

C++
from the Ground Up

Third Edition

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:i

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:i

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

About the Author

Herbert Schildt is the world’s leading
programming author. He is an authority on the
C, C++, Java, and C# languages, and is a master
Windows programmer. His programming books
have sold more than 3 million copies worldwide
and have been translated into all major foreign
languages. He is the author of numerous bestsellers,
including C++: The Complete Reference, C#: The
Complete Reference, Java 2: The Complete Reference,
C: The Complete Reference, C++ From the Ground Up,
C++: A Beginner’s Guide, C#: A Beginner’s Guide, and
Java 2: A Beginner’s Guide. Schildt holds a master’s
degree in computer science from the University of
Illinois. He can be reached at his consulting office
at (217) 586-4683.

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:ii

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:ii

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C++
from the Ground Up

Third Edition

Herbert Schildt

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City

Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:iii

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

McGraw-Hill/Osborne
2600 Tenth Street
Berkeley, California 94710
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact McGraw-Hill/Osborne at the above address. For information on
translations or book distributors outside the U.S.A., please see the International
Contact Information page immediately following the index of this book.

C++ from the Ground Up, Third Edition

Copyright © 2003 by The McGraw-Hill Companies. All rights reserved. Printed in
the United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior
written permission of publisher, with the exception that the program listings may
be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

1234567890 DOC DOC 019876543

ISBN 0-07-222897-0

Publisher
Brandon A. Nordin

Vice President &
Associate Publisher
Scott Rogers

Acquisitions Editor
Lisa McClain

Project Editors
Jenn Tust, Elizabeth Seymour

Proofreader
Marian M. Selig

Indexer
Sheryl Schildt

Computer Designers
Tabitha M. Cagan, Tara A. Davis,
John Patrus, Lucie Ericksen

Illustrators
Michael Mueller, Lyssa Wald,
Melinda Lytle

Cover Series Design
John Nedwidek, emdesign

Cover Illustration
Lance Ravella

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by McGraw-Hill/Osborne from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill/Osborne, or others, McGraw-Hill/Osborne does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from the use of such information.

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:iv

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:iv

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents

Preface . xvii

1 The Story of C++ . 1
The Origins of C++ . 2

The Creation of C . 2
Understanding the Need for C++ 4
C++ Is Born . 5

The Evolution of C++ . 6
What Is Object-Oriented Programming? . 6

Encapsulation . 7
Polymorphism . 7
Inheritance . 8
C++ Implements OOP . 8
How C++ Relates to Java and C# 8

2 An Overview of C++ . 11
Your First C++ Program . 12

Entering the Program . 12
Compiling the Program . 13
Run the Program . 14
A Line-by-Line Explanation . 14

v

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Handling Syntax Errors . 16
A Second Simple Program . 17
A More Practical Example . 18
A New Data Type . 19
A Quick Review . 20
Functions . 20

A Program with Two Functions . 21
Function Arguments . 22

Functions Returning Values . 24
The main() Function . 25
The General Form of C++ Functions 26

Some Output Options . 26
Two Simple Commands . 27

The if Statement . 27
The for Loop . 28

Blocks of Code . 29
Semicolons and Positioning . 30
Indentation Practices . 31
C++ Keywords . 31
Identifiers in C++ . 32
The Standard C++ Library . 32

3 The Basic Data Types . 33
Declaration of Variables . 35

Local Variables . 35
Formal Parameters . 36
Global Variables . 37

Some Type Modifiers . 38
Literals . 41

Hexadecimal and Octal Literals . 43
String Literals . 43
Character Escape Sequences . 44

Variable Initializations . 45
Operators . 46

Arithmetic Operators . 46
Increment and Decrement . 48
How C++ Got Its Name . 49
Relational and Logical Operators 50

Expressions . 53
Type Conversion in Expressions 53
Converting to and from bool . 53
Casts . 54
Spacing and Parentheses . 55

vi C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

4 Program Control Statements . 57
The if Statement . 58

The Conditional Expression . 59
Nested ifs . 60
The if-else-if Ladder . 61

The for Loop . 62
Some Variations on the for Loop 64
Missing Pieces . 66
The Infinite Loop . 66
Time Delay Loops . 67

The switch Statement . 67
Nested switch Statements . 71

The while Loop . 71
The do-while Loop . 73
Using continue . 74
Using break to Exit Loops . 75
Nested Loops . 76
Using the goto Statement . 77
Putting Together the Pieces . 78

5 Arrays and Strings . 81
One-Dimensional Arrays . 82

No Bounds Checking . 84
Sorting an Array . 85

Strings . 86
Reading a String from the Keyboard 87

Some String Library Functions . 89
strcpy . 89
strcat . 89
strcmp . 90
strlen . 91
Using the Null Terminator . 93

Two-Dimensional Arrays . 94
Multidimensional Arrays . 96
Array Initialization . 96

Unsized Array Initializations . 100
Arrays of Strings . 101

An Example Using String Arrays 102

6 Pointers . 105
What Are Pointers? . 106
The Pointer Operators . 107

The Base Type Is Important . 108
Assigning Values Through a Pointer 110

Contents vii

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointer Expressions . 110
Pointer Arithmetic . 111
Pointer Comparisons . 112

Pointers and Arrays . 112
Indexing a Pointer . 115
Are Pointers and Arrays Interchangeable? 116

Pointers and String Literals . 117
A Comparison Example . 117
Arrays of Pointers . 118
The Null Pointer Convention . 121
Multiple Indirection . 122

Pointers and 16-bit Environments 122
Problems with Pointers . 124

Uninitialized Pointers . 124
Invalid Pointer Comparisons . 124
Forgetting to Reset a Pointer . 125

7 Functions, Part One: The Fundamentals 127
Scope Rules of Functions . 128

Local Variables . 128
Formal Parameters . 134
Global Variables . 134

Passing Pointers and Arrays . 136
Calling Functions with Pointers 136
Calling Functions with Arrays . 137
Passing Strings . 140

argc and argv: Arguments to main() . 141
Passing Numeric Command Line Arguments 144
Converting Numeric Strings to Numbers 145

The return Statement . 145
Returning from a Function . 146
Returning Values . 147
void Functions . 149
Functions That Return Pointers . 149

Function Prototypes . 151
Headers: A Closer Look . 152

Old-Style versus Modern Function Parameter
Declarations . 153

Recursion . 153

8 Functions, Part Two: References, Overloading,
and Default Arguments . 157

Two Approaches to Argument Passing . 158
How C++ Passes Arguments . 158
Using a Pointer to Create a Call-by-Reference 159

viii C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Reference Parameters . 160
Declaring Reference Parameters . 163
Returning References . 164
Creating a Bounded Array . 167
Independent References . 168
A Few Restrictions When Using References 169

Function Overloading . 170
The overload Anachronism . 173

Default Function Arguments . 173
Default Arguments versus Overloading 175
Using Default Arguments Correctly 177

Function Overloading and Ambiguity . 177

9 More Data Types and Operators . 181
The const and volatile Qualifiers . 182

const . 182
volatile . 184

Storage Class Specifiers . 185
auto . 185
extern . 186
static Variables . 187
Register Variables . 191
The Origins of the register Modifier 192

Enumerations . 193
typedef . 197
More Operators . 197
Bitwise Operators . 197

AND, OR, XOR, and NOT . 198
The Shift Operators . 202

The ? Operator . 203
Compound Assignment . 205
The Comma Operator . 205
Multiple Assignments . 206
Using sizeof . 206
Dynamic Allocation Using new and delete 207

Initializing Dynamically Allocated Memory 210
Allocating Arrays . 210
C’s Approach to Dynamic Allocation: malloc()

and free() . 211
Precedence Summary . 213

10 Structures and Unions . 215
Structures . 216

Accessing Structure Members . 218
Arrays of Structures . 219

Contents ix

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A Simple Inventory Example . 219
Passing Structures to Functions . 226
Assigning Structures . 227
Pointers to Structures and the Arrow Operator 228
References to Structures . 232
Arrays and Structures Within Structures 233
C Structure Versus C++ Structures 234
Bit-Fields . 235

Unions . 237
Anonymous Unions . 242

Using sizeof to Ensure Portability . 243
Moving On to Object-Oriented Programming 243

11 Introducing the Class . 245
Class Fundamentals . 246

The General Form of a class . 250
A Closer Look at Class Member Access . 250
Constructors and Destructors . 252

Parameterized Constructors . 255
An Initialization Alternative . 259

Classes and Structures Are Related . 260
Structures versus Classes . 262

Unions and Classes Are Related . 263
Inline Functions . 264

Creating Inline Functions Inside a Class 265
Arrays of Objects . 267

Initializing Object Arrays . 268
Pointers to Objects . 270
Object References . 272

12 A Closer Look at Classes . 273
Friend Functions . 274
Overloading Constructors . 278
Dynamic Initialization . 280

Applying Dynamic Initialization to Constructors 280
Assigning Objects . 282
Passing Objects to Functions . 283

Constructors, Destructors, and Passing Objects 284
A Potential Problem When Passing Objects 285

Returning Objects . 288
A Potential Problem When Returning Objects 289

Creating and Using a Copy Constructor . 291
Copy Constructors and Parameters 292
Copy Constructors and Initializations 294

x C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Copy Constructors When an Object Is Returned . . . 295
Copy Constructors—Is There a Simpler Way? 296

The this Keyword . 297

13 Operator Overloading . 299
Operator Overloading Using Member Functions 300

Using Member Functions to Overload Unary Operators . . 303
Operator Overloading Tips and Restrictions 308

Nonmember Operator Functions . 309
Order Matters . 309
Using a Friend to Overload a Unary Operator 313
Overloading the Relational and Logical Operators 316

A Closer Look at the Assignment Operator 317
Overloading [] . 320
Overloading () . 324
Overloading Other Operators . 325
Another Example of Operator Overloading 325

14 Inheritance . 331
Introducing Inheritance . 332
Base Class Access Control . 335
Using protected Members . 337

Using protected for Inheritance of a Base Class 340
Reviewing public, protected, and private 342

Inheriting Multiple Base Classes . 342
Constructors, Destructors, and Inheritance 343

When Constructors and Destructors Are Executed 343
Passing Parameters to Base Class Constructors 346

Granting Access . 350
Reading C++ Inheritance Graphs 352

Virtual Base Classes . 352

15 Virtual Functions and Polymorphism 357
Pointers to Derived Types . 358

References to Derived Types . 360
Virtual Functions . 360

Virtual Functions Are Inherited . 363
Why Virtual Functions? . 365
A Simple Application of Virtual Functions 366
Pure Virtual Functions and Abstract Classes 370

Early versus Late Binding . 372
Polymorphism and the Purist . 373

16 Templates . 375
Generic Functions . 376

A Function with Two Generic Types 378
Explicitly Overloading a Generic Function 379

Contents xi

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Overloading a Function Template 381
Using Standard Parameters with Template Functions . . . 382
Generic Function Restrictions . 383
Creating a Generic abs() Function 383

Generic Classes . 384
An Example with Two Generic Data Types 387
Creating a Generic Array Class . 388
Using Non-Type Arguments with Generic Classes 389
Using Default Arguments with Template Classes 391
Explicit Class Specializations . 393

17 Exception Handling . 395
Exception Handling Fundamentals . 396

exit() and abort() . 398
Catching Class Types . 401
Using Multiple catch Statements 402

Options for Exception Handling . 404
Catching All Exceptions . 404
Restricting Exceptions Thrown by a Function 406
Rethrowing an Exception . 408

Handling Exceptions Thrown by new . 409
The nothrow Alternative . 410

Overloading new and delete . 411
Overloading the nothrow Version of new 415

18 The C++ I/O System . 417
Old VS Modern C++ I/O . 418
C++ Streams . 418

The C++ Predefined Streams . 419
The C++ Stream Classes . 419
Overloading the I/O Operators . 420

Creating Inserters . 421
Using Friend Functions to Overload Inserters 423
Overloading Extractors . 424
C I/O Versus C++ I/O . 426

Formatted I/O . 426
Formatting with the ios Member Functions 426
Using I/O Manipulators . 431
Creating Your Own Manipulator Functions 433

File I/O . 435
Opening and Closing a File . 435
Reading and Writing Text Files . 438
Unformatted Binary I/O . 439
Reading and Writing Blocks of Data 441
Detecting EOF . 442
A File Comparison Example . 443

xii C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

More Binary I/O Functions . 444
Random Access . 446
Checking I/O Status . 448
Customized I/O and Files . 449

19 Run-Time Type ID and the Casting Operators 451
Run-Time Type Identification (RTTI) . 452

A Simple Application of Run-Time Type ID 456
typeid Can Be Applied to Template Classes 458

The Casting Operators . 462
dynamic_cast . 462
const_cast . 467
static_cast . 468
reinterpret_cast . 469
The Traditional Cast Versus the Four Casting Operators . . 470

20 Namespaces and Other Advanced Topics 471
Namespaces . 472

Namespace Fundamentals . 472
using . 475
Unnamed Namespaces . 477

The std Namespace . 478
Pointers to Functions . 480

Finding the Address of an Overloaded Function 483
Static Class Members . 484
const Member Functions and mutable . 486
Explicit Constructors . 488

An Interesting Benefit from Implicit
Constructor Conversion . 490

The Member Initialization Syntax . 490
Using the asm Keyword . 493
Linkage Specification . 493
The .* and –>* Pointer-to-Member Operators 495
Creating Conversion Functions . 497

21 Introducing the Standard Template Library 499
An Overview of the STL . 500
The Container Classes . 502
Vectors . 504

Accessing a Vector Through an Iterator 508
Inserting and Deleting Elements in a Vector 509
Storing Class Objects in a Vector 510
The Power of Iterators . 513

Lists . 514
Sort a List . 519
Merging One List with Another . 520
Storing Class Objects in a List . 521

Contents xiii

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Maps . 523
Storing Class Objects in a Map . 528

Algorithms . 529
Counting . 532
Removing and Replacing Elements 533
Reversing a Sequence . 535
Transforming a Sequence . 535
Exploring the Algorithms . 537

The string Class . 537
Some string Member Functions . 541
Putting Strings into Other Containers 545

Final Thoughts on the STL . 545

22 The C++ Preprocessor . 547
#define . 548

Function-Like Macros . 550
#error . 552
#include . 552
Conditional Compilation Directives . 553

#if, #else, #elif, and #endif . 553
#ifdef and #ifndef . 555
#undef . 556
Using defined . 557
The Diminishing Role of the Preprocessor 557

#line . 558
#pragma . 559
The # and ## Preprocessor Operators . 559
Predefined Macro Names . 560
Final Thoughts . 561

A C-Based I/O . 563
C I/O Uses Streams . 564
Understanding printf() and scanf() . 565

printf() . 565
scanf() . 567

The C File System . 572
fopen() . 573
fputc() . 574
fgetc() . 574
feof() . 575
fclose() . 575
Using fopen(), fgetc(), fputc(), and fclose() 575
ferror() and rewind() . 576
fread() and fwrite() . 577

xiv C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

fseek() and Random-Access I/O . 578
fprintf() and fscanf() . 579
Erasing Files . 580

B Working with an Older C++ Compiler 581
Two Simple Changes . 583

C The .NET Managed Extensions to C++ 585
The .NET Keyword Extensions . 586

_ _abstract . 586
_ _box . 587
_ _delegate . 587
_ _event . 587
_ _finally . 587
_ _gc . 587
_ _identifier . 587
_ _interface . 587
_ _nogc . 587
_ _pin . 588
_ _property . 588
_ _sealed . 588
_ _try_cast . 588
_ _typeof . 588
_ _value . 588

Preprocessor Extensions . 588
The attribute Attribute . 589
Compiling Managed C++ . 589

Index . 591

Contents xv

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

Preface

This book teaches you how to program in C++ — the most powerful computer language
in use today. No previous programming experience is required. The book starts with
the basics, covers the fundamentals, moves on to the core of the language, and
concludes with its more advanced features. By the time you finish, you will be an
accomplished C++ programmer.

C++ is your gateway to modern, object-oriented programming. It is the preeminent
language for the development of high-performance software and is the choice of
programmers worldwide. Simply put, to be a top-flight, professional programmer
today implies competency in C++.

C++ is more than just a popular language. C++ provides the conceptual substrata that
underlie the design of several other languages, and much of modern computing. It is
no accident that two other important languages, Java and C#, are descended from
C++. There is little in programming that has not been influenced by the syntax, style,
and philosophy of C++.

Because C++ was designed for professional programming, C++ is not the easiest
programming language to learn. It is, however, the best programming language to
learn. Once you have mastered C++, you will be able to write professional-quality,
high-performance programs. You will also be able to easily learn languages like
Java or C# because they share the same basic syntax and design as C++.

What Is New in the Third Edition
In the time that has passed since the previous edition of this book, there have been
no changes to the C++ language. There have, however, been big changes to the
computing environment. For example, Java became the dominant language for Web
programming, the .NET Framework was released, and C# was invented. Through all
the changes of the past few years, one thing has remained constant: the staying

xvii

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

power of C++. C++ has been, is, and will remain the dominant language of “power
programmers” well into the forseeable future.

The overall structure and organization of the third edition is similar to the second
edition. Most of the changes involve updating and expanding the coverage throughout.
In some cases, additional details were added. In other cases, the presentation of a
topic was improved. In still other situations, descriptions were modernized to reflect
the current programming environment. Several new sections were also added.

Two appendices were added. One describes the extended keywords defined by Microsoft
that are used for creating managed code for the .NET Framework. The second explains
how to adapt the code in this book for use with an older, non-standard C++ compiler.

Finally, all code examples were retested against the current crop of compilers, including
Microsoft’s Visual Studio .NET and Borland’s C++ Builder.

What Version of C++
The material in this book describes Standard C++. This is the version of C++ defined
by the ANSI/ISO Standard for C++, and it is the one that is currently supported by all
major compilers. Therefore, using this book, you can be confident that what you learn
today will also apply tomorrow.

How to Use This Book
The best way to learn any programming language, including C++, is by doing. Therefore,
after you have read through a section, try the sample programs. Make sure that you
understand why they do what they do before moving on. You should also experiment
with the programs, changing one or two lines at a time and observing the results. The
more you program, the better you become at programming.

If You’re Using Windows
If your computer uses Windows and your goal is to write Windows-based programs, then
you have chosen the right language to learn. C++ is completely at home with Windows
programming. However, none of the programs in this book use the Windows graphical user
interface (GUI). Instead, they are console-based programs that can be run under a Windows
console session, such as that provided by the Command Prompt window. The reason for
this is easy to understand: GUI-based Windows programs are, by their nature, large and
complex. They also use many techniques not directly related to the C++ language.
Thus, they are not well-suited for teaching a programming language. However, you can
still use a Windows-based compiler to compile the programs in this book because the
compiler will automatically create a console session in which to execute your program.

Once you have mastered C++, you will be able to apply your knowledge to Windows
programming. In fact, Windows programming using C++ allows the use of class
libraries such as MFC or the newer .NET Framework, which can greatly simplify the
development of a Windows program.

Don’t Forget: Code on the Web
Remember, the source code for all of the programs in this book is available free of charge
on the Web at http://www.osborne.com. Downloading this code prevents you
from having to type in the examples.

xviii C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For Further Study

C++from the Ground Up is your gateway to the Herb Schildt series of programming
books. Here are some others that you will find of interest.

To learn more about C++, try

C++: The Complete Reference

C++: A Beginner’s Guide

Teach Yourself C++

STL Programming From the Ground Up

C++ Programmer’s Reference

To learn about Java programming, we recommend the following:

Java 2: A Beginner’s Guide

Java 2: The Complete Reference

Java 2 Programmer’s Reference

To learn about C#, Herb offers these books:

C#: A Beginner’s Guide

C#: The Complete Reference

To learn about Windows programming we suggest the following Schildt books:

Windows 98 Programming From the Ground Up

Windows 2000 Programming From the Ground Up

MFC Programming From the Ground Up

The Windows Programming Annotated Archives

If you want to learn about the C language, which is the foundation of all modern
programming, then the following titles will be of interest.

C: The Complete Reference

Teach Yourself C

When you need solid answers, fast, turn to Herbert Schildt,
the recognized authority on programming.

xix

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 1

The Story of C++

1

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C++ is the single most important language that any programmer can learn. This
is a strong statement, but it is not an exaggeration. C++ is the center of gravity

around which all of modern programming revolves. Its syntax and design philosophy
define the essence of object-oriented programming. Moreover, C++ charts the course
for future language development. For example, both Java and C# are directly descended
from C++. C++ is also the universal language of programming; it is the language in
which programmers share ideas with one another. To be a professional programmer
today implies competency in C++. It is that fundamental and that important. C++ is
the gateway to all of modern programming.

Before beginning your study of C++, it is important for you to know how C++ fits into
the historical context of computer languages. Understanding the forces that drove its
creation, the design philosophy it represents, and the legacy that it inherits makes it
easier to appreciate the many innovative and unique features of C++. With this in
mind, this chapter presents a brief history of the C++ programming language, its origins,
its relationship to its predecessor (C), its uses, and the programming philosophies that
it supports. It also puts C++ into perspective relative to other programming languages.

The Origins of C++
The story of C++ begins with C. The reason for this is simple: C++ is built upon the
foundation of C. In fact, C++ is a superset of C. (Indeed, all C++ compilers can also be
used to compile C programs!) Specifically, C++ is an expanded and enhanced version
of C that embodies the philosophy of object-oriented programming (which is described
later in this chapter). C++ also includes several other improvements to the C language,
including an extended set of library routines. However, much of the spirit and flavor
of C++ is inherited directly from C. To fully understand and appreciate C++, you need
to understand the “how and why” behind C.

The Creation of C
The C language shook the computer world. Its impact should not be underestimated
because it fundamentally changed the way programming was approached and thought
about. C is considered by many to be the first modern “programmer’s language.” Prior
to the invention of C, computer languages were generally designed either as academic
exercises or by bureaucratic committees. C is different. C was designed, implemented,
and developed by real, working programmers, and it reflected the way they approached
the job of programming. Its features were honed, tested, thought about, and rethought
by the people who actually used the language. The result of this process was a language
that programmers liked to use. Indeed, C quickly attracted many followers who had
a near-religious zeal for it, and it found wide and rapid acceptance in the programmer
community. In short, C is a language designed by and for programmers.

C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 using the
UNIX operating system. C is the result of a development process that started with an
older language called BCPL, which was developed by Martin Richards. BCPL influenced
a language called B, invented by Ken Thompson, which led to the development of
C in the 1970s.

2 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

1

The Story of C++ 3

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

For many years, the de facto standard for C was the one supplied with the Unix
operating system and described in The C Programming Language, by Brian Kernighan
and Dennis Ritchie (Prentice-Hall, 1978). However, because no formal standard existed,
there were discrepancies between different implementations of C. To alter this situation,
a committee was established in the beginning of the summer of 1983 to work on the
creation of an ANSI (American National Standards Institute) standard that would
define—once and for all—the C language. The final version of the standard was adopted
in December 1989, the first copies of which became available in early 1990. This version
of C is commonly referred to as C89, and it is the foundation upon which C++ is built.

NOTE: The C standard was updated in 1999 and this version of C is usually
referred to as C99. This version contains some new features, including a few borrowed
from C++, but, overall, it is compatible with the original C89 standard. At the time of
this writing, no widely available compiler supports C99 and it is still C89 that defines
what is commonly thought of as the C language. Furthermore, it is C89 that is the basis
for C++. It is possible that a future standard for C++ will include the features added
by C99, but they are not part of C++ at this time.

It may seem hard to understand at first, but C is often called a “middle-level” computer
language. As it is applied to C, middle-level does not have a negative connotation; it
does not mean that C is less powerful, harder to use, or less developed than a “high-level”
language, or that it is as difficult to use as assembly language. (Assembly language, or
assembler, as it is often called, is simply a symbolic representation of the actual machine
code that a computer can execute.) C is thought of as a middle-level language because
it combines elements of high-level languages, such as Pascal, Modula-2, or Visual Basic,
with the functionality of assembler.

From a theoretical point of view, a high-level language attempts to give the programmer
everything he or she could possibly want, already built into the language. A low-level
language provides nothing other than access to the actual machine instructions.
A middle-level language gives the programmer a concise set of tools and allows the
programmer to develop higher-level constructs on his or her own. A middle-level
language offers the programmer built-in power, coupled with flexibility.

Being a middle-level language, C allows you to manipulate bits, bytes, and addresses—
the basic elements with which a computer functions. Thus, C does not attempt to
buffer the hardware of the machine from your program to any significant extent. For
example, the size of an integer in C is directly related to the word size of the CPU. In
most high-level languages there are built-in statements for reading and writing disk
files. In C, all of these procedures are performed by calls to library routines and not by
keywords defined by the language. This approach increases C’s flexibility.

C allows—indeed, needs—the programmer to define routines for performing high-level
operations. These routines are called functions, and they are very important to the C
language. In fact, functions are the building blocks of both C and C++. You can easily
tailor a library of functions to perform various tasks that are used by your program.
In this sense, you can personalize C to fit your needs.

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

There is another aspect of C that you must understand, because it is also important
to C++: C is a structured language. The most distinguishing feature of a structured
language is that it uses blocks. A block is a set of statements that are logically connected.
For example, imagine an IF statement that, if successful, will execute five discrete
statements. If these statements can be grouped together and referenced as an indivisible
unit, then they form a block.

A structured language supports the concept of subroutines with local variables. A
local variable is simply a variable that is known only to the subroutine in which it is
defined. A structured language also supports several loop constructs, such as while,
do-while, and for. The use of the goto statement, however, is either prohibited or
discouraged, and is not the common form of program control in the same way that
it is in traditional BASIC or FORTRAN. A structured language allows you to indent
statements and does not require a strict field concept (as did early versions of FORTRAN).

Finally, and perhaps most importantly, C is a language that stays out of the way. The
underlying philosophy of C is that the programmer, not the language, is in charge.
Therefore, C will let you do virtually anything that you want, even if what you tell
it to do is unorthodox, highly unusual, or suspicious. C gives you nearly complete
control over the machine. Of course, with this power comes considerable responsibility,
which you, the programmer, must shoulder.

Understanding the Need for C++
Given the preceding discussion of C, you might be wondering why C++ was invented.
Since C is a successful and useful computer programming language, why was there
a need for something else? The answer is complexity. Throughout the history of
programming, the increasing complexity of programs has driven the need for better
ways to manage that complexity. C++ is a response to that need. To better understand
this correlation, consider the following.

Approaches to programming have changed dramatically since the invention of the
computer. The primary reason for change has been to accommodate the increasing
complexity of programs. For example, when computers were first invented, programming
was done by toggling in the binary machine instructions using the computer’s front
panel. As long as programs were just a few hundred instructions long, this approach
worked. As programs grew, assembly language was invented so that programmers
could deal with larger, increasingly complex programs by using symbolic representations
of the machine instructions. As programs continued to grow, high-level languages
were developed to give programmers more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was a very
impressive first step, it is hardly a language that encourages clear, easy-to-understand
programs. The 1960s gave birth to structured programming. This is the method of
programming supported by languages such as C. With structured languages, it was,
for the first time, possible to write moderately complex programs fairly easily. However,
even with structured programming methods, once a project reaches a certain size, its
complexity exceeds what a programmer can manage. By the late 1970s, many projects
were near or at this point. To solve this problem, a new way to program began to
emerge. This method is called object-oriented programming (OOP for short). Using OOP,

4 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

a programmer could handle larger programs. The trouble was that C did not support
object-oriented programming. The desire for an object-oriented version of C ultimately
led to the creation of C++.

In the final analysis, although C is one of the most liked and widely used professional
programming languages in the world, there comes a time when its ability to handle
complexity reaches its limit. The purpose of C++ is to allow this barrier to be broken
and to help the programmer comprehend and manage larger, more complex programs.

C++ Is Born
In response to the need to manage greater complexity, C++ was born. It was invented
by Bjarne Stroustrup in 1979 at Bell Laboratories in Murray Hill, New Jersey. He initially
called the new language “C with Classes.” However, in 1983 the name was changed
to C++.

C++ contains the entire C language. As stated earlier, C is the foundation upon
which C++ is built. C++ includes all of C’s features, attributes, and benefits. It also
adheres to C’s philosophy that the programmer, not the language, is in charge. At
this point, it is critical to understand that the invention of C++ was not an attempt
to create a new programming language. Instead, it was an enhancement to an already
highly successful language.

Most of the additions that Stroustrup made to C were designed to support object-oriented
programming. In essence, C++ is the object-oriented version of C. By building upon
the foundation of C, Stroustrup provided a smooth migration path to OOP. Instead
of having to learn an entirely new language, a C programmer needed to learn only
a few new features to reap the benefits of the object-oriented methodology.

But C is not the only language that influenced C++. Stroustrup states that some of
its object-oriented features were inspired by another object-oriented language called
Simula67. Therefore, C++ represents the blending of two powerful programming
methods.

When creating C++, Stroustrup knew that it was important to maintain the original
spirit of C, including its efficiency, flexibility, and philosophy, while at the same time
adding support for object-oriented programming. Happily, his goal was accomplished.
C++ still provides the programmer with the freedom and control of C, coupled with
the power of objects.

Although C++ was initially designed to aid in the management of very large programs,
it is in no way limited to this use. In fact, the object-oriented attributes of C++ can be
effectively applied to virtually any programming task. It is not uncommon to see C++
used for projects such as compilers, editors, programmer tools, games, and networking
programs. Because C++ shares C’s efficiency, much high-performance systems software
is constructed using C++. Also, C++ is frequently the language of choice for Windows
programming.

One important point to remember is this: Because C++ is a superset of C, once you
can program in C++, you can also program in C! Thus, you will actually be learning
two programming languages at the same time, with the same effort that you would
use to learn only one.

The Story of C++ 5

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

1

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Evolution of C++
Since C++ was first invented, it has undergone three major revisions, with each revision
adding to and altering the language. The first revision was in 1985 and the second
occurred in 1990. The third revision occurred during the C++ standardization process.
In the early 1990s, work began on a standard for C++. Towards that end, a joint ANSI
and ISO (International Standards Organization) standardization committee was formed.
The first draft of the proposed standard was created on January 25, 1994. In that draft,
the ANSI/ISO C++ committee (of which I was a member) kept the features first defined
by Stroustrup and added some new ones as well. But, in general, this initial draft reflected
the state of C++ at the time.

Soon after the completion of the first draft of the C++ standard, an event occurred that
caused the standard to expand greatly: the creation of the Standard Template Library
(STL) by Alexander Stepanov. As you will learn, the STL is a set of generic routines
that you can use to manipulate data. It is both powerful and elegant. But the STL is
also quite large. Subsequent to the first draft, the committee voted to include the STL
in the specification for C++. The addition of the STL expanded the scope of C++ well
beyond its original definition. While important, the inclusion of the STL, among
other things, slowed the standardization of C++.

It is fair to say that the standardization of C++ took far longer than any one had
expected when it began. In the process, many new features were added to the
language and many small changes were made. In fact, the version of C++ defined
by the C++ committee is much larger and more complex than Stroustrup’s original
design. The final draft was passed out of committee on November 14, 1997, and an
ANSI/ISO standard for C++ became a reality in 1998. This specification for C++ is
commonly referred to as Standard C++.

The material in this book describes Standard C++. This is the version of C++ supported
by all mainstream C++ compilers, including Microsoft’s Visual C++ and Borland’s C++
Builder. Therefore, the code and information in this book is fully applicable to all
modern C++ environments.

What Is Object-Oriented Programming?
Since object-oriented programming was fundamental to the development of C++, it
is important to define precisely what object-oriented programming is. Object-oriented
programming has taken the best ideas of structured programming and has combined
them with several powerful concepts that allow you to organize your programs more
effectively. In general, when programming in an object-oriented fashion, you decompose
a problem into its constituent parts. Each component becomes a self-contained object
that contains its own instructions and data related to that object. Through this process,
complexity is reduced and you can manage larger programs.

All object-oriented programming languages have three things in common: encapsulation,
polymorphism, and inheritance. Although we will examine these concepts in detail later
in this book, let’s take a brief look at them now.

6 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Encapsulation
As you probably know, all programs are composed of two fundamental elements:
program statements (code) and data. Code is that part of a program that performs
actions, and data is the information affected by those actions. Encapsulation is a
programming mechanism that binds together code and the data it manipulates,
and that keeps both safe from outside interference and misuse.

In an object-oriented language, code and data may be bound together in such a way
that a self-contained black box is created. Within the box are all necessary data and
code. When code and data are linked together in this fashion, an object is created.
In other words, an object is the device that supports encapsulation.

Within an object, the code, data, or both may be private to that object or public.
Private code or data is known to, and accessible only by, another part of the object.
That is, private code or data may not be accessed by a piece of the program that exists
outside the object. When code or data is public, other parts of your program may access
it, even though it is defined within an object. Typically, the public parts of an object
are used to provide a controlled interface to the private elements of the object.

Polymorphism
Polymorphism (from the Greek, meaning “many forms”) is the quality that allows one
interface to be used for a general class of actions. The specific action is determined by
the exact nature of the situation. A simple example of polymorphism is found in the
steering wheel of an automobile. The steering wheel (i.e., the interface) is the same no
matter what type of actual steering mechanism is used. That is, the steering wheel works
the same whether your car has manual steering, power steering, or rack-and-pinion
steering. Therefore, once you know how to operate the steering wheel, you can drive
any type of car. The same principle can also apply to programming. For example, consider
a stack (which is a first-in, last-out list). You might have a program that requires three
different types of stacks. One stack is used for integer values, one for floating-point
values, and one for characters. In this case, the algorithm that implements each stack
is the same, even though the data being stored differs. In a non-object-oriented language,
you would be required to create three different sets of stack routines, calling each set
by a different name, with each set having its own interface. However, because of
polymorphism, in C++ you can create one general set of stack routines (one interface)
that works for all three specific situations. This way, once you know how to use one
stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase
“one interface, multiple methods.” This means that it is possible to design a generic
interface to a group of related activities. Polymorphism helps reduce complexity by
allowing the same interface to be used to specify a general class of action. It is the
compiler’s job to select the specific action (i.e., method) as it applies to each situation.
You, the programmer, don’t need to do this selection manually. You need only
remember and utilize the general interface.

The first object-oriented programming languages were interpreters, so polymorphism
was, of course, supported at run time. However, C++ is a compiled language. Therefore,
in C++, both run-time and compile-time polymorphism are supported.

The Story of C++ 7

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

1

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

8 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

Inheritance
Inheritance is the process by which one object can acquire the properties of another
object. The reason this is important is that it supports the concept of hierarchical
classification. If you think about it, most knowledge is made manageable by
hierarchical (i.e., top-down) classifications. For example, a Red Delicious apple is part
of the classification apple, which in turn is part of the fruit class, which is under the
larger class food. That is, the food class possesses certain qualities (edible, nutritious,
etc.) that also apply, logically, to its fruit subclass. In addition to these qualities, the
fruit class has specific characteristics (juicy, sweet, etc.) that distinguish it from other
food. The apple class defines those qualities specific to an apple (grows on trees, not
tropical, etc.). A Red Delicious apple would, in turn, inherit all the qualities of all
preceding classes, and would define only those qualities that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of
its characteristics. However, using inheritance, an object needs to define only those
qualities that make it unique within its class. It can inherit its general attributes from
its parent. Thus, it is the inheritance mechanism that makes it possible for one object
to be a specific instance of a more general case.

C++ Implements OOP
As you will see as you progress through this book, many of the features of C++ exist
to provide support for encapsulation, polymorphism, and inheritance. Remember,
however, that you can use C++ to write any type of program, using any type of
approach. The fact that C++ supports object-oriented programming does not mean
that you can only write object-oriented programs. As with its predecessor, C, one of
C++’s strongest advantages is its flexibility.

How C++ Relates to Java and C#
As most readers will know, there are two other computer languages that are having a
strong impact on programming: Java and C#. Java was developed by Sun Microsystems
and C# was created by Microsoft. Because there is sometimes confusion about how
these two languages relate to C++, a brief discussion of their relationship is in order.

C++ is the parent for both Java and C#. Although Java and C# added, removed, and
modified various features, in total the syntax for all three languages is nearly identical.
Furthermore, the object model used by C++ is similar to the ones used by Java and C#.
Finally, the overall “look and feel” of these languages is very similar. This means that
once you know C++, you can easily learn Java or C#. This is one reason that Java and
C# borrowed C++’s syntax and object model; it facilitated their rapid adoption by
legions of experienced C++ programmers. The reverse case is also true. If you know
Java or C#, learning C++ is easy.

The main difference between C++, Java, and C# is the type of computing environment
for which each is designed. C++ was created to produce high-performance programs
for a specific type of CPU and operating system. For example, if you want to write
a high-performance program that runs on an Intel Pentium under the Windows
operating system, then C++ is the best language to use.

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Java and C# were developed in response to the unique programming needs of
the highly distributed networked environment that typifies much of contemporary
computing. Java was designed to enable the creation of cross-platform portable code
for the Internet. Using Java, it is possible to write a program that runs in a wide variety
of environments, on a wide range of operating systems and CPUs. Thus, a Java program
can move about freely on the Internet. C# was designed for Microsoft’s .NET Framework,
which supports mixed-language, component-based code that works in a networked
environment.

Although both Java and C# enable the creation of portable code that works in a
highly distributed environment, the price one pays for this portability is efficiency.
Java programs execute slower than do C++ programs. The same is true for C#. Thus,
if you want to create high-performance software, use C++. If you need to create
highly portable software, use Java or C#.

One final point: C++, Java, and C# are designed to solve different sets of problems.
It is not an issue of which language is best in and of itself. Rather, it is a question of
which language is right for the job at hand.

The Story of C++ 9

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 1

1

P:\010Comp\Grnd-Up8\897-0\ch01.vp
Friday, February 28, 2003 11:08:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 2

An Overview
of C++

11

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

One of the hardest things about learning a programming language is the fact that
no element exists in isolation. Rather, the components of the language work

together. It is this interrelatedness that makes it difficult to discuss one aspect of C++
without involving another. To help overcome this problem, this chapter provides a
brief overview of several core C++ features, including the general form of a C++ program,
some simple control statements, variables, and operators. It does not go into too
many details, but rather concentrates on the general concepts common to all C++
programs. Most of the topics presented here are examined more closely in later chapters.

Since learning is best accomplished by doing, it is recommended that you work through
the examples using your computer.

Your First C++ Program
Before getting into any theory, let’s look at a simple C++ program. We will start by
entering, compiling, and running the following program.

/* Program #1 - A first C++ program.

Enter this program, then compile and run it.
*/

#include <iostream>
using namespace std;

// main() is where program execution begins.
int main()
{
cout << "This is my first C++ program.";

return 0;
}

You will follow these steps.

1. Enter the program.

2. Compile the program.

3. Execute the program.

Before beginning, it is necessary to define two terms. The first is source code. Source
code is the version of your program that humans can read. The preceding listing is an
example of source code. The executable version of your program is called object code or
executable code. Object code is created by the compiler when it compiles your program.

Entering the Program
The programs shown in this book are available from Osborne’s Web site:
www.osborne.com. However, if you want to enter the programs by hand,
you are free to do so. Typing in the programs yourself often helps you remember
the key concepts. If you choose to enter a program by hand, you must use a text

12 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

Source code is
the form of your
program that you
create. Object
code is the form
of your program
that the computer
executes.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 13

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

editor not a word processor. Word processors typically store format information along
with text. The problem is that this format information will confuse the C++ compiler.
If you are using a Windows platform, then you can use WordPad, or any other
programming editor that you like.

The name of the file that holds the source code for the program is technically arbitrary.
However, C++ programs are normally contained in files that use the file extension
.cpp. Thus, you can call a C++ program file by any name, but it should use the .cpp
extension. For this example, call the source file MyProg.cpp so that you can follow
along. For most of the other programs in this book, simply use a name of your own
choosing.

Compiling the Program
How you will compile MyProg.cpp depends upon your compiler, and what options
you are using. Furthermore, many compilers, such as Microsoft’s Visual C++ and
Borland’s C++ Builder, provide two different ways for compiling a program: the
command line compiler and the Integrated Development Environment (IDE). Thus,
it is not possible to give generalized instructions for compiling a C++ program that
will work for all compilers. You must consult your compiler’s instructions.

The preceding paragraph not withstanding, two of the most popular compilers are
Visual C++ and C++ Builder. For the benefit of readers using one of these compilers,
brief compilation instructions are provided here. For both Visual C++ or C++ Builder,
the easiest way to compile and run the programs in this book is to the use the
command-line compilers offered by these environments, and that is the method
described.

To compile MyProg.cpp using Visual C++, you will use this command line.

C:\...>cl -GX MyProg.cpp

The –GX option enhances compilation. To use the Visual C++ command-line
compiler, you must first execute the batch file VCVARS32.BAT, which is provided
by Visual C++. (You will want to consult your Visual C++ documentation for details.)
To compile MyProg.cpp using C++ Builder, use this command line.

C:\...>bcc32 Sample.cpp

The output from a C++ compiler is executable object code. For a Windows
environment, the executable file will use the same name as the source file,
but have the .exe extension. Thus, the executable version of MyProg.cpp
will be in MyProg.exe.

NOTE: If you are receiving error messages when you try to compile the first
sample program and are positive that you have entered it correctly, then you may
be using an older C++ compiler that predates the ANSI/ISO standard for C++. If this
is the case, refer to Appendix B for instructions on using an older compiler.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Run the Program
After a C++ program has been compiled, it is ready to be run. Since the output from a
C++ compiler is executable object code, to run the program, simply enter its name at
the command prompt. For example, to run MyProg.exe use this command line:

C:\...>MyProg

When run, the program displays the following output.

This is my first C++ program.

If you are using an Integrated Development Environment, then you can run a program
by selecting Run from a menu. Consult the instructions for your specific compiler. As
mentioned earlier, for the programs in this book, it is usually easier to compile and
run from the command line.

One last point: The programs in this book are console-based, not window-based.
That is, they run in a Command Prompt session. C++ is completely at home with
Windows programming. Indeed, it is the most commonly used language for Windows
development. However, none of the programs in this book use the Windows Graphic
User Interface (GUI). The reason for this is easy to understand: Windows is a complicated
environment to write programs for, involving many side issues unrelated to the C++
language. In contrast, console-based programs are much shorter and are the type of
programs normally used to teach programming. Once you have mastered C++, you
will be able to apply your knowledge to Windows programming with no trouble.

A Line-by-Line Explanation
Now that you have successfully compiled and run the first sample program it is time
to understand how it works. Towards this end, we will examine the program line by
line. The program begins with the lines

/* Program #1 - A first C++ program.

Enter this program, then compile and run it.
*/

This is a comment. Like most other programming languages, C++ lets you enter a remark
into a program’s source code. The contents of a comment are ignored by the compiler.
The purpose of a comment is to describe or explain the operation of a program to
anyone reading its source code. In the case of this comment, it identifies the program.
In more complex programs, you will use comments to help explain what each feature
of the program is for and how it goes about doing its work. In other words, you can
use comments to provide a “play-by-play” description of what your program does.

In C++, there are two types of comments. The one you’ve just seen is called a multiline
comment. This type of comment begins with a /* (a slash followed by an asterisk). It
ends only when a */ is encountered. Anything between these two comment symbols

14 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

A comment is
a remark that
is embedded in
your program.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is completely ignored by the compiler. Multiline comments may be one or more lines
long. The second type of comment is found a little further on in the program; we’ll be
discussing it shortly.

The next line of code looks like this:

#include <iostream>

The C++ language defines several headers, which contain information that is either
necessary or useful to your program. For this program, the header <iostream> is
needed. (It is used to support the C++ I/O system.) This header is provided with your
compiler. A header is included in your program by using the #include directive. Later
in this book, you will learn more about headers and why they are important.

The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a relatively recent
addition to C++. Although namespaces are discussed in detail later in this book, here
is a brief description. A namespace creates a declarative region in which various program
elements can be placed. Elements declared in one namespace are separate from elements
declared in another. Namespaces help in the organization of large programs. The
using statement informs the compiler that you want to use the std namespace.
This is the namespace in which the entire Standard C++ library is declared. By
using the std namespace, you simplify access to the standard library.

The next line in the program is

// main() is where program execution begins.

This line shows you the second type of comment available in C++: the single-line
comment. Single-line comments begin with // and stop at the end of the line.
Typically, C++ programmers use multiline comments when writing larger, more
detailed commentaries, and they use single-line comments when short remarks
are needed. However, this is a matter of personal style.

The next line, as the preceding comment indicates, is where program execution
begins:

int main()

All C++ programs are composed of one or more functions. (Loosely speaking, a function
is a subroutine.) Every C++ function must have a name, and the only function that
any C++ program must include is the one shown here, called main(). The main()
function is where program execution begins and (most commonly) ends. (Technically
speaking, a C++ program begins with a call to main() and, in most cases, ends when
main() returns.) The opening curly brace on the line that follows main() marks the
start of the main() function’s code. The int that precedes main() specifies the type

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

An Overview of C++ 15

main() is where
a C++ program
begins execution.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

16 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

of data returned by main(). As you will learn, C++ supports several built-in data
types and int is one of them. It stands for integer.

The next line in the program is

cout << "This is my first C++ program.";

This is a console output statement. It causes the message This is my first C++
program. to be displayed on the screen. It accomplishes this by using the output
operator <<. The << operator causes whatever expression is on its right side to be
output to the device specified on its left side. cout is a predefined identifier that
stands for console output, which (most generally) refers to the computer’s screen.
Thus, this statement causes the message to be output to the screen. Notice that this
statement ends with a semicolon. In fact, all C++ statements end with a semicolon.

The message "This is my first C++ program." is a string. In C++, a string is a sequence
of characters enclosed between double quotes. As you will see, strings are used
frequently in C++.

The next line in the program is

return 0;

This line terminates main() and causes it to return the value 0 to the calling process
(which is typically the operating system). For most operating systems, a return value
of 0 signifies that the program is terminating normally. Other values indicate that the
program is terminating because of some error. return is one of C++’s keywords, and
it is used to return a value from a function. All of your programs should return 0 when
they terminate normally (that is, without error).

The closing curly brace at the end of the program formally concludes the program.
Although the brace is not actually part of the object code of the program, conceptually
you can think of a C++ program ending when the closing curly brace of main() is
executed. In fact, if the return statement were not part of this sample program, the
program would automatically end when the closing curly brace was encountered.

Handling Syntax Errors
As you may know from your previous programming experience, it is quite easy
to accidentally type something incorrectly when entering code into your computer.
Fortunately, if you enter something incorrectly into your program, the compiler will
report a syntax error message when it tries to compile it. Most C++ compilers attempt
to make sense out of your source code no matter what you have written. For this reason,
the error that is reported may not always reflect the actual cause of the problem. In the
preceding program, for example, an accidental omission of the opening curly brace
after main() will cause some compilers to report the cout statement as the source
of a syntax error. Therefore, when you receive a syntax error message, be prepared
to look at the two or three lines of code that precede the point at which the error
is flagged.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 17

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

Many C++ compilers report not only actual errors, but also warnings. The C++ language
was designed to be very forgiving, and to allow virtually anything that is syntactically
correct to be compiled. However, some things, even though syntactically correct, are
suspicious. When the compiler encounters one of these situations, it prints a warning.
You, as the programmer, then decide whether its suspicions are justified. Frankly,
some compilers are a bit too helpful and flag warnings on perfectly correct C++
statements. There are also compilers that allow you to turn on various options that
report information about your program that you might like to know. Sometimes
this information is reported in the form of a warning message even though there
is nothing to be "warned" about. The programs in this book are in compliance with
Standard C++, and when entered correctly, they will not generate any troublesome
warning messages.

TIP: Most C++ compilers offer several levels of error (and warning) reporting.
Generally, you can select the specific type of error reporting that you want. For example,
most compilers offer options that report such things as inefficient constructs or the
use of obsolete features. For the examples in this book, you will want to use your
compiler's default (or "normal") error reporting. However, you should examine
your compiler's documentation to see what options you have at your disposal. Many
compilers have sophisticated features that can help you spot subtle errors before they
become big problems. Understanding your compiler's error reporting system is worth
the time and effort that you spend.

A Second Simple Program
Perhaps no other construct is as important to a programming language as the assignment
of a value to a variable. A variable is a named memory location that may be assigned
a value. Further, the value of a variable can be changed one or more times during the
execution of a program. That is, the content of a variable is changeable, not fixed.

The following program creates a variable called x, gives it the value 1023, and then
displays the message This program prints the value of x: 1023 on the screen.

// Program #2 - Using a variable

#include <iostream>
using namespace std;

int main()
{
int x; // this declares a variable

x = 1023; // this assigns 1023 to x

cout << "This program prints the value of x: ";
cout << x; // This displays 1023

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This program introduces two new concepts. First, the statement

int x; // this declares a variable

declares a variable called x of type integer. In C++, all variables must be declared
before they are used. Further, the type of values that the variable can hold must also
be specified. This is called the type of the variable. In this case, x may hold integer
values. These are whole-number values whose range will be at least –32,768 to 32,767.
In C++, to declare a variable to be of type integer, precede its name with the keyword
int. Later, you will see that C++ supports a wide variety of built-in variable types.
(You can create your own data types, too.)

The second new feature is found in the next line of code:

x = 1023; // this assigns 1023 to x

As the comment suggests, this assigns the value 1023 to x. In C++, the assignment
operator is the single equal sign. It copies the value on its right side into the variable
on its left. After the assignment, the variable x will contain the number 1023.

The two cout statements display the output generated by the program. Notice how
the following statement is used to display the value of x:

cout << x; // This displays 1023

In general, if you want to display the value of a variable, simply put it on the right
side of << in a cout statement. In this specific case, because x contains the number
1023, it is this number that is displayed on the screen. Before moving on, you might
want to try giving x other values and watching the results.

A More Practical Example
Your first two sample programs, while illustrating several important features of the
C++ language, are not very useful. The next sample program actually performs a
meaningful task: It converts gallons to liters. It also shows how to input information.

// This program converts gallons to liters.

#include <iostream>
using namespace std;

int main()
{
int gallons, liters;

cout << "Enter number of gallons: ";
cin >> gallons; // this inputs from the user

liters = gallons * 4; // convert to liters

18 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

The type of
a variable
determines the
values it may hold.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 19

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

cout << "Liters: " << liters;

return 0;
}

This program first displays a prompting message on the screen, and then waits for you
to enter a whole number amount of gallons. (Remember, integer types cannot have
fractional components.) The program then displays the approximate liter equivalent.
There are actually 3.7854 liters in a gallon, but since integers are used in this example,
the conversion is rounded to 4 liters per gallon. For example, if you enter 1 gallon, the
program responds with the metric equivalent of 4 liters.

The first new thing you see in this program is that two variables, gallons and liters,
are declared following the int keyword, in the form of a comma-separated list. In
general, you can declare any number of variables of the same type by separating them
with commas. (As an alternative, the program could have used multiple int statements
to accomplish the same thing.)

The function uses this statement to actually input a value entered by the user:

cin >> gallons; // this inputs from the user

cin is another predefined identifier that is provided with your C++ compiler. cin
stands for console input (which generally means input from the keyboard). The input
operator is the >> symbol. The value entered by the user (which must be an integer,
in this case) is put into the variable that is on the right side of the >> (in this case,
gallons).

There is one more new thing in this program. Examine this line:

cout << "Liters: " << liters;

It uses two output operators within the same output statement. Specifically, it outputs
the string "Liters: " followed by the value of liters. In general, you can chain together
as many output operations as you like within one output statement. Just use a separate
<< for each item.

A New Data Type
Although the gallons-to-liters program is fine for rough approximations, because
it uses integers, it leaves something to be desired when a more accurate answer is
needed. As stated, integer data types cannot represent any fractional value. If you
need fractions, then you must use a floating-point data type. One of these is called
double, which represents double-precision floating-point. Data of this type will typically
be in the range 1.7E–308 to 1.7E+308. Operations on floating-point numbers preserve
any fractional part of the outcome and, hence, provide a more accurate conversion.

The following version of the conversion program uses floating-point values:

/* This program converts gallons to liters using
floating point numbers. */

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

#include <iostream>
using namespace std;

int main()
{
double gallons, liters;

cout << "Enter number of gallons: ";
cin >> gallons; // this inputs from the user

liters = gallons * 3.7854; // convert to liters

cout << "Liters: " << liters;

return 0;
}

There are two changes to this program from the previous version. First, gallons and
liters are declared as double. Second, the conversion coefficient is now specified as
3.7854, allowing a more accurate conversion. Whenever C++ encounters a number
that contains a decimal point, it automatically knows that it is a floating-point constant.
One other thing: notice that the cout and cin statements are unchanged from the
previous version of this program that used int variables. C++’s I/O system automatically
adjusts to whatever type of data you give it.

Try the program at this time. Enter 1 gallon when prompted. The equivalent number
of liters is now 3.7854.

A Quick Review
Before proceeding, let’s review the most important things that you have learned:

1. All C++ programs must have a main() function, and it is there that program
execution begins.

2. All variables must be declared before they are used.

3. C++ supports a variety of data types, including integer and floating point.

4. The output operator is <<, and when used with cout, it causes information to be
displayed on the screen.

5. The input operator is >>, and when used with cin, it reads information from the
keyboard.

6. Program execution stops at the end of main().

Functions
A C++ program is constructed from building blocks called functions. A function is a
subroutine that contains one or more C++ statements and performs one or more tasks.
In well-written C++ code, each function performs only one task.

20 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 21

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

Each function has a name, and it is this name that is used to call the function. In
general, you can give a function whatever name you please. However, remember
that main() is reserved for the function that begins execution of your program.

In C++, one function cannot be embedded within another function. Unlike Pascal,
Modula-2, and some other programming languages that allow the nesting of functions,
C++ considers all functions to be separate entities. (Of course, one function may call
another.)

When denoting functions in text, this book uses a convention that has become
common when writing about C++: A function will have parentheses after its name.
For example, if a function’s name is getval, then it will be written getval() when
its name is used in a sentence. This notation will help you distinguish variable names
from function names in this book.

In your first programs, main() was the only function. As stated earlier, main() is
the first function executed when your program begins to run, and it must be included
in all C++ programs. There are two types of functions that will be used by your programs.
The first type is written by you. main() is an example of this type of function. The
other type of function is implemented by the compiler and is found in the compiler’s
standard library. (The standard library is discussed shortly, but in general terms, it
is a collection of predefined functions.) Programs that you write will usually contain
a mix of functions that you create and those supplied by the compiler.

Since functions form the foundation of C++, let’s take a closer look at them now.

A Program with Two Functions
The following program contains two functions: main() and myfunc(). Before
running this program (or reading the description that follows), examine it closely
and try to figure out exactly what it displays on the screen.

/* This program contains two functions: main()
and myfunc().

*/
#include <iostream>
using namespace std;

void myfunc(); // myfunc's prototype

int main()
{
cout << "In main()";
myfunc(); // call myfunc()
cout << "Back in main()";

return 0;
}

void myfunc()
{
cout << " Inside myfunc() ";

}

Functions are the
building blocks of
a C++ program.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

22 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

The program works like this. First, main() begins, and it executes the first cout
statement. Next, main() calls myfunc(). Notice how this is achieved: the function’s
name, myfunc, appears, followed by parentheses, and finally by a semicolon.
A function call is a C++ statement and, therefore, must end with a semicolon. Next,
myfunc() executes its cout statement, and then returns to main() at the line
of code immediately following the call. Finally, main() executes its second cout
statement, and then terminates. The output on the screen is this:

In main() Inside myfunc() Back in main()

There is one other important statement in the preceding program:

void myfunc(); // myfunc's prototype

As the comment states, this is the prototype for myfunc(). Although we will
discuss prototypes in detail later, a few words are necessary now. A function prototype
declares the function prior to its definition. The prototype allows the compiler to know
the function's return type, as well as the number and type of any parameters that the
function may have. The compiler needs to know this information prior to the first
time the function is called. This is why the prototype occurs before main(). The only
function that does not require a prototype is main(), because it is predefined by C++.

As you can see, myfunc() does not contain a return statement. The keyword void,
which precedes both the prototype for myfunc() and its definition, formally states
that myfunc() does not return a value. In C++, functions that don’t return values
are declared as void.

Function Arguments
It is possible to pass one or more values to a function. A value passed to a function
is called an argument. In the programs that you have studied so far, none of the
functions take any arguments. Specifically, neither main() nor myfunc() in
the preceding examples have an argument. However, functions in C++ can have
one or more arguments. The upper limit is determined by the compiler you are
using, but Standard C++ specifies that at least 256 arguments will be allowed.

Here is a short program that uses one of C++’s standard library (i.e., built-in) functions,
called abs(), to display the absolute value of a number. The abs() function takes one
argument, converts it into its absolute value, and returns the result.

// Use the abs() function.
#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
cout << abs(-10);

return 0;
}

A prototype
declares a
function prior
to its first use.

An argument is
a value passed
to a function
when it is called.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 23

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

Here, the value –10 is passed as an argument to abs(). The abs() function receives
the argument that it is called with and returns its absolute value, which is 10 in this
case. Although abs() takes only one argument, other functions can have several. The
key point here is that when a function requires an argument, it is passed by specifying
it between the parentheses that follow the function’s name.

The return value of abs() is used by the cout statement to display the absolute value
of –10 on the screen. The reason this works is that whenever a function is part of a
larger expression, it is automatically called so that its return value can be obtained.
In this case, the return value of abs() becomes the value of the right side of the
<< operator, and is therefore displayed on the screen.

Notice one other thing about the preceding program: it also includes the header
<cstdlib>. This is the header required by abs(). In general, whenever you use a
library function, you must include its header. The header provides the prototype
for the library function, among other things.

When you create a function that takes one or more arguments, the variables that
will receive those arguments must also be declared. These variables are called the
parameters of the function. For example, the function shown next prints the product
of the two integer arguments passed to the function when it is called.

void mul(int x, int y)
{
cout << x * y << " ";

}

Each time mul() is called, it will multiply the value passed to x by the value passed
to y. Remember, however, that x and y are simply the operational variables that
receive the values you use when calling the function.

Consider the following short program, which illustrates how to call mul():

// A simple program that demonstrates mul().

#include <iostream>
using namespace std;

void mul(int x, int y); // mul()'s prototype

int main()
{
mul(10, 20);
mul(5, 6);
mul(8, 9);

return 0;
}

void mul(int x, int y)
{
cout << x * y << " ";

}

A parameter is
a variable defined
by a function
that receives
an argument.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This program will print 200, 30, and 72 on the screen. When mul() is called, the C++
compiler copies the value of each argument into the matching parameter. That is, in
the first call to mul(), 10 is copied into x and 20 is copied into y. In the second call,
5 is copied into x and 6 into y. In the third call, 8 is copied into x and 9 into y.

If you have never worked with a language that allows parameterized functions, then
the preceding process may seem a bit strange. Don’t worry; as you see more examples
of C++ programs, the concept of arguments, parameters, and functions will become clear.

REMEMBER: The term argument refers to the value that is used to call a
function. The variable that receives the value of an argument is called a parameter. In
fact, functions that take arguments are called parameterized functions.

In C++ functions, when there are two or more arguments, they are separated by
commas. In this book, the term argument list refers to comma-separated arguments.
The argument list for mul() is x,y.

Functions Returning Values
Many of the C++ library functions that you use will return values. For example, the
abs() function used earlier returned the absolute value of its argument. Functions
you write may also return values to the calling routine. In C++, a function uses
a return statement to return a value. The general form of return is

return value;

where value is the value being returned.

To illustrate the process of functions returning values, the foregoing program can be
rewritten, as shown next. In this version, mul() returns the product of its arguments.
Notice that the placement of the function on the right side of an assignment statement
assigns the return value to a variable.

// Returning a value.

#include <iostream>
using namespace std;

int mul(int x, int y); // mul()'s prototype

int main()
{
int answer;

answer = mul(10, 11); // assign return value
cout << "The answer is " << answer;

return 0;

24 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 25

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

}

// This function returns a value.
int mul(int x, int y)
{
return x * y; // return product of x and y

}

In this example, mul() returns the value of x*y by using the return statement.
This value is then assigned to answer. That is, the value returned by the return
statement becomes mul()'s value in the calling routine.

Since mul() now returns a value, it is not preceded by the keyword void. (Remember,
void is used only when a function does not return a value.) Just as there are different
types of variables, there are also different types of return values. Here, mul() returns
an integer. The return type of a function precedes its name in both its prototype and
its definition.

Before moving on, a short historical note is in order. For early versions of C++, if no
return type is specified, then a function is assumed to return an integer value. For
example, in old code you might find mul() written like this:

// An old-style way to code mul().
mul(int x, int y) // default to int return type
{
return x * y; // return product of x and y

}

Here, the type returned by mul() is integer by default, since no other return type is
specified. However, the "default-to-int" rule was dropped by Standard C++. Although
most compilers will continue to support the "default-to-int" rule for the sake of backward
compatibility, you should explicitly specify the return type of every function that you
write. Since older code frequently made use of the default integer return type, this
change is also something to keep in mind when working on legacy code.

When a return statement is encountered, the function returns immediately, skipping
any remaining code. It is possible to cause a function to return by using the return
statement without any value attached to it, but this form of return can be used only
with functions that have no return values and that are declared as void. Also, there
can be more than one return in a function.

The main() Function
As you know, the main() function is special because it is the first function called
when your program executes. It signifies the beginning of your program. Unlike
some programming languages that always begin execution at the "top" of the program,
C++ begins every program with a call to the main() function, no matter where that
function is located in the program. (However, it is common for main() to be the
first function in your program so that it can be easily found.)

There can be only one main() in a program. If you try to include more than one,
your program will not know where to begin execution. Actually, most compilers will

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

26 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

catch this type of error and report it. As mentioned earlier, since main() is
predefined by C++, it does not require a prototype.

The General Form of C++ Functions
The preceding examples have shown some specific types of functions. However,
all C++ functions share a common form, which is shown here:

return-type function-name(parameter list)
{
.
. body of the function
.

}

Let’s look closely at the different parts that make up a function.

The return type of a function determines the type of data that the function will return.
As you will see later in this book, you can specify nearly any return type you like.
Keep in mind, however, that no function has to return a value. If it does not return
a value, its return type is void. But if it does return a value, that value must be of a
type that is compatible with the function’s return type.

Every function must have a name. After the name is a parenthesized parameter list.
The parameter list specifies the names and types of variables that will be passed
information. If a function has no parameters, the parentheses are empty.

Next, braces surround the body of the function. The body of the function is composed
of the C++ statements that define what the function does. The function terminates
and returns to the calling procedure when the closing curly brace is reached or when
a return statement is encountered.

Some Output Options
Up to this point, there has been no occasion to advance output to the next line—that
is, to execute a carriage return-linefeed sequence. However, the need for this will arise
very soon. In C++, the carriage return-linefeed sequence is generated using the newline
character. To put a newline character into a string, use this code: \n (a backslash
followed by a lowercase n). To see an example of a carriage return-linefeed sequence,
try the following program:

/* This program demonstrates the \n code, which
generates a new line.

*/
#include <iostream>
using namespace std;

int main()
{
cout << "one\n";
cout << "two\n";
cout << "three";

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 27

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

cout << "four";

return 0;
}

This program produces the following output:

one
two
threefour

The newline character can be placed anywhere in the string, not just at the end. You
might want to try experimenting with the newline character now, just to make sure
you understand exactly what it does.

Two Simple Commands
So that meaningful examples can be developed in the next chapter, it is necessary for
you to understand, in their simplest form, two C++ commands: the if and the for. Later,
these commands will be explored completely.

The if Statement
The C++ if statement operates in much the same way that an IF statement operates in
any other language. Its simplest form is

if(condition) statement;

where condition is an expression that is evaluated to be either true or false. In C++,
true is non-zero and false is zero. If the condition is true, then the statement will
execute. If it is false, then the statement will not execute. The following fragment
displays the phrase 10 is less than 11 on the screen.

if(10 < 11) cout << "10 is less than 11";

The comparison operators, such as < (less than) and >= (greater than or equal), are
similar to those in other languages. However, in C++, the equality operator is ==. The
following cout statement will not execute, because the condition of equality is false;
that is, because 10 is not equal to 11, the statement will not display hello on the screen.

if(10==11) cout << "hello";

Of course, the operands inside an if statement need not be constants. They can also
be variables, or even calls to functions.

The following program shows an example of the if statement. It prompts the user for
two numbers and reports if the first value is less than the second.

// This program illustrates the if statement.

#include <iostream>

if selects between
two paths of
execution.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

using namespace std;

int main()
{
int a, b;

cout << "Enter first number: ";
cin >> a;
cout << "Enter second number: ";
cin >> b;

if(a < b) cout << "First number is less than second.";

return 0;
}

The for Loop
The for loop repeats a statement a specified number of times. The for loop can
operate much like the FOR loop in other languages, including Java, C#, Pascal, and
BASIC. Its simplest form is

for(initialization, condition, increment) statement;

Here, initialization sets a loop control variable to an initial value. condition is an
expression that is tested each time the loop repeats. As long as condition is true
(non-zero), the loop keeps running. The increment is an expression that determines
how the loop control variable is incremented each time the loop repeats.

For example, the following program prints the numbers 1 through 100 on the screen.

// A program that illustrates the for loop.

#include <iostream>
using namespace std;

int main()
{
int count;

for(count=1; count<=100; count=count+1)
cout << count << " ";

return 0;
}

Figure 2-1 illustrates the execution of the for loop in this example. As you can see,
count is initialized to 1. Each time the loop repeats, the condition count<=100 is
tested. If it is true, the value is output and count is increased by one. When count
reaches a value greater than 100, the condition becomes false, and the loop stops
running.

28 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

for is one of the
loop statements
provided by C++.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of C++ 29

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

In professionally written C++ code, you will seldom see a statement like
count=count+1, because for this sort of statement, C++ supports a special
shorthand that looks like this: count++. The ++ is the increment operator. It
increases its operand by 1. The complement of ++ is – –, the decrement operator,
which decreases its operand by 1. For example, the preceding for statement will
generally be written like this:

for(count=1; count<=100; count++)
cout << count << " ";

This is the form that will be used throughout the rest of this book.

Blocks of Code
Because C++ is a structured (as well as an object-oriented) language, it supports
the creation of blocks of code. A block is a logically connected group of program
statements that is treated as a unit. In C++, a code block is created by placing a
sequence of statements between opening and closing curly braces. In this example,

if(x<10) {
cout << "too low, try again";
cin >> x;

}

the two statements after the if and between the curly braces are both executed only if
x is less than 10. These two statements, together with the braces, represent a block of
code. They are a logical unit: One of the statements cannot execute without the other
also executing. In C++, the target of most commands can be either a single statement

Figure 2-1.

How the for
loop works.

A block is
a logically
connected unit
of statements.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or a code block. Code blocks allow many algorithms to be implemented with greater
clarity and efficiency. They can also help you better conceptualize the true nature of
an algorithm.

The program that follows uses a block of code. Enter and run the program so that you
can see the effect of the block.

// This program demonstrates a block of code.

#include <iostream>
using namespace std;

int main()
{
int a, b;

cout << "Enter first number: ";
cin >> a;
cout << "Enter second number: ";
cin >> b;

if(a < b) {
cout << "First number is less than second.\n";
cout << "Their difference is: " << b-a;

}

return 0;
}

This program prompts the user to enter two numbers from the keyboard. If the first
number is less than the second number, then both cout statements are executed.
Otherwise, both are skipped. At no time can just one of them execute.

Semicolons and Positioning
In C++, the semicolon is a statement terminator. That is, each individual statement
must be ended with a semicolon. It indicates the end of one logical entity.

As you know, a block is a set of logically connected statements that are surrounded by
opening and closing braces. A block is not terminated with a semicolon. Since a block
is a group of statements, with a semicolon after each statement, it makes sense that a
block is not terminated by a semicolon; instead, the end of the block is indicated by
the closing brace. This is also the reason that there is no semicolon following the closing
brace of a function.

C++ does not recognize the end of the line as a terminator. For this reason, it does not
matter where on a line you put a statement. For example,

x = y;
y = y+1;
mul(x, y);

30 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

is the same as

x = y; y = y+1; mul(x, y);

to a C++ compiler.

Indentation Practices
You may have noticed in the previous examples that certain statements were indented.
C++ is a free-form language, meaning that it does not matter where you place statements
relative to each other on a line. However, over the years, a common and accepted
indentation style has developed that provides very readable programs. This book
follows that style, and it is recommended that you do so as well. Using this style,
you indent one level after each opening brace, and move back out one level after
each closing brace. There are certain statements that encourage some additional
indenting; these will be covered later.

C++ Keywords
There are 63 keywords currently defined for Standard C++. These are shown in Table 2-1.
Together with the formal C++ syntax, they form the C++ programming language. Also,
early versions of C++ defined the overload keyword, but it is now obsolete.

An Overview of C++ 31

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

2

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace templateTable 2-1.

The C++
Keywords

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Keep in mind that the case of the keywords is significant. C++ is a case-sensitive
language, and it requires that all keywords be in lowercase. For example, RETURN
will not be recognized as the keyword return.

Identifiers in C++
In C++ an identifier is a name assigned to a function, a variable, or any other user-defined
item. Identifiers can be from one to several characters long. The first 1024 characters
will be significant. Variable names may start with any letter of the alphabet or with an
underscore. Next may be either a letter, a digit, or an underscore. The underscore can
be used to enhance the readability of a variable name, as in first_name. Uppercase
and lowercase are different; that is, to C++, count and COUNT are separate names.
Here are some examples of acceptable identifiers:

first last Addr1 top_of_file
name23 _temp t s23e3 MyVar

You cannot use any of the C++ keywords as identifier names. Also, you should not use
the name of any standard function, such as abs, for an identifier. Beyond these two
restrictions, good programming practice dictates that you use identifier names that
reflect the meaning or usage of the items being named.

The Standard C++ Library
In the discussion of the sample programs earlier in this chapter, it was mentioned that
abs() is provided with your C++ compiler. abs() is not part of the C++ language per
se, yet you will find it included with every C++ compiler. This function, and many
others, are found in the standard library. We will be making extensive use of library
functions in the example programs throughout this book.

C++ defines a rather large set of functions that will be contained in the standard
library. These functions are designed to perform many commonly needed tasks,
including I/O operations, mathematical computations, and string handling. When
you use a library function, the C++ compiler automatically links the object code for
that function to the object code of your program.

Because the C++ standard library is so large, it already contains many of the functions
that you will need to use in your programs. The library functions act as building blocks
that you simply assemble. You should explore your compiler’s library documentation.
You may be surprised at how varied the library functions are. If you write a function
that you will use again and again, it too can be stored in a library.

In addition to providing library functions, every C++ compiler also contains a class
library, which is an object-oriented library. Finally, C++ defines the Standard Template
Library (STL), which provides reusable routines that can be configured to meet your
specific requirements. However, you will need to wait until you learn about classes,
objects, and templates before you can make use of the class library or the STL.

32 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 2

The C++ standard
library contains
many predefined
functions that
you can use in
your programs.

P:\010Comp\Grnd-Up8\897-0\ch02.vp
Friday, February 28, 2003 4:21:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 3

The Basic
Data Types

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

33

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

34 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

As you saw in Chapter 2, all variables in C++ must be declared prior to their use.
This is necessary because the compiler must know what type of data a variable

contains before it can properly compile any statement that uses the variable. In C++
there are seven basic data types: character, wide character, integer, floating point,
double floating point, Boolean, and somewhat surprisingly, valueless. The keywords
used to declare variables of these types are char, wchar_t, int, float, double,
bool, and void, respectively. Common sizes and ranges of each data type are shown
in Table 3-1. Remember, the sizes and ranges used by your compiler may vary from
those listed here. The most common variance occurs between 16-bit and 32-bit
environments. In general, an integer in a 16-bit environment is 16 bits wide. In a
32-bit environment, an integer is usually 32 bits wide.

Variables of type char are used to hold 8-bit ASCII characters such as A, B, or C, or
any other 8-bit quantity. To specify a character, you must enclose it between single
quotes. The type wchar_t is designed to hold characters that are part of large character
sets. As you may know, many human languages, such as Chinese, define a large
number of characters, more than will fit within the 8 bits provided by the char type.
The wchar_t type was added to C++ to accommodate this situation. While we won’t
be making much use of wchar_t in this book, it is something that you will want to
look into if you are tailoring programs for the international market.

Variables of type int can hold integer quantities that do not require fractional
components. Variables of this type are often used for controlling loops and conditional
statements. Variables of the types float and double are employed either when a
fractional component is required or when your application requires very large or small
numbers. The difference between a float and a double variable is the magnitude of
the largest (and smallest) number that each one can hold. As shown in Table 3-1, a
double in C++ can store a number approximately ten times larger than a float.

Type Typical Bit Width Typical Range

char 8 –128 to 127

wchar_t 16 0 to 65,535

int (16-bit environments) 16 –32,768 to 32,767

int (32-bit environments) 32 –2,147,483,648 to
2,147,483,647

float 32 3.4E–38 to 3.4E+38

double 64 1.7E–308 to 1.7E+308

bool N/A true or false

void N/A valuelessTable 3-1.

Common Sizes
and Ranges of
the Basic Types
in C++

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

The bool type stores Boolean (i.e., true/false) values. C++ defines two Boolean constants:
true and false, which are the only values that a bool variable may have.

As you have seen, void is used to declare any function that does not return a value.
Other purposes of void are discussed later in this book.

Declaration of Variables
The general form of a variable declaration statement is shown here:

type variable_list;

Here, type must be a valid C++ data type, and variable_list may consist of one or more
identifier names separated by commas. Some declarations are shown here, for example:

int i, j, k;

char ch, chr;

float f, balance;

double d;

In C++, the name of a variable has nothing to do with its type.

Standard C++ states that at least the first 1,024 characters of any identifier name
(including variable names) will be significant. This means that if two variable names
differ in at least one character within the first 1,024 characters, then the compiler
will consider them to be different names.

There are three places where variables will be declared: inside functions, in the definition
of function parameters, and outside of all functions. These variables are called local
variables, formal parameters, and global variables, respectively. Although we will examine
the importance of these three different types of variables in greater detail later in this
book, let’s take a brief look at them now.

Local Variables
Variables that are declared inside a function are local variables. They can be used only
by statements that are inside that function. Local variables are not known to functions
outside their own. Consider this example:

#include <iostream>
using namespace std;

void func();

int main()

The Basic Data Types 35

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

36 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

{
int x; // local to main()

x = 10;
func();
cout << "\n";
cout << x; // displays 10

return 0;
}

void func()
{
int x; // local to func()

x = -199;
cout << x; // displays -199

}

Here, the integer variable x is declared twice, once in main() and once in func().
The x in main() has no bearing on, or relationship to, the x in func(). Specifically,
changes to the x inside func() will not affect the x inside main(). Therefore, this
program will print –199 and 10 on the screen.

In C++, local variables are created when the function is called and are destroyed when
the function is exited. Correspondingly, the storage for these local variables is created
and destroyed in the same way. For these reasons, local variables do not maintain
their values between function calls. (That is, the value of a local variable is lost each
time its function returns.)

In some C++ literature, a local variable is called a dynamic variable or an automatic
variable. However, this book will continue to use the term local variable because it is
the more common term.

Formal Parameters
As you saw in Chapter 2, if a function has arguments, then those arguments must
be declared. These are called the formal parameters of the function. As shown in the
following fragment, this declaration occurs after the function name, inside the
parentheses:

int func1(int first, int last, char ch)
{
.
.
.

}

The func1() function has three arguments, called first, last, and ch. You must tell
C++ what type of variables these are by declaring them, as shown above. Once this

A local variable is
known only to the
function in which
it is declared.

A formal
parameter is a
local variable that
receives the value
of an argument
passed to a
function.

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

The Basic Data Types 37

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

has been done, these arguments receive information passed to the function. They may
also be used inside the function as normal local variables. For example, you may
make assignments to a function’s formal parameters or use them in any allowable
C++ expression. Even though these variables perform the special task of receiving the
value of the arguments passed to the function, they can be used like any other local
variable. Like other local variables, their value is lost once the function terminates.

Global Variables
You may be wondering how to make a variable and its data stay in existence throughout
the entire execution of your program. You can do this in C++ by using a global variable.
Unlike local variables, global variables will hold their value throughout the lifetime of
your program. You create global variables by declaring them outside of all functions.
A global variable can be accessed by any function. That is, a global variable is available
for use throughout your entire program.

In the following program, you can see that the variable count has been declared
outside of all functions. Its declaration is before the main() function. However, it
could have been placed anywhere, as long as it was not in a function. Remember,
though, that since you must declare a variable before you use it, it is best to declare
global variables at the top of the program.

#include <iostream>
using namespace std;

void func1();
void func2();

int count; // this is a global variable

int main()
{
int i; // this is a local variable

for(i=0; i<10; i++) {
count = i * 2;
func1();

}

return 0;
}

void func1()
{
cout << "count: " << count; // access global count
cout << '\n'; // output a newline
func2();

}

void func2()

Global variables
are known
throughout your
entire program.

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

38 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

{
int count; // this is a local variable

for(count=0; count<3; count++) cout << '.';
}

Looking closely at this program, it should be clear that although neither main() nor
func1() has declared the variable count, both may use it. In func2(), however, a
local variable called count is declared. When func2() uses count, it is referring to
its local variable, not the global one. It is important to remember that if a global variable
and a local variable have the same name, all references to that variable name inside
the function in which the local variable is declared will refer to the local variable and
not to the global variable.

Some Type Modifiers
C++ allows the char, int, and double data types to have modifiers preceding them.
A modifier is used to alter the meaning of the base type so that it more precisely fits
the needs of various situations. The data type modifiers are listed here:

signed

unsigned

long

short

The modifiers signed, unsigned, long, and short can be applied to integer base
types. In addition, signed and unsigned can be applied to char, and long can be
applied to double. Tables 3-2a and 3-2b show all the allowed combinations of the
basic types and the type modifiers for both 16- and 32-bit environments. The tables
also show the most common size and range for each type. You should check your
compiler’s documentation for the actual range supported by your compiler.

As you look at the tables, pay special attention to the size of a short integer, an integer,
and a long integer. Notice that in most 16-bit environments, the size of an integer is
the same as a short integer. Also notice that in most 32-bit environments, the size of
an integer is the same as a long integer. The reason for this is found in C++’s definition
of its basic types. Standard C++ states that a long integer will be at least as large as an
integer, and that an integer will be at least as large as a short integer. Further, the size
of an integer should be based upon the execution environment. This means that for
16-bit environments, integers are 16 bits, and for 32-bit environments, integers are
32 bits. However, the smallest allowable size for an integer in any environment is 16 bits.
Since C++ defines only the relationship and a set of guidelines for the size of the integer
types, there is no requirement (or guarantee) that one type will be larger than another.
However, the sizes shown in both tables hold true for many compilers.

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Although it is allowed, the use of signed on integers is redundant because the default
declaration assumes a signed value. Technically, whether char is signed or unsigned
by default is implementation-defined. However, for most compilers, char is signed. In
these environments, the use of signed on char is also redundant. For the rest of this
book, it will be assumed that chars are signed entities.

The difference between signed and unsigned integers is in the way the high-order bit
of the integer is interpreted. If a signed integer is specified, then the C++ compiler will
generate code that assumes that the high-order bit of an integer is to be used as a sign flag.
If the sign flag is 0, then the number is positive; if it is 1, then the number is negative.
Negative numbers are almost always represented using the two’s complement approach.
In this method, all bits in the number are reversed, and then 1 is added to this number.

Signed integers are important for a great many algorithms, but they have only half
the absolute magnitude of their unsigned relatives. For example, assuming 16-bit
integers, here is 32,767:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

The Basic Data Types 39

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

Type Bit Width Common Range

char 8 –128 to 127

unsigned char 8 0 to 255

signed char 8 –128 to 127

int 16 –32,768 to 32,767

unsigned int 16 0 to 65,535

signed int 16 –32,768 to 32,767

short int 16 same as int

unsigned short int 16 same as unsigned int

signed short int 16 same as short int

long int 32 –2,147,483,648 to 2,147,483,647

unsigned long int 32 0 to 4,294,967,295

signed long int 32 –2,147,483,648 to 2,147,483,647

float 32 3.4E–38 to 3.4E+38

double 64 1.7E–308 to 1.7E+308

long double 80 3.4E–4932 to 1.1E+4932

bool N/A true or false

wchar_t 16 0 to 65,535Table 3-2a.

All Possible
Combinations
of the Basic
Types and
Modifiers in
C++, Along
With Their
Common Bit
Lengths and
Ranges for
a 16-bit
Environment

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For a signed value, if the high-order bit were set to 1, the number would then be
interpreted as –1 (assuming the two’s complement format). However, if you declared
this to be an unsigned int, then when the high-order bit was set to 1, the number
would become 65,535.

To understand the difference between the way that signed and unsigned integers are
interpreted by C++, you should run this short program now:

#include <iostream>
using namespace std;

/* This program shows the difference between
signed and unsigned integers.

*/
int main()
{
short int i; // a signed short integer
short unsigned int j; // an unsigned short integer

j = 60000;

40 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

Type Bit Width Common Range

char 8 –128 to 127

unsigned char 8 0 to 255

signed char 8 –128 to 127

int 32 –2,147,483,648 to 2,147,483,647

unsigned int 32 0 to 4,294,967,295

signed int 32 –2,147,483,648 to 2,147,483,647

short int 16 –32,768 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 –32,768 to 32,767

long int 32 Same as int

unsigned long int 32 Same as unsigned int

signed long int 32 Same as signed int

float 32 3.4E–38 to 3.4E+38

double 64 1.7E–308 to 1.7E+308

long double 80 3.4E–4932 to 1.1E+4932

bool N/A true or false

wchar_t 16 0 to 65,535Table 3-2b.

All Possible
Combinations
of the Basic
Types and
Modifiers in
C++, Along
With Their
Common Bit
Lengths and
Ranges for
a 32-bit
Environment

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

i = j;
cout << i << " " << j;

return 0;
}

When this program is run, the output is –5536 60000. This is because the bit pattern
that represents 60,000 as a short unsigned integer is interpreted as –5,536 by a short
signed integer.

C++ allows a shorthand notation for declaring unsigned, short, or long integers.
You can simply use the word unsigned, short, or long, without the int. The int is
implied. For example, the following two statements both declare unsigned integer
variables.

unsigned x;
unsigned int y;

Variables of type char can be used to hold values other than just the ASCII character
set. A char variable can also be used as a "small" integer with the range –128 through
127, and it can be used in place of an integer when the situation does not require
larger numbers. For example, the following program uses a char variable to control
the loop that prints the alphabet on the screen:

// This program prints the alphabet in reverse order.

#include <iostream>
using namespace std;

int main()
{
char letter;

for(letter = 'Z'; letter >= 'A'; letter--)
cout << letter;

return 0;
}

If the for loop seems weird to you, keep in mind that the character A is represented
inside the computer as a number, and that the values from A to Z are sequential, in
ascending order.

Literals
In C++, literals (also called constants) refer to fixed values that cannot be altered by
the program. For the most part, literals and their usage are so intuitive that they have
been used in one form or another by all the preceding sample programs. Now, the
time has come to explain them formally.

The Basic Data Types 41

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

42 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

C++ literals can be of any of the basic data types. The way each literal is represented
depends upon its type. Character literals are enclosed between single quotes. For
example, 'a' and '%' are both character literals. As some of the examples thus far have
shown, if you want to assign a character to a variable of type char, you will use a
statement similar to this one:

ch = 'Z';

To specify a wide character literal (i.e., one that is of type wchar_t), precede the
character with an L. For example,

wchar_t wc;
wc = L'A';

Here, wc is assigned the wide-character constant equivalent of A.

Integer literals are specified as numbers without fractional components. For example,
10 and –100 are integer literals. Floating-point literals require the use of the decimal
point, followed by the number’s fractional component. For example, 11.123 is a
floating-point constant. C++ also allows you to use scientific notation for floating-point
numbers.

There are two floating-point types: float and double. There are also several flavors
of the basic types that can be generated with the type modifiers. The question is this:
How does the compiler determine the type of a literal? For example, is 123.23 a float
or a double? The answer to this question has two parts. First, the C++ compiler
automatically makes certain assumptions about literals; second, you can explicitly
specify the type of a literal, if you like.

By default, the C++ compiler fits an integer literal into the smallest compatible data
type that will hold it, beginning with int. Therefore, assuming 16-bit integers, 10
is int by default, but 103,000 is long. Even though the value 10 could be fit into a
character, the compiler will not do this, because it means crossing type boundaries.

An exception to the smallest-type rule is a floating-point constant, which is assumed
to be double. For virtually all programs you will write as a beginner, the compiler
defaults are perfectly adequate. However, it is possible to specify precisely the type
of literal you want.

In cases where the default assumption that C++ makes about a numeric literal is not
what you want, C++ allows you to specify the exact type by using a suffix. For floating-
point types, if you follow the number with an F, the number is treated as a float.
If you follow it with an L, the number becomes a long double. For integer types,
the U suffix stands for unsigned and the L for long. (Both the U and the L must
be used to specify an unsigned long.) Some examples are shown here:

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Data Type Examples of Literals

int 1 123 21000 –234

long int 35000L –34L

unsigned int 10000U 987U 40000U

unsigned long 12323UL 900000UL

float 123.23F 4.34e–3F

double 23.23 123123.33 –0.9876324

long double 1001.2L

Hexadecimal and Octal Literals
As you probably know, in programming it is sometimes easier to use a number system
based on 8 or 16 instead of 10. The number system based on 8 is called octal, and it
uses the digits 0 through 7. In octal, the number 10 is the same as 8 in decimal. The
base-16 number system is called hexadecimal, and it uses the digits 0 through 9, plus
the letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For example, the
hexadecimal number 10 is 16 in decimal. Because of the frequency with which these
two number systems are used, C++ allows you to specify integer literals in hexadecimal
or octal instead of decimal. A hexadecimal literal must begin with 0x (a zero followed
by an x). An octal literal begins with a zero. Here are some examples:

hex = 0xFF; // 255 in decimal
oct = 011; // 9 in decimal

String Literals
C++ supports one other type of literal in addition to those of the predefined data
types: the string. A string is a set of characters enclosed by double quotes. For example,
"this is a test" is a string. You have seen examples of strings in some of the cout
statements in the preceding sample programs. Keep in mind one important fact:
although C++ allows you to define a string literal, it does not have a built-in string
data type. Instead, as you will see a little later in this book, strings are supported in
C++ as character arrays. (However, Standard C++ does provide a string type in its class
library, which you will also learn about later in this book.)

CAUTION: You must not confuse strings with characters. A single character
literal is enclosed by single quotes, as with 'a'. However, "a" is a string containing only
one letter.

The Basic Data Types 43

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Character Escape Sequences
Enclosing character literals in single quotes works for most printing characters, but a
few characters, such as the carriage return, pose a special problem when a text editor
is used. In addition, certain other characters, such as the single and double quotes,
have special meaning in C++, so you cannot use them directly. For these reasons, C++
provides the character escape sequences shown in Table 3-3. These sequences are also
referred to as backslash character constants.

The following sample program illustrates the use of backslash codes. When this program
is run, it outputs a newline, a backslash, and a backspace.

#include <iostream>
using namespace std;

int main()
{
cout << "\n\\\b";

return 0;
}

44 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

Code Meaning

\b backspace

\f form feed

\n newline

\r carriage return

\t horizontal tab

\" double quote

\' single quote character

\\ backslash

\v vertical tab

\a alert

\? ?

\N octal constant (where N is an octal constant)

\xN hexadecimal constant (where N is a hexadecimal constant)Table 3-3.

The Character
Escape
Sequences

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Basic Data Types 45

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

Variable Initializations
You can assign a value to a variable at the same time that it is declared by placing an
equal sign and the value after the variable name. The general form of initialization is:

type variable_name = value;

Some examples are:

char ch = 'a';
int first = 0;
float balance = 123.23F;

Although variables are frequently initialized by constants, you can initialize a variable by
using any expression valid at the time of the initialization. As you will see, initialization
plays an important role when you are working with objects.

Global variables are initialized only at the start of the program. Local variables are
initialized each time the function in which they are declared is entered. All global
variables are initialized to zero if no other initializer is specified. Local variables that are
not initialized will have unknown values before the first assignment is made to them.

Here is a simple example of variable initialization. This program uses the total()
function to compute the summation of the value that it is passed. In other words,
total() sums the digits from 1 to the value. For example, the summation of 3 is
1 + 2 + 3, or 6. In the process, total() displays a running total. Notice the use of
the sum variable in total().

// An example that uses variable initialization.

#include <iostream>
using namespace std;

void total(int x);

int main()
{
cout << "Computing summation of 5.\n";
total(5);

cout << "\nComputing summation of 6.\n";
total(6);

return 0;
}

void total(int x)

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

46 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

{
int sum=0; // initialize sum
int i, count;

for(i=1; i<=x; i++) {
sum = sum + i;
for(count=0; count<10; count++) cout << '.';
cout << "The current sum is " << sum << '\n';

}
}

Here is the output produced by the program.

Computing summation of 5.
..........The current sum is 1
..........The current sum is 3
..........The current sum is 6
..........The current sum is 10
..........The current sum is 15

Computing summation of 6.
..........The current sum is 1
..........The current sum is 3
..........The current sum is 6
..........The current sum is 10
..........The current sum is 15
..........The current sum is 21

As you can see, each time total() is called, sum is initialized to zero.

Operators
C++ is rich in built-in operators. An operator is a symbol that tells the compiler to
perform specific mathematical or logical manipulations. C++ has three general classes
of operators: arithmetic, relational and logical, and bitwise. In addition, C++ has some
special operators for particular tasks. This chapter will examine the arithmetic, relational,
and logical operators, reserving the more advanced bitwise operators for later.

Arithmetic Operators
Table 3-4 lists the arithmetic operators allowed in C++. The operators +, –, *, and / all
work the same way in C++ as they do in any other computer language (or algebra, for
that matter). These can be applied to any built-in data type allowed by C++. When /
is applied to an integer or a character, any remainder will be truncated; for example,
10/3 will equal 3 in integer division.

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Basic Data Types 47

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

The modulus operator % also works in C++ in the same way that it does in other
languages. Remember that the modulus operation yields the remainder of an integer
division. This means that the % cannot be used on type float or double. The following
program illustrates its use:

#include <iostream>
using namespace std;

int main()
{
int x, y;

x = 10;
y = 3;
cout << x/y; // will display 3
cout << "\n";
cout << x%y; /* will display 1, the remainder of

the integer division */
cout << "\n";

x = 1;
y = 2;
cout << x/y << " " << x%y; // will display 0 1

return 0;
}

The reason the last line prints a 0 and 1 is because 1/2 in integer division is 0, with
a remainder of 1. Thus, 1%2 yields the remainder 1.

The unary minus, in effect, multiplies its single operand by –1. That is, any number
preceded by a minus sign switches its sign.

Operator Action

– subtraction, also unary minus

+ addition

* multiplication

/ division

% modulus

– – decrement

++ incrementTable 3-4.

Arithmetic
Operators

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

48 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

Increment and Decrement
C++ has two operators not found in some other computer languages. These are the
increment and decrement operators, ++ and – –. These operators were mentioned in
passing in Chapter 2, when the for loop was introduced. The ++ operator adds 1 to
its operand, and – – subtracts 1. Therefore,

x = x+1;

is the same as

++x;

and

x = x-1;

is the same as

--x;

Both the increment and decrement operators can either precede (prefix) or follow
(postfix) the operand. For example:

x = x+1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied as
a prefix or a postfix. However, when an increment or decrement is used as part of a
larger expression, there is an important difference. When an increment or decrement
operator precedes its operand, C++ will perform the corresponding operation prior
to obtaining the operand’s value for use by the rest of the expression. If the operator
follows its operand, then C++ will obtain the operand’s value before incrementing or
decrementing it. Consider the following:

x = 10;
y = ++x;

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In this case, y will be set to 11. However, if the code is written as

x = 10;
y = x++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it
happens. There are significant advantages in being able to control when the increment
or decrement operation takes place.

Most C++ compilers create very fast, efficient object code for increment and decrement
operations that is better than the code generated when the corresponding assignment
statement is used. Therefore, it is a good idea to use increment and decrement operators
when you can.

The precedence of the arithmetic operators is shown here:

highest ++ – –

– (unary minus)

* / %

lowest + –

Operators on the same precedence level are evaluated by the compiler from left to right.
Of course, parentheses may be used to alter the order of evaluation. Parentheses are
treated by C++ in the same way that they are by virtually all other computer languages:
They force an operation, or a set of operations, to have a higher precedence level.

How C++ Got Its Name
Now that you understand the full meaning behind the ++ operator, you can probably
guess how C++ got its name. As you know, C++ is built upon the C language. C++
adds several enhancements to C, most of which support object-oriented programming.
Thus, C++ represents an incremental improvement to C, making the addition of the ++
(the increment operator) to the name C a fitting name for C++.

Bjarne Stroustrup initially named C++ “C with Classes.” However, at the suggestion
of Rick Mascitti, Stroustrup later changed the name to C++. While the new language
was already destined for success, the adoption of the name C++ virtually guaranteed
its place in history because it was a name that every C programmer would instantly
recognize!

The Basic Data Types 49

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

50 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

Relational and Logical Operators
In the terms relational operator and logical operator, relational refers to the relationships
that values can have with one another, and logical refers to the ways in which true
and false values can be connected together. Since the relational operators produce
true or false results, they often work with the logical operators. For this reason, these
operators will be discussed together here.

The relational and logical operators are shown in Table 3-5. Notice that in C++, not
equal is represented by != and equal is represented by the double equal sign, ==. In
Standard C++, the outcome of a relational or logical expression produces a bool result.
That is, the outcome of a relational or logical expression is either true or false. For
older compilers, the outcome of a relational or logical expression will be an integer value
of either 0 or 1. This difference is mostly academic, though, because C++ automatically
converts true into 1 and false into 0, and vice versa.

The operands for a relational operator can be of nearly any type, as long as they can
be compared. The operands to the logical operators must produce a true or false result.
Because any non-zero value is true and zero is false, the logical operators can be used
with any expression that evaluates to a zero or non-zero result.

Relational Operators

Operator Meaning

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

!= not equal to

Logical Operators

Operator Meaning

&& AND

|| OR

! NOTTable 3-5.

The Relational
and Logical
Operators
in C++

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The logical operators are used to support the basic logical operations AND, OR, and
NOT, according to the following truth table. The table uses 1 for true and 0 for false.

p q p AND q p OR q NOT p

0 0 0 0 1

0 1 0 1 1

1 1 1 1 0

1 0 0 1 0

Although C++ does not contain a built-in exclusive-OR (XOR) logical operator, it is
easy to construct one. The XOR operation uses this truth table:

p q XOR

0 0 0

0 1 1

1 0 1

1 1 0

In words, the XOR operation produces a true result when one, and only one, operand
is true. The following function uses the && and || operators to construct an XOR
operation. The result is returned by the function.

bool xor(bool a, bool b)
{
return (a || b) && !(a && b);

}

The following program uses this function. It displays the results of an AND, OR, and
XOR on the values you enter. (Remember, one will be treated as true and zero is false.)

// This program demonstrates the xor() function.
#include <iostream>
using namespace std;

bool xor(bool a, bool b);

int main()
{
bool p, q;

cout << "Enter P (0 or 1): ";
cin >> p;
cout << "Enter Q (0 or 1): ";
cin >> q;

The Basic Data Types 51

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

Remember, in C++,
any non-zero value
is true. Zero is
false.

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

52 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

cout << "P AND Q: " << (p && q) << '\n';
cout << "P OR Q: " << (p || q) << '\n';
cout << "P XOR Q: " << xor(p, q) << '\n';

return 0;
}

bool xor(bool a, bool b)
{
return (a || b) && !(a && b);

}

Here is a sample run produced by the program:

Enter P (0 or 1): 1
Enter Q (0 or 1): 1
P AND Q: 1
P OR Q: 1
P XOR Q: 0

In the program, notice that although the parameters to xor() are specified as type
bool, integer values are entered by the user. As was just explained, this is allowed
because C++ automatically converts 1 values into true and 0 into false. When the
bool return value of xor() is output, it is automatically converted into either 1 or 0,
depending upon whether the outcome of the operation is true or false. As a point of
interest, it is also possible to specify the return type and parameters of xor() as int,
and the function would work exactly the same. Again, this is because of C++'s automatic
conversions between integer values and Boolean values.

Both the relational and logical operators are lower in precedence than the arithmetic
operators. This means that an expression like 10 > 1+12 is evaluated as if it were
written 10 > (1+12). The result is, of course, false. Also, the parentheses surrounding
p && q and p || q in the preceding program are necessary because the && and ||
operators are lower in precedence than the output operator.

You can link any number of relational operations together by using logical operators.
For example, this expression joins three relational operations:

var>15 || !(10<count) && 3<=item

The following table shows the relative precedence of the relational and logical operators:

highest !

> >= < <=

= = !=

&&

lowest ||

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Expressions
Operators, literals, and variables are constituents of expressions. You probably already
know the general form of expressions from your other programming experience or
from algebra. However, there are a few aspects of expressions that relate specifically
to C++; these will be discussed now.

Type Conversion in Expressions
When literals and variables of different types are mixed in an expression, they are
converted to the same type. First, all char and short int values are automatically
elevated to int. This process is called integral promotion. Next, all operands are converted
"up" to the type of the largest operand. This is called type promotion, and is done on
an operation-by-operation basis. For example, if one operand is a int and the other
a long int, then the int is promoted to long int. Or, if either operand is a double,
the other operand is promoted to double. This means that conversions such as that
from a char to a double are perfectly valid. Once a conversion has been applied,
each pair of operands will be of the same type, and the result of each operation will
be the same as the type of both operands.

For example, consider the type conversions that occur in Figure 3-1. First, the character ch
is promoted to int. Then the outcome of ch/i is converted to a double because f*d is a
double. The final result is double because, by this time, both operands are double.

Converting to and from bool
As mentioned earlier, values of type bool are automatically converted into the integers
0 or 1 when used in an integer expression. When an integer result is converted to type
bool, 0 becomes false and a non-zero value becomes true. Although bool is a fairly

The Basic Data Types 53

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

Figure 3-1.

A type
conversion
example

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

54 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

recent addition to C++, the automatic conversions to and from integers mean that it
has virtually no impact on older code. Furthermore, the automatic conversions allow
C++ to maintain its original definition of true and false as zero and non-zero. Thus,
bool is mostly a convenience to the programmer.

Casts
It is possible to force an expression to be of a specific type by using a construct called
a cast. C++ defines five types of casts. Four allow detailed and sophisticated control
over casting, and are described later in this book after objects have been explained.
However, there is one type of cast that you can use now. It is C++’s most general cast
because it can be used to transform any type into any other type. It was also the only
type of cast that early versions of C++ supported. The general form of this cast is

(type) expression

where type is the target type into which you want to convert the expression. For example,
if you want to make sure the expression x/2 is evaluated to type float, you can write

(float) x / 2

Casts are often considered operators. As an operator, a cast is unary and has the same
precedence as any other unary operator.

There are times when a cast can be very useful. For example, you may want to use
an integer for loop control, but also perform a computation on it that requires a
fractional part, as in the program shown here:

#include <iostream>
using namespace std;

int main() // print i and i/2 with fractions
{
int i;

for(i=1; i<=100; ++i)
cout << i << "/ 2 is: " << (float) i / 2 << '\n';

return 0;
}

Without the cast (float) in this example, only an integer division would be performed.
The cast ensures that the fractional part of the answer will be displayed on the screen.

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Basic Data Types 55

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 3

3

Spacing and Parentheses
An expression in C++ may have tabs and spaces in it to make it more readable. For
example, the following two expressions are the same, but the second is easier to read:

x=10/y*(127/x);

x = 10 / y * (127/x);

Use of redundant or additional parentheses will not cause errors or slow down the
execution of the expression. You are encouraged to use parentheses to make clear the
exact order of evaluation, both for yourself and for others who may have to figure
out your program later. For example, which of the following two expressions is easier
to read?

x = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127;

P:\010Comp\Grnd-Up8\897-0\ch03.vp
Monday, March 03, 2003 10:01:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 4

Program Control
Statements

57

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In this chapter you will learn about the statements that control a program’s flow of
execution. There are three specific categories of program control statements: selection

statements, which include the if and the switch; iteration statements, which include
the for, while, and do-while loops; and jump statements, which include break,
continue, return, and goto. (However, a discussion of the return statement is
deferred until later in this book.)

This chapter begins with a thorough examination of the if and for statements, to
which you have already had a brief introduction in Chapter 2. It then discusses the
other program control statements.

