"' maxlength="'65"
value="$phone'> </td>
<t
<{/table>
<{p><input type="submit' value='Submit name and phone number'>
</ form>
{/center>";
exit();
}
echo "Welcome";

2>
</body></htm1>

Here are the differences between this program and the program in Listing 8-12:

v~ This program creates two arrays for problem data. It creates
$bTank_array, as did the previous program. But this program also
creates $bad_format for fields that contain information that is not in
an acceptable format.

v~ This program loops through $bad_format to create a separate list of
problem data. If any fields are blank, it creates one error message and
list of problem fields, as did the previous program. If any fields are in an
unacceptable format, this program also creates a second error message
and list of problem fields.

The Web page in Figure 8-14 results when the user accidentally types his or
her first name into the Middle Name field and also types nonsense for his or
her phone number. Notice that two error messages appear, showing that
the First Name field is blank and that the Phone field contains incorrect
information.

Giving users a choice with
multiple submit buttons

You can use more than one submit button in a form. For instance, in a cus-
tomer order form, you might use a button that reads Submit Order and another
button that reads Cancel Order. However, you can only list one program in the
action=programname part of your form tag, meaning that the two buttons
run the same program. PHP solves this problem. By using PHP, you can
process the form differently, depending on which button the user clicks.

Chapter 8: Data In, Data Qut 2 3 9

L Check all fields - Netscape
e Edit View Go Communicator Help

2 & A4 N 2 bW o $ & @
Bace_z__ “onweErd Reload ____}-iqj'_\e___Search Nelscape Print Seourt_y S . .
" Bookmarks i Location: [Fitp:2 fenetval san in.com/PHPEMyS O LioiDummiss /checkAllphp =] @17 what's Related

& intemet 4 Lockup [§ MewtCool |E ReaPlayer

You didn't fill in one or more required fields. You must enter:
First Mame

One or more fields have information that appears to be incorrect. Correct the format for:
Phone

First Name: |

Middle Name: [Goliath

—— Last Name: [sn:th

Figure 8-14: Phone: |>cxx—xxxx
The I'ESU|F of Subrmit name and phone nurmber
processing
a form
with both
missing and
incorrect
information.
|

Document: Done S W e

[
¥

The following statements create a form with two submit buttons:

<form action="twoButtons.php" method="P0OST">
<input type="text" name="last_name" maxlength="50">

<input type="submit" name="display_button"
value="Show Address">
<input type="submit" name="display_button"
value="Show Phone Number">
</ form>

Notice that the submit button fields have a name: display_button. The
fields each have a different value. Whichever button the user clicks sets the
value for $display_button. The program twoButtons.php in Listing 8-14
processes the preceding form.

Listing 8-14: Program That Processes Two Submit Buttons

<?php

/* Program name: twoButtons.php

* Description: Program displays different information
u depending on which submit button was

& pushed.

(continued)

240 Partur:prp

Listing 8-14 (continued)

=Y
?>
<html>
<head><title>Member Address or Phone Number</title></head>
<body>
<?php
$user="admin";
$host="1ocalhost";
$password="";
$database = "MemberDirectory";
$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");
$db = mysql_select _db($database,$connection)
or die ("Couldn't select database");
if ($_POST['display_button'] == "Show Address")
{

$query = "SELECT street,city,state,zip FROM Member
WHERE TastName='$_POST[last_name]l'";
$result = mysql_query($query)
or die ("Couldn't execute query.");
$row = mysql_fetch_array($result);
extract($row);
echo "$street
$city, $state $zip
";
}
else
{
$query = "SELECT phone FROM Member
WHERE TastName='$_POST[last_namel'";
$result = mysql_query($query)
or die ("Couldn't execute query.");
$row = mysql_fetch_array($result);
echo "Phone: {$row['phone']}
";
?>}
</body></html>

The program executes different statements, depending on which button is
clicked. If the user clicks the button for the address, the program outputs the
address for the name submitted in the form; if the user clicks the Show Phone
Number button, the program outputs the phone number.

Putting Information into a Database

Your application probably needs to store data in your database. For example,
your database might store information that a user typed into a form for your
use — a Member Directory is a good example of this. Or your database might
store data temporarily during the application. Either way, you store data by

sending SQL queries to MySQL. (I explain SQL queries in detail in Chapter 4.)

Chapter 8: Data In, Data Qut 2 4 1

Preparing the data

You need to prepare the data before storing it in the database. Preparing the
data includes the following:

v Putting the data into variables
v Making sure that the data is in the format expected by the database
v Cleaning the data

Putting the data into variables

You store the data by sending it to the database in an SQL query. You store
the data in variables and include the variable names in the query. By using
PHP, this process is simple. The user provides most of the data that you want
to store via a form. As I discuss earlier in this chapter, PHP stores the data in
a variable with the name of the form field, invisibly and automatically, with-
out your having to store it yourself. You just use the variables that PHP pro-
vides. Occasionally, you want to store information that you generate yourself,
such as today’s date or a customer order number. You just need to store this
information in a variable so that you can include it in a query.

Using the correct format

When you design your database, you set the data type for each column. The
data that you want to store must match the data type of the column that you
want to store it in. For instance, if the column expects a data type integer, the
data sent must be numbers. Or if the column expects data that’s a date, the
data that you send must be in a format that MySQL recognizes as a date. If you
send incorrectly formatted data, MySQL still stores the data, but it might not
store the value that you expected. Here’s a rundown of how MySQL stores
data for the most frequently used data types:

v CHAR or VARCHAR: Stores strings. MySQL stores pretty much any data sent
to a character column, including numbers or dates, as strings. When you
created the column, you specified a length. For example, if you specified
CHAR(20), only 20 characters can be stored. If you send a string longer
than 20 characters, only the first 20 characters are stored. The remaining
characters are dropped.

\3
) Set the max1ength for any text input fields in a form to the same length as

the column width in the database where the data will be stored. That way,
the user can’t enter any more characters than the database can store.

v INT or DECIMAL: Stores numbers. MySQL will try to interpret any data
sent to a number column as a number, whether it makes sense or not. For
instance, it might interpret a date as a number, and you could end up with
a number like 2001.00. If MySQL is completely unable to interpret the data
sent as a number, it stores 0 (zero) in the column.

242 Partur:pHp

v DATE: Stores dates. MySQL expects dates as numbers, with the year first,
month second, and day last. The year can be two or four digits (2001 or
01). The date can be a string of numbers, or each part can be separated
by a hyphen (), a period (.), or a forward slash (/). Some valid date for-
mats are 20011203, 980103, 2001-3-2, and 2000.10.01. If MySQL cannot
interpret the data sent as a date, it stores the date as 0000-00-00.

v ENUM: Stores only the values that you allowed when you created the
column. If you send data that is not allowed, MySQL stores a 0.

In many cases, the data is collected in a form and stored in the database as-is.
For instance, users type their names in a form, and the program stores them.
However, in some cases, the data needs to be changed before you store it. For
instance, if a user enters a date into a form in three separate selection lists for
month, day, and year (as [describe in the section, “Building selection lists,”
earlier in this chapter), the values in the three fields must be put together into
one variable. The following statements put the fields together:

$expDate = $_POST['expYear']."-";
$expDate .= $_POST['expMonth']."-";
$expDate .= $_POST['expDay'];

Another case in which you might want to change the data before storing it is
when you’re storing phone numbers. Users enter phone numbers in a variety
of formats, using parentheses, dashes, dots, or spaces. Rather than storing
these varied formats in your database, you might just store the numbers.
Then when you retrieve a phone number from the database, you can format
the number however you want before you display it. The following statement
removes characters from the string:

$phone = ereg_replace("[)(.-1","",$_POST['phone']);

The function ereg_replace uses regular expressions to search for a pattern.
The first string passed is the regular expression to match. If any part of the
string matches the pattern, it is replaced by the second string. In this case,
the regular expression is [) (. -], which means any one of the characters in
the square brackets. The second string is "", which is a string with nothing in
it. Therefore, any spaces, parentheses, dots, or hyphens in the string are
replaced by nothing.

Cleaning the data

The earlier section “Getting Information from the User,” which describes the
use of HTML forms, discusses checking the data in forms. Users can type
data into a text field, either accidentally or maliciously, that can cause prob-
lems for your application, your database, or your users. Checking the data
and accepting only the characters expected for the information requested
can prevent many problems. However, you can miss something. Also, in some

Chapter 8: Data In, Data Qut 2 43

cases, the information that the user enters needs to allow pretty much any-
thing. For instance, you normally wouldn’t allow the characters < and > in a
field. However, there might be a situation in which the user needs to enter
these characters — perhaps the user needs to enter a technical formula or
specification that requires them.

PHP provides two functions that can clean the data, thus rendering it harmless:

v strip_tags: This function removes all text enclosed by < and > from
the data. It looks for an opening < and removes it and everything else,
until it finds a closing > or reaches the end of the string. You can include
specific tags that you want to allow. For instance, the following state-
ment removes all tags from a character string except and <i>:

$last_name = strip_tags($last_name, "<i>");

v htmlspecialchars: This function changes some special characters
with meaning to HTML into an HTML format that allows them to be dis-
played without any special meaning. The changes are

e < becomes &1t;
® > becomes > ;
® & becomes &

In this way, the characters < and > can be displayed on a Web page with-
out being interpreted by HTML as tags. The following statement changes
these special characters:

$last_name = htmlspecialchars($last name);

If you're positive that you don’t want to allow your users to type any < or >
characters into a form field, use strip_tags. However, if you want to allow <
or > characters, you can safely store them after they have been processed by
htmlspecialchars.

Another function that you should use before storing data in your database is
trim. Users often type spaces at the beginning or end of a text field without
meaning to. Trim removes any leading or trailing spaces so they don’t get
stored. Use the following statement to remove these spaces:

$last_name = trim($_POST['Tast_name']);

Adding new information

You use the INSERT query (described in Chapter 4) to add new information
to the database. INSERT adds a new row to a database table. The general
format is

244 Partur:prp

$query = "INSERT INTO tablename (col,col,col...)
VALUES ('var', 'var', 'var'...)";
$result = mysql_query($query)
or die ("Couldn't execute query.");

For instance, the statements to store the name and phone number that a user
entered in a form are

$firstName = "Goliath"; // from form field
$lastName = "Smith"; // from form field
$phone = "555-555-5555"; // from form field
$query = "INSERT INTO Member (lastName,firstName,phone)

VALUES ('$lastName','$firstName', '$phone')";
$result = mysql_query($query)
or die ("Couldn't execute query.");

Listing 8-15 shows a program called savePhone.php that stores a name and a
phone number from a form.

Listing 8-15: Program That Stores Data from a Form

{?php

/* Program name: savePhone.php

* Description: Program checks all the form fields for

& blank fields and incorrect format. Saves the

u correct fields in a database.

=

[

<html>

<head><title>Member Phone Number</title></head>

<body>

{?php

$first_name = strip_tags(trim($_POST['first_name'l));
$1ast_name = strip_tags(trim($_POST['Tast_name']));
$phone = strip_tags(trim($_POST['phone'1));
$phone = ereg_replace("[)(.-1","",$phone);

/* check information from the form */

/* set up array of field labels */
$1abel_array = array ("first_name" => "First Name",
"Tast_name" => "lLast Name",
"phone" => "Phone");
foreach ($_POST as $field => $value)
{
/* check each field for blank fields */
if ($value == "")
{
$blank_array[$field] = "blank";
}
elseif (ereg("(name)",$field))

Chapter 8: Data In, Data Qut 2 4 5

{
if (lereg("~[A-Za-z' -1{1,50}%",$_POST[$field]))
{
$bad_format[$field] = "bad";
}
}
elseif ($field == "phone")
{
if(lereg("~[0-9)(-1{7,20} (([xX]1|(ext)|(ex))?[-1200-91(1,7})?$",%value))
{
$bad_format[$field] = "bad";
}
}
} // end of foreach for $_POST
/* if any fields were not okay, display error message and form */
if (@sizeof($blank_array) > 0 or @sizeof($bad format) > 0)
{
if (@sizeof($blank_array) > 0)
{
/* display message for missing information */
echo "You didn't fill in one or more required fields.
You must enter:
";
/* display list of missing information */
foreach($blank_array as $field => $value)
{
echo " {$Tabel_array[$fieldl}
";
}
}
if (@sizeof($bad_format) > 0)
{
/* display message for bad information */
echo "One or more fields have information that appears to
be incorrect. Correct the format for:
";
/* display list of bad information */
foreach($bad_format as $field => $value)
{
echo " {$1abel_array[$fieldl}
";
}
}
/* redisplay form */
echo "<p><hr>
<{form action='checkAl1.php"' method="'POST'>
{center>
{table width='95%" border='0" cellspacing='0" cellpadding="2"'>
<tr><td align='right'>{$1abel_array['first_name']}:</br></td>
{td><input type="text' name='first_name' size='65"' maxlength='65"
value="$first_name' > </td>
</tr>
<tr><td align="right'>{$1abel_array['last_name']}:</td>
<td> <input type='text' name='last_name' size='65' maxlength='65"
value="$Tast_name'> </td>
</t

(continued)

2406 Partin:php

NNG/
&

Listing 8-15 (continued)

<tr><td align="right'>{$1abel array['phone']}:</td>
<td> <input type='text' name='phone' size='65"' maxlength="65"
value="$phone'> </td>
<Jtr>
{/table>
<{p><input type="submit' value='Submit name and phone number'>
</ form>
{/center>";
exit();
}
else //if data is okay
{
$user="admin";
$host="Tocalhost";
$password="";
$database = "MemberDirectory";
$connection = mysql_connect($host,$user,$password)
or die ("couldn't connect to server");
$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");
$query = "INSERT INTO Member (lastName,firstName,phone)
VALUES ('$1ast_name','$first_name','$phone')";
$result = mysql_query($query)
or die ("Couldn't execute query.");
echo "New Member added to database
";
}
[
</body></htm1>

This program builds on the program in Listing 8-14. It checks the data from
the form for blank fields and incorrect formats, asking the user to retype the
data when it finds a problem. If the data is okay, the program trims the data,
cleans it, and stores it in the database.

The program in Listing 8-15 is a demonstration program showing how to add
a single line to a database table. If you use this program, you can only add a
single customer to the database because this program does not create or
insert a unique login name. You need to delete the customer that you added
before you can run the program again. This is not a program that you would
use to add customers in a real situation. It’s just a very simple demo program
to show the principles needed. Listing 12-3 in Chapter 12 is an example of a
real program for adding customers that would be useful for a real Web
application.

Your application might need to store data in several different places. A function
that stores data from a form can be very useful. The following is a function that
stores all the data in a form:

Chapter 8: Data In, Data Qut 2 4 7

function storeForm($formdata,$tablename)
{
if (lis_array($formdata))
{
return FALSE;
exit();
}
foreach ($formdata as $field => $value)
{
$formdatal$field] trim($formdatal$field]);
$formdatal$field] strip_tags($formdatal[$field]);
if ($field == "phone")
{

$formdatal$field] =
ereg_replace("[)(.-1","",$formdatal$field]);
}
$field_array[1=$field;
$value_arrayl[]l=$formdatal$field];
1
$fields=implode(",",$field_array);
$values=implode('",""',$value_array);
$query = "INSERT INTO $tablename ($fields)
VALUES (\"$values\")";
$result = mysql_query($query)
or die ("Couldn't execute query.");
return TRUE;

}

The function returns TRUE if it finishes inserting the data without an error. At
the beginning, the function checks that the data passed to it is actually an
array. If $formdata is not an array, the function stops and returns FALSE.

Notice that this function works only if the field names in the form are the
same as the column names in the database table. Also notice that this func-
tion assumes that you're already connected to the MySQL server and have
selected the correct database. By using this function, here is the last part of
the program in Listing 8-15:

else //if data is okay
{
$stored = storeForm($_POST, "Member") ;
echo "New Member added to database
";
}
?>
</body></html>

Notice how much easier this program is to read with the majority of the state-
ments in the function. Furthermore, this function works for any form as long
as the field names in the form are the same as the column names in the data-
base table. If the function is unable to execute the query, it stops execution at
that point and prints the error message "Couldn't execute query".If there
are circumstances in which the query might fail, you need to take these into
consideration.

248 Partur:prp

Updating existing information

You update existing information with the UPDATE query, as I describe in
Chapter 4. Updating means changing data in the columns of rows that are
already in the database — not adding new rows to the database table. The
general format is

$query = "UPDATE tablename SET col=value WHERE col=value";
$result = mysql_query($query)
or die ("Couldn't execute query.");

For instance, the statements to update the phone number for Goliath Smith are

WING/
N If

$firstName = "Goliath"; // from form field
$lastName = "Smith"; // from form field
$phone = "555-555-5555"; // from form field

$query = "UPDATE Member SET phone='$phone'
WHERE TastName='$lastName'
AND firstName='$firstName'";
$result = mysql_query($query)
or die ("Couldn't execute query.");

you don’t use a WHERE clause in an UPDATE query, the field that is SET is set

for all the rows. That is seldom what you want to do.

Listing 8-16 shows a program called updatePhone.php that stores a name
and a phone number from a form.

Listing 8-16: Program That Updates Data

{?php
/* Program name: updatePhone.php
* Description: Program checks the phone number for incorrect format. Updates
* the phone number in the database for the specified name.
)
[
<html>
<head><title>Member Phone Number</title></head>
<body>
{?php
$phone = strip_tags(trim($_POST['phone'1));
$phone = ereg_replace("[)(.-1","",$phone);
$first_name = $ _POST['first_name'];
$1ast_name = $_POST['last_name'];

/* check information from the form */

/* set up array of field labels */

$1abel_array = array ("first_name" => "First Name",
"last_name" => "Last Name",

Chapter 8: Data In, Data Qut 2 4 9

"phone" => "Phone");
foreach ($_POST as $field => $value)
{
/* check each field for blank fields */
if ($value == "")
{
$blank_array[$field] = "blank";
}
elseif (ereg("(name)",$field))
{
if (lereg("*[A-Za-z"' -1{1,50}$",$_POST[$field]))
{
$bad_format[$field] = "bad";
}
}
elseif ($field == "phone")
{
if(lereg("~[0-9)(-1(7,20) (([xX1|(ext)|(ex))?L -1200-91{1,7})?%",$value))
{
$bad_format[$field] = "bad";
}
}
}
/* if any fields were not okay, display error message and form */
if (@sizeof($blank_array) > 0 or @sizeof($bad_format) > 0)
{
if (@sizeof($blank_array) > 0)
{
/* display message for missing information */
echo "You didn't fill in one or more required
fields. You must enter:
";
/* display list of missing information */
foreach($blank_array as $field => $value)
{
echo " {$1abel_array[$field]}
";
}
}
if (@sizeof($bad_format) > 0)
{
/* display message for bad information */
echo "One or more fields have information that
appears to be incorrect. Correct the format
for:
";
/* display list of bad information */
foreach($bad_format as $field => $value)
{
echo " {$1abel_array[$field]}
";
}
}
/* redisplay form */
echo "<p><hr>
{form action="checkAll.php' method="'POST'>

(continued)

250 rartiipup

Listing 8-16 (continued)

7>

}

{center>
{table width="95%" border='0" cellspacing='0"
cellpadding="'2">
<tr><td align='right'>
{$Tabel_array['first_name']}:</td>
<td><input type="text' name='first_name' size='65"
maxlength="65" value='$first_name' > </td>
<t
<tr><td align="'right'>
{$Tabel_array['Tast_name']}:</td>
<td> <input type='text' name='last _name' size='65"
maxlength="65" value="$Tast_name'> </td>
<t
<tr><td align='right'>
{$1abel_array['phone']}:</td>
<td> <input type='text' name='phone' size='65"
maxlength="65" value="$phone'> </td>
<t
<{/table>
<p><input type="submit'
value="Submit name and phone number'>
</ form>
{/center>";

exit();

else //if data is okay

{

$user="admin";
$host="Tocalhost";

$password="";
$database = "MemberDirectory";
$connection = mysql_connect($host,$user,$password)

or die ("couldn't connect to server");

$db = mysql_select db($database,$connection)

}

or die ("Couldn't select database");

$query = "UPDATE Member SET phone="$phone’

WHERE TastName='$last_name' AND firstName='$first_name'";

$result = mysql_query($query)
or die ("Couldn't execute query.".mysql_error());
echo " Member phone number has been updated
";

</body></htm1>

The program in Listing 8-16, which updates the database, is almost identical
to the program in Listing 8-15, which adds new data. Using an UPDATE query
in this program — instead of the INSERT query you used to add new data —
is the major difference. Both programs check the data and then clean it
because both programs store the data in the database.

Chapter 8: Data In, Data Qut 2 5 1

Getting Information in Files

Sometimes you want to receive an entire file of information from a user, such
as user résumés for your job-search Web site or pictures for your photo
album Web site. Or, suppose that you're building the catalog from informa-
tion supplied by Sales. In addition to descriptive text about the product, you
want Sales to provide you with a picture of the product. You can provide a
form that Sales can use to upload an image file.

Using a form to upload the file

You can display a form that allows a user to upload a file by using an HTML
form designed for that purpose. The general format of the form is as follows:

<form enctype="multipart/form-data"
action="processfile.php" method="POST">
<input type="hidden" name="MAX_FILE SIZE" value="30000">
<input type="file" name="user_file">
<input type="submit" value="Upload File">
</ form>

Notice the following points regarding the form:

v The enctype attribute is used in the form tag. You must set this attribute
tomultipart/form-data when uploading a file to ensure that the file
arrives correctly.

v A hidden field is included that sends a value (in bytes) for
MAX_FILE_SIZE. If the user tries to upload a file that is larger than this
value, it won’t upload. You can set this value as high as 2MB. If you need
to upload a file larger than that, you need to change the default setting for
upload_max_filesizein php.ini to alarger number before sending a
value larger than 2MB for MAX_FILE_SIZE in the hidden field.

+~ The input field that uploads the file is of type file. Notice that the
field has a name — user_file — as do other types of fields in a form.
The filename that the user enters into the form is sent to the processing
program and is available in the built-in array called FILES. I explain the
structure and information in FILES in the following section.

When the user submits the form, the file is uploaded to a temporary location.
The script that processes the form needs to copy the file to another location
because the temporary file is deleted as soon as the script is finished.

252 Ppartii:prp

Processing the uploaded file

Information about the uploaded file is stored in the PHP built-in array called
$_FILES. An array of information is available for each file that was uploaded,
resulting in $§_FILES being a multidimensional array. As with any other form,
you can obtain the information from the array by using the name of the field.
The following is the array available from $_FILES for each file that is
uploaded.

$_FILES[L 'fieldname']['name"]
$ _FILESL "fieldname']["type']
$_FILES['fieldname']1["'tmp_name"']
$_FILES['fieldname']['size']

For example, suppose that you use the following field to upload a file, as
shown in the previous section:

<input type="file" name="user_file">

If the user uploads a file named test.txt by using the form, the resulting
array that can be used by the processing program looks something like this:

$_FILES[user_filellnamel test.txt
$_FILES[user_filelltypel = text/plain
$_FILESCuser_filel[tmp_namel = D:\WINNT\php92C.tmp
$_FILES[user_filellsize] = 435

In this array, name is the name of the file that was uploaded, type is the type
of file, tmp_name is the path/filename of the temporary file, and 435 is the
size of the file. Notice that name contains only the filename, but tmp_name
includes the path to the file as well as the filename.

If the file is too large to upload, the tmp_name in the array is set to none,

and the size is set to 0. The processing program must move the uploaded file
from the temporary location to a permanent location. The general format of
the statement that moves the file is as follows:

move_uploaded_file(path/tempfilename,path/permfilename) ;

The path/tempfilename is available in the built-in array element
$_FILES['fieldname']["tmp_file']. The path/permfilename is the
path to the file where you want to store the file. The following statement
moves the file uploaded in the input field, given the name user_file, shown
earlier in this section:

move_uploaded_file($_FILES['user_file']['tmp_name'],
'c:\data\new_file.txt');

Chapter 8: Data In, Data Qut 2 53

The destination directory (in this case, c: \data) must exist before the file
can be moved to it. This statement doesn’t create the destination directory:.

Security can be an issue when uploading files. Allowing strangers to load files
onto your computer is risky; malicious files are possible. You probably want
to check the files for as many factors as possible after they’re uploaded,
using conditional statements to check file characteristics, such as expected
file type and size. In some cases, for even more security, it might be a good
idea to change the name of the file to something else so that users don’t
know where their files are or what they’re called.

Putting it all together

A complete example script is shown in Listing 8-17. This program displays

a form for the user to upload a file, saves the uploaded file, and then displays
a message after the file has been successfully uploaded. That is, this program
both displays the form and processes the form. This program expects the
uploaded file to be an image file and tests to make sure that it is an image file,
but any type of file can be uploaded. The HTML code for the form is in the
include file shown in Listing 8-18. A Web page displaying the form is shown in
Figure 8-15.

Listing 8-17: A Script That Uploads a File by Using a POST Form

<?php

/* Script name: uploadFile.php
* Description: Uploads a file via HTTP using a POST form.
*/

if(lisset($_POST['Upload'])) #5
{
include("form_upload.inc");
} # endif
else 19
{
if($_FILES['pix'1["tmp_name'] == "none") #11
{

echo "File did not successfully upload. Check the
file size. File must be less than 500K.
";

include("form_upload.inc");

exit();

}
if(lereg("image",$_FILES['pix'1['type'])) 16
{

echo "File is not a picture. Please try another
file.
";

include("form_upload.inc");

exit();

}

(continued)

254

Part Ill: PHP

Listing 8-17 (continued)

else #23
{
$destination = 'c:\data'."\\".$_FILES['pix']['name'];
$temp_file = $ FILES['pix']J["tmp_name'];
move_uploaded_file($temp_file,$destination);
echo "<p>The file has successfully uploaded:
{$_FILES['pix"1["'name"']}
({$_FILES['pix'1['size"'I1N)</p>";
}
}
7>

[have added line numbers at the end of some of the lines in the script. The
script is discussed below with reference to these line numbers:

5 This line is an i f statement that tests whether the form has been sub-
mitted. If not, the form is displayed by including the file containing the
form code. The include file is shown in Listing 8-18.

9 This line starts an e1se block that executes if the form has been submit-
ted. This block includes the rest of the script and processes the submit-
ted form and uploaded file.

11 This line is an i f statement that tests whether the file was successfully
uploaded. If not, an error message is displayed, and the form is redis-
played.

16 This line is an i f statement that tests whether the file is a picture. If not,
an error message is displayed, and the form is redisplayed.

23 This line starts an e1se block that executes if the file has been success-
fully uploaded. The file is moved to its permanent destination, and a
message is displayed that the file has been uploaded.

Listing 8-18 shows the include file used to display the upload form.

Listing 8-18: An Include File That Displays the File Upload Form

<!-- Program Name: form_upload.inc
Description: Displays a form to upload a file -->
<html>
<head><title>File Upload</title></head>
<body>
<o1><Ti>Enter the file name of the product picture you want
to upload or use the browse button
to navigate to the picture file.</1i>
<1i>When the path to the picture file shows in the text
field, click the Upload Picture button.</1i>

|
Figure 8-15:
A form that
allows users
to upload an
image file.

Chapter 8: Data In, Data Qut 2 5 5

<div align="center"><hr>
<form enctype="multipart/form-data"
action="uploadFile.php" method="POST">
<input type="hidden" name="MAX_FILE SIZE" value="500000">

<input type="file" name="pix" size="60">
<p><input type="submit" name="Upload"
value="Upload Picture">
</form>
</body></html>

Notice that the include file doesn’t contain PHP code — just HTML code.

The form that allows users to select a file to upload is shown in Figure 8-15.
The form has a text field for inputting a filename and a browse button that
enables the user to navigate to the file and select it.

| File Edit View Favorites Tnols Help -
| &Back v = - (D] 4| Disearch (il Favorites -NjHlstmy | By & 2
| Address [£] http: #/localhost/PHPEMyS ALforDummies/uploadFile. php x| @60

1. Enter the file name of the product picture you want to upload or use the browse button to
nawigate to the pacture file.
2. “When the path to the picture file shows m the text field, click the Upload Picture button

Browse...
Upload Picture |

&) Done |_ ’_ |@‘E Local intranet 4

256 rartin:pup

Chapter 9

Moving Information from One
Web Page to the Next

In This Chapter

Moving your user from one page to the next

Moving information from one page to the next
Adding information to a URL

Taking a look at cookies

Using hidden form fields

Discovering PHP sessions

M ost Web sites consist of more than one Web page. This includes the
static Web pages that you may have developed in the past. With static
Web pages, users click links to move from one page to the next. Users click a
link in one Web page, and a new Web page appears in their browser. When
users move from page to page this way, no information is transferred from the
first page to the second. Each new page that is sent to the user’s browser is
independent of any other pages that the user may have seen previously. With
dynamic Web pages, you may need to transfer information from one page to
the next. If you are an advanced HTML developer, you may have some experi-
ence with limited methods for transferring information from one page to the
next by using HTML forms and CGI (Common Gateway Interface) or cookies.
However, PHP is much more powerful for passing information from Web page
to Web page.

Moving Vour User from
One Page to Another

When using HTML only, you provide links so that a visitor can go from one
page to another in your Web site. When using PHP, however, you have three
options for moving your user from one page to the next.

258 rpartnipup

v Links: You can echo the HTML tags that display a link. The general
format of an HTML statement that displays a link is

Text user sees as a link

When users click the link, the program newpage. php is sent to their
browser. This method is used extensively in HTML Web pages. You're
likely familiar with creating links from your HTML experience, but if you
need a refresher, find out more about links in any HTML book, such as
HTML 4 For Dummies Quick Reference, 2nd Edition, by Deborah S. Ray
and Eric J. Ray (Wiley).

v Form submit buttons: You can use an HTML form with one or more
submit buttons. When the user clicks a submit button, the program in
the formtag runs and sends a new Web page to the user’s browser. You
can create a form with no fields — only a submit button — but the user
must click the submit button to move to the next page.

I discuss forms and submit buttons thoroughly in Chapter 8.

1 The header function: You can send a message to the Web server that
tells it to send a new page by using the PHP header function. When
using this method, you can display a new page in the user’s browser
without the user having to click a link or a button.

The PHP header function can be used to send a new page to the user’s
browser. The program uses a header statement and displays the new Web
page without needing any user action. When the header statement is exe-
cuted, the new page is displayed. The format of the header function that
requests a new page is

header("Location: URL");

The file located at URL is sent to the user’s browser. Either of the following
statements are valid header statements:

header("Location: newpage.php");
header("Location: http://company.com/catalog/catalog.php");

The header function has a major limitation, however. The header statement
can only be used before any other output is sent. You cannot send a message
requesting a new page in the middle of a program after you have echoed
some output to the Web page. See the sidebar for a discussion of “Statements
that must come before output.”

Chapter 9: Moving Information from One Web Page to the Next 259

URLs

A URL (Uniform Resource Locator) is an address
on the World Wide Web. Every Web page has
its own URL or address. The URL is used by the
Web server to find the Web page and send it to
a browser.

The format of a URL is

HTTP://servername:portnumber/
pathittarget?string=string

Here’s a breakdown of the parts that make up
the URL:

v HTTP://servername: This tells the
server that the address is a Web site and
gives the name of the computer where the
Web site is located. Other types of transfer
can be specified, such as FTP (File Transfer
Protocol), but these aren’t related to the
subject of this book. If this part of the URL is
left out, the Web server assumes that the
computer is the same computer that the
URL is typed on. Valid choices for this part
are HTTP://amazon.com or HTTP://
localhost. Note: HTTP doesn’t have to
be in uppercase letters.

v :portnumber: The Web server
exchanges information with the Internet at
a particular port on the computer. Most of
the time, the Web server is set up to com-
municate via port 80. If the port number isn't
specified, port 80 is assumed. In some
unusual circumstances, a Web server may
use a different port number, in which case
the port number must be specified. The
most common reason for using a different
port number is to set up a test Web site on
another port that's available only to devel-
opers and testers, not customers. When the

site is ready for customers, it is made avail-
able on port 80.

v path: This is the path to the file, which fol-
lows the rules of any path. The root of the
path is the main Web site directory. If the
path points to a directory, rather than a file,
the Web server searches for a default file
name, suchasdefault.html or index.
html. The person who administers the
Web site sets the default file name. The
path /catalog/show.php indicates a
directory called catalog that is in the
main Web site directory and a file named
show.php. The path catalog/show.
php indicates a directory called catalog
thatis in the current directory.

v #target: An HTML tag defines a target.
This part of the URL displays a Web page
at the location where the target tag is
located. For instance, if the tag <a name=
"target">isinthe middle of the file
somewhere, the Web page will be dis-
played at the tag rather than at the top of
the file.

v ?string=string: The question mark
allows information to be attached to the end
of the URL. The information in forms that
use the get method is passed at the end of
the URLin the format fieldname=value.
You can add information to the end of a URL
to pass it to another page. PHP automati-
cally gets information from the URL and puts
it into built-in arrays. You can pass more
than one string=string pair by sepa-
rating each pair with an ampersand (&): for
example, ?state=CA&city=home.

200 Partui:prp

Statements that must come before output

Some PHP statements can only be used before sending any output. header statements,
setcookie statements, and session functions, all described in this chapter, must all come
before any output is sent. If you use one of these statements after sending output, you may see the
following message:

Cannot add header information - headers already sent

The message will also provide the name of the file and indicate which line sent the previous output.
Or you might not see a message at all; the new page might just not appear. (Whether you see an
error message depends on what error message level is set in PHP; see Chapter 6 for details.) The
following statements will fail because the header message is not the first output:

<html>
<head><title>testing header</title></head>
<body>
<?php
header("Location: http://company.com");
7>
</body>
</html>

Three lines of HTML code are sent before the header statement. The following statements will
work, although they don’t make much sense

<?php
header("Location: http://company.com");
?>
<html>
<head><title>testing header</title></head>
<body>
</body>
</html>

The following statements will fail:

<?php
header("Location: http://company.com");

?>

<html>
<head><title>testing header</title></head>
<body>
</body>
</heml>

The reason why these statements fail is not easy to see, but if you look closely, you'll notice a single
blank space before the opening PHP tag. This blank space is output to the browser, although the
resulting Web page looks empty. Therefore, the header statement fails because there is output
before it. This is a common mistake and difficult to spot.

Chapter 9: Moving Information from One Web Page to the Next 26 1

In spite of its limitation, the header function can be useful. You can have as
many PHP statements as you want before the header function as long as they
don’t send output. Therefore, the following statements will work:

<?php
if ($customer_age < 13)
{
header("Location: ToyCatalog.php");

1
else

{
header("Location: ElectronicsCatalog.php");
}
?>

These statements run a program that displays a toy catalog if the customer’s
age is less than 13 but run a program that displays an electronics catalog if
the customer’s age is 13 or older.

Moving Information from Page to Page

HTML pages are independent from one another. When a user clicks a link, the
Web server sends a new page to the user’s browser, but the Web server doesn’t
know anything about the previous page. For static HTML pages, this process
works fine. However, many dynamic applications need information to pass
from page to page. For instance, you might want to store a user’s name and
refer to that person by name on another Web page.

Dynamic Web applications often consist of many pages and expect the user
to view several different pages. The period beginning when a user views the
first page and ending when a user leaves the Web site is a session. Often you
want information to be available for a complete session. The following are
examples of sessions that necessitate sharing information among pages:

1 Restricting access to a Web site: Suppose that your Web site is restricted
and users log in with a password to access the site. You don’t want users
to have to log in on every page. You just want them to log in once and
then be able to see all the pages that they want. You want users to bring
information with them to each page showing that they have logged in and
are authorized to view the page. You want users to log in and remain
logged in for the whole session.

+ Providing Web pages based on browser: Because browsers interpret
some HTML features differently, you might want to provide different ver-
sions of your Web pages for different browsers. You want to check the
user’s browser when the user views the first page and then deliver all
the other pages based on the user’s browser type and version.

262 rartu:pHp

With PHP, you can move information from page to page by using any of the
following methods:

1 Adding information to the URL: You can add certain information to the
end of the URL of the new page, and PHP will put the information into
built-in arrays that you can use in the new page. This method is most
appropriate when you need to pass only a small amount of information.

1 Storing information via cookies: You can store cookies — small
amounts of information containing variable=value pairs — on the
user’s computer. After the cookie is stored, you can get it from any Web
page. However, users can refuse to accept cookies. Therefore, this
method only works in environments where you know for sure that the
user will have cookies turned on.

v~ Passing information using HTML forms: You can pass information to a
specific program by using a form tag. When the user clicks the submit
button, the information in the form is sent to the next program. This
method is very useful when you need to collect information from users.

v Using PHP session functions: Beginning with PHP 4, PHP functions are
available that set up a user session and store session information on the
server; this information can be accessed from any Web page. This
method is very useful for sessions in which you expect users to view
many pages.

Adding information to the URL

A simple way to move information from one page to the next is to add the
information to the URL. Put the information in the following format:

variable=value
The variable is a variable name, but do not use a dollar sign (%) in it. The
value is the value to be stored in the variable. You can add the
variable=value pairs anywhere that you use a URL. You signal the start of
the information with a question mark (?). The following statements are all
valid ways of passing information in the URL:

{form action="nextpage.php?state=CA" method="POST">

go to next page

header("Location: nextpage.php?state=CA");

You can add several variable=value pairs, separating them with ampersands
(&) as follows:

<form action="nextpage.php?state=CA&city=home" method="POST">

Chapter 9: Moving Information from One Web Page to the Next 2 63

Here are two reasons why you might not want to pass information in the URL:

v Security: The URL is shown in the address line of the browser, which

means that the information that you attach to the URL is also shown. If
the information needs to be secure, you don’t want it shown so publicly.
For example, if you’re moving a password from one page to the next, you
probably don’t want to pass it in the URL. Also, the URL can be book-
marked by the user. There may be reasons why you don’t want your
users to save the information that you add to the URL.

v~ Length of string: There is a limit on the length of the URL. The limit dif-

fers for various browsers and browser versions, but there is always a
limit. Therefore, if you're passing a lot of information, there may not be
room for it in the URL.

Adding information to the URL is very useful for quick, simple data transfer. For
instance, suppose that you want to provide a Web page where users can update
their phone numbers. You want the form to behave in the following way:

1.

When the user first displays the form, the phone number from the data-
base is shown in the form so that the user can see what number is cur-
rently stored in the database.

2. When the user submits the form, the program checks the phone number

to see whether the field is blank or whether the field is in a format that
could not possibly be a phone number.

. If the phone number checks out okay, the number is stored in the

database.

. If the phone number is blank or has bad data, the program redisplays

the form. However, this time you don’t want to show the data from the
database. Instead, you want to show the bad data that the user typed
and submitted in the form field.

The displayPhone.php program in Listing 9-1 shows how to use the URL
to determine whether this is the first showing of the form or a later showing.
The program shows the phone number for the user’s login name and allows
the user to change the phone number.

Listing 9-1: Program That Displays Phone Number in Form

{?php

/*
*
*

el

7>

Program name: displayPhone.php
Description: Displays a phone number retrieved from the database and
allows the user to change the phone number.

