S esonE Learn C++ from
the Master

Works with all C++ compilers,
including Visual C++ '|’H|RD ED|‘|’|0N
. P - Covers the International
Standard for (++

Teaches the entire C++
language, from the basics
to advanced features
Packed with insider tips
and techniques, and
hundreds of examples

Includes the Standard

Template
Libeary (STL)

Herbert Schildt

Bt g ry] POOFrATTN] Lo et mdee B § mleon B

C++
from the Ground Up

Third Edition

About the Author

Herbert Schildt is the world’s leading
programming author. He is an authority on the

C, C++, Java, and C# languages, and is a master
Windows programmer. His programming books
have sold more than 3 million copies worldwide
and have been translated into all major foreign
languages. He is the author of numerous bestsellers,
including C++: The Complete Reference, C#: The
Complete Reference, Java 2: The Complete Reference,
C: The Complete Reference, C++ From the Ground Up,
C++: A Beginner’s Guide, C#: A Beginner’s Guide, and
Java 2: A Beginner’s Guide. Schildt holds a master’s
degree in computer science from the University of
Illinois. He can be reached at his consulting office
at (217) 586-4683.

C++
from the Ground Up

Third Edition

Herbert Schildt

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

The McGraw-Hill companies

McGraw-Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact McGraw-Hill/Osborne at the above address. For information on
translations or book distributors outside the U.S.A., please see the International
Contact Information page immediately following the index of this book.

C++ from the Ground Up, Third Edition

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior
written permission of publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

1234567890 DOC DOC 019876543
ISBN 0-07-222897-0

Publisher Indexer

Brandon A. Nordin Sheryl Schildt

Vice President & Computer Designers
Associate Publisher Tabitha M. Cagan, Tara A. Davis,
Scott Rogers John Patrus, Lucie Ericksen
Acquisitions Editor Illustrators

Lisa McClain Michael Mueller, Lyssa Wald,

. . Melinda Lytle
Project Editors

Jenn Tust, Elizabeth Seymour Cover Series Design

John Nedwidek, emdesign
Proofreader

Marian M. Selig Cover Illustration
Lance Ravella

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from the use of such information.

Preface

1 The Story of C++ e
The Originsof C++

The Creationof C

L9
[
-
o

Contents

Understanding the Need for C++

C++IsBormm
The Evolution of C++

What Is Object-Oriented Programming?

Encapsulation
Polymorphism
Inheritance
C++ Implements OOP

How C++ Relatesto Javaand C#

2 An Overview of C++
Your First C++ Program
Entering the Program
Compiling the Program . ..
Run the Program
A Line-by-Line Explanation

OO0 ONNANO U NN -

12
12
13
14
14

Handling Syntax Errors
A Second Simple Program
A More Practical Example
A New DataType
A Quick Review
Functions

C++ from the Ground Up

A Program with Two Functions

Function Arguments

Functions Returning Values

The main() Function ..

The General Form of C++ Functions

Some Output Options
Two Simple Commands

The if Statement

The for Loop
Blocksof Code
Semicolons and Positioning
Indentation Practices
C++ Keywords
Identifiersin C++
The Standard C++ Library

The Basic Data Types

Declaration of Variables
Local Variables
Formal Parameters
Global Variables
Some Type Modifiers
Literals

String Literals

Character Escape Sequences

Variable Initializations
Operators
Arithmetic Operators ..

Increment and Decrement

How C++ Got Its Name

Relational and Logical Operators

Expressions

Type Conversion in Expressions
Converting to and from bool

Casts

Spacing and Parentheses

16
17
18
19
20
20
21
22
24
25
26
26
27
27
28
29
30
31
31
32
32

35
35
36
37
38
41
43
43
44
45
46
46
48
49
50
53
53
53
54
55

Contents vii

4 Program Control Statements 57
Theif Statement 58
The Conditional Expression 59
Nestedifs i 60

The if-else-if Ladder 61

The for Loopt 62
Some Variations on the for Loop 64

Missing Pieces 66

The Infinite Loop 66

Time Delay Loops 67

The switch Statement 67
Nested switch Statements 71
Thewhile Loop i 71
The do-while Loop i 73
Using continuet 74
Using break to Exit Loops i i 75
Nested LOOPS . ..ttt 76
Using the goto Statement 77
Putting Together the Pieces 78
5 Arraysand Strings ittt 81
One-Dimensional Arraysttt 82
No Bounds Checking 84
Sortingan Array i, 85

SHIINgS . . 86
Reading a String from the Keyboard 87

Some String Library Functions 89
SEICPY oo 89

strcat 89

SEIICIID oot 90

strlen ... 91

Using the Null Terminator 93
Two-Dimensional Arrays 94
Multidimensional Arraysc.o i 96
Array Initialization 96
Unsized Array Initializations 100

Arrays of Strings 101
An Example Using String Arrays 102

6 Pointersttt iieinenennannns 105
What Are Pointers? i i 106
The Pointer Operators i, 107
The Base Type Is Important 108

Assigning Values Through a Pointer 110

s.I

C++ from the Ground Up

Pointer EXpressions 110

Pointer Arithmetic 111

Pointer Comparisonsiiiiii.n 112

Pointers and AITaysi i e 112

Indexinga Pointer 115

Are Pointers and Arrays Interchangeable? 116

Pointers and String Literals 117

A Comparison Example 117

Arrays of Pointers 118

The Null Pointer Convention 121

Multiple Indirection i 122

Pointers and 16-bit Environments 122

Problems with Pointers 124

Uninitialized Pointers 124

Invalid Pointer Comparisons 124

Forgetting to Reset a Pointer 125

Functions, Part One: The Fundamentals 127

Scope Rules of Functions 128

Local Variables 128

Formal Parameters 134

Global Variables 134

Passing Pointers and Arrays 136

Calling Functions with Pointers 136

Calling Functions with Arrays 137

Passing Strings 140

argc and argv: Argumentstomain() 141

Passing Numeric Command Line Arguments 144

Converting Numeric Strings to Numbers 145

The return Statement 145

Returning from a Function 146

Returning Values 147

void Functions o i L 149

Functions That Return Pointers 149

Function Prototypes 151

Headers: A Closer Look i, 152
Old-Style versus Modern Function Parameter

Declarations i 153

Recursion 153

Functions, Part Two: References, Overloading,

and Default Arguments 0. 157
Two Approaches to Argument Passing 158
How C++ Passes Arguments 158

Using a Pointer to Create a Call-by-Reference 159

Contents IX

Reference Parameters 160
Declaring Reference Parameters 163
Returning References 164
Creating a Bounded Array 167
Independent References 168
A Few Restrictions When Using References 169
Function Overloading 170
The overload Anachronism 173
Default Function Arguments 173
Default Arguments versus Overloading 175
Using Default Arguments Correctly 177
Function Overloading and Ambiguity 177
9 More Data Typesand Operatorsccc0u.. 181
The const and volatile Qualifiers 182
CONSE .ottt e 182
volatile 184
Storage Class Specifiers 185
auto ... 185
EXTEITL . oot 186
static Variables o i il 187
Register Variables 191
The Origins of the register Modifier 192
Enumerations 193
typedef 197
More Operators 197
Bitwise Operators 197
AND, OR, XOR,and NOT 198
The Shift Operators 202
The ? Operator 203
Compound Assignmenteiiiiiiieiniiee... 205
The Comma Operatorttt 205
Multiple Assignments i 206
Using sizeof 206
Dynamic Allocation Using new and delete 207
Initializing Dynamically Allocated Memory 210
Allocating AITaysviuiinn i 210

C’s Approach to Dynamic Allocation: malloc()
and free() 211
Precedence Summary e 213
10 Structuresand Unionsciiiiiiiiiiinnnns 215
Structures 216
Accessing Structure Members 218

Arrays of Structures 219

X C++ from the Ground Up
A Simple Inventory Example 219

Passing Structures to Functions 226
Assigning Structures 227

Pointers to Structures and the Arrow Operator 228
References to Structures 232

Arrays and Structures Within Structures 233

C Structure Versus C++ Structures 234

Bit-Fields 235

Unions 237
Anonymous Unions 242

Using sizeof to Ensure Portability 243
Moving On to Object-Oriented Programming 243
11 IntroducingtheClassciiiiiiitienenns 245
Class Fundamentals 246
The General Formofaclass 250

A Closer Look at Class Member Access 250
Constructors and Destructors 252
Parameterized Constructors 255

An Initialization Alternative 259

Classes and Structures Are Related 260
Structures versus Classeso .. 262

Unions and Classes Are Related 263
Inline Functions i e 264
Creating Inline Functions Insidea Class 265

Arrays of Objects 267
Initializing Object Arrays 268

Pointers to Objects e 270
Object Referencesuiiuuiin i 272
12 ACloser LookatClassescititieinencnennns 273
Friend Functions e 274
Overloading Constructors 278
Dynamic Initialization 280
Applying Dynamic Initialization to Constructors 280
Assigning Objects 282
Passing Objects to Functions 283
Constructors, Destructors, and Passing Objects 284

A Potential Problem When Passing Objects 285
Returning Objects 288
A Potential Problem When Returning Objects 289

Creating and Using a Copy Constructor 291
Copy Constructors and Parameters 292

Copy Constructors and Initializations 294

Contents XI

Using Copy Constructors When an Object Is Returned . . . 295

Copy Constructors—Is There a Simpler Way? 296

The this Keyword i 297

13 Operator Overloading 299
Operator Overloading Using Member Functions 300

Using Member Functions to Overload Unary Operators . . 303

Operator Overloading Tips and Restrictions 308

Nonmember Operator Functions 309

Order Matters, 309

Using a Friend to Overload a Unary Operator 313

Overloading the Relational and Logical Operators 316

A Closer Look at the Assignment Operator 317

Overloading []ot e 320

Overloading () .. v v vttt e 324

Overloading Other Operators 325

Another Example of Operator Overloading 325

14 Inheritance ittt 331
Introducing Inheritance L. 332

Base Class Access Control 335

Using protected Members 337

Using protected for Inheritance of a Base Class 340

Reviewing public, protected, and private 342

Inheriting Multiple Base Classes 342

Constructors, Destructors, and Inheritance 343

When Constructors and Destructors Are Executed 343

Passing Parameters to Base Class Constructors 346

Granting ACCess 350

Reading C++ Inheritance Graphs 352

Virtual Base Classes 352

15 Virtual Functions and Polymorphism 357
Pointers to Derived Types 358

References to Derived Types 360

Virtual Functions i 360

Virtual Functions Are Inherited 363

Why Virtual Functions? 365

A Simple Application of Virtual Functions 366

Pure Virtual Functions and Abstract Classes 370

Early versus Late Binding 372

Polymorphism and the Purist 373

16 Templates ittt ineeneenss. 375
Generic Functions o i i 376

A Function with Two Generic Types 378

Explicitly Overloading a Generic Function 379

C++ from the Ground Up

Overloading a Function Template
Using Standard Parameters with Template Functions

Generic Function Restrictions
Creating a Generic abs() Function
Generic Classes
An Example with Two Generic Data Types
Creating a Generic Array Class
Using Non-Type Arguments with Generic Classes
Using Default Arguments with Template Classes

Explicit Class Specializations

17 Exception Handling
Exception Handling Fundamentals . .

exit() and abort()
Catching Class Types

ooooooooooooooooooo

Using Multiple catch Statements
Options for Exception Handling

Catching All Exceptions ..

Restricting Exceptions Thrown by a Function

Rethrowing an Exception .

Handling Exceptions Thrown by new

The nothrow Alternative ..

Overloading new and delete
Overloading the nothrow Version ofnew

18 The C++ I/OSystem
Old VS Modern C++1/O
C++Streams

The C++ Predefined Streams

The C++ Stream Classes
Overloading the I/O Operators

Creating Inserters

Using Friend Functions to Overload Inserters

Overloading Extractors ...
C1/O Versus C++ I/O

Formatted /O
Formatting with the ios Member Functions

File I/O

Using 1I/O Manipulators . ..

Creating Your Own Manipulator Functions

Opening and Closing a File

Reading and Writing Text Files

Unformatted Binary I/O ..

Reading and Writing Blocksof Data

Detecting EOF
A File Comparison Example

381
382
383
383
384
387
388
389
391
393

396
398
401
402
404
404
406
408
409
410
411
415

418
418
419
419
420
421
423
424
426
426
426
431
433
435
435
438
439
441
442
443

Contents

More Binary I/O Functions
Random Access
Checking I[/O Status
Customized I/O and Files

19 Run-Time Type ID and the Casting Operators

Run-Time Type Identification (RTTI) ...
A Simple Application of Run-Time TypeID
typeid Can Be Applied to Template Classes
The Casting Operators

dynamic_cast
const_cast
static_cast
reinterpret_cast

The Traditional Cast Versus the Four Casting Operators

20 Namespaces and Other Advanced Topics
Namespacesccoiveo...

Namespace Fundamentals . ..
usingc.o...
Unnamed Namespaces

The std Namespace
Pointers to Functions
Finding the Address of an Overloaded Function
Static Class Members
const Member Functions and mutable .
Explicit Constructors
An Interesting Benefit from Implicit

Constructor Conversion . .

The Member Initialization Syntax
Using the asm Keyword
Linkage Specification
The .* and —>* Pointer-to-Member Operators
Creating Conversion Functions

21 Introducing the Standard Template Library
An Overview of the STL
The Container Classes
Vectors

Accessing a Vector Through an

Iterator

Inserting and Deleting Elements in a Vector
Storing Class Objectsina Vector

The Power of Iterators
SortalList
Merging One List with Another
Storing Class Objects in a List

444
446
448
449

452
456
458
462
462
467
468
469
470

471
472
472
475
477
478
480
483
484
486
488

490
490
493
493
495
497

499
500
502
504
508
509
510
513
514
519
520
521

XIv C++ from the Ground Up
Maps .. 523
Storing Class ObjectsinaMap 528
Algorithms 529
Counting 532
Removing and Replacing Elements 533

Reversing a Sequence 535
Transforming a Sequence 535
Exploring the Algorithms 537

The string Class 537
Some string Member Functions 541

Putting Strings into Other Containers 545

Final Thoughtsonthe STL 545
22 The C++ PreprocCessorcceeeeeeeeeeescocncnces 547
#define 548
Function-Like Macros 550

HOITOT . . e e e e 552
#include 552
Conditional Compilation Directives 553
#if, #else, #elif, and #endif 553

#ifdef and #ifndef L L. 5585

#undef 556

Using defined, 557

The Diminishing Role of the Preprocessor 557

HINE .. 558
HPIagIa 559
The # and ## Preprocessor Operators 559
Predefined Macro Names i, 560
Final Thoughts i 561
A CBasedI/O ittt ienensneeennnas 563
CI/O Uses Streamsouutitiniiie e 564
Understanding printf() and scanf() 565
printf() 565

SCanf() ... 567

The CFile System e 572
fopen() 573

fputc() oo 574

fgetC() v 574

feof() .. e 575

fClose() .o vt 575

Using fopen(), fgetc(), fputc(), and fclose() 575
ferror()and rewind(), 576

fread()and fwrite() 577

Contents XV
fseek() and Random-Access I/O i, 578
tprintf() and fscanf() 579
Erasing Files e 580
B Working with an Older C++ Compiler 581
Two Simple Changes 583
C The .NET Managed Extensionsto C++ 585
The .NET Keyword Extensions 586
_oabstract ... 586
_ box L 587
__delegate ... 587
Vet L e 587
_ finally ... 587
(N 587
_ddentifier 587
_nterface 587
CNOZC o« et 587
N) o L 588
L PIOPEIY oot 588
Cosealed L. 588
_try_cast ... 588
_typeof .. 588
value ... 588
Preprocessor Extensions i 588
The attribute Attribute L 589
Compiling Managed C++ttt 589

1 10 "< 591

This page intentionally left blank

Preface

This book teaches you how to program in C++ — the most powerful computer language
in use today. No previous programming experience is required. The book starts with
the basics, covers the fundamentals, moves on to the core of the language, and
concludes with its more advanced features. By the time you finish, you will be an
accomplished C++ programmer.

C++ is your gateway to modern, object-oriented programming. It is the preeminent
language for the development of high-performance software and is the choice of
programmers worldwide. Simply put, to be a top-flight, professional programmer
today implies competency in C++.

C++ is more than just a popular language. C++ provides the conceptual substrata that
underlie the design of several other languages, and much of modern computing. It is
no accident that two other important languages, Java and C#, are descended from
C++. There is little in programming that has not been influenced by the syntax, style,
and philosophy of C++.

Because C++ was designed for professional programming, C++ is not the easiest
programming language to learn. It is, however, the best programming language to
learn. Once you have mastered C++, you will be able to write professional-quality,
high-performance programs. You will also be able to easily learn languages like
Java or C# because they share the same basic syntax and design as C++.

What Is New in the Third Edition

In the time that has passed since the previous edition of this book, there have been
no changes to the C++ language. There have, however, been big changes to the
computing environment. For example, Java became the dominant language for Web
programming, the NET Framework was released, and C# was invented. Through all
the changes of the past few years, one thing has remained constant: the staying

XVii

>
s.I

C++ from the Ground Up

power of C++. C++ has been, is, and will remain the dominant language of “power
programmers” well into the forseeable future.

The overall structure and organization of the third edition is similar to the second
edition. Most of the changes involve updating and expanding the coverage throughout.
In some cases, additional details were added. In other cases, the presentation of a
topic was improved. In still other situations, descriptions were modernized to reflect
the current programming environment. Several new sections were also added.

Two appendices were added. One describes the extended keywords defined by Microsoft
that are used for creating managed code for the .NET Framework. The second explains
how to adapt the code in this book for use with an older, non-standard C++ compiler.

Finally, all code examples were retested against the current crop of compilers, including
Microsoft’s Visual Studio .NET and Borland’s C++ Builder.

What Version of C++

The material in this book describes Standard C++. This is the version of C++ defined
by the ANSI/ISO Standard for C++, and it is the one that is currently supported by all
major compilers. Therefore, using this book, you can be confident that what you learn
today will also apply tomorrow.

How to Use This Book

The best way to learn any programming language, including C++, is by doing. Therefore,
after you have read through a section, try the sample programs. Make sure that you
understand why they do what they do before moving on. You should also experiment
with the programs, changing one or two lines at a time and observing the results. The
more you program, the better you become at programming.

If You’re Using Windows

If your computer uses Windows and your goal is to write Windows-based programs, then
you have chosen the right language to learn. C++ is completely at home with Windows
programming. However, none of the programs in this book use the Windows graphical user
interface (GUI). Instead, they are console-based programs that can be run under a Windows
console session, such as that provided by the Command Prompt window. The reason for
this is easy to understand: GUI-based Windows programs are, by their nature, large and
complex. They also use many techniques not directly related to the C++ language.
Thus, they are not well-suited for teaching a programming language. However, you can
still use a Windows-based compiler to compile the programs in this book because the
compiler will automatically create a console session in which to execute your program.

Once you have mastered C++, you will be able to apply your knowledge to Windows
programming. In fact, Windows programming using C++ allows the use of class
libraries such as MFC or the newer .NET Framework, which can greatly simplify the
development of a Windows program.

Don’t Forget: Code on the Web

Remember, the source code for all of the programs in this book is available free of charge
on the Web at http://www.osborne.com. Downloading this code prevents you
from having to type in the examples.

XX

For Further Study

C++from the Ground Up is your gateway to the Herb Schildt series of programming
books. Here are some others that you will find of interest.

To learn more about C++, try

C++: The Complete Reference

C++: A Beginner’s Guide

Teach Yourself C++

STL Programming From the Ground Up
C++ Programmer’s Reference

To learn about Java programming, we recommend the following:

Java 2: A Beginner’s Guide
Java 2: The Complete Reference
Java 2 Programmer’s Reference

To learn about C#, Herb offers these books:

C#: A Beginner’s Guide
C#: The Complete Reference

To learn about Windows programming we suggest the following Schildt books:

Windows 98 Programming From the Ground Up
Windows 2000 Programming From the Ground Up
MFC Programming From the Ground Up

The Windows Programming Annotated Archives

If you want to learn about the C language, which is the foundation of all modern
programming, then the following titles will be of interest.

C: The Complete Reference
Teach Yourself C

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

This page intentionally left blank

CHAPTER 1

C++ from the Ground Up

C++ is the single most important language that any programmer can learn. This

is a strong statement, but it is not an exaggeration. C++ is the center of gravity
around which all of modern programming revolves. Its syntax and design philosophy
define the essence of object-oriented programming. Moreover, C++ charts the course
for future language development. For example, both Java and C# are directly descended
from C++. C++ is also the universal language of programming; it is the language in
which programmers share ideas with one another. To be a professional programmer
today implies competency in C++. It is that fundamental and that important. C++ is
the gateway to all of modern programming.

Before beginning your study of C++, it is important for you to know how C++ fits into
the historical context of computer languages. Understanding the forces that drove its
creation, the design philosophy it represents, and the legacy that it inherits makes it
easier to appreciate the many innovative and unique features of C++. With this in
mind, this chapter presents a brief history of the C++ programming language, its origins,
its relationship to its predecessor (C), its uses, and the programming philosophies that
it supports. It also puts C++ into perspective relative to other programming languages.

The Origins of C++

The story of C++ begins with C. The reason for this is simple: C++ is built upon the
foundation of C. In fact, C++ is a superset of C. (Indeed, all C++ compilers can also be
used to compile C programs!) Specifically, C++ is an expanded and enhanced version
of C that embodies the philosophy of object-oriented programming (which is described
later in this chapter). C++ also includes several other improvements to the C language,
including an extended set of library routines. However, much of the spirit and flavor
of C++ is inherited directly from C. To fully understand and appreciate C++, you need
to understand the “how and why” behind C.

The Creation of C

The C language shook the computer world. Its impact should not be underestimated
because it fundamentally changed the way programming was approached and thought
about. C is considered by many to be the first modern “programmer’s language.” Prior
to the invention of C, computer languages were generally designed either as academic
exercises or by bureaucratic committees. C is different. C was designed, implemented,
and developed by real, working programmers, and it reflected the way they approached
the job of programming. Its features were honed, tested, thought about, and rethought
by the people who actually used the language. The result of this process was a language
that programmers liked to use. Indeed, C quickly attracted many followers who had

a near-religious zeal for it, and it found wide and rapid acceptance in the programmer
community. In short, C is a language designed by and for programmers.

C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 using the
UNIX operating system. C is the result of a development process that started with an
older language called BCPL, which was developed by Martin Richards. BCPL influenced
a language called B, invented by Ken Thompson, which led to the development of
Cin the 1970s.

The Story of C++ 3

For many years, the de facto standard for C was the one supplied with the Unix
operating system and described in The C Programming Language, by Brian Kernighan
and Dennis Ritchie (Prentice-Hall, 1978). However, because no formal standard existed,
there were discrepancies between different implementations of C. To alter this situation,
a committee was established in the beginning of the summer of 1983 to work on the
creation of an ANSI (American National Standards Institute) standard that would
define—once and for all—the C language. The final version of the standard was adopted
in December 1989, the first copies of which became available in early 1990. This version
of C is commonly referred to as C89, and it is the foundation upon which C++ is built.

NOTE: The C standard was updated in 1999 and this version of C is usually
referred to as C99. This version contains some new features, including a few borrowed
from C++, but, overall, it is compatible with the original C89 standard. At the time of
this writing, no widely available compiler supports C99 and it is still C89 that defines
what is commonly thought of as the C language. Furthermore, it is C89 that is the basis
for C++. It is possible that a future standard for C++ will include the features added
by C99, but they are not part of C++ at this time.

It may seem hard to understand at first, but C is often called a “middle-level” computer
language. As it is applied to C, middle-level does not have a negative connotation; it
does not mean that C is less powerful, harder to use, or less developed than a “high-level”
language, or that it is as difficult to use as assembly language. (Assembly language, or
assembler, as it is often called, is simply a symbolic representation of the actual machine
code that a computer can execute.) C is thought of as a middle-level language because
it combines elements of high-level languages, such as Pascal, Modula-2, or Visual Basic,
with the functionality of assembler.

From a theoretical point of view, a high-level language attempts to give the programmer
everything he or she could possibly want, already built into the language. A low-level
language provides nothing other than access to the actual machine instructions.

A middle-level language gives the programmer a concise set of tools and allows the
programmer to develop higher-level constructs on his or her own. A middle-level
language offers the programmer built-in power, coupled with flexibility.

Being a middle-level language, C allows you to manipulate bits, bytes, and addresses—
the basic elements with which a computer functions. Thus, C does not attempt to
buffer the hardware of the machine from your program to any significant extent. For
example, the size of an integer in C is directly related to the word size of the CPU. In
most high-level languages there are built-in statements for reading and writing disk
files. In C, all of these procedures are performed by calls to library routines and not by
keywords defined by the language. This approach increases C’s flexibility.

C allows—indeed, needs—the programmer to define routines for performing high-level
operations. These routines are called functions, and they are very important to the C
language. In fact, functions are the building blocks of both C and C++. You can easily
tailor a library of functions to perform various tasks that are used by your program.
In this sense, you can personalize C to fit your needs.

C++ from the Ground Up

There is another aspect of C that you must understand, because it is also important

to C++: Cis a structured language. The most distinguishing feature of a structured
language is that it uses blocks. A block is a set of statements that are logically connected.
For example, imagine an IF statement that, if successful, will execute five discrete
statements. If these statements can be grouped together and referenced as an indivisible
unit, then they form a block.

A structured language supports the concept of subroutines with local variables. A
local variable is simply a variable that is known only to the subroutine in which it is
defined. A structured language also supports several loop constructs, such as while,
do-while, and for. The use of the goto statement, however, is either prohibited or
discouraged, and is not the common form of program control in the same way that
it is in traditional BASIC or FORTRAN. A structured language allows you to indent
statements and does not require a strict field concept (as did early versions of FORTRAN).

Finally, and perhaps most importantly, C is a language that stays out of the way. The
underlying philosophy of C is that the programmer, not the language, is in charge.
Therefore, C will let you do virtually anything that you want, even if what you tell

it to do is unorthodox, highly unusual, or suspicious. C gives you nearly complete
control over the machine. Of course, with this power comes considerable responsibility,
which you, the programmer, must shoulder.

Understanding the Need for C++

Given the preceding discussion of C, you might be wondering why C++ was invented.
Since C is a successful and useful computer programming language, why was there

a need for something else? The answer is complexity. Throughout the history of
programming, the increasing complexity of programs has driven the need for better
ways to manage that complexity. C++ is a response to that need. To better understand
this correlation, consider the following.

Approaches to programming have changed dramatically since the invention of the
computer. The primary reason for change has been to accommodate the increasing
complexity of programs. For example, when computers were first invented, programming
was done by toggling in the binary machine instructions using the computer’s front
panel. As long as programs were just a few hundred instructions long, this approach
worked. As programs grew, assembly language was invented so that programmers
could deal with larger, increasingly complex programs by using symbolic representations
of the machine instructions. As programs continued to grow, high-level languages
were developed to give programmers more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was a very
impressive first step, it is hardly a language that encourages clear, easy-to-understand
programs. The 1960s gave birth to structured programming. This is the method of
programming supported by languages such as C. With structured languages, it was,
for the first time, possible to write moderately complex programs fairly easily. However,
even with structured programming methods, once a project reaches a certain size, its
complexity exceeds what a programmer can manage. By the late 1970s, many projects
were near or at this point. To solve this problem, a new way to program began to
emerge. This method is called object-oriented programming (OOP for short). Using OOP,

The Story of C++ 5

a programmer could handle larger programs. The trouble was that C did not support
object-oriented programming. The desire for an object-oriented version of C ultimately
led to the creation of C++.

In the final analysis, although C is one of the most liked and widely used professional
programming languages in the world, there comes a time when its ability to handle
complexity reaches its limit. The purpose of C++ is to allow this barrier to be broken
and to help the programmer comprehend and manage larger, more complex programs.

C++ Is Born

In response to the need to manage greater complexity, C++ was born. It was invented
by Bjarne Stroustrup in 1979 at Bell Laboratories in Murray Hill, New Jersey. He initially
called the new language “C with Classes.” However, in 1983 the name was changed
to C++.

C++ contains the entire C language. As stated earlier, C is the foundation upon
which C++ is built. C++ includes all of C’s features, attributes, and benefits. It also
adheres to C’s philosophy that the programmer, not the language, is in charge. At
this point, it is critical to understand that the invention of C++ was not an attempt
to create a new programming language. Instead, it was an enhancement to an already
highly successful language.

Most of the additions that Stroustrup made to C were designed to support object-oriented
programming. In essence, C++ is the object-oriented version of C. By building upon
the foundation of C, Stroustrup provided a smooth migration path to OOP. Instead
of having to learn an entirely new language, a C programmer needed to learn only

a few new features to reap the benefits of the object-oriented methodology.

But C is not the only language that influenced C++. Stroustrup states that some of
its object-oriented features were inspired by another object-oriented language called
Simula67. Therefore, C++ represents the blending of two powerful programming
methods.

When creating C++, Stroustrup knew that it was important to maintain the original
spirit of C, including its efficiency, flexibility, and philosophy, while at the same time
adding support for object-oriented programming. Happily, his goal was accomplished.
C++ still provides the programmer with the freedom and control of C, coupled with
the power of objects.

Although C++ was initially designed to aid in the management of very large programs,
it is in no way limited to this use. In fact, the object-oriented attributes of C++ can be
effectively applied to virtually any programming task. It is not uncommon to see C++
used for projects such as compilers, editors, programmer tools, games, and networking
programs. Because C++ shares C’s efficiency, much high-performance systems software
is constructed using C++. Also, C++ is frequently the language of choice for Windows
programming.

One important point to remember is this: Because C++ is a superset of C, once you
can program in C++, you can also program in C! Thus, you will actually be learning
two programming languages at the same time, with the same effort that you would
use to learn only one.

6 C++ from the Ground Up

mmmmmmm The Evolution of C++

Since C++ was first invented, it has undergone three major revisions, with each revision
adding to and altering the language. The first revision was in 1985 and the second
occurred in 1990. The third revision occurred during the C++ standardization process.
In the early 1990s, work began on a standard for C++. Towards that end, a joint ANSI
and ISO (International Standards Organization) standardization committee was formed.
The first draft of the proposed standard was created on January 25, 1994. In that draft,
the ANSI/ISO C++ committee (of which I was a member) kept the features first defined
by Stroustrup and added some new ones as well. But, in general, this initial draft reflected
the state of C++ at the time.

Soon after the completion of the first draft of the C++ standard, an event occurred that
caused the standard to expand greatly: the creation of the Standard Template Library
(STL) by Alexander Stepanov. As you will learn, the STL is a set of generic routines
that you can use to manipulate data. It is both powerful and elegant. But the STL is
also quite large. Subsequent to the first draft, the committee voted to include the STL
in the specification for C++. The addition of the STL expanded the scope of C++ well
beyond its original definition. While important, the inclusion of the STL, among
other things, slowed the standardization of C++.

It is fair to say that the standardization of C++ took far longer than any one had
expected when it began. In the process, many new features were added to the
language and many small changes were made. In fact, the version of C++ defined
by the C++ committee is much larger and more complex than Stroustrup’s original
design. The final draft was passed out of committee on November 14, 1997, and an
ANSI/ISO standard for C++ became a reality in 1998. This specification for C++ is
commonly referred to as Standard C++.

The material in this book describes Standard C++. This is the version of C++ supported
by all mainstream C++ compilers, including Microsoft’s Visual C++ and Borland’s C++
Builder. Therefore, the code and information in this book is fully applicable to all
modern C++ environments.

s \Vhat Is Object-Oriented Programming?

Since object-oriented programming was fundamental to the development of C++, it

is important to define precisely what object-oriented programming is. Object-oriented
programming has taken the best ideas of structured programming and has combined
them with several powerful concepts that allow you to organize your programs more
effectively. In general, when programming in an object-oriented fashion, you decompose
a problem into its constituent parts. Each component becomes a self-contained object
that contains its own instructions and data related to that object. Through this process,
complexity is reduced and you can manage larger programs.

All object-oriented programming languages have three things in common: encapsulation,
polymorphism, and inheritance. Although we will examine these concepts in detail later
in this book, let’s take a brief look at them now.

The Story of C++ 7

Encapsulation

As you probably know, all programs are composed of two fundamental elements:
program statements (code) and data. Code is that part of a program that performs
actions, and data is the information affected by those actions. Encapsulation is a
programming mechanism that binds together code and the data it manipulates,
and that keeps both safe from outside interference and misuse.

In an object-oriented language, code and data may be bound together in such a way
that a self-contained black box is created. Within the box are all necessary data and
code. When code and data are linked together in this fashion, an object is created.
In other words, an object is the device that supports encapsulation.

Within an object, the code, data, or both may be private to that object or public.
Private code or data is known to, and accessible only by, another part of the object.
That is, private code or data may not be accessed by a piece of the program that exists
outside the object. When code or data is public, other parts of your program may access
it, even though it is defined within an object. Typically, the public parts of an object
are used to provide a controlled interface to the private elements of the object.

Polymorphism

Polymorphism (from the Greek, meaning “many forms”) is the quality that allows one
interface to be used for a general class of actions. The specific action is determined by
the exact nature of the situation. A simple example of polymorphism is found in the
steering wheel of an automobile. The steering wheel (i.e., the interface) is the same no
matter what type of actual steering mechanism is used. That is, the steering wheel works
the same whether your car has manual steering, power steering, or rack-and-pinion
steering. Therefore, once you know how to operate the steering wheel, you can drive
any type of car. The same principle can also apply to programming. For example, consider
a stack (which is a first-in, last-out list). You might have a program that requires three
different types of stacks. One stack is used for integer values, one for floating-point
values, and one for characters. In this case, the algorithm that implements each stack
is the same, even though the data being stored differs. In a non-object-oriented language,
you would be required to create three different sets of stack routines, calling each set
by a different name, with each set having its own interface. However, because of
polymorphism, in C++ you can create one general set of stack routines (one interface)
that works for all three specific situations. This way, once you know how to use one
stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase

“one interface, multiple methods.” This means that it is possible to design a generic
interface to a group of related activities. Polymorphism helps reduce complexity by
allowing the same interface to be used to specify a general class of action. It is the
compiler’s job to select the specific action (i.e., method) as it applies to each situation.
You, the programmer, don’t need to do this selection manually. You need only
remember and utilize the general interface.

The first object-oriented programming languages were interpreters, so polymorphism
was, of course, supported at run time. However, C++ is a compiled language. Therefore,
in C++, both run-time and compile-time polymorphism are supported.

C++ from the Ground Up

Inheritance

Inheritance is the process by which one object can acquire the properties of another
object. The reason this is important is that it supports the concept of hierarchical
classification. If you think about it, most knowledge is made manageable by
hierarchical (i.e., top-down) classifications. For example, a Red Delicious apple is part
of the classification apple, which in turn is part of the fruit class, which is under the
larger class food. That is, the food class possesses certain qualities (edible, nutritious,
etc.) that also apply, logically, to its fruit subclass. In addition to these qualities, the
fruit class has specific characteristics (juicy, sweet, etc.) that distinguish it from other
food. The apple class defines those qualities specific to an apple (grows on trees, not
tropical, etc.). A Red Delicious apple would, in turn, inherit all the qualities of all
preceding classes, and would define only those qualities that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of

its characteristics. However, using inheritance, an object needs to define only those
qualities that make it unique within its class. It can inherit its general attributes from
its parent. Thus, it is the inheritance mechanism that makes it possible for one object
to be a specific instance of a more general case.

C++ Implements OOP

As you will see as you progress through this book, many of the features of C++ exist
to provide support for encapsulation, polymorphism, and inheritance. Remember,
however, that you can use C++ to write any type of program, using any type of
approach. The fact that C++ supports object-oriented programming does not mean
that you can only write object-oriented programs. As with its predecessor, C, one of
C++'s strongest advantages is its flexibility.

How C++ Relates to Java and C#

As most readers will know, there are two other computer languages that are having a
strong impact on programming: Java and C#. Java was developed by Sun Microsystems
and C# was created by Microsoft. Because there is sometimes confusion about how
these two languages relate to C++, a brief discussion of their relationship is in order.

C++ is the parent for both Java and C#. Although Java and C# added, removed, and
modified various features, in total the syntax for all three languages is nearly identical.
Furthermore, the object model used by C++ is similar to the ones used by Java and C#.
Finally, the overall “look and feel” of these languages is very similar. This means that
once you know C++, you can easily learn Java or C#. This is one reason that Java and
C# borrowed C++'s syntax and object model; it facilitated their rapid adoption by
legions of experienced C++ programmers. The reverse case is also true. If you know
Java or C#, learning C++ is easy.

The main difference between C++, Java, and C# is the type of computing environment
for which each is designed. C++ was created to produce high-performance programs
for a specific type of CPU and operating system. For example, if you want to write

a high-performance program that runs on an Intel Pentium under the Windows
operating system, then C++ is the best language to use.

The Story of C++ 9

Java and C# were developed in response to the unique programming needs of

the highly distributed networked environment that typifies much of contemporary
computing. Java was designed to enable the creation of cross-platform portable code 1
for the Internet. Using Java, it is possible to write a program that runs in a wide variety

of environments, on a wide range of operating systems and CPUs. Thus, a Java program

can move about freely on the Internet. C# was designed for Microsoft’s .NET Framework,
which supports mixed-language, component-based code that works in a networked
environment.

Although both Java and C# enable the creation of portable code that works in a
highly distributed environment, the price one pays for this portability is efficiency.
Java programs execute slower than do C++ programs. The same is true for C#. Thus,
if you want to create high-performance software, use C++. If you need to create
highly portable software, use Java or C#.

One final point: C++, Java, and C# are designed to solve different sets of problems.
It is not an issue of which language is best in and of itself. Rather, it is a question of
which language is right for the job at hand.

This page intentionally left blank

CHAPTER 2

' of C++
|

e
B '__J,-, An Overview
o
-
+

I i | ! ,'IE! 11

12

Source code is

the form of your
program that you
create. Object
code is the form

of your program
that the computer
executes,

C++ from the Ground Up

One of the hardest things about learning a programming language is the fact that
no element exists in isolation. Rather, the components of the language work
together. It is this interrelatedness that makes it difficult to discuss one aspect of C++
without involving another. To help overcome this problem, this chapter provides a
brief overview of several core C++ features, including the general form of a C++ program,
some simple control statements, variables, and operators. It does not go into too
many details, but rather concentrates on the general concepts common to all C++
programs. Most of the topics presented here are examined more closely in later chapters.

Since learning is best accomplished by doing, it is recommended that you work through
the examples using your computer.

Your First C++ Program

Before getting into any theory, let’s look at a simple C++ program. We will start by
entering, compiling, and running the following program.

/* Program #1 - A first C++ program.

Enter this program, then compile and run it.
*/

#include <iostream>
using namespace std;

// main() is where program execution begins.
int main()
{

cout << "This is my first C++ program.";

return 0;

You will follow these steps.

1. Enter the program.
2. Compile the program.
3. Execute the program.

Before beginning, it is necessary to define two terms. The first is source code. Source

code is the version of your program that humans can read. The preceding listing is an
example of source code. The executable version of your program is called object code or
executable code. Object code is created by the compiler when it compiles your program.

Entering the Program

The programs shown in this book are available from Osborne’s Web site:
www.osborne.com. However, if you want to enter the programs by hand,
you are free to do so. Typing in the programs yourself often helps you remember
the key concepts. If you choose to enter a program by hand, you must use a text

An Overview of C++ 13

editor not a word processor. Word processors typically store format information along
with text. The problem is that this format information will confuse the C++ compiler.
If you are using a Windows platform, then you can use WordPad, or any other
programming editor that you like.

The name of the file that holds the source code for the program is technically arbitrary.
However, C++ programs are normally contained in files that use the file extension 2
.cpp- Thus, you can call a C++ program file by any name, but it should use the .cpp
extension. For this example, call the source file MyProg.cpp so that you can follow

along. For most of the other programs in this book, simply use a name of your own
choosing.

Compiling the Program

How you will compile MyProg.cpp depends upon your compiler, and what options
you are using. Furthermore, many compilers, such as Microsoft’s Visual C++ and
Borland’s C++ Builder, provide two different ways for compiling a program: the
command line compiler and the Integrated Development Environment (IDE). Thus,
it is not possible to give generalized instructions for compiling a C++ program that
will work for all compilers. You must consult your compiler’s instructions.

The preceding paragraph not withstanding, two of the most popular compilers are
Visual C++ and C++ Builder. For the benefit of readers using one of these compilers,
brief compilation instructions are provided here. For both Visual C++ or C++ Builder,
the easiest way to compile and run the programs in this book is to the use the
command-line compilers offered by these environments, and that is the method
described.

To compile MyProg.cpp using Visual C++, you will use this command line.

C:\...>cl -GX MyProg.cpp

The —-GX option enhances compilation. To use the Visual C++ command-line
compiler, you must first execute the batch file VCVARS32.BAT, which is provided

by Visual C++. (You will want to consult your Visual C++ documentation for details.)
To compile MyProg.cpp using C++ Builder, use this command line.

C:\...>bcc32 Sample.cpp

The output from a C++ compiler is executable object code. For a Windows
environment, the executable file will use the same name as the source file,
but have the .exe extension. Thus, the executable version of MyProg.cpp
will be in MyProg.exe.

NOTE: If you are receiving error messages when you try to compile the first
sample program and are positive that you have entered it correctly, then you may
be using an older C++ compiler that predates the ANSI/ISO standard for C++. If this
is the case, refer to Appendix B for instructions on using an older compiler.

14

A comment is
a remark that
is embedded in
your program.

C++ from the Ground Up

Run the Program

After a C++ program has been compiled, it is ready to be run. Since the output from a
C++ compiler is executable object code, to run the program, simply enter its name at
the command prompt. For example, to run MyProg.exe use this command line:

C:\...>MyProg

When run, the program displays the following output.

This is my first C++ program.

If you are using an Integrated Development Environment, then you can run a program
by selecting Run from a menu. Consult the instructions for your specific compiler. As
mentioned earlier, for the programs in this book, it is usually easier to compile and
run from the command line.

One last point: The programs in this book are console-based, not window-based.

That is, they run in a Command Prompt session. C++ is completely at home with
Windows programming. Indeed, it is the most commonly used language for Windows
development. However, none of the programs in this book use the Windows Graphic
User Interface (GUI). The reason for this is easy to understand: Windows is a complicated
environment to write programs for, involving many side issues unrelated to the C++
language. In contrast, console-based programs are much shorter and are the type of
programs normally used to teach programming. Once you have mastered C++, you
will be able to apply your knowledge to Windows programming with no trouble.

A Line-by-Line Explanation

Now that you have successfully compiled and run the first sample program it is time
to understand how it works. Towards this end, we will examine the program line by
line. The program begins with the lines

/* Program #1 - A first C++ program.

Enter this program, then compile and run it.
*/

This is a comment. Like most other programming languages, C++ lets you enter a remark
into a program’s source code. The contents of a comment are ignored by the compiler.
The purpose of a comment is to describe or explain the operation of a program to
anyone reading its source code. In the case of this comment, it identifies the program.
In more complex programs, you will use comments to help explain what each feature
of the program is for and how it goes about doing its work. In other words, you can
use comments to provide a “play-by-play” description of what your program does.

In C++, there are two types of comments. The one you’ve just seen is called a multiline
comment. This type of comment begins with a /* (a slash followed by an asterisk). It
ends only when a */ is encountered. Anything between these two comment symbols

An Overview of C++ 15

main() is where
a C++ program

begins execution.

is completely ignored by the compiler. Multiline comments may be one or more lines
long. The second type of comment is found a little further on in the program; we’ll be
discussing it shortly.

The next line of code looks like this:

#include <iostream>

The C++ language defines several headers, which contain information that is either
necessary or useful to your program. For this program, the header <iostream> is
needed. (It is used to support the C++ I/O system.) This header is provided with your
compiler. A header is included in your program by using the #include directive. Later
in this book, you will learn more about headers and why they are important.

The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a relatively recent
addition to C++. Although namespaces are discussed in detail later in this book, here
is a brief description. A namespace creates a declarative region in which various program
elements can be placed. Elements declared in one namespace are separate from elements
declared in another. Namespaces help in the organization of large programs. The
using statement informs the compiler that you want to use the std namespace.
This is the namespace in which the entire Standard C++ library is declared. By
using the std namespace, you simplify access to the standard library.

The next line in the program is

// main() is where program execution begins.

This line shows you the second type of comment available in C++: the single-line
comment. Single-line comments begin with // and stop at the end of the line.
Typically, C++ programmers use multiline comments when writing larger, more
detailed commentaries, and they use single-line comments when short remarks
are needed. However, this is a matter of personal style.

The next line, as the preceding comment indicates, is where program execution
begins:

int main()

All C++ programs are composed of one or more functions. (Loosely speaking, a function
is a subroutine.) Every C++ function must have a name, and the only function that
any C++ program must include is the one shown here, called main(). The main()
function is where program execution begins and (most commonly) ends. (Technically
speaking, a C++ program begins with a call to main() and, in most cases, ends when
main() returns.) The opening curly brace on the line that follows main() marks the
start of the main() function’s code. The int that precedes main() specifies the type

16

C++ from the Ground Up

of data returned by main(). As you will learn, C++ supports several built-in data
types and int is one of them. It stands for integer.

The next line in the program is

cout << "This is my first C++ program.";

This is a console output statement. It causes the message This is my first C++
program. to be displayed on the screen. It accomplishes this by using the output
operator <<. The << operator causes whatever expression is on its right side to be
output to the device specified on its left side. cout is a predefined identifier that
stands for console output, which (most generally) refers to the computer’s screen.
Thus, this statement causes the message to be output to the screen. Notice that this
statement ends with a semicolon. In fact, all C++ statements end with a semicolon.

The message "This is my first C++ program." is a string. In C++, a string is a sequence
of characters enclosed between double quotes. As you will see, strings are used
frequently in C++.

The next line in the program is

return 0;

This line terminates main() and causes it to return the value O to the calling process
(which is typically the operating system). For most operating systems, a return value
of 0 signifies that the program is terminating normally. Other values indicate that the
program is terminating because of some error. return is one of C++’s keywords, and
it is used to return a value from a function. All of your programs should return 0 when
they terminate normally (that is, without error).

The closing curly brace at the end of the program formally concludes the program.
Although the brace is not actually part of the object code of the program, conceptually
you can think of a C++ program ending when the closing curly brace of main() is
executed. In fact, if the return statement were not part of this sample program, the
program would automatically end when the closing curly brace was encountered.

Handling Syntax Errors

As you may know from your previous programming experience, it is quite easy

to accidentally type something incorrectly when entering code into your computer.
Fortunately, if you enter something incorrectly into your program, the compiler will
report a syntax error message when it tries to compile it. Most C++ compilers attempt
to make sense out of your source code no matter what you have written. For this reason,
the error that is reported may not always reflect the actual cause of the problem. In the
preceding program, for example, an accidental omission of the opening curly brace
after main() will cause some compilers to report the cout statement as the source
of a syntax error. Therefore, when you receive a syntax error message, be prepared
to look at the two or three lines of code that precede the point at which the error
is flagged.

An Overview of C++ 17

Many C++ compilers report not only actual errors, but also warnings. The C++ language
was designed to be very forgiving, and to allow virtually anything that is syntactically
correct to be compiled. However, some things, even though syntactically correct, are
suspicious. When the compiler encounters one of these situations, it prints a warning.
You, as the programmer, then decide whether its suspicions are justified. Frankly,
some compilers are a bit too helpful and flag warnings on perfectly correct C++
statements. There are also compilers that allow you to turn on various options that
report information about your program that you might like to know. Sometimes
this information is reported in the form of a warning message even though there

is nothing to be "warned" about. The programs in this book are in compliance with
Standard C++, and when entered correctly, they will not generate any troublesome
warning messages.

TIP: Most C++ compilers offer several levels of error (and warning) reporting.
Generally, you can select the specific type of error reporting that you want. For example,
most compilers offer options that report such things as inefficient constructs or the
use of obsolete features. For the examples in this book, you will want to use your
compiler's default (or "normal") error reporting. However, you should examine
your compiler's documentation to see what options you have at your disposal. Many
compilers have sophisticated features that can help you spot subtle errors before they
become big problems. Understanding your compiler's error reporting system is worth
the time and effort that you spend.

s A Second Simple Program

Perhaps no other construct is as important to a programming language as the assignment
of a value to a variable. A variable is a named memory location that may be assigned
a value. Further, the value of a variable can be changed one or more times during the
execution of a program. That is, the content of a variable is changeable, not fixed.

The following program creates a variable called x, gives it the value 1023, and then
displays the message This program prints the value of x: 1023 on the screen.

// Program #2 - Using a variable

#include <iostream>
using namespace std;

int main()
{
int x; // this declares a variable

x = 1023; // this assigns 1023 to x

cout << "This program prints the value of x: ";
cout << x; // This displays 1023

return 0;

18

The type of
a variable
determines the

values it may hold.

C++ from the Ground Up

This program introduces two new concepts. First, the statement

int x; // this declares a variable

declares a variable called x of type integer. In C++, all variables must be declared
before they are used. Further, the type of values that the variable can hold must also
be specified. This is called the type of the variable. In this case, x may hold integer
values. These are whole-number values whose range will be at least -32,768 to 32,767.
In C++, to declare a variable to be of type integer, precede its name with the keyword
int. Later, you will see that C++ supports a wide variety of built-in variable types.
(You can create your own data types, too.)

The second new feature is found in the next line of code:

x = 1023; // this assigns 1023 to x

As the comment suggests, this assigns the value 1023 to x. In C++, the assignment
operator is the single equal sign. It copies the value on its right side into the variable
on its left. After the assignment, the variable x will contain the number 1023.

The two cout statements display the output generated by the program. Notice how
the following statement is used to display the value of x:

cout << x; // This displays 1023

In general, if you want to display the value of a variable, simply put it on the right
side of << in a cout statement. In this specific case, because x contains the number
1023, it is this number that is displayed on the screen. Before moving on, you might
want to try giving x other values and watching the results.

A More Practical Example

Your first two sample programs, while illustrating several important features of the
C++ language, are not very useful. The next sample program actually performs a
meaningful task: It converts gallons to liters. It also shows how to input information.

// This program converts gallons to liters.

#include <iostream>
using namespace std;

int main()
{

int gallons, liters;

cout << "Enter number of gallons: ";
cin >> gallons; // this inputs from the user

liters = gallons * 4; // convert to liters

An Overview of C++ 19

cout << "Liters: " << liters;

return 0;

}

This program first displays a prompting message on the screen, and then waits for you
to enter a whole number amount of gallons. (Remember, integer types cannot have
fractional components.) The program then displays the approximate liter equivalent.
There are actually 3.7854 liters in a gallon, but since integers are used in this example,
the conversion is rounded to 4 liters per gallon. For example, if you enter 1 gallon, the
program responds with the metric equivalent of 4 liters.

The first new thing you see in this program is that two variables, gallons and liters,
are declared following the int keyword, in the form of a comma-separated list. In
general, you can declare any number of variables of the same type by separating them
with commas. (As an alternative, the program could have used multiple int statements
to accomplish the same thing.)

The function uses this statement to actually input a value entered by the user:

cin >> gallons; // this inputs from the user

cin is another predefined identifier that is provided with your C++ compiler. cin
stands for console input (which generally means input from the keyboard). The input
operator is the >> symbol. The value entered by the user (which must be an integer,
in this case) is put into the variable that is on the right side of the >> (in this case,
gallons).

There is one more new thing in this program. Examine this line:

cout << "Liters: " << liters;

It uses two output operators within the same output statement. Specifically, it outputs
the string "Liters: " followed by the value of liters. In general, you can chain together
as many output operations as you like within one output statement. Just use a separate
<< for each item.

mmm—— A New Data Type

Although the gallons-to-liters program is fine for rough approximations, because
it uses integers, it leaves something to be desired when a more accurate answer is
needed. As stated, integer data types cannot represent any fractional value. If you
need fractions, then you must use a floating-point data type. One of these is called
double, which represents double-precision floating-point. Data of this type will typically
be in the range 1.7E-308 to 1.7E+308. Operations on floating-point numbers preserve
any fractional part of the outcome and, hence, provide a more accurate conversion.

The following version of the conversion program uses floating-point values:

/* This program converts gallons to liters using
floating point numbers. */

20

C++ from the Ground Up

#include <iostream>
using namespace std;

int main()

{

double gallons, liters;

cout << "Enter number of gallons: ";
cin >> gallons; // this inputs from the user

liters = gallons * 3.7854; // convert to liters
cout << "Liters: " << liters;

return 0;

There are two changes to this program from the previous version. First, gallons and
liters are declared as double. Second, the conversion coefficient is now specified as
3.7854, allowing a more accurate conversion. Whenever C++ encounters a number
that contains a decimal point, it automatically knows that it is a floating-point constant.
One other thing: notice that the cout and cin statements are unchanged from the
previous version of this program that used int variables. C++’s I/O system automatically
adjusts to whatever type of data you give it.

Try the program at this time. Enter 1 gallon when prompted. The equivalent number
of liters is now 3.7854.

A Quick Review

Before proceeding, let’s review the most important things that you have learned:

1. All C++ programs must have a main() function, and it is there that program
execution begins.

2. All variables must be declared before they are used.
3. C++ supports a variety of data types, including integer and floating point.

4. The output operator is <<, and when used with cout, it causes information to be
displayed on the screen.

5. The input operator is >>, and when used with cin, it reads information from the
keyboard.

6. Program execution stops at the end of main().

Functions

A C++ program is constructed from building blocks called functions. A function is a
subroutine that contains one or more C++ statements and performs one or more tasks.
In well-written C++ code, each function performs only one task.

An Overview of C++ 21

Functions are the
building blocks of
a C++ program.

Each function has a name, and it is this name that is used to call the function. In
general, you can give a function whatever name you please. However, remember
that main() is reserved for the function that begins execution of your program.

In C++, one function cannot be embedded within another function. Unlike Pascal,
Modula-2, and some other programming languages that allow the nesting of functions,
C++ considers all functions to be separate entities. (Of course, one function may call
another.)

When denoting functions in text, this book uses a convention that has become
common when writing about C++: A function will have parentheses after its name.
For example, if a function’s name is getval, then it will be written getval() when
its name is used in a sentence. This notation will help you distinguish variable names
from function names in this book.

In your first programs, main() was the only function. As stated earlier, main() is
the first function executed when your program begins to run, and it must be included
in all C++ programs. There are two types of functions that will be used by your programs.
The first type is written by you. main() is an example of this type of function. The
other type of function is implemented by the compiler and is found in the compiler’s
standard library. (The standard library is discussed shortly, but in general terms, it

is a collection of predefined functions.) Programs that you write will usually contain
a mix of functions that you create and those supplied by the compiler.

Since functions form the foundation of C++, let’s take a closer look at them now.

A Program with Two Functions

The following program contains two functions: main() and myfunc(). Before
running this program (or reading the description that follows), examine it closely
and try to figure out exactly what it displays on the screen.

/* This program contains two functions: main/()
and myfunc () .

*/

#include <iostream>

using namespace std;

void myfunc(); // myfunc's prototype

int main()

{
cout << "In main()";
myfunc(); // call myfunc()
cout << "Back in main()";

return 0;

}

void myfunc ()
{
cout << " Inside myfunc() ";

}

22

A prototype
declares a
function prior
to its first use

An argument is
a value passed
to a function
when it is called.

C++ from the Ground Up

The program works like this. First, main() begins, and it executes the first cout
statement. Next, main() calls myfunc(). Notice how this is achieved: the function’s
name, myfunc, appears, followed by parentheses, and finally by a semicolon.

A function call is a C++ statement and, therefore, must end with a semicolon. Next,
myfunc() executes its cout statement, and then returns to main() at the line

of code immediately following the call. Finally, main() executes its second cout
statement, and then terminates. The output on the screen is this:

In main() Inside myfunc() Back in main()

There is one other important statement in the preceding program:

void myfunc(); // myfunc's prototype

As the comment states, this is the prototype for myfunc(). Although we will

discuss prototypes in detail later, a few words are necessary now. A function prototype
declares the function prior to its definition. The prototype allows the compiler to know
the function's return type, as well as the number and type of any parameters that the
function may have. The compiler needs to know this information prior to the first
time the function is called. This is why the prototype occurs before main(). The only
function that does not require a prototype is main(), because it is predefined by C++.