The if Statement
Chapter 2 introduced the if statement. Now it is time to examine it in detail. The
complete form of the if statement is

if(expression) statement;
else statement;

where the targets of the if and else are single statements. The else clause is optional.
The targets of both the if and else can be blocks of statements. The general form of
the if using blocks of statements is

if(expression)
{

statement sequence
}
else
{

statement sequence
}

If the conditional expression is true, the target of the if will be executed; otherwise, if
it exists, the target of the else will be executed. At no time will both of them be executed.
The conditional expression controlling the if may be any type of valid C++ expression
that produces a true or false result.

The following program demonstrates the if by playing a simple version of the "guess
the magic number" game. The program generates a random number, prompts for your
guess, and prints the message ** Right ** if you guess the magic number. This program
also introduces another standard C++ library function, called rand(), which returns a
randomly selected integer value. It requires the header called <cstdlib>.

// Magic Number program.
#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{

58 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

if selects between
two paths of
execution.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Program Control Statements 59

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

int magic; // magic number
int guess; // user's guess

magic = rand(); // get a random number

cout << "Enter your guess: ";
cin >> guess;

if(guess == magic) cout << "** Right **";

return 0;
}

This program uses the relational operator == to determine whether the guess matches
the magic number. If it does, the message is printed on the screen.

Taking the Magic Number program further, the next version uses the else to print a
message when the wrong number is picked.

// Magic Number program: 1st improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int magic; // magic number
int guess; // user's guess

magic = rand(); // get a random number

cout << "Enter your guess: ";
cin >> guess;

if(guess == magic) cout << "** Right **";
else cout << "...Sorry, you're wrong.";

return 0;
}

The Conditional Expression
Sometimes newcomers to C++ are confused by the fact that any valid C++ expression
can be used to control the if. That is, the type of expression need not be restricted to
only those involving the relational and logical operators or to operands of type bool.
All that is required is that the controlling expression evaluate to either a true or false
result. As you should recall from the previous chapter, a value of zero is automatically
converted into false, and all non-zero values are converted to true. Thus, any expression
that results in a zero or non-zero value can be used to control the if. For example, the
following program reads two integers from the keyboard and displays the quotient.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

In order to avoid a divide-by-zero error, an if statement, controlled by the second
number, is used.

// Divide the first number by the second.

#include <iostream>
using namespace std;

int main()
{
int a, b;

cout << "Enter two numbers: ";
cin >> a >> b;

if(b) cout << a/b << '\n';
else cout << "Cannot divide by zero.\n";

return 0;
}

Notice that b (the divisor) is tested for zero by using if(b). This approach works
because when b is zero, the condition controlling the if is false and the else executes.
Otherwise, the condition is true (non-zero) and the division takes place. It is not
necessary (and would be considered bad style by most C++ programmers) to write this
if as shown here:

if(b != 0) cout << a/b << '\n';

This form of the statement is redundant and potentially inefficient.

Nested ifs
A nested if is an if statement that is the target of another if or an else. Nested ifs are
very common in programming. The main thing to remember about nested ifs in C++
is that an else statement always refers to the nearest if statement that is within the
same block as the else and not already associated with an else. Here is an example:

if(i) {
if(j) statement1;
if(k) statement2; // this if
else statement3; // is associated with this else

}
else statement4; // associated with if(i)

As the comments indicate, the final else is not associated with if(j) (even though it is
the closest if without an else), because it is not in the same block. Rather, the final
else is associated with if(i). The inner else is associated with if(k) because that is the
nearest if.

C++ allows at least 256 levels of nesting. In practice, you will seldom need to nest if
statements this deeply.

60 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

A nested if is an
if statement that
is the target of
either another if
or an else.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

We can use a nested if to add a further improvement to the Magic Number program.
This addition provides the player with feedback about a wrong guess.

// Magic Number program: 2nd improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int magic; // magic number
int guess; // user's guess

magic = rand(); // get a random number

cout << "Enter your guess: ";
cin >> guess;

if (guess == magic) {
cout << "** Right **\n";
cout << magic << " is the magic number.\n";

}
else {
cout << "...Sorry, you're wrong.";

// use a nested if statement
if(guess > magic)
cout <<" Your guess is too high.\n";

else
cout << " Your guess is too low.\n";

}

return 0;
}

The if-else-if Ladder
A common programming construct that is based upon nested ifs is the if-else-if
ladder. It looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

.

.

.
else

statement;

Program Control Statements 61

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

62 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

The conditional expressions are evaluated from the top downward. As soon as a true
condition is found, the statement associated with it is executed, and the rest of the
ladder is bypassed. If none of the conditions is true, then the final else statement
will be executed. The final else often acts as a default condition; that is, if all other
conditional tests fail, then the last else statement is performed. If there is no final
else and all other conditions are false, then no action will take place.

The following program demonstrates the if-else-if ladder.

// Demonstrate an if-else-if ladder.
#include <iostream>
using namespace std;

int main()
{
int x;

for(x=0; x<6; x++) {
if(x==1) cout << "x is one\n";
else if(x==2) cout << "x is two\n";
else if(x==3) cout << "x is three\n";
else if(x==4) cout << "x is four\n";
else cout << "x is not between 1 and 4\n";

}

return 0;
}

The program produces the following output:

x is not between 1 and 4
x is one
x is two
x is three
x is four
x is not between 1 and 4

As you can see, the default else is executed only if none of the preceding if
statements succeed.

The for Loop
You were introduced to a simple form of the for loop in Chapter 2. You might be
surprised just how powerful and flexible the for loop is. Let’s begin by reviewing the
basics, starting with the most traditional forms of the for loop.

The general form of the for loop for repeating a single statement is

for(initialization; expression; increment) statement;

An if-else-if
ladder is a series
of nested if/else
statements.

The for is C++’s
most versatile loop.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Program Control Statements 63

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

For repeating a block, the general form is

for(initialization; expression; increment)
{

statement sequence
}

The initialization is usually an assignment statement that sets the initial value of the
loop control variable, which acts as the counter that controls the loop. The expression is
a conditional expression that determines whether or not the loop will repeat. The
increment defines the amount by which the loop control variable will change each
time the loop is repeated. Notice that these three major sections of the loop must be
separated by semicolons. The for loop will continue to execute as long as the conditional
expression tests true. Once the condition becomes false, the loop will exit, and program
execution will resume on the statement following the for block.

The following program uses a for loop to print the square roots of the numbers between
1 and 99. Notice that in this example, the loop control variable is called num.

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
int num;
double sq_root;

for(num=1; num < 100; num++) {
sq_root = sqrt((double) num);
cout << num << " " << sq_root << '\n';

}

return 0;
}

Here are the first few lines of output displayed by the program:

1 1
2 1.41421
3 1.73205
4 2
5 2.23607
6 2.44949
7 2.64575
8 2.82843
9 3
10 3.16228

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

This program introduces another of C++’s standard functions: sqrt(). The sqrt()
function returns the square root of its argument. The argument must be of type
double and this is why num is cast to double when sqrt() is called. The function
returns a value of type double. Notice that the header <cmath> has been included.
This file is needed to support the sqrt() function.

TIP: In addition to sqrt(), C++ supports an extensive set of mathematical library
functions. For example, sin(), cos(), tan(), log(), ceil(), and floor() are a few.
If mathematical programming is your interest, you will want to explore the C++ math
functions. Remember, they all require the header <cmath>.

The for loop can proceed in a positive or negative fashion, and it can increment the
loop control variable by any amount. For example, the following program prints the
numbers 100 to –100, in decrements of 5.

#include <iostream>
using namespace std;

int main()
{
int i;

for(i=100; i >= -100; i = i-5) cout << i << ' ';

return 0;
}

An important point about for loops is that the conditional expression is always tested
at the top of the loop. This means that the code inside the loop may not be executed at
all if the condition is false to begin with. Here is an example:

for(count=10; count < 5; count++)
cout << count; // this statement will not execute

This loop will never execute, because its control variable, count, is greater than 5
when the loop is first entered. This makes the conditional expression, count<5, false
from the outset; thus, not even one iteration of the loop will occur.

Some Variations on the for Loop
The for is one of the most versatile statements in the C++ language because it allows
a wide range of variations from its traditional use. For example, multiple loop control
variables can be used. Consider the following fragment of code:

for(x=0, y=10; x<=10; ++x, --y)
cout << x << ' ' << y << '\n';

64 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

Program Control Statements 65

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

Here, commas separate the two initialization statements and the two increment
expressions. This is necessary in order for the compiler to understand that there are
two initialization and two increment statements. In C++, the comma is an operator
that essentially means “do this and this.” We will look at other uses for the comma
operator later in this book, but its most common use is in the for loop. You can have
any number of initialization and increment statements, but in practice, more than
two or three make the for loop unwieldy.

The condition controlling the loop may be any valid C++ expression. It does not need
to involve the loop control variable. In the next example, the loop continues to execute
until the user presses a key at the keyboard. The example also introduces an important
library function: kbhit(). This function returns false if no key has been pressed or
true if a key has been struck. It does not wait for a keypress, thus allowing the loop to
continue execution. The kbhit() function is not defined by Standard C++, but is a
common extension that is provided by most compilers. It uses the header file conio.h.
(This header must be supplied using the .h extension, as shown below, since it is not
defined by Standard C++.)

#include <iostream>
#include <conio.h>
using namespace std;

int main()
{
int i;

// print numbers until a key is pressed
for(i=0; !kbhit(); i++) cout << i << ' ';

return 0;
}

Each time through the loop, kbhit() is called. If a key has been pressed, then a true
value is returned, which causes !kbhit() to be false, so the loop stops. However, if no
key has been pressed, kbhit() returns false, and !kbhit() is true, allowing the loop
to continue.

TIP: The kbhit() function is not part of the C++ standard library. This is
because the C++ standard library defines only a minimum set of functions that all
C++ compilers must have. kbhit() is not included in this minimal set, because not
all environments can support keyboard interactivity. However, kbhit() is supported
by virtually all mainstream C++ compilers, although it might be called something
slightly different. A compiler manufacturer is free—in fact, encouraged—to provide
more library functions than are required to meet the minimum requirements of the
standard C++ library. These extra functions are included so that you can fully access
and utilize your programming environment. You should feel free to use all the functions
supplied by your compiler unless portability to another environment is an issue.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

66 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

Missing Pieces
Another aspect of the for loop that is different in C++ than in many computer
languages is that pieces of the loop definition need not be there. For example, if you
want to write a loop that runs until the number 123 is typed in at the keyboard, it
could look like this:

#include <iostream>
using namespace std;

int main()
{
int x;

for(x=0; x != 123;) {
cout << "Enter a number: ";
cin >> x;

}

return 0;
}

The increment portion of the for definition is blank. This means that each time the
loop repeats, x is tested to see whether it equals 123, but no further action takes place.
If, however, you type 123 at the keyboard, the loop condition becomes false and the
loop exits. The C++ for loop will not modify the loop control variable if no increment
portion of the loop is present.

Another variation on the for is to move the initialization section outside of the loop,
as shown in this fragment:

cout << "Enter position: ";
cin >> x;

for(; x < limit; x++) cout << ' ';

Here, the initialization section has been left blank, and x is initialized by a value
entered by the user before the loop is entered .

Placing the initialization outside of the loop is generally done only when the initial
value is derived through a process that does not lend itself to containment within the
for statement, such as when the variable is set by keyboard input. Another situation
in which the initialization portion of the for might be empty is when you control the
loop with a function parameter, using the value the parameter receives when the
function is called as the starting point.

The Infinite Loop
You can create an infinite loop (a loop that never terminates) by using this for construct:

for(;;)
{

An infinite loop is
a loop that never
terminates.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Program Control Statements 67

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

//...
}

This loop will run forever. Although there are some programming tasks, such as operating
system command processors, that require an infinite loop, most "infinite loops" are
really just loops with special termination requirements. Near the end of this chapter,
you will see how to halt a loop of this type. (Hint: it’s done using the break statement.)

Time Delay Loops
Time delay loops are often used in programs. These are loops that have no other
purpose than to kill time. Delay loops can be created by specifying an empty target
statement. For example:

for(x=0; x<1000; x++) ;

This loop increments x one thousand times, but does nothing else. The semicolon
that terminates the line is necessary because the for expects a statement, which can
be empty.

Before moving on, you might want to experiment with your own variations on the
for loop. As you will find, it is a fascinating loop.

The switch Statement
Before looking at C++’s other loop constructs, let’s examine its other selection statement:
the switch. Although a series of nested if statements can perform multiway tests, for
many situations, a more efficient approach can be used. C++ has a built-in multiple-
branch decision statement called switch. It works like this: the value of an expression
is successively tested against a list of integer or character constants. When a match is
found, the statement sequence associated with that match is executed. The general
form of the switch statement is

switch(expression) {
case constant1:

statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence
break;

.

.

.
default:

statement sequence
}

switch is C++’s
multiway decision
statement.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

The switch expression must evaluate to either a character or an integer value.
(Floating-point expressions, for example, are not allowed.) Frequently, the expression
controlling the switch is simply a variable.

The default statement sequence is performed if no matches are found. The default is
optional; if it is not present, no action takes place if all matches fail. When a match
is found, the statements associated with that case are executed until the break is
encountered or, in the case of the default or the last case, the end of the switch
is reached.

There are four important things to know about the switch statement:

◆ The switch differs from the if in that switch can test only for equality (i.e., for
matches between the switch expression and the case constants), whereas the if
conditional expression can be of any type.

◆ No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch may have case constants in
common.

◆ A switch statement is usually more efficient than nested ifs.

◆ The statement sequences associated with each case are not blocks. However, the
entire switch statement does define a block. The importance of this will become
apparent as you learn more about C++.

Standard C++ specifies that a switch can have at least 16,384 case statements. In
practice, you will want to limit the number of case statements to a much smaller
total, for reasons of efficiency.

The following program demonstrates the switch. It creates a simple "help" system
that describes the meaning of the for, if, and switch statements. It displays the help
topics and then waits for the user to enter his or her choice. This choice is then used
by the switch to display information about the requested topic. (You might find it
fun to expand the information in this program. You can also add new topics as you
learn about them.)

// Demonstrate the switch using a simple "help" program.
#include <iostream>
using namespace std;

int main()
{
int choice;

cout << "Help on:\n\n";
cout << "1. for\n";
cout << "2. if\n";
cout << "3. switch\n\n";

cout << "Enter choice (1-3): ";
cin >> choice;
cout << "\n";

68 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

break stops the
execution of code
within a switch.

The default
statements are
executed if no
case constant
matches the
switch expression.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

switch(choice) {
case 1:
cout << "for is C++'s most versatile loop.\n";
break;

case 2:
cout << "if is C++'s conditional branch statement.\n";
break;

case 3:
cout << "switch is C++'s multiway branch statement.\n";
break;

default:
cout << "You must enter a number between 1 and 3.\n";

}

return 0;
}

Here is a sample run:

Help on:

1. for
2. if
3. switch

Enter choice (1-3): 2

if is C++'s conditional branch statement.

Technically, the break statement is optional, although most applications of the
switch will use it. When encountered within the statement sequence of a case, the
break statement causes program flow to exit from the entire switch statement and
resume at the next statement outside the switch. However, if a break statement
does not end the statement sequence associated with a case, then all the statements
at and below the matching case will be executed until a break (or the end of the
switch) is encountered.

For example, study the following program carefully. Can you figure out what it will
display on the screen?

#include <iostream>
using namespace std;

int main()
{
int i;

for(i=0; i<5; i++) {
switch(i) {
case 0: cout << "less than 1\n";
case 1: cout << "less than 2\n";
case 2: cout << "less than 3\n";

Program Control Statements 69

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

70 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

case 3: cout << "less than 4\n";
case 4: cout << "less than 5\n";

}
cout << '\n';

}

return 0;
}

This program displays the following output:

less than 1
less than 2
less than 3
less than 4
less than 5

less than 2
less than 3
less than 4
less than 5

less than 3
less than 4
less than 5

less than 4
less than 5

less than 5

As this program illustrates, execution will continue into the next case if no break
statement is present.

You can have empty cases, as shown in this example:

switch(i) {
case 1:
case 2:
case 3: do_something();
break;

case 4: do_something_else();
break;

In this fragment, if i has the value 1, 2, or 3, then do_something() is called. If i has
the value 4, then do_something_else() is called. The "stacking" of cases, as shown
in this example, is very common when several cases share common code.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Program Control Statements 71

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

Nested switch Statements
It is possible to have a switch as part of the statement sequence of an outer switch.
Even if the case constants of the inner and outer switch contain common values, no
conflicts will arise. For example, the following code fragment is perfectly acceptable:

switch(ch1) {
case 'A': cout << "This A is part of outer switch";
switch(ch2) {
case 'A':
cout << "This A is part of inner switch";
break;

case 'B': // ...
}
break;

case 'B': // ...

C++ specifies that at least 256 levels of nesting be allowed for switch statements.
Frankly, few programs ever require anywhere near 256 levels of nesting.

The while Loop
Another loop is the while. The general form of the while loop is

while(expression) statement;

where statement may be a single statement or a block of statements. The expression
defines the condition that controls the loop, and it may be any valid expression. The
statement is performed while the condition is true. When the condition becomes false,
program control passes to the line immediately following the loop.

The next program illustrates the while in a short but sometimes fascinating program.
Virtually all computers support an extended character set beyond that defined by ASCII.
The extended characters, if they exist, often include special characters such as foreign
language symbols and scientific notations. The ASCII characters use values that are
less than 128. The extended character set begins at 128 and continues to 255. This
program prints all characters between 32 (which is a space) and 255. When you run
this program, you will most likely see some very interesting characters.

/* This program displays all printable characters,
including the extended character set, if one exists.

*/

#include <iostream>
using namespace std;

int main()
{
unsigned char ch;

while is another
of C++’s loop
statements.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ch = 32;
while(ch) {
cout << ch;
ch++;

}

return 0;
}

Examine the loop expression in the preceding program. You might be wondering why
only ch is used to control the while. The answer is quite easy. Since ch is an unsigned
character, it can only hold the values 0 through 255. When it holds the value 255 and
is then incremented, its value will "wrap around" to zero. Therefore, the test for ch
being zero serves as a convenient stopping condition.

As with the for loop, the while checks the conditional expression at the top of the
loop, which means that the loop code may not execute at all. This eliminates the
need for performing a separate test before the loop. The following program illustrates
this characteristic of the while loop. It displays a line of periods. The number of
periods displayed is equal to the value entered by the user. The program does not
allow lines longer than 80 characters. The test for a permissible number of periods is
performed inside the loop’s conditional expression, not outside of it.

#include <iostream>
using namespace std;

int main()
{
int len;

cout << "Enter length (1 to 79): ";
cin >> len;

while(len>0 && len<80) {
cout << '.';
len--;

}

return 0;
}

There need not be any statements at all in the body of the while loop. Here is
an example:

while(rand() != 100) ;

This loop iterates until the random number generated by rand() equals 100.

72 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

The do-while Loop
Unlike the for and the while loops, in which the condition is tested at the top of the
loop, the do-while loop checks its condition at the bottom of the loop. This means
that a do-while loop will always execute at least once. The general form of the
do-while loop is

do {
statements;

} while(expression);

Although the braces are not necessary when only one statement is present, they are
often used to improve readability of the do-while construct, thus preventing
confusion with the while. The do-while loop executes as long as the conditional
expression is true.

The following program loops until the number 100 is entered.

#include <iostream>
using namespace std;

int main()
{
int num;

do {
cout << "Enter a number (100 to stop): ";
cin >> num;

} while(num != 100);

return 0;
}

Using a do-while loop, we can further improve the Magic Number program. This time,
the program loops until you guess the number.

// Magic Number program: 3rd improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int magic; // magic number
int guess; // user's guess

magic = rand(); // get a random number

do {

Program Control Statements 73

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

The do-while is
the only loop that
will always iterate
at least once.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

cout << "Enter your guess: ";
cin >> guess;
if(guess == magic) {
cout << "** Right ** ";
cout << magic << " is the magic number.\n";

}
else {
cout << "...Sorry, you're wrong.";
if(guess > magic)

cout << " Your guess is too high.\n";
else
cout << " Your guess is too low.\n";

}
} while(guess != magic);

return 0;
}

Using continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control
structure. This is accomplished by using continue. The continue statement forces
the next iteration of the loop to take place, skipping any code between itself and the
conditional expression that controls the loop. For example, the following program
prints the even numbers between 0 and 100:

#include <iostream>
using namespace std;

int main()
{
int x;

for(x=0; x<=100; x++) {
if(x%2) continue;
cout << x << ' ';

}

return 0;
}

Only even numbers are printed, because an odd one will cause the loop to iterate early,
bypassing the cout statement.

In while and do-while loops, a continue statement will cause control to go directly
to the conditional expression and then continue the looping process. In the case of
the for, the increment part of the loop is performed, next the conditional expression
is executed, and then the loop continues.

74 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

continue
immediately
causes the next
iteration of a loop.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Program Control Statements 75

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

Using break to Exit Loops
It is possible to force an immediate exit from a loop, bypassing the loop’s conditional
test, by using the break statement. When the break statement is encountered inside
a loop, the loop is immediately terminated, and program control resumes at the next
statement following the loop. Here is a simple example:

#include <iostream>
using namespace std;

int main()
{
int t;

// Loops from 0 to 9, not to 100!
for(t=0; t<100; t++) {
if(t==10) break;
cout << t << ' ';

}

return 0;
}

This program will print the numbers 0 through 9 on the screen before ending. It will
not go to 100, because the break statement will cause it to terminate early.

The break statement is commonly used in loops in which a special condition can
cause immediate termination. The following fragment contains an example of such
a situation, where a keypress can stop the execution of the loop:

for(i=0; i<1000; i++) {
// do something
if(kbhit()) break;

}

A break will cause an exit from only the innermost loop. Here is an example:

#include <iostream>
using namespace std;

int main()
{
int t, count;

for(t=0; t<100; t++) {
count = 1;
for(;;) {
cout << count << ' ';
count++;
if(count==10) break;

}

break causes
immediate
termination
of a loop.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

cout << '\n';
}

return 0;
}

This program will print the numbers 1 through 9 on the screen 100 times. Each time
the break is encountered, control is passed back to the outer for loop.

NOTE: A break used in a switch statement will affect only that switch, and
not any loop the switch happens to be in.

As you have seen, it is possible to create an infinite loop in C++ by using the for
statement. (You can also create infinite loops by using the while and the do-while,
but the for is the traditional method.) In order to exit from an infinite loop, you
must use the break statement. Of course, you can also use break to terminate a
non-infinite loop.

Nested Loops
As you have seen in some of the preceding examples, one loop can be nested inside of
another. C++ allows at least 256 levels of nesting. Nested loops are used to solve a wide
variety of programming problems. For example, the following program uses a nested
for loop to find the prime numbers from 2 to 1000:

/* This program finds the prime numbers from
2 to 1000.

*/

#include <iostream>
using namespace std;

int main()
{
int i, j;

for(i=2; i<1000; i++) {
for(j=2; j <= (i/j); j++)
if(!(i%j)) break; // if factor found, not prime

if(j > (i/j)) cout << i << " is prime\n";
}

return 0;
}

76 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

This program determines if the number contained in i is prime by successively
dividing it by the values between 2 and the result of i / j. (You can stop at the value
of i / j because a number that is larger than i / j cannot be a factor of i.) If any
division is even, the number is not prime. However, if the loop completes, the
number is, indeed, prime.

Using the goto Statement
The goto statement fell out of favor with programmers many years ago because it
encouraged the creation of "spaghetti code." However, it is still occasionally—and
sometimes effectively—used. This book will not make a judgment regarding its
validity as a form of program control. It should be stated, however, that there are no
programming situations that require the use of the goto statement—it is not an item
necessary for making the language complete. Rather, it is a convenience that, if used
wisely, can be of benefit in certain programming situations. As such, the goto is not
used in this book outside of this section. The chief concern most programmers have
about the goto is its tendency to clutter a program and render it nearly unreadable.
However, there are times when the use of the goto will actually clarify program flow
rather than confuse it.

The goto requires a label for operation. A label is a valid C++ identifier followed by
a colon. Furthermore, the label must be in the same function as the goto that uses it.
For example, a loop from 1 to 100 could be written using a goto and a label, as
shown here:

x = 1;
loop1:
x++;
if(x < 100) goto loop1;

One good use for the goto is to exit from a deeply nested routine. For example,
consider the following code fragment:

for(...) {
for(...) {
while(...) {
if(...) goto stop;
.
.
.

}
}

}
stop:
cout << "Error in program.\n";

Eliminating the goto would force a number of additional tests to be performed.
A simple break statement would not work here, because it would only cause the
program to exit from the innermost loop.

Program Control Statements 77

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

goto is C++’s
unconditional
branch
statement.

A label is an
identifier
followed by
a colon.

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

TIP: You should use the goto sparingly. But if your code would otherwise be
much more difficult to read, or if execution speed of the code is critical, then by all
means use the goto.

Putting Together the Pieces
This next example shows the final version of the Magic Number game. It uses many
of the concepts that were presented in this chapter, and you should make sure that
you understand all of its elements before you go on to the next chapter. The program
allows you to generate a new number, to play the game, and to quit.

// Magic Number program: Final improvement.

#include <iostream>
#include <cstdlib>
using namespace std;

void play(int m);

int main()
{
int option;
int magic;

magic = rand();

do {
cout << "1. Get a new magic number\n";
cout << "2. Play\n";
cout << "3. Quit\n";
do {
cout << "Enter your choice: ";
cin >> option;

} while(option<1 || option>3);

switch(option) {
case 1:
magic = rand();
break;

case 2:
play(magic);
break;

case 3:
cout << "Goodbye\n";
break;

}
} while(option!=3);

78 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

return 0;
}

// Play the game.
void play(int m)
{
int t, x;

for(t=0; t < 100; t++) {
cout << "Guess the number: ";
cin >> x;
if(x == m) {
cout << "** Right **\n";
return;

}
else
if(x < m) cout << "Too low.\n";
else cout << "Too high.\n";

}
cout << "You've used up all your guesses. Try again.\n";

}

Program Control Statements 79

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 4

4

P:\010Comp\Grnd-Up8\897-0\ch04.vp
Friday, February 28, 2003 11:43:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 5

Arrays and Strings

81

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This chapter discusses the array. An array is a collection of variables of the same
type that are referred to by a common name. In C++, arrays may have from one

to several dimensions, although the one-dimensional array is the most common.
Arrays offer a convenient means of grouping together several related variables.

The array that you will probably use most often is the character array because it is
used to hold strings. As explained earlier, the C++ language does not define a built-in
string data type. Instead, strings are implemented as arrays of characters. This approach
to strings allows greater power and flexibility than are available in languages that use
a distinct string type.

One-Dimensional Arrays
A one-dimensional array is a list of related variables. The general form of a one-
dimensional array declaration is

type var_name[size];

Here, type declares the base type of the array. The base type determines the data type
of each element that comprises the array. size defines how many elements the array
will hold. For example, the following declares an integer array named sample that
is ten elements long:

int sample[10];

An individual element within an array is accessed by use of an index. An index
describes the position of an element within an array. In C++, all arrays have zero
as the index of their first element. Because sample has ten elements, it has index
values of 0 through 9. You access an array element by indexing the array, using
the number of the element you are seeking. To index an array, specify the number
of the element you want, surrounded by square brackets. Thus, the first element
in sample is sample[0], and the last element is sample[9]. For example, the
following program loads sample with the numbers 0 through 9:

#include <iostream>
using namespace std;

int main()
{
int sample[10]; // this reserves 10 integer elements
int t;

// load the array
for(t=0; t<10; ++t) sample[t]=t;

// display the array
for(t=0; t<10; ++t) cout << sample[t] << ' ';

return 0;
}

82 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

An index identifies
a specific element
within an array.

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 83

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

In C++, all arrays consist of contiguous memory locations. (That is, the array elements
reside next to each other in memory.) The lowest address corresponds to the first element,
and the highest address to the last element. For example, after this fragment is run,

int i[7];
int j;

for(j=0; j<7; j++) i[j] = j;

i looks like this:

For a one-dimensional array, the total size of an array in bytes is computed as
shown here:

total bytes = number of bytes in type × number of elements

Arrays are common in programming because they let you deal easily with large
numbers of related variables. For example, the following program creates an array
of ten elements, assigns each element a random value, and then displays the
minimum and maximum values.

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int i, min_value, max_value;
int list[10];

for(i=0; i<10; i++) list[i] = rand();

// find minimum value
min_value = list[0];
for(i=1; i<10; i++)
if(min_value > list[i]) min_value = list[i];

cout << "minimum value: " << min_value << '\n';

// find maximum value
max_value = list[0];
for(i=1; i<10; i++)
if(max_value < list[i]) max_value = list[i];

cout << "maximum value: " << max_value << '\n';

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

84 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

In C++, you cannot assign one array to another. For example, the following is illegal:

int a[10], b[10];

// ...

a = b; // error -- illegal

To transfer the contents of one array into another, you must assign each value
individually.

No Bounds Checking
C++ performs no bounds checking on arrays; nothing stops you from overrunning the
end of an array. If this happens during an assignment operation, you will be assigning
values to some other variable’s data, or even into a piece of the program’s code. In
other words, you can index an array of size N beyond N without causing any compile-
or run-time error messages, even though doing so will probably cause your program to
crash. As the programmer, it is your job both to ensure that all arrays are large enough
to hold what the program will put in them and to provide bounds checking whenever
necessary.

For example, C++ will compile and run the following program even though the array
crash is being overrun.

CAUTION: Do not try the following example. It might crash your system!

// An incorrect program. Do Not Execute!

int main()
{
int crash[10], i;

for(i=0; i<100; i++) crash[i] = i; // Error! array overrun

return 1;
}

In this case, the loop will iterate 100 times, even though crash is only ten elements
long! This might cause important information to be overwritten, resulting in
a program failure.

You might be wondering why C++ does not provide boundary checks on arrays. The
answer is that C++ was designed to give professional programmers the capability to
create the fastest, most efficient code possible. Towards this end, virtually no run-time
error checking is included because it slows (often dramatically) the execution of

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 85

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

a program. Instead, C++ expects you, the programmer, to be responsible enough to
prevent array overruns in the first place and to add appropriate error checking on
your own, as needed. Also, as you will learn later in this book, it is possible for you
to define array types of your own that perform bounds checking, if your program
actually requires this feature.

Sorting an Array
One common operation performed upon an array is to sort it. As you may know, there
are a number of different sorting algorithms. There are the Quicksort, the shaker sort,
and the shell sort, to name just three. However, the best-known, simplest, and easiest-
to-understand sorting algorithm is called the bubble sort. While the bubble sort is not
very efficient—in fact, its performance is unacceptable for sorting large arrays—it may
be used effectively for sorting small ones.

The bubble sort gets its name from the way it performs the sorting operation. It uses
the repeated comparison and, if necessary, exchange of adjacent elements in the
array. In this process, small values move toward one end and large ones toward the
other end. The process is conceptually similar to bubbles finding their own level in
a tank of water. The bubble sort operates by making several passes through the array,
exchanging out-of-place elements when necessary. The number of passes required
to ensure that the array is sorted is equal to one less than the number of elements
in the array.

The following program sorts an array of integers that contains random values. If you
carefully examine the sort, you will find its operation easy to understand.

// Using the bubble sort to order an array.
#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int nums[10];
int a, b, t;
int size;

size = 10; // number of elements to sort

// Give the array some random initial values.
for(t=0; t<size; t++) nums[t] = rand();

// Display original array.
cout << "Original array is: ";

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for(t=0; t<size; t++) cout << nums[t] << ' ';
cout << '\n';

// This is the bubble sort.
for(a=1; a<size; a++)
for(b=size-1; b>=a; b--) {
if(nums[b-1] > nums[b]) { // if out of order
// exchange elements
t = nums[b-1];
nums[b-1] = nums[b];
nums[b] = t;

}
}

// This is the end of the bubble sort.

// Display sorted array.
cout << "Sorted array is: ";
for(t=0; t<size; t++) cout << nums[t] << ' ';

return 0;
}

Although the bubble sort is good for small arrays, it is not efficient when used on
larger ones. The best general-purpose sorting algorithm is the Quicksort. The C++
standard library contains a function called qsort() that implements a version of
the Quicksort. However, you will need to know more about C++ before you can
use it. Chapter 20 of this book discusses the qsort() function in detail.

Strings
By far, the most common use for one-dimensional arrays is to create character strings.
In C++, a string is defined as a character array that is terminated by a null. A null
character is specified using '\0', and is zero. Because of the null terminator, it is
necessary to declare a character array to be one character longer than the largest
string that it will hold.

For example, if you want to declare an array str that could hold a 10-character string,
you would write:

char str[11];

Specifying the size as 11 makes room for the null at the end of the string.

86 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

A string is a
null-terminated
character array.

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Monday, March 03, 2003 12:35:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As you learned earlier in this book, C++ allows you to define a string literal. Recall
that a string literal is a list of characters enclosed in double quotes. Here are some
examples:

"hello there" "I like C++"
"#$%@@#$" ""

The last string shown is "". This is called a null string. It contains only the null terminator,
and no other characters. Null strings are useful because they represent the empty string.

It is not necessary to manually add the null onto the end of string constants; the C++
compiler does this for you automatically. Therefore, the string "Hello" will appear in
memory like this:

Reading a String from the Keyboard
The easiest way to read a string entered from the keyboard is to make the array that
will receive the string the target of a cin statement. For example, the following program
reads a string entered by the user:

// Using cin to read a string from the keyboard.

#include <iostream>
using namespace std;

int main()
{
char str[80];

cout << "Enter a string: ";
cin >> str; // read string from keyboard
cout << "Here is your string: ";
cout << str;

return 0;
}

Although this program is technically correct, there is still a problem. To see what it is,
examine the following sample run.

Enter a string: This is a test
Here is your string: This

As you can see, when the program redisplays the string, it shows only the word "This",
not the entire sentence that was entered. The reason for this is that the >> operator
stops reading a string when the first whitespace character is encountered. Whitespace
characters include spaces, tabs, and newlines.

Arrays and Strings 87

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

88 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

One way to solve the whitespace problem is to use another of C++’s library functions,
gets(). The general form of a gets() call is:

gets(array-name);

If you need your program to read a string, call gets() with the name of the array,
without any index, as its argument. Upon return from gets(), the array will hold the
string input from the keyboard. The gets() function will continue to read characters
until you press ENTER. The header used by gets() is <cstdio>.

This version of the preceding program uses gets() to allow the entry of strings
containing spaces.

// Using gets() to read a string from the keyboard.

#include <iostream>
#include <cstdio>
using namespace std;

int main()
{
char str[80];

cout << "Enter a string: ";
gets(str); // read a string from the keyboard
cout << "Here is your string: ";
cout << str;

return 0;
}

Now, when you run the program and enter the string "This is a test", the entire
sentence is read and then displayed, as this sample run shows.

Enter a string: This is a test
Here is your string: This is a test

There is one other point of interest in the preceding programs. Notice that in the
cout statement, str is used directly. For reasons that will be clear after you have read
a few more chapters, the name of a character array that holds a string can be used any
place that a string literal can be used.

Keep in mind that neither >> nor gets() performs any bounds checking on the
array. Therefore, if the user enters a string longer than the size of the array, the array
will be overwritten. This makes both methods of reading a string potentially
dangerous. Later, when I/O is examined in detail in Chapter 18, you will learn ways
around this problem.

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 89

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

Some String Library Functions
C++ supports a wide range of string-manipulation functions. The most common are

strcpy()
strcat()
strlen()
strcmp()

The string functions all use the same header, <cstring>. Let’s take a look at these
functions now.

strcpy
A call to strcpy() takes this general form:

strcpy(to, from);

The strcpy() function copies the contents of the string from into to. Remember, the
array that forms to must be large enough to hold the string contained in from. If it isn’t,
the to array will be overrun, which will probably crash your program.

The following program will copy "hello" into string str:

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
char str[80];

strcpy(str, "hello");
cout << str;

return 0;
}

strcat
A call to strcat() takes this form:

strcat(s1, s2);

The strcat() function appends s2 to the end of s1; s2 is unchanged. Both strings
must be null-terminated, and the result is null-terminated. For example, the following
program will print hello there on the screen:

#include <iostream>
#include <cstring>
using namespace std;

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int main()
{
char s1[20], s2[10];

strcpy(s1, "hello");
strcpy(s2, " there");
strcat(s1, s2);
cout << s1;

return 0;
}

strcmp
A call to strcmp() takes this general form:

strcmp(s1, s2);

The strcmp() function compares two strings and returns 0 if they are equal. If s1 is
greater than s2 lexicographically (i.e., according to dictionary order), then a positive
number is returned; if it is less than s2, a negative number is returned.

The password() function, shown in the following program, is a password-verification
routine. It uses strcmp() to check a user’s input against a password.

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

bool password();

int main()
{
if(password()) cout << "Logged on.\n";
else cout << "Access denied.\n";

return 0;
}

// Return true if password accepted; false otherwise.
bool password()
{
char s[80];

cout << "Enter password: ";
gets(s);

if(strcmp(s, "password")) { // strings differ
cout << "Invalid password.\n";
return false;

}

90 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 91

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

// strings compared the same
return true;

}

The key to using strcmp() is to remember that it returns false when the strings match.
Therefore, you will need to use the ! (NOT) operator if you want something to occur
when the strings are equal. For example, the following program continues to request
input until the user types the word "quit":

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char s[80];

for(;;) {
cout << "Enter a string: ";
gets(s);
if(!strcmp("quit", s)) break;

}

return 0;
}

strlen
The general form of a call to strlen() is

strlen(s);

where s is a string. The strlen() function returns the length of the string pointed to
by s.

The following program will print the length of a string entered from the keyboard:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char str[80];

cout << "Enter a string: ";

gets(str);

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

92 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

cout << "Length is: " << strlen(str);

return 0;
}

If the user enters the string "Hi there", this program will display 8. The null terminator
is not counted by strlen().

When the following program is run, the string entered at the keyboard is printed in
reverse. For example, "hello" will be displayed as olleh. Remember that strings are
simply character arrays; thus each character can be referenced individually.

// Print a string backwards.
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char str[80];
int i;

cout << "Enter a string: ";
gets(str);

// Print the string in reverse.
for(i=strlen(str)-1; i>=0; i--) cout << str[i];

return 0;
}

As a final example, the following program illustrates the use of all four string
functions:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char s1[80], s2[80];

cout << "Enter two strings: ";

gets(s1); gets(s2);

cout << "lengths: " << strlen(s1);
cout << ' ' << strlen(s2) << '\n';

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 93

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

if(!strcmp(s1, s2))
cout << "The strings are equal\n";

else cout << "not equal\n";

strcat(s1, s2);
cout << s1 << '\n';

strcpy(s1, s2);
cout << s1 << " and " << s2 << ' ';
cout << "are now the same\n";

return 0;
}

If this program is run and the strings "hello" and "there" are entered, then the output
will be

lengths: 5 5
not equal
hellothere
there and there are now the same

One last reminder: Remember that strcmp() returns false if the strings are equal.
This is why you must use the ! operator to reverse the condition, as shown in the
preceding example, if you are testing for equality.

Using the Null Terminator
The fact that all strings are null-terminated can often be used to simplify various
operations on strings. For example, look at how little code is required to uppercase
every character in a string:

// Convert a string to uppercase.
#include <iostream>
#include <cstring>
#include <cctype>
using namespace std;

int main()
{
char str[80];
int i;

strcpy(str, "this is a test");

for(i=0; str[i]; i++) str[i] = toupper(str[i]);

cout << str;

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

94 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

return 0;
}

This program will print THIS IS A TEST. It uses the library function toupper(),
which returns the uppercase equivalent of its character argument, to convert each
character in the string. The toupper() function uses the header <cctype>.

Notice that the test condition of the for loop is simply the array indexed by the control
variable. This works because a true value is any non-zero value. Remember, all printable
characters are represented by values that are non-zero, but the null terminating the
string is zero. Therefore, the loop runs until it encounters the null terminator, which
causes str[i] to become zero. Since the null terminator marks the end of the string,
the loop stops precisely where it is supposed to. As you progress, you will see many
examples that use the null terminator in a similar fashion.

TIP: In addition to toupper(), the C++ standard library contains several other
character-manipulation functions. For example, the complement to toupper() is
tolower(), which returns the lowercase equivalent of its character argument. Other
character functions include isalpha(), isdigit(), isspace(), and ispunct(). These
functions each take a character argument and determine if it belongs to that category.
For example, isalpha() returns true if its argument is a letter of the alphabet.

Two-Dimensional Arrays
C++ allows multidimensional arrays. The simplest form of the multidimensional
array is the two-dimensional array. A two-dimensional array is, in essence, a list of
one-dimensional arrays. To declare a two-dimensional integer array twod of size
10,20 you would write

int twod[10][20];

Pay careful attention to the declaration. Unlike some other computer languages,
which use commas to separate the array dimensions, C++ places each dimension
in its own set of brackets.

Similarly, to access point 3,5 of array twod, you would use twod[3][5]. In the next
example, a two-dimensional array is loaded with the numbers 1 through 12.

#include <iostream>
using namespace std;

int main()
{

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int t,i, num[3][4];

for(t=0; t<3; ++t) {
for(i=0; i<4; ++i) {
num[t][i] = (t*4)+i+1;
cout << num[t][i] << ' ';

}
cout << '\n';

}

return 0;
}

In this example, num[0][0] will have the value 1, num[0][1] the value 2,
num[0][2] the value 3, and so on. The value of num[2][3] will be 12.
Conceptually, the array will look like that shown in Figure 5-1.

Two-dimensional arrays are stored in a row-column matrix, where the first index
indicates the row and the second indicates the column. This means that when array
elements are accessed in the order in which they are actually stored in memory, the
right index changes faster than the left.

You should remember that storage for all array elements is determined at compile time.
Also, the memory used to hold an array is required the entire time that the array is in
existence. In the case of a two-dimensional array, you can use this formula to determine
the number of bytes of memory that will be allocated:

bytes = row × column × number of bytes in type

Therefore, assuming two-byte integers, an integer array with dimensions 10,5 would
have 10 × 5 × 2 (or 100) bytes allocated.

Arrays and Strings 95

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

Figure 5-1.

A conceptual
view of the
num array

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

96 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

Multidimensional Arrays
C++ allows arrays with more than two dimensions. Here is the general form of
a multidimensional array declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a 4 × 10 × 3 integer array:

int multidim[4][10][3];

Arrays of more than three dimensions are not often used, due to the amount of memory
required to hold them. As stated before, storage for all array elements is allocated
during the entire lifetime of an array. When multidimensional arrays are used, large
amounts of memory can be consumed. For example, a four-dimensional character
array with dimensions 10,6,9,4 would require 10 × 6 × 9 × 4 (or 2,160) bytes. If each array
dimension is increased by a factor of 10 each (that is, 100 × 60 × 90 × 40), then the
memory required for the array increases to 21,600,000 bytes! As you can see, large
multidimensional arrays may cause a shortage of memory for other parts of your
program. Thus, a program with arrays of more than two or three dimensions may
find itself quickly out of memory!

Array Initialization
C++ allows the initialization of arrays. The general form of array initialization is
similar to that of other variables, as shown here:

type-specifier array_name[size] = {value-list};

The value-list is a comma-separated list of values that are type-compatible with the base
type of the array. The first value will be placed in the first position of the array, the
second value in the second position, and so on. Notice that a semicolon follows the }.

In the following example, a 10-element integer array is initialized with the
numbers 1 through 10:

int i[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

This means that i[0] will have the value 1, and i[9] will have the value 10.

Character arrays that will hold strings allow a shorthand initialization that takes
this form:

char array_name[size] = "string";

For example, the following code fragment initializes str to the phrase "hello":

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 97

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

char str[6] = "hello";

This is the same as writing

char str[6] = { 'h', 'e', 'l', 'l', 'o', '\0' };

Because strings in C++ must end with a null, you must make sure that the array you
declare is long enough to include it. This is why str is 6 characters long in these
examples, even though "hello" is only 5. When a string literal is used, the compiler
automatically supplies the null terminator.

Multidimensional arrays are initialized in the same way as one-dimensional arrays.
For example, the following program initializes an array called sqrs with the numbers
1 through 10 and their squares:

int sqrs[10][2] = {
1, 1,
2, 4,
3, 9,
4, 16,
5, 25,
6, 36,
7, 49,
8, 64,
9, 81,
10, 100

};

Examine Figure 5-2 to see how the sqrs array appears in memory.

When initializing a multidimensional array, you may add braces around the
initializers for each dimension. This is called subaggregate grouping. For example,
here is another way to write the preceding declaration:

int sqrs[10][2] = {
{1, 1},
{2, 4},
{3, 9},
{4, 16},
{5, 25},
{6, 36},
{7, 49},
{8, 64},
{9, 81},
{10, 100}

};

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

98 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

When using subaggregate grouping, if you don’t supply enough initializers for
a given group, the remaining members will be set to zero, automatically.

The following program uses the sqrs array to find the square of a number
entered by the user. It first looks up the number in the array and then prints
the corresponding square.

#include <iostream>
using namespace std;

int sqrs[10][2] = {
{1, 1},
{2, 4},
{3, 9},

Figure 5-2.

The initialized
sqrs array

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{4, 16},
{5, 25},
{6, 36},
{7, 49},
{8, 64},
{9, 81},
{10, 100}

};

int main()
{
int i, j;

cout << "Enter a number between 1 and 10: ";
cin >> i;

// look up i
for(j=0; j<10; j++)
if(sqrs[j][0]==i) break;

// display square
cout << "The square of " << i << " is ";
cout << sqrs[j][1];

return 0;
}

Global arrays are initialized when the program begins. Local arrays are initialized each
time the function that contains them is called, as shown here:

#include <iostream>
#include <cstring>
using namespace std;

void f1();

int main()
{
f1();
f1();

return 0;
}

void f1()
{
char s[80]="this is a test\n";

cout << s;
strcpy(s, "CHANGED\n"); // change s
cout << s;

}

Arrays and Strings 99

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This program displays the following output:

this is a test
CHANGED
this is a test
CHANGED

In the program, the array s is initialized each time f1() is called. The fact that s is
changed in the function does not affect its reinitialization upon subsequent calls.
This means that f1() prints

this is a test

every time it is entered.

Unsized Array Initializations
Imagine that you are using array initialization to build a table of error messages,
as shown here:

char e1[14] = "Divide by 0\n";
char e2[23] = "End-of-File\n";
char e3[21] = "Access Denied\n";

As you might guess, it is very tedious to manually count the characters in each
message to determine the correct array dimension. It is possible to let C++ automatically
dimension the arrays in this example through the use of unsized arrays. If an array-
initialization statement does not specify the size of the array, then C++ will automatically
create an array large enough to hold all the initializers present. When this approach is
used, the message table becomes

char e1[] = "Divide by 0\n";
char e2[] = "End-of-File\n";
char e3[] = "Access Denied\n";

Besides being less tedious, the unsized array-initialization method allows you to
change any of the messages without having to resize the array. This avoids errors
caused by accidentally miscounting the number of characters in the message.

Unsized array initializations are not restricted to one-dimensional arrays. For a
multidimensional array, you must specify all but the leftmost dimension so that
C++ can index the array properly. Using unsized array initializations, you can build
tables of varying lengths, with the compiler automatically allocating enough storage
for them.

In the following example, sqrs is declared as an unsized array:

int sqrs[][2] = {
1, 1,
2, 4,

100 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 101

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

3, 9,
4, 16,
5, 25,
6, 36,
7, 49,
8, 64,
9, 81,
10, 100

};

The advantage to this declaration over the sized version is that the table may be
lengthened or shortened without changing the array dimensions.

Arrays of Strings
A special form of a two-dimensional array is an array of strings. It is not uncommon
in programming to use an array of strings. The input processor to a database, for
instance, may verify user commands against a string array of valid commands. To
create an array of strings, a two-dimensional character array is used, with the size
of the left index determining the number of strings, and the size of the right index
specifying the maximum length of each string. For example, the following declares
an array of 30 strings, each having a maximum length of 80 characters:

char str_array[30][80];

Accessing an individual string is quite easy: You simply specify only the left index.
For example, the following statement calls gets() with the third string in str_array:

gets(str_array[2]);

To better understand how string arrays work, study the next short program, which
accepts lines of text entered at the keyboard and redisplays them after a blank line
is entered.

// Enter and display strings.
#include <iostream>
#include <cstdio>
using namespace std;

int main()
{
int t, i;
char text[100][80];

for(t=0; t<100; t++) {
cout << t << ": ";
gets(text[t]);
if(!text[t][0]) break; // quit on blank line

}

// redisplay the strings

A string array is a
two-dimensional
array of
characters.

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for(i=0; i<t; i++)
cout << text[i] << '\n';

return 0;
}

Notice how the program checks for the entry of a blank line. The gets() function returns
a zero-length string if the only key you press is ENTER. This means that the first byte
in that string will be the null character. A null value is always false, thus allowing the
conditional expression to be true.

An Example Using String Arrays
Arrays of strings are commonly used for handling tables of information. One such
application is an employee database that stores the name, telephone number, hours
worked per pay period, and hourly wage of each employee. To create such a program
for a staff of ten employees, you would define these four arrays (the first two of which
are string arrays):

char name[10][80]; // this array holds employee names
char phone[10][20]; // their phone numbers
float hours[10]; // hours worked per week
float wage[10]; // wage

To enter information about each employee, you could use a function like enter(),
as shown here:

// Enter information.
void enter()
{
int i;
char temp[80];

for(i=0; i<10; i++) {
cout << "Enter last name: ";
cin >> name[i];
cout << "Enter phone number: ";
cin >> phone[i];
cout << "Enter number of hours worked: ";
cin >> hours[i];
cout << "Enter wage: ";
cin >> wage[i];

}
}

Once information has been entered, the database can report the data and calculate
the amount of pay each employee is to receive, using the report() function, as
shown here:

102 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Arrays and Strings 103

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

5

// Display report.
void report()
{
int i;

for(i=0; i<10; i++) {
cout << name[i] << ' ' << phone[i] << '\n';
cout << "Pay for the week: " << wage[i] * hours[i];
cout << '\n';

}
}

The entire employee database program is shown next. Pay special attention to
how each array is accessed. This version of the employee database program is not
particularly useful, because the information is lost when the program is terminated.
Later in this book, however, you will learn how to store information in a disk file.

// A simple employee database program.

#include <iostream>
using namespace std;

char name[10][80]; // this array holds employee names
char phone[10][20]; // their phone numbers
float hours[10]; // hours worked per week
float wage[10]; // wage

int menu();
void enter(), report();

int main()
{
int choice;

do {
choice = menu(); // get selection
switch(choice) {
case 0: break;
case 1: enter();
break;

case 2: report();
break;

default: cout << "Try again.\n\n";
}

} while(choice != 0);

return 0;
}

// Return a user's selection.

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int menu()
{
int choice;

cout << "0. Quit\n";
cout << "1. Enter information\n";
cout << "2. Report information\n";
cout << "\nChoose one: ";
cin >> choice;

return choice;
}

// Enter information.
void enter()
{
int i;
char temp[80];

for(i=0; i<10; i++) {
cout << "Enter last name: ";
cin >> name[i];
cout << "Enter phone number: ";
cin >> phone[i];
cout << "Enter number of hours worked: ";
cin >> hours[i];
cout << "Enter wage: ";
cin >> wage[i];

}
}

// Display report.
void report()
{
int i;

for(i=0; i<10; i++) {
cout << name[i] << ' ' << phone[i] << '\n';
cout << "Pay for the week: " << wage[i] * hours[i];
cout << '\n';

}
}

104 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 5

P:\010Comp\Grnd-Up8\897-0\ch05.vp
Friday, February 28, 2003 2:42:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 6

Pointers

105

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointers are without a doubt one of the most important—and troublesome—aspects
of C++. In fact, a large measure of C++’s power is derived from pointers. For example,

they allow C++ to support such things as linked lists and dynamic memory allocation.
They also provide one means by which a function can alter the contents of an argument.
However, these and other uses of pointers will be discussed in subsequent chapters.
In this chapter, you will learn the basics about pointers, see how to manipulate them,
and discover how to avoid some potential troubles.

In a few places in this chapter, it is necessary to refer to the size of several of C++’s
basic data types. For the sake of discussion, assume that characters are one byte in
length, integers are four bytes long, floats are four bytes long, and doubles have
a length of eight bytes. Thus, we will be assuming a typical 32-bit environment.

What Are Pointers?
A pointer is a variable that contains a memory address. Very often this address is the
location of another variable. For example, if x contains the address of y, then x is said
to "point to" y.

Pointer variables must be declared as such. The general form of a pointer variable
declaration is

type *var-name;

Here, type is the pointer’s base type; it must be a valid C++ type. var-name is the name
of the pointer variable. For example, to declare p to be a pointer to an integer, use this
declaration:

int *p;

For a float pointer, use

float *p;

In general, in a declaration statement, preceding a variable name with an * causes that
variable to become a pointer.

The type of data that a pointer will point to is determined by its base type. Here is an
example:

int *ip; // pointer to integers

double *dp; // pointer to doubles

As the comments indicate, ip is a pointer to integers because its base type is int, and
dp is a pointer to doubles because its base type is double. As you will see, the base
type is very important in pointer operations.

106 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

A pointer is a
variable that
contains the
address of
another object.

The base type
of a pointer
determines what
type of data it
will point to.

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

The Pointer Operators
There are two special operators that are used with pointers: * and &. The & is a unary
operator that returns the memory address of its operand. (Recall that a unary operator
requires only one operand.) For example,

balptr = &balance;

puts into balptr the memory address of the variable balance. This address is the
location of the variable in the computer’s internal memory. It has nothing to do
with the value of balance. The operation of & can be remembered as returning "the
address of" the variable it precedes. Therefore, the above assignment statement could
be verbalized as "balptr receives the address of balance." To better understand this
assignment, assume that the variable balance is located at address 100. Then, after
the assignment takes place, balptr has the value 100.

The second operator is *, and it is the complement of &. It is a unary operator that
returns the value of the variable located at the address specified by its operand.
Continuing with the same example, if balptr contains the memory address of
the variable balance, then

value = *balptr;

will place the value of balance into value. For example, if balance originally had
the value 3,200, then value will have the value 3,200, because that is the value stored
at location 100, the memory address that was assigned to balptr. The operation of *
can be remembered as "at address." In this case, then, the statement could be read as
"value receives the value at address balptr." Figure 6-1 depicts the actions of the two
preceding statements.

The following program executes the sequence of operations shown in Figure 6-1:

#include <iostream>
using namespace std;

int main()
{
int balance;
int *balptr;
int value;

balance = 3200;
balptr = &balance;
value = *balptr;
cout << "balance is: " << value << '\n';

return 0;
}

Pointers 107

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The output is shown here.

balance is: 3200

It is unfortunate that the multiplication symbol and the "at address" symbol are the
same. This fact sometimes confuses newcomers to the C++ language. These operators
have no relationship to each other. Keep in mind that both & and * have a higher
precedence than any of the arithmetic operators except the unary minus, with which
they are equal.

The act of using a pointer is often called indirection, because you are accessing one
variable indirectly through another variable.

The Base Type Is Important
In the preceding discussion, you saw that it was possible to assign value the value
of balance indirectly through a pointer. At this point, you may have thought of
this important question: How does C++ know how many bytes to copy into value
from the address pointed to by balptr? Or, more generally, how does the compiler
transfer the proper number of bytes for any assignment using a pointer? The answer
is that the base type of the pointer determines the type of data that the compiler
assumes the pointer is pointing to. In this case, because balptr is an integer pointer,
C++ copies four bytes of information (assuming 32-bit integers) into value from the
address pointed to by balptr. However, if it had been a double pointer, for example,
then eight bytes would have been copied.

Your pointer variables must always point to the correct type of data. For example,
when you declare a pointer to be of type int, the compiler assumes that anything
it points to will be an integer value. Generally, you won’t need to worry about this
because C++ will not allow you to assign one type of pointer to another unless the
two types of pointers are compatible (i.e., essentially, the same).

108 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

Figure 6-1.

The * and
& pointer
operators

Indirection is the
process of using a
pointer to access
some object.

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, the following fragment is incorrect:

int *p;
double f;
// ...
p = &f; // ERROR

This fragment is invalid because you cannot assign a double pointer to an integer
pointer. That is, &f generates a pointer to a double, but p is a pointer to an int.
These two types are not compatible. (In fact, the compiler would flag an error at
this point and not compile your program.)

Although two pointers must have compatible types in order for one to be assigned to
another, you can override this restriction (at your own risk) by using a cast. For example,
the following fragment is now technically correct:

int *p ;
double f;
// ...
p = (int *) &f; // Now technically OK

The cast to int * causes the double pointer to be converted to an integer pointer.
However, to use a cast for this purpose is questionable, because the base type of a
pointer determines how the compiler treats the data it points to. In this case, even
though p is actually pointing to a floating-point value, the compiler still "thinks"
that p is pointing to an integer (because p is an integer pointer).

To better understand why using a cast to assign one type of pointer to another is not
usually a good idea, consider the following short program:

// This program will not work right.
#include <iostream>
using namespace std;

int main()
{
double x, y;
int *p;

x = 123.23;
p = (int *) &x; // use cast to assign double * to int *

y = *p; // What will this do?
cout << y; // What will this print?

return 0;
}

As you can see, p (which is an integer pointer) has been assigned the address of x
(which is a double). Thus, when y is assigned the value pointed to by p, y receives
only four bytes of data (and not the eight required for a double value), because p is

Pointers 109

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

an integer pointer. Therefore, the cout statement displays not 123.23, but a garbage
value instead. (Try this program and observe the result.)

Assigning Values Through a Pointer
You can use a pointer on the left side of an assignment statement to assign a value
to the location pointed to by the pointer. Assuming that p is an integer pointer, this
assigns the value 101 to the location pointed to by p:

*p = 101;

You can verbalize this assignment like this: "at the location pointed to by p, assign
the value 101." To increment or decrement the value at the location pointed to by
a pointer, you can use a statement like this:

(*p)++;

The parentheses are necessary because the * operator has lower precedence than the
++ operator.

The following program demonstrates assignment using a pointer.

#include <iostream>
using namespace std;

int main()
{
int *p, num;

p = #

*p = 100;
cout << num << ' ';
(*p)++;
cout << num << ' ';
(*p)--;
cout << num << '\n';

return 0;
}

The output from the program is shown here.

100 101 100

Pointer Expressions
Pointers can be used in most valid C++ expressions. However, some special rules apply.
Remember also that you may need to surround some parts of a pointer expression
with parentheses in order to ensure that the outcome is what you desire.

110 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointer Arithmetic
There are only four arithmetic operators that can be used on pointers: ++, – –, +, and
–. To understand what occurs in pointer arithmetic, let p1 be an integer pointer with
a current value of 2,000 (that is, it contains the address 2,000). Assuming 32-bit integers,
after the expression

p1++;

the contents of p1 will be 2,004, not 2,001! Each time p1 is incremented, it will point
to the next integer. The same is true of decrements. For example,

p1--;

will cause p1 to have the value 1,996, assuming that it previously was 2,000. Here is
why: Each time that a pointer is incremented, it will point to the memory location
of the next element of its base type. Each time it is decremented, it will point to the
location of the previous element of its base type.

In the case of character pointers, an increment or decrement will appear as "normal"
arithmetic because characters are one byte long. However, every other type of pointer
will increase or decrease by the length of its base type.

You are not limited to only increment and decrement operations. You can also add or
subtract integers to or from pointers. The expression

p1 = p1 + 9;

makes p1 point to the ninth element of p1’s base type, beyond the one to which it is
currently pointing.

While you cannot add pointers, you can subtract one pointer from another (provided
they are both of the same base type). The remainder will be the number of elements
of the base type that separate the two pointers.

Other than addition and subtraction of a pointer and an integer, or the subtraction
of two pointers, no other arithmetic operations can be performed on pointers. For
example, you cannot add or subtract float or double values to or from pointers.

To see the effects of pointer arithmetic, execute the next short program. It prints the
actual physical addresses to which an integer pointer (i) and a floating-point pointer
(f) are pointing. Observe how each changes, relative to its base type, each time the loop
is repeated. (For most 32-bit compilers, i will increase by 4s and f will increase by 8s.)
Notice that when using a pointer in a cout statement, its address is automatically
displayed in the addressing format applicable to the current processor and environment.

// Demonstrate pointer arithmetic.
#include <iostream>
using namespace std;

int main()

Pointers 111

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
int *i, j[10];
double *f, g[10];
int x;

i = j;
f = g;

for(x=0; x<10; x++)
cout << i+x << ' ' << f+x << '\n';

return 0;
}

Here is sample output. (The addresses you see when you run the program may differ
from those shown here, but the net effect will be the same.)

0012FE5C 0012FE84
0012FE60 0012FE8C
0012FE64 0012FE94
0012FE68 0012FE9C
0012FE6C 0012FEA4
0012FE70 0012FEAC
0012FE74 0012FEB4
0012FE78 0012FEBC
0012FE7C 0012FEC4
0012FE80 0012FECC

REMEMBER: All pointer arithmetic is performed relative to the base type of
the pointer.

Pointer Comparisons
Pointers may be compared by using relational operators, such as ==, <, and >. However,
for the outcome of a pointer comparison to be meaningful, the two pointers normally
must have some relationship to each other. For example, if p1 and p2 are pointers
that point to two separate and unrelated variables, then any comparison between p1
and p2 is generally meaningless. However, if p1 and p2 point to variables that are
related to each other, such as elements of the same array, then p1 and p2 can be
meaningfully compared. Later in this chapter, you will see a sample program that
does this.

Pointers and Arrays
In C++, there is a close relationship between pointers and arrays. In fact, frequently
a pointer and an array are interchangeable. In this section, you will see how pointers
and arrays relate.

112 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointers 113

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

To begin, consider this fragment:

char str[80];
char *p1;

p1 = str;

Here, str is an array of 80 characters and p1 is a character pointer. However, it is the
third line that is of interest. In this line, p1 is assigned the address of the first element
in the str array. (That is, after the assignment, p1 will point to str[0].) Here’s why: In
C++, using the name of an array without an index generates a pointer to the first element
in the array. Thus the assignment p1 = str assigns the address of str[0] to p1. This is
a crucial point to understand: When an unindexed array name is used in an expression,
it yields a pointer to the first element in the array.

Since, after the assignment, p1 points to the beginning of str, you may use p1 to
access elements in the array. For example, if you want to access the fifth element in
str, you could use

str[4]

or

*(p1+4)

Both statements will return the fifth element. Remember, array indices start at zero,
so when str is indexed, a 4 is used to access the fifth element. A 4 is also added to the
pointer p1 to get the fifth element, because p1 currently points to the first element
of str.

The parentheses surrounding p1+4 are necessary because the * operation has a higher
priority than the + operation. Without the parentheses, the expression would first
find the value pointed to by p1 (the first location in the array) and then add 4 to it.

TIP: Be sure to properly parenthesize a pointer expression. If you don’t, the
error will be hard to find later because your program will look correct. If in doubt
about whether or not to add parentheses, add them; they will do no harm.

In effect, C++ allows two methods of accessing array elements: pointer arithmetic and
array indexing. This is important because pointer arithmetic can sometimes be faster
than array indexing—especially when you are accessing an array in strictly sequential
order. Since speed is often a consideration in programming, the use of pointers to access
array elements is very common in C++ programs. Also, you can sometimes write tighter
code by using pointers rather than array indexing.

To get the flavor of the difference between using array indexing and pointer
arithmetic, two versions of the same program will be shown next. The program

An array name
without an index
generates a
pointer to the
start of the array.

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

extracts words, separated by spaces, from a string. For example, given "Hello Tom," the
program would extract "Hello" and "Tom." Programmers typically refer to delineated
character sequences as tokens, and the process of extracting tokens is generally called
tokenizing. The program scans the input string, copying characters from the string into
another array, called token, until a space is encountered. It then prints the token and
repeats the process until the null at the end of the string is reached. For example, if
you enter This is a test. the program displays the following:

This
is
a
test.

Here is the pointer version of the tokenizing program:

// Tokenizing program: pointer version.
#include <iostream>
#include <cstdio>
using namespace std;

int main()
{
char str[80];
char token[80];
char *p, *q;

cout << "Enter a sentence: ";
gets(str);

p = str;

// Read a token at a time from the string.
while(*p) {
q = token; // set q pointing to start of token

/* Read characters until either a space or the
null terminator is encountered. */

while(*p!=' ' && *p) {
*q = *p;
q++; p++;

}
if(*p) p++; // advance past the space
*q = '\0'; // null terminate the token
cout << token << '\n';

}

return 0;
}

Here is the array-indexing version:

114 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Tokenizing program: array-indexing version.
#include <iostream>
#include <cstdio>
using namespace std;

int main()
{
char str[80];
char token[80];
int i, j;

cout << "Enter a sentence: ";
gets(str);

// Read a token at a time from the string.
for(i=0; ; i++) {
/* Read characters until either a space or the

null terminator is encountered. */
for(j=0; str[i]!=' ' && str[i]; j++, i++)
token[j] = str[i];

token[j] = '\0'; // null terminate the token
cout << token << '\n';
if(!str[i]) break;

}

return 0;
}

Because of the way some C++ compilers generate code, these two programs may not
be equivalent in performance. Generally, it takes more machine instructions to index
an array than it does to perform arithmetic on a pointer. Consequently, in professionally
written C++ code, it is common to see the pointer version used more frequently.
However, as a beginning C++ programmer, feel free to use array indexing until you
are comfortable with pointers.

Indexing a Pointer
As you have just seen, it is possible to access an array by using pointer arithmetic.
What you might find surprising is that the reverse is also true. In C++, it is possible
to index a pointer as if it were an array. This further illustrates the close relationship
between pointers and arrays. Here is an example that indexes a pointer.

// Indexing a pointer like an array.
#include <iostream>
#include <cctype>
using namespace std;

int main()
{
char str[20] = "hello tom";
char *p;

Pointers 115

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int i;

p = str; // put address of str into p

// now, index p like an array
for(i=0; p[i]; i++) p[i] = toupper(p[i]);

cout << p; // display the string

return 0;
}

The program displays

HELLO TOM

Here is how it works. First the program loads the string str with "hello tom". It then
assigns the address of the beginning of str to p. Next, using toupper(), it converts
each character in the string to uppercase by indexing p. Remember, the expression
p[i] is functionally identical to *(p+i).

Are Pointers and Arrays Interchangeable?
As the preceding few pages have shown, pointers and arrays are strongly related.
In fact, pointers and arrays are interchangeable in many cases. For example, a
pointer that points to the beginning of an array can access that array by using
either pointer arithmetic or array-style indexing. However, pointers and arrays
are not completely interchangeable. For example, consider this fragment:

int num[10];
int i;

for(i=0; i<10; i++) {
*num = i; // this is OK
num++; // ERROR -- cannot modify num

}

Here, num is an array of integers. As the comments describe, while it is perfectly
acceptable to apply the * operator to num (which is a pointer operation), it is illegal
to modify num’s value. The reason for this is that num is a constant that points to
the beginning of an array. Thus, you cannot increment it. More generally, while an
array name without an index does generate a pointer to the beginning of an array,
it cannot be changed.

Although an array name generates a pointer constant, it can still take part in pointer-style
expressions, as long as it is not modified. For example, the following is a valid statement
that assigns num[3] the value 100:

*(num+3) = 100; // This is OK because num is not changed

116 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointers and String Literals
You might be wondering how string literals, like the one in the fragment shown here,
are handled by C++:

cout << strlen("C++ Compiler");

The answer is that when the compiler encounters a string literal, it stores it in the
program’s string table and generates a pointer to the string. Therefore, the following
program is perfectly valid, and prints the phrase Pointers are fun to use.
on the screen:

#include <iostream>
using namespace std;

int main()
{
char *s;

s = "Pointers are fun to use.\n";

cout << s;

return 0;
}

In this program, the characters that make up a string literal are stored in the string
table, and s is assigned a pointer to the string in that table.

Since a pointer into your program’s string table is generated automatically whenever a
string literal is used, you might be tempted to use this fact to modify the contents of
the string table. However, this is usually not a good idea because many C++ compilers
create optimized tables in which one string literal may be used at two or more different
places in your program. Thus, changing a string may cause undesired side effects.
Furthermore, string literals are constants and some modern C++ compilers will not
let you change their contents. Attempting to do so generates a run-time error.

A Comparison Example
Earlier you learned that it is legal to compare the value of one pointer to that of another.
However, in order for a pointer comparison to be meaningful, the two pointers must
have some relationship to each other. The most common way such a relationship is
established is when both pointers point to elements of the same array. For example,
given two pointers, A and B, that both point into the same array, if A is less than B
then A points to an element at a smaller index than the element pointed to by B. Such
comparisons are especially useful for determining boundary conditions.

The following program demonstrates a pointer comparison. The program creates two
pointer variables. One, called start, initially points to the beginning of an array, and
the other, called end, points to the end of the array. As the user enters numbers, the

Pointers 117

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

The string table is
a table generated
by the compiler
that holds the
strings used by
your program.

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

118 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

array is filled sequentially from the beginning to the end. Each time a number is entered
into the array, start is incremented. To determine if the array is full, the program simply
compares start with end. When start is greater than end, the array has been filled.
Once the array is full, the contents of the array are displayed.

// A pointer comparison example.
#include <iostream>
using namespace std;

int main()
{
int num[10];
int *start, *end;

start = num;
end = &num[9];

// enter the values
while(start <= end) {
cout << "Enter a number: ";
cin >> *start;
start++;

}

start = num; // reset the starting pointer

// display the values
while(start <= end) {
cout << *start << ' ';
start++;

}

return 0;
}

As this program illustrates, because start and end both point to a common object,
in this case the array num, they can be meaningfully compared. This type of pointer
comparison is used frequently in professionally written C++ code.

Arrays of Pointers
Pointers can be arrayed like any other data type. For example,

int *ipa[10];

declares ipa as an array of 10 integer pointers. Thus, each element in ipa holds
a pointer to an int value.

To assign the address of an int variable called var to the third element of ipa, you
would write

ipa[2] = &var;

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointers 119

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

Remember, ipa is an array of integer pointers. The only values that its array elements
can hold are the addresses of integer variables. This is why var is preceded by the
& operator.

Using the ipa array to assign the value of var to an int variable called x, you
would write:

x = *ipa[2];

Because the address of var is stored at ipa[2], applying the * operator to this index
causes the value of var to be obtained.

Like other arrays, arrays of pointers can be initialized. A common use for initialized
pointer arrays is to hold pointers to strings. For example, to create a function that will
output a fortune, you can define a number of different messages in a pointer array, as
shown here:

char *fortunes[] = {
"Soon, you will come into some money.\n",
"A new love will enter your life.\n",
"You will live long and prosper.\n",
"Now is a good time to invest for the future.\n",
"A close friend will ask for a favor.\n"

};

Remember, C++ stores all string literals in the string table associated with your
program, so the array need only store pointers to the strings. Thus, to print the
second message, use a statement like this:

cout << fortunes[1];

An entire "fortune cookie" program is shown here. It uses rand() to generate a
random number. It then uses the modulus operator to obtain a number between
0 and 4, which it uses to index the array.

#include <iostream>
#include <cstdlib>
#include <conio.h>
using namespace std;

char *fortunes[] = {
"Soon, you will come into some money.\n",
"A new love will enter your life.\n",
"You will live long and prosper.\n",
"Now is a good time to invest for the future.\n",
"A close friend will ask for a favor.\n"

};

int main()
{
int chance;

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

120 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

cout << "To see your fortune, press a key: ";

// randomize the random number generator
while(!kbhit()) rand();

cout << '\n';

chance = rand();
chance = chance % 5;
cout << fortunes[chance];

return 0;
}

Notice the while loop in the program, which calls rand() repeatedly until a key is
pressed. Because the rand() function always generates the same sequence of random
numbers, it is important to have some way for the program to start using this sequence
at a random point. (Otherwise, the same fortune will be given each time the program
is run.) This is achieved by repeated calls to rand(). When the user presses a key, the
loop stops at a random point in the sequence, and the fortune is displayed on the screen.
Remember, kbhit() is a common extension provided by many compilers, but it is
not defined by C++.

The next example uses a two-dimensional array of pointers to create the skeleton
of a program that displays a syntax reminder for the C++ keywords. This program
initializes a list of string pointers. The first dimension points to a C++ keyword, and
the second dimension points to a short description of the keyword. The list is terminated
by two null strings. These nulls are used to mark the end of the list. The user enters
a keyword, and the program displays the description. As you can see, only a few
keywords have been listed. The expansion of the list is left to you, as an exercise.

// A simple C++ keyword synopsis program.

#include <iostream>
#include <cstring>
using namespace std;

char *keyword[][2] = {
"for", "for(initialization; condition; increment)",
"if", "if(condition) ... else ...",
"switch", "switch(value) { case-list }",
"while", "while(condition) ...",
// add the rest of the C++ keywords here
"", "" // terminate the list with nulls

};

int main()
{
char str[80];

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int i;

cout << "Enter keyword: ";
cin >> str;

// display syntax
for(i=0; *keyword[i][0]; i++)
if(!strcmp(keyword[i][0], str))
cout << keyword[i][1];

return 0;
}

Here is a sample run.

Enter keyword: for
for(initialization; condition; increment)

In the program, notice the expression controlling the for loop. It causes the loop to
terminate when keyword[i][0] contains a pointer that points to a null, which is a
false value. Thus, when the loop encounters the null strings at the end of the pointer
array, the loop stops.

The Null Pointer Convention
After a pointer is declared, but before it has been assigned a value, it will contain an
arbitrary value. Should you try to use the pointer prior to giving it a value, you will
probably crash not only your program, but perhaps even the operating system of your
computer (a very nasty type of error!). While there is no sure way to avoid using an
uninitialized pointer, C++ programmers have adopted a procedure that helps prevent
some errors. By convention, if a pointer contains the null (zero) value, it is assumed to
point to nothing. Thus, if all unused pointers are given the null value and you avoid
the use of a null pointer, you can avoid the accidental misuse of an uninitialized pointer.
This is a good practice to follow.

Any type of pointer can be initialized to null when it is declared. For example, the
following initializes p to null:

float *p = 0; // p is now a null pointer

To check for a null pointer, use an if statement, like one of these:

if(p) // succeeds if p is not null

if(!p) // succeeds if p is null

If you follow the null pointer convention, you will avoid many problems when using
pointers.

Pointers 121

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

122 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

Multiple Indirection
A pointer to a pointer is a form of multiple indirection, or a chain of pointers.
Consider Figure 6-2. As you can see, in the case of a normal pointer, the pointer
contains the address of a value. In the case of a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the location
that contains the desired value.

Pointers and 16-bit Environments
Although the most common computing environment today is 32-bits, there are
still 16-bit environments in use, and there is a lot of old 16-bit code still in existence.
The most important 16-bit environment is DOS, followed by Windows 3.1. These
operating systems were designed for the 8086 family of processors, which includes
the 80286, 80386, 80486, and Pentium, when running in 8086-emulation mode.
Although most new code is designed for a 32-bit environment, programs are still
being written and maintained for the more compact 16-bit environments. Because
there are some issues unique to the 16-bit environment that impact the way code is
written, a brief discussion is in order for the benefit of those programmers working
in one of these environments, adapting older code, or porting 16-bit code to 32 bits.

When writing 16-bit code for the 8086 family of processors you have up to six different
ways to compile your program, each organizing the memory of the machine differently.
You can compile your programs for the tiny, small, medium, compact, large, and
huge memory models. Each of these models optimizes the space reserved for data, code,
and stack in its own way. The reason for the different memory organizations is based
on the 8086 family’s use of a segmented architecture when running 16-bit code. In
16-bit segmented mode, the 8086 family divides memory into 64K segments.

Figure 6-2.

Single and
multiple
indirection

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointers 123

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

The memory model can, in some cases, have an effect on how pointers behave and
on what you can do with them. The main issue is what happens when a pointer is
incremented beyond a segment boundary. It is beyond the scope of this book to
discuss the behaviors and nuances of each 8086 16-bit memory model. Just be aware
that if you are working in a 16-bit 8086 environment then you will need to consult
your compiler’s documentation about memory models and their effect on pointers.

One last thing: When writing for the modern, 32-bit environment, there is only one
way to organize memory, which is called the flat model.

Multiple indirection can be carried on to whatever extent desired, but there are few
cases where more than a pointer to a pointer is needed, or, indeed, is even wise to use.
Excessive indirection is difficult to follow and prone to conceptual errors.

A variable that is a pointer to a pointer must be declared as such. This is done by
placing an additional asterisk in front of its name. For example, this declaration
tells the compiler that balance is a pointer to a pointer of type int:

int **balance;

It is important to understand that balance is not a pointer to an integer, but rather
a pointer to an int pointer.

When a target value is indirectly pointed to by a pointer to a pointer, accessing that
value requires that the asterisk operator be applied twice, as is shown in this short
example:

// Demonstrate multiple indirection.
#include <iostream>
using namespace std;

int main()
{
int x, *p, **q;

x = 10;
p = &x;
q = &p;

cout << **q; // prints the value of x

return 0;
}

Here, p is declared as a pointer to an integer, and q as a pointer to a pointer to an
integer. The cout statement will print the number 10 on the screen.

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

124 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

Problems with Pointers
Nothing will get you into more trouble than a "wild" pointer! Pointers are a mixed
blessing. They give you tremendous power and are useful for a number of different
operations. But, when a pointer accidentally contains the wrong value, it can be the
most difficult bug to track down.

Bugs caused by bad pointers are hard to find because often the pointer itself does
not exhibit the problem. Instead, the problem shows itself only indirectly, perhaps
several steps after you have performed a pointer operation. For example, if a pointer
accidentally points to the wrong data, then a pointer operation may alter this data,
but the problem associated with this unintended alteration will not manifest itself
until later in the program’s execution. This may lead you to look for the bug in the
wrong place. By the time the problem is evident, there may be little or no indication
that the pointer was the original cause of the problem. For this reason, pointer bugs
have caused programmers to lose sleep time and time again.

Since pointer problems are so troublesome, let’s look at some ways they can happen,
and how they can be avoided.

Uninitialized Pointers
The classic example of a pointer error is the uninitialized pointer. Consider this example:

// This program is wrong.
int main(){
int x, *p;

x = 10;
*p = x; // where does p point?

return 0;
}

Here, p contains an unknown address because it has never been defined. You will
have no way of knowing where the value of x has been written. When your program
is very small, as it is here, the odds are that p will contain an address that is not in
your code or data area. Most of the time, your program will seem to work fine. However,
as your program grows, the probability of p pointing into either your program’s code
or data area increases. Eventually your program stops working. The way to prevent
this type of program is obvious: make sure that a pointer is pointing to something
valid before using it!

Invalid Pointer Comparisons
Comparisons between pointers that do not access the same array are generally invalid,
and often cause errors. You should not make assumptions about where your data will
be placed in memory, whether it will always be in the same place, or whether every
compiler or execution environment will treat it in the same way. Therefore, making
any comparisons between pointers to two different objects may yield unexpected
results. Here is an example:

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Pointers 125

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

6

char s[80];
char y[80];
char *p1, *p2;

p1 = s;
p2 = y;
if(p1 < p2) . . .

This code is based on an invalid concept since C++ makes no guarantees about the
placement of variables in memory. You should write your applications in such a way
that they work no matter where data is located.

A related error assumes that two back-to-back arrays can be indexed as one simply by
incrementing a pointer across the array boundaries. For example:

int first[10];
int second[10];

int *p, t;

p = first;
for(t=0; t<20; ++t) {
*p = t;
p++;

}

The aim here is to initialize arrays first and second with the numbers 0 through 19,
but the code is not reliable. Even though it may work with some compilers under certain
circumstances, it assumes that both arrays will be placed back-to-back in memory
with first first. However, C++ does not guarantee how variables will be located in
memory.

Forgetting to Reset a Pointer
The following (incorrect) program inputs a string entered from the keyboard and then
displays the ASCII code for each character in the string. (Notice that it uses a cast to
cause the ASCII codes to be displayed.) However, this program has a serious bug.

// This program is wrong.

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char s[80];
char *p1;

p1 = s;

do {

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

126 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 6

cout << "Enter a string: ";
gets(p1); // read a string
// print the ASCII values of each character
while(*p1) cout << (int) *p1++ << ' ';
cout << '\n';

} while(strcmp(s, "done"));

return 0;
}

Can you find the error?

The pointer p1 is assigned the address of s once. This assignment is made outside
of the loop. The first time through the loop, p1 does point to the first character in s.
However, the second time through, it continues on from where it left off, because it
has not been reset to the start of the array s. This will eventually cause s to be overrun.

The proper way to write this program is shown here:

// This program is correct.

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int main()
{
char s[80];
char *p1;

do {
p1 = s; // reset p1 each time through the loop

cout << "Enter a string: ";
gets(p1); // read a string
// print the ASCII values of each character
while(*p1) cout << (int) *p1++ << ' ';
cout << '\n';

} while(strcmp(s, "done"));

return 0;
}

Here, each time the loop iterates, p1 is set to the beginning of the string.

REMEMBER: The key to the safe use of pointers is to know where your
pointers are pointing at all times.

P:\010Comp\Grnd-Up8\897-0\ch06.vp
Friday, February 28, 2003 12:05:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 7

Functions, Part One:
The Fundamentals

127

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

128 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

This chapter begins an in-depth discussion of the function. Functions are the building
blocks of C++, and a firm understanding of them is fundamental to becoming a

successful C++ programmer. Aside from their brief introduction in Chapter 2, you have
been using functions more or less intuitively. In this chapter you will study them in
detail. Topics include the scope rules of a function, recursive functions, some special
properties of the main() function, the return statement, and function prototypes.

Scope Rules of Functions
The scope rules of a language are the rules that govern how an object may be accessed
by various parts of your program. In other words, the scope rules determine what code
has access to a variable. The scope rules also determine the lifetime of a variable. As
mentioned earlier, there are three types of variables: local variables, formal parameters,
and global variables. Let’s look more closely at the scope rules at this time, with emphasis
on how they relate to functions.

Local Variables
As you know, variables that are declared inside a function are called local variables.
However, C++ supports a more subtle concept of the local variable than you have
previously seen. In C++, variables can be localized to a block. That is, a variable can be
declared inside any block of code and is then local to it. (Remember, a block begins
with an opening curly brace and ends with a closing curly brace.) In reality, variables
local to a function are simply a special case of the more general concept.

A local variable can be used only by statements located within the block in which it is
declared. Stated another way, a local variable is not known outside its own code block.
Thus, statements outside a block cannot access an object defined within the block.

One of the most important things to understand about local variables is that they exist
only while the block of code in which they are declared is executing. This means that
a local variable is created upon entry into its block and destroyed upon exit. Because a
local variable is destroyed upon exit from its block, its value is lost.

The most common code block is the function. In C++, each function defines a block
of code that begins with the function’s opening curly brace and ends with its closing
curly brace. A function’s code and data are private to that function, and cannot be
accessed by any statement in any other function, except through a call to that function.
(It is not possible, for instance, to use a goto statement to jump into the middle of
another function.) The body of a function is hidden from the rest of the program and,
unless it uses global variables, it can neither affect nor be affected by other parts of the
program. Thus, the contents of one function are completely separate from the contents
of another. Stated another way, the code and data that are defined within one function
cannot interact with the code or data defined in another function, because the two
functions have a different scope.

Because each function defines its own scope, the variables declared within one function
have no effect on those declared in another—even if those variables share the same name.
For example, consider the following program:

The scope rules
define how an
object may be
accessed and
determine its
lifetime.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 129

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

#include <iostream>
using namespace std;

void f1();

int main()
{
char str[] = "this is str in main()";

cout << str << '\n';
f1();
cout << str << '\n';

return 0;
}

void f1()
{
char str[80];

cout << "Enter something: ";
cin >> str;
cout << str << '\n';

}

A character array called str is declared twice here, once in main() and once in
f1(). The str in main() has no bearing on, or relationship to, the one in f1().
The reason for this is that each str is known only to the block in which it is
declared. To confirm this, try running the program. As you will see, even though
str receives a string entered by the user inside f1(), the contents of str in main()
remain unchanged.

The C++ language contains the keyword auto, which can be used to declare local
variables. However, since all non-global variables are, by default, assumed to be auto,
it is virtually never used. Hence, you will not see it used in any of the examples in this
book. However, if you choose to use it, place it immediately before the variable’s type,
as shown here:

auto char ch;

It is common practice to declare all variables needed within a function at the
beginning of that function’s code block. This is done mainly so that anyone
reading the code can easily determine what variables are used. However, the
beginning of the function’s block is not the only place where local variables can
be declared. A local variable can be declared anywhere, within any block of code.
A variable declared within a block is local to that block. This means that the
variable does not exist until the block is entered and is destroyed when the block
is exited. Furthermore, no code outside that block—including other code in the
function—can access that variable.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

130 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

To understand this, try the following program:

/* This program illustrates how variables can be
local to a block.

*/

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
int choice;

cout << "(1) add numbers or ";
cout << "(2) concatenate strings?: ";

cin >> choice;
if(choice == 1) {
int a, b; /* activate two integer vars */
cout << "Enter two numbers: ";
cin >> a >> b;
cout << "Sum is " << a+b << '\n';

}
else {
char s1[80], s2[80]; /* activate two strings */
cout << "Enter two strings: ";
cin >> s1;
cin >> s2;
strcat(s1, s2);
cout << "Concatenation is " << s1 << '\n';

}

return 0;
}

This program either adds two numbers or concatenates two strings, depending on the
user’s choice. Notice the variable declarations for a and b in the if block and those for
s1 and s2 in the else block. These variables will come into existence only when their
respective blocks are entered, and they will cease to exist when their blocks are exited.
If the user chooses to add numbers, then a and b are created. If the user wants to
concatenate strings, s1 and s2 are created. Finally, none of these variables can be
referenced from outside of its block—not even in other parts of the function. For
example, if you try to compile the following (incorrect) version of the program, you
will receive an error message:

/* This program is incorrect. */

#include <iostream>
#include <cstring>
using namespace std;

int main()
{

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 131

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

int choice;

cout << "(1) add numbers or ";
cout << "(2) concatenate strings?: ";

cin >> choice;
if(choice == 1) {
int a, b; /* activate two integer vars */
cout << "Enter two numbers: ";
cin >> a >> b;
cout << "Sum is " << a+b << '\n';

}
else {
char s1[80], s2[80]; /* activate two strings */
cout << "Enter two strings: ";
cin >> s1;
cin >> s2;
strcat(s1, s2);
cout << "Concatenation is " << s1 << '\n';

}

a = 10; // *** Error *** -- a not known here!

return 0;
}

In this case, a is not known outside of the else block. Thus, it is an error to attempt to
use it.

When a local variable declared in an inner block has the same name as a variable
declared in an outer block, the variable declared in the inner block overrides the one
in the outer block, within the scope of the inner block. For example:

#include <iostream>
using namespace std;

int main()
{
int i, j;

i = 10;
j = 100;

if(j > 0) {
int i; // this i is separate from outer i

i = j / 2;
cout << "inner i: " << i << '\n';

}

cout << "outer i: " << i << '\n';

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

132 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

The output from this program is shown here:

inner i: 50
outer i: 10

The i declared within the if block overrides, or hides, the outer i. Changes that take
place on the inner i have no effect on the outer i. Furthermore, outside of the if
block, the inner i is unknown and the outer i comes back into view.

Because local variables are created and destroyed with each entry and exit from the
blocks in which they are declared, a local variable will not hold its value between
activations of its block. This is especially important to remember in terms of a function
call. When a function is called, its local variables are created, and upon its return, they
are destroyed. This means that local variables cannot retain their values between calls.
(There is one way around this restriction, however, which will be explained later in
this book.)

Unless otherwise specified, storage for local variables is on the stack. The fact that the
stack is a dynamic, changing region of memory explains why local variables cannot,
in general, hold their values between function calls.

As mentioned earlier, although local variables are typically declared at the beginning of
their block, they need not be. A local variable can be declared anywhere within a block,
as long as it is declared before it is used. For example, this is a perfectly valid program:

#include <iostream>
using namespace std;

int main()
{
cout << "Enter a number: ";
int a; // declare one variable
cin >> a;

cout << "Enter a second number: ";
int b; // declare another variable
cin >> b;

cout << "Product: " << a*b << '\n';

return 0;
}

In this example, a and b are not declared until just before they are needed. Frankly,
most programmers declare all local variables at the beginning of the block that uses
them, but this is a stylistic issue.

Declaring Variables Within Iteration and Selection Statements
It is possible to declare a variable within the initialization portion of a for loop or
the conditional expression of an if, switch, or while. A variable declared in one of
these places has its scope limited to the block of code controlled by that statement.

A local variable
will not hold its
value between
activations.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

For example, a variable declared within a for statement will be local to that loop, as
the following example shows.

#include <iostream>
using namespace std;

int main()
{
// i is local to for
for(int i = 0; i<10; i++) {
cout << i << " ";
cout << "squared is " << i * i << "\n";

}

// i = 10; // *** Error *** -- i not known here!

return 0;
}

Here, i is declared within the initialization portion of the for and is used to control
the loop. Outside the loop, i is unknown.

In general, when the loop control variable of a for is not needed outside the loop,
declaring it inside the for statement, as shown in the example, is a good idea because
it localizes the variable to the loop and prevents its accidental misuse elsewhere. In
professionally written C++ code, you will frequently find the loop control variable
declared within the for statement. Of course, if the variable is required by code
outside the loop, then it cannot be declared within the for statement.

TIP: Whether or not a variable declared within the initialization portion of a for
loop is local to that loop has changed over time. Originally, the variable was available
after the for. However, Standard C++ restricts the variable to the scope of the for loop.
Compilers continue to differ on this point, though.

If your compiler fully complies with Standard C++, then you can also declare a
variable within the conditional expression of the if, switch, or while. For example,
this fragment

if(int x = 20) {
cout << "This is x: ";
cout << x;

}

declares x and assigns it the value 20. Since this is a true value, the cout statements
execute. Variables declared within a conditional statement have their scope limited
to the block of code controlled by that statement. Thus, in this case, x is not known
outside the if. Frankly, not all programmers believe that declaring variables within
conditional statements is good practice, and this technique will not be used in this book.

Functions, Part One: The Fundamentals 133

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

134 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

Formal Parameters
As you know, if a function uses arguments, then it must declare variables that will
accept the values of those arguments. These variables are called the formal parameters
of the function. Aside from receiving the arguments when a function is called, formal
parameters behave like any other local variables inside the function. The scope of
a parameter is local to its function.

You must make sure that the formal parameters you declare are of the same type as the
arguments you will pass to the function. Also, even though these variables perform the
special task of receiving the values of the arguments, they can be used like any other local
variable. For example, you can assign a new value to a parameter within the function.

Global Variables
Global variables are, in many ways, the opposite of local variables. They are known
throughout the entire program, can be used by any piece of code, and maintain their
values during the entire execution of the program. Therefore, their scope extends to
the entire program. You can create global variables by declaring them outside of any
function. Because they are global, they can be accessed by any expression, regardless
of the function in which the expression is located.

When a global and a local variable share the same name, the local variable has
precedence. Put differently, a local variable will hide a global variable of the same name.
Thus, even though global variables can be accessed by any code in your program, this
will happen only when no local variable’s name overrides the global variable.

The following program demonstrates the use of global variables. As you can see, the
variables count and num_right have been declared outside of all functions; they are,
therefore, global. Common practice dictates that it is best to declare global variables near
the top of the program. However, technically, they simply have to be declared before they
are first used. This program is a simple addition drill. It first asks you how many problems
you want. For each problem, the program calls drill(), which generates two random
numbers in the range 0 through 99. It prompts for, and then checks, your answer. You get
three tries per problem. At the end, the program displays the number of answers you’ve
gotten right. Pay special attention to the global variables used in this program:

// A simple addition drill program.

#include <iostream>
#include <cstdlib>
using namespace std;

void drill();

int count; // count and num_right are global
int num_right;

int main()
{
cout << "How many practice problems: ";
cin >> count;

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 135

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

num_right = 0;
do {
drill();
count--;

} while(count);
cout << "You got " << num_right << " right.\n";

return 0;
}

void drill()
{
int count; /* This count is local and unrelated to

the global one.
*/

int a, b, ans;

// Generate two numbers between 0 and 99.
a = rand() % 100;
b = rand() % 100;

// The user gets three tries to get it right.
for(count=0; count<3; count++) {
cout << "What is " << a << " + " << b << "? ";
cin >> ans;
if(ans==a+b) {
cout << "Right\n";
num_right++;
return;

}
}
cout << "You've used up all your tries.\n";
cout << "The answer is " << a+b << '\n';

}

Looking closely at this program, it should be clear that both main() and drill() access
the global num_right. However, count is a little more complex. The reference to count
in main() is to the global count. However, drill() has declared a local variable called
count. When drill() uses count, it is referring to its local variable, not the global one.
Remember that if, within a function, a global variable and a local variable have the same
name, all uses of that variable will refer to the local variable, not the global variable.

Storage for global variables is in a fixed region of memory set aside for this purpose
by your program. Global variables are helpful when the same data is used by several
functions in your program, or when a variable must hold its value throughout the
duration of the program. You should avoid using unnecessary global variables,
however, for three reasons:

◆ They take up memory the entire time your program is executing, not just when
they are needed.

◆ Using a global variable where a local variable is sufficient makes a function less
general, because it relies on something that must be defined outside itself.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

136 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

◆ Using a large number of global variables can lead to program errors because of
unknown, and unwanted, side effects. A major problem in developing large
programs is the accidental modification of a variable’s value due to its use
elsewhere in a program. This can happen in C++ if you use too many global
variables in your programs.

Passing Pointers and Arrays
Up to now, the examples in this book have only passed simple variables to functions.
However, there will be times when you will want to use pointers and arrays as arguments.
While passing these types of arguments is a straightforward process, some special issues
need to be addressed.

Calling Functions with Pointers
C++ allows you to pass a pointer to a function. To do so, simply declare the parameter
as a pointer type. Here is an example:

// Pass a pointer to a function.
#include <iostream>
using namespace std;

void f(int *j);

int main()
{
int i;
int *p;

p = &i; // p now points to i

f(p);

cout << i; // i is now 100

return 0;
}

void f(int *j)
{
*j = 100; // var pointed to by j is assigned 100

}

Study this program carefully. As you can see, f() takes one parameter: an integer
pointer. Inside main(), p is assigned the address of i. Next, f() is called with p as an
argument. When the pointer parameter j receives p, it then also points to i within
main(). Thus, the assignment

*j = 100;

causes i to be given the value 100. Thus, the program displays 100. For the general
case, f() assigns 100 to whatever address it is called with.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 137

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

In the preceding example, it is not actually necessary to use the pointer variable p.
Instead, you can simply precede i with an & when f() is called. (This, of course, will
cause the address of i to be generated.) The revised program is shown here:

// Pass a pointer to a function -- revised version.
#include <iostream>
using namespace std;

void f(int *j);

int main()
{
int i;

f(&i);

cout << i;

return 0;
}

void f(int *j)
{
*j = 100; // var pointed to by j is assigned 100

}

It is crucial that you understand one important point about passing pointers to
functions: When you perform an operation within the function that uses the pointer,
you are operating on the variable that is pointed to by that pointer. Thus, the function
will be able to change the value of the object pointed to by the parameter.

Calling Functions with Arrays
When an array is an argument to a function, only the address of the first element of
the array is passed, not a copy of the entire array. (Remember, in C++, an array name
without an index is a pointer to the first element in the array.) This means that the
parameter declaration must be of a compatible type. There are three ways to declare
a parameter that is to receive an array pointer. First, it can be declared as an array of
the same type and size as that used to call the function, as shown here:

#include <iostream>
using namespace std;

void display(int num[10]);

int main()
{
int t[10],i;

for(i=0; i<10; ++i) t[i]=i;

display(t); // pass array t to a function

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

138 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

return 0;
}

// Print some numbers.
void display(int num[10])
{
int i;

for(i=0; i<10; i++) cout << num[i] << ' ';
}

Even though the parameter num is declared to be an integer array of 10 elements,
the C++ compiler will automatically convert it to an integer pointer. This is necessary
because no parameter can actually receive an entire array. Since only a pointer to the
array will be passed, a pointer parameter must be there to receive it.

A second way to declare an array parameter is to specify it as an unsized array, as
shown here:

void display(int num[])
{
int i;

for(i=0; i<10; i++) cout << num[i] << ' ';
}

Here, num is declared to be an integer array of unknown size. Since C++ provides no
array boundary checks, the actual size of the array is irrelevant to the parameter (but
not to the program, of course). This method of declaration is also automatically
transformed into an integer pointer by the compiler.

The final way that num can be declared is as a pointer. This is the method most
commonly used in professionally written C++ programs. Here is an example:

void display(int *num)
{
int i;

for(i=0; i<10; i++) cout << num[i] << ' ';
}

The reason it is possible to declare num as a pointer is that any pointer can be indexed
using [], as if it were an array. Recognize that all three methods of declaring an array
parameter yield the same result: a pointer.

On the other hand, an array element used as an argument is treated like any other
simple variable. For example, the preceding program could also be written without
passing the entire array, as shown here:

#include <iostream>
using namespace std;

void display(int num);

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int main()
{
int t[10],i;

for(i=0; i<10; ++i) t[i]=i;
for(i=0; i<10; i++) display(t[i]);

return 0;
}

// Print some numbers.
void display(int num)
{
cout << num << ' ';

}

As you can see, the parameter to display() is of type int. It is not relevant that
display() is called using an array element, because only that one value of the array
is passed.

It is important to remember that when an array is used as a function argument, its address
is passed to a function. This means that the code inside the function will be operating on,
and potentially altering, the actual contents of the array used to call the function. For
example, in the following program, examine the function cube(), which converts the
value of each element in an array into its cube. To call cube(), pass the address of the
array as the first argument, and the size of the array as the second.

#include <iostream>
using namespace std;

void cube(int *n, int num);

int main()
{
int i, nums[10];

for(i=0; i<10; i++) nums[i] = i+1;
cout << "Original contents: ";
for(i=0; i<10; i++) cout << nums[i] << ' ';
cout << '\n';

cube(nums, 10); // compute cubes

cout << "Altered contents: ";
for(i=0; i<10; i++) cout << nums[i] << ' ';

return 0;
}

void cube(int *n, int num)
{
while(num) {

Functions, Part One: The Fundamentals 139

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

140 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

*n = *n * *n * *n;
num--;
n++;

}
}

Here is the output produced by this program:

Original contents: 1 2 3 4 5 6 7 8 9 10
Altered contents: 1 8 27 64 125 216 343 512 729 1000

As you can see, after the call to cube(), the contents of array nums in main() will
be cubes of its original values. That is, the values of the elements of nums have been
modified by the statements within cube(), because n points to nums.

Passing Strings
As you know, strings are simply character arrays that are null-terminated. Thus, when
you pass a string to a function, only a pointer to the beginning of the string is actually
passed. This is a pointer of type char *. For example, consider the following program.
It defines the function stringupper(), which converts a string to uppercase.

// Pass a string to a function.
#include <iostream>
#include <cstring>
#include <cctype>
using namespace std;

void stringupper(char *str);

int main()
{
char str[80];

strcpy(str, "this is a test");

stringupper(str);
cout << str; // display uppercase string
return 0;

}

void stringupper(char *str)
{
while(*str) {
*str = toupper(*str); // uppercase one char
str++; // move on to next char

}
}

The output from the program is shown here.

THIS IS A TEST

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 141

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

In the program, notice that the str parameter to stringupper() is declared as
char *. This enables it to receive a pointer to a character array that holds a string.

Here is another example of passing a string to a function. As you learned in Chapter 5,
the standard library function strlen() returns the length of a string. This program
shows one way to implement this function.

// A custom version of strlen().
#include <iostream>
using namespace std;

int mystrlen(char *str);

int main()
{
cout << "Length of Hello There is: ";
cout << mystrlen("Hello There");

return 0;
}

// A custom version of strlen().
int mystrlen(char *str)
{
int i;

for(i=0; str[i]; i++) ; // find the end of the string

return i;
}

On your own, you might want to try implementing the other string functions, such as
strcpy() or strcat(). Doing so is a good way to test your understanding of arrays,
strings, and pointers.

argc and argv: Arguments to main()
Sometimes you will want to pass information into a program when you run it. This
generally is accomplished by passing command line arguments to main(). A command
line argument is the information that follows the program’s name on the command line
of the operating system. (In Windows, the Run command also uses a command line.) For
example, you might compile C++ programs from the command line by typing something
like this,

cl prog-name

where prog-name is the program that you want compiled. The name of the program is
passed into the C++ compiler as a command line argument.

C++ defines two built-in, but optional, parameters to main(). They are argc and argv,
and they receive the command line arguments. These are the only parameters defined by
C++ for main(). However, other arguments may be supported in your specific operating

A command
line argument
is information
specified on the
command line after
a program’s name.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

environment, so you will want to check your compiler’s documentation. Let’s now look
at argc and argv more closely.