<html>
<head><title>Display phone number</title></head>

(continued)

204 rartin:php

Listing 9-1 (continued)

<body>
{?php
$host="Tlocalhost";
$user="admin";
$password="";
$database="MemberDirectory";
$1oginName = "gsmith"; // passed from previous page
$connection = mysql_connect($host,$user,$password)
or die ("couldn't connect to server");
$db = mysql_select db($database,$connection)
or die ("Couldn't select database");

if (@_GET['first'] == "no")
{

$phone = $_POST['phone'];

if (lereg("~[0-9)(-1{7,20} (([xXI|(ext)|(ex))?[-12[0-91(1,7})?$",$phone)

or $phone == "")
{
echo "<p align="center'>Phone number does not
appear to be valid.
";

$query = "UPDATE Member SET phone="$phone’
WHERE ToginName='$ToginName"";
$result = mysql_query($query)
or die ("Couldn't execute query.");
echo "Phone number has been updated.
";
exit();
}

Ise

@

$query = "SELECT phone FROM Member WHERE ToginName='$loginName'";
$result = mysql_query($query)
or die ("Couldn't execute query.");
$row = mysql_fetch_array($result);
extract($row);
}

/* Display user phone in a form */
echo "
<p align='center'>
{font size='+1'>Please check the phone number
below and correct it if necessary.
<hr>
{form action="displayPhone.php?first=no' method="P0OST'>
{div align='center'>
{table width='50%" border='0" cellspacing='0"' cellpadding="2"'>
<tr><td align="right'>$1oginName</br></td>
<td align='center'><input type='text' name='phone'
size="20" maxlength="20" value='$phone' > </td>
<t

Chapter 9: Moving Information from One Web Page to the Next 265

<Er><td></td><td align="center'>

<input type="submit' value='Submit phone number'></td>
<t
{/table>
< formd>";
»
<{/body></htm1>

Notice the following key points about this program:

v The same program displays and processes the form. The name of this
program is displayPhone.php. Notice that the form tag includes
action=displayPhone.php, meaning that when the user clicks the
submit button, the same program runs again.

v Information is added to the URL. The formtag includes
action=displayPhone.php?first=no. When the user clicks the submit
button and displayPhone.php runs the second time, a variable $first
is passed with the value "no".

v The value that was passed for first in the built-in $_GET array is
checked at the beginning of the program. This is to see whether this is
the first time that the program has run.

v If $_GET[first] equals "no", the phone number is checked.
$_GET[first] only equals no if the form is being submitted.
$_GET[first] does not equal no if this is the first time through the
program.

¢ If the phone number is okay, it is stored in the database, and the
program ends.

e [f the phone number is not okay, an error message is printed.

v If$_GET[first] does not equal "no", the phone number is retrieved
from the database. In other words, if $_GET[first] doesn’t equal no, it
is the first time that the program has run. The program should get the
phone number from the database.

1~ If the program reaches the statements that display the form, the form
is displayed. If this is not the first time through the program and a
phone number was submitted and was okay, the phone number is stored
in the database, and the program stops. It never reaches the statements
that display the form. In all other cases, the form is displayed.

The form displayed by the program in Listing 9-1 is shown in Figure 9-1. This
shows what the Web page looks like the first time that it’s displayed. Notice
that the URL in the browser address field doesn’t have any added information.

Figure 9-2 shows the results when a user types a nonsense phone number in
the form in Figure 9-1. Notice that the URL in the browser address field now
has ?first=no added to the end of it.

2006 Ppartu:prp

lay phone number - Microsoft Internet Explorer

i Eile Edit WYiew Favorites Tools Help

@ .9 . [Q@ M I B 9 v.P
| Back . F o f.ituP Hﬁﬁeih Hfme: Saasih Favmi_es Hishm:v___ Mail Piint _EdiE Fleq!.mm N |
| Address [&] hip:snctval san . com/PHPEMyS DL foDummiss/displayPhens phe =] @Go || Links ”] 57 »
=
FPlease check the phone number helow and correct it if necessary.
gsmith |123-123-1234
Submit phone number
—
Figure 9-1:
HTML form
to update
a phone
number. . El
re——— | ® Intemet

Display phone number - Microsoft Internet Explorer

i Eile Edit WYiew Favorites Tools Help

¢ .2 . Q [Q@ @I DS VW, D
| Back: Farwed Stop Aefiesh Home | Seamch Favotes Histoy | Mail Fiink Edit Realeam |
| Address [&] hitp./flenetval san.ni.com/PHPEMyS OLfoiDummiss/displayPhone. php irst=no =] @B | Links ”| Y7 »
=
Fhone number does not appear to be valid
Please check the phone mumber below and correct it if necessary.
gamith 1231232000
Submit phone number
|
Figure 9-2:
HTML form
when a user
submits a
nonsense
phone
number. . El
&] Done | |ﬂ Internet

WBER
@Y—
&

Chapter 9: Moving Information from One Web Page to the Next 26 7

Storing information via cookies

You can store information as cookies. Cookies are small amounts of information
containing variable=value pairs, similar to the pairs that you can add to a
URL. The user’s browser stores cookies on the user’s computer. Your applica-
tion can then get the cookie from any Web page. Why these are called cookies
is one of life’s great mysteries. Perhaps they’re called cookies because they
seem at first glance to be a wonderful thing, but on closer examination, you
realize that they aren’t that good for you. For some people in some situations,
cookies are not helpful at all.

At first glance, cookies seem to solve the entire problem of moving data from
page to page. Just stash a cookie on the user’s computer and get it whenever
you need it. In fact, the cookie can be stored so that it remains there after the
user leaves your site and will still be available when the user enters your Web
site again a month later. Problem solved! Well, not exactly. Cookies are not
under your control: They’re under the user’s control. The user can at any time
delete the cookie. In fact, users can set their browsers to refuse to allow any
cookies. And many users do refuse cookies or routinely delete them. Many
users aren’t comfortable with the whole idea of a stranger storing things on
their computers, especially files that remain after they leave the stranger’s
Web site. It’s an understandable attitude. However, it definitely limits the use-
fulness of cookies. If your application depends on cookies and the user has
turned off cookies, your application won’t work for that user.

Cookies were originally designed for storing small amounts of information for
short periods of time. Unless you specifically set the cookie to last a longer
period of time, the cookie will disappear when the user leaves your Web site.
Although cookies are useful in some situations, you’re unlikely to need them
for your Web database application for the following reasons:

1 Users may set their browsers to refuse cookies. Unless you know for
sure that all your users will have cookies turned on or you can request
that they turn on cookies (and expect them to follow your request),
cookies are a problem. If your application depends on cookies, it won’t
run if cookies are turned off.

1 PHP has features that work better than cookies. Beginning with PHP 4,
PHP includes functions that create sessions and store information that’s
available for the entire session. This session feature is more reliable and
much easier to use than cookies for making information available to all
the Web pages in a session. Sessions don’t work for long-term storage of
information, but MySQL databases can be used for that.

+* You can store data in your database. Your application includes a database
where you can store and retrieve data, which is usually a better solution
than a cookie. Users can’t delete the data in your database unexpectedly.
Because you're using a database in this application, you can use it for any
data storage needed, especially long-term data storage. Cookies are more
useful for applications that don’t make use of a database.

208 Ppartm:prp

QUING/

You store cookies by using the setcookie function. The general format is

setcookie("variable","value");

The variable is the variable name, but do not include the dollar sign ($).
This statement stores the information only until the user leaves your Web
site. For instance, the following statement

setcookie("state","CA");

stores CA in a cookie variable named state. After you set the cookie, the
information is available to your other PHP programs in the element of a built-
in array as $_COOKIE[state]. You don’t need to do anything to get the infor-
mation from the cookie. PHP does this automatically. The cookie is not
available in the program where it is set. The user must go to another page or
redisplay the current page before the cookie information can be used.

The cookies are also available in an array called $HTTP_COOKIE_VARS with
the variable names as keys. For instance, the value in the cookie set in the
previous example can also be used as $HTTP_COOKIE_VARS['state']. This
built-in array must be used if you are using a version of PHP that is earlier
than PHP 4.1.

If you want the information stored in a cookie to remain in a file on the user’s
computer after the user leaves your Web site, set your cookie with an expira-
tion time, as follows:

setcookie("variable","value",expiretime);

The expiretime value sets the time when the cookie will expire. expire
t ime is usually set by using either the time or mktime function as follows:

v time: This function returns the current time in a format that the com-
puter can understand. You use the time function plus a number of sec-
onds to set the expiration time of the cookie, as shown in the following
statements:

setcookie("state","CA",time()+3600); //expires in 1 hour
setcookie("Name",$Name,time()+(3*86400)) // exp in 3 days

v mktime: This function returns a date and time in a format that the com-
puter can understand. You must provide the desired date and time in the
following order: hour, minute, second, month, day, and year. If any value is
not included, the current value is used. You use the mktime function to set
the expiration time of the cookie, as shown in the following statements:

setcookie("state","CA",mktime(3,0,0,4,1,2003));
//expires at 3:00 AM on April 1, 2003.

setcookie("state","CA",mktime(12,0,0,,,));
//expires at noon today

Chapter 9: Moving Information from One Web Page to the Next 26 9

\NG/
V?‘“

You can remove a cookie by setting its value to nothing. Either of the follow-
ing statements removes the cookie:

setcookie("name");
setcookie("name","");

The setcookie function has a major limitation, however. The setcookie
function can only be used before any other output is sent. You cannot set a
cookie in the middle of a program after you have echoed some output to the
Web page. See the sidebar “Statements that must come before output,” else-
where in this chapter.

Passing information with HTML forms

The most common way to pass information from one page to another is by
using HTML forms. An HTML form is displayed with a submit button. When
the user clicks the submit button, the information in the form fields is passed
to the program included in the form tag. The general format is

<form action="processform.php" method="POST">
tags for one or more fields
<input type="submit" value="string">

</ form>

The most common use of a form is to collect information from users (which I
discuss in detail in Chapter 8). However, forms can also be used to pass other
types of information using hidden fields, which are added to the form and
sent with the information that the user typed in. In fact, you can create a form
that has only hidden fields. You always need a submit button, and the new
page doesn’t display until the user clicks the submit button, but you don’t
need to include any fields for the user to fill in.

For instance, the following statements pass the user’s preferred background
color to the next page when the user clicks a button named Next Page:

<?php
$color = "blue"; //passed via a user form
echo "<form action="nextpage.php' method="POST"'>
<input type='hidden' name='color' value='$color'>
<input type='submit' value='Next Page'>
</form>\n";
7>

The Web page shows a submit button labeled Next Page, but it doesn’t ask
the user for any information. When the user clicks the button, nextpage.php
runs and can use the array element $_P0ST[color], which contains "blue".

270 Ppartui:pup

Using PHP Sessions

A session is the time that a user spends at your Web site. Users can view
many Web pages between the time when they enter your site and then leave
it. Often you want information to follow the user around your site so that it’s
available on every page. PHP, beginning with version 4.0, provides a way to
do this.

How PHP sessions work

PHP enables you to set up a session on one Web page and save variables as
session variables. Then you open the session in any other page, and the ses-
sion variables are available for your use in the built-in arrays $ _SESSION. To
do this, PHP does the following:

\\J

WING/
&

1. Assigns a session ID number: The number is a really long, nonsense

number that is unique for the user and that no one could possibly guess.
The session ID is stored in a PHP system variable named PHPSESSID.

. Stores session variables in a file on the server: The file is named with

the session ID number. The file is stored in \ tmp on Unix/Linux; in
Windows, it’s stored in a directory called sessiondata under the direc-
tory where PHP is installed.

If you are the PHP administrator, you can change the location where the
session files are stored by editing the configuration file php.ini. Find
the setting for session.save_path and change the path to the location
where you want to store the files.

. Passes the session ID number to every page: If the user has cookies

turned on, PHP passes the session ID using cookies. If the user has cook-
ies turned off, PHP passes the session ID in the URL for links or in a
hidden variable for forms that use the post method.

. Gets the variables from the session file for each new session page:

Whenever a user opens a new page that is part of the session, PHP gets
the variables from the file by using the session ID number that was
passed from the old page and puts them into the built-in array
$_SESSION. You can use the array elements with the variable name as
the key, and they have the value that you assigned in the previous page.

Sessions do not work unless track_vars is enabled. As of PHP 4.0.3,

track-vars is always turned on. For versions previous to 4.0.3, the option
--enable-track-vars should be used when installing PHP.

TECy,

Chapter 9: Moving Information from One Web Page to the Next 2 7 1

WING/

If users have cookies turned off, sessions do not work unless trans-sid is
turned on. You find out how to turn trans-sid on and off later in the section,
“Using PHP session variables.”

Opening sessions

You should open a session on each Web page. Open the session with the
session_start function, as follows:

session_start();

The function first checks for an existing session ID number. If it finds one, it
sets up the $_SESSION array. If it doesn’t find one, it starts a new session by
creating a new session ID number.

Because sessions use cookies if the user has them turned on, session_start
is subject to the same limitation as cookies. That is, the session_start func-
tion must be called before any output is sent. For complete details, see the

sidebar “Statements that must come before output,” elsewhere in this chapter.

You can tell PHP that every page on your site should automatically start

with a session_start. To do this, edit the configuration file php.ini.If you
are the PHP administrator, you can edit this file; otherwise, ask the adminis-
trator to edit it. Look for the variable session.auto_start and set its value
to 1. You might have to restart the Web server before this takes effect. With
auto_start turned on, you don’t need to add a session_start at the begin-
ning of each page.

Using PHP session variables

When you want to save a variable as a session variable — that is, available to
other Web pages that the user might visit — save it in the $_SESSION array as
follows:

$_SESSION['variablename']l = value;

The variable value is then available in the $_SESSION array on other Web
pages. For example, you can store the state where the user lives by using the
following statement:

$_SESSION['state'] = "CA";

You can then use $_SESSION["state'] in any other Web page, and it will
have the value CA.

272 rarti:pup

The following two programs show how to use sessions to pass information
from one page to the next. The first program, sessionTestl.php in
Listing 9-2, shows the first page where the session begins. Listing 9-3 shows
the program sessionTest?2.php for the second page in a session

Listing 9-2: Starting a Session

<?php
session_start();
?>
<html>
<head><title>Testing Sessions page 1</title></head>
<body>
<?php
$_SESSION['session_var']l = "testing";
echo "This is a test of the sessions feature.
<form action='sessionTest2.php' method="POST"'>
<input type='hidden' name='form_var'
value="testing'>
<input type='submit' value='go to next page'>
</form>";
?>
</body></html1>

Notice that two variables are set in this program to be passed to the second
page. The session variable session_var is created. In addition, a form is dis-
played with a hidden variable form_var, which is also passed to the second
page when the submit button is pressed. Both variables are set to
"testing".

Listing 9-3: The Second Page of a Session

<?php
session_start();
?2>
<html>
<head><title>Testing Sessions page 2</title></head>
<body>
<?php
echo "session_var = {$_SESSION['session_var']l}
\n";
echo "form_var = {$_POST['form_var']}
\n";
?>
</body></html1>

Point your browser at sessionTestl.php and then click the submit button
that reads Go to Next Page. You will then see the following output from
sessionTestZ.php:

session_var = testing
form_var = testing

Chapter 9: Moving Information from One Web Page to the Next 2 73

\NG/
V?‘“

Because sessions work differently for users with cookies turned on and for
users with cookies turned off, you should test the two programs in both con-
ditions. To turn off cookies in your browser, you change the settings for
options or preferences.

To disable cookies in Internet Explorer, follow these steps:

1. Choose Tools>Internet Options.
The Internet Options dialog box opens.
2. Click the Security tab in IE 5.5 or the Privacy tab in IE 6.
3. Click the Internet icon to highlight it.
4. Click the Custom Level button.
The Security Settings dialog box appears.

5. Scroll down to the Cookies section and select Disable for each of the
cookie settings.

6. Click OK.
To disable cookies in Netscape Navigator, follow these steps:

1. Choose Edit~>Preferences.
2. Highlight Advanced.

3. Mark Disable Cookies.

4. Click OK.

If the output from sessionTest?2 shows a blank value for $session_var
when you turn cookies off in your browser, it is probably because trans-sid
is not turned on. You can turn on trans-sid in your php.ini file. Find the
following line:

session.use_trans_sid = 0

Change the 0 to 1 to turn on trans-sid. If you can’t get this problem fixed,
you can still use sessions, but you must pass the session ID number in your
programming statements because PHP won’t pass it automatically when
cookies are turned off. For details on how to use sessions when trans-sid is
not turned on, check out the next section.

For PHP 4.1.2 or earlier, trans-sid is not available unless it was enabled by
using the option —enable-trans-sid when PHP was compiled.

274 Partuprp

\NG/
Vg,\\

Sessions without cookies

Many users turn off cookies in their browsers. PHP checks the user’s browser
to see whether cookies are allowed and behaves accordingly. If the user’s
browser allows cookies, PHP does the following:

v Sets the variable $PHPSESSID equal to the session ID number

v Uses cookies to move $PHPSESSID from one page to the next
If the user’s browser is set to refuse cookies, PHP does the following:

v Sets a constant called SID. The constant contains a variable=value
pair that looks like PHPSESSID=7ongstringofnumbers.

»* Might or might not move the session ID number from one page to the
next, depending on whether trans-sid is turned on. If it is turned on,
PHP passes the session ID number; if it is not turned on, PHP does not
pass the session ID number.

Turning on trans-sid has advantages and disadvantages. The advantage is
that sessions work seamlessly even when users turn cookies off. It also is much
easier to program sessions with trans-sid turned on. The disadvantage is
that the session ID number is often passed in the URL. In some situations, the
session ID number should not be shown in the browser address. Also, when
the session ID number is in the URL, it can be bookmarked by the user. Then,

if the user returns to your site by using the bookmark with the session ID
number in it, the new session ID number from the current visit can get con-
fused with the old session ID number from the previous visit and possibly
cause problems.

Sessions with trans-sid turned on

When trans-sid is turned on and the user has cookies turned off, PHP auto-
matically sends the session ID number in the URL or as a hidden form field. If
the user moves to the next page by using a link, a header function, or a form
with the get method, the session ID number is added to the URL. If the user
moves to the next page by using a form with the post method, the session ID
number is passed in a hidden field. PHP recognizes $PHPSESSID as the ses-
sion ID number and handles the session without any special programming on
your part.

The session ID number is only added to the URLs for pages on your own Web
site. If the URL of the next page includes a server name, PHP assumes that
the URL is on another Web site and doesn’t add the session ID number. For
instance, if your link statement is

Chapter 9: Moving Information from One Web Page to the Next 2 75

PHP will add the session ID number. However, if your statement is

PHP will not add the session ID number.

Sessions without trans-sid turned on

When trans-sid is not turned on, PHP does not send the session ID number
to the next page when users have cookies turned off. Rather, you must send
the session ID number yourself.

Fortunately, PHP provides a constant that you can use to send the session

ID yourself. A constant is a variable that contains information that can’t be
changed. (Constants are described in Chapter 6.) The constant that PHP pro-
vides is named SID and contains a variable=value pair that you can add to
the URL, as follows:

<a href="nextpage.php?<?php echo SID?>" > next page

This link statement adds a question mark (?) and the constant SI1D to the URL.
SID contains the session ID number formatted as variable=value. The
output from echo SID looks something like this:

PHPSESSID=877c22163d8df9deb342c7333cfe38a7
Therefore, the URL that is sent is

next page

For one of several reasons (which I discuss in the section “Adding informa-
tion to the URL,” earlier in this chapter), you may not want the session ID
number to appear on the URL shown by the browser. To prevent that, you
can send the session ID number in a hidden field in a form by using the post
method. First, get the session ID number; then send it in a hidden field. The
statements to do this are

<?php
$PHPSESSID = session_id();
echo "<form action='nextpage.php' method='P0OST'>
<input type='hidden' name='PHPSESSID'
value="$PHPSESSID">
<input type='submit' value='Next Page'>
</form>";
7>

276 Ppartupup

These statements do the following:

1. Store the session ID number in a variable called $PHPSESSID. Use the
function session_id, which returns the current session ID number.

2. Send $PHPSESSID in a hidden form field.

On the new page, PHP will automatically use $PHPSESSID to get any session
variables without any special programming needed from you.

Making sessions private

PHP session functions are ideal for Web sites that are restricted and require
users to log in with a login name and password. Those Web sites undoubtedly
have many pages, and you don’t want the user to have to log in to each page.
PHP sessions can keep track of whether the user has logged in and refuse
access to users that aren’t logged in. You can use PHP sessions to do the
following:

1. Show users a login page.
2. If a user logs in successfully, set and store a session variable.

3. Whenever a user goes to a new page, check the session variable to see
whether the user has logged in.

4. If the user has logged in, show the page.
5. If the user has not logged in, bring up the login page.

To check whether a user has logged in, add the following statements to the
top of every page:

<?php
session_start()
if (@$_SESSION['Togin'] != "yes")
{

header("Location: ToginPage.php");
exit();
}
?>

In these statements, $_SESSION[Togin] is a session variable that is set
to "yes" when the user logs in. The statements check whether
$_SESSION[Togin]is equal to "yes".If it is not, the user is not logged
in and is sent to the login page. If $_ SESSION[Togin] equals "yes", the
program proceeds with the rest of the statements on the Web page.

Chapter 9: Moving Information from One Web Page to the Next 2 7 7

Closing PHP sessions

For restricted sessions that users log into, you often want users to log out
when they’re finished. To close a session, use the following statement:

session_destroy();

This statement gets rid of all the session variable information that is stored
in the session file. PHP no longer passes the session ID number to the next
page. However, the statement does not affect the variables currently set on
the current page: They still equal the same values. If you want to remove the
variables from the current page — as well as prevent them from being passed
to the next page — unset them with this statement:

unset($_SESSION);

278 Ppartui:prp

Part IV
Applications

The 5th Wave By Rich Tennant
s
AW
B\ o9
\\\\
i 3 — 'J - =

“The W {echnolqgg hes reallg helped. me getk oppnizad.. [
Reep my project veports under the TC, budgets under
my laptop and memos under my pager.”

In this part . . .

n this part, you find out how to take the planning and

getting started information from Part I, the MySQL
information from Part II, and the PHP information from
Part lll — and put it all together into a whole Web data-
base application. Chapters 11 and 12 present two sample
applications, complete with their databases and all their
PHP programs.

Chapter 10
Putting It All Together

In This Chapter

Organizing your whole application

Organizing individual programs
Making your application secure

Documenting your application

Fe previous chapters of this book provide you with the tools that you
need to build your Web database application. In Part I, you find out how
PHP and MySQL work and how to get access to them. In addition, you dis-
cover what needs to be done to build your application and in what order to
do it. In Part II, you find out how to build and use a MySQL database. In Part
Ill, you discover what features PHP has and how to use them. In addition, this
part also explains how to show information in a Web page, collect informa-
tion from users, and store information in a database. Now you’re ready to put
it all together.

In this chapter, | show you how to put all the pieces together into a complete
application. To do this, you need to

v Organize the application

v Make sure that the application is secure

v Document the application

Here, I describe each of these steps in detail.

Organizing the Application

Organizing the application is for your benefit. As far as PHP is concerned, the
application could be 8 million PHP statements all on one line of one computer
file. PHP doesn’t care about lines, indents, or files. However, humans write
and maintain the programs for the application, and humans need organiza-
tion. Applications require two levels of organization:

282 Part IV: Applications

a\\s

v The application level: Most applications need more than one program
to deliver complete functionality. You must divide the functions of the
application into an organized set of programs.

v The program level: Most programs perform more than one specific
task. You must divide the tasks of the program into sections within the
program.

Organizing at the application level

In general, Web database applications consist of one program per Web page.
For instance, you might have a program that provides a form to collect infor-
mation and a program that stores the information in a database and tells the
user that the data has been stored.

Another basis for organization is one program per major task. For instance,
you might have a program to present the form and a program that stores the
data in a database. For Web applications, most major tasks involve sending a
Web page. Collecting data from the user requires a Web page for the HTML
(HyperText Markup Language) form; providing product information to cus-
tomers requires Web pages; and when you store data in a database, you usu-
ally want to send a confirmation page to the user that the data was stored.

One program per Web page or one program per major task is not a rule but
merely a guideline. The only rule regarding organization is that it must be
clear and easy to understand. And that’s totally subjective. Still, the organiza-
tion of an application such as the Pet Catalog need not be overly compli-
cated. Suppose that the Pet Catalog design calls for the first page to list all
the pet types — such as cat, dog, and bird — that the user can select from.
Then, after the user selects a type, all the pets in the catalog for that type are
shown on the next Web page. A reasonable organization would be two pro-
grams: one to show the page of pet types and one to show the pets based on
the pet type that was chosen.

Here are a few additional pointers for organizing your programs:

v+ Choose very descriptive names for the programs in your application.
Program names are part of the documentation that makes your applica-
tion understandable. For instance, useful names for the Pet Catalog pro-
grams might be ShowPetTypes.php and ShowPets.php. It’s usual, but
not a requirement, to begin the program names with an uppercase letter.
Case isn’t important for program names on Windows computers, but it’s
very important on Unix/Linux computers. Pay attention to the upper-
lowercase letters so that your programs can run on any computer if
needed.

Chapter 10: Putting It All Together 2 8 3

v Put program files into subdirectories with meaningful names. For
instance, put all the graphic files into a directory called images. If you
only have three files, you may be okay with only one directory, but look-
ing through dozens of files for one specific file can waste a lot of time.

Organizing at the program level

A well-organized individual program is very important for the following
reasons:

v It’s easier for you to write. The better organized your program is, the
easier it is for you to read and understand it. You can see what the pro-
gram is doing and find and fix problems faster.

v It’s easier for others to understand. Others may need to understand
your program. After you claim that big inheritance and head off to the
South Sea Island that you purchased, someone else will have to maintain
your application.

1 It’s easier for you to maintain. No matter how thoroughly you test it,
your application is likely to have a problem or two. The better organized
your program is, the easier it is for you to find and fix problems, espe-
cially six months later.

v It’s easier to change. Sooner or later, you or someone else will need to
change the program. The needs of the user may change. The needs of the
business may change. The technology may change. The ozone layer may
change. For one reason or another, the program will need to be changed.
Figuring out what the program does and how it does it so that you can
change it is much easier if it is well organized. I guarantee that you won’t
remember the details; you just need to be able to understand the program.

The following rules will produce well-organized programs. [hesitate to call
them rules because there can be reasons in any specific environment to break
one or more of the rules, but [strongly recommend thinking carefully before
breaking any of the following rules:

v~ Divide the statements into sections for each specific task. Start each
section with a comment describing what the section does. Separate sec-
tions from each other by adding blank lines. For instance, for the Pet
Catalog, the first program might have three sections for three tasks:

1. Echo introductory text, such as the page heading and instruc-
tions. The comment before the section might be /* opening
text */.If the program echoes a lot of complicated text and
graphics, you might make it into more than one section, such as /*
title and logo */and /* instructions */.

284 Part IV: Applications

2. Get a list of pet types from the database. If this section is long and
complicated, you can divide it into smaller sections, such as 1)
connect to database; 2) execute SELECT query; and 3) put data into
variables.

3. Create a form that displays a selection list of the pet types. Forms
are often long and complicated. It can be useful to have a section
for each part of the form.

v Use indents. Indent blocks in the PHP statements. For instance, indent
if blocks and whi Te blocks as | have done in the sample code for this
book. If blocks are nested inside other blocks, indent the nested block
even further. It’s much easier to see where blocks begin and end when
they’re indented, which in turn makes it easier to understand what the
program does. Indenting the HTML statements can also be helpful. For
instance, if you indent the lines between the open and close tags for a
form or between the <table> tag and the </table> tag, you can more
easily see what the statements are doing.

+ Use comments liberally. Definitely add comments at the beginning that
explain what the program does. And add comments for each section.
Also, comment any statements that you think aren’t obvious or state-
ments where you think you may have done something in an unusual
way. If it took you a while to figure out how to do it, it’s probably worth
commenting. Don’t forget short comments on the end of lines; some-
times just a word or two can help.

v~ Use simple statements. Sometimes programmers get carried away with
the idea of concise code to the detriment of readability. Nesting six func-
tion calls inside each other may save some lines and keystrokes, but it
will also make the program more difficult to read.

+” Reuse blocks of statements. If you find yourself typing the same ten lines
of PHP statements in several places in the program, you can move that
block of statements into another file and call it when you need it. One line
in your program that reads getData () is much easier to read than ten
lines that get the data. Not only that, if you need to change something
within those lines, you can change it in one external file instead of having
to find and change it a dozen different places in your program. There
are two ways to reuse statements: functions and include statements.
Chapter 7 explains how to write and use functions. The following two sec-
tions explain the use of functions and include statements in program
organization.

v~ Use constants. If your program uses the same value many times, such as
the sales tax for your state, you can define a constant in the beginning of
the program that creates a constant called CA_SALES_TAX that is .97
and use it whenever it’s needed. Defining a constant that gives the
number a name helps anyone reading the program understand what the
number is — plus, if you ever need to change it, you only have to change
it in one place. Constants are described in detail in Chapter 6.

Chapter 10: Putting It All Together 2 8 5

Using include statements

PHP allows you to put statements into an external file — that is, a file sepa-
rate from your program — and to insert the file wherever you want it in the
program by using an include statement. include files are very useful for
storing a block of statements that is repeated. You add an include statement
wherever you want to use the statements instead of adding the entire block
of statements at several different locations. It makes your programs much
shorter and easier to read. The format for an include statement is

include("filename") ;

The file can have any name. I like to use the extension . inc. The statements
in the file are included, as-is, at the point where the include statement is
used. The statements are included as HTML, not PHP. Therefore, if you want
to use PHP statements in your include file, you must include PHP tags in the
include file. Otherwise, all the statements in the include file are seen as
HTML and output to the Web page as-is.

Here are some ways to use include files to organize your programs:

v+~ Put all or most of your HTML into include files. For instance, if your
program sends a form to the browser, put the HTML for the form into
an external file. When you need to send the form, use an include state-
ment. Putting the HTML into an include file is a good idea if the form
is shown several times. It is even a good idea if the form is shown only
once because it makes your program much easier to read. The programs
in Chapters 11 and 12 put HTML code for forms into separate files and
include the files when the forms are displayed.

v~ Store the information needed to access the database in a file separate
from your program. Store the variable names in the file as follows:

<?php
$host="1ocalhost";
$user="root";

$password="";
7>

Notice that this file needs the php tags in it because the include state-
ment inserts the file as HTML. Include this file at the top of every program
that needs to connect to the database. If any of the information (such as
the password) changes, just change the password in the inc1ude file. You
don’t need to search through every program file to change the password.
For a little added security, it’s a good idea to use a misleading filename,
rather than something obvious like secret_passwords.inc.

286 Part IV: Applications

v Put your functions in include files. You don’t need the statements for
functions in the program; you can put them in an include file. If you
have a lot of functions, organize related functions into several include
files, such as data_functions.inc and form_functions.inc. Use
include statements at the top of your programs, reading in the func-
tions that are used in the program.

v~ Store statements that all the files on your Web site have in common.
Most Web sites have many Web pages with many elements in common.
For instance, all Web pages start with <htm1>, <head>, and <body> tags.
If you store the common statements in an include file, you can include
them in every Web page, ensuring that all your pages look alike. For
instance, you might have the following statements in an include file:

<html>

<head><title><?php echo $title ?></title></head>

<body topmargin="0">

<p align="center"><img src="logo.gif" width="100"
height="200">

<hr color="red">

If you include this file in the top of every program on your Web site, you
save a lot of typing, and you know that all your pages match. In addition,
if you want to change anything about the look of all your pages, you only
have to change it one place — in the include file.

You can use a similar statement as follows:

include_once("filename");

This statement prevents include files with similar variables from overwriting
each other. Use include_once when you include your functions.

You can use a variable name for the filename as follows:
include("$filename");

For example, you might want to display different messages on different days.

You might store these messages in files that are named for the day on which

the message should display. For instance, you could have a file named

Sun.inc with the following contents:

<p>Go ahead. Sleep in. No work today.</p>

And similar files for all days of the week. The following statements can be
used to display the correct message for the current day:

$today = date("D");
include("$today".".inc");

Chapter 10: Putting It All Together 2 8 7

After the first statement, $today contains the day of the week, in abbrevia-
tion form. The date statement is discussed in Chapter 6. The second state-
ment includes the correct file, using the day stored in $today. If $today
contains Sun, the statement includes a file called Sun.inc.

Protecting your include files is important. The best way to protect them is
to store the include files in a directory outside your Web space so they can’t
be accessed by visitors to your Web site.

You can set up an include directory where PHP looks for any files specified
in an include statement. If you are the PHP administrator, you can set up

an include directory in the php.ini file (the PHP configuration file in your
system directory, as I describe in Appendix B). Find the setting for include_
path and change it to the path to your preferred directory. If there is a semi-
colon at the beginning of the line, before include_path, remove it. The fol-
lowing are examples of include_path settings in the php.ini file:

include_path=".;d:\include"; # for Windows
include_path=".:/user/local/include"; # for Unix/Linux/Mac

Both of these statements specify two directories where PHP looks for include
files. The first directory is dot (meaning the current directory), followed by
the second directory path. You can specify as many include directories as you
want, and PHP will search them for the include file in the order in which they
are listed. The directory paths are separated by a semicolon for Windows and
a colon for Unix/Linux.

If you don’t have access to php.ini, you can set the path in each individual
script by using the following statement:

ini_set("include_path","d:\hidden");

This statement sets the include_path to the specified directory only while
the program is running. It doesn’t set the directory for your entire Web site.

To access a file from an include directory, just use the filename, as follows.
You don’t need to use the full path name.

include("secretpasswords.inc");

If your include file is not in an include directory, you may need to use the
entire path name in the include statement. If the file is in the same directory
as the program, the filename alone is sufficient. However, if the file is located
in another directory, such as a subdirectory of the directory that the pro-
gram is in or a hidden directory outside the Web space, you need to use the
full path name to the file, as follows:

include("d:/hidden/secretpasswords.inc");

288 Part IV: Applications

Using functions

Make frequent use of functions to organize your programs. (In Chapter 7, I
discuss creating and using functions in detail.) Functions are useful when
your program needs to perform the same task at repeated locations in a pro-
gram or in different programs in the application. After you write a function
that does the task and you know it works, you can use it anywhere that you
need it.

Look for opportunities to use functions. Your program is much easier to read
and understand with a line like this:

getMemberData();
than with 20 lines of statements that actually get the data.

In fact, after you've been writing PHP programs for a while, you will have a
stash of functions that you've written for various programs. Very often the
program that you're writing can use a function that you wrote for an applica-
tion two jobs ago. For instance, [often have a need for a list of the states.
Rather than include a list of all 50 states every time that [need it, [have a
function called getStateNames () that returns an array that holds the 50
state names in alphabetical order and a function called getStateCodes ()
that returns an array with all 50 two-letter state codes in the same order.
These functions are frequently useful.

Name your functions very descriptively. The function calls in your program
should tell you exactly what the function does. Long is okay. You don’t want
to see a line in your program that reads

functionl();

This line isn’t very informative. Even a line like the following is less informa-
tive than it could be:

getData();
You want to see a line like this:

getAl1MemberNames();

Keeping It Private

You need to protect your Web database application. People out there may
have nefarious designs on your Web site for purposes such as

v~ Stealing stuff: They hope to find a file sitting around full of valid credit
card numbers or the secret formula for eternal youth.

Chapter 10: Putting It All Together 2 8 9

v Trashing your Web site: Some people think this is funny. Some people
do it to prove that they can.

v Harming your users: A malicious person can add things to your Web
site that harm or steal from the people who visit your site.

This is not a security book. Security is a large, complex issue, and [am not a
security expert. Nevertheless, I want to call a few issues to your attention and
make some suggestions that might help. The following measures will increase
the security of your Web site, but if your site handles really important, secret
information, read some security books and talk to some experts:

1 Ensure the security of the computer that hosts your Web site. This is
probably not your responsibility, but you may want to talk to the people
responsible and discuss your security concerns. You'll feel better if you
know that someone is worrying about security.

v Don’t let the Web server display filenames. Users don’t need to know
the names of the files on your Web site.

+~ Hide things. Store your information so that it can’t be easily accessed
from the Web.

v Don’t trust information from users. Always clean any information that
you didn’t generate yourself.

1 Use a secure Web server. This requires extra work, but it’s important if
you have top-secret information.

Ensure the security of the computer

First, the computer itself must be secure. The system administrator of the
computer is responsible for keeping unauthorized visitors and vandals out of
the system. Security measures include such things as firewalls, encryption,
password shadowing, scan detectors, and so on. In most cases, the system
administrator is not you. If it is, you need to do some serious investigation
into security issues. If you are using a Web-hosting company, you may want
to discuss security with those folks to reassure yourself that they are using
sufficient security measures.

Don’t let the Web server display filenames

You may have noticed that sometimes you get a list of filenames when you
point at a URL. If you point at a directory (rather than a specific file) and the
directory doesn’t contain a file with the default filename (such as index.

290 Part IV: Applications

htm1), the Web server may display a list of files for you to select from. You
probably don’t want your Web server to do this; your site won’t be very
secure if a visitor can look at any file on your site. On other Web sites, you
may have seen an error message that reads

Forbidden
You don't have permission to access /secretdirectory on this server.

On those sites, the Web server is set so that it doesn’t display a list of file-
names when the URL points to a directory. Instead, it delivers this error mes-
sage. This is more secure than listing the filenames. If the filename is being
sent from your Web site, a setting for the Web server needs to be changed. If
you aren’t the administrator for your Web server, request a change. If you are
the administrator, it’s up to you to change this behavior. For instance, in
Apache, this behavior is controlled by an option called Indexes, which can be
turned on or off in the httpd. conf file as follows:

Options Indexes // turns it on
Options -Indexes // turns it off

See the documentation for your Web server to allow or not allow directory
listings in the user’s Web browser.

Hide things

Keep information as private as possible. Of course, the Web pages that you
want visitors to see must be stored in your public Web space directory. But
not everything needs to be stored there. For instance, you can store include
files in another location altogether — in space on the computer that can’t

be accessed from the Web. Your database certainly isn’t stored in your Web
space, but it might be even more secure if it were stored on a totally different
computer.

Another way to hide things is to give them misleading names. For instance,
the include file containing the database variables shouldn’t be called
passwords.inc. A better name might be UncleHenrysChickenSoupRecipe.
inc. I know this suggestion violates other sections of the book where I pro-
mote informative filenames, but this is a special case. Malicious people some-
times do obvious things like typing www.yoursite.com/passwords.htm]l
into their browser to see what happens.

Don’t trust information from users

Malicious users can use the forms in your Web pages to send dangerous text to
your Web site. Therefore, never store information from forms directly into a
database without checking it first. Check the information that you receive for

Chapter 10: Putting It All Together 2 9 1

S

reasonable formats and dangerous characters. In particular, you don’t want to
accept HTML tags, such as <script> tags, from forms. By using script tags, a
user could enter an actual script — perhaps a malicious one. If you just accept
the form field without checking it and store it in your database, you could have
any number of problems, particularly if the stored script was sent in a Web
page to a visitor to your Web site. For more on checking data from forms, see
Chapter 8.

Use a secure Web server

Communication between your Web site and its visitors is not totally secure.
When the files on your Web site are sent to the user’s browser, someone on
the Internet between you and the user can read the contents of these files as
they pass by. For most Web sites, this isn’t an issue; however, if your site col-
lects or sends credit card numbers or other secret information, use a secure
Web server to protect this data.

Secure Web servers use Security Sockets Layer (SSL) to protect communica-
tion sent to and received from browsers. This is similar to the scrambled tele-
phone calls that you hear about in spy movies. The information is encrypted
(translated into coded strings) before it is sent across the Web. The receiving
software decrypts it into its original content. In addition, your Web site uses a
certificate that verifies your identity. Using a secure Web server is extra work,
but it’s necessary for some applications.

You can tell when you are communicating using SSL. The URL begins with
HTTPS, rather than HTTP.

Information about secure Web servers is specific to the Web server that
you’re using. To find out more about using SSL, look at the Web site for the
Web server that you are using. For instance, if you are using Apache, check
out two open-source projects that implement SSL for Apache at www.modssT.
org and www.apache-ss1.org. Commercial software is also available that
provides a secure server based on the Apache Web server. If you're using
Microsoft Internet Information Server (IIS), search for SSL on the Microsoft
Web site at www.microsoft.com.