As you can see, myfunc() does not contain a return statement. The keyword void,
which precedes both the prototype for myfunc() and its definition, formally states
that myfunc() does not return a value. In C++, functions that don’t return values
are declared as void.

Function Arguments

It is possible to pass one or more values to a function. A value passed to a function
is called an argument. In the programs that you have studied so far, none of the
functions take any arguments. Specifically, neither main() nor myfunc() in
the preceding examples have an argument. However, functions in C++ can have
one or more arguments. The upper limit is determined by the compiler you are
using, but Standard C++ specifies that at least 256 arguments will be allowed.

Here is a short program that uses one of C++’s standard library (i.e., built-in) functions,
called abs(), to display the absolute value of a number. The abs() function takes one
argument, converts it into its absolute value, and returns the result.

// Use the abs() function.
#include <iostream>
#include <cstdlib>

using namespace std;

int main()
{

cout << abs(-10);

return 0;

}

An Overview of C++ 23

A parameter is

a variable defined
by a function
that receives

an argument.

Here, the value -10 is passed as an argument to abs(). The abs() function receives
the argument that it is called with and returns its absolute value, which is 10 in this
case. Although abs() takes only one argument, other functions can have several. The
key point here is that when a function requires an argument, it is passed by specifying
it between the parentheses that follow the function’s name.

The return value of abs() is used by the cout statement to display the absolute value
of =10 on the screen. The reason this works is that whenever a function is part of a
larger expression, it is automatically called so that its return value can be obtained.

In this case, the return value of abs() becomes the value of the right side of the

<< operator, and is therefore displayed on the screen.

Notice one other thing about the preceding program: it also includes the header
<cstdlib>. This is the header required by abs(). In general, whenever you use a
library function, you must include its header. The header provides the prototype
for the library function, among other things.

When you create a function that takes one or more arguments, the variables that
will receive those arguments must also be declared. These variables are called the
parameters of the function. For example, the function shown next prints the product
of the two integer arguments passed to the function when it is called.

void mul (int x, int vy)
{
cout << x * y << " n;

}

Each time mul() is called, it will multiply the value passed to x by the value passed
to y. Remember, however, that x and y are simply the operational variables that
receive the values you use when calling the function.

Consider the following short program, which illustrates how to call mul():

// A simple program that demonstrates mul ().

#include <iostream>
using namespace std;

void mul (int x, int y); // mul()'s prototype

int main()

{
mul (10, 20);
mul (5, 6);
mul (8, 9);

return 0;

}

void mul (int x, int y)
{
cout << x * y << " ";

}

2

24

C++ from the Ground Up

This program will print 200, 30, and 72 on the screen. When mul() is called, the C++
compiler copies the value of each argument into the matching parameter. That is, in
the first call to mul(), 10 is copied into x and 20 is copied into y. In the second call,
S is copied into x and 6 into y. In the third call, 8 is copied into x and 9 into y.

If you have never worked with a language that allows parameterized functions, then
the preceding process may seem a bit strange. Don’t worry; as you see more examples
of C++ programs, the concept of arguments, parameters, and functions will become clear.

REMEMBER: The term argument refers to the value that is used to call a
function. The variable that receives the value of an argument is called a parameter. In
fact, functions that take arguments are called parameterized functions.

In C++ functions, when there are two or more arguments, they are separated by
commas. In this book, the term argument list refers to comma-separated arguments.
The argument list for mul() is x,y.

Functions Returning Values

Many of the C++ library functions that you use will return values. For example, the
abs() function used earlier returned the absolute value of its argument. Functions
you write may also return values to the calling routine. In C++, a function uses

a return statement to return a value. The general form of return is

return value;

where value is the value being returned.

To illustrate the process of functions returning values, the foregoing program can be
rewritten, as shown next. In this version, mul() returns the product of its arguments.
Notice that the placement of the function on the right side of an assignment statement
assigns the return value to a variable.

// Returning a value.

#include <iostream>
using namespace std;

int mul(int x, int y); // mul()'s prototype
int main()
{

int answer;

answer = mul (10, 11); // assign return value
cout << "The answer is " << answer;

return 0;

An Overview of C++ 25

}

// This function returns a value.
int mul (int x, int vy)
{

return x * y; // return product of x and y

}

In this example, mul() returns the value of x*y by using the return statement.
This value is then assigned to answer. That is, the value returned by the return
statement becomes mul()'s value in the calling routine.

Since mul() now returns a value, it is not preceded by the keyword void. (Remember,
void is used only when a function does not return a value.) Just as there are different
types of variables, there are also different types of return values. Here, mul() returns
an integer. The return type of a function precedes its name in both its prototype and
its definition.

Before moving on, a short historical note is in order. For early versions of C++, if no
return type is specified, then a function is assumed to return an integer value. For
example, in old code you might find mul() written like this:

// An old-style way to code mul().
mul (int x, int y) // default to int return type

{

return x * y; // return product of x and y

}

Here, the type returned by mul() is integer by default, since no other return type is
specified. However, the "default-to-int" rule was dropped by Standard C++. Although
most compilers will continue to support the "default-to-int" rule for the sake of backward
compatibility, you should explicitly specify the return type of every function that you
write. Since older code frequently made use of the default integer return type, this
change is also something to keep in mind when working on legacy code.

When a return statement is encountered, the function returns immediately, skipping
any remaining code. It is possible to cause a function to return by using the return
statement without any value attached to it, but this form of return can be used only
with functions that have no return values and that are declared as void. Also, there
can be more than one return in a function.

The main() Function

As you know, the main() function is special because it is the first function called
when your program executes. It signifies the beginning of your program. Unlike
some programming languages that always begin execution at the "top" of the program,
C++ begins every program with a call to the main() function, no matter where that
function is located in the program. (However, it is common for main() to be the
first function in your program so that it can be easily found.)

There can be only one main() in a program. If you try to include more than one,
your program will not know where to begin execution. Actually, most compilers will

26

C++ from the Ground Up

catch this type of error and report it. As mentioned earlier, since main() is
predefined by C++, it does not require a prototype.

The General Form of C++ Functions

The preceding examples have shown some specific types of functions. However,
all C++ functions share a common form, which is shown here:

return-type function-name(parameter list)

{
. body of the function
}
Let’s look closely at the different parts that make up a function.

The return type of a function determines the type of data that the function will return.
As you will see later in this book, you can specify nearly any return type you like.
Keep in mind, however, that no function has to return a value. If it does not return
a value, its return type is void. But if it does return a value, that value must be of a
type that is compatible with the function’s return type.

Every function must have a name. After the name is a parenthesized parameter list.
The parameter list specifies the names and types of variables that will be passed
information. If a function has no parameters, the parentheses are empty.

Next, braces surround the body of the function. The body of the function is composed
of the C++ statements that define what the function does. The function terminates
and returns to the calling procedure when the closing curly brace is reached or when
a return statement is encountered.

Some Output Options

Up to this point, there has been no occasion to advance output to the next line—that
is, to execute a carriage return-linefeed sequence. However, the need for this will arise
very soon. In C++, the carriage return-linefeed sequence is generated using the newline
character. To put a newline character into a string, use this code: \n (a backslash
followed by a lowercase n). To see an example of a carriage return-linefeed sequence,
try the following program:

/* This program demonstrates the \n code, which
generates a new line.

*/

#include <iostream>

using namespace std;

int main()

{
cout << "one\n";
cout << "two\n";
cout << "three";

An Overview of C++ 27

if selects between
two paths of
execution.

cout << "four";

return 0;

}

This program produces the following output:

one
two
threefour

The newline character can be placed anywhere in the string, not just at the end. You
might want to try experimenting with the newline character now, just to make sure
you understand exactly what it does.

Two Simple Commands

So that meaningful examples can be developed in the next chapter, it is necessary for
you to understand, in their simplest form, two C++ commands: the if and the for. Later,
these commands will be explored completely.

The if Statement

The C++ if statement operates in much the same way that an IF statement operates in
any other language. Its simplest form is

if(condition) statement;

where condition is an expression that is evaluated to be either true or false. In C++,
true is non-zero and false is zero. If the condition is true, then the statement will
execute. If it is false, then the statement will not execute. The following fragment
displays the phrase 10 is less than 11 on the screen.

if(10 < 11) cout << "10 is less than 11";

The comparison operators, such as < (less than) and >= (greater than or equal), are

similar to those in other languages. However, in C++, the equality operator is ==. The
following cout statement will not execute, because the condition of equality is false;
that is, because 10 is not equal to 11, the statement will not display hello on the screen.

if(10==11) cout << "hello";

Of course, the operands inside an if statement need not be constants. They can also
be variables, or even calls to functions.

The following program shows an example of the if statement. It prompts the user for
two numbers and reports if the first value is less than the second.

// This program illustrates the if statement.

#include <iostream>

28

for is one of the
loop statements
provided by C++.

C++ from the Ground Up

using namespace std;

int main()
{
int a, b;

cout << "Enter first number: ";
cin >> a;
cout << "Enter second number: ";
cin >> b;

if(a < b) cout << "First number is less than second.";

return 0;

The for Loop

The for loop repeats a statement a specified number of times. The for loop can
operate much like the FOR loop in other languages, including Java, C#, Pascal, and
BASIC. Its simplest form is

for(initialization, condition, increment) statement;

Here, initialization sets a loop control variable to an initial value. condition is an
expression that is tested each time the loop repeats. As long as condition is true
(non-zero), the loop keeps running. The increment is an expression that determines
how the loop control variable is incremented each time the loop repeats.

For example, the following program prints the numbers 1 through 100 on the screen.

// A program that illustrates the for loop.

#include <iostream>
using namespace std;

int main()
{

int count;

for (count=1; count<=100; count=count+1)
cout << count << " ";

return 0;

}

Figure 2-1 illustrates the execution of the for loop in this example. As you can see,
count is initialized to 1. Each time the loop repeats, the condition count<=100 is
tested. If it is true, the value is output and count is increased by one. When count
reaches a value greater than 100, the condition becomes false, and the loop stops
running.

An Overview of C++ 29
count=1
No
““’[is count<=100?]
Yes
[count<<count<<”"]

How the for
loop works.
Figure 2-1.

A block is
a logically
connected unit
of statements.

44444444{ count = count + 1]

Done

In professionally written C++ code, you will seldom see a statement like
count=count+1, because for this sort of statement, C++ supports a special
shorthand that looks like this: count++. The ++ is the increment operator. It
increases its operand by 1. The complement of ++ is — -, the decrement operator,
which decreases its operand by 1. For example, the preceding for statement will
generally be written like this:

for (count=1; count<=100; count++)
cout << count << " ";

This is the form that will be used throughout the rest of this book.

Blocks of Code

Because C++ is a structured (as well as an object-oriented) language, it supports

the creation of blocks of code. A block is a logically connected group of program
statements that is treated as a unit. In C++, a code block is created by placing a
sequence of statements between opening and closing curly braces. In this example,

if(x<10) {
cout << "too low, try again";
cin >> x;

}

the two statements after the if and between the curly braces are both executed only if
x is less than 10. These two statements, together with the braces, represent a block of
code. They are a logical unit: One of the statements cannot execute without the other
also executing. In C++, the target of most commands can be either a single statement

30

C++ from the Ground Up

or a code block. Code blocks allow many algorithms to be implemented with greater
clarity and efficiency. They can also help you better conceptualize the true nature of
an algorithm.

The program that follows uses a block of code. Enter and run the program so that you
can see the effect of the block.

// This program demonstrates a block of code.

#include <iostream>
using namespace std;

int main()
{

int a, b;

cout << "Enter first number: ";
cin >> a;
cout << "Enter second number: ";
cin >> b;

if(a < b) {
cout << "First number is less than second.\n";
cout << "Their difference is: " << b-a;

}

return 0;

This program prompts the user to enter two numbers from the keyboard. If the first
number is less than the second number, then both cout statements are executed.
Otherwise, both are skipped. At no time can just one of them execute.

Semicolons and Positioning

In C++, the semicolon is a statement ferminator. That is, each individual statement
must be ended with a semicolon. It indicates the end of one logical entity.

As you know, a block is a set of logically connected statements that are surrounded by
opening and closing braces. A block is not terminated with a semicolon. Since a block
is a group of statements, with a semicolon after each statement, it makes sense that a
block is not terminated by a semicolon; instead, the end of the block is indicated by
the closing brace. This is also the reason that there is no semicolon following the closing
brace of a function.

C++ does not recognize the end of the line as a terminator. For this reason, it does not
matter where on a line you put a statement. For example,

X =Y;
y = y+1;
mul (x, y);

An Overview of C++

The C++
Keywords

Table 2-1.

31

is the same as

y = y+1; mul(x, y);

to a C++ compiler.

Indentation Practices

You may have noticed in the previous examples that certain statements were indented.
C++ is a free-form language, meaning that it does not matter where you place statements
relative to each other on a line. However, over the years, a common and accepted
indentation style has developed that provides very readable programs. This book
follows that style, and it is recommended that you do so as well. Using this style,
you indent one level after each opening brace, and move back out one level after
each closing brace. There are certain statements that encourage some additional
indenting; these will be covered later.

C++ Keywords

There are 63 keywords currently defined for Standard C++. These are shown in Table 2-1.
Together with the formal C++ syntax, they form the C++ programming language. Also,
early versions of C++ defined the overload keyword, but it is now obsolete.

asm else new this

auto enum operator throw
bool explicit private true
break export protected try

case extern public typedef
catch false register typeid
char float reinterpret_cast typename
class for return union
const friend short unsigned
const_cast goto signed using
continue if sizeof virtual
default inline static void
delete int static_cast volatile
do long struct wchar_t
double mutable switch while
dynamic_cast namespace template

32

The C++ standard
library contains
many predefined
functions that
you can use in
your programs.

C++ from the Ground Up

Keep in mind that the case of the keywords is significant. C++ is a case-sensitive
language, and it requires that all keywords be in lowercase. For example, RETURN
will not be recognized as the keyword return.

Identifiers in C++

In C++ an identifier is a name assigned to a function, a variable, or any other user-defined
item. Identifiers can be from one to several characters long. The first 1024 characters
will be significant. Variable names may start with any letter of the alphabet or with an
underscore. Next may be either a letter, a digit, or an underscore. The underscore can
be used to enhance the readability of a variable name, as in first_name. Uppercase
and lowercase are different; that is, to C++, count and COUNT are separate names.
Here are some examples of acceptable identifiers:

first last Addrl top_of_file
name23 _temp t s23e3 MyVar

You cannot use any of the C++ keywords as identifier names. Also, you should not use
the name of any standard function, such as abs, for an identifier. Beyond these two
restrictions, good programming practice dictates that you use identifier names that
reflect the meaning or usage of the items being named.

The Standard C++ Library

In the discussion of the sample programs earlier in this chapter, it was mentioned that
abs() is provided with your C++ compiler. abs() is not part of the C++ language per
se, yet you will find it included with every C++ compiler. This function, and many
others, are found in the standard library. We will be making extensive use of library
functions in the example programs throughout this book.

C++ defines a rather large set of functions that will be contained in the standard
library. These functions are designed to perform many commonly needed tasks,
including I/O operations, mathematical computations, and string handling. When
you use a library function, the C++ compiler automatically links the object code for
that function to the object code of your program.

Because the C++ standard library is so large, it already contains many of the functions
that you will need to use in your programs. The library functions act as building blocks
that you simply assemble. You should explore your compiler’s library documentation.
You may be surprised at how varied the library functions are. If you write a function
that you will use again and again, it too can be stored in a library.

In addition to providing library functions, every C++ compiler also contains a class
library, which is an object-oriented library. Finally, C++ defines the Standard Template
Library (STL), which provides reusable routines that can be configured to meet your
specific requirements. However, you will need to wait until you learn about classes,
objects, and templates before you can make use of the class library or the STL.

CHAPTER 3

The Basic
Data Types

33

34

Common Sizes
and Ranges of
the Basic Types
in C++

Table 3-1.

C++ from the Ground Up

s you saw in Chapter 2, all variables in C++ must be declared prior to their use.

This is necessary because the compiler must know what type of data a variable
contains before it can properly compile any statement that uses the variable. In C++
there are seven basic data types: character, wide character, integer, floating point,
double floating point, Boolean, and somewhat surprisingly, valueless. The keywords
used to declare variables of these types are char, wchar_t, int, float, double,
bool, and void, respectively. Common sizes and ranges of each data type are shown
in Table 3-1. Remember, the sizes and ranges used by your compiler may vary from
those listed here. The most common variance occurs between 16-bit and 32-bit
environments. In general, an integer in a 16-bit environment is 16 bits wide. In a
32-bit environment, an integer is usually 32 bits wide.

Variables of type char are used to hold 8-bit ASCII characters such as A, B, or C, or
any other 8-bit quantity. To specify a character, you must enclose it between single
quotes. The type wchar_t is designed to hold characters that are part of large character
sets. As you may know, many human languages, such as Chinese, define a large
number of characters, more than will fit within the 8 bits provided by the char type.
The wchar_t type was added to C++ to accommodate this situation. While we won't
be making much use of wchar_t in this book, it is something that you will want to
look into if you are tailoring programs for the international market.

Variables of type int can hold integer quantities that do not require fractional
components. Variables of this type are often used for controlling loops and conditional
statements. Variables of the types float and double are employed either when a
fractional component is required or when your application requires very large or small
numbers. The difference between a float and a double variable is the magnitude of
the largest (and smallest) number that each one can hold. As shown in Table 3-1, a
double in C++ can store a number approximately ten times larger than a float.

Type Typical Bit Width Typical Range

char 8 -128 to 127

wchar _t 16 0 to 65,535

int (16-bit environments) 16 -32,768 to 32,767

int (32-bit environments) 32 -2,147,483,648 to
2,147,483,647

float 32 3.4E-38 to 3.4E+38

double 64 1.7E-308 to 1.7E+308

bool N/A true or false

void N/A valueless

The Basic Data Types 35

The bool type stores Boolean (i.e., true/false) values. C++ defines two Boolean constants:
true and false, which are the only values that a bool variable may have.

As you have seen, void is used to declare any function that does not return a value.
Other purposes of void are discussed later in this book.

== Declaration of Variables

The general form of a variable declaration statement is shown here:
type variable_list;

Here, type must be a valid C++ data type, and variable_list may consist of one or more
identifier names separated by commas. Some declarations are shown here, for example:

int i, j, k;
char ch, chr;
float £, balance;

double d;

In C++, the name of a variable has nothing to do with its type.

Standard C++ states that at least the first 1,024 characters of any identifier name
(including variable names) will be significant. This means that if two variable names
differ in at least one character within the first 1,024 characters, then the compiler
will consider them to be different names.

There are three places where variables will be declared: inside functions, in the definition
of function parameters, and outside of all functions. These variables are called local
variables, formal parameters, and global variables, respectively. Although we will examine
the importance of these three different types of variables in greater detail later in this
book, let’s take a brief look at them now.

Local Variables

Variables that are declared inside a function are local variables. They can be used only
by statements that are inside that function. Local variables are not known to functions
outside their own. Consider this example:

#include <iostream>
using namespace std;

void func();

int main()

36

A local variable is
khown only to the
function in which
it is declared.

A formal
parameter is a
local variable that
receives the value
of an argument
passed to a
function.

C++ from the Ground Up

int x; // local to main()
x = 10;

func () ;

cout << "\n";

cout << x; // displays 10

return 0;

}

void func ()
{

int x; // local to func()
x = =-199;
cout << x; // displays -199

}

Here, the integer variable x is declared twice, once in main() and once in func().
The x in main() has no bearing on, or relationship to, the x in func(). Specifically,
changes to the x inside func() will not affect the x inside main(). Therefore, this
program will print —-199 and 10 on the screen.

In C++, local variables are created when the function is called and are destroyed when
the function is exited. Correspondingly, the storage for these local variables is created
and destroyed in the same way. For these reasons, local variables do not maintain
their values between function calls. (That is, the value of a local variable is lost each
time its function returns.)

In some C++ literature, a local variable is called a dynamic variable or an automatic
variable. However, this book will continue to use the term local variable because it is
the more common term.

Formal Parameters

As you saw in Chapter 2, if a function has arguments, then those arguments must
be declared. These are called the formal parameters of the function. As shown in the
following fragment, this declaration occurs after the function name, inside the
parentheses:

char ch)

int funcl (int first, int last,

{

The funcl() function has three arguments, called first, last, and ch. You must tell
C++ what type of variables these are by declaring them, as shown above. Once this

The Basic Data Types 37

has been done, these arguments receive information passed to the function. They may
also be used inside the function as normal local variables. For example, you may
make assignments to a function’s formal parameters or use them in any allowable
C++ expression. Even though these variables perform the special task of receiving the
value of the arguments passed to the function, they can be used like any other local
variable. Like other local variables, their value is lost once the function terminates.

Global Variables

Global variables You may be wondering how to make a variable and its data stay in existence throughout

are known the entire execution of your program. You can do this in C++ by using a global variable.

throughout your Unlike local variables, global variables will hold their value throughout the lifetime of

entire program. your program. You create global variables by declaring them outside of all functions.
A global variable can be accessed by any function. That is, a global variable is available
for use throughout your entire program.

In the following program, you can see that the variable count has been declared
outside of all functions. Its declaration is before the main() function. However, it
could have been placed anywhere, as long as it was not in a function. Remember,
though, that since you must declare a variable before you use it, it is best to declare
global variables at the top of the program.

#include <iostream>
using namespace std;

void funcl();
void func2();

int count; // this is a global variable

int main()
{

int i; // this is a local variable

for (i=0; 1i<10; i++) {
count = 1 * 2;
funcl () ;

}

return 0;

}

void funcl ()

{

cout << "count: " << count; // access global count
cout << '\n'; // output a newline
func2 () ;

}

void func2()

38

C++ from the Ground Up

{

int count; // this is a local variable

for (count=0; count<3; count++) cout << '.';

}

Looking closely at this program, it should be clear that although neither main() nor
func1() has declared the variable count, both may use it. In func2(), however, a
local variable called count is declared. When func2() uses count, it is referring to
its local variable, not the global one. It is important to remember that if a global variable
and a local variable have the same name, all references to that variable name inside
the function in which the local variable is declared will refer to the local variable and
not to the global variable.

Some Type Modifiers

C++ allows the char, int, and double data types to have modifiers preceding them.
A modifier is used to alter the meaning of the base type so that it more precisely fits
the needs of various situations. The data type modifiers are listed here:

signed
unsigned
long
short

The modifiers signed, unsigned, long, and short can be applied to integer base
types. In addition, signed and unsigned can be applied to char, and long can be
applied to double. Tables 3-2a and 3-2b show all the allowed combinations of the
basic types and the type modifiers for both 16- and 32-bit environments. The tables
also show the most common size and range for each type. You should check your
compiler’s documentation for the actual range supported by your compiler.

As you look at the tables, pay special attention to the size of a short integer, an integer,
and a long integer. Notice that in most 16-bit environments, the size of an integer is
the same as a short integer. Also notice that in most 32-bit environments, the size of
an integer is the same as a long integer. The reason for this is found in C++’s definition
of its basic types. Standard C++ states that a long integer will be at least as large as an
integer, and that an integer will be at least as large as a short integer. Further, the size
of an integer should be based upon the execution environment. This means that for
16-bit environments, integers are 16 bits, and for 32-bit environments, integers are
32 bits. However, the smallest allowable size for an integer in any environment is 16 bits.
Since C++ defines only the relationship and a set of guidelines for the size of the integer
types, there is no requirement (or guarantee) that one type will be larger than another.
However, the sizes shown in both tables hold true for many compilers.

The Basic Data Types 39
Type Bit Width Common Range
char 8 -128 to 127
unsigned char 8 0 to 255
signed char 8 -128 to 127
int 16 -32,768 to 32,767
unsigned int 16 0 to 65,535
signed int 16 -32,768 to 32,767
short int 16 same as int
unsigned short int 16 same as unsigned int
All Possible signed short int 16 same as short int
Combinations
of the Basic long int 32 ~2,147,483,648 to 2,147,483,647
Types and unsigned long int 32 0 to 4,294,967,295
Modifiers in
C++, Along signed long int 32 -2,147,483,648 to 2,147,483,647
With Their float 32 3.4E-38 to 3.4E+38
Common Bit
Lengths and double 64 1.7E-308 to 1.7E+308
aRf;”()g_Esitfor long double 80 3.4E-4932 to 1.1E+4932
Environment bool N/A true or false
Table 3-2a. wchar_t 16 0t 65,535
|

Although it is allowed, the use of signed on integers is redundant because the default
declaration assumes a signed value. Technically, whether char is signed or unsigned
by default is implementation-defined. However, for most compilers, char is signed. In
these environments, the use of signed on char is also redundant. For the rest of this
book, it will be assumed that chars are signed entities.

The difference between signed and unsigned integers is in the way the high-order bit

of the integer is interpreted. If a signed integer is specified, then the C++ compiler will
generate code that assumes that the high-order bit of an integer is to be used as a sign flag.
If the sign flag is O, then the number is positive; if it is 1, then the number is negative.
Negative numbers are almost always represented using the two’s complement approach.
In this method, all bits in the number are reversed, and then 1 is added to this number.

Signed integers are important for a great many algorithms, but they have only half
the absolute magnitude of their unsigned relatives. For example, assuming 16-bit
integers, here is 32,767:

01111111 11111111

40

All Possible
Combinations
of the Basic
Types and
Maodifiers in
C++, Along
With Their
Common Bit
Lengths and
Ranges for

a 32-bit
Environment

Table 3-2b.

C++ from the Ground Up

Type Bit Width Common Range

char 8 -128 to 127

unsigned char 8 0 to 255

signed char 8 -128 to 127

int 32 -2,147,483,648 to 2,147,483,647
unsigned int 32 0 to 4,294,967,295

signed int 32 -2,147,483,648 to 2,147,483,647
short int 16 -32,768 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 -32,768 to 32,767

long int 32 Same as int

unsigned long int 32 Same as unsigned int

signed long int 32 Same as signed int

float 32 3.4E-38 to 3.4E+38

double 64 1.7E-308 to 1.7E+308

long double 80 3.4E-4932 to 1.1E+4932

bool N/A true or false

wchar_t 16 0 to 65,535

For a signed value, if the high-order bit were set to 1, the number would then be
interpreted as —1 (assuming the two’s complement format). However, if you declared
this to be an unsigned int, then when the high-order bit was set to 1, the number
would become 65,535.

To understand the difference between the way that signed and unsigned integers are
interpreted by C++, you should run this short program now:

#include <iostream>
using namespace std;

/* This program shows the difference between
signed and unsigned integers.
*/
int main()
{
short int i; // a signed short integer
short unsigned int j; // an unsigned short integer

j = 60000;

The Basic Data Types 41

i=73;
cout << 1 << " " << J;

return 0;

}

When this program is run, the output is -5536 60000. This is because the bit pattern
that represents 60,000 as a short unsigned integer is interpreted as -5,536 by a short
signed integer.

C++ allows a shorthand notation for declaring unsigned, short, or long integers.
You can simply use the word unsigned, short, or long, without the int. The int is
implied. For example, the following two statements both declare unsigned integer
variables.

unsigned x;
unsigned int y;

Variables of type char can be used to hold values other than just the ASCII character
set. A char variable can also be used as a "small" integer with the range —-128 through
127, and it can be used in place of an integer when the situation does not require
larger numbers. For example, the following program uses a char variable to control
the loop that prints the alphabet on the screen:

// This program prints the alphabet in reverse order.

#include <iostream>
using namespace std;

int main()
{

char letter;

for(letter = '2'; letter >= 'A'; letter--)
cout << letter;

return 0;

}

If the for loop seems weird to you, keep in mind that the character A is represented
inside the computer as a number, and that the values from A to Z are sequential, in
ascending order.

mmm— | iterals

In C++, literals (also called constants) refer to fixed values that cannot be altered by
the program. For the most part, literals and their usage are so intuitive that they have
been used in one form or another by all the preceding sample programs. Now, the
time has come to explain them formally.

42

C++ from the Ground Up

C++ literals can be of any of the basic data types. The way each literal is represented
depends upon its type. Character literals are enclosed between single quotes. For
example, 'a' and '%' are both character literals. As some of the examples thus far have
shown, if you want to assign a character to a variable of type char, you will use a
statement similar to this one:

ch = 'z';

To specify a wide character literal (i.e., one that is of type wchar_t), precede the
character with an L. For example,

wchar_t wc;
wc = L'A';

Here, wc is assigned the wide-character constant equivalent of A.

Integer literals are specified as numbers without fractional components. For example,
10 and -100 are integer literals. Floating-point literals require the use of the decimal
point, followed by the number’s fractional component. For example, 11.123 is a
floating-point constant. C++ also allows you to use scientific notation for floating-point
numbers.

There are two floating-point types: float and double. There are also several flavors
of the basic types that can be generated with the type modifiers. The question is this:
How does the compiler determine the type of a literal? For example, is 123.23 a float
or a double? The answer to this question has two parts. First, the C++ compiler
automatically makes certain assumptions about literals; second, you can explicitly
specify the type of a literal, if you like.

By default, the C++ compiler fits an integer literal into the smallest compatible data
type that will hold it, beginning with int. Therefore, assuming 16-bit integers, 10

is int by default, but 103,000 is long. Even though the value 10 could be fit into a
character, the compiler will not do this, because it means crossing type boundaries.

An exception to the smallest-type rule is a floating-point constant, which is assumed
to be double. For virtually all programs you will write as a beginner, the compiler
defaults are perfectly adequate. However, it is possible to specify precisely the type
of literal you want.

In cases where the default assumption that C++ makes about a numeric literal is not
what you want, C++ allows you to specify the exact type by using a suffix. For floating-
point types, if you follow the number with an F, the number is treated as a float.
If you follow it with an L, the number becomes a long double. For integer types,
the U suffix stands for unsigned and the L for long. (Both the U and the L must
be used to specify an unsigned long.) Some examples are shown here:

The Basic Data Types 43
int 1 123 21000 -234
long int 35000L -34L
unsigned int 10000U 987U 40000U
unsigned long 12323UL 900000UL
float 123.23F 4.34e-3F
double 23.23 123123.33 -0.9876324
long double 1001.2L

Hexadecimal and Octal Literals

As you probably know, in programming it is sometimes easier to use a number system
based on 8 or 16 instead of 10. The number system based on 8 is called octal, and it
uses the digits O through 7. In octal, the number 10 is the same as 8 in decimal. The
base-16 number system is called hexadecimal, and it uses the digits O through 9, plus
the letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For example, the
hexadecimal number 10 is 16 in decimal. Because of the frequency with which these
two number systems are used, C++ allows you to specify integer literals in hexadecimal
or octal instead of decimal. A hexadecimal literal must begin with 0x (a zero followed
by an x). An octal literal begins with a zero. Here are some examples:

OxFF; // 255 in decimal
011; // 9 in decimal

hex
oct

String Literals

C++ supports one other type of literal in addition to those of the predefined data
types: the string. A string is a set of characters enclosed by double quotes. For example,
"this is a test" is a string. You have seen examples of strings in some of the cout
statements in the preceding sample programs. Keep in mind one important fact:
although C++ allows you to define a string literal, it does not have a built-in string
data type. Instead, as you will see a little later in this book, strings are supported in
C++ as character arrays. (However, Standard C++ does provide a string type in its class
library, which you will also learn about later in this book.)

CAUTION: You must not confuse strings with characters. A single character
literal is enclosed by single quotes, as with 'a'. However, "a" is a string containing only
one letter.

44

The Character
Escape
Sequences
Table 3-3.

C++ from the Ground Up

Character Escape Sequences

Enclosing character literals in single quotes works for most printing characters, but a
few characters, such as the carriage return, pose a special problem when a text editor
is used. In addition, certain other characters, such as the single and double quotes,
have special meaning in C++, so you cannot use them directly. For these reasons, C++
provides the character escape sequences shown in Table 3-3. These sequences are also
referred to as backslash character constants.

The following sample program illustrates the use of backslash codes. When this program
is run, it outputs a newline, a backslash, and a backspace.

#include <iostream>
using namespace std;

int main()
{
cout << "\n\\\b";

return 0;

}

Code Meaning

\b backspace

\f form feed

\n newline

\r carriage return

\t horizontal tab

\" double quote

\! single quote character

\\ backslash

\v vertical tab

\a alert

\? ?

\N octal constant (where N is an octal constant)
\xN hexadecimal constant (where N is a hexadecimal constant)

The Basic Data Types 45

mmmmm \/ariable Initializations

You can assign a value to a variable at the same time that it is declared by placing an
equal sign and the value after the variable name. The general form of initialization is:

type variable_name = value;
Some examples are:

char ch = 'a';
int first = 0;
float balance = 123.23F;

Although variables are frequently initialized by constants, you can initialize a variable by
using any expression valid at the time of the initialization. As you will see, initialization
plays an important role when you are working with objects.

Global variables are initialized only at the start of the program. Local variables are
initialized each time the function in which they are declared is entered. All global
variables are initialized to zero if no other initializer is specified. Local variables that are
not initialized will have unknown values before the first assignment is made to them.

Here is a simple example of variable initialization. This program uses the total()
function to compute the summation of the value that it is passed. In other words,
total() sums the digits from 1 to the value. For example, the summation of 3 is
1+ 2+ 3, or 6. In the process, total() displays a running total. Notice the use of
the sum variable in total().

// An example that uses variable initialization.

#include <iostream>
using namespace std;

void total (int x);
int main()
{
cout << "Computing summation of 5.\n";

total(5);

cout << "\nComputing summation of 6.\n";
total(6);

return 0;

}

void total (int x)

46

C++ from the Ground Up

int sum=0; // initialize sum
int i, count;

for(i=1; i<=x; 1i++) {

sum = sum + i;
for (count=0; count<1l0; count++) cout << '.';
cout << "The current sum is " << sum << '\n';

Here is the output produced by the program.

Computing summation of 5.
.......... The current sum is 1
.......... The current sum is 3
.......... The current sum is 6
.......... The current sum is 10
.......... The current sum is 15

Computing summation of 6.
.......... The current sum is 1
.......... The current sum is 3
.......... The current sum is 6
.......... The current sum is 10
.......... The current sum is 15
.......... The current sum is 21

As you can see, each time total() is called, sum is initialized to zero.

Operators

C++ is rich in built-in operators. An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations. C++ has three general classes
of operators: arithmetic, relational and logical, and bitwise. In addition, C++ has some
special operators for particular tasks. This chapter will examine the arithmetic, relational,
and logical operators, reserving the more advanced bitwise operators for later.

Arithmetic Operators

Table 3-4 lists the arithmetic operators allowed in C++. The operators +, -, *, and / all
work the same way in C++ as they do in any other computer language (or algebra, for
that matter). These can be applied to any built-in data type allowed by C++. When /
is applied to an integer or a character, any remainder will be truncated; for example,
10/3 will equal 3 in integer division.

The Basic Data Types 47

Operator Action

- subtraction, also unary minus
+ addition
* multiplication
/ division
Arithmetic % modulus
Operators - decrement
Table 3-4. ++ increment

The modulus operator % also works in C++ in the same way that it does in other
languages. Remember that the modulus operation yields the remainder of an integer
division. This means that the % cannot be used on type float or double. The following
program illustrates its use:

#include <iostream>
using namespace std;

int main()
{

int x, y;
x = 10;

cout << x/y; // will display 3

cout << "\n";

cout << x%y; /* will display 1, the remainder of
the integer division */

cout << "\n";

cout << xX/y << " " << x%y; // will display 0 1

return 0;

The reason the last line prints a 0 and 1 is because 1/2 in integer division is 0, with
a remainder of 1. Thus, 1%2 yields the remainder 1.

The unary minus, in effect, multiplies its single operand by —1. That is, any number
preceded by a minus sign switches its sign.

48

C++ from the Ground Up

Increment and Decrement

C++ has two operators not found in some other computer languages. These are the
increment and decrement operators, ++ and — —. These operators were mentioned in
passing in Chapter 2, when the for loop was introduced. The ++ operator adds 1 to
its operand, and - - subtracts 1. Therefore,

x = xX+1;

is the same as

++X;

and

X = x-1;

is the same as

--x;

Both the increment and decrement operators can either precede (prefix) or follow
(postfix) the operand. For example:

X = xX+1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied as
a prefix or a postfix. However, when an increment or decrement is used as part of a
larger expression, there is an important difference. When an increment or decrement
operator precedes its operand, C++ will perform the corresponding operation prior
to obtaining the operand’s value for use by the rest of the expression. If the operator
follows its operand, then C++ will obtain the operand’s value before incrementing or
decrementing it. Consider the following:

x = 10;
Yy = ++X;

The Basic Data Types 49

In this case, y will be set to 11. However, if the code is written as

x = 10;
Vv = X++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it
happens. There are significant advantages in being able to control when the increment
or decrement operation takes place.

Most C++ compilers create very fast, efficient object code for increment and decrement
operations that is better than the code generated when the corresponding assignment
statement is used. Therefore, it is a good idea to use increment and decrement operators
when you can.

The precedence of the arithmetic operators is shown here:

highest ++ ——
— (unary minus)
*/ %

lowest + -

Operators on the same precedence level are evaluated by the compiler from left to right.
Of course, parentheses may be used to alter the order of evaluation. Parentheses are
treated by C++ in the same way that they are by virtually all other computer languages:
They force an operation, or a set of operations, to have a higher precedence level.

How C++ Got Its Name

Now that you understand the full meaning behind the ++ operator, you can probably
guess how C++ got its name. As you know, C++ is built upon the C language. C++
adds several enhancements to C, most of which support object-oriented programming.
Thus, C++ represents an incremental improvement to C, making the addition of the ++
(the increment operator) to the name C a fitting name for C++.

Bjarne Stroustrup initially named C++ “C with Classes.” However, at the suggestion

of Rick Mascitti, Stroustrup later changed the name to C++. While the new language
was already destined for success, the adoption of the name C++ virtually guaranteed
its place in history because it was a name that every C programmer would instantly

recognize!

50

The Relational
and Logical
Operators

in C++

Table 3-5.

C++ from the Ground Up

Relational and Logical Operators

In the terms relational operator and logical operator, relational refers to the relationships
that values can have with one another, and logical refers to the ways in which true
and false values can be connected together. Since the relational operators produce
true or false results, they often work with the logical operators. For this reason, these
operators will be discussed together here.

The relational and logical operators are shown in Table 3-5. Notice that in C++, not
equal is represented by != and equal is represented by the double equal sign, ==. In
Standard C++, the outcome of a relational or logical expression produces a bool result.
That is, the outcome of a relational or logical expression is either true or false. For
older compilers, the outcome of a relational or logical expression will be an integer value
of either O or 1. This difference is mostly academic, though, because C++ automatically
converts true into 1 and false into 0, and vice versa.

The operands for a relational operator can be of nearly any type, as long as they can
be compared. The operands to the logical operators must produce a true or false result.
Because any non-zero value is true and zero is false, the logical operators can be used
with any expression that evaluates to a zero or non-zero result.

Relational Operators

Operator Meaning

> greater than

>= greater than or equal to
< less than

<= less than or equal to

== equal to

I= not equal to

Logical Operators

Operator Meaning
&& AND

Il OR

! NOT

The Basic Data Types 51

Remember, in C++, The logical operators are used to support the basic logical operations AND, OR, and

any non-zerovalue - NOT, according to the following truth table. The table uses 1 for true and O for false.
is true. Zero is

false.
P q p AND q pORq NOT p
0 0 0 0 1
0 1 0 1 1
1 1 1 1 0
1 0 0 1 0

Although C++ does not contain a built-in exclusive-OR (XOR) logical operator, it is
easy to construct one. The XOR operation uses this truth table:

p q XOR
0 0 0
0 1 1
1 0 1
1 1 0

In words, the XOR operation produces a true result when one, and only one, operand
is true. The following function uses the && and || operators to construct an XOR
operation. The result is returned by the function.

bool xor (bool a, bool b)
{

return (a || b) && !(a && b);
}

The following program uses this function. It displays the results of an AND, OR, and
XOR on the values you enter. (Remember, one will be treated as true and zero is false.)

// This program demonstrates the xor () function.
#include <iostream>
using namespace std;

bool xor (bool a, bool b);

int main()
{
bool p, q;

cout << "Enter P (0 or 1): ";
cin >> p;
cout << "Enter Q (0 or 1): ";
cin >> q;

C++ from the Ground Up

cout << "P AND Q: " << (p && g) << '\n';
cout << "P OR Q: " << (p || @) << '\n';
cout << "P XOR Q: " << xor(p, g) << '\n';
return 0;

}

bool xor (bool a, bool b)
{

return (a || b) && !(a && b);
}

Here is a sample run produced by the program:

Enter P (0 or 1): 1
Enter Q (0 or 1): 1

P AND Q: 1
P OR Q: 1
P XOR Q: 0

In the program, notice that although the parameters to xor() are specified as type
bool, integer values are entered by the user. As was just explained, this is allowed
because C++ automatically converts 1 values into true and O into false. When the
bool return value of xor() is output, it is automatically converted into either 1 or O,
depending upon whether the outcome of the operation is true or false. As a point of
interest, it is also possible to specify the return type and parameters of xor() as int,
and the function would work exactly the same. Again, this is because of C++'s automatic
conversions between integer values and Boolean values.

Both the relational and logical operators are lower in precedence than the arithmetic
operators. This means that an expression like 10 > 1+12 is evaluated as if it were
written 10 > (1+12). The result is, of course, false. Also, the parentheses surrounding
p && q and p Il q in the preceding program are necessary because the && and |1
operators are lower in precedence than the output operator.

You can link any number of relational operations together by using logical operators.
For example, this expression joins three relational operations:

var>15 || ! (1l0<count) && 3<=item

The following table shows the relative precedence of the relational and logical operators:

highest !

> >= < <=

lowest [l

The Basic Data Types 53

Emm— Expressions

Operators, literals, and variables are constituents of expressions. You probably already
know the general form of expressions from your other programming experience or
from algebra. However, there are a few aspects of expressions that relate specifically
to C++; these will be discussed now.

Type Conversion in Expressions

When literals and variables of different types are mixed in an expression, they are
converted to the same type. First, all char and short int values are automatically
elevated to int. This process is called integral promotion. Next, all operands are converted
"up" to the type of the largest operand. This is called type promotion, and is done on

an operation-by-operation basis. For example, if one operand is a int and the other

a long int, then the int is promoted to long int. Or, if either operand is a double,
the other operand is promoted to double. This means that conversions such as that
from a char to a double are perfectly valid. Once a conversion has been applied,
each pair of operands will be of the same type, and the result of each operation will
be the same as the type of both operands.

For example, consider the type conversions that occur in Figure 3-1. First, the character ch
is promoted to int. Then the outcome of ch/i is converted to a double because f*d is a
double. The final result is double because, by this time, both operands are double.

Converting to and from bool

As mentioned earlier, values of type bool are automatically converted into the integers
0 or 1 when used in an integer expression. When an integer result is converted to type
bool, 0 becomes false and a non-zero value becomes true. Although bool is a fairly

char ch;
inti;
float f;
double d;

result = (ch/i) + (f*d - (f+i)

! .

int double float

vvooow v

int double float
A type double
conversion
example
Figure 3-1. double

54

C++ from the Ground Up

recent addition to C++, the automatic conversions to and from integers mean that it
has virtually no impact on older code. Furthermore, the automatic conversions allow
C++ to maintain its original definition of true and false as zero and non-zero. Thus,
bool is mostly a convenience to the programmer.

Casts

It is possible to force an expression to be of a specific type by using a construct called
a cast. C++ defines five types of casts. Four allow detailed and sophisticated control
over casting, and are described later in this book after objects have been explained.
However, there is one type of cast that you can use now. It is C++'s most general cast
because it can be used to transform any type into any other type. It was also the only
type of cast that early versions of C++ supported. The general form of this cast is

(type) expression

where type is the target type into which you want to convert the expression. For example,
if you want to make sure the expression x/2 is evaluated to type float, you can write

(float) x / 2

Casts are often considered operators. As an operator, a cast is unary and has the same
precedence as any other unary operator.

There are times when a cast can be very useful. For example, you may want to use
an integer for loop control, but also perform a computation on it that requires a
fractional part, as in the program shown here:

#include <iostream>
using namespace std;

int main() // print i and i/2 with fractions

{

int 1i;

for(i=1; 1<=100; ++1i)
cout << i << "/ 2 is: " << (float) i / 2 << '\n';

return O;

}

Without the cast (float) in this example, only an integer division would be performed.
The cast ensures that the fractional part of the answer will be displayed on the screen.

The Basic Data Types 55

Spacing and Parentheses

An expression in C++ may have tabs and spaces in it to make it more readable. For
example, the following two expressions are the same, but the second is easier to read:

x=10/y*(127/x) ;

x =10 / y * (127/x);

Use of redundant or additional parentheses will not cause errors or slow down the 3
execution of the expression. You are encouraged to use parentheses to make clear the
exact order of evaluation, both for yourself and for others who may have to figure

out your program later. For example, which of the following two expressions is easier

to read?

x = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127;

This page intentionally left blank

CHAPTER 4

Program Control
Statements

57

58

if selects between
two paths of
execution.

C++ from the Ground Up

In this chapter you will learn about the statements that control a program’s flow of
execution. There are three specific categories of program control statements: selection
statements, which include the if and the switch,; iteration statements, which include
the for, while, and do-while loops; and jump statements, which include break,
continue, return, and goto. (However, a discussion of the return statement is
deferred until later in this book.)

This chapter begins with a thorough examination of the if and for statements, to
which you have already had a brief introduction in Chapter 2. It then discusses the
other program control statements.

The if Statement

Chapter 2 introduced the if statement. Now it is time to examine it in detail. The
complete form of the if statement is

if(expression) statement;
else statement;

where the targets of the if and else are single statements. The else clause is optional.
The targets of both the if and else can be blocks of statements. The general form of
the if using blocks of statements is

if(expression)
{
statement sequence
}
else
{

statement sequence

}

If the conditional expression is true, the target of the if will be executed; otherwise, if
it exists, the target of the else will be executed. At no time will both of them be executed.
The conditional expression controlling the if may be any type of valid C++ expression
that produces a true or false result.

The following program demonstrates the if by playing a simple version of the "guess
the magic number" game. The program generates a random number, prompts for your
guess, and prints the message ** Right ** if you guess the magic number. This program
also introduces another standard C++ library function, called rand(), which returns a
randomly selected integer value. It requires the header called <cstdlib>.

// Magic Number program.
#include <iostream>
#include <cstdlib>
using namespace std;

int main()

{

Program Control Statements 59

int magic; // magic number
int guess; // user's guess

magic = rand(); // get a random number

cout << "Enter your guess: ";
cin >> guess;

if (guess == magic) cout << "** Right **";

return 0;

This program uses the relational operator == to determine whether the guess matches
the magic number. If it does, the message is printed on the screen.

Taking the Magic Number program further, the next version uses the else to print a
message when the wrong number is picked.

// Magic Number program: lst improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()

{

int magic; // magic number
int guess; // user's guess
magic = rand(); // get a random number

cout << "Enter your guess: ";
cin >> guess;

if (guess == magic) cout << "** Right **";
else cout << "...Sorry, you're wrong.";
return 0;

The Conditional Expression

Sometimes newcomers to C++ are confused by the fact that any valid C++ expression
can be used to control the if. That is, the type of expression need not be restricted to
only those involving the relational and logical operators or to operands of type bool.
All that is required is that the controlling expression evaluate to either a true or false
result. As you should recall from the previous chapter, a value of zero is automatically
converted into false, and all non-zero values are converted to true. Thus, any expression
that results in a zero or non-zero value can be used to control the if. For example, the
following program reads two integers from the keyboard and displays the quotient.

60

A nested if is an
if statement that
is the target of
either another if
or an else

C++ from the Ground Up

In order to avoid a divide-by-zero error, an if statement, controlled by the second
number, is used.

// Divide the first number by the second.

#include <iostream>
using namespace std;

int main()
{

int a, b;

cout << "Enter two numbers: ";
cin >> a >> b;

if(b) cout << a/b << '\n';
else cout << "Cannot divide by zero.\n";

return 0;

Notice that b (the divisor) is tested for zero by using if(b). This approach works
because when b is zero, the condition controlling the if is false and the else executes.
Otherwise, the condition is true (non-zero) and the division takes place. It is not
necessary (and would be considered bad style by most C++ programmers) to write this
if as shown here:

if(b !'= 0) cout << a/b << '\n';

This form of the statement is redundant and potentially inefficient.

Nested ifs

A nested if is an if statement that is the target of another if or an else. Nested ifs are
very common in programming. The main thing to remember about nested ifs in C++
is that an else statement always refers to the nearest if statement that is within the
same block as the else and not already associated with an else. Here is an example:

if (i) |

if(j) statementl;

if (k) statement2; // this if

else statement3; // is associated with this else
}

else statement4; // associated with if (i)

As the comments indicate, the final else is not associated with if(j) (even though it is
the closest if without an else), because it is not in the same block. Rather, the final
else is associated with if(i). The inner else is associated with if(k) because that is the
nearest if.

C++ allows at least 256 levels of nesting. In practice, you will seldom need to nest if
statements this deeply.

Program Control Statements 61

We can use a nested if to add a further improvement to the Magic Number program.
This addition provides the player with feedback about a wrong guess.

// Magic Number program: 2nd improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int magic; // magic number
int guess; // user's guess
magic = rand(); // get a random number

cout << "Enter your guess: ";
cin >> guess;

if (guess == magic) {

cout << "** Right **\n";

cout << magic << " is the magic number.\n";
}
else {

cout << "...Sorry, you're wrong.";

// use a nested if statement
if (guess > magic)

cout <<" Your guess is too high.\n";
else

cout << " Your guess is too low.\n";

return 0;

The if-else-if Ladder

A common programming construct that is based upon nested ifs is the if-else-if
ladder. It looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

else
statement;

62

An if-else-if
ladder is a series
of nested if/else
statements.

The for is C++'s
most versatile loop.

C++ from the Ground Up

The conditional expressions are evaluated from the top downward. As soon as a true
condition is found, the statement associated with it is executed, and the rest of the
ladder is bypassed. If none of the conditions is true, then the final else statement
will be executed. The final else often acts as a default condition; that is, if all other
conditional tests fail, then the last else statement is performed. If there is no final
else and all other conditions are false, then no action will take place.

The following program demonstrates the if-else-if ladder.

// Demonstrate an if-else-if ladder.
#include <iostream>
using namespace std;

int main()
{

int x;

for(x=0; x<6; x++) {
if (x==1) cout << "x is one\n";
else if(x==2) cout << "x is two\n";
else if(x==3) cout << "x is three\n";
else if(x==4) cout << "x is four\n";
else cout << "x is not between 1 and 4\n";

}

return 0;

The program produces the following output:

is not between 1 and 4
is one

is two

is three

is four

is not between 1 and 4

LI A

As you can see, the default else is executed only if none of the preceding if
statements succeed.

The for Loop

You were introduced to a simple form of the for loop in Chapter 2. You might be
surprised just how powerful and flexible the for loop is. Let’s begin by reviewing the
basics, starting with the most traditional forms of the for loop.

The general form of the for loop for repeating a single statement is

for(initialization; expression; increment) statement;

Program Control Statements 63

For repeating a block, the general form is

for(initialization; expression; increment)

statement sequence

}

The initialization is usually an assignment statement that sets the initial value of the
loop control variable, which acts as the counter that controls the loop. The expression is
a conditional expression that determines whether or not the loop will repeat. The
increment defines the amount by which the loop control variable will change each
time the loop is repeated. Notice that these three major sections of the loop must be
separated by semicolons. The for loop will continue to execute as long as the conditional
expression tests true. Once the condition becomes false, the loop will exit, and program
execution will resume on the statement following the for block.

The following program uses a for loop to print the square roots of the numbers between
1 and 99. Notice that in this example, the loop control variable is called num.

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
int num;
double sg_root;

for (num=1; num < 100; num++) {

sg_root = sqgrt((double) num);

cout << num << " " << sg _root << '\n';
}
return 0;

Here are the first few lines of output displayed by the program:

.41421
.73205

.23607
.44949
.64575
.82843

W N NDNDNDDNDERE R

1
2
3
4
5
6
7
8
9
1

0 3.16228

64

C++ from the Ground Up

This program introduces another of C++’s standard functions: sqrt(). The sqrt()
function returns the square root of its argument. The argument must be of type
double and this is why num is cast to double when sqrt() is called. The function
returns a value of type double. Notice that the header <cmath> has been included.
This file is needed to support the sqrt() function.

TIP: In addition to sqrt(), C++ supports an extensive set of mathematical library
functions. For example, sin(), cos(), tan(), log(), ceil(), and floor() are a few.
If mathematical programming is your interest, you will want to explore the C++ math
functions. Remember, they all require the header <cmath>.

The for loop can proceed in a positive or negative fashion, and it can increment the
loop control variable by any amount. For example, the following program prints the
numbers 100 to —-100, in decrements of 5.

#include <iostream>
using namespace std;

int main()
{

int 1i;
for(i=100; i >= -100; 1 = i-5) cout << i << ' ';

return 0;

}

An important point about for loops is that the conditional expression is always tested
at the top of the loop. This means that the code inside the loop may not be executed at
all if the condition is false to begin with. Here is an example:

for (count=10; count < 5; count++)
cout << count; // this statement will not execute

This loop will never execute, because its control variable, count, is greater than 5
when the loop is first entered. This makes the conditional expression, count<S5, false
from the outset; thus, not even one iteration of the loop will occur.

Some Variations on the for Loop

The for is one of the most versatile statements in the C++ language because it allows
a wide range of variations from its traditional use. For example, multiple loop control
variables can be used. Consider the following fragment of code:

for(x=0, y=10; x<=10; ++x, --Y)
cout << x << ' ' << y << '\n';

Program Control Statements 65

Here, commas separate the two initialization statements and the two increment
expressions. This is necessary in order for the compiler to understand that there are
two initialization and two increment statements. In C++, the comma is an operator
that essentially means “do this and this.” We will look at other uses for the comma
operator later in this book, but its most common use is in the for loop. You can have
any number of initialization and increment statements, but in practice, more than
two or three make the for loop unwieldy.

The condition controlling the loop may be any valid C++ expression. It does not need

to involve the loop control variable. In the next example, the loop continues to execute

until the user presses a key at the keyboard. The example also introduces an important
library function: kbhit(). This function returns false if no key has been pressed or

true if a key has been struck. It does not wait for a keypress, thus allowing the loop to 4
continue execution. The kbhit() function is not defined by Standard C++, but is a
common extension that is provided by most compilers. It uses the header file conio.h.

(This header must be supplied using the .h extension, as shown below, since it is not
defined by Standard C++.)

#include <iostream>
#include <conio.h>
using namespace std;

int main()
{

int 1i;

// print numbers until a key is pressed
for(i=0; !kbhit(); i++) cout << i << ' ';

return 0;

}

Each time through the loop, kbhit() is called. If a key has been pressed, then a true
value is returned, which causes !kbhit() to be false, so the loop stops. However, if no
key has been pressed, kbhit() returns false, and !kbhit() is true, allowing the loop
to continue.

TIP: The kbhit() function is not part of the C++ standard library. This is
because the C++ standard library defines only a minimum set of functions that all
C++ compilers must have. kbhit() is not included in this minimal set, because not
all environments can support keyboard interactivity. However, kbhit() is supported
by virtually all mainstream C++ compilers, although it might be called something
slightly different. A compiler manufacturer is free—in fact, encouraged—to provide
more library functions than are required to meet the minimum requirements of the
standard C++ library. These extra functions are included so that you can fully access
and utilize your programming environment. You should feel free to use all the functions
supplied by your compiler unless portability to another environment is an issue.

66

An infinite loop is
a loop that never
terminates

C++ from the Ground Up

Missing Pieces

Another aspect of the for loop that is different in C++ than in many computer
languages is that pieces of the loop definition need not be there. For example, if you
want to write a loop that runs until the number 123 is typed in at the keyboard, it
could look like this:

#include <iostream>
using namespace std;

int main()
{

int x;

for(x=0; x != 123;) {
cout << "Enter a number: ";
cin >> x;

}

return 0;

The increment portion of the for definition is blank. This means that each time the
loop repeats, x is tested to see whether it equals 123, but no further action takes place.
If, however, you type 123 at the keyboard, the loop condition becomes false and the
loop exits. The C++ for loop will not modify the loop control variable if no increment
portion of the loop is present.