NOTE: Technically, the names of the command line parameters are arbitrary—you
can use any names you like. However, argc and argv have been used by convention for
several years, and it is best that you use these names so that anyone reading your program
can quickly identify them as the command line parameters.

The argc parameter is an integer that holds the number of arguments on the command
line. It will always be at least 1, because the name of the program is also counted.

The argv parameter is a pointer to an array of character pointers. Each pointer in the
argv array points to a string containing a command line argument. The program’s name
is pointed to by argv[0]; argv[1] will point to the first argument, argv[2] to the second
argument, and so on. All command line arguments are passed to the program as strings,
so numeric arguments will have to be converted by your program into their proper
internal format.

It is important that you declare argv properly. The most common method is

char *argv[];

You can access the individual arguments by indexing argv. The following program
demonstrates how to access the command line arguments. It prints Hello, followed
by your name, which must be the first command line argument.

#include <iostream>
using namespace std;

int main(int argc, char *argv[])
{
if(argc!=2) {
cout << "You forgot to type your name.\n";
return 1;

}
cout << "Hello " << argv[1] << '\n';

return 0;
}

If you titled this program name and your name was Tom, then to run the program,
you would type name Tom. The output from the program would be Hello Tom. For
example, if you were logged into drive A and using the command prompt, you would see:

A>name Tom
Hello Tom

A>

142 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C++ does not stipulate the exact nature of a command line argument because host
environments (operating systems) vary considerably on this point. However, the most
common convention is as follows: Each command line argument must be separated
by spaces or tabs. Often, commas, semicolons, and the like are not valid argument
separators. For example,

one, two, and three

is made up of four strings, while

one,two,and three

has two strings—the comma is not a legal separator.

If you need to pass a command line argument that does, in fact, contain spaces, then
you must place it between quotes. For example, this will be treated as a single command
line argument:

"this is one argument"

Keep in mind that the examples provided here apply to a wide variety of environments,
but not necessarily to yours.

To access an individual character in one of the command strings, add a second index
to argv. For example, the program below will display all the arguments it is called
with, one character at a time.

/* The program prints all command line arguments it is
called with one character at a time. */

#include <iostream>
using namespace std;

int main(int argc, char *argv[])
{
int t, i;

for(t=0; t<argc; ++t) {
i = 0;
while(argv[t][i]) {
cout << argv[t][i];
++i;

}
cout << ' ';

}

return 0;
}

As applied to argv, the first index accesses the string, and the second index accesses a
character in the string.

Functions, Part One: The Fundamentals 143

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

144 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

Usually, you will use argc and argv to get initial options or values into your program.
In C++, you can have as many command line arguments as the operating system will
allow. You normally use these arguments to indicate a filename or an option. Using
command line arguments will give your program a professional appearance and will
facilitate the program’s use in batch files.

Passing Numeric Command Line Arguments
As mentioned, when you pass numeric data as a command line argument to a program,
that data will be received in string form. Your program will need to convert it into the
proper internal format by using one of the standard library functions supported by C++.
For example, the program shown next prints the sum of the two numbers that follow
its name on the command line. The program uses the atof() function to convert each
argument into its internal representation. atof() is another of C++’s standard library
functions. It converts the string form of a number into a double.

/* This program displays the sum of the two numeric
command line arguments.

*/

#include <iostream>
#include <cstdlib>
using namespace std;

int main(int argc, char *argv[])
{

double a, b;

if(argc!=3) {
cout << "Usage: add num num\n";
return 1;

}

a = atof(argv[1]);
b = atof(argv[2]);

cout << a + b;

return 0;
}

To add two numbers, use this type of command line (assuming the program is
called add):

C>add 100.2 231

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 145

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

Converting Numeric Strings to Numbers
The C++ standard library includes several functions that allow you to convert the
string representation of a number into its internal format. These are atoi(), atol(),
and atof(), which convert a numeric string into an integer, long integer, and double
floating-point value, respectively. These functions all require the header file <cstdlib>.
The following program illustrates their use:

// Demonstrate atoi(), atol(), and atof().
#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int i;
long j;
double k;

i = atoi("100");
j = atol("100000");
k = atof("-0.123");

cout << i << ' ' << j << ' ' << k;
cout << '\n';

return 0;
}

The output is shown here:

100 100000 -0.123

The string-conversion functions are especially useful when passing numeric data to
a program through a command line argument. They are also useful in a variety of
other programming situations.

The return Statement
You have been using the return statement without much explanation since Chapter 2.
As you know, the return statement performs two important operations: First, it will
cause a function to return immediately to its caller. Second, it can be used to return a
value. This section of the chapter presents some important issues related to both of
these processes.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

146 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

Returning from a Function
As you already know, a function returns to its caller in one of two situations: either
when the function’s closing curly brace is encountered or when a return statement
is executed. The return statement can be used with or without an associated value.
However, functions that are declared as returning a value (i.e., that have a non-void
return type) must return a value. Only functions declared as void can use return
without a value.

For void functions, the return statement is mostly used as a program-control device.
For example, the function shown next will print the outcome of one number raised to
a positive integer power. If the exponent is negative, the return statement causes the
function to terminate before any attempt is made to compute the exponent. In this
capacity, it acts as a control statement designed to prevent part of the function from
executing.

void power(int base, int exp)
{
int i;

if(exp<0) return; /* Can't do negative exponents,
so return to calling routine
and bypass the rest of the
function. */

i = 1;

for(; exp; exp--) i = base * i;
cout << "The answer is: " << i;

}

A function may contain several return statements. As soon as one is encountered,
the function returns. For example, this fragment is perfectly valid:

void f()
{
// ...

switch(c) {
case 'a': return;
case 'b': // ...
case 'c': return;

}
if(count<100) return;
// ...

}

Be aware, however, that having too many returns can muddy the operation of a
algorithm and confuse its meaning. It is best to use multiple returns only when
they help clarify a function.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 147

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

Returning Values
Every function, unless it is of type void, returns a value. This value is explicitly specified
by the return statement. This means that as long as a function is not declared to be
void, it can be used as an operand in an expression. Therefore, each of the following
expressions is valid in C++:

x = power(y);

if(max(x, y)) > 100) cout << "greater";

switch(abs(x)) {

Although all non-void functions return values, you don’t necessarily have to use
the values for anything. A very common question regarding function return values is,
"Don’t I have to assign this value to some variable, since a value is being returned?"
The answer is no. If there is no assignment specified, then the return value is simply
discarded.

Examine the following program, which uses the standard library function abs():

#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int i;

i = abs(-10); // line 1
cout << abs(-23); // line 2
abs(100); // line 3

return 0;
}

The abs() function returns the absolute value of its integer argument. It uses the
<cstdlib> header. In line 1, the return value of abs() is assigned to i. In line 2, the
return value is not actually assigned, but it is used by the cout statement. Finally, in
line 3, the return value is lost because it is neither assigned to another variable nor
used as part of an expression.

If a non-void function returns because its closing curly brace is encountered, an
undefined (i.e., unknown) value is returned. Because of a quirk in the formal C++
syntax, a non-void function need not actually execute a return statement. This
can happen if the end of the function is reached prior to a return statement being
encountered. However, because the function is declared as returning a value, a value
will still be returned—even though it is just a garbage value. Generally, any non-void
function that you create should return a value via an explicit return statement.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Just as a void function may have more than one return statement, so too may a
function that returns a value. For example, the find_substr() function shown in
the next program uses two return statements to simplify its operation. The function
searches a string for a substring. It returns the index of the first matching substring,
or if no match is found, it returns –1. For example, if the string is "I like C++" and the
substring is "like", then the function returns 2 (which is the index of the "l" in like).

#include <iostream>
using namespace std;

int find_substr(char *sub, char *str);

int main()
{
int index;

index = find_substr("three", "one two three four");

cout << "Index of three is " << index; // index is 8

return 0;
}

// Return index of substring or -1 if not found.
int find_substr(char *sub, char *str)
{
int t;
char *p, *p2;

for(t=0; str[t]; t++) {
p = &str[t]; // reset pointers
p2 = sub;
while(*p2 && *p2==*p) { // check for substring
p++;
p2++;

}

/* If at end of p2 (i.e., substring), then
a match has been found. */

if(!*p2) return t; // return index of match
}
return -1; // no match found

}

The output from the program is shown here.

Index of three is 8

Since the string being sought is found, the first return statement executes. On your
own, try searching for a word that is not part of the string. In this case, find_substr()
returns –1 via the second return statement.

148 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A function can be declared to return any valid C++ data type (except that a function
cannot return an array.) The method of declaration is similar to that used with variables:
The type specifier precedes the function name. The type specifier tells the compiler what
type of data will be returned by the function. This return type must be compatible with
the type of data used in the return statement. If it isn’t, a compile-time error will result.

void Functions
As you have seen, functions that don’t return values are declared void. This prevents
their use in an expression and helps head off accidental misuse. In the following
example, the function print_vertical() prints its string argument vertically down
the side of the screen. Since it returns no value, it is declared as void.

#include <iostream>
using namespace std;

void print_vertical(char *str);

int main(int argc, char *argv[])
{
if(argc==2) print_vertical(argv[1]);

return 0;
}

void print_vertical(char *str)
{
while(*str)
cout << *str++ << '\n';

}

Since print_vertical() is declared as void, it cannot be used in an expression. For
example, the following statement is wrong, and will not compile:

x = print_vertical("hello"); // Error

TIP: Early versions of the C language did not have the void return type. Thus, in
old C programs, functions that did not return values were simply allowed to default to
type int. You may still encounter functions of this sort when updating older C programs
to C++. If you do, simply convert them to void functions.

Functions That Return Pointers
Functions can return pointers. Pointers are returned like any other data type, and they
pose no special problem. However, because the pointer is one of C++’s more confusing
features, a short discussion of pointer return types is warranted.

Functions, Part One: The Fundamentals 149

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In order to return a pointer, a function must declare its return type to be a pointer.
For example, here the return type of f() is declared to be an integer pointer:

int *f();

If a function’s return type is a pointer, then the value used in its return statement
must also be a pointer. (As with all functions, the return value must be compatible
with the return type.)

The following program demonstrates the use of a pointer return type. It reworks the
find_substr() function, shown earlier, so that it returns a pointer to the substring,
rather than the index of the substring. If no match is found, a null pointer is returned.

// Rework find_substr() to return a pointer.
#include <iostream>
using namespace std;

char *find_substr(char *sub, char *str);

int main()
{
char *substr;

substr = find_substr("three", "one two three four");

cout << "substring found: " << substr;

return 0;
}

// Return pointer to substring or null if not found.
char *find_substr(char *sub, char *str)
{
int t;
char *p, *p2, *start;

for(t=0; str[t]; t++) {
p = &str[t]; // reset pointers
start = p;
p2 = sub;
while(*p2 && *p2==*p) { // check for substring
p++;
p2++;

}

/* If at end of p2 (i.e., substring), then
a match has been found. */

if(!*p2)
return start; // return pointer to beginning of substring

}
return 0; // no match found

}

150 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 151

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

The output from this version of the program is shown here.

substring found: three four

In this case, when "three" is found within "one two three four", a pointer to the
beginning of the matching "three" is returned and assigned to substr inside main().
Thus, when substr is output, the remainder of the string, "three four", is displayed.

Many of the string-related library functions supported by C++ return character
pointers. For example, the strcpy() function returns a pointer to the first argument.
Check your compiler’s library reference for other examples.

Function Prototypes
Until this point, prototypes have been used without explanation in the sample
programs. Now it is time to explain them formally. In C++, all functions must be
declared before they are used. Typically, this is accomplished by use of a function
prototype. Prototypes specify three things about a function:

◆ Its return type

◆ The type of its parameters

◆ The number of its parameters

Prototypes allow the compiler to perform three important operations:

◆ They tell the compiler what type of code to generate when a function is called.
Different return and parameter types must be handled differently by the compiler.

◆ They allow C++ to find and report any illegal type conversions between the type
of arguments used to call a function and the type definition of its parameters.

◆ They allow the compiler to detect differences between the number of arguments
used to call a function and the number of parameters in the function.

The general form of a function prototype is as follows. It is the same as a function
definition, except that no body is present.

type func-name(type parm_name1, type parm_name2,...,
type parm_nameN);

The use of parameter names in a prototype is optional. However, their use does let the
compiler identify any type mismatches by name when an error occurs, so it is a good
idea to include them.

To better understand the usefulness of function prototypes, consider the following
program. If you try to compile it, an error message will be issued because the program
attempts to call sqr_it() with an integer argument instead of the integer pointer
required. (It is illegal to transform an integer into a pointer.)

A prototype
declares a
function prior
to its first use.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

152 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

/* This program uses a function prototype to
enforce strong type checking.

*/

void sqr_it(int *i); // prototype

int main()
{
int x;

x = 10;
sqr_it(x); // *** Error *** -- type mismatch!

return 0;
}

void sqr_it(int *i)
{
*i = *i * *i;

}

TIP: Although the C language accepts prototypes, it does not currently require
them. This is because early versions of C did not accept full prototypes. If you are
porting older C code to C++, you may need to fully prototype all functions before the
program will compile.

Headers: A Closer Look
Earlier in this book, you were introduced to the standard C++ headers. You have
learned that these headers contain information needed by your programs. While this
partial explanation is true, it does not tell the whole story. C++’s headers contain the
prototypes for the functions in the standard library. (They also contain various values
and definitions used by those functions.) Like functions that you write, the standard
library functions must be prototyped before they are used. For this reason, any
program that uses a library function must also include the header containing the
prototype of that function.

To find out which header a library function requires, look in your compiler’s library
reference. Along with a description of each function, you will find the name of the
header that must be included in order to use that function.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 153

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

Old-Style versus Modern Function
Parameter Declarations
If you have ever examined older C code, you may have noticed that the
function parameter declarations look different. When C was first invented, it used
a fundamentally different parameter declaration method. This old-style method,
sometimes called the classic form, is outdated but still found in older code. The
declaration approach used by C++ (and newer C code) is called the modern form.
Because you may need to work on older C programs, especially if you are updating
them to C++, it is useful to understand the old-style parameter declaration form.

The old-style function parameter declaration consists of two parts: A parameter list,
which goes inside the parentheses that follow the function name; and the actual
parameter declarations, which go between the closing parenthesis and the function’s
opening curly brace. For example, this modern declaration:

float f(int a, int b, char ch)
{ ...

will look like this in its old-style form

float f(a, b, ch)
int a, b;
char ch;
{ ...

Notice that in classic form, more than one parameter can be in a list after the type
name. This isn’t allowed in the modern form.

In general, to convert the old-style form into the modern (C++ style) form, simply
move the parameter declarations inside the function’s parentheses. Remember, each
parameter must be declared separately, each with its own type specifier.

Recursion
The last topic that we will examine in this chapter is recursion. Sometimes called
circular definition, recursion is the process of defining something in terms of itself. As it
relates to programming, recursion is the process of a function calling itself. A function
that calls itself is said to be recursive.

A recursive
function is a
function that
calls itself.

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

154 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

The classic example of recursion is the function factr(), which computes the factorial
of an integer. The factorial of a number N is the product of all the whole numbers
between 1 and N. For example, 3 factorial is 1×2×3, or 6. Both factr() and its iterative
equivalent are shown here:

#include <iostream>
using namespace std;

int factr(int n);
int fact(int n);

int main()
{
// use recursive version
cout << "4 factorial is " << factr(4);
cout << '\n';

// use iterative version
cout << "4 factorial is " << fact(4);
cout << '\n';

return 0;
}

// Recursive version.
int factr(int n)
{
int answer;

if(n==1) return(1);
answer = factr(n-1)*n;
return(answer);

}

// Iterative version.
int fact(int n)
{
int t, answer;

answer = 1;
for(t=1; t<=n; t++) answer = answer*(t);
return(answer);

}

The operation of the nonrecursive version of fact() should be clear. It uses a loop
starting at 1 and progressively multiplies each number by the moving product.

The operation of the recursive factr() is a little more complex. When factr() is
called with an argument of 1, the function returns 1; otherwise it returns the product
of factr(n–1)*n. To evaluate this expression, factr() is called with n–1. This happens
until n equals 1 and the calls to the function begin returning. For example, when the
factorial of 2 is calculated, the first call to factr() will cause a second call to be made

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part One: The Fundamentals 155

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

7

with the argument of 1. This call will return 1, which is then multiplied by 2 (the
original n value). The answer is then 2. You might find it interesting to insert cout
statements into factr() that will show at what level each call is, and what the
intermediate answers are.

When a function calls itself, new local variables and parameters are allocated storage
on the stack, and the function code is executed with these new variables from the
start. A recursive call does not make a new copy of the function; only the values are
new. As each recursive call returns, the old local variables and parameters are removed
from the stack, and execution resumes at the point of the function call inside the
function. Recursive functions could be said to "telescope" out and back.

Keep in mind that most recursive routines do not significantly reduce code size.
Also, the recursive versions of most routines may execute a bit more slowly than
their iterative equivalents, due to the added overhead of the additional function
calls. Too many recursive calls to a function may cause a stack overrun. Because
storage for function parameters and local variables is on the stack, and each new call
creates a new copy of these variables, it is possible that the stack will be exhausted.
If this occurs, other data may be destroyed as well. However, you probably will not
have to worry about any of this unless a recursive function runs wild.

The main advantage of recursive functions is that they can be used to create clearer
and simpler versions of several algorithms than those produced with their iterative
relatives. For example, the Quicksort sorting algorithm is quite difficult to implement
in an iterative way. Also, some problems, especially those related to artificial intelligence,
seem to lend themselves to recursive solutions. Finally, some people find it easier to
think recursively rather than iteratively.

When writing a recursive function, you must include a conditional statement, such as
an if, to force the function to return without execution of the recursive call. If you don’t
provide the conditional statement, then once you call the function, it will never return.
This is a very common error. When developing programs with recursive functions, use
cout statements liberally so that you can watch what is going on, and abort execution if
you see that you have made a mistake.

Here is another example of a recursive function, called reverse(). It prints its string
argument backwards on the screen.

// Print a string backwards using recursion.
#include <iostream>
using namespace std;

void reverse(char *s);

int main()
{
char str[] = "this is a test";

reverse(str);

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Print string backwards.
void reverse(char *s)
{
if(*s)
reverse(s+1);

else
return;

cout << *s;
}

The reverse() function first checks to see if it has been passed a pointer to the null
terminating the string. If not, then reverse() calls itself with a pointer to the next
character in the string. When the null terminator is finally found, the calls begin
unraveling, and the characters are displayed in reverse order.

Creating recursive functions is often difficult for beginners. Over time, however, you
will grow more accustomed to using them.

156 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 7

P:\010Comp\Grnd-Up8\897-0\ch07.vp
Friday, February 28, 2003 3:37:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 8

Functions,
Part Two:

References,
Overloading, and

Default Arguments

157

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

158 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

This chapter continues our examination of the function. Specifically, it discusses
three of C++’s most important function-related topics: references, function

overloading, and default arguments. These three features vastly expand the capabilities
of a function. As you will see, a reference is an implicit pointer. Function overloading
is the quality that allows one function to be implemented two or more different ways,
each performing a separate task. Function overloading is one way that C++ supports
polymorphism. Using a default argument, it is possible to specify a value for a parameter
that will be automatically used when no corresponding argument is specified.

Since references are frequently applied to function parameters (it is the main reason
for their existence), this chapter begins with a brief discussion of how arguments can
be passed to functions.

Two Approaches to Argument Passing
To understand the genesis of the reference, you must understand the theory behind
argument passing. In general, there are two ways that a computer language can pass
an argument to a subroutine. The first is called call-by-value. This method copies the
value of an argument into the formal parameter of the subroutine. Therefore, changes
made to the parameters of the subroutine will not affect the arguments used to call it.

Call-by-reference is the second way a subroutine can be passed arguments. This method
copies the address of an argument (not its value) into the parameter. Inside the
subroutine, this address is used to access the actual argument specified in the call.
This means that changes made to the parameter will affect the argument used to
call the subroutine.

How C++ Passes Arguments
By default, C++ uses the call-by-value method for passing arguments. This means that,
in general, code inside a function cannot alter the arguments used to call the function.
In this book, all of the programs up to this point have used the call-by-value method.

Consider this function:

#include <iostream>
using namespace std;

int sqr_it(int x);
int main()
{
int t=10;

cout << sqr_it(t) << ' ' << t;

return 0;
}

int sqr_it(int x)
{
x = x*x;
return x;

}

Call-by-value
passes the value
of an argument
to a function.

Call-by-reference
passes the
address of an
argument to
a function.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part Two: References, Overloading, and Default Arguments 159

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

In this example, the value of the argument to sqr_it(), 10, is copied into the
parameter x. When the assignment x = x*x takes place, the only thing modified is
the local variable x. The variable t, used to call sqr_it(), will still have the value 10
and is unaffected by the operations inside the function. Hence, the output will
be 100 10.

REMEMBER: By default, a copy of an argument is passed into a function.
What occurs inside the function will not affect the variable used in the call.

Using a Pointer to Create a Call-by-Reference
Even though C++’s default parameter-passing convention is call-by-value, it is possible
to manually create a call-by-reference by passing the address of an argument (i.e., a
pointer to the argument) to a function. It will then be possible for code inside the
function to change the value of the argument outside of the function. You saw an
example of this in the preceding chapter when the passing of pointers was discussed.
As you know, pointers are passed to functions just like any other values. Of course, it
is necessary to declare the parameters as pointer types.

To see how passing a pointer allows you to manually create a call-by-reference,
examine this version of swap(). It exchanges the values of the two variables
pointed to by its arguments.

void swap(int *x, int *y)
{
int temp;

temp = *x; // save the value at address x
*x = *y; // put y into x
*y = temp; // put x into y

}

The *x and the *y refer to the variables pointed to by x and y, which are the addresses
of the arguments used to call the function. Consequently, the contents of the variables
used to call the function will be swapped.

Since swap() expects to receive two pointers, you must remember to call swap()
with the addresses of the variables you wish to exchange. The correct method is shown
in this program:

#include <iostream>
using namespace std;

// Declare swap() using pointers.
void swap(int *x, int *y);

int main()
{

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

int i, j;

i = 10;
j = 20;

cout << "Initial values of i and j: ";
cout << i << ' ' << j << '\n';
swap(&j, &i); // call swap() with addresses of i and j
cout << "Swapped values of i and j: ";
cout << i << ' ' << j << '\n';

return 0;
}

// Exchange arguments.
void swap(int *x, int *y)
{
int temp;

temp = *x; // save the value at address x
*x = *y; // put y into x
*y = temp; // put x into y

}

The output from the program is shown here:

Initial values of i and j: 10 20
Swapped values of i and j: 20 10

In this example, the variable i is assigned the value 10, and j the value 20. Then
swap() is called with the addresses of i and j. The unary operator & is used to
produce the addresses of the variables. Therefore, the addresses of i and j, not their
values, are passed into the function swap(). When swap() returns, i and j will
have their values exchanged.

Reference Parameters
While it is possible to achieve a call-by-reference manually by using the pointer operators,
this approach is rather clumsy. First, it compels you to perform all operations through
pointers. Second, it requires that you remember to pass the addresses (rather than the
values) of the arguments when calling the function. Fortunately, in C++, it is possible
to tell the compiler to automatically use call-by-reference rather than call-by-value
for one or more parameters of a particular function. You can accomplish this with a
reference parameter. When you use a reference parameter, the address (not the value) of
an argument is automatically passed to the function. Within the function, operations
on the reference parameter are automatically de-referenced, so there is no need to use
the pointer operators.

A reference parameter is declared by preceding the parameter name in the function’s
declaration with an &. Operations performed on a reference parameter affect the
argument used to call the function, not the reference parameter itself.

160 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

A reference
parameter
automatically
receives the
address of its
corresponding
argument.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To understand reference parameters, let’s begin with a simple example. In the
following, the function f() takes one reference parameter of type int:

// Using a reference parameter.
#include <iostream>
using namespace std;

void f(int &i);

int main()
{
int val = 1;

cout << "Old value for val: " << val << '\n';

f(val); // pass address of val to f()

cout << "New value for val: " << val << '\n';

return 0;
}

void f(int &i)
{
i = 10; // this modifies calling argument

}

This program displays the following output:

Old value for val: 1
New value for val: 10

Pay special attention to the definition of f(), shown here:

void f(int &i)
{
i = 10; // this modifies calling argument

}

Notice the declaration of i. It is preceded by an &, which causes it to become a
reference parameter. (This declaration is also used in the function’s prototype.)
Inside the function, the following statement

i = 10;

does not cause i to be given the value 10. Instead, it causes the variable referenced by
i (in this case, val) to be assigned the value 10. Notice that this statement does not
use the * pointer operator. When you use a reference parameter, the C++ compiler
automatically knows that it is an address (i.e., a pointer) and de-references it for you.
In fact, using the * would be an error.

Functions, Part Two: References, Overloading, and Default Arguments 161

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Since i has been declared as a reference parameter, the compiler will automatically
pass f() the address of any argument it is called with. Thus, in main(), the statement

f(val); // pass address of val to f()

passes the address of val (not its value) to f(). There is no need to precede val with
the & operator. (Doing so would be an error.) Since f() receives the address of val
in the form of a reference, it may modify the value of val.

To illustrate reference parameters in actual use—and to fully demonstrate their
benefits—the swap() function is rewritten using references in the following
program. Look carefully at how swap() is declared and called.

#include <iostream>
using namespace std;

// Declare swap() using reference parameters.
void swap(int &x, int &y);

int main()
{
int i, j;

i = 10;
j = 20;

cout << "Initial values of i and j: ";
cout << i << ' ' << j << '\n';
swap(j, i);
cout << "Swapped values of i and j: ";
cout << i << ' ' << j << '\n';

return 0;
}

/* Here, swap() is defined as using call-by-reference,
not call-by-value. Thus, it can exchange the two
arguments it is called with.

*/
void swap(int &x, int &y)
{
int temp;

temp = x; // save the value at address x
x = y; // put y into x
y = temp; // put x into y

}

Notice again that by making x and y reference parameters, there is no need to use
the * operator when exchanging values. As explained, it would be an error to do so.

162 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Remember, the compiler automatically generates the addresses of the arguments used
to call swap(), and automatically de-references x and y.

Let’s review. When you create a reference parameter, that parameter automatically
refers to (i.e., implicitly points to) the argument used to call the function. Further,
there is no need to apply the & operator to an argument. Also, inside the function,
the reference parameter is used directly; the * operator is not necessary or, in fact,
correct. All operations involving the reference parameter automatically refer to the
argument used in the call to the function.

REMEMBER: When you assign a value to a reference, you are actually
assigning that value to the variable that the reference is pointing to. In the case
of function parameters, this will be the variable used in the call to the function.

Declaring Reference Parameters
When Bjarne Stroustrup wrote The C++ Programming Language (in which he first
described C++) in 1986, he introduced a style of declaring reference parameters,
which some other programmers have adopted. In this approach, the & is associated
with the type name rather than the variable name. For example, here is another way
to write the prototype to swap():

void swap(int& x, int& y);

As you can see, the & is immediately adjacent to int and not to x.

Further, some programmers also specify pointers by associating the * with the type
rather than the variable, as shown here:

float* p;

These types of declarations reflect the desire by some programmers for C++ to contain
a separate reference or pointer type. However, the trouble with associating the & or *
with the type rather than the variable is that, according to the formal C++ syntax,
neither the & nor the * is distributive over a list of variables, and this can lead to
confusing declarations. For example, the following declaration creates one, not two,
integer pointers.

int* a, b;

Functions, Part Two: References, Overloading, and Default Arguments 163

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

164 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

Here, b is declared as an integer (not an integer pointer) because, as specified by the
C++ syntax, when used in a declaration, an * or an & is linked to the individual variable
that it precedes, not to the type that it follows.

It is important to understand that, as far as the C++ compiler is concerned, it doesn’t
matter whether you write int *p or int* p. Thus, if you prefer to associate the * or &
with the type rather than the variable, feel free to do so. However, to avoid confusion,
this book will continue to associate the * and the & with the variable name that each
modifies, rather than the type name.

TIP: The C language does not support references. Thus, the only way to create a
call-by-reference in C is to use pointers, as shown earlier in the first version of swap().
When converting C code to C++, you will want to convert these types of parameters
to references, where feasible.

Returning References
A function can return a reference. In C++ programming, there are several uses for
reference return values. You will see some of these later in this book when you learn
about operator overloading. However, reference return values have other important
applications that you can use now.

When a function returns a reference, it returns an implicit pointer to its return value.
This gives rise to a rather startling possibility: The function can be used on the left
side of an assignment statement! For example, consider this simple program:

// Returning a reference.
#include <iostream>
using namespace std;

double &f();

double val = 100.0;

int main()
{
double newval;

cout << f() << '\n'; // display val's value

newval = f(); // assign value of val to newval
cout << newval << '\n'; // display newval's value

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

f() = 99.1; // change val's value
cout << f() << '\n'; // display val's new value

return 0;
}

double &f()
{
return val; // return reference to val

}

The output of this program is shown here:

100
100
99.1

Let’s examine this program closely. At the beginning, f() is declared as returning
a reference to a double, and the global variable val is initialized to 100. Next, the
following statement displays the original value of val:

cout << f() << '\n'; // display val's value

When f() is called, it returns a reference to val. Because f() is declared as returning
a reference, the line

return val; // return reference to val

automatically returns a reference to val. This reference is then used by the cout
statement to display val’s value.

In the line

newval = f(); // assign value of val to newval

the reference to val returned by f() is used to assign the value of val to newval.

The most interesting line in the program is shown here:

f() = 99.1; // change val's value

This statement causes the value of val to be changed to 99.1. Here is why: Since
f() returns a reference to val, this reference becomes the target of the assignment
statement. Thus, the value of 99.1 is assigned to val indirectly, through the reference
to it returned by f().

Finally, in this line

cout << f() << '\n'; // display val's new value

Functions, Part Two: References, Overloading, and Default Arguments 165

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the new value of val is displayed when a reference to val is returned by the call to
f() inside the cout statement.

Here is another sample program that uses a reference return type:

#include <iostream>
using namespace std;

double &change_it(int i); // return a reference

double vals[] = {1.1, 2.2, 3.3, 4.4, 5.5};

int main()
{
int i;

cout << "Here are the original values: ";
for(i=0; i<5; i++)
cout << vals[i] << ' ';

cout << '\n';

change_it(1) = 5298.23; // change 2nd element
change_it(3) = -98.8; // change 4th element

cout << "Here are the changed values: ";
for(i=0; i<5; i++)
cout << vals[i] << ' ';

cout << '\n';

return 0;
}

double &change_it(int i)
{
return vals[i]; // return a reference to the ith element

}

This program changes the values of the second and fourth elements in the vals array.
The program displays the following output:

Here are the original values: 1.1 2.2 3.3 4.4 5.5
Here are the changed values: 1.1 5298.23 3.3 -98.8 5.5

Let’s see how this is accomplished. The change_it() function is declared as returning
a reference to a double. Specifically, it returns a reference to the element of vals that
is specified by its parameter i. Thus, inside main(), when this statement executes

change_it(1) = 5298.23; // change 2nd element

change_it() returns a reference to vals[1]. Through this reference, vals[1] is then
assigned the value 5298.23. A similar process occurs when this statement executes.

166 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

change_it(3) = -98.8; // change 4th element

Because change_it() returns a reference to a specific element of the vals array, it
can be used on the left side of an assignment statement to assign a new value to that
array element.

When returning a reference, be careful that the object being referred to does not go
out of scope. For example, consider this function:

// Error, cannot return reference to local var.
int &f()
{
int i=10;
return i;

}

In f(), the local variable i will go out of scope when the function returns. Therefore,
the reference to i returned by f() will be undefined. Actually, some compilers will not
compile f() as written, precisely for this reason. However, this type of problem can be
created indirectly, so be careful which object you return a reference to.

Creating a Bounded Array
One good use for a reference return type is to create a bounded array. As you know,
in C++, there is no run-time boundary checking on array indexing. This means that
arrays can be overrun. That is, an array index may be specified that exceeds the size
of the array. However, it is possible to prevent array overruns by creating a bounded
or safe array. When a bounded array is created, any out-of-bounds index is prevented
from indexing the array.

The following program illustrates one way to create a bounded array:

// A simple safe array.
#include <iostream>
using namespace std;

int &put(int i); // put value into the array
int get(int i); // obtain a value from the array

int vals[10];
int error = -1;

int main()
{
put(0) = 10; // put values into the array
put(1) = 20;
put(9) = 30;

cout << get(0) << ' ';
cout << get(1) << ' ';
cout << get(9) << ' ';

Functions, Part Two: References, Overloading, and Default Arguments 167

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// now, intentionally generate an error
put(12) = 1; // Out of Bounds

return 0;
}

// Put a value into the array.
int &put(int i)
{
if(i>=0 && i<10)
return vals[i]; // return a reference to the ith element

else {
cout << "Bounds Error!\n";
return error; // return a reference to error

}
}

// Get a value from the array.
int get(int i)
{
if(i>=0 && i<10)
return vals[i]; // return the value of the ith element

else {
cout << "Bounds Error!\n";
return error; // return an error

}
}

The output produced by this program is shown here:

10 20 30 Bounds Error!

This program creates a safe array of ten integers. To put a value into the array, use
the put() function. To retrieve a value, call get(). For both functions, the index
of the desired element is specified as an argument. As the program shows, both get()
and put() prevent an array overrun. Notice that put() returns a reference to the
specified element and is thus used on the left side of an assignment statement.

While the approach to implementing a bounded array shown in this example is correct,
an even better implementation is possible. As you will see when you learn about operator
overloading later in this book, it is possible to create your own custom, bounded arrays
that also use standard array notation.

Independent References
Even though the reference is included in C++ primarily for supporting call-by-reference
parameter passing and for use as a function return type, it is possible to declare a stand-
alone reference variable. This is called an independent reference. It must be stated at the
outset, however, that independent reference variables are seldom used, because they
tend to confuse and destructure your program. With these reservations in mind, we will
take a short look at them here.

168 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

An independent reference must point to some object. Thus, an independent reference
must be initialized when it is declared. Generally, this means that it will be assigned
the address of a previously declared variable. Once this is done, the name of the reference
variable can be used anywhere that the variable it refers to can be used. In fact, there is
virtually no distinction between the two. For example, consider the program shown here:

#include <iostream>
using namespace std;

int main()
{
int j, k;
int &i = j; // independent reference

j = 10;

cout << j << " " << i; // outputs 10 10

k = 121;
i = k; // copies k's value into j

// not k's address

cout << "\n" << j; // outputs 121

return 0;
}

This program displays the following output:

10 10
121

The address pointed to by a reference variable is fixed; it cannot be changed. Thus,
when the statement i = k is evaluated, it is k’s value that is copied into j (pointed
to by i), not its address. For another example, i++ does not cause i to point to a new
address. Instead, j is increased by 1.

As stated earlier, it is generally not a good idea to use independent references, because
they are not necessary and they tend to garble your code. Having two names for the
same variable is an inherently confusing situation.

A Few Restrictions When Using References
There are some restrictions that apply to reference variables:

◆ You cannot reference a reference variable.

◆ You cannot create arrays of references.

◆ You cannot create a pointer to a reference. That is, you cannot apply the & operator
to a reference.

◆ References are not allowed on bit-fields. (Bit-fields are discussed later in this book.)

Functions, Part Two: References, Overloading, and Default Arguments 169

An independent
reference is simply
another name
for some other
variable.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Function Overloading
In this section, you will learn about one of C++’s most exciting features: function
overloading. In C++, two or more functions can share the same name, as long as
their parameter declarations are different. In this situation, the functions that share
the same name are said to be overloaded, and the process is referred to as function
overloading. Function overloading is one way that C++ achieves polymorphism.

Let’s begin with a short sample program:

// Overload a function three times.
#include <iostream>
using namespace std;

void f(int i); // integer parameter
void f(int i, int j); // two integer parameters
void f(double k); // one double parameter

int main()
{
f(10); // call f(int)

f(10, 20); // call f(int, int)

f(12.23); // call f(double)

return 0;
}

void f(int i)
{
cout << "In f(int), i is " << i << '\n';

}

void f(int i, int j)
{
cout << "In f(int, int), i is " << i;
cout << ", j is " << j << '\n';

}

void f(double k)
{
cout << "In f(double), k is " << k << '\n';

}

This program produces the following output:

In f(int), i is 10
In f(int, int), i is 10, j is 20
In f(double), k is 12.23

170 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

Function
overloading is the
mechanism that
allows two related
functions to share
the same name.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part Two: References, Overloading, and Default Arguments 171

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

As you can see, f() is overloaded three times. The first version takes one integer
parameter, the second version requires two integer parameters, and the third version
has one double parameter. Because the parameter list for each version is different,
the compiler is able to call the correct version of each function. In general, to overload
a function, you simply declare different versions of it.

The compiler uses the type and/or number of arguments as its guide to determining
which version of an overloaded function to call. Thus, overloaded functions must
differ in the type and/or number of their parameters. While overloaded functions
may have different return types, the return type alone is not sufficient to distinguish
two versions of a function. (Return types do not provide sufficient information in all
cases for the compiler to correctly decide which function to use.)

To better understand the benefit of function overloading, consider these three functions,
which are located in the standard library: abs(), labs(), and fabs(). These functions
were first defined by the C language and, for compatibility, are also included in C++.
The abs() function returns the absolute value of an integer, labs() returns the absolute
value of a long, and fabs() returns the absolute value of a double. In C (which
does not support function overloading), three slightly different names must be used
to represent these essentially similar tasks. This makes the situation more complex,
conceptually, than it actually is. Even though the underlying concept of each function
is the same, the programmer has three names to remember, not just one. However,
in C++ it is possible to use just one name for all three functions, as illustrated in this
example:

// Create an overloaded version of abs() called myabs().
#include <iostream>
using namespace std;

// myabs() is overloaded three ways.
int myabs(int i);
double myabs(double d);
long myabs(long l);

int main()
{
cout << myabs(-10) << "\n";

cout << myabs(-11.0) << "\n";

cout << myabs(-9L) << "\n";

return 0;
}

int myabs(int i)
{
cout << "Using integer myabs(): ";

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

172 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

if(i<0) return -i;
else return i;

}

double myabs(double d)
{
cout << "Using double myabs(): ";

if(d<0.0) return -d;
else return d;

}

long myabs(long l)
{
cout << "Using long myabs(): ";

if(l<0) return -l;
else return l;

}

Here is the output produced by the program.

Using integer myabs(): 10
Using double myabs(): 11
Using long myabs(): 9

This program creates three similar but different functions called myabs, each of which
returns the absolute value of its argument. The compiler knows which function to use
in each given situation because of the type of the argument. The value of overloading
is that it allows related sets of functions to be accessed using a common name. Thus,
the name myabs represents the general action that is being performed. It is left to the
compiler to choose the correct specific version for a particular circumstance. Therefore,
through the application of polymorphism, three things to remember have been reduced
to one. Although this example is fairly simple, if you expand the concept, you can see
how overloading can help you manage greater complexity.

When you overload a function, each version of that function can perform any activity
you desire. That is, there is no rule stating that overloaded functions must relate to
one another. However, from a stylistic point of view, function overloading implies a
relationship. Thus, while you can use the same name to overload unrelated functions,
you should not. For example, you could use the name sqr to create functions that
return the square of an int and the square root of a double. These two operations are
fundamentally different, however, and applying function overloading in this manner
defeats its original purpose. (In fact, programming in this manner is considered to be
extremely bad style!) In practice, you should overload only closely related operations.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The overload Anachronism
When C++ was created, overloaded functions had to be explicitly declared as such
by using the overload keyword. The overload keyword is no longer required or
supported by C++. In fact, it is not even defined as a keyword by Standard C++.
However, you may still encounter overload from time to time—especially in older
books and articles.

The general form of overload is shown here:

overload func-name;

where func-name is the name of the function being overloaded. This statement must
precede the overloaded declarations. (Generally, it is found near the top of the program.)
For example, if the function Counter() is being overloaded, then this line will be
included in the program:

overload Counter;

If you encounter overload declarations when working with older programs, you can
simply remove them; they are no longer needed. Because overload is an anachronism,
you should not use it in new C++ programs. In fact, most compilers will not accept it.

Default Function Arguments
The next function-related feature discussed in this chapter is the default argument.
In C++, you can give a parameter a default value that is automatically used when
no argument corresponding to that parameter is specified in a call to a function.
Default arguments can be used to simplify calls to complex functions. Also, they
can sometimes be used as a "shorthand" form of function overloading.

A default argument is specified in a manner syntactically similar to a variable
initialization. Consider the following example, which declares myfunc() as
taking one double argument with a default value of 0.0, and one character
argument with a default value of 'X':

void myfunc(double num = 0.0, char ch = 'X')
{
.
.
.

}

Functions, Part Two: References, Overloading, and Default Arguments 173

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Now, myfunc() can be called by one of the three methods shown here:

myfunc(198.234, 'A'); // pass explicit values

myfunc(10.1); // pass num a value, let ch default

myfunc(); // let both num and ch default

The first call passes the value 198.234 to num and 'A' to ch. The second call
automatically gives num the value 10.1 and allows ch to default to 'X'. Finally,
the third call causes both num and ch to default.

One reason that default arguments are included in C++ is that they enable the
programmer to manage greater complexity. In order to handle the widest variety
of situations, quite frequently a function will contain more parameters than are
required for its most common usage. Thus, when the default arguments apply, you
need remember and specify only the arguments that are meaningful to the exact
situation, not all those needed for the most general case.

A simple illustration of how useful a default function argument can be is shown
by the clrscr() function in the following program. The clrscr() function clears the
screen by outputting a series of linefeeds (not the most efficient way, but sufficient for
this example!). Since a very common video mode displays 25 lines of text, the default
argument of 25 is provided. However, since some video modes can display more or less
than 25 lines, you can override the default argument by specifying another one explicitly.

#include <iostream>
using namespace std;

void clrscr(int size=25);

int main()
{
int i;

for(i=0; i<30; i++) cout << i << '\n';
clrscr(); // clears 25 lines

for(i=0; i<30; i++) cout << i << '\n';
clrscr(10); // clears 10 lines

return 0;
}

void clrscr(int size)
{

for(; size; size--) cout << '\n';
}

174 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

A default
argument is a
value that will
automatically
be passed to a
function when no
explicit argument
is specified.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As this program illustrates, when the default value is appropriate to the situation,
no argument need be specified when calling clrscr(). However, it is still possible
to override the default and give size a different value.

There are two important points to remember about creating a function that has
default argument values: The default values must be specified only once, and this
specification must happen the first time the function is declared within the file. In
the preceding example, the default argument was specified in clrscr()’s prototype.
If you try to specify new (or even the same) default values in clrscr()’s definition,
the compiler will display an error message and will not compile your program.

Even though default arguments must be specified only once, you can specify different
default arguments for each version of an overloaded function. Thus, different versions
of an overloaded function can have different default arguments.

It is important to understand that all parameters that take default values must appear
to the right of those that do not. For example, the following prototype is invalid:

// wrong!
void f(int a = 1, int b);

Once you’ve begun defining parameters that take default values, you cannot specify
a non-defaulting parameter. That is, a declaration like the following is also wrong and
will not compile:

int myfunc(float f, char *str, int i=10, int j);

Since i has been given a default value, j must be given one too.

Default Arguments versus Overloading
As mentioned at the beginning of this section, one application of default arguments is
as a shorthand form of function overloading. To see why this is the case, imagine that
you want to create two customized versions of the standard strcat() function. One
version will operate like strcat() and concatenate the entire contents of one string
to the end of another. The other version will take a third argument that specifies
the number of characters to concatenate. That is, this version will concatenate only
a specified number of characters from one string to the end of another.

Assuming that you call your customized functions mystrcat(), they will have the
following prototypes:

void mystrcat(char *s1, char *s2, int len);
void mystrcat(char *s1, char *s2);

The first version will copy len characters from s2 to the end of s1. The second version
will copy the entire string pointed to by s2 onto the end of the string pointed to by s1
and will operate like strcat().

Functions, Part Two: References, Overloading, and Default Arguments 175

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

176 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

While it would not be wrong to implement two versions of mystrcat() to create the
two versions that you want, there is an easier way. Using a default argument, you can
create only one version of mystrcat() that performs both functions. The following
program demonstrates this:

// A customized version of strcat().
#include <iostream>
#include <cstring>
using namespace std;

void mystrcat(char *s1, char *s2, int len = -1);

int main()
{
char str1[80] = "This is a test";
char str2[80] = "0123456789";

mystrcat(str1, str2, 5); // concatenate 5 chars
cout << str1 << '\n';

strcpy(str1, "this is a test"); // reset str1

mystrcat(str1, str2); // concatenate entire string
cout << str1 << '\n';

return 0;
}

// A custom version of strcat().
void mystrcat(char *s1, char *s2, int len)
{
// find end of s1
while(*s1) s1++;

if(len == -1) len = strlen(s2);

while(*s2 && len) {
*s1 = *s2; // copy chars
s1++;
s2++;
len--;

}

*s1 = '\0'; // null terminate s1
}

Here, mystrcat() concatenates up to len characters from the string pointed to
by s2 onto the end of the string pointed to by s1. However, if len is –1, as it will
be when it is allowed to default, mystrcat() concatenates the entire string pointed
to by s2 onto s1. (Thus, when len is –1, the function operates like the standard
strcat() function.) By using a default argument for len, it is possible to combine
both operations into one function. As this example illustrates, default arguments
sometimes provide a shorthand form of function overloading.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Functions, Part Two: References, Overloading, and Default Arguments 177

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

Using Default Arguments Correctly
Although default arguments can be a very powerful tool when used correctly, they
can also be misused. The point of default arguments is to allow a function to perform
its job in an efficient, easy-to-use manner, while still allowing considerable flexibility.
Towards this end, all default arguments should reflect the way a function is generally
used, or a reasonable alternate usage. When there is no single value that is normally
associated with a parameter, then there is no reason to declare a default argument. In
fact, declaring default arguments when there is insufficient basis for doing so destructures
your code, because they are liable to mislead and confuse anyone reading your program.
Finally, a default argument should cause no harm. That is, the accidental use of a
default argument should not have irreversible, negative consequences. For example,
forgetting to specify an argument should not cause an important data file to be erased!

Function Overloading and Ambiguity
Before concluding this chapter, we must examine a type of error unique to C++:
ambiguity. It is possible to create a situation in which the compiler is unable to choose
between two (or more) correctly overloaded functions. When this happens, the situation
is said to be ambiguous. Ambiguous statements are errors, and programs containing
ambiguity will not compile.

By far the main cause of ambiguity involves C++’s automatic type conversions. C++
automatically attempts to convert the type of the arguments used to call a function
into the type of the parameters defined by the function. Here is an example:

int myfunc(double d);
.
.
.
cout << myfunc('c'); // not an error, conversion applied

As the comment indicates, this is not an error, because C++ automatically converts
the character c into its double equivalent. Actually, in C++, very few type conversions
of this sort are disallowed. While automatic type conversions are convenient, they are
also a prime cause of ambiguity. Consider the following program:

// Overloading ambiguity.
#include <iostream>
using namespace std;

float myfunc(float i);
double myfunc(double i);

int main()
{
// unambiguous, calls myfunc(double)
cout << myfunc(10.1) << " ";

// ambiguous
cout << myfunc(10);

Ambiguity results
when the compiler
cannot resolve the
difference between
two overloaded
functions.

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

178 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

return 0;
}

float myfunc(float i)
{
return i;

}

double myfunc(double i)
{
return -i;

}

Here, myfunc() is overloaded so that it can take arguments of either type float or
type double. In the unambiguous line, myfunc(double) is called because, unless
explicitly specified otherwise, all floating-point literals in C++ are automatically of
type double. However, when myfunc() is called using the integer 10, ambiguity
is introduced, because the compiler has no way of knowing whether it should be
converted to a float or to a double. Both are valid conversions. This confusion
causes an error message to be displayed and prevents the program from compiling.

The central issue illustrated by the preceding example is that it is not the overloading
of myfunc() relative to double and float that causes the ambiguity. Rather, the
confusion is caused by the specific call to myfunc() using an indeterminate type
of argument. Put differently, it is not the overloading of myfunc() that is in error,
but the specific invocation.

Here is another example of ambiguity caused by the automatic type conversions
in C++:

// Another ambiguity error.
#include <iostream>
using namespace std;

char myfunc(unsigned char ch);
char myfunc(char ch);

int main()
{
cout << myfunc('c'); // this calls myfunc(char)
cout << myfunc(88) << " "; // ambiguous

return 0;
}

char myfunc(unsigned char ch)
{
return ch-1;

}

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

char myfunc(char ch)
{
return ch+1;

}

In C++, unsigned char and char are not inherently ambiguous. (They are different
types.) However, when myfunc() is called with the integer 88, the compiler does
not know which function to call. That is, should 88 be converted into a char or
unsigned char? Both are valid conversions.

Another way you can cause ambiguity is by using default arguments in overloaded
functions. To see how, examine this program:

// More ambiguity.
#include <iostream>
using namespace std;

int myfunc(int i);
int myfunc(int i, int j=1);

int main()
{
cout << myfunc(4, 5) << " "; // unambiguous
cout << myfunc(10); // ambiguous

return 0;
}

int myfunc(int i)
{
return i;

}

int myfunc(int i, int j)
{
return i*j;

}

Here, in the first call to myfunc() two arguments are specified; therefore, no
ambiguity is introduced, and myfunc(int i, int j) is called. However, the second
call to myfunc() results in ambiguity, because the compiler does not know whether
to call the version of myfunc() that takes one argument, or to apply the default to
the version that takes two arguments.

As you continue to write your own C++ programs, be prepared to encounter
ambiguity errors. Unfortunately, until you become more experienced, you will
find that they are fairly easy to create.

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

8

Functions, Part Two: References, Overloading, and Default Arguments 179

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 8

P:\010Comp\Grnd-Up8\897-0\ch08.vp
Monday, March 03, 2003 10:20:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 9

More Data Types
and Operators

181

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Before we move on to the more advanced features of C++, now is a good time to
return to data types and operators. In addition to the data types that you have

been using so far, C++ supports several others. Some of these consist of modifiers
added to the types you already know about. Other data types include enumerations
and typedefs. C++ also provides several additional operators that greatly expand its
scope and facilitate its application to various programming tasks. These include the
bitwise, shift, ?, and sizeof operators. Also, two special operators, new and delete,
are discussed in this chapter. These operators support C++’s dynamic memory
allocation system.

The const and volatile Qualifiers
C++ has two type qualifiers that affect the ways in which variables can be accessed or
modified: const and volatile. Formally called the cv-qualifiers, they precede the base
type when a variable is declared.

const
Variables declared with the const qualifier cannot have their values changed during
the execution of your program. You may give a variable declared as const an initial
value, however. For example,

const double version = 3.2;

creates a double variable called version that contains the value 3.2 and that value
cannot be changed by your program. The variable can, however, be used in other
types of expressions. A const variable will receive its value either from an explicit
initialization or by some hardware-dependent means. Applying the const qualifier to
a variable’s declaration ensures that the variable will not be modified by other parts of
your program.

The const qualifier has several important uses. Perhaps the most common is to create
const pointer parameters. A const pointer parameter prevents the object pointed to by
the parameter from being modified by a function. That is, when a pointer parameter is
preceded by const, no statement in the function can modify the variable pointed to by
that parameter. For example, the code() function in this short program shifts each
letter in a message by one (so that an A becomes a B, and so forth), thus displaying
the message in code. The use of const in the parameter declaration prevents the code
inside the function from modifying the object pointed to by the parameter.

#include <iostream>
using namespace std;

void code(const char *str);

int main()
{
code("this is a test");

return 0;

182 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

The cv-qualifiers
control how a
variable can be
accessed.

The const
qualifier prevents
a variable from
being modified by
your program.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

/* Use of const ensures str cannot modify the
argument to which it points. */

void code(const char *str)
{
while(*str) {
cout << (char) (*str+1);
str++;

}
}

Since str is declared as being a const pointer, the function can make no changes to
the string pointed to by str. However, if you attempted to write code() as shown
in the next example, an error would result, and the program would not compile:

// This is wrong.
void code(const char *str)
{
while(*str) {
*str = *str + 1; // Error, can't modify the argument
cout << (char) *str;
str++;

}
}

Because str is const, it can’t be used to modify the object to which it points.

The const qualifier can also be used on reference parameters to prevent functions
from modifying the variables that they reference. For example, the following program
is incorrect because f() attempts to modify the variable referred to by i:

// const references cannot be modified.
#include <iostream>
using namespace std;

void f(const int &i);

int main()
{
int k = 10;

f(k);
return 0;

}

// Use a const reference parameter.
void f(const int &i)
{
i = 100; // Error, can't modify a const reference.
cout << i;

}

More Data Types and Operators 183

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

184 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

Another use for const is to provide verification that your program does not, in fact,
alter a variable. Recall that a variable of type const can be modified by something
outside your program. For example, a hardware device may set its value. By declaring
a variable as const, you can prove that any changes to that variable occur because of
external events.

Finally, const is used to create named constants. Often, programs will require the
same value for many different purposes. For example, several different arrays may be
declared that must all be the same size. When such a "magic number" is needed, one
good way to implement it is as a const variable. Then you can use the name of the
variable instead of the value, and if that value needs to be changed, you will need to
change it in only one place in your program. The following example gives you the
flavor of this application of const:

#include <iostream>
using namespace std;

const int size = 10;

int main()
{
int A1[size], A2[size], A3[size];

// ...
}

In this example, if you need to use a new size for the arrays, you need only change the
declaration of size and recompile your program. All three arrays will be automatically
resized.

volatile
The volatile qualifier tells the compiler that a variable’s value may be changed in ways
not explicitly specified by the program. For example, the address of a global variable
may be passed to an interrupt-driven clock routine that updates the variable with
each tick of the clock. In this situation, the contents of the variable are altered
without the use of any explicit assignment statements in the program. The reason the
external alteration of a variable may be important is that a C++ compiler is permitted
to optimize certain expressions on the assumption that the content of a variable is
unchanged if it does not occur on the left side of an assignment statement. However, if
factors external to the program change the value of a variable, then problems can occur.

For example, in the following fragment, assume that clock is being updated every
millisecond by the computer’s clock mechanism. However, since clock is not
declared as volatile, the fragment may not always work properly. (Pay special
attention to the lines labeled A and B.)

int clock, timer;
// ...

The volatile
qualifier informs
the compiler that
a variable may
be changed by
factors outside
of the program.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

timer = clock; // line A
// ... do something
cout << "Elapsed time is " << clock-timer; // line B

In this fragment, the value of clock is obtained when it is assigned to timer in line A.
However, because clock is not declared as volatile, the compiler is free to optimize the
code in such a way that the value of clock is not reexamined in the cout statement in
line B if there has been no intervening assignment to clock between lines A and B.
(That is, in line B the compiler could simply reuse the value for clock that it obtained
in line A.) However, if a clock tick occurs between lines A and B, then the value of
clock will have changed, and line B will not produce the correct output.

To solve this problem, you must declare clock to be volatile, as shown here:

volatile int clock;

Now, clock’s value will be obtained each time it is used.

Although it seems strange at first thought, it is possible to use const and volatile
together. For example, the following declaration is perfectly valid. It creates a const
pointer to a volatile object.

const volatile unsigned char *port = (const volatile char *) 0x2112;

In this example, the cast is needed in order to transform the integer literal 0x2112
into a const volatile character pointer.

Storage Class Specifiers
There are five storage class specifiers supported by C++. They are:

auto
extern
register
static
mutable

These tell the compiler how a variable should be stored. The storage specifier precedes
the rest of the variable declaration.

The mutable specifier applies only to class objects, which are discussed later in this
book. Each of the other specifiers is examined here.

auto
The auto specifier declares a local variable. However, it is rarely (if ever) used, because
local variables are auto by default. It is extremely unusual to see this keyword used in
a program.

More Data Types and Operators 185

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

The storage class
specifiers
determine how a
variable is stored.

The seldom used
auto specifier
declares a local
variable.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

extern
All the programs that you have worked with so far have been quite small. However,
in reality, computer programs tend to be much larger. As a program file grows, the
compilation time eventually becomes long enough to be annoying. When this
happens, you should break your program into two or more separate files. Once you
divide your program this way, small changes to one file will not require that the
entire program be recompiled. The multiple file approach can yield a substantial time
savings with large projects. The extern keyword helps support this approach. Let’s
see how.

In programs that consist of two or more files, each file must know the names and
types of the global variables used by the program. However, you cannot simply
declare copies of the global variables in each file. The reason for this is that in C++,
your program can include only one copy of each global variable. Therefore, if you
try to declare the global variables needed by your program in each file, you will have
trouble. When the linker tries to link together the files, it will find the duplicated
global variables, and will not link your program. The solution to this dilemma is to
declare all of the global variables in one file and use extern declarations in the
others, as shown in Figure 9-1.

File One declares and defines x, y, and ch. In File Two, the global variable list is
copied from File One, and the extern specifier is added to the declarations. The
extern specifier allows a variable to be made known to a module, but does not
actually create that variable. In other words, extern lets the compiler know what the
types and names are for these global variables, without actually creating storage for
them again. When the linker links the two modules together, all references to the
external variables are resolved.

While we haven’t yet worried about the distinction between the declaration and the
definition of a variable, it is important here. A declaration declares the name and type
of a variable. A definition causes storage to be allocated for the variable. In most cases,
variable declarations are also definitions. By preceding a variable name with the
extern specifier, you can declare a variable without defining it.

There is another use of extern which does not involve multi-file projects. Although
most of the time you will declare global variables at the top of your program, this is

186 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

Figure 9-1.

Using global
variables in
separately
compiled
modules

The extern
specifier declares
a variable, but
does not allocate
storage for it.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

not technically necessary. If a function uses a global variable that is defined later in
the file, the global variable can be declared as extern inside the function. Later, when
the variable’s definition is encountered, references to the variable are resolved.
Consider the following example. Notice that the global variables first and last are
declared after main().

#include <iostream>
using namespace std;

int main()
{
extern int first, last; // use global vars

cout << first << " " << last << "\n";

return 0;
}

// global definition of first and last
int first = 10, last = 20;

This programs outputs 10 20 because the global variables first and last used by the
cout statement are initialized to these values. Because the extern declaration inside
main() tells the compiler that first and last are declared elsewhere (in this case,
later in the same file), the program can be compiled without error even though first
and last are used prior to their definition.

It is important to understand that the extern variable declarations as shown in
the preceding program are necessary only because first and last had not yet been
defined prior to their use in main(). Had their definitions occurred prior to main(),
then there would have been no need for the extern statement. Remember, if the
compiler finds a variable that has not been declared within the current block, it
checks if the variable matches any of the variables declared within enclosing blocks.
If it does not, the compiler then checks the previously defined global variables. If a
match is found, the compiler assumes that it is the variable being referenced. The
extern specifier is needed only when you want to use a variable that is declared later
in the file, or in another file.

One other point: Although an extern statement declares but does not define a
variable, there is one exception to this rule. If, in an extern declaration, you initialize
the variable, then the extern declaration becomes a definition. This is important
because an object can have multiple declarations, but only one definition.

static Variables
Variables of type static are permanent variables within their own function or file.
They differ from global variables because they are not known outside their function
or file. Because static affects local variables differently than it does global ones, local
and global variables will be examined separately here.

More Data Types and Operators 187

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

static Local Variables
When the static modifier is applied to a local variable, permanent storage for the
variable is allocated in much the same way that it is for a global variable. This allows
a static variable to maintain its value between function calls. (That is, its value is not
lost when the function returns, unlike the value of a normal local variable.) The key
difference between a static local variable and a global variable is that the static local
variable is known only to the block in which it is declared. Thus, a static local
variable is, more or less, a global variable that has restricted scope.

To declare a static variable, precede its type with the word static. For example, this
statement declares count as a static variable:

static int count;

A static variable may be given an initial value. For example, this statement gives
count an initial value of 200:

static int count = 200;

Local static variables are initialized only once, when program execution begins, not
each time the function in which they are declared is entered.

It is important to the creation of stand-alone functions that static local variables
are available, because there are several types of routines that must preserve a value
between calls. If static variables were not allowed, then global variables would have
to be used—opening the door to possible side effects.

Here is an example of a static variable. It keeps a running average of the numbers
entered by the user.

/* Compute a running average of numbers entered by
the user.

*/
#include <iostream>
using namespace std;

int r_avg(int i);

int main()
{
int num;

do {
cout << "Enter numbers (-1 to quit): ";
cin >> num;
if(num != -1)
cout << "Running average is: " << r_avg(num);

cout << '\n';
} while(num > -1);

return 0;

188 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

A static local
variable maintains
its value between
function calls.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}

// Compute a running average.
int r_avg(int i)
{
static int sum=0, count=0;

sum = sum + i;

count++;

return sum / count;
}

Here, the local variables sum and count are both declared as static and initialized to 0.
Remember, for static variables, the initialization occurs only once—not each time
the function is entered. The program uses r_avg() to compute and report the current
average of the numbers entered by the user. Because both sum and count are static,
they will maintain their values between calls, causing the program to work properly.
To prove to yourself that the static modifier is necessary, try removing it and running
the program. As you can see, the program no longer works correctly, because the
running total is lost each time r_avg() returns.

static Global Variables
When the static specifier is applied to a global variable, it tells the compiler to create
a global variable that is known only to the file in which the static global variable is
declared. This means that even though the variable is global, other functions in other
files have no knowledge of it and cannot alter its contents. Thus, it is not subject to
unauthorized changes. Therefore, for the few situations where a local static cannot
do the job, you can create a small file that contains only the functions that need the
global static variable, separately compile that file, and use it without fear of side
effects.

Here is an example that reworks the running-average program shown in the previous
section. It consists of two files and uses global static variables to hold the running
average and the count.

// ---------------------- First File ----------------------

#include <iostream>
using namespace std;

int r_avg(int i);
void reset();

int main()
{
int num;

do {
cout << "Enter numbers (-1 to quit, -2 to reset): ";

More Data Types and Operators 189

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

A static global
variable is known
only to the file in
which the variable
is declared.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cin >> num;
if(num==-2) {
reset();
continue;

}
if(num != -1)
cout << "Running average is: " << r_avg(num);

cout << '\n';
} while(num != -1);

return 0;
}

// ---------------------- Second File ----------------------

static int sum=0, count=0;

int r_avg(int i)
{
sum = sum + i;

count++;

return sum / count;
}

void reset()
{
sum = 0;
count = 0;

}

In this version of the program, the variables sum and count are global statics that
are restricted to the second file. Thus, they may be accessed by both r_avg() and
reset(), both in the second file. This allows them to be reset so that a second set of
numbers can be averaged. However, no functions outside the second file can access
those variables. When you run this program, you can reset the average by entering –2.
This causes a call to reset().You should try this now. You might also try to access
either sum or count from the first file. (You will receive an error message.)

To review: The name of a local static variable is known only to the function or block
of code in which it is declared, and the name of a global static variable is known
only to the file in which it resides. In essence, the static modifier allows variables to
exist that are known only to the functions that need them, thereby controlling and
limiting the possibility of side effects. Variables of type static enable you, the
programmer, to hide portions of your program from other portions. This can be a
tremendous advantage when you are trying to manage a very large and complex
program.

190 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

TIP: Although global static variables are still valid and widely used in C++
code, Standard C++ deprecates their use. Instead, it recommends another method of
controlling access to global variables that involves the use of namespaces. This
technique is described later in this book.

Register Variables
Perhaps the most frequently used storage class specifier is register. The register
modifier tells the compiler to store a variable in such a way that it can be accessed as
quickly as possible. Typically, this means storing the variable either in a register of the
CPU or in cache memory. As you probably know, accessing the registers of the CPU
(or cache memory) is fundamentally faster than is accessing the main memory of the
computer. Thus, a variable stored in a register will be accessed much more quickly
than if that variable had been stored in RAM, for example. Because the speed by
which variables can be accessed has a profound effect on the overall speed of your
programs, the careful use of register is an important programming technique.

Technically, register is only a request to the compiler, which the compiler is free to
ignore. The reason for this is easy to understand: There is a finite number of registers
(or fast-access memory), and these may differ from environment to environment. Thus,
if the compiler runs out of fast access memory, it simply stores the variable normally.
Generally, this causes no harm, but of course the register advantage is lost.

Since only a limited number of variables can actually be granted the fastest access, it is
important to choose carefully those to which you apply the register modifier. (Only
by choosing the right variables can you gain the greatest increase in performance.) In
general, the more often a variable is accessed, the more benefit there will be to
optimizing it as a register variable. For this reason, variables that control or are
accessed within loops are good variables to declare as register. The following example
uses a register variable of type int to control a loop. This function computes the result
of me for integers, while preserving the sign. Thus, –2 squared is –4.

int signed_pwr(register int m, register int e)
{
register int temp;
int sign;

if(m < 0) sign = -1;
else sign = 1;

temp = 1;
for(;e ;e--) temp = temp * m;

return temp * sign;
}

In this example, m, e and temp are all declared as register because they are all used
within the loop and are accessed frequently. However, sign is not specified as
register because it is not part of the loop and is accessed less frequently.

More Data Types and Operators 191

The register
specifier requests
that a variable be
optimized for
access speed.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Origins of the register Modifier
The register modifier was first defined by the C language. It originally applied only to
variables of type int and char, or to pointers. It caused variables of these types to be
held in a register of the CPU rather than in memory, where normal variables are stored.
This meant that operations on register variables could occur much faster than on
variables stored in memory, because no memory access was required to determine or
modify their values.

When C was standardized, a decision was made to expand the definition of register.
According to the ANSI C standard, the register modifier may be applied to any
type of data. It simply tells the compiler to make access to a register type as fast as
possible. For situations involving characters and integers, this still usually means
putting them into a CPU register, so the traditional definition still holds. Since C++ is
built upon ANSI standard C, it has also adopted the expanded definition of register.

As stated, the exact number of register variables that will actually be optimized
within any one function is determined by both the processor type and the specific
implementation of C++ that you are using. You can generally count on at least two.
You don’t have to worry about declaring too many register variables, though,
because C++ will automatically make register variables into non-register variables
when the limit is reached. (This is done to ensure portability of C++ code across a
broad line of processors.)

To show the difference that register variables can make, the following program
measures the execution time of two for loops that differ only in the type of variable
that controls them. This program uses the clock() function found in C++’s standard
library. The clock() function returns the number of system clock ticks that have
elapsed since the program began running. It requires the header <ctime>.

/* This program shows the difference a register variable
can make to the speed of program execution.

*/

#include <iostream>
#include <ctime>
using namespace std;

unsigned int i; // non-register
unsigned int delay;

int main()
{
register unsigned int j;

192 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 193

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

long start, end;

start = clock();
for(delay=0; delay<50; delay++)
for(i=0; i < 64000000; i++);

end = clock();
cout << "Number of clock ticks for non-register loop: ";
cout << end-start << '\n';

start = clock();
for(delay=0; delay<50; delay++)
for(j=0; j < 64000000; j++) ;

end = clock();
cout << "Number of clock ticks for register loop: ";
cout << end-start << '\n';

return 0;
}

When you run this program, you will find that the register-controlled loop executes
in about half the time of the non-register-controlled loop. If you don’t see the
expected difference, it probably means that your compiler is simply optimizing all of
the variables for speed. Just play with the program a bit until the difference becomes
apparent.

NOTE: At the time of this writing, Visual C++ ignores the register keyword.
Instead, Visual C++ applies optimizations as it sees fit. Thus, you won’t see any
optimization caused by register in the preceding program. However, the register
keyword is still accepted by the compiler without error. It just doesn’t have any effect.

Enumerations
In C++, you can define a list of named integer constants. Such a list is called an
enumeration. These constants can then be used anywhere that an integer can.
Enumerations are defined using the keyword enum, and this general format:

enum type-name { enumeration list } variable-list;

The enumeration list is a comma-separated list of names that represent the values of
the enumeration. The variable list is optional because variables may be declared later
by using the enumeration type name. The following example defines an enumeration
called apple, and two variables of type apple called red and yellow.

enum apple {Jonathan, Golden_Del, Red_Del, Winesap,
Cortland, McIntosh} red, yellow;

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

194 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

Once you have defined an enumeration, you can declare additional variables of its
type by using its name. For example, this statement declares one variable, called
fruit, of enumeration apple:

apple fruit;

The statement can also be written like this:

enum apple fruit;

However, the use of enum here is redundant. In C (which also supports enumerations),
this second form was required, so you may see it used in some programs.

Assuming the preceding declarations, the following types of statements are perfectly
valid:

fruit = Winesap;
if(fruit==Red_Del) cout << "Red Delicious\n";

The key point to understand about an enumeration is that each of the symbols stands
for an integer value. As such, they can be used in any integer expression. Unless
initialized otherwise, the value of the first enumeration symbol is 0, the value of the
second symbol is 1, and so forth. Therefore,

cout << Jonathan << ' ' << Cortland;

displays 0 4 on the screen.

Although enumerated constants are automatically converted to integers, integers are
not automatically converted into enumerated constants. For example, the following
statement is incorrect:

fruit = 1; // Error

This statement causes a compile-time error because there is no automatic conversion
from integer to apple. However, you could fix the preceding statement by using a
cast, as shown here:

fruit = (apple) 1; // now OK, but probably poor style

This causes fruit to contain the value Golden_Del, because it is the apple constant
associated with the value 1. As the comment suggests, while this statement is now
correct, it would be considered poor style, except in unusual circumstances.

It is possible to specify the value of one or more of the enumerated constants by using
an initializer. This is done by following the symbol with an equal sign and an integer
value. Whenever an initializer is used, the symbol that appears after it is assigned a
value 1 greater than the preceding initialization value. For example, the following
statement assigns the value of 10 to Winesap:

The enum keyword
declares an
enumeration.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 195

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

enum apple {Jonathan, Golden_Del, Red_Del, Winesap=10,
Cortland, McIntosh};

Now, the values of these symbols are as follows:

Jonathan 0

Golden_Del 1

Red_Del 2

Winesap 10

Cortland 11

McIntosh 12

One common, but erroneous, assumption sometimes made about enumerations is that
the symbols can be input and output as a string. This is not the case. For example, the
following code fragment will not perform as desired:

// This will not print "McIntosh" on the screen.
fruit = McIntosh;
cout << fruit;

Remember, the symbol McIntosh is simply a name for an integer; it is not a string.
Thus, the preceding code will display the numeric value of McIntosh, not the string
"McIntosh". Actually, to create code that inputs and outputs enumeration symbols as
strings is quite tedious. For example, the following code is needed in order to display,
in words, the kind of apple that fruit contains:

switch(fruit) {
case Jonathan: cout << "Jonathan";
break;

case Golden_Del: cout << "Golden Delicious";
break;

case Red_Del: cout << "Red Delicious";
break;

case Winesap: cout << "Winesap";
break;

case Cortland: cout << "Cortland";
break;

case McIntosh: cout << "McIntosh";
break;

}

Sometimes it is possible to declare an array of strings and use the enumeration value
as an index in order to translate an enumeration value into its corresponding string.
For example, the following program prints the names of three apples:

#include <iostream>
using namespace std;

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

196 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

enum apple {Jonathan, Golden_Del, Red_Del, Winesap,
Cortland, McIntosh};

// Array of strings that correspond to the apple enumeration.
char name[][20] = {
"Jonathan",
"Golden Delicious",
"Red Delicious",
"Winesap",
"Cortland",
"McIntosh"

};

int main()
{
apple fruit;

fruit = Jonathan;
cout << name[fruit] << '\n';

fruit = Winesap;
cout << name[fruit] << '\n';

fruit = McIntosh;
cout << name[fruit] << '\n';

return 0;
}

The output is shown here.

Jonathan
Winesap
McIntosh

The approach this program uses to convert an enumeration value into a string can be
applied to any type of enumeration, as long as that enumeration does not contain
initializers. To properly index the array of strings, the enumerated constants must
begin at zero, be in strictly ascending order, and each be precisely one greater than
the previous.

Given the fact that enumeration values must be converted manually to their human-
readable string values, they find their greatest use in routines that do not make such
conversions. It is common to see an enumeration used to define a compiler’s symbol
table, for example.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 197

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

typedef
C++ allows you to define new data type names with the typedef keyword. When you
use typedef, you actually are not creating a new data type, but rather are defining
a new name for an existing type. This process can help make machine-dependent
programs more portable; only the typedef statements have to be changed. It also
can help you self-document your code by allowing descriptive names for the standard
data types. The general form of the typedef statement is

typedef type new-name;

where type is any valid data type, and new-name is the new name for this type. The
new name you define is in addition to, not a replacement for, the existing type name.

For example, you could create a new name for float using

typedef float balance;

This statement would tell the compiler to recognize balance as another name for
float. Next, you could create a float variable using balance:

balance over_due;

Here, over_due is a floating-point variable of type balance, which is another name
for float.

More Operators
Earlier in this book, you learned about the more commonplace C++ operators. Unlike
many computer languages, C++ provides several special operators that greatly increase
its power and flexibility. These operators are the subject of the remainder of this
chapter.

Bitwise Operators
Since C++ is designed to allow full access to the computer’s hardware, it is important
that it have the ability to operate directly upon the bits within a byte or word.
Towards this end, C++ contains the bitwise operators. Bitwise operations refer to the
testing, setting, or shifting of the actual bits in a byte or word, which correspond to
C++’s character and integer types. Bitwise operations may not be used on bool, float,
double, long double, void, or other more complex data types. Bitwise operations
are important in a wide variety of systems-level programming in which status
information from a device must be interrogated or constructed. Table 9-1 lists the
bitwise operators. Let’s now look at each operator in turn.

typedef lets
you create a
new name for
an existing
data type.

The bitwise
operators
operate upon
individual bits.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

198 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

AND, OR, XOR, and NOT
The bitwise AND, OR, and one’s complement (NOT) are governed by the same truth
table as their logical equivalents, except that they work on a bit-by-bit level. The
exclusive OR (XOR) operates according to the following truth table:

p q p ^ q

0 0 0

1 0 1

1 1 0

0 1 1

As the table indicates, the outcome of an XOR is true only if exactly one of the
operands is true; it is false otherwise.

In terms of its most common usage, you can think of the bitwise AND as a way to
turn bits off. That is, any bit that is 0 in either operand will cause the corresponding
bit in the outcome to be set to 0. For example:

1 1 0 1 0 0 1 1
& 1 0 1 0 1 0 1 0

———————
1 0 0 0 0 0 1 0

The following program reads characters from the keyboard, and turns any lowercase
letter into uppercase by resetting the sixth bit to 0. As the ASCII character set is
defined, the lowercase letters are the same as the uppercase ones, except that they are
greater in value by exactly 32. Therefore, to uppercase a lowercase letter, you need to
turn off the sixth bit, as this program illustrates:

// Uppercase letters.
#include <iostream>
using namespace std;

Operator Action

& AND

| OR

^ exclusive OR (XOR)

~ one’s complement (NOT)

>> shift right

<< shift leftTable 9-1.

The Bitwise
Operators

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

int main()
{
char ch;

do {
cin >> ch;

// This statement turns off the 6th bit.
ch = ch & 223; // ch is now uppercase

cout << ch;
} while(ch!='Q');

return 0;
}

The value 223 used in the AND statement is the decimal representation of 1101 1111.
Hence, the AND operation leaves all bits in ch unchanged, except for the sixth one,
which is set to zero.

The AND operator is also useful when you want to determine whether a bit is on or
off. For example, this statement checks to see if bit 4 in status is set:

if(status & 8) cout << "bit 4 is on";

To understand why 8 is used to determine if bit 4 is set, recall that, in binary, 8 is
represented as 0000 1000. Thus, the number 8 has only the fourth bit set. Therefore,
the if statement can succeed only when bit 4 of status is also on. An interesting use
of this technique is the disp_binary() function, shown next. It displays, in binary
format, the bit pattern of its argument. You will use disp_binary() later in this
chapter to examine the effects of other bitwise operations.

// Display the bits within a byte.
void disp_binary(unsigned u)
{
register int t;

for(t=128; t>0; t = t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

cout << "\n";
}

The disp_binary() function works by successively testing each bit in the low-order
byte of u, using the bitwise AND, to determine if it is on or off. If the bit is on, the
digit 1 is displayed; otherwise 0 is displayed. For fun, try expanding this function so
that it displays all of the bits in u, not just its low-order byte.

More Data Types and Operators 199

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

200 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

The bitwise OR, as the reverse of AND, can be used to turn bits on. A bit that is set to 1
in either operand will cause the corresponding bit in the result to be set to 1. For
example:

1 1 0 1 0 0 1 1
| 1 0 1 0 1 0 1 0

———————
1 1 1 1 1 0 1 1

You can make use of the OR to change the uppercasing program, used earlier, into a
lowercasing program, as shown here:

// Lowercase letters.
#include <iostream>
using namespace std;

int main()
{
char ch;

do {
cin >> ch;

/* This lowercases the letter by turning
on bit 6.

*/
ch = ch | 32;

cout << ch;
} while(ch != 'q');

return 0;
}

Setting the sixth bit causes an uppercase letter to be transformed into its lowercase
equivalent.

An exclusive OR, usually abbreviated XOR, will set a bit if and only if the bits being
compared are different, as illustrated here:

0 1 1 1 1 1 1 1
^ 1 0 1 1 1 0 0 1

—————————
1 1 0 0 0 1 1 0

The 1’s complement (NOT) unary operator reverses the state of all the bits of its
operand. For example, if some integer called A has the bit pattern 1001 0110, then ~A
produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number and
its complement in binary, using the disp_binary() function shown earlier:

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 201

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

#include <iostream>
using namespace std;

void disp_binary(unsigned u);

int main()
{
unsigned u;

cout << "Enter a number between 0 and 255: ";
cin >> u;

cout << "Here's the number in binary: ";
disp_binary(u);

cout << "Here's the complement of the number: ";
disp_binary(~u);

return 0;
}

// Display the bits within a byte.
void disp_binary(unsigned u)
{
register int t;

for(t=128; t>0; t = t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

cout << "\n";
}

Here is a sample run produced by the program:

Enter a number between 0 and 255: 99
Here's the number in binary: 0 1 1 0 0 0 1 1
Here's the complement of the number: 1 0 0 1 1 1 0 0

One last point: Be careful not to confuse the logical and bitwise operators. They
perform different functions. The &, |, and ~ apply their operations directly to each bit
in the value individually. The equivalent logical operators work on true/false (zero/
nonzero) values. For this reason, the bitwise operators cannot be used to replace their
logical equivalents in conditional statements. For example, if x equals 7, then x && 8
evaluates to true, whereas x & 8 evaluates to false.

REMEMBER: A relational or logical operator always produces a result that
is either true or false, whereas the similar bitwise operator produces a value in
accordance with the specific operation.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

202 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

The Shift Operators
The shift operators, >> and <<, move all bits in a value to the right or left. The general
form of the right-shift operator is

value >> num-bits

and the left-shift operator is

value << num-bits

The value of num-bits determines how many bit places the bits are shifted. Each
left-shift causes all bits within the specified value to shift left one position, and it brings
in a zero bit on the right. Each right-shift shifts all bits to the right one position, and
brings in a zero on the left. However, if the value is a signed integer containing a
negative value, then each right-shift brings in a 1 on the left, which preserves the sign
bit. Remember, a shift is not a rotation. That is, the bits shifted off of one end do not
come back around to the other.

The shift operators work only with integral types, such as characters, integers, and
long integers. They cannot be applied to floating-point values, for example.

Bit shift operations can be very useful for decoding external device input, like D/A
converters, and processing status information. The bitwise shift operators can also be
used to perform very fast multiplication and division of integers. A shift left will
effectively multiply a number by 2, and a shift right will divide it by 2.

The following program illustrates the effects of the shift operators:

// Demonstrate bitshifting.
#include <iostream>
using namespace std;

void disp_binary(unsigned u);

int main()
{
int i=1, t;

for(t=0; t<8; t++) {
disp_binary(i);
i = i << 1;

}

cout << "\n";

for(t=0; t<8; t++) {
i = i >> 1;
disp_binary(i);

}

return 0;
}

// Display the bits within a byte.

The shift
operators shift
the bits within an
integral value.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Monday, March 03, 2003 12:18:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

void disp_binary(unsigned u)
{
register int t;

for(t=128; t>0; t=t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

cout << "\n";
}

This program produces the following output:

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

The ? Operator
One of C++’s most fascinating operators is the ?. The ? operator can be used to replace
if-else statements of this general form:

if (condition)
var = expression1;

else
var = expression2;

Here, the value assigned to var depends upon the outcome of the condition
controlling the if.

The ? is called a ternary operator because it requires three operands. It takes the general
form

Exp1 ? Exp2 : Exp3;

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false,

More Data Types and Operators 203

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

then Exp3 is evaluated and its value becomes the value of the expression. Consider
this example:

while(something) {
x = count > 0 ? 0 : 1;
// ...

}

Here, x will be assigned the value 0 until count is less than or equal to 0. The same
code written using an if-else statement would look like this:

while(something) {
if(count > 0) x = 0;
else x = 1;
// ...

}

Here’s an example of the ? operator in action. This program divides two numbers, but
will not allow a division by zero.

/* This program uses the ? operator to prevent
a division by zero. */

#include <iostream>
using namespace std;

int div_zero();

int main()
{
int i, j, result;

cout << "Enter dividend and divisor: ";
cin >> i >> j;

// This statement prevents a divide by zero error.
result = j ? i/j : div_zero();

cout << "Result: " << result;

return 0;
}

int div_zero()
{
cout << "Cannot divide by zero.\n";
return 0;

}

Here, if j is non-zero, then i is divided by j, and the outcome is assigned to result.
Otherwise, the div_zero() error handler is called and zero is assigned to result.

204 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 205

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

Compound Assignment
C++ has a special shorthand called compound assignment that combines assignment
with another operation. For example,

x = x + 10;

can be written using a compound assignment as

x += 10;

The operator pair += tells the compiler to assign to x the value of x plus 10. As this
example illustrates, compound assignment simplifies the coding of a certain type of
assignment statement. Depending upon the compiler, it may also produce more
efficient code.

Compound assignment operators exist for all of the binary operators in C++ (that is,
those that require two operands). Thus, for the binary operators, any assignment that
has this general form

var = var op expression;

can be rewritten as

var op = expression;

Here is another example:

x = x - 100;

is the same as

x -= 100;

You will see compound assignment used widely in professionally written C++
programs, so you should become familiar with it.

The Comma Operator
Another interesting C++ operator is the comma. You have seen some examples of the
comma operator in the for loop, where it has been used to allow multiple initialization
or incrementation statements. However, the comma can be used as a part of any
expression. Its purpose is to string together several expressions. The value of a
comma-separated list of expressions is the value of the right-most expression. The
values of the other expressions will be discarded. This means that the expression on the
right side will become the value of the entire comma-separated expression. For example,

var = (count=19, incr=10, count+1);

first assigns count the value 19, assigns incr the value 10, then adds 1 to count, and
finally, assigns var the value of the rightmost expression, count+1, which is 20. The

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parentheses are necessary because the comma operator has a lower precedence than
the assignment operator.

To see the effects of the comma operator, try running the following program:

#include <iostream>
using namespace std;

int main()
{
int i, j;

j = 10;

i = (j++, j+100, 999+j);

cout << i;

return 0;
}

This program prints 1010 on the screen. Here is why: j starts with the value 10. j is
then incremented to 11. Next, j is added to 100. Finally, j (still containing 11) is added
to 999, which yields the result 1010.

Essentially, the comma’s effect is to cause a sequence of operations to be performed.
When it is used on the right side of an assignment statement, the value assigned is the
value of the last expression in the comma-separated list. You can, in some ways, think
of the comma operator as having the same meaning that the word "and" has in
English when used in the phrase "do this and this and this."

Multiple Assignments
C++ allows a very convenient method of assigning many variables the same value:
using multiple assignments in a single statement. For example, this fragment assigns
count, incr, and index the value 10:

count = incr = index = 10;

In professionally written programs, you will often see variables assigned a common
value using this format.

Using sizeof
Sometimes it is helpful to know the size, in bytes, of a type of data. Since the sizes of
C++’s built-in types can differ between computing environments, knowing the size of
a variable in all situations can be difficult. To solve this problem, C++ includes the
sizeof compile-time operator, which has these general forms:

sizeof (type)
sizeof value

206 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 207

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

The first version returns the size of the specified data type, and the second returns the
size of the specified value. As you can see, if you want to know the size of a data type,
such as int, you must enclose the type name in parentheses. If you want to know the
size of a value, no parentheses are needed, although you can use them if you want.

To see how sizeof works, try the following short program. For many 32-bit
environments, it displays the values 1, 4, 4, and 8.

// Demonstrate sizeof.
#include <iostream>
using namespace std;

int main()
{
char ch;
int i;

cout << sizeof ch << ' '; // size of char
cout << sizeof i << ' '; // size of int
cout << sizeof (float) << ' '; // size of float
cout << sizeof (double) << ' '; // size of double

return 0;
}

As mentioned earlier, sizeof is a compile-time operator. All information necessary for
computing the size of a variable or data type is known during compilation.

You may apply sizeof to any data type. For example, when it is applied to an array, it
returns the number of bytes used by the array. Consider this fragment:

int nums[4];

cout << sizeof nums; // displays 16

Assuming 4-byte integers, this fragment displays the value 16 (i.e., 4 bytes times 4
elements).

sizeof primarily helps you write code that depends upon the size of the C++ data
types. Remember, since the sizes of types in C++ are defined by the implementation,
it is bad style to make assumptions about their sizes in code that you write.

Dynamic Allocation Using new and delete
There are two primary ways in which a C++ program can store information in the
main memory of the computer. The first is through the use of variables. The storage
provided by variables is fixed at compile time, and cannot be altered during the
execution of a program. The second way information can be stored is through the use
of C++’s dynamic allocation system. In this method, storage for data is allocated as
needed from the free memory area that lies between your program (and its permanent
storage area) and the stack. This region is called the heap. (Figure 9-2 shows
conceptually how a C++ program appears in memory.)

sizeof is a
compile-time
operator that
obtains the size
of a type or value.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

208 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

Dynamically allocated storage is obtained at run time. Thus, dynamic allocation
makes it possible for your program to create variables during its execution, and it can
create as many or as few variables as required, depending upon the situation. This
makes dynamic allocation especially valuable for data structures such as linked lists
and binary trees, which change size as they are used. Dynamic allocation for one
purpose or another is an important part of nearly all real-world programs.

Memory to satisfy a dynamic allocation request is taken from the heap. As you might
guess, it is possible, under fairly extreme cases, for free memory to become exhausted.
Therefore, while dynamic allocation offers greater flexibility, it, too, is finite.

C++ contains two operators, new and delete, that perform the functions of
allocating and freeing memory. Their general forms are shown here:

pointer-var = new var-type;
delete pointer-var;

Here, pointer-var is a pointer of type var-type. The new operator allocates sufficient
memory to hold a value of type var-type and returns a pointer to it. Any valid data
type can be allocated using new. The delete operator frees the memory pointed to
by pointer-var. Once freed, this memory can be reallocated to different purposes by a
subsequent new allocation request.

Figure 9-2.

A conceptual
view of memory
usage in a C++
program

Dynamic
allocation is the
means by which a
program can
obtain memory
during its
execution.

new allocates
dynamic memory.

delete frees
previously
allocated dynamic
memory.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 209

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

Since the heap is finite, it can become exhausted. If there is insufficient available
memory to fill an allocation request, then new will fail and an exception will be
generated. An exception is a run-time error and C++ has a complete subsystem dedicated
to handling such errors. (Exceptions are described in Chapter 17.) In general, your
program should handle this exception and take appropriate action, if possible. If this
exception is not handled by your program, then your program will be terminated.

The actions of new on failure as just described are specified by Standard C++. This is
also the way that all modern compilers work, including the latest versions of Visual
C++ and C++ Builder. The trouble is that some older compilers will implement new
in a different way. When C++ was first invented, new returned a null pointer on
failure. Later, this was changed so that new throws an exception on failure, as just
described. Because this book teaches Standard C++, the examples in this book assume
that new generates an exception on failure. If you are using an older compiler, check
your compiler’s documentation to see precisely how it implements new, making
changes to the examples, if necessary.

Because exceptions will not be examined until later in this book, after classes and
objects have been described, we won’t be handling any exceptions caused by a new
failure at this time. Also, none of the examples in this and subsequent chapters will
cause new to fail, since only a handful of bytes are being allocated by any single
program. However, should an allocation failure occur, it will simply cause your
program to terminate. In Chapter 17, which discusses exception handling, you will
learn how to handle the exception generated by a new failure.

Here is a simple example illustrating the use of new and delete:

#include <iostream>
using namespace std;

int main()
{
int *p;

p = new int; // allocate memory for int

*p = 20; // assign that memory the value 20
cout << *p; // prove that it works by displaying value

delete p; // free the memory

return 0;
}

This program assigns to p an address in the heap that is large enough to hold an
integer. It then assigns that memory the value 20, and displays the contents of the
memory on the screen. Finally, it frees the dynamically allocated memory.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

210 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

Because of the way dynamic allocation is managed, you must only use delete with a
pointer to memory that has been allocated using new. Using delete with any other
type of address will cause serious problems.

Initializing Dynamically Allocated Memory
You can initialize dynamically allocated memory by using the new operator. To do
this, specify the initial value, inside parentheses, after the type name. For example, the
following program uses initialization to give the memory pointed to by p the value 99:

#include <iostream>
using namespace std;

int main()
{
int *p;

p = new int (99); // initialize with 99

cout << *p; // displays 99

delete p;

return 0;
}

Allocating Arrays
You can allocate arrays by using new. This is the general form used to allocate a
singly dimensioned array:

pointer-var = new type [size];

Here, size specifies the number of elements in the array.

To free a dynamically allocated array, use this form of delete:

delete [] pointer-var;

Here, pointer-var is the address obtained when the array was allocated. The square
brackets tell C++ that a dynamically allocated array is being deleted, and it
automatically frees all the memory allocated to the array.

TIP: Older C++ compilers may require that you specify the size of the array being
deleted, because early versions of C++ required this form of delete for freeing an array:

delete [size] pointer-var;

Here, size is the number of elements in the array. Standard C++ no longer requires
that the size of the array be specified.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

More Data Types and Operators 211

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

The following program allocates space for a 10-element array of doubles, assigns the
array the values 100 to 109, and displays the contents of the array on the screen:

#include <iostream>
using namespace std;

int main()
{
double *p;
int i;

p = new double [10]; // get a 10-element array

// assign the values 100 through 109
for(i=0; i<10; i++) p[i] = 100.00 + i;

// display the contents of the array
for(i=0; i<10; i++) cout << p[i] << " ";

delete [] p; // delete the entire array

return 0;
}

There is one important point to remember about allocating an array: You cannot
initialize it.

C’s Approach to Dynamic Allocation:
malloc() and free()
The C language does not contain the new or the delete operators. Instead, C uses
library functions to allocate and free memory. For compatibility, C++ still provides
support for C’s dynamic allocation system, and it is still quite common to find the
C-like dynamic allocation system used in C++ programs. The following discussion
explains how it works.

At the core of C’s allocation system are the functions malloc() and free(). The
malloc() function allocates memory, and the free() function releases it. That is,
each time a malloc() memory request is made, a portion of the remaining free
memory is allocated. Each time free() is called, memory is returned to the system.
Any program that uses these functions must include the header <cstdlib>.

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

212 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

The malloc() function has this prototype:

void *malloc(size_t num_bytes);

Here, num_bytes is the number of bytes of memory you want to allocate. (size_t is a
defined type that is some type of unsigned integer). The malloc() function returns a
pointer of type void, which signifies a generic pointer. You must use a cast to convert
this pointer into the type of pointer needed by your program. After a successful call,
malloc() will return a pointer to the first byte of the region of memory allocated
from the heap. If there is not enough memory to satisfy the request, an allocation
failure occurs, and malloc() returns a null.

The free() function is the opposite of malloc() in that it returns previously
allocated memory to the system. Once the memory has been released, it may be
reused by a subsequent call to malloc(). The function free() has this prototype:

void free(void *ptr);

Here, ptr is a pointer to memory previously allocated using malloc(). You must
never call free() with an invalid argument; this would cause the free list to be
destroyed.

The following program illustrates malloc() and free():

// Demonstrate malloc() and free().
#include <iostream>
#include <cstdlib>
using namespace std;

int main()
{
int *i;
double *j;

i = (int *) malloc(sizeof(int));
if(!i) {
cout << "Allocation Failure.\n";
return 1;

}

j = (double *) malloc(sizeof(double));
if(!j) {
cout << "Allocation Failure.\n";
return 1;

}

*i= 10;

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

*j = 100.123;

cout << *i << ' ' << *j;

// free the memory
free(i);
free(j);

return 0;
}

While malloc() and free() are fully capable dynamic allocation functions, there are
several reasons why C++ defines its own approach to dynamic allocation. First, new
automatically computes the size of the type being allocated. You don’t have to make
use of the sizeof operator, so you save some effort. More importantly, automatic
computation prevents the wrong amount of memory from being allocated. The second
advantage to the C++ approach is that new automatically returns the correct pointer
type—you don’t need to use a type cast. Third, by using new, you can initialize the
object being allocated. Finally, as you will see later in this book, you can create your
own, customized versions of new and delete.

One last point: Because of possible incompatibilities, you should not mix malloc()
and free() with new and delete in the same program.

Precedence Summary
Table 9-2 lists the precedence, from highest to lowest, of all C++ operators. Most
operators associate from left to right. The unary operators, the assignment operators,
and the ? operator associate from right to left. Note that the table includes a few
operators that you have not yet learned about; most of these are used in object-oriented
programming.

More Data Types and Operators 213

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

9

Precedence Operators

Highest () [] –> :: .

! ~ ++ – – – * & sizeof new delete typeid type-casts

.* –>*

* / %

+ –Table 9-2.

Precedence of
the C++
Operators

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Friday, February 28, 2003 3:58:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

214 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 9

Precedence Operators

<< >>

< <= > >=

== !=

&

^

|

&&

||

?:

= += –= *= /= %= >>= <<= &= ^= |=

Lowest ,Table 9-2.

Precedence of
the C++
Operators
(continued)

P:\010Comp\Grnd-Up8\897-0\ch09.vp
Monday, March 03, 2003 12:21:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 10

Structures and
Unions

215

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C++ defines several compound data types. These are data types that are comprised
of two or more elements. You have already learned about one compound type:

the array. Three more are the structure, the union, and the class. This chapter
discusses the structure and the union. A discussion of the class is deferred until
Chapter 11. Although they fill different needs, both the structure and the union
provide a convenient means of managing groups of related variables. Another
important aspect of structures and unions is that when you create one, you are also
creating a new, programmer-defined data type. The ability to create your own data
types is a powerful feature of C++.

In C++, structures and unions have both object-oriented and non-object-oriented
attributes. This chapter discusses only their non-object-oriented features. Their
object-oriented qualities are discussed in the following chapter, after classes
and objects have been introduced.

Structures
In C++, a structure is a collection of variables that are referenced under one name,
providing a convenient means of keeping related information together. Structures
are called aggregate data types because they consist of several different, yet logically
connected, variables. You will also see structures referred to as compound or conglomerate
data types, for the same reason.

Before a structure object can be created, the form of the structure must be defined.
This is accomplished by means of a structure declaration. The structure declaration
determines what type of variables the structure contains. The variables that comprise
the structure are called members of the structure. Structure members are also commonly
referred to as elements or fields.

Generally, all members of the structure will be logically related to each other. For
example, structures are typically used to hold information such as mailing addresses,
compiler symbol tables, library card catalog entries, and the like. Of course, the
relationship between the members of a structure is purely subjective, and thus
determined by you. The compiler doesn't know (or care).

Let's begin our examination of structures with an example. We will define a structure
that can hold the information relating to a company's inventory. An inventory record
typically consists of several pieces of information, such as the item name, cost, and
number on hand, so a structure is a good way to manage this information. The
following code fragment declares a structure that defines the item name, cost and
retail price, number on hand, and resupply time for maintaining an inventory. The
keyword struct tells the compiler that a structure declaration is beginning.

struct inv_type {
char item[40]; // name of item
double cost; // cost
double retail; // retail price
int on_hand; // amount on hand
int lead_time; // number of days before resupply

};

216 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

A structure is a
group of related
variables.

A structure
member is a
variable that
is part of a
structure.

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Structures and Unions 217

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

Notice that the declaration is terminated by a semicolon. This is because a structure
declaration is a statement. The type name of the structure is inv_type. As such,
inv_type identifies this particular data structure and is its type specifier.

In the preceding declaration, no variable has actually been created. Only the form of
the data has been defined. To declare an actual variable (i.e., a physical object) with
this structure, you would write something like this:

inv_type inv_var;

This declares a structure variable of type inv_type called inv_var. Remember, when
you define a structure, you are defining a new data type. It is not until you declare a
variable of that type that one actually exists.

C++ will automatically allocate sufficient memory to accommodate all the members
of a structure. Figure 10-1 shows how inv_var would appear in memory (assuming
8-byte doubles and 4-byte ints).

You can also declare one or more variables at the same time that you define a
structure, as shown here:

struct inv_type {
char item[40]; // name of item
double cost; // cost
double retail; // retail price
int on_hand; // amount on hand
int lead_time; // number of days before resupply

} inv_varA, inv_varB, inv_varC;

This defines a structure type called inv_type and declares variables inv_varA,
inv_varB, and inv_varC of that type. It is important to understand that each structure
variable contains its own copies of the structure’s members. For example, the cost
field of inv_varA is separate from the cost field of inv_varB. Thus, changes to one
do not affect the other.

A structure’s
name is its type
specifier.

Figure 10-1.

The inv_var
structure as it
appears in
memory

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If you need only one structure variable, then it is not necessary to include the name of
the structure type. Consider this example:

struct {
char item[40]; // name of item
double cost; // cost
double retail; // retail price
int on_hand; // amount on hand
int lead_time; // number of days before resupply

} temp;

This fragment declares one variable named temp, as defined by the structure
preceding it.

The general form of a structure declaration is shown here:

struct struct-type-name {
type element_name1;
type element_name2;
type element_name3;
.
.
.
type element_nameN;

} structure-variables;

Accessing Structure Members
Individual structure members are accessed through the use of a period (generally
called the "dot" operator). For example, the following code will assign the value 10.39
to the cost field of the structure variable inv_var, declared earlier.

inv_var.cost = 10.39;

The structure variable name, followed by a period and the member name, refers to
that member. All structure elements are accessed in the same way. The general form is

structure-varname.member-name

Therefore, to print cost on the screen, you could write

cout << inv_var.cost;

In the same fashion, the character array inv_var.item can be used to call gets(), as
shown here:

gets(inv_var.item);

This will pass a character pointer to the beginning of the element item.

218 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

struct is the
keyword that
begins a structure
declaration.

The dot operator
(.) accesses a
member of a
structure.

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If you want to access the individual elements of the array inv_var.item, you can
index item. For example, you can print the contents of inv_var.item one character
at a time by using this code:

int t;

for(t=0; inv_var.item[t]; t++)
cout << inv_var.item[t];

Arrays of Structures
Structures may be arrayed. In fact, structure arrays are quite common. To declare an
array of structures, you must first define a structure, then declare an array of its type.
For example, to declare a 100-element array of structures of type inv_type (defined
earlier), you would write

inv_type invtry[100];

To access a specific structure within an array of structures, you must index the
structure name. For example, to display the on_hand member of the third structure,
you would write

cout << invtry[2].on_hand;

Like all array variables, arrays of structures begin their indexing at zero.

A Simple Inventory Example
To illustrate the value of structures, a simple inventory-management program will be
developed that uses an array of structures of type inv_type to hold the inventory
information. The functions in this program interact with structures and their
elements in various ways.

The inventory will be held in structures of type inv_type, organized into an array
called invtry, as shown here:

const int SIZE = 100;

struct inv_type {
char item[40]; // name of item
double cost; // cost
double retail; // retail price
int on_hand; // amount on hand
int lead_time; // number of days before resupply

} invtry[SIZE];

The size of the array is arbitrary. Feel free to change it if you desire. Notice that the
array dimension is specified using a const variable. Since the size of the array will be
used at several places in the full program, using a const variable for this value is a

Structures and Unions 219

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

good idea. To change the size of the array, simply change the value of SIZE and then
recompile. Using a const variable to define a "magic number" that is used frequently
within a program is common practice in professionally written C++ code.

The program will provide these three options:

◆ Enter inventory information

◆ Display the inventory

◆ Modifiy a specific item

The first function needed for the program is main(), which is shown here:

int main()
{
char choice;

init_list();

for(;;) {
choice = menu();
switch(choice) {
case 'e': enter();
break;

case 'd': display();
break;

case 'u': update();
break;

case 'q': return 0;
}

}
}

The main() function begins by calling init_list(), which initializes the structure
array. It then enters a loop that displays the menu and processes the user's selection.