Completing Your Documentation

I'm making one last pitch here. Documenting your Web database application
is essential. You start with a plan describing what the application is supposed
to do. Based on your plan, you create a database design. Keep the plan and
the design up to date. Often as a project moves along, changes are made.
Make sure that your documentation changes to match the new decisions.

292 Part IV: Applications

While you design your programs, associate the tasks in the application plan
with the programs that you plan to write. List the programs and what each
one will do. If the programs are complicated, you may want to include a brief
description of how the program will perform its tasks. If this is a team effort,
list who is responsible for each program. When you complete your applica-
tion, you should have the following documents:

v~ Application plan: Describes what the application is supposed to do, list-
ing the tasks that it will perform

v~ Database design: Describes the tables and fields that are in the database

+ Program design: Describes how the programs will do the tasks in the
application plan

v Program comments: Describe the details of how the individual program
works

Pretend that it’s five years in the future and you’re about to do a major
rewrite of your application. What will you need to know about the application
in order to change it? Be sure that you include all the information that you
need to know in your documentation.

Chapter 11
Building an Online Catalog

In This Chapter

Designing an online catalog

Building the database for the Pet Catalog
Designing the Web pages for the Pet Catalog
Writing the programs for the Pet Catalog

0 nline catalogs are everywhere on the Web. Every business that has
products for sale can use an online catalog. Some businesses use online
catalogs to sell their products online, and some use them to show the quality
and worth of their products to the world. Many customers have come to
expect businesses to be online and provide information about their products.
Customers often begin their search for a product online, researching its avail-
ability and cost through the Web.

In this chapter, you find out how to build an online catalog. I chose a pet
store catalog for no particular reason except that it sounded like more fun
than a catalog of socks or light bulbs. And looking at the pictures for a pet
catalog was much more fun than looking at pictures of socks. I introduce the
Pet Catalog example in Chapter 3 and use it for many of the examples
throughout this book.

In general, all catalogs do the same thing: provide product information to
potential customers. The general purpose of the catalog is to make it as easy
as possible for customers to see information about the products. In addition,
you want to make the products look as attractive as possible so that cus-
tomers will want to purchase them.

Designing the Application

The first step in design is to decide what the application should do. The obvi-
ous purpose of the Pet Catalog is to show potential customers information
about the pets. A pet store might also want to show information about pet

294 Part IV: Applications

products, such as pet food, cages, fish tanks, and catnip toys . . . but you
decide not to include such items in your catalog. The purpose of your online
catalog application is just to show pets.

For the customer, displaying the information is the sole function of the cata-
log. However, from your perspective, the catalog also needs to be maintained;
that is, you need to add items to the catalog. So, you must include the task of
adding items to the catalog as part of the catalog application. Thus, the appli-
cation has two distinct functions:

v Show pets to the customers

v Add pets to the catalog

Showing pets to the customers

The basic purpose of your online catalog is to let customers look at pets.
Customers can’t purchase pets online, of course. Sending pets through the
mail isn’t feasible. But a catalog can showcase pets in a way that motivates
customers to rush to the store to buy them.

If your catalog only has three pets in it, your catalog can be pretty simple —
one page showing the three pets. However, most catalogs have many more
items than that. Usually, a catalog opens with a list of the types of products —
in this case, pets — that are available, such as cat, dog, horse, and dragon.
Customers select the type of pet they want to see, and the catalog then dis-
plays the individual pets of that type. For example, if the customer selects dog,
the catalog would then show collies, spaniels, and wolves. Some types of prod-
ucts might have more levels of categories before you see individual products.
For instance, furniture might have three levels rather than two. The top level
might be the room, such as kitchen, bedroom, and so on. The second level
might be type, such as chairs, tables, and so on. The third level would be the
individual products.

The purpose of a catalog is to motivate those who look at it to make a purchase
immediately. For the Pet Catalog, pictures are a major factor in motivating cus-
tomers to make a purchase. Pictures of pets make people go ooooh and aaaah
and say, “Isn’t he cuuuute!” This generates sales. The main purpose of your Pet
Catalog is to show pictures of pets. In addition, the catalog also should show
descriptions and prices.

To show the pets to customers, the Pet Catalog will do the following:

1. Show a list of the types of pets and allow the customer to select a type.

2. Show information about the pets that match the selected type. The
information includes the description, the price, and a picture of the pet.

Chapter 11: Building an Online Catalog 295

Adding pets to the catalog

You can add items to your catalog several ways. However, the task of adding
an item to the catalog is much easier if you use an application designed for
adding your specific products. In many cases, you aren’t the person who will
be adding products to your catalog. One reason for adding maintenance func-
tionality to your catalog application is so that someone else can do those
boring maintenance tasks. The easier it is to maintain your catalog, the less
likely that errors will sneak into it.

An application to add a pet to your catalog should do the following:

1. Prompt the user to enter a pet type for the pet. A selection list of possi-
ble pet types would eliminate many errors, such as alternate spellings
(dog and dogs) and misspellings. The application also needs to allow the
user to add new categories when needed.

2. Prompt the user to enter a name for the pet, such as collie or shark.
A selection list of names would help prevent mistakes. The application
also needs to allow the user to add new names when needed.

3. Prompt the user to enter the pet information for the new pet. The
application should clearly specify what information is needed.

4. Store the information in the catalog.

The catalog entry application can check the data for mistakes and enter the
data into the correct locations. The person entering the new pet doesn’t need
to know the inner workings of the catalog.

Building the Database

The catalog itself is a database. It doesn’t have to be a database; it’s possible
to store a catalog as a series of HTML (HyperText Markup Language) files that
contain the product information in HTML tags and display the appropriate file
when the customer clicks a link. However, it makes my eyes cross to think of
maintaining such a catalog. Imagine the tedium of adding and removing cata-
log items manually . . . or finding the right location for each item by searching
through many files. Ugh. For these reasons, putting your Pet Catalog in a data-
base is better.

The PetCatalog database contains all the information about pets. It uses
three tables:

v Pet table

v PetType table

v Color table

296 Part IV: Applications

WMBER
‘x&
&

The first step in building the Pet Catalog is to build the database. It’s pretty
much impossible to write programs without a working database to test the
programs on. First you design your database; then you build it; then you add
the data (or at least some sample data to use while developing the programs).

Some changes have been made to the database design in Chapter 3 for the
Pet Catalog. Development and testing often result in changes. Perhaps you
find that you didn’t take some factors into consideration in your design or
that certain elements of your design don’t work with real-world data or are
difficult to program. It’s perfectly normal for the design to evolve while you
work on your application. Just be sure to change your documentation when
your design changes.

Building the Pet table

In your design for the Pet Catalog, the main table is the Pet table. It contains
the information about the individual pets that you sell. The following SQL
query creates the Pet table:

CREATE TABLE Pet (

petlD INT(5) NOT NULL AUTO_INCREMENT,
petName CHAR(25) NOT NULL,

petType CHAR(15) NOT NULL DEFAULT "Misc",
petDescription VARCHAR(255),

price DECIMAL(9,2),

piXx CHAR(15) NOT NULL DEFAULT "na.gif",

PRIMARY KEY(petID));
Each row of the Pet table represents a pet. The columns are as follows:

v petID: A sequence number for the pet. In another catalog, this might be
a product number, a serial number, or a number used to order the prod-
uct. The CREATE query defines the petID column in the following ways:

e INT(5): The data in the field is expected to be a numeric integer.
The database won’t accept a character string in this field.

e PRIMARY KEY(petID): This is the primary key, which is the field
that must be unique. MySQL will not allow two rows to be entered
with the same petID.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be set to NOT
NULL.

e AUTO-INCREMENT: This definition means that the field will automat-
ically be filled with a sequential number if you don’t provide a spe-
cific number. For example, if a row is added with 98 for a petID,
the next row will be added with 99 for the petID unless you spec-
ify a different number. This is a useful way of specifying a column

Chapter 11: Building an Online Catalog 29 7

with a unique number, such as a product number or an order
number. You can always override the automatic sequence number
with a number of your own, but if you don’t provide a number, a
sequential number is stored.

v petName: The name of the pet, such as lion, collie, or unicorn. The
CREATE query defines the petName column in the following ways:

e CHAR(25): The data in this field is expected to be a character
string that’s 25 characters long. The field will always take up 25
characters of storage, with padding if the actual string stored is
less than 25 characters.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. After all, it wouldn’t make much sense to have a
pet in the catalog without a name.

¢ No default value: If you try to add a new row to the Pet table with-
out a petName, it won’t be added. It doesn’t make sense to have a
default name for a pet.

v petType: The type of pet, such as dog or fish. The CREATE query defines
the petType column in the following ways:

e CHAR(15): The data in this field is expected to be a character
string that’s 15 characters long. The field will always take up 15
characters of storage, with padding if the actual string stored is
less than 15 characters.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The online catalog application will show cate-
gories first and then pets within a category, so a pet with no cate-
gory will never be shown on the Web page.

e DEFAULT "Misc": The value "Misc" is stored if you don’t provide
avalue for petType. This ensures that a value is always stored for
petType.

v petDescription: A description of the pet. The CREATE query defines
the petDescription in the following way:

e VARCHAR(255): This data type defines the field as a variable char-
acter string that can be up to 255 characters long. The field is
stored in its actual length.

v price: The price of the pet. The CREATE query defines price in the fol-
lowing way:

e DECIMAL(9, 2): This data type defines the field as a decimal
number that can be up to nine digits and has two decimal places. If
you store an integer in this field, it will be returned with two deci-
mal places, such as 9.00 or 2568.00.

298 Part IV: Applications

v pix: The filename of the picture of the pet. Pictures on a Web site are

A\

stored in graphic files with names like dog. jpg, dragon.gif, or
cat.png. This field stores the filename for the picture that you want to
show for this pet. The CREATE query defines pix in the following ways:

e CHAR(15): The data in this field is expected to be a character
string that’s 15 characters long. For some applications, the picture
files might be in other directories or on other Web sites requiring a
longer field, but for this application, the pictures are all in a direc-
tory on the Web site and have short names. The field will always
take up 15 characters of storage, with padding if the actual string
stored is less than 15 characters.

NOT NULL: This definition means that this field can’t be empty. It
must have a value. You need a picture for the pet. When a Web site
tries to show a picture that can’t be found, it displays an ugly error
message in the browser window where the graphic would go. You
don’t want your catalog to do that, so your database should
require a value. In this case, you define a default value so that a
value will always be placed in this field.

DEFAULT "na.gif": Thevalue "na.gif" is stored if you don’t pro-
vide a value for pix. In this way, a value is always stored for pi x.
The na.gif file might be a graphic that reads something like:
"picture not available".

Notice the following points about this database table design:

v Some fields are CHAR, and some are VARCHAR. CHAR fields are faster,

whereas VARCHAR fields are more efficient. Your decision will depend on
whether disk space or speed is more important for your application in
your environment.

In general, shorter fields should be CHAR because shorter fields don’t
waste much space. For instance, if your CHAR is 5 characters, the most
space that you could possibly waste is 4. However, if your CHAR is 200,
you could waste 199. Therefore, for short fields, use CHAR for speed with
very little wasted space.

v~ The petID field means different things for different pets. The petID

field assigns a unique number to each pet. However, a unique number is
not necessarily meaningful in all cases. For example, a unique number
is meaningful for an individual kitten but not for an individual goldfish.

There are really two kinds of pets. One is the unique pet, such as a
puppy or a kitten. After all, the customer buys a specific dog — not just
a generic dog. The customer needs to see the picture of the actual
animal. On the other hand, some pets are not especially unique, such as
a goldfish or a parakeet. When customers purchase a goldfish, they see a

Chapter 11: Building an Online Catalog 299

tank full of goldfish and point at one. The only real distinguishing char-
acteristic of a goldfish is its color. The customer doesn’t need to see a
picture of the actual fish in your catalog, just a picture of a generic gold-
fish, perhaps showing the possible colors.

In your catalog, you have both kinds of pets. The catalog might contain
several pets with the name cat but with different petIDs. The picture
would show the individual pet. The catalog also contains pets that aren’t
individuals but that represent generic pets, such as goldfish. In this
case, there’s only one entry with the name goldfish, with a single petID.

I've used both kinds of pets in this catalog to demonstrate the different
kinds of products that you might want to include in a catalog. The unique
item catalog might include such products as artwork or vanity license
plates. When the unique item is sold, it’s removed from the catalog. Most
products are more generic, such as clothing or automobiles. Although a
picture shows a particular shirt, many identical shirts are available. You
can sell the shirt many times without having to remove it from the catalog.

Building the PetType table

You assign each pet a type, such as dog or dragon. The first Web page of the
catalog lists the types for the customer to select from. A description of each
type is also helpful to show. You don’t want to put the type description in the
main Pet table because the description would be the same for all pets with the
same category. Repeating information in a table violates good database design.

The PetCatalog database includes a table called PetType that holds the
type descriptions. The following SQL query creates the PetType table:

CREATE TABLE PetType (
petType CHAR(15) NOT NULL,
typeDescription VARCHAR(255),
PRIMARY KEY(petType));

Each row of this table represents a pet type. These are the columns:

v petType: The type name. Notice that the petType column is defined the
same in the Pet table (which I describe in the preceding section) and in
this table. This makes table joining possible and makes matching rows in
the tables much easier. However, the petType is the primary key in this
table but not in the Pet table. The CREATE query defines the petType
column in the following ways:

e CHAR(15): The data in this field is expected to be a character
string that’s 15 characters long.

e PRIMARY KEY(petType): This definition sets the petType column
as the primary key. This is the field that must be unique. MySQL
will not allow two rows to be entered with the same petType.

300 Part IV: Applications

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be set to NOT
NULL.

v typeDescription: A description of the pet type. The CREATE query
defines the typeDescription in the following way:

e VARCHAR(255): The string in this field is expected to be a variable
character string that can be up to 255 characters long. The field is
stored in its actual length.

Building the Color table

When I discuss building the Pet table (see “Building the Pet table,” earlier in
this chapter), I discuss the different kinds of pets: pets that are unique (such
as puppies and horses) and pets that are not unique (such as goldfish and tur-
tles). For unique pets, the customer needs to see a picture of the actual pet.
For pets that aren’t unique, the customer only needs to see a generic picture.

In some cases, generic pets come in a variety of colors, such as blue parakeets
and green parakeets. You might want to show two pictures for parakeets: a pic-
ture of a blue parakeet and a picture of a green parakeet. However, because
most pets aren’t this kind of generic pet, you don’t want to add a color column
to your main Pet table because it would be blank for most of the rows. Instead,
you create a separate table containing only pets that come in more than one
color. Then when the catalog application is showing pets, it can check the
Color table to see whether there’s more than one color available — and if
there is, it can show the pictures from the Color table.

The Color table points to pictures of pets when the pets come in different
colors so that the catalog can show pictures of all the available colors. The
following SQL query creates the Color table:

CREATE TABLE Color (

petName CHAR(25) NOT NULL,
petColor CHAR(15) NOT NULL,
pix CHAR(15) NOT NULL DEFAULT "na.gif",

PRIMARY KEY(petName,petColor));
Each row represents a pet type. The columns are as follows:

v petName: The name of the pet, such as lion, collie, or Chinese bearded
dragon. Notice that the petName column is defined the same in the Pet
table and in this table. This makes table joining possible and makes
matching rows in the tables much easier. However, the petName is the
primary key in this table but not in the Pet table. The CREATE query
defines the petName in the following ways:

Chapter 11: Building an Online Catalog 30 1

e CHAR(25): The data in this field is expected to be a character
string that is 25 characters long.

e PRIMARY KEY(petName,petColor): The primary key must be
unique. For this table, two columns together are the primary key —
this column and the petColor column. MySQL won'’t allow two rows
to be entered with the same petName and petColor.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be defined as NOT
NULL.

v petColor: The color of the pet, such as orange or purple. The CREATE
query defines the petColor in the following ways:

e CHAR(15): This data type defines the field as a character string
that’s 15 characters long.

e PRIMARY KEY(petName,petColor): The primary key must be
unique. For this table, two columns together are the primary key —
this column and the petName column. MySQL won’t allow two rows
to be entered with the same petName and petColor.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. The primary key must always be defined as NOT
NULL.

v pix: The filename containing the picture of the pet. The CREATE query
defines pix in the following ways:

e CHAR(15): This data type defines the field as a character string
that is 15 characters long.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. You need a picture for the pet. When a Web site
tries to show a picture that can’t be found, it displays an ugly error
message in the browser window where the graphic would go. You
don’t want your catalog to do that, so your database should
require a value. In this case, the CREATE query defines a default
value so that a value will always be placed in this field.

e DEFAULT "na.gif": Thevalue "na.gif" is stored if you don’t pro-
vide a value for pix. In this way, a value is always stored for p1i x.
The file na. gif might contain a graphic that reads something like
picture not available.

Adding data to the database

You can add the data to the database many ways. You can use SQL queries

to add pets to the database, or you can use the application that I describe in
this chapter. My personal favorite during development is to add a few sample
items to the catalog by reading the data from a file. Then, whenever my data

302 Part IV: Applications

becomes totally bizarre during development (as a result of programming
errors or my weird sense of humor), I can re-create the data table in a
moment. Just DROP the table, re-create it with the SQL query, and reread the
sample data.

For example, the data file for the Pet table might look like this:

<TAB>Pekinese<TAB>Dog<TAB>Small, cute, energetic. Good alarm
system.<TAB>100.00<TAB>peke. jpg

<TAB>House cat<TAB>Cat<TAB>Yellow and white cat. Extremely
playful. <TAB>20.00<TAB>catyellow.jpg

<{TAB>House cat<{TAB>Cat<TAB>Black cat. Sleek, shiny. Likes
children. <TAB>20.00<TAB>catblack.jpg

<TAB>Chinese Bearded Dragon<TAB>Lizard<TAB>Grows up to 2 feet
long. Fascinating to watch. Likes to be
held.<TAB>100.00<TAB>Tizard.jpg

<TAB>Labrador Retriever<TAB>Dog<TAB>BTack dog. Large,
intelligent retriever. Often selected as guide
dogs for the blind.<TAB>100.00<TAB>1ab.jpg

<TAB>Go1dfish<TAB>Fish<TAB>Variety of colors. Inexpensive.
Easy care. Good first pet for small
children.<TAB>2.00<TAB>goldfish.jpg

<TAB>Shark<TAB>Fish<TAB>STeek. Powerful. Handle with
care.<TAB>200.00<TAB>shark.jpg

{TAB>Asian Dragon<TAB>Dragon<TAB>Long and serpentine. Often
gold or red.<TAB>10000.00<TAB>dragona.jpg

<TAB>Unicorn<TAB>Horse<TAB>Beautiful white steed with spiral
horn on forehead.<TAB>20000.00<TAB>unicorn.jpg

These are the data file rules:

v The <TAB> tags represent real tabs — the kind that you create by press-
ing the Tab key.

v Each line represents one pet and must be entered without pressing the
Enter or Return key. The lines in the preceding example are shown
wrapped to more than one line so that you can see the whole line.
However, in the actual file, the data lines are one on each line.

v A tab appears at the beginning of each line because the first field is not
being entered. The first field is the pet 1D, which is entered automati-
cally; you don’t need to enter it. However, you do need to use a tab so
that MySQL knows there’s a blank field at the beginning.

You can then use an SQL query to read the data file into the Pet table:
LOAD DATA LOCAL INFILE "pets" INTO TABLE Pet;

Any time that the data table gets odd, you can re-create it and read the data
in again.

Chapter 11: Building an Online Catalog 303

\NG/
Vg,\\

The LOAD DATA LOCAL query might not be available in your version of
MySQL. This query must be enabled before you can use it. If it’s not enabled,
you will see an error that reads The used command is not allowed with
this MySQL version. Idiscuss LOAD DATA LOCAL in detail in Chapter 4.

Designing the Look and Feel

After you know what the application is going to do and what information the
database contains, you can design the look and feel of the application. The look
and feel includes what the user sees and how the user interacts with the appli-
cation. Your design should be attractive and easy to use. You can plan out this
design on paper, indicating what the user sees, perhaps with sketches or with
written descriptions. In your design, include the user interaction components,
such as buttons or links, and describe their actions. You should include each
page of the application in the design. If you're lucky, you have a graphic
designer who can develop beautiful Web pages for you. If you’re me, you just
do your best with a limited amount of graphic know-how.

The Pet Catalog has two look and feel designs: one for the catalog that the
customer sees; and another, less fancy one for the part of the application that
you or whoever is adding pets to the catalog uses.

Showing pets to the customers

The application includes three pages that customers see:

1 The storefront page: This is the first page that customers see. It states
the name of the business and the purpose of the Web site.

+~ The pet type page: This page lists all the types of pets and allows cus-
tomers to select which type of pet they want to see.

1 The pets page: This page shows all the pets of the selected type.

Storefront page

The storefront page is the introductory page for the Pet Store. Because most
people already know what a pet store is, this page doesn’t need to provide
much explanation. Figure 11-1 shows the storefront page. The only customer
action available on this page is a link that the customer can click to see the
Pet Catalog.

Pet type page

The pet type page lists all the types of pets in the catalog. Each pet type is
listed with its description. Figure 11-2 shows the pet type page. Radio buttons
appear next to each pet type so that customers can select the type of pet that
they want to see.

304 Part IV: Applications

A Pet Store Front Page - Microsoft Internet Explorer
| Elle Edit View Favorites Tools Help

Figure 11-1:
The opening
page of the
Pet Store
Web site.

|
Figure 11-2:
The pet type
page of the
Pet Store
Web site.

leg -2 . @ [Q@ & I B ¥, P
| Back Fanard Stop Aefiesh Home Sesrch Favortes Histary il Edit Realcam
| Address [&] i/ enetval sann com/PHPEMyS OLioDummiss/PetShopFient php =] @6 |_Links ”|| 7 »
=
P
Looking for a new friend?
Check out our Pet Catalog.
Wire may have past what you're looking for.
El

.2 .0 9

Back Fanward Stop Refiesh

A Pet Types - Microsoft Internet Explorer
| Eile Edit Miew Favorites Tools Help

Q @ @B

Home: Search Favortes History Mail

r . @
Edt Realcom

|Address |1 kitp:/ fiznetval san.n.com/PHPEMYS OLforDummiss catalog/FatCatalog. php

Which pet are you mterested in?

Pet Catalog

The following animal friends are waiting for you.

Find just what you want and hutry in to the store to pick up your new friend,

=] @50 || Links || §ZR »

® Cat Beautiful and dignified, Independent, Range m size from large lions to small house cats, Camivorous,
© Dog Strong, coursgeous, Exdremely Intelligent, Can be tramed for very useful wotk, such as watchdog or seeing-eye dog
Ot bringing in the newspaper. Includes wild species, such as coyotes and wolves
| Dragon | Magnificent, large reptiles. Dragons fly tirelessly and many are large enough to rde. Very good watch animals.
[
| © Fish | Many colorful varieties. Relaang and mesmerizing to watch, Size varies from great white sharks to guppies.
| " Horse Beautiful four legged snimals that you can ride, Includes magical varieties such as Unicom and Pagasus
| ¢ Lizard | Zmall reptiles. Fascmating to watch. Require wamm ervironment. Eet vegetables and bugs.
Select Pet Tvpe |
&) Done |—|—|‘ Internet

L]

Chapter 11: Building an Online Catalog 305

Pets page

The pets page lists all the pets of the selected type. Each pet is listed with its
petID, description, price, and picture. The pets page appears in a different
format, depending on the information in the catalog database. Figures 11-3,
11-4, and 11-5 show some possible pets pages. Figure 11-3 shows a page list-
ing three different dogs from the catalog.

2 Pet Catalog - Microsoft Internet Explorer

| File Edit View Favorites Tools Help | it
‘«hv==>.@3|r§@_%1a§%v§@
Back Fanward Stop Refresh Home Search Favortes History ail Piint Edit Realcom
|Ade'QSS 1€| hitp: / flanetval zan . com/PHPEMyS OLforDummiss/catalog/S howPetz php j @Gu ! Links "|: ‘Y" »
Click on any picture Lo see alarger version. E
1001 Pekinese Small cute, energetic. Good alarm system.
1005 Lahr_adnr Black dog, Large, intelligent retriewer. Often selected as guide dogs for the 1 $100.00
Retriever blind
|
Figure 11-3: 1002 Golden Retriever Lerge, intefligent retriever. Likes poople. Often win abedience trials. $10000
This pets
page shows
three
) See more peis
different
dogs. . El
—— & | | |® internet

Figure 11-4 shows that more than one pet can have the same pet name.
Notice that the house cats have different petID numbers.

Figure 11-5 shows the output when pets are found in the Color table, show-
ing more than one color is available.

306 Part IV: Applications

A Pet Catalog - Microsoft Internet Explorer

| Eile Edit View Favorites Tools Help |
& .2 .9 [H I B4 v, @
Back Fanward Stop Refiesh Home Search Favortes History ail Piint Edit Fealcom
|Addf98$ 15:] hitp: / flanetval zan . com/PHPEMyS OLforDummiss/catalog/S howPetz php j @ Go | Links "H ‘YP »»
Click on any picture to see alarger version. ;I
1002 House cat Tellow and white cal. Exremely playfil $2000
1003 House cat Black cat, Sleel;, shiny, Likes children $20.00
|
Figure 11-4:
This Pets | 100 Housecat Lo heirsdwhits cat Fluffy, sofl, cuddly. Kesps the mice swey: $20.00
page shows
three cats
with the
See more peis
same pet
name. El
— & || ®ntemet
A Pet Catalog - Microsoft Internet Explorer
| Eile Edit View Favorites Tools Help |
@ .5 . @ (9 Q G @B 9 v . @
Back Fonward Stop Refresh Home Search Favortes History ail Piint Edit Fealcom
|Addf98$ 15:] hitp: / flanetval zan . com/PHPEMyS OLforDummiss/catalog/S howPetz php j @ Go | Links "H ‘YP »»
Click on any picture to see alarger version. -
1007 Goldfish Variety of colors. Inexpensive, Easy care, Good first pet for small children $200
gold -“
goldfwhite
|
Figure 11-5:
This petS 1008 Shark Sleek. Powerful Handle with care. $20000
page shows
goldfish
that are
. . See more peis
available in
two colors. El
— & || ®ntemet

Chapter 11: Building an Online Catalog 30 7

On all these pages, a line at the top reads C1ick on any picture to see
a larger version. If the customer clicks the picture, a larger version of
the picture is displayed.

Adding pets to the catalog

The application includes three pages that customers don'’t see; these are the
pages used to add pets to the Pet Catalog. The three pages work in sequential
order to add a single pet:

1. Get pet type page. The person adding a pet to the catalog selects the
radio button for the pet type. The user can also enter a new pet type.

2. Get pet information page. The user selects the radio button for the pet
being added and fills in the pet description, price, and picture filename.
The user can also enter a new pet name.

3. Feedback page. A page is displayed showing the pet information that
was added to the catalog.

Get pet type page

The first page gets the pet type for the pet that needs to be added to the cata-
log. Figure 11-6 shows the get pet type page. Notice that all the pet types cur-
rently in the catalog are listed, and a section is provided where the user can
enter a new pet type if it’s needed.

Get pet information page

Figure 11-7 shows the second page. This page lets the user type the informa-
tion about the pet that goes in the catalog. This page lists all the pet names in
the catalog for the selected pet type so that the user can select one. It also
provides a section where the user can type a new pet name if needed.

Feedback page

When the user submits the pet information, the information is added to the
PetCatalog database. Figure 11-8 shows a page that verifies the information
that was added to the database. The user can click a link to return to the first
page and add another pet.

Get missing information page

The application checks the data to see that the user entered the required
information and prompts the user for any information that isn’t entered. For
instance, if the user selects New Category on the first page, the user must
type a category name and description. If the user doesn’t type the name or
the description, a page is displayed that points out the problem and requests
the information. Figure 11-9 shows the page that users see if they forget to
type the category name and description.

308 Part IV: Applications

|
Figure 11-6:
The first
page for
adding a
pet to the
catalog.
|

|
Figure 11-7:
The second
page asks
for the pet
name.
|

dl Pet Types - Microsoft Internet Explorer
| Eile Edit View Favorites Tools Help

S @ B o8 G 3 o, @
| Back | Stop Refresh Home Search Favortes History il Piint Edit Realcom
| Address [&] kitp://iznetval san . com/PHPEMyS LoD ummies/catalng/ChonsePeiCat php =] @6o | Links *|| §7R »

=
Select the category for the pet you are adding.

If you are adding a pet in a category that is not listed, choose New Category and type the name and description of the category. Press
Submit Category when you have finished selecting an existing category or typing & new category.

@ st CDog O Dragon (Fish C Horse O Lizard

Category name:

Mew Category Category description: |

o

Submit Catagony

4
&] Done |_| |ﬂ Intermnet

’aﬂdd Pet . Microsoft Internet Explorer
i Eile Edit WYiew Favorites Tools Help

@ . . Q [ol@ M D D & - @
| Bﬂ -~ Forwald_ S_tuP Refiesh _Hﬂi Seach Favoites Histary il Frint _' Fleg!.mm N |
| Address [&] ip:/Asnctval san.n. com/PHPEMyS OLfoDummiss/ataloa/ChossePeiName. php =] @Go || Links ”| 57 »
Pet Name
 Golden Retriever © Labrador Retriever O Pelinese
& New Name (iype new nams)
Pet iformation
Pet Categary: Dog
Fet Description: |
Price:
Pictuse file name: |
Fet color (optional): |
SubmitPetMame | Cancsl |
&] Done | | |ﬂ Intermnet

Figure 11-8:
The last
page
provides
feedback.

Figure 11-9:
This page
requests

a new
category
and
description.
|

Chapter 11: Building an Online Catalog

2 Add Pet - Microsoft Internet Explorer
: Eile Edit WYiew Favorites Tools Help

.9 . Q [&la @I DS v,
| Bask Fomws Stop Aefiesh Home | Seamch Favotes Histoy | Mail Fi Edit Realcam . |
Address [@] hip://janetval.sann. com/PHPEMySOLfoDummies/catalog/AddPet pho =] @B | Links ”| Y7 »
The following pet has been added to the Pet Catalog:
» Category: Dog
= Pet Hame: Golden Retriever
= PetDescrption: Large, intellient retriever. Likes people. Often wins obedience trials.
= Price: 100.00
= Picture file: gold jpg
Add Another Pet
=
&] Done [l | |ﬂ Intermnet

2 Add Pet - Microsoft Internet Explorer
: Eile Edit WYiew Favorites Tools Help

.9 . Q [&la @I DS v,
| Bak Fomad Stop Aefiesh Home | Seamch Favotes Histoy | Mail Fiink Edit Realcam . |
Address [@] hitp://ianetval.sann. com/PHPEMy S OLfoDummies/catalog/ChoosePeiName. php =] @B | Links ”| Y7 »
Either the category name or the category description was lefi blank. You musi enter hoth.
Category name:
Category description: |
Enter new category | Fetum to category page
T
&] Done [l | |ﬂ Intermnet

309

3 ’0 Part IV: Applications

Writing the Programs

After you know what the pages are going to look like and what they are going
to do, you can write the programs. In general, you write a program for each
page, although sometimes it makes sense to separate programs into more
than one file or to combine programs on a page. (For details on how to orga-
nize applications, see Chapter 10.)

As I discuss in Chapter 10, keep the information needed to connect to the
database in a separate file and include that file in all the programs that need
to access the database. The file should be stored in a secure location and
with a misleading name for security reasons. For this application, the follow-
ing information is stored in a file named misc.inc:

<?php
$user="catalog";
$host="1ocalhost";

$password="";
$database="PetCatalog";
?>

The Pet Catalog application has two independent sets of programs: one set
to show the Pet Catalog to customers and one set to enter new pets into the
catalog.

Showing pets to the customers

The application that shows the Pet Catalog to customers has three basic
tasks:

v Show the storefront page. Provide a link to the catalog.

v Show a page where users select the pet type.

v Show a page with pets of the selected pet type.

Showing the storefront

The storefront page doesn’t need any PHP statements. It simply displays a
Web page with a link. HTML statements are sufficient to do this. Listing 11-1
shows the HTML file that describes the storefront page.

Listing 11-1: HTML File for the Storefront Page

<?php
/* Program: PetShopFront.php
* Desc: Displays opening page for Pet Store.

*/

Chapter 11: Building an Online Catalog 3 ’ 1

?>
<html>
<head><title>Pet Store Front Page</title></head>
<body topmargin="0" Teftmargin="0" marginheight="0"
marginwidth="0">
<table width="100%" height="100%" border="0"
cellspacing="0" cellpadding="0">
<tr>
<td align="center" valign="top" height="30">

</td>
</tr>
<tr>
<td align="center" valign="top">

<p style="margin-top: 40pt">
<img src="images/lizard-front.jpg" alt="animal picture’
height="186" width="280">
<p><h2>Looking for a new friend?</h2>
<p>Check out our Pet
Catalog.

 We may have just what you're looking for.
</td>
</tr>
</table>
</body></html>

Notice that the link is to a PHP program called PetCatalog.php. When the
customer clicks the link, the Pet Catalog program (PetCatalog.php) begins.

Showing the pet types

The pet type page (refer to Figure 11-2) shows the customer a list of all the
types of pets currently in the catalog. Listing 11-2 shows the program that
produces the pet type Web page.

Listing 11-2: Program That Displays Pet Types

<?php
/* Program: PetCatalog.php
* Desc: Displays a list of pet categories from the
PetType table. Includes descriptions.
w3 User checks radio button.
=
?>
<html>
<head><title>Pet Types</title></head>
<body>
<?php
include("misc.inc"); #11

(continued)

3 ’2 Part IV: Applications

Listing 11-2 (continued)

$connection = mysql_connect($host, $user,$password) #13
or die ("couldn't connect to server");
$db = mysql_select_db($database,$connection) #15

or die ("Couldn't select database");

/* Select all categories from PetType table */

$query = "SELECT * FROM PetType ORDER BY petType"; #19
$result = mysql_query($query)
or die ("Couldn't execute query."); {21

/* Display text before form */
echo "<div style="margin-left: .lin'>
<hl align='center'>Pet Catalog</hl>
<h2 align="center'>The following animal friends are
waiting for you.</h2>
<p align='center'>Find just what you want and hurry in to
the store to pick up your new friend.
<p><h3>Which pet are you interested in?</h3>\n";

/* Create form containing selection Tist */
echo "<form action='ShowPets.php' method='post'>\n"; #34
echo "<table cellpadding='5"' border="1'>";

$counter=1; 136
while ($row = mysql_fetch_array($result)) {37
{

extract($row); #39

echo "<tr><td valign="top"' width="15%"'>\n";

echo "<input type='radio' name='interest'
value="$petType'\n"; {42

if ($counter == 1) 43

{

}

echo "checked";

echo ">$petTyped/b>"; #47
echo "</td>

<td>$typeDescription</td>"; #49
echo "</tr>";
$counter++; #51

}
echo "</table>";
echo "<p><input type='submit' value='Select Pet Type'>

</form>\n"; {k55
72>
</div>
</body></htm1>

The program in Listing 11-2 has line numbers at the end of some of the lines.
The line numbers are a reference so that [can refer to particular parts of the
program. The numbers in the following list correspond to the line numbers in
the listing. Here is a brief explanation of what the following lines do in the
program:

Chapter 11: Building an Online Catalog 3 ’3

WING/
&

11 The include statement brings in a file that contains the information
necessary to connect to the database. I call it misc.inc because that
seems more secure than calling it passwords.inc.

13 Connects to the MySQL server.
15 Selects the PetCatalog database.

19 A query that selects all the information from the PetType table and puts
it in alphabetical order based on pet type.

21 Executes the query on line 19.

34 The opening tag for a form that will hold all the pet types. The action
target is ShowPets.php, which is the program that shows the pets of the
chosen type.

36 Creates a counter with a starting value of 1. The counter will keep track
of how many pet types are found in the database.

37 Starts a while loop that will get the rows containing the pet type and
pet description that were selected from the database on lines 19 and 20.
The loop will execute once for each pet type that was retrieved.

39 Separates the row into two variables: $petType and $petDescription.

41/42 Echoes a form field tag for a radio button. The value is the value in

$petType. This statement executes once in each loop, creating a radio
button for each pet type. This statement echoes only part of the form
field tag.

43 Starts an if block that executes only in the first loop. It echoes the word
"checked" as part of the form field. This ensures that one of the radio
buttons is selected in the form so that the form can’t be submitted with
no button selected, which would result in unsightly error messages or
warnings. The counter was set up solely for this purpose.

Although adding "checked" to every radio button works in some
browsers, it confuses other browsers. However, the extra programming
required to add "checked" to only one radio button can prevent poten-
tial problems.

47 Echoes the remaining part of the form field tag for the radio button —
the part that closes the tag.

49 Echoes the pet description in a second cell in the table row.

51 Adds 1 to the counter to keep track of the number of times that the loop
has executed.

54 Adds the submit button to the form.
55 Closes the form.
When the user selects a radio button and then clicks the submit button, the

next program — named ShowPets.php in the form tag — runs, showing the
pets for the selected pet type.

3 ’4 Part IV: Applications

Showing the pets

The pets page (refer to Figures 11-3, 11-4, and 11-5) shows the customer a list
of all the pets of the selected type that are currently in the catalog. Listing
11-3 shows the program that produces the pet Web page.

Listing 11-3: Program That Shows a List of Pets

<?php
/* Program: ShowPets.php
* Desc: Displays all the pets in a category. Category
B is passed in a variable from a form. The
s information for each pet 1is displayed on a
& single Tine, unless the pet comes in more than
& one color. If the pet comes in colors, a single
s line is displayed without a picture and a line
& for each color, with pictures, is displayed
& following the single line. Small pictures are
w displayed, which are Tinks to larger pictures.
=)

?>

<html>

<head><title>Pet Catalog</title></head>

<b
<7

ody topmargin="0" marginheight="0">

php
include("misc.inc");

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");

$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");

/* Select pets of the given type */
$query = "SELECT * FROM Pet
WHERE petType=\"{$_POST['interest'I1}\""; {27
$result = mysql_query($query)
or die ("Couldn't execute query.");

/* Display results in a table */
echo "<table cellspacing="10" border="0
width="100%"'>";
echo "<tr><td colspan='5"' align="right'>
Click on any picture to see a larger
version.
<hr>
</td></tr>\n";
while ($row = mysql_fetch_array($result,MYSQL_ASSOC)) 438
{

cellpadding="0"

$f_price = number_format($row['price'l,2);

/* check whether pet comes in colors */
$query = "SELECT * FROM Color

WHERE petName='{$row['petName']}'"; {44
$result2 = mysql_query($query) or die(mysql_error()); {45

Chapter 11: Building an Online Catalog

$ncolors = mysql_num_rows($result2); 46

/* display row for each pet */
echo "<tr>\n";
echo "<td>{$row['petID']}</td>\n";
echo "<td>
{$rowl 'petName']}</td>\n";
echo "<td>{$row['petDescription']}</td>\n";
/* display picture if pet does not come in colors */

if ($ncolors <=1) ##55
{
echo "<td><a href='../images/{$row['pix']}"
border="0">
<img src='../images/{$row['pix']}"' border='0"

width="100" height="80"></td>\n";
}
echo "<td align='center'>\$$f price</td>\n

</tr>\n";
/* display row for each color if pet comes in colors */
if ($ncolors > 1) 1#65

{
while($row2 = mysql_fetch_array($result2,MYSQL_ASSOC))
{
echo "<tr><td colspan=2> </td>
<td>{$row2['petColor']}</td>
<td><a href="../images/{$row2['pix']}"
border="0"'>
<img src='../images/{$row2['pix']1}" border='0"
width="100" height="80"'></td>\n";
1

echo "<tr><td colspan="'5"><hr></td></tr>\n";
}
echo "</table>\n";
echo "<div align='"center'>

See more pets</div>";
?>
</body></html>

The following numbers correspond to the line numbers shown as comments
at the end of lines in Listing 11-3. I document only some of the lines in this
program in the following list. Many of the tasks in the listing are also in most
of the programs in this application, such as connecting to the database, cre-
ating forms, and executing queries. Because I document these common tasks
for Listing 11-2, [don’t repeat them here. Here is a brief explanation of what
some of the other lines do in the program:

26/27 This query selects all the pets in the catalog that match the chosen type,
which was passed in a form from the previous page.