Another variation on the for is to move the initialization section outside of the loop,
as shown in this fragment:

cout << "Enter position: ";
cin >> x;

for(; x < limit; x++) cout << ' ';

Here, the initialization section has been left blank, and x is initialized by a value
entered by the user before the loop is entered .

Placing the initialization outside of the loop is generally done only when the initial
value is derived through a process that does not lend itself to containment within the
for statement, such as when the variable is set by keyboard input. Another situation
in which the initialization portion of the for might be empty is when you control the
loop with a function parameter, using the value the parameter receives when the
function is called as the starting point.

The Infinite Loop

You can create an infinite loop (a loop that never terminates) by using this for construct:

for(;;)

{

Program Control Statements 67

switch is C++'s
multiway decision
statement.

VA

This loop will run forever. Although there are some programming tasks, such as operating
system command processors, that require an infinite loop, most "infinite loops" are
really just loops with special termination requirements. Near the end of this chapter,
you will see how to halt a loop of this type. (Hint: it’s done using the break statement.)

Time Delay Loops

Time delay loops are often used in programs. These are loops that have no other
purpose than to kill time. Delay loops can be created by specifying an empty target
statement. For example:

for (x=0; x<1000; x++) ;

This loop increments x one thousand times, but does nothing else. The semicolon
that terminates the line is necessary because the for expects a statement, which can
be empty.

Before moving on, you might want to experiment with your own variations on the
for loop. As you will find, it is a fascinating loop.

The switch Statement

Before looking at C++’s other loop constructs, let’s examine its other selection statement:
the switch. Although a series of nested if statements can perform multiway tests, for
many situations, a more efficient approach can be used. C++ has a built-in multiple-
branch decision statement called switch. It works like this: the value of an expression
is successively tested against a list of integer or character constants. When a match is
found, the statement sequence associated with that match is executed. The general
form of the switch statement is

switch(expression) {
case constantl:
statement sequence
break;
case constant2:
statement sequence
break;
case constant3:
statement sequence
break;

default:
statement sequence

638

break stops the
execution of code
within a switch.

The default
statements are
executed if no
case constant
matches the

switch expression.

C++ from the Ground Up

The switch expression must evaluate to either a character or an integer value.
(Floating-point expressions, for example, are not allowed.) Frequently, the expression
controlling the switch is simply a variable.

The default statement sequence is performed if no matches are found. The default is
optional; if it is not present, no action takes place if all matches fail. When a match
is found, the statements associated with that case are executed until the break is
encountered or, in the case of the default or the last case, the end of the switch
is reached.

There are four important things to know about the switch statement:

€ The switch differs from the if in that switch can test only for equality (i.e., for
matches between the switch expression and the case constants), whereas the if
conditional expression can be of any type.

€ No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch may have case constants in
common.

€ A switch statement is usually more efficient than nested ifs.

€ The statement sequences associated with each case are not blocks. However, the
entire switch statement does define a block. The importance of this will become
apparent as you learn more about C++.

Standard C++ specifies that a switch can have at least 16,384 case statements. In
practice, you will want to limit the number of case statements to a much smaller
total, for reasons of efficiency.

The following program demonstrates the switch. It creates a simple "help" system
that describes the meaning of the for, if, and switch statements. It displays the help
topics and then waits for the user to enter his or her choice. This choice is then used
by the switch to display information about the requested topic. (You might find it
fun to expand the information in this program. You can also add new topics as you
learn about them.)

// Demonstrate the switch using a simple "help" program.
#include <iostream>
using namespace std;

int main()
{

int choice;

cout << "Help on:\n\n";
cout << "1. for\n";
cout << "2. if\n";
cout << "3. switch\n\n";

cout << "Enter choice (1-3): ";
cin >> choice;
cout << "\n";

Program Control Statements 69

switch(choice) ({

case 1:
cout << "for is C++'s most versatile loop.\n";
break;

case 2:
cout << "if is C++'s conditional branch statement.\n";
break;

case 3:
cout << "switch is C++'s multiway branch statement.\n";
break;

default:
cout << "You must enter a number between 1 and 3.\n";

return 0;

Here is a sample run:

Help on:
1. for
2. if

3. switch
Enter choice (1-3): 2

if is C++'s conditional branch statement.

Technically, the break statement is optional, although most applications of the
switch will use it. When encountered within the statement sequence of a case, the
break statement causes program flow to exit from the entire switch statement and
resume at the next statement outside the switch. However, if a break statement
does not end the statement sequence associated with a case, then all the statements
at and below the matching case will be executed until a break (or the end of the
switch) is encountered.

For example, study the following program carefully. Can you figure out what it will
display on the screen?

#include <iostream>
using namespace std;

int main()
{

int 1i;

for (i=0; i<5; i++) {
switch(i) {
case 0: cout << "less than 1\n";
case 1l: cout << "less than 2\n";
case 2: cout << "less than 3\n";

70

C++ from the Ground Up

case 3: cout << "less than 4\n";
case 4: cout << "less than 5\n";
}

cout << '\n';

return 0;

This program displays the following output:

less than
less than
less than
less than
less than

U W N

less than
less than
less than
less than

urs W N

w

less than
less than
less than 5

IS

less than 4
less than 5

less than 5

As this program illustrates, execution will continue into the next case if no break
statement is present.

You can have empty cases, as shown in this example:

switch(i) {
case 1:
case 2:
case 3: do_something() ;
break;
case 4: do_something_else();
break;

In this fragment, if i has the value 1, 2, or 3, then do_something() is called. If i has
the value 4, then do_something_else() is called. The "stacking" of cases, as shown
in this example, is very common when several cases share common code.

Program Control Statements 71

while is another
of C++’s loop
statements.

Nested switch Statements

It is possible to have a switch as part of the statement sequence of an outer switch.
Even if the case constants of the inner and outer switch contain common values, no
conflicts will arise. For example, the following code fragment is perfectly acceptable:

switch(chl) {
case 'A': cout << "This A is part of outer switch";
switch(ch2) {
case 'A':
cout << "This A is part of inner switch";
break;
case 'B': //
}
break;
case 'B': //

C++ specifies that at least 256 levels of nesting be allowed for switch statements.
Frankly, few programs ever require anywhere near 256 levels of nesting.

The while Loop

Another loop is the while. The general form of the while loop is
while(expression) statement;

where statement may be a single statement or a block of statements. The expression
defines the condition that controls the loop, and it may be any valid expression. The
statement is performed while the condition is true. When the condition becomes false,
program control passes to the line immediately following the loop.

The next program illustrates the while in a short but sometimes fascinating program.
Virtually all computers support an extended character set beyond that defined by ASCII.
The extended characters, if they exist, often include special characters such as foreign
language symbols and scientific notations. The ASCII characters use values that are
less than 128. The extended character set begins at 128 and continues to 255. This
program prints all characters between 32 (which is a space) and 255. When you run
this program, you will most likely see some very interesting characters.

/* This program displays all printable characters,
including the extended character set, if one exists.
*/

#include <iostream>
using namespace std;

int main()
{

unsigned char ch;

72

C++ from the Ground Up

ch = 32;

while(ch) {
cout << ch;
ch++;

}

return 0;

Examine the loop expression in the preceding program. You might be wondering why
only ch is used to control the while. The answer is quite easy. Since ch is an unsigned
character, it can only hold the values 0 through 255. When it holds the value 255 and
is then incremented, its value will "wrap around" to zero. Therefore, the test for ch
being zero serves as a convenient stopping condition.

As with the for loop, the while checks the conditional expression at the top of the
loop, which means that the loop code may not execute at all. This eliminates the
need for performing a separate test before the loop. The following program illustrates
this characteristic of the while loop. It displays a line of periods. The number of
periods displayed is equal to the value entered by the user. The program does not
allow lines longer than 80 characters. The test for a permissible number of periods is
performed inside the loop’s conditional expression, not outside of it.

#include <iostream>
using namespace std;

int main()
{

int len;

cout << "Enter length (1 to 79): ";
cin >> len;

while(len>0 && len<80) {
cout << '.';
len--;

}

return 0;

There need not be any statements at all in the body of the while loop. Here is
an example:

while(rand() != 100) ;

This loop iterates until the random number generated by rand() equals 100.

Program Control Statements 73

The do-while is
the only loop that
will always iterate
at least once.

The do-while Loop

Unlike the for and the while loops, in which the condition is tested at the top of the
loop, the do-while loop checks its condition at the bottom of the loop. This means
that a do-while loop will always execute at least once. The general form of the
do-while loop is

do {
statements;
} while(expression);

Although the braces are not necessary when only one statement is present, they are
often used to improve readability of the do-while construct, thus preventing
confusion with the while. The do-while loop executes as long as the conditional
expression is true.

The following program loops until the number 100 is entered.

#include <iostream>
using namespace std;

int main()
{

int num;

do {
cout << "Enter a number (100 to stop): ";
cin >> num;

} while(num != 100);

return 0;

Using a do-while loop, we can further improve the Magic Number program. This time,
the program loops until you guess the number.

// Magic Number program: 3rd improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()

{
int magic; // magic number
int guess; // user's guess

magic = rand(); // get a random number

do {

74

continue
immediately
causes the next
iteration of a loop.

C++ from the Ground Up

cout << "Enter your guess: ";
cin >> guess;

if (guess == magic) {

cout << "** Right ** ";

cout << magic << " is the magic number.\n";
}
else {

cout << "...Sorry, you're wrong.";

if (guess > magic)

cout << " Your guess is too high.\n";
else

cout << " Your guess is too low.\n";

}

} while(guess != magic);

return 0;

Using continue

It is possible to force an early iteration of a loop, bypassing the loop’s normal control
structure. This is accomplished by using continue. The continue statement forces
the next iteration of the loop to take place, skipping any code between itself and the
conditional expression that controls the loop. For example, the following program
prints the even numbers between 0 and 100:

#include <iostream>
using namespace std;

int main()
{

int x;

for (x=0; x<=100; x++) {
if (x%2) continue;
cout << x << ' ';

}

return 0;

Only even numbers are printed, because an odd one will cause the loop to iterate early,
bypassing the cout statement.

In while and do-while loops, a continue statement will cause control to go directly
to the conditional expression and then continue the looping process. In the case of
the for, the increment part of the loop is performed, next the conditional expression
is executed, and then the loop continues.

Program Control Statements 75

s Using break to Exit Loops

break causes It is possible to force an immediate exit from a loop, bypassing the loop’s conditional
immediate test, by using the break statement. When the break statement is encountered inside
tir mination a loop, the loop is immediately terminated, and program control resumes at the next

of a loop.

statement following the loop. Here is a simple example:

#include <iostream>
using namespace std;

int main()
{

int t;

// Loops from 0 to 9, not to 100!
for(t=0; t<100; t++) {

if (t==10) break;

cout << t << ' ';

}

return 0;

This program will print the numbers O through 9 on the screen before ending. It will
not go to 100, because the break statement will cause it to terminate early.

The break statement is commonly used in loops in which a special condition can
cause immediate termination. The following fragment contains an example of such
a situation, where a keypress can stop the execution of the loop:

for(i=0; 1i<1000; i++) {
// do something
if (kbhit()) break;

A break will cause an exit from only the innermost loop. Here is an example:

#include <iostream>
using namespace std;

int main()
{

int t, count;

for (t=0; t<100; t++) {
count = 1;
for(;;) |
cout << count << ' ';
count++;
if (count==10) break;

76

C++ from the Ground Up

cout << '\n';

}

return 0;

}

This program will print the numbers 1 through 9 on the screen 100 times. Each time
the break is encountered, control is passed back to the outer for loop.

NOT E: A break used in a switch statement will affect only that switch, and
not any loop the switch happens to be in.

As you have seen, it is possible to create an infinite loop in C++ by using the for
statement. (You can also create infinite loops by using the while and the do-while,
but the for is the traditional method.) In order to exit from an infinite loop, you
must use the break statement. Of course, you can also use break to terminate a
non-infinite loop.

Nested Loops

As you have seen in some of the preceding examples, one loop can be nested inside of
another. C++ allows at least 256 levels of nesting. Nested loops are used to solve a wide
variety of programming problems. For example, the following program uses a nested
for loop to find the prime numbers from 2 to 1000:

/* This program finds the prime numbers from
2 to 1000.
*/

#include <iostream>
using namespace std;

int main()
{

int i, 3;

for(i=2; i<1000; i++) {
for(j=2; j <= (i/3); J++)
if(!(i%j)) break; // if factor found, not prime
if(j > (i/3J)) cout << i << " is prime\n";

}

return 0;

Program Control Statements 77

goto is C++'s
unconditional
branch
statement.

A label is an
identifier
followed by
a colon.

This program determines if the number contained in i is prime by successively
dividing it by the values between 2 and the result of i / j. (You can stop at the value
of i / j because a number that is larger than i / j cannot be a factor of i.) If any
division is even, the number is not prime. However, if the loop completes, the
number is, indeed, prime.

Using the goto Statement

The goto statement fell out of favor with programmers many years ago because it
encouraged the creation of "spaghetti code." However, it is still occasionally—and
sometimes effectively—used. This book will not make a judgment regarding its
validity as a form of program control. It should be stated, however, that there are no
programming situations that require the use of the goto statement—it is not an item
necessary for making the language complete. Rather, it is a convenience that, if used
wisely, can be of benefit in certain programming situations. As such, the goto is not
used in this book outside of this section. The chief concern most programmers have
about the goto is its tendency to clutter a program and render it nearly unreadable.
However, there are times when the use of the goto will actually clarify program flow
rather than confuse it.

The goto requires a label for operation. A label is a valid C++ identifier followed by

a colon. Furthermore, the label must be in the same function as the goto that uses it.
For example, a loop from 1 to 100 could be written using a goto and a label, as
shown here:

x = 1;
loopl:
X++;
if(x < 100) goto loopl;

One good use for the goto is to exit from a deeply nested routine. For example,
consider the following code fragment:

for(...) {
while(...) {
if(...) goto stop;

for(...) {
(.

}
}
stop:
cout << "Error in program.\n";

Eliminating the goto would force a number of additional tests to be performed.
A simple break statement would not work here, because it would only cause the
program to exit from the innermost loop.

78

C++ from the Ground Up

TIP: You should use the goto sparingly. But if your code would otherwise be
much more difficult to read, or if execution speed of the code is critical, then by all
means use the goto.

Putting Together the Pieces

This next example shows the final version of the Magic Number game. It uses many
of the concepts that were presented in this chapter, and you should make sure that
you understand all of its elements before you go on to the next chapter. The program
allows you to generate a new number, to play the game, and to quit.

// Magic Number program: Final improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

void play(int m);

int main()

{
int option;
int magic;

magic = rand();

do {
cout << "1l. Get a new magic number\n";
cout << "2. Play\n";
cout << "3. Quit\n";
do {
cout << "Enter your choice: ";
cin >> option;
} while(option<l || option>3);

switch (option) ({
case 1:
magic = rand();
break;
case 2:
play (magic) ;
break;
case 3:
cout << "Goodbye\n";
break;
}
} while(option!=3);

Program Control Statements

return 0;

// Play the game.
void play (int m)
{

int t, x;

for(t=0; t < 100; t++) {
cout << "Guess the number: ";
cin >> x;

if(x == m) {
cout << "** Right **\n";
return;

}

else

if(x < m) cout << "Too low.\n";
else cout << "Too high.\n";
}

cout << "You've used up all your guesses.

Try again.

\n";

79

This page intentionally left blank

CHAPTER 5

Ji

-
o '__J,-, Arrays and Strings

e

-

|

! 8l ; ;'IE ! 81

82

An index identifies
a specific element
within an array.

C++ from the Ground Up

his chapter discusses the array. An array is a collection of variables of the same

type that are referred to by a common name. In C++, arrays may have from one
to several dimensions, although the one-dimensional array is the most common.
Arrays offer a convenient means of grouping together several related variables.

The array that you will probably use most often is the character array because it is
used to hold strings. As explained earlier, the C++ language does not define a built-in
string data type. Instead, strings are implemented as arrays of characters. This approach
to strings allows greater power and flexibility than are available in languages that use
a distinct string type.

One-Dimensional Arrays

A one-dimensional array is a list of related variables. The general form of a one-
dimensional array declaration is

type var_namelsize];

Here, type declares the base type of the array. The base type determines the data type
of each element that comprises the array. size defines how many elements the array
will hold. For example, the following declares an integer array named sample that
is ten elements long:

int sample[10];

An individual element within an array is accessed by use of an index. An index
describes the position of an element within an array. In C++, all arrays have zero
as the index of their first element. Because sample has ten elements, it has index
values of 0 through 9. You access an array element by indexing the array, using
the number of the element you are seeking. To index an array, specify the number
of the element you want, surrounded by square brackets. Thus, the first element
in sample is sample[0], and the last element is sample[9]. For example, the
following program loads sample with the numbers O through 9:

#include <iostream>
using namespace std;

int main()

{
int sample[10]; // this reserves 10 integer elements
int t;

// load the array
for (t=0; t<10; ++t) samplel[t]=t;

// display the array
for(t=0; t<10; ++t) cout << samplel[t] << ' ';

return 0;

Arrays and Strings 83

In C++, all arrays consist of contiguous memory locations. (That is, the array elements
reside next to each other in memory.) The lowest address corresponds to the first element,
and the highest address to the last element. For example, after this fragment is run,

int i[771;
int j;

for (3=0; j<7; Jj++) il[J] = 3;

i looks like this:

i[0] i[1] i[2] i[3] i[4] i[5] il6]

0 1 B 3 4 5 6

For a one-dimensional array, the total size of an array in bytes is computed as
shown here:

total bytes = number of bytes in type x number of elements

Arrays are common in programming because they let you deal easily with large
numbers of related variables. For example, the following program creates an array
of ten elements, assigns each element a random value, and then displays the
minimum and maximum values.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()

{
int i, min_value, max_value;
int 1ist[10];

for(i=0; 1<10; i++) list[i] = rand();
// find minimum value
min_value = 1list[0];
for (i=1; i<10; i++)
if (min_value > list[i]) min_value = list[i];

cout << "minimum value: " << min_value << '\n';

// find maximum value

max_value = 1ist[0];
for(i=1; 1<10; 1i++)

if (max_value < list[i]) max_value = list[i];
cout << "maximum value: " << max_value << '\n';

return 0;

84

C++ from the Ground Up

In C++, you cannot assign one array to another. For example, the following is illegal:
int a[10], b[10];
/...

a =b; // error -- illegal

To transfer the contents of one array into another, you must assign each value
individually.

No Bounds Checking

C++ performs no bounds checking on arrays; nothing stops you from overrunning the
end of an array. If this happens during an assignment operation, you will be assigning
values to some other variable’s data, or even into a piece of the program’s code. In
other words, you can index an array of size N beyond N without causing any compile-
or run-time error messages, even though doing so will probably cause your program to
crash. As the programmer, it is your job both to ensure that all arrays are large enough
to hold what the program will put in them and to provide bounds checking whenever
necessary.

For example, C++ will compile and run the following program even though the array
crash is being overrun.

CAUTION: Do not try the following example. It might crash your system!

// An incorrect program. Do Not Execute!

int main()
{

int crash[10], 1i;
for(i=0; i<100; i++) crash[i] = i; // Error! array overrun

return 1;

}

In this case, the loop will iterate 100 times, even though crash is only ten elements
long! This might cause important information to be overwritten, resulting in
a program failure.

You might be wondering why C++ does not provide boundary checks on arrays. The
answer is that C++ was designed to give professional programmers the capability to
create the fastest, most efficient code possible. Towards this end, virtually no run-time
error checking is included because it slows (often dramatically) the execution of

Arrays and Strings 85

a program. Instead, C++ expects you, the programmer, to be responsible enough to
prevent array overruns in the first place and to add appropriate error checking on
your own, as needed. Also, as you will learn later in this book, it is possible for you
to define array types of your own that perform bounds checking, if your program
actually requires this feature.

Sorting an Array

One common operation performed upon an array is to sort it. As you may know, there

are a number of different sorting algorithms. There are the Quicksort, the shaker sort,

and the shell sort, to name just three. However, the best-known, simplest, and easiest- 5
to-understand sorting algorithm is called the bubble sort. While the bubble sort is not

very efficient—in fact, its performance is unacceptable for sorting large arrays—it may

be used effectively for sorting small ones.

The bubble sort gets its name from the way it performs the sorting operation. It uses
the repeated comparison and, if necessary, exchange of adjacent elements in the
array. In this process, small values move toward one end and large ones toward the
other end. The process is conceptually similar to bubbles finding their own level in
a tank of water. The bubble sort operates by making several passes through the array,
exchanging out-of-place elements when necessary. The number of passes required

to ensure that the array is sorted is equal to one less than the number of elements

in the array.

The following program sorts an array of integers that contains random values. If you
carefully examine the sort, you will find its operation easy to understand.

// Using the bubble sort to order an array.
#include <iostream>

#include <cstdlib>

using namespace std;

int main/()

{
int nums[10];
int a, b, t;
int size;

size = 10; // number of elements to sort

// Give the array some random initial values.
for(t=0; t<size; t++) nums([t] = rand();

// Display original array.
cout << "Original array is: ";

86

A string is a
null-terminated

character array.

C++ from the Ground Up

CONTINUED

for(t=0; t<size; t++) cout << nums[t] << ' ';
cout << '\n';

// This is the bubble sort.
for(a=1; a<size; a++)
for (b=size-1; b>=a; b--) {
if (nums[b-1] > nums[b]) { // if out of order
// exchange elements
t = nums[b-1];
nums [b-1] = nums[b];
nums [b] = t;
}
}
// This is the end of the bubble sort.

// Display sorted array.
cout << "Sorted array is: ";
for (t=0; t<size; t++) cout << nums[t] << ' ';

return O0;

}

Although the bubble sort is good for small arrays, it is not efficient when used on
larger ones. The best general-purpose sorting algorithm is the Quicksort. The C++
standard library contains a function called qsort() that implements a version of
the Quicksort. However, you will need to know more about C++ before you can
use it. Chapter 20 of this book discusses the qsort() function in detail.

Strings

By far, the most common use for one-dimensional arrays is to create character strings.
In C++, a string is defined as a character array that is terminated by a null. A null
character is specified using '\0', and is zero. Because of the null terminator, it is
necessary to declare a character array to be one character longer than the largest
string that it will hold.

For example, if you want to declare an array str that could hold a 10-character string,
you would write:

char str[l11];

Specifying the size as 11 makes room for the null at the end of the string.

Arrays and Strings 87

As you learned earlier in this book, C++ allows you to define a string literal. Recall
that a string literal is a list of characters enclosed in double quotes. Here are some
examples:

"hello there" "I like C++"
l|#$%@@#$l| n

The last string shown is "". This is called a null string. It contains only the null terminator,
and no other characters. Null strings are useful because they represent the empty string.

It is not necessary to manually add the null onto the end of string constants; the C++
compiler does this for you automatically. Therefore, the string "Hello" will appear in
memory like this:

H = | o 0’

Reading a String from the Keyboard

The easiest way to read a string entered from the keyboard is to make the array that
will receive the string the target of a cin statement. For example, the following program
reads a string entered by the user:

// Using cin to read a string from the keyboard.

#include <iostream>
using namespace std;

int main()
{
char str[80];

cout << "Enter a string: ";

cin >> str; // read string from keyboard
cout << "Here is your string: ";

cout << str;

return 0;

Although this program is technically correct, there is still a problem. To see what it is,
examine the following sample run.

Enter a string: This is a test
Here is your string: This

As you can see, when the program redisplays the string, it shows only the word "This",
not the entire sentence that was entered. The reason for this is that the >> operator
stops reading a string when the first whitespace character is encountered. Whitespace
characters include spaces, tabs, and newlines.

88

C++ from the Ground Up

One way to solve the whitespace problem is to use another of C++’s library functions,
gets(). The general form of a gets() call is:

gets(array-name);

If you need your program to read a string, call gets() with the name of the array,
without any index, as its argument. Upon return from gets(), the array will hold the
string input from the keyboard. The gets() function will continue to read characters
until you press ENTER. The header used by gets() is <cstdio>.

This version of the preceding program uses gets() to allow the entry of strings
containing spaces.

// Using gets() to read a string from the keyboard.

#include <iostream>
#include <cstdio>
using namespace std;

int main()
{
char str[80];

cout << "Enter a string: ";

gets(str); // read a string from the keyboard
cout << "Here is your string: ";

cout << str;

return 0;

Now, when you run the program and enter the string "This is a test", the entire
sentence is read and then displayed, as this sample run shows.

Enter a string: This is a test
Here is your string: This is a test

There is one other point of interest in the preceding programs. Notice that in the
cout statement, str is used directly. For reasons that will be clear after you have read
a few more chapters, the name of a character array that holds a string can be used any
place that a string literal can be used.

Keep in mind that neither >> nor gets() performs any bounds checking on the
array. Therefore, if the user enters a string longer than the size of the array, the array
will be overwritten. This makes both methods of reading a string potentially
dangerous. Later, when I/O is examined in detail in Chapter 18, you will learn ways
around this problem.

Arrays and Strings 89

s Some String Library Functions

C++ supports a wide range of string-manipulation functions. The most common are

strepy()
strcat()

strlen()
strcmp()

The string functions all use the same header, <cstring>. Let’s take a look at these
functions now.

strcpy

A call to strcpy() takes this general form:

strepy(to, from);

The strcpy() function copies the contents of the string from into fo. Remember, the
array that forms to must be large enough to hold the string contained in from. If it isn’t,
the to array will be overrun, which will probably crash your program.

The following program will copy "hello" into string str:

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
char str[80];

strcpy (str, "hello");
cout << str;

return 0;

strcat
A call to strcat() takes this form:

strcat(s1, s2);

The strcat() function appends s2 to the end of s1; s2 is unchanged. Both strings
must be null-terminated, and the result is null-terminated. For example, the following
program will print hello there on the screen:

#include <iostream>
#include <cstring>
using namespace std;

90

C++ from the Ground Up

int main()
{
char s1[20], s2[10];

strcpy(sl, "hello");
strcpy(s2, " there");
strcat(sl, s2);

cout << sl;

return 0;

strcmp

A call to strcmp() takes this general form:
strcmp(s1, s2);

The stremp() function compares two strings and returns O if they are equal. If s1 is
greater than s2 lexicographically (i.e., according to dictionary order), then a positive
number is returned; if it is less than s2, a negative number is returned.

The password() function, shown in the following program, is a password-verification
routine. It uses strcemp() to check a user’s input against a password.

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

bool password() ;

int main()

{
if (password()) cout << "Logged on.\n";
else cout << "Access denied.\n";

return 0;

// Return true if password accepted; false otherwise.
bool password()
{

char s[80];

cout << "Enter password: ";
gets(s);

if (strcmp (s, "password")) { // strings differ
cout << "Invalid password.\n";
return false;

Arrays and Strings 91

// strings compared the same
return true;

}

The key to using strcmp() is to remember that it returns false when the strings match.
Therefore, you will need to use the ! (NOT) operator if you want something to occur
when the strings are equal. For example, the following program continues to request
input until the user types the word "quit":

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char s[80];

for(;;) {
cout << "Enter a string: ";
gets(s);
if(!strcmp("quit", s)) break;

}

return 0;

strlen

The general form of a call to strlen() is
strlen(s);

where s is a string. The strlen() function returns the length of the string pointed to
by s.

The following program will print the length of a string entered from the keyboard:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char str[80];

cout << "Enter a string: ";

gets(str);

92

C++ from the Ground Up

cout << "Length is: " << strlen(str);

return 0;

If the user enters the string "Hi there", this program will display 8. The null terminator
is not counted by strlen().

When the following program is run, the string entered at the keyboard is printed in
reverse. For example, "hello" will be displayed as olleh. Remember that strings are
simply character arrays; thus each character can be referenced individually.

// Print a string backwards.
#include <iostream>
#include <cstdio>

#include <cstring>

using namespace std;

int main()

{
char str[80];
int 1i;

cout << "Enter a string: ";
gets(str);

// Print the string in reverse.
for(i=strlen(str)-1; i>=0; i--) cout << str[i];

return 0;

As a final example, the following program illustrates the use of all four string
functions:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char s1[80], s2[80];
cout << "Enter two strings: ";

gets(sl); gets(s2);

cout << "lengths: " << strlen(sl);
cout << ' ' << strlen(s2) << '\n';

Arrays and Strings 93

if(!strcmp(sl, s2))
cout << "The strings are equal\n";
else cout << "not equal\n";

strcat(sl, s2);
cout << sl << '\n';

strcepy(sl, s2);
cout << sl << " and " << 82 << ' ';
cout << "are now the same\n";

return 0;

If this program is run and the strings "hello" and "there" are entered, then the output 5
will be

lengths: 5 5

not equal

hellothere

there and there are now the same

One last reminder: Remember that stremp() returns false if the strings are equal.
This is why you must use the ! operator to reverse the condition, as shown in the
preceding example, if you are testing for equality.

Using the Null Terminator

The fact that all strings are null-terminated can often be used to simplify various
operations on strings. For example, look at how little code is required to uppercase
every character in a string:

// Convert a string to uppercase.
#include <iostream>

#include <cstring>

#include <cctype>

using namespace std;

int main()
{
char str[80];

int 1i;
strcpy(str, "this is a test");
for(i=0; str[i]; i++) str[i] = toupper(str[i]);

cout << str;

94

C++ from the Ground Up

return 0;

}

This program will print THIS IS A TEST. It uses the library function toupper(),
which returns the uppercase equivalent of its character argument, to convert each
character in the string. The toupper() function uses the header <cctype>.

Notice that the test condition of the for loop is simply the array indexed by the control
variable. This works because a true value is any non-zero value. Remember, all printable
characters are represented by values that are non-zero, but the null terminating the
string is zero. Therefore, the loop runs until it encounters the null terminator, which
causes str[i] to become zero. Since the null terminator marks the end of the string,
the loop stops precisely where it is supposed to. As you progress, you will see many
examples that use the null terminator in a similar fashion.

TIP: In addition to toupper(), the C++ standard library contains several other
character-manipulation functions. For example, the complement to toupper() is
tolower(), which returns the lowercase equivalent of its character argument. Other
character functions include isalpha(), isdigit(), isspace(), and ispunct(). These
functions each take a character argument and determine if it belongs to that category.
For example, isalpha() returns true if its argument is a letter of the alphabet.

Two-Dimensional Arrays

C++ allows multidimensional arrays. The simplest form of the multidimensional
array is the two-dimensional array. A two-dimensional array is, in essence, a list of
one-dimensional arrays. To declare a two-dimensional integer array twod of size
10,20 you would write

int twod[10][20];

Pay careful attention to the declaration. Unlike some other computer languages,
which use commas to separate the array dimensions, C++ places each dimension
in its own set of brackets.

Similarly, to access point 3,5 of array twod, you would use twod[3][5]. In the next
example, a two-dimensional array is loaded with the numbers 1 through 12.

#include <iostream>
using namespace std;

int main/()

{

Arrays and Strings 95

A conceptual
view of the
num array
Figure 5-1.

int t,i, num(3][4];

for(t=0; t<3; ++t) {
for (1=0; i<4; ++1i) {
num[t] [1] = (t*4)+i+1;
cout << num[t][i] << ' ';
}
cout << '\n';

}

return 0;

In this example, num[0][0] will have the value 1, num[0][1] the value 2,
num|[0][2] the value 3, and so on. The value of num|[2][3] will be 12.
Conceptually, the array will look like that shown in Figure 5-1.

Two-dimensional arrays are stored in a row-column matrix, where the first index
indicates the row and the second indicates the column. This means that when array
elements are accessed in the order in which they are actually stored in memory, the
right index changes faster than the left.

You should remember that storage for all array elements is determined at compile time.

Also, the memory used to hold an array is required the entire time that the array is in

existence. In the case of a two-dimensional array, you can use this formula to determine
the number of bytes of memory that will be allocated:

bytes = row x column x number of bytes in type

Therefore, assuming two-byte integers, an integer array with dimensions 10,5 would
have 10 x 5 x 2 (or 100) bytes allocated.

0 1 2 3 «——— Right index
0 1 2 3 4
1 5 6 <:> 8
A
2 9 10 11 12
Left index num [1][2]

96 C++ from the Ground Up

s Multidimensional Arrays

C++ allows arrays with more than two dimensions. Here is the general form of
a multidimensional array declaration:

type name[sizel][size2]...[sizeN];
For example, the following declaration creates a 4 x 10 x 3 integer array:

int multidim([4][10][3];

Arrays of more than three dimensions are not often used, due to the amount of memory
required to hold them. As stated before, storage for all array elements is allocated
during the entire lifetime of an array. When multidimensional arrays are used, large
amounts of memory can be consumed. For example, a four-dimensional character
array with dimensions 10,6,9,4 would require 10 x 6 x 9 x 4 (or 2,160) bytes. If each array
dimension is increased by a factor of 10 each (that is, 100 x 60 x 90 x 40), then the
memory required for the array increases to 21,600,000 bytes! As you can see, large
multidimensional arrays may cause a shortage of memory for other parts of your
program. Thus, a program with arrays of more than two or three dimensions may
find itself quickly out of memory!

s Array Initialization

C++ allows the initialization of arrays. The general form of array initialization is
similar to that of other variables, as shown here:

type-specifier array_namel[size] = {value-list};
The value-list is a comma-separated list of values that are type-compatible with the base

type of the array. The first value will be placed in the first position of the array, the
second value in the second position, and so on. Notice that a semicolon follows the }.

In the following example, a 10-element integer array is initialized with the
numbers 1 through 10:

int i[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

This means that i[0] will have the value 1, and i[9] will have the value 10.

Character arrays that will hold strings allow a shorthand initialization that takes
this form:

char array_namelsize] = "string";

For example, the following code fragment initializes str to the phrase "hello":

Arrays and Strings 97

char str[6] = "hello";

This is the same as writing
char str[6] = { 'h', 'e', '1', '1', 'o', '\0' };

Because strings in C++ must end with a null, you must make sure that the array you
declare is long enough to include it. This is why str is 6 characters long in these
examples, even though "hello" is only 5. When a string literal is used, the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized in the same way as one-dimensional arrays.
For example, the following program initializes an array called sqrs with the numbers
1 through 10 and their squares:

int sqrs[10][2] = {
1, 1,

2, 4,
3, 9,
4, 16,
5, 25,
6, 36,
7, 49,
8, 64,
9, 81,
10, 100
}i

Examine Figure 5-2 to see how the sqrs array appears in memory.

When initializing a multidimensional array, you may add braces around the
initializers for each dimension. This is called subaggregate grouping. For example,
here is another way to write the preceding declaration:

int sqrs[10][2] = {
{1, 13,
{2, 4%,
{3, 9},
{4, 16},
{5, 25},
{6, 36},
(7, 493},
{8, 64},
{9, 81},

{10, 100}

C++ from the Ground Up

— Right index

0

1

2

3

4

5

6

7

8
| 9
The initialized T
sqrs array |
Figure 5-2. Left index
|

When using subaggregate grouping, if you don’t supply enough initializers for
a given group, the remaining members will be set to zero, automatically.

The following program uses the sqrs array to find the square of a number
entered by the user. It first looks up the number in the array and then prints
the corresponding square.

#include <iostream>
using namespace std;

int sqgrs[10][2] = {
{1, 13},
{2, 4},

{3, 91,

Arrays and Strings 99
(4, 16},
{5, 25},
(6, 36},
(7, 493,
{8, 64},
{9, 81},
{10, 100}

}i

int main()
{

int i, §;

cout << "Enter a number between 1 and 10: ";
cin >> 1i;

// look up 1
for(j=0; Jj<10; J++)
if (sqrs[j1[0]==1i) break;

// display square
cout << "The square of " << i << " is ";
cout << sqgrs[jl[1];

return 0;

Global arrays are initialized when the program begins. Local arrays are initialized each
time the function that contains them is called, as shown here:

#include <iostream>
#include <cstring>
using namespace std;

void £1();

int main()

{
£1();
£1()

7

return 0;

void f1()
{

char s[80]="this is a test\n";

cout << s;
strcpy (s, "CHANGED\n"); // change s
cout << s;

100

C++ from the Ground Up

This program displays the following output:

this is a test
CHANGED
this is a test
CHANGED

In the program, the array s is initialized each time £1() is called. The fact that s is
changed in the function does not affect its reinitialization upon subsequent calls.
This means that £1() prints

this is a test

every time it is entered.

Unsized Array Initializations

Imagine that you are using array initialization to build a table of error messages,
as shown here:

char el[14] = "Divide by 0\n";
char e2[23] = "End-of-File\n";
char e3[21] = "Access Denied\n";

As you might guess, it is very tedious to manually count the characters in each
message to determine the correct array dimension. It is possible to let C++ automatically
dimension the arrays in this example through the use of unsized arrays. If an array-
initialization statement does not specify the size of the array, then C++ will automatically
create an array large enough to hold all the initializers present. When this approach is
used, the message table becomes

char el[] = "Divide by 0\n";
char e2[] = "End-of-File\n";
char e3[] = "Access Denied\n";

Besides being less tedious, the unsized array-initialization method allows you to
change any of the messages without having to resize the array. This avoids errors
caused by accidentally miscounting the number of characters in the message.

Unsized array initializations are not restricted to one-dimensional arrays. For a
multidimensional array, you must specify all but the leftmost dimension so that
C++ can index the array properly. Using unsized array initializations, you can build
tables of varying lengths, with the compiler automatically allocating enough storage
for them.

In the following example, sqrs is declared as an unsized array:

int sqgrs[][2] = {
1, 1,
2, 4,

Arrays and Strings 101

A string array is a
two-dimensiona
array of
characters

16,
, 25,
36,

, 64,
81,
, 100

P W oo J o Ul W

o -~

}i

The advantage to this declaration over the sized version is that the table may be
lengthened or shortened without changing the array dimensions.

Arrays of Strings

A special form of a two-dimensional array is an array of strings. It is not uncommon
in programming to use an array of strings. The input processor to a database, for
instance, may verify user commands against a string array of valid commands. To
create an array of strings, a two-dimensional character array is used, with the size

of the left index determining the number of strings, and the size of the right index
specifying the maximum length of each string. For example, the following declares
an array of 30 strings, each having a maximum length of 80 characters:

char str_array[30][80];

Accessing an individual string is quite easy: You simply specify only the left index.
For example, the following statement calls gets() with the third string in str_array:

gets (str_array([2]);

To better understand how string arrays work, study the next short program, which
accepts lines of text entered at the keyboard and redisplays them after a blank line
is entered.

// Enter and display strings.
#include <iostream>

#include <cstdio>

using namespace std;

int main()
{
int t, 1i;
char text[100][80];

for (t=0; t<100; t++) {

cout << t << ": ";

gets (text([t]);

if(!text[t][0]) break; // quit on blank line
}

// redisplay the strings

102

C++ from the Ground Up

for (i=0; i<t; i++)
cout << text[i] << '\n';

return 0;

}

Notice how the program checks for the entry of a blank line. The gets() function returns
a zero-length string if the only key you press is ENTER. This means that the first byte
in that string will be the null character. A null value is always false, thus allowing the
conditional expression to be true.

An Example Using String Arrays

Arrays of strings are commonly used for handling tables of information. One such
application is an employee database that stores the name, telephone number, hours
worked per pay period, and hourly wage of each employee. To create such a program
for a staff of ten employees, you would define these four arrays (the first two of which
are string arrays):

char name[10][80]; // this array holds employee names
char phone[10][20]; // their phone numbers

float hours[10]; // hours worked per week

float wage[10]; // wage

To enter information about each employee, you could use a function like enter(),
as shown here:

// Enter information.
void enter ()
{

int 1i;

char temp[80];

for (i=0; i<10; i++) {
cout << "Enter last name: ";
cin >> namel[i];
cout << "Enter phone number: ";
cin >> phonel[i];
cout << "Enter number of hours worked: ";
cin >> hours[i];
cout << "Enter wage: ";
cin >> wagel[i];

Once information has been entered, the database can report the data and calculate
the amount of pay each employee is to receive, using the report() function, as
shown here:

Arrays and Strings 103

// Display report.
void report()

{

int 1i;

for(i=0; i<10; i++) {
cout << name[i] << ' ' << phone[i] << '\n';
cout << "Pay for the week: " << wage[i] * hours[i];
cout << '\n';

The entire employee database program is shown next. Pay special attention to

how each array is accessed. This version of the employee database program is not
particularly useful, because the information is lost when the program is terminated.
Later in this book, however, you will learn how to store information in a disk file.

// A simple employee database program.

#include <iostream>
using namespace std;

char name[10][80];
char phone[10][20];
float hours[10];
float wage[10];

//
//
//
//

int menu() ;

void enter(), report();
int main()
{
int choice;
do {
choice = menu() ;
switch(choice) {
case 0: break;
case 1l: enter();
break;
case 2: report();
break;
default: cout <<

}

} while(choice !=

0);

return 0;

this array holds employee names
their phone numbers

hours worked per week

wage

// get selection

"Try again.\n\n";

// Return a user's selection.

104

int menu()

{

int choice;

cout
cout
cout
cout

<<
<<
<<
<<

0. Quit\n";

1. Enter information\n";
2. Report information\n";

\nChoose one: ";

cin >> choice;

return choice;

// Enter information.
void enter ()

{

int 1i;
char temp[80];

for (i=0;
cout <<
cin >> namel[i];
cout <<

cout <<

1<10; i++) |
"Enter last name:

7

"Enter phone number:
cin >> phonel[i];
"Enter number of hours worked:
cin >> hours[i];
cout <<
cin >> wageli];

"Enter wage: ";

// Display report.
void report ()

{

int 1i;

for (i=0;
cout
cout
cout

<<
<<
<<

i<10; i++) {

"o,
7

C++ from the Ground Up

7

name[i] << ' ' << phone[i] << '\n';
"Pay for the week: " << wage[i] * hours[i];
|\n|;

CHAPTER 6

Pointers

105

106

A pointer is a
variable that
contains the
address of
another object

The base type
of a pointer
determines what
type of data it
will point to.

C++ from the Ground Up

Pointers are without a doubt one of the most important—and troublesome—aspects
of C++. In fact, a large measure of C++'s power is derived from pointers. For example,

they allow C++ to support such things as linked lists and dynamic memory allocation.
They also provide one means by which a function can alter the contents of an argument.

However, these and other uses of pointers will be discussed in subsequent chapters.

In this chapter, you will learn the basics about pointers, see how to manipulate them,

and discover how to avoid some potential troubles.

In a few places in this chapter, it is necessary to refer to the size of several of C++’s
basic data types. For the sake of discussion, assume that characters are one byte in
length, integers are four bytes long, floats are four bytes long, and doubles have
a length of eight bytes. Thus, we will be assuming a typical 32-bit environment.

What Are Pointers?

A pointer is a variable that contains a memory address. Very often this address is the
location of another variable. For example, if x contains the address of y, then x is said
to "point to" y.

Pointer variables must be declared as such. The general form of a pointer variable
declaration is

type *var-name;
Here, type is the pointer’s base type; it must be a valid C++ type. var-name is the name
of the pointer variable. For example, to declare p to be a pointer to an integer, use this
declaration:
int *p;
For a float pointer, use

float *p;

In general, in a declaration statement, preceding a variable name with an * causes that
variable to become a pointer.

The type of data that a pointer will point to is determined by its base type. Here is an
example:

int *ip; // pointer to integers

double *dp; // pointer to doubles

As the comments indicate, ip is a pointer to integers because its base type is int, and
dp is a pointer to doubles because its base type is double. As you will see, the base
type is very important in pointer operations.

Pointers

107

The Pointer Operators

There are two special operators that are used with pointers: * and &. The & is a unary
operator that returns the memory address of its operand. (Recall that a unary operator
requires only one operand.) For example,

balptr = &balance;

puts into balptr the memory address of the variable balance. This address is the
location of the variable in the computer’s internal memory. It has nothing to do
with the value of balance. The operation of & can be remembered as returning "the
address of" the variable it precedes. Therefore, the above assignment statement could
be verbalized as "balptr receives the address of balance." To better understand this
assignment, assume that the variable balance is located at address 100. Then, after
the assignment takes place, balptr has the value 100.

The second operator is ¥, and it is the complement of &. It is a unary operator that
returns the value of the variable located at the address specified by its operand.
Continuing with the same example, if balptr contains the memory address of
the variable balance, then

value = *balptr;

will place the value of balance into value. For example, if balance originally had
the value 3,200, then value will have the value 3,200, because that is the value stored
at location 100, the memory address that was assigned to balptr. The operation of *
can be remembered as "at address." In this case, then, the statement could be read as
"value receives the value at address balptr." Figure 6-1 depicts the actions of the two
preceding statements.

The following program executes the sequence of operations shown in Figure 6-1:

#include <iostream>
using namespace std;

int main()

{
int balance;
int *balptr;
int value;

balance = 3200;

balptr = &balance;

value = *balptr;

cout << "balance is: " << value << '\n';

return 0;

108

The * and
& pointer
operators
Figure 6-1.

Indirection is the
process of using a
pointer to access
some object.

C++ from the Ground Up

Memory
addresses 3, 0 1 2 cee 100 101
balptr balance | value
Memory
100 3200 ~
f f
balptr = &balance;
Memory
addresses____ 0 1 2 oo 100 101
balptr balance | value
Memory
° 100 3200 3200

value = *balptr

The output is shown here.

balance is: 3200

It is unfortunate that the multiplication symbol and the "at address" symbol are the
same. This fact sometimes confuses newcomers to the C++ language. These operators
have no relationship to each other. Keep in mind that both & and * have a higher
precedence than any of the arithmetic operators except the unary minus, with which
they are equal.

The act of using a pointer is often called indirection, because you are accessing one
variable indirectly through another variable.

The Base Type Is Important

In the preceding discussion, you saw that it was possible to assign value the value

of balance indirectly through a pointer. At this point, you may have thought of

this important question: How does C++ know how many bytes to copy into value
from the address pointed to by balptr? Or, more generally, how does the compiler
transfer the proper number of bytes for any assignment using a pointer? The answer
is that the base type of the pointer determines the type of data that the compiler
assumes the pointer is pointing to. In this case, because balptr is an integer pointer,
C++ copies four bytes of information (assuming 32-bit integers) into value from the
address pointed to by balptr. However, if it had been a double pointer, for example,
then eight bytes would have been copied.

Your pointer variables must always point to the correct type of data. For example,
when you declare a pointer to be of type int, the compiler assumes that anything
it points to will be an integer value. Generally, you won'’t need to worry about this
because C++ will not allow you to assign one type of pointer to another unless the
two types of pointers are compatible (i.e., essentially, the same).

Pointers

109

For example, the following fragment is incorrect:

int *p;

double f;

//

p = &f; // ERROR

This fragment is invalid because you cannot assign a double pointer to an integer
pointer. That is, &f generates a pointer to a double, but p is a pointer to an int.
These two types are not compatible. (In fact, the compiler would flag an error at
this point and not compile your program.)

Although two pointers must have compatible types in order for one to be assigned to
another, you can override this restriction (at your own risk) by using a cast. For example,
the following fragment is now technically correct:

int *p ;

double f;

//

p = (int *) &f; // Now technically OK

The cast to int * causes the double pointer to be converted to an integer pointer.
However, to use a cast for this purpose is questionable, because the base type of a
pointer determines how the compiler treats the data it points to. In this case, even
though p is actually pointing to a floating-point value, the compiler still "thinks"
that p is pointing to an integer (because p is an integer pointer).

To better understand why using a cast to assign one type of pointer to another is not
usually a good idea, consider the following short program:

// This program will not work right.
#include <iostream>
using namespace std;

int main()
{
double x, v;

int *p;
x = 123.23;
p = (int *) &x; // use cast to assign double * to int *

y = *p; // What will this do?
cout << y; // What will this print?

return 0;

As you can see, p (which is an integer pointer) has been assigned the address of x
(which is a double). Thus, when y is assigned the value pointed to by p, y receives
only four bytes of data (and not the eight required for a double value), because p is

110

C++ from the Ground Up

an integer pointer. Therefore, the cout statement displays not 123.23, but a garbage
value instead. (Try this program and observe the result.)

Assigning Values Through a Pointer

You can use a pointer on the left side of an assignment statement to assign a value
to the location pointed to by the pointer. Assuming that p is an integer pointer, this
assigns the value 101 to the location pointed to by p:

*p = 101;

You can verbalize this assignment like this: "at the location pointed to by p, assign
the value 101." To increment or decrement the value at the location pointed to by
a pointer, you can use a statement like this:

(*p) ++;

The parentheses are necessary because the * operator has lower precedence than the
++ operator.

The following program demonstrates assignment using a pointer.

#include <iostream>
using namespace std;

int main()
{

int *p, num;

p = #

*p = 100;
cout << num << ' ';
(*p) ++;

cout << num << ' ';
(*p)--;
cout << num << '\n';

return 0;

The output from the program is shown here.

100 101 100

Pointer Expressions

Pointers can be used in most valid C++ expressions. However, some special rules apply.
Remember also that you may need to surround some parts of a pointer expression
with parentheses in order to ensure that the outcome is what you desire.

Pointers

111

Pointer Arithmetic

There are only four arithmetic operators that can be used on pointers: ++, — —, +, and
-. To understand what occurs in pointer arithmetic, let p1 be an integer pointer with
a current value of 2,000 (that is, it contains the address 2,000). Assuming 32-bit integers,
after the expression

pl++;

the contents of p1 will be 2,004, not 2,001! Each time p1 is incremented, it will point
to the next integer. The same is true of decrements. For example,

pl--;

will cause p1 to have the value 1,996, assuming that it previously was 2,000. Here is
why: Each time that a pointer is incremented, it will point to the memory location
of the next element of its base type. Each time it is decremented, it will point to the
location of the previous element of its base type.

In the case of character pointers, an increment or decrement will appear as "normal"
arithmetic because characters are one byte long. However, every other type of pointer
will increase or decrease by the length of its base type.

You are not limited to only increment and decrement operations. You can also add or
subtract integers to or from pointers. The expression

pl = pl + 9;

makes p1 point to the ninth element of p1’s base type, beyond the one to which it is
currently pointing.

While you cannot add pointers, you can subtract one pointer from another (provided
they are both of the same base type). The remainder will be the number of elements
of the base type that separate the two pointers.

Other than addition and subtraction of a pointer and an integer, or the subtraction
of two pointers, no other arithmetic operations can be performed on pointers. For
example, you cannot add or subtract float or double values to or from pointers.

To see the effects of pointer arithmetic, execute the next short program. It prints the
actual physical addresses to which an integer pointer (i) and a floating-point pointer
(f) are pointing. Observe how each changes, relative to its base type, each time the loop
is repeated. (For most 32-bit compilers, i will increase by 4s and f will increase by 8s.)
Notice that when using a pointer in a cout statement, its address is automatically
displayed in the addressing format applicable to the current processor and environment.

// Demonstrate pointer arithmetic.
#include <iostream>
using namespace std;

int main()

112

C++ from the Ground Up

int *i, j[10];
double *f, g[10];

int x;
i=3;
£t =g;

for (x=0; x<10; x++)
cout << 1+4x << ' ' << f4x << '\n‘';

return 0;

Here is sample output. (The addresses you see when you run the program may differ
from those shown here, but the net effect will be the same.)

0012FE5C 0012FE84
0012FE60 0012FES8C
0012FE64 0012FE94
0012FE68 0012FESC
0012FE6C 0012FEA4
0012FE70 0012FEAC
0012FE74 0012FEB4
0012FE78 0012FEBC
0012FE7C 0012FEC4
0012FE80 0012FECC

REMEMBER: All pointer arithmetic is performed relative to the base type of
the pointer.

Pointer Comparisons

Pointers may be compared by using relational operators, such as ==, <, and >. However,
for the outcome of a pointer comparison to be meaningful, the two pointers normally
must have some relationship to each other. For example, if p1 and p2 are pointers
that point to two separate and unrelated variables, then any comparison between p1
and p2 is generally meaningless. However, if p1 and p2 point to variables that are
related to each other, such as elements of the same array, then p1 and p2 can be
meaningfully compared. Later in this chapter, you will see a sample program that
does this.

Pointers and Arrays

In C++, there is a close relationship between pointers and arrays. In fact, frequently
a pointer and an array are interchangeable. In this section, you will see how pointers
and arrays relate.

Pointers

An array name
without an index
generates a
pointer to the

start of the array.

113

To begin, consider this fragment:

char str[80];
char *pl;

pl = str;

Here, str is an array of 80 characters and p1 is a character pointer. However, it is the
third line that is of interest. In this line, p1 is assigned the address of the first element
in the str array. (That is, after the assignment, p1 will point to str[0].) Here’s why: In
C++, using the name of an array without an index generates a pointer to the first element
in the array. Thus the assignment p1 = str assigns the address of str[0] to p1. This is
a crucial point to understand: When an unindexed array name is used in an expression,
it yields a pointer to the first element in the array.

Since, after the assignment, p1 points to the beginning of str, you may use p1 to
access elements in the array. For example, if you want to access the fifth element in
str, you could use

str[4]

or

*(pl+4)

Both statements will return the fifth element. Remember, array indices start at zero,
so when str is indexed, a 4 is used to access the fifth element. A 4 is also added to the
pointer p1 to get the fifth element, because p1 currently points to the first element
of str.

The parentheses surrounding p1+4 are necessary because the * operation has a higher
priority than the + operation. Without the parentheses, the expression would first
find the value pointed to by p1 (the first location in the array) and then add 4 to it.

TIP: Be sure to properly parenthesize a pointer expression. If you don’t, the
error will be hard to find later because your program will look correct. If in doubt
about whether or not to add parentheses, add them; they will do no harm.

In effect, C++ allows two methods of accessing array elements: pointer arithmetic and
array indexing. This is important because pointer arithmetic can sometimes be faster
than array indexing—especially when you are accessing an array in strictly sequential
order. Since speed is often a consideration in programming, the use of pointers to access
array elements is very common in C++ programs. Also, you can sometimes write tighter
code by using pointers rather than array indexing.

To get the flavor of the difference between using array indexing and pointer
arithmetic, two versions of the same program will be shown next. The program

114

C++ from the Ground Up

extracts words, separated by spaces, from a string. For example, given "Hello Tom," the
program would extract "Hello" and "Tom." Programmers typically refer to delineated
character sequences as tokens, and the process of extracting tokens is generally called
tokenizing. The program scans the input string, copying characters from the string into
another array, called token, until a space is encountered. It then prints the token and
repeats the process until the null at the end of the string is reached. For example, if
you enter This is a test. the program displays the following:

This
is

a
test.

Here is the pointer version of the tokenizing program:

// Tokenizing program: pointer version.
#include <iostream>

#include <cstdio>

using namespace std;

int main()

{
char str[80];
char token([80];
char *p, *q;

cout << "Enter a sentence: ";
gets (str);

p = str;
// Read a token at a time from the string.
while (*p) {

g = token; // set g pointing to start of token

/* Read characters until either a space or the
null terminator is encountered. */

while(*p!="' ' && *p) {
*q = *p;
q++; Pt

}

if (*p) p++; // advance past the space
*g = '\0'; // null terminate the token
cout << token << '\n';

return 0;

Here is the array-indexing version:

Pointers

115

// Tokenizing program: array-indexing version.
#include <iostream>

#include <cstdio>

using namespace std;

int main()

{
char str[80];
char token[80];
int i, J;

cout << "Enter a sentence: ";
gets(str);

// Read a token at a time from the string.
for(i=0; ; i++) {
/* Read characters until either a space or the
null terminator is encountered. */

for(j=0; str[i]!=' ' && str[i]; J++, i++)
token[j] = str[i];
token[j] = '\0'; // null terminate the token

cout << token << '\n';
if(!'str([i]) break;

return 0;

Because of the way some C++ compilers generate code, these two programs may not
be equivalent in performance. Generally, it takes more machine instructions to index
an array than it does to perform arithmetic on a pointer. Consequently, in professionally
written C++ code, it is common to see the pointer version used more frequently.
However, as a beginning C++ programmer, feel free to use array indexing until you
are comfortable with pointers.

Indexing a Pointer

As you have just seen, it is possible to access an array by using pointer arithmetic.
What you might find surprising is that the reverse is also true. In C++, it is possible
to index a pointer as if it were an array. This further illustrates the close relationship
between pointers and arrays. Here is an example that indexes a pointer.