The init_list() function is shown here:

// Initialize the array.
void init_list()
{
int t;

// a zero length name signifies empty
for(t=0; t<SIZE; t++) *invtry[t].item = '\0';

}

The init_list() function prepares the structure array for use by putting a null
character into the first byte of the item field. The program assumes that a structure
is not in use if the item field is empty.

220 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Structures and Unions 221

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

The menu_select() function, shown next, displays the options and returns the
user's selection:

// Get a menu selection.
int menu()
{
char ch;

cout << '\n';
do {
cout << "(E)nter\n";
cout << "(D)isplay\n";
cout << "(U)pdate\n";
cout << "(Q)uit\n\n";
cout << "choose one: ";
cin >> ch;

} while(!strchr("eduq", tolower(ch)));
return tolower(ch);

}

The user selects an option by entering the specified letter. For example, to display the
inventory list, press D.

The menu() function makes use of another of C++'s library functions, strchr(),
which has this prototype:

char *strchr(const char *str, int ch);

This function searches the string pointed to by str for an occurrence of the character
in the low-order byte of ch. If the character is found, a pointer to that character is
returned. This is by definition a true value. However, if no match is found, a null
is returned, which is by definition false. It is used in this program to see whether the
user entered a valid menu selection.

The enter() function sets up the call to input(), which prompts the user for
information. Both functions are shown here:

// Enter items into the list.
void enter()
{
int i;

// find the first free structure
for(i=0; i<SIZE; i++)
if(!*invtry[i].item) break;

// i will equal SIZE if the list is full
if(i==SIZE) {
cout << "List full.\n";
return;

}

input(i);

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

222 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

}

// Input the information.
void input(int i)
{
// enter the information
cout << "Item: ";
cin >> invtry[i].item;

cout << "Cost: ";
cin >> invtry[i].cost;

cout << "Retail price: ";
cin >> invtry[i].retail;

cout << "On hand: ";
cin >> invtry[i].on_hand;

cout << "Lead time to resupply (in days): ";
cin >> invtry[i].lead_time;

}

The enter() function first finds an empty structure. To do this, enter() starts with
the first element in invtry and advances through the array, checking the item field.
If it finds an item field that is null, it assumes that structure is unused. If no free
structure is found before the end of the array is reached, the loop control variable i
will be equal to the size of the array. This condition indicates that the array is full
and no further information can be added. If an open array element is found, then
input() will be called to obtain the inventory information entered by the user. The
reason the input code is not part of enter() is that input() is also used by the
update() function, which you will see next.

Because inventory information changes, the inventory program lets you change the
information about the individual items. This is accomplished with a call to the
update() function, shown here:

// Modify an existing item.
void update()
{
int i;
char name[80];

cout << "Enter item: ";
cin >> name;

for(i=0; i<SIZE; i++)
if(!strcmp(name, invtry[i].item)) break;

if(i==SIZE) {
cout << "Item not found.\n";
return;

}

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Structures and Unions 223

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

cout << "Enter new information.\n";
input(i);

}

This function prompts the user for the name of the item to be changed. It then looks
in the list to see if the item is there. If it is, input() is called, and the new information
can be entered.

The final function used by the program is display(). It displays the entire inventory
list on the screen. The display() function is shown here:

// Display the list.
void display()
{
int t;

for(t=0; t<SIZE; t++) {
if(*invtry[t].item) {
cout << invtry[t].item << '\n';
cout << "Cost: $" << invtry[t].cost;
cout << "\nRetail: $";
cout << invtry[t].retail << '\n';
cout << "On hand: " << invtry[t].on_hand;
cout << "\nResupply time: ";
cout << invtry[t].lead_time << " days\n\n";

}
}

}

The complete inventory program is shown next. You should enter this program into
your computer and study its execution. Make some changes and watch the effects
they have. You should also try to expand the program by adding functions that search
the list for a specific inventory item, remove an item from the list, or reset the
inventory list.

/* A simple inventory program that uses an array
of structures. */

#include <iostream>
#include <cctype>
#include <cstring>
#include <cstdlib>
using namespace std;

const int SIZE = 100;

struct inv_type {
char item[40]; // name of item
double cost; // cost
double retail; // retail price
int on_hand; // amount on hand

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

int lead_time; // number of days before resupply
} invtry[SIZE];

void enter(), init_list(), display();
void update(), input(int i);
int menu();

int main()
{
char choice;

init_list();

for(;;) {
choice = menu();
switch(choice) {
case 'e': enter();
break;

case 'd': display();
break;

case 'u': update();
break;

case 'q': return 0;
}

}
}

// Initialize the array.
void init_list()
{
int t;

// a zero length name signifies empty
for(t=0; t<SIZE; t++) *invtry[t].item = '\0';

}

// Get a menu selection.
int menu()
{
char ch;

cout << '\n';
do {
cout << "(E)nter\n";
cout << "(D)isplay\n";
cout << "(U)pdate\n";
cout << "(Q)uit\n\n";
cout << "choose one: ";
cin >> ch;

} while(!strchr("eduq", tolower(ch)));
return tolower(ch);

}

// Enter items into the list.

224 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

void enter()
{
int i;

// find the first free structure
for(i=0; i<SIZE; i++)
if(!*invtry[i].item) break;

// i will equal SIZE if the list is full
if(i==SIZE) {
cout << "List full.\n";
return;

}

input(i);
}

// Input the information.
void input(int i)
{
// enter the information
cout << "Item: ";
cin >> invtry[i].item;

cout << "Cost: ";
cin >> invtry[i].cost;

cout << "Retail price: ";
cin >> invtry[i].retail;

cout << "On hand: ";
cin >> invtry[i].on_hand;

cout << "Lead time to resupply (in days): ";
cin >> invtry[i].lead_time;

}

// Modify an existing item.
void update()
{
int i;
char name[80];

cout << "Enter item: ";
cin >> name;

for(i=0; i<SIZE; i++)
if(!strcmp(name, invtry[i].item)) break;

if(i==SIZE) {
cout << "Item not found.\n";
return;

}

Structures and Unions 225

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

cout << "Enter new information.\n";
input(i);

}

// Display the list.
void display()
{
int t;

for(t=0; t<SIZE; t++) {
if(*invtry[t].item) {
cout << invtry[t].item << '\n';
cout << "Cost: $" << invtry[t].cost;
cout << "\nRetail: $";
cout << invtry[t].retail << '\n';
cout << "On hand: " << invtry[t].on_hand;
cout << "\nResupply time: ";
cout << invtry[t].lead_time << " days\n\n";

}
}

}

Passing Structures to Functions
When a structure is used as an argument to a function, the entire structure is passed
by using the standard call-by-value parameter passing mechanism. This, of course,
means that any changes made to the contents of the structure inside the function to
which it is passed do not affect the structure used as an argument. However, be aware
that passing large structures can incur significant overhead. (As a general rule, the
more data passed to a function, the longer it takes.)

When using a structure as a parameter, remember that the type of the argument must
match the type of the parameter. For example, the following program declares a
structure called sample, and then a function called f1() that takes a parameter of
type sample.

// Pass a structure to a function.
#include <iostream>
using namespace std;

// define a structure type
struct sample {
int a;
char ch;

} ;

void f1(sample parm);

int main()
{
struct sample arg; // declare arg

226 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

arg.a = 1000;
arg.ch = 'X';

f1(arg);

return 0;
}

void f1(sample parm)
{
cout << parm.a << " " << parm.ch << "\n";

}

Here, both arg in main() and parm in f1() are of the same type. Thus, arg can be
passed to f1(). If the structure types had differed, a compile-time error would have
resulted.

Assigning Structures
You can assign the contents of one structure to another as long as both structures are
of the same type. For example, the following program assigns the value of svar1
to svar2:

// Demonstrate structure assignments.
#include <iostream>
using namespace std;

struct stype {
int a, b;

};

int main()
{
stype svar1, svar2;

svar1.a = svar1.b = 10;
svar2.a = svar2.b = 20;

cout << "Structures before assignment.\n";
cout << "svar1: " << svar1.a << ' ' << svar1.b;
cout << '\n';
cout << "svar2: " << svar2.a << ' ' << svar2.b;
cout << "\n\n";

svar2 = svar1; // assign structures

cout << "Structures after assignment.\n";
cout << "svar1: " << svar1.a << ' ' << svar1.b;
cout << '\n';
cout << "svar2: " << svar2.a << ' ' << svar2.b;

Structures and Unions 227

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

return 0;
}

This program displays the following output:

Structures before assignment.
svar1: 10 10
svar2: 20 20

Structures after assignment.
svar1: 10 10
svar2: 10 10

In C++, each new structure declaration defines a new type. Therefore, even if two
structures are physically the same, if they have different type names, they will be
considered different by the compiler and, thus, cannot be assigned to one another.
Consider the following fragment, which is not valid, and will not compile.

struct stype1 {
int a, b;

};

struct stype2 {
int a, b;

};

stype1 svar1;
stype2 svar2;

svar2 = svar1; // Error - type mismatch

Even though stype1 and stype2 are physically the same, they are separate types as
far as the compiler is concerned.

REMEMBER: One structure can be assigned to another only if both are of the
same type.

Pointers to Structures and the Arrow Operator
C++ allows pointers to structures in the same way that it allows pointers to any other
type of variable. However, there are some special aspects to using structure pointers
that you must be aware of.

You declare a structure pointer as you would any other pointer variable, by putting an
* in front of a structure variable's name. For example, assuming the previously defined
structure inv_type, the following statement declares inv_pointer to be a pointer to
data of that type:

228 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

inv_type *inv_pointer;

To find the address of a structure variable, you must place the & operator before the
structure variable's name. For example, given the following fragment,

struct bal {
float balance;
char name[80];

} person;

bal *p; // declare a structure pointer

then

p = &person;

puts the address of person into the pointer p.

The members of a structure can be accessed through a pointer to the structure. However,
you do not use the dot operator for this purpose. Instead, you must use the –> operator.
For example, this fragment accesses balance through p:

p->balance

The –> is called the arrow operator. It is formed by using the minus sign followed by a
greater than sign.

One important use of a structure pointer is as a function parameter. Because of the
overhead that occurs when a large structure is passed to a function, many times only a
pointer to a structure is passed. (Passing a pointer is always faster than passing a large
structure.)

REMEMBER: To access members of a structure, use the dot operator. To access
members of a structure through a pointer, use the arrow operator.

An Example Using Structure Pointers
An interesting use of structure pointers can be found in C++'s time and date
functions. These functions obtain the current system time and date. The time and
date functions require the header <ctime>. This header supplies two data types
needed by the time and date functions. The first type is time_t. It is capable of
representing the system time and date as a long integer. This is referred to as the
calendar time. The second type is a structure called tm, which holds the individual

Structures and Unions 229

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

The arrow
operator (–>)
accesses the
members of a
structure through
a pointer.

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

230 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

elements of the date and time. This is called the broken-down time. The tm structure is
defined as shown here:

struct tm {
int tm_sec; // seconds, 0-61
int tm_min; // minutes, 0-59
int tm_hour; // hours, 0-23
int tm_mday; // day of the month, 1-31
int tm_mon; // months since Jan, 0-11
int tm_year; // years from 1900
int tm_wday; // days since Sunday, 0-6
int tm_yday; // days since Jan 1, 0-365
int tm_isdst; // Daylight Saving Time indicator

};

The value of tm_isdst will be positive if daylight saving time is in effect, 0 if it is not
in effect, and negative if there is no information available.

The foundation for C++'s time and date functions is time(), which has this
prototype:

time_t time(time_t *curtime);

The time() function returns the current calendar time. It can be called either with a
null pointer or with a pointer to a variable of type time_t. If the latter is used, then
the variable pointed to by curtime will also be assigned the current calendar time.

To convert the calendar time into broken-down time, use localtime(), which has
this prototype:

struct tm *localtime(const time_t *curtime);

The localtime() function returns a pointer to the broken-down form of curtime, in
the form of a tm structure. The time is represented in local time. The curtime value is
generally obtained through a call to time().

The structure used by localtime() to hold the broken-down time is internally
allocated by the localtime() function and is overwritten each time the function is
called. If you want to save the contents of the structure, you must copy it elsewhere.

The following program demonstrates the use of time() and localtime() by
displaying the current system time:

// This program displays the current system time.
#include <iostream>
#include <ctime>
using namespace std;

int main()
{
struct tm *ptr;
time_t lt;

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Structures and Unions 231

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

lt = time('\0');

ptr = localtime(<);

cout << ptr->tm_hour << ':' << ptr->tm_min;
cout << ':' << ptr->tm_sec;

return 0;
}

Here is sample output from the program:

4:15:46

Although your programs can use the broken-down form of the time and date (as
illustrated in the preceding example), the easiest way to generate a time and date
string is to use asctime(), whose prototype is shown here:

char *asctime(const struct tm *ptr);

The asctime() function returns a pointer to a string, which is the conversion of the
information stored in the structure pointed to by ptr. This string has the following form:

day month date hours:minutes:seconds year\n\0

Often the structure pointer passed to asctime() is the one obtained from
localtime().

The memory used by asctime() to hold the formatted output string is an internally
allocated character array, and is overwritten each time the function is called. If you
want to save the contents of the string, you must copy it elsewhere.

The following program uses asctime() to display the system time and date.

// This program displays the current system time.
#include <iostream>
#include <ctime>
using namespace std;

int main()
{
struct tm *ptr;
time_t lt;

lt = time('\0');

ptr = localtime(<);
cout << asctime(ptr);

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

232 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

Here is sample output.

Fri Feb 28 12:27:54 2003

C++ contains several other time and date functions; to learn about these, check your
compiler's documentation.

References to Structures
You can create a reference to a structure. A structure reference is frequently used as a
function parameter, or as a function return type. When accessing members through a
structure reference, use the dot operator. The arrow operator is explicitly reserved for
accessing members through a pointer.

The following program shows how a structure can be used as a reference parameter:

// Demonstrate a reference to a structure.
#include <iostream>
using namespace std;

struct mystruct {
int a;
int b;

};

mystruct &f(mystruct &var);

int main()
{
mystruct x, y;
x.a = 10; x.b = 20;

cout << "Original x.a and x.b: ";
cout << x.a << ' ' << x.b << '\n';

y = f(x);

cout << "Modified x.a and x.b: ";
cout << x.a << ' ' << x.b << '\n';
cout << "Modified y.a and y.b: ";
cout << y.a << ' ' << y.b << '\n';

return 0;
}

// Receive and return a reference to a structure.
mystruct &f(mystruct &var)
{
var.a = var.a * var.a;
var.b = var.b / var.b;
return var;

}

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Structures and Unions 233

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

Here is the output produced by this program:

Original x.a and x.b: 10 20
Modified x.a and x.b: 100 1
Modified y.a and y.b: 100 1

Since there is significant overhead incurred when passing a structure to a function, or
when returning a structure, many C++ programmers use references when performing
these tasks.

Arrays and Structures Within Structures
A structure member can be of any valid data type, including other aggregate types
such as arrays and other structures. Because this is an area that often causes confusion,
a close examination is warranted.

A structure member that is an array is treated as you might expect from the earlier
examples. Consider this structure:

struct stype {
int nums[10][10]; // 10 x 10 array of ints
float b;

} var;

To refer to integer 3,7 in nums of var of structure stype, you would write

var.nums[3][7]

As this example shows, when an array is a member of a structure, it is the array name
that is indexed—not the structure name.

When a structure is a member of another structure, it is called a nested structure. In
the following example, the structure addr is nested inside emp:

struct addr {
char name[40];
char street[40];
char city[40];
char zip[10];

}

struct emp {
addr address;
float wage;

} worker;

Here, structure emp has been defined as having two members. The first member is
the structure of type addr that will contain an employee's address. The second is
wage, which holds the employee's wage. The following code fragment will assign
the ZIP code 98765 to the zip field of address of worker:

worker.address.zip = 98765;

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

As you can see, the members of each structure are specified left to right, from the
outermost to the innermost.

A structure may also contain a pointer to a structure as a member. In fact, it is perfectly
valid for a structure to contain a member that is a pointer to itself. For example, in the
following structure, sptr is declared as a pointer to a structure of type mystruct, which
is the structure being declared.

struct mystruct {
int a;
char str[80];
mystruct *sptr; // pointer to mystruct objects

};

Structures containing pointers to themselves are quite common when various data
structures, such as linked lists, are created. As you progress in C++, you will frequently
see applications that make use of this feature.

C Structure Versus C++ Structures
C++ structures are derived from C structures. Thus, any C structure is also a valid C++
structure. There are two important differences, however. First, as you will see in the
next chapter, C++ structures have some unique attributes that allow them to support
object-oriented programming. Second, in C a structure does not actually define a new
data type. A C++ structure does. As you know, when you define a structure in C++,
you are defining a new type, which is the name of the structure. This new type can be
used to declare variables, function return types, and the like. However, in C, the name
of a structure is called its tag. The tag, by itself, is not a type name.

To understand the difference, consider the following C code fragment:

struct C_struct {
int a;
int b;

}

// declare a C_struct variable
struct C_struct svar:

Notice that the structure definition is exactly the same as it is in C++. However, look
closely at the declaration of the structure variable svar. Its declaration also starts
with the keyword struct. In C, after you have defined a structure, you must still use
the keyword struct in conjunction with the structure’s tag (in this case, C_struct) to
specify a complete data type.

234 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

If you will be converting older C programs to C++, you won’t need to worry about
the differences between C and C++ structures, because C++ still accepts the C-like
declarations. The preceding code fragment, for instance, will compile correctly as part
of a C++ program. It is just that the redundant use of struct in the declaration of
svar is unnecessary in C++.

Bit-Fields
Unlike many other computer languages, C++ has a built-in method for accessing a
single bit within a byte. Bit access is achieved through the use of a bit-field. Bit-fields
can be useful for a number of reasons. Here are three examples. First, if storage is
limited, you can store several Boolean values in one byte; second, certain device
interfaces transmit information encoded into bits within one byte; and third, certain
encryption routines need to access the bits within a byte. All of these functions can be
performed using the bitwise operators, as you saw in the previous chapter; however,
a bit-field can add more transparency and readability to your program. It might also
make your code more portable.

The method that C++ uses to access bits is based on the structure. A bit-field is really
just a special type of structure member that defines its length in bits. The general form
of a bit-field definition is

struct struct-type-name {
type name1 : length;
type name2 : length;
.
.
.
type nameN : length;

};

Here, type is the type of the bit-field and length is the number of bits in the field. A
bit-field must be declared as an integral or enumeration type. Bit-fields of length 1
should be declared as unsigned, because a single bit cannot have a sign.

Bit-fields are commonly used for analyzing the input from a hardware device. For
example, the status port of a serial communications adapter might return a status byte
organized like this:

Bit Meaning When Set

0 Change in clear-to-send line

1 Change in data-set-ready

2 Trailing edge detected

Structures and Unions 235

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

A bit-field is a
bit-based
structure member.

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Bit Meaning When Set

3 Change in receive line

4 Clear-to-send

5 Data-set-ready

6 Telephone ringing

7 Received signal

You can use the following bit-field to represent the information in a status byte:

struct status_type {
unsigned delta_cts: 1;
unsigned delta_dsr: 1;
unsigned tr_edge: 1;
unsigned delta_rec: 1;
unsigned cts: 1;
unsigned dsr: 1;
unsigned ring: 1;
unsigned rec_line: 1;

} status;

You might use code similar to that shown next to determine when you can send or
receive data:

status = get_port_status ();
if(status.cts) cout << "clear to send";
if(status.dsr) cout << "data ready";

To assign a value to a bit-field, simply use the same form that you would use for any
other type of structure element. For example, the following statement clears the ring
field:

status.ring = 0;

As you can see from these examples, each bit-field is accessed by using the dot operator.
However, if the structure is accessed through a pointer, you must use the –> operator.

You do not have to name each bit-field. This makes it easy to reach the bit you want,
passing up those that are unused. For example, if you care only about the cts and dsr
bits, you could declare the status_type structure like this:

struct status_type {
unsigned : 4;
unsigned cts: 1;
unsigned dsr: 1;

} status;

236 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Structures and Unions 237

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

Notice here that the bits after dsr do not need to be mentioned at all.

It is valid to mix normal structure members with bit-field elements. Here is an
example:

struct emp {
struct addr address;
float pay;
unsigned lay_off: 1; // lay off or active
unsigned hourly: 1: // hourly pay or wage
unsigned deductions: 3: // tax deductions

};

This structure defines an employee record that uses only one byte to hold three pieces
of information: the employee's status, whether or not the employee is salaried, and
the number of deductions. Without the use of the bit-field, this information would
require three bytes.

Bit-fields have certain restrictions. You cannot take the address of a bit-field, or
reference a bit-field. Bit-fields cannot be arrayed. They cannot be declared as static.
You cannot know, from machine to machine, whether the fields will run from right
to left or from left to right; this implies that any code using bit-fields may have some
machine dependencies. Other restrictions may be imposed by various specific
implementations of C++, so check your compiler's documentation.

The next section presents a program that uses a bit-field to display the ASCII character
codes in binary.

Unions
A union is comprised of two or more variables that share the same memory location.
Thus, a union provides a way of interpreting the same bit pattern in two or more
different ways. A union declaration is similar to that of a structure, as shown in this
example:

union utype {
short int i;
char ch;

} ;

This declares a union in which a short int and a char both share the same location.
Be clear on one point: It is not possible to have this union hold both an integer and a
character at the same time, because i and ch overlay each other. Instead, your program
can treat the information in the union as an integer or a character at any time. Thus, a
union gives two or more ways to view the same piece of data. As the example shows,
a union is declared by using the union keyword.

A union is
comprised of two
or more variables
that share the
same memory
location.

The union keyword
begins a union
declaration.

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As with structures, a union declaration does not define any variables. You may declare
a variable either by placing its name at the end of the declaration, or by using a separate
declaration statement. To declare a union variable called u_var of type utype you
would write

utype u_var;

In u_var, both the short integer i and the character ch share the same memory
location. (Of course, i occupies two bytes and ch uses only one.) Figure 10-2
illustrates how i and ch share the same address.

When a union is declared, the compiler will automatically allocate enough storage to
hold the largest variable type in the union.

To access a union element, use the same syntax that you would use for structures: the
dot and arrow operators. If you are operating on the union directly (or through a
reference), use the dot operator. If the union variable is accessed through a pointer,
use the arrow operator. For example, to assign the letter 'A' to element ch of u_var,
you would write the following:

u_var.ch = 'A';

In the next example, a pointer to u_var is passed to a function. Inside the function, i
is assigned the value 10 through the pointer:

// ...
func1(&u_var); // pass func1() a pointer to u_var
// ...

}
void func1(utype *un)
{
un->i = 10; /* Assign 10 to u_var using

a pointer. */
}

Because unions allow your program to interpret data in more than one way, they are
often used when an unusual type conversion is needed. For example, the following
program uses a union to exchange the two bytes that comprise a short integer. It uses

238 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

Figure 10-2.

i and ch both
utilize the union
u_var

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the disp_binary() function, developed in Chapter 9, to display the contents of the
integer. (This program assumes that short integers are two bytes.)

// Use a union to exchange the bytes within a short integer.
#include <iostream>
using namespace std;

void disp_binary(unsigned u);

union swap_bytes {
short int num;
char ch[2];

};

int main()
{
swap_bytes sb;
char temp;

sb.num = 15; // binary: 0000 0000 0000 1111

cout << "Original bytes: ";
disp_binary(sb.ch[1]);
cout << " ";
disp_binary(sb.ch[0]);
cout << "\n\n";

// exchange the bytes
temp = sb.ch[0];
sb.ch[0] = sb.ch[1];
sb.ch[1] = temp;

cout << "Exchanged bytes: ";
disp_binary(sb.ch[1]);
cout << " ";
disp_binary(sb.ch[0]);
cout << "\n\n";

return 0;
}

// Display the bits within a byte.
void disp_binary(unsigned u)
{
register int t;

for(t=128; t>0; t=t/2)
if(u & t) cout << "1 ";
else cout << "0 ";

}

Structures and Unions 239

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

240 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

The output from this program is shown here:

Original bytes: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
Exchanged bytes: 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

In the program, 15 is assigned to the integer variable sb.num. The two bytes that
form that integer are exchanged by swapping the two characters that comprise the
array in ch. This causes the high- and low-order bytes of num to be swapped. The
fact that both num and ch share the same memory location makes this operation
possible.

Another use for a union is shown in the following program, which combines unions
with bit-fields to display, in binary, the ASCII code generated when you press a key.
This program also shows an alternative method for displaying the individual bits that
make up a byte. The union allows the value of the key to be assigned to a character
variable, while the bit-field is used to display the individual bits.

// Display the ASCII code in binary for characters.

#include <iostream>
#include <conio.h>
using namespace std;

// a bit field that will be decoded
struct byte {
unsigned a : 1;
unsigned b : 1;
unsigned c : 1;
unsigned d : 1;
unsigned e : 1;
unsigned f : 1;
unsigned g : 1;
unsigned h : 1;

};

union bits {
char ch;
struct byte bit;

} ascii ;

void disp_bits(bits b);

int main()
{
do {
cin >> ascii.ch;
cout << ": ";
disp_bits(ascii);

} while(ascii.ch!='q'); // quit if q typed

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// Display the bit pattern for each character.
void disp_bits(bits b)
{
if(b.bit.h) cout << "1 ";
else cout << "0 ";

if(b.bit.g) cout << "1 ";
else cout << "0 ";

if(b.bit.f) cout << "1 ";
else cout << "0 ";

if(b.bit.e) cout << "1 ";
else cout << "0 ";

if(b.bit.d) cout << "1 ";
else cout << "0 ";

if(b.bit.c) cout << "1 ";
else cout << "0 ";

if(b.bit.b) cout << "1 ";
else cout << "0 ";

if(b.bit.a) cout << "1 ";
else cout << "0 ";

cout << "\n";
}

A sample run of the program is shown here:

a: 0 1 1 0 0 0 0 1
b: 0 1 1 0 0 0 1 0
c: 0 1 1 0 0 0 1 1
d: 0 1 1 0 0 1 0 0
e: 0 1 1 0 0 1 0 1
f: 0 1 1 0 0 1 1 0
g: 0 1 1 0 0 1 1 1
h: 0 1 1 0 1 0 0 0
i: 0 1 1 0 1 0 0 1
j: 0 1 1 0 1 0 1 0
k: 0 1 1 0 1 0 1 1
l: 0 1 1 0 1 1 0 0
m: 0 1 1 0 1 1 0 1
n: 0 1 1 0 1 1 1 0
o: 0 1 1 0 1 1 1 1
p: 0 1 1 1 0 0 0 0
q: 0 1 1 1 0 0 0 1

TIP: Because a union causes two or more variables to share the same memory
location, unions provide a good way for your program to store and access information
that may contain differing data types, depending upon the situation. If you think
about it, unions provide low-level support for the principle of polymorphism. That is,
a union provides a single interface to several different types of data, thus embodying
the concept of "one interface, multiple methods" in its simplest form.

Structures and Unions 241

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

242 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

Anonymous Unions
There is a special type of union in C++ called an anonymous union. An anonymous
union does not have a type name, and you can declare no objects of an anonymous
union. Instead, an anonymous union tells the compiler that its members will share
the same memory location. However, the variables themselves are referred to directly,
without the normal dot operator syntax.

Consider this example:

// Demonstrate an anonymous union.
#include <iostream>
using namespace std;

int main()
{
// this is an anonymous union
union {
short int count;
char ch[2];

};

// Here, refer to union members directly
ch[0] = 'X';
ch[1] = 'Y';
cout << "union as chars: " << ch[0] << ch[1] << '\n';
cout << "union as integer: " << count << '\n';

return 0;
}

This program displays the following output. 22872 is the integer produced by putting
the characters X and Y into the low- and high-order bytes, respectively, of count.

union as chars: XY
union as integer: 22872

As you can see, both count and ch are accessed as if they were normal variables, and
not part of a union. Even though they are declared as being part of an anonymous
union, their names are at the same scope level as any other local variable declared at
the same point. Thus, a member of an anonymous union cannot have the same name
as any other variable declared within the same scope.

An anonymous
union declares
local variables
that share the
same memory.

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Structures and Unions 243

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 10

10

The anonymous union provides a way for you to tell the compiler that you want two
or more variables to share the same memory location. Aside from this special attribute,
members of an anonymous union behave like other variables.

Using sizeof to Ensure Portability
You have seen that structures and unions create objects of varying sizes, depending
upon the sizes and number of their members. Furthermore, sizes of the built-in types,
such as int, can change from machine to machine. Also, sometimes the compiler
will pad a structure or union so that it aligns on an even word or on a paragraph
boundary. (A paragraph is 16 bytes.) Therefore, when you need to determine the
size, in bytes, of a structure or union, use the sizeof operator. Do not try to manually
add up the sizes of the individual members. Because of padding, or other machine
dependencies, the size of a structure or union may be larger than the sum of the sizes
of its individual members.

One other point: A union will always be large enough to hold its largest member.
Consider this example:

union x {
char ch;
int i;
double f;

} u_var;

Here, the sizeof u_var will be 8 (assuming eight-byte doubles). At run time, it does
not matter what u_var is actually holding; all that matters is the size of the largest
variable it can hold, because the union must be as large as its largest element.

Moving On to Object-Oriented Programming
This is the last chapter that describes those attributes of C++ that are not explicitly
object-oriented. Beginning with the next chapter, features that support OOP will be
examined. To understand and apply the object-oriented features of C++ requires a
thorough understanding of the material in this and the preceding nine chapters. For
this reason, you might want to take some time to quickly review. Specifically, make
sure that you are comfortable with pointers, structures, functions, and function
overloading.

P:\010Comp\Grnd-Up8\897-0\ch10.vp
Monday, March 03, 2003 10:38:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 11

Introducing
the Class

245

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

246 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

This chapter introduces the class. The class is the foundation of C++’s support for
object-oriented programming, and is at the core of many of its more advanced

features. The class is C++’s basic unit of encapsulation and it provides the mechanism
by which objects are created.

Class Fundamentals
Let’s begin by defining the terms class and object. A class defines a new data type that
specifies the form of an object. A class includes both data and the code that will operate
on that data. Thus, a class links data with code. C++ uses a class specification to
construct objects. Objects are instances of a class. Therefore, a class is essentially a set
of plans that specify how to build an object. It is important to be clear on one issue:
A class is a logical abstraction. It is not until an object of that class has been created
that a physical representation of that class exists in memory.

When you define a class, you declare the data that it contains and the code that operates
on that data. Although very simple classes might contain only code or only data, most
real-world classes contain both. Within a class, data is contained in variables and code
is contained in functions. Collectively, the functions and variables that constitute a
class are called members of the class. Thus, a variable declared within a class is called
a member variable, and a function declared within a class is called a member function.
Sometimes the term instance variable is used in place of member variable.

A class is created by using the keyword class. A class declaration is syntactically similar
to a structure. Here is an example. The following class defines a type called queue,
which will be used to implement a queue. (A queue is a first-in, first-out list.)

// This creates the class queue.
class queue {
int q[100];
int sloc, rloc;

public:
void init();
void qput(int i);
int qget();

};

Let’s look closely at this class declaration.

All members of queue are declared within its class statement. The member variables
of queue are q, sloc, and rloc. The member functions are init(), qput(), and qget().

A class can contain private as well as public members. By default, all items defined in
a class are private. For example, the variables q, sloc, and rloc are private. This means
that they can be accessed only by other members of the queue class, and not by any
other part of your program. This is one way encapsulation is achieved—you can tightly
control access to certain items of data by keeping them private. Although there are
none in this example, you can also define private functions, which can be called only
by other members of the class.

The class forms
the foundation for
object-oriented
programming.

class is the
keyword that
begins a class
declaration.

By default,
members of a
class are private.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 247

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

To make parts of a class public (i.e., accessible to other parts of your program), you
must declare them after the public keyword. All variables or functions defined after
the public specifier are accessible by all other functions in your program. Therefore,
in queue, the functions init(), qput(), and qget() are public. Typically, your program
will access the private members of a class through its public functions. Notice that the
public keyword is followed by a colon.

Keep in mind that an object forms a bond between code and data. Thus, a member
function has access to the private elements of its class. This means that init(), qput(),
and qget() have access to q, sloc, and rloc. To add a member function to a class,
specify its prototype within the class declaration.

Once you have defined a class, you can create an object of that type by using the class
name. A class name becomes a new type specifier. For example, the following statement
creates two objects called Q1 and Q2 of type queue:

queue Q1, Q2;

When an object of a class is created, it will have its own copy of the member variables
that comprise the class. This means that Q1 and Q2 will each have their own, separate
copies of q, sloc, and rloc. Thus, the data associated with Q1 is distinct and separate
from the data associated with Q2.

To access a public member of a class through an object of that class, use the dot operator,
just the way you do when operating on a structure. For example, to output Q1’s value
of sloc, use the following statement.

cout << Q1.sloc;

Let’s review: In C++, a class creates a new data type that can be used to create objects.
Specifically, a class creates a logical framework that defines a relationship between its
members. When you declare a variable of a class, you are creating an object. An object
has physical existence, and is a specific instance of a class. (That is, an object occupies
memory space, but a type definition does not.) Further, each object of a class has its
own copy of the data defined within that class.

Inside the declaration of queue, prototypes for the member functions are specified.
Because the member functions are prototyped within the class definition, they need
not be prototyped elsewhere.

To implement a function that is a member of a class, you must tell the compiler to
which class the function belongs by qualifying the function name with the class name.
For example, here is one way to code the qput() function:

void queue::qput(int i)
{
if(sloc==100) {
cout << "Queue is full.\n";
return;

The public keyword
is used to declare
the public members
of a class.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

}
sloc++;
q[sloc] = i;

}

The :: is called the scope resolution operator. Essentially, it tells the compiler that this
version of qput() belongs to the queue class. Or, put differently, :: states that this
qput() is in queue’s scope. Several different classes can use the same function names.
The compiler knows which function belongs to which class because of the scope
resolution operator and the class name.

Member functions can only be invoked relative to a specific object. To call a member
function from a part of your program that is outside the class, you must use the object’s
name and the dot operator. For example, this calls init() on object ob1:

queue ob1, ob2;

ob1.init();

The invocation ob1.init() causes init() to operate on ob1’s copy of the data. Keep
in mind that ob1 and ob2 are two separate objects. This means, for example, that
initializing ob1 does not cause ob2 to also be initialized. The only relationship ob1
has with ob2 is that it is an object of the same type.

When one member function calls another member function of the same class, it can
do so directly, without using an object and the dot operator. In this case, the compiler
already knows which object is being operated upon. It is only when a member function
is called by code that is outside the class that the object name and the dot operator
must be used. By the same reasoning, a member function can refer directly to a member
variable, but code outside the class must refer to the variable through an object and
the dot operator.

The program shown here puts together all the pieces and missing details, and illustrates
the queue class:

#include <iostream>
using namespace std;

// This creates the class queue.
class queue {
int q[100];
int sloc, rloc;

public:
void init();
void qput(int i);
int qget();

};

// Initialize the queue.
void queue::init()
{

248 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

The scope
resolution
operator ::
qualifies a
member name
with its class.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

rloc = sloc = 0;
}

// Put an integer into the queue.
void queue::qput(int i)
{
if(sloc==100) {
cout << "Queue is full.\n";
return;

}
sloc++;
q[sloc] = i;

}

// Get an integer from the queue.
int queue::qget()
{
if(rloc == sloc) {
cout << "Queue underflow.\n";
return 0;

}
rloc++;
return q[rloc];

}

int main()
{
queue a, b; // create two queue objects

a.init();
b.init();

a.qput(10);
b.qput(19);

a.qput(20);
b.qput(1);

cout << "Contents of queue a: ";
cout << a.qget() << " ";
cout << a.qget() << "\n";

cout << "Contents of queue b: ";
cout << b.qget() << " ";
cout << b.qget() << "\n";

return 0;
}

This program displays the following output:

Contents of queue a: 10 20
Contents of queue b: 19 1

Introducing the Class 249

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Keep in mind that the private members of a class are accessible only by functions that
are members of that class. For example, a statement like

a.rloc = 0;

could not be included in the main() function of the program.

The General Form of a class
All classes are declared in a fashion similar to the queue class just described. The general
form of a class declaration is shown here.

class class-name {
private data and functions

public:
public data and functions

} object-list;

Here class-name specifies the name of the class. This name becomes a new type name
that can be used to create objects of the class. You can also create objects of the class
by specifying them immediately after the class declaration in object-list, but this is
optional. Once a class has been declared, objects can be created where needed.

A Closer Look at Class Member Access
How to access class members is the cause of considerable confusion for beginners. For
this reason, we will take a closer look at it here. Consider the following simple class:

// Demonstrate class member access.
#include <iostream>
using namespace std;

class myclass {
int a; // private data

public:
int b; // public data
void setab(int i); // public functions
int geta();
void reset();

};

void myclass::setab(int i)
{
a = i; // refer directly to a
b = i*i; // refer directly to b

}

int myclass::geta()
{
return a; // refer directly to a

}

250 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

void myclass::reset()
{
// call setab() directly
setab(0); // the object is already known

}

int main()
{
myclass ob;

ob.setab(5); // set ob.a and ob.b
cout << "ob after setab(5): ";
cout << ob.geta() << ' ';
cout << ob.b; // can access b because it is public
cout << '\n';

ob.b = 20; // can access b because it is public
cout << "ob after ob.b=20: ";
cout << ob.geta() << ' ';
cout << ob.b;
cout << '\n';

ob.reset();
cout << "ob after ob.reset(): ";
cout << ob.geta() << ' ';
cout << ob.b;
cout << '\n';

return 0;
}

This program produces the following output:

ob after setab(5): 5 25
ob after ob.b=20: 5 20
ob after ob.reset(): 0 0

Let’s look carefully at how the members of myclass are accessed. First, notice the way
that setab() assigns values to the member variables a and b using the lines of code
shown here.

a = i; // refer directly to a
b = i*i; // refer directly to b

Because it is a member function, setab() can refer to a and b directly, without explicit
reference to an object, and without the use of the dot operator. As explained earlier,
a member function is always invoked relative to an object. Once this invocation has
occurred, the object is known. Thus, within a member function, there is no need to
specify the object a second time. Therefore, references to a and b will apply to the
invoking object’s copy of these variables.

Introducing the Class 251

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

252 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

Next, notice that b is a public member of myclass. This means that b can be accessed
by code outside of myclass. This is demonstrated when b is assigned the value 20
inside main() using this line of code.

ob.b = 20; // can access b because it is public

Because this statement is outside of myclass, b must be accessed through an object
(in this case, ob) and by use of the dot operator.

Now, notice how reset() is called from within main(), as shown here.

ob.reset();

Because reset() is a public member function, it too can be called from code outside
of myclass, through an object (in this case, ob).

Finally, examine the code inside reset(). Since reset() is a member function, it can
directly refer to other members of the class, without use of the dot operator or object.
In this case, it calls setab(). Again, because the object is already known (because it
was used to call reset()), there is no need to specify it again.

The key point to understand is this: When a member of a class is referred to outside of
its class, it must be qualified with an object. However, code inside a member function
can refer to other members of the class directly.

NOTE: Don’t worry if you are still a little unsure about how class members are
accessed. A bit of uneasiness about this issue is common at first. As you read on and
study more examples, member access will become clear.

Constructors and Destructors
It is very common for some part of an object to require initialization before it can be
used. For example, consider the queue class, shown earlier in this chapter. Before
the queue could be used, the variables rloc and sloc had to be set to zero. This was
performed using the function init(). Because the requirement for initialization is
so common, C++ allows objects to initialize themselves when they are created. This
automatic initialization is performed through the use of a constructor.

A constructor is a special function that is a member of a class and that has the same
name as the class. For example, here is how the queue class looks when it is converted
to use a constructor for initialization:

// This creates the class queue.
class queue {
int q[100];
int sloc, rloc;

A constructor is a
function that is
called when an
object is created.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 253

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

public:
queue(); // constructor
void qput(int i);
int qget();

};

Notice that the constructor queue() has no return type. In C++, constructors do not
return values and, therefore, have no return type. (Not even void may be specified.)

The queue() function is coded as follows:

// This is the constructor.
queue::queue()
{
sloc = rloc = 0;
cout << "Queue Initialized.\n";

}

Here, the message Queue Initialized is output as a way to illustrate the constructor.
In actual practice, most constructors do not print a message.

An object’s constructor is called when the object is created. This means that it is
called when the object’s declaration is executed. For global objects, the constructor
is called when the program begins execution, prior to the call to main(). For local
objects, the constructor is called each time the object declaration is encountered.

The complement of the constructor is the destructor. In many circumstances, an object
will need to perform some action or series of actions when it is destroyed. Local objects
are created when their block is entered, and destroyed when the block is left. Global
objects are destroyed when the program terminates. There are many reasons why a
destructor may be needed. For example, an object may need to deallocate memory
that it had previously allocated. In C++, it is the destructor that handles deactivation.
The destructor has the same name as the constructor, but the destructor’s name is
preceded by a ~. Like constructors, destructors do not have return types.

Here is the queue class that contains a constructor and destructor. (Keep in mind
that the queue class does not require a destructor, so the one shown here is just for
illustration.)

// This creates the class queue.
class queue {
int q[100];
int sloc, rloc;

public:
queue(); // constructor
~queue(); // destructor
void qput(int i);
int qget();

};

A destructor
is the function
that is called
when an object
is destroyed.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

254 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

// This is the constructor.
queue::queue()
{
sloc = rloc = 0;
cout << "Queue initialized.\n";

}

// This is the destructor.
queue::~queue()
{
cout << "Queue destroyed.\n";

}

Here is a new version of the queue program that demonstrates the constructor and
destructor:

// Demonstrate a constructor and a destructor.
#include <iostream>
using namespace std;

// This creates the class queue.
class queue {
int q[100];
int sloc, rloc;

public:
queue(); // constructor
~queue(); // destructor
void qput(int i);
int qget();

};

// This is the constructor.
queue::queue()
{
sloc = rloc = 0;
cout << "Queue initialized.\n";

}

// This is the destructor.
queue::~queue()
{
cout << "Queue destroyed.\n";

}

// Put an integer into the queue.
void queue::qput(int i)
{
if(sloc==100) {
cout << "Queue is full.\n";
return;

}
sloc++;

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 255

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

q[sloc] = i;
}

// Get an integer from the queue.
int queue::qget()
{
if(rloc == sloc) {
cout << "Queue Underflow.\n";
return 0;

}
rloc++;
return q[rloc];

}

int main()
{
queue a, b; // create two queue objects

a.qput(10);
b.qput(19);

a.qput(20);
b.qput(1);

cout << a.qget() << " ";
cout << a.qget() << " ";
cout << b.qget() << " ";
cout << b.qget() << "\n";

return 0;
}

This program displays the following output:

Queue initialized.
Queue initialized.
10 20 19 1
Queue destroyed.
Queue destroyed.

Parameterized Constructors
A constructor can have parameters. This allows you to give member variables program-
defined initial values when an object is created. You do this by passing arguments to
an object’s constructor. The next example will enhance the queue class to accept an
argument that will act as the queue’s ID number. First, queue is changed to look like this:

// This creates the class queue.
class queue {
int q[100];

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

256 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

int sloc, rloc;
int who; // holds the queue's ID number

public:
queue(int id); // parameterized constructor
~queue(); // destructor
void qput(int i);
int qget();

};

The variable who is used to hold an ID number that will identify the queue. Its actual
value will be determined by what is passed to the constructor in id when a variable of
type queue is created. The queue() constructor looks like this:

// This is the constructor.
queue::queue(int id)
{
sloc = rloc = 0;
who = id;
cout << "Queue " << who << " initialized.\n";

}

To pass an argument to the constructor, you must associate the argument with an
object when the object is declared. C++ supports two ways to accomplish this. The
first method is illustrated here:

queue a = queue(101);

This declaration creates a queue called a and passes the value 101 to it. However, this
form is seldom used (in this context), because the second method is shorter and more
to the point. In the second method, the argument must follow the object’s name and
must be enclosed between parentheses. For example, this statement accomplishes the
same thing as the previous declaration:

queue a(101);

This is the most common way that parameterized objects are declared. Using this
method, the general form of passing arguments to constructors is

class-type var(arg-list);

Here, arg-list is a comma-separated list of arguments that are passed to the constructor.

NOTE: Technically, there is a small difference between the two initialization
forms, which you will learn about later in this book. However, this difference does not
affect the programs in this chapter, or most programs that you will write.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 257

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

The following version of the queue program demonstrates a parameterized constructor:

// Use a parameterized constructor.
#include <iostream>
using namespace std;

// This creates the class queue.
class queue {
int q[100];
int sloc, rloc;
int who; // holds the queue's ID number

public:
queue(int id); // parameterized constructor
~queue(); // destructor
void qput(int i);
int qget();

};

// This is the constructor.
queue::queue(int id)
{
sloc = rloc = 0;
who = id;
cout << "Queue " << who << " initialized.\n";

}

// This is the destructor.
queue::~queue()
{
cout << "Queue " << who << " destroyed.\n";

}

// Put an integer into the queue.
void queue::qput(int i)
{
if(sloc==100) {
cout << "Queue is full.\n";
return;

}
sloc++;
q[sloc] = i;

}

// Get an integer from the queue.
int queue::qget()
{
if(rloc == sloc) {
cout << "Queue underflow.\n";
return 0;

}
rloc++;

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

258 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

return q[rloc];
}

int main()
{
queue a(1), b(2); // create two queue objects

a.qput(10);
b.qput(19);

a.qput(20);
b.qput(1);

cout << a.qget() << " ";
cout << a.qget() << " ";
cout << b.qget() << " ";
cout << b.qget() << "\n";

return 0;
}

This program produces the following output:

Queue 1 initialized.
Queue 2 initialized.
10 20 19 1
Queue 2 destroyed.
Queue 1 destroyed.

As you can see by looking at main(), the queue associated with a is given the ID
number 1, and the queue associated with b is given the number 2.

Although the queue example passes only a single argument when an object is created,
it is possible to pass two or more. In the following example, objects of type widget are
passed two values:

#include <iostream>
using namespace std;

class widget {
int i;
int j;

public:
widget(int a, int b);
void put_widget();

} ;

// Pass 2 arguments to widget().
widget::widget(int a, int b)
{
i = a;

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 259

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

j = b;
}

void widget::put_widget()
{
cout << i << " " << j << "\n";

}

int main()
{
widget x(10, 20), y(0, 0);

x.put_widget();
y.put_widget();

return 0;
}

This program displays

10 20
0 0

TIP: Unlike constructors, destructors cannot have parameters. The reason for
this is easy to understand: There is no means by which to pass arguments to an object
that is being destroyed. Although the situation is rare, if your object needs access to
some run-time-defined data when its destructor is called, you will need to create a
specific variable for this purpose. Then, just prior to the object’s destruction, set that
variable to the desired value.

An Initialization Alternative
If a constructor takes only one parameter, then you can use an alternative method to
initialize it. Consider the following program:

#include <iostream>
using namespace std;

class myclass {
int a;

public:
myclass(int x);
int get_a();

};

myclass::myclass(int x)
{
a = x;

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

260 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

}

int myclass::get_a()
{
return a;

}

int main()
{
myclass ob = 4; // calls myclass(4)

cout << ob.get_a();

return 0;
}

Here, the constructor for myclass takes one parameter. Pay special attention to how
ob is declared in main(). It uses this declaration:

myclass ob = 4;

In this form of initialization, 4 is automatically passed to the x parameter in the
myclass() constructor. That is, the declaration statement is handled by the compiler
as if it were written like this:

myclass ob = myclass(4);

In general, any time that you have a constructor that requires only one argument,
you can use either ob(x) or ob = x to initialize an object. The reason for this is that
whenever you create a constructor that takes one argument, you are also implicitly
creating a conversion from the type of that argument to the type of the class.

Remember that the alternative shown here applies only to constructors that have
exactly one parameter.

Classes and Structures Are Related
As mentioned in the preceding chapter, in C++ the structure also has object-oriented
capabilities. In fact, classes and structures are closely related. With one exception,
they are interchangeable because the structure can also include data, and the code
that manipulates that data, in just the same way that a class can. The only difference
between a C++ structure and a class is that, by default, the members of a class are
private, while the members of a structure are public. Aside from this distinction,
structures and classes serve the same purpose. In fact, according to the formal C++
syntax, a structure declaration actually creates a class type.

Here is an example of a structure that uses its class-like features:

// Use struct to create a class.
#include <iostream>

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 261

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

using namespace std;

struct cl {
int get_i(); // these are public
void put_i(int j); // by default

private:
int i;

};

int cl::get_i()
{
return i;

}

void cl::put_i(int j)
{
i = j;

}

int main()
{
cl s;

s.put_i(10);
cout << s.get_i();

return 0;
}

This program defines a structure type called cl, in which get_i() and put_i() are
public and i is private. Notice that structs use the keyword private to introduce
the private elements of the structure.

The following program shows an equivalent program that uses a class rather than
a struct:

// Now, use class, instead.
#include <iostream>
using namespace std;

class cl {
int i; // private by default

public:
int get_i();
void put_i(int j);

};

int cl::get_i()
{
return i;

}

void cl::put_i(int j)

The private
keyword is used
to declare the
private members
of a class.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
i = j;

}

int main()
{
cl s;

s.put_i(10);
cout << s.get_i();

return 0;
}

For the most part, C++ programmers will use a class to define the form of an object that
contains member functions, and use a struct in its more traditional role to create objects
that contain only data members. Sometimes the acronym POD is used to describe a
structure that does not contain member functions. It stands for Plain Old Data.

Structures versus Classes
On the surface, the fact that both structures and classes have virtually identical
capabilities seems redundant. Many newcomers to C++ wonder why this apparent
duplication exists. It is not uncommon to hear the suggestion that either the keyword
class or struct is unnecessary.

The answer to this line of reasoning is rooted in C++’s derivation from C, and the desire
to keep C++ upwardly compatible with C. As C++ is currently defined, a standard C
structure is also a completely valid C++ structure. In C, which does not contain the
public or private keywords, all structure members are public. This is why members
of C++ structures are public (rather than private) by default. Since the class construct
is expressly designed to support encapsulation, it makes sense that its members are
private by default. Thus, to avoid incompatibility with C on this issue, the structure
default could not be altered, so a new keyword was added. However, in the long term,
there is a more important reason for the separation of structures and classes. Because
class is an entity syntactically separate from struct, the definition of a class is free to
evolve in ways that may not be syntactically compatible with C-like structures. Since
the two are separated, the future direction of C++ is not encumbered by concerns of
compatibility with C structures.

Before leaving this topic, one important point must be emphasized: A structure defines
a class type. Thus a structure is a class. This was intentional on the part of Bjarne
Stroustrup. He believed that if structures and classes were made more or less equivalent,
the transition from C to C++ would be eased. History has proven him correct!

262 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

C++ programmers
sometimes use
the term
POD-struct when
referring to
structures that
do not contain
member functions.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Unions and Classes Are Related
The fact that structures and classes are related is not too surprising; however, you
might be surprised to learn that unions are also related to classes. As far as C++ is
concerned, a union is essentially a class in which all data members are stored in
the same location. (Thus, a union, too, defines a class type.) A union can contain a
constructor and destructor, as well as member functions. Of course, members of a
union are public, not private, by default.

Here is a program that uses a union to display the characters that comprise the low
and high order bytes of a short integer (assuming short integers are two bytes):

// Create union-based class.
#include <iostream>
using namespace std;

union u_type {
u_type(short int a); // public by default
void showchars();
short int i;
char ch[2];

};

// constructor
u_type::u_type(short int a)
{
i = a;

}

// Show the characters that comprise a short int.
void u_type::showchars()
{
cout << ch[0] << " ";
cout << ch[1] << "\n";

}

int main()
{
u_type u(1000);

u.showchars();

return 0;
}

Like the structure, the C++ union is derived from its C forerunner. However, in C++ it
has the expanded capabilities of the class. But just because C++ gives unions greater
power and flexibility does not mean that you have to use it. When you simply need
a traditional-style union, you are free to use one in that manner. However, in cases
where you can encapsulate a union along with the functions that manipulate it, doing
so will add considerable clarity to your program.

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

Introducing the Class 263

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

264 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

Inline Functions
Before we continue exploring the class, a small, but important digression is in order.
Although it does not pertain specifically to object-oriented programming, one very
useful feature of C++, called an inline function, is frequently used in class definitions.
An inline function is a function whose code is expanded in line at the point at which
it is invoked, rather than being called. There are two ways to create an inline function.
The first is to use the inline modifier. For example, to create an inline function called
f that returns an int and takes no parameters, you declare it like this:

inline int f()
{
// ...

}

The inline modifier precedes all other aspects of a function’s declaration.

The reason for inline functions is efficiency. Every time a function is called, a series
of instructions must be executed, both to set up the function call, including pushing
arguments onto the stack, and to return from the function. In some cases, many CPU
cycles are used to perform these actions. However, when a function is expanded in
line, no such overhead exists, and the overall speed of your program will increase.
Even so, in cases where the inline function is large, the overall size of your program
will also increase. For this reason, the best inline functions are those that are very
small. Larger functions are usually left as normal functions.

The following program demonstrates inline.

#include <iostream>
using namespace std;

class cl {
int i; // private by default

public:
int get_i();
void put_i(int j);

} ;

inline int cl::get_i()
{
return i;

}

inline void cl::put_i(int j)
{
i = j;

}

int main()
{

An inline function
is a small function
whose code is
expanded in line
rather than called.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:51:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 265

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

cl s;

s.put_i(10);
cout << s.get_i();

return 0;
}

Here, the code for get_i() and put_i() is expanded in line rather than being called.
Thus, in main(), the line

s.put_i(10);

is functionally equivalent to this assigment statement:

s.i = 10;

Of course, because i is private to cl, this line could not actually be used in main(),
but by in-lining put_i(), the same effect is produced and the function call is avoided.

It is important to understand that technically, inline is a request, not a command, that
the compiler generate inline code. There are various situations that might prevent the
compiler from complying with the request. Here are some examples:

◆ Some compilers will not generate inline code if a function contains a loop, a
switch, or a goto.

◆ Often, you cannot have inline recursive functions.

◆ Inline functions that contain static variables are frequently disallowed.

REMEMBER: Inline restrictions are implementation-dependent, so you
must check your compiler’s documentation to learn the restrictions that apply
to your situation.

Creating Inline Functions Inside a Class
There is another way to create an inline function. This is accomplished by defining
the code to a member function inside a class declaration. Any function that is defined
inside a class declaration is automatically made into an inline function. It is not
necessary to precede its declaration with the keyword inline. For example, the
preceding program can be rewritten as shown here:

#include <iostream>
using namespace std;

class cl {

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

266 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

int i; // private by default
public:
// automatic inline functions
int get_i() { return i; }
void put_i(int j) { i = j; }

} ;

int main()
{
cl s;

s.put_i(10);
cout << s.get_i();

return 0;
}

Here, get_i() and put_i() are defined inside cl and are automatically inline.

Notice the way the function code is arranged inside cl. For very short functions, this
arrangement reflects common C++ style. However, there is no reason that you could
not format the functions as shown here:

class cl {
int i; // private by default

public:
// inline functions
int get_i()
{
return i;

}

void put_i(int j)
{

i = j;
}

};

Generally, short functions like those illustrated in this example are defined inside the
class declaration. This convention will be followed by the rest of the examples in this
book.

TIP: Defining short member functions inside their class declaration is very
common in C++ programming. The reason for this is not necessarily because of the
automatic inlining feature, but because it is very convenient. In fact, it is quite rare to
see short member functions defined outside their class in professionally written code.

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Class 267

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

Arrays of Objects
You can create arrays of objects in the same way that you create arrays of any other
data type. For example, the following program establishes a class called display that
holds the resolution of a video display mode. Inside main(), an array of three display
objects is created, and the objects that comprise the elements of the array are accessed
by using the normal array-indexing procedure.

// An example of arrays of objects
#include <iostream>
using namespace std;

enum resolution {low, medium, high};

class display {
int width;
int height;
resolution res;

public:
void set_dim(int w, int h) {width = w; height = h;}
void get_dim(int &w, int &h) {w = width; h = height;}
void set_res(resolution r) {res = r;}
resolution get_res() {return res;}

};

char names[3][7] = {
"low",
"medium",
"high",

} ;

int main()
{
display display_mode[3];
int i, w, h;

display_mode[0].set_res(low);
display_mode[0].set_dim(640, 480);

display_mode[1].set_res(medium);
display_mode[1].set_dim(800, 600);

display_mode[2].set_res(high);
display_mode[2].set_dim(1600, 1200);

cout << "Available display modes:\n\n";

for(i=0; i<3; i++) {
cout << names[display_mode[i].get_res()] << ": ";
display_mode[i].get_dim(w, h);

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cout << w << " by " << h << "\n";
}

return 0;
}

This program produces the following output:

Available display modes:

low: 640 by 480
medium: 800 by 600
high: 1600 by 1200

Notice how the two-dimensional character array names is used to convert between
an enumerated value and its equivalent character string. In all enumerations that do
not contain explicit initializations, the first constant has the value 0, the second 1,
and so on. Therefore, the value returned by get_res() can be used to index the names
array, causing the appropriate name to be printed.

Multidimensional arrays of objects are indexed in precisely the same way as arrays
of other types of data.

Initializing Object Arrays
If the class includes a parameterized constructor, an array of objects can be initialized.
For example, in the following program, samp is a parameterized class and sampArray
is an initialized array of objects of that class:

// Initialize an array of objects.
#include <iostream>
using namespace std;

class samp {
int a;

public:
samp(int n) { a = n; }
int get_a() { return a; }

};

int main()
{
samp sampArray[4] = { -1, -2, -3, -4 };
int i;

for(i=0; i<4; i++) cout << sampArray[i].get_a() << ' ';

cout << "\n";

return 0;
}

268 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This program displays the following:

-1 -2 -3 -4

As the output confirms, the values –1 through –4 are passed to the samp constructor.

Actually, the syntax shown in the initialization list is shorthand for this longer form:

samp sampArray[4] = { samp(-1), samp(-2), samp(-3), samp(-4) };

However, the form used in the program is more common, although this form will
work only with arrays whose constructors take only one argument. When initializing
an array of objects whose constructor takes more than one argument, you must use
the longer form of initialization. For example:

#include <iostream>
using namespace std;

class samp {
int a, b;

public:
samp(int n, int m) { a = n; b = m; }
int get_a() { return a; }
int get_b() { return b; }

};

int main()
{
samp sampArray[4][2] = {
samp(1, 2), samp(3, 4),
samp(5, 6), samp(7, 8),
samp(9, 10), samp(11, 12),
samp(13, 14), samp(15, 16)

};

int i;

for(i=0; i<4; i++) {
cout << sampArray[i][0].get_a() << ' ';
cout << sampArray[i][0].get_b() << "\n";
cout << sampArray[i][1].get_a() << ' ';
cout << sampArray[i][1].get_b() << "\n";

}

cout << "\n";

return 0;
}

In this example, samp’s constructor takes two arguments. Here, the array sampArray
is declared and initialized in main() by using direct calls to samp’s constructor. When

Introducing the Class 269

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

270 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

initalizing arrays, you can always use the long form of initialization, even if the object
takes only one argument. It’s just that the short form is more convenient when only
one argument is required. The program displays

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

Pointers to Objects
As you saw in the previous chapter, you can access a structure directly, or through
a pointer to the structure. In like fashion, you can access an object either directly
(as has been the case in all preceding examples), or by using a pointer to the object.
To access an element of an object when using the actual object itself, use the dot
operator. To access a specific element of an object when using a pointer to the object,
you must use the arrow operator. (The use of the dot and arrow operators for objects
parallels their use for structures and unions.)

To declare an object pointer, you use the same declaration syntax that you would use
for any other pointer type. The next program creates a simple class called P_example,
defines an object of that class, called ob, and defines a pointer to an object of type
P_example, called p. It then illustrates how to access ob directly, and how to use a
pointer to access it indirectly.

// A simple example using an object pointer.
#include <iostream>
using namespace std;

class P_example {
int num;

public:
void set_num(int val) {num = val;}
void show_num();

};

void P_example::show_num()
{
cout << num << "\n";

}

int main()
{
P_example ob, *p; // declare an object and pointer to it

ob.set_num(1); // access ob directly

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ob.show_num();

p = &ob; // assign p the address of ob
p->show_num(); // access ob using pointer

return 0;
}

Notice that the address of ob is obtained by using the & (address of) operator in the
same way that the address is obtained for any type of variable.

As you know, when a pointer is incremented or decremented, it is increased or decreased
in such a way that it will always point to the next element of its base type. The same
thing occurs when a pointer to an object is incremented or decremented: the next
object is pointed to. To illustrate this, the preceding program has been modified here
so that ob is a two-element array of type P_example. Notice how p is incremented
and decremented to access the two elements in the array.

// Incrementing and decrementing an object pointer.
#include <iostream>
using namespace std;

class P_example {
int num;

public:
void set_num(int val) {num = val;}
void show_num();

};

void P_example::show_num()
{
cout << num << "\n";

}

int main()
{
P_example ob[2], *p;

ob[0].set_num(10); // access objects directly
ob[1].set_num(20);

p = &ob[0]; // obtain pointer to first element
p->show_num(); // show value of ob[0] using pointer

p++; // advance to next object
p->show_num(); // show value of ob[1] using pointer

p--; // retreat to previous object
p->show_num(); // again show value of ob[0]

return 0;
}

Introducing the Class 271

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The output from this program is

10
20
10

As you will see later in this book, object pointers play an important role in one of
C++’s most important concepts: polymorphism.

Object References
Objects can be referenced in the same way as any other data type. There are no special
restrictions or instructions that apply. However, as you will see in the next chapter,
the use of object references does help to solve some special problems that you may
encounter when using classes.

272 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 11

P:\010Comp\Grnd-Up8\897-0\ch11.vp
Friday, February 28, 2003 2:52:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 12

A Closer Look
at Classes

273

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This chapter continues the discussion of the class begun in Chapter 11. It discusses
friend functions, overloading constructors, passing objects to functions, and

returning objects. It also examines a special type of constructor, called the copy
constructor, which is used when a copy of an object is needed. The chapter concludes
with a description of the this keyword.

Friend Functions
It is possible to allow a non-member function access to the private members of a class
by declaring it a friend of the class. To make a function a friend of a class, include its
prototype in the public section of the class declaration and precede it with the friend
keyword. For example, in this fragment frnd() is declared to be a friend of the class cl:

class cl {
// ...

public:
friend void frnd(cl ob);

// ...
};

As you can see, the keyword friend precedes the rest of the prototype. A function
may be a friend of more than one class.

Here is a short example that uses a friend function to access the private members
of myclass:

// Demonstrate a friend function.
#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
myclass(int i, int j) { a=i; b=j; }
friend int sum(myclass x); // sum() is a friend of myclass

};

// Note: sum() is not a member function of any class.
int sum(myclass x)
{
/* Because sum() is a friend of myclass, it can

directly access a and b. */

return x.a + x.b;
}

int main()
{
myclass n(3, 4);

cout << sum(n);

274 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

The friend keyword
gives a non-
member function
access to the
private members
of a class.

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

return 0;
}

In this example, the sum() function is not a member of myclass. However, it still
has full access to the private members of myclass. Specifically, it can access x.a and
x.b. Notice also that sum() is called normally—not in conjunction with an object and
the dot operator. Since it is not a member function, it does not need to be qualified
with an object’s name. (In fact, it cannot be qualified with an object.) Typically, a friend
function is passed one or more objects of the class for which it is a friend, as is the
case with sum().

While there is nothing gained by making sum() a friend rather than a member function
of myclass, there are some circumstances in which friend functions are quite valuable.
First, friends can be useful for overloading certain types of operators. Second, friend
functions simplify the creation of some types of I/O functions. Both of these uses are
discussed later in this book.

The third reason that friend functions may be desirable is that, in some cases, two or
more classes may contain members that are interrelated relative to other parts of your
program. For example, imagine two different classes that each display a pop-up message
on the screen when some sort of event occurs. Other parts of your program that are
designed to write to the screen will need to know whether the pop-up message is active,
so that no message is accidentally overwritten. It is possible to create a member function
in each class that returns a value indicating whether a message is active or not; however,
checking this condition involves additional overhead (i.e., two function calls, not just
one). If the status of the pop-up message needs to be checked frequently, the additional
overhead may not be acceptable. However, by using a friend function, it is possible to
directly check the status of each object by calling only one function that has access to
both classes. In situations like this, a friend function helps you write more efficient code.
The following program illustrates this concept.

// Use a friend function.
#include <iostream>
using namespace std;

const int IDLE=0;
const int INUSE=1;

class C2; // forward declaration

class C1 {
int status; // IDLE if off, INUSE if on screen
// ...

public:
void set_status(int state);
friend int idle(C1 a, C2 b);

};

class C2 {
int status; // IDLE if off, INUSE if on screen
// ...

A Closer Look at Classes 275

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

276 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

public:
void set_status(int state);
friend int idle(C1 a, C2 b);

};

void C1::set_status(int state)
{
status = state;

}

void C2::set_status(int state)
{
status = state;

}

// idle() is a friend of C1 and C2.
int idle(C1 a, C2 b)
{
if(a.status || b.status) return 0;
else return 1;

}

int main()
{
C1 x;
C2 y;

x.set_status(IDLE);
y.set_status(IDLE);

if(idle(x, y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

x.set_status(INUSE);

if(idle(x, y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

return 0;
}

The output produced by this program is shown here:

Screen Can Be Used.
Pop-up In Use.

Because idle() is a friend of both C1 and C2 it has access to the private status
member defined by both classes. Thus, a single call to idle() can simultaneously
check the status of an object of each class.

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Closer Look at Classes 277

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

Notice that this program uses a forward declaration (also called a forward reference) for
the class C2. This is necessary because the declaration of idle() inside C1 refers to C2
before it is declared. To create a forward declaration to a class, simply use the form
shown in this program.

A friend of one class can be a member of another. For example, here is the preceding
program rewritten so that idle() is a member of C1. Notice the use of the scope
resolution operator when declaring idle() to be a friend of C2.

/* A function can be a member of one class and
a friend of another. */

#include <iostream>
using namespace std;

const int IDLE=0;
const int INUSE=1;

class C2; // forward declaration

class C1 {
int status; // IDLE if off, INUSE if on screen
// ...

public:
void set_status(int state);
int idle(C2 b); // now a member of C1

};

class C2 {
int status; // IDLE if off, INUSE if on screen
// ...

public:
void set_status(int state);
friend int C1::idle(C2 b); // a friend, here

};

void C1::set_status(int state)
{
status = state;

}

void C2::set_status(int state)
{
status = state;

}

// idle() is member of C1, but friend of C2.
int C1::idle(C2 b)
{
if(status || b.status) return 0;
else return 1;

}

A forward
declaration
declares a class
type-name prior
to the definition
of the class.

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

int main()
{
C1 x;
C2 y;

x.set_status(IDLE);
y.set_status(IDLE);

if(x.idle(y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

x.set_status(INUSE);

if(x.idle(y)) cout << "Screen Can Be Used.\n";
else cout << "Pop-up In Use.\n";

return 0;
}

Since idle() is a member of C1, it can access the status variable of objects of type
C1 directly. Thus, only objects of type C2 need be passed to idle().

Overloading Constructors
Although they perform a unique service, constructors are not much different from other
types of functions, and they too can be overloaded. To overload a class’s constructor,
simply declare the various forms it will take and define each action relative to these
forms. For example, the following program declares a class called timer, which acts
as a countdown timer (such as a darkroom timer). When an object of type timer is
created, it is given an initial time value. When the run() function is called, the timer
counts down to zero and then rings the bell. In this example, the constructor has
been overloaded to allow the time to be specified in seconds as either an integer or a
string, or in minutes and seconds by specifying two integers. This program makes use
of the standard library function clock(), which returns the number of system clock
ticks since the program began running. Its prototype is shown here:

clock_t clock();

The type clock_t is a defined type that is some form of long integer. Dividing the
return value of clock() by CLOCKS_PER_SEC converts the return value into seconds.
Both the prototype for clock() and the definition of CLOCKS_PER_SEC are found
in the header <ctime>.

// Use overloaded constructors.
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

278 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

class timer{
int seconds;

public:
// seconds specified as a string
timer(char *t) { seconds = atoi(t); }

// seconds specified as integer
timer(int t) { seconds = t; }

// time specified in minutes and seconds
timer(int min, int sec) { seconds = min*60 + sec; }

void run();
} ;

void timer::run()
{
clock_t t1;

t1 = clock();

while((clock()/CLOCKS_PER_SEC - t1/CLOCKS_PER_SEC) < seconds);

cout << "\a"; // ring the bell
}

int main()
{
timer a(10), b("20"), c(1, 10);

a.run(); // count 10 seconds
b.run(); // count 20 seconds
c.run(); // count 1 minute, 10 seconds

return 0;
}

When a, b, and c are created inside main(), they are given initial values using the
three different methods supported by the overloaded constructor functions. Each
approach causes the appropriate constructor to be utilized, thus properly initializing
all three variables.

In the preceding program, you may see little value in overloading a constructor
function, because it is not difficult to simply decide on a single way of specifying the
time. However, if you were creating a library of classes for someone else to use, then
you might want to supply constructors for the most common forms of initialization,
thereby allowing the programmer to utilize the most appropriate form for his or her
program. Also, as you will see shortly, there is one C++ attribute that makes overloaded
constructors quite valuable.

A Closer Look at Classes 279

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

280 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

Dynamic Initialization
In C++, both local and global variables can be initialized at run time. This process is
sometimes referred to as dynamic initialization. So far, most initializations that you
have seen in this book have used constants. However, under dynamic initialization,
a variable can be initialized at run time using any C++ expression valid at the time
the variable is declared. This means that you can initialize a variable by using other
variables and/or function calls, so long as the overall expression has meaning when
the declaration is encountered. For example, the following are all perfectly valid
variable initializations in C++:

int n = strlen(str);

double arc = sin(theta);

float d = 1.02 * count / deltax;

Applying Dynamic Initialization to Constructors
Like simple variables, objects can be initialized dynamically when they are created.
This feature allows you to create exactly the type of object you need, using information
that is known only at run time. To illustrate how dynamic initialization works, let’s
rework the timer program from the previous section.

Recall that in the first example of the timer program, there is little to be gained by
overloading the timer() constructor, because all objects of its type are initialized
using constants provided at compile time. However, in cases where an object will be
initialized at run time, there may be significant advantages to providing a variety of
initialization formats. This allows you, the programmer, the flexibility of using the
constructor that most closely matches the format of the data available at the moment.

For example, in the following version of the timer program, dynamic initialization
is used to construct two objects, b and c, at run time:

// Demonstrate dynamic initialization.
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

class timer{
int seconds;

public:
// seconds specified as a string
timer(char *t) { seconds = atoi(t); }

// seconds specified as integer
timer(int t) { seconds = t; }

// time specified in minutes and seconds
timer(int min, int sec) { seconds = min*60 + sec; }

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

void run();
} ;

void timer::run()
{
clock_t t1;

t1 = clock();

while((clock()/CLOCKS_PER_SEC - t1/CLOCKS_PER_SEC) < seconds);

cout << "\a"; // ring the bell
}

int main()
{
timer a(10);

a.run();

cout << "Enter number of seconds: ";
char str[80];
cin >> str;
timer b(str); // initialize at run time
b.run();

cout << "Enter minutes and seconds: ";
int min, sec;
cin >> min >> sec;
timer c(min, sec); // initialize at run time
c.run();

return 0;
}

As you can see, object a is constructed using an integer constant. However, objects
b and c are constructed using information entered by the user. For b, since the user
enters a string, it makes sense that timer() is overloaded to accept it. In similar
fashion, object c is also constructed at run time from user input. In this case, since the
time is entered as minutes and seconds, it is logical to use this format for constructing
object c. As the example shows, having a variety of initialization formats keeps you
from having to perform conversions when initializing an object.

The point of overloading constructors is to help programmers handle greater
complexity by allowing objects to be constructed in the most natural manner relative
to their specific use. Since there are three common methods of passing timing values to
an object, it makes sense that timer() be overloaded to accept each method. However,
overloading timer() to accept days or nanoseconds is probably not a good idea. Littering
your code with constructors to handle seldom-used contingencies has a destabilizing
influence on your program.

A Closer Look at Classes 281

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REMEMBER: You must decide what constitutes valid constructor overloading
and what is frivolous.

Assigning Objects
If both objects are of the same type (that is, both are objects of the same class), then
one object may be assigned to another. It is not sufficient for the two classes to simply
be physically similar—their type names must be the same. By default, when one object
is assigned to another, a bitwise copy of the first object’s data is copied to the second.
The following program demonstrates object assignment:

// Demonstrate object assignment.
#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
void setab(int i, int j) { a = i, b = j; }
void showab();

};

void myclass::showab()
{
cout << "a is " << a << '\n';
cout << "b is " << b << '\n';

}

int main()
{
myclass ob1, ob2;

ob1.setab(10, 20);
ob2.setab(0, 0);
cout << "ob1 before assignment: \n";
ob1.showab();
cout << "ob2 before assignment: \n";
ob2.showab();
cout << '\n';

ob2 = ob1; // assign ob1 to ob2

cout << "ob1 after assignment: \n";
ob1.showab();
cout << "ob2 after assignment: \n";
ob2.showab();

return 0;
}

282 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Closer Look at Classes 283

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

This program displays the following output:

ob1 before assignment:
a is 10
b is 20
ob2 before assignment:
a is 0
b is 0
ob1 after assignment:
a is 10
b is 20
ob2 after assignment:
a is 10
b is 20

By default, all data from one object is assigned to the other using a bit-by-bit copy.
(That is, an exact duplicate is created.) However, as you will see later, it is possible to
overload the assignment operator so that customized assignment operations can be
defined.

Remember: Assignment of one object to another simply makes the data in those
objects identical. The two objects are still completely separate. Thus, a subsequent
modification of one object’s data has no effect on that of the other.

Passing Objects to Functions
An object can be passed to a function in the same way as any other data type. Objects
are passed to functions by using the normal C++ call-by-value parameter-passing
convention. This means that a copy of the object, not the actual object itself, is passed
to the function. Therefore, changes made to the object inside the function do not affect
the object used as the argument to the function. The following program illustrates
this point:

#include <iostream>
using namespace std;

class OBJ {
int i;

public:
void set_i(int x) { i = x; }
void out_i() { cout << i << " "; }

};

void f(OBJ x)
{
x.out_i(); // outputs 10
x.set_i(100); // this affects only local copy
x.out_i(); // outputs 100

}

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

284 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

int main()
{
OBJ o;

o.set_i(10);
f(o);
o.out_i(); // still outputs 10, value of i unchanged

return 0;
}

The output from the program is shown here.

10 100 10

As the output shows, the modification of x within f() has no effect on object o inside
main().

Constructors, Destructors, and Passing Objects
Although passing simple objects as arguments to functions is a straightforward
procedure, some rather unexpected events occur that relate to constructors and
destructors. To understand why, consider this short program:

// Constructors, destructors, and passing objects.
#include <iostream>
using namespace std;

class myclass {
int val;

public:
myclass(int i) { val = i; cout << "Constructing\n"; }
~myclass() { cout << "Destructing\n"; }
int getval() { return val; }

};

void display(myclass ob)
{
cout << ob.getval() << '\n';

}

int main()
{
myclass a(10);

display(a);

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Closer Look at Classes 285

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

This program produces the following, unexpected output:

Constructing
10
Destructing
Destructing

As you can see, there is one call to the constructor function (which occurs when a
is created), but there are two calls to the destructor. Let’s see why this is the case.

When an object is passed to a function, a copy of that object is made (and this copy
becomes the parameter in the function). This means that a new object comes into
existence. When the function terminates, the copy of the argument (i.e., the parameter)
is destroyed. This raises two fundamental questions: First, is the object’s constructor
called when the copy is made? Second, is the object’s destructor called when the copy
is destroyed? The answers may, at first, surprise you.

When a copy of an argument is made during a function call, the normal constructor
is not called. Instead, the object’s copy constructor is called. A copy constructor defines
how a copy of an object is made. (Later in this chapter you will see how to create a
copy constructor.) However, if a class does not explicitly define a copy constructor,
then C++ provides one by default. The default copy constructor creates a bitwise (that
is, identical) copy of the object. The reason a bitwise copy is made is easy to understand
if you think about it. Since a normal constructor is used to initialize some aspect of an
object, it must not be called to make a copy of an already existing object. Such a call
would alter the contents of the object. When passing an object to a function, you want
to use the current state of the object, not its initial state.

However, when the function terminates and the copy of the object used as an argument
is destroyed, the destructor is called. This is necessary because the object has gone out
of scope. This is why the preceding program had two calls to the destructor. The first
was when the parameter to display() went out of scope. The second is when a inside
main() was destroyed when the program ended.

To summarize: When a copy of an object is created to be used as an argument to a
function, the normal constructor is not called. Instead, the default copy constructor
makes a bit-by-bit identical copy. However, when the copy is destroyed (usually by
going out of scope when the function returns), the destructor is called.

A Potential Problem When Passing Objects
Even though objects are passed to functions by means of the normal call-by-value
parameter-passing mechanism, which, in theory, protects and insulates the calling
argument, it is still possible for a side effect to occur that may affect, or even damage,
the object used as an argument. For example, if an object used as an argument allocates
dynamic memory and frees that memory when it is destroyed, then its local copy inside
the function will free the same memory when its destructor is called. This is a problem

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

286 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

because the original object is still using the memory. This situation will leave the
original object damaged and effectively useless. Consider this sample program:

// Demonstrate a problem when passing objects.
#include <iostream>
#include <cstdlib>
using namespace std;

class myclass {
int *p;

public:
myclass(int i);
~myclass();
int getval() { return *p; }

};

myclass::myclass(int i)
{
cout << "Allocating p\n";
p = new int;
*p = i;

}

myclass::~myclass()
{
cout << "Freeing p\n";
delete p;

}

// This will cause a problem.
void display(myclass ob)
{
cout << ob.getval() << '\n';

}

int main()
{
myclass a(10);

display(a);

return 0;
}

This program displays the following output:

Allocating p
10
Freeing p
Freeing p

This program contains a fundamental error. Here is why: When a is constructed within
main(), memory is allocated and assigned to a.p. When a is passed to display(),

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a is copied into the parameter ob. This means that both a and ob will have the same
value for p. That is, both objects will have their copies of p pointing to the same
dynamically allocated memory. When display() terminates, ob is destroyed, and its
destructor is called. This causes ob.p to be freed. However, the memory freed by ob.p
is the same memory that is still in use by a.p! This is, in itself, a serious bug.

However, things get even worse. When the program ends, a is destroyed, and its
dynamically allocated memory is freed a second time. The problem is that freeing the
same piece of dynamically allocated memory a second time is an undefined operation
which could, depending upon how the dynamic allocation system is implemented,
cause a fatal error.

As you might guess, one way around the problem of a parameter’s destructor destroying
data needed by the calling argument is to pass either a pointer or a reference, instead
of the object itself. When either a pointer to an object or a reference to an object is passed,
no copy is made; thus, no destructor is called when the function returns. For example,
here is one way to correct the preceding program:

// One solution to the problem of passing objects.
#include <iostream>
#include <cstdlib>
using namespace std;

class myclass {
int *p;

public:
myclass(int i);
~myclass();
int getval() { return *p; }

};

myclass::myclass(int i)
{
cout << "Allocating p\n";
p = new int;
*p = i;

}

myclass::~myclass()
{
cout << "Freeing p\n";
delete p;

}

/* This will NOT cause a problem.

Because ob is now passed by reference, no
copy of the calling argument is made and thus,
no object goes out-of-scope when display()
terminates.

*/
void display(myclass &ob)
{

A Closer Look at Classes 287

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cout << ob.getval() << '\n';
}

int main()
{
myclass a(10);

display(a);

return 0;
}

The output from this version of the program is shown here.

Allocating p
10
Freeing p

As you can see, only one call to the destructor occurs. This is because no copy of a
is made when it is passed by reference to display().

Passing an object by reference is an excellent approach when the situation allows it,
but it may not be applicable to all cases. Fortunately, a more general solution is available:
you can create your own version of the copy constructor. Doing so lets you define
precisely how a copy of an object is made, allowing you to avoid the type of problems
just described. Before discussing the copy constructor, let’s look at another, related
situation that can also benefit from a copy constructor.

Returning Objects
Just as objects can be passed to functions, so functions can return objects. To return
an object, first declare the function as returning a class type. Second, return an object
of that type by using the normal return statement. Here is an example of a function
that returns an object:

// Returning an object.
#include <iostream>
#include <cstring>
using namespace std;

class sample {
char s[80];

public:
void show() { cout << s << "\n"; }
void set(char *str) { strcpy(s, str); }

};

// Return an object of type sample.
sample input()
{
char instr[80];

288 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sample str;

cout << "Enter a string: ";
cin >> instr;

str.set(instr);

return str;
}

int main()
{
sample ob;

// assign returned object to ob
ob = input();
ob.show();

return 0;
}

In this example, input() creates a local object called str and then reads a string from
the keyboard. This string is copied into str.s, and then str is returned by the function.
This object is then assigned to ob inside main() after it is returned by input().

A Potential Problem When Returning Objects
There is one important point to understand about returning objects from functions:
When an object is returned by a function, a temporary object is automatically created,
which holds the return value. It is this object that is actually returned by the function.
After the value has been returned, this object is destroyed. The destruction of this
temporary object may cause unexpected side effects in some situations. For example,
if the object returned by the function has a destructor that frees dynamically allocated
memory, that memory will be freed even though the object that receives the return
value is still using it. Consider the following incorrect version of the preceding program:

// An error generated by returning an object.
#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;

class sample {
char *s;

public:
sample() { s = 0; }
~sample() { if(s) delete [] s; cout << "Freeing s\n"; }
void show() { cout << s << "\n"; }
void set(char *str);

};

A Closer Look at Classes 289

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Load a string.
void sample::set(char *str)
{
s = new char[strlen(str)+1];
strcpy(s, str);

}

// Return an object of type sample.
sample input()
{
char instr[80];
sample str;

cout << "Enter a string: ";
cin >> instr;

str.set(instr);
return str;

}

int main()
{
sample ob;

// assign returned object to ob
ob = input(); // This causes an error!!!!
ob.show(); // displays garbage

return 0;
}

The output from this program is shown here:

Enter a string: Hello
Freeing s
Freeing s
garbage here
Freeing s

Notice that sample’s destructor is called three times! First, it is called when the local
object str goes out of scope upon the return of input(). The second time ~sample()
is called is when the temporary object returned by input() is destroyed. When an
object is returned from a function, an invisible (to you) temporary object is automatically
generated, which holds the return value. In this case, the object is simply a bitwise
copy of str, which is the return value of the function. Therefore, after the function has
returned, the temporary object’s destructor is executed. Because the memory holding
the string entered by the user has already been freed (twice!), garbage is displayed
when show() is called. (Depending upon how your compiler implements dynamic
allocation, you may not see garbage output, but the error is still present.) Finally, the
destructor for object ob, inside main(), is called when the program terminates. The
trouble is that, in this situation, the first time the destructor executes, the memory
allocated to hold the string obtained by input() is freed. Thus, not only do the other

290 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

two calls to sample’s destructor try to free an already released piece of dynamic memory,
but they may also damage the dynamic allocation system in the process.

The key point to understand from this example is that when an object is returned from
a function, the temporary object holding the return value will have its destructor called.
Thus, you should avoid returning objects in which this situation can be harmful. One
solution is to return either a pointer or a reference. However, this is not always feasible.
Another way to solve this problem involves the use of a copy constructor, which is
described next.

Creating and Using a Copy Constructor
One of the more important forms of an overloaded constructor is the copy constructor.
As earlier examples have shown, problems can occur when an object is passed to, or
returned from, a function. As you will learn in this section, one way to avoid these
problems is to define a copy constructor, which is a special type of overloaded constructor.

To begin, let’s restate the problems that a copy constructor is designed to solve. When
an object is passed to a function, a bitwise (i.e., exact) copy of that object is made and
given to the function parameter that receives the object. However, there are cases in
which this identical copy is not desirable. For example, if the object contains a pointer
to allocated memory, then the copy will point to the same memory as does the original
object. Therefore, if the copy makes a change to the contents of this memory, it will
be changed for the original object, too! Furthermore, when the function terminates,
the copy will be destroyed, thus causing its destructor to be called. This may also have
undesired effects on the original object.

A similar situation occurs when an object is returned by a function. The compiler will
generate a temporary object that holds a copy of the value returned by the function.
(This is done automatically, and is beyond your control.) This temporary object goes
out of scope once the value is returned to the calling routine, causing the temporary
object’s destructor to be called. However, if the destructor destroys something needed
by the calling routine, trouble will follow.

At the core of these problems is the creation of a bitwise copy of the object. To prevent
them, you need to define precisely what occurs when a copy of an object is made so
that you can avoid undesired side effects. The way you accomplish this is by creating
a copy constructor.

Before we explore the use of the copy constructor, it is important for you to understand
that C++ defines two distinct types of situations in which the value of one object is
given to another. The first situation is assignment. The second situation is initialization,
which can occur three ways:

◆ When one object explicitly initializes another, such as in a declaration

◆ When a copy of an object is passed as a parameter to a function

◆ When a temporary object is generated (most commonly, as a return value)

The copy constructor applies only to initializations. It does not apply to assignments.

A Closer Look at Classes 291

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

A copy
constructor
allows you to
control precisely
what occurs when
a copy of an
object is made.

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REMEMBER: Copy constructors do not affect assignment operations.

The most common form of copy constructor is shown here:

classname (const classname &obj) {
// body of constructor

}

Here, obj is a reference to an object that is being used to initialize another object. For
example, assuming a class called myclass, and y as an object of type myclass, then
the following statements would invoke the myclass copy constructor:

myclass x = y; // y explicitly initializing x
func1(y); // y passed as a parameter
y = func2(); // y receiving a returned object

In the first two cases, a reference to y would be passed to the copy constructor. In the
third, a reference to the object returned by func2() would be passed to the copy
constructor.

To fully explore the value of copy constructors, let’s see how they impact each of the
three situations to which they apply.

Copy Constructors and Parameters
When an object is passed to a function as an argument, a copy of that object is made.
If a copy constructor exists, the copy constructor is called to make the copy. Here is a
program that uses a copy constructor to properly handle objects of type myclass when
they are passed to a function. (This is a corrected version of the incorrect program
shown earlier in this chapter.)

// Use a copy constructor to construct a parameter.
#include <iostream>
#include <cstdlib>
using namespace std;

class myclass {
int *p;

public:
myclass(int i); // normal constructor
myclass(const myclass &ob); // copy constructor
~myclass();
int getval() { return *p; }

};

// Copy constructor.

292 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

The copy
constructor is
called when one
object initializes
another.

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

myclass::myclass(const myclass &obj)
{
p = new int;
*p = *obj.p; // copy value
cout << "Copy constructor called.\n";

}

// Normal Constructor.
myclass::myclass(int i)
{
cout << "Allocating p\n";
p = new int;
*p = i;

}

myclass::~myclass()
{
cout << "Freeing p\n";
delete p;

}

// This function takes one object parameter.
void display(myclass ob)
{
cout << ob.getval() << '\n';

}

int main()
{
myclass a(10);

display(a);

return 0;
}

This program displays the following output:

Allocating p
Copy constructor called.
10
Freeing p
Freeing p

Here is what occurs when the program is run: When a is created inside main(), the
normal constructor allocates memory and assigns the address of that memory to a.p.
Next, a is passed to ob of display(). When this occurs, the copy constructor is called,
and a copy of a is created. The copy constructor allocates memory for the copy, and a
pointer to that memory is assigned to the copy’s p member. Next, the value stored at
the original object’s p is assigned to the memory pointed to by the copy’s p. Thus, the
areas of memory pointed to by a.p and ob.p are separate and distinct, but the values

A Closer Look at Classes 293

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

294 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

that they point to are the same. If the copy constructor had not been created, then the
default bitwise copy would have caused a.p and ob.p to point to the same memory.

When display() returns, ob goes out of scope. This causes its destructor to be called,
which frees the memory pointed to by ob.p. Finally, when main() returns, a goes
out of scope, causing its destructor to free a.p. As you can see, the use of the copy
constructor has eliminated the destructive side effects associated with passing an
object to a function.

Copy Constructors and Initializations
The copy constructor is also invoked when one object is used to initialize another.
Examine this sample program:

// The copy constructor is called for initialization.
#include <iostream>
#include <cstdlib>
using namespace std;

class myclass {
int *p;

public:
myclass(int i); // normal constructor
myclass(const myclass &ob); // copy constructor
~myclass();
int getval() { return *p; }

};

// Copy constructor.
myclass::myclass(const myclass &ob)
{
p = new int;
*p = *ob.p; // copy value
cout << "Copy constructor allocating p.\n";

}

// Normal constructor.
myclass::myclass(int i)
{
cout << "Normal constructor allocating p.\n";
p = new int;
*p = i;

}

myclass::~myclass()
{
cout << "Freeing p\n";
delete p;

}

int main()
{
myclass a(10); // calls normal constructor

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Closer Look at Classes 295

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

myclass b = a; // calls copy constructor

return 0;
}

This program displays the following output:

Normal constructor allocating p.
Copy constructor allocating p.
Freeing p
Freeing p

As the output confirms, the normal constructor is called for object a. However, when
a is used to initialize b, the copy constructor is invoked. The use of the copy constructor
ensures that b will allocate its own memory. Without the copy constructor, b would
simply be an exact copy of a, and a.p would point to the same memory as b.p.

Keep in mind that the copy constructor is called only for initializations. For example, the
following sequence does not call the copy constructor defined in the preceding program:

myclass a(2), b(3);
// ...
b = a;

In this case, b = a performs the assignment operation, not a copy operation.

Using Copy Constructors When an Object Is Returned
The copy constructor is also invoked when a temporary object is created as the result
of a function returning an object. Consider this short program:

/* Copy constructor is called when a temporary object
is created as a function return value.

*/
#include <iostream>
using namespace std;

class myclass {
public:
myclass() { cout << "Normal constructor.\n"; }
myclass(const myclass &obj) { cout << "Copy constructor.\n"; }

};

myclass f()
{
myclass ob; // invoke normal constructor

return ob; // implicitly invoke copy constructor
}

int main()
{
myclass a; // invoke normal constructor

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a = f(); // invoke copy constructor

return 0;
}

This program displays the following output:

Normal constructor.
Normal constructor.
Copy constructor.

Here, the normal constructor is called twice: once when a is created inside main(),
and once when ob is created inside f(). The copy constructor is called when the
temporary object is generated as a return value from f().

Although copy constructors may seem a bit esoteric at this point, virtually every
real-world class will require one, due to the side effects that often result from the
default bitwise copy.

Copy Constructors—Is There a Simpler Way?
As has been stated several times in this book, C++ is a very powerful language. It is
also a very large, and at times, complex language. Copy constructors are a feature
that many programmers point to as a prime example of this complexity because it
is a non-intuitive feature. Newcomers often do not immediately understand why the
copy constructor is important, nor is it always obvious to the novice when a copy
constructor is needed and when one isn’t. This situation often gives rise to the
question “Isn’t there a better way?” The answer is both Yes and No!

Languages such as Java and C# do not have copy constructors because neither language
makes bitwise copies of an object. This is because both Java and C# dynamically
allocate all objects and you operate on those objects exclusively through references.
Thus, no copies of an object are made when passing one as a parameter or returning
one from a function.

The fact that neither Java nor C# require copy constructors streamlines those languages,
but it comes at a price. Operating on objects exclusively through references, rather
directly as you can in C++, imposes limitations on the type of operations you can
perform. Furthermore, because of their exclusive use of object references, in Java and
C# you cannot precisely specify when an object will be destroyed. In C++, an object
is always destroyed when it goes out of scope.

Because C++ gives you, the programmer, complete control, it is a bit more complicated
language than are Java and C#. This is the price of programming power.

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

296 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The this Keyword
Each time a member function is invoked, it is automatically passed a pointer, called
this, to the object on which it is called. The this pointer is an implicit parameter to
all member functions. Therefore, inside a member function, this may be used to refer
to the invoking object.

As you know, a member function can directly access the private data of its class.
For example, given this class,

class cl {
int i;
void f() { ... };
// ...

};

inside f(), the following statement can be used to assign i the value 10:

i = 10;

In actuality, the preceding statement is shorthand for this one:

this->i = 10;

To see how the this pointer works, examine the following short program:

#include <iostream>
using namespace std;

class cl {
int i;

public:
void load_i(int val) { this->i = val; } // same as i = val
int get_i() { return this->i; } // same as return i

} ;

int main()
{
cl o;

o.load_i(100);
cout << o.get_i();

return 0;
}

This program displays the number 100.

A Closer Look at Classes 297

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

12

this is a pointer
to the object that
invokes a member
function.

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Of course, the preceding example is trivial—no one would actually use the this
pointer in this way. Soon, however, you will see why the this pointer is important
to C++ programming.

TIP: Friend functions do not have a this pointer, because friends are not
members of a class. Only member functions have a this pointer.

298 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 12

P:\010Comp\Grnd-Up8\897-0\ch12.vp
Friday, February 28, 2003 3:21:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 13

Operator
Overloading

299

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

300 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

In C++, operators can be overloaded relative to class types that you define. The
principal advantage to overloading operators is that it allows you to seamlessly

integrate new data types into your programming environment.

Operator overloading allows you to define the meaning of an operator for a particular
class. For example, a class that defines a linked list might use the + operator to add an
object to the list. A class that implements a stack might use the + to push an object
onto the stack. Another class might use the + operator in an entirely different way.
When an operator is overloaded, none of its original meaning is lost. It is simply that
a new operation, relative to a specific class, is defined. Therefore, overloading the + to
handle a linked list, for example, does not cause its meaning relative to integers (i.e.,
addition) to change.

Operator overloading is closely related to function overloading. To overload an
operator, you must define what the operation means relative to the class to which it is
applied. To do this, you create an operator function, which defines the action of the
operator. The general form of an operator function is

type classname::operator#(arg-list)
{

operation relative to the class
}

Here, the operator that you are overloading is substituted for the #, and type is the
type of value returned by the specified operation. Although it can be of any type you
choose, the return value is often of the same type as the class for which the operator
is being overloaded. This correlation facilitates the use of the overloaded operator in
compound expressions. The specific nature of arg-list is determined by several factors,
as you will soon see.

Operator functions can be either members or nonmembers of a class. Nonmember
operator functions are often friend functions of the class, however. Although similar,
there are some differences between the way a member operator function is overloaded
and the way a nonmember operator function is overloaded. Each approach is
described here.

Operator Overloading Using Member Functions
To begin our examination of operator overloading using member fuctions, we will
start with a simple example. The following program creates a class called three_d,
which maintains the coordinates of an object in three-dimensional space. This program
overloads the + and the = operators relative to the three_d class. Examine it closely:

// Overload operators using member functions.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates

public:
three_d() { x = y = z = 0; }
three_d(int i, int j, int k) {x = i; y = j; z = k; }

Operators are
overloaded using
an operator
function.

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 301

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

three_d operator+(three_d op2); // op1 is implied
three_d operator=(three_d op2); // op1 is implied

void show() ;
};

// Overload +.
three_d three_d::operator+(three_d op2)
{
three_d temp;

temp.x = x + op2.x; // These are integer additions
temp.y = y + op2.y; // and the + retains its original
temp.z = z + op2.z; // meaning relative to them.
return temp;

}

// Overload assignment.
three_d three_d::operator=(three_d op2)
{
x = op2.x; // These are integer assignments
y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

}

// Show X, Y, Z coordinates.
void three_d::show()
{
cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

}

int main()
{
three_d a(1, 2, 3), b(10, 10, 10), c;

a.show();
b.show();

c = a + b; // add a and b together
c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

302 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

This program produces the following output:

1, 2, 3
10, 10, 10
11, 12, 13
22, 24, 26
1, 2, 3
1, 2, 3

As you examined the program, you may have been surprised to see that both operator
functions have only one parameter each, even though they overload binary operations.
The reason for this apparent contradiction is that when a binary operator is overloaded
using a member function, only one argument is explicitly passed to it. The other
argument is implicitly passed using the this pointer. Thus, in the line

temp.x = x + op2.x;

the x refers to this–>x, which is the x associated with the object that invokes the
operator function. In all cases, it is the object on the left side of an operation that causes
the call to the operator function. The object on the right side is passed to the function.

In general, when you use a member function, no parameters are used when overloading a
unary operator, and only one parameter is required when overloading a binary operator.
(You cannot overload the ternary ? operator.) In either case, the object that invokes the
operator function is implicitly passed via the this pointer.

To understand how operator overloading works, let’s examine the preceding program
carefully, beginning with the overloaded operator +. When two objects of type three_d
are operated on by the + operator, the magnitudes of their respective coordinates are
added together, as shown in operator+(). Notice, however, that this function
does not modify the value of either operand. Instead, an object of type three_d, which
contains the result of the operation, is returned by the function. To understand why
the + operation does not change the contents of either object, think about the standard
arithmetic + operation, as applied like this: 10 + 12. The outcome of this operation is
22, but neither 10 nor 12 is changed by it. Although there is no rule that prevents an
overloaded operator from altering the value of one of its operands, it is best for the
actions of an overloaded operator to be consistent with its original meaning.

Notice that operator+() returns an object of type three_d. Although the function
could have returned any valid C++ type, the fact that it returns a three_d object
allows the + operator to be used in compound expressions, such as a+b+c. Here, a+b
generates a result that is of type three_d. This value can then be added to c. Had any
other type of value been generated by a+b, such an expression would not work.

In contrast with the + operator, the assignment operator does, indeed, cause one of
its arguments to be modified. (This is, after all, the very essence of assignment.) Since
the operator=() function is called by the object that occurs on the left side of the
assignment, it is this object that is modified by the assignment operation. Most often,
the return value of an overloaded assignment operator is the object on the left, after
the assignment has been made. (This is in keeping with the traditional action of the =
operator.) For example, to allow statements like

a = b = c = d;

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 303

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

it is necessary for operator=() to return the object pointed to by this, which will
be the object that occurs on the left side of the assignment statement. This allows
a string of assignments to be made. The assignment operation is one of the most
important uses of the this pointer.

REMEMBER: When a member function is used for overloading a binary operator,
the object on the left side of the operator invokes the operator function, and is passed
to it implicitly through this. The object on the right is passed as a parameter to the
operator function.

Using Member Functions
to Overload Unary Operators
You may also overload unary operators, such as ++, – –, or the unary – or +. As stated
earlier, when a unary operator is overloaded by means of a member function, no object
is explicitly passed to the operator function. Instead, the operation is performed on the
object that generates the call to the function through the implicitly passed this pointer.
For example, here is an expanded version of the previous example program. This version
defines the increment operation for objects of type three_d.

// Overload a unary operator.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates

public:
three_d() { x = y = z = 0; }
three_d(int i, int j, int k) {x = i; y = j; z = k; }

three_d operator+(three_d op2); // op1 is implied
three_d operator=(three_d op2); // op1 is implied
three_d operator++(); // prefix version of ++

void show() ;
} ;

// Overload +.
three_d three_d::operator+(three_d op2)
{
three_d temp;

temp.x = x + op2.x; // These are integer additions
temp.y = y + op2.y; // and the + retains its original
temp.z = z + op2.z; // meaning relative to them.
return temp;

}

// Overload assignment.

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

304 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

three_d three_d::operator=(three_d op2)
{
x = op2.x; // These are integer assignments
y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

}

// Overload the prefix version of ++.
three_d three_d::operator++()
{
x++; // increment x, y, and z
y++;
z++;
return *this;

}

// Show X, Y, Z coordinates.
void three_d::show()
{
cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

}

int main()
{
three_d a(1, 2, 3), b(10, 10, 10), c;
a.show();
b.show();

c = a + b; // add a and b together
c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

++c; // increment c
c.show();

return 0;
}

The output from the program is shown here.

1, 2, 3
10, 10, 10
11, 12, 13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

22, 24, 26
1, 2, 3
1, 2, 3
2, 3, 4

As the last line of the output shows, operator++() increments each coordinate in
the object and returns the modified object. Again, this is in keeping with the
traditional meaning of the ++ operator.

As you know, the ++ and – – have both a prefix and a postfix form. For example, both

++O;

and

O++;

are valid uses of the increment operator. As the comments in the preceding program
state, the operator++() function defines the prefix form of ++ relative to the three_d
class. However, it is possible to overload the postfix form as well. The prototype for the
postfix form of the ++ operator, relative to the three_d class, is shown here:

three_d three_d::operator++(int notused);

The parameter notused is not used by the function, and should be ignored. This
parameter is simply a way for the compiler to distinguish between the prefix and postfix
forms of the increment operator. (The postfix decrement uses the same approach.)