38 Sets up a while loop that runs once for each pet selected. The loop cre-
ates a line of information for each pet found.

315

3 ’6 Part IV: Applications

43 Lines 43 through 46 check whether there are any entries in the Color

table for the pet. Notice that the query results are put in $result2.
They could not be put in $result because this variable name is already
in use. $ncolors stores the number of rows found in the CoTor table for
the pet. Every pet name is checked for colors when it’s processed in the
loop.

55 Starts an if block that is executed only if zero or one rows for the pet

were found in the Color table. The if block displays the picture of the
pet. If the program found more than one color for the pet in the Color
table, the pet is available in more than one color, and the picture should-
n’t be shown here. Instead, a picture for each color will be shown in later
lines. Refer to Figures 11-3 and 11-4 for pet pages that display the pictures
and information on a single row, as done in this if block.

65 Starts an i f block that’s executed if more than one color were found for

the pet. The if block echoes a row for each color found in the Color
table.

67 Sets up a while loop within the if block that runs once for each color

that was found in the Color table. The loop displays a line, including a
picture, for each color. Refer to Figure 11-5 for a pet page that displays
separate lines with pictures for each color.

The page has a link to more pets at the bottom. The link points to the previ-
ous program that displays the pet types.

Adding pets to the catalog

The application that adds a new pet to the catalog should do the following
tasks:

1.

Create a form that asks for a pet category. The person adding the pet
can choose one of the existing pet types or create a new one. To create a
new type, the user needs to type a category name and description.

. If a new type is created, check that the name and description were

typed in.

. Create a form that asks for pet information — name, description,

price, picture filename, and color. The person adding the pet can
choose one of the existing pet names for the selected category or create
a new name. To create a new pet name, the user needs to type a pet
name.

4. If new is selected for pet name, check that the name was typed in.

5. Store the new pet in the PetCatalog database.

6. Send a feedback page that shows what information was just added to

the catalog.

Chapter 11: Building an Online Catalog

The tasks are performed in three programs:

v ChoosePetCat.php: Creates the pet type form (task 1)

v ChoosePetName.php: Checks the pet category data and creates the pet
information form (tasks 2 and 3)

v AddPet.php: Checks the pet name field, stores the new pet in the cata-
log database, and provides feedback (tasks 4, 5, and 6)

Writing ChoosePetCat

The first program produces a Web page with an HTML form where the person
adding a pet can select a pet type for the pet. To make the program easier to
read and maintain, as [discuss in Chapter 10, keep some of the HTML state-
ments used by the program in a separate file that you bring into the program
by using an include statement. Listing 11-4 shows ChoosePetCat.php.

Listing 11-4: Program That Lets User Select a Pet Type

<?php
/* Program: ChoosePetCat.php
* Desc: Allows users to select a pet type. All the
w existing pet types from the PetType table
& are displayed. A section to enter a new
& pet type is provided. Selections are
w provided as radio buttons, with text
& fields for new category name and
& description.
=
?>
<html>
<head><title>Pet Types</title></head>
<body>
<?php

include("misc.inc");

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");

$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");

/* gets types from PetType table in alphabetical order */
$query="SELECT petType FROM PetType ORDER BY petType"; #23
$result = mysql_query($query)

or die ("Couldn't execute query.");

/* Display text before form */

echo "<div style='margin-left: .1lin'>

<p><h3>Select the category for the pet you are adding.</h3>
If you are adding a pet in a category that is not
listed, choose New Category and type the name

(continued)

317

3 ’8 Part IV: Applications

Listing 11-4 (continued)

and description of the category. Press Submit
Category when you have finished selecting an
existing category or typing a new category.\n";

/* Create form containing selection Tist */
echo "<form action="ChoosePetName.php' method="'POST'>\n";
echo "<table cellpadding='5" border="0'>\n";

echo "<tr>";
$counter=0; #40
while ($row = mysql_fetch_array($result)) #41

{
extract($row) ;
echo "<td>
<input type='radio' name='category' value='$petType'";
if ($counter == 0) 46
{

}
echo ">$petType </td>\n"; #50
$counter++; ##51

echo "checked";

}
echo "</tr></table>\n";

include("NewCat_table.inc"); ##55

echo "<p><input type='submit' value='Submit Category'>\n";
echo "</form>\n";

?>

</div>

</body></html>

The following numbers correspond to the line numbers shown as comments
at the end of lines in Listing 11-4. Only some of the lines are documented in
the following list. Many of the tasks in the listing, such as connecting to the
database, creating forms, and executing queries, are found in most of the pro-
grams in this application; refer to Listing 11-2 for an explanation. The following
list provides a brief explanation of what the following lines do in the program:

23 A query that selects all the pet types from the PetType table and sorts
them in alphabetical order.

40 Creates a counter with a starting value of 0. The counter will keep track
of how many pet types are found in the database.

41 Starts a whi1e loop that executes once for each pet type. The loop cre-
ates a list of radio buttons for the pet types, with one button selected.
Here are the details of the while loop:

45 Echoes a form field tag for a radio button with the value equal to
$petType. This statement executes once in each loop, creating a
radio button for each pet type. This statement echoes only the first
part of the form field tag.

Chapter 11: Building an Online Catalog

WING/

46 An if block that executes only in the first loop. It echoes the word
"checked" as part of the form field. This ensures that one of the
radio buttons is selected when displayed so that the form can’t be
submitted with no button selected, which would result in unsightly
error messages or warnings. The counter was set up solely for this
purpose.

Although adding "checked" to every radio button works in some
browsers, it causes problems in other browsers. The extra pro-
gramming required to add "checked" to only one radio button can
prevent problems.

50 Echoes the remaining part of the form field tag for the radio
button — the part that closes the tag.

51 Adds 1 to the counter to keep track of the number of times that the
loop has executed. This is the last line in the whi 1e loop.

55 Creates a table that asks for the new pet type name and description. The
HTML for the table is read in from another file called
NewCat_table.inc. AsIdiscuss in Chapter 10, the HTML — especially
HTML that describes a form — is often kept in a separate file to make
the main program easier to read and to make the form easier to modify
when necessary. This file is shown in Listing 11-5.

Listing 11-5: File Containing New Type Form

<?php
/* Program: NewCat_table.inc
* Desc: HTML code that displays a table for input of a
% new category
=/
?>

<table width="100%">
<tr><td colspan=3><hr></td></tr>
<tr>
<td align='center'>
<input type='radio' name='category' value='new'>
</td>
<td align='right'>Category name:</td>
<td><input type='text' name='newCat' size='20"
maxlength="20"'></td>
</tr>
<tr><td align="'center'>New Category</td>
<td align='right'>Category description:</td>
<td><input type='text' name='newDesc' size='70%"'
maxlength="255">
</td>
</tr>
<tr><td colspan=3><hr></td></tr>
</table>

319

320 Part IV: Applications

This file is all HTML except for a section of PHP in the top that holds the
header as comments. I could actually have done this with HTML comments,
but I like the PHP comment style better.

Writing ChoosePetName

This second program accepts the data from the form in the first program. It
checks the information and asks for missing information. After the pet type
information is received correctly, the program creates a form where a user
can select a pet name for the new pet being added to the catalog and type the
information for the pet. This program, as in the preceding program, brings in
some of the HTML forms and tables from separate files by using the include
statement. This program also calls a function that’s in an include file. This
program brings in two files. Listing 11-6 shows ChoosePetName.php.

Listing 11-6: Program That Asks User for Pet Name

<?php
/* Program: ChoosePetName.php
* Desc: Allows the user to enter the information for
& the pet. First, the program checks for a new
& category and enters it into the petType table
& if it is new. Then, all pets in the selected
& category are displayed with radio buttons.
w The user can enter a new name. Fields are
o provided to enter the description, price, and
& picture file name.
)

?>

<?php

if (@$_POST['newbutton'] =
or @$_POST['newbutton'

= "Return to category page"
] == "Cancel") {15
{

}
?>
<html>
<head><title>Add Pet</title><{/head>
<body>
<?php
include("misc.inc");
include("functions.inc");

header("Location: ChoosePetCat.php");

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");

$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");

$category = $_POST['category'];

/* If new was selected for pet category, check if text
fields were filled in. If they were not filled in,
display them again for the user to enter the category

Chapter 11: Building an Online Catalog 32 1

name and category description. When the fields are filled
in, store the new category in the PetType table.*/

if ($_POST['category']l == "new") {38
{
if ($_POST['newCat'] == ""
or $_POST['newDesc'] == "") 41
{
include("NewCat_form.inc"); {43
exit(); {44

1

/* add new pet type to PetType table */

else {47

{
addNewType($_POST['newCat'],$_POST['newDesc'1); #49
$category = $_POST['newCat'];

}

} #52

/* Select pet names from table with given category. If
user entered a new category, it is searched for. */
$query = "SELECT DISTINCT petName FROM Pet
WHERE petType='$category' ORDER BY petName"; #57
$result = mysql_query($query)
or die ("Couldn't execute query");
$nrow = mysql_num_rows($result); #60

/* create form */

echo "<div style="margin-left: .lin'>";

echo "<form action="'AddPet.php' method="'post'>\n";

echo "<p>Pet Name</p>\n";

if ($nrow < 1) {66
{

echo "<hr>No pet names are currently in the database
for the category $category<hr>\n";
}

else #71
{

echo "<table cellpadding='5" border='0"'>";

echo "<tr>";

while ($row = mysql_fetch_array($result)) #75

{
extract($row);
echo "<td>";
echo " <input type='radio' name='petName'
value="$petName'";
echo ">$petName</td>\n";
}
echo "</tr></table>";
}
include ("NewName_table.inc"); 185

(continued)

322 Part IV: Applications

Listing 11-6 (continued)

$petDescription=" ";$price = "";$pix = "";$petColor = ;
include("PetInfo_table.inc"); 188

echo "<input type='hidden' name='category'
value="'$category'>\n";
echo "<p><input type='submit' value='Submit Pet Name'>
<input type='submit' name='newbutton' value='Cancel'>

</form>\n";
>
</div>
</body></html1>

The following numbers correspond to the line numbers shown as comments
at the end of lines in Listing 11-6. Only some of the lines are documented in the
following list because many of the tasks in the listing are found in most of the
programs in this application. The common tasks are documented for Listing
11-2 and explained in other parts of the book, so I don’t repeat them here. Here
is a brief explanation of what the following lines do in the program:

15 Checks whether the user clicked the submit button labeled Cancel or
Return to category page. If so, it returns to the first page.

38 Starts an i f block that executes only if the user selected the radio
button for New Category in the form from the previous program. This
block checks whether the new category name and description are filled
in. If the user forgot to type them in, he or she is asked for the pet type
name and description again. After the name and description are filled in,
the program calls a function that adds the new category to the PetType
table. The following lines describe this i f block in more detail:

41 Starts an i f block that executes only if the category name and/or
the category description are blank. Because this i f block is inside
the if block for a new category, this block executes only if the
user selected New Category for pet type but did not fill in the new
category name and description.

43 Creates a form that asks for the category name and description.
The HTML for the form is included from a file. This executes only
when the if statement on line 38 is true — that is, if the category
is new and the category name and/or description are blank.

44 Stops the program after displaying the form on line 43. The pro-
gram can’t proceed until the category name and description are
typed in. This block will repeat until a category name and descrip-
tion are filled in.

47 Starts an e1se block that executes only if both the category name
and description are filled in. Because this block is inside the i f
block for the new radio button, this block executes when the user
selected new and filled in the new category name and description.

Chapter 11: Building an Online Catalog 323

49 Calls a function that adds the new category to the PetType table.

50 Up to this point, thecategory is still set to "new". This line sets
$category to the new category name.

52 This line ends the i f block. If the user selected one of the existing
pet types, the statements between line 38 and this line did not
execute.

56 A query that selects one of each pet name with the chosen pet type and
sorts them alphabetically.

60 Checks whether any pet names were found for the chosen pet type.

66 Starts an if block that executes only if no pets were found for the pet
type. The block echoes a message to the user that no pets were found
for the pet type.

71 Starts an el se block that executes if pets were found for the pet type. The
else block creates a list of radio buttons for the pet names found. The list
is created with a whi1e loop (starting on line 75) in the same manner that
the list of categories was created, as explained in Listing 11-4.

85/88 Lines 85 and 88 create tables that ask for the new pet name and informa-
tion, bringing the HTML in from separate files by using include
statements.

This program brings in three files containing HTML using include state-

ments. Listings 11-7, 11-8, and 11-9 show the three files that are included:
NewCat_form.inc, NewName_table.inc,and PetInfo_table.inc.

Listing 11-7: HTML Code That Creates New Pet Type Form

<?php
/* Program: NewCat_form.inc
* Desc: Displays a form to collect a category name and
& description.
&Y/
?>

Either the category name or the category description was
left blank. You must enter both.
<form action="ChoosePetName.php" method="POST">
{table>
<tr>
<td align="right">Category name:</td>
<td><input type="text" name="newCat"
value="<?php echo $ POST['newCat'] ?>"
size="20" maxlength="20">
</td></tr>
<tr>
<td align="right">Category description:</td>
<td><input type="text" name="newDesc"

(continued)

324 Part IV: Applications

Listing 11-7 (continued)

value="<?php echo $_POST['newDesc'] ?>"
size="70%" maxlength="255">
</td></tr>
</table>
<input type="hidden" name="category" value="new">
<p><input type="submit" name="newbutton"
value="Enter new category">
<input type="submit" name="newbutton"
value="Return to category page">
</form>

This program is almost all HTML code. Notice the following points about this
form:

v~ This form is created only when the user selects the radio button for
New Category on the pet type Web page but does not type in the pet
type name or description. This form is displayed to give the user a
second chance to type the name or description.

v Most of the file is HTML, with only two small PHP sections that echo
values for the two fields.

1 The form returns to the program that generated it for processing. It is
processed in the same manner as the form that was sent from the first
page. The field names are the same and are checked again to see
whether they are blank.

v A hidden field is included that sends $category with a value of "new".
If this form didn’t send $category, the program that processes it — the
same program that generated it — wouldn’t know that the pet type was
new and wouldn’t execute the i f block that should be executed when a
new category is selected.

Listing 11-8: HTML File That Creates Table for New Name

<?php
/* Program: NewName_table.inc
* Desc: Displays table to enter new pet name
=)
?>
<table border="0">
<tr><td>
<input type="radio" name="petName"
value="new" checked >New Name</td>
<td><input type="text" name="newName" size="25"
maxlength="25"> (type new name)</td>
</tr>

<tr><td colspan=2><hr></td></tr>
</table>

Chapter 11: Building an Online Catalog 325

This file is all HTML with no PHP. It displays the section of the pet name Web
page where the user can enter a new pet name.

Listing 11-9: HTML That Creates Table for Pet Info

<?php
/* Program: PetInfo_table.inc
* Desc: Displays table to collect pet information
=

?>

Pet Information

<p><table>

<tr><td align="right">Pet Category:</td>
<td> <?php echo $category ?></td>
</tr>
<tr><td align="right">Pet Description:</td>
<td><input type="text" name="petDescription"
value="<?php echo $petDescription ?>"
size="65" maxlength="255">
</td></tr>
<tr><td align="right">Price:</td>
<td><input type="text" name="price"
value="<?php echo $price ?>" size="15"
maxlength="15">
</td></tr>
<tr><td align="right">Picture file name:</td>
<td><input type="text" name="pix"
value="<?php echo $pix ?>" size="25"
maxlength="25">
</td></tr>
<tr><td align="right">Pet color (optional):</td>
<td><input type="text" name="petColor"
value="<?php echo $petColor ?>" size="25"
maxlength="25">
</td></tr>
</table>

This file includes small PHP sections for the variable values. Otherwise, it is
HTML.

In addition to HTML for tables and forms, the ChoosePetName.php program
in Listing 11-6 calls a function. The function is stored in a file named func-
tions.inc and is included in the beginning of the program. Listing 11-10
shows the function

326 Part IV: Applications

Listing 11-10: Function AddNewType()

<?php

/* Function addNewType
* Desc Adds a new pet type and description to the
% PetType table. Checks for the new pet type
% first and does not add it to the table if
& it is already there.
&/

function addNewType($petType,$typeDescription)
{
/* Prepare data */
$petType = ucfirst(strip_tags(trim($petType)));
$typeDescription =
ucfirst(strip_tags(trim($typeDescription)));

/* Check whether new category is already in PetType table.
I[f it is not in table, add it to table. */
$query = "SELECT petType FROM PetType
WHERE petType='"$petType'";

$result = mysql_query($query) or

die ("Couldn't execute query ");
$ntype = mysql_num_rows($result); //
if ($ntype < 1) // if new type is not in table
{

$query = "INSERT INTO PetType (petType,typeDescription)
VALUES ('$petType', '$typeDescription’')";
$result = mysql_query($query)
or DIE ("Couldn't execute query ");
}
return;

}
7>

The function cleans the data first. Then it checks whether the pet type is
already in the PetType table. If it is not, the function adds it to the table.

Writing AddPet

This last program accepts the data from the form in the second program. If
new was selected for the pet name, it checks to see that a new name was
typed in and prompts for it again if it was left blank. After the pet name is
filled in, the program stores the pet information from the previous page.
Notice that it does not check the other information because the other infor-
mation is optional. This program, as in the previous program, brings in some
of the HTML forms and tables from two separate files by using the include
statement. Listing 11-11 shows AddPet.php.

Chapter 11: Building an Online Catalog 32 7

Listing 11-11: Program That Adds New Pet to Catalog

<?php
/* Program: AddPet.php
* Desc: Adds new pet to the database. A confirmation
u screen is sent to the user.
=
if (@$_POST['newbutton'] == "Cancel") # 7

{

}
$petName
$newName
$price =
$pix = $_

header("Location: ChoosePetCat.php");

$_POST['petName'];

$_POST["newName'];

POST['price'];

ST['pix"']1;

$petColor = $_POST['petColor'];

$category = $_POST['category'];
$petDescription = $_POST['petDescription'];

o Il
(=]

if ($petName == "new") #18
{

if ($newName == "") #20
{
include("NewName_form.inc");

exit();
}
else {25
{

$petName=trim($newName) ;

$petName=ucfirst(strtolower(strip_tags($petName)));
}

}

if ($pix == "") #31
$pix = "na.gif";
72>
<html>
<head><title>Add Pet</title><{/head>
<body>
<?php
include("misc.inc"); 38

$connection = mysql_connect($host,$user, $password)
or die ("couldn't connect to server");

$db = mysql_select_db($database,$connection)
or die ("Couldn't select database");

/* Clean the data */

$petDescription = strip_tags(trim($petDescription));

$price = strip_tags(trim($price));

$pix = strip_tags(trim($pix));

$petColor = strip_tags(trim($petColor));

$query = "INSERT INTO Pet
(petName,petType,petDescription,price,pix) VALUES

(continued)

328 Part IV: Applications

Listing 11-11 (continued)

('$petName', '$category’', '$petDescription', '$price’,
l$p.i><l)";

$result = mysql_query($query)
or die ("Couldn't execute query.");

$petID = mysql_insert_id(); {#55

echo "The following pet has been added to the
Pet Catalog:

<Ti>Category: $category
<1i>Pet Name: $petName
<1i>Pet Description: $petDescription
<1i>Price: $price
Picture file: $pix \n";

if ($petColor = "") 166
{
if ($petName == "Goldfish" or $petName == "Parakeet")
{
$query = "SELECT petName FROM Color
WHERE petName='"$petName'
AND petColor="$petColor'";
$result = mysql_query($query)
or die ("Couldn't execute query.");
$num = mysql_num_rows($result);
if ($num < 1)
{
$query = "INSERT INTO Color (petName,petColor,pix)
VALUES ('$petName', '$petColor', '$pix')";
$result = mysql_query($query)
or die ("Couldn't execute query.");
echo "<1i>Color: $petColor\n";
}
}

} 185
echo "";
echo "Add Another Pet\n";
?>
</body></htm1>

Notice the line numbers shown as comments at the end of lines in Listing
11-11. The numbers in the following list correspond to the line numbers in
the listing. | document only some of the lines in the following list because
many of the most common tasks, such as connecting to the database, have
been documented for the previous programs in this chapter.

7 Checks whether the user clicked the Cancel button. If so, returns to the
first page.

18 Starts an i f block that executes only if the user selected new for the pet
name. If the new name is blank, it displays a form that asks for the new
pet name (line 20) repeatedly until the user types one in. After the new
name is filled in, $petName is set to the new name (line 25).

31 If the picture filename was not typed in, it is set to the default picture.

38 Lines 38-55 add the new pet to the database. The data is cleaned before
it’s added.

57 Starts echoing the feedback page.

66 Starts an i f block that executes only if the color was filled in. The color
is only stored for parakeets and goldfish. The Color table is checked to
see whether the name and color are already there. If not, they are added
to the Color table. The if block ends on line 85.

This program brings in an HTML file that creates the form to prompt the user

for the pet name if the user forgot to type it in. Listing 11-12 shows the file
that is included: NewName_form.inc.

Listing 11-12: HTML That Asks User for a New Pet Name

Chapter 11: Building an Online Catalog 329

<?php
/* Program: NewName_form.inc
* Desc: Displays form to collect a pet name
*/

?>

You must type a pet name.
<form action="AddPet.php" method="post">
{table><tr>
<td align="right">Pet name:</td>
<td><input type="text" name="newName"
value="<?php echo $newName ?>"
size="25" maxlength="25">
</td></tr>
</table>
<input type="hidden" name="category"
value="<?php echo $category ?>">
<input type="hidden" name="petName"
value="<?php echo $petName ?>">
<input type="hidden" name="petDescription"
value="<?php echo $petDescription ?>">
<input type="hidden" name="price"
value="<?php echo $price ?>">
<input type="hidden" name="pix" value="<?php echo $pix ?2>">
<input type="hidden" name="petColor"
value="<?php echo $petColor ?>">
<p><input type="submit" name="newbutton"
value="Enter new pet name">
<input type="submit" name="newbutton" value="Cancel">
</ form>

330 Part IV: Applications

This file creates the form that is displayed if the user forgets to type in the
new pet name. It is very similar to the program in Listing 11-7 that’s displayed
when a user forgets to type in a new category. Notice that two hidden fields
are used to pass on the values for $category and $petName. When the form
is filled in, the values for these two variables are needed to store the pet
information.

At the end, this program provides a link to the first page so that the user can
add another new pet to the catalog if desired.

Chapter 12

Building a Members Only
Web Site

In This Chapter
Designing the Members Only Web site
Building the database for the member directory
Designing the Web pages for the Members Only section

Writing the programs for logging in to the Members Only section

M any Web sites require users to log in. Sometimes users can’t view any
Web pages without entering a password, while sometimes just part of
the Web page requires a login. Here are some reasons why you might want to
require a user login:

v+ The information is secret. You don’t want anyone except a few autho-
rized people to see the information. Or perhaps only your own employ-
ees should see the information.

v The information or service is for sale. The information or service that
your Web site provides is your product, and you want to charge people
for it. For instance, you might have a corner on some survey data that
researchers are willing to pay for. For example, AAA Automobile Club
offers some of its information for free, but you have to be a member to
see its hotel ratings.

+ You can provide better service. If you know who your customers are or
have some of their information, you can make their interaction with your
Web site easier. For instance, if you have an account with Barnes and
Noble.com or the Gap and log into their site, they use your stored ship-
ping address, and you don’t have to type it in again.

33 2 Part IV: Applications

+* You can find out more about your customers. Marketing would like to
know who is looking at your Web site. A list of customers with addresses
and phone numbers and perhaps some likes and dislikes is a useful thing.
If your Web site offers some attractive features, customers may be will-
ing to provide some information in order to access your site. For instance,
a person might be willing to answer some questions in order to down-
load some free software or to play a great online game.

Typically, a login requires the user to enter a user ID and a password. Often,
users can create their own accounts on the Web site, choosing their own user
ID and password. Sometimes users can maintain their accounts — for exam-
ple, change their password or phone number — online.

In Chapter 11, you find out how to build an online catalog for your Pet Store
Web site. Now, you want to add a section to your Web site that’s for Members
Only. You plan to offer special discounts, a newsletter, a database of pet infor-
mation, and more in the Members Only section. You hope that customers will
see the section as so valuable that they’ll be willing to provide their addresses
and phone numbers to get a member account that lets them use the services
in the restricted section. In this chapter, you build a login section for the Pet
Store.

Designing the Application

The first step in design is to decide what the application should do. Its basic
function is to gather customer information and store it in a database. It offers
customers access to valuable information and services to motivate them to
provide information for the database. Because state secrets or credit card
numbers aren’t at risk, you should make it as easy as possible for customers
to set up and access their accounts.

The application that provides access to the Members Only section of the Pet
Store should do the following:

v Provide a means for customers to set up their own accounts with
member IDs and passwords. This includes collecting the information
from the customer that’s required to become a member.

1 Provide a page where customers type their member ID and password
and then check whether they are valid. If so, the customer enters the
Members Only section. If not, the customer can try another login.

1~ Show the pages in the Members Only section to anyone who is logged in.

* Refuse to show the pages in the Members Only section to anyone who
is not logged in.

 Keep track of member logins. You want to know who logs in and how
often.

Chapter 12: Building a Members Only Web Site 333

Building the Database

The database is the core and purpose of this application. It holds the cus-
tomer information that’s the goal of the Members Only section. It also holds
the Member ID and password so that the user can log into the Members Only
section.

The Members Only application database contains two tables:

v Member table
v Login table

The first step in building the login application is to build the database. It’s
pretty much impossible to write programs without a working database to test
the programs on. First design your database; then build it; then add some
sample data for use while developing the programs.

®@J\BEI? Some changes have been made to the database design that I develop in

> Chapter 3 for the Members Only restricted section of the Pet Store Web site.
Development and testing often result in changes. Perhaps you find that you
didn’t take some factors into consideration in your design or that certain ele-
ments of your design don’t work with real-world data or are difficult to pro-
gram. It’s perfectly normal for the design to evolve while you work on your
application. Just be sure to change your documentation when your design
changes.

Building the Member table

In your design for the login application, the main table is the Member table.
It holds all the information entered by the customer, including the customer’s
personal information (name, address, phone number, and so on) and the
Member ID and password. The following SQL query creates the Member table:

CREATE TABLE Member (

loginName VARCHAR(20) NOT NULL,
createDate DATE NOT NULL,
password VARCHAR(255) NOT NULL,
lastName VARCHAR(50),
firstName VARCHAR(40),
street VARCHAR(50),
city VARCHAR(50),
state CHAR(2),
zip CHAR(10),
email VARCHAR(50),
phone CHAR(15),
fax CHAR(15)
)

334 Part IV: Applications

Each row represents a member. The columns are

v 1oginName: A Member ID for the member to use when logging in. The
customer chooses and types in the login name. The CREATE query
defines the ToginName in the following ways:

e CHAR(20): This data type defines the field as a character string
that’s 20 characters long. The field will always take up 20 charac-
ters of storage, with padding if the actual string stored is less than
20 characters. If a string longer than 20 characters is stored, any
characters after 20 are dropped.

e PRIMARY KEY(loginName): The primary key identifies the row

and must be unique. MySQL will not allow two rows to be entered
with the same ToginName.

e NOT NULL: This definition means that this field can’t be empty.

It must have a value. The primary key must always be set to
NOT NULL.

v createDate: The date when the row was added to the database — that

is, the date when the customer created the account. The query defines
createDate as

e DATE: This is a string that’s treated as a date. Dates are displayed
in the format YYYY-MM-DD. They can be entered in that format or
some similar formats, such as YY/M/D or YYYYMMDD.

e NOT NULL: This definition means that this field can’t be empty. It
must have a value. Because the program, not the user, creates the
date and stores it, it won’t ever be blank.

v password: A password for the member to use when logging in. The cus-
tomer chooses and types in the password. The CREATE query defines
the password in the following ways:

e VARCHAR(255): This statement defines the field as a variable char-
acter string that can be up to 255 characters long. The field is stored
in its actual length. You don’t expect the password to be 255 char-
acters long. In fact, you expect it to be pretty short. However, you
intend to use the MySQL password function to encrypt it rather
than store it in plain view. After it’s encrypted, the string will be
longer, so you're allowing room for the longer string.

e NOT NULL: This statement means that this field can’t be empty. It
must have a value. You're not going to allow an empty password in
this application.

v lastName: The customer’s last name, as typed by the customer. The
CREATE query defines the field as

e VARCHAR(50): This data type defines the field as a variable charac-

ter string that can be up to 50 characters long. The field is stored
in its actual length.

Chapter 12: Building a Members Only Web Site

v firstName: The customer’s first name, as typed by the customer. The
CREATE query defines the field as

* VARCHAR(40): This data type defines the field as a variable charac-
ter string that can be up to 40 characters long. The field is stored
in its actual length.

v street: The customer’s street address, as typed by the customer. The
CREATE query defines the field as

* VARCHAR(50): This data type defines the field as a variable charac-
ter string that can be up to 50 characters long. The field is stored
in its actual length.

v city: The city in the customer’s address, as typed by the customer. The
CREATE query defines the field as

* VARCHAR(50): This data type defines the field as a variable charac-
ter string that can be up to 50 characters long. The field is stored
in its actual length.

v state: The state in the customer’s address. The string is the two-letter
state code. The customer selects the data from a drop-down list contain-
ing all the states. The CREATE query defines the field as

e CHAR(2): This data type defines the field as a character string
that’s two characters long. The field will always take up two char-
acters of storage, with padding if the actual string stored is less
than two characters.

v zip: The ZIP code that the customer types in. The CREATE query defines
the field as

e CHAR(10): This data type defines the field as a character string
that’s ten characters long. The field will always take up ten charac-
ters of storage, with padding if the actual string stored is less than
ten characters. The field is long enough to hold a ZIP+4 code, such
as 12345-1234.

v email: The e-mail address that the customer types in. The CREATE query
defines the field as

e VARCHAR(50): This data type defines the field as a variable charac-
ter string that can be up to 50 characters long. The field is stored
in its actual length.

v phone: The phone number that the customer types in. The CREATE
query defines the field as

e CHAR(15): This data type defines the field as a character string
that’s 15 characters long. The field will always take up 15 charac-
ters of storage, with padding if the actual string stored is less than
15 characters.

335

336 Part IV: Applications

\\3

v fax: The fax number that the customer types in. The CREATE query
defines the field as

e CHAR(15): This data type defines the field as a character string
that’s 15 characters long. The field will always take up 15 charac-
ters of storage, with padding if the actual string stored is less than
15 characters.

Notice that some fields are CHAR and some are VARCHAR. CHAR fields are
faster, whereas VARCHAR fields are more efficient in using disk space. Your
decision will depend on whether disk space or speed is more important for
your application in your environment.

In general, shorter fields should be CHAR because shorter fields don’t waste
much space. For instance, if your CHAR is 5 characters, the most space that
could possibly be wasted is 4 characters. However, if your CHAR is 200, you
could waste 199 characters. Therefore, for short fields, use CHAR for speed

with very little wasted space.

Building the Login table

The Login table keeps track of member logins by recording the date and time
every time that a member logs in. Because each member has multiple logins,
the login data requires its own table. The CREATE query that builds the Login
table is

CREATE TABLE Login (
lToginName VARCHAR(20) NOT NULL,
loginTime DATETIME NOT NULL,
PRIMARY KEY(loginName,loginTime));

The Login table has only two columns, as follows:

v 1oginName: The Member ID that the customer uses to log in with. The
lToginName is the connection between the Member table (which I describe
in the preceding section) and this table. Notice that the ToginName
column is defined the same in the Member table and in this table. This
makes table joining possible and makes matching rows in the tables
much easier. The CREATE query defines the ToginName in the following
ways:

e CHAR(20): This data type defines the field as a character string
that’s 20 characters long. The field will always take up 20 charac-
ters of storage, with padding if the actual string stored is less than
20 characters. If a string longer than 20 characters is stored, any
characters after 20 are dropped.

Chapter 12: Building a Members Only Web Site 33 7

e PRIMARY KEY(ToginName,loginTime): The primary key identifies
the row and must be unique. For this table, two columns together
are the primary key. MySQL will not allow two rows to be entered
with the same ToginName and 1oginDate.

e NOT NULL: This definition means that this field can’t be empty.
It must have a value. The primary key must always be set to
NOT NULL.

v 1oginTime: The date and time when the member logged in. This field
uses both the date and time because it needs to be unique. It’s very
unlikely that two users would log in at the same second at the Pet Store
Web site. However, in some very busy Web sites, two users might log in
during the same second. At such a site, you might have to create a
sequential login number to be the unique primary key for the site. The
CREATE query defines the 1oginTime in the following ways:

e DATETIME: This is a string that’s treated as a date and time. The
string is displayed in the format YYYY-MM-DD HH:MM:SS.

e PRIMARY KEY(ToginName,loginTime): The primary key identifies
the row and must be unique. For this table, two columns together
are the primary key. MySQL will not allow two rows to be entered
with the same ToginName and 1oginDate.

e NOT NULL: This definition means that this field can’t be empty.
It must have a value. The primary key must always be set to
NOT NULL.

Adding data to the database

This database is intended to hold data entered by customers — not by you.

It will be empty when the application is first made available to customers
until customers add data. However, to test the programs while you write them,
you need to have at least a couple of members in the database. You need a
couple of Member IDs and passwords to test the login program. You can add

a couple of fake members for testing purposes — by using an INSERT SQL
query — and remove them when you're ready to go live with your Members
Only application.

Designing the Look and Feel

After you know what the application is going to do and what information
you want to get from customers and store in the database, you can design
the look and feel. The look and feel includes what the user sees and how the
user interacts with the application. Your design should be attractive and

338 Part IV: Applications

easy to use. You can create your design on paper, indicating what the user
sees, perhaps with sketches or with written descriptions. You should also
show the user interaction components, such as buttons or links, and describe
their actions. Include each page of the application in the design.

The Pet Store Members Only application has three pages that are part of the
login procedures. In addition, the application includes all the pages that are
part of the Members Only section, such as the page that shows the special
discounts and the pages that provide discussions of pet care. In this chapter,
you only build the pages that are part of the login procedure. You don’t build
the pages that are part of the Members Only section, but [do discuss what
needs to be included in them to protect them from viewing by non-members.

The login application includes three pages, plus the group of pages that com-
prise the Members Only section, as follows:

v~ Storefront page: The first page that a customer sees. It provides the
name of the business and the purpose of the Web site. I introduce a
storefront page in Chapter 11, and in this chapter, you modify it to pro-
vide access to the Members Only section.

v Login page: Allows the customer to either log in or create a new member
account. It shows a form for the customer to fill in to get a new account.

1+ New Member Welcome page: Welcomes the new users by name, letting
them know that their accounts have been created. Provides any informa-
tion that they need to know. Provides a button so that users can continue
to the Members Only section or return to the main page.

1 Members Only section: A group of Web pages that contain the content
of the Members Only section.

Storefront page

The storefront page is the introductory page for the Pet Store. Because most
people know what a pet store is, the page doesn’t need to provide much expla-
nation. Figure 12-1 shows the storefront page. Two customer actions are avail-
able on this page: a link that the customer can click to see the Pet Catalog and
a link to the Members Only section.

Login page

The login page allows the customer to log in or create a new member account.
It includes the form that customers need to fill out to get a member account.
Figure 12-2 shows the login page. This page has two different submit buttons:
one to log in with an existing member account and one to create a new member
account.

Figure 12-1:
The opening
page of the
Pet Store
Web site.

Figure 12-2:
The page
where
customers
loginor
create
anew
member
account.
|

A Pet Store Front Page - Microsoft Internet Explorer
| Elle Edit View Favorites Tools Help |

Chapter 12: Building a Members Only Web Site

¢ . . Q [Q@ @I B S v, P
Back Fanward Stop Aefiesh Home Sesrch Favortes Histary il Frint Edit Realcam
|Aﬁdr888 !€| Fitp: 4 fjanetval san . com/PHPEMS D LfoiDummies/PetShopFiont php d Go |_Links »H ‘w »
=
Looking for
Looking for a new friend? 3i's freet
Check out our Pet Catalog,
We may have just what you're looking for.
&] Done |—|—|‘ Intermnet

A Members Only Login - Microsoft Internet Explorer
| Elle Edit View Favorites Tools Help |

@« .2 .0 [N ol a @ @ B8 v, D

Back Fanard Stop Aefiesh Home Sesrch Favortes Histary Mail Frint Eit Realcam

| Address [&] hitp:/Aanetval san i com/PHPEMS O LIoDummiss/members/fagin.phe =] @50 || Links || 72 »

Nota ber yet? Cet di a 1 advance notice of new pets, much more.

Fill in the information below and join It's easy and free!

Member ID I
Password I

First Name |

Last Name |

Stuetl

City |
State | Alabama =l ozl

Phone | Fax|

Email Addvess |

Become a Member |

Ll comments and suggestions are d. Pleass send

stenpetotore. com

£i0one [[Oimtemt

339

34 0 Part IV: Applications

Figure 12-3:
Page
showing a
message
resulting
from a
mistake in
the form.
|

If a customer makes a mistake on the login page, either in the login section
or the new member section, the form is displayed again with an error mes-
sage. For instance, suppose that a customer makes an error when typing his
e-mail address: He forgot to type the . com at the end of the e-mail address.
Figure 12-3 shows the screen that he sees after he submits the form with the
mistake in it. Notice the error message printed right above the form.

When members successfully log in with a valid Member ID and password,
they go to the first page of the Members Only section. When new members
successfully submit a form with information that looks reasonable, they go
to a New Member Welcome page (see the next section). In addition, an e-mail
message is sent to the new member with the following contents:

A new Member Account has been setup for you. Your new
Member ID and password are:

gsmith
secret

We appreciate your interest in Pet Store at PetStore.com

If you have any questions or problems, send email
to webmaster@petstore.com

Ew‘%'gw'@

= .
Back Fanard Stop Aefiesh Home Sesrch Favortes Histary Frint Edit Realcam
| Address [&] hitp:isnetval san 1. com/PHPEMy SOLIoD ummies/members/Logi php Tdo=new =] @60 |_Links ”H ¥ »

Members Only Section

Nota ber yet? Cet di L 4 1 advance notice of new pets, much more.
Fill in the information below and join It's easy and free!

Are you a member?

Username
ily pany is not a valid email address. Please try again,
Password | Meniher ID Igsmi!h
B Password W

First Name IGDIiath

Last Name [Srmith

Street [1234 Giant 5t

City [Big City
State [Alabama =l zpfa7e50
Phone [555-555-5555 Fax|

Email Address |mymail @mycompany

Become aMember |

— it s i o

\\J

|
Figure 12-4:
A page
welcoming
new
members.

Chapter 12: Building a Members Only Web Site

This e-mail message contains the customer’s password. I think that it’s very
helpful to both the customer and the business to provide customers with a
hard copy of their password. Customers will forget their password. It seems
to be one of the rules. An e-mail message with their password might help them
when they forget it, saving both them and you some trouble. Of course, e-mail
messages aren’t necessarily secure, so sending passwords via e-mail isn’t a
good idea for some accounts, such as an online bank account. But, for this Pet
Store application, with only unauthorized discounts and pet care information
at risk, sending the password via e-mail is a reasonable risk.

New Member Welcome page

The New Member Welcome page greets the customer and offers useful infor-
mation. The customer sees that the account has been installed and can then
enter the Members Only section immediately. Figure 12-4 shows a welcome
page.