// Indexing a pointer like an array.
#include <iostream>

#include <cctype>

using namespace std;

int main()

{
char str[20] = "hello tom";
char *p;

116

C++ from the Ground Up

int 1i;
p = str; // put address of str into p

// now, index p like an array
for(i=0; plil; i++) pl[i] = toupper(pl[i]);

cout << p; // display the string

return 0;

The program displays

HELLO TOM

Here is how it works. First the program loads the string str with "hello tom". It then
assigns the address of the beginning of str to p. Next, using toupper(), it converts
each character in the string to uppercase by indexing p. Remember, the expression
plil is functionally identical to *(p+i).

Are Pointers and Arrays Interchangeable?

As the preceding few pages have shown, pointers and arrays are strongly related.
In fact, pointers and arrays are interchangeable in many cases. For example, a
pointer that points to the beginning of an array can access that array by using
either pointer arithmetic or array-style indexing. However, pointers and arrays
are not completely interchangeable. For example, consider this fragment:

int num([107];
int 1i;

for (i=0; i<10; i++) {
*num = i; // this is OK
num++; // ERROR -- cannot modify num

}

Here, num is an array of integers. As the comments describe, while it is perfectly
acceptable to apply the * operator to num (which is a pointer operation), it is illegal
to modify mum’s value. The reason for this is that mum is a constant that points to
the beginning of an array. Thus, you cannot increment it. More generally, while an
array name without an index does generate a pointer to the beginning of an array,

it cannot be changed.

Although an array name generates a pointer constant, it can still take part in pointer-style
expressions, as long as it is not modified. For example, the following is a valid statement
that assigns num|[3] the value 100:

*(num+3) = 100; // This is OK because num is not changed

Pointers

117

= Pointers and String Literals

The string table is
a table generated
by the compiler
that holds the
strings used by
your program.

You might be wondering how string literals, like the one in the fragment shown here,
are handled by C++:

cout << strlen("C++ Compiler");

The answer is that when the compiler encounters a string literal, it stores it in the
program'’s string table and generates a pointer to the string. Therefore, the following
program is perfectly valid, and prints the phrase Pointers are fun to use.

on the screen:

#include <iostream>
using namespace std;

int main()
{

char *s;
s = "Pointers are fun to use.\n";
cout << s;

return 0;

}

In this program, the characters that make up a string literal are stored in the string
table, and s is assigned a pointer to the string in that table.

Since a pointer into your program'’s string table is generated automatically whenever a
string literal is used, you might be tempted to use this fact to modify the contents of
the string table. However, this is usually not a good idea because many C++ compilers
create optimized tables in which one string literal may be used at two or more different
places in your program. Thus, changing a string may cause undesired side effects.
Furthermore, string literals are constants and some modern C++ compilers will not

let you change their contents. Attempting to do so generates a run-time error.

A Comparison Example

Earlier you learned that it is legal to compare the value of one pointer to that of another.
However, in order for a pointer comparison to be meaningful, the two pointers must
have some relationship to each other. The most common way such a relationship is
established is when both pointers point to elements of the same array. For example,
given two pointers, A and B, that both point into the same array, if A is less than B
then A points to an element at a smaller index than the element pointed to by B. Such
comparisons are especially useful for determining boundary conditions.

The following program demonstrates a pointer comparison. The program creates two
pointer variables. One, called start, initially points to the beginning of an array, and
the other, called end, points to the end of the array. As the user enters numbers, the

118

C++ from the Ground Up

array is filled sequentially from the beginning to the end. Each time a number is entered
into the array, start is incremented. To determine if the array is full, the program simply
compares start with end. When start is greater than end, the array has been filled.
Once the array is full, the contents of the array are displayed.

// A pointer comparison example.
#include <iostream>
using namespace std;

int main()
{
int num([10];
int *start, *end;

start = num;
end = &numl[9];

// enter the values
while(start <= end) {
cout << "Enter a number: ";
cin >> *start;
start++;

}
start = num; // reset the starting pointer

// display the values

while(start <= end) {
cout << *start << ' ';
start++;

}

return 0;

As this program illustrates, because start and end both point to a common object,
in this case the array num, they can be meaningfully compared. This type of pointer
comparison is used frequently in professionally written C++ code.

Arrays of Pointers
Pointers can be arrayed like any other data type. For example,

int *ipa[1l0];

declares ipa as an array of 10 integer pointers. Thus, each element in ipa holds
a pointer to an int value.

To assign the address of an int variable called var to the third element of ipa, you
would write

ipal[2] = &var;

Pointers

119

Remember, ipa is an array of integer pointers. The only values that its array elements
can hold are the addresses of integer variables. This is why var is preceded by the
& operator.

Using the ipa array to assign the value of var to an int variable called x, you
would write:

x = *ipal2];

Because the address of var is stored at ipa[2], applying the * operator to this index
causes the value of var to be obtained.

Like other arrays, arrays of pointers can be initialized. A common use for initialized
pointer arrays is to hold pointers to strings. For example, to create a function that will
output a fortune, you can define a number of different messages in a pointer array, as
shown here:

char *fortunes[] = {
"Soon, you will come into some money.\n",
"A new love will enter your life.\n",
"You will live long and prosper.\n",
"Now is a good time to invest for the future.\n",
"A close friend will ask for a favor.\n"
}i

Remember, C++ stores all string literals in the string table associated with your
program, so the array need only store pointers to the strings. Thus, to print the
second message, use a statement like this:

cout << fortunes[1l];

An entire "fortune cookie" program is shown here. It uses rand() to generate a
random number. It then uses the modulus operator to obtain a number between
0 and 4, which it uses to index the array.

#include <iostream>
#include <cstdlib>
#include <conio.h>
using namespace std;

char *fortunes[] = {
"Soon, you will come into some money.\n",
"A new love will enter your life.\n",
"You will live long and prosper.\n",
"Now is a good time to invest for the future.\n",
"A close friend will ask for a favor.\n"
Y

int main()
{

int chance;

120

C++ from the Ground Up

cout << "To see your fortune, press a key: ";

// randomize the random number generator
while(!kbhit()) rand();

cout << '\n';

chance = rand() ;

chance = chance % 5;
cout << fortunes|[chance];

return 0;

Notice the while loop in the program, which calls rand() repeatedly until a key is
pressed. Because the rand() function always generates the same sequence of random
numbers, it is important to have some way for the program to start using this sequence
at a random point. (Otherwise, the same fortune will be given each time the program
is run.) This is achieved by repeated calls to rand(). When the user presses a key, the
loop stops at a random point in the sequence, and the fortune is displayed on the screen.
Remember, kbhit() is a common extension provided by many compilers, but it is
not defined by C++.

The next example uses a two-dimensional array of pointers to create the skeleton

of a program that displays a syntax reminder for the C++ keywords. This program
initializes a list of string pointers. The first dimension points to a C++ keyword, and
the second dimension points to a short description of the keyword. The list is terminated
by two null strings. These nulls are used to mark the end of the list. The user enters

a keyword, and the program displays the description. As you can see, only a few
keywords have been listed. The expansion of the list is left to you, as an exercise.

// A simple C++ keyword synopsis program.

#include <iostream>
#include <cstring>
using namespace std;

char *keyword[][2] = {
"for", "for(initialization; condition; increment)",
"if", "if(condition) ... else ...",
"switch", "switch(value) { case-list }",
"while", "while(condition) ...",
// add the rest of the C++ keywords here
ww, wn o // terminate the list with nulls
Y

int main()

{
char str[80];

Pointers

121

int 1i;

cout << "Enter keyword: ";
cin >> str;

// display syntax
for(i=0; *keyword[i][0]; i++)
if (!strcmp (keyword[i] [0], str))
cout << keyword[i][1];

return 0;

Here is a sample run.

Enter keyword: for
for(initialization; condition; increment)

In the program, notice the expression controlling the for loop. It causes the loop to
terminate when keyword[i][0] contains a pointer that points to a null, which is a
false value. Thus, when the loop encounters the null strings at the end of the pointer
array, the loop stops.

The Null Pointer Convention

After a pointer is declared, but before it has been assigned a value, it will contain an
arbitrary value. Should you try to use the pointer prior to giving it a value, you will
probably crash not only your program, but perhaps even the operating system of your
computer (a very nasty type of error!). While there is no sure way to avoid using an
uninitialized pointer, C++ programmers have adopted a procedure that helps prevent
some errors. By convention, if a pointer contains the null (zero) value, it is assumed to
point to nothing. Thus, if all unused pointers are given the null value and you avoid
the use of a null pointer, you can avoid the accidental misuse of an uninitialized pointer.
This is a good practice to follow.

Any type of pointer can be initialized to null when it is declared. For example, the
following initializes p to null:

float *p = 0; // p is now a null pointer

To check for a null pointer, use an if statement, like one of these:
if(p) // succeeds if p is not null

if(!p) // succeeds if p is null

If you follow the null pointer convention, you will avoid many problems when using
pointers.

122

Single and
multiple
indirection
Figure 6-2.

C++ from the Ground Up

Pointer Variable

‘ address }—" value ‘

Single Indirection

Pointer Pointer Variable

‘ address }—" address }—" value ‘

Multiple Indirection

Multiple Indirection

A pointer to a pointer is a form of multiple indirection, or a chain of pointers.
Consider Figure 6-2. As you can see, in the case of a normal pointer, the pointer
contains the address of a value. In the case of a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the location
that contains the desired value.

Pointers and 16-bit Environments

Although the most common computing environment today is 32-bits, there are

still 16-bit environments in use, and there is a lot of old 16-bit code still in existence.
The most important 16-bit environment is DOS, followed by Windows 3.1. These
operating systems were designed for the 8086 family of processors, which includes
the 80286, 80386, 80486, and Pentium, when running in 8086-emulation mode.
Although most new code is designed for a 32-bit environment, programs are still
being written and maintained for the more compact 16-bit environments. Because
there are some issues unique to the 16-bit environment that impact the way code is
written, a brief discussion is in order for the benefit of those programmers working
in one of these environments, adapting older code, or porting 16-bit code to 32 bits.

When writing 16-bit code for the 8086 family of processors you have up to six different
ways to compile your program, each organizing the memory of the machine differently.
You can compile your programs for the tiny, small, medium, compact, large, and
huge memory models. Each of these models optimizes the space reserved for data, code,
and stack in its own way. The reason for the different memory organizations is based
on the 8086 family’s use of a segmented architecture when running 16-bit code. In
16-bit segmented mode, the 8086 family divides memory into 64K segments.

Pointers 123

CONTINUED

The memory model can, in some cases, have an effect on how pointers behave and
on what you can do with them. The main issue is what happens when a pointer is
incremented beyond a segment boundary. It is beyond the scope of this book to
discuss the behaviors and nuances of each 8086 16-bit memory model. Just be aware
that if you are working in a 16-bit 8086 environment then you will need to consult
your compiler’s documentation about memory models and their effect on pointers.

One last thing: When writing for the modern, 32-bit environment, there is only one
way to organize memory, which is called the flat model.

Multiple indirection can be carried on to whatever extent desired, but there are few
cases where more than a pointer to a pointer is needed, or, indeed, is even wise to use.
Excessive indirection is difficult to follow and prone to conceptual errors. 6

A variable that is a pointer to a pointer must be declared as such. This is done by
placing an additional asterisk in front of its name. For example, this declaration
tells the compiler that balance is a pointer to a pointer of type int:

int **balance;

It is important to understand that balance is not a pointer to an integer, but rather
a pointer to an int pointer.

When a target value is indirectly pointed to by a pointer to a pointer, accessing that
value requires that the asterisk operator be applied twice, as is shown in this short
example:

// Demonstrate multiple indirection.
#include <iostream>
using namespace std;

int main()
{

int x, *p, **q;

x = 10;
p = &X;
q = &p;

cout << **q; // prints the value of x

return 0;

Here, p is declared as a pointer to an integer, and q as a pointer to a pointer to an
integer. The cout statement will print the number 10 on the screen.

124

C++ from the Ground Up

Problems with Pointers

Nothing will get you into more trouble than a "wild" pointer! Pointers are a mixed
blessing. They give you tremendous power and are useful for a number of different
operations. But, when a pointer accidentally contains the wrong value, it can be the
most difficult bug to track down.

Bugs caused by bad pointers are hard to find because often the pointer itself does
not exhibit the problem. Instead, the problem shows itself only indirectly, perhaps
several steps after you have performed a pointer operation. For example, if a pointer
accidentally points to the wrong data, then a pointer operation may alter this data,
but the problem associated with this unintended alteration will not manifest itself
until later in the program’s execution. This may lead you to look for the bug in the
wrong place. By the time the problem is evident, there may be little or no indication
that the pointer was the original cause of the problem. For this reason, pointer bugs
have caused programmers to lose sleep time and time again.

Since pointer problems are so troublesome, let’s look at some ways they can happen,
and how they can be avoided.

Uninitialized Pointers

The classic example of a pointer error is the uninitialized pointer. Consider this example:

// This program is wrong.
int main() {
int x, *p;

x = 10;
*p = x; // where does p point?

return 0;

}

Here, p contains an unknown address because it has never been defined. You will
have no way of knowing where the value of x has been written. When your program
is very small, as it is here, the odds are that p will contain an address that is not in
your code or data area. Most of the time, your program will seem to work fine. However,
as your program grows, the probability of p pointing into either your program’s code
or data area increases. Eventually your program stops working. The way to prevent
this type of program is obvious: make sure that a pointer is pointing to something
valid before using it!

Invalid Pointer Comparisons

Comparisons between pointers that do not access the same array are generally invalid,
and often cause errors. You should not make assumptions about where your data will
be placed in memory, whether it will always be in the same place, or whether every
compiler or execution environment will treat it in the same way. Therefore, making
any comparisons between pointers to two different objects may yield unexpected
results. Here is an example:

Pointers 125

char s[80];
char y[80];
char *pl, *p2;

pl = s;
P2 = vy;
if(pl < p2)

This code is based on an invalid concept since C++ makes no guarantees about the
placement of variables in memory. You should write your applications in such a way
that they work no matter where data is located.

A related error assumes that two back-to-back arrays can be indexed as one simply by
incrementing a pointer across the array boundaries. For example:

int first[10];
int second[10];

int *p, t;

p = first;

for(t=0; t<20; ++t) {
*p o= t;
pH+;

}

The aim here is to initialize arrays first and second with the numbers O through 19,
but the code is not reliable. Even though it may work with some compilers under certain
circumstances, it assumes that both arrays will be placed back-to-back in memory
with first first. However, C++ does not guarantee how variables will be located in
memory.

Forgetting to Reset a Pointer

The following (incorrect) program inputs a string entered from the keyboard and then
displays the ASCII code for each character in the string. (Notice that it uses a cast to
cause the ASCII codes to be displayed.) However, this program has a serious bug.

// This program is wrong.

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()

{
char s[80];
char *pl;

do {

126

C++ from the Ground Up

cout << "Enter a string: ";
gets(pl); // read a string
// print the ASCII values of each character
while(*pl) cout << (int) *pl++ << ' ';
cout << '\n';
} while(strcmp(s, "done"));

return 0;

Can you find the error?

The pointer p1 is assigned the address of s once. This assignment is made outside

of the loop. The first time through the loop, p1 does point to the first character in s.
However, the second time through, it continues on from where it left off, because it

has not been reset to the start of the array s. This will eventually cause s to be overrun.

The proper way to write this program is shown here:

// This program is correct.

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()

{
char s[80];
char *pl;

do {
pl = s; // reset pl each time through the loop

cout << "Enter a string: ";
gets(pl); // read a string
// print the ASCII values of each character
while(*pl) cout << (int) *pl++ << ' ';
cout << '\n';

} while(strcmp(s, "done"));

return 0;

Here, each time the loop iterates, p1 is set to the beginning of the string.

REMEMBER: The key to the safe use of pointers is to know where your
pointers are pointing at all times.

CHAPTER 7

| Functions, Part One:
The Fundamentals

127

128

The scope rules
define how an
object may be
accessed and
determine its
lifetime.

C++ from the Ground Up

is chapter begins an in-depth discussion of the function. Functions are the building
blocks of C++, and a firm understanding of them is fundamental to becoming a
successful C++ programmer. Aside from their brief introduction in Chapter 2, you have
been using functions more or less intuitively. In this chapter you will study them in
detail. Topics include the scope rules of a function, recursive functions, some special
properties of the main() function, the return statement, and function prototypes.

Scope Rules of Functions

The scope rules of a language are the rules that govern how an object may be accessed

by various parts of your program. In other words, the scope rules determine what code
has access to a variable. The scope rules also determine the lifetime of a variable. As
mentioned earlier, there are three types of variables: local variables, formal parameters,
and global variables. Let’s look more closely at the scope rules at this time, with emphasis
on how they relate to functions.

Local Variables

As you know, variables that are declared inside a function are called local variables.
However, C++ supports a more subtle concept of the local variable than you have
previously seen. In C++, variables can be localized to a block. That is, a variable can be
declared inside any block of code and is then local to it. (Remember, a block begins
with an opening curly brace and ends with a closing curly brace.) In reality, variables
local to a function are simply a special case of the more general concept.

A local variable can be used only by statements located within the block in which it is
declared. Stated another way, a local variable is not known outside its own code block.
Thus, statements outside a block cannot access an object defined within the block.

One of the most important things to understand about local variables is that they exist
only while the block of code in which they are declared is executing. This means that
a local variable is created upon entry into its block and destroyed upon exit. Because a
local variable is destroyed upon exit from its block, its value is lost.

The most common code block is the function. In C++, each function defines a block
of code that begins with the function’s opening curly brace and ends with its closing
curly brace. A function’s code and data are private to that function, and cannot be
accessed by any statement in any other function, except through a call to that function.
(It is not possible, for instance, to use a goto statement to jump into the middle of
another function.) The body of a function is hidden from the rest of the program and,
unless it uses global variables, it can neither affect nor be affected by other parts of the
program. Thus, the contents of one function are completely separate from the contents
of another. Stated another way, the code and data that are defined within one function
cannot interact with the code or data defined in another function, because the two
functions have a different scope.

Because each function defines its own scope, the variables declared within one function
have no effect on those declared in another—even if those variables share the same name.
For example, consider the following program:

Functions, Part One: The Fundamentals 129

#include <iostream>
using namespace std;

void £1();

int main()
{

char str[] = "this is str in main()";

cout << str << '\n';
£1();
cout << str << '\n';

return 0;

}

void f1()
{
char str[80];

cout << "Enter something: ";
cin >> str;
cout << str << '\n';

}

A character array called str is declared twice here, once in main() and once in
f1(). The str in main() has no bearing on, or relationship to, the one in £1().
The reason for this is that each str is known only to the block in which it is
declared. To confirm this, try running the program. As you will see, even though
str receives a string entered by the user inside £f1(), the contents of str in main()
remain unchanged.

The C++ language contains the keyword auto, which can be used to declare local
variables. However, since all non-global variables are, by default, assumed to be auto,
it is virtually never used. Hence, you will not see it used in any of the examples in this
book. However, if you choose to use it, place it immediately before the variable’s type,
as shown here:

auto char ch;

It is common practice to declare all variables needed within a function at the
beginning of that function’s code block. This is done mainly so that anyone
reading the code can easily determine what variables are used. However, the
beginning of the function’s block is not the only place where local variables can
be declared. A local variable can be declared anywhere, within any block of code.
A variable declared within a block is local to that block. This means that the
variable does not exist until the block is entered and is destroyed when the block
is exited. Furthermore, no code outside that block—including other code in the
function—can access that variable.

130 C++ from the Ground Up

To understand this, try the following program:

/* This program illustrates how variables can be
local to a block.
*/

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

int choice;

cout << " (1) add numbers or ";
cout << "(2) concatenate strings?: ";

cin >> choice;
if (choice == 1) {
int a, b; /* activate two integer vars */
cout << "Enter two numbers: ";
cin >> a >> b;
cout << "Sum is " << a+b << '\n';
}
else {
char s1[80], s2[80]; /* activate two strings */
cout << "Enter two strings: ";
cin >> sl;
cin >> s2;
strcat(sl, s2);
cout << "Concatenation is " << sl << '\n';

return 0;

}

This program either adds two numbers or concatenates two strings, depending on the
user’s choice. Notice the variable declarations for a and b in the if block and those for
s1 and s2 in the else block. These variables will come into existence only when their
respective blocks are entered, and they will cease to exist when their blocks are exited.
If the user chooses to add numbers, then a and b are created. If the user wants to
concatenate strings, s1 and s2 are created. Finally, none of these variables can be
referenced from outside of its block—not even in other parts of the function. For
example, if you try to compile the following (incorrect) version of the program, you
will receive an error message:

/* This program is incorrect. */

#include <iostream>
#include <cstring>
using namespace std;

int main()

{

Functions, Part One: The Fundamentals 131

int choice;

cout << " (1) add numbers or ";
cout << "(2) concatenate strings?: ";

cin >> choice;

if (choice == 1) {
int a, b; /* activate two integer vars */
cout << "Enter two numbers: ";
cin >> a >> b;

cout << "Sum is " << a+b << '\n';
}
else {
char s1[80], s2[80]; /* activate two strings */

cout << "Enter two strings: ";

cin >> sl;

cin >> s2;

strcat(sl, s2);

cout << "Concatenation is " << sl << '\n';

a = 10; // *** Error *** -- a not known here!

return 0;

In this case, a is not known outside of the else block. Thus, it is an error to attempt to
use it.

When a local variable declared in an inner block has the same name as a variable
declared in an outer block, the variable declared in the inner block overrides the one
in the outer block, within the scope of the inner block. For example:

#include <iostream>
using namespace std;

int main()

{

int i, 3;
i = 10;
j = 100;

if(3 > 0) {
int i; // this 1 is separate from outer i

i=37/7 2;

cout << "inner i: " << i << '\n';
}
cout << "outer i: " << 1 << '\n‘';

return 0;

132

A local variable
will not hold its
value between
activations.

C++ from the Ground Up

The output from this program is shown here:

inner i: 50
outer i: 10

The i declared within the if block overrides, or hides, the outer i. Changes that take
place on the inner i have no effect on the outer i. Furthermore, outside of the if
block, the inner i is unknown and the outer i comes back into view.

Because local variables are created and destroyed with each entry and exit from the
blocks in which they are declared, a local variable will not hold its value between
activations of its block. This is especially important to remember in terms of a function
call. When a function is called, its local variables are created, and upon its return, they
are destroyed. This means that local variables cannot retain their values between calls.
(There is one way around this restriction, however, which will be explained later in
this book.)

Unless otherwise specified, storage for local variables is on the stack. The fact that the
stack is a dynamic, changing region of memory explains why local variables cannot,
in general, hold their values between function calls.

As mentioned earlier, although local variables are typically declared at the beginning of
their block, they need not be. A local variable can be declared anywhere within a block,
as long as it is declared before it is used. For example, this is a perfectly valid program:

#include <iostream>
using namespace std;

int main()

{
cout << "Enter a number: ";
int a; // declare one variable
cin >> a;

cout << "Enter a second number: ";
int b; // declare another variable
cin >> b;

cout << "Product: " << a*b << '\n';

return 0;

In this example, a and b are not declared until just before they are needed. Frankly,
most programmers declare all local variables at the beginning of the block that uses
them, but this is a stylistic issue.

Declaring Variables Within Iteration and Selection Statements

It is possible to declare a variable within the initialization portion of a for loop or
the conditional expression of an if, switch, or while. A variable declared in one of
these places has its scope limited to the block of code controlled by that statement.

Functions, Part One: The Fundamentals 133

For example, a variable declared within a for statement will be local to that loop, as
the following example shows.

#include <iostream>
using namespace std;

int main()
{
// i 1s local to for
for(int 1 = 0; 1i<10; 1i++) {
cout << 1 << " ";
cout << "squared is " << i1 * i << "\n";

}
// i1 = 10; // *** Error *** -- i not known here!

return 0;

}

Here, i is declared within the initialization portion of the for and is used to control
the loop. Outside the loop, i is unknown.

In general, when the loop control variable of a for is not needed outside the loop,
declaring it inside the for statement, as shown in the example, is a good idea because
it localizes the variable to the loop and prevents its accidental misuse elsewhere. In
professionally written C++ code, you will frequently find the loop control variable
declared within the for statement. Of course, if the variable is required by code
outside the loop, then it cannot be declared within the for statement.

TIP: Whether or not a variable declared within the initialization portion of a for
loop is local to that loop has changed over time. Originally, the variable was available
after the for. However, Standard C++ restricts the variable to the scope of the for loop.
Compilers continue to differ on this point, though.

If your compiler fully complies with Standard C++, then you can also declare a
variable within the conditional expression of the if, switch, or while. For example,
this fragment

if(int x = 20) {
cout << "This is x: ";
cout << x;

}

declares x and assigns it the value 20. Since this is a true value, the cout statements
execute. Variables declared within a conditional statement have their scope limited
to the block of code controlled by that statement. Thus, in this case, x is not known
outside the if. Frankly, not all programmers believe that declaring variables within
conditional statements is good practice, and this technique will not be used in this book.

134

C++ from the Ground Up

Formal Parameters

As you know, if a function uses arguments, then it must declare variables that will
accept the values of those arguments. These variables are called the formal parameters
of the function. Aside from receiving the arguments when a function is called, formal
parameters behave like any other local variables inside the function. The scope of

a parameter is local to its function.

You must make sure that the formal parameters you declare are of the same type as the
arguments you will pass to the function. Also, even though these variables perform the
special task of receiving the values of the arguments, they can be used like any other local
variable. For example, you can assign a new value to a parameter within the function.

Global Variables

Global variables are, in many ways, the opposite of local variables. They are known
throughout the entire program, can be used by any piece of code, and maintain their
values during the entire execution of the program. Therefore, their scope extends to
the entire program. You can create global variables by declaring them outside of any
function. Because they are global, they can be accessed by any expression, regardless
of the function in which the expression is located.

When a global and a local variable share the same name, the local variable has
precedence. Put differently, a local variable will hide a global variable of the same name.
Thus, even though global variables can be accessed by any code in your program, this
will happen only when no local variable’s name overrides the global variable.

The following program demonstrates the use of global variables. As you can see, the
variables count and num_right have been declared outside of all functions; they are,
therefore, global. Common practice dictates that it is best to declare global variables near
the top of the program. However, technically, they simply have to be declared before they
are first used. This program is a simple addition drill. It first asks you how many problems
you want. For each problem, the program calls drill(), which generates two random
numbers in the range 0 through 99. It prompts for, and then checks, your answer. You get
three tries per problem. At the end, the program displays the number of answers you've
gotten right. Pay special attention to the global variables used in this program:

// A simple addition drill program.

#include <iostream>
#include <cstdlib>
using namespace std;

void drill();

int count; // count and num_right are global
int num_right;

int main()

{
cout << "How many practice problems: ";
cin >> count;

Functions, Part One: The Fundamentals 135

num_right = 0;

do {
drill();
count--;
} while(count) ;
cout << "You got " << num_right << " right.\n";

return 0;

}

void drill()
{
int count; /* This count is local and unrelated to
the global one.
*/

int a, b, ans;

// Generate two numbers between 0 and 99.
a = rand() % 100;
b = rand() % 100;

// The user gets three tries to get it right.
for (count=0; count<3; count++) {
cout << "What is " << a << " + " << b << "? ";
cin >> ans;
if (ans==a+b) {
cout << "Right\n";
num_right++;
return;
}
}
cout << "You've used up all your tries.\n";
cout << "The answer is " << a+b << '\n';

Looking closely at this program, it should be clear that both main() and drill() access
the global num_right. However, count is a little more complex. The reference to count
in main() is to the global count. However, drill() has declared a local variable called
count. When drill() uses count, it is referring to its local variable, not the global one.
Remember that if, within a function, a global variable and a local variable have the same
name, all uses of that variable will refer to the local variable, not the global variable.

Storage for global variables is in a fixed region of memory set aside for this purpose
by your program. Global variables are helpful when the same data is used by several
functions in your program, or when a variable must hold its value throughout the
duration of the program. You should avoid using unnecessary global variables,
however, for three reasons:

€ They take up memory the entire time your program is executing, not just when
they are needed.

€ Using a global variable where a local variable is sufficient makes a function less
general, because it relies on something that must be defined outside itself.

136

C++ from the Ground Up

€ Using a large number of global variables can lead to program errors because of
unknown, and unwanted, side effects. A major problem in developing large
programs is the accidental modification of a variable’s value due to its use
elsewhere in a program. This can happen in C++ if you use too many global
variables in your programs.

Passing Pointers and Arrays

Up to now, the examples in this book have only passed simple variables to functions.
However, there will be times when you will want to use pointers and arrays as arguments.
While passing these types of arguments is a straightforward process, some special issues
need to be addressed.

Calling Functions with Pointers

C++ allows you to pass a pointer to a function. To do so, simply declare the parameter
as a pointer type. Here is an example:

// Pass a pointer to a function.
#include <iostream>
using namespace std;

void f (int *3j);

int main()
{
int 1i;
int *p;

p = &i; // p now points to 1
f(p);
cout << i; // i is now 100

return 0;

}

void f(int *j)
{

*j = 100; // var pointed to by j is assigned 100
}

Study this program carefully. As you can see, f() takes one parameter: an integer
pointer. Inside main(), p is assigned the address of i. Next, £() is called with p as an
argument. When the pointer parameter j receives p, it then also points to i within
main(). Thus, the assignment

*j = 100;

causes i to be given the value 100. Thus, the program displays 100. For the general
case, £() assigns 100 to whatever address it is called with.

Functions, Part One: The Fundamentals 137

In the preceding example, it is not actually necessary to use the pointer variable p.
Instead, you can simply precede i with an & when £() is called. (This, of course, will
cause the address of i to be generated.) The revised program is shown here:

// Pass a pointer to a function -- revised version.
#include <iostream>
using namespace std;

void f (int *3j);

int main()
{

int 1i;
f(&i);
cout << 1i;

return 0;

}

void f (int *3j)
{

*j = 100; // var pointed to by j is assigned 100
}

It is crucial that you understand one important point about passing pointers to
functions: When you perform an operation within the function that uses the pointer,
you are operating on the variable that is pointed to by that pointer. Thus, the function
will be able to change the value of the object pointed to by the parameter.

Calling Functions with Arrays

When an array is an argument to a function, only the address of the first element of
the array is passed, not a copy of the entire array. (Remember, in C++, an array name
without an index is a pointer to the first element in the array.) This means that the
parameter declaration must be of a compatible type. There are three ways to declare
a parameter that is to receive an array pointer. First, it can be declared as an array of
the same type and size as that used to call the function, as shown here:

#include <iostream>
using namespace std;

void display(int num[10]);
int main()
{

int t[10],1;

for(i=0; 1<10; ++1i) t[il=1i;

display(t); // pass array t to a function

138

C++ from the Ground Up

return 0;

}

// Print some numbers.
void display(int num[10])
{

int 1i;

for (i=0; i<10; i++) cout << num[i] << ' ';

}

Even though the parameter num is declared to be an integer array of 10 elements,
the C++ compiler will automatically convert it to an integer pointer. This is necessary
because no parameter can actually receive an entire array. Since only a pointer to the
array will be passed, a pointer parameter must be there to receive it.

A second way to declare an array parameter is to specify it as an unsized array, as
shown here:

void display(int num[])

{

int 1i;

for(i=0; i<10; i++) cout << num[i] << ' ';

}

Here, num is declared to be an integer array of unknown size. Since C++ provides no
array boundary checks, the actual size of the array is irrelevant to the parameter (but
not to the program, of course). This method of declaration is also automatically
transformed into an integer pointer by the compiler.

The final way that num can be declared is as a pointer. This is the method most
commonly used in professionally written C++ programs. Here is an example:

void display (int *num)
{

int 1i;

for(i=0; 1i<10; i++) cout << num[i] << ' ';

}

The reason it is possible to declare num as a pointer is that any pointer can be indexed
using [], as if it were an array. Recognize that all three methods of declaring an array
parameter yield the same result: a pointer.

On the other hand, an array element used as an argument is treated like any other
simple variable. For example, the preceding program could also be written without
passing the entire array, as shown here:

#include <iostream>
using namespace std;

void display(int num) ;

Functions, Part One: The Fundamentals 139

int main()
{
int t£[10],1;

for (i=0; 1<10; ++1i) t[il=1i;
for (i=0; i<10; i++) display(t[il]);

return 0;

}

// Print some numbers.
void display (int num)
{

cout << num << ' ';

}

As you can see, the parameter to display() is of type int. It is not relevant that
display() is called using an array element, because only that one value of the array
is passed.

It is important to remember that when an array is used as a function argument, its address
is passed to a function. This means that the code inside the function will be operating on,
and potentially altering, the actual contents of the array used to call the function. For
example, in the following program, examine the function cube(), which converts the
value of each element in an array into its cube. To call cube(), pass the address of the
array as the first argument, and the size of the array as the second.

#include <iostream>
using namespace std;

void cube(int *n, int num) ;

int main()
{

int i, nums[10];

for(i=0; 1<10; i++) nums[i] = i+1;

cout << "Original contents: ";

for(i=0; i<10; i++) cout << nums[i] << ' ';
cout << '\n';

cube (nums, 10); // compute cubes

cout << "Altered contents: ";
for(i=0; i<10; i++) cout << nums[i] << ' ';

return 0;

}

void cube (int *n, int num)
{

while (num) {

140 C++ from the Ground Up

*kp = *p X kpn *x *n;
num--;
n++;

Here is the output produced by this program:

Original contents: 1 2 3 4 56 7 8 9 10
Altered contents: 1 8 27 64 125 216 343 512 729 1000

As you can see, after the call to cube(), the contents of array nums in main() will
be cubes of its original values. That is, the values of the elements of nums have been
modified by the statements within cube(), because n points to nums.

Passing Strings

As you know, strings are simply character arrays that are null-terminated. Thus, when

you pass a string to a function, only a pointer to the beginning of the string is actually
passed. This is a pointer of type char *. For example, consider the following program.

It defines the function stringupper(), which converts a string to uppercase.

// Pass a string to a function.
#include <iostream>

#include <cstring>

#include <cctype>

using namespace std;

void stringupper (char *str);

int main()
{
char str[80];

strcpy(str, "this is a test");

stringupper (str) ;
cout << str; // display uppercase string
return 0;

}

void stringupper (char *str)
{
while(*str) {
*str = toupper(*str); // uppercase one char
str++; // move on to next char

The output from the program is shown here.

THIS IS A TEST

Functions, Part One: The Fundamentals 141

A command

line argument

is information
specified on the
command line after
a program’s name.

In the program, notice that the str parameter to stringupper() is declared as
char *. This enables it to receive a pointer to a character array that holds a string.

Here is another example of passing a string to a function. As you learned in Chapter 35,
the standard library function strlen() returns the length of a string. This program
shows one way to implement this function.

// A custom version of strlen().
#include <iostream>
using namespace std;

int mystrlen(char *str);

int main()

{
cout << "Length of Hello There is: ";
cout << mystrlen("Hello There");

return 0;

}

// A custom version of strlen().
int mystrlen(char *str)
{

int 1i;
for(i=0; str[i]; i++) ; // find the end of the string

return 1i;

}

On your own, you might want to try implementing the other string functions, such as
strcpy() or strcat(). Doing so is a good way to test your understanding of arrays,
strings, and pointers.

argc and argv: Arguments to main()

Sometimes you will want to pass information into a program when you run it. This
generally is accomplished by passing command line arguments to main(). A command
line argument is the information that follows the program’s name on the command line
of the operating system. (In Windows, the Run command also uses a command line.) For
example, you might compile C++ programs from the command line by typing something
like this,

cl prog-name

where prog-name is the program that you want compiled. The name of the program is
passed into the C++ compiler as a command line argument.

C++ defines two built-in, but optional, parameters to main(). They are argc and argv,
and they receive the command line arguments. These are the only parameters defined by
C++ for main(). However, other arguments may be supported in your specific operating

142

C++ from the Ground Up

environment, so you will want to check your compiler’s documentation. Let’s now look
at argc and argv more closely.

NOTE: Technically, the names of the command line parameters are arbitrary—you
can use any names you like. However, argc and argv have been used by convention for

several years, and it is best that you use these names so that anyone reading your program
can quickly identify them as the command line parameters.

The argc parameter is an integer that holds the number of arguments on the command
line. It will always be at least 1, because the name of the program is also counted.

The argv parameter is a pointer to an array of character pointers. Each pointer in the
argyv array points to a string containing a command line argument. The program’s name
is pointed to by argv[0]; argv[1] will point to the first argument, argv[2] to the second
argument, and so on. All command line arguments are passed to the program as strings,
so numeric arguments will have to be converted by your program into their proper
internal format.

It is important that you declare argv properly. The most common method is

char *argvl(];

You can access the individual arguments by indexing argv. The following program
demonstrates how to access the command line arguments. It prints Hello, followed
by your name, which must be the first command line argument.

#include <iostream>
using namespace std;

int main(int argc, char *argvl([])
{
if (argc!=2) {
cout << "You forgot to type your name.\n";
return 1;
}
cout << "Hello " << argv([l] << '\n';

return 0;

}

If you titled this program mame and your name was Tom, then to run the program,
you would type name Tom. The output from the program would be Hello Tom. For
example, if you were logged into drive A and using the command prompt, you would see:

A>name Tom
Hello Tom
A>

Functions, Part One: The Fundamentals 143

C++ does not stipulate the exact nature of a command line argument because host
environments (operating systems) vary considerably on this point. However, the most
common convention is as follows: Each command line argument must be separated
by spaces or tabs. Often, commas, semicolons, and the like are not valid argument
separators. For example,

one, two, and three

is made up of four strings, while

one, two,and three

has two strings—the comma is not a legal separator.

If you need to pass a command line argument that does, in fact, contain spaces, then
you must place it between quotes. For example, this will be treated as a single command
line argument:

"this is one argument"

Keep in mind that the examples provided here apply to a wide variety of environments,
but not necessarily to yours.

To access an individual character in one of the command strings, add a second index
to argv. For example, the program below will display all the arguments it is called
with, one character at a time.

/* The program prints all command line arguments it is
called with one character at a time. */

#include <iostream>

using namespace std;

int main(int argc, char *argvl([])
{

int t, 1i;

for (t=0; t<argc; ++t) {
i=20;
while(argv[t][i]) {
cout << argv[t][i];
++1;
}
cout << ' ';
}
return 0;

As applied to argv, the first index accesses the string, and the second index accesses a
character in the string.

144

C++ from the Ground Up

Usually, you will use argc and argv to get initial options or values into your program.
In C++, you can have as many command line arguments as the operating system will
allow. You normally use these arguments to indicate a filename or an option. Using
command line arguments will give your program a professional appearance and will
facilitate the program’s use in batch files.

Passing Numeric Command Line Arguments

As mentioned, when you pass numeric data as a command line argument to a program,
that data will be received in string form. Your program will need to convert it into the
proper internal format by using one of the standard library functions supported by C++.
For example, the program shown next prints the sum of the two numbers that follow
its name on the command line. The program uses the atof() function to convert each
argument into its internal representation. atof() is another of C++'s standard library
functions. It converts the string form of a number into a double.

/* This program displays the sum of the two numeric
command line arguments.
*/

#include <iostream>
#include <cstdlib>
using namespace std;

int main(int argc, char *argvl[])

{
double a, b;

if (argc!=3) {
cout << "Usage: add num num\n";
return 1;

}

a = atof(argv([1l]);
b atof (argv[2]);

cout << a + b;

return 0;

To add two numbers, use this type of command line (assuming the program is
called add):

C>add 100.2 231

Functions, Part One: The Fundamentals 145

Converting Numeric Strings to Numbers

The C++ standard library includes several functions that allow you to convert the
string representation of a number into its internal format. These are atoi(), atol(),
and atof(), which convert a numeric string into an integer, long integer, and double
floating-point value, respectively. These functions all require the header file <cstdlib>.
The following program illustrates their use:

// Demonstrate atoi(), atol(), and atof ().
#include <iostream>

#include <cstdlib>

using namespace std;

int main()
{
int 1i;
long Jj;
double k;

i atoi("100");
j = atol("100000");
k atof ("-0.123");

cout << i << ' ' << j << ' ' << k;
cout << '\n';

return O0;

}
The output is shown here:

100 100000 -0.123

The string-conversion functions are especially useful when passing numeric data to
a program through a command line argument. They are also useful in a variety of
other programming situations.

s The return Statement

You have been using the return statement without much explanation since Chapter 2.
As you know, the return statement performs two important operations: First, it will
cause a function to return immediately to its caller. Second, it can be used to return a
value. This section of the chapter presents some important issues related to both of
these processes.

146

C++ from the Ground Up

Returning from a Function

As you already know, a function returns to its caller in one of two situations: either
when the function’s closing curly brace is encountered or when a return statement
is executed. The return statement can be used with or without an associated value.
However, functions that are declared as returning a value (i.e., that have a non-void
return type) must return a value. Only functions declared as void can use return
without a value.

For void functions, the return statement is mostly used as a program-control device.
For example, the function shown next will print the outcome of one number raised to
a positive integer power. If the exponent is negative, the return statement causes the
function to terminate before any attempt is made to compute the exponent. In this
capacity, it acts as a control statement designed to prevent part of the function from
executing.

void power (int base, int exp)
{

int 1i;

if (exp<0) return; /* Can't do negative exponents,
so return to calling routine
and bypass the rest of the
function. */

i=1;
for(; exp; exp--) 1 = base * i;
cout << "The answer is: " << i;

}

A function may contain several return statements. As soon as one is encountered,
the function returns. For example, this fragment is perfectly valid:

void f()
{
//

switch(c) {

case 'a': return;
case 'b': //
case 'c': return;

}
if (count<100) return;
//

Be aware, however, that having too many returns can muddy the operation of a
algorithm and confuse its meaning. It is best to use multiple returns only when
they help clarify a function.

Functions, Part One: The Fundamentals 147

Returning Values

Every function, unless it is of type void, returns a value. This value is explicitly specified
by the return statement. This means that as long as a function is not declared to be
void, it can be used as an operand in an expression. Therefore, each of the following
expressions is valid in C++:

x = power (y) ;
if (max(x, y)) > 100) cout << "greater";

switch(abs (x)) {

Although all non-veid functions return values, you don’t necessarily have to use

the values for anything. A very common question regarding function return values is,
"Don’t I have to assign this value to some variable, since a value is being returned?"
The answer is no. If there is no assignment specified, then the return value is simply
discarded.

Examine the following program, which uses the standard library function abs():

#include <iostream>
#include <cstdlib>
using namespace std;

int main()

{

int 1i;

i = abs(-10); // line 1
cout << abs(-23); // line 2
abs (100) ; // line 3
return 0;

The abs() function returns the absolute value of its integer argument. It uses the
<cstdlib> header. In line 1, the return value of abs() is assigned to i. In line 2, the
return value is not actually assigned, but it is used by the cout statement. Finally, in
line 3, the return value is lost because it is neither assigned to another variable nor
used as part of an expression.

If a non-void function returns because its closing curly brace is encountered, an
undefined (i.e., unknown) value is returned. Because of a quirk in the formal C++
syntax, a non-void function need not actually execute a return statement. This

can happen if the end of the function is reached prior to a return statement being
encountered. However, because the function is declared as returning a value, a value
will still be returned—even though it is just a garbage value. Generally, any non-void
function that you create should return a value via an explicit return statement.

148

C++ from the Ground Up

Just as a void function may have more than one return statement, so too may a
function that returns a value. For example, the find_substr() function shown in
the next program uses two return statements to simplify its operation. The function
searches a string for a substring. It returns the index of the first matching substring,
or if no match is found, it returns -1. For example, if the string is "I like C++" and the
substring is "like", then the function returns 2 (which is the index of the "1" in like).

#include <iostream>
using namespace std;

int find_substr (char *sub, char *str);

int main()

{
int index;
index = find_substr("three", "one two three four");
cout << "Index of three is " << index; // index is 8
return 0;

// Return index of substring or -1 if not found.

int find_substr (char *sub, char *str)

{
int t;

char *p, *p2;

for (t=0; strlt]; t++) {

p = &str(t]l; // reset pointers

p2 = sub;

while (*p2 && *p2==*p) { // check for substring
pH+;
P2++;

/* If at end of p2 (i.e., substring), then
a match has been found. */
if(!*p2) return t; // return index of match
}
return -1; // no match found

The output from the program is shown here.

Index of three is 8

Since the string being sought is found, the first return statement executes. On your
own, try searching for a word that is not part of the string. In this case, find_substr()
returns -1 via the second return statement.

Functions, Part One: The Fundamentals 149

A function can be declared to return any valid C++ data type (except that a function
cannot return an array.) The method of declaration is similar to that used with variables:
The type specifier precedes the function name. The type specifier tells the compiler what
type of data will be returned by the function. This return type must be compatible with
the type of data used in the return statement. If it isn’t, a compile-time error will result.

void Functions

As you have seen, functions that don’t return values are declared void. This prevents
their use in an expression and helps head off accidental misuse. In the following
example, the function print_vertical() prints its string argument vertically down
the side of the screen. Since it returns no value, it is declared as void.

#include <iostream>
using namespace std;

void print_vertical (char *str);

int main(int argc, char *argvl([])
{

if (argc==2) print_vertical (argv[1l]);

return 0;

}

void print_vertical (char *str)
{
while(*str)
cout << *str++ << '\n';

Since print_vertical() is declared as void, it cannot be used in an expression. For
example, the following statement is wrong, and will not compile:

x = print_vertical("hello"); // Error

TIP: Early versions of the C language did not have the void return type. Thus, in
old C programs, functions that did not return values were simply allowed to default to
type int. You may still encounter functions of this sort when updating older C programs
to C++. If you do, simply convert them to void functions.

Functions That Return Pointers

Functions can return pointers. Pointers are returned like any other data type, and they
pose no special problem. However, because the pointer is one of C++'s more confusing
features, a short discussion of pointer return types is warranted.

150

C++ from the Ground Up

In order to return a pointer, a function must declare its return type to be a pointer.
For example, here the return type of £() is declared to be an integer pointer:

int *f();

If a function’s return type is a pointer, then the value used in its return statement
must also be a pointer. (As with all functions, the return value must be compatible
with the return type.)

The following program demonstrates the use of a pointer return type. It reworks the
find_substr() function, shown earlier, so that it returns a pointer to the substring,
rather than the index of the substring. If no match is found, a null pointer is returned.

// Rework find_substr() to return a pointer.
#include <iostream>
using namespace std;

char *find_substr (char *sub, char *str);
int main()

{

char *substr;

substr = find_substr("three", "one two three four");
cout << "substring found: " << substr;
return 0;

// Return pointer to substring or null if not found.
char *find_substr (char *sub, char *str)
{

int t;

char *p, *p2, *start;

for (t=0; strltl; t++) {
p = &str[t]; // reset pointers
start = p;
p2 = sub;
while (*p2 && *p2==*p) { // check for substring
DH+;
pP2++;

/* If at end of p2 (i.e., substring), then
a match has been found. */
if (!*p2)
return start; // return pointer to beginning of substring
}
return 0; // no match found

Functions, Part One: The Fundamentals 151

A prototype
declares a
function prior
to its first use.

The output from this version of the program is shown here.

substring found: three four

In this case, when "three" is found within "one two three four", a pointer to the
beginning of the matching "three" is returned and assigned to substr inside main().
Thus, when substr is output, the remainder of the string, "three four", is displayed.

Many of the string-related library functions supported by C++ return character
pointers. For example, the strcpy() function returns a pointer to the first argument.
Check your compiler’s library reference for other examples.

Function Prototypes

Until this point, prototypes have been used without explanation in the sample
programs. Now it is time to explain them formally. In C++, all functions must be
declared before they are used. Typically, this is accomplished by use of a function
prototype. Prototypes specify three things about a function:

€ Its return type
€ The type of its parameters

€ The number of its parameters

Prototypes allow the compiler to perform three important operations:

€ They tell the compiler what type of code to generate when a function is called.
Different return and parameter types must be handled differently by the compiler.

€ They allow C++ to find and report any illegal type conversions between the type
of arguments used to call a function and the type definition of its parameters.

€ They allow the compiler to detect differences between the number of arguments
used to call a function and the number of parameters in the function.

The general form of a function prototype is as follows. It is the same as a function
definition, except that no body is present.

type func-name(type parm_namel, type parm_name2,...,
type parm_nameN);

The use of parameter names in a prototype is optional. However, their use does let the
compiler identify any type mismatches by name when an error occurs, so it is a good
idea to include them.

To better understand the usefulness of function prototypes, consider the following
program. If you try to compile it, an error message will be issued because the program
attempts to call sqr_it() with an integer argument instead of the integer pointer
required. (It is illegal to transform an integer into a pointer.)

152

C++ from the Ground Up

/* This program uses a function prototype to
enforce strong type checking.
*/

void sqgr_it(int *i); // prototype

int main()
{

int x;

x = 10;
sqgr_it(x); // *** Error *** -- type mismatch!

return O;

}

void sqgr_it(int *i)
{
*1 = *i ox xi;

}

TIP: Although the C language accepts prototypes, it does not currently require
them. This is because early versions of C did not accept full prototypes. If you are
porting older C code to C++, you may need to fully prototype all functions before the
program will compile.

Headers: A Closer Look

Earlier in this book, you were introduced to the standard C++ headers. You have
learned that these headers contain information needed by your programs. While this
partial explanation is true, it does not tell the whole story. C++’s headers contain the
prototypes for the functions in the standard library. (They also contain various values
and definitions used by those functions.) Like functions that you write, the standard
library functions must be prototyped before they are used. For this reason, any
program that uses a library function must also include the header containing the
prototype of that function.

To find out which header a library function requires, look in your compiler’s library
reference. Along with a description of each function, you will find the name of the
header that must be included in order to use that function.

Functions, Part One: The Fundamentals 153

A recursive
function is a
function that
calls itself.

Old-Style versus Modern Function
Parameter Declarations

If you have ever examined older C code, you may have noticed that the

function parameter declarations look different. When C was first invented, it used
a fundamentally different parameter declaration method. This old-style method,
sometimes called the classic form, is outdated but still found in older code. The
declaration approach used by C++ (and newer C code) is called the modern form.
Because you may need to work on older C programs, especially if you are updating
them to C++, it is useful to understand the old-style parameter declaration form.

The old-style function parameter declaration consists of two parts: A parameter list,
which goes inside the parentheses that follow the function name; and the actual
parameter declarations, which go between the closing parenthesis and the function’s
opening curly brace. For example, this modern declaration:

float f(int a, int b, char ch)
{ ...

will look like this in its old-style form

float f(a, b, ch)
int a, b;
char ch;

...

Notice that in classic form, more than one parameter can be in a list after the type
name. This isn’t allowed in the modern form.

In general, to convert the old-style form into the modern (C++ style) form, simply
move the parameter declarations inside the function’s parentheses. Remember, each
parameter must be declared separately, each with its own type specifier.

Recursion

The last topic that we will examine in this chapter is recursion. Sometimes called
circular definition, recursion is the process of defining something in terms of itself. As it
relates to programming, recursion is the process of a function calling itself. A function
that calls itself is said to be recursive.

7

154

C++ from the Ground Up

The classic example of recursion is the function factr(), which computes the factorial
of an integer. The factorial of a number N is the product of all the whole numbers
between 1 and N. For example, 3 factorial is 1x2x3, or 6. Both factr() and its iterative
equivalent are shown here:

#include <iostream>
using namespace std;

int factr(int n);
int fact(int n);

int main()

{
// use recursive version
cout << "4 factorial is " << factr(4);
cout << '\n';

// use iterative version
cout << "4 factorial is " << fact(4);
cout << '\n';

return 0;

}

// Recursive version.
int factr(int n)
{

int answer;

if(n==1) return(l);
answer = factr(n-1)*n;
return (answer) ;

}

// Iterative version.
int fact(int n)
{

int t, answer;

answer = 1;
for(t=1; t<=n; t++) answer = answer* (t);
return (answer) ;

The operation of the nonrecursive version of fact() should be clear. It uses a loop
starting at 1 and progressively multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex. When factr() is
called with an argument of 1, the function returns 1; otherwise it returns the product
of factr(n-1)*n. To evaluate this expression, factr() is called with n-1. This happens
until m equals 1 and the calls to the function begin returning. For example, when the
factorial of 2 is calculated, the first call to factr() will cause a second call to be made

Functions, Part One: The Fundamentals 155

with the argument of 1. This call will return 1, which is then multiplied by 2 (the
original m value). The answer is then 2. You might find it interesting to insert cout
statements into factr() that will show at what level each call is, and what the
intermediate answers are.

When a function calls itself, new local variables and parameters are allocated storage
on the stack, and the function code is executed with these new variables from the
start. A recursive call does not make a new copy of the function; only the values are
new. As each recursive call returns, the old local variables and parameters are removed
from the stack, and execution resumes at the point of the function call inside the
function. Recursive functions could be said to "telescope" out and back.

Keep in mind that most recursive routines do not significantly reduce code size.
Also, the recursive versions of most routines may execute a bit more slowly than
their iterative equivalents, due to the added overhead of the additional function
calls. Too many recursive calls to a function may cause a stack overrun. Because
storage for function parameters and local variables is on the stack, and each new call
creates a new copy of these variables, it is possible that the stack will be exhausted.
If this occurs, other data may be destroyed as well. However, you probably will not
have to worry about any of this unless a recursive function runs wild.

The main advantage of recursive functions is that they can be used to create clearer
and simpler versions of several algorithms than those produced with their iterative
relatives. For example, the Quicksort sorting algorithm is quite difficult to implement
in an iterative way. Also, some problems, especially those related to artificial intelligence,
seem to lend themselves to recursive solutions. Finally, some people find it easier to
think recursively rather than iteratively.

When writing a recursive function, you must include a conditional statement, such as
an if, to force the function to return without execution of the recursive call. If you don't
provide the conditional statement, then once you call the function, it will never return.
This is a very common error. When developing programs with recursive functions, use
cout statements liberally so that you can watch what is going on, and abort execution if
you see that you have made a mistake.

Here is another example of a recursive function, called reverse(). It prints its string
argument backwards on the screen.

// Print a string backwards using recursion.
#include <iostream>
using namespace std;
void reverse(char *s);
int main()
{
char str[] = "this is a test";

reverse (str) ;

return 0;

156

C++ from the Ground Up

// Print string backwards.
void reverse(char *s)

{
if(*s)
reverse (s+1) ;
else
return;

cout << *g;

}

The reverse() function first checks to see if it has been passed a pointer to the null
terminating the string. If not, then reverse() calls itself with a pointer to the next
character in the string. When the null terminator is finally found, the calls begin
unraveling, and the characters are displayed in reverse order.

Creating recursive functions is often difficult for beginners. Over time, however, you
will grow more accustomed to using them.

CHAPTER 8

Functions,
Part Two:
i J' References,
o | Overloading, and
Default Arguments

, 'IE ! 157

158

Call-by-value
passes the value
of an argument
to a function.

Call-by-reference
passes the
address of an
argument to

a function.

C++ from the Ground Up

his chapter continues our examination of the function. Specifically, it discusses

three of C++’s most important function-related topics: references, function
overloading, and default arguments. These three features vastly expand the capabilities
of a function. As you will see, a reference is an implicit pointer. Function overloading
is the quality that allows one function to be implemented two or more different ways,
each performing a separate task. Function overloading is one way that C++ supports
polymorphism. Using a default argument, it is possible to specify a value for a parameter
that will be automatically used when no corresponding argument is specified.

Since references are frequently applied to function parameters (it is the main reason
for their existence), this chapter begins with a brief discussion of how arguments can
be passed to functions.

Two Approaches to Argument Passing

To understand the genesis of the reference, you must understand the theory behind
argument passing. In general, there are two ways that a computer language can pass
an argument to a subroutine. The first is called call-by-value. This method copies the
value of an argument into the formal parameter of the subroutine. Therefore, changes
made to the parameters of the subroutine will not affect the arguments used to call it.

Call-by-reference is the second way a subroutine can be passed arguments. This method
copies the address of an argument (not its value) into the parameter. Inside the
subroutine, this address is used to access the actual argument specified in the call.
This means that changes made to the parameter will affect the argument used to
call the subroutine.

How C++ Passes Arguments

By default, C++ uses the call-by-value method for passing arguments. This means that,
in general, code inside a function cannot alter the arguments used to call the function.
In this book, all of the programs up to this point have used the call-by-value method.