Here is one way to implement a postfix version of ++ relative to the three_d class:

// Overload the postfix version of ++.
three_d three_d::operator++(int notused)
{
three_d temp = *this; // save original value

x++; // increment x, y, and z
y++;
z++;
return temp; // return original value

}

Notice that this function saves the current state of the operand by using the statement

three_d temp = *this;

and then returns temp. Keep in mind that the traditional meaning of a postfix increment
is to first obtain the value of the operand, and then to increment the operand. Therefore,
it is necessary to save the current state of the operand and return its original value, before
it is incremented, rather than its modified value.

Operator Overloading 305

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

The increment
and decrement
operators have
both a prefix and
postfix form.

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

306 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

The following version of the original program implements both forms of the ++
operator:

// Demonstrate prefix and postfix ++.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates

public:
three_d() { x = y = z = 0; }
three_d(int i, int j, int k) {x = i; y = j; z = k; }

three_d operator+(three_d op2); // op1 is implied
three_d operator=(three_d op2); // op1 is implied
three_d operator++(); // prefix version of ++
three_d operator++(int notused); // postfix version of ++

void show() ;
};

// Overload +.
three_d three_d::operator+(three_d op2)
{
three_d temp;

temp.x = x + op2.x; // These are integer additions
temp.y = y + op2.y; // and the + retains its original
temp.z = z + op2.z; // meaning relative to them.
return temp;

}

// Overload assignment.
three_d three_d::operator=(three_d op2)
{
x = op2.x; // These are integer assignments
y = op2.y; // and the = retains its original
z = op2.z; // meaning relative to them.
return *this;

}

// Overload the prefix version of ++.
three_d three_d::operator++()
{
x++; // increment x, y, and z
y++;
z++;
return *this; // return altered value

}

// Overload the postfix version of ++.

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 307

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

three_d three_d::operator++(int notused)
{
three_d temp = *this; // save original value

x++; // increment x, y, and z
y++;
z++;
return temp; // return original value

}

// Show X, Y, Z coordinates.
void three_d::show()
{
cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

}

int main()
{
three_d a(1, 2, 3), b(10, 10, 10), c;
a.show();
b.show();

c = a + b; // add a and b together
c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

++c; // prefix increment
c.show();

c++; // postfix increment
c.show();

a = ++c; // a receives c's value after increment
a.show(); // a and c
c.show(); // are the same

a = c++; // a receives c's value prior to increment
a.show(); // a and c
c.show(); // now differ

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

The output is shown here.

1, 2, 3
10, 10, 10
11, 12, 13
22, 24, 26
1, 2, 3
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
4, 5, 6
4, 5, 6
5, 6, 7

As the last four lines show, the prefix increment increases the value of c before its value
is assigned to a, and the postfix increment increases c after its value is assigned to a.

Remember that if the ++ precedes its operand, the operator++() is called. If it follows its
operand, the operator++(int notused) function is called. This same approach is also
used to overload the prefix and postfix decrement operator relative to any class. You
might want to try defining the decrement operator relative to three_d as an exercise.

TIP: Early versions of C++ did not distinguish between the prefix and postfix
forms of the increment or decrement operators. For these old versions, the prefix form
of the operator function was called for both uses of the operator. When working on
older C++ code, be aware of this possibility.

Operator Overloading Tips and Restrictions
The action of an overloaded operator, as applied to the class for which it is defined, need
not bear any relationship to that operator’s default usage, as applied to C++’s built-in
types. For example, the << and >> operators, as applied to cout and cin, have little in
common with the same operators applied to integer types. However, to maintain the
transparency and readability of your code, an overloaded operator should reflect, when
possible, the spirit of the operator’s original use. For example, the + relative to three_d
is conceptually similar to the + relative to integer types. There would be little benefit in
defining the + operator relative to some class in such a way that it acts more the way you
would expect the || operator, for instance, to perform. The central concept here is that,
while you can give an overloaded operator any meaning you like, for clarity, it is best
when its new meaning is related to its original meaning.

There are some restrictions to overloading operators. First, you cannot alter the
precedence of any operator. Second, you cannot alter the number of operands required
by the operator, although your operator function could choose to ignore an operand.
Finally, except for the function call operator (discussed later), operator functions cannot
have default arguments.

308 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 309

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

The only operators that you cannot overload are shown here:

. :: .* ?

The .* is a special-purpose operator, discussed later in this book.

Nonmember Operator Functions
You can overload an operator for a class by using a nonmember function, which is
often a friend of the class. As you learned earlier, nonmember functions, including
friend functions, do not have a this pointer. Therefore, when a friend is used to
overload an operator, both operands are passed explicitly when a binary operator is
overloaded, and a single operand is passed when a unary operator is overloaded. The
only operators that cannot be overloaded using nonmember functions are =, (), [],
and –>.

Order Matters
When overloading binary operators, remember that in many cases, the order
of the operands does make a difference. For example, while A + B is commutative,
A – B is not. (That is, A – B is not the same as B – A!) Therefore, when implementing
overloaded versions of the non-commutative operators, you must remember which
operand is on the left and which is on the right. For example, in this fragment,
subtraction is overloaded relative to the three_d class:

// Overload subtraction.
three_d three_d::operator-(three_d op2)
{
three_d temp;

temp.x = x - op2.x;
temp.y = y - op2.y;
temp.z = z - op2.z;
return temp;

}

Remember, it is the operand on the left that invokes the operator function.
The operand on the right is passed explicitly. This is why x – op2.x is the proper
order for the subtraction.

Nonmember
binary operator
functions have
two parameters.
Nonmember
unary operator
functions have
one parameter.

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

310 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

For example, in the following program, a friend is used instead of a member function
to overload the + operation:

// Overload + using a friend.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates

public:
three_d() { x = y = z = 0; }
three_d(int i, int j, int k) { x = i; y = j; z = k;}

friend three_d operator+(three_d op1, three_d op2);
three_d operator=(three_d op2); // op2 is implied

void show() ;
} ;

// This is now a friend function.
three_d operator+(three_d op1, three_d op2)
{
three_d temp;

temp.x = op1.x + op2.x;
temp.y = op1.y + op2.y;
temp.z = op1.z+ op2.z;
return temp;

}

// Overload assignment.
three_d three_d::operator=(three_d op2)
{
x = op2.x;
y = op2.y;
z = op2.z;
return *this;

}

// Show X, Y, Z coordinates.
void three_d::show()
{
cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

}

int main()
{
three_d a(1, 2, 3), b(10, 10, 10), c;

a.show();
b.show();

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

c = a + b; // add a and b together
c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

return 0;

}

As you can see by looking at operator+(), now both operands are passed to it.
The left operand is passed in op1, and the right operand in op2.

In many cases, there is no benefit to using a friend function rather than a member
function when overloading an operator. However, there is one situation in which a
friend function is quite useful: when you want an object of a built-in type to occur
on the left side of a binary operator. To understand why, consider the following.
As you know, a pointer to the object that invokes a member operator function is passed
in this. In the case of a binary operator, it is the object on the left that invokes the
function. This is fine, provided that the object on the left defines the specified operation.
For example, assuming some object called Ob, which has integer addition defined for
it, then the following is a perfectly valid expression:

Ob + 10; // will work

Because the object Ob is on the left side of the + operator, it invokes its overloaded
operator function, which (presumably) is capable of adding an integer value to some
element of Ob. However, this statement won’t work:

10 + Ob; // won't work

The problem with this statement is that the object on the left of the + operator is an
integer, a built-in type for which no operation involving an integer and an object of
Ob’s type is defined.

The solution to the preceding problem is to overload the + using two friend functions.
In this case, the operator function is explicitly passed both arguments, and it is invoked
like any other overloaded function, based upon the types of its arguments. One version
of the + operator function handles object + integer, and the other handles integer + object.
Overloading the + (or any other binary operator) using friend functions allows a built-in
type to occur on the left or right side of the operator. The following sample program
shows you how to accomplish this:

#include <iostream>
using namespace std;

class CL {

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

Operator Overloading 311

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public:
int count;
CL operator=(CL obj);
friend CL operator+(CL ob, int i);
friend CL operator+(int i, CL ob);

};

CL CL::operator=(CL obj)
{
count = obj.count;
return *this;

}

// This handles ob + int.
CL operator+(CL ob, int i)
{
CL temp;

temp.count = ob.count + i;
return temp;

}

// This handles int + ob.
CL operator+(int i, CL ob)
{
CL temp;

temp.count = ob.count + i;
return temp;

}

int main()
{
CL O;

O.count = 10;
cout << O.count << " "; // outputs 10

O = 10 + O; // add object to integer
cout << O.count << " "; // outputs 20

O = O + 12; // add integer to object
cout << O.count; // outputs 32

return 0;
}

As you can see, the operator+() function is overloaded twice, to accommodate the
two ways in which an integer and an object of type CL can occur in the addition
operation.

312 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using a Friend to Overload a Unary Operator
You can also overload a unary operator by using a friend function. However,
doing so requires a little extra effort. To begin, think back to the original version of
the overloaded ++ operator relative to the three_d class that was implemented as a
member function. It is shown here for your convenience:

// Overload the prefix form of ++.
three_d three_d::operator++()
{
x++;
y++;
z++;
return *this;

}

As you know, every member function receives as an implicit argument this, which is a
pointer to the object that invokes the function. When a unary operator is overloaded by
use of a member function, no argument is explicitly declared. The only argument needed
in this situation is the implicit pointer to the invoking object. Any changes made to the
object’s data will affect the object on which the operator function is called. Therefore, in
the preceding function, x++ increments the x member of the invoking object.

Unlike member functions, a nonmember function, including a friend, does not
receive a this pointer, and therefore cannot access the object on which it was called.
Instead, a friend operator function is passed its operand explicitly. For this reason,
trying to create a friend operator++() function, as shown here, will not work:

// THIS WILL NOT WORK
three_d operator++(three_d op1)
{
op1.x++;
op1.y++;
op1.z++;
return op1;

}

This function will not work because only a copy of the object that activated the call to
operator++() is passed to the function in parameter op1. Thus, the changes inside
operator++() will not affect the calling object, only the local parameter.

If you want to use a friend function to overload the increment or decrement operators,
you must pass the object to the function as a reference parameter. Since a reference
parameter is an implicit pointer to the argument, changes to the parameter will affect
the argument. Using a reference parameter allows the function to increment or
decrement the object used as an operand.

When a friend is used for overloading the increment or decrement operators, the
prefix form takes one parameter (which is the operand). The postfix form takes two
parameters. The second is an integer, which is not used.

Operator Overloading 313

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here is the entire three_d program, which uses a friend operator++() function.
Notice that both the prefix and postfix forms are overloaded.

// This program uses friend operator++() functions.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates

public:
three_d() { x = y = z = 0; }
three_d(int i, int j, int k) {x = i; y = j; z = k; }

friend three_d operator+(three_d op1, three_d op2);
three_d operator=(three_d op2);

// use a reference to overload the ++
friend three_d operator++(three_d &op1);
friend three_d operator++(three_d &op1, int notused);

void show() ;
} ;

// This is now a friend function.
three_d operator+(three_d op1, three_d op2)
{
three_d temp;

temp.x = op1.x + op2.x;
temp.y = op1.y + op2.y;
temp.z = op1.z + op2.z;
return temp;

}

// Overload the =.
three_d three_d::operator=(three_d op2)
{
x = op2.x;
y = op2.y;
z = op2.z;
return *this;

}

/* Overload prefix ++ using a friend function.
This requires the use of a reference parameter. */

three_d operator++(three_d &op1)
{
op1.x++;
op1.y++;
op1.z++;
return op1;

}

314 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 315

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

/* Overload postfix ++ using a friend function.
This requires the use of a reference parameter. */

three_d operator++(three_d &op1, int notused)
{
three_d temp = op1;

op1.x++;
op1.y++;
op1.z++;
return temp;

}

// Show X, Y, Z coordinates.
void three_d::show()
{
cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

}

int main()
{
three_d a(1, 2, 3), b(10, 10, 10), c;

a.show();
b.show();

c = a + b; // add a and b together
c.show();

c = a + b + c; // add a, b and c together
c.show();

c = b = a; // demonstrate multiple assignment
c.show();
b.show();

++c; // prefix increment
c.show();

c++; // postfix increment
c.show();

a = ++c; // a receives c's value after increment
a.show(); // a and c
c.show(); // are the same

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

316 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

a = c++; // a receives c's value prior to increment
a.show(); // a and c
c.show(); // now differ

return 0;
}

REMEMBER: In general, you should use member functions to implement
overloaded operators. Friend functions are used in C++ mostly to handle certain
special-case situations.

Overloading the Relational and Logical Operators
Overloading a relational or logical operator, such as ==, <, or && is a straightforward
process. However, there is one small distinction. As you know, an overloaded operator
function usually returns an object of the class for which it is overloaded. However, an
overloaded relational or logical operator typically returns a true or false value. This is
in keeping with the normal usage of these operators, and allows them to be used in
conditional expression.

Here is an example that overloads the = = relative to the three_d class:

//overload ==.
bool three_d::operator==(three_d op2)
{
if((x == op2.x) && (y == op2.y) && (z == op2.z))
return true;

else
return false;

}

Once operator==() has been implemented, the following fragment is
perfectly valid:

three_d a, b;

// ...

if(a == b) cout << "a equals b\n";
else cout << "a does not equal b\n";

Because == returns a bool result, its outcome can be used to control an if statement.
As an exercise, try implementing several of the relational and logical operators relative
to the three_d class.

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A Closer Look at the Assignment Operator
The preceding chapter discussed a potential problem associated with passing objects
to functions, and with returning objects from functions. In both cases, the problem
was caused by a copy of an object being made by use of the default copy constructor,
which makes a bit-by-bit copy of an object. Recall that the solution to these problems
was the creation of your own copy constructor, which could define precisely how a
copy of an object was made. A similar type of problem can occur when one object is
assigned to another. By default, the object on the left side of an assignment statement
receives a bitwise copy of the object on the right. This can lead to trouble in cases in
which an object allocates a resource, such as memory, when it is created and later
alters or releases the resource. If, after an assignment, one object alters or releases that
resource, the second object is also affected because it is still using that resource. The
solution to this type of problem is to provide an overloaded assignment operator.

To fully understand the type of problem that the default, bitwise assignment
operation can cause, examine the following (incorrect) program:

// An error generated by returning an object.
#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;

class sample {
char *s;

public:
sample() { s = 0; }
sample(const sample &ob); // copy constructor
~sample() { if(s) delete [] s; cout << "Freeing s\n"; }
void show() { cout << s << "\n"; }
void set(char *str);

};

// Copy constructor.
sample::sample(const sample &ob)
{
s = new char[strlen(ob.s)+1];

strcpy(s, ob.s);
}

// Load a string.
void sample::set(char *str)
{
s = new char[strlen(str)+1];

strcpy(s, str);
}

// Return an object of type sample.
sample input()

Operator Overloading 317

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

318 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

{
char instr[80];
sample str;

cout << "Enter a string: ";
cin >> instr;

str.set(instr);
return str;

}

int main()
{
sample ob;

// assign returned object to ob
ob = input(); // This causes an error!!!!
ob.show();

return 0;
}

Sample output from this program is shown here:

Enter a string: Hello
Freeing s
Freeing s
garbage here
Freeing s

Depending upon your compiler, you may or may not see garbled output. The program
might also generate a run-time error. In any event, an error will still have occurred.
Here’s why.

In this program, the copy constructor correctly handles the return of an object by
input(). Recall that when a function returns an object, it does so by creating a
temporary object to hold the return value. Because the copy constructor allocates new
memory when a copy is made, the s in the original object and the s in the copy point
to different regions of memory, and are therefore independent.

However, an error still occurs when the return object is assigned to ob because the default
assignment performs a bitwise copy. In this case, the temporary object returned by
input() is copied into ob. This causes ob.s to point to the same memory that the
temporary object’s s points to. However, after the assignment, this memory is released
when the temporary object is destroyed. Thus, ob.s is pointing to freed memory! Further,
when the program ends, ob.s is again released, causing the memory to be freed a second
time. To prevent this problem, you must overload the assignment operator in such a way
that the object on the left side of an assignment allocates its own memory.

The following corrected program shows how such a solution can be accomplished:

// This program is now fixed.
#include <iostream>
#include <cstring>

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 319

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

#include <cstdlib>
using namespace std;

class sample {
char *s;

public:
sample(); // normal constructor
sample(const sample &ob); // copy constructor
~sample() { if(s) delete [] s; cout << "Freeing s\n"; }
void show() { cout << s << "\n"; }
void set(char *str);
sample operator=(sample &ob); // overload assignment

};

// Normal constructor.
sample::sample()
{
s = new char('\0'); // s points to a null string.

}

// Copy constructor.
sample::sample(const sample &ob)
{
s = new char[strlen(ob.s)+1];

strcpy(s, ob.s);
}

// Load a string.
void sample::set(char *str)
{
s = new char[strlen(str)+1];

strcpy(s, str);
}

// Overload assignment operator.
sample sample::operator=(sample &ob)
{
/* If the target memory is not large enough

then allocate new memory. */
if(strlen(ob.s) > strlen(s)) {
delete [] s;
s = new char[strlen(ob.s)+1];

}
strcpy(s, ob.s);
return *this;

}

// Return an object of type sample.
sample input()
{
char instr[80];
sample str;

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

320 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

cout << "Enter a string: ";
cin >> instr;

str.set(instr);
return str;

}

int main()
{
sample ob;

// assign returned object to ob
ob = input(); // This is now OK
ob.show();

return 0;
}

This program now displays the following output (assuming that you enter “Hello”
when prompted):

Enter a string: Hello
Freeing s
Freeing s
Freeing s
Hello
Freeing s

As you can see, the program now runs properly. You should be able to understand
why each Freeing s message is printed. (Hint: One of them is caused by the delete
statement inside the operator=() function.)

Overloading []
In addition to the more traditional operators, C++ also lets you overload several of the
more exotic ones. One of the most useful is the [] array subscripting operator. In C++,
the [] is considered a binary operator for the purposes of overloading. The [] can
only be overloaded relative to a class, and only by a member function. Therefore, the
general form of a member operator[]() function is

type class-name::operator[](int index)
{

// ...
}

Technically, the parameter does not have to be of type int, but operator[]() functions
are typically used to provide array subscripting, so an integer value is generally used.

The [] is
overloaded as a
binary operator.

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 321

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

Given an object called Ob, the expression

Ob[3]

translates into the following call to the operator[]() function:

Ob.operator[](3)

That is, the value of the expression within the subscripting operator is passed to the
operator[]() function in its explicit parameter. The this pointer will point to Ob,
the object that generated the call.

In the following program, atype declares an array of three integers. Its constructor
initializes each member of the array. The overloaded operator[]() function returns
the value of the element specified by its parameter.

// Overload [].
#include <iostream>
using namespace std;

const int SIZE = 3;

class atype {
int a[SIZE];

public:
atype() {
register int i;

for(i=0; i<SIZE; i++) a[i] = i;
}
int operator[](int i) {return a[i];}

};

int main()
{
atype ob;

cout << ob[2]; // displays 2

return 0;
}

Here, operator[]() returns the value of the ith element of a. Thus, ob[2] returns 2,
which is displayed by the cout statement. The initialization of the array a by the
constructor in this program, and in the following programs, is for the sake of illustration
only. It is not required.

It is possible to design the operator[]() function in such a way that the [] can be
used on both the left and right sides of an assignment statement. To do this, simply

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

322 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

specify that the return value of operator[]() be a reference. This change is
illustrated in the following program:

// Return a reference from [].
#include <iostream>
using namespace std;

const int SIZE = 3;

class atype {
int a[SIZE];

public:
atype() {
register int i;

for(i=0; i<SIZE; i++) a[i] = i;
}
int &operator[](int i) {return a[i];}

};

int main()
{
atype ob;

cout << ob[2]; // displays 2
cout << " ";

ob[2] = 25; // [] on left of =

cout << ob[2]; // now displays 25

return 0;
}

The program generates the following output.

2 25

Because operator[]() now returns a reference to the array element indexed by i, it
can now be used on the left side of an assignment statement to modify an element of
the array. (Of course, it can still be used on the right side as well.)

One advantage of being able to overload the [] operator is that it provides a means of
implementing safe array indexing. As you know, in C++, it is possible to overrun (or
underrun) an array boundary at run time without generating a run-time error message.
However, if you create a class that contains the array, and allow access to that array only
through the overloaded [] subscripting operator, then you can intercept an out-of-range
index. For example, the program shown next adds a range check to the preceding
program, and proves that it works:

// A safe array example.
#include <iostream>
#include <cstdlib>

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

using namespace std;

const int SIZE = 3;

class atype {
int a[SIZE];

public:
atype() {
register int i;

for(i=0; i<SIZE; i++) a[i] = i;
}
int &operator[](int i);

};

// Provide range checking for atype.
int &atype::operator[](int i)
{
if(i<0 || i> SIZE-1) {
cout << "\nIndex value of ";
cout << i << " is out-of-bounds.\n";
exit(1);

}
return a[i];

}

int main()
{
atype ob;

cout << ob[2]; // displays 2
cout << " ";

ob[2] = 25; // [] appears on left

cout << ob[2]; // displays 25

ob[3] = 44; // generates runtime error, 3 out-of-range
return 0;

}

The program displays the following output.

2 25
Index value of 3 is out-of-bounds.

When the statement

ob[3] = 44;

executes, the boundary error is intercepted by operator[](), and the program is
terminated before any damage can be done.

Operator Overloading 323

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

324 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

Overloading ()
Perhaps the most intriguing operator that you can overload is (), the function call
operator. When you overload (), you are not creating a new way to call a function.
Rather, you are creating an operator function that can be passed an arbitrary number
of parameters. Let’s begin with an example. Given the overloaded operator function
declaration

int operator()(float f, char *p);

and an object Ob of its class, then the statement

Ob(99.57, "overloading");

translates into this call to the operator() function:

operator()(99.57, "overloading");

In general, when you overload the () operator, you define the parameters that you
want to pass to that function. When you use the () operator in your program, the
arguments you specify are copied to those parameters. As always, the object that
generates the call (Ob in this example) is pointed to by the this pointer.

Here is an example of overloading () relative to the three_d class. It creates a new
three_d object whose coordinates are the sums of the calling object’s coordinates and
the values passed as arguments.

// Overload ().
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates

public:
three_d() { x = y = z = 0; }
three_d(int i, int j, int k) {x = i; y = j; z = k; }
three_d operator()(int a, int b, int c);
void show() ;

};

// Overload ().
three_d three_d::operator()(int a, int b, int c)
{
three_d temp;

temp.x = x + a;
temp.y = y + b;
temp.z = z + c;

return temp;
}

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 325

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

// Show X, Y, Z coordinates.
void three_d::show()
{
cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

}

int main()
{
three_d ob1(1, 2, 3), ob2;

ob2 = ob1(10, 11, 12); // invoke operator()

cout << "ob1: ";
ob1.show();

cout << "ob2: ";
ob2.show();

return 0;
}

The output produced by this program is shown here:

ob1: 1, 2, 3
ob2: 11, 13, 15

Remember, when overloading (), you can use any type of parameters and return any
type of value. These types will be dictated by the demands of your programs.

Overloading Other Operators
Except for new, delete, –>, –>*, and the comma operators, the other C++ operators are
overloaded in the same way as those shown in the preceding examples. Overloading
new and delete requires special techniques, a complete description of which is found
in Chapter 17, where exception handling is discussed. The –>, –>*, and comma are
specialty operators that are beyond the scope of this book. The interested reader is
directed to my book, C++: The Complete Reference (McGraw-Hill/Osborne), for additional
examples of operator overloading.

Another Example of Operator Overloading
To close this chapter, we will develop what is often considered to be the
quintessential example of operator overloading: a string class. Even though C++’s
approach to strings—implemented as null-terminated character arrays rather than as a
type unto themselves—is both efficient and flexible, to beginners it can still lack the
conceptual clarity of the way strings are implemented in languages such as BASIC. Of
course, this situation is easily addressed because it is possible to define a string class
that implements strings in a manner somewhat like that provided by other computer

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

languages. In fact, in the early days of C++, implementing a string class was a common
pastime for programmers. Although Standard C++ now defines a string class, which
is described later in this book, it is still fun to implement a simple one on your own.
Doing so illustrates the power of operator overloading.

To begin, the following class declares the type str_type:

#include <iostream>
#include <cstring>
using namespace std;

class str_type {
char string[80];

public:
str_type(char *str = "") { strcpy(string, str); }

str_type operator+(str_type str); // concatenate
str_type operator=(str_type str); // assign

// output the string
void show_str() { cout << string; }

};

As you can see, str_type declares a private character array called string, which will
be used to hold the string. For the sake of this example, no string can be longer than
79 bytes. A real-world string class would allocate strings dynamically, and would not
have this restriction. Also, to keep the logic of this example clear, no checking for
boundary errors is provided by this class, or by any of the subsequent functions. Of
course, full error checking would be required by any real-world implementation.

The class has one constructor, which can be used to initialize the array string with a
specific value or to assign it a null string in the absence of any initializer. The class
also declares two overloaded operators, which perform concatenation and assignment.
Finally, it declares the function show_str(), which outputs string to the screen.

The overloaded operator functions are shown here:

// Concatenate two strings.
str_type str_type::operator+(str_type str) {
str_type temp;

strcpy(temp.string, string);
strcat(temp.string, str.string);
return temp;

}

// Assign one string to another.
str_type str_type::operator=(str_type str) {
strcpy(string, str.string);
return *this;

}

326 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Given these definitions, the following main() illustrates their use:

int main()
{
str_type a("Hello "), b("There"), c;

c = a + b;

c.show_str();

return 0;
}

This program outputs Hello There on the screen. It first concatenates a with b, and
then assigns the resulting value to c.

Keep in mind that both the = and the + are defined only for objects of type str_type.
For example, the following statement is invalid because it tries to assign object a a
null-terminated string:

a = "this is currently wrong";

However, the str_type class can be enhanced to allow such a statement, as you will
see next.

To expand the types of operations supported by the str_type class so that you can assign
null-terminated strings to str_type objects, or concatenate a null-terminated string with
a str_type object, you will need to overload the + and = operations a second time. First,
the class declaration must be changed, as shown here:

class str_type {
char string[80];

public:
str_type(char *str = "") { strcpy(string, str); }

str_type operator+(str_type str); // concatenate str_type objects
str_type operator+(char *str); /* concatenate str_type object

with a null-terminated string */

str_type operator=(str_type str); /* assign one str_type object
to another */

char *operator=(char *str); /* assign null-terminated string
to str_type object */

void show_str() { cout << string; }
};

Next, the overloaded operator+() and operator=() are implemented, as shown here:

// Assign a null-terminated string to an str_type object.
str_type str_type::operator=(char *str)
{
str_type temp;

Operator Overloading 327

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

328 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

strcpy(string, str);
strcpy(temp.string, string);
return temp;

}

// Add a null-terminated string to an str_type object.
str_type str_type::operator+(char *str)
{
str_type temp;

strcpy(temp.string, string);
strcat(temp.string, str);
return temp;

}

Look carefully at these functions. Notice that the right-side argument is not an
object of type str_type, but simply a pointer to a null-terminated character array—that
is, a normal C++ string. However, both functions return an object of type str_type.
Although the functions could, in theory, return some other type, it makes the most
sense to return a str_type object, since the targets of these operations are also str_type
objects. The advantage to defining a string operation that accepts a null-terminated
string as the right-side operand is that it allows you to write certain statements in a
natural way. For example, these are now valid statements:

str_type a, b, c;
a = "hi there"; // assign a null-terminated string to an object

c = a + " George"; /* concatenate an object with a
null-terminated string */

The following program incorporates the additional meanings of the + and = operators:

// Expanding the string type.
#include <iostream>
#include <cstring>
using namespace std;

class str_type {
char string[80];

public:
str_type(char *str = "") { strcpy(string, str); }

str_type operator+(str_type str);
str_type operator+(char *str);

str_type operator=(str_type str);
str_type operator=(char *str);

void show_str() { cout << string; }
} ;

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Overloading 329

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

13

str_type str_type::operator+(str_type str) {
str_type temp;

strcpy(temp.string, string);
strcat(temp.string, str.string);
return temp;

}

str_type str_type::operator=(str_type str) {
strcpy(string, str.string);
return *this;

}

str_type str_type::operator=(char *str)
{
str_type temp;

strcpy(string, str);
strcpy(temp.string, string);
return temp;

}

str_type str_type::operator+(char *str)
{
str_type temp;

strcpy(temp.string, string);
strcat(temp.string, str);
return temp;

}

int main()
{
str_type a("Hello "), b("There"), c;

c = a + b;

c.show_str();
cout << "\n";

a = "to program in because";
a.show_str();
cout << "\n";

b = c = "C++ is fun";

c = c+" "+a+" "+b;
c.show_str();

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This program displays this on the screen:

Hello There
to program in because
C++ is fun to program in because C++ is fun

Before continuing, you should make sure that you understand how this output is
created. On your own, try creating other string operations. For example, you might
try defining the – so that it performs a substring deletion. For example, if object A’s
string is “This is a test” and object B’s string is “is”, then A–B yields “th a test”. In this
case, all occurrences of the substring are removed from the original string. Also, define
a friend function that allows a null-terminated string to appear on the left side of the
+ operator. Finally, add all necessary error checking.

TIP: You will want to experiment with operator overloading relative to classes
that you create. As the examples in this chapter have shown, you can use operator
overloading to add new data types to your programming environment. This is one of
C++’s most powerful features.

330 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 13

P:\010Comp\Grnd-Up8\897-0\ch13.vp
Friday, February 28, 2003 3:36:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 14

Inheritance

331

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance is one of the cornerstones of OOP because it allows the creation of
hierarchical classifications. With inheritance, it is possible to create a general class

that defines traits common to a set of related items. This class may then be inherited
by other, more specific classes, each adding only those things that are unique to the
inheriting class.

In standard C++ terminology, a class that is inherited is referred to as a base class. The
class that does the inheriting is called the derived class. Further, a derived class can be
used as a base class for another derived class. In this way, a multilayered class hierarchy
can be achieved.

Introducing Inheritance
C++ supports inheritance by allowing one class to incorporate another class into its
declaration. Before discussing the theory and details, let’s begin with an example of
inheritance. The following class, called road_vehicle, very broadly defines vehicles
that travel on the road. It stores the number of wheels a vehicle has and the number
of passengers it can carry.

class road_vehicle {
int wheels;
int passengers;

public:
void set_wheels(int num) { wheels = num; }
int get_wheels() { return wheels; }
void set_pass(int num) { passengers = num; }
int get_pass() { return passengers; }

};

You can use this broad definition of a road vehicle to help define specific types of
vehicles. For example, the fragment shown here inherits road_vehicle to create a
class called truck.

class truck : public road_vehicle {
int cargo;

public:
void set_cargo(int size) { cargo = size; }
int get_cargo() { return cargo; }
void show();

};

Because truck inherits road_vehicle, truck includes all of road_vehicle. It then
adds cargo to it, along with the supporting member functions.

Notice how road_vehicle is inherited. The general form for inheritance is shown here:

class derived-class : access base-class {
body of new class

}

332 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

A base class is
inherited by a
derived class.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 333

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

Here, access is optional. However, if present, it must be either public, private, or
protected. You will learn more about these options later in this chapter. For now,
all inherited classes will use public. Using public means that all the public members
of the base class will also be public members of the derived class. Therefore, in the
preceding example, members of truck have access to the public member functions of
road_vehicle, just as if they had been declared inside truck. However, truck does
not have access to the private members of road_vehicle. For example, truck does
not have access to wheels.

Here is a program that uses inheritance to create two subclasses of road_vehicle.
One is truck and the other is automobile.

// Demonstrate inheritance.
#include <iostream>
using namespace std;

// Define a base class for vehicles.
class road_vehicle {
int wheels;
int passengers;

public:
void set_wheels(int num) { wheels = num; }
int get_wheels() { return wheels; }
void set_pass(int num) { passengers = num; }
int get_pass() { return passengers; }

};

// Define a truck.
class truck : public road_vehicle {
int cargo;

public:
void set_cargo(int size) { cargo = size; }
int get_cargo() { return cargo; }
void show();

};

enum type {car, van, wagon};

// Define an automoble.
class automobile : public road_vehicle {
enum type car_type;

public:
void set_type(type t) { car_type = t; }
enum type get_type() { return car_type; }
void show();

};

void truck::show()
{
cout << "wheels: " << get_wheels() << "\n";
cout << "passengers: " << get_pass() << "\n";
cout << "cargo capacity in cubic feet: " << cargo << "\n";

}

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

334 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

void automobile::show()
{
cout << "wheels: " << get_wheels() << "\n";
cout << "passengers: " << get_pass() << "\n";
cout << "type: ";
switch(get_type()) {
case van: cout << "van\n";
break;

case car: cout << "car\n";
break;

case wagon: cout << "wagon\n";
}

}

int main()
{
truck t1, t2;
automobile c;

t1.set_wheels(18);
t1.set_pass(2);
t1.set_cargo(3200);

t2.set_wheels(6);
t2.set_pass(3);
t2.set_cargo(1200);

t1.show();
cout << "\n";
t2.show();
cout << "\n";

c.set_wheels(4);
c.set_pass(6);
c.set_type(van);

c.show();

return 0;
}

The output from this program is shown here:

wheels: 18
passengers: 2
cargo capacity in cubic feet: 3200

wheels: 6
passengers: 3
cargo capacity in cubic feet: 1200

wheels: 4
passengers: 6
type: van

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

Inheritance 335

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

As this program shows, the major advantage of inheritance is that it lets you create a base
class that can be incorporated into more specific classes. In this way, each derived class
can be precisely tailored to its own needs while still being part of a general classification.

One other point: Notice that both truck and automobile include a member function
called show(), which displays information about each object. This illustrates another
aspect of polymorphism. Since each show() is linked with its own class, the compiler
can easily tell which one to call for any given object.

Now that you have seen the basic procedure by which one class inherits another, let’s
examine inheritance in detail.

Base Class Access Control
When one class inherits another, the members of the base class become members of
the derived class. The access status of the base class members inside the derived class
is determined by the access specifier used for inheriting the base class. The base class
access specifier must be public, private, or protected. If the access specifier is not
used, then it is private by default if the derived class is a class. If the derived class is
a struct, then public is the default in the absence of an explicit access specifier. Let’s
examine the ramifications of using public or private access. (The protected specifier
is described in the next section.)

When a base class is inherited as public, all public members of the base class become
public members of the derived class. In all cases, the private elements of the base class
remain private to that class, and are not accessible by members of the derived class.
For example, in the following program, the public members of base become public
members of derived. Thus, they are accessible by other parts of the program.

#include <iostream>
using namespace std;

class base {
int i, j;

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {
int k;

public:
derived(int x) { k = x; }
void showk() { cout << k << "\n"; }

};

int main()
{
derived ob(3);

When a base class
is inherited as
public, its public
members become
public members of
the derived class.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ob.set(1, 2); // access member of base
ob.show(); // access member of base

ob.showk(); // uses member of derived class

return 0;
}

Since set() and show() are inherited as public, they can be called on an object of
type derived from within main(). Since i and j are specified as private, they
remain private to base.

The opposite of public inheritance is private inheritance. When the base class is
inherited as private, then all public members of the base class become private
members of the derived class. For example, the program shown next will not compile,
because both set()and show() are now private members of derived, and thus
cannot be called from main().

// This program won't compile.
#include <iostream>
using namespace std;

class base {
int i, j;

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << i << " " << j << "\n"; }

};

// Public elements of base are private in derived.
class derived : private base {
int k;

public:
derived(int x) { k = x; }
void showk() { cout << k << "\n"; }

};

int main()
{
derived ob(3);

ob.set(1, 2); // Error, can't access set()
ob.show(); // Error, can't access show()

return 0;
}

The key point to remember is that when a base class is inherited as private, public
members of the base class become private members of the derived class. This means
that they are still accessible by members of the derived class, but cannot be accessed
by other parts of your program.

336 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

When a base class
is inherited as
private, its public
members become
private members of
the derived class.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 337

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

Using protected Members
In addition to public and private, a class member can be declared as protected. Further,
a base class can be inherited as protected. Both of these actions are accomplished by
using the protected access specifier. The protected keyword is included in C++ to
provide greater flexibility for the inheritance mechanism.

When a member of a class is declared as protected, that member is not accessible to
other, non-member elements of the program. With one important exception, access
to a protected member is the same as access to a private member; it can be accessed
only by other members of the class of which it is a part. The sole exception to this
rule is when a protected member is inherited. In this case, a protected member differs
substantially from a private one.

As you know, a private member of a base class is not accessible by any other part
of your program, including any derived class. However, protected members behave
differently. When a base class is inherited as public, protected members in the base
class become protected members of the derived class, and are accessible to the derived
class. Therefore, by using protected, you can create class members that are private to
their class, but that can still be inherited and accessed by a derived class.

Consider this sample program:

#include <iostream>
using namespace std;

class base {
protected:
int i, j; // private to base, but accessible to derived

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {
int k;

public:
// derived may access base's i and j
void setk() { k = i*j; }

void showk() { cout << k << "\n"; }
};

int main()
{
derived ob;

ob.set(2, 3); // OK, known to derived
ob.show(); // OK, known to derived

The protected
access specifier
declares protected
members or
inherits a
protected class.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

338 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

ob.setk();
ob.showk();

return 0;
}

Here, because base is inherited by derived as public, and because i and j are declared
as protected, derived’s function setk() may access them. If i and j were declared as
private by base, then derived would not have access to them, and the program
would not compile.

REMEMBER: The protected specifier allows you to create a class member that
is accessible within a class hierarchy, but is otherwise private.

When a derived class is used as a base class for another derived class, then any protected
member of the initial base class that is inherited (as public) by the first derived class can
be inherited again, as a protected member, by a second derived class. For example, the
following program is correct, and derived2 does, indeed, have access to i and j:

#include <iostream>
using namespace std;

class base {
protected:
int i, j;

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << i << " " << j << "\n"; }

};

// i and j inherited as protected.
class derived1 : public base {
int k;

public:
void setk() { k = i*j; } // legal
void showk() { cout << k << "\n"; }

};

// i and j inherited indirectly through derived1.
class derived2 : public derived1 {
int m;

public:
void setm() { m = i-j; } // legal
void showm() { cout << m << "\n"; }

};

int main()
{

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 339

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

derived1 ob1;
derived2 ob2;

ob1.set(2, 3);
ob1.show();
ob1.setk();
ob1.showk();

ob2.set(3, 4);
ob2.show();
ob2.setk();
ob2.setm();
ob2.showk();
ob2.showm();

return 0;
}

When a base class is inherited as private, protected members of the base class become
private members of the derived class. Therefore, in the preceding example, if base
were inherited as private, then all members of base would become private members of
derived1, meaning that they would not be accessible to derived2. (However, i and j
would still be accessible to derived1.) This situation is illustrated by the following
program, which is in error (and won’t compile). The comments describe each error.

// This program won't compile.
#include <iostream>
using namespace std;

class base {
protected:
int i, j;

public:
void set(int a, int b) { i = a; j = b; }
void show() { cout << i << " " << j << "\n"; }

};

// Now, all elements of base are private in derived1.
class derived1 : private base {
int k;

public:
// This is legal because i and j are private to derived1.
void setk() { k = i*j; } // OK
void showk() { cout << k << "\n"; }

};

// Access to i, j, set(), and show() not inherited.
class derived2 : public derived1 {
int m;

public:
// Illegal because i and j are private to derived1.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

340 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

void setm() { m = i-j; } // error
void showm() { cout << m << "\n"; }

};

int main()
{
derived1 ob1;
derived2 ob2;

ob1.set(1, 2); // Error, can't use set()
ob1.show(); // Error, can't use show()

ob2.set(3, 4); // Error, can't use set()
ob2.show(); // Error, can't use show()

return 0;
}

Even though base is inherited as private by derived1, derived1 still has access to
the public and protected elements of base. However, it cannot pass this privilege
along. This is the reason that protected is part of the C++ language. It provides a
means of protecting certain members from being modified by non-member functions,
but allows them to be inherited.

The protected specifier can also be used with structures. It cannot be used with a
union, however, because a union cannot inherit another class or be inherited. (Some
compilers will accept its use in a union declaration, but because unions cannot
participate in inheritance, protected is the same as private in this context.)

The protected access specifier may occur anywhere in a class declaration, although
typically it occurs after the (default) private members are declared, and before the
public members. Thus, the most common full form of a class declaration is

class class-name {
private members

protected:
protected members

public:
public members

};

Of course, the protected category is optional.

Using protected for Inheritance of a Base Class
In addition to specifying protected status for members of a class, the keyword protected
can also be used to inherit a base class. When a base class is inherited as protected, all
public and protected members of the base class become protected members of the derived
class. Here is an example:

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 341

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

// Demonstrate inheriting a protected base class.
#include <iostream>
using namespace std;

class base {
int i;

protected:
int j;

public:
int k;
void seti(int a) { i = a; }
int geti() { return i; }

};

// Inherit base as protected.
class derived : protected base {
public:
void setj(int a) { j = a; } // j is protected here
void setk(int a) { k = a; } // k is also protected
int getj() { return j; }
int getk() { return k; }

};

int main()
{
derived ob;

/* This next line is illegal because seti() is
a protected member of derived, which makes it
inaccessible outside of derived. */

// ob.seti(10);

// cout << ob.geti(); // illegal -- geti() is protected
// ob.k = 10; // also illegal because k is protected

// these next statements are OK
ob.setk(10);
cout << ob.getk() << ' ';
ob.setj(12);
cout << ob.getj() << ' ';

return 0;
}

As you can see by reading the comments in this program, k, j, seti(), and geti()
in base become protected members of derived. This means that they cannot
be accessed by code outside of derived. Thus, inside main(), references to these
members through ob are illegal.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

342 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

Reviewing public, protected, and private
Because the access rights as defined by public, protected, and private are
fundamental to C++ programming, let’s review their meanings.

When a class member is declared as public, it can be accessed by any other part of a
program. When a member is declared as private, it can be accessed only by members
of its class. Further, derived classes do not have access to private base class members.
When a member is declared as protected, it can be accessed only by members of its
class, or by derived classes. Thus, protected allows a member to be inherited, but to
remain private within a class hierarchy.

When a base class is inherited by use of public, its public members become public
members of the derived class, and its protected members become protected members
of the derived class.

When a base class is inherited by use of protected, its public and protected members
become protected members of the derived class.

When a base class is inherited by use of private, its public and protected members
become private members of the derived class.

In all cases, private members of a base class remain private to the base class, and are
not inherited.

As you become more familiar with C++, the meaning of public, protected, and
private will become second nature. For now, if you are unsure what precise effect an
access specifier has, write a short sample program as an experiment and observe the
results.

Inheriting Multiple Base Classes
It is possible for a derived class to inherit two or more base classes. For example, in
this short program, derived inherits both base1 and base2:

// An example of multiple base classes.
#include <iostream>
using namespace std;

class base1 {
protected:
int x;

public:
void showx() { cout << x << "\n"; }

};

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

class base2 {
protected:
int y;

public:
void showy() { cout << y << "\n"; }

};

// Inherit multiple base classes.
class derived: public base1, public base2 {
public:
void set(int i, int j) { x = i; y = j; }

};

int main()
{
derived ob;

ob.set(10, 20); // provided by derived
ob.showx(); // from base1
ob.showy(); // from base2

return 0;
}

As this example illustrates, to cause more than one base class to be inherited, you
must use a comma-separated list. Further, be sure to use an access specifier for each
base class inherited.

Constructors, Destructors, and Inheritance
There are two important questions that arise relative to constructors and destructors
when inheritance is involved. First, when are base class and derived class constructors
and destructors called? Second, how can parameters be passed to a base class
constructor? This section answers these questions.

When Constructors and Destructors Are Executed
It is possible for a base class, a derived class, or both, to contain a constructor and/or
destructor. It is important to understand the order in which these are executed when
an object of a derived class comes into existence and when it goes out of existence.

Examine this short program:

#include <iostream>
using namespace std;

class base {
public:
base() { cout << "Constructing base\n"; }
~base() { cout << "Destructing base\n"; }

};

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

Inheritance 343

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

344 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

class derived: public base {
public:
derived() { cout << "Constructing derived\n"; }
~derived() { cout << "Destructing derived\n"; }

};

int main()
{
derived ob;

// do nothing but construct and destruct ob

return 0;
}

As the comment in main() indicates, this program simply constructs and then destroys
an object called ob, which is of class derived. When executed, this program displays:

Constructing base
Constructing derived
Destructing derived
Destructing base

As you can see, the constructor of base is executed, followed by the constructor of
derived. Next (since ob is immediately destroyed in this program), the destructor of
derived is called, followed by that of base.

The results of the foregoing experiment can be generalized as follows: When an object
of a derived class is created, the base class constructor is called first, followed by the
constructor for the derived class. When a derived object is destroyed, its destructor is
called first, followed by the destructor for the base class. Put differently, constructors
are executed in the order of their derivation. Destructors are executed in reverse order
of derivation.

If you think about it, it makes sense that constructor functions are executed in the
order of their derivation. Because a base class has no knowledge of any derived class,
any initialization it needs to perform is separate from, and possibly prerequisite to, any
initialization performed by the derived class. Therefore, it must be executed first.

Likewise, it is quite sensible that destructors be executed in reverse order of derivation.
Since the base class underlies a derived class, the destruction of the base class implies
the destruction of the derived class. Therefore, the derived destructor must be called
before the object is fully destroyed.

In the case of a large class hierarchy (i.e., where a derived class becomes the base class
for another derived class), the general rule applies: Constructors are called in order of
derivation, destructors in reverse order. For example, this program

#include <iostream>
using namespace std;

class base {
public:

Constructors
are called in
order of derivation.
Destructors
are called in
reverse order.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 345

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

base() { cout << "Constructing base\n"; }
~base() { cout << "Destructing base\n"; }

};

class derived1 : public base {
public:
derived1() { cout << "Constructing derived1\n"; }
~derived1() { cout << "Destructing derived1\n"; }

};

class derived2: public derived1 {
public:
derived2() { cout << "Constructing derived2\n"; }
~derived2() { cout << "Destructing derived2\n"; }

};

int main()
{
derived2 ob;

// construct and destruct ob

return 0;
}

displays this output:

Constructing base
Constructing derived1
Constructing derived2
Destructing derived2
Destructing derived1
Destructing base

The same general rule applies in situations involving multiple base classes. For
example, this program

#include <iostream>
using namespace std;

class base1 {
public:
base1() { cout << "Constructing base1\n"; }
~base1() { cout << "Destructing base1\n"; }

};

class base2 {
public:
base2() { cout << "Constructing base2\n"; }
~base2() { cout << "Destructing base2\n"; }

};

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

346 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

class derived: public base1, public base2 {
public:
derived() { cout << "Constructing derived\n"; }
~derived() { cout << "Destructing derived\n"; }

};

int main()
{
derived ob;

// construct and destruct ob

return 0;
}

produces this output:

Constructing base1
Constructing base2
Constructing derived
Destructing derived
Destructing base2
Destructing base1

As you can see, constructors are called in order of derivation, left to right, as specified
in derived’s inheritance list. Destructors are called in reverse order, right to left. This
means that if base2 were specified before base1 in derived’s list, as shown here:

class derived: public base2, public base1 {

then the output of the preceding program would look like this:

Constructing base2
Constructing base1
Constructing derived
Destructing derived
Destructing base1
Destructing base2

Passing Parameters to Base Class Constructors
So far, none of the preceding examples have included constructors requiring
arguments. In cases where only the constructor of the derived class requires one or
more arguments, you simply use the standard parameterized constructor syntax.
But how do you pass arguments to a constructor in a base class? The answer is to
use an expanded form of the derived class’ constructor declaration, which passes
arguments along to one or more base class constructors. The general form of this
expanded declaration is shown here:

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

Inheritance 347

derived-constructor(arg-list) : base1(arg-list),
base2(arg-list), ...
baseN(arg-list);

{
body of derived constructor

}

Here, base1 through baseN are the names of the base classes inherited by the derived
class. Notice that a colon separates the constructor declaration of the derived class
from the base classes, and that the base classes are separated from each other by
commas, in the case of multiple base classes.

Consider this sample program:

#include <iostream>
using namespace std;

class base {
protected:
int i;

public:
base(int x) { i = x; cout << "Constructing base\n"; }
~base() { cout << "Destructing base\n"; }

};

class derived: public base {
int j;

public:
// derived uses x; y is passed along to base.
derived(int x, int y): base(y)
{ j = x; cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }
void show() { cout << i << " " << j << "\n"; }

};

int main()
{
derived ob(3, 4);

ob.show(); // displays 4 3

return 0;
}

Here, derived’s constructor is declared as taking two parameters, x and y. However,
derived() uses only x; y is passed along to base(). In general, the constructor of the
derived class must declare the parameter(s) that its class requires, as well as any required
by the base class. As the preceding example illustrates, any parameters required by the
base class are passed to it in the base class’ argument list, specified after the colon.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

348 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

Here is a sample program that uses multiple base classes:

#include <iostream>
using namespace std;

class base1 {
protected:
int i;

public:
base1(int x) { i = x; cout << "Constructing base1\n"; }
~base1() { cout << "Destructing base1\n"; }

};

class base2 {
protected:
int k;

public:
base2(int x) { k = x; cout << "Constructing base2\n"; }
~base2() { cout << "Destructing base2\n"; }

};

class derived: public base1, public base2 {
int j;

public:
derived(int x, int y, int z): base1(y), base2(z)
{ j = x; cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }
void show() { cout << i << " " << j << " " << k << "\n"; }

};

int main()
{
derived ob(3, 4, 5);

ob.show(); // displays 4 3 5

return 0;
}

It is important to understand that arguments to a base class constructor are passed via
arguments to the derived class’ constructor. Therefore, even if a derived class’ constructor
does not use any arguments, it still must declare one or more arguments if the base
class takes one or more arguments. In this situation, the arguments passed to the derived
class are simply passed along to the base. For example, in the following program, the
constructor of derived takes no arguments, but base1() and base2() do:

#include <iostream>
using namespace std;

class base1 {
protected:

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 349

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

int i;
public:
base1(int x) { i=x; cout << "Constructing base1\n"; }
~base1() { cout << "Destructing base1\n"; }

};

class base2 {
protected:
int k;

public:
base2(int x) { k = x; cout << "Constructing base2\n"; }
~base2() { cout << "Destructing base2\n"; }

};

class derived: public base1, public base2 {
public:
/* Derived constructor uses no parameters,

but still must be declared as taking them to
pass them along to base classes.

*/
derived(int x, int y): base1(x), base2(y)
{ cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }
void show() { cout << i << " " << k << "\n"; }

};

int main()
{
derived ob(3, 4);

ob.show(); // displays 3 4

return 0;
}

The constructor of a derived class is free to use any and all parameters that it is
declared as taking, whether or not one or more are passed along to a base class. Put
differently, just because an argument is passed along to a base class does not preclude
its use by the derived class as well. For example, this fragment is perfectly valid:

class derived: public base {
int j;

public:
// derived uses both x and y, and also passes them to base.
derived(int x, int y): base(x, y)
{ j = x*y; cout << "Constructing derived\n"; }

// ...

One final point to keep in mind when passing arguments to base class constructors:
An argument being passed can consist of any expression valid at the time, including
function calls and variables. This is in keeping with the fact that C++ allows dynamic
initialization.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Granting Access
When a base class is inherited as private, all members of that class (public, protected, or
private) become private members of the derived class. However, in certain circumstances,
you may want to restore one or more inherited members to their original access
specification. For example, you might want to grant certain public members of the base
class public status in the derived class, even though the base class is inherited as private.
You have two ways to accomplish this. First, you may use a using declaration within the
derived class. This is the method recommended by Standard C++ for use in new code.
However, a discussion of using is deferred until later in this book when namespaces are
examined. (The primary reason for using is to provide support for namespaces.) The
second way to adjust access to an inherited member is to employ an access declaration.
Access declarations are still supported by Standard C++, but they have recently been
deprecated, which means that they should not be used for new code. Since they are
still used in existing code, a discussion of access declarations is presented here.

An access declaration takes this general form:

base-class::member;

The access declaration is put under the appropriate access heading in the derived
class. Notice that no type declaration is required (or allowed) in an access declaration.

To see how an access declaration works, let’s begin with this short fragment:

class base {
public:
int j; // public in base

};

// Inherit base as private.
class derived: private base {
public:

// here is access declaration
base::j; // make j public again
// ...

};

Because base is inherited as private by derived, the public variable j is made a
private variable of derived. However, the inclusion of this access declaration

base::j;

under derived’s public heading restores j to its public status.

You can use an access declaration to restore the access rights of public and protected
members. However, you cannot use an access declaration to raise or lower a member’s
access status. For example, a member declared as private within a base class cannot be
made public by a derived class. (Allowing this would destroy encapsulation!)

350 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

The access
declaration
restores the
access level of an
inherited member
to what it was in
the base class.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following program illustrates the use of access declarations:

#include <iostream>
using namespace std;

class base {
int i; // private to base

public:
int j, k;
void seti(int x) { i = x; }
int geti() { return i; }

};

// Inherit base as private.
class derived: private base {
public:
/* The next three statements override
base's inheritance as private
and restore j, seti() and geti() to
public access. */

base::j; // make j public again - but not k
base::seti; // make seti() public
base::geti; // make geti() public

// base::i; // illegal, you cannot elevate access

int a; // public
};

int main()
{
derived ob;

//ob.i = 10; // illegal because i is private in derived

ob.j = 20; // legal because j is made public in derived
//ob.k = 30; // illegal because k is private in derived

ob.a = 40; // legal because a is public in derived
ob.seti(10);

cout << ob.geti() << " " << ob.j << " " << ob.a;

return 0;
}

Notice how this program uses access declarations to restore j, seti(), and geti() to
public status. The comments describe various other access restrictions.

C++ provides the ability to adjust access to inherited members to accommodate those
special situations in which most of an inherited class is intended to be made private,
but a few members are to retain their public or protected status. It is best to use this
feature sparingly.

Inheritance 351

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

352 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

Reading C++ Inheritance Graphs
Sometimes C++ class hierarchies are depicted graphically to make them easier to
understand. However, due to a quirk in the way they are usually drawn by C++
programmers, class inheritance graphs are sometimes misleading to newcomers. For
example, consider a situation in which class A is inherited by class B, which in turn is
inherited by C. Using standard C++ graphic notation, this situation is drawn as
shown here:

As you can see, the arrows point up, not down. While most people initially find
the direction of the arrows to be counterintuitive, this is the style that most C++
programmers have adopted. In C++ style graphs, the arrow points to the base class.
Thus, the arrow means “derived from,” and not “deriving.” Here is another example.
Can you describe, in words what it means?

This graph states that class E is derived from both C and D. (That is, that E has multiple
base classes, called C and D.) Further, C is derived from A, and D is derived from B.

While the direction of the arrows may be confusing at first, it is best that you become
familiar with this style of graphic notation, since it is commonly used in books,
magazines, and compiler documentation.

Virtual Base Classes
An element of ambiguity can be introduced into a C++ program when multiple base
classes are inherited. Consider this incorrect program:

// This program contains an error and will not compile.
#include <iostream>
using namespace std;

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 353

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

class base {
public:
int i;

};

// derived1 inherits base.
class derived1 : public base {
public:
int j;

};

// derived2 inherits base.
class derived2 : public base {
public:
int k;

};

/* derived3 inherits both derived1 and derived2.
This means that there are two copies of base
in derived3! */

class derived3 : public derived1, public derived2 {
public:
int sum;

};

int main()
{
derived3 ob;

ob.i = 10; // this is ambiguous; which i???
ob.j = 20;
ob.k = 30;

// i ambiguous here, too
ob.sum = ob.i + ob.j + ob.k;

// also ambiguous, which i?
cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";
cout << ob.sum;

return 0;
}

As the comments in this program indicate, both derived1 and derived2 inherit base.
However, derived3 inherits both derived1 and derived2. As a result, there are two
copies of base present in an object of type derived3, so that in an expression like

ob.i = 20;

which i is being referred to? The one in derived1 or the one in derived2? Since
there are two copies of base present in object ob, there are two ob.is! As you can see,
the statement is inherently ambiguous.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

There are two ways to remedy the preceding program. The first is to apply the scope
resolution operator to manually select one i. For example, the following version of the
program will compile and run as expected:

// This program uses explicit scope resolution to select i.
#include <iostream>
using namespace std;

class base {
public:
int i;

};

// derived1 inherits base.
class derived1 : public base {
public:
int j;

};

// derived2 inherits base.
class derived2 : public base {
public:
int k;

};

/* derived3 inherits both derived1 and derived2.
This means that there are two copies of base
in derived3! */

class derived3 : public derived1, public derived2 {
public:
int sum;

};

int main()
{
derived3 ob;

ob.derived1::i = 10; // scope resolved, use derived1's i
ob.j = 20;
ob.k = 30;

// scope resolved
ob.sum = ob.derived1::i + ob.j + ob.k;

// also resolved here
cout << ob.derived1::i << " ";

cout << ob.j << " " << ob.k << " ";
cout << ob.sum;

return 0;
}

354 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inheritance 355

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

14

By applying the ::, the program manually selects derived1’s version of base. However,
this solution raises a deeper issue: What if only one copy of base is actually required? Is
there some way to prevent two copies from being included in derived3? The answer,
as you probably have guessed, is yes. The solution is achieved with virtual base classes.

When two or more objects are derived from a common base class, you can prevent
multiple copies of the base class from being present in an object derived from those
classes, by declaring the base class as virtual when it is inherited. To do this, you
precede the name of the base class with the keyword virtual when it is inherited.

To illustrate this process, here is another version of the sample program. This time,
derived3 contains only one copy of base.

// This program uses virtual base classes.
#include <iostream>
using namespace std;

class base {
public:
int i;

};

// derived1 inherits base as virtual.
class derived1 : virtual public base {
public:
int j;

};

// derived2 inherits base as virtual.
class derived2 : virtual public base {
public:
int k;

};

/* derived3 inherits both derived1 and derived2.
This time, there is only one copy of base class. */

class derived3 : public derived1, public derived2 {
public:
int sum;

};

int main()
{
derived3 ob;

ob.i = 10; // now unambiguous
ob.j = 20;
ob.k = 30;

// unambiguous
ob.sum = ob.i + ob.j + ob.k;

The inheritance of
a base class as
virtual ensures
that only one
copy of it will be
present in any
derived class.

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// unambiguous
cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";
cout << ob.sum;

return 0;
}

As you can see, the keyword virtual precedes the rest of the inherited class’ specification.
Now that both derived1 and derived2 have inherited base as virtual, any multiple
inheritance involving them will cause only one copy of base to be present. Therefore,
in derived3 there is only one copy of base, and ob.i = 10 is perfectly valid and
unambiguous.

One further point to keep in mind: Even though both derived1 and derived2
specify base as virtual, base is still present in an object of either type. For example,
the following sequence is perfectly valid:

// Define a class of type derived1.
derived1 myclass;

myclass.i = 88;

The difference between a normal base class and a virtual one becomes evident only
when an object inherits the base class more than once. If the base class has been
declared as virtual, then only one instance of it will be present in the inheriting
object. Otherwise, multiple copies will be found.

356 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 14

P:\010Comp\Grnd-Up8\897-0\ch14.vp
Monday, March 03, 2003 11:10:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 15

Virtual Functions
and Polymorphism

357

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

358 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

One of the three major facets of object-oriented programming is polymorphism.
As applied to C++, polymorphism is the term used to describe the process by

which different implementations of a function can be accessed via the same name.
For this reason, polymorphism is sometimes characterized by the phrase “one interface,
multiple methods.” This means that every member of a general class of operations can
be accessed in the same fashion, even though the specific actions associated with each
operation may differ.

In C++, polymorphism is supported both at run time and at compile time. Operator
and function overloading are examples of compile-time polymorphism. As powerful
as operator and function overloading are, they cannot perform all the tasks required by
a true, object-oriented language. Therefore, C++ also allows run-time polymorphism
through the use of derived classes and virtual functions, and these are the major topics
of this chapter.

This chapter begins with a short discussion of pointers to derived types, because they
provide support for run-time polymorphism.

Pointers to Derived Types
The foundation of run-time polymorphism is the base class pointer. Pointers to base
classes and derived classes are related in ways that other types of pointers are not. As
you learned earlier in this book, a pointer of one type generally cannot point to an object
of another type. However, base class pointers and derived objects are the exceptions to
this rule. In C++, a base class pointer may also be used to point to an object of any class
derived from that base. For example, assume that you have a base class called B_class
and a class called D_class, which is derived from B_class. In C++, any pointer declared
as a pointer to B_class can also be a pointer to D_class. Therefore, given

B_class *p; // pointer to object of type B_class
B_class B_ob; // object of type B_class
D_class D_ob; // object of type D_class

both of the following statements are perfectly valid:

p = &B_ob; // p points to object of type B_class
p = &D_ob; /* p points to object of type D_class,

which is an object derived from B_class. */

In this example, p can be used to access all elements of D_ob inherited from B_ob.
However, elements specific to D_ob cannot be referenced with p.

For a more concrete example, consider the following short program, which defines a
base class called B_class and a derived class called D_class. This program uses a simple
class hierarchy to store authors and titles.

// Using base pointers on derived class objects.
#include <iostream>
#include <cstring>
using namespace std;

A base class
pointer can
point to any
object derived
from that base.

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

class B_class {
char author[80];

public:
void put_author(char *s) { strcpy(author, s); }
void show_author() { cout << author << "\n"; }

} ;

class D_class : public B_class {
char title[80];

public:
void put_title(char *num) {
strcpy(title, num);

}
void show_title() {
cout << "Title: ";
cout << title << "\n";

}
};

int main()
{
B_class *p;
B_class B_ob;

D_class *dp;
D_class D_ob;

p = &B_ob; // address of base

// Access B_class via pointer.
p->put_author("Tom Clancy");

// Access D_class via base pointer.
p = &D_ob;
p->put_author("William Shakespeare");

// Show that each author went into proper object.
B_ob.show_author();
D_ob.show_author();
cout << "\n";

/* Since put_title() and show_title() are not part
of the base class, they are not accessible via
the base pointer p and must be accessed either
directly, or, as shown here, through a pointer to the
derived type.

*/
dp = &D_ob;
dp->put_title("The Tempest");
p->show_author(); // either p or dp can be used here.
dp->show_title();

return 0;
}

Virtual Functions and Polymorphism 359

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

360 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

This program displays the following:

Tom Clancy
William Shakespeare

William Shakespeare
Title: The Tempest

In this example, the pointer p is defined as a pointer to B_class. However, it can
point to an object of the derived class D_class and can be used to access those
elements of the derived class that are inherited from the base class. But remember, a
base pointer cannot access those elements specific to the derived class. This is why
show_title() is accessed with the dp pointer, which is a pointer to the derived class.

If you want to access elements defined by a derived class by using a base class pointer,
you must cast it into a pointer of the derived type. For example, this line of code will
properly call the show_title() function of D_ob:

((D_class *)p)->show_title();

The outer set of parentheses is necessary for associating the cast with p and not with the
return type of show_title(). While there is technically nothing wrong with casting a
pointer in this manner, it is probably best avoided, because it simply adds confusion to
your code. (Actually, most C++ programmers would consider this to be bad form.)

Another point to understand is that, while a base pointer can be used to point to any
type of derived object, the reverse is not true. That is, you cannot access an object of
the base type by using a pointer to a derived class.

A pointer is incremented and decremented relative to its base type. Therefore, when a
base class pointer is pointing at a derived object, incrementing or decrementing it will
not make it point to the next object of the derived class. Instead, it will point to (what
it thinks is) the next object of the base class. Therefore, you should consider it invalid
to increment or decrement a base class pointer when it is pointing to a derived object.

The fact that a pointer to a base type can be used to point to any object derived from
that base is extremely important, and fundamental to C++. As you will soon learn,
this flexibility is crucial to the way C++ implements run-time polymorphism.

References to Derived Types
Similar to the action of pointers just described, a base class reference can be used to
refer to an object of a derived type. The most common application of this is found in
function parameters. A base class reference parameter can receive objects of the base
class as well as any other type derived from that base.

Virtual Functions
Run-time polymorphism is achieved through a combination of two features:
inheritance and virtual functions. You learned about inheritance in the preceding
chapter. Here, you will learn about the virtual function.

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Virtual Functions and Polymorphism 361

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

A virtual function is a function that is declared as virtual in a base class and redefined
in one or more derived classes. Thus, each derived class can have its own version of a
virtual function. What makes virtual functions interesting is what happens when one
is called through a base class pointer (or reference). In this situation, C++ determines
which version of the function to call based upon the type of the object pointed to by
the pointer. And, this determination is made at run time. Thus, when different objects
are pointed to, different versions of the virtual function are executed. In other words,
it is the type of the object being pointed to (not the type of the pointer) that determines
which version of the virtual function will be executed. Therefore, if a base class contains
a virtual function, and if two or more different classes are derived from that base class,
then when different types of objects are pointed to through a base class pointer, different
versions of the virtual function are executed. The same thing occurs when using a base
class reference.

You declare a function as virtual inside the base class by preceding its declaration with
the keyword virtual. When a virtual function is redefined by a derived class, the
keyword virtual need not be repeated (although it is not an error to do so).

A class that includes a virtual function is called a polymorphic class. This term also
applies to a class that inherits a base class containing a virtual function.

Examine this short program, which demonstrates the use of virtual functions:

// A short example that uses virtual functions.
#include <iostream>
using namespace std;

class base {
public:
virtual void who() { // specify a virtual
cout << "Base\n";

}
};

class first_d : public base {
public:
void who() { // redefine who() relative to first_d
cout << "First derivation\n";

}
};

class second_d : public base {
public:
void who() { // redefine who() relative to second_d
cout << "Second derivation\n";

}
};

int main()
{
base base_obj;
base *p;

You declare a
virtual function
by preceding its
declaration with
the keyword virtual.

A class that
includes a virtual
function is called a
polymorphic class.

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

first_d first_obj;
second_d second_obj;

p = &base_obj;
p->who(); // access base's who

p = &first_obj;
p->who(); // access first_d's who

p = &second_obj;
p->who(); // access second_d's who

return 0;
}

This program produces the following output:

Base
First derivation
Second derivation

Let’s examine the program in detail to understand how it works.

In base, the function who() is declared as virtual. This means that the function
can be redefined by a derived class. Inside both first_d and second_d, who() is
redefined relative to each class. Inside main(), four variables are declared: base_obj,
which is an object of type base; p, which is a pointer to base objects; and first_obj and
second_obj, which are objects of the two derived classes. Next, p is assigned the address
of base_obj, and the who() function is called. Since who() is declared as virtual, C++
determines, at run time, which version of who() is referred to by the type of object
pointed to by p. In this case, p points to an object of type base, so it is the version of
who() declared in base that is executed. Next, p is assigned the address of first_obj.
Recall that a base class pointer can refer to an object of any derived class. Now, when
who() is called, C++ again checks to see what type of object is pointed to by p and,
based on that type, determines which version of who() to call. Since p points to an
object of type first_d, that version of who() is used. Likewise, when p is assigned the
address of second_obj, the version of who() declared inside second_d is executed.

REMEMBER: It is determined at run time which version of a virtual function
actually gets called. Further, this determination is based solely upon the type of the
object that is being pointed to by a base class pointer.

A virtual function can be called normally, with the standard object, dot-operator
syntax. This means that in the preceding example, it would not be syntactically
incorrect to access who() by using this statement:

first_obj.who();

362 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, calling a virtual function in this manner ignores its polymorphic attributes.
It is only when a virtual function is accessed through a base class pointer that
run-time polymorphism is achieved.

At first, the redefinition of a virtual function in a derived class seems to be a special
form of function overloading. However, this is not the case. In fact, the two processes
are fundamentally different. First, an overloaded function must differ in its type and/or
number of parameters, while a redefined virtual function must have exactly the same
type and number of parameters. In fact, the prototypes for a virtual function and its
redefinitions must be exactly the same. If the prototypes differ, then the function is
simply considered to be overloaded, and its virtual nature is lost. Another restriction
is that a virtual function must be a member, not a friend, of the class for which it
is defined. However, a virtual function can be a friend of another class. Also, it is
permissible for destructor functions to be virtual, but this is not so for constructors.

Because of the restrictions and differences between overloading normal functions and
redefining virtual functions, the term overriding is used to describe the redefinition of
a virtual function.

Virtual Functions Are Inherited
Once a function is declared as virtual, it stays virtual no matter how many layers of
derived classes it may pass through. For example, if second_d is derived from first_d
instead of base, as shown in the next example, then who() is still virtual and the
proper version is still correctly selected:

// Derive from first_d, not base.
class second_d : public first_d {
public:
void who() { // define who() relative to second_d
cout << "Second derivation\n";

}
};

When a derived class does not override a virtual function, then the function, as
defined in the base class, is used. For example, try this version of the preceding
program in which second_d doesn’t override who().

#include <iostream>
using namespace std;

class base {
public:
virtual void who() {
cout << "Base\n";

}
};

class first_d : public base {
public:
void who() {

Virtual Functions and Polymorphism 363

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

When a virtual
function is
redefined in a
derived class,
it is said to be
overridden.

The virtual
attribute is
inherited.

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

cout << "First derivation\n";
}

};

class second_d : public base {
// who() not defined
};

int main()
{
base base_obj;
base *p;
first_d first_obj;
second_d second_obj;

p = &base_obj;
p->who(); // access base's who()

p = &first_obj;
p->who(); // access first_d's who()

p = &second_obj;
p->who(); /* access base's who() because

second_d does not redefine it */

return 0;
}

The program now outputs the following:

Base
First derivation
Base

As the output confirms, because who() is not overridden by second_d, when p
points to second_obj, it is the version of who() in base that is executed.

Keep in mind that inherited characteristics of virtual are hierarchical. Therefore, if the
preceding example is changed such that second_d is derived from first_d instead of
base, then when who() is referenced relative to an object of type second_d, it is the
version of who() declared inside first_d that is called since it is the class closest to
second_d, not the who() inside base. The following program demonstrates this
hierarchy.

#include <iostream>
using namespace std;

class base {
public:
virtual void who() {
cout << "Base\n";

}

364 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Virtual Functions and Polymorphism 365

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

};

class first_d : public base {
public:
void who() {
cout << "First derivation\n";

}
};

// second_d now inherited first_d -- not base.
class second_d : public first_d {
// who() not defined
};

int main()
{
base base_obj;
base *p;
first_d first_obj;
second_d second_obj;

p = &base_obj;
p->who(); // access base's who()

p = &first_obj;
p->who(); // access first_d's who()

p = &second_obj;
p->who(); /* access first_d's who() because

second_d does not redefine it */

return 0;
}

This program produces the following output:

Base
First derivation
First derivation

As you can see, second_d now uses first_d’s version of who() because that version
is closest in the inheritance chain.

Why Virtual Functions?
As stated at the beginning of this chapter, virtual functions in combination with
derived types allow C++ to support run-time polymorphism. Polymorphism is essential
to object-oriented programming for one reason: It allows a generalized class to specify
those functions that will be common to all derivatives of that class, while allowing a
derived class to define the specific implementation of some or all of those functions.
Sometimes this idea is expressed as follows: The base class dictates the general interface
that any object derived from that class will have, but lets the derived class define the

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

366 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

actual method used to implement that interface. This is why the phrase “one interface,
multiple methods” is often used to describe polymorphism.

Part of the key to successfully applying polymorphism is understanding that
the base and derived classes form a hierarchy, which moves from greater to lesser
generalization (base to derived). When designed correctly, the base class provides all
of the elements that a derived class can use directly. It also defines those functions
that the derived class must implement on its own. This allows the derived class the
flexibility to define its own methods, and yet still enforces a consistent interface. That
is, since the form of the interface is defined by the base class, any derived class will
share that common interface. Thus, the use of virtual functions makes it possible for
the base class to define the generic interface that will be used by all derived classes.

At this point, you might be asking yourself why a consistent interface with multiple
implementations is important. The answer, again, goes back to the central driving force
behind object-oriented programming: It helps the programmer handle increasingly
complex programs. For example, if you develop your program correctly, then you know
that all objects you derive from a base class are accessed in the same general way, even if
the specific actions vary from one derived class to the next. This means that you need to
remember only one interface, rather than several. Also, your derived class is free to use
any or all of the functionality provided by the base class. You need not reinvent those
elements. Further, the separation of interface and implementation allows the creation of
class libraries, which can be provided by a third party. If these libraries are implemented
correctly, they will provide a common interface that you can use to derive classes of your
own that meet your specific needs. For example, both the Microsoft Foundation Classes
(MFC) and the newer .NET Framework Windows Forms class library support Windows
programming. By using these classes, your program can inherit much of the functionality
required by a Windows program. You need add only the features unique to your
application. This is a major benefit when programming complex systems.

A Simple Application of Virtual Functions
To get an idea of the power of the “one interface, multiple methods” concept, examine
the following short program. It creates a base class called figure. This class stores the
dimensions of various two-dimensional objects and computes their areas. The function
set_dim() is a standard member function because this operation will be common to
all derived classes. However, show_area() is declared as virtual because the method
of computing the area of each object will vary. The program uses figure to derive two
specific classes called rectangle and triangle.

#include <iostream>
using namespace std;

class figure {
protected:
double x, y;

public:
void set_dim(double i, double j) {
x = i;
y = j;

}

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

virtual void show_area() {
cout << "No area computation defined ";
cout << "for this class.\n";

}
} ;

class triangle : public figure {
public:
void show_area() {
cout << "Triangle with height ";
cout << x << " and base " << y;
cout << " has an area of ";
cout << x * 0.5 * y << ".\n";

}
};

class rectangle : public figure {
public:
void show_area() {
cout << "Rectangle with dimensions ";
cout << x << " x " << y;
cout << " has an area of ";
cout << x * y << ".\n";

}
};

int main()
{
figure *p; // create a pointer to base type

triangle t; // create objects of derived types
rectangle r;

p = &t;
p->set_dim(10.0, 5.0);
p->show_area();

p = &r;
p->set_dim(10.0, 5.0);
p->show_area();

return 0;
}

The output is shown here.

Triangle with height 10 and base 5 has an area of 25.
Rectangle with dimensions 10 x 5 has an area of 50.

In the program, notice that the interface to both rectangle and triangle is the
same, even though both provide their own methods for computing the area of each
of their objects.

Virtual Functions and Polymorphism 367

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

368 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

Given the declaration for figure, is it possible to derive a class called circle that will
compute the area of a circle, given its radius? The answer is yes. All that you need to
do is to create a new derived type that computes the area of a circle. The power of
virtual functions is based in the fact that you can easily derive a new type that will
still share a common interface with other related objects. For example, here is one
way to do it:

class circle : public figure {
public:
void show_area() {
cout << "Circle with radius ";
cout << x;
cout << " has an area of ";
cout << 3.14 * x * x;

}
};

Before trying to use circle, look closely at the definition for show_area(). Notice
that it uses only the value of x, which is assumed to hold the radius. (Remember,
the area of a circle is computed by using the formula πR2.) However, the function
set_dim() as defined in figure, assumes that it will be passed two values, not just
one. Since circle does not require this second value, what course of action can
we take?

There are two ways to resolve this problem. First and worst, you could simply call
set_dim() using a dummy value as the second parameter when using a circle
object. This has the disadvantage of being sloppy, along with requiring that you
remember a special exception, which violates the “one interface, many methods”
philosophy.

A better way to resolve the problem is to give the y parameter inside set_dim() a
default value. Then, when calling set_dim() for a circle, you need specify only the
radius. When calling set_dim() for a triangle or a rectangle, you specify both values.
The expanded program, which uses this method, is shown here:

#include <iostream>
using namespace std;

class figure {
protected:
double x, y;

public:
void set_dim(double i, double j=0) {
x = i;
y = j;

}
virtual void show_area() {
cout << "No area computation defined ";
cout << "for this class.\n";

}
} ;

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Virtual Functions and Polymorphism 369

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

class triangle : public figure {
public:
void show_area() {
cout << "Triangle with height ";
cout << x << " and base " << y;
cout << " has an area of ";
cout << x * 0.5 * y << ".\n";

}
};

class rectangle : public figure {
public:
void show_area() {
cout << "Rectangle with dimensions ";
cout << x << " x " << y;
cout << " has an area of ";
cout << x * y << ".\n";

}
};

class circle : public figure {
public:
void show_area() {
cout << "Circle with radius ";
cout << x;
cout << " has an area of ";
cout << 3.14 * x * x << ".\n";

}
} ;

int main()
{
figure *p; // create a pointer to base type

triangle t; // create objects of derived types
rectangle r;
circle c;

p = &t;
p->set_dim(10.0, 5.0);
p->show_area();

p = &r;
p->set_dim(10.0, 5.0);
p->show_area();

p = &c;
p->set_dim(9.0);
p->show_area();

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

This program produces the following output.

Triangle with height 10 and base 5 has an area of 25.
Rectangle with dimensions 10 x 5 has an area of 50.
Circle with radius 9 has an area of 254.34.

TIP: While virtual functions are syntactically easy to understand, their true
power cannot be demonstrated in short examples. In general, polymorphism finds its
greatest strength in large, complex systems. As you continue to use C++, opportunities
to apply virtual functions will present themselves.

Pure Virtual Functions and Abstract Classes
As you have seen, when a virtual function that is not overridden in a derived class
is called by an object of that derived class, the version of the function as defined in
the base class is used. However, in many circumstances, there will be no meaningful
definition of a virtual function inside the base class. For example, in the base class
figure used in the preceding example, the definition of show_area() is simply a
place holder. It will not compute and display the area of any type of object. As you
will see when you create your own class libraries, it is not uncommon for a virtual
function to have no meaningful definition in the context of its base class.

When this situation occurs, there are two ways you can handle it. One way, as
shown in the example, is to simply have the function report a warning message.
While this approach can be useful in some situations, it will not be appropriate in
most circumstances. For example, there may be virtual functions that simply must be
defined by the derived class for the derived class to have any meaning. Consider the
class triangle. It has no meaning if show_area() is not defined. In this case, you
want some method to ensure that a derived class does, indeed, define all necessary
functions. In C++, the solution to this problem is the pure virtual function.

A pure virtual function is a function declared in a base class that has no definition
relative to the base. As a result, any derived type must define its own version—it
cannot simply use the version defined in the base. To declare a pure virtual function,
use this general form:

virtual type func-name(parameter-list) = 0;

Here, type is the return type of the function, and func-name is the name of the function.
It is the = 0 that designates the virtual function as pure. For example, in the following
version of figure, show_area() is a pure virtual function:

class figure {
double x, y;

public:
void set_dim(double i, double j=0) {
x = i;
y = j;

}
virtual void show_area() = 0; // pure

};

370 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

A pure virtual
function is a
virtual function
that has no
definition in its
base class.

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Virtual Functions and Polymorphism 371

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

By declaring a virtual function as pure, you force any derived class to define its own
implementation. If a class fails to do so, the compiler will report an error. For example,
try to compile this modified version of the figures program, in which the definition for
show_area() has been removed from the circle class:

/*
This program will not compile because the class
circle does not override show_area().

*/
#include <iostream>
using namespace std;

class figure {
protected:
double x, y;

public:
void set_dim(double i, double j) {
x = i;
y = j;

}
virtual void show_area() = 0; // pure

} ;

class triangle : public figure {
public:
void show_area() {
cout << "Triangle with height ";
cout << x << " and base " << y;
cout << " has an area of ";
cout << x * 0.5 * y << ".\n";

}
};

class rectangle : public figure {
public:
void show_area() {
cout << "Rectangle with dimensions ";
cout << x << "x" << y;
cout << " has an area of ";
cout << x * y << ".\n";

}
};

class circle : public figure {
// no definition of show_area() will cause an error
};

int main()
{
figure *p; // create a pointer to base type

triangle t; // create objects of derived types

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

372 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

rectangle r;

circle c; // Illegal -- can't create!

p = &t;
p->set_dim(10.0, 5.0);
p->show_area();

p = &r;
p->set_dim(10.0, 5.0);
p->show_area();

return 0;
}

If a class has at least one pure virtual function, then that class is said to be abstract. An
abstract class has one important feature: There can be no objects of that class. Instead,
an abstract class must be used only as a base that other classes will inherit. The reason
that an abstract class cannot be used to declare an object is, of course, that one or
more of its functions have no definition. However, even if the base class is abstract,
you still can use it to declare pointers or references, which are needed to support
run-time polymorphism.

Early versus Late Binding
There are two terms that are commonly used when object-oriented programming
languages are discussed: early binding and late binding. Relative to C++, these terms
refer to events that occur at compile time and events that occur at run time,
respectively.

Early binding means that a function call is resolved at compile time. That is, all
information necessary to call a function is known when the program is compiled.
Examples of early binding include standard function calls, overloaded function calls,
and overloaded operator function calls. The principal advantage to early binding is
efficiency—it is faster, and it often requires less memory. Its disadvantage is lack of
flexibility.

Late binding means that a function call is resolved at run time. Thus, precisely
which function to call is determined “on-the-fly” as the program executes. Late
binding is achieved in C++ through the use of virtual functions and derived types.
The advantage to late binding is that it allows greater flexibility. It can be used
to support a common interface, while allowing various objects that utilize that
interface to define their own implementations. Further, it can be used to help you
create class libraries, which can be reused and extended. Its disadvantage, however,
is a slight loss of execution speed.

A class that
contains at least
one pure virtual
function is called
an abstract class.

Early binding
resolves a function
call at compile
time. Late binding
resolves a function
call at run time.

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Polymorphism and the Purist
Throughout this book, and in this chapter specifically, a distinction has been made
between run-time and compile-time polymorphism. Compile-time polymorphic features
are operator and function overloading. Run-time polymorphism is achieved with virtual
functions. The most common definition of polymorphism is “one interface, multiple
methods,” and all of these features fit this meaning. However, some controversy does
exist over the use of the term polymorphism.

Some OOP purists have insisted that the term be used to refer only to events that occur at
run time. Thus, they would say that only virtual functions support polymorphism. Part
of this view is founded in the fact that the earliest polymorphic computer languages were
interpreters (in which all events occur at run time). The advent of compiled polymorphic
languages expanded the concept of polymorphism. However, some still argue that the
term polymorphism should refer only to run-time events. Most C++ programmers disagree
with this view and hold that the term applies both to run-time and to compile-time
features. However, don’t be surprised if some day, someone strikes up an argument with
you over the use of this term!

Whether your program uses early or late binding depends upon what the program is
designed to do. (Actually, most large programs will use a combination of both.) Late
binding is one of the most powerful features of C++. However, the price you pay for
this power is that your program will run slightly slower. Therefore, it is best to use late
binding only when it meaningfully adds to the structure and manageability of your
program. (In essence, use—but don’t abuse—the power.) Keep in mind, however, that
the loss of performance caused by late binding is very slight, so when the situation
calls for late binding, you should most definitely use it.

Virtual Functions and Polymorphism 373

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 15

15

P:\010Comp\Grnd-Up8\897-0\ch15.vp
Friday, February 28, 2003 3:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 16

Templates

375

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

376 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

The template is one of C++’s most sophisticated and high-powered features. Although
not part of the original specification for C++, it was added several years ago and

is now an integral part of C++ programming. Templates help you achieve one of the
most elusive goals in programming: the creation of reusable code.

Using templates, it is possible to create generic functions and classes. In a generic function
or class, the type of data upon which the function or class operates is specified as a
parameter. Thus, you can use one function or class with several different types of data,
without having to explicitly recode specific versions for each data type. Both generic
functions and generic classes are discussed in this chapter.

Generic Functions
A generic function defines a general set of operations that will be applied to various
types of data. The type of data that the function will operate upon is passed to it as a
parameter. Through a generic function, a single general procedure can be applied to a
wide range of data. As you probably know, many algorithms are logically the same no
matter what type of data is being operated upon. For example, the Quicksort sorting
algorithm is the same whether it is applied to an array of integers or an array of floats.
It is just that the type of data being sorted is different. By creating a generic function,
you can define the nature of the algorithm, independent of any data. Once you have
done this, the compiler will automatically generate the correct code for the type of
data that is actually used when you execute the function. In essence, when you create
a generic function, you are creating a function that can automatically overload itself.

A generic function is created by using the keyword template. The normal meaning of
the word “template” accurately reflects its use in C++. It is used to create a template (or
framework) that describes what a function will do, leaving it to the compiler to fill in
the details, as needed. The general form of a template function definition is shown here:

template <class Ttype> ret-type func-name(parameter list)
{

// body of function
}

Here, Ttype is a placeholder name for a data type used by the function. This name
can be used within the function definition. However, it is only a placeholder that the
compiler will automatically replace with an actual data type when it creates a specific
version of the function. Although the use of the keyword class to specify a generic type
in a template declaration is traditional, you may also use the keyword typename.

The following example creates a generic function that swaps the values of the two
variables with which it is called. Because the general process of exchanging two values
is independent of the type of the variables, it is a good candidate for being made into
a generic function.

// Function template example.
#include <iostream>
using namespace std;

// This is a function template.

A generic function
is capable of
overloading itself.

template is
the keyword
that begins a
generic function
definition.

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

template <class X> void swapargs(X &a, X &b)
{
X temp;

temp = a;
a = b;
b = temp;

}

int main()
{
int i=10, j=20;
double x=10.1, y=23.3;
char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << '\n';
cout << "Original x, y: " << x << ' ' << y << '\n';
cout << "Original a, b: " << a << ' ' << b << '\n';

swapargs(i, j); // swap integers
swapargs(x, y); // swap floats
swapargs(a, b); // swap chars

cout << "Swapped i, j: " << i << ' ' << j << '\n';
cout << "Swapped x, y: " << x << ' ' << y << '\n';
cout << "Swapped a, b: " << a << ' ' << b << '\n';

return 0;
}

The output is shown here.

Original i, j: 10 20
Original x, y: 10.1 23.3
Original a, b: x z
Swapped i, j: 20 10
Swapped x, y: 23.3 10.1
Swapped a, b: z x

Let’s look closely at this program. The line

template <class X> void swapargs(X &a, X &b)

tells the compiler two things: that a template is being created, and that a generic
definition is beginning. Here, X is a generic type that is used as a placeholder. After
the template portion, the function swapargs() is declared, using X as the data
type of the values that will be swapped. In main(), the swapargs() function is
called using three different types of data: ints, floats, and chars. Because swapargs()
is a generic function, the compiler automatically creates three versions of swapargs():
one that will exchange integer values, one that will exchange floating-point values,
and one that will swap characters.

Templates 377

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here are some important terms related to templates. First, a generic function (that is, a
function definition preceded by a template statement) is also called a template function.
Both terms will be used interchangeably in this book. When the compiler creates a
specific version of this function, it is said to have created a specialization. This is also
called a generated function. The act of generating a function is referred to as instantiating
it. Put differently, a generated function is a specific instance of a template function.

Since C++ does not recognize end-of-line as a statement terminator, the template
portion of a generic function definition does not have to be on the same line as the
function’s name. The following example shows another common way to format the
swapargs() function:

template <class X>
void swapargs(X &a, X &b)
{
X temp;

temp = a;
a = b;
b = temp;

}

If you use this form, it is important to understand that no other statements can occur
between the template statement and the start of the generic function definition. For
example, the fragment shown next will not compile:

// This will not compile.
template <class X>
int i; // this is an error
void swapargs(X &a, X &b)
{
X temp;

temp = a;
a = b;
b = temp;

}

As the comments imply, the template specification must directly precede the function
definition. You cannot put a variable declaration statement (or any other kind of
statement) between the two.

A Function with Two Generic Types
You can define more than one generic data type in the template statement by using
a comma-separated list. For example, this program creates a template function that
has two generic types:

#include <iostream>
using namespace std;

378 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

template <class type1, class type2>
void myfunc(type1 x, type2 y)
{
cout << x << ' ' << y << '\n';

}

int main()
{
myfunc(10, "hi");

myfunc(0.23, 10L);

return 0;
}

In this example, the placeholder types type1 and type2 are replaced by the compiler
with the data types int and char *, and double and long, respectively, when the
compiler generates the specific instances of myfunc() within main().

REMEMBER: When you create a template function, you are, in essence,
allowing the compiler to generate as many different versions of that function as
are necessary for handling the various ways that your program calls the function.

Explicitly Overloading a Generic Function
Even though a generic function overloads itself as needed, you can explicitly overload
one, too. This is formally called explicit specialization. If you overload a generic function,
then that overloaded function overrides (or “hides”) the generic function relative to
that specific version. For example, consider the following, revised version of the first
example in this chapter:

// Overriding a template function.
#include <iostream>
using namespace std;

template <class X> void swapargs(X &a, X &b)
{
X temp;

temp = a;
a = b;
b = temp;
cout << "Inside template swapargs.\n";

}

// This overrides the generic version of swapargs() for ints.
void swapargs(int &a, int &b)
{

Templates 379

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

A manually
overloaded version
of a generic
function is called
an explicit
specialization.

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

int temp;

temp = a;
a = b;
b = temp;
cout << "Inside swapargs int specialization.\n";

}

int main()
{
int i=10, j=20;
double x=10.1, y=23.3;
char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << '\n';
cout << "Original x, y: " << x << ' ' << y << '\n';
cout << "Original a, b: " << a << ' ' << b << '\n';

swapargs(i, j); // calls explicitly overloaded swapargs()
swapargs(x, y); // calls generic swapargs()
swapargs(a, b); // calls generic swapargs()

cout << "Swapped i, j: " << i << ' ' << j << '\n';
cout << "Swapped x, y: " << x << ' ' << y << '\n';
cout << "Swapped a, b: " << a << ' ' << b << '\n';

return 0;
}

This program displays the following output:

Original i, j: 10 20
Original x, y: 10.1 23.3
Original a, b: x z
Inside swapargs int specialization.
Inside template swapargs.
Inside template swapargs.
Swapped i, j: 20 10
Swapped x, y: 23.3 10.1
Swapped a, b: z x

As the comments inside the program indicate, when swapargs(i, j) is called, it invokes
the explicitly overloaded version of swapargs() defined in the program. Thus, the
compiler does not generate this version of the generic swapargs() function, because
the generic function is overridden by the explicit overloading.

There is a newer, alternative syntax that you can use to denote the explicit specialization
of a function. This modern approach uses the template keyword. For example, using
the new-style specialization syntax, the overloaded swapargs() function from the
preceding program looks like this:

// Use the newer-style specialization syntax.
template<> void swapargs<int>(int &a, int &b)

380 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
int temp;

temp = a;
a = b;
b = temp;
cout << "Inside swapargs int specialization.\n";

}

As you can see, the new-style syntax uses the template<> construct to indicate
specialization. The type of data for which the specialization is being created is placed
inside the angle brackets following the function name. This same syntax is used
to specialize any type of generic function. While there is no advantage to using one
specialization syntax over the other at this point in time, the new-style is probably
a better approach for the long term.

Explicit specialization of a template allows you to tailor a version of a generic function
to accommodate a unique situation—perhaps to take advantage of some performance
boost that applies to only one type of data, for example. However, as a general rule, if
you need to have different versions of a function for different data types, you should
use overloaded functions rather than templates.

Overloading a Function Template
In addition to creating explicit, overloaded versions of a generic function, you can also
overload the template specification, itself. To do so, simply create another version of
the template that differs from any others in its parameter list. For example:

// Overload a function template declaration.
#include <iostream>
using namespace std;

// First version of f() template.
template <class X> void f(X a)
{
cout << "Inside f(X a)\n";

}

// Second version of f() template.
template <class X, class Y> void f(X a, Y b)
{
cout << "Inside f(X a, Y b)\n";

}

int main()
{
f(10); // calls f(X)
f(10, 20); // calls f(X, Y)

return 0;
}

Here, the template for f() is overloaded to accept either one or two parameters.

Templates 381

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using Standard Parameters with Template Functions
You can mix standard parameters with generic type parameters in a template function.
These non-generic parameters work just like they do with any other function. For
example:

// Using standard parameters in a template function.
#include <iostream>
using namespace std;

// Display data specified number of times.
template<class X> void repeat(X data, int times)
{
do {
cout << data << "\n";
times--;

} while(times);
}

int main()
{
repeat("This is a test", 3);
repeat(100, 5);
repeat(99.0/2, 4);

return 0;
}

Here is the output produced by this program:

This is a test
This is a test
This is a test
100
100
100
100
100
49.5
49.5
49.5
49.5

In the program, the function repeat() displays its first argument the number of times
requested by its second argument. Since the first argument is a generic type, repeat()
can be used to display any type of data. The times parameter is a standard, call-by-value
parameter. The mixing of generic and non-generic parameters causes no trouble and,
indeed, is common.

382 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Templates 383

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16
Generic Function Restrictions
Generic functions are similar to overloaded functions, except that they are more
restrictive. When functions are overloaded, you may have different actions performed
within the body of each function. But a generic function must perform the same general
action for all versions—only the type of data can differ. Consider the overloaded
functions in the following example. These functions could not be replaced by a generic
function, because they do not do the same thing.

void outdata(int i)
{
cout << i;

}

void outdata(double d)
{
cout << d * 3.1416;

}

Creating a Generic abs() Function
Let’s return to the abs() function one last time. Recall that in Chapter 8, the standard
library functions abs(), labs(), and fabs() were consolidated into three overloaded
functions called myabs(). Each of the overloaded versions of myabs() were designed
to return the absolute value of a different type of data. While the manual overloading
of abs() in Chapter 8 was an improvement over the use of three different library
functions (each having different names), it is still not the best way to create an absolute
value function. Since the procedure that returns the absolute value of a number is the
same for all types of numeric values, abs() is an excellent choice for a template function.
Once a generic version of abs() exists, the compiler can automatically create whatever
version of the function it needs. You, the programmer, do not need to anticipate each
application. (You also won’t be cluttering your source code with multiple, manually
overloaded versions.)

The following program contains the generic version of myabs(). You might want to
compare it to the overloaded versions in Chapter 8. As you will see, the generic version
has shorter source code and is more flexible.

// A generic version of myabs().
#include <iostream>
using namespace std;

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

template <class X> X myabs(X val)
{
return val < 0 ? -val : val;

}

int main()
{
cout << myabs(-10) << '\n'; // integer abs

cout << myabs(-10.0) << '\n'; // double abs

cout << myabs(-10L) << '\n'; // long abs

cout << myabs(-10.0F) << '\n'; // float abs

return 0;
}

On your own, you should try to find other library functions that are good candidates
for being made into generic functions. Remember, the key is that the same algorithm
be applicable to a wide range of data.

Generic Classes
In addition to generic functions, you can also define a generic class. When you do
this, you create a class that defines all the algorithms used by that class; however, the
actual type of the data being manipulated will be specified as a parameter when objects
of that class are created.

Generic classes are useful when a class uses logic that can be generalized. For example,
the same algorithms that maintain a queue of integers will also work for a queue of
characters, and the same mechanism that maintains a linked list of mailing addresses
will also maintain a linked list of auto part information. When you create a generic
class, it can perform the operation you define, such as maintaining a queue or a linked
list, for any type of data. The compiler will automatically generate the correct type of
object, based upon the type you specify when the object is created.

The general form of a generic class declaration is shown here:

template <class Ttype> class class-name {
.
.
.

}

384 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here, Ttype is the placeholder type name, which will be specified when a class is
instantiated. If necessary, you can define more than one generic data type by using
a comma-separated list.

Once you have created a generic class, you create a specific instance of that class by
using the following general form:

class-name <type> ob;

Here, type is the type name of the data that the class will be operating upon. Member
functions of a generic class are, themselves, automatically generic. You don’t need to
use template to explicitly specify them as such.

In the following program, the queue class (first introduced in Chapter 11) is reworked
into a generic class. Thus, it can be used to queue objects of any type. In this example,
a character queue and a floating-point queue are created, but any data type can be
used.

// Demonstrate a generic queue class.
#include <iostream>
using namespace std;

const int SIZE=100;

// This creates the generic class queue.
template <class QType> class queue {
QType q[SIZE];
int sloc, rloc;

public:
queue() { sloc = rloc = 0; }
void qput(QType i);
QType qget();

};

// Put an object into the queue.
template <class QType> void queue<QType>::qput(QType i)
{
if(sloc==SIZE) {
cout << "Queue is full.\n";
return;

}
sloc++;
q[sloc] = i;

}

// Get an object from the queue.
template <class QType> QType queue<QType>::qget()
{
if(rloc == sloc) {
cout << "Queue Underflow.\n";
return 0;

}
rloc++;

Templates 385

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

386 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

return q[rloc];
}

int main()
{
queue<int> a, b; // create two integer queues

a.qput(10);
b.qput(19);
a.qput(20);
b.qput(1);

cout << a.qget() << " ";
cout << a.qget() << " ";
cout << b.qget() << " ";
cout << b.qget() << "\n";

queue<double> c, d; // create two double queues

c.qput(10.12);
d.qput(19.99);
c.qput(-20.0);
d.qput(0.986);

cout << c.qget() << " ";
cout << c.qget() << " ";
cout << d.qget() << " ";
cout << d.qget() << "\n";

return 0;
}

The output is shown here.

10 20 19 1
10.12 -20 19.99 0.986

In the program, the declaration of a generic class is similar to that of a generic function.
The actual type of data stored by the queue is generic in the class declaration. It is not
until an object of the queue is declared that the actual data type is determined. When
a specific instance of queue is declared, the compiler automatically generates all the
functions and variables necessary for handling the actual data. In this example, two
different types of queues are declared. Two are integer queues. Two are queues of
doubles. Pay special attention to these declarations:

queue<int> a, b;
queue<double> c, d;

Notice how the desired data type is passed inside the angle brackets. By changing the
type of data specified when queue objects are created, you can change the type of

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

data stored in that queue. For example, by using the following declaration, you can
create another queue that stores character pointers:

queue<char *> chrptrQ;

You can also create queues to store data types that you create. For example, if you
want to use the following structure to store address information,

struct addr {
char name[40];
char street[40];
char city[30];
char state[3];
char zip[12];

};

then to use queue to generate a queue that will store objects of type addr, use a
declaration like this:

queue<addr> obj;

As the queue class illustrates, generic functions and classes are powerful tools that
you can use to maximize your programming efforts, because they allow you to define
the general form of an object, which can then be used with any type of data. You are
saved from the tedium of creating separate implementations for each data type with
which you want the algorithm to work. The compiler automatically creates the specific
versions of the class for you.

An Example with Two Generic Data Types
A template class can have more than one generic data type. Simply declare all the data
types required by the class in a comma-separated list within the template specification.
For example, the following program creates a class that uses two generic data types:

/* This example uses two generic data types in a
class definition.

*/
#include <iostream>
using namespace std;

template <class Type1, class Type2> class myclass
{
Type1 i;
Type2 j;

public:
myclass(Type1 a, Type2 b) { i = a; j = b; }
void show() { cout << i << ' ' << j << '\n'; }

};

int main()

Templates 387

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
myclass<int, double> ob1(10, 0.23);
myclass<char, char *> ob2('X', "This is a test");

ob1.show(); // show int, double
ob2.show(); // show char, char *

return 0;
}

This program produces the following output:

10 0.23
X This is a test

The program declares two types of objects. ob1 uses int and double data. ob2 uses a
character and a character pointer. For both cases, the compiler automatically generates
the appropriate data and functions to accommodate the way the objects are created.

Creating a Generic Array Class
Before moving on, let’s look at another generic class application. As you saw in
Chapter 13, you can overload the [] operator. Doing so allows you to create your
own array implementations, including “safe arrays” that provide run-time boundary
checking. As you know, in C++, it is possible to overrun (or underrun) an array
boundary at run time, without generating a run-time error message. However, if you
create a class that contains the array, and allow access to that array only through the
overloaded [] subscripting operator, then you can intercept an out-of-range index.

By combining operator overloading with a generic class, it is possible to create a
generic safe-array type that can be used for creating safe arrays of any data type.
This type of array is created in the following program:

// A generic safe array example.
#include <iostream>
#include <cstdlib>
using namespace std;

const int SIZE = 10;

template <class AType> class atype {
AType a[SIZE];

public:
atype() {
register int i;
for(i=0; i<SIZE; i++) a[i] = i;

}
AType &operator[](int i);

};

// Provide range checking for atype.

388 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

template <class AType> AType &atype<AType>::operator[](int i)
{
if(i<0 || i> SIZE-1) {
cout << "\nIndex value of ";
cout << i << " is out-of-bounds.\n";
exit(1);

}
return a[i];

}

int main()
{
atype<int> intob; // integer array
atype<double> doubleob; // double array

int i;

cout << "Integer array: ";
for(i=0; i<SIZE; i++) intob[i] = i;
for(i=0; i<SIZE; i++) cout << intob[i] << " ";
cout << '\n';

cout << "Double array: ";
for(i=0; i<SIZE; i++) doubleob[i] = (double) i/3;
for(i=0; i<SIZE; i++) cout << doubleob[i] << " ";
cout << '\n';

intob[12] = 100; // generates runtime error

return 0;
}

This program implements a generic safe-array type and then demonstrates its use by
creating an array of ints and an array of doubles. You should try creating other types
of arrays. As this example shows, part of the power of generic classes is that they allow
you to write the code once, debug it, and then apply it to any type of data, without
having to re-engineer it for each specific application.