2 New Member Welcome . Microsoft Interet Explorer

Eile Edit View Favorites Tools Help |
.2 .0 [& @ @ I D 9 v . @

Back' Fomwasd Stop Refiesh Home Sesch Favontes Historpy | Mail Fiint Eii Realeam)

Address |€| Fitp:/ fjanetval san . com/PHPEMS DLfoiDummiss/members/neve_member.php j @ 0Go || Links »i ‘w »»
Welcome Goliath Smith
Your new hMember Account leis you enter the IMembers Only section of our web site. Youlll find special discounts and bargains, a huge
databage of animal facts and stories, advice from experts, advance notification of new pets for sale, a message board where you can talk to
other Members, and much more
Vour new Member [D and password were emailed to you. Store them carefully for fture use,
Glad you could join us!
Enter the Members Only Section |
Go to Pet Store Main Page]
@] || |® Intermet

341

342 Part IV: Applications

Members Only section

One or more Web pages make up the contents of the Members Only section.
Whatever the content is, the pages are no different than any other Web pages
or PHP programs, except for some PHP statements in the beginning of each
file that prevent non-members from viewing the pages.

Writing the Programs

CMBER
S

After you know what the pages are going to look like and what they are going
to do, you can write the programs. In general, you create a program for each
page, although sometimes it makes sense to separate programs into more
than one file or to combine programs on a page. (See Chapter 10 for details
on how to organize applications.)

As I discuss in Chapter 10, keep the information needed to connect to the
database in a separate file and include it in all the programs that need to
access the database. Store the file in a secure location, with a misleading
name. For this application, the following information is stored in a file named
dogs.inc:

<?php
$user="catalog";
$host="1ocalhost";
$password="";
$database="MemberDirectory";
?>

The member login application has several basic tasks:

1. Show the storefront page. This provides a link to the login page.

2. Show a page where customers can fill in a Member ID and a password
to log in.

3. Check the Member ID and the password that the customer types
against the Member ID and password stored in the database. If the ID
and password are okay, the customer enters the Members Only section.
If the ID and/or password are not okay, the customer is returned to the
login page.

4. Show a page where customers can fill in the information needed to
obtain a member account.

5. Check the information the customer typed in for blank fields or incor-
rect formats. If bad information is found, show the form again so that
the customer can correct the information.

Chapter 12: Building a Members Only Web Site

6. When good information is entered, add the new member to the
database.

7. Show a welcoming page to the new member.
The tasks are performed in three programs:

v PetShopFront.php: Shows the storefront page (task 1).

v Login.php: Performs both the login and create new member account
tasks (tasks 2-6).

v New_member.php: Shows the page that welcomes the new member
(task 7).

Writing PetShopFront

The storefront page doesn’t need any PHP statements. It simply displays a
Web page with two links — one link to the Pet Catalog and one link to the
Members Only section of the Web site. HTML (HyperText Markup Language)
statements are sufficient to do this. Listing 12-1 shows the HTML file that
describes the storefront page.

Listing 12-1: HTML File for the Storefront Page

<?php
/* Program: PetShopFrontMembers.php
* Desc: Displays opening page for Pet Store.
=

?>

<html>

<head><title>Pet Store Front Page</title></head>
<body topmargin="0" Teftmargin="0" marginheight="0"
marginwidth="0">
<table width="100%" height="100%" border="0"
cellspacing="0" cellpadding="0">
<tr>
<td align="center" valign="top" height="30" colspan="2">

</td>
</tr>
<tr>
<td align="center" valign="top" colspan="2">

</td></tr>

(continued)

343

344 Part IV: Applications

Listing 12-1 (continued)

<tr>
<td width="80%" align="center">
<p style="margin-top: 40pt">
<img src="images/lizard-front.jpg" alt="1lizard picture"
height="186" width="280">
<p><h2>Looking for a new friend?</h2>
<p>Check out our
Pet Catalog.

 We may have just what you're looking for.
</td>
<td width="20%" bgcolor="black">
<div style="color: white; Tink: white">
<p style="text-align: center; font-size: 15pt">
Looking for
more?</p>

special deals?
pet information?
<1i>good conversation?

<p style="text-align: center">Try the

<a href="Login.php"
style="color: white">Members Only

section
of our store
<p style="text-align: center">It's freel</p>
</td>
</tr>
</table>
</body></htm1>

Notice the link to the login PHP program. When the customer clicks the link,
the login page appears.

Writing Login

The login page (refer to Figure 12-2) is produced by the program Login.php,
as shown in Listing 12-2. The program uses a switch to create two sections:
one for the login and one for creating a new account. The program creates a
session that’s used in all the Members Only Web pages. The login form itself
isn’t included in this program,; it’s in a separate file called 1ogin_form.inc,
which is called into this program, whenever the form is needed, by using
include statements.

Listing 12-2: Login Program

<?php
/* Program: Login.php
* Desc: Login program for the Members Only section of the

e pet store. It provides two options: (1) Togin

Chapter 12: Building a Members Only Web Site 345

& using an existing Login Name and (2) enter a new
& login name. Login Names and passwords are stored
* in a MySQL database.
=)
session_start(); # 9
include("dogs.inc"); #10
switch (@$_GET['do"']) #11
{
case "login": #13

$connection = mysql_connect($host, $user,$password) #14
or die ("Couldn't connect to server.");
$db = mysql_select_db($database, $connection)

or die ("Couldn't select database."); #17
$sql = "SELECT loginName FROM Member
WHERE loginName='$_POST[fusername]'"; #20
$result = mysql_query($sql)
or die("Couldn't execute query."); 22
$num = mysql_num_rows($result); #23
if ($num == 1) // login name was found {24

{
$sql = "SELECT loginName FROM Member
WHERE loginName='$_POST[fusername]’
AND password=password('$_POST[fpassword]')";
$result2 = mysql_query($sql)
or die("Couldn't execute query 2."); ##30
$num2 = mysql_num_rows($result2);

if ($num2 > 0) // password is correct {32
{
$_SESSION["auth'J]="yes"; 134
$Togname=$_POST['fusername'];
$_SESSION['logname'] = $logname; {36
$today = date("Y-m-d h:m:s"); #37

$sql = "INSERT INTO Login (loginName,loginTime)
VALUES ('$logname', '$today')";
mysql_query($sql) or die("Can't execute query.");

header("Location: Member_page.php"); #41
}
else // password is not correct 143
{

unset($do); 45

$message="The Login Name, '$_POST[fusername]"
exists, but you have not entered the
correct password! Please try

again.
";
include("login_form.inc"); {49
}
} #51
elseif ($num == 0) // login name not found {52

{

(continued)

34 6 Part IV: Applications

Listing 12-2 (continued)

unset($do); #54
$message = "The Login Name you entered does not
exist! Please try again.
";
include("login_form.inc");
}

break; #59
case "new": {61
foreach($_POST as $field => $value) 62

{ if ($field != "fax") 64

{ if ($value == "") #66

{
unset($_GET['do"'1);
$message_new = "Required information is missing.
Please try again.";
include("login_form.inc");
exit();
}
1
if (ereg("(Name)",$field)) #75
{
/*if (lereg("~[A-Za-z' -1{1,50}$",%$value))
{
unset($_GET['do']);
$message_new = "$field is not a valid name.
Please try again.";
include("login_form.inc");

exit();
%4
}
$$field = strip_tags(trim($value)); 186
} // end foreach
if (lereg("~[0-91{5,5}(\-[0-91{4,4})?%",%$zip)) 88

{
unset($_GET['do'1);
$message_new = "$zip is not a valid zip code.
Please try again.";
include("Togin_form.inc");
exit();
}
if (lereg("~[0-9)(xX -1{7,20}$",%$phone)) 196
{
unset($_GET['do'1);
$message_new = "$phone is not a valid phone number.
Please try again.";
include("login_form.inc");
exit();
}

Chapter 12: Building a Members Only Web Site 34 7

if ($fax I="") #104
{
if (lereg("~[0-9)(xX -1{7,20}$",$fax))
{
unset($_GET['do']);
$message_new = "$fax is not a valid phone number.
Please try again.";
include("login_form.inc");
exit();
}
}
if (lereg("".+@.+\\..+$",$email)) #115
{
unset($_GET['do']);
$message_new = "$email is not a valid email address.
Please try again.";
include("login_form.inc");
exit();
} #122
/* check to see if login name already exists */
$connection = mysql_connect($host,$user, $password)
or die ("Couldn't connect to server.");
$db = mysql_select_db($database, $connection)
or die ("Couldn't select database.");
$sql = "SELECT loginName FROM Member
WHERE ToginName='$newname'";
$result = mysql_query($sql)
or die("Couldn't execute query.");
$num = mysql_numrows($result);

if ($num > 0) #133
{
unset($_GET['do']);
$message_new = "$newname already used. Select another
Member ID.";
include("login_form.inc");
exit();
}
else #141
{
$today = date("Y-m-d"); #143

$sql = "INSERT INTO Member (loginName,createDate,
password, firstName,TastName,street,city,
state,zip,phone,fax,email) VALUES
("$newname', "$today',password('$newpass'),
"$firstName', '$lastName', '$street', '$city’,
"$state', '$zip', '$phone’, '$fax"', '$email')";

mysql_query($sql); #F150
$_SESSION['auth']="yes"; #151
$_SESSION['lTogname']l = $newname; #152

(continued)

34 8 Part IV: Applications

Listing 12-2 (continued)

/* send email to new member */ {153

$emess = "A new Member Account has been setup. ";
$emess.= "Your new Member ID and password are: ";
$emess.= "\n\n\t$newname\n\t$newpass\n\n";
$emess.= "We appreciate your interest in Pet Store";
$emess.= " at PetStore.com. \n\n";
$emess.= "If you have any questions or problems,";
$emess.= " email webmaster@petstore.com";
$ehead="From: member-desk@petstore.com\r\n"; #161
$subj = "Your new Member Account from Pet Store";
$mailsend=mail("$email","$subj","$emess","$ehead");
header("Location: New_member.php"); #164
}
break; {166
default: #168

include("login_form.inc");
}
?>

Some of the lines in Listing 12-2 have line numbers at the ends of the lines.
The following list refers to the line numbers in the listing to discuss the pro-
gram and how it works:

9 Starts a session. The session has to be started at the beginning of the
program, even though the user hasn’t logged in yet.

10 Reads in the file that sets the variables needed to connect to the data-
base. The program is called dogs. inc, which is a misleading name that
seems more secure than calling it mypasswords.inc.

11 Starts a switch statement. The switch statement contains three sections,
based on the value that was passed for do, obtained from the built-in
array $_GET. The first section runs when the value pair passed for do is
10gin; the second section runs when the value passed for do is new; and
the third section is the default that runs if no value was passed for do.
The third section just creates the login page and only runs when the cus-
tomer first links to the login page.

13 Starts the case block for the login section — the section that runs when
the customer logs in. The login section of the form sends do=Togin in
the URL, which causes this section of the switch statement to run.

14 Lines 14-17 connect to MySQL and select the database.

19 Lines 19-22 look in the database table Member for a row with the login
name typed by the customer.

23 Checks to see whether a row was found with a ToginName field contain-
ing the Member ID typed by the customer. $num will equal 0 or 1, depend-
ing on whether the row was found.

Chapter 12: Building a Members Only Web Site

\NG/
$

24 Starts an i f block that executes if the Member ID was found. That means
that the user submitted a Member ID that is in the database. This block
then checks to see whether the password submitted by the user is cor-
rect for the given Member ID. This block is documented in more detail in
the following list:

26 Lines 26-28 create a query that looks for a row with both the
Member ID and the password submitted by the customer. Notice
that the password submitted in the form ($fpassword) is encrypted
by using the MySQL function, password (). Passwords in the data-
base are encrypted, so the password that you're trying to match
must also be encrypted, or it won’t match.

29 Lines 29-31 execute the query and check whether a match was
found. $num?2 equals 1 or 0, depending on whether a row with both
the Member ID and the password is found.

32 Starts an if block that executes if the password is correct. This
is a successful login. Lines 32-41 are executed, performing the fol-
lowing tasks: 1) The two session variables, auth and Togname, are
stored in the SESSION array. 2) $today is created with today’s date
and time in the correct format expected by the database table. 3) A
row for the login is entered into the Login table. 4) The first page of
the Members Only section is sent to the member.

43 Starts an el se block that executes if the password is not correct.
This is an unsuccessful login. Lines 45-49 are executed, perform-
ing the following tasks: 1) Unset the form variable $do. This pre-
vents any confusion later. 2) Set the appropriate error message
into $message. 3) Show the login page again. The login page will
show the error message.

Notice that the loop starting on line 43 lets the user know when
they have a real login name but the wrong password. If the security
of your data is very important, you may want to write this loop dif-
ferently. Providing that information may be helpful to someone who
is trying to break in. The cracker now only needs to find the pass-
word. For more security, just have one condition that gives the
same error message whenever either the login name or the pass-
word is incorrect. In this example, I prefer to provide the informa-
tion because it is helpful to the legitimate member (who may not
remember whether he or she installed an account at all), and I'm
not protecting any vital information.

51 Ends the block that executes when the Member ID is found in the
database.

52 Starts an if block that executes when the Member ID is not found in the
database. This could actually be an else, instead of an elseif, but I
think that it’s clearer to humans with the if condition in the statement.
This block unsets the form variable $do, creates the appropriate error
message and also shows the login page again, which includes the error
message.

349

350 Part IV: Applications

59 Ends the case block that executes when the customer submits a
Member ID and password to log in. The login block extends from
line 13 to this line.

61 Starts the case block that executes when the customer fills out the form
to get a new member account. The form sends do=new in the URL, caus-
ing the program to jump to this section of the switch statement.

62 Starts a foreach loop that loops through every field in the new member
form. The loop checks for empty required fields and checks the first and
last name for acceptable characters. The statements in the loop are docu-
mented in more detail in the following list:

64 Checks whether the field is the fax field. The fax field is not
required. The fax field isn’t checked to see whether it is blank
because it’s okay for it to be blank.

66 Checks whether the field is blank. If it is, the i f block performs
the following tasks: 1) Unsets $do. 2) Creates an error message
that explains the problem. 3) Shows the login form again, includ-
ing the error message. 4) Stops the program and waits for the user
to submit the form again with the field filled in.

75 Checks whether the field is the last name or first name field. If so,
it checks the field format for allowed characters. If any characters
that are not allowed are found, it performs the following tasks:

1) Unsets $do. 2) Creates an error message that explains the prob-
lem. 3) Shows the login form again, including the error message.
4) Stops the program and waits for the user to submit the form
again with the correct format.

86 Trims extra spaces from all the field values after they are checked
in line 66 to be sure that they aren’t blank. Removes any HTML
tags that are in any of the fields. Creates a variable for each of
the fields in the following way. Suppose in the first loop of the
foreach loop, the variableis $ _POST [loginName] = gsmith.
The foreach loop sets $key="ToginName" and $value="gsmith".
Therefore, the statement in line 86 is equivalent to
$1oginName=strip_tags(trim("gsmith")). The
$$keyis $1oginName because $key=1oginName.

87 Ends the foreach loop.

88 Lines 88-122 are a series of i f blocks that check the fields for the cor-
rect format. If any of the fields checked doesn’t have the correct format,
the block performs the following tasks: 1) Unsets $do. 2) Creates an error
message that explains the problem. 3) Shows the login form again, includ-
ing the error message. 4) Stops the program and waits for the user to
submit the form again with the correct format.

Chapter 12: Building a Members Only Web Site 35 1

124 Lines 124-132 check whether the Member ID submitted by the customer
is already a ToginName in the database table Member. The ToginName
must be unique. $num equals 0 or 1, depending on whether the
loginName is found in the database.

133 Starts an i f block that executes if the ToginName is already in the data-
base. The new member cannot be added if the Member ID is not unique.
The block performs the following tasks: 1) Unsets $do. 2) Creates an
error message that explains the problem. 3) Shows the login form again,
including the error message. 4) Stops the program and waits for the user
to submit the form again with a different Member ID.

141 Starts an else block if the ToginName is not already in the database.
This is a successful application for a member account. The block inserts
anew row in the Member table for the new member account and sends
an e-mail message to the customer about the new account. The state-
ments in the block are documented in more detail in the following list:

143 Sets $today to today’s date in the correct format for the
createDate field in the Member table.

144 Creates an INSERT query to add the new member row. Notice that
the password is encrypted as password('$newpass') when it is
entered. This is a security method so that no one who looks in the
database can see the password. If you're totally sure that no one will
see the database that shouldn’t, encryption isn’t really necessary.

150 Executes the INSERT query.

151 In lines 151 and 152, the two session variables, $auth and $1ogname,
are stored in the SESSION array.

154 Lines 154-163 send an e-mail to the new member, verifying the
Member ID and password. Notice that the e-mail message is cre-
ated in the variable $emess over several lines. It begins in line 154
and is added to (by using . =) on each line until it finishes on line
160. This is to make it easier for humans to read — not because
PHP needs this. Unlike HTML content that ignores extra spaces
and line ends, extra spaces and other things have an effect on an
e-mail message. For instance, if I created one long message — with
extra spaces to indent it so that I could read it — those spaces
would show up in the e-mail. So, [set the message on several lines
that I can indent for readability in the program. Line 163 uses the
PHP function mail to send the e-mail message. The mail function
is documented in Chapter 14.

164 Sends the customer to the New Member page.

165 Ends the else block for a successful new member account
application.

352 Part IV: Applications

166 Ends the case block for the New Member section of the login page.

168 Starts the case block for the default condition. If $do is not set to either
"Togin" or "new", the program skips to this block. Because both the
forms on the login page set $do, this block only executes the first time
this program runs — when the user links to it from the storefront page
and has not yet submitted either form. This section has only one state-
ment: a statement that displays the login page.

This program shows the login page in many places. This is done with include
statements that call the file Togin_form. inc. This file includes the HTML
that produces the login page. The program Login.php does not produce any
output at all. All the output is produced by Togin_form. inc. This type of
application organization is discussed in Chapter 10. This is a good example
of the use of include files. Just imagine this program, which is long enough,
if the statements in 1ogin_form. inc, shown in Listing 12-3, were included in
the Login program at each place where 10gin_formis included. Whew, that
would be a mess that only a computer could understand.

Listing 12-3: File That Creates the Login Page

<?php

/* File: login_form.inc
* Desc: Displays login page. Page displays two forms--one
& form for entering an existing login name and

2 password and another form for the information
% needed to apply for a new account.
=)
include("functionsl2.inc"); i# 8
7>
<html>

<head><title>Members Only Login</title></head>
<body topmargin="0" Teftmargin="0" marginheight="0"
marginwidth="0">
<table border="0" cellpadding="5" cellspacing="0">
<tr><td colspan="3" bgcolor="gray" align="center">

Members Only Section</td></tr>
<tr>
<td width="33%" valign="top">
Are you a member?
<p>
<!-- form for customer login -->
<form action="Login.php?do=1ogin" method="POST">
<table border="0">
<?php #25
if (isset($message))
echo "<tr><td colspan="2"'>$message </td></tr>";
?>

Chapter 12: Building a Members Only Web Site

<tr><td align=right>Username</td>
<td><input type="text" name="fusername"
size="20" maxsize="20">
</td></tr>
<tr><td width="120" align="right">Password
</td>
<td><input type="password" name="fpassword"
size="20" maxsize="20"></td></tr>
<tr><td align="center" colspan="2">

<input type="submit" name="1og"
value="Enter">
</td></tr>
</table>
</form>
</td>
<td width="1" bgcolor="gray"></td>
<td width="67%">
<p>Not a member yet?
Get discounts, a newsletter, advance notice of
new pets, much more. Fill in the information
pbelow and join. It's easy and free!

<I-- form for new member to fill in -->
<form action="Login.php?do=new" method="POST">
<p>
<table border="0" width="100%">
<?php
if (isset($message_new)) #55
echo "<tr><td colspan="'2"'>$message_new
</td></tr> "
?>

<tr><td align="right">Member ID</td>
<td><input type="text" name="newname"
value="<?php echo @$newname ?>"
size="20" maxlength="20"></td></tr>
<tr><td align="right">Password</td>
<td><input type="password" name="newpass"
value="<?php echo @$newpass ?>"
size="10" maxlength="8"></td></tr>
<tr><td align="right">First Name</td>
<td><input type="text" name="firstName"
value="<7?php echo @$firstName ?>"
size="40" maxlength="40"></td></tr>
<tr><td align="right">Last Name</td>
<td><input type="text" name="lastName"
value="<?php echo @$lastName ?>"
size="40" maxlength="40"></td></tr>
<tr><td align="right">Street/b></td>
<td><input type="text" name="street"
value="<?php echo @$street ?>"
size="55" maxlength="50"></td></tr>

(continued)

353

354

Part IV: Applications

Listing 12-3 (continued)

<tr><td align="right">City</td>
<td><input type="text" name="city"
value="<7?php echo @$city ?>"
size="40" maxlength="40"></td></tr>
<tr><td align="right">State</td>
<td><select name="state">
<?php
$stateName=getStateName(); 186
$stateCode=getStateCode(); 87
for ($n=1;$n<=50;%$n++)
{
$state=$stateNamel[$n];
$scode=$stateCodel[$n];
echo "<option value='$scode'";
if ($scode== "AL")
echo " selected";
echo ">$state\n";
?> }
{/select>
 Zip
<input type="text" name="zip"
value="<?php echo @$zip ?>"
size="10" maxsize="10">
</td></tr>
<tr><td align=right>Phone</td>
<td><input type="test" name="phone"
value="<?php echo @$phone 7?>"
size="15" maxlength="20">
 Fax
<input type="text" name="fax"
value="<?php echo @$fax ?>"
size="15" maxlength="20"></td></tr>
<tr><td align=right>Email Address</td>
<td><input type="test" name="email"
value="<?php echo @$email ?>"
size="55" maxlength="67"></td></tr>
<tr><td> </td>
<td align="center">
<input type="submit"
value="Become a Member"></td>
</tr>
</table>
</ form>
</td>
</tr>
<tr><td colspan="3" bgcolor="gray"> </td></tr>
</table>

Chapter 12: Building a Members Only Web Site

<div align="center">
ATT comments and suggestions are appreciated. Please
send comments to
webmaster@petstore.com </div>

</body></html1>

Notice the following points about Togin_form:

v Most of the statements are HTML, with a few small PHP sections here
and there.

v The two forms that start on lines 23 and 51 set action to the same pro-
gram, but add a different string to the URL — do=10gin or do=new.

v The error messages are shown on the login page by using small PHP sec-
tions. Each form has its section, and the message has different names for
the two forms: $message and $message_new. On line 26, the variable
$message is tested. If it has a value, the message is shown but is not if
it has no value. If there was no error in the form, the message was never
set, and no message is displayed. A similar statement on line 55 shows
error messages for the new member form.

v A selection drop-down list (started on line 84) is provided for the cus-
tomer to select the state, guarding against typing errors by the customer.
Notice that lines 86 and 87 call functions. These functions are not PHP
functions; they’re my functions. The functions are included in the pro-
gram on line 8. The functions make arrays from a list of state names and
a list of two-letter state codes. By using functions, you don’t need the
two lists of 50 states in the program. The functions can be used repeat-
edly for many programs. The functionl?2. inc file contains the two
functions as follows:

<?php
function getStateCode()
{
$stateCode = array(l=> "AL"
IIAK")
IIAZ"

Y
return $stateCode;
}

function getStateName()
{
$stateName = array(1=> "Alabama",
"Alaska",
"Arizona",

355

356 Part IV: Applications

"Wyoming");
return $stateName;

}
7>

A for loop then creates 50 options for the select list, using the two state
arrays.

After running Login.php, if the user is successful with a login, the first page
of the Members Only section is displayed. If the user is successful in obtain-
ing a new user account, the New_member.php program is run.

Writing New_member

The New Member Welcome page greets new members by name and provides
information about their accounts. Members then have the choice of entering
the Members Only section or returning to the main page. Listing 12-4 shows
the program that displays the page that new members see.

Listing 12-4: Program That Welcomes New Members

<?php
/* Program: New_member.php
* Desc: Displays the new member welcome page. Greets
member by name and gives user choice to enter
2 restricted section or go back to main page.
=/
session_start(); # 7
if (@$_SESSION['auth']l != "yes") # 9
{
header("Location: Login.php");
exit();
}
include("dogs.inc"); ##14
$connection = mysql_connect($host,$user, $password)
or die ("Couldn't connect to server."); 16
$db = mysql_select_db($database, $connection)
or die ("Couldn't select database."); ##18

$sql = "SELECT firstName,lastName FROM Member
WHERE TloginName='{$_SESSION['Togname']}'";
$result = mysql_query($sql)
or die("Couldn't execute query 1.");
$row = mysql_fetch_array($result,MYSQL_ASSOC);
extract($row) ;

Chapter 12: Building a Members Only Web Site 35 7

echo "<html>
<head><title>New Member Welcome</title></head>

<body>
<h2 align='center' style='margin-top: .7in'>
Welcome $firstName $lastName</h2>\n"; 29

?>
<p>Your new Member Account lets you enter the Members Only
section of our web site. You'll find special discounts and
bargains, a huge database of animal facts and stories, advice
from experts, advance notification of new pets for sale,
a message board where you can talk to other Members, and much
more.
<p>Your new Member ID and password were emailed to you. Store

them carefully for future use.

<div align="center">
<p style="margin-top: .5in">Glad you could join us!
<form action="Member_page.php" method="P0OST">

<input type="submit"

value="Enter the Members Only Section">

</formd>
<form action="PetShopFrontMembers.php" method="POST">

<input type="submit" value="Go to Pet Store Main Page">
</formd>
</div>
</body></html1>

Notice the following points about New_member . php:

v A session is started on line 7. This makes the session variables stored in
Login.php available to this program.

v The program checks, beginning on line 9, whether the customer is logged
in. $authis setto yes in Login.php when the customer successfully
logs in or creates a new account and stored in the $_SESSION array. If
$auth doesn’t equal yes, the customer isn’t logged in. If a customer
tries to run the New_member . php program without running the Login.
php program first, $_SESSION[auth] won’t equal yes, and the user will
be sent to the login page.

v The program gets the customer’s first and last name from the database,
beginning with the database connection statement on line 15. In line
19/20, the query is created by using $_SESSION[1ogname] to search for
the member’s information. The session variable 1ogname that contains
the Member ID was set in the login program.

v The PHP section ends on line 30. The remainder of the program is HTML.

v The program uses two different forms to provide two different submit
buttons. The form statements on lines 41 and 45 start different programs.

358 Part IV: Applications

The customer controls what happens next. If the customer clicks the button
to return to the main page, the PetShopFront.php programs runs. If the cus-
tomer clicks the Members Only Section submit button, the first page of the
Members Only section is shown.

Writing the Members Only section

The Web pages in the Members Only section are no different than any other

Web pages. You just want to restrict them to members who are logged in. To
do this, you start a session and check whether they’re logged in at the top of
every page. The statements for the top of each program are

session_start();
if (@$_SESSION['auth'] != "yes")
{
header("Location: Login.php");
exit();
1

When session_start executes, PHP checks for an existing session. If one
exists, it sets up the session variables. One of the session variables is $auth.
When the user logs in, $_SESSION[auth] is set to yes.If $ SESSION[auth]
doesn’t equal yes, the user is not logged in, and the program takes the user
to the login page.

Planning for Growth

The original plan for an application usually includes every wonderful thing
that the user might want it to do. Realistically, it’s usually important to make
the application available to the users as quickly as possible. Consequently,
applications usually go public with a subset of the planned functionality.
More functionality is added later. That’s why it’s important to write your
application with future growth in mind.

Looking at the login application in this chapter, 'm sure you can see many
things that could be added to it. Here are some possibilities:

v E-mail a forgotten password. Users often forget their passwords. Many
login applications have a link that users can click to have their passwords
e-mailed to them.

v Change the password. Members might want to change their password.
The application could offer a form for password changes.

Chapter 12: Building a Members Only Web Site 359

v+ Update information. Members might move or change their phone
number or e-mail address. The application could provide a way for
members to change their own information.

v Create a member list. You might want to output a nicely formatted list
of all the members in the database. This probably isn’t something you
want to make available to other members but just for yourself. In some
situations, however, you might want to make the list available to all
members.

You can easily add any of these abilities to the application. For instance, you
can add a button to the login form that reads Forgot my password that e-mails
the password to the e-mail address in the database. The button can run the
login program with a section for e-mailing the password or run a different
program that e-mails the password. In the same manner, you can add buttons
for changing the password or updating the customer information. You don’t
need to wait until an application has all its bells and whistles to let your cus-
tomers use it. You can write it one step at a time.

360 Part IV: Applications

PartV
The Part of Tens

The 5th Wave By Rich Tennant

CLBTEANT
\r’/

"0 YOU WANT ME TO CALL THE COMPANY AND HAVE THEM
SEND ANOTHER REVIEW QOPY OF THEIR PATABASE SOFTWARE
SYSTEM, OR DO YOU KNOW WHAT YOU'RE GOING TO WRITE?”

In this part . . .

Tle chapters in this part contain hints, tips, and warn-
ings based on my experience. Perhaps they can serve as
a shortcut for you on your journey to becoming a confident
Web developer. I sincerely hope so.

Chapter 13

Ten Things You Might Want to Do
Using PHP Functions

In This Chapter

Finding out about many useful functions

Understanding what functions can do

0ne of the strongest aspects of PHP is its many built-in functions. In this

chapter, I list the PHP functions that I use most often. I describe some of
them elsewhere in this book, some I only mention in passing, and some I don’t

mention at all. These aren’t all the functions, by any means. There are many

hundreds of functions in the PHP language. For a complete list of all the func-
tions, see the PHP documentation at www.php.net.

Communicate with MySOL

PHP has many functions designed specifically for interacting with MySQL. I
describe the following MySQL functions thoroughly in this book, particularly

in Chapter 8:
mysql_connect(); mysql_select_db(); mysql_fetch_array()
mysql_close(); mysql_num_rows () ; mysql_query()

The following functions could be useful, but I either don’t discuss them or
discuss them only briefly in earlier chapters:

v mysql_insert_id(): For use with an AUTO-INCREMENT MySQL column.
This function gets the last number inserted into the column.

v mysql_fetch_row($result): Gets one row from the temporary results
location. The row is put into an array with numbers as the keys. It’s the
same as mysql_fetch_array($row,MYSQL_NUM).

364 Partv:The Part of Tens

v mysql_affected_rows($result): Returns the number of rows that
were affected by a query — for instance, the number of rows deleted or
updated.

v mysql_num_fields($result): Returns the number of fields in a result.

v mysql_field_name($result, N):Returnsthe name of the row indi-
cated by N. For instance, mysql_field_name($result,1) returns the
name of the second column in the result. The first column is 0.

If you use any of the above functions with MySQL 4.1, the function’s names
are slightly different. Rather than beginning with mysq1_, the function names
begin with mysqli_.

Send E-Mail

PHP provides a function that sends e-mail from your PHP program. The
format is

mail(address,subject,message,headers) ;
These are the values that you need to fill in:

v address: The e-mail address that will receive the message.
v subject: A string that goes on the subject line of the e-mail message.
v message: The content that goes inside the e-mail message.

v headers: A string that sets values for headers. For instance, you might
have a headers string as follows:

"From: member-desk@petstore.com\r\nbcc: mom@hercompany.com"

The header would set the From header to the given e-mail address, plus
send a blind copy of the e-mail message to mom.

The following is an example of PHP statements that you can use in your
script to set up and send an e-mail message:

$to = "janet@valade.com";
$subj = "Test";
$mess = "This is a test of the mail function";

$headers = bcc:techsupport@mycompany.com\r\n
$mailsend = mail($to,$subj,$mess,$headers);

Chapter 13: Ten Things You Might Want to Do Using PHP Functions 365

Sometimes you might have a problem with your e-mail. PHP has a configura-
tion setting that must be correct before the mail function can connect to your
system e-mail software. The default is usually correct, but if your e-mail
doesn’t seem to be getting to its destination, check the PHP configuration
mail setting by looking for the following in the output of phpinfo():

Sendmail_path (on Unix/Linux)
SMTP (on Windows)

It might be set incorrectly. You can change the setting by editing the php.ini
file. Look for the following lines:

[mail function]
; For Win32 only.
SMTP = Tocalhost

For Win32 only.
sendmail_from = me@localhost.com

For Unix only.
;sendmail_path =

Windows users need to change the first two settings. The first setting is
where you put the name of your outgoing mail server. However you send
e-mail — LAN at work, a cable modem at home, an ISP via a modem — you
send your mail with an SMTP server, which has an address that you need to
know.

If you send directly from your computer, you should be able to find the name
of the outgoing mail server that you're using in your e-mail software. For
instance, in Microsoft Outlook Express, choose Tools=>Accounts=>Properties
and then select the Servers tab. Look for the name of your outgoing mail
server. If you can’t find its name, you can ask your e-mail administrator for
the name. If you use an ISP, you can ask the ISP. The name is likely to be in a
format similar to the following:

mail.ispname.net
The second setting is the return address that is sent with all your e-mail.
Change the setting to the e-mail address that you want to use for your return

address, as follows:

sendmail_from = Janet@Valade.com

The third setting is for Unix users. The default is usually correct. If it doesn’t
work, you need to talk to your system administrator about the correct path
to your outgoing mail server. This usually refers to Linux as well.

366 Part V: The Part of Tens

CMBER
Q‘y‘“ Don’t forget to remove the semicolon at the beginning of the lines. The semi-
colon makes the line into a comment, so the setting isn’t active until you
remove the semicolon.

Use PHP Sessions

The functions to open or close a session follow. I explain all these functions
in Chapter 9.

session_start(); session_destroy()

Stop Vour Program

Sometimes you just want your program to stop, cease, and desist. There are
two functions for this: exit () and die(). Actually, these are two different
names for the same function. Exit is probably accurate, but sometimes it’s
just more fun to say die. Both functions will print a message when they stop
if you provide one. The format is

exit("message string");

When exit executes, the message string is output.

Handle Arrays

Arrays are very useful in PHP, particularly for getting the results from data-
base functions and for form variables. I explain the following array functions
elsewhere in the book, mainly in Chapter 7:

array(); extract(); sort(); asort();
rsort(); arsort(); ksort(); krsort();

Here are some other useful functions:

v array_reverse($varname): Returns an array with the values in reverse
order.

v array_unique($varname): Removes duplicate values from an array.

Chapter 13: Ten Things You Might Want to Do Using PHP Functions 36 7

v in_array("string",$varname): Looks through an array $varname for
astring "string".

v range(valuel,value?): Creates an array containing all the values
between valuel and valueZ. For instance, range('a', 'z"') creates
an array containing all the letters between a and z.

v explode("sep","string"): Creates an array of strings in which
each item is a substring of string, separated sep. For example,

explode(" ",$string) creates an array in which each word in
$string is a separate value. This is similar to the sp1it function
in Perl.

v implode("glue",$array): Creates a string containing all the values in
$array with gl ue between them. For instance, implode(", ",$array)
creates a string: valuel, value2, value3, and so on. This is similar to
the join function in Perl.

And there are many more useful array functions. PHP can do almost anything
you can think of that you want to do with an array.

Check for Variables

Sometimes you just need to know whether a variable exists. The following
functions can be used to test whether a variable is currently set:

isset($varname); // true if variable is set
lisset($varname); // true if variable is not set
empty($varname); // true if value is 0 or is not set

Format Values

Sometimes you need to format the values in variables. In Chapter 6, I explain
how to format numbers into dollar format by using number_format() and
sprintf().In Chapter 6, I also discuss unset (), which removes the values
from a variable. In this section, I describe additional capabilities of
sprintf().

The function sprintf () allows you to format any string or number, including
variable values. The general format is

$newvar = sprintf("format",$varnamel,$varnamez,...);

368 Partv:The Part of Tens

where format gives instructions for the format and $varname contains the
value(s) to be formatted. format can contain both literals and instructions
for formatting the values in the $varname. Actually, the format can contain
only literals. The following statement is valid:

$newvar = sprintf("I have a pet");

This statement outputs the literal string. However, you can also add vari-
ables, using the following statements:

$ndogs = 5;
$ncats = 2;
$newvar = sprintf("I have %s dogs and %s cats",$ndogs,$ncats);

The %s is a formatting instruction that tells sprintf to insert the variable
value as a string. Thus, the outputis I have 5 dogs and 2 cats.The?%
character signals sprintf that a formatting instruction starts here. The for-
matting instruction has the following format:

%pad-width.dectype
These are the components of the formatting instructions:

v %: Signals the start of the formatting instruction.

v pad: A padding character that’s used to fill out the number when neces-
sary. If you don’t specify a character, a space is used. pad can be a space,
a 0, or any character preceded by a single quote (). For instance, it’s
common to pad numbers with 0 — for example, 01 or 0001.

v -: A symbol meaning to left-justify the characters. If this isn’t included,
the characters are right-justified.

v width: The number of characters to use for the value. If the value doesn’t
fill the width, the padding character is used to pad the value. For instance,
if the width is 5, the padding character is 0, and the value is 1, the output
is 00001.

v .dec: The number of decimal places to use for a number.

v type: The type of value. Use s for most values. Use f for numbers that
you want to format with decimal places.

Some possible sprintf statements are

sprintf("I have $%03.2f. Does %S have any?",$money,$name);
sprintf("%'.-20s%3.2f",$product, $price);

Chapter 13: Ten Things You Might Want to Do Using PHP Functions 369

The output of these statements is

I have $030.00. Does Tom have any?
Kitten.............. 30.00

Compare Strings to Patterns

In earlier chapters in this book, I use regular expressions as patterns to match
strings. (I explain regular expressions in Chapter 6.) The following functions
use regular expressions to find and sometimes replace patterns in strings:

v ereg("pattern",$varname): Checks whether the pattern is found in
$varname. eregi is the same function except that it ignores upper- and
lowercase.

v ereg_replace("pattern","string",$varname): Searches for the
patternin $varname and replaces it with the string. eregi_replace
is the same function except that it ignores upper- and lowercase.

Find Out about Strings

Sometimes you need to know things about a string, such as how long it is or
whether the first character is an uppercase O. PHP offers many functions for

checking out your strings:

v strlen($varname): Returns the length of the string.

V¥ strpos("string","substring"): Returns the position in string
where substring begins. For instance, strpos("hello","el")
returns 1. Remember that the first position for PHP is 0. strrpos()
finds the last position in string where substring begins.

v substr("string",nl,n2): Returns the substring from string that
begins at n1 and is n2 characters long. For instance,
substr("hello",2,2) returns 11.

v strir($varname,"strl","str2"): Searches through the string
$varname for strl and replaces it with str2 every place that it’s
found.

v strrev($varname): Returns the string with the characters reversed.

Many, many more string functions exist. See the documentation at
www.php.net.

370 Partv:The Part of Tens
Change the Case of Strings

Changing uppercase letters to lowercase and vice versa is not so easy. Bless
PHP for providing functions to do this for you:

v strtolower($varname): Changes any uppercase letters in the string to

lowercase letters
v strtoupper($varname): Changes any lowercase letters in the string to

uppercase letters
v ucfirst($varname): Changes the first letter in the string to uppercase

v ucwords ($varname): Changes the first letter of each word in the string

to uppercase

Chapter 14

Ten PHP Gotchas

In This Chapter

Recognizing common PHP errors

Interpreting error messages

guarantee that you will do all the things that I mention in this chapter. It’s

not possible to write programs without making these mistakes. The trick
is to find out how to recognize them, roll your eyes, say, “Not again,” and then
fix them. One error message that you will see many times is

Parse error: parse error in c:\test.php on line 7

This is PHP’s way of saying, “Huh?” It means it doesn’t understand some-

thing. This message helpfully points to the file and the line number where
PHP got confused. Sometimes it’s directly pointing at the error, but some-
times PHP’s confusion results from an error earlier in the program.