Consider this function:

#include <iostream>
using namespace std;

int sgr_it(int x);
int main()
{

int t=10;

cout << sqgr_it(t) << ' ' << t;

return 0;

}

int sgr_it(int x)
{

X = X*X;

return Xx;

}

I
Functions, Part Two: References, Overloading, and Default Arguments 159

In this example, the value of the argument to sqr_it(), 10, is copied into the
parameter x. When the assignment x = x*x takes place, the only thing modified is
the local variable x. The variable t, used to call sqr_it(), will still have the value 10
and is unaffected by the operations inside the function. Hence, the output will

be 100 10.

REMEMBER: By default, a copy of an argument is passed into a function.
What occurs inside the function will not affect the variable used in the call.

Using a Pointer to Create a Call-by-Reference

Even though C++'s default parameter-passing convention is call-by-value, it is possible
to manually create a call-by-reference by passing the address of an argument (i.e., a
pointer to the argument) to a function. It will then be possible for code inside the
function to change the value of the argument outside of the function. You saw an
example of this in the preceding chapter when the passing of pointers was discussed.
As you know, pointers are passed to functions just like any other values. Of course, it
is necessary to declare the parameters as pointer types.

To see how passing a pointer allows you to manually create a call-by-reference,
examine this version of swap(). It exchanges the values of the two variables
pointed to by its arguments.

void swap (int *x, int *y)
{

int temp;

temp = *x; // save the value at address x
*x o= *y; // put y into x
*y temp; // put x into y

The *x and the *y refer to the variables pointed to by x and y, which are the addresses
of the arguments used to call the function. Consequently, the contents of the variables
used to call the function will be swapped.

Since swap() expects to receive two pointers, you must remember to call swap()
with the addresses of the variables you wish to exchange. The correct method is shown
in this program:

#include <iostream>
using namespace std;

// Declare swap () using pointers.
void swap (int *x, int *y);

int main()

{

160

A reference
parameter
automatically
receives the
address of ite
corresponding
argument.

C++ from the Ground Up

int i, 3J;
i = 10;
j = 20;

cout << "Initial values of i and j: ";

cout << 1 << ' ' << j << '"\n';

swap (&j, &i); // call swap() with addresses of i and j
cout << "Swapped values of i and j: ";

cout << i << ' ' << j << '"\n';

return 0;

}

// Exchange arguments.
void swap (int *x, int *y)

{

int temp;
temp = *x; // save the value at address x
*x = *y; // put y into x

*y = temp; // put x into y

The output from the program is shown here:

Initial values of i and j: 10 20
Swapped values of i and j: 20 10

In this example, the variable i is assigned the value 10, and j the value 20. Then
swap() is called with the addresses of i and j. The unary operator & is used to
produce the addresses of the variables. Therefore, the addresses of i and j, not their
values, are passed into the function swap(). When swap() returns, i and j will
have their values exchanged.

Reference Parameters

While it is possible to achieve a call-by-reference manually by using the pointer operators,
this approach is rather clumsy. First, it compels you to perform all operations through
pointers. Second, it requires that you remember to pass the addresses (rather than the
values) of the arguments when calling the function. Fortunately, in C++, it is possible
to tell the compiler to automatically use call-by-reference rather than call-by-value

for one or more parameters of a particular function. You can accomplish this with a
reference parameter. When you use a reference parameter, the address (not the value) of
an argument is automatically passed to the function. Within the function, operations
on the reference parameter are automatically de-referenced, so there is no need to use
the pointer operators.

A reference parameter is declared by preceding the parameter name in the function’s
declaration with an &. Operations performed on a reference parameter affect the
argument used to call the function, not the reference parameter itself.

Functions, Part Two: References, Overloading, and Default Arguments

161

To understand reference parameters, let’s begin with a simple example. In the

following, the function f() takes one reference parameter of type int:

// Using a reference parameter.
#include <iostream>
using namespace std;

void f (int &i);

int main()

{
int val = 1;
cout << "0ld value for val: " << val << '\n';
f(val); // pass address of val to f()
cout << "New value for val: " << val << '\n';
return 0;

}

void f(int &i)
{
i = 10; // this modifies calling argument

}

This program displays the following output:

0ld value for wval: 1
New value for wval: 10

Pay special attention to the definition of £(), shown here:

void f(int &i)
{
i = 10; // this modifies calling argument

}

Notice the declaration of i. It is preceded by an &, which causes it to become a
reference parameter. (This declaration is also used in the function’s prototype.)

Inside the function, the following statement

i = 10;

does not cause i to be given the value 10. Instead, it causes the variable referenced by
i (in this case, val) to be assigned the value 10. Notice that this statement does not
use the * pointer operator. When you use a reference parameter, the C++ compiler
automatically knows that it is an address (i.e., a pointer) and de-references it for you.

In fact, using the * would be an error.

162 C++ from the Ground Up

Since i has been declared as a reference parameter, the compiler will automatically
pass £() the address of any argument it is called with. Thus, in main(), the statement

f(val); // pass address of val to f()

passes the address of val (not its value) to £(). There is no need to precede val with
the & operator. (Doing so would be an error.) Since £() receives the address of val
in the form of a reference, it may modify the value of val.

To illustrate reference parameters in actual use—and to fully demonstrate their
benefits—the swap() function is rewritten using references in the following
program. Look carefully at how swap() is declared and called.

#include <iostream>
using namespace std;

// Declare swap() using reference parameters.
void swap (int &x, int &y);

int main()

{

int i, J;
i = 10;
j = 20;

cout << "Initial values of i and j: ";
cout << 1 << ' ' << j << '\n';

swap(j, 1i);

cout << "Swapped values of i and j: ";

cout << 1 << ' ' << j << '\n';
return 0;
}
/* Here, swap() is defined as using call-by-reference,

not call-by-value. Thus, it can exchange the two
arguments it is called with.

*/

void swap (int &x, int &y)

{

int temp;

temp = x; // save the value at address x
X =Y // put y into x
vy = temp; // put x into y

Notice again that by making x and y reference parameters, there is no need to use
the * operator when exchanging values. As explained, it would be an error to do so.

I
Functions, Part Two: References, Overloading, and Default Arguments 163

Remember, the compiler automatically generates the addresses of the arguments used
to call swap(), and automatically de-references x and y.

Let’s review. When you create a reference parameter, that parameter automatically
refers to (i.e., implicitly points to) the argument used to call the function. Further,
there is no need to apply the & operator to an argument. Also, inside the function,
the reference parameter is used directly; the * operator is not necessary or, in fact,
correct. All operations involving the reference parameter automatically refer to the
argument used in the call to the function.

REMEMBER: When you assign a value to a reference, you are actually
assigning that value to the variable that the reference is pointing to. In the case
of function parameters, this will be the variable used in the call to the function.

Declaring Reference Parameters

When Bjarne Stroustrup wrote The C++ Programming Language (in which he first
described C++) in 1986, he introduced a style of declaring reference parameters,
which some other programmers have adopted. In this approach, the & is associated
with the type name rather than the variable name. For example, here is another way
to write the prototype to swap():

void swap (int& x, int& y);

As you can see, the & is immediately adjacent to int and not to x.

Further, some programmers also specify pointers by associating the * with the type
rather than the variable, as shown here:

float* p;

These types of declarations reflect the desire by some programmers for C++ to contain
a separate reference or pointer type. However, the trouble with associating the & or *
with the type rather than the variable is that, according to the formal C++ syntax,
neither the & nor the * is distributive over a list of variables, and this can lead to
confusing declarations. For example, the following declaration creates one, not two,
integer pointers.

int* a, b;

164

C++ from the Ground Up

CONTINUED

Here, b is declared as an integer (not an integer pointer) because, as specified by the
C++ syntax, when used in a declaration, an * or an & is linked to the individual variable
that it precedes, not to the type that it follows.

It is important to understand that, as far as the C++ compiler is concerned, it doesn’t
matter whether you write int *p or int* p. Thus, if you prefer to associate the * or &
with the type rather than the variable, feel free to do so. However, to avoid confusion,
this book will continue to associate the * and the & with the variable name that each
modifies, rather than the type name.

TIP: The C language does not support references. Thus, the only way to create a
call-by-reference in C is to use pointers, as shown earlier in the first version of swap().
When converting C code to C++, you will want to convert these types of parameters
to references, where feasible.

Returning References

A function can return a reference. In C++ programming, there are several uses for
reference return values. You will see some of these later in this book when you learn
about operator overloading. However, reference return values have other important
applications that you can use now.

When a function returns a reference, it returns an implicit pointer to its return value.
This gives rise to a rather startling possibility: The function can be used on the left
side of an assignment statement! For example, consider this simple program:

// Returning a reference.
#include <iostream>
using namespace std;
double &f();
double val = 100.0;
int main()
{

double newval;

cout << f£() << '\n'; // display val's value

newval = f£(); // assign value of val to newval
cout << newval << '\n'; // display newval's value

Functions, Part Two: References, Overloading, and Default Arguments 165
f() = 99.1; // change val's value
cout << f() << '\n'; // display val's new value

return 0;

}

double &f ()
{

return val; // return reference to val

}

The output of this program is shown here:

100
100
99.1

Let’s examine this program closely. At the beginning, £() is declared as returning
a reference to a double, and the global variable val is initialized to 100. Next, the
following statement displays the original value of val:

cout << f() << '\n'; // display val's value

When £() is called, it returns a reference to val. Because £() is declared as returning
a reference, the line

return val; // return reference to val

automatically returns a reference to val. This reference is then used by the cout
statement to display val'’s value.

In the line

newval = f(); // assign value of val to newval

the reference to val returned by £() is used to assign the value of val to newval.
The most interesting line in the program is shown here:

f() = 99.1; // change val's value

This statement causes the value of val to be changed to 99.1. Here is why: Since

f() returns a reference to val, this reference becomes the target of the assignment
statement. Thus, the value of 99.1 is assigned to val indirectly, through the reference
to it returned by £().

Finally, in this line

cout << f() << '\n'; // display val's new value

8

166

C++ from the Ground Up

the new value of val is displayed when a reference to val is returned by the call to
f() inside the cout statement.

Here is another sample program that uses a reference return type:

#include <iostream>
using namespace std;

double &change_it(int i); // return a reference
double vals[] = {1.1, 2.2, 3.3, 4.4, 5.5};

int main()
{

int 1i;

cout << "Here are the original values: ";
for (i=0; i<5; i++)

cout << vals[i] << ' ';
cout << '\n';

change_it (1) = 5298.23; // change 2nd element
change_it(3) = -98.8; // change 4th element

cout << "Here are the changed values: ";
for (i=0; i<5; i++)

cout << vals[i] << ' ';
cout << '\n';

return 0;
double &change_it (int i)

{

return vals[i]; // return a reference to the ith element

This program changes the values of the second and fourth elements in the vals array.
The program displays the following output:

Here are the original values: 1.1 2.2 3.3 4.4 5.5
Here are the changed values: 1.1 5298.23 3.3 -98.8 5.5

Let’s see how this is accomplished. The change_it() function is declared as returning
a reference to a double. Specifically, it returns a reference to the element of vals that
is specified by its parameter i. Thus, inside main(), when this statement executes

change_1it (1) = 5298.23; // change 2nd element

change _it() returns a reference to vals[1]. Through this reference, vals[1] is then
assigned the value 5298.23. A similar process occurs when this statement executes.

Functions, Part Two: References, Overloading, and Default Arguments 167

change_it (3) = -98.8; // change 4th element

Because change_it() returns a reference to a specific element of the vals array, it
can be used on the left side of an assignment statement to assign a new value to that
array element.

When returning a reference, be careful that the object being referred to does not go
out of scope. For example, consider this function:

// Error, cannot return reference to local var.
int &£ ()
{

int i=10;

return 1i;

}

In £(), the local variable i will go out of scope when the function returns. Therefore,
the reference to i returned by £() will be undefined. Actually, some compilers will not
compile £() as written, precisely for this reason. However, this type of problem can be
created indirectly, so be careful which object you return a reference to.

Creating a Bounded Array

One good use for a reference return type is to create a bounded array. As you know,
in C++, there is no run-time boundary checking on array indexing. This means that
arrays can be overrun. That is, an array index may be specified that exceeds the size
of the array. However, it is possible to prevent array overruns by creating a bounded
or safe array. When a bounded array is created, any out-of-bounds index is prevented
from indexing the array.

The following program illustrates one way to create a bounded array:

// A simple safe array.
#include <iostream>
using namespace std;

int &put(int 1i); // put value into the array
int get(int 1); // obtain a value from the array

int vals[10];
int error = -1;

int main()

{

put (0) = 10; // put values into the array
put(l) = 20;
put(9) = 30;

cout << get(0) << ' ';
cout << get(l) << ' ';
cout << get(9) << ' ';

168

C++ from the Ground Up

// now, intentionally generate an error
put (12) = 1; // Out of Bounds

return 0;

}

// Put a value into the array.
int &put(int i)
{
if(i>=0 && i<10)
return vals[i]; // return a reference to the ith element
else {
cout << "Bounds Error!\n";
return error; // return a reference to error
}
}

// Get a value from the array.
int get(int 1)
{
if(i>=0 && 1i<10)
return vals([i]; // return the value of the ith element
else {
cout << "Bounds Error!\n";
return error; // return an error

}

The output produced by this program is shown here:

10 20 30 Bounds Error!

This program creates a safe array of ten integers. To put a value into the array, use
the put() function. To retrieve a value, call get(). For both functions, the index
of the desired element is specified as an argument. As the program shows, both get()
and put() prevent an array overrun. Notice that put() returns a reference to the
specified element and is thus used on the left side of an assignment statement.

While the approach to implementing a bounded array shown in this example is correct,
an even better implementation is possible. As you will see when you learn about operator
overloading later in this book, it is possible to create your own custom, bounded arrays

that also use standard array notation.

Independent References

Even though the reference is included in C++ primarily for supporting call-by-reference
parameter passing and for use as a function return type, it is possible to declare a stand-
alone reference variable. This is called an independent reference. It must be stated at the
outset, however, that independent reference variables are seldom used, because they
tend to confuse and destructure your program. With these reservations in mind, we will
take a short look at them here.

Functions, Part Two: References, Overloading, and Default Arguments 169

An independent
reference is simply
another hame

for some other
variable.

An independent reference must point to some object. Thus, an independent reference
must be initialized when it is declared. Generally, this means that it will be assigned
the address of a previously declared variable. Once this is done, the name of the reference
variable can be used anywhere that the variable it refers to can be used. In fact, there is
virtually no distinction between the two. For example, consider the program shown here:

#include <iostream>
using namespace std;

int main()
{
int j, k;
int &i = j; // independent reference

j = 10;
cout << j << " " << i; // outputs 10 10
= 121;

i = %k; // copies k's value into j
// not k's address

cout << "\n" << j; // outputs 121

return 0;

This program displays the following output:

10 10
121

The address pointed to by a reference variable is fixed; it cannot be changed. Thus,
when the statement i = K is evaluated, it is Kk’s value that is copied into j (pointed
to by i), not its address. For another example, i++ does not cause i to point to a new
address. Instead, j is increased by 1.

As stated earlier, it is generally not a good idea to use independent references, because
they are not necessary and they tend to garble your code. Having two names for the
same variable is an inherently confusing situation.

A Few Restrictions When Using References

There are some restrictions that apply to reference variables:

€@ You cannot reference a reference variable.

You cannot create arrays of references.

L 4

€ You cannot create a pointer to a reference. That is, you cannot apply the & operator
to a reference.

*

References are not allowed on bit-fields. (Bit-fields are discussed later in this book.)

170

Function
overloading is the
mechanism that
allows two related
functions to share
the same name

C++ from the Ground Up

Function Overloading

In this section, you will learn about one of C++'s most exciting features: function
overloading. In C++, two or more functions can share the same name, as long as
their parameter declarations are different. In this situation, the functions that share
the same name are said to be overloaded, and the process is referred to as function
overloading. Function overloading is one way that C++ achieves polymorphism.

Let’s begin with a short sample program:
// Overload a function three times.

#include <iostream>
using namespace std;

void f(int 1i); // integer parameter
void f(int i, int j); // two integer parameters
void f (double k) ; // one double parameter

int main()
{
£(10); // call f(int)

£(10, 20); // call f(int, int)
£(12.23); // call f(double)

return 0;

void f (int 1)
{

cout << "In f(int), i is " << i << '\n';

void f(int i, int J)

{
cout << "In f(int, int), 1 is " << i;
cout << ", j is " << j << '\n';

void f (double k)
{
cout << "In f(double), k is " << k << '\n';

This program produces the following output:
In f(int), i is 10

In f(int, int), i is 10, j is 20
In f(double), k is 12.23

I
Functions, Part Two: References, Overloading, and Default Arguments 171

As you can see, () is overloaded three times. The first version takes one integer
parameter, the second version requires two integer parameters, and the third version
has one double parameter. Because the parameter list for each version is different,
the compiler is able to call the correct version of each function. In general, to overload
a function, you simply declare different versions of it.

The compiler uses the type and/or number of arguments as its guide to determining
which version of an overloaded function to call. Thus, overloaded functions must
differ in the type and/or number of their parameters. While overloaded functions
may have different return types, the return type alone is not sufficient to distinguish
two versions of a function. (Return types do not provide sufficient information in all
cases for the compiler to correctly decide which function to use.)

To better understand the benefit of function overloading, consider these three functions,
which are located in the standard library: abs(), labs(), and fabs(). These functions
were first defined by the C language and, for compatibility, are also included in C++.
The abs() function returns the absolute value of an integer, labs() returns the absolute
value of a long, and fabs() returns the absolute value of a double. In C (which
does not support function overloading), three slightly different names must be used
to represent these essentially similar tasks. This makes the situation more complex,
conceptually, than it actually is. Even though the underlying concept of each function
is the same, the programmer has three names to remember, not just one. However,
in C++ it is possible to use just one name for all three functions, as illustrated in this
example:

// Create an overloaded version of abs() called myabs().
#include <iostream>
using namespace std;

// myabs () is overloaded three ways.
int myabs (int 1i);

double myabs (double d) ;

long myabs(long 1);

int main()

{
cout << myabs(-10) << "\n";
cout << myabs(-11.0) << "\n";

cout << myabs(-9L) << "\n";

return 0;

}

int myabs (int 1)
{
cout << "Using integer myabs(): ";

172

C++ from the Ground Up

if(i<0) return -i;
else return 1i;

}

double myabs (double d)
{

cout << "Using double myabs(): ";

if(d<0.0) return -d;
else return d;

}

long myabs(long 1)
{

cout << "Using long myabs(): ";
if(1<0) return -1;

else return 1;

}

Here is the output produced by the program.

Using integer myabs(): 10
Using double myabs(): 11
Using long myabs(): 9

This program creates three similar but different functions called myabs, each of which
returns the absolute value of its argument. The compiler knows which function to use
in each given situation because of the type of the argument. The value of overloading
is that it allows related sets of functions to be accessed using a common name. Thus,
the name myabs represents the general action that is being performed. It is left to the
compiler to choose the correct specific version for a particular circumstance. Therefore,
through the application of polymorphism, three things to remember have been reduced
to one. Although this example is fairly simple, if you expand the concept, you can see
how overloading can help you manage greater complexity.

When you overload a function, each version of that function can perform any activity
you desire. That is, there is no rule stating that overloaded functions must relate to
one another. However, from a stylistic point of view, function overloading implies a
relationship. Thus, while you can use the same name to overload unrelated functions,
you should not. For example, you could use the name sqr to create functions that
return the square of an int and the square root of a double. These two operations are
fundamentally different, however, and applying function overloading in this manner
defeats its original purpose. (In fact, programming in this manner is considered to be
extremely bad style!) In practice, you should overload only closely related operations.

Functions, Part Two: References, Overloading, and Default Arguments 173

The overload Anachronism

When C++ was created, overloaded functions had to be explicitly declared as such
by using the overload keyword. The overload keyword is no longer required or
supported by C++. In fact, it is not even defined as a keyword by Standard C++.
However, you may still encounter overload from time to time—especially in older
books and articles.

The general form of overload is shown here:
overload func-name;

where func-name is the name of the function being overloaded. This statement must
precede the overloaded declarations. (Generally, it is found near the top of the program.)
For example, if the function Counter() is being overloaded, then this line will be
included in the program:

overload Counter;

If you encounter overload declarations when working with older programs, you can
simply remove them; they are no longer needed. Because overload is an anachronism,
you should not use it in new C++ programs. In fact, most compilers will not accept it.

Default Function Arguments

The next function-related feature discussed in this chapter is the default argument.
In C++, you can give a parameter a default value that is automatically used when
no argument corresponding to that parameter is specified in a call to a function.
Default arguments can be used to simplify calls to complex functions. Also, they
can sometimes be used as a "shorthand" form of function overloading.

A default argument is specified in a manner syntactically similar to a variable
initialization. Consider the following example, which declares myfunc() as
taking one double argument with a default value of 0.0, and one character
argument with a default value of 'X"

void myfunc (double num = 0.0, char ch = 'X")

{

8

174

A default
argument is a
value that will
automatically
be passed to a
function when no
explicit argument
is specified.

C++ from the Ground Up

Now, myfunc() can be called by one of the three methods shown here:

myfunc(198.234, 'A'); // pass explicit values
myfunc(10.1); // pass num a value, let ch default

myfunc () ; // let both num and ch default

The first call passes the value 198.234 to num and 'A' to ch. The second call
automatically gives num the value 10.1 and allows ch to default to 'X'. Finally,
the third call causes both num and ch to default.

One reason that default arguments are included in C++ is that they enable the
programmer to manage greater complexity. In order to handle the widest variety
of situations, quite frequently a function will contain more parameters than are
required for its most common usage. Thus, when the default arguments apply, you
need remember and specify only the arguments that are meaningful to the exact
situation, not all those needed for the most general case.

A simple illustration of how useful a default function argument can be is shown

by the clrscr() function in the following program. The clrscr() function clears the
screen by outputting a series of linefeeds (not the most efficient way, but sufficient for
this example!). Since a very common video mode displays 25 lines of text, the default
argument of 25 is provided. However, since some video modes can display more or less
than 25 lines, you can override the default argument by specifying another one explicitly.

#include <iostream>
using namespace std;

void clrscr(int size=25);

int main()

{
int 1i;
for(i=0; 1<30; i++) cout << i << '\n';
clrscr(); // clears 25 lines
for(i=0; i<30; i++) cout << i << '\n';
clrscr(10); // clears 10 lines
return 0;

}

void clrscr(int size)
{
for(; size; size--) cout << '\n';

}

I
Functions, Part Two: References, Overloading, and Default Arguments 175

As this program illustrates, when the default value is appropriate to the situation,
no argument need be specified when calling clrscr(). However, it is still possible
to override the default and give size a different value.

There are two important points to remember about creating a function that has
default argument values: The default values must be specified only once, and this
specification must happen the first time the function is declared within the file. In
the preceding example, the default argument was specified in clrscr()’s prototype.
If you try to specify new (or even the same) default values in clrscr()’s definition,
the compiler will display an error message and will not compile your program.

Even though default arguments must be specified only once, you can specify different
default arguments for each version of an overloaded function. Thus, different versions
of an overloaded function can have different default arguments.

It is important to understand that all parameters that take default values must appear
to the right of those that do not. For example, the following prototype is invalid:

// wrong!
void f(int a = 1, int b);

Once you've begun defining parameters that take default values, you cannot specify
a non-defaulting parameter. That is, a declaration like the following is also wrong and
will not compile:

int myfunc(float f, char *str, int i1=10, int j);

Since i has been given a default value, j must be given one too.

Default Arguments versus Overloading

As mentioned at the beginning of this section, one application of default arguments is
as a shorthand form of function overloading. To see why this is the case, imagine that
you want to create two customized versions of the standard strcat() function. One
version will operate like strcat() and concatenate the entire contents of one string
to the end of another. The other version will take a third argument that specifies
the number of characters to concatenate. That is, this version will concatenate only

a specified number of characters from one string to the end of another.

Assuming that you call your customized functions mystrcat(), they will have the
following prototypes:

void mystrcat (char *sl, char *s2, int len);
void mystrcat (char *sl, char *s2);

The first version will copy len characters from s2 to the end of s1. The second version
will copy the entire string pointed to by s2 onto the end of the string pointed to by s1
and will operate like strcat().

176

C++ from the Ground Up

While it would not be wrong to implement two versions of mystrcat() to create the
two versions that you want, there is an easier way. Using a default argument, you can
create only one version of mystrcat() that performs both functions. The following
program demonstrates this:

// A customized version of strcat().
#include <iostream>

#include <cstring>

using namespace std;

void mystrcat (char *sl, char *s2, int len = -1);

int main()

{

char strl1[80] = "This is a test";
char str2[80] = "0123456789";
mystrcat (strl, str2, 5); // concatenate 5 chars

cout << strl << '\n';
strcpy(strl, "this is a test"); // reset strl

mystrcat (strl, str2); // concatenate entire string
cout << strl << '\n';

return 0;

}

// A custom version of strcat().
void mystrcat (char *sl, char *s2, int len)
{

// find end of sl

while(*sl) sl++;

if(len == -1) len = strlen(s2);

while(*s2 && len) {
*sl = *s2; // copy chars
sl++;
S2++;
len--;

*sl = '\0'; // null terminate sl

Here, mystrcat() concatenates up to len characters from the string pointed to

by s2 onto the end of the string pointed to by s1. However, if len is -1, as it will

be when it is allowed to default, mystrcat() concatenates the entire string pointed
to by s2 onto s1. (Thus, when len is -1, the function operates like the standard
strcat() function.) By using a default argument for len, it is possible to combine
both operations into one function. As this example illustrates, default arguments
sometimes provide a shorthand form of function overloading.

Functions, Part Two: References, Overloading, and Default Arguments 177

Ambiguity results
when the compiler
cannot resolve the
difference between
two overloaded
functions.

Using Default Arguments Correctly

Although default arguments can be a very powerful tool when used correctly, they
can also be misused. The point of default arguments is to allow a function to perform
its job in an efficient, easy-to-use manner, while still allowing considerable flexibility.
Towards this end, all default arguments should reflect the way a function is generally
used, or a reasonable alternate usage. When there is no single value that is normally
associated with a parameter, then there is no reason to declare a default argument. In
fact, declaring default arguments when there is insufficient basis for doing so destructures
your code, because they are liable to mislead and confuse anyone reading your program.
Finally, a default argument should cause no harm. That is, the accidental use of a
default argument should not have irreversible, negative consequences. For example,
forgetting to specify an argument should not cause an important data file to be erased!

Function Overloading and Ambiguity

Before concluding this chapter, we must examine a type of error unique to C++:
ambiguity. It is possible to create a situation in which the compiler is unable to choose
between two (or more) correctly overloaded functions. When this happens, the situation
is said to be ambiguous. Ambiguous statements are errors, and programs containing
ambiguity will not compile.

By far the main cause of ambiguity involves C++’s automatic type conversions. C++
automatically attempts to convert the type of the arguments used to call a function
into the type of the parameters defined by the function. Here is an example:

int myfunc (double 4d);

cout << myfunc('c'); // not an error, conversion applied

As the comment indicates, this is not an error, because C++ automatically converts
the character c into its double equivalent. Actually, in C++, very few type conversions
of this sort are disallowed. While automatic type conversions are convenient, they are
also a prime cause of ambiguity. Consider the following program:

// Overloading ambiguity.
#include <iostream>
using namespace std;

float myfunc(float 1i);
double myfunc (double 1i);

int main()

{
// unambiguous, calls myfunc (double)
cout << myfunc(10.1) << " ";

// ambiguous
cout << myfunc(10);

178

C++ from the Ground Up

return 0;

}

float myfunc(float i)
{

return 1i;

}

double myfunc (double i)
{
return -i;

}

Here, myfunc() is overloaded so that it can take arguments of either type float or
type double. In the unambiguous line, myfunc(double) is called because, unless
explicitly specified otherwise, all floating-point literals in C++ are automatically of
type double. However, when myfunc() is called using the integer 10, ambiguity
is introduced, because the compiler has no way of knowing whether it should be
converted to a float or to a double. Both are valid conversions. This confusion
causes an error message to be displayed and prevents the program from compiling.

The central issue illustrated by the preceding example is that it is not the overloading
of myfunc() relative to double and float that causes the ambiguity. Rather, the
confusion is caused by the specific call to myfunc() using an indeterminate type

of argument. Put differently, it is not the overloading of myfunc() that is in error,
but the specific invocation.

Here is another example of ambiguity caused by the automatic type conversions
in C++:

// Another ambiguity error.
#include <iostream>
using namespace std;

char myfunc (unsigned char ch);
char myfunc (char ch);

int main()

{
cout << myfunc('c'); // this calls myfunc (char)
cout << myfunc(88) << " "; // ambiguous

return 0;

}

char myfunc (unsigned char ch)
{
return ch-1;

}

Functions, Part Two: References, Overloading, and Default Arguments 179

char myfunc (char ch)
{

return ch+1;

}

In C++, unsigned char and char are not inherently ambiguous. (They are different
types.) However, when myfunc() is called with the integer 88, the compiler does
not know which function to call. That is, should 88 be converted into a char or
unsigned char? Both are valid conversions.

Another way you can cause ambiguity is by using default arguments in overloaded
functions. To see how, examine this program:

// More ambiguity.
#include <iostream>
using namespace std;

int myfunc(int 1i);
int myfunc(int i, int j=1);

int main()

{
cout << myfunc(4, 5) << " "; // unambiguous
cout << myfunc(10); // ambiguous
return 0;

}

int myfunc(int 1)
{

return i;

}

int myfunc(int i, int j)
{
return i*j;

}

Here, in the first call to myfunc() two arguments are specified; therefore, no
ambiguity is introduced, and myfunc(int i, int j) is called. However, the second
call to myfunc() results in ambiguity, because the compiler does not know whether
to call the version of myfunc() that takes one argument, or to apply the default to
the version that takes two arguments.

As you continue to write your own C++ programs, be prepared to encounter
ambiguity errors. Unfortunately, until you become more experienced, you will
find that they are fairly easy to create.

This page intentionally left blank

CHAPTER 9

More Data Types
and Operators

181

182

The cv-qualifiers
control how a
variable can be
accessed.

The const
qualifier prevents
a variable from
being modified by
your program.

C++ from the Ground Up

Before we move on to the more advanced features of C++, now is a good time to
return to data types and operators. In addition to the data types that you have
been using so far, C++ supports several others. Some of these consist of modifiers
added to the types you already know about. Other data types include enumerations
and typedefs. C++ also provides several additional operators that greatly expand its
scope and facilitate its application to various programming tasks. These include the
bitwise, shift, ?, and sizeof operators. Also, two special operators, new and delete,
are discussed in this chapter. These operators support C++'s dynamic memory
allocation system.

The const and volatile Qualifiers

C++ has two type qualifiers that affect the ways in which variables can be accessed or
modified: const and volatile. Formally called the cv-qualifiers, they precede the base
type when a variable is declared.

const

Variables declared with the const qualifier cannot have their values changed during
the execution of your program. You may give a variable declared as const an initial
value, however. For example,

const double version = 3.2;

creates a double variable called version that contains the value 3.2 and that value
cannot be changed by your program. The variable can, however, be used in other
types of expressions. A const variable will receive its value either from an explicit
initialization or by some hardware-dependent means. Applying the const qualifier to
a variable’s declaration ensures that the variable will not be modified by other parts of
your program.

The const qualifier has several important uses. Perhaps the most common is to create
const pointer parameters. A const pointer parameter prevents the object pointed to by
the parameter from being modified by a function. That is, when a pointer parameter is
preceded by const, no statement in the function can modify the variable pointed to by
that parameter. For example, the code() function in this short program shifts each
letter in a message by one (so that an A becomes a B, and so forth), thus displaying
the message in code. The use of const in the parameter declaration prevents the code
inside the function from modifying the object pointed to by the parameter.

#include <iostream>
using namespace std;

void code(const char *str);
int main()
{

code("this is a test");

return 0;

More Data Types and Operators 183

/* Use of const ensures str cannot modify the
argument to which it points. */
void code(const char *str)
{
while(*str) {
cout << (char) (*str+l);
str++;

Since str is declared as being a const pointer, the function can make no changes to
the string pointed to by str. However, if you attempted to write code() as shown
in the next example, an error would result, and the program would not compile:

// This is wrong.
void code(const char *str)
{

while(*str) {

*str = *str + 1; // Error, can't modify the argument
cout << (char) *str;
str++;

Because str is const, it can’t be used to modify the object to which it points.

The const qualifier can also be used on reference parameters to prevent functions 9
from modifying the variables that they reference. For example, the following program
is incorrect because f() attempts to modify the variable referred to by i:

// const references cannot be modified.
#include <iostream>
using namespace std;

void f(const int &i);

int main()
{
int k = 10;

f(k);
return 0;

// Use a const reference parameter.

void f(const int &i)

{
i = 100; // Error, can't modify a const reference.
cout << 1i;

184

The volatile
qualifier informs
the compiler that
a variable may

be changed by
factors outside
of the program.

C++ from the Ground Up

Another use for const is to provide verification that your program does not, in fact,
alter a variable. Recall that a variable of type const can be modified by something
outside your program. For example, a hardware device may set its value. By declaring
a variable as const, you can prove that any changes to that variable occur because of
external events.

Finally, const is used to create named constants. Often, programs will require the
same value for many different purposes. For example, several different arrays may be
declared that must all be the same size. When such a "magic number" is needed, one
good way to implement it is as a const variable. Then you can use the name of the
variable instead of the value, and if that value needs to be changed, you will need to
change it in only one place in your program. The following example gives you the
flavor of this application of const:

#include <iostream>
using namespace std;

const int size = 10;

int main()
{

int Al[size], A2[size], A3[size];

//

In this example, if you need to use a new size for the arrays, you need only change the
declaration of size and recompile your program. All three arrays will be automatically
resized.

volatile

The volatile qualifier tells the compiler that a variable’s value may be changed in ways
not explicitly specified by the program. For example, the address of a global variable
may be passed to an interrupt-driven clock routine that updates the variable with
each tick of the clock. In this situation, the contents of the variable are altered
without the use of any explicit assignment statements in the program. The reason the
external alteration of a variable may be important is that a C++ compiler is permitted
to optimize certain expressions on the assumption that the content of a variable is
unchanged if it does not occur on the left side of an assignment statement. However, if
factors external to the program change the value of a variable, then problems can occur.

For example, in the following fragment, assume that clock is being updated every
millisecond by the computer’s clock mechanism. However, since clock is not
declared as volatile, the fragment may not always work properly. (Pay special
attention to the lines labeled A and B.)

int clock, timer;
//

More Data Types and Operators 185
timer = clock; // line A
// ... do something
cout << "Elapsed time is " << clock-timer; // line B

The storage class
specifiers
determine how a
variable is stored.

The seldom used
auto specifier
declares a local
variable

In this fragment, the value of clock is obtained when it is assigned to timer in line A.
However, because clock is not declared as volatile, the compiler is free to optimize the
code in such a way that the value of clock is not reexamined in the cout statement in
line B if there has been no intervening assignment to clock between lines A and B.
(That is, in line B the compiler could simply reuse the value for clock that it obtained
in line A.) However, if a clock tick occurs between lines A and B, then the value of
clock will have changed, and line B will not produce the correct output.

To solve this problem, you must declare clock to be volatile, as shown here:

volatile int clock;

Now, clock’s value will be obtained each time it is used.

Although it seems strange at first thought, it is possible to use const and volatile
together. For example, the following declaration is perfectly valid. It creates a const
pointer to a volatile object.

const volatile unsigned char *port = (const volatile char *) 0x2112;

In this example, the cast is needed in order to transform the integer literal 0x2112
into a const volatile character pointer.

Storage Class Specifiers

There are five storage class specifiers supported by C++. They are:

auto
extern
register
static
mutable

These tell the compiler how a variable should be stored. The storage specifier precedes
the rest of the variable declaration.

The mutable specifier applies only to class objects, which are discussed later in this
book. Each of the other specifiers is examined here.

auto

The auto specifier declares a local variable. However, it is rarely (if ever) used, because
local variables are auto by default. It is extremely unusual to see this keyword used in
a program.

186

The extern
specifier declares
a variable, but
does not allocate
storage for it.

Using global
variables in
separately
compiled
modules

Figure 9-1.

C++ from the Ground Up

extern

All the programs that you have worked with so far have been quite small. However,
in reality, computer programs tend to be much larger. As a program file grows, the
compilation time eventually becomes long enough to be annoying. When this
happens, you should break your program into two or more separate files. Once you
divide your program this way, small changes to one file will not require that the
entire program be recompiled. The multiple file approach can yield a substantial time
savings with large projects. The extern keyword helps support this approach. Let’s
see how.

In programs that consist of two or more files, each file must know the names and
types of the global variables used by the program. However, you cannot simply
declare copies of the global variables in each file. The reason for this is that in C++,
your program can include only one copy of each global variable. Therefore, if you
try to declare the global variables needed by your program in each file, you will have
trouble. When the linker tries to link together the files, it will find the duplicated
global variables, and will not link your program. The solution to this dilemma is to
declare all of the global variables in one file and use extern declarations in the
others, as shown in Figure 9-1.

File One declares and defines x, y, and ch. In File Two, the global variable list is
copied from File One, and the extern specifier is added to the declarations. The
extern specifier allows a variable to be made known to a module, but does not
actually create that variable. In other words, extern lets the compiler know what the
types and names are for these global variables, without actually creating storage for
them again. When the linker links the two modules together, all references to the
external variables are resolved.

While we haven'’t yet worried about the distinction between the declaration and the
definition of a variable, it is important here. A declaration declares the name and type
of a variable. A definition causes storage to be allocated for the variable. In most cases,
variable declarations are also definitions. By preceding a variable name with the
extern specifier, you can declare a variable without defining it.

There is another use of extern which does not involve multi-file projects. Although
most of the time you will declare global variables at the top of your program, this is

File One File Two

extern int x,y;
extern char ch;

int x, y;
char ch;

int main() void func22 ()
{ {

/... x = y/10
} }

void funcl() void func23()
{ {

x = 123 v = 10;
} }

More Data Types and Operators 187

not technically necessary. If a function uses a global variable that is defined later in
the file, the global variable can be declared as extern inside the function. Later, when
the variable’s definition is encountered, references to the variable are resolved.
Consider the following example. Notice that the global variables first and last are
declared after main().

#include <iostream>
using namespace std;

int main()
{

extern int first, last; // use global vars
cout << first << " " << last << "\n";

return 0;

}

// global definition of first and last
int first = 10, last = 20;

This programs outputs 10 20 because the global variables first and last used by the
cout statement are initialized to these values. Because the extern declaration inside
main() tells the compiler that first and last are declared elsewhere (in this case,
later in the same file), the program can be compiled without error even though first
and last are used prior to their definition.

It is important to understand that the extern variable declarations as shown in

the preceding program are necessary only because first and last had not yet been
defined prior to their use in main(). Had their definitions occurred prior to main(),
then there would have been no need for the extern statement. Remember, if the
compiler finds a variable that has not been declared within the current block, it
checks if the variable matches any of the variables declared within enclosing blocks.
If it does not, the compiler then checks the previously defined global variables. If a
match is found, the compiler assumes that it is the variable being referenced. The
extern specifier is needed only when you want to use a variable that is declared later
in the file, or in another file.

One other point: Although an extern statement declares but does not define a
variable, there is one exception to this rule. If, in an extern declaration, you initialize
the variable, then the extern declaration becomes a definition. This is important
because an object can have multiple declarations, but only one definition.

static Variables

Variables of type static are permanent variables within their own function or file.
They differ from global variables because they are not known outside their function
or file. Because static affects local variables differently than it does global ones, local
and global variables will be examined separately here.

188

A static local
variable maintains
its value between
function calls.

C++ from the Ground Up

static Local Variables

When the static modifier is applied to a local variable, permanent storage for the
variable is allocated in much the same way that it is for a global variable. This allows
a static variable to maintain its value between function calls. (That is, its value is not
lost when the function returns, unlike the value of a normal local variable.) The key
difference between a static local variable and a global variable is that the static local
variable is known only to the block in which it is declared. Thus, a static local
variable is, more or less, a global variable that has restricted scope.

To declare a static variable, precede its type with the word static. For example, this
statement declares count as a static variable:

static int count;

A static variable may be given an initial value. For example, this statement gives
count an initial value of 200:

static int count = 200;

Local static variables are initialized only once, when program execution begins, not
each time the function in which they are declared is entered.

It is important to the creation of stand-alone functions that static local variables
are available, because there are several types of routines that must preserve a value
between calls. If static variables were not allowed, then global variables would have
to be used—opening the door to possible side effects.

Here is an example of a static variable. It keeps a running average of the numbers
entered by the user.

/* Compute a running average of numbers entered by
the user.

*/

#include <iostream>

using namespace std;

int r_avg(int 1i);

int main()

{

int num;
do {
cout << "Enter numbers (-1 to quit): ";
cin >> num;
if(num != -1)
cout << "Running average is: " << r_avg(num) ;

cout << '\n';
} while(num > -1);

return 0;

More Data Types and Operators 189

A static global
variable is known
only to the file in
which the variable
is declared.

}

// Compute a running average.
int r_avg(int i)
{

static int sum=0, count=0;
sum = sum + 1i;
count++;

return sum / count;

}

Here, the local variables sum and count are both declared as static and initialized to O.
Remember, for static variables, the initialization occurs only once—not each time
the function is entered. The program uses r_avg() to compute and report the current
average of the numbers entered by the user. Because both sum and count are static,
they will maintain their values between calls, causing the program to work properly.
To prove to yourself that the static modifier is necessary, try removing it and running
the program. As you can see, the program no longer works correctly, because the
running total is lost each time r_avg() returns.

static Global Variables

When the static specifier is applied to a global variable, it tells the compiler to create
a global variable that is known only to the file in which the static global variable is
declared. This means that even though the variable is global, other functions in other
files have no knowledge of it and cannot alter its contents. Thus, it is not subject to
unauthorized changes. Therefore, for the few situations where a local static cannot
do the job, you can create a small file that contains only the functions that need the
global static variable, separately compile that file, and use it without fear of side
effects.

Here is an example that reworks the running-average program shown in the previous
section. It consists of two files and uses global static variables to hold the running
average and the count.

#include <iostream>
using namespace std;

int r_avg(int 1i);
void reset() ;

int main()

{

int num;

do {
cout << "Enter numbers (-1 to quit, -2 to reset): ";

190

C++ from the Ground Up

cin >> num;
if (num==-2) {
reset () ;
continue;
}
if(num != -1)
cout << "Running average is: " << r_avg(num);
cout << '\n';
} while(num != -1);

return 0;

static int sum=0, count=0;

int r_avg(int 1)
{

sum = sum + 1;
count++;

return sum / count;

}

void reset ()
{
sum = 0;

count 0;

In this version of the program, the variables sum and count are global statics that
are restricted to the second file. Thus, they may be accessed by both r_avg() and
reset(), both in the second file. This allows them to be reset so that a second set of
numbers can be averaged. However, no functions outside the second file can access
those variables. When you run this program, you can reset the average by entering -2.
This causes a call to reset().You should try this now. You might also try to access
either sum or count from the first file. (You will receive an error message.)

To review: The name of a local static variable is known only to the function or block
of code in which it is declared, and the name of a global static variable is known
only to the file in which it resides. In essence, the static modifier allows variables to
exist that are known only to the functions that need them, thereby controlling and
limiting the possibility of side effects. Variables of type static enable you, the
programmer, to hide portions of your program from other portions. This can be a
tremendous advantage when you are trying to manage a very large and complex
program.

More Data Types and Operators 191

TIP: Although global static variables are still valid and widely used in C++
code, Standard C++ deprecates their use. Instead, it recommends another method of
controlling access to global variables that involves the use of namespaces. This
technique is described later in this book.

Register Variables

Perhaps the most frequently used storage class specifier is register. The register
modifier tells the compiler to store a variable in such a way that it can be accessed as
quickly as possible. Typically, this means storing the variable either in a register of the
CPU or in cache memory. As you probably know, accessing the registers of the CPU
(or cache memory) is fundamentally faster than is accessing the main memory of the
computer. Thus, a variable stored in a register will be accessed much more quickly
than if that variable had been stored in RAM, for example. Because the speed by
which variables can be accessed has a profound effect on the overall speed of your
programs, the careful use of register is an important programming technique.

The register Technically, register is only a request to the compiler, which the compiler is free to
specifier requests ignore. The reason for this is easy to understand: There is a finite number of registers
that avariablebe (or fast-access memory), and these may differ from environment to environment. Thus,
optimized for if the compiler runs out of fast access memory, it simply stores the variable normally.
80C695 5posd. Generally, this causes no harm, but of course the register advantage is lost.

Since only a limited number of variables can actually be granted the fastest access, it is
important to choose carefully those to which you apply the register modifier. (Only
by choosing the right variables can you gain the greatest increase in performance.) In
general, the more often a variable is accessed, the more benefit there will be to
optimizing it as a register variable. For this reason, variables that control or are
accessed within loops are good variables to declare as register. The following example
uses a register variable of type int to control a loop. This function computes the result
of m° for integers, while preserving the sign. Thus, -2 squared is —4.

int signed_pwr (register int m, register int e)
{

register int temp;

int sign;

if(m < 0) sign = -1;
else sign = 1;

temp = 1;
for(;e ;e--) temp = temp * m;

return temp * sign;

In this example, m, e and temp are all declared as register because they are all used
within the loop and are accessed frequently. However, sign is not specified as
register because it is not part of the loop and is accessed less frequently.

192

C++ from the Ground Up

I
The Origins of the register Modifier

The register modifier was first defined by the C language. It originally applied only to
variables of type int and char, or to pointers. It caused variables of these types to be
held in a register of the CPU rather than in memory, where normal variables are stored.
This meant that operations on register variables could occur much faster than on
variables stored in memory, because no memory access was required to determine or
modify their values.

When C was standardized, a decision was made to expand the definition of register.
According to the ANSI C standard, the register modifier may be applied to any

type of data. It simply tells the compiler to make access to a register type as fast as
possible. For situations involving characters and integers, this still usually means
putting them into a CPU register, so the traditional definition still holds. Since C++ is
built upon ANSI standard C, it has also adopted the expanded definition of register.

As stated, the exact number of register variables that will actually be optimized
within any one function is determined by both the processor type and the specific
implementation of C++ that you are using. You can generally count on at least two.
You don’t have to worry about declaring too many register variables, though,
because C++ will automatically make register variables into non-register variables
when the limit is reached. (This is done to ensure portability of C++ code across a
broad line of processors.)

To show the difference that register variables can make, the following program
measures the execution time of two for loops that differ only in the type of variable
that controls them. This program uses the clock() function found in C++’s standard
library. The clock() function returns the number of system clock ticks that have
elapsed since the program began running. It requires the header <ctime>.

/* This program shows the difference a register variable
can make to the speed of program execution.
*/

#include <iostream>
#include <ctime>
using namespace std;

unsigned int i; // non-register
unsigned int delay;

int main()
{

register unsigned int j;

More Data Types and Operators 193

long start, end;

start = clock();
for (delay=0; delay<50; delay++)
for(i=0; i < 64000000; i++);
end = clock();
cout << "Number of clock ticks for non-register loop: ";
cout << end-start << '\n';

start = clock();
for (delay=0; delay<50; delay++)
for(j=0; j < 64000000; J++) ;
end = clock();
cout << "Number of clock ticks for register loop: ";
cout << end-start << '\n';

return 0;

When you run this program, you will find that the register-controlled loop executes
in about half the time of the non-register-controlled loop. If you don'’t see the
expected difference, it probably means that your compiler is simply optimizing all of
the variables for speed. Just play with the program a bit until the difference becomes
apparent.

NOTE: At the time of this writing, Visual C++ ignores the register keyword.
Instead, Visual C++ applies optimizations as it sees fit. Thus, you won't see any
optimization caused by register in the preceding program. However, the register
keyword is still accepted by the compiler without error. It just doesn’t have any effect.

s Fnumerations

In C++, you can define a list of named integer constants. Such a list is called an
enumeration. These constants can then be used anywhere that an integer can.
Enumerations are defined using the keyword enmum, and this general format:

enum type-name { enumeration list } variable-list;

The enumeration list is a comma-separated list of names that represent the values of
the enumeration. The variable list is optional because variables may be declared later
by using the enumeration type name. The following example defines an enumeration
called apple, and two variables of type apple called red and yellow.

enum apple {Jonathan, Golden_Del, Red_Del, Winesap,
Cortland, McIntosh} red, yellow;

194

The enum keyword
declares an
enumeration.

C++ from the Ground Up

Once you have defined an enumeration, you can declare additional variables of its
type by using its name. For example, this statement declares one variable, called
fruit, of enumeration apple:

apple fruit;

The statement can also be written like this:

enum apple fruit;

However, the use of enum here is redundant. In C (which also supports enumerations),
this second form was required, so you may see it used in some programs.

Assuming the preceding declarations, the following types of statements are perfectly
valid:

fruit = Winesap;
if (fruit==Red_Del) cout << "Red Delicious\n";

The key point to understand about an enumeration is that each of the symbols stands
for an integer value. As such, they can be used in any integer expression. Unless
initialized otherwise, the value of the first enumeration symbol is O, the value of the
second symbol is 1, and so forth. Therefore,

cout << Jonathan << ' ' << Cortland;

displays 0 4 on the screen.

Although enumerated constants are automatically converted to integers, integers are
not automatically converted into enumerated constants. For example, the following
statement is incorrect:

fruit = 1; // Error

This statement causes a compile-time error because there is no automatic conversion
from integer to apple. However, you could fix the preceding statement by using a
cast, as shown here:

fruit = (apple) 1; // now OK, but probably poor style

This causes fruit to contain the value Golden_Del, because it is the apple constant
associated with the value 1. As the comment suggests, while this statement is now
correct, it would be considered poor style, except in unusual circumstances.

It is possible to specify the value of one or more of the enumerated constants by using
an initializer. This is done by following the symbol with an equal sign and an integer
value. Whenever an initializer is used, the symbol that appears after it is assigned a
value 1 greater than the preceding initialization value. For example, the following
statement assigns the value of 10 to Winesap:

More Data Types and Operators

enum apple {Jonathan,

Golden_Del,
Cortland, McIntosh};

195

Red_Del, Winesap=10,

Now, the values of these symbols are as follows:

Jonathan 0
Golden_Del

Red_Del 2
Winesap 10
Cortland 11
McIntosh 12

One common, but erroneous, assumption sometimes made about enumerations is that
the symbols can be input and output as a string. This is not the case. For example, the
following code fragment will not perform as desired:

// This will not print "McIntosh" on the screen.
fruit = McIntosh;
cout << fruit;

Remember, the symbol McIntosh is simply a name for an integer; it is not a string.
Thus, the preceding code will display the numeric value of McIntosh, not the string
"McIntosh". Actually, to create code that inputs and outputs enumeration symbols as
strings is quite tedious. For example, the following code is needed in order to display,
in words, the kind of apple that fruit contains:

switch(fruit) {
case Jonathan: cout << "Jonathan";

break;

case Golden_Del: cout << "Golden Delicious";
break;

case Red_Del: cout << "Red Delicious";
break;

case Winesap: cout << "Winesap";
break;

case Cortland: cout << "Cortland";
break;

case McIntosh: cout << "McIntosh";
break;

Sometimes it is possible to declare an array of strings and use the enumeration value
as an index in order to translate an enumeration value into its corresponding string.
For example, the following program prints the names of three apples:

#include <iostream>
using namespace std;

196 C++ from the Ground Up

enum apple {Jonathan, Golden_Del, Red_Del, Winesap,
Cortland, McIntosh};

// Array of strings that correspond to the apple enumeration.
char name[][20] = {

"Jonathan",

"Golden Delicious",

"Red Delicious",

"Winesap",

"Cortland",

"McIntosh"
}i

int main()
{
apple fruit;

fruit = Jonathan;
cout << name[fruit] << '\n';

fruit = Winesap;
cout << name[fruit] << '\n';

fruit = McIntosh;
cout << name[fruit] << '\n';

return 0;

The output is shown here.

Jonathan
Winesap
McIntosh

The approach this program uses to convert an enumeration value into a string can be
applied to any type of enumeration, as long as that enumeration does not contain
initializers. To properly index the array of strings, the enumerated constants must
begin at zero, be in strictly ascending order, and each be precisely one greater than
the previous.

Given the fact that enumeration values must be converted manually to their human-
readable string values, they find their greatest use in routines that do not make such

conversions. It is common to see an enumeration used to define a compiler’s symbol
table, for example.

More Data Types and Operators 197

typedef lete
you create a
new name for
an existing
data type.

The bitwise
operators
operate upon
individual bits.

typedef

C++ allows you to define new data type names with the typedef keyword. When you
use typedef, you actually are not creating a new data type, but rather are defining

a new name for an existing type. This process can help make machine-dependent
programs more portable; only the typedef statements have to be changed. It also
can help you self-document your code by allowing descriptive names for the standard
data types. The general form of the typedef statement is

typedef type new-name;

where fype is any valid data type, and new-name is the new name for this type. The
new name you define is in addition to, not a replacement for, the existing type name.

For example, you could create a new name for float using

typedef float balance;

This statement would tell the compiler to recognize balance as another name for
float. Next, you could create a float variable using balance:

balance over_due;

Here, over_due is a floating-point variable of type balance, which is another name
for float.

More Operators

Earlier in this book, you learned about the more commonplace C++ operators. Unlike
many computer languages, C++ provides several special operators that greatly increase
its power and flexibility. These operators are the subject of the remainder of this
chapter.

Bitwise Operators

Since C++ is designed to allow full access to the computer’s hardware, it is important
that it have the ability to operate directly upon the bits within a byte or word.
Towards this end, C++ contains the bitwise operators. Bitwise operations refer to the
testing, setting, or shifting of the actual bits in a byte or word, which correspond to
C++'s character and integer types. Bitwise operations may not be used on bool, float,
double, long double, void, or other more complex data types. Bitwise operations
are important in a wide variety of systems-level programming in which status
information from a device must be interrogated or constructed. Table 9-1 lists the
bitwise operators. Let’s now look at each operator in turn.

198

The Bitwise
Operators

Table 9-1.

C++ from the Ground Up

Operator Action

& AND

| OR

A exclusive OR (XOR)

~ one’s complement (NOT)
>> shift right

<< shift left

AND, OR, XOR, and NOT

The bitwise AND, OR, and one’s complement (NOT) are governed by the same truth
table as their logical equivalents, except that they work on a bit-by-bit level. The
exclusive OR (XOR) operates according to the following truth table:

P q P"q
0 0 0
1 0 1
1 1 0
0 1 1

As the table indicates, the outcome of an XOR is true only if exactly one of the
operands is true; it is false otherwise.

In terms of its most common usage, you can think of the bitwise AND as a way to
turn bits off. That is, any bit that is O in either operand will cause the corresponding
bit in the outcome to be set to 0. For example:

11010011
& 10101010

10000010

The following program reads characters from the keyboard, and turns any lowercase
letter into uppercase by resetting the sixth bit to 0. As the ASCII character set is
defined, the lowercase letters are the same as the uppercase ones, except that they are
greater in value by exactly 32. Therefore, to uppercase a lowercase letter, you need to
turn off the sixth bit, as this program illustrates:

// Uppercase letters.
#include <iostream>
using namespace std;

More Data Types and Operators 199

int main()
{

char ch;

do {
cin >> ch;

// This statement turns off the 6th bit.
ch = ch & 223; // ch is now uppercase

cout << ch;
} while(ch!='Q");

return 0;

The value 223 used in the AND statement is the decimal representation of 1101 1111.
Hence, the AND operation leaves all bits in ch unchanged, except for the sixth one,
which is set to zero.

The AND operator is also useful when you want to determine whether a bit is on or
off. For example, this statement checks to see if bit 4 in status is set:

if (status & 8) cout << "bit 4 is on";

To understand why 8 is used to determine if bit 4 is set, recall that, in binary, 8 is
represented as 0000 1000. Thus, the number 8 has only the fourth bit set. Therefore,

the if statement can succeed only when bit 4 of status is also on. An interesting use

of this technique is the disp_binary() function, shown next. It displays, in binary 9
format, the bit pattern of its argument. You will use disp_binary() later in this

chapter to examine the effects of other bitwise operations.

// Display the bits within a byte.
void disp_binary (unsigned u)
{

register int t;

for (£t=128; t>0; t = t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

cout << "\n";

}

The disp_binary() function works by successively testing each bit in the low-order
byte of w, using the bitwise AND, to determine if it is on or off. If the bit is on, the
digit 1 is displayed; otherwise 0 is displayed. For fun, try expanding this function so
that it displays all of the bits in w, not just its low-order byte.