Using Non-Type Arguments with Generic Classes
In the template specification for a generic class, you may also specify non-type arguments.
That is, in a template specification, you can specify what you would normally think of
as a standard argument, such as an integer or a pointer. The syntax to accomplish this
is essentially the same as for normal function parameters: Simply include the type and
name of the argument. For example, here is a better way to implement the safe-array
class presented in the preceding section:

// Demonstrate non-type template arguments.
#include <iostream>
#include <cstdlib>
using namespace std;

Templates 389

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Here, int size is a non-type argument.
template <class AType, int size> class atype {
AType a[size]; // length of array is passed in size

public:
atype() {
register int i;
for(i=0; i<size; i++) a[i] = i;

}
AType &operator[](int i);

};

// Provide range checking for atype.
template <class AType, int size>
AType &atype<AType, size>::operator[](int i)
{
if(i<0 || i> size-1) {
cout << "\nIndex value of ";
cout << i << " is out-of-bounds.\n";
exit(1);

}
return a[i];

}

int main()
{
atype<int, 10> intob; // integer array of size 10
atype<double, 15> doubleob; // double array of size 15

int i;

cout << "Integer array: ";
for(i=0; i<10; i++) intob[i] = i;
for(i=0; i<10; i++) cout << intob[i] << " ";
cout << '\n';

cout << "Double array: ";
for(i=0; i<15; i++) doubleob[i] = (double) i/3;
for(i=0; i<15; i++) cout << doubleob[i] << " ";
cout << '\n';

intob[12] = 100; // generates runtime error

return 0;
}

Look carefully at the template specification for atype. Note that size is declared as
an int. This parameter is then used within atype to declare the size of the array a.
Even though size is depicted as a “variable” in the source code, its value is known
at compile time. This allows it to be used to set the size of the array. size is also used
in the bounds checking within the operator[]() function. Within main(), notice
how the integer and floating-point arrays are created. The second parameter specifies
the size of each array.

390 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Non-type parameters are restricted to integers, pointers, or references. Other types,
such as float, are not allowed. The arguments that you pass to a non-type parameter
must consist of either an integer constant, or a pointer or reference to a global function
or object. Thus, non-type parameters should, themselves, be thought of as constants,
since their values cannot be changed. For example, inside operator[](), the following
statement is not allowed:

size = 10; // Error

Since non-type parameters are treated as constants, they can be used to set the dimension
of an array, which is a significant, practical benefit.

As the safe-array example illustrates, the use of non-type parameters greatly expands
the utility of template classes. Although the information contained in the non-type
argument must be known at compile time, this restriction is mild compared with the
power offered by non-type parameters.

Programming challenge: The queue template class, shown earlier in this chapter,
would also benefit from a non-type parameter that specifies the size of the queue.
Try making this improvement on your own.

Using Default Arguments with Template Classes
A template class can have a default argument associated with a generic type. For example:

template <class X=int> class myclass { //...

Here, the type int will be used if no other type is specified when an object of type
myclass is instantiated.

It is also permissible for non-type arguments to take default arguments. The default
value is used when no explicit value is specified when the class is instantiated. Default
arguments for non-type parameters are specified by using the same syntax as default
arguments for function parameters.

Here is another version of the safe-array class that uses default arguments for both the
type of data and the size of the array:

// Demonstrate default template arguments.
#include <iostream>
#include <cstdlib>
using namespace std;

// Here, AType defaults to int and size defaults to 10.
template <class AType=int, int size=10> class atype {
AType a[size]; // size of array is passed in size

public:
atype() {
register int i;
for(i=0; i<size; i++) a[i] = i;

}

Templates 391

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AType &operator[](int i);
};

// Provide range checking for atype.
template <class AType, int size>
AType &atype<AType, size>::operator[](int i)
{
if(i<0 || i> size-1) {
cout << "\nIndex value of ";
cout << i << " is out-of-bounds.\n";
exit(1);

}
return a[i];

}

int main()
{
atype<int, 100> intarray; // integer array, size 100
atype<double> doublearray; // double array, default size
atype<> defarray; // default to int array of size 10

int i;

cout << "int array: ";
for(i=0; i<100; i++) intarray[i] = i;
for(i=0; i<100; i++) cout << intarray[i] << " ";
cout << '\n';

cout << "double array: ";
for(i=0; i<10; i++) doublearray[i] = (double) i/3;
for(i=0; i<10; i++) cout << doublearray[i] << " ";
cout << '\n';

cout << "defarray array: ";
for(i=0; i<10; i++) defarray[i] = i;
for(i=0; i<10; i++) cout << defarray[i] << " ";
cout << '\n';

return 0;
}

Pay close attention to this line:

template <class AType=int, int size=10> class atype {

Here, AType defaults to type int, and size defaults to 10. As the program illustrates,
atype objects can be created three ways:

◆ By explicitly specifying both the type and size of the array

◆ By explicitly specifying the type, but letting the size default to 10

◆ By letting the type default to int and the size default to 10

392 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The use of default arguments—especially default types—adds versatility to your template
classes. You can provide a default for the type of data most commonly used, while still
allowing the user of your classes to specialize them as needed.

Explicit Class Specializations
As with template functions, you can create a specialization of a generic class. To do so,
use the template<> construct, which works the same as it does for explicit function
specializations. For example:

// Demonstrate class specialization.
#include <iostream>
using namespace std;

template <class T> class myclass {
T x;

public:
myclass(T a) {
cout << "Inside generic myclass\n";
x = a;

}
T getx() { return x; }

};

// Explicit specialization for int.
template <> class myclass<int> {
int x;

public:
myclass(int a) {
cout << "Inside myclass<int> specialization\n";
x = a * a;

}
int getx() { return x; }

};

int main()
{
myclass<double> d(10.1);
cout << "double: " << d.getx() << "\n\n";

myclass<int> i(5);
cout << "int: " << i.getx() << "\n";

return 0;
}

This program displays the following output:

Inside generic myclass
double: 10.1

Inside myclass<int> specialization
int: 25

Templates 393

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the program, pay close attention to this line:

template <> class myclass<int> {

It tells the compiler that an explicit integer specialization of myclass is being created.
This same general syntax is used for any type of class specialization.

Explicit class specialization expands the utility of generic classes, because it lets you easily
handle one or two special cases, while allowing all others to be automatically processed by
the compiler. Of course, if you find that you are creating too many specializations, then
you are probably better off not using a template class in the first place.

394 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 16

P:\010Comp\Grnd-Up8\897-0\ch16.vp
Friday, February 28, 2003 4:05:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 17

Exception Handling

395

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This chapter discusses exception handling. An exception is an error that occurs at
run time. Using C++’s exception-handling subsystem, you can, in a structured and

controlled manner, handle run-time errors. When exception handling is employed,
your program automatically invokes an error-handling routine when an exception
occurs. The principal advantage of exception handling is that it automates much of
the error-handling code that previously had to be entered “by hand” into any large
program.

This chapter also revisits C++’s dynamic allocation operators: new and delete.
As explained earlier in this book, if new cannot allocate the requested memory, it
generates an exception. In this chapter, you will learn to handle that exception. You
will also see how to overload new and delete, which allows you to define your own
allocation schemes.

Exception Handling Fundamentals
C++ exception handling is built upon three keywords: try, catch, and throw. In the
most general terms, program statements that you want to monitor for exceptions are
contained in a try block. If an exception (i.e., an error) occurs within the try block, it
is thrown (using throw). The exception is caught, using catch, and processed. The
following discussion elaborates upon this general description.

Code that you want to monitor for exceptions must have been executed from within
a try block. (A function called from within a try block is also monitored.) Exceptions
that can be thrown by the monitored code are caught by a catch statement, which
immediately follows the try statement in which the exception was thrown. The general
form of try and catch are shown here:

try {
// try block

}
catch (type1 arg) {

// catch block
}
catch (type2 arg) {

// catch block
}
catch (type3 arg) {

// catch block
}
// ...
catch (typeN arg) {

// catch block
}

The try block must contain the portion of your program that you want to monitor
for errors. This section can be as short as a few statements within one function, or
as all-encompassing as a try block that encloses the main() function code (which
would, in effect, cause the entire program to be monitored).

396 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

Exception handling
is a structured
means by which
your program can
manage run-time
errors.

throw throws an
exception, which is
caught by a catch
statement.

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

When an exception is thrown, it is caught by its corresponding catch statement, which
then processes the exception. There can be more than one catch statement associated
with a try. The type of the exception determines which catch statement is used. That is,
if the data type specified by a catch statement matches that of the exception, then
that catch statement is executed (and all others are bypassed). When an exception is
caught, arg will receive its value. Any type of data can be caught, including classes that
you create.

The general form of the throw statement is shown here:

throw exception;

throw generates the exception specified by exception. If this exception is to be caught,
then throw must be executed either from within a try block itself, or from any function
called from within the try block (directly or indirectly).

NOTE: If you throw an exception for which there is no applicable catch
statement, an abnormal program termination will occur. Throwing an unhandled
exception will cause the terminate() standard library function to be invoked.
By default, terminate() calls abort() to stop your program, but you can specify
your own termination handler, if you like. You will need to refer to your compiler’s
documentation for details.

Here is a very simple example that shows how C++ exception handling operates:

// A simple exception handling example.
#include <iostream>
using namespace std;

int main()
{
cout << "start\n";

try { // start a try block
cout << "Inside try block\n";
throw 99; // throw an error
cout << "This will not execute";

}
catch (int i) { // catch an error
cout << "Caught an exception -- value is: ";
cout << i << "\n";

}

cout << "end";

return 0;
}

Exception Handling 397

To catch an
exception, it must
be thrown from
within a try block.

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

398 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

This program displays the following output:

start
Inside try block
Caught an exception — value is: 99
end

Look carefully at this program. As you can see, there is a try block containing three
statements, and a catch(int i) statement that processes an integer exception. Within
the try block, only two of the three statements will execute: the first cout statement
and the throw. Once an exception has been thrown, control passes to the catch
expression, and the try block is terminated. That is, catch is not called. Rather,
program execution is transferred to it. (The program’s stack is automatically reset, as
necessary, to accomplish this.) Thus, the cout statement following the throw will
never execute.

After the catch statement executes, program control continues with the statements
following the catch. Thus, it is the job of your exception handler to remedy the problem
that caused the exception, so that program execution can continue normally. In cases
where the error cannot be fixed, a catch block will usually end with a call to exit()
or abort(), or otherwise terminate program execution. (The exit() and abort()
functions are described in the In Depth box.)

As mentioned earlier, the type of the exception must match the type specified in a
catch statement. For example, in the preceding program, if you change the type in
the catch statement to double, then the exception will not be caught, and abnormal
termination will occur. This change is shown here:

exit() and abort()
The exit() and abort() functions are provided by the C++ library. Both cause the
termination of a program, but in different ways. These functions are frequently used
in C++ programming.

The exit() function causes the immediate, orderly termination of a program. (Orderly
termination means that the normal program shutdown sequence is followed.) It is
typically used to halt a program when a fatal error has occurred that renders further
execution of the program meaningless or harmful. The exit() function requires the
header <cstdlib>. It has the following prototype:

void exit(int status);

Because exit() causes immediate termination of the program, it does not return to
the calling program and does not have a return value. However, the value of status
is returned as an exit code to the calling process. By convention, a status value of 0

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

indicates successful termination. Any other value indicates that your program terminated
because of some sort of error. You may also use the constant EXIT_SUCCESS to indicate
successful termination, or EXIT_FAILURE to specify an error. These constants are
defined in <cstdlib>.

The abort() function has this prototype:

void abort();

Similar to exit(), abort() causes immediate program termination. However, unlike
exit(), it does not return status information to the operating system, nor does it
perform an orderly shutdown of your program. It requires the header <cstdlib>. In
practical terms, abort() is a C++ program’s “emergency stop” function. It should be
used only after a catastrophic error has occurred.

// This example will not work.
#include <iostream>
using namespace std;

int main()
{
cout << "start\n";

try { // start a try block
cout << "Inside try block\n";
throw 99; // throw an error
cout << "This will not execute";

}
catch (double i) { // won't work for an int exception
cout << "Caught an exception -- value is: ";
cout << i << "\n";

}

cout << "end";

return 0;
}

This program produces the following output, because the integer exception will not
be caught by the catch(double i) statement:

start
Inside try block
Abnormal program termination

Exception Handling 399

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

400 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

Depending upon what compiler you are using, the precise message displayed when
an abnormal termination occurs may differ from the one shown above.

An exception thrown by a function called from within a try block can be caught by
that try block. For example, this is a valid program:

/* Throwing an exception from a function called
from within a try block.

*/
#include <iostream>
using namespace std;

void Xtest(int test)
{
cout << "Inside Xtest, test is: " << test << "\n";
if(test) throw test;

}

int main()
{
cout << "start\n";

try { // start a try block
cout << "Inside try block\n";
Xtest(0);
Xtest(1);
Xtest(2);

}
catch (int i) { // catch an error
cout << "Caught an exception -- value is: ";
cout << i << "\n";

}

cout << "end";

return 0;
}

This program produces the following output:

start
Inside try block
Inside Xtest, test is: 0
Inside Xtest, test is: 1
Caught an exception — value is: 1
end

A try block can be localized to a function. When this is the case, each time the function
is entered, the exception handling relative to that function is reset. Examine this sample
program:

#include <iostream>
using namespace std;

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Exception Handling 401

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

// A try/catch is reset each time a function is entered.
void Xhandler(int test)
{
try{
if(test) throw test;

}
catch(int i) {
cout << "Caught One! Ex. #: " << i << '\n';

}
}

int main()
{
cout << "start\n";

Xhandler(1);
Xhandler(2);
Xhandler(0);
Xhandler(3);

cout << "end";

return 0;
}

This program displays the following output:

start
Caught One! Ex. #: 1
Caught One! Ex. #: 2
Caught One! Ex. #: 3
end

As you can see, three exceptions are thrown. After each exception, the function returns.
When the function is called again, the exception handling is reset.

In general, a try block is reset each time it is entered. Thus, a try block that is part of
a loop will be reset each time the loop repeats.

Catching Class Types
An exception can be of any type, including class types that you create. Actually, in
real-world programs, most exceptions will be class types, rather than built-in types.
Perhaps the most common reason that you will want to define a class type for an
exception is to create an object that describes the error that occured. This information
can be used by the exception handler to help it process the error. The following example
demonstrates this.

// Use an exception class.
#include <iostream>
#include <cstring>
using namespace std;

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

class MyException {
public:
char str_what[80];

MyException() { *str_what = 0; }

MyException(char *s) {
strcpy(str_what, s);

}
};

int main()
{
int a, b;

try {
cout << "Enter numerator and denominator: ";
cin >> a >> b;
if(!b)
throw MyException("Cannot divide by zero!");

else
cout << "Quotient is " << a/b << "\n";

}
catch (MyException e) { // catch an error
cout << e.str_what << "\n";

}

return 0;
}

Here is a sample run:

Enter numerator and denominator: 10 0
Cannot divide by zero!

The program prompts the user for a numerator and denominator. If the denominator
is zero, an object of the class MyException is created that indicates the divide-by-zero
error. Thus, MyException encapsulates information about the error. This information
is then used by the exception handler to tell the user what happened.

Of course, most real-world exception classes will be more sophisticated than
MyException. In general, you will want to create exception classes that encapsulate
sufficient information about an error to enable the exception handler to respond
effectively, possibly rectifying the situation.

Using Multiple catch Statements
As stated earlier, you can associate more than one catch statement with a try. In fact,
it is common to do so. However, each catch must catch a different type of exception.
For example, the program shown here catches both integers and character pointers:

402 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

#include <iostream>
using namespace std;

// Different types of exceptions can be caught.
void Xhandler(int test)
{
try{
if(test) throw test;
else throw "Value is zero";

}
catch(int i) {
cout << "Caught One! Ex. #: " << i << '\n';

}
catch(char *str) {
cout << "Caught a string: ";
cout << str << '\n';

}
}

int main()
{
cout << "start\n";

Xhandler(1);
Xhandler(2);
Xhandler(0);
Xhandler(3);

cout << "end";

return 0;
}

This program produces the following output:

start
Caught One! Ex. #: 1
Caught One! Ex. #: 2
Caught a string: Value is zero
Caught One! Ex. #: 3
end

As you can see, each catch statement responds only to its own type.

In general, catch expressions are checked in the order in which they occur in a program.
Only a matching statement is executed. All other catch blocks are ignored.

Catching Base Class Exceptions
There is one important point about multiple catch statements that relates to derived
classes. A catch clause for a base class will also match any class derived from that
base. Thus, if you want to catch exceptions of both a base class type and a derived
class type, put the derived class first in the catch sequence. If you don’t, then the

Exception Handling 403

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

404 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

base class catch will also catch all derived classes. For example, consider the following
program:

// Catching derived classes.
#include <iostream>
using namespace std;

class B {
};

class D: public B {
};

int main()
{
D derived;

try {
throw derived;

}
catch(B b) {
cout << "Caught a base class.\n";

}
catch(D d) {
cout << "This won't execute.\n";

}

return 0;
}

Here, because derived is an object that has B as a base class, it will be caught by the
first catch clause, and the second clause will never execute. Some compilers will flag
this condition with a warning message. Others may issue an error. Either way, to
fix this condition, reverse the order of the catch clauses.

Options for Exception Handling
There are several additional features and nuances to C++ exception handling that
make it easier and more convenient to use. These attributes are discussed here.

Catching All Exceptions
In some circumstances, you will want an exception handler to catch all exceptions,
instead of just a certain type. This is easy to accomplish. Simply use this form of catch:

catch(...) {
// process all exceptions

}

Here, the ellipsis matches any type of data.

The following program illustrates catch(...):

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// This example catches all exceptions.
#include <iostream>
using namespace std;

void Xhandler(int test)
{
try{
if(test==0) throw test; // throw int
if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double

}
catch(...) { // catch all exceptions
cout << "Caught One!\n";

}
}

int main()
{
cout << "start\n";

Xhandler(0);
Xhandler(1);
Xhandler(2);

cout << "end";

return 0;
}

This program displays the following output:

start
Caught One!
Caught One!
Caught One!
end

As you can see, all three throws were caught by using the one catch statement.

One very good use for catch(...) is as the last catch of a cluster of catches. In this
capacity, it provides a useful default or “catch all” statement. For example, this slightly
different version of the preceding program explicitly catches integer exceptions, but
relies upon catch(...) to catch all others:

// This example uses catch(...) as a default.
#include <iostream>
using namespace std;

void Xhandler(int test)
{
try{
if(test==0) throw test; // throw int

Exception Handling 405

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double

}
catch(int i) { // catch an int exception
cout << "Caught " << i << '\n';

}
catch(...) { // catch all other exceptions
cout << "Caught One!\n";

}
}

int main()
{
cout << "start\n";

Xhandler(0);
Xhandler(1);
Xhandler(2);

cout << "end";

return 0;
}

The output produced by this program is shown here:

start
Caught 0
Caught One!
Caught One!
end

As this example suggests, using catch(...) as a default is a good way to catch all
exceptions that you don’t want to handle explicitly. Also, by catching all exceptions,
you prevent an unhandled exception from causing an abnormal program termination.

Restricting Exceptions Thrown by a Function
You can restrict the type of exceptions that a function can throw outside of itself. In
fact, you can also prevent a function from throwing any exceptions whatsoever. To
accomplish these restrictions, you must add a throw clause to a function definition.
The general form of this clause is

ret-type func-name(arg-list) throw(type-list)
{

// ...
}

Here, only those data types contained in the comma-separated type-list can be thrown
by the function. Throwing any other type of expression will cause abnormal program
termination. If you don’t want a function to be able to throw any exceptions, then use
an empty list.

406 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE: Attempting to throw an exception that is not supported by a function
will cause the unexpected() standard library function to be called. By default, this
causes abort() to be called, which causes abnormal program termination. However,
you can specify your own termination handler, if you like. You will need to refer
to your compiler’s documentation for details.

The following program shows how to restrict the types of exceptions that can be
thrown from a function:

// Restricting function throw types.
#include <iostream>
using namespace std;

// This function can only throw ints, chars, and doubles.
void Xhandler(int test) throw(int, char, double)
{
if(test==0) throw test; // throw int
if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double

}

int main()
{
cout << "start\n";

try{
Xhandler(0); // also, try passing 1 and 2 to Xhandler()

}
catch(int i) {
cout << "Caught int\n";

}
catch(char c) {
cout << "Caught char\n";

}
catch(double d) {
cout << "Caught double\n";

}

cout << "end";

return 0;
}

In this program, the function Xhandler() can throw only integer, character, and
double exceptions. If it attempts to throw any other type of exception, then an
abnormal program termination will occur. (That is, unexpected() will be called.)
To see an example of this, remove int from the list and retry the program.

Exception Handling 407

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

It is important to understand that a function can be restricted only in what types of
exceptions it throws back to the try block that has called it. That is, a try block within
a function can throw any type of exception, as long as the exception is caught within
that function. The restriction applies only when throwing an exception outside of the
function.

The following change to Xhandler() prevents it from throwing any exceptions:

// This function can throw NO exceptions!
void Xhandler(int test) throw()
{
/* The following statements no longer work. Instead,

they will cause an abnormal program termination. */
if(test==0) throw test;
if(test==1) throw 'a';
if(test==2) throw 123.23;

}

NOTE: At the time of this writing, Visual C++ does not actually prevent a
function from throwing an exception type that is not specified in a throw clause.
This is non-standard behavior. You can still specify a throw clause, but such a clause
is considered informational only.

Rethrowing an Exception
If you want to rethrow an exception from within an exception handler, you can do so
by calling throw by itself, with no exception. This causes the current exception to be
passed on to an outer try/catch sequence. The most likely reason for calling throw
this way is to allow multiple handlers to have access to the exception. For example,
perhaps one exception handler manages one aspect of an exception, and a second
handler copes with another aspect. An exception can be rethrown only from within a
catch block (or from any function called from within that block). When you rethrow
an exception, it will not be recaught by the same catch statement. It will propagate
to the immediately enclosing try/catch sequence.

The following program illustrates rethrowing an exception. It rethrows a char *
exception.

// Example of "rethrowing" an exception.
#include <iostream>
using namespace std;

void Xhandler()
{
try {
throw "hello"; // throw a char *

}
catch(char *) { // catch a char *
cout << "Caught char * inside Xhandler\n";

408 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

throw ; // rethrow char * out of function
}

}

int main()
{
cout << "start\n";

try{
Xhandler();

}
catch(char *) {
cout << "Caught char * inside main\n";

}

cout << "end";

return 0;
}

This program displays the following output:

start
Caught char * inside Xhandler
Caught char * inside main
end

Handling Exceptions Thrown by new
In Chapter 9 you learned that the new operator throws an exception if an allocation
request fails. Because exceptions had not yet been discussed, a description of how to
handle that exception was deferred until later. Now the time has come for you to see
the proper way to handle a new allocation failure.

Before beginning, it is necessary to state that the material in this section describes the
behavior of new as specified by Standard C++. As you should recall from Chapter 9,
the precise action that occurs when new fails has been changed several times since
C++ was invented. Originally, new returned null on failure. Later, this was changed
such that new caused an exception on failure. Also, the name of this exception has
changed over time. Finally, it was decided that a new failure will generate an exception
by default, but that a null pointer could be returned instead, as an option. Thus, new
has been implemented differently, at different times. Although all modern compilers
implement new in compliance with Standard C++, older ones may not. If the code
examples shown here do not work with your compiler, check its documentation for
details on how it implements new.

In Standard C++, when an allocation request cannot be honored, new throws a
bad_alloc exception. If you don’t catch this exception, then your program will be
terminated. While this behavior is fine for short sample programs, in real applications,
you must catch this exception and process it in some rational manner. To have access
to this exception, you must include the header <new> in your program.

Exception Handling 409

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Here is an example of new that uses a try/catch block to monitor for an allocation
failure:

// Handle exceptions thrown by new.
#include <iostream>
#include <new>
using namespace std;

int main()
{
int *p, i;

try {
p = new int[32]; // allocate memory for 32-element int array

} catch (bad_alloc xa) {
cout << "Allocation failure.\n";
return 1;

}

for(i=0; i<32; i++) p[i] = i;

for(i=0; i<32; i++) cout << p[i] << " ";

delete [] p; // free the memory

return 0;
}

Here, if an allocation failure occurs, it is caught by the catch statement. This same
general approach can be used to watch for allocation errors whenever new is used.
Simply enclose each new statement within a try block.

The nothrow Alternative
In Standard C++, it is also possible to have new return null, instead of having it
throw an exception when an allocation failure occurs. This form of new is most
useful when you are compiling older code with a modern C++ compiler. It is also
valuable when you are replacing calls to malloc() with new. (This is common
when updating C code to C++.) This form of new is shown here:

p_var = new(nothrow) type;

Here, p_var is a pointer variable of type type. The nothrow form of new works like
the original version of new from years ago. Since it returns null on failure, it can be
“dropped into” older code, without having to add exception handling. However, for
new code, exceptions provide a better alternative.

The following program shows how to use the new(nothrow) alternative. It reworks
the preceding program.

// Demonstrate nothrow version of new.
#include <iostream>

410 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

#include <new>
using namespace std;

int main()
{
int *p, i;

p = new(nothrow) int[32]; // use nothrow option
if(!p) {
cout << "Allocation failure.\n";
return 1;

}

for(i=0; i<32; i++) p[i] = i;

for(i=0; i<32; i++) cout << p[i] << " ";

delete [] p; // free the memory

return 0;
}

As this program demonstrates, when using the nothrow approach, you must check
the pointer returned by new after each allocation request.

Overloading new and delete
Because new and delete are operators, they too can be overloaded. Although operator
overloading was discussed in Chapter 13, the overloading of new and delete was
deferred until after exceptions had been discussed. This was necessary because a
properly overloaded version of new (one that is in compliance with Standard C++)
must generate a bad_alloc exception when it fails. You might want to create your
own version of new for any number of reasons. For example, you may want to create
allocation routines that automatically begin using a disk file as virtual memory when
the heap has been exhausted. Whatever the reason, it is a simple matter to overload
these operators.

The skeletons for the functions that overload new and delete are shown here:

// Allocate an object.
void *operator new(size_t size)
{
/* Perform allocation. Throw bad_alloc on failure.

Constructor called automatically. */
return pointer_to_memory;

}

// Delete an object.
void operator delete(void *p)
{
/* Free memory pointed to by p.

Destructor called automatically. */
}

Exception Handling 411

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The type size_t is a defined type capable of containing the largest single piece of memory
that can be allocated. (size_t is essentially an unsigned integer.) The parameter size
will contain the number of bytes needed to hold the object being allocated. This is
the amount of memory that your version of new must allocate. The overloaded new
function must return a pointer to the memory that it allocates, or throw a bad_alloc
exception if an allocation error occurs. Beyond these constraints, the overloaded new
function can do anything else you require. When you allocate an object using new
(whether your own version or not), the object’s constructor is automatically called.

The delete function receives a pointer to the region of memory to be freed. It must
then release the previously allocated memory back to the system. When an object is
deleted, its destructor function is automatically called.

To allocate and free arrays of objects, you must use these forms of new and delete:

// Allocate an array of objects.
void *operator new[](size_t size)
{
/* Perform allocation. Throw bad_alloc exception on failure.

Each constructor called automatically. */
return pointer_to_memory;

}

// Delete an array of objects.
void operator delete[](void *p)
{
/* Free memory pointed to by p.

Destructor for each element automatically called. */
}

When an array is allocated, each object’s constructor is automatically called. When
an array is freed, each object’s destructor is automatically called. You do not have to
provide explicit code to accomplish these actions.

The new and delete operators are generally overloaded relative to a class. For the
sake of simplicity, in the example that follows, no new allocation scheme will be used.
Instead, the overloaded functions will simply invoke the C-based allocation functions
malloc() and free(). (In your own application, you are, of course, free to implement
any alternative allocation method you like.)

To overload the new and delete operators relative to a class, simply make the
overloaded operator functions class members. In the following sample program, the
new and delete operators are overloaded relative to the three_d class. Both are
overloaded to allow objects and arrays of objects to be allocated and freed.

// Demonstrate overloaded new and delete.
#include <iostream>
#include <new>
#include <cstdlib>
using namespace std;

class three_d {

412 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

int x, y, z; // 3-D coordinates
public:
three_d() {
x = y = z = 0;
cout << "Constructing 0, 0, 0\n";

}
three_d(int i, int j, int k) {
x = i; y = j; z = k;
cout << "Constructing " << i << ", ";
cout << j << ", " << k;
cout << '\n';

}
~three_d() { cout << "Destructing\n"; }
void *operator new(size_t size);
void *operator new[](size_t size);
void operator delete(void *p);
void operator delete[](void *p);
void show() ;

};

// new overloaded relative to three_d.
void *three_d::operator new(size_t size)
{
void *p;

cout << "Allocating three_d object.\n";
p = malloc(size);

// throw an exception on failure
if(!p) {
bad_alloc ba;
throw ba;

}
return p;

}
// new overloaded relative to arrays of three_d.
void *three_d::operator new[](size_t size)
{
void *p;

cout << "Allocating array of three_d objects.\n";

// throw an exception on failure
p = malloc(size);
if(!p) {
bad_alloc ba;
throw ba;

}
return p;

}

// delete overloaded relative to three_d.
void three_d::operator delete(void *p)
{

Exception Handling 413

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

414 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

cout << "Deleting three_d object.\n";
free(p);

}

// delete overloaded relative to arrays of three_d.
void three_d::operator delete[](void *p)
{
cout << "Deleting array of three_d objects.\n";
free(p);

}

// Show X, Y, Z coordinates.
void three_d::show()
{
cout << x << ", ";
cout << y << ", ";
cout << z << "\n";

}

int main()
{
three_d *p1, *p2;

try {
p1 = new three_d[3]; // allocate array
p2 = new three_d(5, 6, 7); // allocate object

} catch (bad_alloc ba) {
cout << "Allocation error.\n";
return 1;

}

p1[1].show();
p2->show();

delete [] p1; // delete array
delete p2; // delete object

return 0;
}

The output produced by this program is shown here:

Allocating array of three_d objects.
Constructing 0, 0, 0
Constructing 0, 0, 0
Constructing 0, 0, 0
Allocating three_d object.
Constructing 5, 6, 7
0, 0, 0
5, 6, 7
Destructing
Destructing

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Exception Handling 415

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

17

Destructing
Deleting array of three_d objects.
Destructing
Deleting three_d object.

The first three Constructing messages are caused by the allocation of the three-element
array. As stated, when an array is allocated, each element’s constructor is automatically
called. The last Constructing message is caused by the allocation of a single object.
The first three Destructing messages are caused by the deletion of the three-element
array. Each element’s destructor is automatically called. No special action is required on
your part. The last Destructing message is caused by the deletion of the single object.

It is important to understand that when new and delete are overloaded relative to a
specific class, the use of these operators on any other type of data causes the original
new or delete to be employed. This means that if you add the following line to main(),
the default new will be executed:

int *f = new int; // uses default new

One last point: It is also possible to overload new and delete globally. To do so, just
declare their operator functions outside of any class. In this case, C++’s default new
and delete are ignored and your versions are used for all allocation requests. Of course,
if you have also defined a version of new and delete relative to a class, then the class-
specific version is used when allocating/freeing an object of that class. The global new
and delete are used in all other cases.

Overloading the nothrow Version of new
You can also create overloaded nothrow versions of new and delete. To do so, use
these skeletons:

// Nothrow version of new.
void *operator new(size_t size, const nothrow_t &n)
{
// Perform allocation.
if(success) return pointer_to_memory;
else return 0;

}

// Nothrow version of new for arrays.
void *operator new[](size_t size, const nothrow_t &n)
{
// Perform allocation.
if(success) return pointer_to_memory;
else return 0;

}

// Nothrow version of delete.
void operator delete(void *p, const nothrow_t &n)
{

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// free memory
}

// Nothrow version of delete for arrays.
void operator delete[](void *p, const nothrow_t &n)
{
// free memory

}

The type nothrow_t is defined by <new>. This is the type of the nothrow object. The
nothrow_t parameter is unused. You might want to experiment with the nothrow
version of new and delete on your own.

416 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 17

P:\010Comp\Grnd-Up8\897-0\ch17.vp
Monday, March 03, 2003 11:19:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 18

The C++ I/O
System

417

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

418 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

Since the beginning of this book, you have been using the C++ I/O system. However,
you have been doing so without much formal explanation. Because the C++ I/O

system is based upon a hierarchy of classes, it was not possible to present its theory and
details without first discussing classes and inheritance. Now it is time to examine the
C++ I/O system in detail.

This chapter discusses several features of the C++ I/O system. The I/O system is quite
large, and it won’t be possible to discuss every class, function, or feature, but this
chapter will introduce you to those that are most important and commonly used.
Specifically, it shows how to overload the << and >> operators so that you can input
or output objects of classes that you design. It describes how to format output and
how to use I/O manipulators. The chapter ends by discussing file I/O.

Old VS Modern C++ I/O
There are currently two versions of the C++ object-oriented I/O library in use: the older
one that is based upon the original specifications for C++ and the newer one defined by
Standard C++. The old I/O library is supported by the header file <iostream.h>. The
new I/O library is supported by the header <iostream>. For the most part, the two
libraries appear the same to the programmer. This is because the new I/O library is,
in essence, simply an updated and improved version of the old one. In fact, the vast
marjority of differences between the two occur beneath the surface, in the way that the
libraries are implemented—not in how they are used.

From the programmer’s perspective, there are two main differences between the old
and new C++ I/O libraries. First, the new I/O library contains a few additional features
and defines some new data types. Thus, the new I/O library is essentially a superset
of the old one. Nearly all programs originally written for the old library will compile
without substantive changes when the new library is used. Second, the old-style I/O
library was in the global namespace. The new-style library is in the std namespace.
(Recall that the std namespace is used by all of the Standard C++ libraries.) Since the
old-style I/O library is now obsolete, this book describes only the new I/O library, but
most of the information is applicable to the old I/O library as well.

C++ Streams
The most fundamental point to understand about the C++ I/O system is that it operates
on streams. A stream is a common, logical interface to the various devices that comprise
the computer. A stream either produces or consumes information, and is linked to a
physical device by the C++ I/O system. All streams behave in the same manner, even if
the actual physical devices they are linked to differ. Because all streams act the same,
the same I/O functions and operators can operate on virtually any type of device. For
example, the same method that you use to write to the screen can be used to write to a
disk file or to the printer.

In its most common form, a stream is a logical interface to a file. As C++ defines the
term “file,” it can refer to a disk file, the screen, the keyboard, a port, a file on tape,
and so on. Although files differ in form and capabilities, all streams are the same. The
advantage to this approach is that to you, the programmer, one hardware device will
look much like any other. The stream provides a consistent interface.

A stream is a
consistent, logical
interface that
is linked to a
physical file.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A stream is linked to a file through an open operation, and is disassociated from a file
through a close operation.

There are two types of streams: text and binary. A text stream is used with characters.
When a text stream is being used, some character translations may take place.
For example, when the newline character is output, it may be converted into a
carriage-return/linefeed sequence. For this reason, there might not be a one-to-one
correspondence between what is sent to the stream and what is written to the file. A
binary stream can be used with any type of data. No character translations will occur,
and there is a one-to-one correspondence between what is sent to the stream and
what is actually contained in the file.

One more concept to understand is that of the current location. The current location
(also referred to as the current position) is the location in a file where the next file
access will occur. For example, if a file is 100 bytes long, and half the file has been
read, the next read operation will occur at byte 50, which is the current location.

To summarize: In C++, I/O is performed through a logical interface called a stream. All
streams have similar properties, and every stream is operated upon by the same I/O
functions, no matter what type of file it is associated with. A file is the actual physical
entity that contains the data. Even though files differ, streams do not. (Of course, some
devices may not support all operations, such as random-access operations, so their
associated streams will not support these operations either.)

The C++ Predefined Streams
C++ contains several predefined streams that are automatically opened when your
program begins execution. They are cin, cout, cerr, and clog. As you know, cin is
the stream associated with standard input, and cout is the stream associated with
standard output. The cerr stream is linked to standard output, and so is clog. The
difference between these two streams is that clog is buffered, but cerr is not. This
means that any output sent to cerr is immediately output, but output to clog is
written only when a buffer is full. Typically, cerr and clog are streams to which
program debugging or error information is written.

C++ also opens wide (16-bit) character versions of the standard streams, called wcin,
wcout, wcerr, and wclog. These streams exist to support languages, such as Chinese,
that require large character sets. We won’t be using them in this book.

By default, the C++ standard streams are linked to the console, but they can be redirected
to other devices or files by your program. They can also be redirected by the operating
system.

The C++ Stream Classes
As you learned in Chapter 2, C++ provides support for its I/O system in <iostream>.
In this header, a rather complicated set of class hierarchies is specified that supports
I/O operations. The I/O classes begin with a system of template classes. As explained
in the Chapter 16, a template class defines the form of a class without fully specifying
the data upon which it will operate. Once a template class has been defined, specific
instances of a template class can be created. As it relates to the I/O library, Standard

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

The C++ I/O System 419

The current
location is the
place within a file
at which the next
file access will
occur.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

420 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

C++ creates two specializations of the I/O template classes: one for 8-bit characters
and another for wide characters. This book will use only the 8-bit character classes
since they are by far the most frequently used.

The C++ I/O system is built upon two related, but different, template class hierarchies.
The first is derived from the low-level I/O class called basic_streambuf. This class
supplies the basic, low-level input and output operations, and provides the underlying
support for the entire C++ I/O system. Unless you are doing advanced I/O programming,
you will not need to use basic_streambuf directly. The class hierarchy that you will
most commonly be working with is derived from basic_ios. This is a high-level I/O
class that provides formatting, error checking, and status information related to stream
I/O. (A base class for basic_ios is called ios_base, which defines several non-template
traits used by basic_ios.) basic_ios is used as a base for several derived classes, including
basic_istream, basic_ostream, and basic_iostream. These classes are used to create
streams capable of input, output, and input/output, respectively.

As explained, the I/O library creates two specializations of the template class hierarchies
just described: one for 8-bit characters and one for wide characters. Here is a list of the
mapping of template class names to their character-based versions.

Template Class Character-Based Class

basic_streambuf streambuf

basic_ios ios

basic_istream istream

basic_ostream ostream

basic_iostream iostream

basic_fstream fstream

basic_ifstream ifstream

basic_ofstream ofstream

The character-based names will be used throughout the remainder of this book, since
they are the names that you will use in your programs. They are also the same names
that were used by the old I/O library. This is why the old and the new I/O libraries are
compatible at the source code level.

One last point: The ios class contains many member functions and variables that
control or monitor the fundamental operation of a stream. The ios class will be referred
to frequently. Just remember that if you include <iostream> in your program, you will
have access to this important class.

Overloading the I/O Operators
In the preceding chapters, when a program needed to output or input the data associated
with a class, member functions were created whose only purpose was to output or input
the class’ data. While there is nothing, in itself, wrong with this approach, C++ allows a

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

much better way of performing I/O operations on classes: by overloading the << and the
>> I/O operators.

In the language of C++, the << operator is referred to as the insertion operator because it
inserts characters into a stream. Likewise, the >> operator is called the extraction operator
because it extracts characters from a stream. The operator functions that overload the
insertion and extraction operators are generally called inserters and extractors, respectively.

As you know, the insertion and extraction operators are already overloaded (in
<iostream>) so that they are capable of performing stream I/O on any of C++’s
built-in types. Here you will see how to define these operators relative to classes that
you define.

Creating Inserters
As a simple first example, let’s create an inserter for the version of the three_d class
shown here:

class three_d {
public:
int x, y, z; // 3-D coordinates
three_d(int a, int b, int c) { x = a; y = b; z = c; }

};

To create an inserter function for an object of type three_d, you must overload the
<< operator. Here is one way to do this:

// Display X, Y, Z coordinates - three_d inserter.
ostream &operator<<(ostream &stream, three_d obj)
{
stream << obj.x << ", ";
stream << obj.y << ", ";
stream << obj.z << "\n";
return stream; // return the stream

}

Let’s look closely at this function, because many of its features are common to all
inserter functions. First, notice that it is declared as returning a reference to an object
of type ostream. This declaration is necessary so that several inserters of this type can
be combined in a compound I/O expression. Next, the function has two parameters.
The first is the reference to the stream that occurs on the left side of the << operator. The
second parameter is the object that occurs on the right side. (This parameter can also
be a reference to the object, if you want.) Inside the function, the three values contained
in an object of type three_d are output, and stream is returned.

Here is a short program that demonstrates the inserter:

// Demonstrate a custom inserter.
#include <iostream>
using namespace std;

The C++ I/O System 421

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

An inserter
outputs
information to
a stream. An
extractor inputs
information from
a stream.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

class three_d {
public:
int x, y, z; // 3-D coordinates
three_d(int a, int b, int c) { x = a; y = b; z = c; }

} ;

// Display X, Y, Z coordinates - three_d inserter.
ostream &operator<<(ostream &stream, three_d obj)
{
stream << obj.x << ", ";
stream << obj.y << ", ";
stream << obj.z << "\n";
return stream; // return the stream

}

int main()
{
three_d a(1, 2, 3), b(3, 4, 5), c(5, 6, 7);

cout << a << b << c;

return 0;
}

This program displays the following output:

1, 2, 3
3, 4, 5
5, 6, 7

If you eliminate the code that is specific to the three_d class, you are left with the
skeleton for an inserter function, as shown here:

ostream &operator<<(ostream &stream, class_type obj)
{
// class specific code goes here
return stream; // return the stream

}

Of course, it is permissible for obj to be passed by reference.

Within wide boundaries, what an inserter function actually does is up to you. However,
good programming practice dictates that your inserter should produce reasonable output.
Just make sure that you return stream.

Before moving on, you might be wondering why the three_d inserter was not coded
as shown here:

// Limited version - don't use.
ostream &operator<<(ostream &stream, three_d obj)
{
cout << obj.x << ", ";

422 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

cout << obj.y << ", ";
cout << obj.z << "\n";
return stream; // return the stream

}

In this version, the cout stream is hard-coded into the function. This limits the situations
where it can be applied. Remember that the << operator can be applied to any stream,
and that the stream used in the << expression is passed to stream. Therefore, you must
use the stream passed to the function if it is to work correctly in all cases. Only in this way
can you create an inserter that can be used in any I/O expression.

Using Friend Functions to Overload Inserters
In the preceding program, the overloaded inserter function is not a member of
three_d. In fact, neither inserter nor extractor functions can be members of a class.
The reason for this is that when an operator function is a member of a class, the left
operand (implicitly passed using the this pointer) must be an object of the class
that has generated the call to the operator function. There is no way to change this.
However, when inserters are overloaded, the left operand is a stream, and the right
operand is an object of the class being output. Therefore, overloaded inserters must
be non-member functions.

The fact that inserters must not be members of the class on which they are defined
to operate raises a serious question: How can an overloaded inserter access the private
elements of a class? In the preceding program, the variables x, y, and z were made
public so that the inserter could access them. But hiding data is an important part of
OOP, and forcing all data to be public is a serious inconsistency. However, there is a
solution: An inserter can be a friend of a class. As a friend of the class for which it is
defined, it has access to private data. To show you an example of this, the three_d
class and sample program are reworked here, with the overloaded inserter declared
as a friend:

// Use a friend to overload <<.
#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates - now private

public:
three_d(int a, int b, int c) { x = a; y = b; z = c; }
friend ostream &operator<<(ostream &stream, three_d obj);

} ;

// Display X, Y, Z coordinates - three_d inserter.
ostream &operator<<(ostream &stream, three_d obj)
{
stream << obj.x << ", ";
stream << obj.y << ", ";
stream << obj.z << "\n";
return stream; // return the stream

}

The C++ I/O System 423

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

424 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

int main()
{
three_d a(1, 2, 3), b(3, 4, 5), c(5, 6, 7);

cout << a << b << c;

return 0;
}

Notice that the variables x, y, and z are now private to three_d, but can still be directly
accessed by the inserter. Making inserters (and extractors) friends of the classes for which
they are defined preserves the encapsulation principle of OOP.

Overloading Extractors
To overload an extractor, use the same general approach that you use when overloading
an inserter. For example, the following extractor inputs 3-D coordinates. Notice that it
also prompts the user.

// Get three-dimensional values - three_d extractor.
istream &operator>>(istream &stream, three_d &obj)
{
cout << "Enter X,Y,Z values: ";
stream >> obj.x >> obj.y >> obj.z;
return stream;

}

An extractor must return a reference to an object of type istream. Also, the first
parameter must be a reference to an object of type istream. This is the stream that
occurs on the left side of the >>. The second parameter is a reference to the variable
that will be receiving input. Because it is a reference, the second parameter can be
modified when information is input.

The skeleton of an extractor is shown here:

istream &operator>>(istream &stream, object_type &obj)
{
// put your extractor code here
return stream;

}

The following program demonstrates the extractor for objects of type three_d:

// Demonstrate a custom extractor.
#include <iostream>
using namespace std;

class three_d {

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 425

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

int x, y, z; // 3-D coordinates
public:
three_d(int a, int b, int c) { x = a; y = b; z = c; }
friend ostream &operator<<(ostream &stream, three_d obj);
friend istream &operator>>(istream &stream, three_d &obj);

} ;

// Display X, Y, Z coordinates - three_d inserter.
ostream &operator<<(ostream &stream, three_d obj)
{
stream << obj.x << ", ";
stream << obj.y << ", ";
stream << obj.z << "\n";
return stream; // return the stream

}

// Get three dimensional values - three_d extractor.
istream &operator>>(istream &stream, three_d &obj)
{
cout << "Enter X,Y,Z values: ";
stream >> obj.x >> obj.y >> obj.z;
return stream;

}

int main()
{
three_d a(1, 2, 3);

cout << a;

cin >> a;
cout << a;

return 0;
}

A sample run is shown here.

1, 2, 3
Enter X,Y,Z values: 4 5 6
4, 5, 6

Like inserters, extractor functions cannot be members of the class they are designed to
operate upon. They can be friends or simply independent functions.

Except for the fact that you must return a reference to an object of type istream, you
can do anything you like inside an extractor function. However, for the sake of structure
and clarity, it is best to use extractors only for input operations.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C I/O Versus C++ I/O
As you may know, C++’s predecessor, C, has one of the most flexible yet powerful I/O
systems of any of the structured languages. (In fact, it may be safe to say that among
the world’s structured programming languages, C’s I/O system is unparalleled.) Given
the power of C’s I/O functions, you might be asking yourself why C++ defined its own
I/O system, since for the most part it duplicates the one already contained in C. The
answer is that the C I/O system provides no support for user-defined objects. For
example, if you create the following structure in C:

struct my_struct {
int count;
char s[80];
double balance;

} cust;

there is no way to customize or extend C’s I/O system so that it knows about, and can
perform I/O operations directly on, an object of type my_struct. However, since objects
are at the core of object-oriented programming, it makes sense that C++ has an I/O system
that can be made aware of objects that you create. Thus, a new, object-oriented I/O
system was invented for C++. As you have seen, C++’s approach to I/O allows you to
overload the << and >> operators so that they know about classes that you create.

One other point: Because C++ is a superset of C, all of C’s I/O system is included in
C++. (See Appendix A for an overview of C-based I/O.) Therefore, if you are migrating
C programs to C++, you won’t have to change all the I/O statements immediately.
The C-based statements will still compile and run. It is just that C-based I/O has no
object-oriented capabilities.

Formatted I/O
Up to this point, the format for inputting or outputting information has been left to
the defaults provided by the C++ I/O system. However, you can precisely control the
format of your data in either of two ways. The first way uses member functions of the
ios class. The second way uses a special type of function called a manipulator. We will
begin by looking at formatting that uses the ios member functions.

Formatting with the ios Member Functions
Each stream has associated with it a set of format flags that control the way information
is formatted by a stream. The ios class declares a bitmask enumeration called fmtflags,
in which the following values are defined. (Technically, these values are defined within
ios_base, which, as explained earlier, is a base class for ios.)

426 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 427

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

adjustfield floatfield right skipws

basefield hex scientific unitbuf

boolalpha internal showbase uppercase

dec left showpoint

fixed oct showpos

These values are used to set or clear the format flags. If you are using an older compiler,
then it may not define the fmtflags enumeration type. In this case, the format flags
will be encoded into a long integer.

When the skipws flag is set, leading whitespace characters (spaces, tabs, and newlines)
are discarded when performing input on a stream. When skipws is cleared, whitespace
characters are not discarded.

When the left flag is set, output is left justified. When the right flag is set, output is
right justified. When the internal flag is set, a numeric value is padded to fill a field
by inserting spaces between any sign or base character. If none of these flags is set,
output is right justified by default.

By default, numeric values are output in decimal. However, it is possible to change the
number base. Setting the oct flag causes output to be displayed in octal. Setting the
hex flag causes output to be displayed in hexadecimal. To return output to decimal,
set the dec flag.

Setting showbase causes the base of numeric values to be shown. For example, if the
conversion base is hexadecimal, the value 1F will be displayed as 0x1F.

By default, when scientific notation is displayed, the e is in lowercase. Also, when a
hexadecimal value is displayed, the x is in lowercase. When uppercase is set, these
characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values.

Setting showpoint causes a decimal point and trailing zeros to be displayed for all
floating point output—whether needed or not.

By setting the scientific flag, floating-point numeric values are displayed using scientific
notation. When fixed is set, floating-point values are displayed using normal notation.
When neither flag is set, the compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion operation.

When boolalpha is set, Booleans can be input or output by using the keywords true
and false.

Since it is common to refer to the oct, dec, and hex fields, they can be collectively
referred to as basefield. Similarly, the left, right, and internal fields can be referred
to as adjustfield. Finally, the scientific and fixed fields can be referenced as
floatfield.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

428 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

To set a flag, use the setf() function. This function is a member of ios. Its most
common form is shown here:

fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags
specified by flags. For example, to turn on the showbase flag, you can use this
statement:

stream.setf(ios::showbase);

Here, stream is the stream you want to affect. Notice the use of ios:: to qualify showbase.
Because showbase is an enumerated constant defined by the ios class, it must be
qualified by ios when it is referred to. This principle applies to all of the format flags.

The following program uses setf() to turn on both the showpos and scientific flags:

#include <iostream>
using namespace std;

int main()
{
cout.setf(ios::showpos);
cout.setf(ios::scientific);
cout << 123 << " " << 123.23 << " ";

return 0;
}

The output produced by this program is shown here:

+123 +1.232300e+002

You may OR together as many flags as you like in a single call. For example, by ORing
together scientific and showpos, as shown next, you can change the program so
that only one call is made to setf():

cout.setf(ios::scientific | ios::showpos);

To turn off a flag, use the unsetf() function, whose prototype is shown here:

void unsetf(fmtflags flags);

The flags specified by flags are cleared. (All other flags are unaffected.)

Sometimes it is useful to know the current flag settings. You can retrieve the current
flag values by using the flags() function, whose prototype is shown here:

fmtflags flags();

This function returns the current value of the flags relative to the invoking stream.

To set format
flags, call setf().

To clear format
flags, call
unsetf().

To obtain the
current flag
settings, call
flags().

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following form of flags() sets the flag values to those specified by flags, and
returns the previous flag values:

fmtflags flags(fmtflags flags);

To see how flags() and unsetf() work, examine this program. It includes a function
called showflags() that displays the state of the flags.

#include <iostream>
using namespace std;

void showflags(ios::fmtflags f);

int main()
{
ios::fmtflags f;

f = cout.flags();

showflags(f);
cout.setf(ios::showpos);
cout.setf(ios::scientific);

f = cout.flags();
showflags(f);

cout.unsetf(ios::scientific);

f = cout.flags();
showflags(f);

return 0;
}

void showflags(ios::fmtflags f)
{
long i;

for(i=0x4000; i; i = i >> 1)
if(i & f) cout << "1 ";
else cout << "0 ";

cout << "\n";
}

When run, the program produces the following output. (The precise output that you
see may differ because of implementation differences between compilers.)

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0 0 0 0 1

The C++ I/O System 429

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

430 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

In the foregoing program, notice that the type fmtflags is preceded by ios::. This is
necessary since fmtfags is a type defined by ios. In general, whenever you use the
name of a type or enumerated constant that is defined by a class, you must qualify it
with the name of the class.

Setting the Field Width, Precision, and Fill Characters
In addition to the formatting flags, you can also set the field width, the fill character,
and the number of digits of precision, by using these functions:

streamsize width(streamsize len);

char fill(char ch);

streamsize precision(streamsize num);

The width() function returns the current field width and sets the field width to len.
By default, the field width varies, depending upon the number of characters it takes to
hold the data. The fill() function returns the current fill character, which is a space
by default, and makes the current fill character the same as ch. The fill character is used
to pad output to fill a specified field width. The precision() function returns the
number of digits displayed after a decimal point and sets that value to num. (By default,
there are six digits of precision.) The streamsize type is defined as some form of integer.

Here is a program that demonstrates these three functions:

#include <iostream>
using namespace std;

int main()
{
cout.setf(ios::showpos);
cout.setf(ios::scientific);
cout << 123 << " " << 123.23 << "\n";

cout.precision(2); // two digits after decimal point
cout.width(10); // in a field of 10 characters
cout << 123 << " ";
cout.width(10); // set width to 10
cout << 123.23 << "\n";

cout.fill('#'); // fill using #
cout.width(10); // in a field of 10 characters
cout << 123 << " ";
cout.width(10); // set width to 10
cout << 123.23;

return 0;
}

The program displays this output:

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 431

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

+123 +1.232300e+002
+123 +1.23e+002

######+123 +1.23e+002

In some implementations, it is necessary to reset the field width before each output
operation. This is why width() is called repeatedly in the preceding program.

There are overloaded forms of width(), precision(), and fill() which obtain, but
do not change the current setting. These forms are shown here.

char fill();

streamsize width();

streamsize precision();

Using I/O Manipulators
The C++ I/O system includes a second way in which you can alter the format
parameters of a stream. This method uses special functions, called manipulators, that can
be included in an I/O expression. The standard manipulators are shown in Table 18-1.

Manipulator Purpose Input/Output

boolalpha Turns on boolapha flag. Input/Output

dec Turns on dec flag. Input/Output

endl Output a newline character and flush
the stream.

Output

ends Output a null. Output

fixed Turns on fixed flag. Output

flush Flush a stream. Output

hex Turns on hex flag. Input/Output

internal Turns on internal flag. Output

left Turns on left flag. Output

nobooalpha Turns off boolalpha flag. Input/Output

noshowbase Turns off showbase flag. Output

noshowpoint Turns off showpoint flag. Output

noshowpos Turns off showpos flag. Output

noskipws Turns off skipws flag. Input

nounitbuf Turns off unitbuf flag. OutputTable 18-1.

The Standard
C++ I/O
Manipulators

You can use a
manipulator to
embed formatting
instructions in an
I/O expression.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

432 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

To use those manipulators that take arguments, you must include <iomanip> in your
program.

A manipulator is used as part of a larger I/O expression. Here is a sample program that
uses manipulators to control the format of its output:

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
cout << setprecision(2) << 1000.243 << endl;
cout << setw(20) << "Hello there.";

return 0;
}

The output is shown here.

Manipulator Purpose Input/Output

nouppercase Turns off uppercase flag. Output

oct Turns on oct flag. Input/Output

resetiosflags(fmtflags f) Turns off the flags specified in f. Input/Output

right Turns on right flag. Output

scientific Turns on scientific flag. Output

setbase(int base) Sets the number base to base. Input/Output

setfill(int ch) Sets the fill character to ch. Output

setiosflags(fmtflags f) Turns on the flags specified in f. Input/Output

setprecision(int p) Sets the number of digits of precision. Output

setw(int w) Sets the field width to w. Output

showbase Turns on showbase flag. Output

showpoint Turns on showpoint flag. Output

showpos Turns on showpos flag. Output

skipws Turns on skipws flag. Input

unitbuf Turns on unitbuf flag. Output

uppercase Turns on uppercase flag. Output

ws Skips leading white space. InputTable 18-1.

The Standard
C++ I/O
Manipulators
(continued)

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 433

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

1e+003
Hello there.

Notice how the manipulators occur in the chain of I/O operations. Also, notice that
when a manipulator does not take an argument, such as endl in the example, it is not
followed by parentheses.

The following program uses setiosflags() to set the scientific and showpos flags:

#include <iostream>
#include <iomanip>
using namespace std;

int main()
{
cout << setiosflags(ios::showpos);
cout << setiosflags(ios::scientific);
cout << 123 << " " << 123.23;

return 0;
}

The output is shown here.

+123 +1.232300e+002

The program shown next uses ws to skip any leading whitespace when inputting a
string into s:

#include <iostream>
using namespace std;

int main()
{
char s[80];

cin >> ws >> s;
cout << s;

return 0;
}

Creating Your Own Manipulator Functions
You can create your own manipulator functions. There are two types of manipulator
functions: those that take arguments and those that don’t. The creation of parameterized
manipulators requires the use of techniques beyond the scope of this book. However, the
creation of parameterless manipulators is easily accomplished and is described here.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

434 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

All parameterless manipulator output functions have this skeleton:

ostream &manip_name(ostream &stream)
{
// your code here
return stream;

}

Here, manip_name is the name of the manipulator. It is important to understand that
even though the manipulator has as its single argument a pointer to the stream upon
which it is operating, no argument is specified when the manipulator is used in an
output expression.

The following program creates a manipulator called setup() that turns on left
justification, sets the field width to 10, and specifies that the dollar sign will be the
fill character:

#include <iostream>
#include <iomanip>
using namespace std;

ostream &setup(ostream &stream)
{
stream.setf(ios::left);
stream << setw(10) << setfill('$');
return stream;

}

int main()
{
cout << 10 << " " << setup << 10;

return 0;
}

Custom manipulators are useful for two reasons. First, you might need to perform an
I/O operation on a device for which none of the predefined manipulators applies—a
plotter, for example. In this case, creating your own manipulators will make it more
convenient when outputting to the device. Second, you may find that you are repeating
the same sequence of operations many times. You can consolidate these operations
into a single manipulator, as the foregoing program illustrates.

All parameterless input manipulator functions have this skeleton:

istream &manip_name(istream &stream)
{
// your code here
return stream;

}

For example, the following program creates the prompt() manipulator. It displays a
prompting message and then configures input to accept hexadecimal.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

#include <iostream>
#include <iomanip>
using namespace std;

istream &prompt(istream &stream)
{
cin >> hex;
cout << "Enter number using hex format: ";

return stream;
}

int main()
{
int i;

cin >> prompt >> i;
cout << i;

return 0;
}

Remember that it is crucial that your manipulator return stream. If this is not done,
then your manipulator cannot be used in a compound input or output expression.

File I/O
You can use the C++ I/O system to perform file I/O. In order to perform file I/O, you
must include the header <fstream> in your program. It defines several important
classes and values.

Opening and Closing a File
In C++, a file is opened by linking it to a stream. As you know, there are three types of
streams: input, output, and input/output. To open an input stream, you must declare
the stream to be of class ifstream. To open an output stream, it must be declared as
class ofstream. A stream that will be performing both input and output operations
must be declared as class fstream. For example, this fragment creates one input stream,
one output stream, and one stream capable of both input and output:

ifstream in; // input
ofstream out; // output
fstream both; // input and output

Once you have created a stream, one way to associate it with a file is by using open().
This function is a member of each of the three stream classes. The prototype for each is
shown here:

void ifstream::open(const char *filename,
ios::openmode mode = ios::in);

The C++ I/O System 435

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

open() opens
a file.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

436 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

void ofstream::open(const char *filename,
ios::openmode mode = ios::out | ios::trunc);

void fstream::open(const char *filename,
ios::openmode mode = ios::in | ios::out);

Here, filename is the name of the file; it can include a path specifier. The value of mode
determines how the file is opened. It must be one or more of the following values
defined by openmode, which is an enumeration defined by ios.

ios::app

ios::ate

ios::binary

ios::in

ios::out

ios::trunc

You can combine two or more of these values by ORing them together.

NOTE: Depending on your compiler, the mode parameter for fstream::open()
may not default to in | out. Therefore, you might need to specify this explicitly.

Including ios::app causes all output to that file to be appended to the end. This value
can be used only with files capable of output. Including ios::ate causes a seek to the
end of the file to occur when the file is opened. Although ios::ate causes a seek to
the end of the file, I/O operations can still occur anywhere within the file.

The ios::in value specifies that the file is capable of input. The ios::out value specifies
that the file is capable of output.

The ios::binary value causes a file to be opened in binary mode. By default, all files
are opened in text mode. In text mode, various character translations may take place,
such as carriage return, linefeed sequences being converted into newlines. When a file
is opened in binary mode, no such character translations will occur. Keep in mind
that any file, whether it contains formatted text or raw data, can be opened in either
binary or text mode. The only difference is whether character translations take place.

The ios::trunc value causes the contents of a preexisting file by the same name to be
destroyed, and the file is truncated to zero length. When creating an output stream
using ofstream, any preexisting file by that name is automatically truncated.

The following fragment opens a normal output file:

ofstream out;
out.open("test");

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 437

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

Since the mode parameter to open() defaults to a value appropriate to the type of
stream being opened, there is no need to specify its value in the preceding example.

If open() fails, the stream will evaluate to false when used in a Boolean expression.
You can make use of this fact to confirm that the open operation succeeded, by using
a statement like this:

if(!mystream) {
cout << "Cannot open file.\n";
// handle error

}

In general, you should always check the result of a call to open() before attempting
to access the file.

You can also check to see if you have successfully opened a file by using the
is_open() function, which is a member of fstream, ifstream, and ofstream.
It has this prototype:

bool is_open();

It returns true if the stream is linked to an open file, and false otherwise. For example,
the following checks if mystream is currently open:

if(!mystream.is_open()) {
cout << "File is not open.\n";
// ...

Although it is entirely proper to use the open() function for opening a file, most of
the time you will not do so because the ifstream, ofstream, and fstream classes
have constructors that automatically open the file. The constructors have the same
parameters and defaults as the open() function. Therefore, the most common way
you will see a file opened is shown in this example:

ifstream mystream("myfile"); // open file for input

If, for some reason, the file cannot be opened, the value of the associated stream
variable will be false.

To close a file, use the member function close(). For example, to close the file linked
to a stream called mystream, you would use this statement:

mystream.close();

The close() function takes no parameters and returns no value.

To close a file, call
close().

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

438 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

Reading and Writing Text Files
The easiest way to read from or write to a text file is to use the << and >> operators.
For example, this program writes an integer, a floating-point value, and a string to a
file called test:

// Write to file.
#include <iostream>
#include <fstream>
using namespace std;

int main()
{
ofstream out("test");
if(!out) {
cout << "Cannot open file.\n";
return 1;

}

out << 10 << " " << 123.23 << "\n";
out << "This is a short text file.";

out.close();

return 0;
}

The following program reads an integer, a float, a character, and a string from the file
created by the previous program:

// Read from file.
#include <iostream>
#include <fstream>
using namespace std;

int main()
{
char ch;
int i;
float f;
char str[80];

ifstream in("test");
if(!in) {
cout << "Cannot open file.\n";
return 1;

}

in >> i;
in >> f;
in >> ch;
in >> str;

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 439

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

cout << i << " " << f << " " << ch << "\n";
cout << str;

in.close();
return 0;

}

Keep in mind that when the >> operator is used for reading text files, certain character
translations occur. For example, whitespace characters are omitted. If you want to
prevent any character translations, you must open a file for binary access. Also remember
that when >> is used to read a string, input stops when the first whitespace character
is encountered.

Unformatted Binary I/O
Formatted text files (like those used in the preceding examples) are useful for a variety
of situations, but they do not have the flexibility of unformatted binary files. For this
reason, C++ supports a number of binary (sometimes called “raw”) file I/O functions
that can perform unformatted operations.

When performing binary operations on a file, be sure to open it using the ios::binary
mode specifier. Although the unformatted file functions will work on files opened for
text mode, some character translations may occur. Character translations negate the
purpose of binary file operations.

In general, there are two ways to write and read unformatted binary data to or from a
file. First, you can write a byte by using the member function put(), and read a byte
by using the member function get(). The second way uses C++’s block I/O functions:
read() and write(). Each way is examined here.

Using get() and put()
The get() function has many forms, but the most commonly used version is shown
next, along with that of put():

istream &get(char &ch);

ostream &put(char ch);

The get() function reads a single character from the associated stream and puts that
value in ch. It returns a reference to the stream. This value will be null if the end of
the file is reached. The put() function writes ch to the stream and returns a reference
to the stream.

The following program will display the contents of any file on the screen. It uses the
get() function.

// Display a file using get().
#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char *argv[])

get() reads a
character from a
file and put()
writes a character
to a file.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

440 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

{
char ch;

if(argc!=2) {
cout << "Usage: PR <filename>\n";
return 1;

}

ifstream in(argv[1], ios::in | ios::binary);
if(!in) {
cout << "Cannot open file.\n";
return 1;

}

while(in) { // in will be false when eof is reached
in.get(ch);
if(in) cout << ch;

}

in.close();

return 0;
}

When in reaches the end of the file, it will be false, causing the while loop to stop.

There is actually a more compact way to code the loop that reads and displays a file,
as shown here:

while(in.get(ch))
cout << ch;

This form works because get() returns the stream in, and in will be false when the
end of the file is encountered.

This program uses put() to write a string to a file:

// Use put() to write to a file.
#include <iostream>
#include <fstream>
using namespace std;

int main()
{
char *p = "hello there";

ofstream out("test", ios::out | ios::binary);
if(!out) {
cout << "Cannot open file.\n";
return 1;

}

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 441

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

while(*p) out.put(*p++);

out.close();

return 0;
}

Reading and Writing Blocks of Data
To read and write blocks of binary data, use the read() and write() member functions.
Their prototypes are shown here:

istream &read(char *buf, streamsize num);

ostream &write(const char *buf, int streamsize num);

The read() function reads num bytes from the associated stream and puts them in
the buffer pointed to by buf. The write() function writes num bytes to the associated
stream from the buffer pointed to by buf. As mentioned earlier, streamsize is defined
as some form of integer. It is capable of holding the largest number of bytes that can
be transferred in any one I/O operation.

The following program writes and then reads an array of integers:

// Use read() and write().
#include <iostream>
#include <fstream>
using namespace std;

int main()
{
int n[5] = {1, 2, 3, 4, 5};
register int i;

ofstream out("test", ios::out | ios::binary);
if(!out) {
cout << "Cannot open file.\n";
return 1;

}

out.write((char *) &n, sizeof n);

out.close();

for(i=0; i<5; i++) // clear array
n[i] = 0;

ifstream in("test", ios::in | ios::binary);
if(!in) {
cout << "Cannot open file.\n";
return 1;

}

read() inputs a
block of data, and
write() outputs a
block of data.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

442 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

in.read((char *) &n, sizeof n);

for(i=0; i<5; i++) // show values read from file
cout << n[i] << " ";

in.close();

return 0;
}

Note that the type casts inside the calls to read() and write() are necessary when
operating on a buffer that is not defined as a character array.

If the end of the file is reached before num characters have been read, then read()
simply stops, and the buffer will contain as many characters as were available. You
can find out how many characters have been read by using another member function,
called gcount(), which has this prototype:

streamsize gcount();

gcount() returns the number of characters read by the last input operation.

Detecting EOF
You can detect when the end of the file is reached by using the member function
eof(), which has this prototype:

bool eof();

It returns true when the end of the file has been reached; otherwise, it returns false.

The following program uses eof() to display the contents of a file on the screen:

// Detect end-of-file using eof().
#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char *argv[])
{
char ch;

if(argc!=2) {
cout << "Usage: PR <filename>\n";
return 1;

}

ifstream in(argv[1], ios::in | ios::binary);
if(!in) {
cout << "Cannot open file.\n";
return 1;

}

while(!in.eof()) { // use eof()

gcount() returns
the number of
characters read
by the last input
operation.

eof() detects
when the end of
the file has been
reached.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O System 443

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

in.get(ch);
if(!in.eof()) cout << ch;

}

in.close();

return 0;
}

A File Comparison Example
The following program illustrates the power and simplicity of the C++ file system. It
compares two files for equality. It does so by using the binary file functions read(),
eof(), and gcount(). The program first opens the files for binary operations. (This is
necessary to prevent character translations from being performed.) Next, it reads one
buffer at a time from each of the files and compares the contents. Since less than a full
buffer may be read, it uses the gcount() function to determine precisely how many
characters are in the buffers. As you can see, when using the C++ file functions, very
little code is needed to perform these operations.

// Compare files.
#include <iostream>
#include <fstream>
using namespace std;

int main(int argc, char *argv[])
{
register int i;

unsigned char buf1[1024], buf2[1024];

if(argc!=3) {
cout << "Usage: compfiles <file1> <file2>\n";
return 1;

}

ifstream f1(argv[1], ios::in | ios::binary);
if(!f1) {
cout << "Cannot open first file.\n";
return 1;

}
ifstream f2(argv[2], ios::in | ios::binary);
if(!f2) {
cout << "Cannot open second file.\n";
return 1;

}

cout << "Comparing files...\n";

do {
f1.read((char *) buf1, sizeof buf1);
f2.read((char *) buf2, sizeof buf2);

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

444 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

if(f1.gcount() != f2.gcount()) {
cout << "Files are of differing sizes.\n";
f1.close();
f2.close();
return 0;

}

// compare contents of buffers
for(i=0; i<f1.gcount(); i++)
if(buf1[i] != buf2[i]) {
cout << "Files differ.\n";
f1.close();
f2.close();
return 0;

}

} while(!f1.eof() && !f2.eof());

cout << "Files are the same.\n";

f1.close();
f2.close();

return 0;
}

Here is an experiment: The buffer size is hard-coded at 1024. As an exercise, change
this value to a const variable, and try different buffer sizes. Find the optimal buffer
size for your operating environment.

More Binary I/O Functions
In addition to the form shown earlier, the get() function is overloaded several
different ways. The prototypes for the three most commonly used overloaded forms
are shown here:

istream &get(char *buf, streamsize num);

istream &get(char *buf, streamsize num, char delim);

int get();

The first form reads characters into the array pointed to by buf until either num−1
characters have been read, a newline is found, or the end of the file has been
encountered. The array pointed to by buf will be null-terminated by get(). If the
newline character is encountered in the input stream, it is not extracted. Instead, it
remains in the stream until the next input operation.

The second form reads characters into the array pointed to by buf until either num−1
characters have been read, the character specified by delim has been found, or the end
of the file has been encountered. The array pointed to by buf will be null-terminated
by get(). If the delimiter character is encountered in the input stream, it is not extracted.
Instead, it remains in the stream until the next input operation.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The third overloaded form of get() returns the next character from the stream. The
character is contained in the low-order byte of the return value. Thus, the return value
of get() can be assigned to a char variable. The function returns EOF (a value that
indicates end-of-file) if the end of the file is encountered. EOF is defined by <iostream>.

One good use for get() is to read a string that contains spaces. As you know, when
you use >> to read a string, it stops reading when the first whitespace character is
encountered. This makes >> useless for reading a string containing spaces. However,
you can overcome this problem by using get(buf, num), as illustrated in this program:

// Use get() to read a string that contains spaces.
#include <iostream>
#include <fstream>
using namespace std;

int main()
{
char str[80];

cout << "Enter your name: ";
cin.get(str, 79);

cout << str << '\n';

return 0;
}

Here, the delimiter to get() is allowed to default to a newline. This makes get() act
much like the standard gets() function. However, the advantage to get() is that it
enables you to prevent user input from overrunning the receiving character array
because you can specify the maximum number of characters to read. This makes get()
much safer than gets() when reading user input.

Another function that performs input is getline(). It is a member of each input stream
class. Its prototypes are shown here:

istream &getline(char *buf, streamsize num);

istream &getline(char *buf, streamsize num, char delim);

The first form reads characters into the array pointed to by buf until either num−1
characters have been read, a newline character has been found, or the end of the file has
been encountered. The array pointed to by buf will be null-terminated by getline(). If
the newline character is encountered in the input stream, it is extracted, but is not put
into buf.

The second form reads characters into the array pointed to by buf until either num−1
characters have been read, the character specified by delim has been found, or the end
of the file has been encountered. The array pointed to by buf will be null-terminated
by getline(). If the delimiter character is encountered in the input stream, it is extracted,
but is not put into buf.

The C++ I/O System 445

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

getline() is
another C++
input function.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

As you can see, the two versions of getline() are virtually identical to the get(buf,
num) and get(buf, num, delim) versions of get(). Both read characters from
input and put them into the array pointed to by buf, until either num−1 characters
have been read or the delimiter character is encountered. The difference between
get() and getline() is that getline() reads and removes the delimiter from the
input stream; get() does not.

You can obtain the next character in the input stream without removing it from that
stream by using peek(). It has this prototype:

int peek();

peek() returns the next character in the stream, or EOF if the end of the file is
encountered. The character is returned in the low-order byte of the return value.
Thus, the return value of peek() can be assigned to a char variable.

You can return the last character read from a stream to that stream by using putback().
Its prototype is shown here,

istream &putback(char c);

where c is the last character read.

When output is performed, data is not immediately written to the physical device linked
to the stream. Instead, information is stored in an internal buffer until the buffer is full.
Only then are the contents of that buffer written to disk. However, you can force the
information to be physically written to disk, before the buffer is full, by calling flush().
Its prototype is shown here:

ostream &flush();

Calls to flush() might be warranted when a program is going to be used in adverse
environments (in situations where power outages occur frequently, for example).

Random Access
So far, files have always been read or written sequentially. But you can also access a file
in random order. In C++’s I/O system, you perform random access using the seekg()
and seekp() functions. Their most common forms are shown here:

istream &seekg(off_type offset, seekdir origin);

ostream &seekp(off_type offset, seekdir origin);

Here, off_type is an integer type defined by ios that is capable of containing the largest
valid value that offset can have. seekdir is an enumeration that has these values:

Value Meaning

ios::beg Beginning of file

ios::cur Current location

ios::end End of file

446 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

peek() obtains
the next character
in the input
stream.

putback() returns
a character to
the input stream.

flush() flushes an
output stream.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ I/O system manages two pointers associated with a file. One is the get pointer,
which specifies where in the file the next input operation will occur. The other is the
put pointer, which specifies where in the file the next output operation will occur.
Each time an input or an output operation takes place, the appropriate pointer is
automatically advanced. Using the seekg() and seekp() functions, it is possible to
access the file in a non-sequential fashion.

The seekg() function moves the associated file’s current get pointer offset number of
bytes from the specified origin. The seekp() function moves the associated file’s current
put pointer offset number of bytes from the specified origin.

Generally, random access I/O should be performed only on those files opened for
binary operations. The character translations that may occur on text files could cause
a position request to be out of sync with the actual contents of the file.

The following program demonstrates the seekp() function. It allows you to specify a
file name on the command line, followed by the specific byte that you want to change
in the file. The program then writes an X at the specified location. Notice that the file
must be opened for binary read/write operations.

// Demonstrate random access.
#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;

int main(int argc, char *argv[])
{
if(argc!=3) {
cout << "Usage: CHANGE <filename> <byte>\n";
return 1;

}

fstream out(argv[1], ios::in | ios::out | ios::binary);
if(!out) {
cout << "Cannot open file.\n";
return 1;

}

out.seekp(atoi(argv[2]), ios::beg);

out.put('X');
out.close();

return 0;
}

The next program uses seekg(). It displays the contents of a file, beginning with the
location you specify on the command line.

// Display a file from a given starting point.
#include <iostream>

The C++ I/O System 447

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

seekg() moves
the get pointer.
seekp() moves
the put pointer.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

448 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

#include <fstream>
#include <cstdlib>
using namespace std;

int main(int argc, char *argv[])
{
char ch;

if(argc!=3) {
cout << "Usage: NAME <filename> <starting location>\n";
return 1;

}

ifstream in(argv[1], ios::in | ios::binary);
if(!in) {
cout << "Cannot open file.\n";
return 1;

}

in.seekg(atoi(argv[2]), ios::beg);

while(in.get(ch))
cout << ch;

return 0;
}

You can determine the current position of each file pointer by using these functions:

pos_type tellg();

pos_type tellp();

Here, pos_type is a type defined by ios that is capable of holding the largest value
that either function can return.

There are overloaded versions of seekg() and seekp() that move the file pointers to
the location specified by the return values of tellg() and tellp(). Their prototypes
are shown here:

istream &seekg(pos_type position);

ostream &seekp(pos_type position);

Checking I/O Status
The C++ I/O system maintains status information about the outcome of each I/O
operation. The current status of an I/O stream is described in an object of type
iostate, which is an enumeration defined by ios that includes these members:

tellg() returns
the current get
location, and
tellp() returns
the current put
location.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

18

Name Meaning

ios::goodbit No error bits set.

ios::eofbit 1 when end-of-file is encountered; 0 otherwise

ios::failbit 1 when a (possibly) nonfatal I/O error has occurred; 0 otherwise

ios::badbit 1 when a fatal I/O error has occurred; 0 otherwise

There are two ways in which you can obtain I/O status information. First, you can call
the rdstate() function, which is a member of ios. It has this prototype:

iostate rdstate();

It returns the current status of the error flags. As you can probably guess from looking
at the preceding list of flags, rdstate() returns goodbit when no error has occurred.
Otherwise, an error flag is returned.

The other way you can determine if an error has occurred is by using one or more of
these ios member functions:

bool bad();

bool eof();

bool fail();

bool good();

The eof() function was discussed earlier. The bad() function returns true if badbit
is set. The fail() function returns true if failbit is set. The good() function returns
true if there are no errors. Otherwise, they return false.

Once an error has occurred, it may need to be cleared before your program continues.
To do this, use the ios member function clear(), whose prototype is shown here:

void clear(iostate flags = ios::goodbit);

If flags is goodbit (as it is by default), all error flags are cleared. Otherwise, set flags to
the settings you desire.

Before moving on, you might want to experiment with these status-reporting
functions by adding extended error-checking to the preceding file examples.

Customized I/O and Files
Earlier in this chapter, you learned how to overload the insertion and extraction operators
relative to your own classes. You also learned how to create your own manipulators. In
the examples, only console I/O was performed. However, because all C++ streams are the
same, the same overloaded inserter function, for example, can be used to output to the

The C++ I/O System 449

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

450 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 18

screen or to a file with no changes whatsoever. This is one of the most important and
useful features of C++’s approach to I/O.

The following program uses the overloaded three_d inserter to write coordinate
information to a file called threed.

/* Use overloaded inserter to write three_d
objects to a file. */

#include <iostream>
#include <fstream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates -- now private

public:
three_d(int a, int b, int c) { x = a; y = b; z = c; }
friend ostream &operator<<(ostream &stream, three_d obj);

};

// Display X, Y, Z coordinates - three_d inserter.
ostream &operator<<(ostream &stream, three_d obj)
{
stream << obj.x << ", ";
stream << obj.y << ", ";
stream << obj.z << "\n";
return stream; // return the stream

}

int main()
{
three_d a(1, 2, 3), b(3, 4, 5), c(5, 6, 7);
ofstream out("threed");

if(!out) {
cout << "Cannot open file.";
return 1;

}

out << a << b << c;

out.close();

return 0;
}

If you compare this version of the three_d inserter to the one shown earlier in this
chapter, you will find that no changes have been made to make it accommodate disk
files. Once you correctly define an inserter or extractor, it will work with any stream.

TIP: Before moving on to the next chapter, take some time to experiment with the
C++ I/O system. Specifically, try creating your own class and then defining an inserter and
extractor for it. Also, try creating your own manipulators.

P:\010Comp\Grnd-Up8\897-0\ch18.vp
Monday, March 03, 2003 11:36:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 19

Run-Time Type ID
and the Casting

Operators

451

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

This chapter discusses two features of C++ that support modern, object-oriented
programming: run-time type identification (or, RTTI for short) and a set of

four additional casting operators. Neither of these features was part of the original
specification for C++, but both were added to provide enhanced support for run-time
polymorphism. RTTI allows you to identify the type of an object during the execution
of your program. The casting operators give you safer, more controlled ways to cast.
As you will see, one of the casting operators, dynamic_cast, relates directly to RTTI,
so it makes sense to discuss casting operators and RTTI in the same chapter.

Run-Time Type Identification (RTTI)
Run-time type information may be new to you, because it is not found in
non-polymorphic languages, such as C. In non-polymorphic languages there is no
need for run-time type information because the type of each object is known at
compile time (i.e., when the program is written). However, in polymorphic languages
such as C++, there can be situations in which the type of an object is unknown at
compile time, because the precise nature of that object is not determined until the
program is executed. As you know, C++ implements polymorphism through the use
of class hierarchies, virtual functions, and base class pointers. A base class pointer
may be used to point to objects of the base class or any object derived from that base.
Thus, it is not always possible to know in advance what type of object will be pointed
to by a base pointer at any given moment in time. This determination must be made
at run time, by using run-time type identification.

To obtain an object’s type, use typeid. You must include the header <typeinfo>
in order to use typeid. The most commonly used form of typeid is shown here:

typeid(object)

Here, object is the object whose type you will be obtaining. It may be of any type,
including the built-in types and class types that you create. typeid returns a
reference to an object of type type_info that describes the type of object.

The type_info class defines the following public members:

bool operator==(const type_info &ob);

bool operator!=(const type_info &ob);

bool before(const type_info &ob);

const char *name();

The overloaded == and != provide for the comparison of types. The before() function
returns true if the invoking object is before ob in collation order. (This function is
mostly for internal use. Its return value has nothing to do with inheritance or class
hierarchies.) The name() function returns a pointer to the name of the type.

452 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

To obtain the
type of an object
at run time,
use typeid.

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

Run-Time Type ID and the Casting Operators 453

Here is a simple example that uses typeid:

// A simple example that uses typeid.
#include <iostream>
#include <typeinfo>
using namespace std;

class myclass {
// ...

};

int main()
{
int i, j;
float f;
myclass ob;

cout << "The type of i is: " << typeid(i).name();
cout << endl;
cout << "The type of f is: " << typeid(f).name();
cout << endl;
cout << "The type of ob is: " << typeid(ob).name();
cout << "\n\n";

if(typeid(i) == typeid(j))
cout << "The types of i and j are the same\n";

if(typeid(i) != typeid(f))
cout << "The types of i and f are not the same\n";

return 0;
}

The output produced by this program is shown here:

The type of i is: int
The type of f is: float
The type of ob is: class myclass

The types of i and j are the same
The types of i and f are not the same

Perhaps the most important use of typeid occurs when it is applied through a
pointer of a polymorphic base class. (Recall that a polymorphic class is one that
contains a virtual function.) In this case, it will automatically return the type of the
actual object being pointed to, which may be a base class object or an object derived
from that base. (Remember, a base class pointer can point to objects of the base class
or of any class derived from that base.) Thus, by using typeid, you can determine at

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

run time the type of the object that is being pointed to by a base class pointer. The
following program demonstrates this principle:

// An example that uses typeid on a polymorphic class hierarchy.
#include <iostream>
#include <typeinfo>
using namespace std;

class Base {
virtual void f() {}; // make Base polymorphic
// ...

};

class Derived1: public Base {
// ...

};

class Derived2: public Base {
// ...

};

int main()
{
Base *p, baseob;
Derived1 ob1;
Derived2 ob2;

p = &baseob;
cout << "p is pointing to an object of type ";
cout << typeid(*p).name() << endl;

p = &ob1;
cout << "p is pointing to an object of type ";
cout << typeid(*p).name() << endl;

p = &ob2;
cout << "p is pointing to an object of type ";
cout << typeid(*p).name() << endl;

return 0;
}

The output produced by this program is shown here:

p is pointing to an object of type class Base
p is pointing to an object of type class Derived1
p is pointing to an object of type class Derived2

When typeid is applied to a base class pointer of a polymorphic type, the type of
object pointed to will be determined at run time, as the output produced by the
program shows.

454 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In all cases, when typeid is applied to a pointer of a non-polymorphic class hierarchy,
then the base type of the pointer is obtained. That is, no determination of what that
pointer is actually pointing to is made. As an experiment, comment out the virtual
function f() in Base and observe the results. As you will see, the type of each object
will be Base because that is the type of the pointer.

Since typeid is commonly applied to a dereferenced pointer (i.e., one to which the *
operator has been applied), a special exception has been created to handle the
situation in which the pointer being dereferenced is null. In this case, typeid throws
a bad_typeid exception.

References to an object of a polymorphic class hierarchy work the same as pointers.
When typeid is applied to a reference of a polymorphic class, it will return the type
of the object actually being referred to, which may be a derived type. The circumstance
where you will most often make use of this feature is when objects are passed to functions
by reference. For example, in the following program, the function WhatType()
declares a reference parameter to objects of type Base. This means that WhatType()
can be passed references to objects of type Base or any class derived from Base.
When the typeid operator is applied to this parameter, it returns the actual type of
the object being passed.

// Use a reference with typeid.
#include <iostream>
#include <typeinfo>
using namespace std;

class Base {
virtual void f() {}; // make Base polymorphic
// ...

};

class Derived1: public Base {
// ...

};

class Derived2: public Base {
// ...

};

// Demonstrate typeid with a reference parameter.
void WhatType(Base &ob)
{
cout << "ob is referencing an object of type ";
cout << typeid(ob).name() << endl;

}

int main()
{
int i;
Base baseob;
Derived1 ob1;

Run-Time Type ID and the Casting Operators 455

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:19 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Derived2 ob2;

WhatType(baseob);
WhatType(ob1);
WhatType(ob2);

return 0;
}

The output produced by this program is shown here:

ob is referencing an object of type class Base
ob is referencing an object of type class Derived1
ob is referencing an object of type class Derived2

There is a second form of typeid that takes a type name as its argument. This form is
shown here:

typeid(type-name)

For example, the following statement is perfectly acceptable:

cout << typeid(int).name();

The main use of this form of typeid is to obtain a type_info object that describes
the specified type, so that it can be used in a type-comparison statement.

A Simple Application of Run-Time Type ID
The following program hints at the power of RTTI. It uses a modified version of the
figure class hierarchy from Chapter 15, which defines classes that compute the area
of a circle, triangle, and rectangle. In the program, the function called factory()
creates an instance of a circle, triangle, or rectangle, and returns a pointer to it.
(A function that produces objects is sometimes called an object factory.) The specific
type of object created is determined by the outcome of a call to rand(), C++’s
random-number generator. Thus, there is no way to know in advance what type
of object will be generated. The program creates ten objects and counts the number
of each type of figure. Since any type of figure may be generated by a call to
factory(), the program relies upon typeid to determine which type of object
has actually been made.

// Demonstrating run-time type id.
#include <iostream>
#include <cstdlib>
using namespace std;

class figure {
protected:
double x, y;

public:

456 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Run-Time Type ID and the Casting Operators 457

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

figure(double i, double j) {
x = i;
y = j;

}
virtual double area() = 0;

} ;

class triangle : public figure {
public:
triangle(double i, double j) : figure(i, j) {}
double area() {
return x * 0.5 * y;

}
};

class rectangle : public figure {
public:
rectangle(double i, double j) : figure(i, j) {}
double area() {
return x * y;

}
};

class circle : public figure {
public:
circle(double i, double j=0) : figure(i, j) {}
double area() {
return 3.14 * x * x;

}
} ;

// A factory for objects derived from figure.
figure *factory()
{
switch(rand() % 3) {
case 0: return new circle(10.0);
case 1: return new triangle(10.1, 5.3);
case 2: return new rectangle(4.3, 5.7);

}
return 0;

}

int main()
{
figure *p; // pointer to base class
int i;

int t=0, r=0, c=0;

// generate and count objects
for(i=0; i<10; i++) {
p = factory(); // generate an object

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

458 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

cout << "Object is " << typeid(*p).name();
cout << ". ";

// count it
if(typeid(*p) == typeid(triangle)) t++;
if(typeid(*p) == typeid(rectangle)) r++;
if(typeid(*p) == typeid(circle)) c++;

// display its area
cout << "Area is " << p->area() << endl;

}

cout << endl;
cout << "Objects generated:\n";
cout << " Triangles: " << t << endl;
cout << " Rectangles: " << r << endl;
cout << " Circles: " << c << endl;

return 0;
}

Sample output is shown here:

Object is class rectangle. Area is 24.51
Object is class rectangle. Area is 24.51
Object is class triangle. Area is 26.765
Object is class triangle. Area is 26.765
Object is class rectangle. Area is 24.51
Object is class triangle. Area is 26.765
Object is class circle. Area is 314
Object is class circle. Area is 314
Object is class triangle. Area is 26.765
Object is class rectangle. Area is 24.51

Objects generated:
Triangles: 4
Rectangles: 4
Circles: 2

typeid Can Be Applied to Template Classes
The typeid operator can be applied to template classes. The type of an object that
is an instance of a template class is, in part, determined by what data is used for its
generic data when the object is instantiated. Two instances of the same template
class that are created using different data are, therefore, different types. Here is a
simple example:

// Using typeid with templates.
#include <iostream>
using namespace std;

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

template <class T> class myclass {
T a;

public:
myclass(T i) { a = i; }
// ...

};

int main()
{
myclass<int> o1(10), o2(9);
myclass<double> o3(7.2);

cout << "Type of o1 is ";
cout << typeid(o1).name() << endl;

cout << "Type of o2 is ";
cout << typeid(o2).name() << endl;

cout << "Type of o3 is ";
cout << typeid(o3).name() << endl;

cout << endl;

if(typeid(o1) == typeid(o2))
cout << "o1 and o2 are the same type\n";

if(typeid(o1) == typeid(o3))
cout << "Error\n";

else
cout << "o1 and o3 are different types\n";

return 0;
}

The output produced by this program is shown here:

Type of o1 is class myclass<int>
Type of o2 is class myclass<int>
Type of o3 is class myclass<double>

o1 and o2 are the same type
o1 and o3 are different types

As you can see, even though two objects are of the same template class type, if their
parameterized data does not match, they are not equivalent types. In the program,
o1 is of type myclass<int> and o3 is of type myclass<double>. Thus, they are of
different types.

Here is one more example that applies typeid to template classes. It is a modified
version of the figures program from the previous section. In this case, figure has
been converted into a template class.

Run-Time Type ID and the Casting Operators 459

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

460 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

// Template version of the figure hierarchy.
#include <iostream>
#include <cstdlib>
using namespace std;

template <class T> class figure {
protected:
T x, y;

public:
figure(T i, T j) {
x = i;
y = j;

}
virtual T area() = 0;

} ;

template <class T> class triangle : public figure<T> {
public:
triangle(T i, T j) : figure<T>(i, j) {}
T area() {
return x * 0.5 * y;

}
};

template <class T> class rectangle : public figure<T> {
public:
rectangle(T i, T j) : figure<T>(i, j) {}
T area() {
return x * y;

}
};

template <class T> class circle : public figure<T> {
public:
circle(T i, T j=0) : figure<T>(i, j) {}
T area() {
return 3.14 * x * x;

}
} ;

// A factory for objects derived from figure.
figure<double> *generator()
{
switch(rand() % 3) {
case 0: return new circle<double>(10.0);
case 1: return new triangle<double>(10.1, 5.3);
case 2: return new rectangle<double>(4.3, 5.7);

}
return 0;

}

int main()

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

{
figure<double> *p;
int i;
int t=0, c=0, r=0;

// generate and count objects
for(i=0; i<10; i++) {
p = generator();

cout << "Object is " << typeid(*p).name();
cout << ". ";

// count it
if(typeid(*p) == typeid(triangle<double>)) t++;
if(typeid(*p) == typeid(rectangle<double>)) r++;
if(typeid(*p) == typeid(circle<double>)) c++;

cout << "Area is " << p->area() << endl;
}

cout << endl;
cout << "Objects generated:\n";
cout << " Triangles: " << t << endl;
cout << " Rectangles: " << r << endl;
cout << " Circles: " << c << endl;

return 0;
}

Here is sample output:

Object is class rectangle<double>. Area is 24.51
Object is class rectangle<double>. Area is 24.51
Object is class triangle<double>. Area is 26.765
Object is class triangle<double>. Area is 26.765
Object is class rectangle<double>. Area is 24.51
Object is class triangle<double>. Area is 26.765
Object is class circle<double>. Area is 314
Object is class circle<double>. Area is 314
Object is class triangle<double>. Area is 26.765
Object is class rectangle<double>. Area is 24.51

Objects generated:
Triangles: 4
Rectangles: 4
Circles: 2

Run-time type identification is not something that every program will use. However,
when you are working with polymorphic types, it allows you to know what type of
object is being operated upon in any given situation.

Run-Time Type ID and the Casting Operators 461

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Casting Operators
C++ defines five casting operators. The first is the traditional-style cast, described
earlier in this book. It has been part of C++ from the start. The remaining four
casting operators were added a few years ago. They are dynamic_cast, const_cast,
reinterpret_cast, and static_cast. These operators give you additional control
over how casting takes place. Each is examined here.

dynamic_cast
Perhaps the most important of the new casting operators is the dynamic_cast. The
dynamic_cast performs a run-time cast that verifies the validity of a cast. If at the
time dynamic_cast is executed, the cast is invalid, then the cast fails. The general
form of dynamic_cast is shown here:

dynamic_cast<target-type> (expr)

Here, target-type specifies the target type of the cast, and expr is the expression being
cast into the new type. The target type must be a pointer or reference type, and the
expression being cast must evaluate to a pointer or reference. Thus, dynamic_cast
may be used to cast one type of pointer into another, or one type of reference into
another.

The purpose of dynamic_cast is to perform casts on polymorphic types. For example,
given two polymorphic classes B and D, with D derived from B, a dynamic_cast
can always cast a D* pointer into a B* pointer. This is because a base pointer can
always point to a derived object. But, a dynamic_cast can cast a B* pointer into
a D* pointer only if the object being pointed to actually is a D object. In general,
dynamic_cast will succeed if the pointer (or reference) being cast is a pointer (or
reference) to either an object of the target type or an object derived from the target
type. Otherwise, the cast will fail. If the cast fails, then dynamic_cast evaluates to
null if the cast involves pointers. If a dynamic_cast on reference types fails, a
bad_cast exception is thrown.

Here is a simple example. Assume that Base is a polymorphic class and that Derived
is derived from Base.

Base *bp, b_ob;
Derived *dp, d_ob;

bp = &d_ob; // base pointer points to Derived object
dp = dynamic_cast<Derived *> (bp); // cast to derived pointer OK
if(dp) cout << "Cast OK";

Here, the cast from the base pointer bp to the derived pointer dp works because bp
is actually pointing to a Derived object. Thus, this fragment displays Cast OK. But
in the next fragment, the cast fails because bp is pointing to a Base object, and it is
illegal to cast a base pointer into a derived pointer unless the object being pointed to
actually is a derived object.

462 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

dynamic_cast
performs a
run-time cast on
polymorphic types.

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Run-Time Type ID and the Casting Operators 463

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

bp = &b_ob; // base pointer points to Base object
dp = dynamic_cast<Derived *> (bp); // error
if(!dp) cout << "Cast Fails";

Because the cast fails, this fragment displays Cast Fails.

The following program demonstrates the various situations that dynamic_cast
can handle:

// Demonstrate dynamic_cast.
#include <iostream>
using namespace std;

class Base {
public:
virtual void f() { cout << "Inside Base\n"; }
// ...

};

class Derived : public Base {
public:
void f() { cout << "Inside Derived\n"; }

};

int main()
{
Base *bp, b_ob;
Derived *dp, d_ob;

dp = dynamic_cast<Derived *> (&d_ob);
if(dp) {
cout << "Cast from Derived * to Derived * OK.\n";
dp->f();

} else
cout << "Error\n";

cout << endl;

bp = dynamic_cast<Base *> (&d_ob);
if(bp) {
cout << "Cast from Derived * to Base * OK.\n";
bp->f();

} else
cout << "Error\n";

cout << endl;

bp = dynamic_cast<Base *> (&b_ob);
if(bp) {
cout << "Cast from Base * to Base * OK.\n";
bp->f();

} else

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

464 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

cout << "Error\n";

cout << endl;

dp = dynamic_cast<Derived *> (&b_ob);
if(dp)
cout << "Error\n";

else
cout << "Cast from Base * to Derived * not OK.\n";

cout << endl;

bp = &d_ob; // bp points to Derived object
dp = dynamic_cast<Derived *> (bp);
if(dp) {
cout << "Casting bp to a Derived * OK\n" <<
"because bp is really pointing\n" <<
"to a Derived object.\n";

dp->f();
} else
cout << "Error\n";

cout << endl;

bp = &b_ob; // bp points to Base object
dp = dynamic_cast<Derived *> (bp);
if(dp)
cout << "Error";

else {
cout << "Now casting bp to a Derived *\n" <<
"is not OK because bp is really \n" <<
"pointing to a Base object.\n";

}

cout << endl;

dp = &d_ob; // dp points to Derived object
bp = dynamic_cast<Base *> (dp);
if(bp) {
cout << "Casting dp to a Base * is OK.\n";
bp->f();

} else
cout << "Error\n";

return 0;
}

The program produces the following output:

Cast from Derived * to Derived * OK.
Inside Derived

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Cast from Derived * to Base * OK.
Inside Derived

Cast from Base * to Base * OK.
Inside Base

Cast from Base * to Derived * not OK.

Casting bp to a Derived * OK
because bp is really pointing
to a Derived object.
Inside Derived

Now casting bp to a Derived *
is not OK because bp is really
pointing to a Base object.

Casting dp to a Base * is OK.
Inside Derived

The dynamic_cast operator can sometimes be used instead of typeid in certain
cases. For example, again assuming that Base is a polymorphic base class for Derived,
the following fragment will assign dp the address of the object pointed to by bp if,
and only if, the object really is a Derived object:

Base *bp;
Derived *dp;
// ...
if(typeid(*bp) == typeid(Derived)) dp = (Derived *) bp;

In this case, a traditional-style cast is used to actually perform the cast. This is safe
because the if statement checks the legality of the cast by using typeid before the
cast actually occurs. However, a better way to accomplish this is to replace the typeid
operators and the if statement with this dynamic_cast:

dp = dynamic_cast<Derived *> (bp);

Since dynamic_cast succeeds only if the object being cast is either already an object
of the target type or an object derived from the target type, after this statement executes,
dp will contain either a null or a pointer to an object of type Derived. Since
dynamic_cast succeeds only if the cast is legal, it can simplify the logic in certain
situations. The following program illustrates how a dynamic_cast can be used to
replace typeid. It performs the same set of operations twice: first with typeid, then
using dynamic_cast.

// Use dynamic_cast to replace typeid.
#include <iostream>
#include <typeinfo>
using namespace std;

Run-Time Type ID and the Casting Operators 465

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

466 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

class Base {
public:
virtual void f() {}

};

class Derived : public Base {
public:
void derivedOnly() {
cout << "Is a Derived Object\n";

}
};

int main()
{
Base *bp, b_ob;
Derived *dp, d_ob;

// ************************************
// use typeid
// ************************************
bp = &b_ob;
if(typeid(*bp) == typeid(Derived)) {
dp = (Derived *) bp;
dp->derivedOnly();

}
else
cout << "Cast from Base to Derived failed.\n";

bp = &d_ob;
if(typeid(*bp) == typeid(Derived)) {
dp = (Derived *) bp;
dp->derivedOnly();

}
else
cout << "Error, cast should work!\n";

// ************************************
// use dynamic_cast
// ************************************
bp = &b_ob;
dp = dynamic_cast<Derived *> (bp);
if(dp) dp->derivedOnly();
else
cout << "Cast from Base to Derived failed.\n";

bp = &d_ob;
dp = dynamic_cast<Derived *> (bp);
if(dp) dp->derivedOnly();
else

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

cout << "Error, cast should work!\n";

return 0;
}

As you can see, the use of dynamic_cast simplifies the logic required to cast a base
pointer into a derived pointer. The output from the program is shown here:

Cast from Base to Derived failed.
Is a Derived Object
Cast from Base to Derived failed.
Is a Derived Object

One last point: The dynamic_cast operator can also be used with template classes.

const_cast
The const_cast operator is used to explicitly override const and/or volatile in a
cast. The target type must be the same as the source type, except for the alteration of
its const or volatile attributes. The most common use of const_cast is to remove
const-ness. The general form of const_cast is shown here:

const_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast
into the new type.