Missing Semicolons

Every PHP statement ends with a semicolon (;). PHP doesn’t stop reading a
statement until it reaches a semicolon. If you leave out the semicolon at the
end of a line, PHP continues reading the statement on the following line. For
instance, consider the following statement:

$test =1
echo $test;

Of course, the statement doesn’t make sense to PHP when it reads the two
lines as one statement, so it complains with an error message, such as the
annoying

Parse error: parse error in c:\test.php on line 2

Before you know it, you’ll be writing your home address with semicolons at
the end of each line.

372 PartV:The Part of Tens
Not Enough Equal Signs

When you ask whether two values are equal in a comparison statement, you
need two equal signs (==). Using one equal sign is a common mistake. It’s per-
fectly reasonable because you have been using one equal sign to mean equal
since the first grade when you discovered that 2 + 2 = 4. This is a difficult mis-
take to recognize because it doesn’t cause an error message. It just makes your
program do odd things, like infinite loops or if blocks that never execute. 'm
continually amazed at how long I can stare at

$test = 0;
while ($test = 0)
{

}

$test++;

and not see why it’s looping endlessly.

Misspelled Variable Names

This is another PHP gotcha that doesn’t result in an error message, just odd
program behavior. If you misspell a variable name, PHP considers it a new
variable and does what you ask it to do. Here’s another clever way to write
an infinite loop:

$test = 0;
while ($test ==)
{

}

$Test++;

Remember: To PHP, $test is not the same variable as $Test.

Missing Dollar Signs

A missing dollar sign in a variable name is really hard to see, but at least it
usually results in an error message so that you know where to look for the
problem. It usually results in the old familiar parse error:

Parse error: parse error in test.php on line 7

Chapter 14: Ten PHP Gotchas 3 73

Troubling Quotes

You can have too many, too few, or the wrong kind of quotes. You have too
many when you put quotes inside of quotes, such as

$test = "<table width="100%">";

PHP will see the second double quote (") — before 100 — as the ending
double quote (") and read the 1 as an instruction, which makes no sense.
Voila! Another parse error. The line must be either

$test = "<table width="100%"'>";

or
$test = "<table width=\"100%\">";

You have too few quotes when you forget to end a quoted string, such as
$test = "<table width="100%"'>;

PHP will continue reading the lines as part of the quoted string until it encoun-
ters another double quote ("), which might not occur for several lines. This
is one occasion when the parse error pointing to where PHP got confused is
not pointing to the actual error. The actual error occurred some lines previ-
ously, when you forgot to end the string.

You have the wrong kind of quotes when you use a single quote (') when you
meant a double quote (") or vice versa. The difference between single and
double quotes is sometimes important, and [explain it in Chapter 6.

Invisible Output

Some statements, such as the header statement, must execute before the pro-
gram produces any output. If you try to use such statements after sending
output, they fail. The following statements will fail because the header mes-
sage isn’t the first output:

<html>
<?php

header("Location: http://company.com");
?>

374 PartV: The Part of Tens

<htm1> is not in a PHP section and is therefore sent as HTML output. The fol-
lowing statements will work:

<?php

header("Location: http://company.com");
?>
<html>

The following statements will fail:

<?php

header("Location: http://company.com");
7>
<html>

because there’s one single blank space before the opening PHP tag. The blank
space is output to the browser, although the resulting Web page looks empty.
Therefore, the header statement fails because there is output before it. This
is a common mistake and difficult to spot.

Numbered Arrays

PHP believes the first value in an array is numbered zero (0). Of course,
humans tend to believe that lists start with the number one (1). This funda-
mentally different way of viewing lists results in us humans believing an array
isn’t working correctly when it’s working just fine. For instance, consider the
following statements:

$test = 1;
while ($test <= 3)
{
$arrayl[] = $test;
$test++;
1
echo $array[3];

Nothing is displayed by these statements. I leap to the conclusion that there’s
something wrong with my loop. Actually, it’s fine. It just results in the follow-
ing array:

$array[0]=1

$array[1]=2

$array[2]1=3

And doesn’t set anything into $array[3].

Chapter 14: Ten PHP Gotchas 3 75

Including PHP Statements

When a file is read in using an include statement in a PHP section, it seems
reasonable to me that the statements in the file will be treated as PHP state-
ments. After all, PHP adds the statements to the program at the point where I
include them. However, PHP doesn’t see it my way. If a file named filel.inc
contains the following statements:

if ($test == 1)
echo "Hi";

and [read it in with the following statements in my main program:

<?php

$test = 1;

include ("filel.inc");
?>

[expect the word Hi to appear on the Web page. However, the Web page actu-
ally displays this:

if ($test == 1) echo "Hi";

Clearly, the file that is included is seen as HTML. To send Hi to the Web page,
filel.inc needs to contain the following statements:

<?php

if ($test == 1)
echo "Hi";

?2>

Missing Mates

Parentheses and curly brackets come in pairs and must be used that way.
Opening with a (that has no closing) or a { without a } will result in an
error message. One of my favorites is using one closing parenthesis where
two are needed, as in the following statement:

if (isset($test)

This statement needs a closing parenthesis at the end. It’s much more diffi-
cult to spot that one of your blocks didn’t get closed when you have blocks
inside of blocks inside of blocks. For instance, consider the following.

3706 Partv:The Part of Tens

while ($test < 3)

{

if ($test2 = "yes")
{

if ($test3 > 4)

{
echo
1

1

go-;

You can see there are three opening curly brackets and only two closing ones.
Imagine that 100 lines of code are inside these blocks. It can be difficult to
spot the problem — especially if you think the last closing bracket is closing
the while loop, but PHP sees it as closing the if loop for $test2. Somewhere
later in your program, PHP might be using a closing bracket to close the while

loop that you aren’t even looking at. It can be difficult to trace the problem in
a large program.

Indenting blocks makes it easier to see where closing brackets belong. Also, |
often use comments to keep track of where I am, such as

while ($test < 3)
{
if ($test2 != "yes")
{
if ($test3 > 4)
{
echo "go";
} // closing if block for $test3
} // closing if block for $test?2
} // closing while block

Confusing Parentheses and Brackets

I'm not sure whether this is a problem for everyone or just a problem for me
because I refuse to admit that I can’t see as well as used to. Although PHP
has no trouble distinguishing between parentheses and curly brackets, my
eyes are not so reliable. Especially while staring at a computer screen at the
end of a ten-hour programming marathon, I can easily confuse (and {. Using
the wrong one gets you a parse error message.

Part VI
Appendixes

The 5th Wave By Rich Tennant

WANDA HAD THE DISTINCT FEELING HER HUSRANDS NEW
SOFTWARE: FROGRAM WAS ABOUT O BECOME INTERACTIVE .
ORATENNANT— .

In this part . . .

Fis part provides instructions for installing MySQL
and PHP. Appendix C provides installation and config-
uration information that could be helpful if you need to
install Apache.

Appendix A
Installing MySQL

A Ithough MySQL runs on many platforms, [describe how to install it on
Linux, Unix, Windows, and Mac, which together account for the major-
ity of Web sites on the Internet. Be sure to read the instructions all the way
through before beginning the installation.

MySQL can be installed most easily from binaries — precompiled, ready-to-
install packages. Binaries are available for most operating systems: Linux,
Windows, Mac, FreeBSD, many flavors of Unix, and others. If such a package
is available for your operating system, use it. Only install MySQL from source
if it’s totally necessary, such as when there’s no binary for your operating
system or you need some functionality that’s not compiled into the binaries
(for example, a different character set).

If you have trouble starting the MySQL server after installing it, check the
error log for useful information. The error log is located in the data directory
and has the extension .err.

On Window's

In most cases, when you download and install MySQL, the server is started
automatically. If it isn’t or if you need to stop and start it for another reason,
you can start it manually using the WinMySQLadmin utility that is installed
with MySQL, as [describe in the upcoming section, “Starting the MySQL
server.” You can also use WinMySQLadmin to set up MySQL so that it starts
every time your computer starts.

380 Part VI: Appendixes

Downloading and installing MySQL

To install MySQL on Windows, follow these steps:

1

2.

10.

. Point your Web browser to www.mysq1.com, the MySQL home page.
Click the Production version number link.

Look for the section under the heading Database Server. As of this writ-
ing, the production release is 4.0.17.

MySQL 4.0.x is supported by PHP 4 or 5. Support for MySQL 4.1.x is pro-
vided beginning with PHP 5.

. Scroll down the screen until you come to the Windows Downloads
heading.

. Click the download link for the Windows binary labeled Windows 95/
98/NT/2000/XP/2003. This binary includes an installer.

A dialog box opens.

. Select the option to save the file.
A dialog box opens that lets you select where you want the file saved.

. Navigate to where you want to save the file (for example,
c:\downloads). Then click Save.

After the download, you see a Zip file in the download location (for
example, c:\downloads) containing the MySQL files. The file is named
mysq1-, followed by the version number and -win.zip — for instance,
mysql-4.0.17-win.zip.

. Use your favorite Zip utility to unzip the files and save them in a tem-
porary location (for example, c: \downloads\mysql).

Two popular Zip utilities are PKZIP at www.pkware.com and WinZip at
www.winzip.com.

. Navigate to the temporary directory where the unzipped files are
stored. Then double-click setup.exe.

Note: If you're installing from a Windows NT/2000/XP system, be sure
that you're logged into an account with administrative privileges.

The opening screen shown in Figure A-1 is displayed.
. Click Next.
The license is displayed.
Click the I Agree button to continue.

You see a screen showing the directory where MySQL will be installed.

Appendix A: Installing MysoL 3 &]

+= MySOL Servers and Clients 3.23.44 Setup

Welcome

gm| Welcome to the MySOL Sesvers and Clents 3.23.44
Setup program. This program wil install MySOL
Servers and Clients 3.23.44 on pour complder.

It iz shongly recommended that you ext all Windows programs
before wnning this Setup program.

Click Cancel to quit Setup and then closs any programs pou
have ening. Click Newt to continue wilh the: Setup program.

‘WARNING: This program is protected by copyright law and
intemational reaties,

\sibinrssd e ction e cistibution of this progtain, o any
peartian of it, may result in sevese civil and crimingl penalties, and
will be prosecided to the masimum exent possible under law.

I

Figure A-1:
The opening
screen of
the MySQL
setup
program.
|

11. If you want to install MySQL in the default directory, c:\mysql, click
Next. If you want to install MySQL in a different directory, click Browse,
select a directory, and click OK; then click Next.

You see a screen in which you can choose the type of installation.
12. Select Typical and then click Next.

The installation of MySQL begins. A message appears when the installa-
tion is complete.

The server might or might not have been started during installation. If it is
running, you should see a traffic signal in your system tray (bottom of your
screen) with a green light showing. If it isn’t running, check out the next
section.

Starting the MySOL server

You can start and stop your server manually, although you’re more likely to
want the MySQL server to be running whenever your computer is running. To
see how to set up MySQL so that it starts when the computer boots up, see
the next section.

382 Part VI: Appendixes

On Windows 98/Me

You can start and stop your server with WinMySQLadmin, a program that
was installed with MySQL. The WinMySQLadmin program is responsible for
displaying the traffic signal in your system tray. If the traffic signal is displayed,
WinMySQL is running. If the traffic signal is not in your tray, you need to start
WinMySQLadmin.

If WinMySQLadmin is not running, you might be able to start it from your
Startup menu: Choose Starte>Programs=Startup>WinMySQLadmin. If you
can’t find it on your Startup menu, use Windows Explorer to navigate to the
bin directory in the directory where MySQL is installed (for example, c:\
mysq1\bin) and double-click WinMySQLadmin. When it’s started, you should
be able to see the traffic signal in your system tray.

To start or stop the MySQL server by using WinMySQLadmin, follow these
steps:
1. Right-click the traffic signal in your system tray.
You see a short menu.
2. Select your operating system: Windows 9x.
3. To start or stop, click either Start the Server or Stop the Server.

4. Exit WinMySQLadmin by right-clicking in the WinMySQLadmin
window and then clicking Hide Me.

On Windows NT/2000/XP

You can start your MySQL server directly by navigating to the bin subdirec-
tory in the directory where MySQL is installed (such as c:\mysqgl\bin) and
then double-clicking the file mysqld.exe.

The above procedure might not work if the WinMySQLadmin program isn’t
running (if there is no traffic signal on your system tray). In this case, you can
either start the WinMySQL program by double-clicking it or start the MySQL
server with a DOS Window console. If you are having problems, it is often
useful to start the server with a console because some helpful error mes-
sages will be displayed.

To start the MySQL server with a console, follow these steps:

1. Open a command prompt window.
For instance, choose Start>Programs=>Accessories>Command Prompt.
2. Change to the bin directory for MySQL.

For instance, CD c:\mysql\bin.

Appendix A: Installing MysaL 38 3

3. Type mysqld —console.

A message is displayed telling you that the server started. The window
remains open and ready to receive any more messages from the server.
Don’t close the window.

You might be able to stop the server using WinMySQLadmin if it is running
by right clicking the traffic signal, selecting Win NT from the menu displayed,
and then clicking Stop the Server. If this doesn’t work, you can use the follow-
ing steps:
1. Open a command prompt window.
For instance, choose Start=>Programs=>Accessories>Command Prompt.
2. Change to the bin directory for MySQL.
For instance, CD c:\mysql\bin.
3. Type mysqladmin -u root —p shutdown.

The -u is followed by an account name — in this case, root, which

was installed when MySQL was installed. If you use the -p, you will be
prompted for a password. Unless you installed a password, you shouldn’t
need one, so leave out the -p.

Setting up the server to start when the
computer starts

In most cases, you want to set up your MySQL server so that it is running
whenever your computer is running.

On Windows 98/Me

If you want to set up your MySQL server so that it starts every time your
computer starts, start WinMySQLadmin as I describe in the previous section
and then follow these steps:

1. Click the my.ini Setup tab.

2. Click Create ShortCut on Start Menu in the bottom-left corner of the
screen.

3. Exit WinMySQLadmin by right-clicking in the WinMySQLadmin
window and then choosing Hide Me.

On Windows NT/2000/XP

To set up the MySQL server so that it starts every time the computer boots,
set it up as a service. The installation procedure might have set it up as a ser-
vice. You can check whether MySQL is a service as follows:

384 Part VI: Appendixes

1. Open the services window at Start=>Settings=>Control Panel=>
Administrative Tools->Services.

A window showing a list of all the services opens.
2. Scroll down the list to see whether MySQL is listed.

If it is not, it is not set up as a service. See how to set it up as a service
later in this section.

3. Select the Startup Type.
It should say Automatic. If it doesn’t, do the following:
1. Right click the entry for MySQL.
2. Choose Properties from the menu that is displayed.

3. Select Automatic from the Startup Type drop-down list in the
middle of the window.

4. Click OK.
If MySQL was not shown in the list of services, you can set it up as a service
as follows:
1. Open a command prompt window.
For instance, choose Start=>Programs=>Accessories>Command Prompt.
2. Change to the bin directory for MySQL.
For instance, CD c:\mysql\bin.
3. Type mysqld —install.
A message is displayed telling you the service was successfully installed.
If you need to remove the MySQL server from the services list, such as when

you are about to upgrade to a newer version, follow the steps 1 and 2 above.
For step 3, type mysqld —remove.

On Linux/Unix
Using RPM (Linux only)

MySQL can be installed on Linux using RPM. Although RPM stands for Red Hat
Package Manager, RPM is available on most flavors of Linux, not just Red Hat.
Using RPM is the easiest way to install on Linux. If installing from an RPM file
doesn’t work for you, try using a ready-to-install package called a binary,
which is also easy to install; for installation instructions, see the section,

Appendix A: Installing MySoL 385

“From binary files.” If neither of these methods works for you, you can always
install MySQL from source files. To do this, follow the instructions in the sec-
tion, “From source files.”

You can download the RPM file using the following instructions. However, the
RPM file might already be on the CD that your Linux operating system came on.
Installing the RPM file from a CD saves you the trouble of downloading (you
can skip Steps 1-9 in the following list), but if the version of MySQL on your
CD is not the most recent, you might want to download an RPM file anyway.

To install MySQL on Linux from an RPM file, follow these steps:

1.
2.

Point your Web browser to www.mysq1.com, the MySQL home page.
Click the Production version number link.

Look in the list on the right side of the screen, labeled MySQL Products.
Look for the section under the heading Database Server. As of this writ-
ing, the production release is 4.0.17.

. Scroll down the screen until you come to the Linux x86 RPM

Downloads heading.

This section lists several downloads for Linux.

. Click the download link for the standard server. This should be the

first entry.

A dialog box opens.

. Select the option to save the file.

A box opens that lets you select where you want to save the file.

. Navigate to where you want to save the RPM (for example, /usr/src/

mysq1). Then click Save.

. Repeat Steps 5-7 to download the RPM file for Client Programs into

the same download location.

. Change to the directory where you saved the download.

For instance, type cd /usr/src/mysql. You see two files in the
directory — one file named MySQL-server-, followed by the version
number and .1386. rpm, and a second file named similarly with cTient
embedded in its name. For example: MySQL-4.0.15-0.1386.rpmand
MySQL-client-4.0.15-0.1386.rpm.

. Install the RPM by entering this command:

rpm -i listofpackages

For instance, using the example in Step 10, the command would be this:

rpm -i MySQL-server-4.0.17-0.1386.rpm MySQL-client-
4.0.17-0.1386.rpm

386 Part VI: Appendixes

This command installs the MySQL packages. It sets the MySQL account
and group name that you need, and creates the data directory at /var/
1ib/mysql. It also starts the MySQL server and creates the appropriate
entries in /etc/rc.d so that MySQL starts automatically whenever your
computer starts.

You need to be using an account that has permissions to successfully
run the rpm command, such as a root account.

10. To test that MySQL is running okay, type this:
bin/mysqladmin --version

You should see the version number of your MySQL server.

From binary files

Ready-to-use, compiled binary files are available for several flavors of Linux
and Unix. If none of the flavors work for your Linux/Unix machine, you can
install MySQL from source files, but it’s better to use a binary if at all possi-
ble. As of this writing, MySQL binary files were available for the following fla-
vors of Unix, but more could be made available at any time:

v Solaris

v HP-UX

v AIX

v SCO

v SGI Irix

v Dec OSF

1 QNX

v BSDi

v OpenBSD

v FreeBSD

To install a binary file version of MySQL on Linux or Unix, follow these steps:

1. Point your Web browser to www.mysq1.com, the MySQL home page.
2. Click the Production version number link.

Look in the list on the right side of the screen, labeled MySQL Products.
Look for the section under the heading Database Server. As of this writ-
ing, the production release is 4.0.17.

Appendix A: Installing MySQL 38 7

10.

. Scroll down the screen until you come to the heading for Linux or for

your version of Unix (for example, Solaris Downloads).

Each section lists several downloads for that operating system.

. Locate the correct package for your version of operating system.

For Linux, you probably want the Intel libc6 binary version. For Unix,
select the correct version of the Unix system — for example, Solaris 9
(SPARC, 64-bit).

. Click the download link for the standard version for your operating

system.

A dialog box opens.

. Select the option to save the file.

A box opens that lets you select where you want to save the file.

. Navigate to where you want to install MySQL. Then click Save.

The standard location is /usr/1local; it’s best to use this location if
possible.

. After the download is complete, change to the download directory —

for instance, cd-/usr/local.

You see a file named mysq1 -, followed by the version number, the name
of the operating system, and . tar.gz — for instance, mysql-4.0.17-
sun-solaris2.9-sparc.64bit-tar.gz. This file is a tarball.

. Create a user and group ID for MySQL to run under by using these

commands:

groupadd mysql

useradd -g mysqgl mysql
The syntax for the commands might differ slightly on different versions
of Unix, or they might be called adduser and addgroup.

Note: You must be using an account that is authorized to add users and
groups.

Unpack the tarball by typing this:

gunzip -c filename | tar -xvf -

For example:

qunzip -c mysql-4.0.17-sun-solaris2.9-sparc-64bit.tar.gz | tar -xvf -

Note: You must be using an account that is allowed to create files in
/usr/local.

388 Part VI: Appendixes

11.

12.

13.

14.

15.

16.
17.

18.

Create a link to the new directory so that you can refer to it by a
shorter name, rather than its current, difficult-to-type name. Type
the following:

In -s newdirectoryname mysql

For example:

In -s mysql-4.0.17-sun-solaris2.9-sparc-64bit mysql

Now you can refer to the directory as mysq]l, instead of by its long name.
Change to the new directory by typing cd mysql.
You should see several subdirectories, including /bin and /scripts.

Add the path to the bin directory (for example, /usr/local/mysql/
b1in) to your system path so that the MySQL programs can be accessed
by any programs that need to access MySQL.

You should do this by editing the file that sets the system variables
when your computer starts up.

Type the following:
scripts/mysql_install_db

This command runs a script that initializes your MySQL databases.

Make sure that the ownership and group membership of your MySQL
directories are correct. Set the ownership with these commands:

chown -R root /usr/local/mysql
chown -R mysql /usr/local/mysqgl/data
chgrp -R mysqgl /usr/Tocal/mysq]l

These commands make root the owner of all the MySQL directories
except data and make mysql the owner of data. All MySQL directories
belong to group mysqT.

Set up your computer so that MySQL starts automatically when your
machine starts by copying the file mysql.server from /usr/local/
mysql/support-files to the location where your system has its
startup files.

To test MySQL, you can start your server manually, without restarting
your computer, by typing the following:

bin/safe_mysqld --user=mysqgl &

To test that MySQL is running okay, type
bin/mysqladmin --version

You should see the version number of your MySQL server.

Appendix A: Installing MysaL 389

From source files

Before you decide to install MySQL from source files, check for binary files for
your operating system. MySQL binary files are precompiled, ready-to-install
packages for installing MySQL. MySQL binary files are very convenient and
reliable.

You install MySQL by downloading source files, compiling the source files,
and installing the compiled programs. This process sounds terribly technical
and daunting, but it’s not. Read all the way through the following steps before
you begin the installation procedure.

To install MySQL from source code, follow these steps:

1.
2.

Point your Web browser to www.mysq1.com, the MySQL home page.
Click the Production version number link.

Look in the list on the right side of the screen, labeled MySQL Products.
Look for the section under the Database Server heading. As of this writ-
ing, the production release is 4.0.17.

. Scroll to the bottom of the screen to the Source Downloads heading.

This section lists several downloads.

. Locate the tarball version and click the download link next to it.

A dialog box opens.

. Select the option to save the file.

A box opens that lets you select where the file will be saved.

. Navigate to where you want to install MySQL and then click Save.

The standard location is /usr/Tlocal. It is best to use the standard loca-
tion if possible.

. After the download is complete, change to the download directory —

for instance, cd-/usr/local.

You see a file named mysqT -, followed by the version number and
.tar.gz. —for instance, mysql-4.0.17.tar.gz. This file is a tarball.

. Create a user and group ID for MySQL to run under by using the fol-

lowing commands:

groupadd mysql

useradd -g mysqgl mysql
The syntax for the commands might differ slightly on different versions
of Unix, or they might be called adduser and addgroup.

Note: You must be using an account that is authorized to add users and
groups.

390 Partvi: Appendixes

9. Unpack the tarball by typing

gunzip -c filename | tar -xvf -

For example:

gunzip -c mysql-3.23.44.tar.gz | tar -xvf -

You see a new directory named mysql-version — for instance,
mysql-4.0.15.

You must be using an account that is allowed to create files in
/usr/local.

10. Change to the new directory.
For instance, type cd mysq1-4.0.17.
11. Type the following:
./configure --prefix=/usr/local/mysql
You see several lines of output. The output will tell you when configure
is done. This might take some time.
12. Type make.

You see many lines of output. The output will tell you when make is
done. make might run for some time.

13. Type make install.
make install will finish quickly.
Note: You might need to run this command as root.
14. Type the following:
scripts/mysqgl_install_db.

This command runs a script that initializes your MySQL databases.

15. Make sure that the ownership and group membership of your MySQL
directories are correct. Set the ownership with these commands:

chown -R root /usr/Tocal/mysq]l
chown -R mysqgl /usr/local/mysqgl/data
chgrp -R mysql /usr/Tocal/mysq]l

These commands make root the owner of all the MySQL directories
except data and make mysq1 the owner of data. All MySQL directories
belong to group mysql.

16. Set up your computer so that MySQL starts automatically when your
machine starts by copying the file mysql.server from /usr/Tocal/
mysql/support-files to the location where your system has its
startup files.

Appendix A: Installing MysaL 39]

17. To test MySQL, you can start your server manually, without restarting
your computer, by typing the following:

bin/safe_mysqld --user=mysql &

18. To test that MySQL is running okay, type:
bin/mysqladmin --version

You should see the version number of your MySQL server.

On Mac

You can download MySQL using a Mac OS X 10.2 (Jaguar) PKG binary package.
If your operating system is OS X 10.1 or earlier, you can’t use this package.
You will need to download a tarball and install MySQL from source code, as
described in the previous section.

1. Point your Web browser to www.mysq1.com, the MySQL home page.

2. Click the Production version number link.

Look in the list on the right side of the screen, labeled MySQL Products.
Look for the section under the heading Database Server. As of this writ-
ing, the production release is 4.0.17.

3. Scroll down the screen to find the section with the heading Mac OS
Package Installer Downloads.

This section lists several downloads.

4. Locate the standard version and then click the download link next to it.
A dialog box opens.

5. Select the option to save the file.
A box opens that lets you select where the file will be saved.

6. Navigate to where you want to install MySQL and then click Save.

The standard location is /usr/Tlocal. It is best to use the standard loca-
tion if possible.

7. After the download is complete, change to the download director —
for instance, /usr/Tocal.

You see a package named mysql-standard, followed by the version
number and dmg, such as mysql-standard-4.0.17.dmg. If the down-
loaded file does not have the extension .dmg, change the filename to
give it the . dmg extension.

3 92 Part VI: Appendixes

8. Create a user and a group named mysql for MySQL to run under. In
most newer Mac versions, this user and group already exist.

9. Mount the disk image by double-clicking its icon in the Finder.
10. Double-click the package icon to install the MySQL PKG.

The package installer will run and install the package. It installs MySQL
in the directory /usr/Tocal/mysql-, followed by the version number. It
also installs a symbolic link /usr/1ocal/mysql/ pointing to the direc-
tory where MySQL is installed. It also initializes the database by running
the script mysql_install_db, which creates a MySQL account called
root.

11. You might need to change the owner of the mysql directory.

The directory where MySQL is installed (for example, /usr/Tocal/
mysql-4.0.17) should be owned by root. The data directory (such as,
/usr/local/mysql-4.0.17/data) should be owned by the account
mysq1. Both directories should belong to the group mysq1. If the user
and group are not correct, change them with the following commands:

sudo chown -R root /usr/local/mysql-4.0.17
sudo chown -R mysqgl /usr/local/mysql-4.0.17/data
sudo chown -R root /usr/local/mysql-4.0.17/bin

12. Start the MySQL server using the following commands:

cd /usr/Tocal/mysql

sudo ./bin/mysqgld_safe

if necessary, enter your password
Press Ctrl-Z

bg
Press Ctrl-D or type exit

This starts the server manually, meaning you must start the MySQL
server every time you restart your computer. To have your server start
every time the computer is started, you need to install the MySQL
Startup Item, which is included in the installation disk image in a sepa-
rate installation package. To install the Startup Item, double-click the
MySQLStartupltem.pkg icon.

To stop the MySQL server, change to the bin subdirectory in the directory
where MySQL is installed and type

\BE mysgladmin -u root -p shutdown
R
‘x&

& The -p causes mysqladmin to prompt you for a password. If the account
doesn’t require a password, don’t include -p.

Appendix A: Installing MySQL 393

Configuring MySOL

MySQL reads a configuration file when it starts up. If you use the defaults or
an installer, you probably don’t need to add anything to the configuration file.
However, if you install MySQL in a nonstandard location or want the databases
to be stored somewhere other than the default, you might need to edit the
configuration file.

The file is named my . ini or my.cnf. It’s located in your system directory
(such as WINNT) if you are using Windows and in /etc on Linux/Unix/Mac.
The file looks something like the following:

[mysqld]
basedir=D:/mysql4
datadir=D:/mysql4/data
#fport=3306

The basedir line tells the MySQL server where MySQL is installed. The
datadir line tells the server where the databases are located. The # at the
beginning of the last line makes the line inactive. You could remove the # and
change the port number to tell the server to listen for database queries on a
different port.

394 partvi: Appendixes

TECy,

Appendix B
Installing PHP

A Ithough PHP runs on many platforms, I describe installing it on
Unix/Linux/ Mac and Windows, which includes the majority of Web sites
on the Internet. PHP runs with several Web servers, but these instructions
focus mainly on Apache and Internet Information Servers (IIS) because
together they power almost 90 percent of the Web sites on the Internet. If you
need instructions for other operating systems or Web servers, see the PHP
Web site (www.php.net).

This section provides installation instructions for PHP 5. If you're installing
an earlier version, there are some small differences, so read the file
install.txt provided with the PHP distribution.

Installing PHP on Unix/Linux/Mac
with Apache

On Unix/Linux

You can install PHP as an Apache module or as a stand-alone interpreter. If
you’re using PHP as a scripting language in Web pages to interact with a data-
base, install PHP as an Apache module. PHP is faster and more secure as a
module. I don’t discuss PHP as a stand-alone interpreter in this book.

You install PHP by downloading source files, compiling these files, and
installing the compiled programs. This process isn’t as technical and daunt-
ing as it sounds. I provide step-by-step instructions in the next few sections.
Read all the way through the steps before you begin the installation
procedure.

For Linux users only: PHP for Linux is available in an RPM as well as in
source files. It might be in RPM format on your distribution CD. However,
when you install PHP from an RPM, you can’t control the options that PHP is
installed with. For instance, you need to install PHP with MySQL support
enabled, but the RPM may not have MySQL support enabled. MySQL is

3 96 Part VI: Appendixes

popular, so many RPMs enable support for it, but it is out of your control.
Also, an RPM usually enables all the most popular options, so an RPM might
enable options that you don’t need. Consequently, the simplest and most effi-
cient way to install PHP could be from the source. If you're familiar with
RPMs, feel free to find an RPM and install it. RPMs are available. However, I
am providing steps for source code installation, not RPMs.

Before installing
Before beginning to install PHP, check the following:

1 The Apache module mod_so is installed. It usually is. To display a list
of all the modules, type the following:
httpd -1.

You might have to be in the directory where httpd is located before

the command will work. The output usually shows a long list of modules.
All you need to be concerned with for PHP is mod_so. If mod_so is not
loaded, Apache must be reinstalled using the enable-module=so option.

v~ The apxs utility is installed. apxs is installed when Apache is installed.
You should be able to find a file called apxs. If Apache were installed on
Linux from an RPM, apxs might not have been installed. Some RPMs for
Apache consist of two RPMs: one for the basic Apache server and one
for Apache development tools. Possibly the RPM with the development
tools, which installs apxs, needs to be installed.

v Apache version is recent. See Appendix C for information about Apache
versions.

To check the version, type the following:
httpd --v

You might have to be in the directory where httpd is located before the
command will work.

Installing
To install PHP on Unix/Linux with an Apache Web server, follow these steps:

1. Point your Web browser to www.php.net, the PHP home page.
2. Click Downloads.

3. Click the latest version of the PHP source code, which is version 5.0.0
as of this writing.

The file you are about to download contains many files compressed into
one file — a tarball.

A dialog box opens.

Appendix B: Installing PP 39 7

4. Select the option to save the file.

A dialog box opens that lets you select where the file will be saved.

3]

. Navigate to where you want to save the source code (for example,
/usr/src). Then click Save.

6. After the download, change to the download directory (for instance,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.

N|

. Unpack the tarball. The command for PHP version 5.0.0 is
gunzip -c php-5.0.0.tar.gz | tar -xf -

A new directory called php-5.0.0 is created with several subdirectories.

Qo

. Change to the new directory that was created when you unpacked the
tarball. For example:

cd php-5.0.0
9. Type the configure command.
Use one of the two following configure commands:

./configure --with-mysql=DIR --with-apxs
./configure --with-mysqli=DIR --with-apxs

Use mysql if you're using MySQL 4.0 or earlier; use mysqli if you're
using MySQL 4.1 or later. DIR is the path to the appropriate MySQL
directory. When using with-mysqT, use the path to the directory where
mysq]l is installed, for instance:

--with-mysqgl=/user/local/mysql

When using with-mysql1i, use the path to the file named mysql_
config.

If you're using Apache 2, use the option with-apxs2. (See Appendix C
for information on using Apache 2.)

You will see many lines of output. Wait until the configure command has
completed. This might take a few minutes. If the configure command
fails, it provides an informative message. Usually, the problem is missing
software. You see an error message indicating that xyz software can’t be
found or that xyz version 5.6 is required but xyz version 4.2 is found. You
need to install or update the software that PHP needs.

V?‘“\NG! If the apxs utility isn’t installed in the expected location, you see an
S error message indicating that apxs couldn’t be found. If you get this
message, check the location where apxs is installed (find / -name

apxs) and include the path in the with-apxs option of the configure

398 Ppartvi: Appendixes

WING/
&

command: —with-apxs=/usr/sbin/apxs or /usr/local/apache/
bin/apxs. If you're using Apache 2, the option is —with-apxs2=/usr/
sbin/apxs.

10. Type make.

You will see many lines of output. Wait until it is finished. This might
take a few minutes.

11. Type make install.

On Mac 0S X

With the release of PHP 4.3, you can install PHP on Mac OS X as easily as on
Unix/Linux. You install PHP by downloading source files, compiling the
source files, and installing the compiled programs. This process isn’t as tech-
nical and daunting as it might appear. I provide step-by-step instructions in
the next few sections. Read all the way through the steps before you begin
the installation procedure to be sure that you understand it all clearly and
have everything prepared so you don’t have to stop in the middle of the
installation.

Before installing

If you want to use PHP with Apache for your Web site, Apache must be
installed. Most Mac OS X systems come with Apache already installed. For
more information on Apache, see Appendix C.

Before beginning to install PHP, check the following:

v~ The Apache version is recent: See Appendix C for a discussion of
Apache versions. To check the version, type the following on the com-
mand line:

httpd --v

You might have to be in the directory where httpd is located before the
command will work.

As of this writing, PHP with Apache 2 is still considered experimental.
For use on production Web sites, it might be better to use Apache 1.3
than Apache 2. See Appendix C for a discussion of Apache versions.
Keep updated on the status of PHP with Apache 2 by checking the PHP
Web site at www.php.net/manual/en/install.apache2.php.

v The Apache module mod_so is installed. It usually is. To display a list of
all the modules, type the following:

httpd -1.

Appendix B: Installing PHP 399

You might have to be in the directory where httpd is located before the
command will work. The output usually shows a long list of modules. All
you need to be concerned with for PHP is mod_so. If mod_so is not
loaded, Apache must be reinstalled.

v The apxs utility is installed. apxs is normally installed when Apache is
installed. To determine whether it’s installed on your computer, you
should look for a file called apxs, usually in the /usr/sbin/apxs direc-
tory. If you can find the file, apxs is installed; if not, it’s not.

v The files from the Developer’s Tools CD are installed. This CD is sup-
plemental to the main Mac OS X distribution. If you can’t find the CD,
you can download the tools from the Apple Developer Connection Web
site at developer.apple.com/tools/macosxtools.html.

Installing
To install PHP on Mac, follow these steps:

1. Point your Web browser to www.php.net, which is the PHP home
page.
2. Click Downloads.

3. Click the latest version of the PHP source code, which is version 5.0.0
as of this writing.

A dialog box opens.
4. Select the option to save the file.
A dialog box opens that lets you select where the file is to be saved.

5. Navigate to where you want to save the source code (for example,
/usr/src), and then click Save.

6. After the download, change to the download directory (for example,
cd-/usr/src).

You see a file named php-, followed by the version name and tar.gz.
This file is contains several files compressed into one file. The file might
have been unpacked by the Stufflt Expander automatically so that you
see the directory php-5.0.0. If so, skip to Step 8.

7. Unpack the tarball.
The command to unpack the tarball for PHP version 5.0.0 is
tar xvfz php-5.0.0.tar.gz

A new directory called php-5.0.0 is created with several subdirectories.

4 00 Part VI: Appendixes

8. Change to the new directory that was created when you unpacked the
tarball.

For example, you can use a command like the following:
cd php-5.0.0
9. Type the configure command:

The configure command consists of . /configure followed by all the
necessary options. The minimum set of options is as follows:

¢ Location options: Because the Mac stores files in different loca-
tions than the PHP default locations, you need to tell PHP where
files are located. Use the following options:

--prefix=/usr
--sysconfdir=/etc
--localstatedir=/var
--mandir=/usr/share/man

e z1ib option: --with-z1ib

¢ Apache option: If you are installing PHP for use with Apache, use
the following option: --with-apxs or --with-apxs2.

Therefore, the most likely configuration command that you should use is

./configure --prefix=/usr --sysconfdir=/etc
--localstatedir=/var --mandir=/usr/share/man
--with-apxs --with-z1ib

You also need to use an option to include MySQL support. Use one of the
following options:

--with-mysql=DIR

--with-mysqli=DIR

Use mysq]l if you're using MySQL 4.0 or earlier; use mysqli if you're
using MySQL 4.1 or later. DIR is the path to the appropriate MySQL

directory. When using with-mysql, use the path to the directory where
mysql is installed, as follows:

--with-mysql=/user/local/mysql

When using with-mysqli, use the path to the file named
mysql_config.

You can type the configure command on one line. If you use more than
one line, type a \ at the end of each line.

You will see many lines of output. Wait until the configure command
has completed. This may take a few minutes.

\NG/
Vg&\

If the apxs utility isn’t installed in the expected location, you see

an error message, indicating that apxs could not be found. If you get
this error message, check the location where apxs is installed

(find / -name apxs) and include the path in the with-apxs option
of the configure command: --with-apxs=/usr/sbin/apxs.

You might need to use many other options, such as options for the data-
base that you’re using or options that change the directories where PHP
is installed. These configure options are discussed in the section,
“Installation Options,” later in this Appendix.

10. Type make.

You will see many lines of output. Wait until it is finished. This might
take a few minutes.

11. Type sudo make install.

Installation Options

The previous sections give you steps to quickly install PHP with the options
needed for the applications in this book. However, you might want to install
PHP differently. For instance, all the PHP programs and files are installed in
their default locations, but you might need to install PHP in different loca-
tions. Or you might be planning applications using additional software. You
can use additional command line options if you need to configure PHP for
your specific needs. Just add the options to the command shown in Step 13
of the Unix/Linux installation instructions or Step 9 in the Mac installation
instructions. In general, the order of the options in the command line doesn’t
matter. Table B-1 shows the most commonly used options for PHP. To see a
list of all possible options, type ./configure —help.

Table B-1 PHP Configure Options
Option Tells PHP To
prefix=PREFIX Set main PHP directory to PREFIX. Default

PREFIXis /usr/local.

exec-prefix=EPREFIX Install architecture dependentfilesin EPREFIX.
Default EPREFIX is PREFIX.

bindir=DIR Install user executables in DIR. Defaultis
EPREFIX/bin.

(continued)

Appendix B: Installing PHP 3 ()]

4 02 Part VI: Appendixes

Table B-1 (continued)

Option

Tells PHP To

infodir=DIR

Install info documentation in DIR. Default is
PREFIX/info.

mandir=DIR

Install man files in DIR. Defaultis PREFIX/man.

with-config-file-
path=DIR

Look for the configuration file (php.ini)in DIR.
Without this option, PHP looks for the configuration
file in a default location, usually /usr/Tocal/11ib.

disable-Tibxml

Disables XML support that's included be default.

enable-ftp

Enable FTP support.

enable-magic-quotes

Enable automatic escaping of quotes with a
backslash.

with-apxs=FILE

Build a shared Apache module using the apxs utility
located at FILE. Default FILE is apxs.

with-apxs2=FILE

Build a shared Apache 2 module using the apxs
utility located at FILE. Default FILE is apxs.

with-mysql=DIR

Enable support for MySQL 4.0 or earlier databases.
Default DIR where MySQL is located is /usr/
local.

with-mysqli=DIR

Enable support for MySQL 4.1 or later databases.
DIR needs to be the path to the file named mysql_
configthat was installed with 4.1.

with-openss1=DIR

Enable OpenSSL support for a secure server.
Requires OpenSSL version 0.9.5 or later.

with-oci8=DIR

Enable support for Oracle 7 or later. Default DIR is
contained in the environmental variable, ORACLE__
HOME.

with-oracle=DIR

Enable support for earlier versions of Oracle.
Default DIR is contained in the environmental
variable, ORACLE_HOME.

with-pgsql=DIR

Enable support for PostgreSQL databases. Default
DIR where PostgreSQL is located is /usr/local/

pgsql.

with-servlet=DIR

Include servlet support. DIRis the base install
directory for the JSDK. The Java extension must be
built as a shared .dII.