200

C++ from the Ground Up

The bitwise OR, as the reverse of AND, can be used to turn bits on. A bit that is set to 1
in either operand will cause the corresponding bit in the result to be set to 1. For
example:

11010011
l 10101010

11111011

You can make use of the OR to change the uppercasing program, used earlier, into a
lowercasing program, as shown here:

// Lowercase letters.
#include <iostream>
using namespace std;

int main()
{

char ch;

do {
cin >> ch;

/* This lowercases the letter by turning
on bit 6.

*/

ch = ch | 32;

cout << ch;
} while(ch != 'q");

return 0;

}

Setting the sixth bit causes an uppercase letter to be transformed into its lowercase
equivalent.

An exclusive OR, usually abbreviated XOR, will set a bit if and only if the bits being
compared are different, as illustrated here:

01111111
10111001

N

11000110

The 1’s complement (NOT) unary operator reverses the state of all the bits of its
operand. For example, if some integer called A has the bit pattern 1001 0110, then ~A
produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number and
its complement in binary, using the disp_binary() function shown earlier:

More Data Types and Operators 201

#include <iostream>
using namespace std;

void disp_binary (unsigned u) ;

int main()

{

unsigned u;

cout << "Enter a number between 0 and 255: ";
cin >> u;

cout << "Here's the number in binary: ";
disp_binary (u) ;

cout << "Here's the complement of the number: ;
disp_binary (~u) ;

return 0;

// Display the bits within a byte.
void disp_binary (unsigned u)
{

register int t;

for (t=128; t>0; t = t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

cout << "\n";

Here is a sample run produced by the program:

Enter a number between 0 and 255: 99
Here's the number in binary: 0 1 1 0

001
Here's the complement of the number: 1 0 0

1
11100

One last point: Be careful not to confuse the logical and bitwise operators. They
perform different functions. The &, |, and ~ apply their operations directly to each bit
in the value individually. The equivalent logical operators work on true/false (zero/
nonzero) values. For this reason, the bitwise operators cannot be used to replace their
logical equivalents in conditional statements. For example, if x equals 7, then x && 8
evaluates to true, whereas x & 8 evaluates to false.

REMEMBER: A relational or logical operator always produces a result that
is either true or false, whereas the similar bitwise operator produces a value in
accordance with the specific operation.

202

The shift
operators ohift
the bits within an
integral value

C++ from the Ground Up

The Shift Operators

The shift operators, >> and <<, move all bits in a value to the right or left. The general
form of the right-shift operator is

value >> num-bits

and the left-shift operator is

value << num-bits

The value of num-bits determines how many bit places the bits are shifted. Each
left-shift causes all bits within the specified value to shift left one position, and it brings
in a zero bit on the right. Fach right-shift shifts all bits to the right one position, and
brings in a zero on the left. However, if the value is a signed integer containing a
negative value, then each right-shift brings in a 1 on the left, which preserves the sign
bit. Remember, a shift is not a rotation. That is, the bits shifted off of one end do not
come back around to the other.

The shift operators work only with integral types, such as characters, integers, and
long integers. They cannot be applied to floating-point values, for example.

Bit shift operations can be very useful for decoding external device input, like D/A
converters, and processing status information. The bitwise shift operators can also be
used to perform very fast multiplication and division of integers. A shift left will
effectively multiply a number by 2, and a shift right will divide it by 2.

The following program illustrates the effects of the shift operators:

// Demonstrate bitshifting.
#include <iostream>
using namespace std;

void disp_binary (unsigned u) ;

int main()
{
int i=1, t;

for (t=0; t<8; t++) {
disp_binary (i) ;
i=1<<1;

}

cout << "\n";

for (t=0; t<8; t++) {
i=1> 1;
disp_binary (i) ;

}

return 0;

}

// Display the bits within a byte.

More Data Types and Operators 203

void disp_binary (unsigned u)
{

register int t;

for (t=128; t>0; t=t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

cout << "\n";

This program produces the following output:

0000O0O0OCT1
00000010
0000O01TO0O0
00001000
00010000
00100000
01000000
10000000
10000000
01000000
00100000
00010000
00001000
0000O01TO0O0
0000O0O0T1ITO0
0000O0O0OCT1

s The ? Operator

One of C++’s most fascinating operators is the ?. The ? operator can be used to replace
if-else statements of this general form:

if (condition)

var = expressionl;
else

var = expression2;

Here, the value assigned to var depends upon the outcome of the condition
controlling the if.

The ? is called a ternary operator because it requires three operands. It takes the general
form

Expl ? Exp2 : Exp3;

where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false,

204 C++ from the Ground Up

then Exp3 is evaluated and its value becomes the value of the expression. Consider
this example:

while (something) ({
x = count > 0 ? 0 : 1;
//

Here, x will be assigned the value O until count is less than or equal to 0. The same
code written using an if-else statement would look like this:

while (something) ({

if(count > 0) x = 0;
else x = 1;
//

Here’s an example of the ? operator in action. This program divides two numbers, but
will not allow a division by zero.

/* This program uses the ? operator to prevent
a division by zero. */

#include <iostream>
using namespace std;

int div_zero();
int main()
{

int i, j, result;

cout << "Enter dividend and divisor: ";
cin >> i >> j;

// This statement prevents a divide by zero error.

result = j ? i/j : div_zero();
cout << "Result: " << result;
return 0O;

int div_zero()

{
cout << "Cannot divide by zero.\n";
return 0;

Here, if j is non-zero, then i is divided by j, and the outcome is assigned to result.
Otherwise, the div_zero() error handler is called and zero is assigned to result.

More Data Types and Operators 205

s Compound Assignment

C++ has a special shorthand called compound assignment that combines assignment
with another operation. For example,

x = x + 10;

can be written using a compound assignment as

x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10. As this
example illustrates, compound assignment simplifies the coding of a certain type of
assignment statement. Depending upon the compiler, it may also produce more
efficient code.

Compound assignment operators exist for all of the binary operators in C++ (that is,
those that require two operands). Thus, for the binary operators, any assignment that
has this general form

var = var op expression;
can be rewritten as
var op = expression;

Here is another example:

x = x - 100;

is the same as

x -= 100;

You will see compound assignment used widely in professionally written C++
programs, so you should become familiar with it.

mmmmm= The Comma Operator

Another interesting C++ operator is the comma. You have seen some examples of the
comma operator in the for loop, where it has been used to allow multiple initialization
or incrementation statements. However, the comma can be used as a part of any
expression. Its purpose is to string together several expressions. The value of a
comma-separated list of expressions is the value of the right-most expression. The
values of the other expressions will be discarded. This means that the expression on the
right side will become the value of the entire comma-separated expression. For example,

var = (count=19, incr=10, count+1);

first assigns count the value 19, assigns incr the value 10, then adds 1 to count, and
finally, assigns var the value of the rightmost expression, count+1, which is 20. The

206

C++ from the Ground Up

parentheses are necessary because the comma operator has a lower precedence than
the assignment operator.

To see the effects of the comma operator, try running the following program:

#include <iostream>
using namespace std;

int main()
{

int i, 9;

J 10;

i = (Jj++, j+100, 999+3);
cout << 1i;

return 0;

}

This program prints 1010 on the screen. Here is why: j starts with the value 10. j is
then incremented to 11. Next, j is added to 100. Finally, j (still containing 11) is added
to 999, which yields the result 1010.

Essentially, the comma’s effect is to cause a sequence of operations to be performed.
When it is used on the right side of an assignment statement, the value assigned is the
value of the last expression in the comma-separated list. You can, in some ways, think
of the comma operator as having the same meaning that the word "and" has in
English when used in the phrase "do this and this and this."

Multiple Assignments

C++ allows a very convenient method of assigning many variables the same value:
using multiple assignments in a single statement. For example, this fragment assigns
count, incr, and index the value 10:

count = incr = index = 10;

In professionally written programs, you will often see variables assigned a common
value using this format.

Using sizeof

Sometimes it is helpful to know the size, in bytes, of a type of data. Since the sizes of
C++'s built-in types can differ between computing environments, knowing the size of
a variable in all situations can be difficult. To solve this problem, C++ includes the
sizeof compile-time operator, which has these general forms:

sizeof (type)

sizeof value

More Data Types and Operators 207
sizeofis a The first version returns the size of the specified data type, and the second returns the
compile-time size of the specified value. As you can see, if you want to know the size of a data type,
operator that

such as int, you must enclose the type name in parentheses. If you want to know the

obtzins the size ;6 of a value, no parentheses are needed, although you can use them if you want.

of a type or value.
To see how sizeof works, try the following short program. For many 32-bit
environments, it displays the values 1, 4, 4, and 8.

// Demonstrate sizeof.
#include <iostream>
using namespace std;

int main()
{
char ch;
int 1i;
cout << sizeof ch << ' '; // size of char
cout << sizeof i << ' '; // size of int
cout << sizeof (float) << ' '; // size of float
cout << sizeof (double) << ' '; // size of double
return 0;

As mentioned earlier, sizeof is a compile-time operator. All information necessary for
computing the size of a variable or data type is known during compilation.

You may apply sizeof to any data type. For example, when it is applied to an array, it
returns the number of bytes used by the array. Consider this fragment:

int nums[4];

cout << sizeof nums; // displays 16

Assuming 4-byte integers, this fragment displays the value 16 (i.e., 4 bytes times 4
elements).

sizeof primarily helps you write code that depends upon the size of the C++ data
types. Remember, since the sizes of types in C++ are defined by the implementation,
it is bad style to make assumptions about their sizes in code that you write.

s Dynamic Allocation Using new and delete

There are two primary ways in which a C++ program can store information in the
main memory of the computer. The first is through the use of variables. The storage
provided by variables is fixed at compile time, and cannot be altered during the
execution of a program. The second way information can be stored is through the use
of C++'s dynamic allocation system. In this method, storage for data is allocated as
needed from the free memory area that lies between your program (and its permanent
storage area) and the stack. This region is called the heap. (Figure 9-2 shows
conceptually how a C++ program appears in memory.)

208

A conceptual
view of memory
usage in a C++
program

Figure 9-2.

Dyhamic
allocation is the
means by which a
program can
obtain memory
during its
execution.

new allocates
dynamic memory.

delete frees
previously
allocated dynamic
merrory.

C++ from the Ground Up

High memory Stack
Heap
Global data
Program
code
Low memory

Dynamically allocated storage is obtained at run time. Thus, dynamic allocation
makes it possible for your program to create variables during its execution, and it can
create as many or as few variables as required, depending upon the situation. This
makes dynamic allocation especially valuable for data structures such as linked lists
and binary trees, which change size as they are used. Dynamic allocation for one
purpose or another is an important part of nearly all real-world programs.

Memory to satisfy a dynamic allocation request is taken from the heap. As you might
guess, it is possible, under fairly extreme cases, for free memory to become exhausted.
Therefore, while dynamic allocation offers greater flexibility, it, too, is finite.

C++ contains two operators, new and delete, that perform the functions of
allocating and freeing memory. Their general forms are shown here:

pointer-var = new var-type;
delete pointer-var;

Here, pointer-var is a pointer of type var-type. The new operator allocates sufficient
memory to hold a value of type var-type and returns a pointer to it. Any valid data
type can be allocated using new. The delete operator frees the memory pointed to
by pointer-var. Once freed, this memory can be reallocated to different purposes by a
subsequent new allocation request.

More Data Types and Operators 209

Since the heap is finite, it can become exhausted. If there is insufficient available
memory to fill an allocation request, then new will fail and an exception will be
generated. An exception is a run-time error and C++ has a complete subsystem dedicated
to handling such errors. (Exceptions are described in Chapter 17.) In general, your
program should handle this exception and take appropriate action, if possible. If this
exception is not handled by your program, then your program will be terminated.

The actions of new on failure as just described are specified by Standard C++. This is
also the way that all modern compilers work, including the latest versions of Visual
C++ and C++ Builder. The trouble is that some older compilers will implement new
in a different way. When C++ was first invented, new returned a null pointer on
failure. Later, this was changed so that new throws an exception on failure, as just
described. Because this book teaches Standard C++, the examples in this book assume
that new generates an exception on failure. If you are using an older compiler, check
your compiler’s documentation to see precisely how it implements new, making
changes to the examples, if necessary.

Because exceptions will not be examined until later in this book, after classes and
objects have been described, we won’t be handling any exceptions caused by a new
failure at this time. Also, none of the examples in this and subsequent chapters will
cause new to fail, since only a handful of bytes are being allocated by any single
program. However, should an allocation failure occur, it will simply cause your
program to terminate. In Chapter 17, which discusses exception handling, you will
learn how to handle the exception generated by a new failure.

Here is a simple example illustrating the use of new and delete:

#include <iostream>
using namespace std;

int main()
{
int *p;

p = new int; // allocate memory for int

*p = 20; // assign that memory the value 20
cout << *p; // prove that it works by displaying value

delete p; // free the memory

return 0;

This program assigns to p an address in the heap that is large enough to hold an
integer. It then assigns that memory the value 20, and displays the contents of the
memory on the screen. Finally, it frees the dynamically allocated memory.

210

C++ from the Ground Up

Because of the way dynamic allocation is managed, you must only use delete with a
pointer to memory that has been allocated using new. Using delete with any other
type of address will cause serious problems.

Initializing Dynamically Allocated Memory

You can initialize dynamically allocated memory by using the mew operator. To do
this, specify the initial value, inside parentheses, after the type name. For example, the
following program uses initialization to give the memory pointed to by p the value 99:

#include <iostream>
using namespace std;

int main()

{
int *p;
p = new int (99); // initialize with 99
cout << *p; // displays 99

delete p;

return 0;

}

Allocating Arrays

You can allocate arrays by using new. This is the general form used to allocate a
singly dimensioned array:

pointer-var = new type [size];

Here, size specifies the number of elements in the array.

To free a dynamically allocated array, use this form of delete:
delete [] pointer-var;

Here, pointer-var is the address obtained when the array was allocated. The square
brackets tell C++ that a dynamically allocated array is being deleted, and it
automatically frees all the memory allocated to the array.

TIP: Older C++ compilers may require that you specify the size of the array being
deleted, because early versions of C++ required this form of delete for freeing an array:

delete [size] pointer-var;

Here, size is the number of elements in the array. Standard C++ no longer requires
that the size of the array be specified.

More Data Types and Operators 211

The following program allocates space for a 10-element array of doubles, assigns the
array the values 100 to 109, and displays the contents of the array on the screen:

#include <iostream>
using namespace std;

int main()

{
double *p;
int 1i;

p = new double [10]; // get a 1l0-element array

// assign the values 100 through 109
for(i=0; i<10; i++) pl[i] = 100.00 + i;

// display the contents of the array

for (1i=0; i<10; i++) cout << p[i] << " ";
delete [] p; // delete the entire array
return 0;

There is one important point to remember about allocating an array: You cannot
initialize it.

C’s Approach to Dynamic Allocation:
malloc() and free()

The C language does not contain the mew or the delete operators. Instead, C uses
library functions to allocate and free memory. For compatibility, C++ still provides
support for C’s dynamic allocation system, and it is still quite common to find the
C-like dynamic allocation system used in C++ programs. The following discussion
explains how it works.

At the core of C’s allocation system are the functions malloc() and free(). The
malloc() function allocates memory, and the free() function releases it. That is,
each time a malloc() memory request is made, a portion of the remaining free
memory is allocated. Each time free() is called, memory is returned to the system.
Any program that uses these functions must include the header <cstdlib>.

212

C++ from the Ground Up

CONTINUED

The malloc() function has this prototype:
void *malloc(size_t num_bytes);

Here, num_bytes is the number of bytes of memory you want to allocate. (size_t is a
defined type that is some type of unsigned integer). The malloc() function returns a
pointer of type void, which signifies a generic pointer. You must use a cast to convert
this pointer into the type of pointer needed by your program. After a successful call,
malloc() will return a pointer to the first byte of the region of memory allocated
from the heap. If there is not enough memory to satisfy the request, an allocation
failure occurs, and malloc() returns a null.

The free() function is the opposite of malloc() in that it returns previously
allocated memory to the system. Once the memory has been released, it may be
reused by a subsequent call to malloc(). The function free() has this prototype:

void free(void *ptr);

Here, ptr is a pointer to memory previously allocated using malloc(). You must
never call free() with an invalid argument; this would cause the free list to be
destroyed.

The following program illustrates malloc() and free():

// Demonstrate malloc() and free().
#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{
int *i;
double *j;

i = (int *) malloc(sizeof (int));
if(ri)
cout << "Allocation Failure.\n";
return 1;

}

j = (double *) malloc (sizeof (double)) ;
if(!3) |
cout << "Allocation Failure.\n";
return 1;

}

*i= 10;

More Data Types and Operators 213

CONTINUED

*j = 100.123;
cout << *i << ' ' << *j;

// free the memory
free(1i);
free(J);

return 0;

While malloc() and free() are fully capable dynamic allocation functions, there are
several reasons why C++ defines its own approach to dynamic allocation. First, new
automatically computes the size of the type being allocated. You don’t have to make
use of the sizeof operator, so you save some effort. More importantly, automatic
computation prevents the wrong amount of memory from being allocated. The second
advantage to the C++ approach is that new automatically returns the correct pointer
type—you don’t need to use a type cast. Third, by using new, you can initialize the
object being allocated. Finally, as you will see later in this book, you can create your
own, customized versions of new and delete.

One last point: Because of possible incompatibilities, you should not mix malloc()
and free() with new and delete in the same program. 9

= Precedence Summary

Table 9-2 lists the precedence, from highest to lowest, of all C++ operators. Most
operators associate from left to right. The unary operators, the assignment operators,
and the ? operator associate from right to left. Note that the table includes a few
operators that you have not yet learned about; most of these are used in object-oriented

programming.

Precedence Operators

Highest O [l = =

' ~ ++ —= - * & sizeof new delete typeid type-casts

Precedence of * ok
the C++ -
Operators * /] %
Table 9'2- + -
I

214 C++ from the Ground Up

Precedence Operators

<< >>

< <= > >=

= I=

&
N
|
&&
Precedence of I
the C++ 2.
Operators
(Continued) = 4= —= *— /= %: >o = <<= &: N=
Table 9'2. Lowest

2 | CHAPTER 10

Structures and
Unions

215

216

A structure is a
group of related
variables.

A structure
member is a
variable that
is part of a
structure.

C++ from the Ground Up

C++ defines several compound data types. These are data types that are comprised
of two or more elements. You have already learned about one compound type:
the array. Three more are the structure, the union, and the class. This chapter
discusses the structure and the union. A discussion of the class is deferred until
Chapter 11. Although they fill different needs, both the structure and the union
provide a convenient means of managing groups of related variables. Another
important aspect of structures and unions is that when you create one, you are also
creating a new, programmer-defined data type. The ability to create your own data
types is a powerful feature of C++.

In C++, structures and unions have both object-oriented and non-object-oriented
attributes. This chapter discusses only their non-object-oriented features. Their
object-oriented qualities are discussed in the following chapter, after classes
and objects have been introduced.

Structures

In C++, a structure is a collection of variables that are referenced under one name,
providing a convenient means of keeping related information together. Structures
are called aggregate data types because they consist of several different, yet logically
connected, variables. You will also see structures referred to as compound or conglomerate
data types, for the same reason.

Before a structure object can be created, the form of the structure must be defined.
This is accomplished by means of a structure declaration. The structure declaration
determines what type of variables the structure contains. The variables that comprise
the structure are called members of the structure. Structure members are also commonly
referred to as elements or fields.

Generally, all members of the structure will be logically related to each other. For
example, structures are typically used to hold information such as mailing addresses,
compiler symbol tables, library card catalog entries, and the like. Of course, the
relationship between the members of a structure is purely subjective, and thus
determined by you. The compiler doesn't know (or care).

Let's begin our examination of structures with an example. We will define a structure
that can hold the information relating to a company's inventory. An inventory record
typically consists of several pieces of information, such as the item name, cost, and
number on hand, so a structure is a good way to manage this information. The
following code fragment declares a structure that defines the item name, cost and
retail price, number on hand, and resupply time for maintaining an inventory. The
keyword struct tells the compiler that a structure declaration is beginning.

struct inv_type {

char item[40]; // name of item
double cost; // cost

double retail; // retail price
int on_hand; // amount on hand

int lead_time; // number of days before resupply

Structures and Unions 217

A structure’s
name is its type
specifier.

The inv_var
structure as it
appears in
memory
Figure 10-1.

Notice that the declaration is terminated by a semicolon. This is because a structure
declaration is a statement. The type name of the structure is inv_type. As such,
inv_type identifies this particular data structure and is its type specifier.

In the preceding declaration, no variable has actually been created. Only the form of
the data has been defined. To declare an actual variable (i.e., a physical object) with
this structure, you would write something like this:

inv_type inv_var;

This declares a structure variable of type inv_type called inv_var. Remember, when
you define a structure, you are defining a new data type. It is not until you declare a
variable of that type that one actually exists.

C++ will automatically allocate sufficient memory to accommodate all the members
of a structure. Figure 10-1 shows how inv_var would appear in memory (assuming
8-byte doubles and 4-byte ints).

You can also declare one or more variables at the same time that you define a
structure, as shown here:

struct inv_type {

char item[40]; // name of item
double cost; // cost

double retail; // retail price
int on_hand; // amount on hand

int lead_time; // number of days before resupply
} inv_varA, inv_varB, inv_varC;

This defines a structure type called inv_type and declares variables inv_varA,

inv_varB, and inv_varC of that type. It is important to understand that each structure
variable contains its own copies of the structure’s members. For example, the cost 1 0
field of inv_varaA is separate from the cost field of inv_varB. Thus, changes to one

do not affect the other.

item 40 bytes
cost 8 bytes
retail 8 bytes — inv_var
on_hand 4 bytes
lead_time 4 bytes

218

struct is the
keyword that
begins a structure
declaration.

The dot operator
() accesses a
member of a
structure.

C++ from the Ground Up

If you need only one structure variable, then it is not necessary to include the name of
the structure type. Consider this example:

struct {

char item[40]; // name of item

double cost; // cost

double retail; // retail price

int on_hand; // amount on hand

int lead_time; // number of days before resupply
} temp;

This fragment declares one variable named temp, as defined by the structure
preceding it.

The general form of a structure declaration is shown here:
struct struct-type-name {
type element_namel;

type element_name2;
type element_name3;

type element_nameN;
} structure-variables;

Accessing Structure Members

Individual structure members are accessed through the use of a period (generally
called the "dot" operator). For example, the following code will assign the value 10.39
to the cost field of the structure variable imv_var, declared earlier.

inv_var.cost = 10.39;

The structure variable name, followed by a period and the member name, refers to
that member. All structure elements are accessed in the same way. The general form is

structure-varname.member-name
Therefore, to print cost on the screen, you could write

cout << inv_var.cost;

In the same fashion, the character array inv_var.item can be used to call gets(), as
shown here:

gets (inv_var.item) ;

This will pass a character pointer to the beginning of the element item.

Structures and Unions 219

If you want to access the individual elements of the array inv_var.item, you can
index item. For example, you can print the contents of inv_var.item one character
at a time by using this code:

int t;

for(t=0; inv_var.item[t]; t++)
cout << inv_var.item[t];

Arrays of Structures

Structures may be arrayed. In fact, structure arrays are quite common. To declare an
array of structures, you must first define a structure, then declare an array of its type.
For example, to declare a 100-element array of structures of type inv_type (defined
earlier), you would write

inv_type invtry[100];

To access a specific structure within an array of structures, you must index the
structure name. For example, to display the on_hand member of the third structure,
you would write

cout << invtry[2].on_hand;

Like all array variables, arrays of structures begin their indexing at zero.

A Simple Inventory Example

To illustrate the value of structures, a simple inventory-management program will be
developed that uses an array of structures of type inv_type to hold the inventory
information. The functions in this program interact with structures and their
elements in various ways.

The inventory will be held in structures of type inv_type, organized into an array
called invtry, as shown here:

const int SIZE = 100;

struct inv_type {

char item[40]; // name of item
double cost; // cost

double retail; // retail price
int on_hand; // amount on hand

int lead_time; // number of days before resupply
} invtry[SIZE];

The size of the array is arbitrary. Feel free to change it if you desire. Notice that the
array dimension is specified using a const variable. Since the size of the array will be
used at several places in the full program, using a const variable for this value is a

10

220

C++ from the Ground Up

good idea. To change the size of the array, simply change the value of SIZE and then
recompile. Using a const variable to define a "magic number" that is used frequently
within a program is common practice in professionally written C++ code.

The program will provide these three options:

€ Enter inventory information
€ Display the inventory
€ Modifiy a specific item

The first function needed for the program is main(), which is shown here:

int main()
{

char choice;
init_list();

for(;;) {
choice = menul();
switch(choice) {
case 'e': enter();

break;

case 'd': display();
break;

case 'u': update();
break;

case 'q': return O;

The main() function begins by calling init_list(), which initializes the structure
array. It then enters a loop that displays the menu and processes the user's selection.

The init_list() function is shown here:

// Initialize the array.
void init_list ()
{

int t;

// a zero length name signifies empty
for (t=0; t<SIZE; t++) *invtry[t].item = '\0';
}

The init_list() function prepares the structure array for use by putting a null
character into the first byte of the item field. The program assumes that a structure
is not in use if the item field is empty.

Structures and Unions 221

The menu_select() function, shown next, displays the options and returns the
user's selection:

// Get a menu selection.
int menu/()

{

char ch;

cout << '\n';

do {
cout << " (E)nter\n";
cout << " (D)isplay\n";
cout << " (U)pdate\n";
cout << " (Q)uit\n\n";

cout << "choose one: ";

cin >> ch;
} while(!strchr("eduqg", tolower(ch)));
return tolower (ch);

The user selects an option by entering the specified letter. For example, to display the
inventory list, press D.

The menu() function makes use of another of C++'s library functions, strchr(),
which has this prototype:

char *strchr(const char *str, int ch);

This function searches the string pointed to by str for an occurrence of the character
in the low-order byte of ch. If the character is found, a pointer to that character is
returned. This is by definition a true value. However, if no match is found, a null
is returned, which is by definition false. It is used in this program to see whether the
user entered a valid menu selection.

The enter() function sets up the call to input(), which prompts the user for
information. Both functions are shown here:

// Enter items into the list.
void enter ()
{

int 1i;

// find the first free structure
for (i=0; i<SIZE; i++)
if (!*invtry[i].item) break;

// 1 will equal SIZE if the list is full
1f(1i==SIZE) {

cout << "List full.\n";

return;

}

input (i) ;

10

222

C++ from the Ground Up

}

// Input the information.
void input (int 1)
{
// enter the information
cout << "Item: ";
cin >> invtryl[i].item;

cout << "Cost: ";
cin >> invtry[i].cost;

cout << "Retail price: ";
cin >> invtry[i].retail;

cout << "On hand: ";
cin >> invtry[i].on_hand;

cout << "Lead time to resupply (in days): ";
cin >> invtryl[i].lead_time;

The enter() function first finds an empty structure. To do this, enter() starts with
the first element in invtry and advances through the array, checking the item field.
If it finds an item field that is null, it assumes that structure is unused. If no free
structure is found before the end of the array is reached, the loop control variable i
will be equal to the size of the array. This condition indicates that the array is full
and no further information can be added. If an open array element is found, then
input() will be called to obtain the inventory information entered by the user. The
reason the input code is not part of enter() is that input() is also used by the
update() function, which you will see next.

Because inventory information changes, the inventory program lets you change the
information about the individual items. This is accomplished with a call to the
update() function, shown here:

// Modify an existing item.
void update ()
{

int 1i;

char name[80];

cout << "Enter item: ";
cin >> name;

for (i=0; i<SIZE; i++)
if (!strcmp (name, invtry([i].item)) break;

1f(1==SIZE) {
cout << "Item not found.\n";
return;

Structures and Unions 223

cout << "Enter new information.\n";
input (i) ;

This function prompts the user for the name of the item to be changed. It then looks
in the list to see if the item is there. If it is, input() is called, and the new information
can be entered.

The final function used by the program is display(). It displays the entire inventory
list on the screen. The display() function is shown here:

// Display the list.
void display ()
{

int t;

for (t=0; t<SIZE; t++) {
if(*invtry[t].item) {
cout << invtry[t].item << '\n';
cout << "Cost: $" << invtry[t].cost;
cout << "\nRetail: $";
cout << invtry[t].retail << '\n';
cout << "On hand: " << invtry[t].on_hand;
cout << "\nResupply time: ";
cout << invtry[t].lead_time << " days\n\n";

The complete inventory program is shown next. You should enter this program into

your computer and study its execution. Make some changes and watch the effects

they have. You should also try to expand the program by adding functions that search 1 0
the list for a specific inventory item, remove an item from the list, or reset the

inventory list.

/* A simple inventory program that uses an array
of structures. */

#include <iostream>
#include <cctype>
#include <cstring>
#include <cstdlib>
using namespace std;

const int SIZE = 100;

struct inv_type {
char item[40]; // name of item
double cost; // cost
double retail; // retail price
int on_hand; // amount on hand

224 C++ from the Ground Up

int lead_time; // number of days before resupply
} invtry[SIZE];

void enter (), init_list(), display();
void update(), input(int 1i);
int menu() ;

int main()

{

char choice;
init_list();

for(;;) {
choice = menu();
switch(choice) {
case 'e': enter();

break;

case 'd': display();
break;

case 'u': update();
break;

case 'q': return O;

// Initialize the array.
void init_list()
{

int t;

// a zero length name signifies empty

for (t=0; t<SIZE; t++) *invtry[t].item = '\0';
}
// Get a menu selection.
int menu()
{
char ch;

cout << '\n';
do {
cout << " (E)nter\n";
cout << " (D)isplay\n";
cout << " (U)pdate\n";
cout << "(Q)uit\n\n";
cout << "choose one: ";
cin >> ch;
} while(!strchr ("eduqg", tolower (ch)));
return tolower (ch) ;

// Enter items into the list.

Structures and Unions

void enter ()
{

int 1i;

// find the first free structure

for (i=0; i<SIZE; i++)
if (!*invtry[i].item) break;

// 1 will equal SIZE if the list is full

if (1==SIZE) {
cout << "List full.\n";
return;

input (i) ;

// Input the information.
void input (int 1)
{
// enter the information
cout << "Item: ";
cin >> invtry[i].item;

cout << "Cost: ";
cin >> invtry[i].cost;

cout << "Retail price: ";
cin >> invtry[i].retail;

cout << "On hand: ";
cin >> invtryl[i].on_hand;

cout << "Lead time to resupply
cin >> invtry[i]l.lead_time;

// Modify an existing item.
void update ()
{

int 1i;

char name[80];

cout << "Enter item: ";
cin >> name;

for (i=0; 1<SIZE; i++)

(in days) :

if (!strcmp (name, invtry[i].item)) break;

if (1==SIZE) {
cout << "Item not found.\n";
return;

7

225

10

226

C++ from the Ground Up

cout << "Enter new information.\n";
input (i) ;

}

// Display the list.
void display ()
{

int t;

for(t=0; t<SIZE; t++) {
if (*invtry[t].item) {
cout << invtry[t].item << '\n';
cout << "Cost: $" << invtryl[t].cost;
cout << "\nRetail: S$";
cout << invtry[t].retail << '\n';
cout << "On hand: " << invtry[t].on_hand;
cout << "\nResupply time: ";
cout << invtry[t].lead_time << " days\n\n";

Passing Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed
by using the standard call-by-value parameter passing mechanism. This, of course,
means that any changes made to the contents of the structure inside the function to
which it is passed do not affect the structure used as an argument. However, be aware
that passing large structures can incur significant overhead. (As a general rule, the
more data passed to a function, the longer it takes.)

When using a structure as a parameter, remember that the type of the argument must
match the type of the parameter. For example, the following program declares a
structure called sample, and then a function called £1() that takes a parameter of
type sample.

// Pass a structure to a function.
#include <iostream>
using namespace std;

// define a structure type
struct sample {

int a;

char ch;

Yo
void f1l(sample parm) ;
int main()

{

struct sample arg; // declare arg

Structures and Unions 227

arg.a = 1000;
arg.ch = 'X';

f1l(arg) ;

return 0;

void f1l (sample parm)
{

cout << parm.a << " " << parm.ch << "\n";

Here, both arg in main() and parm in £1() are of the same type. Thus, arg can be
passed to £1(). If the structure types had differed, a compile-time error would have
resulted.

Assigning Structures

You can assign the contents of one structure to another as long as both structures are
of the same type. For example, the following program assigns the value of svarl
to svar2:

// Demonstrate structure assignments.
#include <iostream>
using namespace std;

struct stype {
int a, b;
}i

int main()
{

stype svarl, svar2;

svarl.a = svarl.b = 10;
svar2.a = svar2.b = 20;

cout << "Structures before assignment.\n";

cout << "svarl: " << svarl.a << ' ' << svarl.b;
cout << '\n';
cout << "svar2: " << svar2.a << ' ' << sgvar2.b;

cout << "\n\n";
svar2 = svarl; // assign structures

cout << "Structures after assignment.\n";

cout << "svarl: " << svarl.a << ' ' << gvarl.b;
cout << '\n';

cout << "svar2: " << svar2.a << ' ' << gvar2.b;

10

228

C++ from the Ground Up

return 0;

}

This program displays the following output:

Structures before assignment.
svarl: 10 10
svar2: 20 20

Structures after assignment.
svarl: 10 10
svar2: 10 10

In C++, each new structure declaration defines a new type. Therefore, even if two
structures are physically the same, if they have different type names, they will be
considered different by the compiler and, thus, cannot be assigned to one another.
Consider the following fragment, which is not valid, and will not compile.

struct stypel {
int a, b;

}i

struct stype2 {
int a, b;

}i

stypel svarl;
stype2 svar?2;

svar2 = svarl; // Error - type mismatch

Even though stypel and stype2 are physically the same, they are separate types as
far as the compiler is concerned.

REMEMBER: One structure can be assigned to another only if both are of the
same type.

Pointers to Structures and the Arrow Operator

C++ allows pointers to structures in the same way that it allows pointers to any other
type of variable. However, there are some special aspects to using structure pointers
that you must be aware of.

You declare a structure pointer as you would any other pointer variable, by putting an
* in front of a structure variable's name. For example, assuming the previously defined
structure inv_type, the following statement declares inv_pointer to be a pointer to
data of that type:

Structures and Unions 229

The arrow
operator (—>)
accesses the
members of a
structure through
a pointer.

inv_type *inv_pointer;

To find the address of a structure variable, you must place the & operator before the
structure variable's name. For example, given the following fragment,

struct bal {
float balance;
char name[80];
} person;

bal *p; // declare a structure pointer

then

p = &person;

puts the address of person into the pointer p.

The members of a structure can be accessed through a pointer to the structure. However,
you do not use the dot operator for this purpose. Instead, you must use the —> operator.
For example, this fragment accesses balance through p:

p->balance

The —> is called the arrow operator. It is formed by using the minus sign followed by a
greater than sign.

One important use of a structure pointer is as a function parameter. Because of the
overhead that occurs when a large structure is passed to a function, many times only a
pointer to a structure is passed. (Passing a pointer is always faster than passing a large
structure.)

REMEMBER: To access members of a structure, use the dot operator. To access
members of a structure through a pointer, use the arrow operator.

An Example Using Structure Pointers

An interesting use of structure pointers can be found in C++'s time and date
functions. These functions obtain the current system time and date. The time and
date functions require the header <ctime>. This header supplies two data types
needed by the time and date functions. The first type is time_t. It is capable of
representing the system time and date as a long integer. This is referred to as the
calendar time. The second type is a structure called tm, which holds the individual

10

230 C++ from the Ground Up

elements of the date and time. This is called the broken-down time. The tm structure is
defined as shown here:

struct tm {
int tm_sec; // seconds, 0-61
int tm_min; // minutes, 0-59
int tm_hour; // hours, 0-23
int tm _mday; // day of the month, 1-31
int tm_mon; // months since Jan, 0-11
int tm_year; // years from 1900
int tm_wday; // days since Sunday, 0-6
int tm_yday; // days since Jan 1, 0-365
int tm_isdst; // Daylight Saving Time indicator
Y

The value of tm_isdst will be positive if daylight saving time is in effect, O if it is not
in effect, and negative if there is no information available.

The foundation for C++'s time and date functions is time(), which has this
prototype:

time_t time(time_t *curtime);

The time() function returns the current calendar time. It can be called either with a
null pointer or with a pointer to a variable of type time_t. If the latter is used, then
the variable pointed to by curtime will also be assigned the current calendar time.

To convert the calendar time into broken-down time, use localtime(), which has
this prototype:

struct tm *localtime(const time_t *curtime);

The localtime() function returns a pointer to the broken-down form of curtime, in
the form of a tm structure. The time is represented in local time. The curtime value is
generally obtained through a call to time().

The structure used by localtime() to hold the broken-down time is internally
allocated by the localtime() function and is overwritten each time the function is
called. If you want to save the contents of the structure, you must copy it elsewhere.

The following program demonstrates the use of time() and localtime() by
displaying the current system time:

// This program displays the current system time.
#include <iostream>

#include <ctime>

using namespace std;

int main()

{
struct tm *ptr;
time_t 1t;

Structures and Unions 231

1t = time('\0");
ptr = localtime (&1lt);

cout << ptr->tm_hour << ':' << ptr->tm_min;
cout << ':' << ptr->tm_sec;

return 0;

Here is sample output from the program:

4:15:46

Although your programs can use the broken-down form of the time and date (as
illustrated in the preceding example), the easiest way to generate a time and date
string is to use asctime(), whose prototype is shown here:

char *asctime(const struct tm *ptr);

The asctime() function returns a pointer to a string, which is the conversion of the
information stored in the structure pointed to by ptr. This string has the following form:

day month date hours:minutes:seconds year\n\0

Often the structure pointer passed to asctime() is the one obtained from
localtime().

The memory used by asctime() to hold the formatted output string is an internally
allocated character array, and is overwritten each time the function is called. If you
want to save the contents of the string, you must copy it elsewhere. 1 0

The following program uses asctime() to display the system time and date.

// This program displays the current system time.
#include <iostream>

#include <ctime>

using namespace std;

int main()

{
struct tm *ptr;
time_t 1t;
1t = time('\0");

ptr = localtime (<);
cout << asctime (ptr);

return 0;

232

C++ from the Ground Up

Here is sample output.

Fri Feb 28 12:27:54 2003

C++ contains several other time and date functions; to learn about these, check your
compiler's documentation.

References to Structures

You can create a reference to a structure. A structure reference is frequently used as a
function parameter, or as a function return type. When accessing members through a
structure reference, use the dot operator. The arrow operator is explicitly reserved for
accessing members through a pointer.

The following program shows how a structure can be used as a reference parameter:

// Demonstrate a reference to a structure.
#include <iostream>
using namespace std;

struct mystruct {
int a;
int b;
Y
mystruct &f (mystruct &var);
int main()
{
mystruct x, y;

x.a = 10; x.b = 20;

cout << "Original x.a and x.b: ";
cout << x.a << ' ' << x.b << '\n';

y = £(x);

cout << "Modified x.a and x.b: ";

cout << x.a << ' ' << x.b << '\n';
cout << "Modified y.a and y.b: ";
cout << y.a << ' ' << y.b << '\n';
return 0;

// Receive and return a reference to a structure.
mystruct &f (mystruct &var)
{

var.a = var.a * var.a;

var.b = var.b / var.b;

return var;

Structures and Unions 233

Here is the output produced by this program:

Original x.a and x.b: 10 20
Modified x.a and x.b: 100 1
Modified y.a and y.b: 100 1

Since there is significant overhead incurred when passing a structure to a function, or
when returning a structure, many C++ programmers use references when performing
these tasks.

Arrays and Structures Within Structures

A structure member can be of any valid data type, including other aggregate types
such as arrays and other structures. Because this is an area that often causes confusion,
a close examination is warranted.

A structure member that is an array is treated as you might expect from the earlier
examples. Consider this structure:

struct stype {
int nums[10][10]; // 10 x 10 array of ints
float b;

} var;

To refer to integer 3,7 in nums of var of structure stype, you would write
var.nums [3] [7]

As this example shows, when an array is a member of a structure, it is the array name
that is indexed—not the structure name.

When a structure is a member of another structure, it is called a nested structure. In
the following example, the structure addr is nested inside emp:

struct addr {
char name[40];
char street[40];
char city[40];
char zipl[10];

}

struct emp {
addr address;
float wage;

} worker;

Here, structure emp has been defined as having two members. The first member is
the structure of type addr that will contain an employee's address. The second is
wage, which holds the employee's wage. The following code fragment will assign
the ZIP code 98765 to the zip field of address of worker:

worker.address.zip = 98765;

10

234

C++ from the Ground Up

As you can see, the members of each structure are specified left to right, from the
outermost to the innermost.

A structure may also contain a pointer to a structure as a member. In fact, it is perfectly
valid for a structure to contain a member that is a pointer to itself. For example, in the
following structure, sptr is declared as a pointer to a structure of type mystruct, which
is the structure being declared.

struct mystruct {

int a;

char str[80];

mystruct *sptr; // pointer to mystruct objects
}i

Structures containing pointers to themselves are quite common when various data
structures, such as linked lists, are created. As you progress in C++, you will frequently
see applications that make use of this feature.

C Structure Versus C++ Structures

C++ structures are derived from C structures. Thus, any C structure is also a valid C++
structure. There are two important differences, however. First, as you will see in the
next chapter, C++ structures have some unique attributes that allow them to support
object-oriented programming. Second, in C a structure does not actually define a new
data type. A C++ structure does. As you know, when you define a structure in C++,
you are defining a new type, which is the name of the structure. This new type can be
used to declare variables, function return types, and the like. However, in C, the name
of a structure is called its fag. The tag, by itself, is not a type name.

To understand the difference, consider the following C code fragment:

struct C_struct {
int a;

int b;

}

// declare a C_struct variable
struct C_struct svar:

Notice that the structure definition is exactly the same as it is in C++. However, look
closely at the declaration of the structure variable svar. Its declaration also starts
with the keyword struct. In C, after you have defined a structure, you must still use
the keyword struct in conjunction with the structure’s tag (in this case, C_struct) to
specify a complete data type.

Structures and Unions 235

A bit-field is a
bit-based

structure member.

CONTINUED

If you will be converting older C programs to C++, you won’t need to worry about
the differences between C and C++ structures, because C++ still accepts the C-like
declarations. The preceding code fragment, for instance, will compile correctly as part
of a C++ program. It is just that the redundant use of struct in the declaration of
svar is unnecessary in C++.

Bit-Fields

Unlike many other computer languages, C++ has a built-in method for accessing a
single bit within a byte. Bit access is achieved through the use of a bit-field. Bit-fields
can be useful for a number of reasons. Here are three examples. First, if storage is
limited, you can store several Boolean values in one byte; second, certain device
interfaces transmit information encoded into bits within one byte; and third, certain
encryption routines need to access the bits within a byte. All of these functions can be
performed using the bitwise operators, as you saw in the previous chapter; however,

a bit-field can add more transparency and readability to your program. It might also
make your code more portable.

The method that C++ uses to access bits is based on the structure. A bit-field is really
just a special type of structure member that defines its length in bits. The general form
of a bit-field definition is

struct struct-type-name {
type namel : length;
type name2 : length;

type nameN : length;

’

Here, type is the type of the bit-field and length is the number of bits in the field. A
bit-field must be declared as an integral or enumeration type. Bit-fields of length 1
should be declared as unsigned, because a single bit cannot have a sign.

Bit-fields are commonly used for analyzing the input from a hardware device. For
example, the status port of a serial communications adapter might return a status byte
organized like this:

Bit Meaning When Set
0 Change in clear-to-send line
1 Change in data-set-ready
2 Trailing edge detected

10

236

C++ from the Ground Up

Bit Meaning When Set
3 Change in receive line
4 Clear-to-send
5 Data-set-ready
6 Telephone ringing
7 Received signal

You can use the following bit-field to represent the information in a status byte:

struct status_type {
unsigned delta_cts: 1
unsigned delta_dsr: 1
unsigned tr_edge: 1
unsigned delta_rec: 1;
unsigned cts: 1
unsigned dsr: 1
unsigned ring: 1
unsigned rec_line: 1

} status;

You might use code similar to that shown next to determine when you can send or
receive data:

status = get_port_status ();
if (status.cts) cout << "clear to send";
if (status.dsr) cout << "data ready";

To assign a value to a bit-field, simply use the same form that you would use for any
other type of structure element. For example, the following statement clears the ring
field:

status.ring = 0;

As you can see from these examples, each bit-field is accessed by using the dot operator.
However, if the structure is accessed through a pointer, you must use the —> operator.

You do not have to name each bit-field. This makes it easy to reach the bit you want,
passing up those that are unused. For example, if you care only about the cts and dsr
bits, you could declare the status_type structure like this:

struct status_type {
unsigned : 4;
unsigned cts: 1;
unsigned dsr: 1;

} status;

Structures and Unions

A union is
comprised of two
or more variables
that share the
same mermory
location.

The union keyword
begins a union
declaration.

237

Notice here that the bits after dsr do not need to be mentioned at all.

It is valid to mix normal structure members with bit-field elements. Here is an
example:

struct emp {
struct addr address;
float pay;
unsigned lay_off: 1; // lay off or active
unsigned hourly: 1: // hourly pay or wage
unsigned deductions: 3: // tax deductions

}i

This structure defines an employee record that uses only one byte to hold three pieces
of information: the employee's status, whether or not the employee is salaried, and
the number of deductions. Without the use of the bit-field, this information would
require three bytes.

Bit-fields have certain restrictions. You cannot take the address of a bit-field, or
reference a bit-field. Bit-fields cannot be arrayed. They cannot be declared as static.
You cannot know, from machine to machine, whether the fields will run from right
to left or from left to right; this implies that any code using bit-fields may have some
machine dependencies. Other restrictions may be imposed by various specific
implementations of C++, so check your compiler's documentation.

The next section presents a program that uses a bit-field to display the ASCII character
codes in binary.

Unions

A union is comprised of two or more variables that share the same memory location.
Thus, a union provides a way of interpreting the same bit pattern in two or more
different ways. A union declaration is similar to that of a structure, as shown in this
example:

union utype {
short int 1i;
char ch;

Yo

This declares a union in which a short int and a char both share the same location.
Be clear on one point: It is not possible to have this union hold both an integer and a
character at the same time, because i and ch overlay each other. Instead, your program
can treat the information in the union as an integer or a character at any time. Thus, a
union gives two or more ways to view the same piece of data. As the example shows,
a union is declared by using the union keyword.

10

238

i and ch both
utilize the union
u_var

Figure 10-2.

C++ from the Ground Up

As with structures, a union declaration does not define any variables. You may declare
a variable either by placing its name at the end of the declaration, or by using a separate
declaration statement. To declare a union variable called u_var of type utype you
would write

utype u_var;

In u_var, both the short integer i and the character ch share the same memory
location. (Of course, i occupies two bytes and ch uses only one.) Figure 10-2
illustrates how i and ch share the same address.

When a union is declared, the compiler will automatically allocate enough storage to
hold the largest variable type in the union.

To access a union element, use the same syntax that you would use for structures: the
dot and arrow operators. If you are operating on the union directly (or through a
reference), use the dot operator. If the union variable is accessed through a pointer,
use the arrow operator. For example, to assign the letter 'A' to element ch of u_var,
you would write the following:

u_var.ch = 'A';

In the next example, a pointer to w_var is passed to a function. Inside the function, i
is assigned the value 10 through the pointer:

//
funcl (&u_var); // pass funcl() a pointer to u_var
//
}
void funcl (utype *un)
{
un->i = 10; /* Assign 10 to u_var using
a pointer. */

Because unions allow your program to interpret data in more than one way, they are
often used when an unusual type conversion is needed. For example, the following
program uses a union to exchange the two bytes that comprise a short integer. It uses

Byte O Byte 1

ch

Structures and Unions 239

the disp_binary() function, developed in Chapter 9, to display the contents of the
integer. (This program assumes that short integers are two bytes.)

// Use a union to exchange the bytes within a short integer.
#include <iostream>
using namespace std;

void disp_binary (unsigned u) ;

union swap_bytes {
short int num;
char ch[2];

}i

int main()

{
swap_bytes sb;
char temp;

sb.num = 15; // binary: 0000 0000 0000 1111

cout << "Original bytes: ";
disp_binary(sb.ch[1]);

cout << " "
disp_binary(sb.ch[0]);

cout << "\n\n";

// exchange the bytes
temp = sb.ch[0];
sb.ch[0] = sb.ch[l];

sb.ch[1l] = temp; 10

cout << "Exchanged bytes: ";
disp_binary(sb.ch[1]);

cout << " "
disp_binary(sb.ch[0]);

cout << "\n\n";

return 0;

// Display the bits within a byte.
void disp_binary (unsigned u)
{

register int t;

for (£t=128; t>0; t=t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

240

C++ from the Ground Up

The output from this program is shown here:

Original bytes:

0000 00001111
Exchanged bytes: 0 0 0 0 000O0O0O0OOCO

0000
1111

In the program, 15 is assigned to the integer variable sb.num. The two bytes that
form that integer are exchanged by swapping the two characters that comprise the
array in ch. This causes the high- and low-order bytes of num to be swapped. The
fact that both num and ch share the same memory location makes this operation
possible.

Another use for a union is shown in the following program, which combines unions
with bit-fields to display, in binary, the ASCII code generated when you press a key.
This program also shows an alternative method for displaying the individual bits that
make up a byte. The union allows the value of the key to be assigned to a character
variable, while the bit-field is used to display the individual bits.

// Display the ASCII code in binary for characters.

#include <iostream>
#include <conio.h>
using namespace std;

// a bit field that will be decoded

struct byte {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

}i

QO QQ T
PR RRRRRPR

union bits {

char ch;

struct byte bit;
} ascii ;

void disp_bits(bits b);

int main()
{
do {
cin >> ascii.ch;
cout << ": ";
disp_bits (ascii);
} while(ascii.ch!='q'); // quit if g typed

return 0;

Structures and Unions

241

// Display the bit pattern for each character.
void disp_bits(bits b)

{

A

QT OoBEHANUYEDTQ MDA OO

if(b.bit.h)
else cout
if(b.bit.g)
else cout
if(b.bit.f)
else cout
if(b.bit.e)
else cout
if(b.bit.d)
else cout
if(b.bit.c)
else cout
if(b.bit.b)
else cout
if(b.bit.a)
else cout

cout <<

<<

cout <<

<<

cout <<

<<

cout <<

<<

cout <<

<<

cout <<

<<

cout <<

<<

cout <<

<<

cout << "\n";

"0

"0

"0

"0

"0

"0

"0

"0

7

7

7

7

7

7

7

7

w1

"

wq

"

wq

"]

wy

"

sample run of the program is shown here:

O OO O OO OO0 OO0 OO o oo o
PR RRPRRPRPRPRERPRRERREREPR R
PR RERRPRRPRPRPRERRPRERREREPR R
PP OOOOOOODOOOOOoOOoOOoOo
oorrRrFRPRFPRPRPEPRPPEPOOOOOOO

oorrPRPRPOCOOORR,RFRPREEREPOOO

oorpProorpProorroor o

POrRrORPORORPROROROLROLR

10

TIP: Because a union causes two or more variables to share the same memory
location, unions provide a good way for your program to store and access information
that may contain differing data types, depending upon the situation. If you think
about it, unions provide low-level support for the principle of polymorphism. That is,
a union provides a single interface to several different types of data, thus embodying
the concept of "one interface, multiple methods" in its simplest form.

242

An anonymous
union declares
local variables
that share the
same mermory.

C++ from the Ground Up

Anonymous Unions

There is a special type of union in C++ called an anonymous union. An anonymous
union does not have a type name, and you can declare no objects of an anonymous
union. Instead, an anonymous union tells the compiler that its members will share
the same memory location. However, the variables themselves are referred to directly,
without the normal dot operator syntax.

Consider this example:

// Demonstrate an anonymous union.
#include <iostream>
using namespace std;

int main()
{
// this 1s an anonymous union
union {
short int count;
char ch[2];
Y

// Here, refer to union members directly

ch[0] = 'X';

ch[l] = 'Y"';

cout << "union as chars: " << ch[0] << ch[l] << '\n';
cout << "union as integer: " << count << '\n';

return 0O;

This program displays the following output. 22872 is the integer produced by putting
the characters X and Y into the low- and high-order bytes, respectively, of count.

union as chars: XY
union as integer: 22872

As you can see, both count and ch are accessed as if they were normal variables, and
not part of a union. Even though they are declared as being part of an anonymous
union, their names are at the same scope level as any other local variable declared at
the same point. Thus, a member of an anonymous union cannot have the same name
as any other variable declared within the same scope.

Structures and Unions 243

The anonymous union provides a way for you to tell the compiler that you want two
or more variables to share the same memory location. Aside from this special attribute,
members of an anonymous union behave like other variables.

= Using sizeof to Ensure Portability

You have seen that structures and unions create objects of varying sizes, depending
upon the sizes and number of their members. Furthermore, sizes of the built-in types,
such as int, can change from machine to machine. Also, sometimes the compiler
will pad a structure or union so that it aligns on an even word or on a paragraph
boundary. (A paragraph is 16 bytes.) Therefore, when you need to determine the
size, in bytes, of a structure or union, use the sizeof operator. Do not try to manually
add up the sizes of the individual members. Because of padding, or other machine
dependencies, the size of a structure or union may be larger than the sum of the sizes
of its individual members.

One other point: A union will always be large enough to hold its largest member.
Consider this example:

union x {
char ch;
int 1i;
double f;
} u_var;

Here, the sizeof u_var will be 8 (assuming eight-byte doubles). At run time, it does
not matter what u_var is actually holding; all that matters is the size of the largest
variable it can hold, because the union must be as large as its largest element.

wmmmmm=_Moving On to Object-Oriented Programming 1

This is the last chapter that describes those attributes of C++ that are not explicitly
object-oriented. Beginning with the next chapter, features that support OOP will be
examined. To understand and apply the object-oriented features of C++ requires a
thorough understanding of the material in this and the preceding nine chapters. For
this reason, you might want to take some time to quickly review. Specifically, make
sure that you are comfortable with pointers, structures, functions, and function
overloading.

This page intentionally left blank

CHAPTER 11

Introducing
the Class

245

246

The class forms
the foundation for
object-oriented
programming.

class is the
keyword that
begins a class
declaration.

By default,
members of a
class are private.

C++ from the Ground Up

his chapter introduces the class. The class is the foundation of C++’s support for

object-oriented programming, and is at the core of many of its more advanced
features. The class is C++’s basic unit of encapsulation and it provides the mechanism
by which objects are created.

Class Fundamentals

Let’s begin by defining the terms class and object. A class defines a new data type that
specifies the form of an object. A class includes both data and the code that will operate
on that data. Thus, a class links data with code. C++ uses a class specification to
construct objects. Objects are instances of a class. Therefore, a class is essentially a set
of plans that specify how to build an object. It is important to be clear on one issue:
A class is a logical abstraction. It is not until an object of that class has been created
that a physical representation of that class exists in memory.

When you define a class, you declare the data that it contains and the code that operates
on that data. Although very simple classes might contain only code or only data, most
real-world classes contain both. Within a class, data is contained in variables and code
is contained in functions. Collectively, the functions and variables that constitute a
class are called members of the class. Thus, a variable declared within a class is called

a member variable, and a function declared within a class is called a member function.
Sometimes the term instance variable is used in place of member variable.

A class is created by using the keyword class. A class declaration is syntactically similar
to a structure. Here is an example. The following class defines a type called queue,
which will be used to implement a queue. (A queue is a first-in, first-out list.)

// This creates the class queue.
class queue {
int g[100];
int sloc, rloc;
public:
void init();
void gput (int 1i);
int gget();
Y

Let’s look closely at this class declaration.

All members of queue are declared within its class statement. The member variables
of queue are q, sloc, and rloc. The member functions are init(), qput(), and qget().

A class can contain private as well as public members. By default, all items defined in
a class are private. For example, the variables q, sloc, and rloc are private. This means
that they can be accessed only by other members of the queue class, and not by any
other part of your program. This is one way encapsulation is achieved—you can tightly
control access to certain items of data by keeping them private. Although there are
none in this example, you can also define private functions, which can be called only
by other members of the class.