The following program demonstrates const_cast:

// Demonstrate const_cast.
#include <iostream>
using namespace std;

void f(const int *p)
{
int *v;

// cast away const-ness.
v = const_cast<int *> (p);

*v = 100; // now, modify object through v
}

int main()
{
int x = 99;

Run-Time Type ID and the Casting Operators 467

const_cast
casts away
const and/or
volatile
attributes.

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

468 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

cout << "x before call: " << x << endl;
f(&x);
cout << "x after call: " << x << endl;

return 0;
}

The output produced by this program is shown here:

x before call: 99
x after call: 100

As you can see, x was modified by f(), even though the parameter to f() was
specified as a const pointer.

It must be stressed that the use of const_cast to cast away const-ness is a potentially
dangerous feature. Use it with care.

One other point: Only const_cast can cast away const-ness. That is, neither
dynamic_cast, static_cast, nor reinterpret_cast can alter the const-ness of
an object.

static_cast
The static_cast operator performs a non-polymorphic cast. It can be used for
any standard conversion. No run-time checks are performed. Its general form is

static_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast
into the new type.

The static_cast operator is essentially a substitute for the original cast operator. It
simply performs a non-polymorphic cast. For example, the following casts a float
into an int:

// Use static_cast.
#include <iostream>
using namespace std;

int main()
{
int i;
float f;

static_cast
performs a
non-polymorphic
cast.

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Run-Time Type ID and the Casting Operators 469

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

19

f = 199.22F;

i = static_cast<int> (f);

cout << i;

return 0;
}

reinterpret_cast
The reinterpret_cast operator converts one type into a fundamentally different
type. For example, it can change a pointer into an integer, and an integer into a
pointer. It can also be used for casting inherently incompatible pointer types. Its
general form is

reinterpret_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast
into the new type.

The following program demonstrates the use of reinterpret_cast:

// An example that uses reinterpret_cast.
#include <iostream>
using namespace std;

int main()
{
int i;
char *p = "This is a string";

i = reinterpret_cast<int> (p); // cast pointer to integer

cout << i;

return 0;
}

Here, reinterpret_cast converts the pointer p into an integer. This conversion
represents a fundamental type change and is a good use of reinterpret_cast.

reinterpret_cast
performs a
fundamental
type change.

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Traditional Cast Versus the Four Casting Operators
It may have occurred to you that the four casting operators described in this chapter
fully replace the need for the traditional cast. This realization usually gives rise to
the question: “Should I use the traditional cast or one of the four newer casting
operators?” The trouble is that there is no general rule that all programmers currently
accept. Because the additional casts were created to add an element of safety to the
inherently risky act of casting one type of data into another, many C++ programmers
feel that they should be used exclusively. Certainly, nothing would be wrong with
using this approach. Other programmers feel that the traditional cast has served
programmers well over many years and should not be abandoned lightly. For example,
some would argue that in the case of simple, relatively safe casts (such as those required
by the read() and write() I/O functions described in the preceding chapter), the
traditional cast is fully appropriate.

There is one point upon which there is no disagreement: When performing casts on
polymorphic types, dynamic_cast should definitely be employed.

470 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 19

P:\010Comp\Grnd-Up8\897-0\ch19.vp
Monday, March 03, 2003 11:41:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 20

Namespaces and
Other Advanced

Topics

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

471

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This chapter describes namespaces and several other advanced features, including
explicit constructors, function pointers, static members, const member

functions, an alternative member initialization syntax, the pointer-to-member
operators, the asm keyword, linkage specification, and conversion functions.

Namespaces
Namespaces were briefly introduced in Chapter 2. Their purpose is to localize the
names of identifiers to avoid name collisions. In the C++ programming environment,
there has been an explosion of variable, function, and class names. Prior to the invention
of namespaces, all of these names competed for slots in the global namespace, and
many conflicts arose. For example, if your program defined a function called
toupper(), it could (depending upon its parameter list) override the standard library
function toupper(), because both names would be stored in the global namespace.
Name collisions were compounded when two or more third-party libraries were used
by the same program. In this case, it was possible—even likely—that a name defined
by one library would conflict with the same name defined by the other library. The
situation can be particularly troublesome for class names. For example, if your program
defines a class called VideoMode, and a library used by your program defines a class
by the same name, a conflict will arise.

The creation of the namespace keyword was a response to these problems. Because
it localizes the visibility of names declared within it, a namespace allows the same
name to be used in different contexts, without conflicts arising. Perhaps the most
noticeable beneficiary of namespace is the C++ standard library. Prior to namespace,
the entire C++ library was defined within the global namespace (which was, of course,
the only namespace). With the addition of namespace, the C++ library is now defined
within its own namespace, called std, which reduces the chance of name collisions.
You can also create your own namespaces within your program to localize the visibility
of any names that you think may cause conflicts. This is especially important if you
are creating class or function libraries.

Namespace Fundamentals
The namespace keyword allows you to partition the global namespace by creating
a declarative region. In essence, a namespace defines a scope. The general form of
namespace is shown here:

namespace name {
// declarations

}

Anything defined within a namespace statement is within the scope of that namespace.

The following program is an example of a namespace. It localizes the names used
to implement a simple countdown counter class. In the namespace are defined the
counter class, which implements the counter, and the variables upperbound and
lowerbound, which contain the upper and lower bounds that apply to all counters.

472 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

A namespace
defines a
declarative region.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Namespaces and Other Advanced Topics 473

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {
int count;

public:
counter(int n) {
if(n <= upperbound) count = n;
else count = upperbound;

}

void reset(int n) {
if(n <= upperbound) count = n;

}

int run() {
if(count > lowerbound) return count--;
else return lowerbound;

}
};

}

Here, upperbound, lowerbound, and the class counter are part of the scope
defined by the CounterNameSpace namespace.

Inside a namespace, identifiers that are declared within that namespace can be
referred to directly, without any namespace qualification. For example, within
CounterNameSpace, the run() function can refer directly to lowerbound in
the statement:

if(count > lowerbound) return count--;

However, since namespace defines a scope, you need to use the scope resolution
operator to refer to objects declared within a namespace from outside that
namespace. For example, to assign the value 10 to upperbound from code outside
CounterNameSpace, you must use this statement:

CounterNameSpace::upperbound = 10;

Or, to declare an object of type counter from outside CounterNameSpace, you
use a statement like this:

CounterNameSpace::counter ob;

In general, to access a member of a namespace from outside its namespace, precede
the member’s name with the name of the namespace, followed by the scope
resolution operator.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here is a program that demonstrates the use of the CounterNamespace:

// Demonstrate a namespace.
#include <iostream>
using namespace std;

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {
int count;

public:
counter(int n) {
if(n <= upperbound) count = n;
else count = upperbound;

}

void reset(int n) {
if(n <= upperbound) count = n;

}

int run() {
if(count > lowerbound) return count--;
else return lowerbound;

}
};

}

int main()
{
CounterNameSpace::upperbound = 100;
CounterNameSpace::lowerbound = 0;

CounterNameSpace::counter ob1(10);
int i;

do {
i = ob1.run();
cout << i << " ";

} while(i > CounterNameSpace::lowerbound);
cout << endl;

CounterNameSpace::counter ob2(20);

do {
i = ob2.run();
cout << i << " ";

} while(i > CounterNameSpace::lowerbound);
cout << endl;

ob2.reset(100);
CounterNameSpace::lowerbound = 90;

474 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

do {
i = ob2.run();
cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

return 0;
}

Notice that the declaration of a counter object and the references to upperbound
and lowerbound are qualified by CounterNameSpace. However, once an object
of type counter has been declared, it is not necessary to further qualify it or any of
its members. Thus, ob1.run() can be called directly; the namespace has already
been resolved.

There may be more than one namespace declaration of the same name. This allows a
namespace to be split over several files, or even to be separated within the same file.
For example:

namespace NS {
int i;

}

// ...

namespace NS {
int j;

}

Here, NS is split into two pieces. However, the contents of each piece are still within
the same namespace, i.e., NS.

A namespace must be declared outside of all other scopes. This means that you cannot
declare namespaces that are localized to a function, for example. However, one
namespace can be nested within another.

using
As you can imagine, if your program includes frequent references to the members of a
namespace, having to specify the namespace and the scope resolution operator each
time you need to refer to one quickly becomes a tedious chore. The using statement
was invented to alleviate this problem. The using statement has these two general
forms:

using namespace name;

using name::member;

In the first form, name specifies the name of the namespace you want to access. All of
the members defined within the specified namespace are brought into view (i.e., they
become part of the current namespace) and may be used without qualification. In the
second form, only a specific member of the namespace is made visible. For example,

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

Namespaces and Other Advanced Topics 475

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

using brings a
namespace
into view.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

476 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

assuming CounterNameSpace, as shown above, the following using statements
and assignments are valid:

using CounterNameSpace::lowerbound; // only lowerbound is visible
lowerbound = 10; // OK because lowerbound is visible

using namespace CounterNameSpace; // all members are visible
upperbound = 100; // OK because all members are now visible

The following program illustrates using by reworking the counter example from the
previous section:

// Demonstrate using.
#include <iostream>
using namespace std;

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {
int count;

public:
counter(int n) {
if(n <= upperbound) count = n;
else count = upperbound;

}

void reset(int n) {
if(n <= upperbound) count = n;

}

int run() {
if(count > lowerbound) return count--;
else return lowerbound;

}
};

}

int main()
{
// use only upperbound from CounterNameSpace
using CounterNameSpace::upperbound;

// now, no qualification needed to set upperbound
upperbound = 100;

// qualification still needed for lowerbound, etc.
CounterNameSpace::lowerbound = 0;

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Namespaces and Other Advanced Topics 477

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

CounterNameSpace::counter ob1(10);
int i;

do {
i = ob1.run();
cout << i << " ";

} while(i > CounterNameSpace::lowerbound);
cout << endl;

// Now, use entire CounterNameSpace
using namespace CounterNameSpace;

counter ob2(20);

do {
i = ob2.run();
cout << i << " ";

} while(i > lowerbound);
cout << endl;

ob2.reset(100);
lowerbound = 90;
do {
i = ob2.run();
cout << i << " ";

} while(i > lowerbound);

return 0;
}

This program illustrates one other important point: Using one namespace does not
override another. When you bring a namespace into view, it simply adds its names to
whatever other namespaces are currently in effect. Thus, by the end of the program,
both std and CounterNameSpace have been added to the global namespace.

Unnamed Namespaces
There is a special type of namespace, called an unnamed namespace, that allows you
to create identifiers that are unique within a file. It has this general form:

namespace {
// declarations

}

Unnamed namespaces allow you to establish unique identifiers that are known
only within the scope of a single file. That is, within the file that contains the
unnamed namespace, the members of that namespace may be used directly, without
qualification. But outside the file, the identifiers are unknown.

An unnamed
namespace
restricts
identifiers
to the file in
which they
are declared.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As mentioned earlier in this book, using static is one way to restrict the scope of a
global name to the file in which it is declared. For example, consider the following
two files that are part of the same program:

File One File Two

static int k;
void f1() {
k = 99; // OK

}

extern int k;
void f2() {
k = 10; // error

}

Because k is defined in File One, it may be used in File One. In File Two, k is specified
as extern, which means that its name and type are known, but that k itself is not
actually defined. When these two files are linked, the attempt to use k within File Two
results in an error because there is no definition for k. By preceding k with static in
File One, its scope is restricted to that file and it is not available to File Two.

Although the use of static global declarations is still allowed in C++, a better way to
localize an identifier to a file is to use an unnamed namespace. For example:

File One File Two

namespace {
int k;

}
void f1() {
k = 99; // OK

}

extern int k;
void f2() {
k = 10; // error

}

Here, k is also restricted to File One. The use of the unnamed namespace rather than
static is recommended for new code.

Typically, you will not need to create namespaces for most small to medium sized
programs. However, if you will be creating libraries of reusable code, or if you want to
ensure the widest portability, then consider wrapping your code within a namespace.

The std Namespace
Standard C++ defines its entire library in its own namespace, called std. This is the
reason that most of the programs in this book have included the following statement:

using namespace std;

This causes the std namespace to be brought into the current namespace, which gives
you direct access to the names of the functions and classes defined within the library,
without having to qualify each one with std::.

478 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

The std
namespace is
the one used by
the C++ library.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Of course, you can explicitly qualify each name with std::, if you like. For example,
the following program does not bring the library into the global namespace:

// Use explicit std:: qualification.
#include <iostream>

int main()
{
double val;

std::cout << "Enter a number: ";

std::cin >> val;

std::cout << "This is your number: ";
std::cout << val;

return 0;
}

Here, cout and cin are both explicitly qualified by their namespace. That is, to write
to standard output, you must specify std::cout, and to read from standard input,
you must use std::cin.

You may not want to bring the standard C++ library into the global namespace if your
program will be making only limited use of it. However, if your program contains
hundreds of references to library names, then including std in the current namespace
is far easier than qualifying each name individually.

If you are using only a few names from the standard library, it may make more sense
to specify a using statement for each individually. The advantage to this approach is
that you can still use those names without an std:: qualification, but you will not be
bringing the entire standard library into the global namespace. For example:

// Bring only a few names into the global namespace.
#include <iostream>

// gain access to cout and cin
using std::cout;
using std::cin;

int main()
{
double val;

cout << "Enter a number: ";

cin >> val;
cout << "This is your number: ";
cout << val;

Namespaces and Other Advanced Topics 479

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

return 0;
}

Here, cin and cout may be used directly, but the rest of the std namespace has not
been brought into view.

As explained, the original C++ library was defined in the global namespace. If you
will be converting older C++ programs, then you will need to either include a using
namespace std statement or qualify each reference to a library member with std::.
This is especially important if you are replacing old .h header files with the modern
headers. Remember, the old .h headers put their contents into the global namespace.
The modern headers put their contents into the std namespace.

Pointers to Functions
A particularly confusing, yet powerful, feature of C++ is the function pointer. Even
though a function is not a variable, it still has a physical location in memory that
can be assigned to a pointer. The address assigned to the pointer is the entry point
of the function. (This is the address that is used when the function is called.) Once
a pointer points to a function, the function can be called through that pointer.
Function pointers also allow functions to be passed as arguments to other functions.

The address of a function is obtained by using the function’s name, without any
parentheses or arguments. (This is similar to the way an array’s address is obtained
when only the array name, without indices, is specified.) If you assign the address
of a function to a pointer, then you can call that function through the pointer. For
example, study the following program. It contains two functions, vline() and
hline(), which draw vertical and horizontal lines of a specified length on the screen.

#include <iostream>
using namespace std;

void vline(int i), hline(int i);

int main()
{
void (*p)(int i);

p = vline; // point to vline()

(*p)(4); // call vline()

p = hline; // point to hline()

(*p)(3); // call hline()

return 0;
}

void hline(int i)

480 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

A function pointer
points to the
entry point of
the function.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
for(;i; i--) cout << "-";
cout << "\n";

}

void vline(int i)
{
for(; i; i--) cout << "|\n";

}

Here is the output.

|
|
|
|

Let’s examine this program in detail. The first line after main() declares p as a
pointer to a function that takes one integer argument and returns no value. It does
not in any way specify what that function is. All it does is create a pointer that can be
used to point to a function of that type. Because of the C++ precedence rules, the
parentheses around the *p are necessary.

The next line assigns to p the address of vline(). The line after that actually calls
vline() with an argument of 4. The program then assigns the address of hline()
to p and calls hline() by using the pointer.

In the program, when a function is called through a pointer, the following form is used:

(*p)(4);

However, the function pointed to by p can be called using the simpler syntax,
shown here:

p(4);

The only reason that you will frequently see the first style is that it tips off anyone
reading your code that a function is being called through a pointer called p, rather
a function named p being called. Other than that, they are equivalent.

Although the preceding example uses a function pointer in a trivial manner for the
sake of illustration, function pointers have very important uses. One of these uses
is to allow a function to be passed the address of another function. An important
example of this is the qsort() function, which is found in C++’s standard library.
The qsort() function is a sorting function, based upon the Quicksort algorithm,
that sorts the contents of an array. Its prototype is shown here:

void qsort(void *start, size_t length, size_t size,
int (*compare) (const void *, const void *));

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

Namespaces and Other Advanced Topics 481

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The prototype for qsort() is in <cstdlib>, which also defines the type size_t, which
is essentially an unsigned int. To use qsort(), you must pass a pointer to the start
of the array of objects that you want sorted in start, the length of the array in length,
the width of each element (in bytes) in size, and a pointer to a comparison function.

The comparison function used by qsort() compares two elements. It must return less
than zero if the first argument points to a value that is less than the second, zero if
they are equal, and greater than zero if the first argument points to a value greater
than the second.

To see how qsort() can be used, try this program:

#include <iostream>
#include <cstdlib>
#include <cstring>
using namespace std;

int comp(const void *a, const void *b);

int main()
{
char str[] = "Function pointers provide flexibility.";

qsort(str, strlen(str), 1, comp);
cout << "sorted string: " << str;

return 0;
}

int comp(const void *a, const void *b)
{
return * (char *) a - * (char *) b;

}

Here is the output.

sorted string: .Fbcdeeefiiiiiillnnnooopprrstttuvxy

This program sorts the string str into ascending order. Since qsort() is passed all the
information it needs, including a pointer to the comparison function, it can be used
to sort any type of data. For example, the following program sorts an array of integers.
To ensure portability, it uses sizeof to find the width of an integer.

#include <iostream>
#include <cstdlib>
using namespace std;

int comp(const void *a, const void *b);

int main()
{

482 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

qsort() is the
C++ standard
library sorting
function.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

int num[] = {10, 4, 3, 6, 5 ,7 ,8};
int i;

qsort(num, 7, sizeof(int), comp);

for(i=0; i<7; i++)
cout << num[i] << ' ';

return 0;
}

int comp(const void *a, const void *b)
{
return * (int *) a - * (int *) b;

}

Although function pointers may still be somewhat confusing to you, with a little
practice and thought, you should have no trouble using them. There is one more
aspect to function pointers, however, that you need to know about; it concerns
overloaded functions.

Finding the Address of an Overloaded Function
Finding the address of an overloaded function is a bit more complex than obtaining
the address of a single function. Since there are two or more versions of an overloaded
function, there must be some mechanism that determines which specific version’s
address is obtained. The solution is both elegant and effective. When obtaining
the address of an overloaded function, it is the way the pointer is declared that
determines which overloaded function’s address will be obtained. In essence, the
pointer’s declaration is compared to those of the overloaded functions. The function
whose declaration matches is the one whose address is obtained.

The following sample program contains two versions of a function called space().
The first version outputs count number of spaces to the screen. The second version
outputs count number of whatever type of character is passed to ch. In main(),
two function pointers are declared. The first one is specified as a pointer to a function
having only one integer parameter. The second is declared as a pointer to a function
taking two parameters.

/* Illustrate assigning function pointers to
overloaded functions. */

#include <iostream>
using namespace std;

// Output count number of spaces.
void space(int count)
{
for(; count; count--) cout << ' ';

}

Namespaces and Other Advanced Topics 483

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

484 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

// Output count number of chs.
void space(int count, char ch)
{
for(; count; count--) cout << ch;

}

int main()
{
/* Create a pointer to void function with

one int parameter. */
void (*fp1)(int);

/* Create a pointer to void function with
one int parameter and one character parameter. */

void (*fp2)(int, char);

fp1 = space; // gets address of space(int)

fp2 = space; // gets address of space(int, char)

fp1(22); // output 22 spaces - same as (*fp1)(22)
cout << "|\n";

fp2(30, 'x'); // output 30 xs - same as (*fp2)(30, 'x')
cout << "|\n";

return 0;
}

The output is shown here.

|
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|

As the comments illustrate, the compiler is able to determine which overloaded
function to obtain the address of, based upon how fp1 and fp2 are declared.

To review: When you assign the address of an overloaded function to a function
pointer, it is the declaration of the pointer that determines which function’s address
is assigned. Further, the declaration of the function pointer must exactly match one,
and only one, of the overloaded functions. If it does not, ambiguity will be introduced,
causing a compile-time error.

Static Class Members
The keyword static can be applied to members of a class. When you declare a
member of a class as static, you are telling the compiler that no matter how many
objects of the class are created, there is only one copy of the static member. That is,

A single static
class member
is shared by
all objects of
that class.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Namespaces and Other Advanced Topics 485

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

a static member is shared by all objects of the class. All static data is initialized to
zero when the first object is created, if no other initialization is present.

When you declare a static data member within a class, you are not defining it. Instead,
you must provide a global definition for it elsewhere, outside the class. This is done by
redeclaring the static variable, using the scope resolution operator to identify which
class it belongs to. This causes storage to be allocated for the static variable.

Here is an example that uses a static member. Examine the program and try to
understand how it works.

#include <iostream>
using namespace std;

class ShareVar {
static int num;

public:
void setnum(int i) { num = i; };
void shownum() { cout << num << " "; }

};

int ShareVar::num; // define num

int main()
{
ShareVar a, b;

a.shownum(); // prints 0
b.shownum(); // prints 0

a.setnum(10); // set static num to 10

a.shownum(); // prints 10
b.shownum(); // also prints 10

return 0;
}

Notice that the static integer num is both declared inside the ShareVar class and
defined as a global variable. As stated earlier, this is necessary because the declaration
of num inside ShareVar does not allocate storage for the variable. C++ initializes
num to 0 since no other initialization is given. This is why the first calls to shownum()
both display 0. Next, object a sets num to 10. Next, both a and b use shownum()
to display its value. Because there is only one copy of num shared by a and b, both
cause the value 10 to be displayed.

REMEMBER: When you declare a member of a class as static, you are causing
only one copy of that member to be created; it will then be shared by all objects of
the class.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

486 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

When a static variable is public, it can be referred to directly through its class name,
without reference to any specific object. (Of course, it can still be referred to through
an object, too.) For example, consider this version of ShareVar:

class ShareVar {
public:
static int num;
void setnum(int i) { num = i; };
void shownum() { cout << num << " "; }

};

In this verison, num is public. This enables you to access num directly, as the following
statement shows.

ShareVar::num = 100;

Here, the value of num is set independently of any object by using its class name and
the scope resolution operator. Furthermore, this statement is valid even before any
objects of type ShareVar exist! Thus, you can obtain or set the value of a static
class member before creating any objects.

Although you may not see an immediate need for static members, as you continue
to write programs in C++, you will find them very useful in certain situations, because
they allow you to avoid the use of global variables.

It is also possible for a member function to be declared as static, but this usage is
not common. A member function declared as static may only access other static
members of its class. (Of course, a static member function may access non-static
global data and functions.) A static member function does not have a this pointer.
Virtual static member functions are not allowed. Also, they cannot be declared as
const or volatile. A static member function can be invoked by an object of its
class, or it may be called independently of any object, using the class name and the
scope resolution operator.

const Member Functions and mutable
Class member functions may be declared as const, which causes this to be treated
as a const pointer. This means that a const function cannot modify the object
on which it is called. Also, a const object may not invoke a non-const member
function. However, a const member function can be called by either const or
non-const objects.

To specify a member function as const, use the form shown in the following example:

class X {
int some_var;

public:
int f1() const; // const member function

};

A const member
function cannot
modify the object
that invoked it.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

As you can see, the const follows the function’s parameter declaration.

The purpose of declaring a member function as const is to prevent it from modifying
the object that invokes it. For example, consider the following program:

/*
Demonstrate const member functions.
This program won't compile.

*/
#include <iostream>
using namespace std;

class Demo {
int i;

public:
int geti() const {
return i; // ok

}

void seti(int x) const {
i = x; // error!

}
};

int main()
{
Demo ob;

ob.seti(1900);
cout << ob.geti();

return 0;
}

This program will not compile because seti() is declared as const. This means that
it is not allowed to modify the invoking object. Since it attempts to change i, the
program is in error. In contrast, since geti() does not attempt to modify i, it is
perfectly acceptable.

Sometimes there will be one or more members of a class that you want a const
function to be able to modify, even though you don’t want the function to be able
to modify any of its other members. You can accomplish this through the use of
mutable. It overrides const-ness. That is, a mutable member can be modified by
a const member function. For example:

// Demonstrate mutable.
#include <iostream>
using namespace std;

class Demo {
mutable int i;

Namespaces and Other Advanced Topics 487

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

488 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

int j;
public:
int geti() const {
return i; // ok

}

void seti(int x) const {
i = x; // now, OK.

}

/* The following function won't compile.
void setj(int x) const {
j = x; // Still Wrong!

}
*/
};

int main()
{
Demo ob;

ob.seti(1900);
cout << ob.geti();

return 0;
}

Here, i is specified as mutable, so it may be changed by the seti() function. However,
j is not mutable and setj() is unable to modify its value.

Explicit Constructors
C++ defines the keyword explicit, which is used to handle a special-case condition
that can occur when certain types of constructors are used. To understand the purpose
of explicit, consider the following program:

#include <iostream>
using namespace std;

class myclass {
int a;

public:
myclass(int x) { a = x; }
int geta() { return a; }

};

int main()
{
myclass ob(4);

cout << ob.geta();

To create a
non-converting
constructor,
use explicit.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

return 0;
}

Here, the constructor for myclass takes one parameter. Pay special attention to how
ob is declared in main(). The value 4, specified in the parentheses following ob, is
the argument that is passed to myclass()’s parameter x, which is used to initialize a.
This is the form of initialization that we have been using since the start of this book.
However, there is an alternative. For example, the following statement also initializes
a to 4:

myclass ob = 4; // automatically converts into myclass(4)

As the comment suggests, this form of initialization is automatically converted into
a call to the myclass constructor, with 4 being the argument. That is, the preceding
statement is handled by the compiler as if it were written like this:

myclass ob(4);

In general, any time that you have a constructor that requires only one argument,
you can use either ob(x) or ob = x to initialize an object. The reason for this is that
whenever you create a constructor that takes one argument, you are also implicitly
creating a conversion from the type of that argument to the type of the class.

If you do not want implicit conversions to be made, you can prevent them by using
explicit. The explicit specifier applies only to constructors. A constructor specified
as explicit will be used only when an initialization uses the normal constructor
syntax. It will not perform any automatic conversion. For example, by declaring the
myclass constructor as explicit, the automatic conversion will not be supplied.
Here is myclass() declared as explicit:

#include <iostream>
using namespace std;

class myclass {
int a;

public:
explicit myclass(int x) { a = x; }
int geta() { return a; }

};

Now, only constructors of the form

myclass ob(110);

will be allowed.

Namespaces and Other Advanced Topics 489

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An Interesting Benefit from
Implicit Constructor Conversion
The automatic conversion from the type of a constructor’s argument into a call to the
constructor, itself, has interesting implications. For example consider the following:

#include <iostream>
using namespace std;

class myclass {
int num;

public:
myclass(int i) { num = i; }
int getnum() { return num; }

};

int main()
{
myclass o(10);

cout << o.getnum() << endl; // displays 10

// now, use implicit conversion to assign new value
o = 1000;

cout << o.getnum() << endl; // displays 1000

return 0;
}

Notice that o is assigned a new value using the statement:

o = 1000;

This works because of the implicit conversion that is created from type int to type
myclass by the myclass constructor. Of course, if myclass() had been declared
explicit, then the preceding statement would not work.

The Member Initialization Syntax
Example code throughout the preceding chapters has initialized member variables
inside the constructor for their class. For example, the following program contains

490 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the myclass class, which has two integer data members called numA and numB.
These member variables are initialized inside myclass’ constructor.

#include <iostream>
using namespace std;

class myclass {
int numA;
int numB;

public:
/* Initialize numA and numB inside the myclass constructor

using normal syntax. */
myclass(int x, int y) {
numA = x;
numB = y;

}

int getNumA() { return numA; }
int getNumB() { return numB; }

};

int main()
{
myclass ob1(7, 9), ob2(5, 2);

cout << "Values in ob1 are " << ob1.getNumB() <<
" and " << ob1.getNumA() << endl;

cout << "Values in ob2 are " << ob2.getNumB() <<
" and " << ob2.getNumA() << endl;

return 0;
}

The output is shown here.

Values in ob1 are 9 and 7
Values in ob2 are 2 and 5

Assigning initial values to member variables numA and numB inside the constructor,
as myclass() does, is the usual approach, and is the way that member initialization
is accomplished for many, many classes. However, this approach won’t work in all
cases. For example, if numA and numB were specified as const, like this

class myclass {
const int numA; // const member
const int numB; // const member

then they could not be given values by the myclass constructor because const
variables must be initialized and cannot be assigned values after the fact. Similar
problems arise when using reference members, which must be initialized, and when

Namespaces and Other Advanced Topics 491

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

492 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

using class members that don’t have default constructors. To solve these types of
problems, C++ supports an alternative member initialization syntax, which gives a
class member an initial value when an object of the class is created.

The member initialization syntax is similar to that used to call a base class constructor.
Here is the general form.

constructor(arg-list) : member1(initializer),
member2(initializer),
// ...
memberN(initializer)

{
// body of construcor

}

The members that you want to initialize are specified after the class’ constructor,
separated from the constructor’s name and argument list by a colon. You can mix
calls to base class constructors with member initializations in the same list.

Here is myclass rewritten so that numA and numB are const members which
are given values using the member initialization syntax.

#include <iostream>
using namespace std;

class myclass {
const int numA; // const member
const int numB; // const member

public:
// Initialize numA and numB using initialization syntax.
myclass(int x, int y) : numA(x), numB(y) { }

int getNumA() { return numA; }
int getNumB() { return numB; }

};

int main()
{
myclass ob1(7, 9), ob2(5, 2);

cout << "Values in ob1 are " << ob1.getNumB() <<
" and " << ob1.getNumA() << endl;

cout << "Values in ob2 are " << ob2.getNumB() <<
" and " << ob2.getNumA() << endl;

return 0;
}

This program produces the same output as the preceding verison. However, notice
how numA and numB are initialized by this statement:

myclass(int x, int y) : numA(x), numB(y) { }

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here, numA is initialized with the value passed in x, and numB is initialized with
the value passed in y. Even though numA and numB are now const, they can be
given initial values when a myclass object is created because the member
initialization syntax is used.

Using the asm Keyword
Although C++ is a comprehensive and powerful programming language, there are a
few highly specialized situations that it cannot handle. (For example, there is no C++
statement that disables interrupts.) To accommodate special situations, C++ provides
a “trap door” that allows you to drop into assembly code at any time, bypassing the
C++ compiler entirely. This “trap door” is the asm statement. Using asm, you can
embed assembly language directly into your C++ program. This assembly code is
compiled without any modification, and it becomes part of your program’s code at
the point at which the asm statement occurs.

The general form of the asm keyword is shown here,

asm (“op-code”);

where op-code is the assembly language instruction that will be embedded in your
program. However, several compilers also allow the following forms of asm:

asm instruction ;

asm instruction newline

asm {
instruction sequence

}

Here, instruction is any valid assembly language instruction. Because of the
implementation-specific nature of asm, you must check the documentation that
came with your compiler for details.

At the time of this writing, Microsoft’s Visual C++ uses _ _asm for embedding
assembly code. It is otherwise similar to asm.

CAUTION: A thorough working knowledge of assembly language programming
is required for using the asm statement. If you are not proficient with assembly
language, it is best to avoid using asm, because very nasty errors may result.

Linkage Specification
In C++, you can specify how a function is linked into your program. By default,
functions are linked as C++ functions. However, by using a linkage specification, you

Namespaces and Other Advanced Topics 493

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

Assembly code
is embedded
directly into a
C++ program
by using the
asm keyword.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

494 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

can cause a function to be linked for a different type of language. The general form
of a linkage specifier is shown here,

extern “language” function-prototype

where language denotes the desired language. All C++ compilers support both C and
C++ linkage. Some will also allow linkage specifiers for Fortran, Pascal, or BASIC.
(You will need to check the documentation for your compiler.)

This program causes myCfunc() to be linked as a C function:

#include <iostream>
using namespace std;

extern "C" void myCfunc();

int main()
{
myCfunc();

return 0;
}

// This will link as a C function.
void myCfunc()
{
cout << "This links as a C function.\n";

}

NOTE: The extern keyword is a necessary part of the linkage specification.
Further, the linkage specification must be global; it cannot be used inside of a
function.

You can specify more than one function at a time by using this form of the linkage
specification:

extern “language” {
prototypes

}

Linkage specifications are rare, and you will probably not need to use one. Its main
use is to allow third-party routines that are written in another language to be used by
a C++ program.

The linkage
specifier allows
you to determine
how a function
is linked.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

Namespaces and Other Advanced Topics 495

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

The .* and –>* Pointer-to-Member Operators
C++ allows you to generate a special type of pointer that “points” generically to a
member of a class, not to a specific instance of that member in an object. This sort
of pointer is called a pointer to a class member or a pointer-to-member, for short. A
pointer to a member is not the same as a normal C++ pointer. Instead, a pointer to
a member provides only an offset into an object of the member’s class at which that
member can be found. Since member pointers are not true pointers, the . and –>
cannot be applied to them. To access a member of a class given a member pointer,
you must use the special pointer-to-member operators .* and –>*.

If the preceding paragraph seems a bit confusing, the following example should help
clear things up. This program displays the summation of the number 7. It accesses
the function sum_it() and the variable sum by using member pointers.

// Pointer-to-member example.
#include <iostream>
using namespace std;

class myclass {
public:
int sum;
void myclass::sum_it(int x);

};

void myclass::sum_it(int x) {
int i;

sum = 0;
for(i=x; i; i--) sum += i;

}

int main()
{
int myclass::*dp; // pointer to an integer class member
void (myclass::*fp)(int x); // pointer to member function
myclass c;

dp = &myclass::sum; // get address of data
fp = &myclass::sum_it; // get address of function

(c.*fp)(7); // compute summation of 7
cout << "summation of 7 is " << c.*dp;

return 0;
}

The output is shown here.

summation of 7 is 28

The pointer-
to-member
operators allow
you to access
a class member
through a pointer
to that member.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inside main(), this program creates two member pointers: dp, which will point to
the variable sum, and fp, which will point to the function sum_it(). Note carefully
the syntax of each declaration. The scope resolution operator is used to specify which
class is being referred to. The program also creates an object of myclass, called c.

Next, the program obtains the addresses of sum and sum_it() and assigns them to
dp and fp, respectively. As stated earlier, these addresses are really just offsets into
an object of myclass, at which point sum and sum_it() will be found. Next, the
program uses the function pointer fp to call the sum_it() function of c. The extra
parentheses are necessary in order to correctly associate the .* operator. Finally, the
program displays the summed value by accessing c’s sum through dp.

When you are accessing a member of an object using an object or a reference, you
must use the .* operator. However, if you are using a pointer to the object, you need
to use the –>* operator, as illustrated in this version of the preceding program:

#include <iostream>
using namespace std;

class myclass {
public:
int sum;
void myclass::sum_it(int x);

};

void myclass::sum_it(int x) {
int i;

sum = 0;
for(i=x; i; i--) sum += i;

}

int main()
{
int myclass::*dp; // pointer to an integer class member
void (myclass::*fp)(int x); // pointer to member function
myclass *c, d; // c is now a pointer to an object

c = &d; // give c the address of an object

dp = &myclass::sum; // get address of data
fp = &myclass::sum_it; // get address of function

(c->*fp)(7); // now, use ->* to call function
cout << "summation of 7 is " << c->*dp; // use ->*

return 0;
}

In this version, c is now a pointer to an object of type myclass, and the –>* operator
is used to access sum and sum_it().

496 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Namespaces and Other Advanced Topics 497

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

20

Remember that the pointer-to-member operators are designed for special-case
applications. You will not need them in your normal, day-to-day programming tasks.

Creating Conversion Functions
Sometimes you will want to freely mix a class that you have created with other types
of data in an expression. Although overloaded operator functions can provide a
means of mixing types, sometimes a simple type conversion is all that is needed. In
this case, you can use a type conversion function to convert your class into a type
that is compatible with that of the rest of the expression. The general format of a type
conversion function is

operator type() {return value;}

Here, type is the target type that you are converting to, and value is the value after
conversion. A conversion function must be a member of the class for which it is
defined.

To illustrate how to create a conversion function, let’s use the three_d class once
again. Suppose that you want to be able to convert an object of type three_d into an
integer so that it can be used in an integer expression. Further, the conversion will
take place by using the product of the three dimensions. To accomplish this, you will
use a conversion function that looks like this:

operator int() { return x * y * z; }

Here is a program that illustrates how the conversion function works:

#include <iostream>
using namespace std;

class three_d {
int x, y, z; // 3-D coordinates

public:
three_d(int a, int b, int c) { x = a; y = b; z = c; }

three_d operator+(three_d op2) ;
friend ostream &operator<<(ostream &stream, three_d &obj);

operator int() {return x * y * z; }
} ;

// Display X, Y, Z coordinates - three_d inserter.
ostream &operator<<(ostream &stream, three_d &obj)
{
stream << obj.x << ", ";
stream << obj.y << ", ";
stream << obj.z << "\n";
return stream; // return the stream

}

A conversion
function
automatically
converts a
class type into
another type.

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

three_d three_d::operator+(three_d op2)
{
three_d temp(0, 0, 0);

temp.x = x+op2.x;
temp.y = y+op2.y;
temp.z = z+op2.z;
return temp;

}

int main()
{
three_d a(1, 2, 3), b(2, 3, 4);

cout << a << b;

cout << b+100; // displays 124 because of conversion to int
cout << "\n";

a = a + b; // add two three_d objects - no conversion

cout << a; // displays 3, 5, 7

return 0;
}

The program displays this output:

1, 2, 3
2, 3, 4
124
3, 5, 7

As the program illustrates, when a three_d object is used in an integer expression,
such as cout << b+100, the conversion function is applied to the object. In this
specific case, the conversion function returns the value 24, which is then added to
100. However, when no conversion is needed, as in a = a+b, the conversion function
is not called.

Once you have created a conversion function, it will be called whenever that conversion
is required, including when an object is passed as a parameter to a function. For example,
the three_d-to-int conversion function is also called if a three_d object is passed to
the standard abs() function, because abs() requires an integer argument.

REMEMBER: You can create different conversion functions to meet different
needs. You could define one that converts three_d to double or long, for example.
Each will be applied automatically. Conversion functions further help you integrate
new class types that you create into your C++ programming environment.

498 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 20

P:\010Comp\Grnd-Up8\897-0\ch20.vp
Friday, February 28, 2003 4:22:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER 21

Introducing the
Standard Template

Library

499

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This chapter explores what is considered by many to be the most important feature
added to C++ in recent years: the Standard Template Library. The inclusion of the

Standard Template Library, or STL, was one of the major efforts that took place during
the standardization of C++. The STL provides general-purpose, templatized classes and
functions that implement many popular and commonly used algorithms and data
structures. For example, it includes support for vectors, lists, queues, and stacks. It also
defines various functions that access them. Because the STL is constructed from template
classes, the algorithms and data structures can be applied to nearly any type of data.

The STL is a complex piece of software engineering that uses some of C++’s most
sophisticated features. To understand and use the STL, you must be comfortable
with all of the material in the preceding chapters. Specifically, you must feel at home
with templates. Frankly, the template syntax that describes the STL can seem quite
intimidating—although it looks more complicated than it actually is. While there is
nothing in this chapter that is any more difficult than the material in the rest of this
book, don’t be surprised or dismayed if you find the STL confusing at first. Just be
patient, study the examples, and don’t let the unfamiliar syntax override the STL’s
basic simplicity.

The STL is a large library and not all of its features can be described in this chapter.
In fact, a full description of the STL and all of its features, nuances, and programming
techniques fill an entire book. The overview presented here is intended to familiarize
you with its basic operation, design philosophy, and programming fundamentals.
After working through this chapter, you will be able to easily explore the remainder
of the STL on your own.

This chapter also describes another important C++ class: string. The string class defines
a string data type which allows you to work with character strings much like you do with
other data types: using operators. The string class is closely related to the STL.

An Overview of the STL
Although the Standard Template Library is large and its syntax is, at times, rather
intimidating, it is actually quite easy to use once you understand how it is constructed
and what elements it employs. Therefore, before looking at any code examples, an
overview of the STL is warranted.

At the core of the Standard Template Library are three foundational items: containers,
algorithms, and iterators. These items work in conjunction with one another to provide
off-the-shelf solutions to a variety of programming problems.

Containers are objects that hold other objects. There are several different types of
containers. For example, the vector class defines a dynamic array, queue creates a
queue, and list provides a linear list. In addition to the basic containers, the STL also
defines associative containers, which allow efficient retrieval of values based on keys.
For example, a map provides access to values with unique keys. Thus, a map stores a
key/value pair and allows a value to be retrieved given its key.

Each container class defines a set of functions that may be applied to the container.
For example, a list container includes functions that insert, delete, and merge
elements. A stack includes functions that push and pop values.

500 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

The STL is a set
of general-purpose
template classes.

Containers are
objects that hold
other objects.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Algorithms act on the contents of containers. They include capabilities for initializing,
sorting, searching, and transforming the contents of containers. Many algorithms
operate on a range of elements within a container.

Iterators are objects that act, more or less, like pointers. They give you the ability to
cycle through the contents of a container in much the same way that you would use
a pointer to cycle through an array. There are five types of iterators:

Iterator Access Allowed
Random Access Store and retrieve values. Elements may be accessed randomly.
Bidirectional Store and retrieve values. Forward and backward moving.
Forward Store and retrieve values. Forward moving only.
Input Retrieve, but not store values. Forward moving only.
Output Store, but not retrieve values. Forward moving only.

In general, an iterator that has greater access capabilities can be used in place of one
that has lesser capabilities. For example, a forward iterator can be used in place of an
input iterator.

Iterators are handled just like pointers. You can increment and decrement them. You
can apply the * operator to them. Iterators are declared using the iterator type defined
by the various containers.

The STL also supports reverse iterators. Reverse iterators are either bidirectional or
random-access iterators that move through a sequence in the reverse direction. Thus,
if a reverse iterator points to the end of a sequence, incrementing that iterator will
cause it to point to one element before the end.

When referring to the various iterator types in template descriptions, this book will
use the following terms:

Term Represents
BiIter Bidirectional iterator
ForIter Forward iterator
InIter Input iterator
OutIter Output iterator
RandIter Random access iterator

In addition to containers, algorithms, and iterators, the STL relies upon several other
standard components for support. Chief among these are allocators, predicates, and
comparison functions.

Each container has an allocator defined for it. Allocators manage memory allocation
for a container. The default allocator is an object of class allocator, but you can
define your own allocators, if needed, for specialized applications. For most uses, the
default allocator is sufficient.

Introducing the Standard Template Library 501

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Algorithms act
on the contents
of containers.

Iterators
are similar
to pointers.

An allocator
manages memory
allocation for
a container.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

502 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

Several of the algorithms and containers use a special type of function called a predicate.
There are two variations of predicates: unary and binary. A unary predicate takes one
argument. A binary predicate has two arguments. These functions return true/false results,
but the precise conditions that make them return true or false are defined by you. For the
rest of this chapter, when a unary predicate function is required, it will be notated using
the type UnPred. When a binary predicate is required, the type BinPred will be used.
In a binary predicate, the arguments are always in the order of first,second. For both unary
and binary predicates, the arguments will contain values of the type of objects being
stored by the container.

Some algorithms and classes use a special type of binary predicate that compares two
elements. Comparison functions return true if their first argument is less than their
second. Comparison functions will be notated using the type Comp.

In addition to the headers required by the various STL classes, the C++ standard
library includes the <utility> and <functional> headers, which provide support for
the STL. For example, in <utility> is defined the template class pair, which can hold
a pair of values. We will make use of pair later in this chapter.

The templates in <functional> help you to construct objects that define
operator(). These are called function objects, and they may be used in place of
function pointers in many places. There are several predefined function objects
declared within <functional>. Some are shown here:

plus minus multiplies divides modulus
negate equal_to not_equal_to greater greater_equal
less less_equal logical_and logical_or logical_not

Perhaps the most widely used function object is less, which determines when one
object is less than another. Function objects can be used in place of actual function
pointers in the STL algorithms, described later. Using function objects rather than
function pointers allows the STL to generate more efficient code in some cases.
However, for the purposes of this chapter, function objects are not needed and we
won’t be using them directly. Although function objects are not inherently difficult,
a detailed discussion of function objects is beyond the scope of this book. (Complete
coverage of function objects can be found in my book C++: The Complete Reference, 4th
Edition, McGraw-Hill/Osborne).

The Container Classes
As explained, containers are the STL objects that actually store data. The containers
defined by the STL are shown in Table 21-1. Also shown are the headers necessary to
use each container. The string class, which manages character strings, is also a
container, but it is discussed later in this chapter.

A predicate
returns a true/
false result.

A comparison
function compares
two elements of a
sequence.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 503

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Since the names of the placeholder types in a template class declaration are arbitrary,
the container classes declare typedefed versions of these types. This makes the type
names concrete. Some of the most common typedef names are shown here:

size_type Some type of integer.
reference A reference to an element.
const_reference A const reference to an element.
iterator An iterator.
const_iterator A const iterator.
reverse_iterator A reverse iterator.
const_reverse_iterator A const reverse iterator.
value_type The type of a value stored in a container.
allocator_type The type of the allocator.
key_type The type of a key.
key_compare The type of a function that compares two keys.
value_compare The type of a function that compares two values.
mapped_type The type of value stored in a map. (Same as the generic

type T.)

While it is not possible to examine each container in this chapter, the next sections
explore three representative containers: vector, list, and map. Once you understand
how these containers work, you will have no trouble using the others.

Container Description Required Header

bitset A set of bits. <bitset>

deque A double-ended queue. <deque>

list A linear list. <list>

map Stores key/value pairs in which each key is
associated with only one value.

<map>

multimap Stores key/value pairs in which one key
may be associated with two or more values.

<map>

multiset A set in which each element is not
necessarily unique.

<set>

priority_queue A priority queue. <queue>

queue A queue. <queue>

set A set in which each element is unique. <set>

stack A stack. <stack>

vector A dynamic array. <vector>Table 21-1.

The Containers
Defined by
the STL

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Vectors
Perhaps the most general-purpose of the containers is vector. The vector class
supports a dynamic array. This is an array that can grow as needed. As you know,
in C++, the size of an array is fixed at compile time. While this is, by far, the most
efficient way to implement arrays, it is also the most restrictive because the size of the
array cannot be adjusted at run time to accommodate changing program conditions.
A vector solves this problem by allocating memory as needed. Although a vector is
dynamic, you can still use the standard array subscript notation to access its elements.

The template specification for vector is shown here:

template <class T, class Allocator = allocator<T> > class vector

Here, T is the type of data being stored, and Allocator specifies the allocator, which
defaults to the standard allocator. vector has the following constructors:

explicit vector(const Allocator &a = Allocator());

explicit vector(size_type num, const T &val = T (),
const Allocator &a = Allocator());

vector(const vector<T, Allocator> &ob);

template <class InIter> vector(InIter start, InIter end,
const Allocator &a = Allocator());

The first form constructs an empty vector. The second form constructs a vector that
has num elements with the value val. The value of val may be allowed to default. The
third form constructs a vector that contains the same elements as ob. The fourth form
constructs a vector that contains the elements in the range specified by the iterators
start and end.

For maximum flexibility and portability, any object that will be stored in a vector
should define a default constructor. It should also define the < and == operations.
Some compilers may require that other comparison operators be defined. (Since
implementations vary, consult your compiler’s documentation for precise information.)
All of the built-in types automatically satisfy these requirements.

Although the template syntax looks rather complex, there is nothing difficult about
declaring a vector. Here are some examples:

vector<int> iv; // create zero-length int vector
vector<char> cv(5); // create 5-element char vector
vector<char> cv(5, 'x'); // initialize a 5-element char vector
vector<int> iv2(iv); // create int vector from an int vector

The following comparison operators are defined for vector:

==, <, <=, !=, >, >=

The subscripting operator [] is also defined for vector. This allows you to access the
elements of a vector by using standard array subscripting notation.

504 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

Vectors are
dynamic arrays.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The member functions defined by vector are shown in Table 21-2. (Again, it is
important not to be put off by the syntax.) Some of the most important member
functions are size(), begin(), end(), push_back(), insert(), and erase(). The
size() function returns the current size of the vector. This function is quite useful
because it allows you to determine the size of a vector at run time. Remember, vectors
will increase in size as needed, so the size of a vector must be determined during
execution, not during compilation.

Introducing the Standard Template Library 505

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Member Description

template <class InIter>
void assign(InIter start, InIter end);

Assigns the vector the sequence defined
by start and end.

void assign(size_type num, const T &val); Assigns the vector num elements of
value val.

reference at(size_type i);
const_reference at(size_type i) const;

Returns a reference to an element
specified by i.

reference back();
const_reference back() const;

Returns a reference to the last element in
the vector.

iterator begin();
const_iterator begin() const;

Returns an iterator to the first element in
the vector.

size_type capacity() const; Returns the current capacity of the
vector. This is the number of elements it
can hold before it will need to allocate
more memory.

void clear(); Removes all elements from the vector.

bool empty() const; Returns true if the invoking vector is
empty and false otherwise.

iterator end();
const_iterator end() const;

Returns an iterator to the end of the vector.

iterator erase(iterator i); Removes the element pointed to by i.
Returns an iterator to the element after
the one removed.

iterator erase(iterator start, iterator end); Removes the elements in the range start
to end. Returns an iterator to the element
after the last element removed.

reference front();
const_reference front() const;

Returns a reference to the first element in
the vector.

allocator_type get_allocator() const; Returns vector’s allocator.

iterator insert(iterator i, const T &val); Inserts val immediately before the element
specified by i. An iterator to the element is
returned.Table 21-2.

The Member
Functions
Defined by
vector

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

506 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

The begin() function returns an iterator to the start of the vector. The end()
function returns an iterator to the end of the vector. As explained, iterators are similar
to pointers, and it is through the use of the begin() and end() functions that you
obtain an iterator to the beginning and end of a vector.

The push_back() function puts a value onto the end of the vector. If necessary, the
vector is increased in length to accommodate the new element. You can add elements
to the middle by using insert(). A vector can also be initialized. In any event, once a
vector contains elements, you can use array subscripting to access or modify those
elements. You can remove elements from a vector by using erase().

Member Description

void insert(iterator i, size_type num,
const T & val);

Inserts num copies of val immediately
before the element specified by i.

template <class InIter>
void insert(iterator i, InIter start,

InIter end);

Inserts the sequence defined by start and
end immediately before the element
specified by i.

size_type max_size() const; Returns the maximum number of
elements that the vector can hold.

reference operator[](size_type i) const;
const_reference operator[](size_type i)

const;

Returns a reference to the element
specified by i.

void pop_back(); Removes the last element in the vector.

void push_back(const T &val); Adds an element with the value specified
by val to the end of the vector.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

Returns a reverse iterator to the end of
the vector.

reverse_iterator rend();
const_reverse_iterator rend() const;

Returns a reverse iterator to the start of
the vector.

void reserve(size_type num); Sets the capacity of the vector so that it is
equal to at least num.

void resize(size_type num, T val = T ()); Changes the size of the vector to that
specified by num. If the vector must be
lengthened, then elements with the value
specified by val are added to the end.

size_type size() const; Returns the number of elements
currently in the vector.

void swap(vector<T, Allocator> &ob); Exchanges the elements stored in the
invoking vector with those in ob.Table 21-2.

The Member
Functions
Defined
by vector
(continued)

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 507

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Here is a short example that illustrates the basic operation of a vector:

// Vector basics.
#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<int> v; // create zero-length vector
unsigned int i;

// display original size of v
cout << "Size = " << v.size() << endl;

/* put values onto end of vector --
vector will grow as needed */

for(i=0; i<10; i++) v.push_back(i);

// display current size of v
cout << "Current contents:\n";
cout << "Size now = " << v.size() << endl;

// display contents of vector
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

/* put more values onto end of vector --
again, vector will grow as needed */

for(i=0; i<10; i++) v.push_back(i+10);

// display current size of v
cout << "Size now = " << v.size() << endl;

// display contents of vector
cout << "Current contents:\n";
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

// change contents of vector
for(i=0; i<v.size(); i++) v[i] = v[i] + v[i];

// display contents of vector
cout << "Contents doubled:\n";
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

508 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

The output of this program is shown here:

Size = 0
Current contents:
Size now = 10
0 1 2 3 4 5 6 7 8 9
Size now = 20
Current contents:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Contents doubled:
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Let’s look at this program carefully. In main(), an integer vector called v is created.
Since no initialization is used, it is an empty vector with an initial capacity of zero.
That is, it is a zero-length vector. This is confirmed by calling the size() member
function. Next, 10 elements are added to the end of v by using the member function
push_back(). This causes v to grow in order to accommodate the new elements. As
the output shows, its size after these additions is 10. Next, the contents of v are displayed.
Notice that the standard array subscripting notation is employed. Next, 10 more
elements are added, and v is automatically increased in size to handle them. Finally,
the values of v’s elements are altered by using standard subscripting notation.

There is one other point of interest in this program: Notice that the loops that display
the contents of v use as their target v.size(). One of the advantages that vectors have
over arrays is that it is possible to find the current size of a vector. As you can imagine,
this is quite useful in a variety of situations.

Accessing a Vector Through an Iterator
As you know, arrays and pointers are tightly linked in C++. An array can be accessed
through either subscripting or a pointer. The parallel to this in the STL is the link
between vectors and iterators. You can access the members of a vector using either
subscripting or an iterator. The following example shows how:

// Access a vector using an iterator.
#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<char> v; // create zero-length vector
int i;

// put values into a vector
for(i=0; i<10; i++) v.push_back('A' + i);

// can access vector contents using subscripting
for(i=0; i<10; i++) cout << v[i] << " ";
cout << endl;

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 509

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

// access via iterator
vector<char>::iterator p = v.begin();
while(p != v.end()) {
cout << *p << " ";
p++;

}

return 0;
}

The output from this program is

A B C D E F G H I J
A B C D E F G H I J

In this program, the vector is initially created with zero length. The push_back()
member function puts characters onto the end of the vector, expanding its size as
needed.

Notice how the iterator p is declared. The type iterator is defined by the
container classes. Thus, to obtain an iterator for a particular container, you will
use a declaration similar to that shown in the example: Simply qualify iterator
with the name of the container. In the program, p is initialized to point to the
start of the vector by using the begin() member function. This function returns
an iterator to the start of the vector. This iterator can then be used to access the
vector an element at a time by incrementing it as needed. This process is directly
parallel to the way a pointer can be used to access the elements of an array. To
determine when the end of the vector has been reached, the end() member
function is employed. This function returns an iterator to the location that is one
past the last element in the vector. Thus, when p equals v.end(), the end of the
vector has been reached.

Inserting and Deleting Elements in a Vector
In addition to putting new values on the end of a vector, you can insert elements into
the middle by using the insert() function. You can also remove elements by using
erase(). The following program demonstrates insert() and erase():

// Demonstrate insert and erase.
#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<char> v;
unsigned int i;

for(i=0; i<10; i++) v.push_back('A' + i);

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

510 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

// display original contents of vector
cout << "Size = " << v.size() << endl;
cout << "Original contents:\n";
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl << endl;

vector<char>::iterator p = v.begin();
p += 2; // point to 3rd element

// insert 10 X's into v
v.insert(p, 10, 'X');

// display contents after insertion
cout << "Size after insert = " << v.size() << endl;
cout << "Contents after insert:\n";
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl << endl;

// remove those elements
p = v.begin();
p += 2; // point to 3rd element
v.erase(p, p+10); // remove next 10 elements

// display contents after deletion
cout << "Size after erase = " << v.size() << endl;
cout << "Contents after erase:\n";
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

return 0;
}

This program produces the following output:

Size = 10
Original contents:
A B C D E F G H I J

Size after insert = 20
Contents after insert:
A B X X X X X X X X X X C D E F G H I J

Size after erase = 10
Contents after erase:
A B C D E F G H I J

Storing Class Objects in a Vector
Although the preceding examples have stored objects of only the built-in types in a
vector, vectors are not limited to this. They can store any type of objects, including those
of classes that you create. Here is an example that uses a vector to store three_d objects.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 511

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Notice that the class defines the default constructor, and that overloaded versions of <
and == are provided. Remember, depending upon how your compiler implements the
STL, other comparison operators may need to be defined.

// Store a class object in a vector.
#include <iostream>
#include <vector>
using namespace std;

class three_d {
int x, y, z;

public:
three_d() { x = y = z = 0; }
three_d(int a, int b, int c) { x = a; y = b; z = c; }

three_d &operator+(int a) {
x += a;
y += a;
z += a;
return *this;

}

friend ostream &operator<<(ostream &stream, three_d obj);
friend bool operator<(three_d a, three_d b);
friend bool operator==(three_d a, three_d b);

} ;

// Display X, Y, Z coordinates - three_d inserter.
ostream &operator<<(ostream &stream, three_d obj)
{
stream << obj.x << ", ";
stream << obj.y << ", ";
stream << obj.z << "\n";
return stream; // return the stream

}

bool operator<(three_d a, three_d b)
{
return (a.x + a.y + a.z) < (b.x + b.y + b.z);

}

bool operator==(three_d a, three_d b)
{
return (a.x + a.y + a.z) == (b.x + b.y + b.z);

}

int main()
{
vector<three_d> v;
unsigned int i;

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

512 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

// add objects to a vector
for(i=0; i<10; i++)
v.push_back(three_d(i, i+2, i-3));

// display contents of vector
for(i=0; i<v.size(); i++)
cout << v[i];

cout << endl;

// modify objects in a vector
for(i=0; i<v.size(); i++)
v[i] = v[i] + 10;

// display modified vector
for(i=0; i<v.size(); i++)
cout << v[i];

return 0;
}

The output from this program is shown here:

0, 2, -3
1, 3, -2
2, 4, -1
3, 5, 0
4, 6, 1
5, 7, 2
6, 8, 3
7, 9, 4
8, 10, 5
9, 11, 6

10, 12, 7
11, 13, 8
12, 14, 9
13, 15, 10
14, 16, 11
15, 17, 12
16, 18, 13
17, 19, 14
18, 20, 15
19, 21, 16

Vectors offer great power, safety, and flexibility, but they are less efficient than normal
arrays. Thus, for most programming tasks, normal arrays will still be your first choice.
But watch for situations in which the benefits of using vector outweighs the costs.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 513

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

The Power of Iterators
Part of the power of the STL comes from the fact that many of its functions operate
on iterators. This fact allows operations on two containers at the same time. For
example, consider this form of vector’s insert() function:

template <class InIter> void insert(iterator i, InIter start, InIter end);

This function inserts the sequence defined by start and end into the target sequence
beginning at i. There is no requirement that i point into the same vector as start and end.
Thus, using this version of insert(), you can insert one vector into another. For example:

// Insert one vector into another.
#include <iostream>
#include <vector>
using namespace std;

int main()
{
vector<char> v, v2;
unsigned int i;

for(i=0; i<10; i++) v.push_back('A' + i);

// display original contents of vector
cout << "Original contents:\n";
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl << endl;

// initialize second vector
char str[] = "-STL Power-";
for(i = 0; str[i]; i++) v2.push_back(str[i]);

/* get iterators to the middle of v and
the start and end of v2 */

vector<char>::iterator p = v.begin()+5;
vector<char>::iterator p2start = v2.begin();
vector<char>::iterator p2end = v2.end();

// insert v2 into v
v.insert(p, p2start, p2end);

// display result
cout << "Contents of v after insertion:\n";
for(i=0; i<v.size(); i++) cout << v[i] << " ";

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

514 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

The output produced by this program is the following:

Original contents:
A B C D E F G H I J

Contents of v after insertion:
A B C D E - S T L P o w e r - F G H I J

As you can see, the contents of vector v2 are inserted into the middle of vector v.

As you learn more about the STL, you will find that interators are the glue that holds it
together. They offer a convenient means of working with two or more STL objects at the
same time. They are especially useful to the algorithms described later in this chapter.

Lists
The list class supports a bidirectional, linear list. Unlike a vector, which supports
random access, a list can be accessed sequentially only. Since lists are bidirectional,
they may be accessed front-to-back or back-to-front.

A list has this template specification:

template <class T, class Allocator = allocator<T> > class list

Here, T is the type of data stored in the list. The allocator is specified by Allocator,
which defaults to the standard allocator. It has the following constructors:

explicit list(const Allocator &a = Allocator());

explicit list(size_type num, const T &val = T (),
const Allocator &a = Allocator());

list(const list<T, Allocator> &ob);

template <class InIter>list(InIter start, InIter end,
const Allocator &a = Allocator());

The first form constructs an empty list. The second form constructs a list that has num
elements with the value val, which can be allowed to default. The third form constructs a
list that contains the same elements as ob. The fourth form constructs a list that contains
the elements in the range specified by the iterators start and end.

The following comparison operators are defined for list:

==, <, <=, !=, >, >=

A list is a
bidirectional
linear list.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The member functions defined for list are shown in Table 21-3. Like a vector, elements
may be put into a list by using the push_back() function. You can put elements on
the front of the list by using push_front(). An element may also be inserted into the
middle of a list by using insert(). Two lists may be joined by using splice(). One list
may be merged into another by using merge().

Introducing the Standard Template Library 515

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Member Description

template <class InIter>
void assign(InIter start, InIter end);

Assigns the list the sequence defined by
start and end.

void assign(size_type num, const T &val); Assigns the list num elements of value val.

reference back();
const_reference back() const;

Returns a reference to the last element in
the list.

iterator begin();
const_iterator begin() const;

Returns an iterator to the first element in
the list.

void clear(); Removes all elements from the list.

bool empty() const; Returns true if the invoking list is empty
and false otherwise.

iterator end();
const_iterator end() const;

Returns an iterator to the end of the list.

iterator erase(iterator i); Removes the element pointed to by i.
Returns an iterator to the element after
the one removed.

iterator erase(iterator start, iterator end); Removes the elements in the range start
to end. Returns an iterator to the element
after the last element removed.

reference front();
const_reference front() const;

Returns a reference to the first element in
the list.

allocator_type get_allocator() const; Returns list’s allocator.

iterator insert(iterator i,
const T &val = T());

Inserts val immediately before the element
specified by i. An iterator to the element is
returned.

void insert(iterator i, size_type num,
const T & val);

Inserts num copies of val immediately
before the element specified by i.

template <class InIter>
void insert(iterator i,

InIter start, InIter end);

Inserts the sequence defined by start and
end immediately before the element
specified by i.

size_type max_size() const; Returns the maximum number of elements
that the list can hold.Table 21-3.

The list Member
Functions

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

516 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

Member Description

void merge(list<T, Allocator> &ob);
template <class Comp>

void merge(<list<T, Allocator> &ob,
Comp cmpfn);

Merges the ordered list contained in ob
with the ordered invoking list. The result is
ordered. After the merge, the list contained
in ob is empty. In the second form, a
comparison function can be specified that
determines when one element is less than
another.

void pop_back(); Removes the last element in the list.

void pop_front(); Removes the first element in the list.

void push_back(const T &val); Adds an element with the value specified
by val to the end of the list.

void push_front(const T &val); Adds an element with the value specified
by val to the front of the list.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

Returns a reverse iterator to the end of
the list.

void remove(const T &val); Removes elements with the value val
from the list.

template <class UnPred>
void remove_if(UnPred pr);

Removes elements for which the unary
predicate pr is true.

reverse_iterator rend();
const_reverse_iterator rend() const;

Returns a reverse iterator to the start of
the list.

void resize(size_type num, T val = T ()); Changes the size of the list to that specified
by num. If the list must be lengthened,
then elements with the value specified by
val are added to the end.

void reverse(); Reverses the invoking list.

size_type size() const; Returns the number of elements
currently in the list.

void sort();
template <class Comp>

void sort(Comp cmpfn);

Sorts the list. The second form sorts the
list using the comparison function cmpfn
to determine when one element is less
than another.

void splice(iterator i,
list<T, Allocator> &ob);

The contents of ob are inserted into the
invoking list at the location pointed to
by i. After the operation, ob is empty.

void splice(iterator i,
list<T, Allocator> &ob,
iterator el);

The element pointed to by el is removed
from the list ob and stored in the invoking
list at the location pointed to by i.Table 21-3.

The list Member
Functions
(continued)

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For maximum flexibility and portability, any object that will be held in a list should
define a default constructor. It should also define the < operator, and possibly other
comparison operators. The precise requirements for an object that will be stored in a
list vary from compiler to compiler, so you will need to check your compiler’s
documentation.

Here is a simple example of list:

// List basics.
#include <iostream>
#include <list>
using namespace std;

int main()
{
list<char> lst; // create an empty list
int i;

for(i=0; i<10; i++) lst.push_back('A'+i);

cout << "Size = " << lst.size() << endl;

cout << "Contents: ";
list<char>::iterator p = lst.begin();
while(p != lst.end()) {
cout << *p;
p++;

}

return 0;
}

The output produced by this program is shown here:

Size = 10
Contents: ABCDEFGHIJ

Introducing the Standard Template Library 517

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Member Description

void splice(iterator i,
list<T, Allocator> &ob,
iterator start, iterator end);

The range defined by start and end is
removed from ob and stored in the
invoking list beginning at the location
pointed to by i.

void swap(list<T, Allocator> &ob); Exchanges the elements stored in the
invoking list with those in ob.

void unique();
template <class BinPred>

void unique(BinPred pr);

Removes duplicate elements from the
invoking list. The second form uses pr to
determine uniqueness.Table 21-3.

The list Member
Functions
(continued)

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This program creates a list of characters. First, an empty list object is created. Next,
ten characters, the letters A through J, are put into the list. This is accomplished by
using the push_back() function, which puts each new value on the end of the
existing list. Next, the size of the list is displayed. Finally, the list is displayed. The
code that does this is shown here:

list<char>::iterator p = lst.begin();
while(p != lst.end()) {
cout << *p;
p++;

}

Here, the iterator p is initialized to point to the start of the list. Each time through
the loop, p is incremented, causing it to point to the next element. The loop ends
when p points to the end of the list. Loops like this are common when using the
STL. For example, a similar loop was used to display the contents of a vector in the
previous section.

Because lists are bidirectional, elements can be put on a list at either the front or the
back. For example, the following program creates two lists, with the first being the
reverse of the second:

// Elements can be put on the front or end of a list.
#include <iostream>
#include <list>
using namespace std;

int main()
{
list<char> lst;
list<char> revlst;
int i;

for(i=0; i<10; i++) lst.push_back('A'+i);

cout << "Size of lst = " << lst.size() << endl;
cout << "Original contents: ";

list<char>::iterator p;

/* Remove elements from lst and put them
into revlst in reverse order. */

while(!lst.empty()) {
p = lst.begin();
cout << *p;
lst.pop_front();
revlst.push_front(*p);

}
cout << endl << endl;

cout << "Size of revlst = ";
cout << revlst.size() << endl;

518 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 519

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

cout << "Reversed contents: ";
p = revlst.begin();
while(p != revlst.end()) {
cout << *p;
p++;

}

return 0;
}

This program produces the following output:

Size of lst = 10
Original contents: ABCDEFGHIJ

Size of revlst = 10
Reversed contents: JIHGFEDCBA

In the program, the list is reversed by removing elements from the start of lst and
pushing them onto the front of revlst. This causes the elements to be stored in
reverse order in revlst.

Sort a List
A list can be sorted by calling the sort() member function. The following program
creates a list of random integers and then puts the list into sorted order:

// Sort a list.
#include <iostream>
#include <list>
#include <cstdlib>
using namespace std;

int main()
{
list<int> lst;
int i;

// create a list of random integers
for(i=0; i<10; i++)
lst.push_back(rand());

cout << "Original contents:\n";
list<int>::iterator p = lst.begin();
while(p != lst.end()) {
cout << *p << " ";
p++;

}
cout << endl << endl;

// sort the list
lst.sort();

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

cout << "Sorted contents:\n";
p = lst.begin();
while(p != lst.end()) {
cout << *p << " ";
p++;

}

return 0;
}

Here is sample output produced by the program:

Original contents:
41 18467 6334 26500 19169 15724 11478 29358 26962 24464

Sorted contents:
41 6334 11478 15724 18467 19169 24464 26500 26962 29358

Merging One List with Another
One ordered list can be merged with another. The result is an ordered list that
contains the contents of the two original lists. The new list is left in the invoking list,
and the second list is left empty. The next example merges two lists. The first contains
the letters ACEGI and the second contains BDFHJ. These lists are then merged to
produce the sequence ABCDEFGHIJ.

// Merge two lists.
#include <iostream>
#include <list>
using namespace std;

int main()
{
list<char> lst1, lst2;
int i;

for(i=0; i<10; i+=2) lst1.push_back('A'+i);
for(i=1; i<11; i+=2) lst2.push_back('A'+i);

cout << "Contents of lst1: ";
list<char>::iterator p = lst1.begin();
while(p != lst1.end()) {
cout << *p;
p++;

}
cout << endl << endl;

cout << "Contents of lst2: ";
p = lst2.begin();
while(p != lst2.end()) {
cout << *p;
p++;

520 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
cout << endl << endl;

// now, merge the two lists
lst1.merge(lst2);
if(lst2.empty())
cout << "lst2 is now empty\n";

cout << "Contents of lst1 after merge:\n";
p = lst1.begin();
while(p != lst1.end()) {
cout << *p;
p++;

}

return 0;
}

The output produced by this program is shown here:

Contents of lst1: ACEGI

Contents of lst2: BDFHJ

lst2 is now empty
Contents of lst1 after merge:
ABCDEFGHIJ

Storing Class Objects in a List
Here is an example that uses a list to store objects of type myclass. Notice that the <,
>, !=, and == are overloaded for objects of type myclass. (For some compilers, you
will not need to define all of these operators, or you might need to define additional
ones.) The STL uses these functions to determine the ordering and equality of objects
in a container. Even though a list is not an ordered container, it still needs a way to
compare elements when searching, sorting, or merging.

// Store class objects in a list.
#include <iostream>
#include <list>
#include <cstring>
using namespace std;

class myclass {
int a, b;
int sum;

public:
myclass() { a = b = 0; }
myclass(int i, int j) {
a = i;
b = j;
sum = a + b;

Introducing the Standard Template Library 521

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}
int getsum() { return sum; }

friend bool operator<(const myclass &o1,
const myclass &o2);

friend bool operator>(const myclass &o1,
const myclass &o2);

friend bool operator==(const myclass &o1,
const myclass &o2);

friend bool operator!=(const myclass &o1,
const myclass &o2);

};

bool operator<(const myclass &o1, const myclass &o2)
{
return o1.sum < o2.sum;

}

bool operator>(const myclass &o1, const myclass &o2)
{
return o1.sum > o2.sum;

}

bool operator==(const myclass &o1, const myclass &o2)
{
return o1.sum == o2.sum;

}

bool operator!=(const myclass &o1, const myclass &o2)
{
return o1.sum != o2.sum;

}

int main()
{
int i;

// create first list
list<myclass> lst1;
for(i=0; i<10; i++) lst1.push_back(myclass(i, i));

cout << "First list: ";
list<myclass>::iterator p = lst1.begin();
while(p != lst1.end()) {
cout << p->getsum() << " ";
p++;

}
cout << endl;

// create a second list
list<myclass> lst2;
for(i=0; i<10; i++) lst2.push_back(myclass(i*2, i*3));

cout << "Second list: ";

522 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

p = lst2.begin();
while(p != lst2.end()) {
cout << p->getsum() << " ";
p++;

}
cout << endl;

// now, merge lst1 and lst2
lst1.merge(lst2);

// display merged list
cout << "Merged list: ";
p = lst1.begin();
while(p != lst1.end()) {
cout << p->getsum() << " ";
p++;

}

return 0;
}

This program creates two lists of myclass objects and displays the contents of each
list. It then merges the two lists and displays the result. The output from this program
is shown here:

First list: 0 2 4 6 8 10 12 14 16 18
Second list: 0 5 10 15 20 25 30 35 40 45
Merged list: 0 0 2 4 5 6 8 10 10 12 14 15 16 18 20 25 30 35 40 45

Maps
The map class supports an associative container in which unique keys are mapped
with values. In essence, a key is simply a name that you give to a value. Once a value
has been stored, you can retrieve it by using its key. Thus, in its most general sense, a
map is a list of key/value pairs. The power of a map is that you can look up a value if
you know its key. For example, you could define a map that uses a person’s name as
its key and stores that person’s telephone number as its value. Associative containers
are becoming more popular in programming.

As mentioned, a map may hold only unique keys. Duplicate keys are not allowed. To
create a map that allows non-unique keys, use multimap.

The map container has the following template specification:

template <class Key, class T, class Comp = less<Key>,
class Allocator = allocator<pair<const Key, T> > > class map

Here, Key is the data type of the keys, T is the data type of the values being stored
(mapped), and Comp is a function that compares two keys. This defaults to the
standard less utility function object. Allocator is the allocator (which defaults to
allocator).

Introducing the Standard Template Library 523

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

A map is an
associative
container.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

524 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

A map has the following constructors:

explicit map(const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

map(const map<Key, T, Comp, Allocator> &ob);

template <class InIter> map(InIter start, InIter end,
const Comp &cmpfn = Comp(), const Allocator &a = Allocator());

The first form constructs an empty map. The second form constructs a map that
contains the same elements as ob. The third form constructs a map that contains the
elements in the range specified by the iterators start and end. The function specified
by cmpfn, if present, determines the ordering of the map.

In general, any object used as a key should define a default constructor and overload
the < operator, and any other necessary comparison operators. The specific
requirements vary from compiler to compiler.

The following comparison operators are defined for map:

==, <, <=, !=, >, >=

The member functions contained by map are shown in Table 21-4. In the
descriptions, key_type is the type of the key, and value_type represents
pair<Key, T>.

Key/value pairs are stored in a map as objects of type pair, which has the following
template specification:

template <class Ktype, class Vtype> struct pair {
typedef Ktype first_type; // type of key
typedef Vtype second_type; // type of value
Ktype first; // contains the key
Vtype second; // contains the value

// constructors
pair();
pair(const Ktype &k, const Vtype &v);
template<class A, class B> pair(const<A, B> &ob);

}

As the comments suggest, the value in first contains the key, and the value in
second contains the value associated with that key.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 525

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Member Description

iterator begin();
const_iterator begin() const;

Returns an iterator to the first element in
the map.

void clear(); Removes all elements from the map.

size_type count(const key_type &k) const; Returns the number of times k occurs in
the map (1 or zero).

bool empty() const; Returns true if the invoking map is
empty and false otherwise.

iterator end();
const_iterator end() const;

Returns an iterator to the end of the map.

pair<iterator, iterator>
equal_range(const key_type &k);

pair<const_iterator, const_iterator>
equal_range(const key_type &k) const;

Returns a pair of iterators that point to
the first and last elements in the map
that contain the specified key.

void erase(iterator i); Removes the element pointed to by i.

void erase(iterator start, iterator end); Removes the elements in the range start
to end.

size_type erase(const key_type &k); Removes from the map elements that
have keys with the value k.

iterator find(const key_type &k);
const_iterator find(const key_type &k)

const;

Returns an iterator to the specified key. If
the key is not found, then an iterator to
the end of the map is returned.

allocator_type get_allocator() const; Returns map’s allocator.

iterator insert(iterator i,
const value_type &val);

Inserts val at or after the element specified
by i. An iterator to the element is returned.

template <class InIter>
void insert(InIter start, InIter end);

Inserts a range of elements.

pair<iterator, bool>
insert(const value_type &val);

Inserts val into the invoking map. An
iterator to the element is returned. The
element is inserted only if it does not
already exist. If the element was inserted,
pair<iterator, true> is returned.
Otherwise, pair<iterator, false> is
returned.

key_compare key_comp() const; Returns the function object that
compares keys.

iterator lower_bound(const key_type &k);
const_iterator

lower_bound(const key_type &k) const;

Returns an iterator to the first element in
the map with the key equal to or greater
than k.Table 21-4.

The map
Member
Functions

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can construct a pair by using either one of pair’s constructors, or by using
make_pair(), which constructs a pair object based upon the types of the data used
as parameters. make_pair() is a generic function that has this prototype:

template <class Ktype, class Vtype>
pair<Ktype, Vtype> make_pair(const Ktype &k, const Vtype &v);

As you can see, it returns a pair object consisting of values of the types specified by
Ktype and Vtype. The advantage of make_pair() is that the types of the objects being
stored are determined automatically by the compiler, rather than being explicitly
specified by you.

The following program illustrates the basics of using a map. It stores 10 key/value
pairs. The key is a character and the value is an integer. The key/value pairs stored are

A 0

B 1

C 2

and so on. Once the pairs have been stored, you are prompted for a key (i.e., a letter
between A and J), and the value associated with that key is displayed.

526 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

Member Description

size_type max_size() const; Returns the maximum number of
elements that the map can hold.

mapped_type & operator[]
(const key_type &i);

Returns a reference to the element
specified by i. If this element does not
exist, it is inserted.

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

Returns a reverse iterator to the end of
the map.

reverse_iterator rend();
const_reverse_iterator rend() const;

Returns a reverse iterator to the start of
the map.

size_type size() const; Returns the number of elements
currently in the map.

void swap(map<Key, T, Comp,
Allocator> &ob);

Exchanges the elements stored in the
invoking map with those in ob.

iterator upper_bound(const key_type &k);
const_iterator

upper_bound(const key_type &k) const;

Returns an iterator to the first element in
the map with the key greater than k.

value_compare value_comp() const; Returns the function object that
compares values.Table 21-4.

The map
Member
Functions
(continued)

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// A simple map demonstration.
#include <iostream>
#include <map>
using namespace std;

int main()
{
map<char, int> m;
int i;

// put pairs into map
for(i=0; i<10; i++) {
m.insert(pair<char, int>('A'+i, i));

}

char ch;
cout << "Enter key: ";
cin >> ch;

map<char, int>::iterator p;

// find value given key
p = m.find(ch);
if(p != m.end())
cout << p->second;

else
cout << "Key not in map.\n";

return 0;
}

Notice the use of the pair template class to construct the key/value pairs. The data
types specified by pair must match those of the map into which the pairs are being
inserted.

Once the map has been initialized with keys and values, you can search for a value,
given its key, by using the find() function. find() returns an iterator to the matching
element or to the end of the map if the key is not found. When a match is found, the
value associated with the key is contained in the second member of pair.

In the preceding example, key/value pairs were constructed explicitly, using
pair<char, int>. While there is nothing wrong with this approach, it is often easier
to use make_pair(), which constructs a pair object based upon the types of the
data used as parameters. For example, assuming the previous program, this line of
code will also insert key/value pairs into m:

m.insert(make_pair((char)('A'+i), i));

Here, the cast to char is needed to override the automatic conversion to int when i is
added to ‘A’. Otherwise, the type determination is automatic.

Introducing the Standard Template Library 527

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

528 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

Storing Class Objects in a Map
Like all of the containers, you can use a map to store objects of types that you create.
For example, the next program creates a simple dictionary. That is, it creates a map of
words with their meanings. To do this, it creates two classes, called word and meaning.
Since a map maintains a sorted list of keys, the program also defines the < operator for
objects of type word. In general, you should define the < operator for any classes that
you will use as keys. (Some compilers may require that additional comparison operators
be defined.)

// Use a map to create a dictionary.
#include <iostream>
#include <map>
#include <cstring>
using namespace std;

class word {
char str[20];

public:
word() { strcpy(str, ""); }
word(char *s) { strcpy(str, s); }
char *get() { return str; }

};

// must define less than relative to word objects
bool operator<(word a, word b)
{

return strcmp(a.get(), b.get()) < 0;
}

class meaning {
char str[80];

public:
meaning() { strcmp(str, ""); }
meaning(char *s) { strcpy(str, s); }
char *get() { return str; }

};

int main()
{
map<word, meaning> dictionary;

// put words and meanings into map
dictionary.insert(pair<word, meaning>(word("house"),

meaning("A place of dwelling.")));
dictionary.insert(pair<word, meaning>(word("keyboard"),

meaning("An input device.")));
dictionary.insert(pair<word, meaning>(word("programming"),

meaning("The act of writing a program.")));
dictionary.insert(pair<word, meaning>(word("STL"),

meaning("Standard Template Library")));

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// given a word, find meaning
char str[80];
cout << "Enter word: ";
cin >> str;

map<word, meaning>::iterator p;

p = dictionary.find(word(str));
if(p != dictionary.end())
cout << "Definition: " << p->second.get();

else
cout << "Word not in dictionary.\n";

return 0;
}

Here is a sample run:

Enter word: house
Definition: A place of dwelling.

In the program, each entry in the map is a character array that holds a null-terminated
string. Later in this chapter, you will see an easier way to write this program that uses
the standard string type.

Algorithms
Algorithms act on containers. Although each container provides support for its own
basic operations, the standard algorithms provide more extended or complex actions.
They also allow you to work with two different types of containers at the same time.
To have access to the STL algorithms, you must include <algorithm>
in your program.

The STL defines a large number of algorithms, which are summarized in Table 21-5.
All of the algorithms are template functions. This means that they can be applied to
any type of container. The following sections explore a representative sample.

Introducing the Standard Template Library 529

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Algorithm Purpose

adjacent_find Searches for adjacent matching elements within a sequence and
returns an iterator to the first match.

binary_search Performs a binary search on an ordered sequence.

copy Copies a sequence.

copy_backward Same as copy() except that it moves the elements from the end of
the sequence first.

count Returns the number of elements in the sequence.

count_if Returns the number of elements in the sequence that satisfy some
predicate.

equal Determines if two ranges are the same.Table 21-5.

The STL
Algorithms

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

530 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

Algorithm Purpose

equal_range Returns a range in which an element can be inserted into a
sequence without disrupting the ordering of the sequence.

fill and fill_n Fills a range with the specified value.

find Searches a range for a value and returns an iterator to the first
occurrence of the element.

find_end Searches a range for a subsequence. It returns an iterator to the end
of the subsequence within the range.

find_first_of Finds the first element within a sequence that matches an element
within a range.

find_if Searches a range for an element for which a user-defined unary
predicate returns true.

for_each Applies a function to a range of elements.

generate and generate_n Assign elements in a range the values returned by a generator
function.

includes Determines if one sequence includes all of the elements in another
sequence.

inplace_merge Merges a range with another range. Both ranges must be sorted in
increasing order. The resulting sequence is sorted.

iter_swap Exchanges the values pointed to by its two iterator arguments.

lexicographical_compare Alphabetically compares one sequence with another.

lower_bound Finds the first point in the sequence that is not less than a
specified value.

make_heap Constructs a heap from a sequence.

max Returns the maximum of two values.

max_element Returns an iterator to the maximum element within a range.

merge Merges two ordered sequences, placing the result into a third
sequence.

min Returns the minimum of two values.

min_element Returns an iterator to the minimum element within a range.

mismatch Finds first mismatch between the elements in two sequences.
Iterators to the two elements are returned.

next_permutation Constructs next permutation of a sequence.

nth_element Arranges a sequence such that all elements less than a specified
element E come before that element and all elements greater than
E come after it.

partial_sort Sorts a range.

partial_sort_copy Sorts a range and then copies as many elements as will fit into a
resulting sequence.Table 21-5.

The STL
Algorithms
(continued)

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 531

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Algorithm Purpose

partition Arranges a sequence such that all elements for which a predicate
returns true come before those for which the predicate returns false.

pop_heap Exchanges the first and last –1 elements and then rebuilds the heap.

prev_permutation Constructs previous permutation of a sequence.

push_heap Pushes an element onto the end of a heap.

random_shuffle Randomizes a sequence.

remove, remove_if,
remove_copy,
and remove_copy_if

Removes elements from a specified range.

replace, replace_copy,
replace_if,
and replace_copy_if

Replaces elements within a range.

reverse and reverse_copy Reverses the order of a range.

rotate and rotate_copy Left-rotates the elements in a range.

search Searches for subsequence within a sequence.

search_n Searches for a sequence of a specified number of similar elements.

set_difference Produces a sequence that contains the difference between two
ordered sets.

set_intersection Produces a sequence that contains the intersection of the two
ordered sets.

set_symmetric_difference Produces a sequence that contains the symmetric difference
between the two ordered sets.

set_union Produces a sequence that contains the union of the two ordered sets.

sort Sorts a range.

sort_heap Sorts a heap within a specified range.

stable_partition Arranges a sequence such that all elements for which a predicate
returns true come before those for which the predicate returns false.
The partitioning is stable. This means that the relative ordering of
the sequence is preserved.

stable_sort Sorts a range. The sort is stable. This means that equal elements are
not rearranged.

swap Exchanges two values.

swap_ranges Exchanges elements in a range.

transform Applies a function to a range of elements and stores the outcome
in a new sequence.

unique and unique_copy Eliminates duplicate elements from a range.

upper_bound Finds the last point in a sequence that is not greater than some value.Table 21-5.

The STL
Algorithms
(continued)

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

532 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

Counting
One of the most basic operations that you can perform on a sequence is to count its
contents. To do this, you can use either count() or count_if(). Their general forms
are shown here:

template <class InIter, class T>
ptrdiff_t count(InIter start, InIter end, const T &val);

template <class InIter, class UnPred>
ptrdiff_t count_if(InIter start, InIter end, UnPred pfn);

The count() algorithm returns the number of elements in the sequence, beginning at
start and ending at end, that match val. The count_if() algorithm returns the number
of elements in the sequence, beginning at start and ending at end, for which the unary
predicate pfn returns true. The type ptrdiff_t is defined as some form of integer.

The following program demonstrates count() and count_if():

// Demonstrate count and count_if.
#include <iostream>
#include <vector>
#include <algorithm>
#include <cctype>
using namespace std;

/* This is a unary predicate that determines
if character is a vowel. */

bool isvowel(char ch)
{
ch = tolower(ch);
if(ch=='a' || ch=='e' || ch=='i'

|| ch=='o' || ch=='u' || ch=='y') return true;

return false;
}

int main()
{
char str[] = "STL programming is powerful.";
vector<char> v;
unsigned int i;

for(i=0; str[i]; i++) v.push_back(str[i]);

cout << "Sequence: ";
for(i=0; i<v.size(); i++) cout << v[i];
cout << endl;

int n;
n = count(v.begin(), v.end(), 'p');
cout << n << " characters are p\n";

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

n = count_if(v.begin(), v.end(), isvowel);
cout << n << " characters are vowels.\n";

return 0;
}

This program displays the following output:

Sequence: STL programming is powerful.
2 characters are p
7 characters are vowels.

The program begins by creating a vector that contains the string “STL programming
is powerful.”. Next, count() is used to count the number of p’s in the vector. Then,
count_if() counts the number of characters that are vowels, specifying isvowel() as
its predicate. Notice how the unary predicate isvowel() is coded. All unary predicates
receive as a parameter an object that is of the same type as that stored in the container
upon which the predicate is operating. The predicate must then return a true or false
result based upon this object.

Removing and Replacing Elements
Sometimes it is useful to generate a new sequence that consists of only certain items
from an original sequence. One algorithm that does this is remove_copy(). Its
general form is shown here:

template <class InIter, class OutIter, class T>
OutIter remove_copy(InIter start, InIter end,

OutIter result, const T &val);

The remove_copy() algorithm copies elements from the specified range, removing
those that are equal to val. It puts the result into the sequence pointed to by result and
returns an iterator to the end of the result. The output container must be large enough
to hold the result.

To replace one element in a sequence with another element when a copy is made, use
replace_copy(). Its general form is shown here:

template <class InIter, class OutIter, class T>
OutIter replace_copy(InIter start, InIter end,

OutIter result, const T &old, const T &new);

The replace_copy() algorithm copies elements from the specified range, replacing
elements equal to old with new. It puts the result into the sequence pointed to by
result and returns an iterator to the end of the result. The output container must be
large enough to hold the result.

The following program demonstrates remove_copy() and replace_copy(). It
creates a sequence of characters. It then removes all of the i’s from the sequence.
Next, it replaces all s’s with X’s.

Introducing the Standard Template Library 533

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

534 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

// Demonstrate remove_copy and replace_copy.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main()
{
char str[] = "This is a test.";
vector<char> v, v2(20);
unsigned int i;

for(i=0; str[i]; i++) v.push_back(str[i]);

// **** demonstrate remove_copy ****

cout << "Input sequence: ";
for(i=0; i<v.size(); i++) cout << v[i];
cout << endl;

// Remove all i's
remove_copy(v.begin(), v.end(), v2.begin(), 'i');

cout << "Result after removing i's: ";
for(i=0; i<v2.size(); i++) cout << v2[i];
cout << endl << endl;

// **** now, demonstrate replace_copy ****

cout << "Input sequence: ";
for(i=0; i<v.size(); i++) cout << v[i];
cout << endl;

// Replace s's with X's
replace_copy(v.begin(), v.end(), v2.begin(), 's', 'X');

cout << "Result after replacing s's with X's: ";
for(i=0; i<v2.size(); i++) cout << v2[i];
cout << endl << endl;

return 0;
}

The output produced by this program is shown here:

Input sequence: This is a test.
Result after removing i's: Ths s a test.

Input sequence: This is a test.
Result after replacing s's with X's: ThiX iX a teXt.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 535

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

Reversing a Sequence
An often useful algorithm is reverse(), which reverses a sequence. Its general form is

template <class BiIter> void reverse(BiIter start, BiIter end);

The reverse() algorithm reverses the order of the range specified by start and end.

The following program demonstrates reverse():

// Demonstrate reverse.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main()
{
vector<int> v;
unsigned int i;

for(i=0; i<10; i++) v.push_back(i);

cout << "Initial: ";
for(i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

reverse(v.begin(), v.end());

cout << "Reversed: ";
for(i=0; i<v.size(); i++) cout << v[i] << " ";

return 0;
}

The output from this program is shown here:

Initial: 0 1 2 3 4 5 6 7 8 9
Reversed: 9 8 7 6 5 4 3 2 1 0

Transforming a Sequence
One of the more interesting algorithms is transform() because it modifies each
element in a range according to a function that you provide. The transform()
algorithm has these two general forms:

template <class InIter, class OutIter, class Func)
OutIter transform(InIter start, InIter end, OutIter result, Func unaryfunc);

template <class InIter1, class InIter2, class OutIter, class Func)
OutIter transform(InIter1 start1, InIter1 end1, InIter2 start2,

OutIter result, Func binaryfunc);

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

536 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

The transform() algorithm applies a function to a range of elements and stores the
outcome in result. In the first form, the range is specified by start and end. The function to
be applied is specified by unaryfunc. This function receives the value of an element in its
parameter, and it must return its transformation. In the second form, the transformation
is applied by using a binary operator function that receives the value of an element from
the sequence to be transformed in its first parameter, and an element from the second
sequence as its second parameter. Both versions return an iterator to the end of the
resulting sequence.

The following program uses a simple transformation function, called xform(), to
square the contents of a list. Notice that the resulting sequence is stored in the same
list that provided the original sequence.

// An example of the transform algorithm.
#include <iostream>
#include <list>
#include <algorithm>
using namespace std;

// A simple transformation function.
int xform(int i) {
return i * i; // square original value

}

int main()
{
list<int> xl;
int i;

// put values into list
for(i=0; i<10; i++) xl.push_back(i);

cout << "Original contents of xl: ";
list<int>::iterator p = xl.begin();
while(p != xl.end()) {
cout << *p << " ";
p++;

}

cout << endl;

// transform xl
p = transform(xl.begin(), xl.end(), xl.begin(), xform);

cout << "Transformed contents of xl: ";
p = xl.begin();
while(p != xl.end()) {
cout << *p << " ";
p++;

}

return 0;
}

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 537

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

The output produced by the program is shown here:

Original contents of xl: 0 1 2 3 4 5 6 7 8 9
Transformed contents of xl: 0 1 4 9 16 25 36 49 64 81

As you can see, each element in the xl has been squared.

Exploring the Algorithms
Although the algorithms just described are representative of those provided by
the STL, they only scratch the surface. You will want to explore the others on
your own. Some of the most interesting algorithms are those that operate on sets,
such as set_union() and set_difference(). Two other fascinating algorithms are
next_permutation() and prev_permutation(). They construct the next and
previous permutation of elements from a sequence. The time you spend exploring
the STL algorithms is time well spent.

The string Class
As you know, C++ does not support a built-in string type, per se. It does, however,
provide for two ways of handling strings. First, you may use the traditional, null-
terminated character array, with which you are already familiar. This is sometimes
referred to as a C string. The second way is as a class object of type string, and
this approach is examined here.

Actually, the string class is a specialization of a more general template class called
basic_string. In fact, there are two specializations of basic_string: string, which
supports 8-bit character strings, and wstring, which supports wide-character strings.
Since 8-bit characters are, by far, the most commonly used in normal programming, it
is the version of basic_string that is examined here.

Before looking at the string class, it is important to understand why it is part of the
C++ library. Standard classes have not been casually added to C++. In fact, a significant
amount of thought and debate has accompanied each new addition. Given that C++
already contains some support for strings as null-terminated character arrays, it may at
first seem that the inclusion of the string class is an exception to this rule. However,
this is actually far from the truth. Here is why: Null-terminated strings cannot be
manipulated by any of the standard C++ operators. Nor can they take part in normal
C++ expressions. For example, consider this fragment:

char s1[80], s2[80], s3[80];

s1 = "one"; // can't do
s2 = "two"; // can't do
s3 = s1 + s2; // error, not allowed

As the comments show, in C++, it is not possible to use the assignment operator to
give a character array a new value (except during initialization), nor is it possible to

The string class
provides an
alternative to
null-terminated
strings.

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 2:19:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

use the + operator to concatenate two strings. These operations must be written using
library functions, as shown here:

strcpy(s1, "one");
strcpy(s2, "two");
strcpy(s3, s1);
strcat(s3, s2);

Since null-terminated character arrays are not technically data types in their own right,
the C++ operators cannot be applied to them. This makes even the most rudimentary
string operations clumsy. More than anything else, it is the inability to operate on
null-terminated strings using the standard C++ operators that has driven the development
of a standard string class. Remember, when you define a class in C++, you are defining a
new data type that can be fully integrated into the C++ environment. This, of course,
means that the operators can be overloaded relative to the new class. Therefore, by adding
a standard string class, it becomes possible to manage strings in the same way as any
other type of data: through the use of operators.

There is, however, one other reason for the standard string class: safety. In the hands
of an inexperienced or careless programmer, it is very easy to overrun the end of an
array that holds a null-terminated string. For example, consider the standard string
copy function, strcpy(). This function contains no provision for checking the
boundary of the target array. If the source array contains more characters than the
target array can hold, then a program error or system crash is possible (likely). As you
will see, the standard string class prevents such errors.

In the final analysis, there are three reasons for the inclusion of the standard string class:
consistency (a string now defines a data type), convenience (you can use the standard
C++ operators), and safety (array boundaries will not be overrun). Keep in mind that there
is no reason that you should altogether abandon normal, null-terminated strings. They
are still the most efficient way in which to implement strings. However, when speed is
not an overriding concern, using the new string class gives you access to a safe and fully
integrated way to manage strings.

Although not traditionally thought of as part of the STL, string is another container
class defined by C++. This means that it supports the algorithms described in the
previous section. However, strings have additional capabilities. To have access to the
string class, you must include <string> in your program.

The string class is very large, with many constructors and member functions. Also, many
member functions have multiple overloaded forms. For this reason, it is not possible to
look at the entire contents of string in this chapter. Instead, we will examine several of
its most commonly used features. Once you have a general understanding of how string
works, you will be able to easily explore the rest of string’s features on your own.

The prototypes for three of string’s most commonly used constructors are shown here:

string();

string(const char *str);

string(const string &str);

538 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Introducing the Standard Template Library 539

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

The first form creates an empty string object. The second creates a string object
from the null-terminated string pointed to by str. This form provides a conversion
from null-terminated strings to string objects. The third form creates a string from
another string.

A number of operators are defined for string objects, including:

Operator Meaning
= Assignment
+ Concatenation
+= Concatenation assignment
= = Equality
!= Inequality
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
[] Subscripting
<< Output
>> Input

These operators allow the use of string objects in normal expressions and eliminate
the need for calls to functions such as strcpy() or strcat(). In general, you can mix
string objects with null-terminated strings in expressions. For example, a string
object can be assigned a null-terminated string.

The + operator can be used to concatenate a string object with another string object,
or a string object with a C-style string. That is, the following variations are supported:

string + string

string + C-string

C-string + string

The + operator can also be used to concatenate a character onto the end of a string.

The string class defines the constant npos, which is –1. This constant represents the
length of the longest possible string.

The C++ string classes make string handling extraordinarily easy. For example, by
using string objects, you can use the assignment operator to assign a quoted string to
a string, the + operator to concatenate strings, and the comparison operators to
compare strings. The following program illustrates these operations:

// A short string demonstration.
#include <iostream>
#include <string>
using namespace std;

int main()
{

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

string str1("The string class gives ");
string str2("C++ high-powered string handling.");
string str3;

// assign a string
str3 = str1;
cout << str1 << "\n" << str3 << "\n";

// concatenate two strings
str3 = str1 + str2;
cout << str3 << "\n";

// compare strings
if(str3 > str1) cout << "str3 > str1\n";
if(str3 == str1+str2)
cout << "str3 == str1+str2\n";

/* A string object can also be
assigned a normal string. */

str1 = "This is a null-terminated string.\n";
cout << str1;

// create a string object using another string object
string str4(str1);
cout << str4;

// input a string
cout << "Enter a string: ";
cin >> str4;
cout << str4;

return 0;
}

This program produces the following output:

The string class gives
The string class gives
The string class gives C++ high-powered string handling.
str3 > str1
str3 == str1+str2
This is a null-terminated string.
This is a null-terminated string.
Enter a string: Hello
Hello

Notice the ease with which the string handling is accomplished. For example, the + is
used to concatenate strings, and the > is used to compare two strings. To accomplish
these operations using C-style, null-terminated strings, less convenient calls to the
strcat() and strcmp() functions would be required. Because C++ string objects
can be freely mixed with C-style strings, there is no disadvantage to using them in
your program—and there are considerable benefits to be gained.

540 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

There is one other thing to notice in the preceding program: The size of the strings
are not specified. string objects are automatically sized to hold the string that they
are given. Thus, when assigning or concatenating strings, the target string will grow
as needed to accommodate the size of the new string. It is not possible to overrun
the end of the string. This dynamic aspect of string objects is one of the ways
that they are better than null-terminated strings (which are subject to boundary
overruns).

Some string Member Functions
Although most simple string operations can be accomplished by using the string
operators, more complex or subtle ones are accomplished by using string member
functions. While string has far too many member functions to discuss them all, we
will examine several of the most common.

TIP: Because string is a container, it also supports the common container
functions, such as begin(), end(), and size().

Basic String Manipulations
To assign one string to another, use the assign() function. Two of its forms are
shown here:

string &assign(const string &strob, size_type start, size_type num);

string &assign(const char *str, size_type num);

In the first form, num characters from strob, beginning at the index specified by start,
will be assigned to the invoking object. In the second form, the first num characters
of the null-terminated string str are assigned to the invoking object. In each case, a
reference to the invoking object is returned. Of course, it is much easier to use the =
to assign one entire string to another. You will need to use the assign() function
only when assigning a partial string.

You can append part of one string to another by using the append() member
function. Two of its forms are shown here:

string &append(const string &strob, size_type start, size_type num);

string &append(const char *str, size_type num);

Here, num characters from strob, beginning at the index specified by start, will be
appended to the invoking object. In the second form, the first num characters of the
null-terminated string str are appended to the invoking object. In each case, a reference
to the invoking object is returned. Of course, it is much easier to use the + to append
one entire string to another. You will need to use the append() function only when
appending a partial string.

Introducing the Standard Template Library 541

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

542 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

You can insert or replace characters within a string by using insert() and replace().
The prototypes for their most common forms are shown here:

string &insert(size_type start, const string &strob);

string &insert(size_type start, const string &strob,
size_type insStart, size_type num);

string &replace(size_type start, size_type num, const string &strob);

string &replace(size_type start, size_type orgNum, const string &strob,
size_type replaceStart, size_type replaceNum);

The first form of insert() inserts strob into the invoking string at the index specified
by start. The second form of the insert() function inserts num characters from strob,
beginning at insStart, into the invoking string at the index specified by start.

Beginning at start, the first form of replace() replaces num characters from the invoking
string, with strob. The second form replaces orgNum characters, beginning at start, in
the invoking string with replaceNum characters from the string specified by strob,
beginning at replaceStart. In both cases, a reference to the invoking object is returned.

You can remove characters from a string by using erase(). One of its forms is
shown here:

string &erase(size_type start = 0, size_type num = npos);

This removes num characters from the invoking string, beginning at start. A reference
to the invoking string is returned.