Appendix B: Installing PHP £} () 3

Configuring Apache for PHP

You must configure Apache to recognize and run PHP files. An Apache config-
uration file, httpd. conf, is on your system, possibly in /etc orin /usr/
local/apache/conf. You must edit this file before PHP can run properly.

Follow these steps to configure your system for PHP:

1. Open the httpd.conf file so you can make changes.
2. Configure Apache to load the PHP module.

Find the list of LoadModule statements. Look for the following line:

LoadModule php5 _module libexec/Tibphp5.so.

If this line isn’t there, add it. If a pound sign (#) is at the beginning of the
line, remove the pound sign.

3. Configure Apache to recognize PHP extensions.

You need to tell Apache which files might contain PHP code. Look for a
section describing AddType. You might see one or more AddType lines
for other software. Look for the AddType line for PHP, as follows:

AddType application/x-httpd-php .php

If you find it with a pound sign (#) at the beginning of the line, remove
the pound sign (#). If you don’t find this line, add it to the AddType state-
ments. This line tells Apache to look for PHP code in all files with a . php
extension. You can specify any extension or series of extensions.

4. Start (if it is not running) or restart (if it is running) the Apache httpd
server.

You can start or restart the server by using a script that was installed on
your system during installation. This script might be apachectl or
httpd.apache, and might be located in /bin or
/usr/local/apache/bin. For example, you might be able to start the
server by typing apachect1 start, restart it by using apachect]
restart, or stop it by using apachectl stop. Sometimes restarting is
not sufficient; you must stop the server first and then start it.

On Window's

PHP runs on Windows 98/Me and Windows NT/2000/XP. It does not run on
Windows 3.1. Windows 95 is no longer supported as of PHP 4.3.0.

4 04 Part VI: Appendixes

\NG/
Vg‘\\

To install PHP 5 on Windows with MySQL support, you download a Zip file
that contains all the necessary files for PHP, The following steps show how to
install PHP on Windows:

1.

Point your Web browser at www.php.net.

2. Click Download.

. Go to the Windows Binaries section. Click the download link for

the Sip package for the most recent version of PHP (as of this
writing, 5.0.0).

. Click the link for a mirror Web site from which to download the file

and choose the site closest to your location.

A dialog box opens.

. Select the option to save the file.

A dialog box opens that lets you select where the file will be saved.

. Navigate to where you want the file to be downloaded. This should be

a temporary location, such as a download directory. Then click Save.

After the download is complete, you see a file in the download location
containing all the files needed. The file is named php, followed by the
version number and win32. zip. For the current version, the file is
named php5.0.0-Win32.zip-.

. Extract the files from the . zip file into the directory where you want

PHP to be installed, such as c: \php.

If you double click the . zip file, it should open in the software on your
computer that extracts files from . zip files, such as WinZip or PKZIP.
Select the menu item for extract and select the directory into which the
files are to be extracted. C: \php is a good choice for installation
because many configuration files assume that’s where PHP is installed,
so the default settings are more likely to be correct.

It’s best not to install PHP in a directory with a space in the path, such
as in Program Files/PHP. It sometimes causes problems.

You now have a directory with several subdirectories that contain the
files that you need.

. Copy the file required for MySQL to the PHP main directory.

The file is located in the ext subdirectory in the directory where PHP is
installed. Copy one of the following files, depending on which version of
MySQL you’re using:
ext\php_mysql.dl1 (for MySQL 4.0 or earlier)
ext\php_mysqli.d11 (for MySQL 4.1 or later)

Appendix B: Installing PHP j ()5

Copy the two files into the main PHP directory, such as c:\php.

V?‘“\NG! Another file is required for MySQL support, named 1ibmysql.d11. This
S file should already be located in the main PHP directory. If it isn’t there,
you need to find it and copy it there. If it’s not in your PHP directory, it’s
usually installed with MySQL, so find it in the directory where MySQL
was installed, perhaps in a bin subdirectory, such as c: \mysqgl\bin.

Occasionally PHP needs DLL files that it can’t find. When this happens,
PHP displays an error message when you run a PHP program, saying
that it can’t find a particular DLL. You can usually find the DLL in the ext
subdirectory and copy it into the main PHP directory.

s

9. Configure your Web server.
The next section provides instructions for configuring your Web server.
10. Configure PHP.

Follow the directions in the section later in this chapter.

Configuring Vour Web Server for PHP

Your Web server needs to be configured to recognize PHP scripts and run
them. Follow the steps in the section for your Web server:

Configuring Apache

You must edit an Apache configuration file, called httpd.conf, before PHP
can run properly To configure Apache for PHP, follow these steps:

1. Open httpd.conf for editing.

You might be able to edit it by choosing Start=>Programs=>Apache
HTTPD Server=>Configure Apache Server=Edit Configuration.

If Edit Configuration isn’t on your Start menu, find the httpd. conf file

on your hard disk, usually in the directory where Apache is installed, in
a conf subdirectory (for example, c:\program files\Apache group\
Apache\conf). Open this file in an editor, such as Notepad or WordPad.

2. Set up a nickname for the directory where PHP is installed.

A ScriptAlias statement is used to set up a name for the directory
where PHP is installed. Look for ScriptAlias statements in the
httpd.conf file. You might see some for other software. If you don’t see
one for PHP, add the following:

ScriptAlias /php/ "c:/php/"

4 06 Part VI: Appendixes

\NG/
Vg‘\\

The first argument is the name, and the second is what it represents. In
this statement, the name /php/ is used to mean c: /php/. Notice that
Apache prefers forward slashes. Also, note that the directory path with
a special character (the colon) in it is enclosed in double quotes.

. Configure Apache to run PHP when it encounters a file that is a PHP

program.

An Action statement is used to tell Apache to run PHP when it encoun-
ters a file that is a PHP program. If you don’t find an Action statement
for PHP, add the following:

Action application/x-httpd-php /php/php-cgi.exe

Prior to PHP 5, the PHP interpreter was named php.exe. If you're
installing an earlier version of PHP, the line should end with php.exe,
rather than php-cgi.exe. If you find an action line for PHP in your
httpd.conf file, be sure that it uses the correct PHP interpreter name
for the version of PHP that you're installing.

Notice that the Action statement uses the name defined in the
ScriptAlias statement. It locates php-cgi.exe in /php/, which means
c:/php/.If you change the ScriptAlias statement to say c:/php27/,
the Action statement would then look for php-cgi.exein c:/php27.

. You need to tell Apache which files are PHP programs.

Look for a section describing AddType. This section might contain one
or more AddType lines for other software. The AddType line for PHP is

AddType application/x-httpd-php .php

Look for this line. If you find it with a pound sign (#) at the beginning of
the line, remove the pound sign. If you don’t find the line, add it to the
list of AddType statements. You can specify any extension or series of
extensions.

This line tells Apache that files with the . php extension are files of the
type application/x-httpd-php. Apache then looks at the Action
statement from Step 2 and knows that files of this type should be run
using the program /php/php.exe.

. Start (if it is not running) or restart (if it is running) Apache.

You can start it as a service on Windows NT/2000 by choosing Start=>
Programs=>Apache HTTPD Server=Control Apache Server and then
selecting Start or Restart.

Or you can start it on Windows 98/ME by choosing Start=>Programs=>
Apache Web Server->Management.

Sometimes restarting Apache is not sufficient; you must stop it first and
then start it. In addition, your computer is undoubtedly set up so that
Apache will start whenever the computer starts. Therefore, you can shut
down and then start your computer to restart Apache.

Appendix B: Installing PHP £} () 7

Configuring IIS

To configure IIS to work with PHP, follow these steps:

1.

R N DU e W N

10.
11.

Enter the IIS Management Console.

You should be able to enter by choosing Start=>Programs=>
Administrative Tools=Internet Services Manager or Start>Settingsw
Control Panel =>Administrative Tools=Internet Services Manager.

. Right-click your Web site (such as Default Web Site).

. Select Properties.

. Select the Home Directory tab.

. Click the Configuration button.

. Choose the App Mappings tab.

. Click Add.

. In the Executable box, type the path to the PHP interpreter: for exam-

ple, type c:\php\php-cgi.exe.

. In the Extension box, type .php.

This will be the extension that is associated with PHP scripts.
Select the Script Engine check box.
Click OK.

Repeat Steps 6-10 if you want any additional extensions, in addition to
.php, to be processed by PHP, such as .phtml.

Configuring PHP

PHP uses settings in a file named php.ini to control some of its behavior.
PHP looks for php.ini when it begins and uses the settings that it finds.
If PHP can’t find the file, it uses a set of default settings.

The default location for the php.ini file is one of the following unless you
change it during installation:

v Windows: The system directory, depending on the Windows version, as

follows:
e Windows 98/Me/XP: windows
e Windows NT/2000: winnt

v Unix/Linux/Mac: /usr/local/1ib

4 08 Part VI: Appendixes

A\

If the php.ini file isn’t installed during installation, you need to install it now.
A configuration file with default settings, called php.ini-dist, is included in
the PHP distribution. Copy this file into the appropriate location, such as the

default locations mentioned above, changing its name to php.ini.

If you have a previous version of PHP installed (such as PHP 4.3), make a
backup copy of the php.ini file before you overwrite it with the php.ini file
for PHP 5. You can then see the settings you are currently using and change
the settings in the new php.ini file to match the current settings.

To configure PHP, follow these steps.

1. Open the php.ini file for editing.
2. Activate mysql or mysqli support.

Look for a list of extensions. Find the line for mysql (if you're using
MySQL 4.0 or earlier) or for mysqli (if you're using MySQL 4.1 or later),
as follows:

;extension=php_mysql.dl]
;extension=php_mysqli.dll

Notice the semicolon (;) at the beginning of the lines. To activate the
extension, remove the semicolon. If the extension line isn’t in your
php.ini file, add it.

3. Only if you’re using PHP with the IIS Web server, turn off force redi-
rect. Find the line:
;cgi.force_redirect = 1

You need to remove the semicolon so that the settings is active, and also
change the 1 to 0. After the changes, the line looks as follows:

cgi.force_redirect = 0
4. Save the php.ini file.

5. You might need to restart the Apache server before the new settings
go into effect.

In general, the remaining default settings allow PHP to run okay, but you
might need to edit some of these settings for specific reasons. I discuss
settings in the php.ini file throughout the book when I discuss a topic that
might require you to change settings. For example, PHP error-handling
actions can be changed by settings in the php. ini file. The possible settings
for error handling and their effects are discussed in Chapter 4.

Appendix C

Installing and Configuring Apache

A pache is an open-source Web server. A Web server delivers the files on
the Web site to the visitor who wants to see the Web pages.

In most cases, you want to get Apache from the Web and install it yourself.
Although Apache may already be installed on your computer (because most
Linux distributions and Mac OS X include Apache), it’s unlikely to be the
latest version. Or Apache may not have been installed with the options you
need. Because of this, you're often better off installing Apache yourself.

Selecting a Version of Apache

\NG/
évg\“

Apache is currently available in two versions: Apache 1.3 and Apache 2.
Apache 2 is the newer version, released in April 2002. Apache 2 is not sup-
ported on Windows 9x installations; it requires Windows NT/2000/XP.

Many Linux distributions come with Apache 2 installed. However, as of this
writing, the PHP Web site cautions against using Apache 2 with PHP in a pro-
duction environment. Check the Web page for the current status of PHP with
Apache 2 at www.php.net/manual/en/install.apache2.php#install.
apache2.unix.

At this time, the current versions are

v Apache 2.0.47
v Apache 1.3.28

Try to install the most current Apache version so that your Apache server
includes all the latest security and bug fixes. New features are no longer
being added to Apache 1.3, but bugs are still being fixed and security issues
are being addressed. New versions of Apache 1.3 continue to be released but
on a less frequent basis than for Apache 2.

4 ’0 Part VI: Appendixes

Installing Apache

Apache can be downloaded and installed on your Web server for free. It’s
available for almost every operating system, including Windows, Linux, many
flavors of Unix, and Mac.

On Linux/Unix

To install Apache on Linux and Unix, you download the source code, compile
it, and install it. This sounds daunting but is much easier than it sounds.

Before installing
Before installing Apache, check the following requirements:

+ Disk space: You may need as much as 50MB of disk space while
installing. Apache will probably use 10MB after installation, although the
amount varies depending on the options used and modules installed.

v C compiler: Your computer has an ANSI-compliant C compiler installed.
GNU C (gcce) is a good choice.

Installing
To install Apache from source files, follow these steps:

1. Point your Web browser to httpd.apache.org, the Apache home
page.

2. Click the From a Mirror link under Download on the left side of
the page.

3. Scroll down to the Mirror section.

A specific mirror is selected for you. If you don’t want to use this mirror,
select another. Or if you have problems downloading from this mirror,
return to this page and select another.

4. Scroll further down the same page to the section for Apache 2 or for
Apache 1.3, whichever you want to install. Locate and highlight the
file you want to download.

For instance, at this time, the most recent version of Apache 1.3 for
Linux is apache-1.3.28.tar.gz.

5. Click the latest version to download it.
6. Select the option to save the file.

7. Navigate to where you want to save the source code (for example,
/usr/src). Then click Save.

Appendix C: Installing and Configuring Apache 4 ’ 1

WING/
&

8. After the download, change to the download directory (for example,
cd-/usr/src).

You see a file named apache-, followed by the version name and
tar.gz. This file is called a tarball because it contains many files com-
pressed into the tarball file by a program called tar.

Be sure you're using an account that has permission to write into
/usr/src,such as root.

9. Verify the downloaded file to be sure it hasn’t been tampered with. To
verify the file, follow these steps:

a. Download two files from www.apache.org/dist/httpd/: One file
to download is named KEYS. The second file is named with the
same file name, including version number, as the source, but the
filename ends in .asc.

b. Type one of the following lines, depending on which version of PGP
is installed on your computer:

pgp <KEYS
gpg --import KEYS

Several lines of output are displayed.
c. Type one of the following lines, with the correct version number.

pgp apache-1.3.28.tar.gz.asc
gpg --verify apache-1.3.28.tar.gz.asc

You should see something similar to the following:
Good signature from user "Sander Striker"

This is what you are looking for. Several messages will probably be
displayed, but the preceding message is the important one. You
might also see a message stating that the relationship between the
key and the signer of the key cannot be verified. This is okay.

If you don’t get a message that the signature is good, the file might
have been tempered with and may be dangerous. In this case,
repeat the process starting with Step 1 and select a different mirror
to download from.

10. Unpack the tarball.
The command to unpack the tarball for version 1.3.28 is the following:
gunzip -c apache-1.3.28.tar.gz | tar -xf -

A new directory called apache-1.3.28 is created with several subdirec-
tories containing all the files that you just unpacked from the tarball.

11. Change to the new directory that was created when you unpacked
the tarball.

4 ’2 Part VI: Appendixes

12.

13.

14.

15.

16.

For example, you can use a command like the following:
cd apache-1.3.28
Type the configure command.

The configure command consists of . /configure followed by all the
necessary options. If you can use all the default options, you can use
configure without any options. However, to use Apache with PHP as a
module, use the configure command as follows:

./configure --enable-module=so

One of the more important installation options you may want to use
is prefix, which sets a different location where you want Apache to
be installed. By default, Apache is installed at /usr/local/apache or
usr/local/apache2. You can change the installation location with
the following line:

./configure --prefix=/software/apache
You can see a list of all the available options by typing the following line:
./configure --help

This script may take a while to finish running. As it runs, it displays
output. When the script is done, the system prompt is displayed. If
configure encounters a problem, it displays a descriptive error
message.

Type the following command:
make

This command builds the Apache server. It may take several minutes to
finish running. As it runs, it displays messages telling you what it’s
doing. There may be occasional longer pauses as it completes some
action. When it’s finished, it returns to the system prompt. If it has a
problem, it displays a descriptive error message.

Type the following command:
make install

This command installs the Apache software in the proper locations,
based on the configure command you used in Step 11.

Start the Apache Web server.
See the following section, “Starting and Stopping Apache,” for details.

Type the URL for your Web site (for example, www.mysite.com or
locaTlhost) into a browser to test Apache.

If all goes well, you see the Apache message telling you that Apache is
working.

Appendix C: Installing and Configuring Apache

Starting and stopping Apache

A script named apachect] is available to control the server. By default, the
script is stored in a subdirectory called bin in the directory where Apache is
installed. Some Linux distributions may put it in another directory.

The script requires a keyword. The most common keywords are start, stop,
and restart. The general syntax is as follows:

path/apachectl] keyword

For example, if Apache was installed in the default directory, type the follow-
ing line to start Apache:

/usr/Tocal/apache/bin/apachect] start

Starting Apache

The apachect] script starts the Apache server, which then runs in the back-
ground, listening for HTTP requests. By default, the compiled Apache server
is named httpd and is stored in the same directory as the apachect] script,
although you can change the name and location when you install Apache. The
apachect] script serves as an interface to the compiled server, called httpd.

You can run the httpd server directly, but it’s better to use apachect1 as
an interface. The apachectl script manages and checks data that httpd
commands require. Use the apachect] script to start Apache with the fol-
lowing command:

/usr/local/apache/bin/apachect] start

The apachect] script contains a line that runs httpd. By default, apachect]
looks for httpd in the default location — /usr/local/apache/bin or
/usr/local/apache2/bin.If you installed Apache in a nonstandard loca-
tion, you may need to edit apachect] to use the correct path. Open
apachect] and then search for the following line:

HTTPD="/usr/local/apache2/bin/httpd’

Change the path to the location where you installed httpd. For example, the
new line might be this:

HTTPD="/usr/mystuff/bin/httpd’
After you start Apache, you can check whether Apache is running by looking
at the processes on your computer. Type the following command to display a
list of the processes that are running:

ps -A

If Apache is running, the list of processes includes some httpd processes.

413

4 ’4 Part VI: Appendixes

Getting information from Apache

You can use options with the httpd server to obtain information about
Apache. For instance, you can find out what version of Apache is installed by
changing to the directory with httpd and typing

httpd -v

Or, probably, . /httpd -v. You can find out what modules are installed with
Apache by typing the following:

httpd -1
To see all the options that are available, type the following:
httpd -h

Restarting Apache

Whenever you change the configuration file, the new directives take effect
the next time Apache starts. If Apache is shut down when you make the
changes, you can start Apache as described earlier in “Starting Apache.”
However, if Apache is running, you can’t use start to restart it. Using start
results in an error message saying that Apache is already running. You can
use the following command to restart Apache when it’s currently running:

/usr/local/apache2/bin/apachect] restart
Although the restart command usually works, sometimes it doesn’t. If you

restart Apache and the new settings don’t seem to be in effect, try stopping
Apache and starting it again. Sometimes this solves the problem.

Stopping Apache
To stop Apache, use the following command:

/usr/Tocal/apache/bin/apachect]l stop

You can check to see that Apache is stopped by checking the processes that
are running on your computer by using the following command:

ps -A

The output from ps should not include any httpd processes.

On Windows

You can install Apache on almost any version of Windows, although Windows
NT/2000/XP are preferred.

Appendix C: Installing and Configuring Apache 4 ’5

Installing
To install Apache, follow these steps:

1.

Point your Web browser to httpd.apache.org, the Apache home
page.

. Click the From a Mirror link under Download on the left side of

the page.

. Scroll down to the Mirror section.

A specific mirror is selected for you. If you don’t want to use this mirror,
select another. Or if you have problems downloading from this mirror,
return to this page and select another.

. Scroll further down the same page to the section for Apache 2 or for

Apache 1.3, whichever you want to install. Locate and highlight the
line for Win 32 Binary (MSI installer).

For instance, at this time, the most recent version of Apache 1.3 for
Windows is apache_1.3.28.

5. Click the filename to download it.

6. Select the option to save the file.

7. Navigate to where you want to save the installer. This should be a tem-

10.

11.

12.

porary directory, such as a download directory. Then click Save.

After the download is complete, you see a file in the download location
containing all the files needed. The file is named apache, followed by the
version number and win32-x86-no_src.msi. For the current version,
the file is named apache_1.3.28-win32-x86-no_src.msi.

. Double-click the downloaded file.

The Apache installation wizard begins, and a welcome screen is
displayed.

. Click Next.

The license agreement is displayed.

Select I Accept the Terms in the License Agreements and then
click Next.

If you don’t accept the terms, you can’t install the software.
A screen of information about Apache is displayed.

Click Next.

A screen is displayed asking for information.

Enter the requested information and then click Next.

4 ’6 Part VI: Appendixes

13.

14.

15.

16.

The information requested is

e Domain Name: Type your domain name, such as
MyFineCompany.com. If you're installing Apache for testing pur-
poses and plan only to access it from the same machine where it’s
installed, you can enter localhost.

¢ Server Name: Type the name of the server where you're installing
Apache, such as www.MyFineCompany.com or
sl.mycompany.com. If you're installing Apache for testing pur-
poses and plan only to access it from the same machine where it’s
installed, you can enter localhost.

E-mail Address: Type the e-mail address that you want to receive
e-mail message about the Web server, such as WebServer@
MyFineCompany.com.

Run Mode: Select whether you want Apache to run as a service,
starting automatically when the computer boots up, or whether
you want to start Apache manually when you want to use it.

In most cases, you want the first choice — to run Apache as a
service.

The installation type screen is displayed.
Select an installation type and click Next.

In most cases, you should select Complete. Only advanced users who
understand Apache well should select Custom.

A screen showing where Apache is to be installed is displayed.
Select the directory where you want Apache installed and click Next.

You see the default installation directory for Apache, usually
C:\Program Files\Apache Group.If this is okay, click Next. If you
want Apache installed in a different directory, click Change and select a
different directory, click OK, and click Next.

A screen is displayed that says the wizard is ready to install Apache.
Click Install.

If you need to, you can go back and change any of the information you
entered before proceeding with the installation.

A screen displays the progress while Apache is being installed. When the
installation is complete, a screen is displayed saying that the wizard has
successfully completed the installation.

Click Finish to exit the installation wizard.

Apache is installed on your computer based on your operating system. If you
install it on Windows NT/2000/XP, it is automatically installed as a service
that automatically starts when your computer starts. If you install it on
Windows 95/98/Me, you need to start it manually or set it up so that it starts

Appendix C: Installing and Configuring Apache 4 ’ 7

automatically when your computer boots. See the next section, “Starting and
stopping Apache,” for more information.

Starting and stopping Apache

When you install Apache on Windows NT/2000/XP, it’s automatically installed
as a service and started. It’s ready to use. You can test it by typing your Web
site name (or localhost) into your browser window. You see a welcome Web
page that reads, “If you can see this, it means that the installation of the
Apache Web server software on this system was successful.” On Windows
95/98/Me, you have to start Apache manually, using the menu.

Apache installs menu items for stopping and starting Apache during installa-
tion. You can find this menu at Start=>Programs=>Apache HTTP Server=
Control Apache Server.

The menu you use to start and stop Apache provides the following menu
items:

v~ Start: Used to start Apache when it is not running. If you click this item
when Apache is running, you see an error message saying that Apache
has already been started.

v~ Stop: Used to stop Apache when it is running. If you click this item when
Apache is not running, you see an error message saying that Apache is
not running.

v Restart: Used to restart Apache when it is running. If you make changes
to Apache’s configuration, you need to restart Apache before the
changes become effective.

Getting information from Apache

Sometimes you want to know information about your Apache installation,
such as the version that’s installed. You can get this information from Apache
by opening a command prompt window (Start=>Programs=Accessories=
Command Prompt), changing to the directory where Apache is installed
(such as, cd C:\Apache), and accessing Apache with options. For example,
to find out which version of Apache is installed, type the following in the
command prompt window:

Apache -v

To find out what modules are compiled into Apache, type
Apache -1

You can also start and stop Apache directly, as follows:

Apache -k start
Apache -k stop

4 ’8 Part VI: Appendixes

You can see all the options available by typing the following:

Apache -h

On Mac

Installing Apache on the Mac is very similar to installing Apache on
Unix/Linux. You download the source code and compile it. To install Apache
on the Mac, follow these steps:

1.

Download the source code, save it in a directory, and change to the
directory where the downloaded file is saved.

Follow Steps 1-8 of the directions for Unix/Linux.

You will see a file named httpd, followed by the version name and
tar.gz,suchas, httpd-1.3.28.tar.gz. This file is the tarball — a
single file that contains all the files needed, compressed into one file.

. Unpack the tarball by using a command similar to the following:

gnutar -xzf /httpd_1.3.28.tar.gz

After unpacking the tarball, you see a directory called httpd_1.3.28.
This directory contains several subdirectories and many files.

. Use a cd command to change to the new directory created when you

unpacked the tarball (for example, cd httpd_1.3.28).

. Type the following command:

./configure --enable-module=most --enable-shared=max

This command may take some time to run.

. Type the following command to build the Apache server:

make

This command may take a few minutes to run. It displays messages while
it is running, with occasional pauses for a process to finish running.

. Type the following command to install Apache:

sudo make install

. Start the Apache Web server.

See the section, “Starting and Stopping Apache,” under Unix/Linux for
details.

. Type the URL for your Web site (for example, www.mysite.com or

locaTlhost) into a browser to test Apache.

If all goes well, you see a Web page telling you that Apache is working.

Appendix C: Installing and Configuring Apache 4 ’ 9

Configuring Apache

When Apache starts, it reads information from a configuration file. If Apache
can’t read the configuration file, it can’t start. Unless you tell Apache to use a
different configuration file, it looks for the file conf/httpd.conf in the direc-
tory where Apache is installed.

Changing settings

Apache behaves according to commands, called directives, in the configura-
tion file. You can change some of Apache’s behavior by editing the configura-
tion file and restarting Apache so that it reads the new directives.

The configuration file is a text file containing commands called directives.
Apache behaves according to the directives in this file. In most cases, the
default settings allow Apache to start and run on your system. However, you
may need to change the settings in some cases. Some reasons you might
want to change the settings are

v~ Installing PHP: If you install PHP, you need to configure Apache to rec-
ognize PHP programs. How to change the Apache configuration for PHP
is described in Appendix B.

v Changing your Web space: Apache looks for Web page files in a specific
directory and its subdirectories, often called your Web space. You can
change the location of your Web space.

1 Changing the port where Apache listens: By default, Apache listens
for file requests on port 80. You can configure Apache to listen on a
different port.

To change any settings, edit the file httpd. conf. On Windows, you can
access this file through the menu at Start>Programs=>Apache HTTPD
Server>Configure Apache Server=Edit the Apache httpd.conf File. When you
click this menu item, the httpd. conf file is opened in Notepad.

The httpd.conf file has comments (beginning with #) that describe the
directives, but you should be sure you understand their function before
changing any. All directives are documented on the Apache Web site.

When adding or change file path/names, use forward slashes, even when the
directory is on Windows. Apache can figure it out. Also, path/names don’t
need to be in quotes unless they include special characters. A colon () is a
special character; the underscore (_) and hyphen (-) are not. For instance, to
indicate a Windows directory, you would use something like the following:

"c:/temp/mydir"

4 20 Part VI: Appendixes

QNING/ Remember to restart Apache after you change any settings. The settings
& don’t go into effect until Apache is restarted. Sometimes using the restart
command doesn’t work to change the settings. If the new settings don’t seem
to be in effect, try stopping the server with stop and then starting it with
start.

Changing the location of your Web space

By default, Apache looks for your Web page files in the subdirectory htdocs
in the directory where Apache is installed. You can change this with the
DocumentRoot directive. Look for the line that begins with DocumentRoot,
such as the following:

DocumentRoot "C:/Program Files/Apache Group/Apache/htdocs"”
Change the file path/name to the location where you want to store your Web
page files. Don’t include a forward slash (/) on the end of the directory path.

For example, the following might be your new directive:

DocumentRoot /usr/mysrver/Apache2/webpages

Changing the port number

By default, Apache listens on port 80. You might want to change this, for
instance, if you are setting up a second Apache server for testing purposes.
The port is set by using the Listen directive as follows:

Listen 80

With Apache 2, the Listen directive is required. If no Listen directive is
included, Apache 2 won't start.

You can change the port number as follows:
Listen 8080

Remember to restart Apache after you change any directives.

Index

® Symbols

& (ampersand), cleaning data with, 243
< > (angle brackets)
cleaning data with, 243
in closing PHP tag (?>), 17, 116
in opening PHP tag (<?php), 17, 116
' (apostrophe) in PHP (\ '), 128
* (asterisk)
as arithmetic operator, 126
for comments (/* and */), 143-144
for pattern matching, 137-138, 139, 140
as SELECT query wildcard, 81
@ (at sign) for preventing PHP notices, 124
\ (backslash)
new line indicator (\n), 129, 148, 150
tab indicator (\t), 129
$ (dollar sign)
beginning PHP variables, 121
$_COOKIE built-in array, 268
$_FILES built-in array, 213
$_GET built-in array, 210, 265
$HTTP_COOKIE_VARS array, 268
$_HTTP_GET_VARS built-in array, 210, 215
$_HTTP_POST_VARS built-in array,
210, 213
literal (\$), 164
missing, 372
$_POST built-in array, 210, 211, 213,
231, 269
$_POST variable, 228-229
$_REQUEST built-in array, 210
$_SESSION built-in array, 270, 271, 277
. (dot)
for concatenating strings, 130
conventions in this book (...), 2
... (ellipsis) conventions in this book, 2
= (equals sign)
for assigning values to variables, 122
common errors, 372
infinite loops and, 179

- (minus sign) as arithmetic operator, 126

() (parentheses)
in function calls, 153, 181
with PHP arithmetic operators, 126
square brackets confused with, 376
% (percent sign)
as arithmetic operator, 126
for blank hostname, 95

+ (plus sign) as arithmetic operator, 126

(pound sign) for comments, 144
? (question mark)
in closing PHP tag (?>), 17, 116
in opening PHP tag (<?php), 17, 116
" (quotation marks)
assigning query strings and, 196
common errors, 373
single-quoted versus double-quoted
strings, 128-129
in SQL queries, 67
; (semicolon)
ending PHP statements, 118
missing, 371
query strings and, 196
' (single quotes)
apostrophe (\ ') versus, 128
assigning query strings and, 196
common errors, 373
single-quoted versus double-quoted
strings, 128-129
/ (slash)
as arithmetic operator, 126
for comments (/* and */), 143-144
for short comments (//), 144
[] (square brackets)
creating arrays using, 154
parentheses confused with, 376

o/ o

access, usability engineering for, 41
accounts. See MySQL accounts

£ 22 PHP&MySQL For Dummies, 2nd Edition

action attribute for HTML forms, 210 asort statement, 157-158
adding information to a database assigning values to PHP variables, 122-123
from a file, 78, 79-80 assignment statements, 146, 150-151
one row at a time, 78-79 asterisk (*)
overview, 77-78 as arithmetic operator, 126
viewing inserted data, 79 for comments (/* and */), 143-144
addNewType function, 325-326 for pattern matching, 137-138, 139, 140
AddPet.php program, 326-330 as SELECT query wildcard, 81
ALTER query, 76, 91 at sign (@) for preventing PHP notices, 124
ampersand (&), cleaning data with, 243 attributes of objects, 48
and joining comparisons, 141-143 autoglobal or superglobal arrays, 20, 213
AND word (MySQL), 84, 85-86
angle brackets (< >) P B Y
cleaning data with, 243
in closing PHP tag (?>), 17, 116 backslash (\)
in opening PHP tag (<?php), 17, 116 new line indicator (\n), 129, 148, 150
Apache Web server tab indicator (\t), 129
advantages, 29 backups, 25, 103-106. See also restoring
installing, 29 data
Linux versus Windows and, 28 binaries, 29
PHP integration with, 17 blank account name, 95
Web site, 29 blank hostname, 95
apostrophe (') in PHP (\ '), 128 blocks of PHP statements
applications defined, 119
defined, 10 function blocks, 182
organizing, 281-288 programming tasks requiring, 145-146
overview, 12 reusing, 284
in Web database applications, 10, 12 bold type in this book, 2
arithmetic operations, 125-127 break statements, 170, 179-181
arrays. See also built-in arrays breaking out of loops, 179-181
creating, 154-155 browsers
defined, 153 cookies and, 267
do..while loop with, 176-177 disabling cookies, 273
functions for handling, 366-367 providing Web pages based on, 261
getting values from, 158-159 usability engineering for, 41
for loops with, 172, 174 viewing PHP programs in, 117
multidimensional, 162-165 buildCheckbox.php program, 225-227
numbered, 374 building a database
registering long arrays, 215 adding tables, 73-75
removing values, 156 changing the database structure, 76
sorting, 156-158 creating a new database, 73
superglobal or autoglobal, 20, 213 deleting a database, 73
as values returned from functions, 188 for Members Only application, 333-337
viewing, 155 overview, 62, 72
walking through, 160-162 for Pet Catalog application, 295-303
while loop with, 174-176 buildRadio.php program, 224-225
arsort statement, 158 buildSelect.php program, 219-220

AS clause, 82 built-in arrays. See also arrays

Index 423

containing form information, 210-211
$_COOKIE, 268
$_FILES, 213
$_GET, 210, 265
$_HTTP_GET_VARS, 210, 215
$_HTTP_POST_VARS, 210, 213
$_POST, 210, 211, 213, 231, 269
$_REQUEST, 210
$_SESSION, 270, 271, 277

built-in functions, 188

oo

C language, PHP compared with, 15
calling functions. See function calls
Cannot add header information error
message, 260
capitalization
changing case of strings, 360
matching character strings to patterns
(PHP), 139
of PHP keywords, 119
in PHP variable names, 121
in SQL queries, 66
case section of switch statement, 169, 170
catalog application. See Pet Catalog
application
cells (database fields), 46, 49
CHAR data type, 58, 241, 298
character data, 56-57, 58
character strings
changing case, 360
character defined, 127
concatenating, 130
defined, 127
finding information about, 369
matching to patterns, 137-141, 369
overview, 127-128
simple comparisons, 135-137
single-quoted versus double-quoted,
128-129
in SQL queries, 67
check box lists (HTML forms), 225-227,
228-229
checkAl11.php program, 236-238
checkBlank.php program, 231-234
checking HTML form information. See
validating HTML form information

ChoosePetCat.php program, 317-320
ChoosePetName.php program, 320-326
cleaning database information, 242-243,
289, 290-291
client software, 71
closing a MySQL server connection, 194
closing PHP tag (?>), 17, 116
closing sessions, 277
columns of tables
altering, 76
deleting, 91
documenting, 59
Login table, 55, 336-337
Member table, 55, 334-336
naming for object attributes, 48
Pet table, 52-53, 296-298
PetColor table, 53, 300-301
PetType table, 53, 299-300
for primary key, 48
with required data, 49
columns_priv table (mysql database), 99
comments in programs, 143-144, 284
communicating with MySQL server. See
also sending SQL queries
building SQL queries, 66-67
functions for, 363-364
mysq1 client for, 71-72
mysql_send.php program for, 67-71
overview, 14-15, 65
company Web site, using, 22-24
comparing values in PHP
conditional statements for, 134—-135
joining comparisons, 141-143
matching character strings to patterns,
137-141
simple comparisons, 135-137
complex statements, 119
concatenating character strings, 130
conditional blocks, 119
conditional statements
defined, 146, 165
getting database information for, 197
if statements, 166-169, 192-193, 253-254
overview, 134-135, 165
simple comparisons in, 136-137
switch statements, 169-170
connection verification, 94
constants, 124-125, 284

h24

PHP & MySOQOL For Dummies, 2nd Edition

continue statement, 179-180
$_COOKTIE built-in array, 268
cookies
disabling, 273
overview, 267-269
sessions without, 274-276
copying HTML files from test location, 23
counter variables, 151-152
CREATE query, 73-75
customer/member-only site. See Members
Only application
customers. See users
customizability
of Apache Web server, 29
of MySQL, 14
of PHP, 16
of PHP with MySQL, 18

oo

data transfer. See moving information
between pages
data types, 56-61, 241-242
database design
choosing the data, 44-46
creating relationships between tables,
50-51
Members Only application, 53-56
organizing data in tables, 46—-49
overview, 44-51
Pet Catalog application, 51-53
tips, 49
Database Management System (DBMS), 12
databases. See also getting database
information; specific databases
adding information, 77-80, 243-247
adding tables, 73-75
backing up, 103-106
building, 62, 72-76, 295-303, 333-337
changing the structure, 76
cleaning data, 242-243, 289, 290-291
combining table information, 77, 86-90
creating a new database, 73
creating before restoring, 111-112
defined, 10, 11, 12
deleting an entire database, 73, 91
deleting data, 77, 91
formatting information, 241-242

hostname for, 24
knowledge needed for this book, 3
naming, 47
overview, 11-12
PHP support for, 16
preparing data for, 241-243
selecting with mysql_select_db,
194-195
size limits for MySQL, 14
updating information, 77, 90-91, 248-250
variables for information, 197, 241
variables for names, 195
in Web database applications, 10, 11-12
date and time data
formatting dates in PHP, 131-132
MySQL data type names, 58-59
overview, 57
in PHP, 130-134
storing timestamps in variables, 132-133
timestamps overview, 130-131
using with MySQL, 133-134
DATE data type, 58, 133-134, 242
dateSelect.php program, 221-224
DATETIME data type, 59
db table (mysql database), 99
DECIMAL data type, 58, 241
decimal places, formatting in PHP, 126-127
defaults
changing for table columns, 76
field value, 49
HTML file, 23
setting for function values, 186-187
define statement, 124-125
DELETE query, 91
deleting
columns of tables, 91
cookies, 269
data from database, 91
databases, 73, 91
information from PHP variables, 122
MySQL accounts, 103
permissions, 102-103
tables, 75, 91
uncreating PHP variables, 123, 153
values from arrays, 156
designing the database. See database
design
developing the application, 61-62

Index 425

die statement, 192
directories
for HTML files, 23
for include files, 287
for mysql client, 71
for PHP programs, 32
subdirectories for program files, 283
disabling cookies, 273
displayAddress.php program, 215-217
displaying. See viewing or displaying
displayPhone.php program, 263-266
DISTINCT word (MySQL) , 83, 86, 220
documentation, 42, 59, 291-292
dollar amounts, formatting in PHP, 126-127
dollar sign (%)
beginning PHP variables, 121
$_COOKIE built-in array, 268
$_FILES built-in array, 213
$_GET built-in array, 210, 265
$HTTP_COOKIE_VARS array, 268
$_HTTP_GET_VARS built-in array, 210, 215
$_HTTP_POST_VARS built-in array,
210, 213
literal (\$), 164
missing, 372
$_POST built-in array, 210, 211, 213,
231, 269
$_POST variable, 228-229
$_REQUEST built-in array, 210
$_SESSION built-in array, 270, 271, 277
domain names, 25, 26
dot ()
for concatenating strings, 130
conventions in this book (...), 2
do..whileloops, 171, 176-177
downloading Apache source code, 29
DROP query, 73, 75, 91
dynamic HTML forms. See also HTML
forms
check box lists, 225-227, 228-229
checking for empty fields, 230-234
checking the format of information, 230,
234-238
displaying dynamic information, 214-217
multiple submit buttons, 238-240
PHP capabilities, 213
radio button lists, 224-225, 228
selection lists, 217-224

uploading files using, 251
using form data, 227-229
dynamic Web pages, 10

oF o

ease of use
as MySQL advantage, 13
as PHP advantage, 16
as PHP with MySQL advantage, 18
usability engineering, 41
echo statement
in buildSelect.php program, 220
defined, 146
displaying HTML forms using, 209
examples, 147
general format, 147
getting values from arrays, 158
stages of Web page delivery and,
148-150
variables with, 148
viewing array values, 155, 163-164
ellipsis (...) conventions in this book, 2
e-mail
addresses from Web hosting
company, 26
message from login page, 340-341
sending with mai1 function, 364-366
e-mail discussion lists, 11, 13, 15, 20
empty fields (HTML forms), checking for,
230-234
encryption of passwords, 96
entities, 47. See also objects
ENUM data type, 59, 242
enumeration data, 57-58, 59
environment setup
setting up your own Web site, 22, 27-32
testing MySQL availability, 34-35
testing PHP availability, 32-33
tools required, 21
using company Web site, 22-24
using Web hosting company, 22, 24-27
equals sign (=)
for assigning values to variables, 122
common errors, 372
infinite loops and, 179
erasing. See deleting
ereg function, 140-141