Introducing the Class 247

The public keyword To make parts of a class public (i.e., accessible to other parts of your program), you

i used to declare must declare them after the public keyword. All variables or functions defined after

the public members the public specifier are accessible by all other functions in your program. Therefore,

ofa clase. in queue, the functions init(), qput(), and qget() are public. Typically, your program
will access the private members of a class through its public functions. Notice that the
public keyword is followed by a colon.

Keep in mind that an object forms a bond between code and data. Thus, a member
function has access to the private elements of its class. This means that init(), qput(),
and qget() have access to q, sloc, and rloc. To add a member function to a class,
specify its prototype within the class declaration.

Once you have defined a class, you can create an object of that type by using the class
name. A class name becomes a new type specifier. For example, the following statement
creates two objects called Q1 and Q2 of type queue:

queue Q1, 02;

When an object of a class is created, it will have its own copy of the member variables
that comprise the class. This means that Q1 and Q2 will each have their own, separate
copies of q, sloc, and rloc. Thus, the data associated with Q1 is distinct and separate
from the data associated with Q2.

To access a public member of a class through an object of that class, use the dot operator,
just the way you do when operating on a structure. For example, to output Q1’s value
of sloc, use the following statement.

cout << Ql.sloc;

Let’s review: In C++, a class creates a new data type that can be used to create objects.
Specifically, a class creates a logical framework that defines a relationship between its
members. When you declare a variable of a class, you are creating an object. An object

has physical existence, and is a specific instance of a class. (That is, an object occupies
memory space, but a type definition does not.) Further, each object of a class has its 1 1
own copy of the data defined within that class.

Inside the declaration of queue, prototypes for the member functions are specified.
Because the member functions are prototyped within the class definition, they need
not be prototyped elsewhere.

To implement a function that is a member of a class, you must tell the compiler to
which class the function belongs by qualifying the function name with the class name.
For example, here is one way to code the qput() function:

void queue: :gput (int 1)
{
if(sloc==100) {
cout << "Queue is full.\n";
return;

248

The scope
resolution
operator ::
qualifies a
member name
with its clase.

C++ from the Ground Up

}
sloc++;
aglsloc] = 1i;

}

The :: is called the scope resolution operator. Essentially, it tells the compiler that this
version of qput() belongs to the queue class. Or, put differently, :: states that this
qput() is in queue’s scope. Several different classes can use the same function names.
The compiler knows which function belongs to which class because of the scope
resolution operator and the class name.

Member functions can only be invoked relative to a specific object. To call a member
function from a part of your program that is outside the class, you must use the object’s
name and the dot operator. For example, this calls init() on object ob1:

queue obl, ob2;

obl.init () ;

The invocation ob1.init() causes init() to operate on ob1’s copy of the data. Keep
in mind that ob1 and ob2 are two separate objects. This means, for example, that
initializing ob1 does not cause ob2 to also be initialized. The only relationship ob1
has with ob2 is that it is an object of the same type.

When one member function calls another member function of the same class, it can
do so directly, without using an object and the dot operator. In this case, the compiler
already knows which object is being operated upon. It is only when a member function
is called by code that is outside the class that the object name and the dot operator
must be used. By the same reasoning, a member function can refer directly to a member
variable, but code outside the class must refer to the variable through an object and
the dot operator.

The program shown here puts together all the pieces and missing details, and illustrates
the queue class:

#include <iostream>
using namespace std;

// This creates the class queue.
class queue {
int g[100];
int sloc, rloc;
public:
void init();
void gput (int 1) ;
int gget ()
}i

7

// Initialize the queue.
void queue::init ()

{

Introducing the Class 249

rloc = sloc = 0;

// Put an integer into the queue.
void queue: :gput (int 1)
{
if (sloc==100) {
cout << "Queue is full.\n";
return;
}
sloc++;
alsloc] = i;

// Get an integer from the queue.
int queue::gget ()
{
if(rloc == sloc) {
cout << "Queue underflow.\n";
return 0;
}
rloc++;
return glrloc];

int main()
{

queue a, b; // create two queue objects

a.init();
b.init();

a.qgput (10) ;
b.gput (19) ;

a.gput (20) ;
b.gput (1) ;

cout << "Contents of queue a: ";
cout << a.gget() << " ";
cout << a.gget() << "\n";
cout << "Contents of queue b: ";
cout << b.gget() << " ";
cout << b.gget() << "\n";

return 0;

This program displays the following output:

Contents of queue a: 10 20
Contents of queue b: 19 1

250

C++ from the Ground Up

Keep in mind that the private members of a class are accessible only by functions that
are members of that class. For example, a statement like

a.rloc = 0;

could not be included in the main() function of the program.

The General Form of a class

All classes are declared in a fashion similar to the queue class just described. The general
form of a class declaration is shown here.

class class-name {

private data and functions
public:

public data and functions
} object-list;

Here class-name specifies the name of the class. This name becomes a new type name
that can be used to create objects of the class. You can also create objects of the class
by specifying them immediately after the class declaration in object-list, but this is
optional. Once a class has been declared, objects can be created where needed.

A Closer Look at Class Member Access

How to access class members is the cause of considerable confusion for beginners. For
this reason, we will take a closer look at it here. Consider the following simple class:

// Demonstrate class member access.
#include <iostream>
using namespace std;

class myclass {
int a; // private data
public:
int b; // public data
void setab(int 1); // public functions
int getal();
void reset();
}i

void myclass::setab(int 1)
{
a = 1; // refer directly to a
b i*i; // refer directly to b

}

int myclass::getaf()
{
return a; // refer directly to a

}

Introducing the Class 251

void myclass: :reset ()
{

// call setab() directly

setab(0); // the object is already known
}

int main()
{

myclass ob;

ob.setab(5); // set ob.a and ob.b

cout << "ob after setab(5): ";

cout << ob.geta() << ' ';

cout << ob.b; // can access b because it is public
cout << '\n';

ob.b = 20; // can access b because it is public
cout << "ob after ob.b=20: ";

cout << ob.geta() << ' ';

cout << ob.b;

cout << '\n';

ob.reset () ;

cout << "ob after ob.reset(): ";
cout << ob.geta() << ' ';

cout << ob.b;

cout << '\n';

return 0;

This program produces the following output:

ob after setab(5): 5 25
ob after ob.b=20: 5 20 11
ob after ob.reset(): 0 0

Let’s look carefully at how the members of myclass are accessed. First, notice the way
that setab() assigns values to the member variables a and b using the lines of code

shown here.
a = 1i; // refer directly to a
b = i*i; // refer directly to b

Because it is a member function, setab() can refer to a and b directly, without explicit
reference to an object, and without the use of the dot operator. As explained earlier,
a member function is always invoked relative to an object. Once this invocation has
occurred, the object is known. Thus, within a member function, there is no need to
specify the object a second time. Therefore, references to a and b will apply to the
invoking object’s copy of these variables.

252

A constructor is a
function that is
called when an
object is created.

C++ from the Ground Up

Next, notice that b is a public member of myclass. This means that b can be accessed
by code outside of myclass. This is demonstrated when b is assigned the value 20
inside main() using this line of code.

ob.b = 20; // can access b because it is public

Because this statement is outside of myclass, b must be accessed through an object
(in this case, ob) and by use of the dot operator.

Now, notice how reset() is called from within main(), as shown here.

ob.reset () ;

Because reset() is a public member function, it too can be called from code outside
of myclass, through an object (in this case, ob).

Finally, examine the code inside reset(). Since reset() is a member function, it can
directly refer to other members of the class, without use of the dot operator or object.
In this case, it calls setab(). Again, because the object is already known (because it
was used to call reset()), there is no need to specify it again.

The key point to understand is this: When a member of a class is referred to outside of
its class, it must be qualified with an object. However, code inside a member function
can refer to other members of the class directly.

NOTE: Don’t worry if you are still a little unsure about how class members are
accessed. A bit of uneasiness about this issue is common at first. As you read on and
study more examples, member access will become clear.

Constructors and Destructors

It is very common for some part of an object to require initialization before it can be
used. For example, consider the queue class, shown earlier in this chapter. Before
the queue could be used, the variables rloc and sloc had to be set to zero. This was
performed using the function init(). Because the requirement for initialization is
so common, C++ allows objects to initialize themselves when they are created. This
automatic initialization is performed through the use of a constructor.

A constructor is a special function that is a member of a class and that has the same
name as the class. For example, here is how the queue class looks when it is converted
to use a constructor for initialization:

// This creates the class queue.
class queue {

int g[1007];

int sloc, rloc;

Introducing the Class 253
public:
queue(); // constructor
void gput (int 1) ;
int gget();

A destructor
is the function
that is called
when an object
is destroyed.

Y

Notice that the constructor queue() has no return type. In C++, constructors do not
return values and, therefore, have no return type. (Not even void may be specified.)

The queue() function is coded as follows:

// This is the constructor.
queue: :queue ()
{

sloc = rloc = 0;

cout << "Queue Initialized.\n";

}

Here, the message Queue Initialized is output as a way to illustrate the constructor.
In actual practice, most constructors do not print a message.

An object’s constructor is called when the object is created. This means that it is
called when the object’s declaration is executed. For global objects, the constructor
is called when the program begins execution, prior to the call to main(). For local
objects, the constructor is called each time the object declaration is encountered.

The complement of the constructor is the destructor. In many circumstances, an object
will need to perform some action or series of actions when it is destroyed. Local objects
are created when their block is entered, and destroyed when the block is left. Global
objects are destroyed when the program terminates. There are many reasons why a
destructor may be needed. For example, an object may need to deallocate memory
that it had previously allocated. In C++, it is the destructor that handles deactivation.
The destructor has the same name as the constructor, but the destructor’s name is
preceded by a ~. Like constructors, destructors do not have return types.

Here is the queue class that contains a constructor and destructor. (Keep in mind
that the queue class does not require a destructor, so the one shown here is just for
illustration.)

// This creates the class queue.
class queue {

int g[100];
int sloc, rloc;
public:
queue(); // constructor
~queue (); // destructor

void gput (int 1i);
int gget();
Y

11

254

// This is the constructor.
queue: :queue ()
{

sloc = rloc = 0;

cout << "Queue initialized.\n";

// This is the destructor.
queue: : ~queue ()
{

cout << "Queue destroyed.\n";

C++ from the Ground Up

Here is a new version of the queue program that demonstrates the constructor and

destructor:

// Demonstrate a constructor and a destructor.

#include <iostream>
using namespace std;

// This creates the class queue.
class queue {

int g[1007];
int sloc, rloc;

public:
queue(); // constructor
~queue(); // destructor
void gput (int 1) ;
int gget();

}i

// This is the constructor.
queue: :queue ()
{

sloc = rloc = 0;

cout << "Queue initialized.\n";

// This is the destructor.
queue: : ~queue ()
{

cout << "Queue destroyed.\n";

// Put an integer into the queue.
void queue: :gput (int i)
{
if (sloc==100) {
cout << "Queue is full.\n";
return;
}

sloc++;

Introducing the Class 255

glsloc] = 1i;
}

// Get an integer from the queue.
int queue::qgget ()
{

if(rloc == sloc) {
cout << "Queue Underflow.\n";
return 0;

}

rloc++;

return glrloc];

}

int main()
{
queue a, b; // create two gueue objects

a.gput (10) ;
b.gput (19) ;

a.gput (20) ;
b.gput (1) ;
cout << a << "o
cout << a
cout << b.gget
cout << b

<< mom,

)
) << " ll;
)
) << ll\nll;

return 0;

This program displays the following output:

Queue initialized.
Queue initialized.
10 20 19 1

Queue destroyed.
Queue destroyed.

Parameterized Constructors

A constructor can have parameters. This allows you to give member variables program-
defined initial values when an object is created. You do this by passing arguments to
an object’s constructor. The next example will enhance the queue class to accept an

argument that will act as the queue’s ID number. First, queue is changed to look like this:

// This creates the class queue.
class queue {
int g[100];

11

256

C++ from the Ground Up

int sloc, rloc;
int who; // holds the queue's ID number

public:
queue (int id); // parameterized constructor
~queue(); // destructor
void gput (int 1) ;
int qgget();

}i

The variable who is used to hold an ID number that will identify the queue. Its actual
value will be determined by what is passed to the constructor in id when a variable of
type queue is created. The queue() constructor looks like this:

// This is the constructor.
queue: :queue (int id)

{

sloc = rloc = 0;
who = 1id;
cout << "Queue " << who << " initialized.\n";

}

To pass an argument to the constructor, you must associate the argument with an
object when the object is declared. C++ supports two ways to accomplish this. The
first method is illustrated here:

queue a = queue(101);

This declaration creates a queue called a and passes the value 101 to it. However, this
form is seldom used (in this context), because the second method is shorter and more
to the point. In the second method, the argument must follow the object’s name and
must be enclosed between parentheses. For example, this statement accomplishes the
same thing as the previous declaration:

queue a(101);

This is the most common way that parameterized objects are declared. Using this
method, the general form of passing arguments to constructors is

class-type var(arg-list);

Here, arg-list is a comma-separated list of arguments that are passed to the constructor.

NOTE: Technically, there is a small difference between the two initialization
forms, which you will learn about later in this book. However, this difference does not
affect the programs in this chapter, or most programs that you will write.

Introducing the Class 257

The following version of the queue program demonstrates a parameterized constructor:

// Use a parameterized constructor.
#include <iostream>
using namespace std;

// This creates the class queue.
class queue {
int g[100];
int sloc, rloc;
int who; // holds the queue's ID number

public:
queue (int id); // parameterized constructor
~queue(); // destructor
void gput (int 1i);
int gget();
}i

// This is the constructor.
queue: :queue (int id)

{

sloc = rloc = 0;
who = 1id;
cout << "Queue " << who << " initialized.\n";

// This is the destructor.
queue: : ~queue ()
{

cout << "Queue " << who << " destroyed.\n";

// Put an integer into the queue.
void queue: :gput (int 1)

{
if(sloc==100) { 11
cout << "Queue is full.\n";

return;
}
sloc++;
glsloc]

1
-

// Get an integer from the queue.
int gqueue::gget ()
{

if(rloc == sloc) {
cout << "Queue underflow.\n";
return 0;

}

rloc++;

258 C++ from the Ground Up

return glrloc];

}

int main()

{

queue a(l), b(2); // create two gqueue objects
a.gput (10) ;

b.gput (19) ;

a.gput (20) ;

b.gput (1) ;

cout << a.qgget() << " ";

cout << a.qgget() << " ";

cout << b.gget() << " ";

cout << b.gget() << "\n";

return 0;

This program produces the following output:

Queue 1 initialized.
Queue 2 initialized.
10 20 19 1

Queue 2 destroyed.
Queue 1 destroyed.

As you can see by looking at main(), the queue associated with a is given the ID
number 1, and the queue associated with b is given the number 2.

Although the queue example passes only a single argument when an object is created,
it is possible to pass two or more. In the following example, objects of type widget are
passed two values:

#include <iostream>
using namespace std;

class widget {
int 1i;
int j;
public:
widget (int a, int b);
void put_widget () ;
Yo

// Pass 2 arguments to widget ().
widget: :widget (int a, int b)
{

i=a;

Introducing the Class 259

void widget: :put_widget ()
{

cout << i << " " << j << "\n";

}

int main()
{
widget x (10, 20), y(0, 0);

7

x.put_widget () ;
y.put_widget ()

return O;

}
This program displays

10 20
00

TIP: Unlike constructors, destructors cannot have parameters. The reason for
this is easy to understand: There is no means by which to pass arguments to an object
that is being destroyed. Although the situation is rare, if your object needs access to
some run-time-defined data when its destructor is called, you will need to create a
specific variable for this purpose. Then, just prior to the object’s destruction, set that
variable to the desired value.

An Initialization Alternative

If a constructor takes only one parameter, then you can use an alternative method to
initialize it. Consider the following program:

#include <iostream>
using namespace std;

class myclass {
int a;

public:
myclass (int x);
int get_al();

Y

myclass::myclass (int x)
{

a = x;

260

C++ from the Ground Up

}

int myclass::get_af()
{
return a;

}

int main()

{
myclass ob = 4; // calls myclass(4)

cout << ob.get_al();

return 0;

}

Here, the constructor for myclass takes one parameter. Pay special attention to how
ob is declared in main(). It uses this declaration:

myclass ob = 4;

In this form of initialization, 4 is automatically passed to the x parameter in the
myclass() constructor. That is, the declaration statement is handled by the compiler
as if it were written like this:

myclass ob = myclass(4);

In general, any time that you have a constructor that requires only one argument,
you can use either ob(x) or ob = x to initialize an object. The reason for this is that
whenever you create a constructor that takes one argument, you are also implicitly
creating a conversion from the type of that argument to the type of the class.

Remember that the alternative shown here applies only to constructors that have
exactly one parameter.

Classes and Structures Are Related

As mentioned in the preceding chapter, in C++ the structure also has object-oriented
capabilities. In fact, classes and structures are closely related. With one exception,
they are interchangeable because the structure can also include data, and the code
that manipulates that data, in just the same way that a class can. The only difference
between a C++ structure and a class is that, by default, the members of a class are
private, while the members of a structure are public. Aside from this distinction,
structures and classes serve the same purpose. In fact, according to the formal C++
syntax, a structure declaration actually creates a class type.

Here is an example of a structure that uses its class-like features:

// Use struct to create a class.
#include <iostream>

Introducing the Class 261

The private
keyword is used
to declare the
private members
of a class.

using namespace std;

struct cl {

int get_1i(); // these are public

void put_i(int j); // by default
private:

int 1i;

1

int cl::get_i()
{

return 1i;

}

void cl::put_i(int 3J)

s.put_1i(10);
cout << s.get_1i();

return 0;

This program defines a structure type called cl, in which get_i() and put_i() are
public and i is private. Notice that structs use the keyword private to introduce
the private elements of the structure.

The following program shows an equivalent program that uses a class rather than
a struct:

// Now, use class, instead. ‘I‘I
#include <iostream>

using namespace std;

class cl {

int i; // private by default
public:

int get_1i();

void put_i(int 3J);

Y

int cl::get_1i()
{

return i;

}

void cl::put_i(int j)

262

C++ programmers
sometimes use
the term
POD-struct when
referring to
structures that
do not contain

member functions.

C++ from the Ground Up

int main()
{

cl s;

s.put_1i(10);
cout << s.get_il();

return 0;

}

For the most part, C++ programmers will use a class to define the form of an object that
contains member functions, and use a struct in its more traditional role to create objects
that contain only data members. Sometimes the acronym POD is used to describe a
structure that does not contain member functions. It stands for Plain Old Data.

Structures versus Classes

On the surface, the fact that both structures and classes have virtually identical
capabilities seems redundant. Many newcomers to C++ wonder why this apparent
duplication exists. It is not uncommon to hear the suggestion that either the keyword
class or struct is unnecessary.

The answer to this line of reasoning is rooted in C++’s derivation from C, and the desire
to keep C++ upwardly compatible with C. As C++ is currently defined, a standard C
structure is also a completely valid C++ structure. In C, which does not contain the
public or private keywords, all structure members are public. This is why members
of C++ structures are public (rather than private) by default. Since the class construct
is expressly designed to support encapsulation, it makes sense that its members are
private by default. Thus, to avoid incompatibility with C on this issue, the structure
default could not be altered, so a new keyword was added. However, in the long term,
there is a more important reason for the separation of structures and classes. Because
class is an entity syntactically separate from struct, the definition of a class is free to
evolve in ways that may not be syntactically compatible with C-like structures. Since
the two are separated, the future direction of C++ is not encumbered by concerns of
compatibility with C structures.

Before leaving this topic, one important point must be emphasized: A structure defines
a class type. Thus a structure is a class. This was intentional on the part of Bjarne
Stroustrup. He believed that if structures and classes were made more or less equivalent,
the transition from C to C++ would be eased. History has proven him correct!

Introducing the Class 263

Unions and Classes Are Related

The fact that structures and classes are related is not too surprising; however, you
might be surprised to learn that unions are also related to classes. As far as C++ is
concerned, a union is essentially a class in which all data members are stored in
the same location. (Thus, a union, too, defines a class type.) A union can contain a
constructor and destructor, as well as member functions. Of course, members of a
union are public, not private, by default.

Here is a program that uses a union to display the characters that comprise the low
and high order bytes of a short integer (assuming short integers are two bytes):

// Create union-based class.
#include <iostream>
using namespace std;

union u_type {
u_type (short int a); // public by default
void showchars () ;
short int i;
char ch[2];
Y

// constructor
u_type: :u_type (short int a)

// Show the characters that comprise a short int.
void u_type: :showchars ()
{

cout << ch[0] << " ";

cout << ch[l] << "\n";

}

int main()
{
u_type u(1000);

u.showchars () ;

return 0;

Like the structure, the C++ union is derived from its C forerunner. However, in C++ it
has the expanded capabilities of the class. But just because C++ gives unions greater
power and flexibility does not mean that you have to use it. When you simply need
a traditional-style union, you are free to use one in that manner. However, in cases
where you can encapsulate a union along with the functions that manipulate it, doing
so will add considerable clarity to your program.

11

264

C++ from the Ground Up

mmmmmm |nline Functions

An inline function
is a small function
whose code is
expanded in line
rather than called.

Before we continue exploring the class, a small, but important digression is in order.
Although it does not pertain specifically to object-oriented programming, one very
useful feature of C++, called an inline function, is frequently used in class definitions.
An inline function is a function whose code is expanded in line at the point at which
it is invoked, rather than being called. There are two ways to create an inline function.
The first is to use the inline modifier. For example, to create an inline function called
f that returns an int and takes no parameters, you declare it like this:

inline int f()
{

//
}

The inline modifier precedes all other aspects of a function’s declaration.

The reason for inline functions is efficiency. Every time a function is called, a series
of instructions must be executed, both to set up the function call, including pushing
arguments onto the stack, and to return from the function. In some cases, many CPU
cycles are used to perform these actions. However, when a function is expanded in
line, no such overhead exists, and the overall speed of your program will increase.
Even so, in cases where the inline function is large, the overall size of your program
will also increase. For this reason, the best inline functions are those that are very
small. Larger functions are usually left as normal functions.

The following program demonstrates inline.

#include <iostream>
using namespace std;

class cl {

int i; // private by default
public:

int get_1i();

void put_i(int j);
o

inline int cl::get_1i()
{
return i;

}

inline void cl::put_i (int j)

{

int main()

{

Introducing the Class 265

cl s;

s.put_1i(10);
cout << s.get_i();

return 0;

Here, the code for get_i() and put_i() is expanded in line rather than being called.
Thus, in main(), the line

s.put_1i(10);

is functionally equivalent to this assigment statement:

Of course, because i is private to cl, this line could not actually be used in main(),
but by in-lining put_i(), the same effect is produced and the function call is avoided.

It is important to understand that technically, inline is a request, not a command, that
the compiler generate inline code. There are various situations that might prevent the
compiler from complying with the request. Here are some examples:

€ Some compilers will not generate inline code if a function contains a loop, a
switch, or a goto.

€ Often, you cannot have inline recursive functions.

€ Inline functions that contain static variables are frequently disallowed.

REMEMBER: Inline restrictions are implementation-dependent, so you
must check your compiler’s documentation to learn the restrictions that apply 1 1
to your situation.

Creating Inline Functions Inside a Class

There is another way to create an inline function. This is accomplished by defining
the code to a member function inside a class declaration. Any function that is defined
inside a class declaration is automatically made into an inline function. It is not
necessary to precede its declaration with the keyword inline. For example, the
preceding program can be rewritten as shown here:

#include <iostream>
using namespace std;

class cl {

266

C++ from the Ground Up

int i; // private by default

public:
// automatic inline functions
int get_i() { return 1i; }

void put_i(int j) { i = 3j; }
Yo

int main()
{

cl s;

s.put_1i(10);
cout << s.get_i();

return 0;

}

Here, get_i() and put_i() are defined inside cl and are automatically inline.

Notice the way the function code is arranged inside cl. For very short functions, this
arrangement reflects common C++ style. However, there is no reason that you could
not format the functions as shown here:

class cl {

int i; // private by default
public:

// inline functions

int get_i()

{

return 1i;

}

void put_i(int)

Generally, short functions like those illustrated in this example are defined inside the
class declaration. This convention will be followed by the rest of the examples in this
book.

TIP: Defining short member functions inside their class declaration is very
common in C++ programming. The reason for this is not necessarily because of the
automatic inlining feature, but because it is very convenient. In fact, it is quite rare to
see short member functions defined outside their class in professionally written code.

Introducing the Class 267

= Arrays of Objects

You can create arrays of objects in the same way that you create arrays of any other
data type. For example, the following program establishes a class called display that
holds the resolution of a video display mode. Inside main(), an array of three display
objects is created, and the objects that comprise the elements of the array are accessed
by using the normal array-indexing procedure.

// An example of arrays of objects
#include <iostream>
using namespace std;

enum resolution {low, medium, high};

class display {
int width;
int height;
resolution res;
public:
void set_dim(int w, int h) {width = w; height = h;}
void get_dim(int &w, int &h) {w = width; h = height;}

void set_res(resolution r) {res = r;}
resolution get_res() {return res;}
}i
char names[3][7] = {
"low",
"medium",
"high",

Yo

int main()

{
display display_model[3];
int i, w, h;

display_mode[0].set_res (low) ;
display_mode[0] .set_dim (640, 480);

display _mode[l].set_res (medium) ;
display_mode[l].set_dim (800, 600);

display_mode[2].set_res (high);
display _mode[2].set_dim(1600, 1200);

cout << "Available display modes:\n\n";
for(i=0; 1i<3; i++) {

cout << names[display mode[i].get_res()] << ": ";
display_mode[i] .get_dim(w, h);

11

268

C++ from the Ground Up

cout << w << " by " << h << "\n";

}

return 0;

}

This program produces the following output:
Available display modes:

low: 640 by 480
medium: 800 by 600
high: 1600 by 1200

Notice how the two-dimensional character array names is used to convert between
an enumerated value and its equivalent character string. In all enumerations that do
not contain explicit initializations, the first constant has the value 0, the second 1,
and so on. Therefore, the value returned by get_res() can be used to index the names
array, causing the appropriate name to be printed.

Multidimensional arrays of objects are indexed in precisely the same way as arrays
of other types of data.

Initializing Object Arrays
If the class includes a parameterized constructor, an array of objects can be initialized.

For example, in the following program, samp is a parameterized class and sampArray
is an initialized array of objects of that class:

// Initialize an array of objects.
#include <iostream>
using namespace std;

class samp {
int a;
public:
samp (int n) { a = n; }
int get_a() { return a; }
Y

int main()
{
samp sampArray([4] = { -1, -2, -3, -4 };
int 1i;
for (i=0; i<4; i++) cout << sampArrayl[i].get_a() << ' ';

cout << "\n";

return 0;

Introducing the Class 269

This program displays the following:

-1 -2 -3 -4

As the output confirms, the values -1 through -4 are passed to the samp constructor.

Actually, the syntax shown in the initialization list is shorthand for this longer form:

samp sampArray[4] = { samp(-1), samp(-2), samp(-3), samp(-4) };

However, the form used in the program is more common, although this form will
work only with arrays whose constructors take only one argument. When initializing
an array of objects whose constructor takes more than one argument, you must use
the longer form of initialization. For example:

#include <iostream>
using namespace std;

class samp {
int a, b;
public:
samp (int n, int m) { a = n; b = m; }
int get_a() { return a; }
int get_b() { return b; }
};

int main()
{
samp sampArray[4][2] = {

samp (1, 2), samp(3, 4),
samp (5, 6), samp (7, 8),

samp (9, 10), samp(1l1l, 12),

samp (13, 14), samp(l5, 16)

1

int 1i;

for (i=0; i<4; i++) {
cout << sampArray[i][0].get_a() << ' '
cout << sampArray[i] [0].get_b() << "\n";
cout << sampArray[i]l[1l].get_af()
cout << sampArray([i][1].get_b()

}

<< ' 'y
<< ll\nll;

cout << "\n";

return 0;

In this example, samp’s constructor takes two arguments. Here, the array sampArray
is declared and initialized in main() by using direct calls to samp’s constructor. When

11

270

C++ from the Ground Up

initalizing arrays, you can always use the long form of initialization, even if the object
takes only one argument. It’s just that the short form is more convenient when only
one argument is required. The program displays

ESIC, OVRN
= oo o N

9 10
11 12
13 14
15 16

Pointers to Objects

As you saw in the previous chapter, you can access a structure directly, or through

a pointer to the structure. In like fashion, you can access an object either directly

(as has been the case in all preceding examples), or by using a pointer to the object.
To access an element of an object when using the actual object itself, use the dot
operator. To access a specific element of an object when using a pointer to the object,
you must use the arrow operator. (The use of the dot and arrow operators for objects
parallels their use for structures and unions.)

To declare an object pointer, you use the same declaration syntax that you would use
for any other pointer type. The next program creates a simple class called P_example,
defines an object of that class, called ob, and defines a pointer to an object of type
P_example, called p. It then illustrates how to access ob directly, and how to use a
pointer to access it indirectly.

// A simple example using an object pointer.
#include <iostream>
using namespace std;

class P_example {
int num;

public:
void set_num(int val) {num = val;}
void show_num() ;

}i

void P_example: :show_num/()
{
cout << num << "\n";

}
int main()
{

P_example ob, *p; // declare an object and pointer to it

ob.set_num(l); // access ob directly

Introducing the Class 271

ob.show_num() ;

p = &ob; // assign p the address of ob
p->show_num(); // access ob using pointer

return 0;

Notice that the address of ob is obtained by using the & (address of) operator in the
same way that the address is obtained for any type of variable.

As you know, when a pointer is incremented or decremented, it is increased or decreased
in such a way that it will always point to the next element of its base type. The same
thing occurs when a pointer to an object is incremented or decremented: the next
object is pointed to. To illustrate this, the preceding program has been modified here
so that ob is a two-element array of type P_example. Notice how p is incremented
and decremented to access the two elements in the array.

// Incrementing and decrementing an object pointer.
#include <iostream>
using namespace std;

class P_example {
int num;

public:
void set_num(int val) {num = val;}
void show_num() ;

}i

void P_example: :show_num/()
{

cout << num << "\n";

int main()

: 11

P_example ob[2], *p;

ob[0].set_num(10); // access objects directly
ob[1l].set_num(20);

p = &ob[0]; // obtain pointer to first element
p->show_num(); // show value of ob[0] using pointer

p++; // advance to next object

p->show_num(); // show value of ob[l] using pointer
p--; // retreat to previous object
p->show_num(); // again show value of ob[0]

return 0;

272

C++ from the Ground Up

The output from this program is

10
20
10

As you will see later in this book, object pointers play an important role in one of
C++'s most important concepts: polymorphism.

Object References

Objects can be referenced in the same way as any other data type. There are no special
restrictions or instructions that apply. However, as you will see in the next chapter,
the use of object references does help to solve some special problems that you may
encounter when using classes.

8 | CHAPTER 12

A Closer Look
at Classes

273

274

The friend keyword
gives a non-
member function
access to the
private members
of a clase.

C++ from the Ground Up

his chapter continues the discussion of the class begun in Chapter 11. It discusses

friend functions, overloading constructors, passing objects to functions, and
returning objects. It also examines a special type of constructor, called the copy
constructor, which is used when a copy of an object is needed. The chapter concludes
with a description of the this keyword.

Friend Functions

It is possible to allow a non-member function access to the private members of a class
by declaring it a friend of the class. To make a function a friend of a class, include its

prototype in the public section of the class declaration and precede it with the friend
keyword. For example, in this fragment frnd() is declared to be a friend of the class cl:

class cl {
//
public:
friend void frnd(cl ob);
//
}i

As you can see, the keyword friend precedes the rest of the prototype. A function
may be a friend of more than one class.

Here is a short example that uses a friend function to access the private members
of myclass:

// Demonstrate a friend function.
#include <iostream>

using namespace std;

class myclass {

int a, b;
public:
myclass (int i, int j) { a=i; b=j; }
friend int sum(myclass x); // sum() is a friend of myclass

}i

// Note: sum() is not a member function of any class.
int sum(myclass x)
{
/* Because sum() 1is a friend of myclass, it can
directly access a and b. */

return x.a + X.b;

}
int main()
{

myclass n(3, 4);

cout << sum(n);

A Closer Look at Classes 275

return 0;

}

In this example, the sum() function is not a member of myclass. However, it still
has full access to the private members of myclass. Specifically, it can access x.a and
x.b. Notice also that sum() is called normally—not in conjunction with an object and
the dot operator. Since it is not a member function, it does not need to be qualified
with an object’s name. (In fact, it cannot be qualified with an object.) Typically, a friend
function is passed one or more objects of the class for which it is a friend, as is the
case with sum().

While there is nothing gained by making sum() a friend rather than a member function
of myclass, there are some circumstances in which friend functions are quite valuable.
First, friends can be useful for overloading certain types of operators. Second, friend
functions simplify the creation of some types of I/O functions. Both of these uses are
discussed later in this book.

The third reason that friend functions may be desirable is that, in some cases, two or
more classes may contain members that are interrelated relative to other parts of your
program. For example, imagine two different classes that each display a pop-up message
on the screen when some sort of event occurs. Other parts of your program that are
designed to write to the screen will need to know whether the pop-up message is active,
so that no message is accidentally overwritten. It is possible to create a member function
in each class that returns a value indicating whether a message is active or not; however,
checking this condition involves additional overhead (i.e., two function calls, not just
one). If the status of the pop-up message needs to be checked frequently, the additional
overhead may not be acceptable. However, by using a friend function, it is possible to
directly check the status of each object by calling only one function that has access to
both classes. In situations like this, a friend function helps you write more efficient code.
The following program illustrates this concept.

// Use a friend function.
#include <iostream>
using namespace std;

const int IDLE=0;
const int INUSE=1;

class C2; // forward declaration

class C1 {
int status; // IDLE if off, INUSE if on screen
/] ..

public:

void set_status (int state);
friend int idle(Cl a, C2 b);
}s

class C2 {
int status; // IDLE if off, INUSE if on screen
//

12

276

C++ from the Ground Up

public:
void set_status (int state);
friend int idle(Cl a, C2 b);
}i

void Cl::set_status(int state)
{

status = state;

void C2::set_status(int state)
{
status = state;

// idle() is a friend of Cl and C2.
int idle(Cl a, C2 b)
{
if (a.status || b.status) return 0;
else return 1;

int main()
{

Cl x;

C2 vy;

x.set_status (IDLE) ;
y.set_status (IDLE) ;

if(idle(x, y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

x.set_status (INUSE) ;

if(idle(x, y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

return 0;

The output produced by this program is shown here:

Screen Can Be Used.
Pop-up In Use.

Because idle() is a friend of both C1 and C2 it has access to the private status
member defined by both classes. Thus, a single call to idle() can simultaneously
check the status of an object of each class.

A Closer Look at Classes 277

A forward
declaration
declares a class
type-name prior
to the definition
of the clase.

Notice that this program uses a forward declaration (also called a forward reference) for
the class C2. This is necessary because the declaration of idle() inside C1 refers to C2
before it is declared. To create a forward declaration to a class, simply use the form
shown in this program.

A friend of one class can be a member of another. For example, here is the preceding
program rewritten so that idle() is a member of C1. Notice the use of the scope
resolution operator when declaring idle() to be a friend of C2.

/* A function can be a member of one class and
a friend of another. */

#include <iostream>

using namespace std;

const int IDLE=0;
const int INUSE=1;

class C2; // forward declaration

class Cl1 {
int status; // IDLE if off, INUSE if on screen
//

public:
void set_status (int state);
int idle(C2 b); // now a member of C1

}i

class C2 {
int status; // IDLE if off, INUSE if on screen
//

public:

void set_status (int state);
friend int Cl::idle(C2 b); // a friend, here
}i

void Cl::set_status(int state)
{

status = state;

void C2::set_status(int state)
{

status = state;

// idle() is member of Cl, but friend of C2.
int Cl::idle(C2 b)
{

if(status || b.status) return 0;

else return 1;

278 C++ from the Ground Up

int main()
{
Cl x;
C2 y;

x.set_status (IDLE) ;
v.set_status (IDLE) ;

if(x.idle(y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

x.set_status (INUSE) ;

if(x.idle(y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

return 0;

Since idle() is a member of C1, it can access the status variable of objects of type
C1 directly. Thus, only objects of type C2 need be passed to idle().

= QOverloading Constructors

Although they perform a unique service, constructors are not much different from other
types of functions, and they too can be overloaded. To overload a class’s constructor,
simply declare the various forms it will take and define each action relative to these
forms. For example, the following program declares a class called timer, which acts
as a countdown timer (such as a darkroom timer). When an object of type timer is
created, it is given an initial time value. When the run() function is called, the timer
counts down to zero and then rings the bell. In this example, the constructor has
been overloaded to allow the time to be specified in seconds as either an integer or a
string, or in minutes and seconds by specifying two integers. This program makes use
of the standard library function clock(), which returns the number of system clock
ticks since the program began running. Its prototype is shown here:

clock_t clock();

The type clock_t is a defined type that is some form of long integer. Dividing the
return value of clock() by CLOCKS_PER_SEC converts the return value into seconds.
Both the prototype for clock() and the definition of CLOCKS_PER_SEC are found
in the header <ctime>.

// Use overloaded constructors.
#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

A Closer Look at Classes 279

class timer{
int seconds;

public:
// seconds specified as a string
timer (char *t) { seconds = atoi(t); }

// seconds specified as integer
timer (int t) { seconds = t; }

// time specified in minutes and seconds
timer (int min, int sec) { seconds = min*60 + sec; }

void run();
Yo

void timer::run/()
{

clock_t ti1;

tl = clock();

while((clock()/CLOCKS_PER_SEC - tl1l/CLOCKS_PER_SEC) < seconds) ;

cout << "\a"; // ring the bell
}

int main()

{
timer a(10), b("20"), c(1, 10);
a.run(); // count 10 seconds
b.run(); // count 20 seconds
c.run(); // count 1 minute, 10 seconds
return 0;

When a, b, and c are created inside main(), they are given initial values using the
three different methods supported by the overloaded constructor functions. Each
approach causes the appropriate constructor to be utilized, thus properly initializing
all three variables.

In the preceding program, you may see little value in overloading a constructor
function, because it is not difficult to simply decide on a single way of specifying the
time. However, if you were creating a library of classes for someone else to use, then
you might want to supply constructors for the most common forms of initialization,
thereby allowing the programmer to utilize the most appropriate form for his or her
program. Also, as you will see shortly, there is one C++ attribute that makes overloaded
constructors quite valuable.

12

280 C++ from the Ground Up

s Dynamic Initialization

In C++, both local and global variables can be initialized at run time. This process is
sometimes referred to as dynamic initialization. So far, most initializations that you
have seen in this book have used constants. However, under dynamic initialization,
a variable can be initialized at run time using any C++ expression valid at the time
the variable is declared. This means that you can initialize a variable by using other
variables and/or function calls, so long as the overall expression has meaning when
the declaration is encountered. For example, the following are all perfectly valid
variable initializations in C++:

int n = strlen(str);
double arc = sin(theta);

float d = 1.02 * count / deltax;

Applying Dynamic Initialization to Constructors

Like simple variables, objects can be initialized dynamically when they are created.
This feature allows you to create exactly the type of object you need, using information
that is known only at run time. To illustrate how dynamic initialization works, let’s
rework the timer program from the previous section.

Recall that in the first example of the timer program, there is little to be gained by
overloading the timer() constructor, because all objects of its type are initialized
using constants provided at compile time. However, in cases where an object will be
initialized at run time, there may be significant advantages to providing a variety of
initialization formats. This allows you, the programmer, the flexibility of using the
constructor that most closely matches the format of the data available at the moment.

For example, in the following version of the timer program, dynamic initialization
is used to construct two objects, b and ¢, at run time:

// Demonstrate dynamic initialization.
#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

class timer{
int seconds;

public:
// seconds specified as a string
timer (char *t) { seconds = atoi(t); }

// seconds specified as integer
timer (int t) { seconds = t; }

// time specified in minutes and seconds
timer (int min, int sec) { seconds = min*60 + sec; }

A Closer Look at Classes 281

void run();
Yo

void timer::run/()
{
clock_t ti1;

tl = clock();
while((clock()/CLOCKS_PER_SEC - tl1/CLOCKS_PER_SEC) < seconds) ;

cout << "\a"; // ring the bell
}

int main()
{
timer a(10);

a.run() ;

cout << "Enter number of seconds: ";
char str[80];

cin >> str;

timer b(str); // initialize at run time
b.run();

cout << "Enter minutes and seconds: ";

int min, sec;

cin >> min >> sec;

timer c(min, sec); // initialize at run time
c.run() ;

return 0;

As you can see, object a is constructed using an integer constant. However, objects

b and c are constructed using information entered by the user. For b, since the user

enters a string, it makes sense that timer() is overloaded to accept it. In similar

fashion, object c is also constructed at run time from user input. In this case, since the 1 2
time is entered as minutes and seconds, it is logical to use this format for constructing

object c. As the example shows, having a variety of initialization formats keeps you

from having to perform conversions when initializing an object.

The point of overloading constructors is to help programmers handle greater
complexity by allowing objects to be constructed in the most natural manner relative
to their specific use. Since there are three common methods of passing timing values to
an object, it makes sense that timer() be overloaded to accept each method. However,
overloading timer() to accept days or nanoseconds is probably not a good idea. Littering
your code with constructors to handle seldom-used contingencies has a destabilizing
influence on your program.

282

C++ from the Ground Up

REMEMBER: You must decide what constitutes valid constructor overloading

and what is frivolous.

Assigning Objects

If both objects are of the same type (that is, both are objects of the same class), then
one object may be assigned to another. It is not sufficient for the two classes to simply
be physically similar—their type names must be the same. By default, when one object
is assigned to another, a bitwise copy of the first object’s data is copied to the second.
The following program demonstrates object assignment:

// Demonstrate object assignment.
#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
void setab(int i, int j) { a =
void showab () ;

Y

void myclass: :showab ()

{
cout << "a is " << a << '\n';
cout << "b is " << b << '\n';

}

int main()
{
myclass obl, ob2;

obl.setab (10, 20);

ob2.setab (0, 0);

cout << "obl before assignment:
obl.showab () ;

cout << "ob2 before assignment:
ob2.showab () ;

cout << '\n';

ob2 = obl; // assign obl to ob2
cout << "obl after assignment:
obl.showab () ;

cout << "ob2 after assignment:

ob2.showab () ;

return 0;

\n";

\n";

\n";

\n";

A Closer Look at Classes 283

This program displays the following output:

obl before assignment:
a is 10
b is 20
ob2 before assignment:
a is 0
b is 0
obl after assignment:
a is 10
b is 20
ob2 after assignment:
a is 10
b is 20

By default, all data from one object is assigned to the other using a bit-by-bit copy.
(That is, an exact duplicate is created.) However, as you will see later, it is possible to
overload the assignment operator so that customized assignment operations can be
defined.

Remember: Assignment of one object to another simply makes the data in those
objects identical. The two objects are still completely separate. Thus, a subsequent
modification of one object’s data has no effect on that of the other.

Passing Objects to Functions

An object can be passed to a function in the same way as any other data type. Objects
are passed to functions by using the normal C++ call-by-value parameter-passing
convention. This means that a copy of the object, not the actual object itself, is passed
to the function. Therefore, changes made to the object inside the function do not affect
the object used as the argument to the function. The following program illustrates
this point:

#include <iostream>
using namespace std;

class OBJ {

int i;
public:
void set_i(int x) { i = x; }
void out_i() { cout << i << " "; }

Y

void f (OBJ x)

{
x.out_i(); // outputs 10
x.set_1(100); // this affects only local copy
x.out_1i(); // outputs 100

}

12

284

C++ from the Ground Up

int main()
{
OBJ o0;

o.set_1i(10);
f(o);
o.out_1i(); // still outputs 10, value of i unchanged

return 0;

}

The output from the program is shown here.

10 100 10

As the output shows, the modification of x within £() has no effect on object o inside
main().

Constructors, Destructors, and Passing Objects

Although passing simple objects as arguments to functions is a straightforward
procedure, some rather unexpected events occur that relate to constructors and
destructors. To understand why, consider this short program:

// Constructors, destructors, and passing objects.
#include <iostream>

using namespace std;

class myclass {

int val;
public:
myclass(int i) { val = i; cout << "Constructing\n"; 1}
~myclass() { cout << "Destructing\n"; }
int getval() { return val; }

1

void display (myclass ob)
{
cout << ob.getval() << '\n';

}
int main()
{
myclass a(10);

display(a);

return 0;

}

A Closer Look at Classes 285

This program produces the following, unexpected output:

Constructing
10
Destructing
Destructing

As you can see, there is one call to the constructor function (which occurs when a
is created), but there are two calls to the destructor. Let’s see why this is the case.

When an object is passed to a function, a copy of that object is made (and this copy
becomes the parameter in the function). This means that a new object comes into
existence. When the function terminates, the copy of the argument (i.e., the parameter)
is destroyed. This raises two fundamental questions: First, is the object’s constructor
called when the copy is made? Second, is the object’s destructor called when the copy
is destroyed? The answers may, at first, surprise you.

When a copy of an argument is made during a function call, the normal constructor
is not called. Instead, the object’s copy constructor is called. A copy constructor defines
how a copy of an object is made. (Later in this chapter you will see how to create a
copy constructor.) However, if a class does not explicitly define a copy constructor,
then C++ provides one by default. The default copy constructor creates a bitwise (that
is, identical) copy of the object. The reason a bitwise copy is made is easy to understand
if you think about it. Since a normal constructor is used to initialize some aspect of an
object, it must not be called to make a copy of an already existing object. Such a call
would alter the contents of the object. When passing an object to a function, you want
to use the current state of the object, not its initial state.

However, when the function terminates and the copy of the object used as an argument
is destroyed, the destructor is called. This is necessary because the object has gone out
of scope. This is why the preceding program had two calls to the destructor. The first
was when the parameter to display() went out of scope. The second is when a inside
main() was destroyed when the program ended.

To summarize: When a copy of an object is created to be used as an argument to a
function, the normal constructor is not called. Instead, the default copy constructor
makes a bit-by-bit identical copy. However, when the copy is destroyed (usually by
going out of scope when the function returns), the destructor is called.

A Potential Problem When Passing Objects

Even though objects are passed to functions by means of the normal call-by-value
parameter-passing mechanism, which, in theory, protects and insulates the calling
argument, it is still possible for a side effect to occur that may affect, or even damage,
the object used as an argument. For example, if an object used as an argument allocates
dynamic memory and frees that memory when it is destroyed, then its local copy inside
the function will free the same memory when its destructor is called. This is a problem

12

286 C++ from the Ground Up

because the original object is still using the memory. This situation will leave the
original object damaged and effectively useless. Consider this sample program:

// Demonstrate a problem when passing objects.
#include <iostream>

#include <cstdlib>

using namespace std;

class myclass {
int *p;
public:
myclass (int 1i);
~myclass () ;
int getval() { return *p; }

Y

myclass::myclass (int 1)

{
cout << "Allocating p\n";
p = new int;
*p o= 1i;

myclass: :~myclass()

{
cout << "Freeing p\n";
delete p;

// This will cause a problem.
void display (myclass ob)
{

cout << ob.getval() << '\n';

int main()
{

myclass a(10);
display(a);

return 0;

This program displays the following output:

Allocating p
10

Freeing p
Freeing p

This program contains a fundamental error. Here is why: When a is constructed within
main(), memory is allocated and assigned to a.p. When a is passed to display(),

A Closer Look at Classes 287

a is copied into the parameter ob. This means that both a and ob will have the same
value for p. That is, both objects will have their copies of p pointing to the same
dynamically allocated memory. When display() terminates, ob is destroyed, and its
destructor is called. This causes ob.p to be freed. However, the memory freed by ob.p
is the same memory that is still in use by a.p! This is, in itself, a serious bug.

However, things get even worse. When the program ends, a is destroyed, and its
dynamically allocated memory is freed a second time. The problem is that freeing the
same piece of dynamically allocated memory a second time is an undefined operation
which could, depending upon how the dynamic allocation system is implemented,
cause a fatal error.

As you might guess, one way around the problem of a parameter’s destructor destroying
data needed by the calling argument is to pass either a pointer or a reference, instead
of the object itself. When either a pointer to an object or a reference to an object is passed,
no copy is made; thus, no destructor is called when the function returns. For example,
here is one way to correct the preceding program:

// One solution to the problem of passing objects.
#include <iostream>

#include <cstdlib>

using namespace std;

class myclass {
int *p;
public:
myclass (int 1i);
~myclass () ;
int getval() { return *p; }

}i

myclass::myclass (int 1)

{
cout << "Allocating p\n";
p = new int;
*p o= 1i;

}

myclass: :~myclass ()

{
cout << "Freeing p\n";
delete p;

}

/* This will NOT cause a problem.

Because ob is now passed by reference, no
copy of the calling argument is made and thus,
no object goes out-of-scope when display()
terminates.

*/

void display (myclass &ob)

{

12

288

C++ from the Ground Up

cout << ob.getval() << '\n';
}

int main()
{

myclass a(10);
display(a) ;

return 0;

}

The output from this version of the program is shown here.

Allocating p
10
Freeing p

As you can see, only one call to the destructor occurs. This is because no copy of a
is made when it is passed by reference to display().

Passing an object by reference is an excellent approach when the situation allows it,
but it may not be applicable to all cases. Fortunately, a more general solution is available:
you can create your own version of the copy constructor. Doing so lets you define
precisely how a copy of an object is made, allowing you to avoid the type of problems
just described. Before discussing the copy constructor, let’s look at another, related
situation that can also benefit from a copy constructor.

Returning Objects

Just as objects can be passed to functions, so functions can return objects. To return
an object, first declare the function as returning a class type. Second, return an object
of that type by using the normal return statement. Here is an example of a function
that returns an object:

// Returning an object.
#include <iostream>
#include <cstring>
using namespace std;

class sample {
char s[80];

public:
void show() { cout << s << "\n"; }
void set(char *str) { strcpy(s, str); }

}i

// Return an object of type sample.
sample input ()
{

char instr[80];

A Closer Look at Classes 289

sample str;

cout << "Enter a string: ";
cin >> instr;

str.set (instr) ;

return str;

}

int main()
{
sample ob;

// assign returned object to ob
ob = input();
ob.show() ;

return 0;

In this example, input() creates a local object called str and then reads a string from
the keyboard. This string is copied into str.s, and then str is returned by the function.
This object is then assigned to ob inside main() after it is returned by input().

A Potential Problem When Returning Objects

There is one important point to understand about returning objects from functions:
When an object is returned by a function, a temporary object is automatically created,
which holds the return value. It is this object that is actually returned by the function.
After the value has been returned, this object is destroyed. The destruction of this
temporary object may cause unexpected side effects in some situations. For example,
if the object returned by the function has a destructor that frees dynamically allocated
memory, that memory will be freed even though the object that receives the return
value is still using it. Consider the following incorrect version of the preceding program:

// An error generated by returning an object.
#include <iostream> 12
#include <cstring>

#include <cstdlib>

using namespace std;

class sample {

char *s;
public:
sample() { s = 0; 1}
~sample() { i1f(s) delete [] s; cout << "Freeing s\n"; }
void show() { cout << s << "\n"; }

void set(char *str);

290

C++ from the Ground Up

// Load a string.

void sample: :set(char *str)

{
s = new char[strlen(str)+1];
strcpy (s, str);

}

// Return an object of type sample.
sample input ()
{

char instr([80];

sample str;

cout << "Enter a string: ";
cin >> instr;

str.set (instr) ;
return str;

}
int main()
{

sample ob;

// assign returned object to ob

ob = input(); // This causes an error!!!!
ob.show(); // displays garbage
return 0;

The output from this program is shown here:

Enter a string: Hello
Freeing s

Freeing s

garbage here

Freeing s

Notice that sample’s destructor is called three times! First, it is called when the local
object str goes out of scope upon the return of input(). The second time ~sample()
is called is when the temporary object returned by input() is destroyed. When an
object is returned from a function, an invisible (to you) temporary object is automatically
generated, which holds the return value. In this case, the object is simply a bitwise
copy of str, which is the return value of the function. Therefore, after the function has
returned, the temporary object’s destructor is executed. Because the memory holding
the string entered by the user has already been freed (twice!), garbage is displayed
when show() is called. (Depending upon how your compiler implements dynamic
allocation, you may not see garbage output, but the error is still present.) Finally, the
destructor for object ob, inside main(), is called when the program terminates. The
trouble is that, in this situation, the first time the destructor executes, the memory
allocated to hold the string obtained by input() is freed. Thus, not only do the other

A Closer Look at Classes 291

A copy
constructor
allows you to
control precisely
what occurs when
a copy of an
object is made.

two calls to sample’s destructor try to free an already released piece of dynamic memory,
but they may also damage the dynamic allocation system in the process.

The key point to understand from this example is that when an object is returned from
a function, the temporary object holding the return value will have its destructor called.
Thus, you should avoid returning objects in which this situation can be harmful. One
solution is to return either a pointer or a reference. However, this is not always feasible.
Another way to solve this problem involves the use of a copy constructor, which is
described next.

Creating and Using a Copy Constructor

One of the more important forms of an overloaded constructor is the copy constructor.
As earlier examples have shown, problems can occur when an object is passed to, or
returned from, a function. As you will learn in this section, one way to avoid these
problems is to define a copy constructor, which is a special type of overloaded constructor.

To begin, let’s restate the problems that a copy constructor is designed to solve. When
an object is passed to a function, a bitwise (i.e., exact) copy of that object is made and
given to the function parameter that receives the object. However, there are cases in
which this identical copy is not desirable. For example, if the object contains a pointer
to allocated memory, then the copy will point to the same memory as does the original
object. Therefore, if the copy makes a change to the contents of this memory, it will
be changed for the original object, too! Furthermore, when the function terminates,
the copy will be destroyed, thus causing its destructor to be called. This may also have
undesired effects on the original object.

A similar situation occurs when an object is returned by a function. The compiler will
generate a temporary object that holds a copy of the value returned by the function.
(This is done automatically, and is beyond your control.) This temporary object goes
out of scope once the value is returned to the calling routine, causing the temporary
object’s destructor to be called. However, if the destructor destroys something needed
by the calling routine, trouble will follow.

At the core of these problems is the creation of a bitwise copy of the object. To prevent
them, you need to define precisely what occurs when a copy of an object is made so
that you can avoid undesired side effects. The way you accomplish this is by creating
a copy constructor.

Before we explore the use of the copy constructor, it is important for you to understand
that C++ defines two distinct types of situations in which the value of one object is
given to another. The first situation is assignment. The second situation is initialization,
which can occur three ways:

€ When one object explicitly initializes another, such as in a declaration

€ When a copy of an object is passed as a parameter to a function

€ When a temporary object is generated (most commonly, as a return value)

The copy constructor applies only to initializations. It does not apply to assignments.

12

292

The copy
constructor is
called when one
object initializes
another.

C++ from the Ground Up

REMEMBER: Copy constructors do not affect assignment operations.

The most common form of copy constructor is shown here:

classname (const classname &obyj) {
// body of constructor

}

Here, obj is a reference to an object that is being used to initialize another object. For
example, assuming a class called myclass, and y as an object of type myclass, then
the following statements would invoke the myclass copy constructor:

myclass x = y; // y explicitly initializing x
funcl (y); // y passed as a parameter
vy = func2(); // y receiving a returned object

In the first two cases, a reference to y would be passed to the copy constructor. In the
third, a reference to the object returned by func2() would be passed to the copy
constructor.

To fully explore the value of copy constructors, let’s see how they impact each of the
three situations to which they apply.

Copy Constructors and Parameters

When an object is passed to a function as an argument, a copy of that object is made.
If a copy constructor exists, the copy constructor is called to make the copy. Here is a
program that uses a copy constructor to properly handle objects of type myclass when
they are passed to a function. (This is a corrected version of the incorrect program
shown earlier in this chapter.)

// Use a copy constructor to construct a parameter.
#include <iostream>

#include <cstdlib>

using namespace std;

class myclass {

int *p;
public:
myclass (int i); // normal constructor
myclass (const myclass &ob); // copy constructor
~myclass () ;
int getval() { return *p; }

Y

// Copy constructor.