The following program demonstrates the insert(), erase(), and replace() functions:

// Demonstrate insert(), erase(), and replace().
#include <iostream>
#include <string>
using namespace std;

int main()
{
string str1("This is a test");
string str2("ABCDEFG");

cout << "Initial strings:\n";
cout << "str1: " << str1 << endl;
cout << "str2: " << str2 << "\n\n";

// demonstrate insert()
cout << "Insert str2 into str1:\n";
str1.insert(5, str2);
cout << str1 << "\n\n";

// demonstrate erase()
cout << "Remove 7 characters from str1:\n";

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

str1.erase(5, 7);
cout << str1 <<"\n\n";

// demonstrate replace
cout << "Replace 2 characters in str1 with str2:\n";
str1.replace(5, 2, str2);
cout << str1 << endl;

return 0;
}

The output produced by this program is shown here:

Initial strings:
str1: This is a test
str2: ABCDEFG

Insert str2 into str1:
This ABCDEFGis a test

Remove 7 characters from str1:
This is a test

Replace 2 characters in str1 with str2:
This ABCDEFG a test

Searching a String
The string class provides several member functions that search a string, including
find() and rfind(). Here are the prototypes for the most common versions of these
functions:

size_type find(const string &strob, size_type start=0) const;

size_type rfind(const string &strob, size_type start=npos) const;

Beginning at start, find() searches the invoking string for the first occurrence of the
string contained in strob. If found, find() returns the index at which the match occurs
within the invoking string. If no match is found, then npos is returned. rfind() is the
opposite of find(). Beginning at start, it searches the invoking string in the reverse
direction for the first occurrence of the string contained in strob (i.e., it finds the last
occurrence of strob within the invoking string). If found, rfind() returns the index at
which the match occurs within the invoking string. If no match is found, npos is
returned.

Here is a short example that uses find():

#include <iostream>
#include <string>
using namespace std;

int main()
{
int i;

Introducing the Standard Template Library 543

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

string s1 =
"The string class makes string handling easy.";

string s2;

i = s1.find("class");
if(i!=string::npos) {
cout << "Match found at " << i << endl;
cout << "Remaining string is: ";
s2.assign(s1, i, s1.size());
cout << s2;

}

return 0;
}

The output produced by this program is shown here:

Match found at 11
Remaining string is: class makes string handling easy.

Comparing Strings
To compare the entire contents of one string object with another, you will normally
use the overloaded relational operators, described earlier. However, if you want to
compare a portion of one string with another, then you will need to use the
compare() member function, shown here:

int compare(size_type start, size_type num, const string &strob) const;

Here, num characters in strob, beginning at start, will be compared against the
invoking string. If the invoking string is less than strob, compare() will return less
than zero. If the invoking string is greater than strob, it will return greater than zero.
If strob is equal to the invoking string, compare() will return zero.

Obtaining a Null-Terminated String
Although string objects are useful in their own right, there will be times when
you will need to obtain a null-terminated character-array version of the string.
For example, you might use a string object to construct a file name. However,
when opening a file, you will need to specify a pointer to a standard, null-terminated
string. To solve this problem, the member function c_str() is provided. Its prototype
is shown here:

const char *c_str() const;

This function returns a pointer to a null-terminated version of the string contained in
the invoking string object. The null-terminated string must not be altered. It is also
not guaranteed to be valid after any other operations have taken place on the string
object.

544 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Putting Strings into Other Containers
Since string defines a data type, it is possible to create containers that hold objects of
type string. For example, here is a better way to write the dictionary program shown
earlier:

// Use a map of strings to create a dictionary.
#include <iostream>
#include <map>
#include <string>
using namespace std;

int main()
{
map<string, string> dictionary;

dictionary.insert(pair<string, string>("house",
"A place of dwelling."));

dictionary.insert(pair<string, string>("keyboard",
"An input device."));

dictionary.insert(pair<string, string>("programming",
"The act of writing a program."));

dictionary.insert(pair<string, string>("STL",
"Standard Template Library"));

string s;
cout << "Enter word: ";
cin >> s;

map<string, string>::iterator p;

p = dictionary.find(s);
if(p != dictionary.end())
cout << "Definition: " << p->second;

else
cout << "Word not in dictionary.\n";

return 0;
}

Final Thoughts on the STL
The STL is an important, integral part of the C++ language. Many programming tasks
can (and will) be framed in terms of it. The STL combines power with flexibility, and
while its syntax is a bit complex, its ease-of-use is remarkable. No C++ programmer
can afford to neglect the STL, because it will play an important role in the way future
programs are written.

Introducing the Standard Template Library 545

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 21

21

P:\010Comp\Grnd-Up8\897-0\ch21.vp
Monday, March 03, 2003 9:23:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

CHAPTER 22

The C++
Preprocessor

547

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

548 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

This final chapter concludes our examination of C++ by discussing the C++
preprocessor. The preprocessor is that part of the compiler that performs various

text manipulations on your program prior to the actual translation of your source
code into object code. You can give text-manipulation commands to the preprocessor.
These commands are called preprocessor directives and, although not technically part
of the C++ language, they expand the scope of its programming environment.

The C++ preprocessor contains the following directives:

#define #error #include

#if #else #elif

#endif #ifdef #ifndef

#undef #line #pragma

As is apparent, all preprocessor directives begin with a # sign. Each will be examined
here in turn.

NOTE: The C++ preprocessor is a holdover from C and some of its features have
been rendered redundant by newer and better C++ language elements. However, it is
still an important part of the C++ programming environment.

#define
#define is used to define an identifier and a character sequence that will be substituted
for the identifier each time it is encountered in the source file. The identifier is called a
macro name and the replacement process is called macro substitution. The general form of
the directive is

#define macro-name character-sequence

Notice that there is no semicolon in this statement. There can be any number of
spaces between the identifier and the character sequence, but once the sequence
begins, it is terminated only by a newline.

For example, if you want to use the word UP for the value 1 and the word DOWN
for the value 0, you could declare these two #defines:

#define UP 1
#define DOWN 0

These statements will cause the compiler to substitute a 1 or a 0 each time the name
UP or DOWN is encountered in your source file. For example, the following will
print 1 0 2 on the screen:

cout << UP << ' ' << DOWN << ' ' << UP + UP;

#define defines
a macro name.

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ Preprocessor 549

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

22

Once a macro name has been defined, it can be used as part of the definition of other
macro names. For example, the following code defines the names ONE, TWO, and
THREE to their respective values:

#define ONE 1
#define TWO ONE+ONE
#define THREE ONE+TWO

It is important to understand that the macro substitution is simply the replacing of
an identifier with its associated string. Therefore, if you want to define a standard
message, you might write something like this:

#define GETFILE "Enter File Name"
// ...
cout << GETFILE;

The preprocessor will substitute the string “Enter File Name” when the identifier
GETFILE is encountered. To the compiler, the cout statement will actually appear
to be

cout << "Enter File Name";

No text substitutions will occur if the identifier occurs within a quoted string. For
example:

#define GETFILE "Enter File Name"
// ...
cout << "GETFILE is a macro name\n";

will not display

Enter File Name is a macro name

but rather

GETFILE is a macro name

If the string is longer than one line, you can continue it on the next line by placing a
backslash at the end of the line, as shown in this example:

#define LONG_STRING "this is a very long \
string that is used as an example"

It is common practice among C++ programmers to use capital letters for macro names.
This convention helps anyone reading the program to know at a glance that a macro
substitution will take place. Also, it is best to put all #defines at the start of the

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

550 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

file, or perhaps in a separate include file, rather than sprinkling them throughout
the program.

Macro substitutions are often used to define “magic numbers” that occur in a program.
For example, you may have a program that defines an array and has several routines
that access that array. Instead of “hard-coding” the array’s size with a constant, it is
better to define a name that represents the size, and then use that name whenever
the size of the array is needed. Therefore, if the size of the array changes, you have to
change it in only one place in the file, and then recompile. For example:

#define MAX_SIZE 100
// ...
float balance[MAX_SIZE];
double index[MAX_SIZE];
int num_emp[MAX_SIZE];

TIP: It is important to remember that C++ provides a better way of defining
constants. This is to use the const specifier. However, many C++ programmers have
migrated from C, where #define is commonly used for this purpose. Thus, you will
likely see it frequently in C++ code, too.

Function-Like Macros
The #define directive has another feature: The macro name can have arguments.
Each time the macro name is encountered, the arguments associated with it are
replaced by the actual arguments found in the program. This creates a function-like
macro. Here is an example:

// Use a function-like macro.
#include <iostream>
using namespace std;

#define MIN(a,b) (((a)<(b)) ? a : b)

int main()
{
int x, y;

x = 10;
y = 20;
cout << "The minimum is " << MIN(x, y);

return 0;
}

When this program is compiled, the expression defined by MIN(a,b) will be substituted,
except that x and y will be used as the operands. That is, the cout statement will be
substituted to look like this:

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

cout << "The minimum is: " << (((x)<(y)) ? x : y);

In essence, the function-like macro is a way to define a function that has its code
expanded in line rather than called.

The apparently redundant parentheses surrounding the MIN macro are necessary
to ensure proper evaluation of the substituted expression, because of the relative
precedence of the operators. In fact, the extra parentheses should be applied in
virtually all function-like macros. In general, you must be very careful how you define
function-like macros; otherwise, there can be surprising results. For example, consider
this short program, which uses a macro to determine whether a value is even or odd:

// This program will give the wrong answer.
#include <iostream>
using namespace std;

#define EVEN(a) a%2==0 ? 1 : 0

int main()
{
if(EVEN(9+1)) cout << "is even";
else cout << "is odd";

return 0;
}

This program will not work correctly because of the way the macro substitution is
made. When compiled, the EVEN(9+1) is expanded to

9+1%2==0 ? 1 : 0

As you should recall, the % (modulus) operator has higher precedence than the plus
operator. This means that the % operation is first performed on the 1 and then the
result is added to 9, which (of course) does not equal 0. To fix the problem, there
must be parentheses around a in the macro definition of EVEN, as is shown in this
corrected version of the program:

// This program is now fixed.
#include <iostream>
using namespace std;

#define EVEN(a) (a)%2==0 ? 1 : 0

int main()
{
if(EVEN(9+1)) cout << "is even";
else cout << "is odd";

return 0;
}

The C++ Preprocessor 551

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

22

A function-like
macro is one
that takes an
argument.

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

552 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

Now, the 9+1 is evaluated prior to the modulus operation. In general, it is a good idea
to surround macro parameters with parentheses, to avoid unforeseen troubles like the
one just described.

The use of macro substitutions in place of real functions has one major benefit: Because
macro substitution code is expanded in line, no overhead for a function call is incurred,
so the speed of your program increases. However, this increased speed might be paid
for with an increase in the size of the program, due to duplicated code.

TIP: Although still commonly seen in C++ code, the use of function-like macros
has been rendered completely redundant by the inline specifier, which accomplishes
the same goal better and more safely. (Remember, inline causes a function to be
expanded in line rather than called.) Also, inline functions do not require the extra
parentheses needed by most function-like macros. However, function-like macros
will almost certainly continue to be a part of C++ programs for some time to come,
because many longtime C/C++ programmers continue to use them out of habit.

#error
When the #error directive is encountered, it forces the compiler to stop compilation.
This directive is used primarily for debugging. The general form of the directive is

#error error-message

Notice that the error-message is not between double quotes. When the compiler
encounters this directive, it displays the error message and other information, and
then terminates compilation. Your implementation determines what information
will actually be displayed. (You might want to experiment with your compiler to
see what is shown.)

#include
The #include preprocessor directive instructs the compiler to include either a
standard header or another source file with the file that contains the #include
directive. The name of the standard headers are enclosed between angle brackets,
as shown in the programs throughout this book. For example,

#include <vector>

includes the standard header for vectors.

When including another source file, its name can be enclosed between double quotes
or angle brackets. For example, the following two directives both cause C++ to read
and compile a file called sample.h:

#include <sample.h>
#include "sample.h"

#error displays an
error message.

#include includes
a header or
another
source file.

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ Preprocessor 553

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

22

When including a file, whether the filename is enclosed by quotes or angle brackets
determines how the search for the specified file is conducted. If the filename is
enclosed between angle brackets, the compiler searches for it in one or more
implementation-defined directories. If the filename is enclosed between quotes,
then the compiler searches for it in some other implementation-defined directory,
which is typically the current working directory. If the file is not found in this
directory, the search is restarted as if the filename had been enclosed between angle
brackets. Since the search path is implementation defined, you will need to check
your compiler’s documentation for details.

Conditional Compilation Directives
There are several directives that allow you to selectively compile portions of your
program’s source code. This process, called conditional compilation, is widely used by
commercial software houses that provide and maintain many customized versions
of one program.

#if, #else, #elif, and #endif
The general idea behind the #if directive is that if the constant expression following
the #if is true, then the code between it and an #endif will be compiled; otherwise,
the code will be skipped over. #endif is used to mark the end of an #if block.

The general form of #if is

#if constant-expression
statement sequence

#endif

If the constant expression is true, the block of code will be compiled; otherwise, it will
be skipped. For example:

// A simple #if example.
#include <iostream>
using namespace std;

#define MAX 100
int main()
{
#if MAX>10
cout << "Extra memory required.\n";

#endif

// ...
return 0;

}

This program will display the message on the screen because, as defined in the program,
MAX is greater than 10. This example illustrates an important point: The expression
that follows the #if is evaluated at compile time. Therefore, it must contain only
identifiers that have been previously defined or constants. No variables can be used.

#if, #ifdef, #ifndef,
#elif, and #else
are the conditional
compilation
directives.

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

554 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

The #else directive works in much the same way as the else statement that forms part
of the C++ language: It establishes an alternative if the #if directive fails. The previous
example can be expanded to include the #else directive, as shown here:

// A simple #if/#else example.
#include <iostream>
using namespace std;

#define MAX 6
int main()
{
#if MAX>10
cout << "Extra memory required.\n");

#else
cout << "Current memory OK.\n";

#endif

// ...

return 0;
}

In this program, MAX is defined to be less than 10, so the #if portion of the code is
not compiled, but the #else alternative is. Therefore, the message Current memory
OK. is displayed.

Notice that the #else is used to mark both the end of the #if block and the beginning
of the #else block. This is necessary because there can be only one #endif associated
with any #if.

The #elif means “else if” and is used to establish an if-else-if ladder for multiple
compilation options. The #elif is followed by a constant expression. If the expression
is true, then that block of code is compiled, and no other #elif expressions are tested
or compiled. Otherwise, the next #elif expression in the series is checked. The general
form is

#if expression
statement sequence

#elif expression 1
statement sequence

#elif expression 2
statement sequence

#elif expression 3
statement sequence

// ...
#elif expression N

statement sequence
#endif

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, this fragment uses the value of COMPILED_BY to define who compiled
the program:

#define JOHN 0
#define BOB 1
#define TOM 2

#define COMPILED_BY JOHN

#if COMPILED_BY == JOHN
char who[] = "John";

#elif COMPILED_BY == BOB
char who[] = "Bob";

#else
char who[] = "Tom";

#endif

#ifs and #elifs can be nested. In this case, the #endif, #else, or #elif associate with
the nearest #if or #elif. For example, the following is perfectly valid:

#if COMPILED_BY == BOB
#if DEBUG == FULL

int port = 198;
#elif DEBUG == PARTIAL

int port = 200;
#endif

#else
cout << "Bob must compile for debug output.\n";

#endif

#ifdef and #ifndef
Another method of conditional compilation uses the directives #ifdef and #ifndef,
which mean “if defined” and “if not defined,” respectively, and refer to macro names.

The general form of #ifdef is

#ifdef macro-name
statement sequence

#endif

If the macro-name has been previously defined in a #define statement, the statement
sequence between the #ifdef and #endif will be compiled.

The general form of #ifndef is

#ifndef macro-name
statement sequence

#endif

The C++ Preprocessor 555

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

22

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

If macro-name is currently undefined by a #define statement, then the block of code
is compiled.

Both the #ifdef and #ifndef directives can have an #else or #elif statement. For
example:

#include <iostream>
using namespace std;

#define TOM

int main()
{
#ifdef TOM
cout << "Programmer is Tom.\n";

#else
cout << "Programmer is unknown.\n";

#endif
#ifndef RALPH
cout << "RALPH not defined.\n";

#endif
return 0;

}

This program displays

Programmer is Tom.
RALPH not defined.

However, if TOM were not defined, then the output would be

Programmer is unknown.
RALPH not defined.

One other point: You can nest #ifdefs and #ifndefs in the same way as #ifs.

#undef
The #undef directive is used to remove a previously defined definition of a macro
name. The general form is

#undef macro-name

Consider this example:

#define TIMEOUT 100
#define WAIT 0

// ...

556 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ Preprocessor 557

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

22

#undef TIMEOUT
#undef WAIT

Here, both TIMEOUT and WAIT are defined until the #undef statements are
encountered.

The principal use of #undef is to allow macro names to be localized to only those
sections of code that need them.

Using defined
In addition to #ifdef, there is a second way to determine whether a macro name is
defined. You can use the #if directive in conjunction with the defined compile-time
operator. For example, to determine whether the macro MYFILE is defined, you can
use either of these two preprocessing commands:

#if defined MYFILE

or

#ifdef MYFILE

You can also precede defined with the ! to reverse the condition. For example, the
following fragment is compiled only if DEBUG is not defined:

#if !defined DEBUG
cout << "Final version!\n";

#endif

The Diminishing Role of the Preprocessor
The C++ preprocessor is directly derived from the C preprocessor, and it offers no
enhancements over its C counterpart. However, the role of the preprocessor in C++
is much smaller than it is in C. One reason for this is that many of the chores that
are performed by the preprocessor in C are performed by language elements in C++.
Stroustrup has stated his desire to render the preprocessor redundant, so that,
ultimately, it could be removed from the language entirely.

At this time, the preprocessor is already partially redundant. For example, two of the
most common uses for #define have been replaced by C++ statements. Specifically,
its abilities to create a constant value and to define a function-like macro are now
redundant. In C++, there are better ways of doing both of these jobs. To create a
constant, simply define a const variable. To create an inline function, use the inline

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

558 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

specifier. Both of these procedures are better ways of accomplishing what has been
done using #define.

Another example of the replacement of preprocessor elements with language elements
is the single-line comment. One of the reasons this element was created was to allow
comments to be commented-out. As you know, the /*…*/ style comment cannot be
nested. This means that you cannot comment-out a fragment of code that includes
/*…*/ comments. However, you can comment-out // comments by surrounding
them with a /*…*/ comment. The ability to comment-out code renders some uses of
the conditional compilation directives, such as #ifdef, partially redundant.

#line
The #line directive is used to change the contents of _ _LINE_ _ and _ _FILE_ _,
which are predefined macro names. _ _LINE_ _ contains the line number of the
line currently being compiled, and _ _FILE_ _ contains the name of the file being
compiled. The basic form of the #line command is

#line number “filename”

Here, number is any positive integer, and the optional filename is any valid file
identifier. The line number becomes the number of the current source line, and the
filename becomes the name of the source file. #line is primarily used for debugging
purposes and for special applications.

For example, the following program specifies that the line count will begin with 200.
The cout statement displays the number 202 because it is the third line in the
program after the #line 200 statement.

#include <iostream>
using namespace std;

#line 200 // set line counter to 200
int main() // now this is line 200
{ // this is line 201
cout << _ _LINE_ _; // outputs 202

return 0;
}

#line changes the
contents of the
_ _LINE_ _ and
_ _FILE_ _macros.

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The C++ Preprocessor 559

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

22

#pragma
The #pragma directive is an implementation-defined directive that allows various
instructions, defined by the compiler’s creator, to be given to the compiler. The
general form of the #pragma directive is

#pragma name

Here, name is the name of the #pragma you want. If the name is unrecognized by
the compiler, then the #pragma directive is simply ignored and no error results.

TIP: Check the documentation that came with your compiler to see what
types of #pragmas it supports. You might find some that are valuable to your
programming efforts. Typical #pragmas include those that determine what compiler
warning messages are issued, how code is generated, and what library is linked.

The # and ## Preprocessor Operators
C++ supports two preprocessor operators: # and ##. These operators are used in
conjunction with #define. The # operator causes the argument it precedes to
become a quoted string. For example, consider this program:

#include <iostream>
using namespace std;

#define mkstr(s) # s

int main()
{
cout << mkstr(I like C++);

return 0;
}

The C++ preprocessor turns the line

cout << mkstr(I like C++);

into

cout << "I like C++";

#pragma is an
implementation-
defined
preprocessing
directive.

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The ## operator is used to concatenate two tokens. Here is an example:

#include <iostream>
using namespace std;

#define concat(a, b) a ## b

int main()
{
int xy = 10;

cout << concat(x, y);

return 0;
}

The preprocessor transforms

cout << concat(x, y);

into

cout << xy;

If these operators seem strange to you, keep in mind that they are not needed or used
in most programs. They exist primarily to allow some special cases to be handled by
the preprocessor.

Predefined Macro Names
C++ specifies six built-in predefined macro names. They are

_ _LINE_ _
_ _FILE_ _
_ _DATE_ _
_ _TIME_ _
_ _STDC_ _
_ _cplusplus

Each will be described here, in turn.

The _ _LINE_ _ and _ _FILE_ _ macros were introduced in the discussion of #line.
Briefly, they contain the current line number and filename of the program when it is
being compiled.

The _ _DATE_ _ macro contains a string of the form month/day/year that is the date
of the translation of the source file into object code.

The _ _TIME_ _ macro contains the time at which the program was compiled. The
time is represented in a string having the form hour:minute:second.

560 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The meaning of _ _STDC_ _ is implementation-defined. Generally, if _ _STDC_ _ is
defined, then the compiler will accept only standard C/C++ code that does not
contain any non-standard extensions.

A compiler conforming to ANSI/ISO Standard C++ will define _ _cplusplus as a value
containing at least 6 digits. Non-conforming compilers will use a value with 5 or
less digits.

Final Thoughts
You have come a long way since Chapter 1. If you have read and worked through all
the examples in this book, then you can call yourself a C++ programmer. Like many
things, programming is best learned by doing, so the best way to reinforce what you
have learned is to write programs. Also, look at examples of C++ programs written by
other people. If possible, study the C++ code written by several different programmers,
paying attention to how the program is designed and implemented. Look for
shortcomings as well as strong points. This will expand the way you think about
programming. Also, consider ways existing code can be improved through use of
STL containers and algorithms. These items offer great potential to improve the
readability and maintainability of large programs. Finally, experiment. Push your
limits. You will be surprised at how quickly you become an expert C++ programmer!

To continue your study of C++, I suggest my book C++: The Complete Reference,
published by McGraw-Hill/Osborne. It contains in-depth descriptions of the C++
language and its libraries.

The C++ Preprocessor 561

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter 22

22

P:\010Comp\Grnd-Up8\897-0\ch22.vp
Monday, March 03, 2003 9:30:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

APPENDIX A

C-Based I/O

563

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter A

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

564 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

This appendix presents a brief overview of the C I/O system. Even though you will
normally use the C++ I/O system, there are several reasons why you may need to

understand the fundamentals of C-based I/O. First, if you will be working on C code
(especially if you are converting it to C++), then you will need to understand how
the C I/O system works. Second, it is common to find both C and C++ I/O within the
same program. This is true especially when the program is very large and has been
written by multiple programmers over a long period of time. Third, a great number
of existing C programs continue to be used and maintained. Finally, many books and
periodicals contain programs written in C. To understand these programs, you need
to understand the basics of the C I/O system.

REMEMBER: For C++ programs, you should use the C++ object-oriented
I/O system.

This appendix covers the most commonly used C-based I/O functions. However, the
C standard library contains a very rich and diverse assortment of I/O functions—more
than can be covered here. If you will be doing extensive work in C, you will want to
explore its I/O system in detail.

The C-based I/O system requires either the header file stdio.h or the new-style header
<cstdio>. A C program must use the stdio.h since C does not support C++-style
headers. A C++ program uses either one. The header <cstdio> puts its contents
into the std namespace. The header file stdio.h puts its contents into the global
namespace, which is in keeping with C. The examples in this appendix are C
programs, so they use the C-style header stdio.h, and no namespace statement
is required.

One other point: As explained in Chapter 1, the C language standard was updated
in 1999, resulting in the C99 standard for C. At that time, a few enhancements were
made to the C I/O system. However, because C++ is built on C89, it does not support
any features added by C99. (Furthermore, at the time of this writing, no widely
available compiler supports C99, nor is there any widely distributed code that uses
the C99 features.) Thus, none of the features added to the C I/O system by C99
are described here. If you are interested in the C language, including a complete
description of its I/O system and those features added by the C99 standard, I
recommend my book C: The Complete Reference, 4th edition, McGraw-Hill/Osborne.

C I/O Uses Streams
Like the C++ I/O system, the C-based I/O system operates on streams. At the beginning
of a program’s execution, three predefined text streams are opened. They are stdin,
stdout, and stderr. (Some compilers also open other, implementation-dependent
streams.) These streams are the C versions of cin, cout, and cerr, respectively. They
each refer to a standard I/O device connected to the system, as shown here:

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C-Based I/O 565

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

Stream Device

stdin keyboard

stdout screen

stderr screen

Remember that most operating systems, including Windows, allow I/O redirection,
so functions that read or write to these streams may be redirected to other devices.
You should never try to explicitly open or close these streams.

Each stream that is associated with a file has a file control structure of type FILE.
This structure is defined in stdio.h. You must not make modifications to this file
control block.

Understanding printf() and scanf()
The two most commonly used C-based I/O functions are printf() and scanf(). The
printf() function writes data to the console; scanf(), its complement, reads data
from the keyboard. Because the C language does not support operator overloading,
or the use of << and >> as I/O operators, it relies on printf() and scanf() for
console I/O. Both printf() and scanf() can operate on any of the built-in data
types, including characters, strings, and numbers. However, since these functions are
not object-oriented, they cannot operate directly upon class types that you create.

printf()
The printf() function has this prototype:

int printf(const char *fmt_string, ...);

The first argument, fmt_string, defines the way any subsequent arguments are displayed.
This argument is often called the format string. It contains two things: text and format
specifiers. Text is printed on the screen and has no other effect. The format specifiers
define the way arguments that follow the format string are displayed. A format specifier
begins with a percent sign, and is followed by the format code. The format specifiers
are shown in Table A-1. There must be exactly the same number of arguments as there
are format specifiers, and the format specifiers and the arguments are matched in order.
For example, this printf() call,

printf(“Hi %c %d %s”, ‘c’, 10, “there!”);

displays: Hi c 10 there!.

The printf() function returns the number of characters output. It returns a negative
value if an error occurs.

The format specifiers may have modifiers that specify the field width, the number
of decimal places, and a left-justification flag. An integer placed between the % sign

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

566 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

and the format specifier acts as a minimum-field-width specifier. This pads the output
with spaces to ensure that it is at least a certain minimum length. If the string or
number is greater than that minimum, it will be printed in full, even if it overruns
the minimum. If you want to pad with 0s, place a 0 before the field-width specifier.
For example, %05d will pad a number of less than five digits with 0s so that its total
length is five.

To specify the number of decimal places printed for a floating-point number, place
a decimal point after the field-width specifier, followed by the number of decimal
places you want to display. For example, %10.4f will display a number at least ten
characters wide, with four decimal places. When this is applied to strings or integers,
the number following the period specifies the maximum field length. For example,
%5.7s will display a string that is at least five characters long, but that does not exceed
seven characters. If the string is longer than the maximum field width, the characters
will be truncated from the end.

By default, all output is right-justified: If the field width is larger than the data
printed, the data will be placed on the right edge of the field. You can force the

Code Format

%c Character

%d Signed decimal integers

%i Signed decimal integers

%e Scientific notation (lowercase e)

%E Scientific notation (uppercase E)

%f Decimal floating point

%g Uses %e or %f, whichever is shorter

%G Uses %E or %F, whichever is shorter

%o Unsigned octal

%s String of characters

%u Unsigned decimal integers

%x Unsigned hexadecimal (lowercase letters)

%X Unsigned hexadecimal (uppercase letters)

%p Displays a pointer

%n The associated argument is a pointer to an integer into which the
number of characters written so far is placed

%% Displays a % signTable A-1.

The printf()
Format
Specifiers

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C-Based I/O 567

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

information to be left-justified by placing a minus sign directly after the %. For
example, %–10.2f will left-justify a floating-point number, with two decimal places
in a ten-character field. Here is a program that demonstrates field-width specifiers
and left-justification:

#include <stdio.h>

int main()
{
printf("|%10.5f|\n", 123.23);
printf("|%-10.5f|\n", 123.23);
printf("|%10.5s|\n", "Hello there");
printf("|%-10.5s|\n", "Hello there");

return 0;
}

This program displays the following output:

| 123.23000|
|123.23000 |
| Hello|
|Hello |

There are two format specifier modifiers that allow printf() to display short and
long integers. These modifiers can be applied to the d, i, o, u, and x type specifiers.
The l (ell) modifier tells printf() that a long data type follows. For example, %ld
means that a long int is to be displayed. The h modifier instructs printf() to
display a short int. Therefore, %hu indicates that the data is of the short, unsigned
integer type.

The l and h modifiers can also be applied to the n specifier, to indicate that the
corresponding argument is a pointer to a long or short integer, respectively.

If your compiler fully complies with Standard C++, then you can use the l modifier
with the c format to indicate a wide character. You can also use the l modifier with
the s format to indicate a wide-character string.

The L modifier can prefix the floating-point specifiers e, f, and g. In this context,
it indicates that a long double follows.

scanf()
C’s general-purpose console input function is scanf(). It can read all the built-in data
types and automatically convert numbers into the proper internal format. It is much
like the reverse of printf(). The general form of scanf() is

int scanf(const char *fmt_string,...);

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The format string consists of three classifications of characters:

◆ Format specifiers

◆ Whitespace characters

◆ Non-whitespace characters

The scanf() function returns the number of fields that are input. It returns EOF
(defined in stdio.h) if an error occurs.

The input format specifiers are preceded by a % sign. They tell scanf() what type of
data is to be read next. For example, %s reads a string, while %d reads an integer.
These codes are listed in Table A-2.

A whitespace character in the control string causes scanf() to skip over one or more
whitespace characters in the input stream. A whitespace character is either a space, a
tab, or a newline. In essence, one whitespace character in the control string will cause
scanf() to read, but not store, any number (including zero) of whitespace characters
up to the first non-whitespace character.

A non-whitespace character causes scanf() to read and discard a matching character.
For example, “%d,%d” causes scanf() to first read an integer, then read and discard
a comma, and finally read another integer. If the specified character is not found,
scanf() will terminate.

568 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

Code Meaning

%c Read a single character

%d Read a decimal integer

%i Read an integer in either decimal, octal, or hexadecimal format.

%e Read a floating-point number

%f Read a floating-point number

%g Read a floating-point number

%o Read an octal number

%s Read a string

%x Read a hexadecimal number

%p Read a pointer

%n Receives an integer value equal to the number of characters read
so far

%u Read an unsigned decimal integer

%[] Scan for a set of characters

%% Read a percent signTable A-2.

The scanf()
Format
Specifiers

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

All the variables used to receive values through scanf() must be passed by their
addresses. This means that all arguments must be pointers to the variables used as
arguments. (C does not support references or the reference parameter.) Passing
pointers allows scanf() to alter the contents of an argument. For example, if you
want to read an integer into the variable count, use the following scanf() call:

scanf("%d", &count);

Strings will be read into character arrays, and the array name, without any index, is
the address of the first element in an array. So, to read a string into the character
array address, you would use

char address[80];
scanf("%s", address);

In this case, address is already a pointer, and need not be preceded by the & operator.

The data items read by scanf() must be separated by spaces, tabs, or newlines.
Punctuation such as commas, semicolons, and the like do not count as separators.
This means that

scanf("%d%d", &r, &c);

will accept an input of 10 20, but will fail with 10,20. As in printf(), the scanf()
format codes are matched, in order, with the variables receiving input in the
argument list.

An * placed after the % and before the format code will read data of the specified
type, but will not assign it to any variable. Thus,

scanf("%d%*c%d", &x, &y);

when given the input 10/20, will place the value 10 into x, discard the division sign,
and give y the value 20.

The format specifiers can specify a maximum-field-length modifier. This is an integer
number placed between the % and the format-specifier code that limits the number
of characters read for any field. For example, if you want to read no more than 20
characters into str, then you would write

scanf("%20s", str);

If the input stream is greater than 20 characters, then a subsequent call to input
begins where this call leaves off. For example, if

ABCDEFGHIJKLMNOPQRSTUVWXYZ

is entered as the response to the scanf() call in this example, then only the first 20
characters, or up to the ‘T,’ are placed into str, because of the maximum-size specifier.

C-Based I/O 569

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This means that the remaining characters, “UVWXYZ,” have not yet been used. If
another scanf() call is made, such as

scanf("%s", str);

then the characters “UVWXYZ” are placed into str. If a whitespace is encountered,
input for a field may terminate before the maximum field length is reached. In this
case, scanf() will move on to the next field.

Although spaces, tabs, and newlines are used as field separators, they are read like any
other characters when single characters are being read. For example, with an input
stream of “x y,”

scanf("%c%c%c", &a, &b, &c);

will return with the character ‘x’ in a, a space in b, and the character ‘y’ in c.

Another feature of scanf() is the scanset. A scanset defines a set of characters that
will be matched by scanf() and stored in a character-array. The scanf() function
continues to input characters as long as they are members of the scanset. When a
character is entered that does not match any in the scanset, scanf() null-terminates
the corresponding array and moves on to the next (if any) field.

You define a scanset by putting a list of the characters you want to scan for inside
square brackets. The beginning square bracket must be prefixed by a percent sign.
For example, this scanset tells scanf() to read only the letters X, Y, and Z.

%[XYZ]

The argument corresponding to the scanset must be a pointer to a character array.
Upon return from scanf(), the array will contain a null-terminated string composed
of the characters read. For example, the following program uses a scanset to read
digits into s1. As soon as a non-digit is entered, s1 is null-terminated, and characters
are read into s2 until the next whitespace character is entered.

/* A simple scanset example. */
#include <stdio.h>

int main()
{
char s1[80], s2[80];

printf("Enter numbers, then some letters\n");
scanf("%[0123456789]%s", s1, s2);
printf("%s %s", s1, s2);

return 0;
}

570 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In most implementations, you can specify a range inside a scanset by using a hyphen.
For example, the following scanset tells scanf() to accept the characters A through Z:

%[A-Z]

You can specify more than one range within a scanset. For example, this program
reads digits and then letters:

/* A scanset example using ranges. */
#include <stdio.h>

int main()
{
char s1[80], s2[80];

printf("Enter numbers, then some letters\n");
scanf("%[0-9]%[a-zA-Z]", s1, s2);
printf("%s %s", s1, s2);

return 0;
}

You can specify an inverted set if the first character in the set is a ^. When the ^ is
present, it tells scanf() to accept any character that is not defined by the scanset.
The following modification of the preceding example uses the ^ to invert the type
of characters the scanset will read:

/* A scanset example using inverted ranges. */
#include <stdio.h>

int main()
{
char s1[80], s2[80];

printf("Enter non-numbers, then some non-letters\n");
scanf("%[^0-9]%[^a-zA-Z]", s1, s2);
printf("%s %s", s1, s2);

return 0;
}

One important point to remember is that the scanset is case-sensitive. Therefore, if
you want to scan for both uppercase and lowercase letters, they must be specified
individually.

Several of the format specifiers can take modifiers which precisely specify the type of
variable that receives the data. To assign data to a long integer, put an l (ell) in front
of the format specifier. To assign data to a short integer, put an h in front of the format
specifier. These modifiers can be used with the d, i, o, u, x, and n format codes.

C-Based I/O 571

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

By default, the f, e, and g specifiers tell scanf() to assign data to a float. If you put
an l (ell) in front of one of these specifiers, scanf() assigns the data to a double.
Using an L tells scanf() that the variable receiving the data is a long double.

The l (ell) modifier can also be used with the c and s format codes as long as your
compiler fully complies with Standard C++. Preceding c with an l indicates a pointer
to an object of type wchar_t. Preceding s with an l indicates a pointer to a wchar_t
array. The l can also be used to modify a scanset for use with wide characters.

The C File System
Although the C file system differs from that used by C++, it largely parallels it. The C
file system is composed of several interrelated functions. The most commonly used
are listed in Table A-3.

The common thread that ties the C I/O system together is the file pointer. A file pointer
is a pointer to information that defines various things about the file, including its
name, status, and current position. In essence, the file pointer identifies a specific disk
file, and is used by the stream to tell each of the C I/O functions where to perform
operations. A file pointer is a pointer variable of type FILE, which is defined in
stdio.h.

The remainder of this appendix discusses the basic file functions.

572 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

Function Purpose

fopen() Opens a stream

fclose() Closes a stream

fputc() Writes a character to a stream

fgetc() Reads a character from a stream

fwrite() Writes a block of data to a stream

fread() Reads a block of data from a stream

fseek() Seeks to specified byte in a stream

fprintf() Is to a stream what printf() is to the console

fscanf() Is to a stream what scanf() is to the console

feof() Returns true if end-of-file is reached

ferror() Returns true if an error has occurred

rewind() Resets the file position indicator to the beginning of the file

remove() Erases a fileTable A-3.

The Most
Commonly used
C File System
Functions

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

fopen()
fopen() serves three functions:

1. It opens a stream for use

2. It links a file with that stream

3. It returns a FILE pointer to that stream

Most often, and for the rest of this discussion, the file is a disk file. The fopen()
function has this prototype:

FILE *fopen(const char *filename, const char *mode);

where filename points to the name of the file that is being opened, and mode points
to a string containing the desired open status. The legal values for mode are shown in
Table A-4. The filename must be a string of characters that comprise a filename valid
in the operating system; it may also include a path specification.

The fopen() function returns a pointer of type FILE. This pointer identifies the file,
and is used by most other file system functions. It should never be altered by your
code. On failure, fopen() returns null.

As Table A-4 shows, a file can be opened in either text mode or binary mode. In text
mode, carriage-return/linefeed sequences are translated into newline characters on
input. On output, the reverse occurs: newlines are translated into carriage-return/
linefeeds. No such translations occur on binary files.

C-Based I/O 573

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

Mode Meaning

“r” Open a text file for reading

“w” Create a text file for writing

“a” Append to a text file

“rb” Open a binary file for reading

“wb” Create a binary file for writing

“ab” Append to a binary file

“r+” Open a text file for read/write

“w+” Create a text file for read/write

“a+” Append to or create a text file for read/write

“r+b” Open a binary file for read/write

“w+b” Create a binary file for read/write

“a+b” Append to or create a binary file for read/writeTable A-4.

The Legal
Values for mode

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

574 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

If you want to open a file for writing with the name test, then you could write

fp = fopen("test", "w");

where fp is a variable of type FILE *. However, you will usually see it written like this:

if((fp = fopen("test", "w"))==NULL) {
printf("Cannot open file.");
exit(1);

}

This method detects any error in opening a file, such as a write-protected or full disk,
before attempting to write to it. NULL is a macro defined in stdio.h.

If you use fopen() to open a file for output, then any preexisting file by that name
will be erased and a new file started. If no file by that name exists, then one will be
created. If you want to add to the end of an existing file, then you must use mode “a”.
If the file does not exist, it will be created. Opening a file for read operations requires
that the file exists. If it does not, an error will be returned. Finally, if a file is opened
for read/write operations, it will not be erased if it exists; however, if it does not exist,
it will be created.

fputc()
The fputc() function is used to write characters to a stream that was previously
opened for writing by using the fopen() function. Its prototype is:

int fputc(int ch, FILE *fp);

Here, fp is the file pointer returned by fopen(), and ch is the character to be output.
The file pointer tells fputc() which disk file to write to. Although ch is an int, only
the low-order byte is used.

If an fputc() operation is a success, then it will return the character written. Upon
failure, an EOF is returned.

fgetc()
The fgetc() function is used to read characters from a stream opened in read mode
by fopen(). Its prototype is

int fgetc(FILE *fp);

Here, fp is a file pointer of type FILE returned by fopen(). Although fgetc() returns
an integer, the high-order byte is zero.

The fgetc() function will return EOF when an error occurs or the end of the file
has been reached. Therefore, to read to the end of a text file you could use the
following code:

ch = fgetc(fp);

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C-Based I/O 575

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

while(ch!=EOF) {
ch = fgetc(fp);

}

feof()
The C file system can also operate on binary data. When a file is opened for binary
input, it is possible that an integer value equal to EOF may be read. This would cause
the code shown above to indicate an end-of-file condition, even though the physical
end of the file had not been reached. To solve this problem, C includes the function
feof(), which is used to determine end-of-file when reading binary data. It has the
prototype

int feof(FILE *fp);

where fp identifies the file. The feof() function returns non-zero if the end of the file
has been reached; otherwise, zero is returned. Therefore, the following reads a binary
file until end-of-file is encountered:

while(!feof(fp)) ch = fgetc(fp);

Of course, this same method can be applied to text files, as well.

fclose()
The fclose() function closes a stream that was opened by a call to fopen(). It
writes any data still remaining in the disk buffer to the file, and does a formal
operating-system-level close on the file. A call to fclose() frees the file control block
associated with the stream and makes it available for reuse. As you probably know,
there is an operating system limit to the number of open files you can have at any
one time, so it may be necessary to close one file before opening another.

The fclose() function has the following prototype:

int fclose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of zero
signifies a successful close operation; EOF is returned if an error occurs. Generally,
the only time fclose() will fail is when a disk has been prematurely removed from
the drive or there is no more space on the disk.

Using fopen(), fgetc(), fputc(), and fclose()
The functions fopen(), fget(), fputc(), and fclose() comprise a minimal set of
file routines. The following program demonstrates these functions by using them to
copy a file. Notice that the files are opened in binary mode, and that feof() is used
to check for end-of-file.

/* This program will copy one file to another. */
#include <stdio.h>

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

int main(int argc, char *argv[])
{
FILE *in, *out;
char ch;

if(argc!=3) {
printf("You forgot to enter a filename\n");
return 1;

}

if((in=fopen(argv[1], "rb")) == NULL) {
printf("Cannot open source file.\n");
return 1;

}
if((out=fopen(argv[2], "wb")) == NULL) {
printf("Cannot open destination file.\n");
return 1;

}

/* This code actually copies the file. */
while(!feof(in)) {

ch = fgetc(in);
if(!feof(in)) fputc(ch, out);

}

fclose(in);
fclose(out);

return 0;
}

ferror() and rewind()
The ferror() function is used to determine whether a file operation has produced an
error. It has the prototype

int ferror(FILE *fp);

where fp is a valid file pointer. ferror() returns true if an error has occurred during
the last file operation; it returns false otherwise. Because each file operation sets the
error condition, ferror() should be called immediately after each file operation;
otherwise, an error may be lost.

The rewind() function will reset the file position indicator to the beginning of the
file specified as its argument. The prototype is

void rewind(FILE *fp);

where fp is a valid file pointer.

576 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

fread() and fwrite()
The C file system provides two functions, fread() and fwrite(), that allow the
reading and writing of blocks of data. These functions are similar to C++’s read()
and write() functions. Their prototypes are

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);

size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

In the case of fread(), buffer is a pointer to a region of memory that will receive the
data read from the file. The function reads count number of objects, each object being
num_bytes in length, from the stream pointed to by fp. fread() returns the number
of objects read, which may be less than count if an error or the end of the file is
encountered.

For fwrite(), buffer is a pointer to the information that will be written to the file.
The function writes count number of objects, each object being num_bytes in length,
to the stream pointed to by fp. fwrite() returns the number of objects written,
which will be equal to count, unless an error occurs.

As long as the file has been opened for binary operations, fread() and fwrite() can
read and write any type of information. For example, this program writes a float to a
disk file:

/* Write a floating point number to a disk file. */
#include <stdio.h>

int main()
{
FILE *fp;
float f = 12.23F;

if((fp=fopen("test","wb"))==NULL) {
printf("Cannot open file.\n");
return 1;

}

fwrite(&f, sizeof(float), 1, fp);

fclose(fp);
return 0;

}

As this program illustrates, the buffer can be, and often is, simply a variable.

One of the most useful applications of fread() and fwrite() involves the reading
and writing of arrays or structures. For example, the following program writes the
contents of the floating-point array balance to the file “balance” by using a single
fwrite() statement. Next, it reads the array, using a single fread() statement, and
displays its contents.

C-Based I/O 577

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

578 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

#include <stdio.h>

int main()
{
register int i;
FILE *fp;
float balance[100];

/* open for write */
if((fp=fopen("balance","w"))==NULL) {
printf("Cannot open file.\n");
return 1;

}

for(i=0; i<100; i++) balance[i] = (float) i;

/* This saves the entire balance array in one step. */
fwrite(balance, sizeof balance, 1, fp);
fclose(fp);

/* zero array */
for(i=0; i<100; i++) balance[i] = 0.0;

/* open for read */
if((fp=fopen("balance","r"))==NULL) {
printf("Cannot open file.\n");
return 1;

}

/* This reads the entire balance array in one step. */
fread(balance, sizeof balance, 1, fp);

/* display contents of array */
for(i=0; i<100; i++) printf("%f ", balance[i]);

fclose(fp);
return 0;

}

Using fread() and fwrite() to read or write blocks of data is more efficient than
using repeated calls to fgetc() and fputc().

fseek() and Random-Access I/O
You can perform random read and write operations using the C I/O system with the
help of fseek(), which sets the file position indicator. Its prototype is

int fseek(FILE *fp, long numbytes, int origin);

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C-Based I/O 579

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

A

where fp is a file pointer returned by a call to fopen(), numbytes is the number of
bytes from origin to seek to, and origin is one of the following macros (defined in
stdio.h):

Origin Macro

Beginning of file SEEK_SET

Current position SEEK_CUR

End of file SEEK_END

Therefore, to seek numbytes from the start of the file, origin should be SEEK_SET.
To seek from the current position, use SEEK_CUR, and from the end of the file,
use SEEK_END.

The fseek() function returns zero on success, and non-zero if a failure occurs.

As a general rule, the use of fseek() on files opened in text mode is not recommended,
because the character translations will cause position errors to result. Therefore, its
use is suggested only for files opened in binary mode. For example, if you want to
read the 234th byte in a file called test, you could use the following code:

int func1()
{
FILE *fp;

if((fp=fopen("test", "rb")) == NULL) {
printf("cannot open file\n");
exit(1);

}

fseek(fp, 234L, SEEK_SET);
return getc(fp); /* read one character */

/* at 234th position */
}

fprintf() and fscanf()
In addition to the basic I/O functions discussed above, the C I/O system includes
fprintf() and fscanf(). These functions behave exactly like printf() and scanf(),
except that they operate on files. For this reason, these functions are commonly found
in C programs. The prototypes of fprintf() and fscanf() are

int fprintf(FILE *fp, const char *fmt_string, ...);

int fscanf(FILE *fp, const char *fmt_string, ...);

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

where fp is a file pointer returned by a call to fopen(). Except for directing their
focus to the file defined by fp, they operate exactly like printf() and scanf(),
respectively.

Erasing Files
The remove() function erases the specified file. Its prototype is

int remove(const char *filename);

It returns zero upon success, and non-zero if it fails.

580 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix A

P:\010Comp\Grnd-Up8\897-0\appa.vp
Monday, March 03, 2003 10:55:25 AM

Color profile: Generic CMYK printer profile
Composite Default screen

APPENDIX B

Working with an
Older C++

Compiler

581

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter B

P:\010Comp\Grnd-Up8\897-0\appb.vp
Monday, March 03, 2003 10:56:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

582 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix B

The programs in this book fully conform to the ANSI/ISO standard for C++ and
can be compiled by nearly any modern C++ compiler, including Microsoft’s

Visual C++ and Borland’s C++ Builder. Therefore, if you are using a modern compiler,
you had no trouble compiling the programs in this book. If this is the case, then you
won’t need the information presented in this appendix. Simply use the programs
exactly as they are shown.

However, if you are using a compiler that was created several years ago, then it might
report a number of errors when you try to compile the examples because it does not
recognize a few of C++’s newer features. If this is the case, don’t worry. Only minor
changes are required to modify the example programs so that they will work with old
compilers. Most often, the differences between old-style and modern code involve the
use of two features: new-style headers and the namespace statement. Each is
examined here.

As explained in Chapter 2, the #include statement includes a header into your
program. For early versions of C++, all headers were files that used the file extension .h.
For example, in an old-style program you would use a statement like this to include
the iostream header.

#include <iostream.h>

This caused the file iostream.h to be included in your program. Thus, in an old-style
program, when you included a header, you specified its filename which had the .h
extension. This is not the case today.

Modern C++ uses a different kind of header, which was developed when the ANSI/ISO
Standard for C++ was created. The modern headers do not specify filenames. Instead,
they specify standard identifiers, which may be mapped to files by the compiler, but
need not be. The modern C++ headers are an abstraction that simply guarantee that
the appropriate information required by your program is included.

Because the modern headers are not filenames, they do not have a .h extension. They
consist solely of the header name contained between angle brackets. For example,
here are two of the modern headers supported by Standard C++.

<iostream>

<fstream>

To convert these new-style headers into old-style header files, simply add a .h
extension.

When you include a modern header in your program, the contents of that header are
contained in the std namespace. As explained, a namespace is simply a declarative
region. Its purpose is to localize the names of identifiers to avoid name collisions.
Older versions of C++ put the names of library functions, etc., into the global namespace,

P:\010Comp\Grnd-Up8\897-0\appb.vp
Monday, March 03, 2003 10:56:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

not the std namespace used by modern compilers. Thus, when working with an old-style
compiler, there is no need for this statement

using namespace std;

In fact, most older compilers won’t accept the using namespace statement at all.

Two Simple Changes
If your compiler does not support namespaces and modern-style headers then it will
report one or more errors when it tries to compile the first few lines of the sample
programs in this book. If this is the case, then for many of the programs in this book
you need only make two simple changes: use an old-style header and delete the
namespace statement. For example, just replace

#include <iostream>
using namespace std;

with

#include <iostream.h>

This change transforms a modern program into a old-style one. Since the old-style
header reads all of its contents into the global namespace, there is no need for a
using namespace statement. After making these changes, the sample program
can be compiled by an older compiler.

There is one other change that you will occasionally need to make. C++ inherits
a few headers from the C language. The C language does not support the modern,
C++-style headers. Instead, C uses .h header files. To allow for backward compatibility,
Standard C++ still supports the C-style header files. However, Standard C++ also
defines modern headers that you can use in place of the C header files. The C++
versions of the C standard headers simply add a ‘c’ prefix to the C filename and drop
the .h. For example, the C++ header for math.h is <cmath>. The one for string.h
is <cstring>. Although it is currently permissible to include a C-style header file,
this approach is deprecated by Standard C++ (that is, it is not recommended). For
this reason, this book uses modern C++ headers in all #include statements. If your
compiler does not support C++-style headers for the C headers, then simply substitute
the old-style header files.

Working with an Older C++ Compiler 583

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Appendix B

B

P:\010Comp\Grnd-Up8\897-0\appb.vp
Monday, March 03, 2003 10:56:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

APPENDIX C

The .NET Managed
Extensions to C++

585

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter C

P:\010Comp\Grnd-Up8\897-0\appc.vp
Monday, March 03, 2003 10:56:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Microsoft’s .NET Framework defines an environment that supports the development
and execution of highly-distributed, component-based applications. It enables

differing computer languages to work together, and provides for security, program
portability, and a common programming model for the Windows platform. Although
the .NET Framework is a relatively recent addition to computing, it is an environment
in which many C++ programmers will likely be working in the near future.

Microsoft’s .NET Framework provides a managed environment that oversees program
execution. A program targeted for the .NET Framework is not compiled into executable
object code. Rather, it is compiled into Microsoft Intermediate Language (MSIL),
which is then executed under the control of the Common Language Runtime (CLR).
Managed execution is the mechanism that supports the key advantages offered by
the .NET Framework.

To take advantage of .NET managed execution, it is necessary for a C++ program to
use a set of non-standard, extended keywords and preprocessor directives that have
been defined by Microsoft. It is important to understand that these extensions are not
defined by ANSI/ISO standard C++. Thus, code in which they are used is not portable
to other environments.

It is far beyond the scope of this book to describe the .NET Framework, or the C++
programming techniques necessary to utilize it. (A thorough explanation of the .NET
Framework and how to create C++ code for it would easily fill a large book!) However,
a brief synopsis of the .NET managed extensions to C++ is given here for the benefit
of those programmers working in the .NET environment. A basic understanding of
the .NET Framework is assumed.

The .NET Keyword Extensions
To support the .NET managed execution environment, Microsoft adds the following
keywords to the C++ language.

_ _abstract _ _box _ _delegate

_ _event _ _finally _ _gc

_ _identifier _ _interface _ _nogc

_ _pin _ _property _ _sealed

_ _try_cast _ _typeof _ _value

Each of these is briefly described in the following sections.

_ _abstract
_ _abstract is used in conjuction with _ _gc to specify an abstract managed class.
No object of an _ _abstract class can be created. A class specified as _ _abstract
is not required to contain pure virtual functions.

586 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter C

P:\010Comp\Grnd-Up8\897-0\appc.vp
Monday, March 03, 2003 10:56:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

_ _box
_ _box wraps a value within an object. Boxing enables a value type to be used by code
that requires an object derived from System::Object, which is the base class of all
.NET objects.

_ _delegate
_ _delegate specifies a delegate, which encapsulates a pointer to a function within a
managed class (that is, a class modified by _ _gc).

_ _event
_ _event specifies a function that represents an event. Only the prototype for the
function is specified.

_ _finally
_ _finally is an addition to the standard C++ exception handling mechanism. It is
used to specify a block of code that will be executed when a try/catch block is left.
It does not matter what conditions cause the try/catch block to terminate. In all
cases, the _ _finally block will be executed.

_ _gc
_ _gc specifies a managed class. Here, “gc” stands for “garbage collection” and
indicates that objects of the class are automatically garbage collected when they
are no longer needed. An object is no longer needed when no references to the
object exist. Objects of a _ _gc class must be created using new. Arrays, pointers,
and interfaces can also be specified as _ _gc.

_ _identifier
_ _identifier allows a C++ keyword to be used as an identifier. This is a special-purpose
extension that will not be used by most programs.

_ _interface
_ _interface specifies a class that will act as an interface. In an interface, no function
can include a body. Thus, all functions in an interface are implicitly pure virtual
functions. An interface is essentially an abstract class in which no function has an
implementation.

_ _nogc
_ _nogc specifies a non-managed class. Since this is the type of class created by default,
the _ _nogc keyword is not usually used.

The .NET Managed Extensions to C++ 587

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter C

C

P:\010Comp\Grnd-Up8\897-0\appc.vp
Monday, March 03, 2003 10:56:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

_ _pin
_ _pin is used to specify a pointer that fixes the location in memory of the object
to which it points. Thus, an object that is “pinned” will not be moved in memory
by the garbarge collector. As a result, garbage collection does not invalidate a pointer
modified by _ _pin.

_ _property
_ _property specifies a property, which is a member function that gets or sets the
value of a member variable. Properties provide a convenient means to control access
to private or protected data.

_ _sealed
_ _sealed prevents the class that it modifies from being inheritied. It can also be used
to specify that a virtual function cannot be overridden.

_ _try_cast
_ _try_cast attempts to cast one type of expression into another. If the cast fails, an
exception of type System::InvalidCastException is thrown.

_ _typeof
_ _typeof obtains an object that encapsulates type information for a given type. This
object is an instance of System::Type.

_ _value
_ _value specifies a class that is represented as a value type. A value type holds its
own values. This differs from a _ _gc type, which must allocate storage through the
use of new. Value types are not subject to garbage collection.

Preprocessor Extensions
To support .NET, Microsoft defines the #using preprocessor directive, which is
used to import metadata into your program. Metadata contains type and member
information in a form that is indepedent of a specific computer language. Thus,
metadata helps support mixed-language programming. All managed C++ programs
must import <mscorlib.dll>, which contains the metadata for the .NET Framework.

Microsoft defines two pragmas that relate to the .NET Framework. (Pragmas are used
with the #pragma preprocessing directive.) The first is managed, which specifies
managed code. The second is unmanaged, which specifies unmanaged (that is, native)
code. These pragmas can be used within a program to selectively create managed and
unmanaged code.

588 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter C

P:\010Comp\Grnd-Up8\897-0\appc.vp
Monday, March 03, 2003 10:56:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The attribute Attribute
Microsoft defines attribute, which is the attribute used to declare another attribute.

Compiling Managed C++
At the time of this writing, the only commonly available compiler that can target the
.NET Framework is the one supplied by Microsoft’s Visual Studio .NET. To compile
a managed code program, you must use the /clr option, which targets code for the
Common Language Runtime.

The .NET Managed Extensions to C++ 589

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Chapter C

C

P:\010Comp\Grnd-Up8\897-0\appc.vp
Monday, March 03, 2003 10:56:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Grnd-Up8\897-0\FM.vp
Tuesday, March 04, 2003 10:51:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This page intentionally left blank

591

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

Index

& (bitwise operator), 198-199, 201
& (pointer operator), 107-108, 160, 161, 163-164,

169, 229, 271
&&, 50-52
< > (used in template syntax), 381
<, 27, 50
<< (left shift operator), 198, 202-203
<< (output operator), 16, 18, 19, 20, 421-424, 426
<=, 50
>, 50
>> (input operator), 19, 20, 87, 421, 424-425, 426
>> (right shift operator), 198, 202-203
>=, 27, 50
* (arithmetic operator), 46, 47, 49
* (pointer operator), 106, 107-108, 161, 162,

163-164, 228-229
[], 82, 94, 309, 320-323, 504
^, 198, 200
:, 77, 247
::, 247-248, 309, 354-355, 473
, (comma), 65, 205-206
{ }, 15, 16, 26, 29, 96, 97, 128
=, 18, 45, 302-303, 309, 317-320
==, 27, 50, 316

!, 50-51, 52
!=, 50
–, 46, 47, 49, 111
–>, 229, 238, 270, 309
–>*, 495, 496-497
– –, 29, 47, 48, 49, 111, 303, 305, 308, 313
(), 21, 22, 23, 26, 49, 55, 110, 113, 210, 309,

324-325
%, 47, 49
. (dot operator), 218, 229, 232, 238, 242, 247,

248, 270, 309
.*, 309, 495-497
+, 46, 47, 49, 111
++, 29, 47, 48-49, 111, 303-308, 313-316
#, 548, 559, 560
##, 559, 560
?, 203-204, 302, 309
; (semicolon), 16, 22, 30, 63, 217
/, 46, 47, 49
/* */, 14-15, 558
//, 15, 558
~, 198, 200-201, 253
|, 198, 200, 201
||, 50-52

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

592 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

A
abort(), 397, 398, 399, 407
abs(), 22-23, 147

generic version of, 383-384
overloaded version of, 171-172

_ _abstract, 586
Access declarations, 350-351
adjustfield format flag, 427
<algorithm> header, 529
Algorithms, 500, 501, 529-537

table of STL, 529-531
allocator class, 501
Allocators, 501
Ambiguity, 177-179, 352-354
AND

bitwise operator (&), 198-199, 201
logical operator (&&), 50-52

ANSI C standard, 3
ANSI/ISO standardization of C++, 6
append(), 541
argc parameter, 141-142, 144
Argument(s)

command line, 141-144
default function. See Default function

arguments
function, 22-24
list, 24
passing, 158-164

argv parameter, 141-144
Arrays

bounded (safe), creating, 167-168, 322-323,
388-393

bounds checking and, 84-85, 88, 167
definition of, 82
dynamic, 504
to functions, passing, 137-140
indexing, 82, 113, 114-115
initialization, 96-101
as members of structures, 233
multidimensional, 96
new and delete to allocate, 210-211
of objects, 267-270
one-dimensional, 82-88
and pointers, 112-116
of pointers, 118-121
sorting, 85-86
of strings, 101-104
of structures, 219-226
two-dimensional, 94-95
unsized, 100-101

Arrow operator (–>), 229, 238, 270, 309

ASCII character set, 34, 71-72, 198-199
asctime(), 231-232
asm statement, 493
_ _asm statement, 493
Assembly language, 4

definition of, 3
instructions, embedding, 493

assign(), 541
Assignment operations, 18

and the comma operator, 205-206
compound, 205
and copy constructors, 291, 292, 295,

317-320
and functions, 164-165
multiple-variable, 206
and objects, 282-283, 317-320
through pointers, 110
and structures, 227-228
and the this pointer, 303

atof(), 144, 145
atoi(), 145
atol(), 145
attribute, 589
auto storage class specifier, 129, 185

B
B (programming language), 2
Backslash character constants, table of, 44
bad(), 449
bad_alloc exception, 409, 411
bad_cast exception, 462
bad_typeid exception, 455
Base class(es)

abstract, 372
access control, 335-342
constructor, passing arguments from

derived class to, 346-349
definition of, 332
general form for inheriting, 332-333
inheriting multiple, 342-343, 352-356
pointers, 358-360, 361, 362, 452
reference, 360, 361
virtual, 352-356

basefield format flag, 427
BASIC, 4, 494
basic_fstream class, 420
basic_ifstream class, 420
basic_ios class, 420
basic_iostream class, 420
basic_istream class, 420
basic_ofstream class, 420

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

basic_ostream class, 420
basic_streambuf class, 420
basic_string class, 537
BCPL (programming language), 2
before(), 452
begin(), 505, 506, 509, 541
Bit-fields, 169, 235-237

combined with unions, 240-241
Bitwise operators, 197-203
Blocks, code, 4, 29-30, 128
bool data type, 34, 35, 50

and automatic conversion to integer,
50, 53-54

boolalpha
format flag, 427
I/O manipulator, 431

_ _box, 587
break statement, 68-70, 75-76
Bubble sort, 85-86

C
C, developmental history of, 2-5
C Programming Language, The (Kernighan and

Ritchie), 3
C string, 537
C89 versus C99, 3, 564
C++

and C#, 8-9
case sensitivity of, 32
developmental history of, 4-6
history of the name, 49
and Java, 8-9
and object-oriented programming,

2, 4-5, 6-8
and Windows programming, 5, 14

C++ Programming Language, The (Stroustrup), 163
C# and C++, 8-9

and objects, 296
c_str(), 544
Call-by-reference, 158

using pointers, 159-160
using reference parameters, 160-164

Call-by-value, 158-159
case, 68-71
Case sensitivity of C++, 32
Casting operators, 461-470
Casts, traditional, 54

and base class pointers, 360
and pointers, 109-110
versus new casting operators, 470

catch, 396-404, 408
statements, multiple, 402-404

catch(...), 404-406
<cctype> header, 94
cerr stream, 419
char data type, 34

and type modifiers, 38, 39, 40
used as "small" integer, 41

Character(s)
ASCII, 34, 71-72, 198-199
escape sequences, 44
extended, 71
literals, 42, 43
standard library functions regarding, 94
translations in text file I/O, 419, 436, 439

cin stream, 19, 20, 87, 419
Circular definition, 153
Class(es), 246-272

abstract, 372
base. See Base class
definition of, 246
derived. See Derived class
forward declaration (reference) to, 277
general form of, 250, 308
generic. See Generic classes
members. See Members, class
polymorphic, 361, 453-454, 455, 470
relationship to structures, 260-262
relationship to unions, 263
template. See Generic classes

class keyword, 246, 262, 376
Class library, 32, 366, 372
clear(), 449
clock(), 192, 278
clock_t, 278
CLOCKS_PER_SEC, 278
clog stream, 419
close(), 437
<cmath> header, 64, 583
Code

definition of, 7
how to comment-out, 558
managed, 586, 588
object, definition of, 12
source, definition of, 12

Comma operator, 205-206
Comments, 14-15

nested, 558
Common Language Runtime (CLR), 586, 588
compare(), 544
Compilation, conditional, 553-557, 558

Index 593

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Compiler, C++, 13
working with an older, 582-583

Conditional expression in program control
statements, 59-62, 63, 64, 65

declaring variables within, 132-133
conio.h header file, 65
Console input, 19
Console output, 16
const qualifier, 182-184, 185, 219-220, 467, 468,

550, 557
const member functions, 486-488
const_cast, 467-468
Constants

creating named, 184
See also Literals

Constructor(s), 252-255, 488-493
copy. See Copy constructor
declaration, expanded form of derived

class, 346-347
dynamic initialization and, 280-282
explicit, 488-489, 490
and inheritance, 343-349
overloading, 278-279, 280-282
parameterized, 255-260
and passing objects to functions, 284-285

Containers, 500, 502-503
table of, 503

continue statement, 74
Conversion function, 497-498
Copy constructor(s), 288, 291-296

default, 285
general form of, 292
and returning objects, 295-296, 317, 318

count(), 529, 532-533
count_if(), 529, 532-533
cout stream, 16, 18, 20, 419
_ _cplusplus macro, 561
.cpp file name extension, 13
<cstdio> header, 88, 564
<cstdlib> header, 23, 145, 147, 211, 398,

399, 482
<ctime> header, 192, 229, 278
<cstring> header, 89, 583
Current location, 419
Cv-qualifiers, 182

D
Data, 7
Data type(s), 16

basic, 34-35
classes as, 246, 247
modifiers, 38-41

structures as, 216, 217, 228, 234
table of basic, 34, 39, 40
unions as, 216
See also Type conversions

_ _DATE_ _ macro, 560
dec

format flag, 427
I/O manipulator, 431

Decrement operator (– –), 29, 47, 48, 49
overloading, 303, 305, 42, 313
and pointers, 111

Default function arguments, 173-177
and ambiguity, 179
versus overloading, 175-176

default statement, 68
Default to int rule, 25, 149
#define directive, 548-552, 557-558, 559
defined compile-time operator, 557
_ _delegate, 587
delete operator, 208-211, 213

overloading, 411-416
Derived class(es)

access declaration in, 350-351
definition of, 332
general form of, 332-333, 346-347
inheriting multiple base classes, 342-343,

352-356
passing arguments to base class constructor

from, 346-349
pointers to, 358-360
references to, 360

Destructors, 253-255, 259
and inheritance, 343-346
and passing objects to functions, 284-288

do-while loop, 73-74
and continue, 74

Dot operator (.), 218, 229, 232, 238, 240, 247,
248, 270, 309

double data type, 19, 34, 42-43
and long type modifier, 38, 39, 40

Dynamic allocation, 207-213
using malloc() and free(), 211-213
using new and delete, 208-211, 213

Dynamic initialization, 280-282
dynamic_cast, 462-467, 470

E
Early binding, 372-373
#elif directive, 554-555, 556
else, 58-59, 60-62
#else directive, 554-555, 556
Encapsulation, 7, 246

594 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

end(), 505, 506, 509, 541
#endif directive, 553-555
ends I/O manipulator, 431
enum keyword, 193, 194
Enumerations, 193-196
EOF, 445, 575
eof(), 442-444, 449
Equality operator (==), 27, 50, 316
erase(), 505, 506, 509-510, 542-543
#error directive, 552
Errors, handling, 16-17

See also Exception handling
_ _event, 587
Exception handling, 396-416

and catching all exceptions, 404-406
and new, 209, 409-416
general operation of, 396-404
and restricting exceptions thrown, 406-408
and rethrowing exceptions, 408-409

exit(), 289, 398-399
explicit keyword, 488-489, 490
Expressions, 53-55

conditional, 59-62, 63, 64, 65
pointers used in, 110-112
type conversion in, 53-54

extern storage class specifier, 186-187, 494
Extraction operator (>>). See Input operator
Extractors, 421, 424-425, 426

F
F suffix for numeric literals, 42
fabs(), 171
fail(), 449
false constant, 35, 50, 427
fclose(), 575-576
feof(), 575-576
ferror(), 576
fgetc(), 574, 575-576, 578
FILE, 565, 572
File control structure, 565
File I/O, C++

and character translations, 436, 439
detecting EOF in, 442-443
opening and closing files in, 435-437
random access in, 446-448
reading and writing text files in, 438-439
unformatted binary, 439-446

_ _FILE_ _ macro, 558, 560
File pointer

C I/O, 572
get, 447, 448
put, 447, 448

fill(), 430-431
_ _finally, 587
find(), 525, 527, 543-544
fixed

format flag, 427
I/O manipulator, 431

flags(), 428-429
float data type, 34, 42-43
floatfield format flag, 427
Floating-point literals (constants), 19, 20, 42
flush(), 446
fmtflags, 426-427
fopen(), 573-574, 575-576
for loop, 28-29, 62-67

and continue, 74
declaring variable within, 132-133

Format flags (I/O), 426-430
FORTRAN, 4, 494
Forward declaration (reference), 277
fprintf(), 579-580
fputc(), 574, 575-576, 578
fread(), 577-578
free(), 211-213, 412
Friend functions, 274-278

and this, 298
friend keyword, 274
fscanf(), 579-580
fseek(), 578-579
fstream class, 420, 435

constructors, 437
<fstream> header, 435
Function(s), 20-26

argument. See Argument(s)
comparison, 502
conversion, 497-498
definition of, 3, 15, 20
friend, 274-278
general form of, 26
generic. See Generic functions
in assignment statements, 164-165, 167
inline. See Inline functions
library. See Library functions
objects (STL), 502
parameters. See Parameters
passing arrays to, 137-140
passing functions to, 480, 481
passing objects to, 283-288, 291, 292-294
passing pointers to, 136-137
passing strings to, 140-141
passing structures to, 226-227
pointers, 480-484, 502
pointers returned from, 149-151
predicate, 502

Index 595

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

prototypes, 21, 151-152
recursive, 153-156
return type of, 25, 26
returning from, 146
returning objects from, 288-291, 295-296
returning references, 164-167
returning values from, 24-25, 147-149
scope rules of, 128-136
virtual. See Virtual functions
void, 22, 25, 26, 146, 149

Function overloading, 158, 170-173
and ambiguity, 177-179
and default arguments, 175-176
and generic functions, 376, 379-381, 383
and polymorphism, 358, 373
See also Copy constructors

<functional> header, 502
fwrite(), 577-578

G
Garbage collection, 587, 588
_ _gc, 587
gcount(), 442, 443-444
Generated function, 378
Generic classes, 384-394

creating safe arrays with, 388-393
declaration, general form of, 384-385
and dynamic_cast, 467
explicit specialization of, 403-394
with multiple generic data types, 387-388
and typeid, 458-461

Generic functions, 376-384
explicitly overloading, 379-381
general form of, 376
versus overloaded functions, 381
overloading, 381
with multiple generic data types, 378-379

Get pointer, 447, 448
get(), 439-440, 444-445, 446
getline(), 445-446
gets(), 88, 445
good(), 449
goto statement, 4, 77-78, 128

H
.h filename extension, 582, 583
Header files, 582, 583
Headers, 15, 23, 152, 552, 582, 583
Heap, 207, 208, 209

hex
format flag, 427
I/O manipulator, 431

Hexadecimal literals, 43
Hierarchical classification, 8, 332

I
_ _identifier, 587
Identifiers, rules governing names of, 32
#if directive, 553-555, 557
if statement, 27-28, 58-62

declaring variable within, 132, 133
nested, 60-61

#ifdef directive, 555-556, 557, 558
if-else-if ladder, 61-62
#ifndef directive, 555-556
ifstream class, 420, 435
#include directive, 15, 552-553, 582, 583
Increment operator (++), 29, 47, 48-49

overloading, 303-308, 313-316
and pointers, 111-112

Indentation practices, 31
Index, array, 82
Indirection, 108

multiple, 122-123
Inheritance, 8, 332-356

and class access control, 335-342
and constructors and destructors, 343-349
general form of class, 332-333, 340
graphs, 352
and multiple base classes, 342-343,

352-356
and unions, 340
and virtual base classes, 352-356
and virtual functions, 363-365

Inline functions, 264-266, 557-558
versus function-like macros, 552

inline keyword, 264, 265, 552, 557-558
Input operator (>>), 19, 20, 87, 421, 424-425, 426
insert(), 505, 506, 509-510, 513-514, 515,

542-543
Inserters, 421-424
Insertion operator (<<). See Output operator
int data type, 15-16, 18, 34

in 16-bit versus 32-bit environment, 34, 38
char used as "small", 41
as default function return type, 25, 149
and integral promotion, 53
and type modifiers, 38-41

Integer literals, 42-43

596 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

_ _interface, 587
internal format flag, 427
Internet, 9
I/O, C, 564-580

file pointer, 572
file system functions, table of, 572
random access, 578-579
streams, 564-565
versus C++, 426

I/O, C++, 418-450
customized, 449-450
file. See File I/O
formatted, 426-435
library, old versus new, 418
manipulators. See Manipulators, I/O
operators. See Operators, I/O
random access, 446-448
status, checking, 448-449
stream classes, 419-420
streams, 418-419

<iomanip> header, 431
ios class, 420, 426

format flags, 426-430
ios::app, 436
ios::ate, 436
ios::badbit, 449
ios::beg, 446
ios::binary, 436, 439
ios::cur, 446
ios::end, 446
ios::eofbit, 449
ios::failbit, 449
ios::goodbit, 449
ios::in, 436
ios::out, 436
ios::trunc, 436
ios_base class, 420, 426
iostate enum, 448-449
iostream class, 420
<iostream> header, 15, 418, 419, 420, 421, 445
<iostream.h> header file, 418
isalpha(), 94
isdigit(), 94
isopen(), 437
ispunct(), 94
isspace(), 94
istream class, 420, 424

constructors, 437
Iteration statements, 58
iterator type, 501, 509
Iterators, 500, 501, 508-509, 513-514

J
Java

and C++, 8-9
and objects, 296

Jump statements, 58

K
kbhit(), 65, 120
Kernighan, Brian, 3
key/value pairs, 500, 523, 524
key_type, 524
Keywords, 31-32

table of, 31

L
L suffix for numeric literals, 42
Label, 77
labs(), 171
Languages, middle-level versus high-level

computer, 3
Late binding, 372-373
left

format flag, 427
I/O manipulator, 431

Libraries, class, 366, 372
Library functions, 21, 22, 32

and headers, 23, 152
Library, C++ standard, 32, 478-480
#line directive, 558
_ _LINE_ _ macro, 558, 560
Linkage specifiers, 493-494
list class, 500, 503, 515-517

member functions, table of, 515-517
Lists, 514-523
Literals, 41-44

hexidecimal and octal, 43
string, 43, 87, 117
suffixes for numeric, 42

localtime(), 230-231
long type modifier, 38, 39, 40, 41
Loops, 4

and break, 75-76
and continue, 74
do-while. See do-while loop
for. See for loop
and goto, 77-78
infinite, 66-67, 76
nested, 76-77
time delay, 67
while. See while loop

Index 597

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

M
Macro(s)

function-like, 550-552
pre-defined, 558, 560-561
substitution, 548, 549, 550, 552

main(), 15-16, 20, 25-26
command line arguments and, 141-144
and prototype requirement, 22, 26

make_pair(), 526, 527
malloc(), 211-213, 410, 412
managed .NET pragma, 588
Manipulators, I/O, 431-435

creating custom, 433-435
table of Standard C++, 431-432

map class, 500, 503, 523-527
member functions, table of, 525-526

Maps, 523-529
Mascitti, Rick, 49
Member functions, 246-248

const, 486-488
static, 486
and the this pointer, 297-298

Members, class, 246
access to, 250-252, 274-276
initialization syntax, 490-493
mutable, 487-488
and pointer-to-member operators, 495-497
static, 484-486

Memory allocation
and containers, 501
and destructors, 285-288, 289-291
See also Dynamic allocation

Memory models and pointers, 122-123
merge(), 515, 516
Metadata, 588
Microsoft Foundation Classes (MFC), 366
Microsoft Intermediate Language (MSIL), 586
Modula-2, 3, 21
<mscorlib.dll>, 588
multimap, 523
mutable storage class specifier, 185, 487-488

N
name(), 452
namespace statement, 472, 582, 583
Namespaces, 15, 191, 472-480, 582-583

unnamed, 477-478
.NET Framework, 9, 366, 586, 588
<new> header, 409, 416

new operator, 208-211, 213
handling exceptions thrown by, 409-411
overloading, 411-416

Newline character (\n), 26-27, 44
next_permutation(), 530, 537
_ _nogc, 587
NOT

bitwise operator (~), 198, 200-201
logical operator (!), 50-51, 52

nothrow, 410-411, 415-416
nothrow_t type, 416
npos, 539
NULL, 574
Null terminator, 86, 97

using, 93-94

O
Object(s), 7, 8, 246, 247, 248

arrays of, 267-270
assigning, 282-283, 317-320
dynamic initialization of, 281-282
factory, 456
function, 502
and inheritance, 8
initialization, 252-260, 291, 292, 294-295
passing, to functions, 283-288, 291, 292-294
pointers to, 270-272
references, 272
returning, from functions, 288-291, 295-296

Object code, 12
Object-oriented programming, 4-5, 6-8, 365-366

class as C++'s foundation of, 246
oct

format flag, 427
I/O manipulator, 432

Octal literals, 43
off_type, 446
ofstream class, 420, 435, 436

constructors, 437
One's complement, 198, 200-201
OOP. See Object-oriented programming
open(), 435-437
openmode enumeration, 436
operator functions

general form of, 300
using friend, 309-316
using member, 300-309, 316

Operator overloading, 300-330
[], 320-323
(), 324-325

598 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

and the assignment operator, 302-303,
309, 317-320

binary, 302-303, 309-312
increment and decrement, postfix and

prefix, 303-308, 313-316
I/O, 420-426
new and delete, 411-416
and polymorphism, 358, 373
relational and logical, 316
restrictions, 308-309
unary, 302, 303-308, 309, 313-316

Operators
arithmetic, 46-49
bitwise, 197-203
casting, 462-470
comma, 205-206
decrement. See Decrement operator (– –)
defined for string objects, 539
increment. See Increment operator (++)
pointer, 107-108
precedence summary, table of, 213-214
preprocessor, 559-560
relational and logical, 50-52, 201
and strings, 537-538
ternary, 203-204, 302, 309

Operators, I/O, 16, 29, 20, 87
overloading, 420-426

OR (|)
bitwise operator, 198, 200, 201
logical operator, 50-52

ostream class, 420, 421
Output operator (<<), 16, 18, 19, 20, 421-424
overload keyword, 31, 173
Overloading, function. See Function Overloading
Overloading, operator. See Operator overloading
Overriding virtual functions, 363

P
pair class, 502, 524, 526-527
Parameter(s), 23-24, 36-37, 134

array, 137-140
declaration, old-style versus modern, 153
list, 26
pointer, 136-137, 182-183
receiving strings, 140-141
reference, 160-161, 183

Pascal, 3, 21, 494
peek(), 446
_ _pin, 588
POD structure, 262
Pointer(s)

and the 8086 processor family, 122-123

arithmetic, 111-112, 113-114, 115, 360
and arrays, 112-116
arrays of, 118-121
assigning values through, 110
base class, 358-360, 361, 362, 452
base type of, 106, 108-110, 111-112
and call-by-reference, 159-160
and casts, 109-110
comparisons, 112, 117-118, 124-125
definition of, 106
to derived types, 358-360, 361, 362
errors, 124-125
file, 447, 448, 572
function, 480-484, 502
to functions, passing, 136-137
indexing, 115-116, 138
null, 121
to objects, 270-272
operators, 107-108
to pointers, 122-123
returned from functions, 149-151
to structures, 228-232, 234
uninitialized, 124

Pointer-to-member operators (.* and ->*), 309,
495-497

Polymorphism, 7, 158, 170, 172, 241, 272, 335,
358, 370

compile-time, 358, 373
run-time, 358, 360, 363, 372, 373, 452
sample program illustrating, 366-370
and virtual functions, 360, 363, 365-366, 370

pos_type, 448
#pragma directive, 559
precision(), 430-431
Predicate, 502
Preprocessor, 548-561

diminishing role of, 557-558
directives, 548-559
extensions, .NET, 588
operators, 559-560

prev_permutation(), 531, 537
printf(), 565-567

format specifiers, table of, 566
private access specifier, 261, 262, 333, 335,

336, 342
Program control statements, 58-79
_ _property, 588
protected access specifier, 333, 335, 337-342
Prototypes, function, 22, 151-152
ptrdiff_t, 532
public access specifier, 247, 262, 333, 335-336, 342
push_back(), 505, 506, 508, 509, 515, 516
push_front(), 515, 516

Index 599

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Put pointer, 447, 448
put(), 439, 440-441
putback(), 446

Q
Quicksort, 85, 86, 155, 376, 481
qsort(), 86, 481-483
Queue, 246
queue class, 500

R
rand(), 58, 119, 120, 456
Random access I/O

in C, 578-579
in C++, 446-448

rdstate(), 449
read(), 441-442, 443-444, 470
Recursion, 153-156
Reference parameters, 160-164, 183
References, 158

and bounded arrays, 167-168
to derived types, base class, 360, 361
independent, 168-169
object, 272
restrictions when using, 169
returning, 164-167
to structures, 232-233

register storage class specifier, 191-193
reinterpret_cast, 469
remove(), 580
remove_copy(), 531, 533-534
replace(), 542-543
replace_copy(), 531, 533-534
return statement, 16, 22, 24-25, 145-151
reverse(), 531, 535
rewind(), 576
rfind(), 543
Richards, Martin, 2
right

format flag, 427
I/O manipulator, 432

Ritchie, Dennis, 2, 3
Run-time type identification (RTTI), 452-461

S
scanf(), 565, 567-572

format specifiers, table of, 568
Scanset, 570-571

scientific format flag, 427
Scope resolution operator (::), 247-248, 309,

354-355, 473
Scope rules, 128-136
_ _sealed, 588
SEEK_CUR, 579
SEEK_END, 579
SEEK_SET, 579
seekdir enumeration, 446
seekg(), 446-448
seekp(), 446-448
Selection statements, 58
set_difference(), 531, 537
setf(), 428
set_union(), 531, 537
Shift operators, 202-203
short type modifier, 38, 39, 40, 41
showbase

format flag, 427
I/O manipulator, 432

showpoint
format flag, 427
I/O maniplutaor, 432

showpos
format flag, 427
I/O manipulator, 432

Sign flag, 39
signed type modifier, 38, 39-41
Simula67, 5
size(), 505, 506, 508, 541
size_t, 212, 412, 482
sizeof compile-time operator, 206-207, 213, 243
skipws

format flag, 427
I/O manipulator, 432

sort(), 516, 519-520
Source code, 12
Specialization (template functions and classes),

378, 379, 393-394
splice(), 515, 516-517
sqrt(), 64
Stack (memory region), 132, 207
Standard library. See Library functions
Standard Template Library. See STL
Statement(s)

function call as, 22
program control, 58-79
and semicolon, 16, 22, 30

static class members, 484-486
static member functions, 486
static storage class specifier, 187-191

600 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

static_cast, 468-469
std namespace, 15, 418, 472, 478-480, 564, 583
_ _STDC_ _ macro, 560, 561
stderr stream, 564-565
stdin stream, 564-565
stdio.h header file, 564, 565, 572
stdout stream, 564-565
Stepanov, Alexander, 6
STL (Standard Template Library), 6, 32, 500-537,

538, 545
algorithms. See Algorithms
containers. See Containers
overview of, 500-502

Storage class specifiers, 185-193
strcat(), 89-90, 141, 539, 540
strchr(), 221
strcmp(), 90-91, 93, 540
strcpy(), 89, 141, 151, 538, 539
streambuf class, 420
Streams (I/O), 418-419, 564-565
streamsize, 430, 441
String(s)

arrays of, 101-104
C, 537
as character arrays, 82, 86-87, 140, 544
definition of, 16, 43, 86
to functions, passing, 140-141
library functions to manipulate, 89-94
literals, 43, 87, 117
null, 87
to numbers, converting numeric, 144-145
reading, from the keyboard, 87-88
string class versus null-terminated,

537-538, 540, 541
string class, 500, 537-545

operators defined for, 539-540
member functions, 541-545

<string> header, 538
String table, 117, 119
strlen(), 91-93, 141
Stroustrup, Bjarne, 5, 6, 49, 163, 262, 557
struct keyword, 216, 218, 234, 235, 262
Structured language, 4
Structures, 216-237

accessing members of, 218-219
arrays as members of, 233
arrays of, 219-226
assigning, 227-228
bit-fields. See Bit-fields
C versus C++, 234-235
determining size of, 243
general form of, 218

nested, 233-234
passed to functions, 226-227
pointers to, 228-232, 234
references to, 232-233
relationship to classes, 260-262

switch statement, 67-71, 76
declaring variables within, 132, 133
nested, 71

System::Object class, 587

T
tellg(), 448
tellp(), 448
Template classes. See Generic classes
Template function, 378

See also Generic functions
template keyword, 376, 384, 385

and specialization syntax, 380-381,
393, 394

terminate(), 397
Ternary operator (?), 203-204, 302, 309
this pointer, 297-298

and friend operator functions, 313
and member operator functions, 302-303,

311, 313
Thompson, Ken, 2
throw, 396-398, 406-409

clause, general form of, 406
statement, general form of, 397

Time and date functions, 229-232
time(), 230-231
_ _TIME_ _ macro, 560
time_t, 229, 230
tm structure, 229-230
Tokens and tokenizing, 114
tolower(), 94
toupper(), 94
transform(), 531, 535-537
True and false in C++, 27, 50, 51, 52, 54
true constant, 35, 50, 427
try, 396-401, 402, 408
_ _try_cast, 588
Two's complement, 39
Type cast. See Casts
Type conversions

and ambiguity, 177-179
and conversion functions, 497-498
in expressions, 53-54

Type modifiers, 38-41
typedef, 197
typeid operator, 452-461, 465-467

Index 601

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<typeinfo> header, 452
type_info class, 452
typename keyword, 376
_ _typeof, 588

U
U suffix for numeric literals, 42
#undef directive, 556-557
unexpected(), 407
union keyword, 237
Unions, 237-243

anonymous, 242-243
combining with bit-fields, 240-241
determining size of, 243
and inheritance, 340
and polymorphism, 241
relationship to classes, 263

unitbuf
format flag, 427
I/O manipulator, 432

UNIX, 2, 3
unmanaged .NET pragma, 588
unsetf(), 428, 429
unsigned type modifier, 38, 39-41
uppercase

format flag, 427
I/O manipulator, 432

#using preprocessor directive, 588
using statement, 15, 350, 475-477, 479, 583
<utility> header, 502

V
_ _value, 588
value_type, 524
Variable(s)

assigning value to, 18, 206
automatic, 36
declaration versus definition, 186, 187
declaring, 18, 19, 20, 35
definition of, 17
dynamic, 36
dynamic initialization of, 280
initializing, 45-46
instance, 246
register, 191-193
specifying type of, 18

Variables, global, 37-38, 134-136
disadvantages of using unnecessary,

135-136
and extern, 186-187
static, 187, 189-191, 478

Variables, local, 4, 35-36, 128-134, 135
declaring, 129, 132-133
static, 187-189, 190

vector class, 500, 503, 504-508
member functions, table of, 505-506

Vectors, 504-514
Virtual base class, 352-356
Virtual functions, 360-372

hierarchical nature of, 366
and inheritance, 363-365
and late binding, 372
overriding, 363
and polymorphism, 360, 363, 365-366,

370, 373
pure, 370-372

virtual keyword, 355, 356, 361
void data type, 22, 25, 26, 34, 35, 149
volatile qualifier, 184-185, 467

W
wcerr, wcin, wclog, and wcout streams, 419
wchar_t data type, 34, 42
while loop, 71-72

declaring variables within, 132, 133
and continue, 74

Whitespace character, 87
and skipws format flag, 427
and ws I/O manipulator, 432, 433

width(), 430-431
Windows programming and C++, 5, 14
write(), 441-442, 470
ws I/O manipulator, 432, 433
wstring class, 537

X
XOR

bitwise operator (^), 198, 200
logical operation of, 51-52

602 C++ from the Ground Up

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 / Index

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 /
Blind Folio 603

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9900-1800

FAX +61-2-9878-8881

http://www.mcgraw-hill.com.au

books-it_sydney@mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Ltd.

TEL +905-430-5000

FAX +905-430-5020

http://www.mcgraw-hill.ca

GREECE, MIDDLE EAST, & AFRICA

(Excluding South Africa)

McGraw-Hill Hellas

TEL +30-210-6560-990

TEL +30-210-6560-993

TEL +30-210-6560-994

FAX +30-210-6545-525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589

http://www.mcgraw-hill.com.mx

fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)

McGraw-Hill Book Company

TEL +65-863-1580

FAX +65-862-3354

http://www.mcgraw-hill.com.sg

mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045

robyn_swanepoel@mcgraw-hill.com

SPAIN

McGraw-Hill/Interamericana de España, S.A.U.

TEL +34-91-180-3000

FAX +34-91-372-8513

http://www.mcgraw-hill.es

professional@mcgraw-hill.es

UNITED KINGDOM, NORTHERN,

EASTERN, & CENTRAL EUROPE

McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224

http://www.mcgraw-hill.co.uk

computing_europe@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:

Osborne/McGraw-Hill

TEL +1-510-549-6600

FAX +1-510-883-7600

http://www.osborne.com

omg_international@mcgraw-hill.com

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:33 AM

Color profile: Generic CMYK printer profile
Composite Default screen

GrdUpSm (8) / C++ from the Ground Up / Schildt / 222897-0 /

More from Herb Schildt—
the World’s #1 Programming Author!

0-07-213485-2

0-07-222680-3

Herb Schildt is an authority on the C, C++, Java, and C# programming languages, and
a master Windows programmer. His programming books have sold more than three
million copies worldwide and have been translated into all major foreign languages.
From Beginner’s Guides to Complete References, Herb’s books fully cover today’s most
important programming languages.

For a complete listing of titles by Herb Schildt,
please visit www.osborne.com

O s b o r n e d e l i v e r s r e s u lt s !]

0-07-222240-7

P:\010Comp\Grnd-Up8\897-0\Index.vp
Tuesday, March 04, 2003 9:08:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

	C++ from the Ground Up, Third Edition
	Cover

	Contents
	Preface
	1 The Story of C++
	The Origins of C++
	The Creation of C
	Understanding the Need for C++
	C++ Is Born

	The Evolution of C++
	What Is Object-Oriented Programming?
	Encapsulation
	Polymorphism
	Inheritance
	C++ Implements OOP
	How C++ Relates to Java and C#

	2 An Overview of C++
	Your First C++ Program
	Entering the Program
	Compiling the Program
	Run the Program
	A Line-by-Line Explanation

	Handling Syntax Errors
	A Second Simple Program
	A More Practical Example
	A New Data Type
	A Quick Review
	Functions
	A Program with Two Functions

	Function Arguments
	Functions Returning Values
	The main() Function
	The General Form of C++ Functions

	Some Output Options
	Two Simple Commands
	The if Statement
	The for Loop

	Blocks of Code
	Semicolons and Positioning
	Indentation Practices
	C++ Keywords
	Identifiers in C++
	The Standard C++ Library

	3 The Basic Data Types
	Declaration of Variables
	Local Variables
	Formal Parameters
	Global Variables

	Some Type Modifiers
	Literals
	Hexadecimal and Octal Literals
	String Literals
	Character Escape Sequences

	Variable Initializations
	Operators
	Arithmetic Operators
	Increment and Decrement
	How C++ Got Its Name
	Relational and Logical Operators

	Expressions
	Type Conversion in Expressions
	Converting to and from bool
	Casts
	Spacing and Parentheses

	4 Program Control Statements
	The if Statement
	The Conditional Expression
	Nested ifs
	The if-else-if Ladder

	The for Loop
	Some Variations on the for Loop
	Missing Pieces
	The Infinite Loop
	Time Delay Loops

	The switch Statement
	Nested switch Statements

	The while Loop
	The do-while Loop
	Using continue
	Using break to Exit Loops
	Nested Loops
	Using the goto Statement
	Putting Together the Pieces

	5 Arrays and Strings
	One-Dimensional Arrays
	No Bounds Checking
	Sorting an Array

	Strings
	Reading a String from the Keyboard

	Some String Library Functions
	strcpy
	strcat
	strcmp
	strlen
	Using the Null Terminator

	Two-Dimensional Arrays
	Multidimensional Arrays
	Array Initialization
	Unsized Array Initializations

	Arrays of Strings
	An Example Using String Arrays

	6 Pointers
	What Are Pointers?
	The Pointer Operators
	The Base Type Is Important
	Assigning Values Through a Pointer

	Pointer Expressions
	Pointer Arithmetic
	Pointer Comparisons

	Pointers and Arrays
	Indexing a Pointer
	Are Pointers and Arrays Interchangeable?

	Pointers and String Literals
	A Comparison Example
	Arrays of Pointers
	The Null Pointer Convention
	Multiple Indirection
	Pointers and 16-bit Environments

	Problems with Pointers
	Uninitialized Pointers
	Invalid Pointer Comparisons
	Forgetting to Reset a Pointer

	7 Functions, Part One: The Fundamentals
	Scope Rules of Functions
	Local Variables
	Formal Parameters
	Global Variables

	Passing Pointers and Arrays
	Calling Functions with Pointers
	Calling Functions with Arrays
	Passing Strings

	argc and argv: Arguments to main()
	Passing Numeric Command Line Arguments
	Converting Numeric Strings to Numbers

	The return Statement
	Returning from a Function
	Returning Values
	void Functions
	Functions That Return Pointers

	Function Prototypes
	Headers: A Closer Look
	Old-Style versus Modern Function Parameter Declarations

	Recursion

	8 Functions, Part Two: References, Overloading, and Default Arguments
	Two Approaches to Argument Passing
	How C++ Passes Arguments
	Using a Pointer to Create a Call-by-Reference

	Reference Parameters
	Declaring Reference Parameters
	Returning References
	Creating a Bounded Array
	Independent References
	A Few Restrictions When Using References

	Function Overloading
	The overload Anachronism

	Default Function Arguments
	Default Arguments versus Overloading
	Using Default Arguments Correctly

	Function Overloading and Ambiguity

	9 More Data Types and Operators
	The const and volatile Qualifiers
	const
	volatile

	Storage Class Specifiers
	auto
	extern
	static Variables
	Register Variables
	The Origins of the register Modifier

	Enumerations
	typedef
	More Operators
	Bitwise Operators
	AND, OR, XOR, and NOT
	The Shift Operators

	The ? Operator
	Compound Assignment
	The Comma Operator
	Multiple Assignments
	Using sizeof
	Dynamic Allocation Using new and delete
	Initializing Dynamically Allocated Memory
	Allocating Arrays
	C's Approach to Dynamic Allocation: malloc() and free()

	Precedence Summary

	10 Structures and Unions
	Structures
	Accessing Structure Members
	Arrays of Structures
	A Simple Inventory Example
	Passing Structures to Functions
	Assigning Structures
	Pointers to Structures and the Arrow Operator
	References to Structures
	Arrays and Structures Within Structures
	C Structure Versus C++ Structures
	Bit-Fields

	Unions
	Anonymous Unions

	Using sizeof to Ensure Portability
	Moving On to Object-Oriented Programming

	11 Introducing the Class
	Class Fundamentals
	The General Form of a class

	A Closer Look at Class Member Access
	Constructors and Destructors
	Parameterized Constructors
	An Initialization Alternative

	Classes and Structures Are Related
	Structures versus Classes

	Unions and Classes Are Related
	Inline Functions
	Creating Inline Functions Inside a Class

	Arrays of Objects
	Initializing Object Arrays

	Pointers to Objects
	Object References

	12 A Closer Look at Classes
	Friend Functions
	Overloading Constructors
	Dynamic Initialization
	Applying Dynamic Initialization to Constructors

	Assigning Objects
	Passing Objects to Functions
	Constructors, Destructors, and Passing Objects
	A Potential Problem When Passing Objects

	Returning Objects
	A Potential Problem When Returning Objects

	Creating and Using a Copy Constructor
	Copy Constructors and Parameters
	Copy Constructors and Initializations
	Using Copy Constructors When an Object Is Returned
	Copy Constructors-Is There a Simpler Way?

	The this Keyword

	13 Operator Overloading
	Operator Overloading Using Member Functions
	Using Member Functions to Overload Unary Operators
	Operator Overloading Tips and Restrictions

	Nonmember Operator Functions
	Order Matters
	Using a Friend to Overload a Unary Operator
	Overloading the Relational and Logical Operators

	A Closer Look at the Assignment Operator
	Overloading []
	Overloading ()
	Overloading Other Operators
	Another Example of Operator Overloading

	14 Inheritance
	Introducing Inheritance
	Base Class Access Control
	Using protected Members
	Using protected for Inheritance of a Base Class
	Reviewing public, protected, and private

	Inheriting Multiple Base Classes
	Constructors, Destructors, and Inheritance
	When Constructors and Destructors Are Executed
	Passing Parameters to Base Class Constructors

	Granting Access
	Reading C++ Inheritance Graphs

	Virtual Base Classes

	15 Virtual Functions and Polymorphism
	Pointers to Derived Types
	References to Derived Types

	Virtual Functions
	Virtual Functions Are Inherited
	Why Virtual Functions?
	A Simple Application of Virtual Functions
	Pure Virtual Functions and Abstract Classes

	Early versus Late Binding
	Polymorphism and the Purist

	16 Templates
	Generic Functions
	A Function with Two Generic Types
	Explicitly Overloading a Generic Function
	Overloading a Function Template
	Using Standard Parameters with Template Functions
	Generic Function Restrictions
	Creating a Generic abs() Function

	Generic Classes
	An Example with Two Generic Data Types
	Creating a Generic Array Class
	Using Non-Type Arguments with Generic Classes
	Using Default Arguments with Template Classes
	Explicit Class Specializations

	17 Exception Handling
	Exception Handling Fundamentals
	exit() and abort()
	Catching Class Types
	Using Multiple catch Statements

	Options for Exception Handling
	Catching All Exceptions
	Restricting Exceptions Thrown by a Function
	Rethrowing an Exception

	Handling Exceptions Thrown by new
	The nothrow Alternative

	Overloading new and delete
	Overloading the nothrow Version of new

	18 The C++ I/O System
	Old VS Modern C++ I/O
	C++ Streams
	The C++ Predefined Streams

	The C++ Stream Classes
	Overloading the I/O Operators
	Creating Inserters
	Using Friend Functions to Overload Inserters
	Overloading Extractors
	C I/O Versus C++ I/O

	Formatted I/O
	Formatting with the ios Member Functions
	Using I/O Manipulators
	Creating Your Own Manipulator Functions

	File I/O
	Opening and Closing a File
	Reading and Writing Text Files
	Unformatted Binary I/O
	Reading and Writing Blocks of Data
	Detecting EOF
	A File Comparison Example

	More Binary I/O Functions
	Random Access
	Checking I/O Status
	Customized I/O and Files

	19 Run-Time Type ID and the Casting Operators
	Run-Time Type Identification (RTTI)
	A Simple Application of Run-Time Type ID
	typeid Can Be Applied to Template Classes

	The Casting Operators
	dynamic_cast
	const_cast
	static_cast
	reinterpret_cast
	The Traditional Cast Versus the Four Casting Operators

	20 Namespaces and Other Advanced Topics
	Namespaces
	Namespace Fundamentals
	using
	Unnamed Namespaces

	The std Namespace
	Pointers to Functions
	Finding the Address of an Overloaded Function

	Static Class Members
	const Member Functions and mutable
	Explicit Constructors
	An Interesting Benefit from Implicit Constructor Conversion

	The Member Initialization Syntax
	Using the asm Keyword
	Linkage Specification
	The * and –>* Pointer-to-Member Operators
	Creating Conversion Functions

	21 Introducing the Standard Template Library
	An Overview of the STL
	The Container Classes
	Vectors
	Accessing a Vector Through an Iterator
	Inserting and Deleting Elements in a Vector
	Storing Class Objects in a Vector
	The Power of Iterators

	Lists
	Sort a List
	Merging One List with Another
	Storing Class Objects in a List

	Maps
	Storing Class Objects in a Map

	Algorithms
	Counting
	Removing and Replacing Elements
	Reversing a Sequence
	Transforming a Sequence
	Exploring the Algorithms

	The string Class
	Some string Member Functions
	Putting Strings into Other Containers

	Final Thoughts on the STL

	22 The C++ Preprocessor
	#define
	Function-Like Macros

	#error
	#include
	Conditional Compilation Directives
	#if, #else, #elif, and #endif
	#ifdef and #ifndef
	#undef
	Using defined
	The Diminishing Role of the Preprocessor

	#line
	#pragma
	The # and ## Preprocessor Operators
	Predefined Macro Names
	Final Thoughts

	A C-Based I/O
	C I/O Uses Streams
	Understanding printf() and scanf()
	printf()
	scanf()

	The C File System
	fopen()
	fputc()
	fgetc()
	feof()
	fclose()
	Using fopen(), fgetc(), fputc(), and fclose()
	ferror() and rewind()
	fread() and fwrite()

	fseek() and Random-Access I/O
	fprintf() and fscanf()
	Erasing Files

	B Working with an Older C++ Compiler
	Two Simple Changes

	C The NET Managed Extensions to C++
	The NET Keyword Extensions
	_ _abstract
	_ _box
	_ _delegate
	_ _event
	_ _finally
	_ _gc
	_ _identifier
	_ _interface
	_ _nogc
	_ _pin
	_ _property
	_ _sealed
	_ _try_cast
	_ _typeof
	_ _value

	Preprocessor Extensions
	The attribute Attribute
	Compiling Managed C++

	Index