£y20 PHP & MySQL For Dummies, 2nd Edition

error messages. See also notices (PHP);
warning messages (PHP)
Cannot add header information, 260
for corrupted tables, 106
for insufficient permissions, 100
mysql functions and, 192-193
Parse error, 371
in PHP, 118, 120-121
for using reserved words, 75
errors, common
invisible output, 373-374
missing dollar signs, 372
missing semicolons, 371
misspelled variable names, 372
numbered arrays, 374
paired punctuation marks, 375-376
parentheses confused with brackets, 376
PHP statements in include files, 373
quote problems, 373
single equal sign, 372
exit function, 366
exit statement, 146, 152, 230, 234
expansion, leaving room for, 42
extract function, 199-200

ofF e

feedback page (Pet Catalog), 307, 309
fields (database), 46, 49
fields (HTML forms)
check box lists, 225-227, 228-229
checking for empty fields, 230-234
dynamic information in, 214-217
maxlength attribute, 213, 217
radio button lists, 224-225, 228
selection lists, 217-224
file extensions for PHP files, 24, 116, 145
$_FILES built-in array, 213
fixed-length format, 56, 57
Flanders, Vincent (Web design expert), 41
for loops, 171-174, 202-203
foreach statement, 161-162, 164-165,
207-208
form PHP tag, 227, 262, 269
formatting
checking HTML form information,
234-238
database information, 241-242

dates and times for MySQL, 134
dates in PHP, 131-132
dollar amounts (decimal places), 126-127
forms with HTML tables, 212
selection lists (HTML forms), 217-218
values in variables, 367-369
form_upload.inc file, 254-255
function calls
defined, 146
getting values from functions, 187-188
mysq1 functions and error handling,
192-193
overview, 153
parentheses after function names,
153, 181
passing values to functions, 153, 184-187
function statement, 184-187
functions (PHP). See also specific functions
advantages, 181-182
for arrays, 366-367
built-in, 188
for changing case of strings, 360
checking for variable existence, 367
for communicating with MySQL, 363-364
for comparing strings with patterns,
140-141, 369
creating using function blocks, 182
defined, 153, 204
for finding string information, 369
for formatting values in variables,
367-369
getting database information with,
204-208
getting values from, 187-188
global statement in, 183-184
include files for, 286
for interacting with MySQL, 189-191
naming, 288
for organizing programs, 288
parentheses after name, 181
passing values to, 153, 184-187
return statement in, 182
for sending e-mail, 364-366
for sessions, 271, 277, 364-366
for stopping programs, 366
variables in, 183-184
functions (SQL SELECT query), 82
functionl?2.inc file, 355-356

Index 42 7

oG o

general public license (GPL) for MySQL, 13
$_GET built-in array, 210, 265
get missing information page (Pet Catalog),
307, 309
get pet information page (Pet Catalog),
307, 308
get pet type page (Pet Catalog), 307, 308
getdata.php program, 204-206
getPetInfo function, 204-206
getPetsOfType function, 206-208
getPets.php program, 206-208
getStateCode function, 355
getStateName function, 355-356
getting database information. See also SQL
queries
all rows of data using loops, 200-203
functions for, 204-208
getting and using data, 198-203
mysql_fetch_array function for, 198-202
one row of data, 198-200
overview, 77, 81
sending SELECT queries, 197-198
specific information, 81-82
in a specific order, 83
from a specific source, 83-86
two-step process, 197
uses for information, 197
getting file information
need for, 251
processing the uploaded file, 252-253
uploadFile.php program, 253-255
uploading the file using a form, 251
getting user information. See HTML forms
global statement, 183-184
goals for Web database applications, 38-40
GPL (general public license) for MySQL, 13
GRANT query, 100-102
graphics, usability engineering for, 41
GROUP BY clause, 83

o o

header function (PHP), 258, 260, 261
Hello World program
concatenating character strings, 130
echo statement examples, 147

HTML version, 117
for loop version, 171-172
PHP version, 117-118
stages of Web page delivery, 149
storing value in a variable, 123
host table (mysql database), 99
hostname, 24, 93, 94-95
HTML forms
action attribute, 210
adding information to URLs for data
transfer, 263-266
built-in arrays containing form
information, 210-211
check box lists, 225-227, 228-229
checking information (validating),
230-238
common application tasks using, 208-209
displaying, 209-213
displaying dynamic information, 214-217
get method versus post method, 228
HTML tables for, 212
making dynamic, 213-227
max1ength attribute for fields, 213, 217
multiple submit buttons for, 238-240
overview, 209-213
passing information between pages using,
262, 269
PHP capabilities, 213
processform.php program for
displaying, 211-213, 229
radio button lists, 224-225, 228
selection lists, 217-224
storeForm function, 246-247
storing name and phone number from,
244-246
submitting form information, 228
uploading files using, 251
using information from, 227-229
HTML 4 For Dummies Quick Reference
(Ray, Deborah S. and Ray, Eric J.),
3,258
HTML 4 For Dummies (Tittel, Ed and Pitts,
Natanya), 3, 209, 212
HTML (HyperText Markup Language)
copying files from test location, 23
default file, 23
displaying forms using, 209
form_upload.inc file, 254-255
further information, 3

428

PHP & MySOQOL For Dummies, 2nd Edition

HTML (HyperText Markup Language)
(continued)

Hello World program, 117

include files for, 285

knowledge needed for this book, 3

limitations for interactivity, 115-116

location for files, 23

stripping tags from data, 243

tags versus PHP special characters, 148
htmlspecialchars function, 243
$HTTP_COOKIE_VARS array, 268
$_HTTP_GET_VARS built-in array, 210, 215
$_HTTP_POST_VARS built-in array, 210, 213

o]e

icons in margins of this book, 5
if statements, 166—-169, 192-193, 263-264
IIS (Internet Information Server) from
Microsoft, 30
include files
for AddPet.php program, 329-330
for ChoosePetCat.php program, 319-320
for ChoosePetName.php program,
323-325
for Login.php program, 352-356
for organizing programs, 285-287
PHP statements in, 373
include statements, 285-287
increment statements, 146, 151-152
indents for programs, 284
index.htmfile, 23
infinite loops, 177-179, 181
Information Technology (IT) department,
22-24
inner joins, 88-89
INSERT query, 78-79, 109-112, 243-244
installing
by IT department, 23
MySQL, 23, 30-31
operating systems, 28
PHP, 23, 31-32
setting up your own Web site, 30-32
Web page files on company site, 23
Web server, 29
INT data type, 58, 241
Internet Information Server (1IS) from
Microsoft, 30

Internet resources
Apache Web site, 29
domain name registration, 26
domain name whois search, 26
e-mail discussion lists, 11, 13, 15, 20
Mac PHP help, 29
MySQL reserved words, 48
MySQL technical support, 13
MySQL Web site, 13, 31
PHP technical support, 15
PHP Web site, 15, 32
SELECT query functions, 82
SSL information, 291
usability engineering information, 41
invisible output, 373-374
IP addresses, 26
iPlanet (Sun), 30
IT (Information Technology) department,
22-24
italic type in this book, 2
iteration. See walking through an array

°] °
JavaScript, 10
JOIN statement (MySQL), 86, 87-90
joining
character strings, 130
comparisons, 141-143

o o

krsort statement, 158
ksort statement, 158

o/ o

Lerdorf, Rasmus (PHP developer), 15
licensing MySQL, 13
LIMIT word (MySQL) , 83, 86
links, 258
Linux
advantages and disadvantages, 28
Apache Web server and, 28, 29
backing up data, 104-105
checking whether MySQL is installed, 30
checking whether PHP is installed, 31-32
installing MySQL, 31

Index 4 29

installing PHP, 32
running my i samchk table repair utility, 107
sending all INSERT queries from backup
file, 110-112
starting MySQL, 30-31
list manager, 11
1ist statement, 159
literals, 128-129, 138, 164
LOAD DATA LOCAL query, 302-303
LOAD query, 78, 79-80
login name versus account name, 95
login page
e-mail message from, 340-341
Members Only application, 338-341
moving information to other pages, 261
need for, 331-332
plan for, 44
private sessions for, 276
Login table, 54-56, 61, 336-337
login_form.inc file, 352-355
Login.php program, 344-356
long arrays, registering, 215
look and feel design
for Members Only application, 337-342
for Pet Catalog application, 303-309
loops
breaking out of, 179-181
defined, 170
do..whileloops, 171, 176-177
getting all rows of data using, 200-203
infinite, 177-179, 181
for loops, 170, 171-174, 202-203
types of, 170-171
whiTe loops, 170, 174-176, 200-202
Lopuck, Lisa (Web Design For Dummies), 41

o o

Mac computers
advantages and disadvantages, 29
backing up data, 104-105
checking whether MySQL is installed, 30
checking whether PHP is installed, 31-32
installing MySQL, 31
installing PHP, 32
running my i samchk table repair
utility, 107

sending all INSERT queries from backup
file, 110-112
starting MySQL, 30-31
mail function, 364-366
matching character strings to patterns
ereg function for, 140-141, 369
examples, 139-140
overview, 137-138
special characters used in patterns,
138-139
max1ength attribute for HTML forms,
213, 217
Member table, 54-56, 61, 333-336
MemberDirectory database. See also
specific tables
adding data, 337
building, 333-337
creating, 73
designing, 53-56
tables, 60-61
Members Only application. See also
Web database applications
basic tasks, 342-343
building the database, 333-337
choosing the data, 45
database tables, 60-61
designing the application, 332
designing the database, 53-56
designing the look and feel, 337-342
login page, 338-341
Login.php program, 344-356
Members Only section, 342, 358
New Member Welcome page, 341
New_member.php program, 356-358
overview, 43-44
PetShopFrontMembers.php program,
343-344
plan for, 44
planning for growth, 358-359
storefront page, 338, 339
writing the programs, 342-358
Microsoft IIS (Internet Information
Server), 30
Microsoft Windows. See Windows
(Microsoft)
minus sign (-) as arithmetic operator, 126

430

PHP & MySOQOL For Dummies, 2nd Edition

moving information between pages
by adding information to the URL,
262-266
cookies for, 262, 267-269
HTML forms for, 262, 269
need for, 261-262
sessions for, 262, 270-277
moving users between pages, 257-258, 261
multidimensional arrays, 162-165, 207-208
multiple submit buttons for forms, 238-240
myisamchk table repair utility, 107-108
MySQL
advantages, 13-14
checking whether installed, 30
database size limits, 14
installing, 30-31
keeping up with changes, 19-20
licensing, 13
overview, 12-15
PHP with, 17-19
as RDBMS, 12, 46
reserved words, 48
security database, 99
starting, 30-31
technical support, 13
testing availability, 34-35
versions, 190-191
Web hosting company support for, 24, 27
Web site, 13, 31
as work environment tool, 21
MySQL AB company, 13
MySQL accounts. See also permissions
account name, 94-96
adding new accounts, 100-102
attributes, 93-94
hostname, 24, 93, 94-95
from IT department, 23
listing existing accounts, 100
passwords, 96-97
removing accounts, 103
required for MySQL server access, 98
root account, 95, 98
setting up, 98-103
mysql client, 71-72
mysq1 functions, 190-191, 192-193. See
also specific functions
mysq1 security database, 99

MySQL server

closing a connection, 194

communicating with, 14-15, 65-72

connecting with mysql_connect

function, 191, 193-194
overview, 14
selecting database to interact with,
194-195

starting, 107, 108
mysql_close function, 194
mysql_connect function, 191, 192-194
mysql_fetch_array function

general format, 198

getting all rows of data, 200-202

getting one row of data, 198-200
mysqli functions, 190-191
mysql_num_rows function, 202-203
mysql_query function, 195-196, 197-198
mysql_select_db function, 194-195, 206
mysql_send.php program, 67-71
mysql_up.php file, 34-35

o\ o

\n indicator in PHP (new line), 129,
148, 150

names
changing column names, 76
checking using pattern matching, 141
columns, 48
constants, 124-125, 284
data types (MySQL), 58-59
databases, 47
default HTML file, 23
directory, 283
domain names, 26
domains, 25
function, 288
hostname, 24, 93, 94-95
misspelled variable names, 372
MySQL accounts, 93-96
preventing Web server from displaying

filenames, 289-290

primary key, 48
program, 282
renaming tables, 76
SQL queries, 66

tables, 47
using variable names literally, 128-129
validating HTML form information,
235-236
variables, 121
variables for database names, 195
navigation, usability engineering for, 41
nested i f statements, 168-169
new line indicator in PHP (\n), 129,
148, 150
New Member Welcome page (Members
Only), 341
NewCat_form.inc file, 323-324
NewCat_table.inc file, 319-320
NewName_form.inc file, 329-330
NewName_table.inc file, 324-325
Nielsen, Jakob (usability expert), 41
notices (PHP). See also error messages;
warning messages (PHP)
for nonexistent array elements, 158-159
for nonexistent variables, 122-123
overview, 120
preventing, 123
numerical data, 57, 58, 135-137

o () o

objects, 46-48, 51, 54
online catalog application. See Pet Catalog
application
open source software, 19
opening PHP tag (<?php), 17, 116
opening sessions, 271
operating systems
Apache Web server support for, 17, 29
choosing for your Web site, 28
MySQL support for, 13
PHP support for, 16
operators
arithmetic, 125-127
comparison, 135-137
or joining comparisons, 141-143
OR word (MySQL), 84, 85-86
ORDER BY clause, 83, 87, 220
organizing applications
at the application level, 282-283
need for, 281
at the program level, 282, 283-288

outer joins, 88-90
output
invisible, 373-374
statements that must come before, 260

oo

parentheses [()]
in function calls, 153, 181
with PHP arithmetic operators, 126
square brackets confused with, 376
Parse error message, 371
passing values to functions, 153, 184-187
passwords. See also security
adding to MySQL accounts, 102
changing for MySQL accounts, 102
checking with mysql_fetch_array
function, 198-200
for MySQL accounts, 96-97, 101-102
for mysql client, 72
recommendations for creating, 96-97
for root account, 96
for SQL queries, 70, 72
patterns, matching character strings to,
137-141, 369
percent sign (%)
as arithmetic operator, 126
for blank hostname, 95
performance. See speed
permissions
changing, 100-101
defined, 94
mysq1 security database for, 99
overview, 97-98
removing, 102-103
for SQL queries, 72
table summarizing, 98
Pet Catalog application. See also Web
database applications
adding pets to the catalog, 295, 307-309,
316-330
AddPet.php program, 326-330
basic tasks, 310
building the database, 295-303
ChoosePetCat.php program, 317-320
ChoosePetName.php program, 320-326
choosing the data, 45
database tables, 59-60

Index 43 1

/32 PHP&MySQL For Dummies, 2nd Edition

Pet Catalog application (continued)
designing the application, 293-295
designing the database, 51-53
designing the look and feel, 303-309

displaying items using functions, 204-208

displaying items using whi1e loop,
200-202

feedback page, 307, 309

get missing information page, 307, 309

get pet information page, 307, 308

get pet type page, 307, 308

overview, 43

pet type page, 303-304

PetCatalog.php program, 311-313

pets page, 305-307

PetShopFront.php program, 310-311

plan for, 43

showing pets to customers, 294, 303-307,

310-316
ShowPets.php program, 314-316
storefront page, 303, 304
writing the programs, 310-330
Pet object, identifying, 51
Pet table
building, 296-299
CHAR versus VARCHAR data types in,
296-298
columns, 52-53, 296-298
data file and rules, 302
designing, 52-53
displaying items using for loop,
202-203, 204
displaying items using whi1e loop,
200-202
overview, 60
petID field, 298-299
selecting all information from, 197-198
pet type page (Pet Catalog), 303-304
PetCatalog database. See also specific
tables
adding data, 301-303
building, 295-303
creating, 73
designing, 51-53
tables, 59-60
PetCatalog.php program, 311-313
PetColor table, 52, 53, 60, 300-301
petDescripFor.php program, 202-203

petDisplay.php program, 201-202

PetInfo_table.inc file, 325

pets page (Pet Catalog), 305-307

PetShopFrontMembers.php program,
343-344

PetShopFront.php program, 310-311

PetType table, 52, 53, 60, 299-300

PHP & MySQL For Dummies (Valade, Janet)

assumptions about the reader, 3
conventions, 2
icons in book margins, 5
organization, 4-5
overview, 1
using, 3, 5-6

.php file extension, 24, 116, 145

PHP (PHP: HyperText Processor)
adding section to HTML page, 115-118
advantages, 16
arithmetic operations, 125-127
arrays, 153-165
C language compared with, 15
capitalization of keywords, 119
character strings, 127-130
checking whether installed, 31-32
comments in programs, 143-144, 284
comparing values, 134-143
conditional statements, 134-137, 146,

165-170
constants, 124-125, 284
dates and times, 130-134
error messages and warnings,
118, 120-121

file extensions, 24, 116, 145
forms capabilities, 213
functions, 181-188
Hello World program, 117-118
installing, 31-32
keeping up with changes, 19-20
loops, 170-181
MySQL with, 17-19
new line indicator (\n), 129, 148, 150
overview, 15-17, 115
popularity of, 15
programs defined, 115
sending SQL queries, 67-72
sessions, 262, 270-277
tab indicator (\t), 129

Index 433

technical support, 15
testing availability, 32-33
variables, 121-124
versions, 20, 24
viewing programs in browser, 117
Web hosting company support for, 24, 27
Web server processing of files, 116
Web site, 15, 32
as work environment tool, 21
writing statements, 118-119
PHP tags
closing (?>), 17, 116
for comments (/* and */), 143-144
form, 227, 262, 269
opening (<?php), 17, 116
stripping from data, 243
php.ini file, 215
$PHPSESSID variable, 270, 274, 276
.phtm] file extension, 24, 145
Pitts, Natanya (HTML 4 For Dummies),
3, 209, 212
planning Web database applications
allowing for expansion, 42
identifying purposes and goals, 38-40
importance of, 37-38
Members Only application plan, 44
Pet Catalog application plan, 43
usability engineering, 41
user considerations, 40—41
writing down the plan, 42
plus sign (+) as arithmetic operator, 126
$_POST built-in array, 210, 211, 213,
231, 269
$_POST variable, 228-229
pound sign (#) for comments, 144
primary keys, 48, 53, 56
print_r statement, 155
private sessions, 276
privileges. See permissions
processAddress.php program, 216
processform.php program, 211-213, 229
product catalog application. See Pet
Catalog application
programs
comments in, 143-144, 284
defined, 115
file extensions for PHP, 24, 116, 145
Hello World, 117-118

naming, 282
organizing, 282, 283-288
rules for, 283-288
subdirectories for files, 283
viewing in browser, 117
purposes for Web database applications, 38

oQo

queries. See SQL queries
question mark (?)
in closing PHP tag (?>), 17, 116
in opening PHP tag (<?php), 17, 116
quotation marks (")
assigning query strings and, 196
common errors, 373
single-quoted versus double-quoted
strings, 128-129
in SQL queries, 67

o R o

radio button lists (HTML forms),
224-225, 228
Ray, Deborah S. and Eric J. (HTML 4
For Dummies Quick Reference), 3, 258
RDBMS (Relational Database Management
System), 12, 46. See also MySQL
register_globals setting, PHP versions
and, 20
registering
domain names, 26
long arrays, 215
for Members Only application, 40-41, 44
reliability
of Apache Web server, 29
of Web hosting company, 25
removing. See deleting
$_REQUEST built-in array, 210
request verification, 94
reserved words, 48, 75
restoring data
from backup copy, 108-112
error messages for corrupted tables, 106
repairing tables, 106-108
when database is gone, 111-112
return statement, 182, 186, 187-188

434

PHP & MySOQOL For Dummies, 2nd Edition

REVOKE query, 102-103
root login name (Unix/Linux), 95
root MySQL account, 95, 96, 98
rows of tables
getting one row of data, 198-200
inserting one row at a time, 78-79
primary key, 48
rsort statement, 158

oS e

savePhone.php program, 244-246

security. See also passwords; permissions

adding information to URLs and, 263

as Apache Web server advantage, 29

backing up data, 103-106

cleaning information from users,
289, 290-291

of computer itself, 289

connection verification, 94

controlling access to data, 93-98

hiding private information, 289, 290

max1ength attribute for HTML forms,
213, 217

as MySQL advantage, 14

mysql database, 99

need for, 288-289

as PHP advantage, 16

PHP versions and, 20

preventing Web server from displaying
filenames, 289-290

request verification, 94

restoring data, 106-112

restricting access to sites, 261

secure Web servers, 289, 291

variables for database names, 195

Security Sockets Layer (SSL), 291
SELECT query

AS clause, 82

in buildSelect.php program, 219-220

combining expressions in WHERE clause,
85-86

combining information from tables,
77, 86-90

for all data from a table, 81

for data from specific source, 83-86

for data in specific order, 83

DISTINCT word, 83, 86, 220

functions, 82
GROUP BY clause, 83
information available for a column, 82
JOIN statement, 86, 87-90
LIMIT word, 83, 86
listing all accounts, 100
with mysql_fetch_array function,
198-200
ORDER BY clause, 83, 87, 220
overview, 81
sending with mysq1_query function,
197-198
for specific information, 81-82
UNION statement, 86-87
viewing inserted data, 79
viewing loaded data, 80
WHERE clause, 83, 84-86, 90-91
selection lists (HTML forms)
buildSelect.php program, 219-220
date selection list, 221-224
defined, 217
formatting, 217-218
variables for options, 218-219
semicolon (;)
ending PHP statements, 118
missing, 371
query strings and, 196
sending SQL queries
mysq]1 client for, 71-72
mysql_query function for, 195-196,
197-198
mysql_send.php program for, 67-71
$_SESSION built-in array, 270, 271, 277
$_SESSION variable, 276
session_destroy function, 277
sessions

Cannot add header information error

message, 260
closing, 277
defined, 270

needing shared information among pages,

261-262
opening, 271
overview, 270-271
private, 276
track_vars and, 270
with trans-sid not turned on, 275-276
with trans-sid turned on, 274-275

Index 435

using session variables, 271-273
without cookies, 274-276
session_start function, 271
sessionTestonel.php program, 272
sessionTesttwo?2.php program, 272-273
setcookie function, 260, 268-269
setting up your own Web site
computer setup, 28-29
MySQL installation, 30-31
overview, 22, 27-28
PHP installation, 31-32
steps for, 27
Web server installation, 29-30
SHOW query, 73, 75
ShowPets.php program, 314-316
simple statements, 146, 284. See also
specific statements
single quotes (')
apostrophe (\ ') versus, 128
assigning query strings and, 196
common errors, 373
single-quoted versus double-quoted
strings, 128-129
slash (/)
as arithmetic operator, 126
for comments (/* and */), 143-144
for short comments (//), 144
software, Web hosting companies and, 26
Solaris (Sun), 29
sort statement, 156-157, 158
sorting arrays, 156-158
spaces
in concatenated strings, 130
in PHP statements, 118
in SQL queries, 67
special characters. See also specific
characters
arithmetic operators, 126
cleaning database information, 243
comparison operators, 135
PHP, HTML tags versus, 148
used in patterns, 138-139
speed
as MySQL advantage, 13
as PHP advantage, 16
as PHP with MySQL advantage, 18
of Web hosting company, 25
Spool, Jarod (usability expert), 41

sprintf function, 127, 367-369
SQL queries. See also getting database
information; specific kinds
adding and changing passwords, 102
adding information, 77-80
adding new accounts, 100-102
adding tables to a database, 73-75
building, 66-67
capitalization, 66
changing permissions, 100-101
creating a new database, 73
deleting a database, 73
deleting tables, 75
example, 66
getting information, 77, 81-90
permissions needed for, 72
quotes in, 67
removing information, 77, 91
sending with mysql client, 71-72
sending with mysql_query function,
195-196, 197-198
sending with mysql_send.php program,
67-71
spaces in, 67
updating information, 77, 90-91
SQL (Structured Query Language), 15, 66
square brackets ([])
creating arrays using, 154
parentheses confused with, 376
SSL (Security Sockets Layer), 291
starting
MySQL, 30-31
mysql client, 71
MySQL server, 107, 108
statements. See also blocks of PHP
statements; specific statements
blocks, 119, 145-146, 182, 284
capitalization of keywords, 119
complex, 119
conditional, 134-137, 146, 165-170
defined, 145
dividing into sections, 283-284
in include files, 373
include statements, 285-287
loops, 170-181
simple, 146, 284
that must come before output, 260
writing, 118-119

436

PHP & MySOQOL For Dummies, 2nd Edition

static Web pages, 10
statistics, Web hosting companies and, 26
storeForm function, 246-247
storefront page (Members Only), 338, 339
storefront page (Pet Catalog), 303, 304
strings. See character strings
strip_tags function, 243
Structured Query Language (SQL), 15, 66
submit buttons for forms, 227, 238-240, 258
Sun

iPlanet, 30

Solaris, 29
superglobal or autoglobal arrays, 20, 213
switch statements, 169-170

oJ o

tab indicator in PHP (\t), 129
tables (database). See also specific tables
adding to a database, 73-75
altering, 76
changing the structure, 76
combining information from, 77, 86-90
creating relationships between, 50-51
deleting, 75, 91
documenting, 59
error messages indicating corruption, 106
getting one row of data, 78-79
inserting rows, 78-79
loading information from a file, 78, 79-80
for MemberDirectory database, 54-56,
60-61
in mysql security database, 99
naming, 47
organizing data in, 46-49
for PetCatalog database, 52-53, 59-60
repairing corrupted tables, 106-108
restoring from backup copy, 109-111
viewing, 75
tables (HTML), formatting forms with, 212
tables_priv table (mysql database), 99
tags. See PHP tags
Technical Stuff icon, 3, 5
technical support
e-mail discussion lists for, 11, 13, 15
for MySQL, 13
operating systems and, 28, 29
for PHP, 15

for PHP with MySQL, 18
from Web hosting company, 25
telephone numbers
displaying in HTML forms, 263-266
savePhone.php program, 244-246
updatePhone.php program, 248-250
validating, 235
testing
MySQL availability, 34-35
mysql_send.php program, 71
PHP availability, 32-33
test location for HTML files, 23
test.php file, 33
TEXT data type, 58
text files, loading into a database, 78, 79-80
text strings. See character strings
time data. See date and time data
TIME data type, 58, 133-134
timestamps, 130-131, 132-133
Tittel, Ed (HTML 4 For Dummies),
3, 209, 212
track_vars, enabling, 270
transferring data. See moving information
between pages
trans_sid, sessions and, 271, 273,
274-276
traversing. See walking through an array
twoButtons.php program, 239-240
typeface conventions in this book, 2

olfe

Uniform Resource Locators. See URLs
UNION statement (MySQL), 86-87
Unix
advantages and disadvantages, 29
backing up data, 104-105
checking whether MySQL is installed, 30
checking whether PHP is installed, 31-32
installing MySQL, 31
installing PHP, 32
running my i samchk table repair
utility, 107
sending all INSERT queries from backup
file, 110-112
starting MySQL, 30-31
unset function, 123, 153, 277
unset statement, 123

unsigned numerical data, 57
UPDATE query, 90-91, 248
updatePhone.php program, 248-250
updating database information, 77, 90-91,
248-250
uploadFile.php program, 253-255
uploading files. See getting file information
URLs (Uniform Resource Locators)
adding information to, 262-266
defined, 259
displayPhone.php program, 263-266
length limit, 263
overview, 259
usability engineering, 41
user table (mysql database), 99
users
cleaning information from, 289, 290-291
motivating registration of, 40
moving between pages, 257-258, 261
planning Web database application for,
40-41
usort statement, 158

o o

Valade Janet (PHP & MySQL For Dummies),
1-6

validating HTML form information
checking for empty fields, 230-234
checking the format, 230, 234-238
defined, 230

values. See also comparing values in PHP
assigning to variables (PHP), 122
default field value (MySQL), 49
formatting in variables (PHP), 367-369
getting from arrays (PHP), 158-159
getting from functions (PHP), 187-188
passing to functions (PHP), 153, 184-187
removing from arrays (PHP), 156

VARCHAR data type, 58, 241, 298

variable-length format, 57

variables. See also specific variables
checking existence of, 367
for cookies, 268
counter variables, 151-152
creating, 122
for database information, 197, 241
for database names, 195

for displaying dynamic information in
forms, 214

with echo statement, 148

formatting values in, 367-369

in functions, 183-184

include files for, 285

loops for moving data into, 200-203

misspelled names, 372

naming, 121

notices for nonexistent variables, 122-123

preventing notices, 123

removing information from, 122

for selection list options, 218-219

session, 270, 271-273, 274, 276

single-quoted versus double-quoted,
128-129

storing information in, 122

storing timestamps in, 132-133

uncreating, 123, 153

variables in URLs (HTML), 262
viewing or displaying

all MySQL accounts, 100

array structure and values (PHP), 155

data inserted in a table, 79

data loaded from a file, 80

data using for loop, 202-203

data using functions, 204-208

data using while loop, 200-202

dynamic information in form fields,
214-217

forms using echo statement, 209

forms using HTML, 209

forms using processform.php program,
211-213, 229

PHP programs in browser, 117

SHOW query for, 73, 75

tables, 75

telephone numbers in HTML forms,
263-266

o((/o

walking through an array
defined, 160
manually, 160-161
multidimensional arrays, 164-165
using foreach, 161-162

Index 43 7

438

PHP & MySOQOL For Dummies, 2nd Edition

warning messages (PHP), 120, 186. See also
error messages; notices (PHP)
Web applications, 10
Web browsers. See browsers
Web database applications. See also
Members Only application; Pet Catalog
application
application part of, 10
building the database, 62, 72-76
database part of, 10
defined, 9, 10
designing the database, 44-51
developing, 61-62
planning, 37-42
writing the programs, 62
Web Design For Dummies (Lopuck, Lisa), 41
Web hosting companies, 22, 24-27
Web pages. See also Internet resources
experience needed for this book, 3
include files for common statements, 286
moving users between, 257-258, 261
stages of delivery, 148-150
static versus dynamic, 10
Web server
choosing for your Web site, 29-30
installing, 29
PHP file processing by, 116
PHP integration with, 16-17
preventing from displaying filenames,
289-290
secure Web servers, 289, 291
as work environment tool, 21
Web site for development
company site, 22-24
setting up your own site, 22, 27-32
using Web hosting company, 22, 24-27
WHERE clause, 83, 84-86, 90-91
while loops
with arrays, 174-176
general format, 174
in getPets.php program, 207-208

getting all rows of data using, 200-202
mysql_fetch_array function with,
200-202
overview, 170, 174
whois domain name search, 26
wildcards
in hostnames, 95
matching character strings to patterns,
137-141
for SELECT query, 81
Windows (Microsoft)
advantages and disadvantages, 28
backing up data, 105-106
checking whether MySQL is installed, 30
checking whether PHP is installed, 31-32
installing Apache Web server, 29
installing MySQL, 31
installing PHP, 32
running my i samchk table repair utility,
107-108
sending all INSERT queries from backup
file, 110-111, 112
starting MySQL, 30-31
work environment. See environment setup
writing the programs
Members Only application, 342-358
overview, 62
Pet Catalog application, 310-330
written documentation, 42, 59, 291-292

o X o

xor joining comparisons, 141-143

o/ o

ZIP codes, validating, 234

	PHP and MySQL for Dummies, Second Edition
	Cover

	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	What You're Not to Read
	Foolish Assumptions
	How This Book Is Organized
	Part I: Developing a Web Database Application Using PHP and MySQL
	Part II: MySQL Database
	Part III: PHP
	Part IV: Applications
	Part V: The Part of Tens
	Part VI: Appendixes

	Icons Used in This Book
	Where to Go from Here

	Part I: Developing a Web Database Application Using PHP and MySQL
	Chapter 1: Introduction to PHP and MySQL
	What Is a Web Database Application?
	The database
	The application: Moving data in and out of the database

	MySQL, My Database
	Advantages of MySQL
	How MySQL works
	Communicating with the MySQL server

	PHP, a Data Mover
	Advantages of PHP
	How PHP works

	MySQL and PHP, the Perfect Pair
	Advantages of the relationship
	How MySQL and PHP work together

	Keeping Up with PHP and MySQL Changes

	Chapter 2: Setting Up Your Work Environment
	The Required Tools
	Finding a Place to Work
	A company Web site
	A Web hosting company
	Setting up and running your own Web site

	Testing, Testing, 1, 2, 3
	Testing PHP
	Testing MySQL

	Chapter 3: Developing a Web Database Application
	Planning Your Web Database Application
	Identifying what you want from the application
	Taking the user into consideration
	Making the site easy to use
	Leaving room for expansion
	Writing it down

	Presenting the Two Running Examples in This Book
	Stuff for Sale
	Members Only

	Designing the Database
	Choosing the data
	Organizing the data

	Designing the Sample Databases
	Pet Catalog design process
	Members Only design process

	Types of Data
	Character data
	Numerical data
	Date and time data
	Enumeration data
	MySQL data type names
	Writing it down

	Taking a Look at the Sample Database Designs
	Stuff for Sale database tables
	Members Only database tables

	Developing the Application
	Building the database
	Writing the programs

	Part II: MySQL Database
	Chapter 4: Building the Database
	Communicating with MySQL
	Building SQL queries
	Sending SQL queries

	Building a Database
	Creating a new database
	Deleting a database
	Adding tables to a database
	Changing the database structure

	Moving Data In and Out of the Database
	Adding information
	Retrieving information
	Combining information from tables
	Updating information
	Removing information

	Chapter 5: Protecting Your Data
	Controlling Access to Your Data
	Understanding account names and hostnames
	Finding out about passwords
	Taking a look at account permissions

	Setting Up MySQL Accounts
	Identifying what accounts currently exist
	Adding new accounts and changing permissions
	Adding and changing passwords
	Removing permissions
	Removing accounts

	Backing Up Your Data
	Restoring Your Data
	Repairing tables
	Restoring from a backup copy

	Part III: PHP
	Chapter 6: General PHP
	Adding a PHP Section to an HTML Page
	Writing PHP Statements
	Using PHP Variables
	Naming a variable
	Creating and assigning values to variables
	Dealing with notices

	Using PHP Constants
	Working with Numbers
	Working with Character Strings
	Single-quoted strings versus double-quoted strings
	Joining strings

	Working with Dates and Times
	Formatting a date
	Storing a timestamp in a variable
	Using dates with MySQL

	Comparing Values
	Making simple comparisons
	Matching character strings to patterns

	Joining Comparisons with and/or/xor
	Adding Comments to Your Program

	Chapter 7: PHP Building Blocks for Programs
	Useful Simple Statements
	Using echo statements
	Using assignment statements
	Using increment statements
	Using exit
	Using function calls

	Using PHP Arrays
	Creating arrays
	Viewing arrays
	Removing values from arrays
	Sorting arrays
	Getting values from arrays
	Walking through an array
	Multidimensional arrays

	Useful Conditional Statements
	Using if statements
	Using switch statements

	Using Loops
	Using for loops
	Using while loops
	Using do while loops
	Infinite loops
	Breaking out of a loop

	Using Functions
	Using variables in functions
	Passing values between a function and the main program
	Using built-in functions

	Chapter 8: Data In, Data Out
	PHP/MySQL Functions
	Making a Connection
	Connecting to the MySQL server
	Selecting the right database
	Sending SQL queries

	Getting Information from a Database
	Sending a SELECT query
	Getting and using the data
	Using functions to get data

	Getting Information from the User
	Using HTML forms
	Making forms dynamic
	Using the information from the form
	Checking the information
	Giving users a choice with multiple submit buttons

	Putting Information into a Database
	Preparing the data
	Adding new information
	Updating existing information

	Getting Information in Files
	Using a form to upload the file
	Processing the uploaded file
	Putting it all together

	Chapter 9: Moving Information from One Web Page to the Next
	Moving Your User from One Page to Another
	Moving Information from Page to Page
	Adding information to the URL
	Storing information via cookies
	Passing information with HTML forms

	Using PHP Sessions
	How PHP sessions work
	Opening sessions
	Using PHP session variables
	Sessions without cookies
	Making sessions private
	Closing PHP sessions

	Part IV: Applications
	Chapter 10: Putting It All Together
	Organizing the Application
	Organizing at the application level
	Organizing at the program level

	Keeping It Private
	Ensure the security of the computer
	Don't let the Web server display filenames
	Hide things
	Don't trust information from users
	Use a secure Web server

	Completing Your Documentation

	Chapter 11: Building an Online Catalog
	Designing the Application
	Showing pets to the customers
	Adding pets to the catalog

	Building the Database
	Building the Pet table
	Building the PetType table
	Building the Color table
	Adding data to the database

	Designing the Look and Feel
	Showing pets to the customers
	Adding pets to the catalog

	Writing the Programs
	Showing pets to the customers
	Adding pets to the catalog

	Chapter 12: Building a Members Only Web Site
	Designing the Application
	Building the Database
	Building the Member table
	Building the Login table
	Adding data to the database

	Designing the Look and Feel
	Storefront page
	Login page
	New Member Welcome page
	Members Only section

	Writing the Programs
	Writing PetShopFront
	Writing Login
	Writing New_member
	Writing the Members Only section

	Planning for Growth

	Part V: The Part of Tens
	Chapter 13: Ten Things You Might Want to Do Using PHP Functions
	Communicate with MySQL
	Send E-Mail
	Use PHP Sessions
	Stop Your Program
	Handle Arrays
	Check for Variables
	Format Values
	Compare Strings to Patterns
	Find Out about Strings
	Change the Case of Strings

	Chapter 14: Ten PHP Gotchas
	Missing Semicolons
	Not Enough Equal Signs
	Misspelled Variable Names
	Missing Dollar Signs
	Troubling Quotes
	Invisible Output
	Numbered Arrays
	Including PHP Statements
	Missing Mates
	Confusing Parentheses and Brackets

	Part VI: Appendixes
	Appendix A: Installing MySQL
	On Windows
	Downloading and installing MySQL
	Starting the MySQL server
	Setting up the server to start when the computer starts

	On Linux/Unix
	Using RPM (Linux only)
	From binary files
	From source files

	On Mac
	Configuring MySQL

	Appendix B: Installing PHP
	Installing PHP on Unix/Linux/Mac with Apache
	On Unix/Linux
	On Mac OS X

	Installation Options
	Configuring Apache for PHP
	On Windows
	Configuring Your Web Server for PHP
	Configuring Apache
	Configuring IIS

	Configuring PHP

	Appendix C: Installing and Configuring Apache
	Selecting a Version of Apache
	Installing Apache
	On Linux/Unix
	On Windows
	On Mac

	Configuring Apache
	Changing settings
	Changing the location of your Web space
	Changing the port number

	Index
	Team DDU