A Closer Look at Classes 293

myclass::myclass (const myclass &obj)
{

p = new int;

*p = *obj.p; // copy value

cout << "Copy constructor called.\n";
}

// Normal Constructor.
myclass::myclass (int 1)
{
cout << "Allocating p\n";
p = new int;
*p o= 1;

}

myclass::~myclass ()

{
cout << "Freeing p\n";
delete p;

}

// This function takes one object parameter.
void display (myclass ob)
{
cout << ob.getval() << '\n';
}

int main()
{

myclass a(10);
display(a) ;

return 0;

}

This program displays the following output:

Allocating p

Copy constructor called.
10

Freeing p

Freeing p

Here is what occurs when the program is run: When a is created inside main(), the
normal constructor allocates memory and assigns the address of that memory to a.p.
Next, a is passed to ob of display(). When this occurs, the copy constructor is called,
and a copy of a is created. The copy constructor allocates memory for the copy, and a
pointer to that memory is assigned to the copy’s p member. Next, the value stored at
the original object’s p is assigned to the memory pointed to by the copy’s p. Thus, the
areas of memory pointed to by a.p and ob.p are separate and distinct, but the values

12

294

C++ from the Ground Up

that they point to are the same. If the copy constructor had not been created, then the
default bitwise copy would have caused a.p and ob.p to point to the same memory.

When display() returns, ob goes out of scope. This causes its destructor to be called,
which frees the memory pointed to by ob.p. Finally, when main() returns, a goes
out of scope, causing its destructor to free a.p. As you can see, the use of the copy
constructor has eliminated the destructive side effects associated with passing an
object to a function.

Copy Constructors and Initializations

The copy constructor is also invoked when one object is used to initialize another.
Examine this sample program:

// The copy constructor is called for initialization.
#include <iostream>

#include <cstdlib>

using namespace std;

class myclass {

int *p;
public:
myclass(int i); // normal constructor
myclass (const myclass &ob); // copy constructor
~myclass () ;
int getval() { return *p; }

1

// Copy constructor.
myclass: :myclass (const myclass &ob)
{
p = new int;
*p = *ob.p; // copy value
cout << "Copy constructor allocating p.\n";

// Normal constructor.

myclass::myclass (int 1)

{
cout << "Normal constructor allocating p.\n";
p = new int;
*p o= 1i;

myclass: :~myclass ()

{
cout << "Freeing p\n";
delete p;

int main()
{

myclass a(l0); // calls normal constructor

A Closer Look at Classes 295

myclass b = a; // calls copy constructor

return 0;

}

This program displays the following output:

Normal constructor allocating p.
Copy constructor allocating p.
Freeing p

Freeing p

As the output confirms, the normal constructor is called for object a. However, when
a is used to initialize b, the copy constructor is invoked. The use of the copy constructor
ensures that b will allocate its own memory. Without the copy constructor, b would
simply be an exact copy of a, and a.p would point to the same memory as b.p.

Keep in mind that the copy constructor is called only for initializations. For example, the
following sequence does not call the copy constructor defined in the preceding program:

myclass a(2), b(3);
//
b = a;

In this case, b = a performs the assignment operation, not a copy operation.

Using Copy Constructors When an Object Is Returned

The copy constructor is also invoked when a temporary object is created as the result
of a function returning an object. Consider this short program:

/* Copy constructor is called when a temporary object
is created as a function return value.

*/

#include <iostream>

using namespace std;

class myclass {
public:

myclass () { cout << "Normal constructor.\n"; }

myclass (const myclass &obj) { cout << "Copy constructor.\n"; }
Y

myclass f()
{

myclass ob; // invoke normal constructor

return ob; // implicitly invoke copy constructor

}

int main()
{

myclass a; // invoke normal constructor

296

C++ from the Ground Up

a = f(); // invoke copy constructor

return 0;

}

This program displays the following output:

Normal constructor.
Normal constructor.
Copy constructor.

Here, the normal constructor is called twice: once when a is created inside main(),
and once when ob is created inside f(). The copy constructor is called when the
temporary object is generated as a return value from £().

Although copy constructors may seem a bit esoteric at this point, virtually every
real-world class will require one, due to the side effects that often result from the
default bitwise copy.

I
Copy Constructors—Is There a Simpler Way?

As has been stated several times in this book, C++ is a very powerful language. It is
also a very large, and at times, complex language. Copy constructors are a feature
that many programmers point to as a prime example of this complexity because it

is a non-intuitive feature. Newcomers often do not immediately understand why the
copy constructor is important, nor is it always obvious to the novice when a copy
constructor is needed and when one isn’t. This situation often gives rise to the
question “Isn’t there a better way?” The answer is both Yes and No!

Languages such as Java and C# do not have copy constructors because neither language
makes bitwise copies of an object. This is because both Java and C# dynamically
allocate all objects and you operate on those objects exclusively through references.
Thus, no copies of an object are made when passing one as a parameter or returning
one from a function.

The fact that neither Java nor C# require copy constructors streamlines those languages,
but it comes at a price. Operating on objects exclusively through references, rather
directly as you can in C++, imposes limitations on the type of operations you can
perform. Furthermore, because of their exclusive use of object references, in Java and
C# you cannot precisely specify when an object will be destroyed. In C++, an object

is always destroyed when it goes out of scope.

Because C++ gives you, the programmer, complete control, it is a bit more complicated
language than are Java and C#. This is the price of programming power.

A Closer Look at Classes 297

this is a pointer
to the object that
invokes a member
function.

The this Keyword

Each time a member function is invoked, it is automatically passed a pointer, called
this, to the object on which it is called. The this pointer is an implicit parameter to
all member functions. Therefore, inside a member function, this may be used to refer
to the invoking object.

As you know, a member function can directly access the private data of its class.
For example, given this class,

class cl {
int 1i;
void £() { ... };

//
}i

inside £(), the following statement can be used to assign i the value 10:

i = 10;

In actuality, the preceding statement is shorthand for this one:

this->i = 10;

To see how the this pointer works, examine the following short program:

#include <iostream>
using namespace std;

class cl {

int 1i;
public:
void load_i(int val) { this->i = val; } // same as i = val

int get_i() { return this->i; } // same as return i

}
int main/()
{

cl o;

o.load_1i(100);
cout << o.get_i();

return 0;

This program displays the number 100.

12

298

C++ from the Ground Up

Of course, the preceding example is trivial—no one would actually use the this
pointer in this way. Soon, however, you will see why the this pointer is important
to C++ programming.

TIP: Friend functions do not have a this pointer, because friends are not
members of a class. Only member functions have a this pointer.

8 | CHAPTER 13

Operator
Overloading

299

300

Operators are
overloaded using
an operator
function.

C++ from the Ground Up

In C++, operators can be overloaded relative to class types that you define. The
principal advantage to overloading operators is that it allows you to seamlessly
integrate new data types into your programming environment.

Operator overloading allows you to define the meaning of an operator for a particular
class. For example, a class that defines a linked list might use the + operator to add an
object to the list. A class that implements a stack might use the + to push an object
onto the stack. Another class might use the + operator in an entirely different way.
When an operator is overloaded, none of its original meaning is lost. It is simply that
a new operation, relative to a specific class, is defined. Therefore, overloading the + to
handle a linked list, for example, does not cause its meaning relative to integers (i.e.,
addition) to change.

Operator overloading is closely related to function overloading. To overload an
operator, you must define what the operation means relative to the class to which it is
applied. To do this, you create an operator function, which defines the action of the
operator. The general form of an operator function is

type classname::operator#(arg-list)

{
}

Here, the operator that you are overloading is substituted for the #, and type is the
type of value returned by the specified operation. Although it can be of any type you
choose, the return value is often of the same type as the class for which the operator
is being overloaded. This correlation facilitates the use of the overloaded operator in
compound expressions. The specific nature of arg-list is determined by several factors,
as you will soon see.

operation relative to the class

Operator functions can be either members or nonmembers of a class. Nonmember
operator functions are often friend functions of the class, however. Although similar,
there are some differences between the way a member operator function is overloaded
and the way a nonmember operator function is overloaded. Each approach is
described here.

Operator Overloading Using Member Functions

To begin our examination of operator overloading using member fuctions, we will

start with a simple example. The following program creates a class called three_d,
which maintains the coordinates of an object in three-dimensional space. This program
overloads the + and the = operators relative to the three_d class. Examine it closely:

// Overload operators using member functions.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates
public:
three_ d() { x =y =2z = 0; }
three_d(int i, int j, int k) {x = i; v = j; z = k; }

Operator Overloading

three_d operator+ (three_d op2) ;
three_d operator=(three_d op2) ;

void show() ;

Y

// Overload +.

301

// opl is implied
// opl is implied

three_d three_d::operator+ (three_d op2)

{
three_d temp;

temp.x = X + 0p2.X;
temp.y = y + o0p2.y;
temp.z = z + 0p2.z;
return temp;

// These are integer additions
// and the + retains its original
// meaning relative to them.

// Overload assignment.
three_d three_d: :operator=(three_d op2)

{

X = 0Op2.X;
y = op2.y; // and the =
Z = 0p2.z;

return *this;

// Show X, Y,
void three_d: :show()
{
cout << x << ", ",
cout << y << ", ",
cout << z <<

int main()

{
three_d a(l, 2,
a.show() ;
b.show () ;

c =a + b;
c.show () ;

c=a+ b+ c;
c.show() ;

c = Db =
.show () ;
b.show ()

(e}

7

return 0;

// add a,

// These are integer assignments

retains its original

// meaning relative to them.

Z coordinates.

10), c;

// add a and b together

13

b and ¢ together

a; // demonstrate multiple assignment

302

C++ from the Ground Up

This program produces the following output:

1, 2, 3
10, 10, 10
11, 12, 13
22, 24, 26
1, 2, 3
1, 2, 3

As you examined the program, you may have been surprised to see that both operator
functions have only one parameter each, even though they overload binary operations.
The reason for this apparent contradiction is that when a binary operator is overloaded
using a member function, only one argument is explicitly passed to it. The other
argument is implicitly passed using the this pointer. Thus, in the line

temp.Xx = X + 0p2.X;

the x refers to this—>x, which is the x associated with the object that invokes the
operator function. In all cases, it is the object on the left side of an operation that causes
the call to the operator function. The object on the right side is passed to the function.

In general, when you use a member function, no parameters are used when overloading a
unary operator, and only one parameter is required when overloading a binary operator.
(You cannot overload the ternary ? operator.) In either case, the object that invokes the
operator function is implicitly passed via the this pointer.

To understand how operator overloading works, let’s examine the preceding program
carefully, beginning with the overloaded operator +. When two objects of type three_d
are operated on by the + operator, the magnitudes of their respective coordinates are
added together, as shown in operator+(). Notice, however, that this function

does not modify the value of either operand. Instead, an object of type three_d, which
contains the result of the operation, is returned by the function. To understand why
the + operation does not change the contents of either object, think about the standard
arithmetic + operation, as applied like this: 10 + 12. The outcome of this operation is
22, but neither 10 nor 12 is changed by it. Although there is no rule that prevents an
overloaded operator from altering the value of one of its operands, it is best for the
actions of an overloaded operator to be consistent with its original meaning.

Notice that operator+() returns an object of type three_d. Although the function
could have returned any valid C++ type, the fact that it returns a three_d object
allows the + operator to be used in compound expressions, such as a+b+c. Here, a+b
generates a result that is of type three_d. This value can then be added to ¢. Had any
other type of value been generated by a+b, such an expression would not work.

In contrast with the + operator, the assignment operator does, indeed, cause one of
its arguments to be modified. (This is, after all, the very essence of assignment.) Since
the operator=() function is called by the object that occurs on the left side of the
assignment, it is this object that is modified by the assignment operation. Most often,
the return value of an overloaded assignment operator is the object on the left, after
the assignment has been made. (This is in keeping with the traditional action of the =
operator.) For example, to allow statements like

Operator Overloading 303

it is necessary for operator=() to return the object pointed to by this, which will
be the object that occurs on the left side of the assignment statement. This allows
a string of assignments to be made. The assignment operation is one of the most
important uses of the this pointer.

REMEMBER: When a member function is used for overloading a binary operator,
the object on the left side of the operator invokes the operator function, and is passed
to it implicitly through this. The object on the right is passed as a parameter to the
operator function.

Using Member Functions
to Overload Unary Operators

You may also overload unary operators, such as ++, — —, or the unary — or +. As stated
earlier, when a unary operator is overloaded by means of a member function, no object
is explicitly passed to the operator function. Instead, the operation is performed on the
object that generates the call to the function through the implicitly passed this pointer.
For example, here is an expanded version of the previous example program. This version
defines the increment operation for objects of type three_d.

// Overload a unary operator.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates
public:
three_d() { x =y =2z = 0; }
three_d(int i, int j, int k) {x =1i; v = J; z = k; }

three_d operator+ (three_d op2); // opl is implied
three_d operator=(three_d op2); // opl is implied
three_d operator++(); // prefix version of ++

void show() ;
Yo

// Overload +. 1 3
three_d three_d: :operator+ (three_d op2)
{

three_d temp;

temp.x = x + op2.X; // These are integer additions
temp.y =y + op2.y; // and the + retains its original
temp.z = z + op2.z; // meaning relative to them.
return temp;

}

// Overload assignment.

304

three_d three_d: :operator=(three_d op2)

{
X = op2.x; // These are integer assignments
vy = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

// Overload the prefix version of ++.
three_d three_d: :operator++()
{

x++; // increment x, y, and z
return *this;

// Show X, Y, Z coordinates.
void three_d: :show()
{

cout << x << ", ",

cout << y << ", ",

cout << z << "\n";

int main()
{
three_d a(l, 2, 3), b(10, 10, 10), c;
a.show() ;
b.show ()

7

c =a + b; // add a and b together
c.show () ;

c =a+ b+ c; // add a, b and c together
c.show() ;

c =Db =
c.show (
b . show (

a; // demonstrate multiple assignment

)i
);

7

++c; // increment c
c.show () ;

return 0;

The output from the program is shown here.

1, 2, 3
10, 10, 10
11, 12, 13

C++ from the Ground Up

Operator Overloading 305

The increment
and decrement
operators have
both a prefix and
postfix form.

As the last line of the output shows, operator++() increments each coordinate in
the object and returns the modified object. Again, this is in keeping with the
traditional meaning of the ++ operator.

As you know, the ++ and - - have both a prefix and a postfix form. For example, both

++0;

and

O++;

are valid uses of the increment operator. As the comments in the preceding program
state, the operator++() function defines the prefix form of ++ relative to the three_d
class. However, it is possible to overload the postfix form as well. The prototype for the
postfix form of the ++ operator, relative to the three_d class, is shown here:

three_d three_d::operator++ (int notused) ;

The parameter notused is not used by the function, and should be ignored. This
parameter is simply a way for the compiler to distinguish between the prefix and postfix
forms of the increment operator. (The postfix decrement uses the same approach.)

Here is one way to implement a postfix version of ++ relative to the three_d class:

// Overload the postfix version of ++.
three_d three_d::operator++ (int notused)
{
three_d temp = *this; // save original value

x++; // increment x, y, and z

yH+;

Z++;

return temp; // return original value

Notice that this function saves the current state of the operand by using the statement

three_d temp = *this;

and then returns temp. Keep in mind that the traditional meaning of a postfix increment
is to first obtain the value of the operand, and then to increment the operand. Therefore,
it is necessary to save the current state of the operand and return its original value, before
it is incremented, rather than its modified value.

13

306 C++ from the Ground Up

The following version of the original program implements both forms of the ++
operator:

// Demonstrate prefix and postfix ++.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates
public:
three_d() { x =y =2z = 0; }
three_d(int i, int j, int k) {x =1i; v = J; z = k; }

three_d operator+ (three_d op2); // opl is implied

three_d operator=(three_d op2); // opl is implied
three_d operator++(); // prefix version of ++

three_d operator++ (int notused); // postfix version of ++

void show() ;
}i

// Overload +.
three_d three_d: :operator+ (three_d op2)
{

three_d temp;

temp.x = x + op2.%x; // These are integer additions
temp.y =y + op2.y; // and the + retains its original
temp.z = z + op2.z; // meaning relative to them.
return temp;

// Overload assignment.

three_d three_d: :operator=(three_d op2)

{
X = op2.%x; // These are integer assignments
vy = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

// Overload the prefix version of ++.
three_d three_d: :operator++()

{

x++; // increment x, y, and z
return *this; // return altered value

// Overload the postfix version of ++.

Operator Overloading 307

three_d three_d::operator++ (int notused)
{

three_d temp = *this; // save original value

x++; // increment x, y, and z
return temp; // return original value

// Show X, Y, Z coordinates.
void three_d: :show()
{

cout << x << ", ",

cout << y << ", ",

cout << z << "\n";

int main()

{
three_d a(l1, 2, 3), b(10, 10, 10), c;
a.show() ;
b.show() ;

c =a + b; // add a and b together
c.show () ;

c=a+ Db+ c; // add a, b and c¢ together
c.show() ;

c =Db = a; // demonstrate multiple assignment
c.show() ;
()

b.show ()

++c; // prefix increment
c.show() ;

c++; // postfix increment
c.show () ;

a = ++c; // a receives c's value after increment

a.show(); // a and c

c.show(); // are the same 13
a = c++; // a receives c's value prior to increment

a.show(); // a and c

c.show(); // now differ

return 0;

308

C++ from the Ground Up

The output is shown here.

1, 2, 3
10, 10, 10
11, 12, 13
22, 24, 26
1, 2, 3
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
4, 5, 6
4, 5, 6
5, 6, 7

v

As the last four lines show, the prefix increment increases the value of ¢ before its value
is assigned to a, and the postfix increment increases c after its value is assigned to a.

Remember that if the ++ precedes its operand, the operator++() is called. If it follows its
operand, the operator++(int notused) function is called. This same approach is also
used to overload the prefix and postfix decrement operator relative to any class. You
might want to try defining the decrement operator relative to three_d as an exercise.

TIP: Early versions of C++ did not distinguish between the prefix and postfix
forms of the increment or decrement operators. For these old versions, the prefix form
of the operator function was called for both uses of the operator. When working on
older C++ code, be aware of this possibility.

Operator Overloading Tips and Restrictions

The action of an overloaded operator, as applied to the class for which it is defined, need
not bear any relationship to that operator’s default usage, as applied to C++'s built-in
types. For example, the << and >> operators, as applied to cout and cin, have little in
common with the same operators applied to integer types. However, to maintain the
transparency and readability of your code, an overloaded operator should reflect, when
possible, the spirit of the operator’s original use. For example, the + relative to three_d
is conceptually similar to the + relative to integer types. There would be little benefit in
defining the + operator relative to some class in such a way that it acts more the way you
would expect the |1 operator, for instance, to perform. The central concept here is that,
while you can give an overloaded operator any meaning you like, for clarity, it is best
when its new meaning is related to its original meaning.

There are some restrictions to overloading operators. First, you cannot alter the
precedence of any operator. Second, you cannot alter the number of operands required
by the operator, although your operator function could choose to ignore an operand.
Finally, except for the function call operator (discussed later), operator functions cannot
have default arguments.

Operator Overloading 309

Nonmember
binary operator
functions have
two parameters.
Nonmember
unary operator
functions have
one parameter.

The only operators that you cannot overload are shown here:

)

The .* is a special-purpose operator, discussed later in this book.

Nonmember Operator Functions

You can overload an operator for a class by using a nonmember function, which is
often a friend of the class. As you learned earlier, nonmember functions, including
friend functions, do not have a this pointer. Therefore, when a friend is used to
overload an operator, both operands are passed explicitly when a binary operator is
overloaded, and a single operand is passed when a unary operator is overloaded. The
only operators that cannot be overloaded using nonmember functions are =, (), [],
and —>.

Order Matters

When overloading binary operators, remember that in many cases, the order

of the operands does make a difference. For example, while A + B is commutative,
A - Bis not. (That is, A - B is not the same as B — A!l) Therefore, when implementing
overloaded versions of the non-commutative operators, you must remember which
operand is on the left and which is on the right. For example, in this fragment,
subtraction is overloaded relative to the three_d class:

// Overload subtraction.
three_d three_d: :operator- (three_d op2)
{

three_d temp;

temp.Xx = X - 0p2.X;
temp.y =y - op2.y;

temp.z = z - op2.z; 13

return temp;

Remember, it is the operand on the left that invokes the operator function.
The operand on the right is passed explicitly. This is why x — op2.x is the proper
order for the subtraction.

310

C++ from the Ground Up

For example, in the following program, a friend is used instead of a member function
to overload the + operation:

// Overload + using a friend.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates
public:
three_d() { x =y =2z = 0; }
three_d(int i, int j, int k) { x =1; v = J; z = k;}

friend three_d operator+ (three_d opl, three_d op2);
three_d operator=(three_d op2); // op2 is implied

void show() ;

Yo

// This is now a friend function.
three_d operator+ (three_d opl, three_d op2)
{

three_d temp;

temp.x opl.x + op2.x;
temp.y opl.y + op2.vy;
temp.z = opl.z+ op2.z;
return temp;

// Overload assignment.
three_d three_d: :operator=(three_d op2)
{

X = 0p2.X;

y = 0p2.Yy;

Z = 0p2.z;

return *this;

// Show X, Y, Z coordinates.
void three_d: :show()
{

cout << x << ", ",

cout << y << ", ",

cout << z << "\n";

int main()
{
three_d a(l, 2, 3), b(10, 10, 10), c;

a.show() ;
b.show () ;

Operator Overloading 311

c =a + b; // add a and b together
c.show() ;

c=a+ Db+ c; // add a, b and ¢ together
c.show () ;

c =Db =
. show (
b.show (

a; // demonstrate multiple assignment

o]

7

)
)

return 0;

}

As you can see by looking at operator+(), now both operands are passed to it.
The left operand is passed in op1, and the right operand in op2.

In many cases, there is no benefit to using a friend function rather than a member
function when overloading an operator. However, there is one situation in which a
friend function is quite useful: when you want an object of a built-in type to occur
on the left side of a binary operator. To understand why, consider the following.

As you know, a pointer to the object that invokes a member operator function is passed
in this. In the case of a binary operator, it is the object on the left that invokes the
function. This is fine, provided that the object on the left defines the specified operation.
For example, assuming some object called Ob, which has integer addition defined for
it, then the following is a perfectly valid expression:

Ob + 10; // will work

Because the object Ob is on the left side of the + operator, it invokes its overloaded
operator function, which (presumably) is capable of adding an integer value to some
element of Ob. However, this statement won'’t work:

10 + Ob; // won't work

The problem with this statement is that the object on the left of the + operator is an
integer, a built-in type for which no operation involving an integer and an object of
Ob’s type is defined.

The solution to the preceding problem is to overload the + using two friend functions.

In this case, the operator function is explicitly passed both arguments, and it is invoked

like any other overloaded function, based upon the types of its arguments. One version 1 3
of the + operator function handles object + integer, and the other handles integer + object.
Overloading the + (or any other binary operator) using friend functions allows a built-in

type to occur on the left or right side of the operator. The following sample program

shows you how to accomplish this:

#include <iostream>
using namespace std;

class CL {

312

public:
int count;
CL operator=(CL obj) ;
friend CL operator+ (CL ob,
friend CL operator+ (int i,
Y

CL CL::operator=(CL obj)
{
count = obj.count;
return *this;

// This handles ob + int.
CL operator+ (CL ob, int i)
{

CL temp;

temp.count = ob.count + i;
return temp;

// This handles int + ob.
CL operator+(int i, CL ob)

{
CL temp;

temp.count = ob.count + 1;

return temp;

int main()
{
CL O;

O.count = 10;

cout << O.count << " "; // outputs 10

O =10 + O; // add object to integer
cout << O.count << " "; // outputs 20

O =0 + 12; // add integer to object
// outputs 32

cout << O.count;

return 0;

int 1i);
CL ob);

C++ from the Ground Up

As you can see, the operator+() function is overloaded twice, to accommodate the
two ways in which an integer and an object of type CL can occur in the addition

operation.

Operator Overloading 313

Using a Friend to Overload a Unary Operator

You can also overload a unary operator by using a friend function. However,

doing so requires a little extra effort. To begin, think back to the original version of
the overloaded ++ operator relative to the three_d class that was implemented as a
member function. It is shown here for your convenience:

// Overload the prefix form of ++.
three_d three_d: :operator++()
{

xX++;

y++i

Z++;

return *this;

As you know, every member function receives as an implicit argument this, which is a
pointer to the object that invokes the function. When a unary operator is overloaded by
use of a member function, no argument is explicitly declared. The only argument needed
in this situation is the implicit pointer to the invoking object. Any changes made to the
object’s data will affect the object on which the operator function is called. Therefore, in
the preceding function, x++ increments the x member of the invoking object.

Unlike member functions, a nonmember function, including a friend, does not
receive a this pointer, and therefore cannot access the object on which it was called.
Instead, a friend operator function is passed its operand explicitly. For this reason,
trying to create a friend operator++() function, as shown here, will not work:

// THIS WILL NOT WORK
three_d operator++ (three_d opl)
{

opl.x++;

opl.y++;

opl.z++;

return opl;

This function will not work because only a copy of the object that activated the call to
operator++() is passed to the function in parameter op1. Thus, the changes inside
operator++() will not affect the calling object, only the local parameter.

If you want to use a friend function to overload the increment or decrement operators, 1 3
you must pass the object to the function as a reference parameter. Since a reference
parameter is an implicit pointer to the argument, changes to the parameter will affect

the argument. Using a reference parameter allows the function to increment or

decrement the object used as an operand.

When a friend is used for overloading the increment or decrement operators, the
prefix form takes one parameter (which is the operand). The postfix form takes two
parameters. The second is an integer, which is not used.

314

C++ from the Ground Up

Here is the entire three_d program, which uses a friend operator++() function.
Notice that both the prefix and postfix forms are overloaded.

// This program uses friend operator++ () functions.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates
public:
three_d() { x =y =2z = 0; }
three_d(int i, int j, int k) {x =1i; v = J; z = k; }

friend three_d operator+ (three_d opl, three_d op2);
three_d operator=(three_d op2) ;

// use a reference to overload the ++
friend three_d operator++ (three_d &opl) ;
friend three_d operator++ (three_d &opl, int notused) ;

void show() ;

Yo

// This is now a friend function.
three_d operator+ (three_d opl, three_d op2)
{

three_d temp;

temp.x = opl.x + op2.X%;
temp.y = opl.y + op2.y;
temp.z = opl.z + op2.z;
return temp;

// Overload the =.
three_d three_d: :operator=(three_d op2)
{

X = 0Op2.X;

Yy = 0p2.y;

Z = 0p2.z;

return *this;

/* Overload prefix ++ using a friend function.

This requires the use of a reference parameter. */
three_d operator++ (three_d &opl)
{

opl.x++;

opl.y++;

opl.z++;

return opl;

Operator Overloading

/* Overload postfix ++ using a friend function.
This requires the use of a reference parameter.

three_d operator++ (three_d &opl, int notused)
{
three_d temp = opl;

opl.x++;
opl.y++;
opl.z++;
return temp;

// Show X, Y, Z coordinates.
void three_d: :show()
{

cout << x << ", ",

cout << y << ", ",

cout << z << "\n";

int main()

{
three_d a(l, 2, 3), b(10, 10, 10), c;
a.show() ;
b.show () ;

c =a + b; // add a and b together
c.show () ;

c =a+ b+ c; // add a, b and c together
c.show() ;

c = Db =
c.show() ;
b.show ()

7

++c; // prefix increment
c.show () ;

c++; // postfix increment
c.show() ;

a = ++c; // a receives c's value after increment

.show(); // a and ¢
c.show(); // are the same

Q

a; // demonstrate multiple assignment

315

*/

13

316

C++ from the Ground Up

a = c++; // a receives c¢'s value prior to increment

a.show(); // a and c
c.show(); // now differ
return 0;

}

REMEMBER: In general, you should use member functions to implement
overloaded operators. Friend functions are used in C++ mostly to handle certain
special-case situations.

Overloading the Relational and Logical Operators

Overloading a relational or logical operator, such as ==, <, or && is a straightforward
process. However, there is one small distinction. As you know, an overloaded operator
function usually returns an object of the class for which it is overloaded. However, an
overloaded relational or logical operator typically returns a true or false value. This is
in keeping with the normal usage of these operators, and allows them to be used in
conditional expression.

Here is an example that overloads the = = relative to the three_d class:

//overload ==.
bool three_d::operator==(three_d op2)
{
1f((x == op2.%X) && (y == op2.y) && (z == op2.z))
return true;
else
return false;

}

Once operator==() has been implemented, the following fragment is
perfectly valid:

three_d a, b;
//

if(a == b) cout << "a equals b\n";
else cout << "a does not equal b\n";

Because == returns a bool result, its outcome can be used to control an if statement.
As an exercise, try implementing several of the relational and logical operators relative
to the three_d class.

Operator Overloading 317

mmmm— A Closer Look at the Assignment Operator

The preceding chapter discussed a potential problem associated with passing objects
to functions, and with returning objects from functions. In both cases, the problem
was caused by a copy of an object being made by use of the default copy constructor,
which makes a bit-by-bit copy of an object. Recall that the solution to these problems
was the creation of your own copy constructor, which could define precisely how a
copy of an object was made. A similar type of problem can occur when one object is
assigned to another. By default, the object on the left side of an assignment statement
receives a bitwise copy of the object on the right. This can lead to trouble in cases in
which an object allocates a resource, such as memory, when it is created and later
alters or releases the resource. If, after an assignment, one object alters or releases that
resource, the second object is also affected because it is still using that resource. The
solution to this type of problem is to provide an overloaded assignment operator.

To fully understand the type of problem that the default, bitwise assignment
operation can cause, examine the following (incorrect) program:

// An error generated by returning an object.
#include <iostream>

#include <cstring>

#include <cstdlib>

using namespace std;

class sample {

char *s;
public:
sample() { s = 0; 1}
sample (const sample &ob); // copy constructor
~sample() { if(s) delete [] s; cout << "Freeing s\n"; }
void show() { cout << s << "\n"; }

void set(char *str);

}i

// Copy constructor.
sample: :sample (const sample &ob)
{

s = new char[strlen(ob.s)+1];

strcpy (s, ob.s);
}

// Load a string.
void sample: :set(char *str)
{

s = new char[strlen(str)+1];

strcpy (s, str);
}

// Return an object of type sample.
sample input ()

318

C++ from the Ground Up

char instr[80];
sample str;

cout << "Enter a string: ";
cin >> instr;

str.set (instr) ;
return str;

}

int main()
{

sample ob;

// assign returned object to ob
ob = input(); // This causes an error!!!!
ob.show() ;

return 0;

}

Sample output from this program is shown here:

Enter a string: Hello
Freeing s

Freeing s

garbage here

Freeing s

Depending upon your compiler, you may or may not see garbled output. The program
might also generate a run-time error. In any event, an error will still have occurred.
Here’s why.

In this program, the copy constructor correctly handles the return of an object by
input(). Recall that when a function returns an object, it does so by creating a
temporary object to hold the return value. Because the copy constructor allocates new
memory when a copy is made, the s in the original object and the s in the copy point
to different regions of memory, and are therefore independent.

However, an error still occurs when the return object is assigned to ob because the default
assignment performs a bitwise copy. In this case, the temporary object returned by
input() is copied into ob. This causes ob.s to point to the same memory that the
temporary object’s s points to. However, after the assignment, this memory is released
when the temporary object is destroyed. Thus, ob.s is pointing to freed memory! Further,
when the program ends, ob.s is again released, causing the memory to be freed a second
time. To prevent this problem, you must overload the assignment operator in such a way
that the object on the left side of an assignment allocates its own memory.

The following corrected program shows how such a solution can be accomplished:

// This program is now fixed.
#include <iostream>
#include <cstring>

Operator Overloading 319

#include <cstdlib>
using namespace std;

class sample {

char *s;
public:
sample(); // normal constructor
sample (const sample &ob); // copy constructor
~sample() { if(s) delete [] s; cout << "Freeing s\n"; }
void show() { cout << s << "\n"; }
void set(char *str);
sample operator=(sample &ob); // overload assignment

}i

// Normal constructor.
sample: :sample ()
{

s = new char('\0'); // s points to a null string.

// Copy constructor.
sample: :sample (const sample &ob)
{

s = new char[strlen(ob.s)+1];

strcpy (s, ob.s);

// Load a string.
void sample: :set(char *str)
{

s = new char[strlen(str)+1];

strcpy (s, str);

// Overload assignment operator.
sample sample: :operator=(sample &ob)
{
/* If the target memory is not large enough
then allocate new memory. */

if(strlen(ob.s) > strlen(s)) {
delete [] s;
s = new char[strlen(ob.s)+1];
}

strcpy (s, ob.s);
return *this;

// Return an object of type sample.
sample input ()
{

char instr[80];

sample str;

320

The []is
overloaded as a

binary operator.

C++ from the Ground Up

cout << "Enter a string: ";
cin >> instr;

str.set (instr) ;
return str;

}

int main()
{

sample ob;

// assign returned object to ob
ob = input(); // This is now OK
ob.show() ;

return 0;

This program now displays the following output (assuming that you enter “Hello”
when prompted):

Enter a string: Hello
Freeing s

Freeing s

Freeing s

Hello

Freeing s

As you can see, the program now runs properly. You should be able to understand
why each Freeing s message is printed. (Hint: One of them is caused by the delete
statement inside the operator=() function.)

Overloading []

In addition to the more traditional operators, C++ also lets you overload several of the
more exotic ones. One of the most useful is the [] array subscripting operator. In C++,
the [] is considered a binary operator for the purposes of overloading. The [] can
only be overloaded relative to a class, and only by a member function. Therefore, the
general form of a member operator[]() function is

type class-name::operator[|(int index)
{

/...
}

Technically, the parameter does not have to be of type int, but operator[]() functions
are typically used to provide array subscripting, so an integer value is generally used.

Operator Overloading 321

Given an object called Ob, the expression

Ob[3]

translates into the following call to the operator[]() function:

Ob.operator[] (3)

That is, the value of the expression within the subscripting operator is passed to the
operator|[]() function in its explicit parameter. The this pointer will point to Ob,
the object that generated the call.

In the following program, atype declares an array of three integers. Its constructor
initializes each member of the array. The overloaded operator[J() function returns
the value of the element specified by its parameter.

// Overload [].
#include <iostream>
using namespace std;

const int SIZE = 3;

class atype {
int a[SIZE];
public:
atype () {
register int i;

for(i=0; 1i<SIZE; i++) ali]l = 1i;

}

int operator([] (int i) {return ali];}
Y
int main()
{

atype ob;

cout << ob[2]; // displays 2

return 0;

}

Here, operator[]() returns the value of the ith element of a. Thus, ob[2] returns 2,
which is displayed by the cout statement. The initialization of the array a by the
constructor in this program, and in the following programs, is for the sake of illustration
only. It is not required.

It is possible to design the operator|[]() function in such a way that the [] can be
used on both the left and right sides of an assignment statement. To do this, simply

13

322

C++ from the Ground Up

specify that the return value of operator[J() be a reference. This change is
illustrated in the following program:

// Return a reference from [].
#include <iostream>
using namespace std;

const int SIZE = 3;

class atype {
int a[SIZE];
public:
atype () {
register int 1i;

for(i=0; 1<SIZE; i++) ali]l = 1i;
}
int &operator([] (int i) {return alil;}
Y

int main()

{

atype ob;

cout << ob[2]; // displays 2

cout << " ";

ob[2] = 25; // [] on left of =
cout << ob[2]; // now displays 25
return 0;

}

The program generates the following output.

2 25

Because operator[]() now returns a reference to the array element indexed by i, it
can now be used on the left side of an assignment statement to modify an element of
the array. (Of course, it can still be used on the right side as well.)

One advantage of being able to overload the [] operator is that it provides a means of
implementing safe array indexing. As you know, in C++, it is possible to overrun (or
underrun) an array boundary at run time without generating a run-time error message.
However, if you create a class that contains the array, and allow access to that array only
through the overloaded [] subscripting operator, then you can intercept an out-of-range
index. For example, the program shown next adds a range check to the preceding
program, and proves that it works:

// A safe array example.
#include <iostream>
#include <cstdlib>

Operator Overloading 323

using namespace std;
const int SIZE = 3;

class atype {
int a[SIZE];
public:
atype () {
register int 1i;

for (i=0; i<SIZE; i++) ali]l = i;
}
int &operator([] (int 1i);
Y

// Provide range checking for atype.
int &atype: :operator[] (int 1)
{

if(i<0 || i> SIZE-1) {
cout << "\nIndex value of ";
cout << i << " is out-of-bounds.\n";
exit (1) ;

}

return ali];

int main()
{
atype ob;
cout << ob[2]; // displays 2
cout << " ",
ob[2] = 25; // [] appears on left
cout << ob[2]; // displays 25
ob[3] = 44; // generates runtime error, 3 out-of-range
return 0;

The program displays the following output.

2 25
Index value of 3 is out-of-bounds.

When the statement

ob[3] = 44;

executes, the boundary error is intercepted by operator[](), and the program is
terminated before any damage can be done.

13

324

C++ from the Ground Up

Overloading ()

Perhaps the most intriguing operator that you can overload is (), the function call
operator. When you overload ('), you are not creating a new way to call a function.
Rather, you are creating an operator function that can be passed an arbitrary number
of parameters. Let’s begin with an example. Given the overloaded operator function
declaration

int operator () (float f, char *p);

and an object Ob of its class, then the statement

Ob(99.57, "overloading") ;

translates into this call to the operator() function:

operator () (99.57, "overloading") ;

In general, when you overload the () operator, you define the parameters that you
want to pass to that function. When you use the () operator in your program, the
arguments you specify are copied to those parameters. As always, the object that
generates the call (Ob in this example) is pointed to by the this pointer.

Here is an example of overloading () relative to the three_d class. It creates a new
three_d object whose coordinates are the sums of the calling object’s coordinates and
the values passed as arguments.

// Overload ().
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates
public:
three_d() { x =y =2z = 0; }
three_d(int i, int j, int k) {x =1i; v = J; z = k; }
three_d operator() (int a, int b, int c);
void show() ;
};

// Overload ().
three_d three_d::operator () (int a, int b, int c¢)
{

three_d temp;

temp.x = X + a;
temp.y v + b;
temp.z = z + c;

return temp;

Operator Overloading 325

// Show X, Y, Z coordinates.
void three_d: :show()
{

cout << x << ", ",

cout << y << ", ";

cout << z << "\n";

}

int main()
{
three_d obl(1l, 2, 3), ob2;

ob2 = obl(10, 11, 12); // invoke operator ()

cout << "obl: ";
obl.show() ;

cout << "ob2: ";
ob2.show() ;

return 0;

The output produced by this program is shown here:

obl: 1, 2, 3
ob2: 11, 13, 15

Remember, when overloading (), you can use any type of parameters and return any
type of value. These types will be dictated by the demands of your programs.

= Overloading Other Operators

Except for new, delete, —>, —>*, and the comma operators, the other C++ operators are
overloaded in the same way as those shown in the preceding examples. Overloading
new and delete requires special techniques, a complete description of which is found
in Chapter 17, where exception handling is discussed. The —>, —>*, and comma are
specialty operators that are beyond the scope of this book. The interested reader is
directed to my book, C++: The Complete Reference (McGraw-Hill/Osborne), for additional
examples of operator overloading.

13

s Another Example of Operator Overloading

To close this chapter, we will develop what is often considered to be the
quintessential example of operator overloading: a string class. Even though C++’s
approach to strings—implemented as null-terminated character arrays rather than as a
type unto themselves—is both efficient and flexible, to beginners it can still lack the
conceptual clarity of the way strings are implemented in languages such as BASIC. Of
course, this situation is easily addressed because it is possible to define a string class
that implements strings in a manner somewhat like that provided by other computer

326

C++ from the Ground Up

languages. In fact, in the early days of C++, implementing a string class was a common
pastime for programmers. Although Standard C++ now defines a string class, which
is described later in this book, it is still fun to implement a simple one on your own.
Doing so illustrates the power of operator overloading.

To begin, the following class declares the type str_type:

#include <iostream>
#include <cstring>
using namespace std;

class str_type {
char string[80];

public:
str_type(char *str = "") { strcpy(string, str); }
str_type operator+ (str_type str); // concatenate

str_type operator=(str_type str); // assign

// output the string
void show_str() { cout << string; }

}i

As you can see, str_type declares a private character array called string, which will
be used to hold the string. For the sake of this example, no string can be longer than
79 bytes. A real-world string class would allocate strings dynamically, and would not
have this restriction. Also, to keep the logic of this example clear, no checking for
boundary errors is provided by this class, or by any of the subsequent functions. Of
course, full error checking would be required by any real-world implementation.

The class has one constructor, which can be used to initialize the array string with a
specific value or to assign it a null string in the absence of any initializer. The class
also declares two overloaded operators, which perform concatenation and assignment.
Finally, it declares the function show_str(), which outputs string to the screen.

The overloaded operator functions are shown here:

// Concatenate two strings.
str_type str_type::operator+(str_type str) {
str_type temp;

strcpy (temp.string, string);
strcat (temp.string, str.string);
return temp;

}

// Assign one string to another.

str_type str_type::operator=(str_type str) {
strcpy(string, str.string);
return *this;

}

Operator Overloading 327

Given these definitions, the following main() illustrates their use:

int main()
{
str_type a("Hello "), b("There"), c;

c =a + b;
c.show_str () ;

return 0;

}

This program outputs Hello There on the screen. It first concatenates a with b, and
then assigns the resulting value to c.

Keep in mind that both the = and the + are defined only for objects of type str_type.
For example, the following statement is invalid because it tries to assign object a a
null-terminated string:

a = "this is currently wrong";

However, the str_type class can be enhanced to allow such a statement, as you will
see next.

To expand the types of operations supported by the str_type class so that you can assign
null-terminated strings to str_type objects, or concatenate a null-terminated string with
a str_type object, you will need to overload the + and = operations a second time. First,
the class declaration must be changed, as shown here:

class str_type {
char string[80];
public:
str_type(char *str = "") { strcpy(string, str); }

str_type operator+ (str_type str); // concatenate str_type objects
str_type operator+(char *str); /* concatenate str_type object
with a null-terminated string */

str_type operator=(str_type str); /* assign one str_type object
to another */
char *operator=(char *str); /* assign null-terminated string
to str_type object */ 13
void show_str() { cout << string; }
}i

Next, the overloaded operator+() and operator=() are implemented, as shown here:

// Assign a null-terminated string to an str_type object.
str_type str_type::operator=(char *str)
{

str_type temp;

328

C++ from the Ground Up

strcpy (string, str);
strcpy (temp.string, string);
return temp;

// Add a null-terminated string to an str_type object.
str_type str_type::operator+ (char *str)
{

str_type temp;

strcpy(temp.string, string);
strcat (temp.string, str);
return temp;

Look carefully at these functions. Notice that the right-side argument is not an

object of type str_type, but simply a pointer to a null-terminated character array—that
is, a normal C++ string. However, both functions return an object of type str_type.
Although the functions could, in theory, return some other type, it makes the most
sense to return a str_type object, since the targets of these operations are also str_type
objects. The advantage to defining a string operation that accepts a null-terminated
string as the right-side operand is that it allows you to write certain statements in a
natural way. For example, these are now valid statements:

str_type a, b, c;
a = "hi there"; // assign a null-terminated string to an object

c = a + " George"; /* concatenate an object with a
null-terminated string */

The following program incorporates the additional meanings of the + and = operators:

// Expanding the string type.
#include <iostream>

#include <cstring>

using namespace std;

class str_type {
char string([80];
public:
str_type(char *str = "") { strcpy(string, str); }

str_type operator+(str_type str);
str_type operator+ (char *str);

str_type operator=(str_type str);
str_type operator=(char *str);

void show_str() { cout << string; }
Yo

Operator Overloading

str_type str_type::operator+(str_type str)
str_type temp;

strcpy (temp.string, string);
strcat (temp.string, str.string);
return temp;

str_type str_type::operator=(str_type str)
strcpy(string, str.string);
return *this;

str_type str_type::operator=(char *str)
{
str_type temp;

strcpy(string, str);
strcpy(temp.string, string);
return temp;

str_type str_type::operator+(char *str)
{
str_type temp;

strcpy(temp.string, string);
strcat (temp.string, str);
return temp;

int main()
{
str_type a("Hello "), b("There"), c;

c =a + b;

c.show_str () ;
cout << "\n";

a = "to program in because";
a.show_str();

cout << "\n";

b

c = "C++ is fun";

c = c+" "+a+" "+b;
c.show_str () ;

return 0;

329

13

330

C++ from the Ground Up

This program displays this on the screen:

Hello There
to program in because
C++ is fun to program in because C++ is fun

Before continuing, you should make sure that you understand how this output is
created. On your own, try creating other string operations. For example, you might
try defining the - so that it performs a substring deletion. For example, if object A’s
string is “This is a test” and object B’s string is “is”, then A-B yields “th a test”. In this
case, all occurrences of the substring are removed from the original string. Also, define
a friend function that allows a null-terminated string to appear on the left side of the
+ operator. Finally, add all necessary error checking.

TIP: You will want to experiment with operator overloading relative to classes
that you create. As the examples in this chapter have shown, you can use operator
overloading to add new data types to your programming environment. This is one of
C++'s most powerful features.

332

A base class is
inherited by a
derived clase.

C++ from the Ground Up

nheritance is one of the cornerstones of OOP because it allows the creation of

hierarchical classifications. With inheritance, it is possible to create a general class
that defines traits common to a set of related items. This class may then be inherited
by other, more specific classes, each adding only those things that are unique to the
inheriting class.

In standard C++ terminology, a class that is inherited is referred to as a base class. The
class that does the inheriting is called the derived class. Further, a derived class can be
used as a base class for another derived class. In this way, a multilayered class hierarchy
can be achieved.

Introducing Inheritance

C++ supports inheritance by allowing one class to incorporate another class into its
declaration. Before discussing the theory and details, let’s begin with an example of
inheritance. The following class, called road_vehicle, very broadly defines vehicles
that travel on the road. It stores the number of wheels a vehicle has and the number
of passengers it can carry.

class road_vehicle {
int wheels;
int passengers;

public:
void set_wheels (int num) { wheels = num; }
int get_wheels() { return wheels; }
void set_pass(int num) { passengers = num; }
int get_pass() { return passengers; }

}i

You can use this broad definition of a road vehicle to help define specific types of
vehicles. For example, the fragment shown here inherits road_vehicle to create a
class called truck.

class truck : public road_vehicle {
int cargo;
public:
void set_cargo(int size) { cargo = size; }
int get_cargo() { return cargo; }
void show () ;
}i

Because truck inherits road_vehicle, truck includes all of road_vehicle. It then

adds cargo to it, along with the supporting member functions.

Notice how road_vehicle is inherited. The general form for inheritance is shown here:
class derived-class : access base-class {

body of new class

}

Inheritance

333

Here, access is optional. However, if present, it must be either public, private, or
protected. You will learn more about these options later in this chapter. For now,

all inherited classes will use public. Using public means that all the public members
of the base class will also be public members of the derived class. Therefore, in the
preceding example, members of truck have access to the public member functions of
road_vehicle, just as if they had been declared inside truck. However, truck does
not have access to the private members of road_vehicle. For example, truck does
not have access to wheels.

Here is a program that uses inheritance to create two subclasses of road_vehicle.
One is truck and the other is automobile.

// Demonstrate inheritance.
#include <iostream>
using namespace std;

// Define a base class for vehicles.

class road_vehicle {
int wheels;
int passengers;

public:
void set_wheels (int num) { wheels = num; }
int get_wheels() { return wheels; }
void set_pass (int num) { passengers = num; }
int get_pass() { return passengers; }

}i

// Define a truck.
class truck : public road_vehicle {
int cargo;

public:
void set_cargo(int size) { cargo = size; }
int get_cargo() { return cargo; }

void show () ;

}s
enum type {car, van, wagon};

// Define an automoble.

class automobile : public road_vehicle {
enum type car_type;

public:
void set_type(type t) { car_type = t; 1}
enum type get_type() { return car_type; }
void show() ;

3 14

void truck: :show()
{
cout << "wheels: " << get_wheels() << "\n";
cout << "passengers: " << get_pass() << "\n";
cout << "cargo capacity in cubic feet: " << cargo << "\n";

334 C++ from the Ground Up

void automobile: :show ()
{
cout << "wheels: " << get_wheels() << "\n";
cout << "passengers: " << get_pass() << "\n";
cout << "type: ";
switch(get_type()) {
case van: cout << "van\n";
break;
case car: cout << "car\n";
break;
case wagon: cout << "wagon\n";

int main()

{
truck tl, t2;
automobile c;

tl.set_wheels (18);
tl.set_pass(2);
tl.set_cargo(3200);

t2.set_wheels(6) ;
t2.set_pass(3);
t2.set_cargo(1200) ;

tl.show() ;
cout << "\n";
t2.show() ;
cout << "\n";

c.set_wheels(4) ;
.set_pass (6);
c.set_type(van) ;

Q

c.show () ;

return 0;

The output from this program is shown here:

wheels: 18
passengers: 2
cargo capacity in cubic feet: 3200

wheels: 6
passengers: 3
cargo capacity in cubic feet: 1200

wheels: 4
passengers: 6
type: van

Inheritance

When a base class
is inherited as
public, its public
members become
public members of
the derived class.

335

As this program shows, the major advantage of inheritance is that it lets you create a base
class that can be incorporated into more specific classes. In this way, each derived class
can be precisely tailored to its own needs while still being part of a general classification.

One other point: Notice that both truck and automobile include a member function
called show(), which displays information about each object. This illustrates another
aspect of polymorphism. Since each show() is linked with its own class, the compiler
can easily tell which one to call for any given object.

Now that you have seen the basic procedure by which one class inherits another, let’s
examine inheritance in detail.

Base Class Access Control

When one class inherits another, the members of the base class become members of
the derived class. The access status of the base class members inside the derived class
is determined by the access specifier used for inheriting the base class. The base class
access specifier must be public, private, or protected. If the access specifier is not
used, then it is private by default if the derived class is a class. If the derived class is
a struct, then public is the default in the absence of an explicit access specifier. Let’s
examine the ramifications of using public or private access. (The protected specifier
is described in the next section.)

When a base class is inherited as public, all public members of the base class become
public members of the derived class. In all cases, the private elements of the base class
remain private to that class, and are not accessible by members of the derived class.
For example, in the following program, the public members of base become public
members of derived. Thus, they are accessible by other parts of the program.

#include <iostream>
using namespace std;

class base {

int i, 3;
public:

void set(int a,

int b) {1 =a; J =Db; }

void show() { cout << i << " " << j << "\n"; }
Y
class derived : public base {

int k;
public:

derived(int x) { k = x; }

void showk () { cout << k << "\n"; }

Y

int main()
{
derived ob(3);

14

336

When a base class
is inherited as
private, its public
members become
private members of
the derived class.

C++ from the Ground Up

ob.set(1l, 2); // access member of base
ob.show () ; // access member of base
ob.showk () ; // uses member of derived class
return 0;

Since set() and show() are inherited as public, they can be called on an object of
type derived from within main(). Since i and j are specified as private, they
remain private to base.

The opposite of public inheritance is private inheritance. When the base class is
inherited as private, then all public members of the base class become private
members of the derived class. For example, the program shown next will not compile,
because both set()and show() are now private members of derived, and thus
cannot be called from main().

// This program won't compile.
#include <iostream>

using namespace std;

class base {

int i, J;
public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << 1 << " " << j << "\n"; 1}

}i

// Public elements of base are private in derived.
class derived : private base {

int k;
public:

derived(int x) { k = x; }

void showk () { cout << k << "\n"; }
}i
int main()

{
derived ob(3);

ob.set (1, 2); // Error, can't access set()
ob.show() ; // Error, can't access show()
return 0;

The key point to remember is that when a base class is inherited as private, public
members of the base class become private members of the derived class. This means
that they are still accessible by members of the derived class, but cannot be accessed
by other parts of your program.

Inheritance

337

s Using protected Members

The protected
access specifier
declares protected
members or
inherits a
protected class.

In addition to public and private, a class member can be declared as protected. Further,
a base class can be inherited as protected. Both of these actions are accomplished by
using the protected access specifier. The protected keyword is included in C++ to
provide greater flexibility for the inheritance mechanism.

When a member of a class is declared as protected, that member is not accessible to
other, non-member elements of the program. With one important exception, access
to a protected member is the same as access to a private member; it can be accessed
only by other members of the class of which it is a part. The sole exception to this
rule is when a protected member is inherited. In this case, a protected member differs
substantially from a private one.

As you know, a private member of a base class is not accessible by any other part

of your program, including any derived class. However, protected members behave
differently. When a base class is inherited as public, protected members in the base
class become protected members of the derived class, and are accessible to the derived
class. Therefore, by using protected, you can create class members that are private to
their class, but that can still be inherited and accessed by a derived class.

Consider this sample program:

#include <iostream>
using namespace std;

class base {
protected:

int i, j; // private to base, but accessible to derived
public:

void set(int a, int b) { 1 = a; j = b; }

void show() { cout << 1 << " " << j << "\n"; }

}i

class derived : public base {
int k;

public:
// derived may access base's 1 and j
void setk() { k = i*j; }

void showk () { cout << k << "\n"; }

}i

int main()
{

derived ob;

ob.set(2, 3); // OK, known to derived
ob.show () ; // OK, known to derived

14

338

C++ from the Ground Up

ob.setk();
ob.showk () ;

return 0;

Here, because base is inherited by derived as public, and because i and j are declared
as protected, derived’s function setk() may access them. If i and j were declared as
private by base, then derived would not have access to them, and the program
would not compile.

REMEMBER: The protected specifier allows you to create a class member that
is accessible within a class hierarchy, but is otherwise private.

When a derived class is used as a base class for another derived class, then any protected
member of the initial base class that is inherited (as public) by the first derived class can
be inherited again, as a protected member, by a second derived class. For example, the
following program is correct, and derived2 does, indeed, have access to i and j:

#include <iostream>
using namespace std;

class base {

protected:
int i, J;
public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << 1 << " " << j << "\n"; }

}i

// 1 and j inherited as protected.
class derivedl : public base {

int k;

public:
void setk() { k = i*j; } // legal
void showk () { cout << k << "\n"; }

}i

// 1 and j inherited indirectly through derivedl.

class derived2 : public derivedl {
int m;

public:
void setm() { m = i-j; } // legal
void showm() { cout << m << "\n"; }

}i

int main()

{

Inheritance

339

derivedl obl;
derived2 ob2;

obl.set (2, 3);
obl.show() ;
obl.setk();
obl.showk () ;

ob2.set (3, 4);
ob2.show() ;
ob2.setk() ;
ob2.setm() ;
ob2.showk () ;
ob2.showmn/() ;

return 0;

When a base class is inherited as private, protected members of the base class become
private members of the derived class. Therefore, in the preceding example, if base
were inherited as private, then all members of base would become private members of
derived1, meaning that they would not be accessible to derived2. (However, i and j
would still be accessible to derived1.) This situation is illustrated by the following
program, which is in error (and won’t compile). The comments describe each error.

// This program won't compile.
#include <iostream>

using namespace std;

class base {

protected:
int i, J;
public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << 1 << " " << j << "\n"; }

}i

// Now, all elements of base are private in derivedl.

class derivedl : private base {
int k;

public:
// This is legal because 1 and j are private to derivedl.
void setk() { k = i*j; } // OK

void showk () { cout << k << "\n"; }
"’ 14
// Access to 1, j, set(), and show() not inherited.
class derived2 : public derivedl {
int m;
public:

// Illegal because i and j are private to derivedl.

340 C++ from the Ground Up
void setm() { m = i-j; } // error
void showm() { cout << m << "\n"; }
}i
int main()

{
derivedl obl;
derived2 ob2;

obl.set(1l, 2); // Error, can't use set()
obl.show () ; // Error, can't use show()

ob2.set(3, 4); // Error, can't use set()
ob2.show () ; // Error, can't use show()

return 0;

Even though base is inherited as private by derived1, derived1 still has access to
the public and protected elements of base. However, it cannot pass this privilege
along. This is the reason that protected is part of the C++ language. It provides a
means of protecting certain members from being modified by non-member functions,
but allows them to be inherited.

The protected specifier can also be used with structures. It cannot be used with a
union, however, because a union cannot inherit another class or be inherited. (Some
compilers will accept its use in a union declaration, but because unions cannot
participate in inheritance, protected is the same as private in this context.)

The protected acces